Background independent quantizations-the scalar field: II
International Nuclear Information System (INIS)
Kaminski, Wojciech; Lewandowski, Jerzy; Okolow, Andrzej
2006-01-01
We are concerned with the issue of the quantization of a scalar field in a diffeomorphism invariant manner. We apply the method used in loop quantum gravity. It relies on the specific choice of scalar field variables referred to as the polymer variables. The quantization, in our formulation, amounts to introducing the 'quantum' polymer *-star algebra and looking for positive linear functionals, called states. As assumed in our paper, homeomorphism invariance allows us to derive the complete class of the states. They are determined by the homeomorphism invariant states defined on the CW-complex *-algebra. The corresponding GNS representations of the polymer *-algebra and their self-adjoint extensions are derived, the equivalence classes are found, and invariant subspaces characterized. In part I we outlined those results. Here, we present the technical details
Canonical quantization of spinning relativistic particle in external backgrounds
Energy Technology Data Exchange (ETDEWEB)
Gavrilov, S.P. [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil); Gitman, D.M. [Sao Paulo Univ. (USP), SP (Brazil). Inst. de Fisica
2000-07-01
Full text follows: We revise the problem of the quantization of spinning relativistic particle pseudoclassical model, using a modified consistent canonical scheme. It allows one not only to include arbitrary electromagnetic and gravitational backgrounds in the consideration but to get in course of the quantization a consistent relativistic quantum mechanics, which reproduces literally the behavior of the one-particle sector of quantized spinor field. In particular, in a physical sector of the Hilbert space a complete positive spectrum of energies of relativistic particles and antiparticles is reproduced. Requirement to maintain all classical symmetries under the coordinate transformations and under U(1) transformations allows one to realize operator algebra without any ambiguities. (author)
A definition of background independence
International Nuclear Information System (INIS)
Gryb, Sean
2010-01-01
We propose a definition for background (in)/dependence in dynamical theories of the evolution of configurations that have a continuous symmetry and test this definition on particle models and on gravity. Our definition draws from Barbour's best matching framework developed for the purpose of implementing spatial and temporal relationalism. Among other interesting theories, general relativity can be derived within this framework in novel ways. We study the detailed canonical structure of a wide range of best matching theories and show that their actions must have a local gauge symmetry. When gauge theory is derived in this way, we obtain at the same time a conceptual framework for distinguishing between background-dependent and -independent theories. Gauge invariant observables satisfying Kuchar's criterion are identified and, in simple cases, explicitly computed. We propose a procedure for inserting a global background time into temporally relational theories. Interestingly, using this procedure in general relativity leads to unimodular gravity.
Background field method for nonlinear σ-model in stochastic quantization
International Nuclear Information System (INIS)
Nakazawa, Naohito; Ennyu, Daiji
1988-01-01
We formulate the background field method for the nonlinear σ-model in stochastic quantization. We demonstrate a one-loop calculation for a two-dimensional non-linear σ-model on a general riemannian manifold based on our formulation. The formulation is consistent with the known results in ordinary quantization. As a simple application, we also analyse the multiplicative renormalization of the O(N) nonlinear σ-model. (orig.)
Tensorial spacetime geometries and background-independent quantum field theory
International Nuclear Information System (INIS)
Raetzel, Dennis
2012-01-01
Famously, Einstein read off the geometry of spacetime from Maxwell's equations. Today, we take this geometry that serious that our fundamental theory of matter, the standard model of particle physics, is based on it. However, it seems that there is a gap in our understanding if it comes to the physics outside of the solar system. Independent surveys show that we need concepts like dark matter and dark energy to make our models fit with the observations. But these concepts do not fit in the standard model of particle physics. To overcome this problem, at least, we have to be open to matter fields with kinematics and dynamics beyond the standard model. But these matter fields might then very well correspond to different spacetime geometries. This is the basis of this thesis: it studies the underlying spacetime geometries and ventures into the quantization of those matter fields independently of any background geometry. In the first part of this thesis, conditions are identified that a general tensorial geometry must fulfill to serve as a viable spacetime structure. Kinematics of massless and massive point particles on such geometries are introduced and the physical implications are investigated. Additionally, field equations for massive matter fields are constructed like for example a modified Dirac equation. In the second part, a background independent formulation of quantum field theory, the general boundary formulation, is reviewed. The general boundary formulation is then applied to the Unruh effect as a testing ground and first attempts are made to quantize massive matter fields on tensorial spacetimes.
Conditional expectations on the von Neumann algebras and causal independence of quantized fields
International Nuclear Information System (INIS)
Dadashyan, K.Yu.; Khoruzhij, S.S.
1981-01-01
Implementation of the condition of casual independence of quantized fields has been established for a number of quantum-field systems. Implementation of a property of the Haag-Castler casual independence has been proved for a net of the von Neumann local algebras in a number of models of free and quantized fields interacting in the Fock local way. In particular, proved is a theorem of meeting the condition of casual independence with the net of local albegras of the Dirac free field. A new method based on the techniques of noncommutative probability law has been used for the proof [ru
Quantum background independence in string theory
International Nuclear Information System (INIS)
Witten, E.
1994-01-01
Not only in physical string theories, but also in some highly simplified situations, background independence has been difficult to understand. It is argued that the ''holomorphic anomaly'' of Bershadsky, Cecotti, Ooguri and Vafa gives a fundamental explanation of some of the problems. Moreover, their anomaly equation can be interpreted in terms of a rather peculiar quantum version of background independence: in systems afflicted by the anomaly, background independence does not hold order by order in perturbation theory, but the exact partition function as a function of the coupling constants has a background independent interpretation as a state in an auxiliary quantum Hilbert space. The significance of this auxiliary space is otherwise unknown. (author). 23 refs
Background field quantization in non-covariant gauges: Renormalization and WTST identities
International Nuclear Information System (INIS)
McKeon, G.; Phillips, S.B.; Samant, S.S.; Sherry, T.N.
1986-01-01
Background field quantization of pure YM theories in non-covariant gauges is treated with particular emphasis on renormalization. Gauge fixing terms of the form (1/2α)n . Qsup(a)fsup(ab)n . Qsup(b) are considered where fsup(ab) can assume the forms fsup(ab)sub((i))=-deltasup(ab) (the axial gauge), fsup(ab)sub((ii))=(n . D(A))sup(2ab)/n 4 and fsup(ab)sub((iii))=D 2 (A)sup(ab)/n 2 (the planar gauge). For the cases where fsup(ab) depends explicitly on the background field Asub(μ)sup(a) the ghost sector is enlarged by the addition of appropriate Nielson-Kallosh ghost fields. The BRS identities for these gauge choices are derived and solved. The quantum-corrected versions of both the bare background field gauge transformations and the bare quantum field gauge transformations are obtained from the BRS analysis. It is also shown that, to one loop, all the counter terms are determined by the background field independent part of the theory and this result is used, in cases (ii) and (iii), to derive all the counter terms and to show that Kallosh's theorem is verified. The result is also used to demonstrate the pathological nature of case (i) for αnot=0, in particular the result that Kallosh's theorem is not applicable. The result that the generating functional of Green functions is independent of the background field Asub(μ)sup(a) in the absence of all external sources is generalized to the case of non-covariant gauges. The equality established by Abbott between the 1PI generating functionals GAMMA tilde[A,0] and GAMMAsub(c)[anti Q; A] sub(anti Q=A), where GAMMAsub(c) is a conventional generating functional in an A-dependent gauge, is analysed. We show that the WTST identities satisfied by GAMMAsub(c) reduce, when anti Q is set equal to A, to the naive Ward-identity satisfied by GAMMA tilde[A,0]. (orig.)
Conserved quantities in background independent theories
Energy Technology Data Exchange (ETDEWEB)
Markopoulou, Fotini [Perimeter Institute for Theoretical Physics, 35 King Street North, Waterloo, Ontario N2J 2W9 (Canada); Department of Physics, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)
2007-05-15
We discuss the difficulties that background independent theories based on quantum geometry encounter in deriving general relativity as the low energy limit. We follow a geometrogenesis scenario of a phase transition from a pre-geometric theory to a geometric phase which suggests that a first step towards the low energy limit is searching for the effective collective excitations that will characterize it. Using the correspondence between the pre-geometric background independent theory and a quantum information processor, we are able to use the method of noiseless subsystems to extract such coherent collective excitations. We illustrate this in the case of locally evolving graphs.
Quantized Dirac field in curved Riemann--Cartan background. I. Symmetry properties, Green's function
International Nuclear Information System (INIS)
Nieh, H.T.; Yan, M.L.
1982-01-01
In the present series of papers, we study the properties of quantized Dirac field in curved Riemann--Cartan space, with particular attention on the role played by torsion. In this paper, we give, in the spirit of the original work of Weyl, a systematic presentation of Dirac's theory in curved Riemann--Cartan space. We discuss symmetry properties of the system, and derive conservation laws as direct consequences of these symmetries. Also discussed is conformal gauge symmetry, with torsion effectively playing the role of a conformal gauge field. To obtain short-distance behavior, we calculate the spinor Green's function, in curved Riemann--Cartan background, using the Schwinger--DeWitt method of proper-time expansion. The calculation corresponds to a generalization of DeWitt's calculation for a Riemannian background
G{sub 2}-structures and quantization of non-geometric M-theory backgrounds
Energy Technology Data Exchange (ETDEWEB)
Kupriyanov, Vladislav G. [Centro de Matemática, Computação e Cognição, Universidade de Federal do ABC,Santo André, SP (Brazil); Tomsk State University,Tomsk (Russian Federation); Szabo, Richard J. [Department of Mathematics, Heriot-Watt University,Colin Maclaurin Building, Riccarton, Edinburgh EH14 4AS (United Kingdom); Maxwell Institute for Mathematical Sciences,Edinburgh (United Kingdom); The Higgs Centre for Theoretical Physics,Edinburgh (United Kingdom)
2017-02-20
We describe the quantization of a four-dimensional locally non-geometric M-theory background dual to a twisted three-torus by deriving a phase space star product for deformation quantization of quasi-Poisson brackets related to the nonassociative algebra of octonions. The construction is based on a choice of G{sub 2}-structure which defines a nonassociative deformation of the addition law on the seven-dimensional vector space of Fourier momenta. We demonstrate explicitly that this star product reduces to that of the three-dimensional parabolic constant R-flux model in the contraction of M-theory to string theory, and use it to derive quantum phase space uncertainty relations as well as triproducts for the nonassociative geometry of the four-dimensional configuration space. By extending the G{sub 2}-structure to a Spin(7)-structure, we propose a 3-algebra structure on the full eight-dimensional M2-brane phase space which reduces to the quasi-Poisson algebra after imposing a particular gauge constraint, and whose deformation quantisation simultaneously encompasses both the phase space star products and the configuration space triproducts. We demonstrate how these structures naturally fit in with previous occurences of 3-algebras in M-theory.
International Nuclear Information System (INIS)
Buchbinder, I.L.; Lyakhovich, S.L.; Pershin, V.D.; Fradkin, E.S.
1991-01-01
At present, superstring theory is the only candidate to be a unified theory of all fundamental interactions. For this reason, the various aspects of the string theory have been attracting great attention. String theory has a nontrivial gauge symmetry and therefore is an interesting object from the viewpoint of application of general quantization methods. This paper discusses the bosonic string theory. The purpose of this paper is a consistent operator quantization of the theory with the action. The natural basis for it is provided by the method of the generalized canonical quantization
PREFACE: Loops 11: Non-Perturbative / Background Independent Quantum Gravity
Mena Marugán, Guillermo A.; Barbero G, J. Fernando; Garay, Luis J.; Villaseñor, Eduardo J. S.; Olmedo, Javier
2012-05-01
Loops 11 The international conference LOOPS'11 took place in Madrid from the 23-28 May 2011. It was hosted by the Instituto de Estructura de la Materia (IEM), which belongs to the Consejo Superior de Investigaciones Cientĺficas (CSIC). Like previous editions of the LOOPS meetings, it dealt with a wealth of state-of-the-art topics on Quantum Gravity, with special emphasis on non-perturbative background-independent approaches to spacetime quantization. The main topics addressed at the conference ranged from the foundations of Quantum Gravity to its phenomenological aspects. They encompassed different approaches to Loop Quantum Gravity and Cosmology, Polymer Quantization, Quantum Field Theory, Black Holes, and discrete approaches such as Dynamical Triangulations, amongst others. In addition, this edition celebrated the 25th anniversary of the introduction of the now well-known Ashtekar variables and the Wednesday morning session was devoted to this silver jubilee. The structure of the conference was designed to reflect the current state and future prospects of research on the different topics mentioned above. Plenary lectures that provided general background and the 'big picture' took place during the mornings, and the more specialised talks were distributed in parallel sessions during the evenings. To be more specific, Monday evening was devoted to Shape Dynamics and Phenomenology Derived from Quantum Gravity in Parallel Session A, and to Covariant Loop Quantum Gravity and Spin foams in Parallel Session B. Tuesday's three Parallel Sessions dealt with Black Hole Physics and Dynamical Triangulations (Session A), the continuation of Monday's session on Covariant Loop Quantum Gravity and Spin foams (Session B) and Foundations of Quantum Gravity (Session C). Finally, Thursday and Friday evenings were devoted to Loop Quantum Cosmology (Session A) and to Hamiltonian Loop Quantum Gravity (Session B). The result of the conference was very satisfactory and enlightening. Not
International Nuclear Information System (INIS)
Hack, Thomas-Paul
2014-01-01
We quantize the linearized Einstein–Klein–Gordon system on arbitrary on-shell backgrounds in a manifestly covariant and gauge-invariant manner. For the special case of perturbations in inflation, i.e. on-shell backgrounds of Friedmann–Lemaître–Robertson–Walker type, we compare our general quantization construction with the standard approach to the quantum theory of perturbations in inflation. We find that not all local quantum observables of the linearized Einstein–Klein–Gordon system can be split into local observables of scalar and tensor type as in the standard approach. However, we argue that this subclass of observables is sufficient for measuring perturbations that vanish at spatial infinity, which is in line with standard assumptions. Finally, we comment on a recent observation that, upon standard quantization, the quantum Bardeen potentials display a non-local behaviour and argue that a similar phenomenon occurs in any local quantum field theory. It is the hope of the author that the present work may constitute a bridge between the generally applicable and thus powerful framework of algebraic quantum field theory in curved spacetimes and the standard treatment of perturbations in inflation. (paper)
Quantization of the Type II superstring in a curved six-dimensional background
International Nuclear Information System (INIS)
Berkovits, Nathan
2000-01-01
A sigma model action with N=2 D=6 superspace variables is constructed for the Type II superstring compactified to six curved dimensions with Ramond-Ramond flux. The action can be quantized since the sigma model is linear when the six-dimensional space-time is flat. When the six-dimensional space-time is AdS 3 xS 3 , the action reduces to one found earlier with Vafa and Witten
On the background independence of two-dimensional topological gravity
Imbimbo, Camillo
1995-04-01
We formulate two-dimensional topological gravity in a background covariant Lagrangian framework. We derive the Ward identities which characterize the dependence of physical correlators on the background world-sheet metric defining the gauge-slice. We point out the existence of an "anomaly" in Ward identitites involving correlators of observables with higher ghost number. This "anomaly" represents an obstruction for physical correlators to be globally defined forms on moduli space which could be integrated in a background independent way. Starting from the anomalous Ward identities, we derive "descent" equations whose solutions are cocycles of the Lie algebra of the diffeomorphism group with values in the space of local forms on the moduli space. We solve the descent equations and provide explicit formulas for the cocycles, which allow for the definition of background independent integrals of physical correlators on the moduli space.
Graviton propagator from background-independent quantum gravity.
Rovelli, Carlo
2006-10-13
We study the graviton propagator in Euclidean loop quantum gravity. We use spin foam, boundary-amplitude, and group-field-theory techniques. We compute a component of the propagator to first order, under some approximations, obtaining the correct large-distance behavior. This indicates a way for deriving conventional spacetime quantities from a background-independent theory.
International Nuclear Information System (INIS)
Naito, S.
1976-01-01
We derive commutation relations (CR's) between gauge-invariant quantities in the Yang-Mills field theory by applying the Peierls method. The CR's obtained are different from those given by Mandelstam in his gauge-independent, path-dependent formalism. However, our CR's are shown to give a consistently quantized field theory, while his CR's do not. In fact, there exist systematic errors in Mandelstam's treatment of the covariant Green's functions. On the other hand, if we correctly treat covariant Green's functions guided by his procedure, our CR's are shown to lead to the same Feynman rules for the Yang-Mills field as prescribed by Feynman, DeWitt, Faddeev and Popov, and Mandelstam
Background-independent measurement of θ13 in Double Chooz
International Nuclear Information System (INIS)
Abe, Y.; Anjos, J.C. dos; Barriere, J.C.; Baussan, E.; Bekman, I.; Bergevin, M.; Bezerra, T.J.C.; Bezrukov, L.; Blucher, E.; Buck, C.; Busenitz, J.; Cabrera, A.; Caden, E.; Camilleri, L.; Carr, R.; Cerrada, M.; Chang, P.-J.; Chauveau, E.
2014-01-01
The oscillation results published by the Double Chooz Collaboration in 2011 and 2012 rely on background models substantiated by reactor-on data. In this analysis, we present a background-model-independent measurement of the mixing angle θ 13 by including 7.53 days of reactor-off data. A global fit of the observed antineutrino rates for different reactor power conditions is performed, yielding a measurement of both θ 13 and the total background rate. The results on the mixing angle are improved significantly by including the reactor-off data in the fit, as it provides a direct measurement of the total background rate. This reactor rate modulation analysis considers antineutrino candidates with neutron captures on both Gd and H, whose combination yields sin 2 (2θ 13 )=0.102±0.028(stat.)±0.033(syst.). The results presented in this study are fully consistent with the ones already published by Double Chooz, achieving a competitive precision. They provide, for the first time, a determination of θ 13 that does not depend on a background model
On background-independent open-string field theory
International Nuclear Information System (INIS)
Witten, E.
1992-01-01
A framework for background-independent open-string field theory is proposed. The approach involves using the Batalin-Vilkovisky formalism, in a way suggested by recent developments in closed-string field theory, to implicitly define a gauge-invariant Lagrangian in a hypothetical ''space of all open-string world-sheet theories.'' It is built into the formalism that classical solutions of the string field theory are Becchi-Rouet-Stora-Tyutin- (BRST-) invariant open-string world-sheet theories and that, when expanding around a classical solution, the infinitesimal gauge transformations are generated by the world-sheet BRST operator
International Nuclear Information System (INIS)
Arodz, H.
1987-01-01
The two formulations of quantum theory of the free electromagnetic field are presented. In the Coulomb gauge approach the independent dynamical variables have been identified and then, in order to quantize the theory, it has been sufficient to apply the straightforward canonical quantization. In the Gupta-Bleuler approach the auxilliary theory is first considered. The straightforward canonical quantization of it leads to the quantum theory defined in the space G with indefinite norm. 15 refs. (author)
A model independent safeguard against background mismodeling for statistical inference
Energy Technology Data Exchange (ETDEWEB)
Priel, Nadav; Landsman, Hagar; Manfredini, Alessandro; Budnik, Ranny [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Herzl St. 234, Rehovot (Israel); Rauch, Ludwig, E-mail: nadav.priel@weizmann.ac.il, E-mail: rauch@mpi-hd.mpg.de, E-mail: hagar.landsman@weizmann.ac.il, E-mail: alessandro.manfredini@weizmann.ac.il, E-mail: ran.budnik@weizmann.ac.il [Teilchen- und Astroteilchenphysik, Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany)
2017-05-01
We propose a safeguard procedure for statistical inference that provides universal protection against mismodeling of the background. The method quantifies and incorporates the signal-like residuals of the background model into the likelihood function, using information available in a calibration dataset. This prevents possible false discovery claims that may arise through unknown mismodeling, and corrects the bias in limit setting created by overestimated or underestimated background. We demonstrate how the method removes the bias created by an incomplete background model using three realistic case studies.
On the background independence of string field theory
International Nuclear Information System (INIS)
Sen, A.
1990-01-01
Given a solution Ψ cl of the classical equations of motion in either closed or open string field theory formulated around a given conformal field theory background, we can construct a new operator Q B in the corresponding two-dimensional field theory such that (Q B ) 2 =0. It is shown that in the limit when the background field Ψ cl is weak, Q B can be identified with the BRST charge of a new local conformal field theory. This indicates that the string field theories formulated around these two different conformal field theories are actually the same theory, and that these two conformal field theories may be regarded as different classical solutions of this string field theory. (orig.)
International Nuclear Information System (INIS)
Cabrera, J. A.; Martin, R.
1976-01-01
We present in this work a review of the conventional quantization procedure, the proposed by I.E. Segal and a new quantization procedure similar to this one for use in non linear problems. We apply this quantization procedures to different potentials and we obtain the appropriate equations of motion. It is shown that for the linear case the three procedures exposed are equivalent but for the non linear cases we obtain different equations of motion and different energy spectra. (Author) 16 refs
International Nuclear Information System (INIS)
Becker, D.; Reuter, M.
2014-01-01
The most momentous requirement a quantum theory of gravity must satisfy is Background Independence, necessitating in particular an ab initio derivation of the arena all non-gravitational physics takes place in, namely spacetime. Using the background field technique, this requirement translates into the condition of an unbroken split-symmetry connecting the (quantized) metric fluctuations to the (classical) background metric. If the regularization scheme used violates split-symmetry during the quantization process it is mandatory to restore it in the end at the level of observable physics. In this paper we present a detailed investigation of split-symmetry breaking and restoration within the Effective Average Action (EAA) approach to Quantum Einstein Gravity (QEG) with a special emphasis on the Asymptotic Safety conjecture. In particular we demonstrate for the first time in a non-trivial setting that the two key requirements of Background Independence and Asymptotic Safety can be satisfied simultaneously. Carefully disentangling fluctuation and background fields, we employ a ‘bi-metric’ ansatz for the EAA and project the flow generated by its functional renormalization group equation on a truncated theory space spanned by two separate Einstein–Hilbert actions for the dynamical and the background metric, respectively. A new powerful method is used to derive the corresponding renormalization group (RG) equations for the Newton- and cosmological constant, both in the dynamical and the background sector. We classify and analyze their solutions in detail, determine their fixed point structure, and identify an attractor mechanism which turns out instrumental in the split-symmetry restoration. We show that there exists a subset of RG trajectories which are both asymptotically safe and split-symmetry restoring: In the ultraviolet they emanate from a non-Gaussian fixed point, and in the infrared they loose all symmetry violating contributions inflicted on them by the
Energy Technology Data Exchange (ETDEWEB)
Faizal, Mir
2013-12-18
In this Letter we will analyze the creation of the multiverse. We will first calculate the wave function for the multiverse using third quantization. Then we will fourth-quantize this theory. We will show that there is no single vacuum state for this theory. Thus, we can end up with a multiverse, even after starting from a vacuum state. This will be used as a possible explanation for the creation of the multiverse. We also analyze the effect of interactions in this fourth-quantized theory.
International Nuclear Information System (INIS)
Klauder, J.R.
1983-01-01
The author provides an introductory survey to stochastic quantization in which he outlines this new approach for scalar fields, gauge fields, fermion fields, and condensed matter problems such as electrons in solids and the statistical mechanics of quantum spins. (Auth.)
Background Independent Open String Field Theory and Constant B-Field
Nemeschansky, D.; Yasnov, V.
2000-01-01
We calculate the background independent action for bosonic and supersymmetric open string field theory in a constant B-field. We also determine the tachyon effective action in the presence of constant B-field.
Quantization ambiguity, ergodicity and semiclassics
International Nuclear Information System (INIS)
Kaplan, Lev
2002-01-01
It is well known that almost all eigenstates of a classically ergodic system are individually ergodic on coarse-grained scales. This has important implications for the quantization ambiguity in ergodic systems: the difference between alternative quantizations is suppressed compared with the O( h-bar 2 ) ambiguity in the integrable or regular case. For two-dimensional ergodic systems in the high-energy regime, individual eigenstates are independent of the choice of quantization procedure, in contrast with the regular case, where even the ordering of eigenlevels is ambiguous. Surprisingly, semiclassical methods are shown to be much more precise in any dimension for chaotic than for integrable systems
Weaver, Nik
2001-01-01
With a unique approach and presenting an array of new and intriguing topics, Mathematical Quantization offers a survey of operator algebras and related structures from the point of view that these objects are quantizations of classical mathematical structures. This approach makes possible, with minimal mathematical detail, a unified treatment of a variety of topics.Detailed here for the first time, the fundamental idea of mathematical quantization is that sets are replaced by Hilbert spaces. Building on this idea, and most importantly on the fact that scalar-valued functions on a set correspond to operators on a Hilbert space, one can determine quantum analogs of a variety of classical structures. In particular, because topologies and measure classes on a set can be treated in terms of scalar-valued functions, we can transfer these constructions to the quantum realm, giving rise to C*- and von Neumann algebras.In the first half of the book, the author quickly builds the operator algebra setting. He uses this ...
Covariant and background independent functional RG flow for the effective average action
Energy Technology Data Exchange (ETDEWEB)
Safari, Mahmoud; Vacca, Gian Paolo [Dipartimento di Fisica and INFN - Sezione di Bologna,via Irnerio 46, 40126 Bologna (Italy)
2016-11-23
We extend our prescription for the construction of a covariant and background-independent effective action for scalar quantum field theories to the case where momentum modes below a certain scale are suppressed by the presence of an infrared regulator. The key step is an appropriate choice of the infrared cutoff for which the Ward identity, capturing the information from single-field dependence of the ultraviolet action, continues to be exactly solvable, and therefore, in addition to covariance, manifest background independence of the effective action is guaranteed at any scale. A practical consequence is that in this framework one can adopt truncations dependent on the single total field. Furthermore we discuss the necessary and sufficient conditions for the preservation of symmetries along the renormalization group flow.
Model-independent test for scale-dependent non-Gaussianities in the cosmic microwave background.
Räth, C; Morfill, G E; Rossmanith, G; Banday, A J; Górski, K M
2009-04-03
We present a model-independent method to test for scale-dependent non-Gaussianities in combination with scaling indices as test statistics. Therefore, surrogate data sets are generated, in which the power spectrum of the original data is preserved, while the higher order correlations are partly randomized by applying a scale-dependent shuffling procedure to the Fourier phases. We apply this method to the Wilkinson Microwave Anisotropy Probe data of the cosmic microwave background and find signatures for non-Gaussianities on large scales. Further tests are required to elucidate the origin of the detected anomalies.
Energy Technology Data Exchange (ETDEWEB)
Morris, Tim R. [STAG Research Centre & Department of Physics and Astronomy, University of Southampton,Highfield, Southampton, SO17 1BJ (United Kingdom)
2016-11-25
In single-metric approximations to the exact renormalization group (RG) for quantum gravity, it has been not been clear how to treat the large curvature domain beyond the point where the effective cutoff scale k is less than the lowest eigenvalue of the appropriate modified Laplacian. We explain why this puzzle arises from background dependence, resulting in Wilsonian RG concepts being inapplicable. We show that when properly formulated over an ensemble of backgrounds, the Wilsonian RG can be restored. This in turn implies that solutions should be smooth and well defined no matter how large the curvature is taken. Even for the standard single-metric type approximation schemes, this construction can be rigorously derived by imposing a modified Ward identity (mWI) corresponding to rescaling the background metric by a constant factor. However compatibility in this approximation requires the space-time dimension to be six. Solving the mWI and flow equation simultaneously, new variables are then derived that are independent of overall background scale.
Equivalence of Lagrangian and Hamiltonian BRST quantizations
International Nuclear Information System (INIS)
Grigoryan, G.V.; Grigoryan, R.P.; Tyutin, I.V.
1992-01-01
Two approaches to the quantization of gauge theories using BRST symmetry are widely used nowadays: the Lagrangian quantization, developed in (BV-quantization) and Hamiltonian quantization, formulated in (BFV-quantization). For all known examples of field theory (Yang-Mills theory, gravitation etc.) both schemes give equivalent results. However the equivalence of these approaches in general wasn't proved. The main obstacle in comparing of these formulations consists in the fact, that in Hamiltonian approach the number of ghost fields is equal to the number of all first-class constraints, while in the Lagrangian approach the number of ghosts is equal to the number of independent gauge symmetries, which is equal to the number of primary first-class constraints only. This paper is devoted to the proof of the equivalence of Lagrangian and Hamiltonian quantizations for the systems with first-class constraints only. This is achieved by a choice of special gauge in the Hamiltonian approach. It's shown, that after integration over redundant variables on the functional integral we come to effective action which is constructed according to rules for construction of the effective action in Lagrangian quantization scheme
Mathematical obstructions to quantization
International Nuclear Information System (INIS)
Chernoff, P.R.
1981-01-01
Quantization is commonly viewed as a mapping of functions on classical phase space to operators on Hilbert space, preserving the Lie algebra structure and satisfying some additional physically motivated requirements. The present paper surveys the main results, old and new, concerning the existence of quantization process. Although it is possible to preserve the Lie structure, it is shown that any one of a number of reasonable additional requirements on the quantization process leads to a contradiction
Asymptotic and geometrical quantization
International Nuclear Information System (INIS)
Karasev, M.V.; Maslov, V.P.
1984-01-01
The main ideas of geometric-, deformation- and asymptotic quantizations are compared. It is shown that, on the one hand, the asymptotic approach is a direct generalization of exact geometric quantization, on the other hand, it generates deformation in multiplication of symbols and Poisson brackets. Besides investigating the general quantization diagram, its applications to the calculation of asymptotics of a series of eigenvalues of operators possessing symmetry groups are considered
International Nuclear Information System (INIS)
Hueffel, H.
1990-01-01
After a brief review of the BRST formalism and of the Parisi-Wu stochastic quantization method we introduce the BRST stochastic quantization scheme. It allows the second quantization of constrained Hamiltonian systems in a manifestly gauge symmetry preserving way. The examples of the relativistic particle, the spinning particle and the bosonic string are worked out in detail. The paper is closed by a discussion on the interacting field theory associated to the relativistic point particle system. 58 refs. (Author)
Probing non-standard gravity with the growth index: a background independent analysis
International Nuclear Information System (INIS)
Steigerwald, Heinrich; Marinoni, Christian; Bel, Julien
2014-01-01
Measurements of the growth index of linear matter density fluctuations γ(z) provide a clue as to whether Einstein's field equations encompass gravity also on large cosmic scales, those where the expansion of the universe accelerates. We show that the information encoded in this function can be satisfactorily parameterized using a small set of coefficients γ i , in such a way that the true scaling of the growth index is recovered to better than 1% in most dark energy and dark gravity models. We find that the likelihood of current data, given this formalism and the Λ Cold Dark Matter (ΛCDM) expansion model of Planck, is maximal for γ 0 = 0.74 +0.44 −0.41 and γ 1 = 0.01 +0.46 −0.46 , a measurement compatible with the ΛCDM predictions (γ 0 = 0.545, γ 1 = −0.007). In addition, data tend to favor models predicting slightly less growth of structures than the Planck ΛCDM scenario. The main aim of the paper is to provide a prescription for routinely calculating, in an analytic way, the amplitude of the growth indices γ i in relevant cosmological scenarios, and to show that these parameters naturally define a space where predictions of alternative theories of gravity can be compared against growth data in a manner which is independent from the expansion history of the cosmological background. As the standard Ω-plane provides a tool to identify different expansion histories H(t) and their relation to various cosmological models, the γ-plane can thus be used to locate different growth rate histories f(t) and their relation to alternatives model of gravity. As a result, we find that the Dvali-Gabadadze-Porrati gravity model is rejected with a 95% confidence level. By simulating future data sets, such as those that a Euclid-like mission will provide, we also show how to tell apart ΛCDM predictions from those of more extreme possibilities, such as smooth dark energy models, clustering quintessence or parameterized post-Friedmann cosmological models
Metric-independent measures for supersymmetric extended object theories on curved backgrounds
International Nuclear Information System (INIS)
Nishino, Hitoshi; Rajpoot, Subhash
2014-01-01
For Green–Schwarz superstring σ-model on curved backgrounds, we introduce a non-metric measure Φ≡ϵ ij ϵ IJ (∂ i φ I )(∂ j φ J ) with two scalars φ I (I=1,2) used in ‘Two-Measure Theory’ (TMT). As in the flat-background case, the string tension T=(2πα ′ ) −1 emerges as an integration constant for the A i -field equation. This mechanism is further generalized to supermembrane theory, and to super-p-brane theory, both on general curved backgrounds. This shows the universal applications of dynamical measure of TMT to general supersymmetric extended objects on general curved backgrounds
A Fast, Background-Independent Retrieval Strategy for Color Image Databases
National Research Council Canada - National Science Library
Das, M; Draper, B. A; Lim, W. J; Manmatha, R; Riseman, E. M
1996-01-01
We describe an interactive, multi-phase color-based image retrieval system which is capable of identifying query objects specified by the user in an image in the presence of significant, interfering backgrounds...
Deep Learning Policy Quantization
van de Wolfshaar, Jos; Wiering, Marco; Schomaker, Lambertus
2018-01-01
We introduce a novel type of actor-critic approach for deep reinforcement learning which is based on learning vector quantization. We replace the softmax operator of the policy with a more general and more flexible operator that is similar to the robust soft learning vector quantization algorithm.
International Nuclear Information System (INIS)
Koral, K.F.; Sarkar, S.D.
1977-01-01
A new computer program for adrenal-uptake measurements is presented in which the algorithm identifies the adrenal and background regions automatically after being given a starting point in the image. Adrenal uptakes and results of reproducibility tests are given for patients injected with [ 131 I] 6β-iodomethyl-19-norcholesterol. The data to date indicate no overlap in the percent-of-dose uptakes for normal patients and patients with Cushing's disease and Cushing's syndrome
On quantization of time-dependent systems with constraints
International Nuclear Information System (INIS)
Gadjiev, S A; Jafarov, R G
2007-01-01
The Dirac method of canonical quantization of theories with second-class constraints has to be modified if the constraints depend on time explicitly. A solution of the problem was given by Gitman and Tyutin. In the present work we propose an independent way to derive the rules of quantization for these systems, starting from the physical equivalent theory with trivial non-stationarity
On quantization of time-dependent systems with constraints
International Nuclear Information System (INIS)
Hadjialieva, F.G.; Jafarov, R.G.
1993-07-01
The Dirac method of canonical quantization of theories with second class constraints has to be modified if the constraints depend on time explicitly. A solution of the problem was given by Gitman and Tyutin. In the present work we propose an independent way to derive the rules of quantization for these systems, starting from physical equivalent theory with trivial nonstationarity. (author). 4 refs
On quantization of time-dependent systems with constraints
Energy Technology Data Exchange (ETDEWEB)
Gadjiev, S A; Jafarov, R G [Institute for Physical Problems, Baku State University, AZ11 48 Baku (Azerbaijan)
2007-03-30
The Dirac method of canonical quantization of theories with second-class constraints has to be modified if the constraints depend on time explicitly. A solution of the problem was given by Gitman and Tyutin. In the present work we propose an independent way to derive the rules of quantization for these systems, starting from the physical equivalent theory with trivial non-stationarity.
Gerhardt, Claus
2018-01-01
A unified quantum theory incorporating the four fundamental forces of nature is one of the major open problems in physics. The Standard Model combines electro-magnetism, the strong force and the weak force, but ignores gravity. The quantization of gravity is therefore a necessary first step to achieve a unified quantum theory. In this monograph a canonical quantization of gravity has been achieved by quantizing a geometric evolution equation resulting in a gravitational wave equation in a globally hyperbolic spacetime. Applying the technique of separation of variables we obtain eigenvalue problems for temporal and spatial self-adjoint operators where the temporal operator has a pure point spectrum with eigenvalues $\\lambda_i$ and related eigenfunctions, while, for the spatial operator, it is possible to find corresponding eigendistributions for each of the eigenvalues $\\lambda_i$, if the Cauchy hypersurface is asymptotically Euclidean or if the quantized spacetime is a black hole with a negative cosmological ...
A Modified Scheme of Triplectic Quantization
Geyer, B.; Gitman, D. M.; Lavrov, P. M.
1998-01-01
A modified version of triplectic quantization, first introduce by Batalin and Martnelius, is proposed which makes use of two independent master equations, one for the action and one for the gauge functional such that the initial classical action also obeys that master equation.
Quasi-algebras and general Weyl quantization
International Nuclear Information System (INIS)
Lassner, G.A.; Lassner, G.
1984-01-01
In this paper we show how the systematic use of the topological properties of the quasi-sup(*)-algebra L(S,S') leads to a systematization of the quantization procedure. With that as background, the multiplication of certain classes of pairs of operators of L(S,S') and the corresponding twisted product of their sybmols are defined. (orig./HSI)
Studies in geometric quantization
International Nuclear Information System (INIS)
Tuynman, G.M.
1988-01-01
This thesis contains five chapters, of which the first, entitled 'What is prequantization, and what is geometric quantization?', is meant as an introduction to geometric quantization for the non-specialist. The second chapter, entitled 'Central extensions and physics' deals with the notion of central extensions of manifolds and elaborates and proves the statements made in the first chapter. Central extensions of manifolds occur in physics as the freedom of a phase factor in the quantum mechanical state vector, as the phase factor in the prequantization process of classical mechanics and it appears in mathematics when studying central extension of Lie groups. In this chapter the connection between these central extensions is investigated and a remarkable similarity between classical and quantum mechanics is shown. In chapter three a classical model is given for the hydrogen atom including spin-orbit and spin-spin interaction. The method of geometric quantization is applied to this model and the results are discussed. In the final chapters (4 and 5) an explicit method to calculate the operators corresponding to classical observables is given when the phase space is a Kaehler manifold. The obtained formula are then used to quantise symplectic manifolds which are irreducible hermitian symmetric spaces and the results are compared with other quantization procedures applied to these manifolds (in particular to Berezin's quantization). 91 refs.; 3 tabs
Fourier duality as a quantization principle
International Nuclear Information System (INIS)
Aldrovandi, R.; Saeger, L.A.
1996-08-01
The Weyl-Wigner prescription for quantization on Euclidean phase spaces makes essential use of Fourier duality. The extension of this property to more general phase spaces requires the use of Kac algebras, which provide the necessary background for the implementation of Fourier duality on general locally groups. Kac algebras - and the duality they incorporate are consequently examined as candidates for a general quantization framework extending the usual formalism. Using as a test case the simplest non-trivial phase space, the half-plane, it is shown how the structures present in the complete-plane case must be modified. Traces, for example, must be replaced by their noncommutative generalizations - weights - and the correspondence embodied in the Weyl-Wigner formalism is no more complete. Provided the underlying algebraic structure is suitably adapted to each case, Fourier duality is shown to be indeed a very powerful guide to the quantization of general physical systems. (author). 30 refs
Weak associativity and deformation quantization
Energy Technology Data Exchange (ETDEWEB)
Kupriyanov, V.G., E-mail: vladislav.kupriyanov@gmail.com [CMCC-Universidade Federal do ABC, Santo André, SP (Brazil); Tomsk State University, Tomsk (Russian Federation)
2016-09-15
Non-commutativity and non-associativity are quite natural in string theory. For open strings it appears due to the presence of non-vanishing background two-form in the world volume of Dirichlet brane, while in closed string theory the flux compactifications with non-vanishing three-form also lead to non-geometric backgrounds. In this paper, working in the framework of deformation quantization, we study the violation of associativity imposing the condition that the associator of three elements should vanish whenever each two of them are equal. The corresponding star products are called alternative and satisfy important for physical applications properties like the Moufang identities, alternative identities, Artin's theorem, etc. The condition of alternativity is invariant under the gauge transformations, just like it happens in the associative case. The price to pay is the restriction on the non-associative algebra which can be represented by the alternative star product, it should satisfy the Malcev identity. The example of nontrivial Malcev algebra is the algebra of imaginary octonions. For this case we construct an explicit expression of the non-associative and alternative star product. We also discuss the quantization of Malcev–Poisson algebras of general form, study its properties and provide the lower order expression for the alternative star product. To conclude we define the integration on the algebra of the alternative star products and show that the integrated associator vanishes.
Weak associativity and deformation quantization
International Nuclear Information System (INIS)
Kupriyanov, V.G.
2016-01-01
Non-commutativity and non-associativity are quite natural in string theory. For open strings it appears due to the presence of non-vanishing background two-form in the world volume of Dirichlet brane, while in closed string theory the flux compactifications with non-vanishing three-form also lead to non-geometric backgrounds. In this paper, working in the framework of deformation quantization, we study the violation of associativity imposing the condition that the associator of three elements should vanish whenever each two of them are equal. The corresponding star products are called alternative and satisfy important for physical applications properties like the Moufang identities, alternative identities, Artin's theorem, etc. The condition of alternativity is invariant under the gauge transformations, just like it happens in the associative case. The price to pay is the restriction on the non-associative algebra which can be represented by the alternative star product, it should satisfy the Malcev identity. The example of nontrivial Malcev algebra is the algebra of imaginary octonions. For this case we construct an explicit expression of the non-associative and alternative star product. We also discuss the quantization of Malcev–Poisson algebras of general form, study its properties and provide the lower order expression for the alternative star product. To conclude we define the integration on the algebra of the alternative star products and show that the integrated associator vanishes.
Weak associativity and deformation quantization
Directory of Open Access Journals (Sweden)
V.G. Kupriyanov
2016-09-01
Full Text Available Non-commutativity and non-associativity are quite natural in string theory. For open strings it appears due to the presence of non-vanishing background two-form in the world volume of Dirichlet brane, while in closed string theory the flux compactifications with non-vanishing three-form also lead to non-geometric backgrounds. In this paper, working in the framework of deformation quantization, we study the violation of associativity imposing the condition that the associator of three elements should vanish whenever each two of them are equal. The corresponding star products are called alternative and satisfy important for physical applications properties like the Moufang identities, alternative identities, Artin's theorem, etc. The condition of alternativity is invariant under the gauge transformations, just like it happens in the associative case. The price to pay is the restriction on the non-associative algebra which can be represented by the alternative star product, it should satisfy the Malcev identity. The example of nontrivial Malcev algebra is the algebra of imaginary octonions. For this case we construct an explicit expression of the non-associative and alternative star product. We also discuss the quantization of Malcev–Poisson algebras of general form, study its properties and provide the lower order expression for the alternative star product. To conclude we define the integration on the algebra of the alternative star products and show that the integrated associator vanishes.
ICTP lectures on covariant quantization of the superstring
International Nuclear Information System (INIS)
Berkovits, N.
2003-01-01
These ICTP Trieste lecture notes review the pure spinor approach to quantizing the superstring with manifest D=10 super-Poincare invariance. The first section discusses covariant quantization of the superparticle and gives a new proof of equivalence with the Brink-Schwarz superparticle. The second section discusses the superstring in a flat background and shows how to construct vertex operators and compute tree amplitudes in a manifestly super-Poincare covariant manner. And the third section discusses quantization of the superstring in curved backgrounds which can include Ramond-Ramond flux. (author)
ICTP lectures on covariant quantization of the superstring
Energy Technology Data Exchange (ETDEWEB)
Berkovits, N [Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, SP (Brazil)
2003-08-15
These ICTP Trieste lecture notes review the pure spinor approach to quantizing the superstring with manifest D=10 super-Poincare invariance. The first section discusses covariant quantization of the superparticle and gives a new proof of equivalence with the Brink-Schwarz superparticle. The second section discusses the superstring in a flat background and shows how to construct vertex operators and compute tree amplitudes in a manifestly super-Poincare covariant manner. And the third section discusses quantization of the superstring in curved backgrounds which can include Ramond-Ramond flux. (author)
Quantized Majorana conductance
Zhang, Hao; Liu, Chun-Xiao; Gazibegovic, Sasa; Xu, Di; Logan, John A.; Wang, Guanzhong; van Loo, Nick; Bommer, Jouri D. S.; de Moor, Michiel W. A.; Car, Diana; Op Het Veld, Roy L. M.; van Veldhoven, Petrus J.; Koelling, Sebastian; Verheijen, Marcel A.; Pendharkar, Mihir; Pennachio, Daniel J.; Shojaei, Borzoyeh; Lee, Joon Sue; Palmstrøm, Chris J.; Bakkers, Erik P. A. M.; Sarma, S. Das; Kouwenhoven, Leo P.
2018-04-01
Majorana zero-modes—a type of localized quasiparticle—hold great promise for topological quantum computing. Tunnelling spectroscopy in electrical transport is the primary tool for identifying the presence of Majorana zero-modes, for instance as a zero-bias peak in differential conductance. The height of the Majorana zero-bias peak is predicted to be quantized at the universal conductance value of 2e2/h at zero temperature (where e is the charge of an electron and h is the Planck constant), as a direct consequence of the famous Majorana symmetry in which a particle is its own antiparticle. The Majorana symmetry protects the quantization against disorder, interactions and variations in the tunnel coupling. Previous experiments, however, have mostly shown zero-bias peaks much smaller than 2e2/h, with a recent observation of a peak height close to 2e2/h. Here we report a quantized conductance plateau at 2e2/h in the zero-bias conductance measured in indium antimonide semiconductor nanowires covered with an aluminium superconducting shell. The height of our zero-bias peak remains constant despite changing parameters such as the magnetic field and tunnel coupling, indicating that it is a quantized conductance plateau. We distinguish this quantized Majorana peak from possible non-Majorana origins by investigating its robustness to electric and magnetic fields as well as its temperature dependence. The observation of a quantized conductance plateau strongly supports the existence of Majorana zero-modes in the system, consequently paving the way for future braiding experiments that could lead to topological quantum computing.
International Nuclear Information System (INIS)
DeWitt-Morette, C.
1983-01-01
Much is expected of path integration as a quantization procedure. Much more is possible if one recognizes that path integration is at the crossroad of stochastic and differential calculus and uses the full power of both stochastic and differential calculus in setting up and computing path integrals. In contrast to differential calculus, stochastic calculus has only comparatively recently become an instrument of thought. It has nevertheless already been used in a variety of challenging problems, for instance in the quantization problem. The author presents some applications of the stochastic scheme. (Auth.)
Minimal quantization and confinement
International Nuclear Information System (INIS)
Ilieva, N.P.; Kalinowskij, Yu.L.; Nguyen Suan Han; Pervushin, V.N.
1987-01-01
A ''minimal'' version of the Hamiltonian quantization based on the explicit solution of the Gauss equation and on the gauge-invariance principle is considered. By the example of the one-particle Green function we show that the requirement for gauge invariance leads to relativistic covariance of the theory and to more proper definition of the Faddeev - Popov integral that does not depend on the gauge choice. The ''minimal'' quantization is applied to consider the gauge-ambiguity problem and a new topological mechanism of confinement
International Nuclear Information System (INIS)
Klitzing von, K.
1989-01-01
The quantized Hall effect is theoretically explained in detail as are its basic properties. The explanation is completed with the pertinent mathematical relations and illustrative figures. Experimental data are critically assessed obtained by quantum transport measurement in a magnetic field on two-dimensional systems. The results are reported for a MOSFET silicon transistor and for GaAs-Al x Ga 1-x As heterostructures. The application is discussed of the quantized Hall effect in determining the fine structure constant or in implementing the resistance standard. (M.D.). 27 figs., 57 refs
Deformation quantization: Twenty years after
International Nuclear Information System (INIS)
Sternheimer, Daniel
1998-01-01
We first review the historical developments, both in physics and in mathematics, that preceded (and in some sense provided the background of) deformation quantization. Then we describe the birth of the latter theory and its evolution in the past twenty years, insisting on the main conceptual developments and keeping here as much as possible on the physical side. For the physical part the accent is put on its relations to, and relevance for, 'conventional' physics. For the mathematical part we concentrate on the questions of existence and equivalence, including most recent developments for general Poisson manifolds; we touch also noncommutative geometry and index theorems, and relations with group theory, including quantum groups. An extensive (though very incomplete) bibliography is appended and includes background mathematical literature
Quantization of physical parameters
International Nuclear Information System (INIS)
Jackiw, R.; Massachusetts Inst. of Tech., Cambridge; Massachusetts Inst. of Tech., Cambridge
1984-01-01
Dynamical models are described with parameters (mass, coupling strengths) which must be quantized for quantum mechanical consistency. These and related topological ideas have physical application to phenomenological descriptions of high temperature and low energy quantum chromodynamics, to the nonrelativistic dynamics of magnetic monopoles, and to the quantum Hall effect. (author)
Enhanced quantization: a primer
International Nuclear Information System (INIS)
Klauder, John R
2012-01-01
Although classical mechanics and quantum mechanics are separate disciplines, we live in a world where Planck’s constant ℏ > 0, meaning that the classical and quantum world views must actually coexist. Traditionally, canonical quantization procedures postulate a direct linking of various c-number and q-number quantities that lie in disjoint realms, along with the quite distinct interpretations given to each realm. In this paper we propose a different association of classical and quantum quantities that renders classical theory a natural subset of quantum theory letting them coexist as required. This proposal also shines light on alternative linking assignments of classical and quantum quantities that offer different perspectives on the very meaning of quantization. In this paper we focus on elaborating the general principles, while elsewhere we have published several examples of what this alternative viewpoint can achieve; these examples include removal of singularities in classical solutions to certain models, and an alternative quantization of several field theory models that are trivial when quantized by traditional methods but become well defined and nontrivial when viewed from the new viewpoint. (paper)
Quantized, piecewise linear filter network
DEFF Research Database (Denmark)
Sørensen, John Aasted
1993-01-01
A quantization based piecewise linear filter network is defined. A method for the training of this network based on local approximation in the input space is devised. The training is carried out by repeatedly alternating between vector quantization of the training set into quantization classes...... and equalization of the quantization classes linear filter mean square training errors. The equalization of the mean square training errors is carried out by adapting the boundaries between neighbor quantization classes such that the differences in mean square training errors are reduced...
Canonical quantization of gravity and a problem of scattering
International Nuclear Information System (INIS)
Rubakov, V.A.
1980-01-01
Linearized theory of gravity is quantized both in a naive way and as a proper limit of the Dirac-Wheeler-De Witt approach to the quantization of the full theory. The equivalence between the two approaches is established. The problem of scattering in the canonically quantized theory of gravitation is investigated. The concept of the background metric naturally appears in the canonical formalism for this case. The equivalence between canonical and path-integral approaches is established for the problem of scattering. Some kinetical properties of functionals in Wheeler superspace are studied in an appendix. (author)
Quantization of a scalar field in the Kerr spacetime
International Nuclear Information System (INIS)
Ford, L.H.
1974-01-01
A discussion of field quantization in a curved background spacetime is presented, with emphasis on the quantization of a scalar field in the Kerr spacetime. The ambiguity in the choice of a Fock space is discussed. The example of quantized fields in a rotating frame of reference in Minkowski space is analyzed, and it is shown that there is a preferred choice of states which makes particle number an invariant under transformation to the rotating frame. This choice allows the existence of negative energy quanta of the field
How to quantize supersymmetric theories
International Nuclear Information System (INIS)
Smilga, A.V.
1985-01-01
A recipe for resolving the ordering ambiguities in quantum hamiltonians of supersymmetric theories is suggested. The Weyl ordering procedure applied to classical supercharges expressed as functions on the phase space of a classically supersymmetric system is shown to result in quantum operators which satisfy usual SUSY algebra. The quantum hamiltonian does not always coincide with the Weyl ordered classical hamiltonian function. The difference is due to that the Weyl symbol of the supercharge anticommutator does not coincide with the Poisson bracket of their Weyl symbols (i.e. the classical hamiltonian). The procedure is applied to supersymmetric σ-models (both N=2 and N=1 cases are analyzed) and also to the supersymmetric SU(2) Yang-Mills theory. Only quantum mechanical systems following from field theories when fields are assumed to be independent of space coordinates are considered. For gauge theories thesuggested recipe for quantization leads to the same result as the well-known Dirac recipe
On the Langevin equation for stochastic quantization of gravity
International Nuclear Information System (INIS)
Nakazawa, Naohito.
1989-10-01
We study the Langevin equation for stochastic quantization of gravity. By introducing two independent variables with a second-class constraint for the gravitational field, we formulate a pair of the Langevin equations for gravity which couples with white noises. After eliminating the multiplier field for the second-class constraint, we show that the equations leads to stochastic quantization of gravity including an unique superspace metric. (author)
Stochastic quantization and gravity
International Nuclear Information System (INIS)
Rumpf, H.
1984-01-01
We give a preliminary account of the application of stochastic quantization to the gravitational field. We start in Section I from Nelson's formulation of quantum mechanics as Newtonian stochastic mechanics and only then introduce the Parisi-Wu stochastic quantization scheme on which all the later discussion will be based. In Section II we present a generalization of the scheme that is applicable to fields in physical (i.e. Lorentzian) space-time and treat the free linearized gravitational field in this manner. The most remarkable result of this is the noncausal propagation of conformal gravitons. Moreover the concept of stochastic gauge-fixing is introduced and a complete discussion of all the covariant gauges is given. A special symmetry relating two classes of covariant gauges is exhibited. Finally Section III contains some preliminary remarks on full nonlinear gravity. In particular we argue that in contrast to gauge fields the stochastic gravitational field cannot be transformed to a Gaussian process. (Author)
Quantized Bogoliubov transformations
International Nuclear Information System (INIS)
Geyer, H.B.
1984-01-01
The boson mapping of single fermion operators in a situation dominated by the pairing force gives rise to a transformation that can be considered a quantized version of the Bogoliubov transformation. This transformation can also be obtained as an exact special case of operators constructed from an approximate treatment of particle number projection, suggesting a method of obtaining the boson mapping in cases more complicated than that of pairing force domination
Geometry and quantization of moduli spaces
Andersen, Jørgen; Riera, Ignasi
2016-01-01
This volume is based on four advanced courses held at the Centre de Recerca Matemàtica (CRM), Barcelona. It presents both background information and recent developments on selected topics that are experiencing extraordinary growth within the broad research area of geometry and quantization of moduli spaces. The lectures focus on the geometry of moduli spaces which are mostly associated to compact Riemann surfaces, and are presented from both classical and quantum perspectives.
Quantum Computing and Second Quantization
International Nuclear Information System (INIS)
Makaruk, Hanna Ewa
2017-01-01
Quantum computers are by their nature many particle quantum systems. Both the many-particle arrangement and being quantum are necessary for the existence of the entangled states, which are responsible for the parallelism of the quantum computers. Second quantization is a very important approximate method of describing such systems. This lecture will present the general idea of the second quantization, and discuss shortly some of the most important formulations of second quantization.
System Identification with Quantized Observations
Wang, Le Yi; Zhang, Jifeng; Zhao, Yanlong
2010-01-01
This book presents recently developed methodologies that utilize quantized information in system identification and explores their potential in extending control capabilities for systems with limited sensor information or networked systems. The results of these methodologies can be applied to signal processing and control design of communication and computer networks, sensor networks, mobile agents, coordinated data fusion, remote sensing, telemedicine, and other fields in which noise-corrupted quantized data need to be processed. Providing a comprehensive coverage of quantized identification,
Quantization Procedures; Sistemas de cuantificacion
Energy Technology Data Exchange (ETDEWEB)
Cabrera, J. A.; Martin, R.
1976-07-01
We present in this work a review of the conventional quantization procedure, the proposed by I.E. Segal and a new quantization procedure similar to this one for use in non linear problems. We apply this quantization procedures to different potentials and we obtain the appropriate equations of motion. It is shown that for the linear case the three procedures exposed are equivalent but for the non linear cases we obtain different equations of motion and different energy spectra. (Author) 16 refs.
Formal connections in deformation quantization
DEFF Research Database (Denmark)
Masulli, Paolo
The field of this thesis is deformation quantization, and we consider mainly symplectic manifolds equipped with a star product. After reviewing basics in complex geometry, we introduce quantization, focusing on geometric quantization and deformation quantization. The latter is defined as a star...... characteristic class, and that formal connections form an affine space over the derivations of the star products. Moreover, if the parameter space for the family of star products is contractible, we obtain that any two flat formal connections are gauge equivalent via a self-equivalence of the family of star...
Quantized motion of trapped ions
International Nuclear Information System (INIS)
Steinbach, J.
1999-01-01
This thesis is concerned with a theoretical and numerical study of the preparation and coherent manipulation of quantum states in the external and internal degrees of freedom of trapped ions. In its first part, this thesis proposes and investigates schemes for generating several nonclassical states for the quantized vibrational motion of a trapped ion. Based on dark state preparation specific laser excitation configurations are presented which, given appropriately chosen initial states, realize the desired motional states in the steady-state, indicated by the cessation of the fluorescence emitted by the ion. The focus is on the SU(1,1) intelligent states in both their single- and two-mode realization, corresponding to one- and two-dimensional motion of the ion. The presented schemes are also studied numerically using a Monte-Carlo state-vector method. The second part of the thesis describes how two vibrational degrees of freedom of a single trapped ion can be coupled through the action of suitably chosen laser excitation. Concentrating on a two-dimensional ion trap with dissimilar vibrational frequencies a variety of quantized two-mode couplings are derived. The focus is on a linear coupling that takes excitations from one mode to another. It is demonstrated how this can result in a state rotation, in which it is possible to coherently transfer the motional state of the ion between orthogonal directions without prior knowledge of that motional state. The third part of this thesis presents a new efficient method for generating maximally entangled internal states of a collection of trapped ions. The method is deterministic and independent of the number of ions in the trap. As the essential element of the scheme a mechanism for the realization of a controlled NOT operation that can operate on multiple ions is proposed. The potential application of the scheme for high-precision frequency standards is explored. (author)
Covariant Quantization with Extended BRST Symmetry
Geyer, B.; Gitman, D. M.; Lavrov, P. M.
1999-01-01
A short rewiev of covariant quantization methods based on BRST-antiBRST symmetry is given. In particular problems of correct definition of Sp(2) symmetric quantization scheme known as triplectic quantization are considered.
On quantization of relativistic string theory
International Nuclear Information System (INIS)
Isaev, A.P.
1982-01-01
Quantization of the relativistic string theory based on methods of the constrained Hamiltonian systems quantization is considered. Connections of this approach and Polyakov's quantization are looked. New representation of a loop heat kernel is obtained
Equivalence of Dirac quantization and Schwinger's action principle quantization
International Nuclear Information System (INIS)
Das, A.; Scherer, W.
1987-01-01
We show that the method of Dirac quantization is equivalent to Schwinger's action principle quantization. The relation between the Lagrange undetermined multipliers in Schwinger's method and Dirac's constraint bracket matrix is established and it is explicitly shown that the two methods yield identical (anti)commutators. This is demonstrated in the non-trivial example of supersymmetric quantum mechanics in superspace. (orig.)
Quantization of interface currents
Energy Technology Data Exchange (ETDEWEB)
Kotani, Motoko [AIMR, Tohoku University, Sendai (Japan); Schulz-Baldes, Hermann [Department Mathematik, Universität Erlangen-Nürnberg, Erlangen (Germany); Villegas-Blas, Carlos [Instituto de Matematicas, Cuernavaca, UNAM, Cuernavaca (Mexico)
2014-12-15
At the interface of two two-dimensional quantum systems, there may exist interface currents similar to edge currents in quantum Hall systems. It is proved that these interface currents are macroscopically quantized by an integer that is given by the difference of the Chern numbers of the two systems. It is also argued that at the interface between two time-reversal invariant systems with half-integer spin, one of which is trivial and the other non-trivial, there are dissipationless spin-polarized interface currents.
Quantization of fields with constraints
Energy Technology Data Exchange (ETDEWEB)
Gitman, D.M.; Tyutin, I.V.
1990-01-01
The quantization of singular field theories, in particular, gauge theories, is one of the key problems in quantum field theory. This book - which addresses the reader acquainted with the foundations of quantum field theory - provides a comprehensive analysis of this problem and techniques for its solution. The main topics are canonical and Lagrangian quantization and the path integral method. (orig.).
Light-Front Quantization of Gauge Theories
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.
2003-03-25
Light-front wavefunctions provide a frame-independent representation of hadrons in terms of their physical quark and gluon degrees of freedom. The light-front Hamiltonian formalism provides new nonperturbative methods for obtaining the QCD spectrum and eigensolutions, including resolvant methods, variational techniques, and discretized light-front quantization. A new method for quantizing gauge theories in light-cone gauge using Dirac brackets to implement constraints is presented. In the case of the electroweak theory, this method of light-front quantization leads to a unitary and renormalizable theory of massive gauge particles, automatically incorporating the Lorentz and 't Hooft conditions as well as the Goldstone boson equivalence theorem. Spontaneous symmetry breaking is represented by the appearance of zero modes of the Higgs field leaving the light-front vacuum equal to the perturbative vacuum. I also discuss an ''event amplitude generator'' for automatically computing renormalized amplitudes in perturbation theory. The importance of final-state interactions for the interpretation of diffraction, shadowing, and single-spin asymmetries in inclusive reactions such as deep inelastic lepton-hadron scattering is emphasized.
Light-Front Quantization of Gauge Theories
Energy Technology Data Exchange (ETDEWEB)
Brodskey, Stanley
2002-12-01
Light-front wavefunctions provide a frame-independent representation of hadrons in terms of their physical quark and gluon degrees of freedom. The light-front Hamiltonian formalism provides new nonperturbative methods for obtaining the QCD spectrum and eigensolutions, including resolvant methods, variational techniques, and discretized light-front quantization. A new method for quantizing gauge theories in light-cone gauge using Dirac brackets to implement constraints is presented. In the case of the electroweak theory, this method of light-front quantization leads to a unitary and renormalizable theory of massive gauge particles, automatically incorporating the Lorentz and 't Hooft conditions as well as the Goldstone boson equivalence theorem. Spontaneous symmetry breaking is represented by the appearance of zero modes of the Higgs field leaving the light-front vacuum equal to the perturbative vacuum. I also discuss an ''event amplitude generator'' for automatically computing renormalized amplitudes in perturbation theory. The importance of final-state interactions for the interpretation of diffraction, shadowing, and single-spin asymmetries in inclusive reactions such as deep inelastic lepton-hadron scattering is emphasized.
Gauge invariance and fractional quantized Hall effect
International Nuclear Information System (INIS)
Tao, R.; Wu, Y.S.
1984-01-01
It is shown that gauge invariance arguments imply the possibility of fractional quantized Hall effect; the Hall conductance is accurately quantized to a rational value. The ground state of a system showing the fractional quantized Hall effect must be degenerate; the non-degenerate ground state can only produce the integral quantized Hall effect. 12 references
Quantized beam shifts in graphene
Energy Technology Data Exchange (ETDEWEB)
de Melo Kort-Kamp, Wilton Junior [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sinitsyn, Nikolai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalvit, Diego Alejandro Roberto [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-10-08
We predict the existence of quantized Imbert-Fedorov, Goos-Hanchen, and photonic spin Hall shifts for light beams impinging on a graphene-on-substrate system in an external magnetic field. In the quantum Hall regime the Imbert-Fedorov and photonic spin Hall shifts are quantized in integer multiples of the fine structure constant α, while the Goos-Hanchen ones in multiples of α^{2}. We investigate the influence on these shifts of magnetic field, temperature, and material dispersion and dissipation. An experimental demonstration of quantized beam shifts could be achieved at terahertz frequencies for moderate values of the magnetic field.
Unique Fock quantization of scalar cosmological perturbations
Fernández-Méndez, Mikel; Mena Marugán, Guillermo A.; Olmedo, Javier; Velhinho, José M.
2012-05-01
We investigate the ambiguities in the Fock quantization of the scalar perturbations of a Friedmann-Lemaître-Robertson-Walker model with a massive scalar field as matter content. We consider the case of compact spatial sections (thus avoiding infrared divergences), with the topology of a three-sphere. After expanding the perturbations in series of eigenfunctions of the Laplace-Beltrami operator, the Hamiltonian of the system is written up to quadratic order in them. We fix the gauge of the local degrees of freedom in two different ways, reaching in both cases the same qualitative results. A canonical transformation, which includes the scaling of the matter-field perturbations by the scale factor of the geometry, is performed in order to arrive at a convenient formulation of the system. We then study the quantization of these perturbations in the classical background determined by the homogeneous variables. Based on previous work, we introduce a Fock representation for the perturbations in which: (a) the complex structure is invariant under the isometries of the spatial sections and (b) the field dynamics is implemented as a unitary operator. These two properties select not only a unique unitary equivalence class of representations, but also a preferred field description, picking up a canonical pair of field variables among all those that can be obtained by means of a time-dependent scaling of the matter field (completed into a linear canonical transformation). Finally, we present an equivalent quantization constructed in terms of gauge-invariant quantities. We prove that this quantization can be attained by a mode-by-mode time-dependent linear canonical transformation which admits a unitary implementation, so that it is also uniquely determined.
The quantization of Regge calculus
International Nuclear Information System (INIS)
Rocek, M.; Williams, R.M.; Cambridge Univ.
1984-01-01
We discuss the quantization of Regge's discrete description of Einstein's theory of gravitation. We show how the continuum theory emerges in the weak field long wavelength limit. We also discuss reparametrizations and conformal transformations. (orig.)
Visibility of wavelet quantization noise
Watson, A. B.; Yang, G. Y.; Solomon, J. A.; Villasenor, J.
1997-01-01
The discrete wavelet transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that we call DWT uniform quantization noise; it is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2-lambda, where r is display visual resolution in pixels/degree, and lambda is the wavelet level. Thresholds increase rapidly with wavelet spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from lowpass to horizontal/vertical to diagonal. We construct a mathematical model for DWT noise detection thresholds that is a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.
Geometric quantization of vector bundles and the correspondence with deformation quantization
International Nuclear Information System (INIS)
Hawkins, E.
2000-01-01
I repeat my definition for quantization of a vector bundle. For the cases of the Toeplitz and geometric quantizations of a compact Kaehler manifold, I give a construction for quantizing any smooth vector bundle, which depends functorially on a choice of connection on the bundle. Using this, the classification of formal deformation quantizations, and the formal, algebraic index theorem, I give a simple proof as to which formal deformation quantization (modulo isomorphism) is derived from a given geometric quantization. (orig.)
Directory of Open Access Journals (Sweden)
W Alexander Escobar
2013-11-01
Full Text Available The proposed model holds that, at its most fundamental level, visual awareness is quantized. That is to say that visual awareness arises as individual bits of awareness through the action of neural circuits with hundreds to thousands of neurons in at least the human striate cortex. Circuits with specific topologies will reproducibly result in visual awareness that correspond to basic aspects of vision like color, motion and depth. These quanta of awareness (qualia are produced by the feedforward sweep that occurs through the geniculocortical pathway but are not integrated into a conscious experience until recurrent processing from centers like V4 or V5 select the appropriate qualia being produced in V1 to create a percept. The model proposed here has the potential to shift the focus of the search for visual awareness to the level of microcircuits and these likely exist across the kingdom Animalia. Thus establishing qualia as the fundamental nature of visual awareness will not only provide a deeper understanding of awareness, but also allow for a more quantitative understanding of the evolution of visual awareness throughout the animal kingdom.
Stochastic quantization of instantons
International Nuclear Information System (INIS)
Grandati, Y.; Berard, A.; Grange, P.
1996-01-01
The method of Parisi and Wu to quantize classical fields is applied to instanton solutions var-phi I of euclidian non-linear theory in one dimension. The solution var-phi var-epsilon of the corresponding Langevin equation is built through a singular perturbative expansion in var-epsilon=h 1/2 in the frame of the center of the mass of the instanton, where the difference var-phi var-epsilon -var-phi I carries only fluctuations of the instanton form. The relevance of the method is shown for the stochastic K dV equation with uniform noise in space: the exact solution usually obtained by the inverse scattering method is retrieved easily by the singular expansion. A general diagrammatic representation of the solution is then established which makes a thorough use of regrouping properties of stochastic diagrams derived in scalar field theory. Averaging over the noise and in the limit of infinite stochastic time, the authors obtain explicit expressions for the first two orders in var-epsilon of the pertrubed instanton of its Green function. Specializing to the Sine-Gordon and var-phi 4 models, the first anaharmonic correction is obtained analytically. The calculation is carried to second order for the var-phi 4 model, showing good convergence. 21 refs., 5 fig
A Numerical Study of Quantization-Based Integrators
Directory of Open Access Journals (Sweden)
Barros Fernando
2014-01-01
Full Text Available Adaptive step size solvers are nowadays considered fundamental to achieve efficient ODE integration. While, traditionally, ODE solvers have been designed based on discrete time machines, new approaches based on discrete event systems have been proposed. Quantization provides an efficient integration technique based on signal threshold crossing, leading to independent and modular solvers communicating through discrete events. These solvers can benefit from the large body of knowledge on discrete event simulation techniques, like parallelization, to obtain efficient numerical integration. In this paper we introduce new solvers based on quantization and adaptive sampling techniques. Preliminary numerical results comparing these solvers are presented.
Test of gauge invariance and unitarity of the quantized Einstein theory of gravity
International Nuclear Information System (INIS)
Hsu, J.P.; Underwood, J.A.
1975-01-01
Explicit calculations at the 1-loop level verify that the usual quantized Einstein theory of gravity is indeed gauge independent and unitary for all values of the gauge parameter α. This lends nontrivial support to a general formal proof
Geometric quantization and general relativity
International Nuclear Information System (INIS)
Souriau, J.-M.
1977-01-01
The purpose of geometric quantization is to give a rigorous mathematical content to the 'correspondence principle' between classical and quantum mechanics. The main tools are borrowed on one hand from differential geometry and topology (differential manifolds, differential forms, fiber bundles, homology and cohomology, homotopy), on the other hand from analysis (functions of positive type, infinite dimensional group representations, pseudo-differential operators). Some satisfactory results have been obtained in the study of dynamical systems, but some fundamental questions are still waiting for an answer. The 'geometric quantization of fields', where some further well known difficulties arise, is still in a preliminary stage. In particular, the geometric quantization on the gravitational field is still a mere project. The situation is even more uncertain due to the fact that there is no experimental evidence of any quantum gravitational effect which could give us a hint towards what we are supposed to look for. The first level of both Quantum Theory, and General Relativity describes passive matter: influence by the field without being a source of it (first quantization and equivalence principle respectively). In both cases this is only an approximation (matter is always a source). But this approximation turns out to be the least uncertain part of the description, because on one hand the first quantization avoids the problems of renormalization and on the other hand the equivalence principle does not imply any choice of field equations (it is known that one can modify Einstein equations at short distances without changing their geometrical properties). (Auth.)
Kähler Quantization and Hitchin Connections
DEFF Research Database (Denmark)
Leth Gammelgaard, Niels
In this thesis, we study geometric quantization as well as deformation quantization of symplectic manifolds endowed with a compatible complex structure. Using Karabegov's classification of star products with separation of variables, we give an explicit, local, combinatorial formula for any...
Pseudo-Kaehler quantization on flag manifolds
International Nuclear Information System (INIS)
Karabegov, A.V.
1997-07-01
A unified approach to geometric, symbol and deformation quantizations on a generalized flag manifold endowed with an invariant pseudo-Kaehler structure is proposed. In particular cases we arrive at Berezin's quantization via covariant and contravariant symbols. (author). 16 refs
LEARNING VECTOR QUANTIZATION FOR ADAPTED GAUSSIAN MIXTURE MODELS IN AUTOMATIC SPEAKER IDENTIFICATION
Directory of Open Access Journals (Sweden)
IMEN TRABELSI
2017-05-01
Full Text Available Speaker Identification (SI aims at automatically identifying an individual by extracting and processing information from his/her voice. Speaker voice is a robust a biometric modality that has a strong impact in several application areas. In this study, a new combination learning scheme has been proposed based on Gaussian mixture model-universal background model (GMM-UBM and Learning vector quantization (LVQ for automatic text-independent speaker identification. Features vectors, constituted by the Mel Frequency Cepstral Coefficients (MFCC extracted from the speech signal are used to train the New England subset of the TIMIT database. The best results obtained (90% for gender- independent speaker identification, 97 % for male speakers and 93% for female speakers for test data using 36 MFCC features.
Loop quantization as a continuum limit
International Nuclear Information System (INIS)
Manrique, Elisa; Oeckl, Robert; Weber, Axel; Zapata, Jose A
2006-01-01
We present an implementation of Wilson's renormalization group and a continuum limit tailored for loop quantization. The dynamics of loop-quantized theories is constructed as a continuum limit of the dynamics of effective theories. After presenting the general formalism we show as a first explicit example the 2D Ising field theory, an interacting relativistic quantum field theory with local degrees of freedom quantized by loop quantization techniques
Context quantization by minimum adaptive code length
DEFF Research Database (Denmark)
Forchhammer, Søren; Wu, Xiaolin
2007-01-01
Context quantization is a technique to deal with the issue of context dilution in high-order conditional entropy coding. We investigate the problem of context quantizer design under the criterion of minimum adaptive code length. A property of such context quantizers is derived for binary symbols....
Quantization and hall effect: necessities and difficulties
International Nuclear Information System (INIS)
Ahmed Bouketir; Hishamuddin Zainuddin
1999-01-01
The quantization procedure is a necessary tool for a proper understanding of many interesting quantum phenomena in modern physics. In this note, we focus on geometrical framework for such procedures, particularly the group-theoretic approach and their difficulties. Finally we look through the example of Hall effect as a quantized macroscopic phenomenon with group-theoretic quantization approach. (author)
Light-cone quantization of quantum chromodynamics
International Nuclear Information System (INIS)
Brodsky, S.J.; Pauli, H.C.
1991-06-01
We discuss the light-cone quantization of gauge theories from two perspectives: as a calculational tool for representing hadrons as QCD bound-states of relativistic quarks and gluons, and also as a novel method for simulating quantum field theory on a computer. The light-cone Fock state expansion of wavefunctions at fixed light cone time provides a precise definition of the parton model and a general calculus for hadronic matrix elements. We present several new applications of light-cone Fock methods, including calculations of exclusive weak decays of heavy hadrons, and intrinsic heavy-quark contributions to structure functions. A general nonperturbative method for numerically solving quantum field theories, ''discretized light-cone quantization,'' is outlined and applied to several gauge theories, including QCD in one space and one time dimension, and quantum electrodynamics in physical space-time at large coupling strength. The DLCQ method is invariant under the large class of light-cone Lorentz transformations, and it can be formulated such at ultraviolet regularization is independent of the momentum space discretization. Both the bound-state spectrum and the corresponding relativistic light-cone wavefunctions can be obtained by matrix diagonalization and related techniques. We also discuss the construction of the light-cone Fock basis, the structure of the light-cone vacuum, and outline the renormalization techniques required for solving gauge theories within the light-cone Hamiltonian formalism
Light-cone quantization of quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Brodsky, S.J. (Stanford Linear Accelerator Center, Menlo Park, CA (USA)); Pauli, H.C. (Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany, F.R.))
1991-06-01
We discuss the light-cone quantization of gauge theories from two perspectives: as a calculational tool for representing hadrons as QCD bound-states of relativistic quarks and gluons, and also as a novel method for simulating quantum field theory on a computer. The light-cone Fock state expansion of wavefunctions at fixed light cone time provides a precise definition of the parton model and a general calculus for hadronic matrix elements. We present several new applications of light-cone Fock methods, including calculations of exclusive weak decays of heavy hadrons, and intrinsic heavy-quark contributions to structure functions. A general nonperturbative method for numerically solving quantum field theories, discretized light-cone quantization,'' is outlined and applied to several gauge theories, including QCD in one space and one time dimension, and quantum electrodynamics in physical space-time at large coupling strength. The DLCQ method is invariant under the large class of light-cone Lorentz transformations, and it can be formulated such at ultraviolet regularization is independent of the momentum space discretization. Both the bound-state spectrum and the corresponding relativistic light-cone wavefunctions can be obtained by matrix diagonalization and related techniques. We also discuss the construction of the light-cone Fock basis, the structure of the light-cone vacuum, and outline the renormalization techniques required for solving gauge theories within the light-cone Hamiltonian formalism.
Path integral quantization of parametrized field theory
International Nuclear Information System (INIS)
Varadarajan, Madhavan
2004-01-01
Free scalar field theory on a flat spacetime can be cast into a generally covariant form known as parametrized field theory in which the action is a functional of the scalar field as well as the embedding variables which describe arbitrary, in general curved, foliations of the flat spacetime. We construct the path integral quantization of parametrized field theory in order to analyze issues at the interface of quantum field theory and general covariance in a path integral context. We show that the measure in the Lorentzian path integral is nontrivial and is the analog of the Fradkin-Vilkovisky measure for quantum gravity. We construct Euclidean functional integrals in the generally covariant setting of parametrized field theory using key ideas of Schleich and show that our constructions imply the existence of nonstandard 'Wick rotations' of the standard free scalar field two-point function. We develop a framework to study the problem of time through computations of scalar field two-point functions. We illustrate our ideas through explicit computation for a time independent (1+1)-dimensional foliation. Although the problem of time seems to be absent in this simple example, the general case is still open. We discuss our results in the contexts of the path integral formulation of quantum gravity and the canonical quantization of parametrized field theory
Bohmian quantization of the big rip
International Nuclear Information System (INIS)
Pinto-Neto, Nelson; Pantoja, Diego Moraes
2009-01-01
It is shown in this paper that minisuperspace quantization of homogeneous and isotropic geometries with phantom scalar fields, when examined in the light of the Bohm-de Broglie interpretation of quantum mechanics, does not eliminate, in general, the classical big rip singularity present in the classical model. For some values of the Hamilton-Jacobi separation constant present in a class of quantum state solutions of the Wheeler-De Witt equation, the big rip can be either completely eliminated or may still constitute a future attractor for all expanding solutions. This is contrary to the conclusion presented in [M. P. Dabrowski, C. Kiefer, and B. Sandhofer, Phys. Rev. D 74, 044022 (2006).], using a different interpretation of the wave function, where the big rip singularity is completely eliminated ('smoothed out') through quantization, independently of such a separation constant and for all members of the above mentioned class of solutions. This is an example of the very peculiar situation where different interpretations of the same quantum state of a system are predicting different physical facts, instead of just giving different descriptions of the same observable facts: in fact, there is nothing more observable than the fate of the whole Universe.
Perturbation theory from stochastic quantization
International Nuclear Information System (INIS)
Hueffel, H.
1984-01-01
By using a diagrammatical method it is shown that in scalar theories the stochastic quantization method of Parisi and Wu gives the usual perturbation series in Feynman diagrams. It is further explained how to apply the diagrammatical method to gauge theories, discussing the origin of ghost effects. (Author)
Ordering in the skyrmions quantization
International Nuclear Information System (INIS)
Ananias Neto, Jorge
1994-01-01
Using collective coordinates for quantization, we show that exits a ordering problem in the definition of momentum operator. We suggest that a new definition for this operator can solve the infrared problem which rises when an attempt to minimize all the quantum Hamiltonian is made
Quantization of the Radiation Field
Indian Academy of Sciences (India)
field,quantization,Lamb shift. Avinash Khare ... actions as well as for theories beyond like grand unified theories. Further, the same ... cules as well as condensed matter physics, not to men- tion their ... of an electromagnetic field by a moving electron, and of the reaction of this field on the electron have not yet been touched.".
Stochastic quantization of Proca field
International Nuclear Information System (INIS)
Lim, S.C.
1981-03-01
We discuss the complications that arise in the application of Nelson's stochastic quantization scheme to classical Proca field. One consistent way to obtain spin-one massive stochastic field is given. It is found that the result of Guerra et al on the connection between ground state stochastic field and the corresponding Euclidean-Markov field extends to the spin-one case. (author)
On the quantization of spacetime
International Nuclear Information System (INIS)
Banai, M.
1981-01-01
A program of quantization of relativistic local field theories in terms of Hilbert modules over non-commutative Csup*-algebras is outlined. The spacetime of the considered systems should become a ''quantum'' represented by a Hilbert space. Two suggestions are given for the possible determination this quantum spacetime. (author)
Deformation of second and third quantization
Faizal, Mir
2015-03-01
In this paper, we will deform the second and third quantized theories by deforming the canonical commutation relations in such a way that they become consistent with the generalized uncertainty principle. Thus, we will first deform the second quantized commutator and obtain a deformed version of the Wheeler-DeWitt equation. Then we will further deform the third quantized theory by deforming the third quantized canonical commutation relation. This way we will obtain a deformed version of the third quantized theory for the multiverse.
Covariant quantizations in plane and curved spaces
International Nuclear Information System (INIS)
Assirati, J.L.M.; Gitman, D.M.
2017-01-01
We present covariant quantization rules for nonsingular finite-dimensional classical theories with flat and curved configuration spaces. In the beginning, we construct a family of covariant quantizations in flat spaces and Cartesian coordinates. This family is parametrized by a function ω(θ), θ element of (1,0), which describes an ambiguity of the quantization. We generalize this construction presenting covariant quantizations of theories with flat configuration spaces but already with arbitrary curvilinear coordinates. Then we construct a so-called minimal family of covariant quantizations for theories with curved configuration spaces. This family of quantizations is parametrized by the same function ω(θ). Finally, we describe a more wide family of covariant quantizations in curved spaces. This family is already parametrized by two functions, the previous one ω(θ) and by an additional function Θ(x,ξ). The above mentioned minimal family is a part at Θ = 1 of the wide family of quantizations. We study constructed quantizations in detail, proving their consistency and covariance. As a physical application, we consider a quantization of a non-relativistic particle moving in a curved space, discussing the problem of a quantum potential. Applying the covariant quantizations in flat spaces to an old problem of constructing quantum Hamiltonian in polar coordinates, we directly obtain a correct result. (orig.)
Covariant quantizations in plane and curved spaces
Energy Technology Data Exchange (ETDEWEB)
Assirati, J.L.M. [University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil); Gitman, D.M. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); P.N. Lebedev Physical Institute, Moscow (Russian Federation); University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil)
2017-07-15
We present covariant quantization rules for nonsingular finite-dimensional classical theories with flat and curved configuration spaces. In the beginning, we construct a family of covariant quantizations in flat spaces and Cartesian coordinates. This family is parametrized by a function ω(θ), θ element of (1,0), which describes an ambiguity of the quantization. We generalize this construction presenting covariant quantizations of theories with flat configuration spaces but already with arbitrary curvilinear coordinates. Then we construct a so-called minimal family of covariant quantizations for theories with curved configuration spaces. This family of quantizations is parametrized by the same function ω(θ). Finally, we describe a more wide family of covariant quantizations in curved spaces. This family is already parametrized by two functions, the previous one ω(θ) and by an additional function Θ(x,ξ). The above mentioned minimal family is a part at Θ = 1 of the wide family of quantizations. We study constructed quantizations in detail, proving their consistency and covariance. As a physical application, we consider a quantization of a non-relativistic particle moving in a curved space, discussing the problem of a quantum potential. Applying the covariant quantizations in flat spaces to an old problem of constructing quantum Hamiltonian in polar coordinates, we directly obtain a correct result. (orig.)
Enhanced quantization particles, fields and gravity
Klauder, John R
2015-01-01
This pioneering book addresses the question: Are the standard procedures of canonical quantization fully satisfactory, or is there more to learn about assigning a proper quantum system to a given classical system? As shown in this book, the answer to this question is: The standard procedures of canonical quantization are not the whole story! This book offers alternative quantization procedures that complete the story of quantization. The initial chapters are designed to present the new procedures in a clear and simple manner for general readers. As is necessary, systems that exhibit acceptable results with conventional quantization lead to the same results when the new procedures are used for them. However, later chapters examine selected models that lead to unacceptable results when quantized conventionally. Fortunately, these same models lead to acceptable results when the new quantization procedures are used.
Path integral quantization in the temporal gauge
International Nuclear Information System (INIS)
Scholz, B.; Steiner, F.
1983-06-01
The quantization of non-Abelian gauge theories in the temporal gauge is studied within Feynman's path integral approach. The standard asymptotic boundary conditions are only imposed on the transverse gauge fields. The fictituous longitudinal gauge quanta are eliminated asymptotically by modified boundary conditions. This abolishes the residual time-independent gauge transformations and leads to a unique fixing of the temporal gauge. The resulting path integral for the generating functional respects automatically Gauss's law. The correct gauge field propagator is derived. It does not suffer from gauge singularities at n x k = 0 present in the usual treatment of axial gauges. The standard principal value prescription does not work. As a check, the Wilson loop in temporal gauge is calculated with the new propagator. To second order (and to all orders in the Abelian case) the result agrees with the one obtained in the Feynman and Coulomb gauge. (orig.)
Rönnberg, Niklas; Rudner, Mary; Lunner, Thomas; Stenfelt, Stefan
2014-01-01
Listening in noise is often perceived to be effortful. This is partly because cognitive resources are engaged in separating the target signal from background noise, leaving fewer resources for storage and processing of the content of the message in working memory. The Auditory Inference Span Test (AIST) is designed to assess listening effort by measuring the ability to maintain and process heard information. The aim of this study was to use AIST to investigate the effect of background noise types and signal-to-noise ratio (SNR) on listening effort, as a function of working memory capacity (WMC) and updating ability (UA). The AIST was administered in three types of background noise: steady-state speech-shaped noise, amplitude modulated speech-shaped noise, and unintelligible speech. Three SNRs targeting 90% speech intelligibility or better were used in each of the three noise types, giving nine different conditions. The reading span test assessed WMC, while UA was assessed with the letter memory test. Twenty young adults with normal hearing participated in the study. Results showed that AIST performance was not influenced by noise type at the same intelligibility level, but became worse with worse SNR when background noise was speech-like. Performance on AIST also decreased with increasing memory load level. Correlations between AIST performance and the cognitive measurements suggested that WMC is of more importance for listening when SNRs are worse, while UA is of more importance for listening in easier SNRs. The results indicated that in young adults with normal hearing, the effort involved in listening in noise at high intelligibility levels is independent of the noise type. However, when noise is speech-like and intelligibility decreases, listening effort increases, probably due to extra demands on cognitive resources added by the informational masking created by the speech fragments and vocal sounds in the background noise.
Directory of Open Access Journals (Sweden)
Niklas eRönnberg
2014-12-01
Full Text Available Listening in noise is often perceived to be effortful. This is partly because cognitive resources are engaged in separating the target signal from background noise, leaving fewer resources for storage and processing of the content of the message in working memory. The Auditory Inference Span Test (AIST is designed to assess listening effort by measuring the ability to maintain and process heard information. The aim of this study was to use AIST to investigate the effect of background noise types and signal-to-noise ratio (SNR on listening effort, as a function of working memory capacity (WMC and updating ability (UA. The AIST was administered in three types of background noise: steady-state speech-shaped noise, amplitude modulated speech-shaped noise, and unintelligible speech. Three SNRs targeting 90% speech intelligibility or better were used in each of the three noise types, giving nine different conditions. The reading span test assessed WMC, while UA was assessed with the letter memory test. Twenty young adults with normal hearing participated in the study. Results showed that AIST performance was not influenced by noise type at the same intelligibility level, but became worse with worse SNR when background noise was speech-like. Performance on AIST also decreased with increasing MLL. Correlations between AIST performance and the cognitive measurements suggested that WMC is of more importance for listening when SNRs are worse, while UA is of more importance for listening in easier SNRs. The results indicated that in young adults with normal hearing, the effort involved in listening in noise at high intelligibility levels is independent of the noise type. However, when noise is speech-like and intelligibility decreases, listening effort increases, probably due to extra demands on cognitive resources added by the informational masking created by the speech-fragments and vocal sounds in the background noise.
Spontaneous symmetry breaking, quantization of the electric charge and the anomalies
International Nuclear Information System (INIS)
Abbas, Afsar
1990-01-01
Cancellation of anomalies and on ensuring that fermions are massive, one obtains quantization of the electric charge, which is shown to be independent of the hypercharge quantum number of the Higgs doublet in the Standard Model. Ignorance of this fact can lead to pitfalls. It is shown that contrary to the popular belief, charge quantization is not a consequence of the anomalies but that in addition spontaneous symmetry breaking is essential. (author)
Topological quantization of ensemble averages
International Nuclear Information System (INIS)
Prodan, Emil
2009-01-01
We define the current of a quantum observable and, under well-defined conditions, we connect its ensemble average to the index of a Fredholm operator. The present work builds on a formalism developed by Kellendonk and Schulz-Baldes (2004 J. Funct. Anal. 209 388) to study the quantization of edge currents for continuous magnetic Schroedinger operators. The generalization given here may be a useful tool to scientists looking for novel manifestations of the topological quantization. As a new application, we show that the differential conductance of atomic wires is given by the index of a certain operator. We also comment on how the formalism can be used to probe the existence of edge states
Modular invariance and stochastic quantization
International Nuclear Information System (INIS)
Ordonez, C.R.; Rubin, M.A.; Zwanziger, D.
1989-01-01
In Polyakov path integrals and covariant closed-string field theory, integration over Teichmueller parameters must be restricted by hand to a single modular region. This problem has an analog in Yang-Mills gauge theory---namely, the Gribov problem, which can be resolved by the method of stochastic gauge fixing. This method is here employed to quantize a simple modular-invariant system: the Polyakov point particle. In the limit of a large gauge-fixing force, it is shown that suitable choices for the functional form of the gauge-fixing force can lead to a restriction of Teichmueller integration to a single modular region. Modifications which arise when applying stochastic quantization to a system in which the volume of the orbits of the gauge group depends on a dynamical variable, such as a Teichmueller parameter, are pointed out, and the extension to Polyakov strings and covariant closed-string field theory is discussed
Topological quantization of gravitational fields
International Nuclear Information System (INIS)
Patino, Leonardo; Quevedo, Hernando
2005-01-01
We introduce the method of topological quantization for gravitational fields in a systematic manner. First we show that any vacuum solution of Einstein's equations can be represented in a principal fiber bundle with a connection that takes values in the Lie algebra of the Lorentz group. This result is generalized to include the case of gauge matter fields in multiple principal fiber bundles. We present several examples of gravitational configurations that include a gravitomagnetic monopole in linearized gravity, the C-energy of cylindrically symmetric fields, the Reissner-Nordstroem and the Kerr-Newman black holes. As a result of the application of the topological quantization procedure, in all the analyzed examples we obtain conditions implying that the parameters entering the metric in each case satisfy certain discretization relationships
Stochastic quantization of general relativity
International Nuclear Information System (INIS)
Rumpf, H.
1986-01-01
Following an elementary exposition of the basic mathematical concepts used in the theory of stochastic relaxation processes the stochastic quantization method of Parisi and Wu is briefly reviewed. The method is applied to Einstein's theory of gravitation using a formalism that is manifestly covariant with respect to field redefinitions. This requires the adoption of Ito's calculus and the introduction of a metric in field configuration space, for which there is a unique candidate. Due to the indefiniteness of the Euclidean Einstein-Hilbert action stochastic quantization is generalized to the pseudo-Riemannian case. It is formally shown to imply the DeWitt path integral measure. Finally a new type of perturbation theory is developed. (Author)
Stochastic quantization and gauge theories
International Nuclear Information System (INIS)
Kolck, U. van.
1987-01-01
Stochastic quantization is presented taking the Flutuation-Dissipation Theorem as a guide. It is shown that the original approach of Parisi and Wu to gauge theories fails to give the right results to gauge invariant quantities when dimensional regularization is used. Although there is a simple solution in an abelian theory, in the non-abelian case it is probably necessary to start from a BRST invariant action instead of a gauge invariant one. Stochastic regularizations are also discussed. (author) [pt
Stochastic quantization and gauge invariance
International Nuclear Information System (INIS)
Viana, R.L.
1987-01-01
A survey of the fundamental ideas about Parisi-Wu's Stochastic Quantization Method, with applications to Scalar, Gauge and Fermionic theories, is done. In particular, the Analytic Stochastic Regularization Scheme is used to calculate the polarization tensor for Quantum Electrodynamics with Dirac bosons or Fermions. The regularization influence is studied for both theories and an extension of this method for some supersymmetrical models is suggested. (author)
Quantization of Equations of Motion
Directory of Open Access Journals (Sweden)
D. Kochan
2007-01-01
Full Text Available The Classical Newton-Lagrange equations of motion represent the fundamental physical law of mechanics. Their traditional Lagrangian and/or Hamiltonian precursors when available are essential in the context of quantization. However, there are situations that lack Lagrangian and/or Hamiltonian settings. This paper discusses a description of classical dynamics and presents some irresponsible speculations about its quantization by introducing a certain canonical two-form ?. By its construction ? embodies kinetic energy and forces acting within the system (not their potential. A new type of variational principle employing differential two-form ? is introduced. Variation is performed over “umbilical surfaces“ instead of system histories. It provides correct Newton-Lagrange equations of motion. The quantization is inspired by the Feynman path integral approach. The quintessence is to rearrange it into an “umbilical world-sheet“ functional integral in accordance with the proposed variational principle. In the case of potential-generated forces, the new approach reduces to the standard quantum mechanics. As an example, Quantum Mechanics with friction is analyzed in detail.
Mazzola, F.; Wells, J. W.; Pakpour-Tabrizi, A. C.; Jackman, R. B.; Thiagarajan, B.; Hofmann, Ph.; Miwa, J. A.
2018-01-01
We demonstrate simultaneous quantization of conduction band (CB) and valence band (VB) states in silicon using ultrashallow, high-density, phosphorus doping profiles (so-called Si:P δ layers). We show that, in addition to the well-known quantization of CB states within the dopant plane, the confinement of VB-derived states between the subsurface P dopant layer and the Si surface gives rise to a simultaneous quantization of VB states in this narrow region. We also show that the VB quantization can be explained using a simple particle-in-a-box model, and that the number and energy separation of the quantized VB states depend on the depth of the P dopant layer beneath the Si surface. Since the quantized CB states do not show a strong dependence on the dopant depth (but rather on the dopant density), it is straightforward to exhibit control over the properties of the quantized CB and VB states independently of each other by choosing the dopant density and depth accordingly, thus offering new possibilities for engineering quantum matter.
Quantization rules for strongly chaotic systems
International Nuclear Information System (INIS)
Aurich, R.; Bolte, J.
1992-09-01
We discuss the quantization of strongly chaotic systems and apply several quantization rules to a model system given by the unconstrained motion of a particle on a compact surface of constant negative Gaussian curvature. We study the periodic-orbit theory for distinct symmetry classes corresponding to a parity operation which is always present when such a surface has genus two. Recently, several quantization rules based on periodic orbit theory have been introduced. We compare quantizations using the dynamical zeta function Z(s) with the quantization condition cos(π N(E)) = 0, where a periodix-orbit expression for the spectral staircase N(E) is used. A general discussion of the efficiency of periodic-orbit quantization then allows us to compare the different methods. The system dependence of the efficiency, which is determined by the topological entropy τ and the mean level density anti d(E), is emphasized. (orig.)
On the Dequantization of Fedosov's Deformation Quantization
Karabegov, Alexander V.
2003-08-01
To each natural deformation quantization on a Poisson manifold M we associate a Poisson morphism from the formal neighborhood of the zero section of the cotangent bundle to M to the formal neighborhood of the diagonal of the product M x M~, where M~ is a copy of M with the opposite Poisson structure. We call it dequantization of the natural deformation quantization. Then we "dequantize" Fedosov's quantization.
Quantization of scalar-spinor instanton
International Nuclear Information System (INIS)
Inagaki, H.
1977-04-01
A systematic quantization to the scalar-spinor instanton is given in a canonical formalism of Euclidean space. A basic idea is in the repair of the symmetries of the 0(5) covariant system in the presence of the instanton. The quantization of the fermion is carried through in such a way that the fermion number should be conserved. Our quantization enables us to get well-defined propagators for both the scalar and the fermion, which are free from unphysical poles
Higgs mechanism in light-front quantized field theory
Energy Technology Data Exchange (ETDEWEB)
Srivastava, P P
1993-12-31
The spontaneous symmetry breaking of continuous symmetry in light-front quantized scalar field theory is studied following the standard Dirac procedure for constrained dynamical systems. A non-local constraint is found to follow. The values of the constant backgrounds fields (zero modes) at the tree level, as a consequence, are shown to given by minimizing the light-front energy. The zero modes are shown to commute with the non-zero ones and the isovector built from them is seen to characterize a (non-perturbative) vacuum state and the corresponding physical sector. The infinite degeneracy of the vacuum is described by the continuum of the allowed orientations of this background isovector in the isospin space. The symmetry generators in the quantized field theory annihilate the vacuum is contrast to the case of equal-time quantization. Not all of them are conserved and the conserved ones determine the surviving symmetry of the quantum theory Lagrangian. The criteria for determining the background isovector and the counting of the number of Goldstone bosons goes as in the equal-time case. A demonstration in favour of the absence of Goldstone bosons in two dimensions is also found. Finally, is extended to an understanding of the Higgs mechanism in light-front frame. (author). 13 refs.
Higgs mechanism in light-front quantized field theory
International Nuclear Information System (INIS)
Srivastava, P.P.
1992-01-01
The spontaneous symmetry breaking of continuous symmetry in light-front quantized scalar field theory is studied following the standard Dirac procedure for constrained dynamical systems. A non-local constraint is found to follow. The values of the constant backgrounds fields (zero modes) at the tree level, as a consequence, are shown to given by minimizing the light-front energy. The zero modes are shown to commute with the non-zero ones and the isovector built from them is seen to characterize a (non-perturbative) vacuum state and the corresponding physical sector. The infinite degeneracy of the vacuum is described by the continuum of the allowed orientations of this background isovector in the isospin space. The symmetry generators in the quantized field theory annihilate the vacuum is contrast to the case of equal-time quantization. Not all of them are conserved and the conserved ones determine the surviving symmetry of the quantum theory Lagrangian. The criteria for determining the background isovector and the counting of the number of Goldstone bosons goes as in the equal-time case. A demonstration in favour of the absence of Goldstone bosons in two dimensions is also found. Finally, is extended to an understanding of the Higgs mechanism in light-front frame. (author). 13 refs
Quantization of Green-Schwarz superstring
International Nuclear Information System (INIS)
Kallosh, R.E.
1987-04-01
The problem of quantization of superstrings is traced back to the nil-potency of gauge generators of the first-generation ghosts. The quantization of such theories is performed. The novel feature of this quantization is the freedom in choosing the number of ghost generations as well as gauge conditions. As an example, we perform quantization of heterotic string in a gauge, which preserves space-time supersymmetry. The equations of motion are those of a free theory. (author). 12 refs, 2 figs
Twisted condensates of quantized fields
International Nuclear Information System (INIS)
Gallone, F.; Sparzani, A.; Ubertone, G.; Streater, R.F.
We construct some quasi-free pure states of free quantized fields in 1+1 dimensions, that are localized in the sense of Knight. We consider massless or massive Dirac fields forming a U(n), n >= 1, multiplet and subject it to a local gauge transformation. We also subject a doublet of massive Klein-Gordon fields to local SO(2) transformations. We find the conditions that the resulting automorphism is spatial in Fock space. In some cases the conditions turn out to require that certain parameters, identified as the winding numbers of the gauge, are integers. It is argued that this integer labels states of various charge. (orig.)
Spectral representation in stochastic quantization
International Nuclear Information System (INIS)
Nakazato, Hiromichi.
1988-10-01
A spectral representation of stationary 2-point functions is investigated based on the operator formalism in stochastic quantization. Assuming the existence of asymptotic non-interacting fields, we can diagonalize the total Hamiltonian in terms of asymptotic fields and show that the correlation length along the fictious time is proportional to the physical mass expected in the usual field theory. A relation between renormalization factors in the operator formalism is derived as a byproduct and its validity is checked with the perturbative results calculated in this formalism. (orig.)
Completely quantized collapse and consequences
International Nuclear Information System (INIS)
Pearle, Philip
2005-01-01
Promotion of quantum theory from a theory of measurement to a theory of reality requires an unambiguous specification of the ensemble of realizable states (and each state's probability of realization). Although not yet achieved within the framework of standard quantum theory, it has been achieved within the framework of the continuous spontaneous localization (CSL) wave-function collapse model. In CSL, a classical random field w(x,t) interacts with quantum particles. The state vector corresponding to each w(x,t) is a realizable state. In this paper, I consider a previously presented model, which is predictively equivalent to CSL. In this completely quantized collapse (CQC) model, the classical random field is quantized. It is represented by the operator W(x,t) which satisfies [W(x,t),W(x ' ,t ' )]=0. The ensemble of realizable states is described by a single state vector, the 'ensemble vector'. Each superposed state which comprises the ensemble vector at time t is the direct product of an eigenstate of W(x,t ' ), for all x and for 0≤t ' ≤t, and the CSL state corresponding to that eigenvalue. These states never interfere (they satisfy a superselection rule at any time), they only branch, so the ensemble vector may be considered to be, as Schroedinger put it, a 'catalog' of the realizable states. In this context, many different interpretations (e.g., many worlds, environmental decoherence, consistent histories, modal interpretation) may be satisfactorily applied. Using this description, a long-standing problem is resolved, where the energy comes from the particles gain due to the narrowing of their wave packets by the collapse mechanism. It is shown how to define the energy of the random field and its energy of interaction with particles so that total energy is conserved for the ensemble of realizable states. As a by-product, since the random-field energy spectrum is unbounded, its canonical conjugate, a self-adjoint time operator, can be discussed. Finally, CSL
Quantization by stochastic relaxation processes and supersymmetry
International Nuclear Information System (INIS)
Kirschner, R.
1984-01-01
We show the supersymmetry mechanism resposible for the quantization by stochastic relaxation processes and for the effective cancellation of the additional time dimension against the two Grassmann dimensions. We give a non-perturbative proof of the validity of this quantization procedure. (author)
Deformation quantization of principal fibre bundles
International Nuclear Information System (INIS)
Weiss, S.
2007-01-01
Deformation quantization is an algebraic but still geometrical way to define noncommutative spacetimes. In order to investigate corresponding gauge theories on such spaces, the geometrical formulation in terms of principal fibre bundles yields the appropriate framework. In this talk I will explain what should be understood by a deformation quantization of principal fibre bundles and how associated vector bundles arise in this context. (author)
Quantized Predictive Control over Erasure Channels
DEFF Research Database (Denmark)
E. Quevedo, Daniel; Østergaard, Jan
2009-01-01
.i.d. dropouts, the controller transmits data packets containing quantized plant input predictions. These minimize a finite horizon cost function and are provided by an appropriate optimal entropy coded dithered lattice vector quantizer. Within this context, we derive an equivalent noise-shaping model...
Deformation quantization of the Heisenberg group
International Nuclear Information System (INIS)
Bonechi, F.
1994-01-01
After reviewing the way the quantization of Poisson Lie Groups naturally leads to Quantum Groups, the existing quantum version H(1) q of the Heisenberg algebra is used to give an explicit example of this quantization on the Heisenberg group. (author) 6 refs
Quantization of super Teichmueller spaces
International Nuclear Information System (INIS)
Aghaei, Nezhla
2016-08-01
The quantization of the Teichmueller spaces of Riemann surfaces has found important applications to conformal field theory and N=2 supersymmetric gauge theories. We construct a quantization of the Teichmueller spaces of super Riemann surfaces, using coordinates associated to the ideal triangulations of super Riemann surfaces. A new feature is the non-trivial dependence on the choice of a spin structure which can be encoded combinatorially in a certain refinement of the ideal triangulation. We construct a projective unitary representation of the groupoid of changes of refined ideal triangulations. Therefore, we demonstrate that the dependence of the resulting quantum theory on the choice of a triangulation is inessential. In the quantum Teichmueller theory, it was observed that the key object defining the Teichmueller theory has a close relation to the representation theory of the Borel half of U q (sl(2)). In our research we observed that the role of U q (sl(2)) is taken by quantum superalgebra U q (osp(1 vertical stroke 2)). A Borel half of U q (osp(1 vertical stroke 2)) is the super quantum plane. The canonical element of the Heisenberg double of the quantum super plane is evaluated in certain infinite dimensional representations on L 2 (R) x C 1 vertical stroke 1 and compared to the flip operator from the Teichmueller theory of super Riemann surfaces.
Fuzzy spheres from inequivalent coherent states quantizations
International Nuclear Information System (INIS)
Gazeau, Jean Pierre; Huguet, Eric; Lachieze-Rey, Marc; Renaud, Jacques
2007-01-01
The existence of a family of coherent states (CS) solving the identity in a Hilbert space allows, under certain conditions, to quantize functions defined on the measure space of CS parameters. The application of this procedure to the 2-sphere provides a family of inequivalent CS quantizations based on the spin spherical harmonics (the CS quantization from usual spherical harmonics appears to give a trivial issue for the Cartesian coordinates). We compare these CS quantizations to the usual (Madore) construction of the fuzzy sphere. Due to these differences, our procedure yields new types of fuzzy spheres. Moreover, the general applicability of CS quantization suggests similar constructions of fuzzy versions of a large variety of sets
Hitchin's connection in metaplectic quantization
DEFF Research Database (Denmark)
Andersen, Jørgen Ellegaard; Gammelgaard, Niels Leth; Lauridsen, Magnus Roed
2012-01-01
We give a differential geometric construction of a connection, which we call the Hitchin connection, in the bundle of quantum Hilbert spaces arising from metaplectically corrected geometric quantization of a prequantizable, symplectic manifold, endowed with a rigid family of Kähler structures, all...... manifold in question. Furthermore, when we are in a setting similar to the moduli space, we give an explicit formula and show that this connection agrees with previous constructions....... of which give vanishing first Dolbeault cohomology groups. This generalizes work of both Hitchin, Scheinost and Schottenloher, and Andersen, since our construction does not need that the first Chern class is proportional to the class of the symplectic form, nor do we need compactness of the symplectic...
Quantization of 2 + 1-spinning particles and bifermionic constraint problem
Energy Technology Data Exchange (ETDEWEB)
Fresneda, R.; Gavrilov, S.P.; Gitman, D.M.; Moshin, P.Yu. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica
2004-07-01
In this paper, we have quantized a P- and T-noninvariant pseudoclassical model of a massive relativistic spin-1=2 particle in 2 + 1 dimensions, on the background of an arbitrary U(1) gauge vector field. A peculiar feature of the model at the classical level is that it contains a bifermionic first-class constraint, which does not admit gauge-fixing. It is shown that this first-class constraint can be realized at the quantum level as a bounded operator, which is imposed as a condition on the state vectors (by analogy with the Dirac quantization method). This allows us to generalize the quantization scheme [?] in case there is a bifermionic first-class constraint.We present a detailed construction of the Hilbert space and verify that the constructed QM possesses the necessary symmetry properties. We show that the condition of preservation of the classical symmetries under the restricted Lorentz transformations and the U(1) transformations allows one to realize the operator algebra in an unambiguous way. Within the constructed relativistic QM, we select a physical subspace which describes the one-particle sector. The physical sector of the QM contains both particles and antiparticles with positive energy hat {omega} levels, and exactly reproduces the one-particle sector of the quantum theory of the 2 + 1 spinor field. (author)
Quantized Hall conductance as a topological invariant
International Nuclear Information System (INIS)
Niu, Q.; Thouless, Ds.J.; Wu, Y.S.
1984-10-01
Whenever the Fermi level lies in a gap (or mobility gap) the bulk Hall conductance can be expressed in a topologically invariant form showing the quantization explicitly. The new formulation generalizes the earlier result by TKNN to the situation where many body interaction and substrate disorder are also present. When applying to the fractional quantized Hall effect we draw the conclusion that there must be a symmetry breaking in the many body ground state. The possibility of writing the fractionally quantized Hall conductance as a topological invariant is also carefully discussed. 19 references
On the quantization of classically chaotic system
International Nuclear Information System (INIS)
Godoy, N.F. de.
1988-01-01
Some propeties of a quantization in terms of observables of a classically chaotic system, which exhibits a strange are studied. It is shown in particular that convenient expected values of some observables have the correct classical limit and that in these cases the limits ℎ → O and t → ∞ (t=time) rigorously comute. This model was alternatively quantized by R.Graham in terms of Wigner function. The Graham's analysis is completed a few points, in particular, we find out a remarkable analogy with general results about the semi-classical limit of Wigner function. Finally the expected values obtained by both methods of quantization were compared. (author) [pt
A Constructive Sharp Approach to Functional Quantization of Stochastic Processes
Junglen, Stefan; Luschgy, Harald
2010-01-01
We present a constructive approach to the functional quantization problem of stochastic processes, with an emphasis on Gaussian processes. The approach is constructive, since we reduce the infinite-dimensional functional quantization problem to a finite-dimensional quantization problem that can be solved numerically. Our approach achieves the sharp rate of the minimal quantization error and can be used to quantize the path space for Gaussian processes and also, for example, Lévy processes.
Superfield extended BRST quantization in general coordinates
Geyer, B.; Gitman, D. M.; Lavrov, P. M.; Moshin, P. Yu.
2003-01-01
We propose a superfield formalism of Lagrangian BRST-antiBRST quantization of arbitrary gauge theories in general coordinates with the base manifold of fields and antifields desribed in terms of both bosonic and fermionic variables.
Schroedinger's variational method of quantization revisited
International Nuclear Information System (INIS)
Yasue, K.
1980-01-01
Schroedinger's original quantization procedure is revisited in the light of Nelson's stochastic framework of quantum mechanics. It is clarified why Schroedinger's proposal of a variational problem led us to a true description of quantum mechanics. (orig.)
Quantized kernel least mean square algorithm.
Chen, Badong; Zhao, Songlin; Zhu, Pingping; Príncipe, José C
2012-01-01
In this paper, we propose a quantization approach, as an alternative of sparsification, to curb the growth of the radial basis function structure in kernel adaptive filtering. The basic idea behind this method is to quantize and hence compress the input (or feature) space. Different from sparsification, the new approach uses the "redundant" data to update the coefficient of the closest center. In particular, a quantized kernel least mean square (QKLMS) algorithm is developed, which is based on a simple online vector quantization method. The analytical study of the mean square convergence has been carried out. The energy conservation relation for QKLMS is established, and on this basis we arrive at a sufficient condition for mean square convergence, and a lower and upper bound on the theoretical value of the steady-state excess mean square error. Static function estimation and short-term chaotic time-series prediction examples are presented to demonstrate the excellent performance.
Constructing canonical bases of quantized enveloping algebras
Graaf, W.A. de
2001-01-01
An algorithm for computing the elements of a given weight of the canonical basis of a quantized enveloping algebra is described. Subsequently, a similar algorithm is presented for computing the canonical basis of a finite-dimensional module.
Null-plane quantization of fermions
International Nuclear Information System (INIS)
Mustaki, D.
1990-01-01
Massive Dirac fermions are canonically quantized on the null plane using the Dirac-Bergmann algorithm. The procedure is carried out in the framework of quantum electrodynamics as an illustration of a rigorous treatment of interacting fermion fields
Quantization in presence of external soliton fields
International Nuclear Information System (INIS)
Grosse, H.; Karner, G.
1986-01-01
Quantization of a fermi field interacting with an external soliton protential is considered. Classes of interactions leading to unitarily equivalent representations of the canonical anticommutation relations are determined. Soliton-like potentials compared to trivial ones yield inequivalent representations. (Author)
Differential calculus on quantized simple Lie groups
International Nuclear Information System (INIS)
Jurco, B.
1991-01-01
Differential calculi, generalizations of Woronowicz's four-dimensional calculus on SU q (2), are introduced for quantized classical simple Lie groups in a constructive way. For this purpose, the approach of Faddeev and his collaborators to quantum groups was used. An equivalence of Woronowicz's enveloping algebra generated by the dual space to the left-invariant differential forms and the corresponding quantized universal enveloping algebra, is obtained for our differential calculi. Real forms for q ε R are also discussed. (orig.)
Speech Data Compression using Vector Quantization
H. B. Kekre; Tanuja K. Sarode
2008-01-01
Mostly transforms are used for speech data compressions which are lossy algorithms. Such algorithms are tolerable for speech data compression since the loss in quality is not perceived by the human ear. However the vector quantization (VQ) has a potential to give more data compression maintaining the same quality. In this paper we propose speech data compression algorithm using vector quantization technique. We have used VQ algorithms LBG, KPE and FCG. The results table s...
Canonical group quantization and boundary conditions
International Nuclear Information System (INIS)
Jung, Florian
2012-01-01
In the present thesis, we study quantization of classical systems with non-trivial phase spaces using the group-theoretical quantization technique proposed by Isham. Our main goal is a better understanding of global and topological aspects of quantum theory. In practice, the group-theoretical approach enables direct quantization of systems subject to constraints and boundary conditions in a natural and physically transparent manner -- cases for which the canonical quantization method of Dirac fails. First, we provide a clarification of the quantization formalism. In contrast to prior treatments, we introduce a sharp distinction between the two group structures that are involved and explain their physical meaning. The benefit is a consistent and conceptually much clearer construction of the Canonical Group. In particular, we shed light upon the 'pathological' case for which the Canonical Group must be defined via a central Lie algebra extension and emphasise the role of the central extension in general. In addition, we study direct quantization of a particle restricted to a half-line with 'hard wall' boundary condition. Despite the apparent simplicity of this example, we show that a naive quantization attempt based on the cotangent bundle over the half-line as classical phase space leads to an incomplete quantum theory; the reflection which is a characteristic aspect of the 'hard wall' is not reproduced. Instead, we propose a different phase space that realises the necessary boundary condition as a topological feature and demonstrate that quantization yields a suitable quantum theory for the half-line model. The insights gained in the present special case improve our understanding of the relation between classical and quantum theory and illustrate how contact interactions may be incorporated.
Canonical group quantization and boundary conditions
Energy Technology Data Exchange (ETDEWEB)
Jung, Florian
2012-07-16
In the present thesis, we study quantization of classical systems with non-trivial phase spaces using the group-theoretical quantization technique proposed by Isham. Our main goal is a better understanding of global and topological aspects of quantum theory. In practice, the group-theoretical approach enables direct quantization of systems subject to constraints and boundary conditions in a natural and physically transparent manner -- cases for which the canonical quantization method of Dirac fails. First, we provide a clarification of the quantization formalism. In contrast to prior treatments, we introduce a sharp distinction between the two group structures that are involved and explain their physical meaning. The benefit is a consistent and conceptually much clearer construction of the Canonical Group. In particular, we shed light upon the 'pathological' case for which the Canonical Group must be defined via a central Lie algebra extension and emphasise the role of the central extension in general. In addition, we study direct quantization of a particle restricted to a half-line with 'hard wall' boundary condition. Despite the apparent simplicity of this example, we show that a naive quantization attempt based on the cotangent bundle over the half-line as classical phase space leads to an incomplete quantum theory; the reflection which is a characteristic aspect of the 'hard wall' is not reproduced. Instead, we propose a different phase space that realises the necessary boundary condition as a topological feature and demonstrate that quantization yields a suitable quantum theory for the half-line model. The insights gained in the present special case improve our understanding of the relation between classical and quantum theory and illustrate how contact interactions may be incorporated.
Quantized Matrix Algebras and Quantum Seeds
DEFF Research Database (Denmark)
Jakobsen, Hans Plesner; Pagani, Chiara
2015-01-01
We determine explicitly quantum seeds for classes of quantized matrix algebras. Furthermore, we obtain results on centres and block diagonal forms of these algebras. In the case where is an arbitrary root of unity, this further determines the degrees.......We determine explicitly quantum seeds for classes of quantized matrix algebras. Furthermore, we obtain results on centres and block diagonal forms of these algebras. In the case where is an arbitrary root of unity, this further determines the degrees....
Quantized acoustoelectric current in the presence of large tunneling counterflow
DEFF Research Database (Denmark)
Gloos, K.; Utko, P.; Hansen, Jørn Bindslev
2004-01-01
A surface acoustic wave drives an electrical current through a short quantum wire. A second tunneling current is injected by biasing one side of the quantum wire. These two contributions to the total current, which flow in opposite directions, are controlled almost independently by the gate...... and the bias voltage, respectively. We have observed the quantization of the acoustoelectric current at up to ten times larger counterflowing tunneling currents. At large tunneling currents the acoustoelectric current can be strongly suppressed. However, this does not seem to be due to an electrostatic...... interaction between the two currents, but is probably caused by the complex potential landscape in the narrow channel of the quantum wire....
Quantized acoustoelectric current in the presence of large tunneling counterflow
International Nuclear Information System (INIS)
Gloos, K.; Utko, P.; Lindelof, P.E.; Hansen, J. Bindslev
2004-01-01
A surface acoustic wave drives an electrical current through a short quantum wire. A second tunneling current is injected by biasing one side of the quantum wire. These two contributions to the total current, which flow in opposite directions, are controlled almost independently by the gate and the bias voltage, respectively. We have observed the quantization of the acoustoelectric current at up to ten times larger counterflowing tunneling currents. At large tunneling currents the acoustoelectric current can be strongly suppressed. However, this does not seem to be due to an electrostatic interaction between the two currents, but is probably caused by the complex potential landscape in the narrow channel of the quantum wire
Stochastic quantization and topological theories
International Nuclear Information System (INIS)
Fainberg, V.Y.; Subbotin, A.V.; Kuznetsov, A.N.
1992-01-01
In the last two years topological quantum field theories (TQFT) have attached much attention. This paper reports that from the very beginning it was realized that due to a peculiar BRST-like symmetry these models admitted so-called Nicolai mapping: the Nicolai variables, in terms of which actions of the theories become gaussian, are nothing but (anti-) selfduality conditions or their generalizations. This fact became a starting point in the quest of possible stochastic interpretation to topological field theories. The reasons behind were quite simple and included, in particular, the well-known relations between stochastic processes and supersymmetry. The main goal would have been achieved, if it were possible to construct stochastic processes governed by Langevin or Fokker-Planck equations in a real Euclidean time leading to TQFT's path integrals (equivalently: to reformulate TQFTs as non-equilibrium phase dynamics of stochastic processes). Further on, if it would appear that these processes correspond to the stochastic quantization of theories of some definite kind, one could expect (d + 1)-dimensional TQFTs to share some common properties with d-dimensional ones
A family of quantization based piecewise linear filter networks
DEFF Research Database (Denmark)
Sørensen, John Aasted
1992-01-01
A family of quantization-based piecewise linear filter networks is proposed. For stationary signals, a filter network from this family is a generalization of the classical Wiener filter with an input signal and a desired response. The construction of the filter network is based on quantization...... of the input signal x(n) into quantization classes. With each quantization class is associated a linear filter. The filtering at time n is carried out by the filter belonging to the actual quantization class of x(n ) and the filters belonging to the neighbor quantization classes of x(n) (regularization......). This construction leads to a three-layer filter network. The first layer consists of the quantization class filters for the input signal. The second layer carries out the regularization between neighbor quantization classes, and the third layer constitutes a decision of quantization class from where the resulting...
An embedding of the BV quantization into an N=1 local superfield formalism
International Nuclear Information System (INIS)
Gitman, D.M.; Moshin, P.Yu.; Reshetnyak, A.A.
2005-01-01
We propose an N=1 superfield formulation of Lagrangian quantization in general hypergauges by extending a reducible gauge theory to a superfield model with a local dependence on a Grassmann parameter θ. By means of θ-local functions of the quantum and gauge-fixing actions in terms of Darboux coordinates on the antisymplectic manifold, we construct superfield generating functionals of Green's functions, including the effective action. We prove the gauge-independence of the S-matrix, obtain the Ward identities and establish a relation of the proposed local quantization with the BV method and the multilevel Batalin-Tyutin formalism
An embedding of the BV quantization into an N=1 local superfield formalism
Energy Technology Data Exchange (ETDEWEB)
Gitman, D.M. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, SP (Brazil)]. E-mail: gitman@dfn.if.usp.br; Moshin, P.Yu. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, SP (Brazil) and Tomsk State Pedagogical University, 634041 Tomsk (Russian Federation)]. E-mail: moshin@dfn.if.usp.br; Reshetnyak, A.A. [Tomsk State Pedagogical University, 634041 Tomsk (Russian Federation)]. E-mail: reshet@tspu.edu.ru
2005-08-18
We propose an N=1 superfield formulation of Lagrangian quantization in general hypergauges by extending a reducible gauge theory to a superfield model with a local dependence on a Grassmann parameter {theta}. By means of {theta}-local functions of the quantum and gauge-fixing actions in terms of Darboux coordinates on the antisymplectic manifold, we construct superfield generating functionals of Green's functions, including the effective action. We prove the gauge-independence of the S-matrix, obtain the Ward identities and establish a relation of the proposed local quantization with the BV method and the multilevel Batalin-Tyutin formalism.
Niklas eRönnberg; Niklas eRönnberg; Mary eRudner; Mary eRudner; Thomas eLunner; Thomas eLunner; Thomas eLunner; Thomas eLunner; Stefan eStenfelt; Stefan eStenfelt
2014-01-01
Listening in noise is often perceived to be effortful. This is partly because cognitive resources are engaged in separating the target signal from background noise, leaving fewer resources for storage and processing of the content of the message in working memory. The Auditory Inference Span Test (AIST) is designed to assess listening effort by measuring the ability to maintain and process heard information. The aim of this study was to use AIST to investigate the effect of background noise t...
On the Uniqueness of the Fock Quantization of the Dirac Field in the Closed FRW Cosmology
Directory of Open Access Journals (Sweden)
Jerónimo Cortez
2018-01-01
Full Text Available The Fock quantization of free fields propagating in cosmological backgrounds is in general not unambiguously defined due to the nonstationarity of the space-time. For the case of a scalar field in cosmological scenarios, it is known that the criterion of unitary implementation of the dynamics serves to remove the ambiguity in the choice of Fock representation (up to unitary equivalence. Here, applying the same type of arguments and methods previously used for the scalar field case, we discuss the issue of the uniqueness of the Fock quantization of the Dirac field in the closed FRW space-time proposed by D’Eath and Halliwell.
Voltage quantization by ballistic vortices in two-dimensional superconductors
International Nuclear Information System (INIS)
Orlando, T.P.; Delin, K.A.
1991-01-01
The voltage generated by moving ballistic vortices with a mass m ν in a two-dimensional superconducting ring is quantized, and this quantization depends on the amount of charge enclosed by the ring. The quantization of the voltage is the dual to flux quantization in a superconductor, and is a manifestation of the Aharonov-Casher effect. The quantization is obtained by applying the Bohr-Sommerfeld criterion to the canonical momentum of the ballistic vortices. The results of this quantization condition can also be used to understand the persistent voltage predicted by van Wees for an array of Josephson junctions
Tribology of the lubricant quantized sliding state.
Castelli, Ivano Eligio; Capozza, Rosario; Vanossi, Andrea; Santoro, Giuseppe E; Manini, Nicola; Tosatti, Erio
2009-11-07
In the framework of Langevin dynamics, we demonstrate clear evidence of the peculiar quantized sliding state, previously found in a simple one-dimensional boundary lubricated model [A. Vanossi et al., Phys. Rev. Lett. 97, 056101 (2006)], for a substantially less idealized two-dimensional description of a confined multilayer solid lubricant under shear. This dynamical state, marked by a nontrivial "quantized" ratio of the averaged lubricant center-of-mass velocity to the externally imposed sliding speed, is recovered, and shown to be robust against the effects of thermal fluctuations, quenched disorder in the confining substrates, and over a wide range of loading forces. The lubricant softness, setting the width of the propagating solitonic structures, is found to play a major role in promoting in-registry commensurate regions beneficial to this quantized sliding. By evaluating the force instantaneously exerted on the top plate, we find that this quantized sliding represents a dynamical "pinned" state, characterized by significantly low values of the kinetic friction. While the quantized sliding occurs due to solitons being driven gently, the transition to ordinary unpinned sliding regimes can involve lubricant melting due to large shear-induced Joule heating, for example at large speed.
Propagators for a quantized scalar field in a static closed universe
International Nuclear Information System (INIS)
Nariai, Hidekazu; Azuma, Takahiro.
1978-07-01
In a previous paper, a massive scalar field in an expanding closed universe was canonically quantized by taking full account of its coupling-type with the background universe and of the latter's topological (spherical or elliptic) nature. General formulae (including the parts of vacuum fluctuation which should after all be removed by a suitable regularization) for the energy density and pressure of the quantized medium were derived. Various propagators for the quantized scalar field were also dealt with, because the Feynman propagator in particular became important as soon as the pair-creation of those particles was called for. However, there will be an intimate relation between the former hydrodynamic quantities and the pair-creation of their constituents. Accordingly, this problem is studied in detail by adopting a static closed universe (for simplicity in the reduction of various expressions derived in the previous paper) and examining the behavior of various bi-scalar propagators in the universe. (author)
Heterotic string in an arbitrary background field
International Nuclear Information System (INIS)
Sen, A.
1985-01-01
An expression for the light-cone gauge action for the first-quantized heterotic string in the presence of arbitrary background gauge, gravitational, and antisymmetric tensor fields is derived. The result is a two-dimensional local field theory with N = 1/2 supersymmetry. The constraints imposed on the background fields in order to make this theory one-loop finite are derived. These constraints are identical to the equations of motion for the massless fields at the linearized level. Finally, it is shown that if there is no background antisymmetric tensor field, and if the gauge connection is set equal to the spin connection, the effective action is that of an N = 1 supersymmetric nonlinear and N = 2 supersymmetric Georgi-Glashow models the occurrence of the fermion fractionization is the necessity; the ignorance of it results in the inconsistency in the perturbative calculation of the mass splittings among the members of the supermultiplets. The notable feature of our result is that the degeneracy due to the Jackiw-Rebbi zero mode is not independent of the one required by the supersymmetry, suggesting a nontrivial structure in embedding the topology of Higgs fields into supersymmetric gauge theories
Gravitational surface Hamiltonian and entropy quantization
Directory of Open Access Journals (Sweden)
Ashish Bakshi
2017-02-01
Full Text Available The surface Hamiltonian corresponding to the surface part of a gravitational action has xp structure where p is conjugate momentum of x. Moreover, it leads to TS on the horizon of a black hole. Here T and S are temperature and entropy of the horizon. Imposing the hermiticity condition we quantize this Hamiltonian. This leads to an equidistant spectrum of its eigenvalues. Using this we show that the entropy of the horizon is quantized. This analysis holds for any order of Lanczos–Lovelock gravity. For general relativity, the area spectrum is consistent with Bekenstein's observation. This provides a more robust confirmation of this earlier result as the calculation is based on the direct quantization of the Hamiltonian in the sense of usual quantum mechanics.
BRS invariant stochastic quantization of Einstein gravity
International Nuclear Information System (INIS)
Nakazawa, Naohito.
1989-11-01
We study stochastic quantization of gravity in terms of a BRS invariant canonical operator formalism. By introducing artificially canonical momentum variables for the original field variables, a canonical formulation of stochastic quantization is proposed in the sense that the Fokker-Planck hamiltonian is the generator of the fictitious time translation. Then we show that there exists a nilpotent BRS symmetry in an enlarged phase space of the first-class constrained systems. The phase space is spanned by the dynamical variables, their canonical conjugate momentum variables, Faddeev-Popov ghost and anti-ghost. We apply the general BRS invariant formulation to stochastic quantization of gravity which is described as a second-class constrained system in terms of a pair of Langevin equations coupled with white noises. It is shown that the stochastic action of gravity includes explicitly the De Witt's type superspace metric which leads to a geometrical interpretation of quantum gravity analogous to nonlinear σ-models. (author)
Second quantized approach to quantum chemistry
International Nuclear Information System (INIS)
Surjan, P.R.
1989-01-01
The subject of this book is the application of the second quantized approach to quantum chemistry. Second quantization is an alternative tool for dealing with many-electron theory. The vast majority of quantum chemical problems are more easily treated using second quantization as a language. This book offers a simple and pedagogical presentation of the theory and some applications. The reader is not supposed to be trained in higher mathematics, though familiarity with elementary quantum mechanics and quantum chemistry is assumed. Besides the basic formalism and standard illustrative applications, some recent topics of quantum chemistry are reviewed in some detail. This book bridges the gap between sophisticated quantum theory and practical quantum chemistry. (orig.)
Wave packets, Maslov indices, and semiclassical quantization
International Nuclear Information System (INIS)
Littlejohn, R.G.
1989-01-01
The Bohr-Sommerfeld quantization condition, as refined by Keller and Maslov, reads I=(n+m/4)h, where I is the classical action, n is the quantum number, and where m is the Maslov index, an even integer. The occurrence of the integers n and m in this formula is a reflection of underlying topological features of semiclassical quantization. In particular, the work of Arnold and others has shown that m/2 is a winding number of closed curves on the classical symplectic group manifold, Sp(2N). Wave packets provide a simple and elegant means of establishing the connection between semiclassical quantization and the homotopy classes of Sp(2N), as well as a practical way of calculating Maslov indices in complex problems. Topological methods can also be used to derive general formulas for the Maslov indices of invariant tori in the classical phase space corresponding to resonant motion. (orig.)
Pseudo-Kähler Quantization on Flag Manifolds
Karabegov, Alexander V.
A unified approach to geometric, symbol and deformation quantizations on a generalized flag manifold endowed with an invariant pseudo-Kähler structure is proposed. In particular cases we arrive at Berezin's quantization via covariant and contravariant symbols.
Modifications of Sp(2) covariant superfield quantization
Energy Technology Data Exchange (ETDEWEB)
Gitman, D.M.; Moshin, P.Yu
2003-12-04
We propose a modification of the Sp(2) covariant superfield quantization to realize a superalgebra of generating operators isomorphic to the massless limit of the corresponding superalgebra of the osp(1,2) covariant formalism. The modified scheme ensures the compatibility of the superalgebra of generating operators with extended BRST symmetry without imposing restrictions eliminating superfield components from the quantum action. The formalism coincides with the Sp(2) covariant superfield scheme and with the massless limit of the osp(1,2) covariant quantization in particular cases of gauge-fixing and solutions of the quantum master equations.
Quantization and non-holomorphic modular forms
Unterberger, André
2000-01-01
This is a new approach to the theory of non-holomorphic modular forms, based on ideas from quantization theory or pseudodifferential analysis. Extending the Rankin-Selberg method so as to apply it to the calculation of the Roelcke-Selberg decomposition of the product of two Eisenstein series, one lets Maass cusp-forms appear as residues of simple, Eisenstein-like, series. Other results, based on quantization theory, include a reinterpretation of the Lax-Phillips scattering theory for the automorphic wave equation, in terms of distributions on R2 automorphic with respect to the linear action of SL(2,Z).
Differential calculus on quantized simple Lie groups
Energy Technology Data Exchange (ETDEWEB)
Jurco, B. (Dept. of Optics, Palacky Univ., Olomouc (Czechoslovakia))
1991-07-01
Differential calculi, generalizations of Woronowicz's four-dimensional calculus on SU{sub q}(2), are introduced for quantized classical simple Lie groups in a constructive way. For this purpose, the approach of Faddeev and his collaborators to quantum groups was used. An equivalence of Woronowicz's enveloping algebra generated by the dual space to the left-invariant differential forms and the corresponding quantized universal enveloping algebra, is obtained for our differential calculi. Real forms for q {epsilon} R are also discussed. (orig.).
Fractional quantization and the quantum hall effect
International Nuclear Information System (INIS)
Guerrero, J.; Calixto, M.; Aldaya, V.
1998-01-01
Quantization with constrains is considered in a group-theoretical framework, providing a precise characterization of the set of good operators, i.e., those preserving the constrained Hilbert space, in terms of the representation of the subgroup of constraints. This machinery is applied to the quantization of the torus as symplectic manifold, obtaining that fractional quantum numbers are permitted, provided that we allow for vector valued representations. The good operators turn out to be the Wilson loops and, for certain representations of the subgroup of constraints, the modular transformations. These results are applied to the Fractional Quantum Hall Effect, where interesting implications are derived
On quantization of the SU(2) Skyrmions
International Nuclear Information System (INIS)
Jurčiukonis, D.; Norvaišas, E.
2013-01-01
There are two known approaches for quantizing the SU(2) Skyrme model, the semiclassical and canonical quantization. The semiclassical approach does not take into account the non-commutativity of velocity of quantum coordinates and the stability of the semiclassical soliton is conveniently ensured by the symmetry breaking term. The canonical quantum approach leads to quantum mass correction that is not obtained in the semiclassical approach. In this Letter we argue that these two approaches are not equivalent and lead to different results. We show that the resulting profile functions have the same asymptotic behaviour, however their shape in the region close to the origin is different
Image Coding Based on Address Vector Quantization.
Feng, Yushu
Image coding is finding increased application in teleconferencing, archiving, and remote sensing. This thesis investigates the potential of Vector Quantization (VQ), a relatively new source coding technique, for compression of monochromatic and color images. Extensions of the Vector Quantization technique to the Address Vector Quantization method have been investigated. In Vector Quantization, the image data to be encoded are first processed to yield a set of vectors. A codeword from the codebook which best matches the input image vector is then selected. Compression is achieved by replacing the image vector with the index of the code-word which produced the best match, the index is sent to the channel. Reconstruction of the image is done by using a table lookup technique, where the label is simply used as an address for a table containing the representative vectors. A code-book of representative vectors (codewords) is generated using an iterative clustering algorithm such as K-means, or the generalized Lloyd algorithm. A review of different Vector Quantization techniques are given in chapter 1. Chapter 2 gives an overview of codebook design methods including the Kohonen neural network to design codebook. During the encoding process, the correlation of the address is considered and Address Vector Quantization is developed for color image and monochrome image coding. Address VQ which includes static and dynamic processes is introduced in chapter 3. In order to overcome the problems in Hierarchical VQ, Multi-layer Address Vector Quantization is proposed in chapter 4. This approach gives the same performance as that of the normal VQ scheme but the bit rate is about 1/2 to 1/3 as that of the normal VQ method. In chapter 5, a Dynamic Finite State VQ based on a probability transition matrix to select the best subcodebook to encode the image is developed. In chapter 6, a new adaptive vector quantization scheme, suitable for color video coding, called "A Self -Organizing
Stochastic quantization of gravity and string fields
International Nuclear Information System (INIS)
Rumpf, H.
1986-01-01
The stochastic quantization method of Parisi and Wu is generalized so as to make it applicable to Einstein's theory of gravitation. The generalization is based on the existence of a preferred metric in field configuration space, involves Ito's calculus, and introduces a complex stochastic process adapted to Lorentzian spacetime. It implies formally the path integral measure of DeWitt, a causual Feynman propagator, and a consistent stochastic perturbation theory. The lineraized version of the theory is also obtained from the stochastic quantization of the free string field theory of Siegel and Zwiebach. (Author)
Mixed quantization dimensions of self-similar measures
International Nuclear Information System (INIS)
Dai Meifeng; Wang Xiaoli; Chen Dandan
2012-01-01
Highlights: ► We define the mixed quantization dimension of finitely many measures. ► Formula of mixed quantization dimensions of self-similar measures is given. ► Illustrate the behavior of mixed quantization dimension as a function of order. - Abstract: Classical multifractal analysis studies the local scaling behaviors of a single measure. However recently mixed multifractal has generated interest. The purpose of this paper is some results about the mixed quantization dimensions of self-similar measures.
Variable Dimension Trellis-Coded Quantization of Sinusoidal Parameters
DEFF Research Database (Denmark)
Larsen, Morten Holm; Christensen, Mads G.; Jensen, Søren Holdt
2008-01-01
In this letter, we propose joint quantization of the parameters of a set of sinusoids based on the theory of trellis-coded quantization. A particular advantage of this approach is that it allows for joint quantization of a variable number of sinusoids, which is particularly relevant in variable...
Dimensional quantization effects in the thermodynamics of conductive filaments
Niraula, D.; Grice, C. R.; Karpov, V. G.
2018-06-01
We consider the physical effects of dimensional quantization in conductive filaments that underlie operations of some modern electronic devices. We show that, as a result of quantization, a sufficiently thin filament acquires a positive charge. Several applications of this finding include the host material polarization, the stability of filament constrictions, the equilibrium filament radius, polarity in device switching, and quantization of conductance.
The representations of Lie groups and geometric quantizations
International Nuclear Information System (INIS)
Zhao Qiang
1998-01-01
In this paper we discuss the relation between representations of Lie groups and geometric quantizations. A series of representations of Lie groups are constructed by geometric quantization of coadjoint orbits. Particularly, all representations of compact Lie groups, holomorphic discrete series of representations and spherical representations of reductive Lie groups are constructed by geometric quantizations of elliptic and hyperbolic coadjoint orbits. (orig.)
Spurious-Free Dynamic Range of a Uniform Quantizer
Oude Alink, M.S.; Kokkeler, Andre B.J.; Klumperink, Eric A.M.; Rovers, K.C.; Smit, Gerardus Johannes Maria; Nauta, Bram
2009-01-01
Abstract—Quantization plays an important role in many systems where analog-to-digital conversion and/or digital-to-analog conversion take place. If the quantization error is correlated with the input signal, then the spectrum of the quantization error will contain spurious peaks. Although analytical
Visual data mining for quantized spatial data
Braverman, Amy; Kahn, Brian
2004-01-01
In previous papers we've shown how a well known data compression algorithm called Entropy-constrained Vector Quantization ( can be modified to reduce the size and complexity of very large, satellite data sets. In this paper, we descuss how to visualize and understand the content of such reduced data sets.
Covariantly second-quantized string. Pt. 2
International Nuclear Information System (INIS)
Siegel, W.
1984-01-01
BRST invariance is used to second-quantize the interacting relativistic string. The zero-mode of the anticommuting string variables is identified as the Grassmann coordinate of BRST superfields. The massless sector is Yang-Mills theory in the usual Faddeev-Popov formalism. (orig.)
A Krein quantization approach to Klein paradox
International Nuclear Information System (INIS)
Payandeh, Farrin; Fathi, Mohsen; Mohammad Pur, Toradj; Moghaddam, Zahra Gh.
2013-01-01
In this paper we first introduce the famous Klein paradox. Afterwards by proposing the Krein quantization approach and taking the negative modes into account, we will show that the expected and exact current densities could be achieved without confronting any paradox. (authors)
Nonperturbative quantization of nonabelian gauge theories
International Nuclear Information System (INIS)
Slavnov, A.
2011-01-01
Full text: (author)On the basis of the equivalence theorems proven earlier, a new formulation of nonabelian gauge theories is proposed. Contrary to the usual scheme this formulation allows the quantization of gauge theories beyond perturbation theory. The method is applicable both to the Yang-Mills theory and to nonabelian models with spontaneously broken symmetries
Group theoretical quantization of isotropic loop cosmology
Livine, Etera R.; Martín-Benito, Mercedes
2012-06-01
We achieve a group theoretical quantization of the flat Friedmann-Robertson-Walker model coupled to a massless scalar field adopting the improved dynamics of loop quantum cosmology. Deparemetrizing the system using the scalar field as internal time, we first identify a complete set of phase space observables whose Poisson algebra is isomorphic to the su(1,1) Lie algebra. It is generated by the volume observable and the Hamiltonian. These observables describe faithfully the regularized phase space underlying the loop quantization: they account for the polymerization of the variable conjugate to the volume and for the existence of a kinematical nonvanishing minimum volume. Since the Hamiltonian is an element in the su(1,1) Lie algebra, the dynamics is now implemented as SU(1, 1) transformations. At the quantum level, the system is quantized as a timelike irreducible representation of the group SU(1, 1). These representations are labeled by a half-integer spin, which gives the minimal volume. They provide superselection sectors without quantization anomalies and no factor ordering ambiguity arises when representing the Hamiltonian. We then explicitly construct SU(1, 1) coherent states to study the quantum evolution. They not only provide semiclassical states but truly dynamical coherent states. Their use further clarifies the nature of the bounce that resolves the big bang singularity.
Quantization of an Ideal Monoatomic Gas
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 1. Quantization of an Ideal Monoatomic Gas. E Fermi. Classics Volume 19 Issue 1 January 2014 pp 82-96. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/019/01/0082-0096. Author Affiliations.
Multiverse in the Third Quantized Formalism
International Nuclear Information System (INIS)
Faizal Mir
2014-01-01
In this paper we will analyze the third quantization of gravity in path integral formalism. We will use the time-dependent version of Wheeler—DeWitt equation to analyze the multiverse in this formalism. We will propose a mechanism for baryogenesis to occur in the multiverse, without violating the baryon number conservation. (general)
Gauge theories and their superspace quantization
International Nuclear Information System (INIS)
Falck, N.K.
1984-01-01
In this thesis the mathematical formalism for gauge theory is treated together with its extensions to supersymmetry. After a description of the differential calculus in superspace, gauge theories at the classical level are considered. Then the superspace quantization of gauge theories is described. (HSI)
QUANTIZATION OF NON-LAGRANGIAN SYSTEMS
Czech Academy of Sciences Publication Activity Database
Kochan, Denis
2009-01-01
Roč. 24, 28-29 (2009), s. 5319-5340 ISSN 0217-751X R&D Projects: GA MŠk(CZ) LC06002 Institutional research plan: CEZ:AV0Z10480505 Keywords : dissipative quantization * non-Lagrangian system * umbilical string Subject RIV: BE - Theoretical Physics Impact factor: 0.941, year: 2009
Stochastic quantization for the axial model
International Nuclear Information System (INIS)
Farina, C.; Montani, H.; Albuquerque, L.C.
1991-01-01
We use bosonization ideas to solve the axial model in the stochastic quantization framework. We obtain the fermion propagator of the theory decoupling directly the Langevin equation, instead of the Fokker-Planck equation. In the Appendix we calculate explicitly the anomalous divergence of the axial-vector current by using a regularization that does not break the Markovian character of the stochastic process
Coherent transform, quantization, and Poisson geometry
Novikova, E; Itskov, V; Karasev, M V
1998-01-01
This volume contains three extensive articles written by Karasev and his pupils. Topics covered include the following: coherent states and irreducible representations for algebras with non-Lie permutation relations, Hamilton dynamics and quantization over stable isotropic submanifolds, and infinitesimal tensor complexes over degenerate symplectic leaves in Poisson manifolds. The articles contain many examples (including from physics) and complete proofs.
Constraints, BRST-Cohomology and stochastic quantization
International Nuclear Information System (INIS)
Hueffel, H.
1989-01-01
After presenting a pedagogical introduction to the Becchi-Rouet-Stora-formalism we introduce stochastic quantization in extended configuration space. The appearance of a specific projection operator and its relationship to the BRST-cohomology is pointed out. 20 refs. (Author)
Quantization of bag-like solitons
International Nuclear Information System (INIS)
Breit, J.D.
1982-01-01
The method of collective coordinates is used to quantize bag-like solitons formed by scalar and spinor fields. This method leads to approximate wave functions for quarks in the bag that are orthogonal to the translational modes. Solutions are given for the MIT bag limit of the fields. (orig.)
Bolometric Device Based on Fluxoid Quantization
Bonetti, Joseph A.; Kenyon, Matthew E.; Leduc, Henry G.; Day, Peter K.
2010-01-01
The temperature dependence of fluxoid quantization in a superconducting loop. The sensitivity of the device is expected to surpass that of other superconducting- based bolometric devices, such as superconducting transition-edge sensors and superconducting nanowire devices. Just as important, the proposed device has advantages in sample fabrication.
Black hole bound states and their quantization
de Boer, J.
2008-01-01
We briefly review the construction of multi-centered black hole solutions in type IIA string theory. We then discuss a decoupling limit which embeds these solutions in M-theory on AdS(3) x S-2 x CY, and discuss some aspects of their dual CFT interpretation. Finally, we consider the quantization of
A unique Fock quantization for fields in non-stationary spacetimes
International Nuclear Information System (INIS)
Cortez, Jerónimo; Marugán, Guillermo A. Mena; Olmedo, Javier; Velhinho, José M.
2010-01-01
In curved spacetimes, the lack of criteria for the construction of a unique quantization is a fundamental problem undermining the significance of the predictions of quantum field theory. Inequivalent quantizations lead to different physics. Recently, however, some uniqueness results have been obtained for fields in non-stationary settings. In particular, for vacua that are invariant under the background symmetries, a unitary implementation of the classical evolution suffices to pick up a unique Fock quantization in the case of Klein-Gordon fields with time-dependent mass, propagating in a static spacetime whose spatial sections are three-spheres. In fact, the field equation can be reinterpreted as describing the propagation in a Friedmann-Robertson-Walker spacetime after a suitable scaling of the field by a function of time. For this class of fields, we prove here an even stronger result about the Fock quantization: the uniqueness persists when one allows for linear time-dependent transformations of the field in order to account for a scaling by background functions. In total, paying attention to the dynamics, there exists a preferred choice of quantum field, and only one SO(4)-invariant Fock representation for it that respects the standard probabilistic interpretation along the evolution. The result has relevant implications e.g. in cosmology
Numerical Optimization Design of Dynamic Quantizer via Matrix Uncertainty Approach
Directory of Open Access Journals (Sweden)
Kenji Sawada
2013-01-01
Full Text Available In networked control systems, continuous-valued signals are compressed to discrete-valued signals via quantizers and then transmitted/received through communication channels. Such quantization often degrades the control performance; a quantizer must be designed that minimizes the output difference between before and after the quantizer is inserted. In terms of the broadbandization and the robustness of the networked control systems, we consider the continuous-time quantizer design problem. In particular, this paper describes a numerical optimization method for a continuous-time dynamic quantizer considering the switching speed. Using a matrix uncertainty approach of sampled-data control, we clarify that both the temporal and spatial resolution constraints can be considered in analysis and synthesis, simultaneously. Finally, for the slow switching, we compare the proposed and the existing methods through numerical examples. From the examples, a new insight is presented for the two-step design of the existing continuous-time optimal quantizer.
Evidence for quantization of mechanical rotation of magnetic nanoparticles.
Tejada, J; Zysler, R D; Molins, E; Chudnovsky, E M
2010-01-15
We report evidence of the quantization of the rotational motion of solid particles containing thousands of atoms. A system of CoFe2O4 nanoparticles confined inside polymeric cavities has been studied. The particles have been characterized by the x-ray diffraction, transmission electron microscopy, plasma mass spectroscopy, ferromagnetic resonance (FMR), and magnetization measurements. Magnetic and FMR data confirm the presence of particles that are free to rotate inside the cavities. Equidistant, temperature-independent jumps in the dependence of the microwave absorption on the magnetic field have been detected. This observation is in accordance with the expectation that orbital motion splits the low-field absorption line into multiple lines.
Quantized levitation states of superconducting multiple-ring systems
International Nuclear Information System (INIS)
Haley, S.B.; Fink, H.J.
1996-01-01
The quantized levitation, trapped, and suspension states of a magnetic microsphere held in equilibrium by two fixed superconducting (SC) microrings are calculated by minimizing the free energy of the system. Each state is a discrete function of two independent fluxoid quantum numbers of the rings. When the radii of the SC rings are of the same order as the Ginzburg-Landau coherence length ξ(T), the system exhibits a small set of gravity and temperature-dependent levels. The levels of a weakly magnetized particle are sensitive functions of the gravitational field, indicating potential application as an accelerometer, and for trapping small magnetic particles in outer space or on Earth. The equilibrium states of a SC ring levitated by another SC ring are also calculated. copyright 1996 The American Physical Society
Tensor products of quantized tilting modules
International Nuclear Information System (INIS)
Andersen, H.H.
1992-01-01
Let U k denote the quantized enveloping algebra corresponding to a finite dimensional simple complex Lie algebra L. Assume that the quantum parameter is a root of unity in k of order at least the Coxeter number for pound. Also assume that this order is odd and not divisible by 3 if type G 2 occurs. We demonstrate how one can define a reduced tensor product on the family F consisting of those finite dimensional simple U k -modules which are deformations of simple L-modules and which have non-zero quantum dimension. This together with the work of Reshetikhin-Turaev and Turaev-Wenzl prove that (U k , F) is a modular Hopf algebra and hence produces invariants of 3-manifolds. Also by recent work of Duurhus, Jakobsen and Nest it leads to a general topological quantum field theory. The method of proof explores quantized analogues of tilting modules for algebraic groups. (orig.)
Postprocessing MPEG based on estimated quantization parameters
DEFF Research Database (Denmark)
Forchhammer, Søren
2009-01-01
the case where the coded stream is not accessible, or from an architectural point of view not desirable to use, and instead estimate some of the MPEG stream parameters based on the decoded sequence. The I-frames are detected and the quantization parameters are estimated from the coded stream and used...... in the postprocessing. We focus on deringing and present a scheme which aims at suppressing ringing artifacts, while maintaining the sharpness of the texture. The goal is to improve the visual quality, so perceptual blur and ringing metrics are used in addition to PSNR evaluation. The performance of the new `pure......' postprocessing compares favorable to a reference postprocessing filter which has access to the quantization parameters not only for I-frames but also on P and B-frames....
Light-front quantization of field theory
Energy Technology Data Exchange (ETDEWEB)
Srivastava, Prem P. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica]|[Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)
1996-07-01
Some basic topics in Light-Front (LF) quantized field theory are reviewed. Poincare algebra and the LF spin operator are discussed. The local scalar field theory of the conventional framework is shown to correspond to a non-local Hamiltonian theory on the LF in view of the constraint equations on the phase space, which relate the bosonic condensates to the non-zero modes. This new ingredient is useful to describe the spontaneous symmetry breaking on the LF. The instability of the symmetric phase in two dimensional scalar theory when the coupling constant grows is shown in the LF theory renormalized to one loop order. Chern-Simons gauge theory, regarded to describe excitations with fractional statistics, is quantized in the light-cone gauge and a simple LF Hamiltonian obtained which may allow us to construct renormalized theory of anyons. (author). 20 refs.
Light-front quantization of field theory
International Nuclear Information System (INIS)
Srivastava, Prem P.
1996-07-01
Some basic topics in Light-Front (LF) quantized field theory are reviewed. Poincare algebra and the LF spin operator are discussed. The local scalar field theory of the conventional framework is shown to correspond to a non-local Hamiltonian theory on the LF in view of the constraint equations on the phase space, which relate the bosonic condensates to the non-zero modes. This new ingredient is useful to describe the spontaneous symmetry breaking on the LF. The instability of the symmetric phase in two dimensional scalar theory when the coupling constant grows is shown in the LF theory renormalized to one loop order. Chern-Simons gauge theory, regarded to describe excitations with fractional statistics, is quantized in the light-cone gauge and a simple LF Hamiltonian obtained which may allow us to construct renormalized theory of anyons. (author). 20 refs
Coherent State Quantization and Moment Problem
Directory of Open Access Journals (Sweden)
J. P. Gazeau
2010-01-01
Full Text Available Berezin-Klauder-Toeplitz (“anti-Wick” or “coherent state” quantization of the complex plane, viewed as the phase space of a particle moving on the line, is derived from the resolution of the unity provided by the standard (or gaussian coherent states. The construction of these states and their attractive properties are essentially based on the energy spectrum of the harmonic oscillator, that is on natural numbers. We follow in this work the same path by considering sequences of non-negative numbers and their associated “non-linear” coherent states. We illustrate our approach with the 2-d motion of a charged particle in a uniform magnetic field. By solving the involved Stieltjes moment problem we construct a family of coherent states for this model. We then proceed with the corresponding coherent state quantization and we show that this procedure takes into account the circle topology of the classical motion.
Gauge invariance and Weyl-polymer quantization
Strocchi, Franco
2016-01-01
The book gives an introduction to Weyl non-regular quantization suitable for the description of physically interesting quantum systems, where the traditional Dirac-Heisenberg quantization is not applicable. The latter implicitly assumes that the canonical variables describe observables, entailing necessarily the regularity of their exponentials (Weyl operators). However, in physically interesting cases -- typically in the presence of a gauge symmetry -- non-observable canonical variables are introduced for the description of the states, namely of the relevant representations of the observable algebra. In general, a gauge invariant ground state defines a non-regular representation of the gauge dependent Weyl operators, providing a mathematically consistent treatment of familiar quantum systems -- such as the electron in a periodic potential (Bloch electron), the Quantum Hall electron, or the quantum particle on a circle -- where the gauge transformations are, respectively, the lattice translations, the magne...
Scalets, wavelets and (complex) turning point quantization
Handy, C. R.; Brooks, H. A.
2001-05-01
Despite the many successes of wavelet analysis in image and signal processing, the incorporation of continuous wavelet transform theory within quantum mechanics has lacked a compelling, first principles, motivating analytical framework, until now. For arbitrary one-dimensional rational fraction Hamiltonians, we develop a simple, unified formalism, which clearly underscores the complementary, and mutually interdependent, role played by moment quantization theory (i.e. via scalets, as defined herein) and wavelets. This analysis involves no approximation of the Hamiltonian within the (equivalent) wavelet space, and emphasizes the importance of (complex) multiple turning point contributions in the quantization process. We apply the method to three illustrative examples. These include the (double-well) quartic anharmonic oscillator potential problem, V(x) = Z2x2 + gx4, the quartic potential, V(x) = x4, and the very interesting and significant non-Hermitian potential V(x) = -(ix)3, recently studied by Bender and Boettcher.
Foundations of quantization for probability distributions
Graf, Siegfried
2000-01-01
Due to the rapidly increasing need for methods of data compression, quantization has become a flourishing field in signal and image processing and information theory. The same techniques are also used in statistics (cluster analysis), pattern recognition, and operations research (optimal location of service centers). The book gives the first mathematically rigorous account of the fundamental theory underlying these applications. The emphasis is on the asymptotics of quantization errors for absolutely continuous and special classes of singular probabilities (surface measures, self-similar measures) presenting some new results for the first time. Written for researchers and graduate students in probability theory the monograph is of potential interest to all people working in the disciplines mentioned above.
Quantized vortices in superfluids and superconductors
International Nuclear Information System (INIS)
Thoulessi, D.J.; Wexler, C.; Ping Ao, Ping; Niu, Qian; Geller, M.R.
1998-01-01
We give a general review of recent developments in the theory of vortices in superfluids and superconductors, discussing why the dynamics of vortices is important, and why some key results are still controversial. We discuss work that we have done on the dynamics of quantized vortices in a superfluid. Despite the fact that this problem has been recognized as important for forty years, there is still a lot of controversy about the forces on and masses of quantized vortices. We think that one can get unambiguous answers by considering a broken symmetry state that consists of one vortex in an infinite ideal system. We argue for a Magnus force that is proportional to the superfluid density, and we find that the effective mass density of a vortex in a neutral superfluid is divergent at low frequencies. We have generalized some of the results for a neutral superfluid to a charged system. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)
Semiclassical quantization of the nonlinear Schrodinger equation
International Nuclear Information System (INIS)
Nohl, C.R.
1976-01-01
Using the functional integral technique of Dashen, Hasslacher, and Neveu, we perform a semiclassical quantization of the nonlinear Schrodinger equation (NLSE), which reproduces McGuire's exact result for the energy levels of the bound states of the theory. We show that the stability angle formalism leads to the one-loop normal ordering and self-energy renormalization expected from perturbation theory, and demonstrate that taking into account center-of-mass motion gives the correct nonrelativistic energy--momentum relation. We interpret the classical solution in the context of the quantum theory, relating it to the matrix element of the field operator between adjacent bound states in the limit of large quantum numbers. Finally, we quantize the NLSE as a theory of N component fermion fields and show that the semiclassical method yields the exact energy levels and correct degeneracies
Adiabatic quantum pumping and charge quantization
International Nuclear Information System (INIS)
Kashcheyevs, V; Aharony, A.; Entin-Wohlmanl, O.
2004-01-01
Full Text:Modern techniques for coherent manipulation of electrons at the nano scale (electrostatic gating, surface acoustic waves) allow for studies of the adiabatic quantum pumping effect - a directed current induced by a slowly varying external perturbation. Scattering theory of pumping predicts transfer of an almost integer number of electrons per cycle if instantaneous transmission is determined by a sequence of resonances. We show that this quantization can be explained in terms of loading/unloading quasi-bound virtual states, and derive a tool for analyzing quantized pumping induced by a general potential. This theory is applied to a simple model of pumping due to surface acoustic waves. The results reproduce all the qualitative features observed in actual experiments
Semi-classical quantization of chaotic billiards
International Nuclear Information System (INIS)
Smilansky, U.
1992-02-01
The semi-classical quantization of chaotic billiards will be developed using scattering theory approach. This will be used to introduce and explain the inherent difficulties in the semi-classical quantization of chaos, and to show some of the modern tools which were developed recently to overcome these difficulties. To this end, we shall first obtain a semi-classical secular equation which is based on a finite number of classical periodic orbits. We shall use it to derive some spectral properties, and in particular to investigate the relationship between spectral statistics of quantum chaotic systems and the predictions of random-matrix theory. We shall finally discuss an important family of chaotic billiard, whose statistics does not follow any of the canonical ensembles, (GOE,GUE,...) but rather, corresponds to a new universality class. (author)
Ionization in a quantized electromagnetic field
International Nuclear Information System (INIS)
Gonoskov, I. A.; Vugalter, G. A.; Mironov, V. A.
2007-01-01
An analytical expression for a matrix element of the transition from a bound state of an electron in an atom to continuum states is obtained by solving the problem of interaction of the electron with a quantized electromagnetic field. This expression is used to derive formulas for the photoelectron spectrum and the rate of ionization of the simplest model atomic system upon absorption of an arbitrary number of photons. The expressions derived are analyzed and compared with the corresponding relationships obtained via other approaches. It is demonstrated that there are differences as compared to the case of the classical field. In particular, the photoelectron spectrum exhibits dips due to the destructive interference of the transition amplitudes in the quantized electromagnetic field
Second quantization in bit-string physics
International Nuclear Information System (INIS)
Noyes, H.P.
1992-08-01
Using a new fundamental theory based on bit-strings we derived a finite and discrete version of the solutions of the free one particle Dirac equation as segmented trajectories with steps of length h/mc along the forward and backward light cones executed at velocity ±c. Interpreting the statistical fluctuations which cause the bends in these segmented trajectories as emission and absorption of radiation, these solutions are analagous to a fermion propagator in a second quantized theory. This allows us to interpret the mass parameter in the step length as the physical mass of the free particle. The radiation in interaction with it has the usual harmonic oscillator structure of a second quantized theory. We sketch on these free particle masses can be generated gravitationally using the combinatorial hierarchy sequence (3,10,137,2 127 +136), and some of the predictive consequences
Inflation and inhomogeneities: a hybrid quantization
International Nuclear Information System (INIS)
Olmedo, J; Fernández-Méndez, M; Mena Marugán, G A
2012-01-01
We provide a complete quantization of a homogeneous and isotropic spacetime with positive spatial curvature coupled to a massive scalar field in the framework of Loop Quantum Cosmology. The physical Hilbert space is constructed out of the space of initial data on the minimum volume section. By means of a perturbative treatment we introduce inhomogeneities and thereafter we adopt a hybrid quantum approach, in which these inhomogeneous degrees of freedom are described by a standard Fock quantization. For the considered case of compact spatial topology, the requirements of: i) invariance of the vacuum state under the spatial isometries, and ii) unitary implementation of the quantum dynamics, pick up a privileged set of canonical fields and a unique Fock representation (up to unitary equivalence).
Renormalized semiclassical quantization for rescalable Hamiltonians
International Nuclear Information System (INIS)
Takahashi, Satoshi; Takatsuka, Kazuo
2004-01-01
A renormalized semiclassical quantization method for rescalable Hamiltonians is proposed. A classical Hamilton system having a potential function that consists of homogeneous polynomials like the Coulombic potential can have a scale invariance in its extended phase space (phase space plus time). Consequently, infinitely many copies of a single trajectory constitute a one-parameter family that is characterized in terms of a scaling factor. This scaling invariance in classical dynamics is lost in quantum mechanics due to the presence of the Planck constant. It is shown that in a system whose classical motions have a self-similarity in the above sense, classical trajectories adopted in the semiclassical scheme interact with infinitely many copies of their own that are reproduced by the relevant scaling procedure, thereby undergoing quantum interference among themselves to produce a quantized spectrum
Nonlinear poisson brackets geometry and quantization
Karasev, M V
2012-01-01
This book deals with two old mathematical problems. The first is the problem of constructing an analog of a Lie group for general nonlinear Poisson brackets. The second is the quantization problem for such brackets in the semiclassical approximation (which is the problem of exact quantization for the simplest classes of brackets). These problems are progressively coming to the fore in the modern theory of differential equations and quantum theory, since the approach based on constructions of algebras and Lie groups seems, in a certain sense, to be exhausted. The authors' main goal is to describe in detail the new objects that appear in the solution of these problems. Many ideas of algebra, modern differential geometry, algebraic topology, and operator theory are synthesized here. The authors prove all statements in detail, thus making the book accessible to graduate students.
A logarithmic quantization index modulation for perceptually better data hiding.
Kalantari, Nima Khademi; Ahadi, Seyed Mohammad
2010-06-01
In this paper, a novel arrangement for quantizer levels in the Quantization Index Modulation (QIM) method is proposed. Due to perceptual advantages of logarithmic quantization, and in order to solve the problems of a previous logarithmic quantization-based method, we used the compression function of mu-Law standard for quantization. In this regard, the host signal is first transformed into the logarithmic domain using the mu-Law compression function. Then, the transformed data is quantized uniformly and the result is transformed back to the original domain using the inverse function. The scalar method is then extended to vector quantization. For this, the magnitude of each host vector is quantized on the surface of hyperspheres which follow logarithmic radii. Optimum parameter mu for both scalar and vector cases is calculated according to the host signal distribution. Moreover, inclusion of a secret key in the proposed method, similar to the dither modulation in QIM, is introduced. Performance of the proposed method in both cases is analyzed and the analytical derivations are verified through extensive simulations on artificial signals. The method is also simulated on real images and its performance is compared with previous scalar and vector quantization-based methods. Results show that this method features stronger a watermark in comparison with conventional QIM and, as a result, has better performance while it does not suffer from the drawbacks of a previously proposed logarithmic quantization algorithm.
Quantized wobbling excitations with alignments
International Nuclear Information System (INIS)
Hamamoto, Ikuko; Hagemann, Gudrun B.
2003-01-01
The wobbling excitations in the presence of an appreciable amount of alignment are expected to appear more easily at lower angular momenta of the yrast spectra, compared with those in the textbook example. The large B(E2;I→I-1) value for Δn=1 transitions where n expresses the number of wobbling phonons is shown to be a strongly increasing function of the triaxiality parameter γ, especially for γ > or approx. +20 deg., while it is relatively independent of moments of inertia. On the other hand, the relation of the wobbling phonon energy to the total angular momentum may be used to extract quantitative information on nuclear moments of inertia. It is concluded that the γ value of the triaxial, strongly deformed bands in 163 Lu is about equal to +20 deg. and may be slightly increasing as a function of I
Homotopy arguments for quantized Hall conductivity
Richter, T
2002-01-01
Using the strong localization bounds obtained by the Aizenman-Molcanov method for a particle in a magnetic field and a disordered potential, we show that the zero-temperature Hall conductivity of a gas of such particles is quantized and constant as long as both Fermi energy and disorder coupling parameter vary in a region of strong localization of the corresponding two-dimensional phase diagram.
Superfield quantization in Sp(2) covariant formalism
Lavrov, P M
2001-01-01
The rules of the superfield Sp(2) covariant quantization of the arbitrary gauge theories for the case of the introduction of the gauging with the derivative equations for the gauge functional are generalized. The possibilities of realization of the expanded anti-brackets are considered and it is shown, that only one of the realizations is compatible with the transformations of the expanded BRST-symmetry in the form of super translations along the Grassmann superspace coordinates
Stochastic quantization and mean field approximation
International Nuclear Information System (INIS)
Jengo, R.; Parga, N.
1983-09-01
In the context of the stochastic quantization we propose factorized approximate solutions for the Fokker-Planck equation for the XY and Zsub(N) spin systems in D dimensions. The resulting differential equation for a factor can be solved and it is found to give in the limit of t→infinity the mean field or, in the more general case, the Bethe-Peierls approximation. (author)
Particle states of a quantized meson field
International Nuclear Information System (INIS)
Skyrme, T.H.R.
1994-01-01
A simple non-linear field theory is considered as the model for a recently proposed classical field theory of mesons and their particle sources. Quantization may be made according to canonical procedures; the problem is to show the existence of quantum states corresponding with the particle-like solutions of the classical field equations. A plausible way to do this is suggested. (author). 5 refs
Inequivalent quantizations and fundamentally perfect spaces
International Nuclear Information System (INIS)
Imbo, T.D.; Sudarshan, E.C.G.
1987-06-01
We investigate the problem of inequivalent quantizations of a physical system with multiply connected configuration space X. For scalar quantum theory on X we show that state vectors must be single-valued if and only if the first homology group H 1 (X) is trivial, or equivalently the fundamental group π 1 (X) is perfect. The θ-structure of quantum gauge and gravitational theories is discussed in light of this result
Quantization of non-Hamiltonian physical systems
International Nuclear Information System (INIS)
Bolivar, A.O.
1998-09-01
We propose a general method of quantization of non-Hamiltonian physical systems. Applying it, for example, to a dissipative system coupled to a thermal reservoir described by the Fokker-Planck equation, we are able to obtain the Caldeira-Leggett master equation, the non-linear Schroedinger-Langevin equation and Caldirola-Kanai equation (with an additional term), as particular cases. (author)
Hamiltonian description and quantization of dissipative systems
Enz, Charles P.
1994-09-01
Dissipative systems are described by a Hamiltonian, combined with a “dynamical matrix” which generalizes the simplectic form of the equations of motion. Criteria for dissipation are given and the examples of a particle with friction and of the Lotka-Volterra model are presented. Quantization is first introduced by translating generalized Poisson brackets into commutators and anticommutators. Then a generalized Schrödinger equation expressed by a dynamical matrix is constructed and discussed.
On the quantization of constrained generalized dynamics
International Nuclear Information System (INIS)
Galvao, C.A.P.; Lemos, N.A.
1987-01-01
A special class of degenerate second order Lagrangians, those which differ from a nondegenerate first order Lagrangian by a total time derivative (or a four divergence) of a function of both the coordinates and velocities, is studied in detail. The canonical quantization of such systems is then realized and it is shown that this leads to the same results as in the first order Lagrangian. (M.W.O.) [pt
Fractional statistics and fractional quantized Hall effect
International Nuclear Information System (INIS)
Tao, R.; Wu, Y.S.
1985-01-01
The authors suggest that the origin of the odd-denominator rule observed in the fractional quantized Hall effect (FQHE) may lie in fractional statistics which govern quasiparticles in FQHE. A theorem concerning statistics of clusters of quasiparticles implies that fractional statistics do not allow coexistence of a large number of quasiparticles at fillings with an even denominator. Thus, no Hall plateau can be formed at these fillings, regardless of the presence of an energy gap. 15 references
Stochastic quantization and 1/N expansion
International Nuclear Information System (INIS)
Brunelli, J.C.; Mendes, R.S.
1992-10-01
We study the 1/N expansion of field theories in the stochastic quantization method of Parisi and Wu using the supersymmetric functional approach. This formulation provides a systematic procedure to implement the 1/N expansion which resembles the ones used in the equilibrium. The 1/N perturbation theory for the non linear sigma model in two dimensions is worked out as an example. (author). 19 refs., 5 figs
New quantization matrices for JPEG steganography
Yildiz, Yesna O.; Panetta, Karen; Agaian, Sos
2007-04-01
Modern steganography is a secure communication of information by embedding a secret-message within a "cover" digital multimedia without any perceptual distortion to the cover media, so the presence of the hidden message is indiscernible. Recently, the Joint Photographic Experts Group (JPEG) format attracted the attention of researchers as the main steganographic format due to the following reasons: It is the most common format for storing images, JPEG images are very abundant on the Internet bulletin boards and public Internet sites, and they are almost solely used for storing natural images. Well-known JPEG steganographic algorithms such as F5 and Model-based Steganography provide high message capacity with reasonable security. In this paper, we present a method to increase security using JPEG images as the cover medium. The key element of the method is using a new parametric key-dependent quantization matrix. This new quantization table has practically the same performance as the JPEG table as far as compression ratio and image statistics. The resulting image is indiscernible from an image that was created using the JPEG compression algorithm. This paper presents the key-dependent quantization table algorithm and then analyzes the new table performance.
Statistical Physics and Light-Front Quantization
Energy Technology Data Exchange (ETDEWEB)
Raufeisen, J
2004-08-12
Light-front quantization has important advantages for describing relativistic statistical systems, particularly systems for which boost invariance is essential, such as the fireball created in a heavy ion collisions. In this paper the authors develop light-front field theory at finite temperature and density with special attention to quantum chromodynamics. They construct the most general form of the statistical operator allowed by the Poincare algebra and show that there are no zero-mode related problems when describing phase transitions. They then demonstrate a direct connection between densities in light-front thermal field theory and the parton distributions measured in hard scattering experiments. The approach thus generalizes the concept of a parton distribution to finite temperature. In light-front quantization, the gauge-invariant Green's functions of a quark in a medium can be defined in terms of just 2-component spinors and have a much simpler spinor structure than the equal-time fermion propagator. From the Green's function, the authors introduce the new concept of a light-front density matrix, whose matrix elements are related to forward and to off-diagonal parton distributions. Furthermore, they explain how thermodynamic quantities can be calculated in discretized light-cone quantization, which is applicable at high chemical potential and is not plagued by the fermion-doubling problems.
Quantizations of D = 3 Lorentz symmetry
Energy Technology Data Exchange (ETDEWEB)
Lukierski, J. [University of Wroclaw, Institute for Theoretical Physics, Wroclaw (Poland); Tolstoy, V.N. [University of Wroclaw, Institute for Theoretical Physics, Wroclaw (Poland); Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow (Russian Federation)
2017-04-15
Using the isomorphism o(3; C) ≅ sl(2; C) we develop a new simple algebraic technique for complete classification of quantum deformations (the classical r-matrices) for real forms o(3) and o(2,1) of the complex Lie algebra o(3; C) in terms of real forms of sl(2; C): su(2), su(1,1) and sl(2; R). We prove that the D = 3 Lorentz symmetry o(2,1) ≅ su(1,1) ≅ sl(2; R) has three different Hopf-algebraic quantum deformations, which are expressed in the simplest way by two standard su(1,1) and sl(2; R) q-analogs and by simple Jordanian sl(2; R) twist deformation. These quantizations are presented in terms of the quantum Cartan-Weyl generators for the quantized algebras su(1,1) and sl(2; R) as well as in terms of quantum Cartesian generators for the quantized algebra o(2,1). Finally, some applications of the deformed D = 3 Lorentz symmetry are mentioned. (orig.)
Introduction to quantized LIE groups and algebras
International Nuclear Information System (INIS)
Tjin, T.
1992-01-01
In this paper, the authors give a self-contained introduction to the theory of quantum groups according to Drinfeld, highlighting the formal aspects as well as the applications to the Yang-Baxter equation and representation theory. Introductions to Hopf algebras, Poisson structures and deformation quantization are also provided. After defining Poisson Lie groups the authors study their relation to Lie bialgebras and the classical Yang-Baxter equation. Then the authors explain in detail the concept of quantization for them. As an example the quantization of sl 2 is explicitly carried out. Next, the authors show how quantum groups are related to the Yang-Baxter equation and how they can be used to solve it. Using the quantum double construction, the authors explicitly construct the universal R matrix for the quantum sl 2 algebra. In the last section, the authors deduce all finite-dimensional irreducible representations for q a root of unity. The authors also give their tensor product decomposition (fusion rules), which is relevant to conformal field theory
On a quantized scalar field in the de Sitter and Nariai universes
International Nuclear Information System (INIS)
Nariai, Hidekazu.
1984-08-01
After canonical quantization of a massive or massless scalar field in the de Sitter and Nariai universes (both of which satisfy the same Einstein equations with a non-vanishing cosmological constant, Rsub(μν)=Agsub(μν), but their topological structures differ from each other), the uniquely obtained 4-dimensional commutation functions in both universes are comparatively studied with due emphasis on their topological structures, as well as the difference of couplings to the background universe. (author)
Quantization, geometry and noncommutative structures in mathematics and physics
Morales, Pedro; Ocampo, Hernán; Paycha, Sylvie; Lega, Andrés
2017-01-01
This monograph presents various ongoing approaches to the vast topic of quantization, which is the process of forming a quantum mechanical system starting from a classical one, and discusses their numerous fruitful interactions with mathematics. The opening chapter introduces the various forms of quantization and their interactions with each other and with mathematics. A first approach to quantization, called deformation quantization, consists of viewing the Planck constant as a small parameter. This approach provides a deformation of the structure of the algebra of classical observables rather than a radical change in the nature of the observables. When symmetries come into play, deformation quantization needs to be merged with group actions, which is presented in chapter 2, by Simone Gutt. The noncommutativity arising from quantization is the main concern of noncommutative geometry. Allowing for the presence of symmetries requires working with principal fiber bundles in a non-commutative setup, where Hopf a...
Algebraic quantization, good operators and fractional quantum numbers
International Nuclear Information System (INIS)
Aldaya, V.; Calixto, M.; Guerrero, J.
1996-01-01
The problems arising when quantizing systems with periodic boundary conditions are analysed, in an algebraic (group-) quantization scheme, and the failure of the Ehrenfest theorem is clarified in terms of the already defined notion of good (and bad) operators. The analysis of constrained Heisenberg-Weyl groups according to this quantization scheme reveals the possibility for quantum operators without classical analogue and for new quantum (fractional) numbers extending those allowed for Chern classes in traditional Geometric Quantization. This study is illustrated with the examples of the free particle on the circumference and the charged particle in a homogeneous magnetic field on the torus, both examples featuring anomalous operators, non-equivalent quantization and the latter, fractional quantum numbers. These provide the rationale behind flux quantization in superconducting rings and Fractional Quantum Hall Effect, respectively. (orig.)
Perspectives of Light-Front Quantized Field Theory: Some New Results
Energy Technology Data Exchange (ETDEWEB)
Srivastava, Prem P.
1999-08-13
A review of some basic topics in the light-front (LF) quantization of relativistic field theory is made. It is argued that the LF quantization is equally appropriate as the conventional one and that they lead, assuming the microcausality principle, to the same physical content. This is confirmed in the studies on the LF of the spontaneous symmetry breaking (SSB), of the degenerate vacua in Schwinger model (SM) and Chiral SM (CSM), of the chiral boson theory, and of the QCD in covariant gauges among others. The discussion on the LF is more economical and more transparent than that found in the conventional equal-time quantized theory. The removal of the constraints on the LF phase space by following the Dirac method, in fact, results in a substantially reduced number of independent dynamical variables. Consequently, the descriptions of the physical Hilbert space and the vacuum structure, for example, become more tractable. In the context of the Dyson-Wick perturbation theory the relevant propagators in the front form theory are causal. The Wick rotation can then be performed to employ the Euclidean space integrals in momentum space. The lack of manifest covariance becomes tractable, and still more so if we employ, as discussed in the text, the Fourier transform of the fermionic field based on a special construction of the LF spinor. The fact that the hyperplanes x{sup {+-}} = 0 constitute characteristic surfaces of the hyperbolic partial differential equation is found irrelevant in the quantized theory; it seems sufficient to quantize the theory on one of the characteristic hyperplanes.
Semiclassical quantization of nonadiabatic systems with hopping periodic orbits
International Nuclear Information System (INIS)
Fujii, Mikiya; Yamashita, Koichi
2015-01-01
We present a semiclassical quantization condition, i.e., quantum–classical correspondence, for steady states of nonadiabatic systems consisting of fast and slow degrees of freedom (DOFs) by extending Gutzwiller’s trace formula to a nonadiabatic form. The quantum–classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow DOF, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels. In addition to the semiclassical quantization condition, we also discuss chaotic dynamics involved in the classical limit of nonadiabatic dynamics
Minimal quantization of two-dimensional models with chiral anomalies
International Nuclear Information System (INIS)
Ilieva, N.
1987-01-01
Two-dimensional gauge models with chiral anomalies - ''left-handed'' QED and the chiral Schwinger model, are quantized consistently in the frames of the minimal quantization method. The choice of the cone time as a physical time for system of quantization is motivated. The well-known mass spectrum is found but with a fixed value of the regularization parameter a=2. Such a unique solution is obtained due to the strong requirement of consistency of the minimal quantization that reflects in the physically motivated choice of the time axis
New discovery: Quantization of atomic and nuclear rest mass differences
International Nuclear Information System (INIS)
Gareev, F. A.; Zhidkova, I. E.
2007-01-01
We come to the conclusion that all atomic models based on either the Newton equation and the Kepler laws, or the Maxwell equations, or the Schrodinger and Dirac equations are in reasonable agreement with experimental data. We can only suspect that these equations are grounded on the same fundamental principle(s) which is (are) not known or these equations can be transformed into each other. We proposed a new mechanism of LENR: cooperative processes in the whole system - nuclei + atoms + condensed matter - nuclear reactions in plasma - can occur at smaller threshold energies than the corresponding ones on free constituents. We were able to quantize [1] phenomenologically the first time the differences between atomic and nuclear rest masses by the formula: ΔΔ M = n 1 /n 2 x 0.0076294 (in MeV/c 2 ), n i =1,2,3,... Note that this quantization rule is justified for atoms and nuclei with different A, N and Z and the nuclei and atoms represent a coherent synchronized open systems - a complex of coupled oscillators (resonators). The cooperative resonance synchronization mechanisms are responsible for explanation of how the electron volt world can influence on the nuclear mega electron volt world. It means that we created new possibilities for inducing and controlling nuclear reactions by atomic processes grounded on the fundamental low of physics - conservation law of energy. The results of these research fields can provide new ecologically pure mobile sources of energy independent from oil, gas and coal, new substances, and technologies. For example, this discovery gives us a simple and cheep method for utilization of nuclear waste. References [1] F.A. Gareev, I.E. Zhidkova, E-print arXiv Nucl-th/0610002 2006
Nonabelian gauge fields in the background of magnetic strings
International Nuclear Information System (INIS)
Wieczorek, E.
1993-01-01
Quantized nonabelian gauge fields are studied in the external classical background of a linear magnetic string. The determination of the gauge field propagator demands a specification of the string by suitable physical limiting procedures. The vacuum energy density is obtained after transforming the background problem into a Casimir problem. (orig.)
Global properties of systems quantized via bundles
International Nuclear Information System (INIS)
Doebner, H.D.; Werth, J.E.
1978-03-01
Take a smooth manifold M and a Lie algebra action (g-ation) theta on M as the geometrical arena of a physical system moving on M with momenta given by theta. It is proposed to quantize the system with a Mackey-like method via the associated vector bundle xisub(rho) of a principal bundle xi=(P,π,M,H) with model dependent structure group H and with g-action phi on P lifted from theta on M. This (quantization) bundle xisub(rho) gives the Hilbert space equal to L 2 (xisub(rho),ω) of the system as the linear space of sections in xisub(rho) being square integrable with respect to a volume form ω on M; the usual position operators are obtained; phi leads to a vector field representation D(phisub(rho),theta) of g in an hence Hilbert space to momentum operators. So Hilbert space carries the quantum kinematics. In this quantuzation the physically important connection between geometrical properties of the system, e.g. quasi-completeness of theta and G-maximality of phisub(rho), and global properties of its quantized kinematics, e.g. skew-adjointness of the momenta and integrability of D(phisub(rho), theta) can easily be studied. The relation to Nelson's construction of a skew-adjoint non-integrable Lie algebra representation and to Palais' local G-action is discussed. Finally the results are applied to actions induced by coverings as examples of non-maximal phisub(rho) on Esub(rho) lifted from maximal theta on M which lead to direct consequences for the corresponding quantum kinematics
Remarks on the quantization of conformal fields
International Nuclear Information System (INIS)
Bakas, I.
1988-01-01
The quantization of a general (b,c) system in two dimensions is formulated in terms of an infinite hierarchy of modules for the Virasoro algebra that interpolate between the space of classical conformal fields of weight j and the Dirac sea of semi-infinite forms. This provides a natural framework in which to study the relation between algebraic geometry and representations of the Virasoro algebra with central charge c j = -2(6j 2 -6j+1). The importance of the construction is discussed in the context of string theory. (orig.)
On the stochastic quantization of gauge theories
Energy Technology Data Exchange (ETDEWEB)
Jona-Lasinio, G.; Parrinello, C.
1988-11-03
The non-gradient stochastic quantization scheme for gauge theories proposed by Zwanziger is analyzed in the semiclassical limit. Using ideas from the theory of small random perturbations of dynamical systems we derive a lower bound for the equilibrium distribution in a neighbourhood of a stable critical point of the drift. In this approach the calculation of the equilibrium distribution is reduced to the problem of finding a minimum for the large fluctuation functional associated to the Langevin equation. Our estimate follows from a simple upper bound for this minimum; in addition to the Yang-Mills action a gauge-fixing term which tends to suppress Gribov copies appears.
Quantized hopfield networks for reliability optimization
International Nuclear Information System (INIS)
Nourelfath, Mustapha; Nahas, Nabil
2003-01-01
The use of neural networks in the reliability optimization field is rare. This paper presents an application of a recent kind of neural networks in a reliability optimization problem for a series system with multiple-choice constraints incorporated at each subsystem, to maximize the system reliability subject to the system budget. The problem is formulated as a nonlinear binary integer programming problem and characterized as an NP-hard problem. Our design of neural network to solve efficiently this problem is based on a quantized Hopfield network. This network allows us to obtain optimal design solutions very frequently and much more quickly than others Hopfield networks
Projective geometry for polarization in geometric quantization
International Nuclear Information System (INIS)
Campbell, P.; Dodson, C.T.J.
1976-12-01
It is important to know the extent to which the procedure of geometric quantization depends on a choice of polarization of the symplectic manifold that is the classical phase space. Published results have so far been restricted to real and transversal polarizations. Here we also consider these cases by presenting a formulation in terms of projective geometry. It turns out that there is a natural characterization of real transversal polarizations and maps among them using projective concepts. We give explicit constructions for Rsup(2n)
Temperature quantization from the TBA equations
International Nuclear Information System (INIS)
Frolov, Sergey; Suzuki, Ryo
2009-01-01
We analyze the Thermodynamic Bethe Ansatz equations for the mirror model which determine the ground state energy of the light-cone AdS 5 xS 5 superstring living on a cylinder. The light-cone momentum of string is equal to the circumference of the cylinder, and is identified with the inverse temperature of the mirror model. We show that the natural requirement of the analyticity of the Y-functions leads to the quantization of the temperature of the mirror model which has never been observed in any other models.
Quantization of soluble classical constrained systems
International Nuclear Information System (INIS)
Belhadi, Z.; Menas, F.; Bérard, A.; Mohrbach, H.
2014-01-01
The derivation of the brackets among coordinates and momenta for classical constrained systems is a necessary step toward their quantization. Here we present a new approach for the determination of the classical brackets which does neither require Dirac’s formalism nor the symplectic method of Faddeev and Jackiw. This approach is based on the computation of the brackets between the constants of integration of the exact solutions of the equations of motion. From them all brackets of the dynamical variables of the system can be deduced in a straightforward way
Quantization of soluble classical constrained systems
Energy Technology Data Exchange (ETDEWEB)
Belhadi, Z. [Laboratoire de physique et chimie quantique, Faculté des sciences, Université Mouloud Mammeri, BP 17, 15000 Tizi Ouzou (Algeria); Laboratoire de physique théorique, Faculté des sciences exactes, Université de Bejaia, 06000 Bejaia (Algeria); Menas, F. [Laboratoire de physique et chimie quantique, Faculté des sciences, Université Mouloud Mammeri, BP 17, 15000 Tizi Ouzou (Algeria); Ecole Nationale Préparatoire aux Etudes d’ingéniorat, Laboratoire de physique, RN 5 Rouiba, Alger (Algeria); Bérard, A. [Equipe BioPhysStat, Laboratoire LCP-A2MC, ICPMB, IF CNRS No 2843, Université de Lorraine, 1 Bd Arago, 57078 Metz Cedex (France); Mohrbach, H., E-mail: herve.mohrbach@univ-lorraine.fr [Equipe BioPhysStat, Laboratoire LCP-A2MC, ICPMB, IF CNRS No 2843, Université de Lorraine, 1 Bd Arago, 57078 Metz Cedex (France)
2014-12-15
The derivation of the brackets among coordinates and momenta for classical constrained systems is a necessary step toward their quantization. Here we present a new approach for the determination of the classical brackets which does neither require Dirac’s formalism nor the symplectic method of Faddeev and Jackiw. This approach is based on the computation of the brackets between the constants of integration of the exact solutions of the equations of motion. From them all brackets of the dynamical variables of the system can be deduced in a straightforward way.
Quantization in rotating co-ordinates revisited
International Nuclear Information System (INIS)
Hussain, F.; Qadir, A.
1982-07-01
Recent work on quantization in rotating co-ordinates showed that no radiation would be seen by an observer rotating with a constant angular speed. This work used a Galilean-type co-ordinate transformation. We show that the same result holds for a Lorentz-type co-ordinate system, in spite of the fact that the metric has a co-ordinate singularity at rΩ = 1. Further, we are able to define positive and negative energy modes for a particular case of a non-static, non-stationary metric. (author)
Phase-space quantization of field theory
International Nuclear Information System (INIS)
Curtright, T.; Zachos, C.
1999-01-01
In this lecture, a limited introduction of gauge invariance in phase-space is provided, predicated on canonical transformations in quantum phase-space. Exact characteristic trajectories are also specified for the time-propagating Wigner phase-space distribution function: they are especially simple--indeed, classical--for the quantized simple harmonic oscillator. This serves as the underpinning of the field theoretic Wigner functional formulation introduced. Scalar field theory is thus reformulated in terms of distributions in field phase-space. This is a pedagogical selection from work published and reported at the Yukawa Institute Workshop ''Gauge Theory and Integrable Models'', 26-29 January, 1999
Entropy and energy quantization: Planck thermodynamic calculation
International Nuclear Information System (INIS)
Mota e Albuquerque, Ivone Freire da.
1988-01-01
This dissertation analyses the origins and development of the concept of entropy and its meaning of the second Law of thermodynamics, as well as the thermodynamics derivation of the energy quantization. The probabilistic interpretation of that law and its implication in physics theory are evidenciated. Based on Clausius work (which follows Carnot's work), we analyse and expose in a original way the entropy concept. Research upon Boltzmann's work and his probabilistic interpretation of the second Law of thermodynamics is made. The discuss between the atomistic and the energeticist points of view, which were actual at that time are also commented. (author). 38 refs., 3 figs
Quantization of a nonlinearly realized supersymmetric theory
International Nuclear Information System (INIS)
Shima, K.
1977-01-01
The two-dimensional version of the Volkov-Akulov Lagrangian, where the supersymmetry is realized nonlinearly by means of a single Majorana spinor psi (x), is quantized. The equal-time anticommutators for the field are not c numbers but are functions of the field itself. By explicit calculation we shall show that the supersymmetry charges of the model form the supersymmetry algebra (the graded Lie algebra); therefore the Hamiltonian of the system P 0 is written as a bilinear sum of products of supersymmetry charges. We shall also show that the supersymmetry charges exactly generate a constant translation of psi (x) in the spinor space
Quantized fields in external field. Pt. 2
International Nuclear Information System (INIS)
Bellissard, J.
1976-01-01
The case of a charged scalar field is considered first. The existence of the corresponding Green's functions is proved. For weak fields, as well as pure electric or scalar external fields, the Bogoliubov S-operator is shown to be unitary, covariant, causal up-to-a-phase. These results are generalised to a class of higher spin quantized fields, 'nicely' coupled to external fields, which includes the Dirac theory, and in the case of minimal and magnetic dipole coupling, the spin one Petiau-Duffin-Kemmer theory. (orig.) [de
Treatment of constraints in the stochastic quantization method and covariantized Langevin equation
International Nuclear Information System (INIS)
Ikegami, Kenji; Kimura, Tadahiko; Mochizuki, Riuji
1993-01-01
We study the treatment of the constraints in the stochastic quantization method. We improve the treatment of the stochastic consistency condition proposed by Namiki et al. by suitably taking into account the Ito calculus. Then we obtain an improved Langevin equation and the Fokker-Planck equation which naturally leads to the correct path integral quantization of the constrained system as the stochastic equilibrium state. This treatment is applied to an O(N) non-linear σ model and it is shown that singular terms appearing in the improved Langevin equation cancel out the δ n (0) divergences in one loop order. We also ascertain that the above Langevin equation, rewritten in terms of independent variables, is actually equivalent to the one in the general-coordinate transformation covariant and vielbein-rotation invariant formalism. (orig.)
An investigation of some quantum systems using modified quantization rule form
Energy Technology Data Exchange (ETDEWEB)
Maiz, F., E-mail: fethimaiz@gmail.com [University of Cartage, Nabeul Engineering Preparatory Institute, Merazka, 8000 Nabeul (Tunisia); King Khalid University, Faculty of Science, Physics Department, P.O. Box 9004, Abha 61413 (Saudi Arabia)
2014-09-15
We propose a new simple quantization rule form: J{sub n}=nπ+δ(n), for exactly solvable and nonsolvable quantum systems. Here, J{sub n} is the momentum integral between two turning points, n the principal quantum number, and δ(n) is a function of potential parameters and n. This new quantization rule form is a generalization of the conventional one, already developed for exactly solvable quantum systems. We found that δ(n) is a constant independent of n for exactly solvable quantum systems. We carry out the expression of δ(n) for V-shape potential, and show that it takes this form δ(n)=(π/2)+(1/a+bn+cn{sup 2}) for anharmonic oscillators potential V(x)=αx{sup p}+βx{sup 2}.
The classical parafermion algebra, its generalization and its quantization
International Nuclear Information System (INIS)
Bardakci, K.
1992-01-01
The Poisson bracket algebra of the classical parafermions derived earlier from the lagrangian description of conformal coset models is generalized. It is also shown how to quantize models with commutative monodromy matrices, and progress is made in quantizing the non-commutative case. (orig.)
Lossless image data sequence compression using optimal context quantization
DEFF Research Database (Denmark)
Forchhammer, Søren; WU, Xiaolin; Andersen, Jakob Dahl
2001-01-01
Context based entropy coding often faces the conflict of a desire for large templates and the problem of context dilution. We consider the problem of finding the quantizer Q that quantizes the K-dimensional causal context Ci=(X(i-t1), X(i-t2), …, X(i-tK)) of a source symbol Xi into one of M...
Quantization ambiguity and the Aharanov-Bohm effect
International Nuclear Information System (INIS)
Kunstatter, G.
1983-01-01
A brief review is given of the role of quantization ambiguity in both quantum mechanics and quantum field theory. The author points out that quantization ambiguity is not relevant to discussions of physical experiments designed to test the Aharanov-Bohm effect. A recent proposal for such an experiment involving Aharanov-Bohm currents in thin superconducting cylinders is mentioned. (Auth.)
Generalized noise terms for the quantized fluctuational electrodynamics
DEFF Research Database (Denmark)
Partanen, Mikko; Hayrynen, Teppo; Tulkki, Jukka
2017-01-01
position-dependent quantum models for the photon number in resonant structures have only been formulated very recently and only for dielectric media. Here we present a general position-dependent quantized fluctuational electrodynamics (QFED) formalism that extends the consistent field quantization...
Quantization Distortion in Block Transform-Compressed Data
Boden, A. F.
1995-01-01
The popular JPEG image compression standard is an example of a block transform-based compression scheme; the image is systematically subdivided into block that are individually transformed, quantized, and encoded. The compression is achieved by quantizing the transformed data, reducing the data entropy and thus facilitating efficient encoding. A generic block transform model is introduced.
On quantization of the electromagnetic field in radiation gauge
International Nuclear Information System (INIS)
Burzynski, A.
1982-01-01
This paper contains a detailed description of quantization of the electromagnetic field (in radiation gauge) and quantization of some basic physical variables connected with radiation field as energy, momentum and spin. The dynamics of the free quantum radiation field and the field interacting with external classical sources is described. The canonical formalism is not used explicity. (author)
A geometrical approach to free-field quantization
International Nuclear Information System (INIS)
Tabensky, R.; Valle, J.W.F.
1977-01-01
A geometrical approach to the quantization of free relativistic fields is given. Complex probability amplitudes are assigned to the solutions of the classical evolution equation. It is assumed that the evolution is stricly classical, according to the scalar unitary representation of the Poincare group in a functional space. The theory is equivalent to canonical quantization [pt
Berezin and Berezin-Toeplitz quantizations for general function spaces
Czech Academy of Sciences Publication Activity Database
Engliš, Miroslav
2006-01-01
Roč. 19, č. 2 (2006), s. 385-430 ISSN 1139-1138 R&D Projects: GA AV ČR(CZ) IAA1019301 Institutional research plan: CEZ:AV0Z10190503 Keywords : Berezin quantization * Berezin-Toeplitz quantization * star product Subject RIV: BA - General Mathematics
Quantization of fermions in external soliton fields and index calculation
International Nuclear Information System (INIS)
Grosse, H.
1986-01-01
We review recent results on the quantization of fermions in external fields, discuss equivalent and inequivalent representations of the canonical anticommutation relations, indicate how the requirement of implementability of gauge transformations leads to quantization conditions, determine the algebra of charges, identify the Schwinger term and remark finally how one may calculate a ground state charge. (Author)
Problems with quantizing the Skyrmion: a critical review
International Nuclear Information System (INIS)
Ralston, J.P.
1984-01-01
We review the motivation and construction of the chiral soliton picture of baryons. We discuss the semi-classical quantization procedure of Adkins, Nappi and Witten and the stability of the semi-classical solution under the collective coordinate quantization. By studying the behavior in the chiral limit and specific numerical predictions, we conclude that the collective coordinate procedure is inadequate
Group representations via geometric quantization of the momentum map
International Nuclear Information System (INIS)
Mladenov, I.M.; Tsanov, V.V.
1992-09-01
In this paper, we treat a general method of quantization of Hamiltonian systems whose flow is a subgroup (not necessarily closed) of a torus acting freely and symplectically on the phase space. The quantization of some classes of completely integrable systems as well as the Borel-Weil-Bott version of representation theory are special cases. (author). 14 refs
Quantization of the Jackiw-Teitelboim model
International Nuclear Information System (INIS)
Constantinidis, Clisthenis P.; Piguet, Olivier; Perez, Alejandro
2009-01-01
We study the phase space structure of the Jackiw-Teitelboim model in its connection variables formulation where the gauge group of the field theory is given by local SL(2,R)[or SU(2) for the Euclidean model], i.e. the de Sitter group in two dimensions. In order to make the connection with two-dimensional gravity explicit, a partial gauge fixing of the de Sitter symmetry can be introduced that reduces it to space-time diffeomorphisms. This can be done in different ways. Having no local physical degrees of freedom, the reduced phase space of the model is finite dimensional. The simplicity of this gauge field theory allows for studying different avenues for quantization, which may use various (partial) gauge fixings. We show that reduction and quantization are noncommuting operations: the representation of basic variables as operators in a Hilbert space depends on the order chosen for the latter. Moreover, a representation that is natural in one case may not even be available in the other leading to inequivalent quantum theories.
Quantization of dissipative systems - some irresponsible speculations
International Nuclear Information System (INIS)
Kochan, Denis
2007-01-01
The Newton-Lagrange equations of motion represent the fundamental law of mechanics. Their traditional Lagrangian and/or Hamiltonian precursors when available are essential in the context of quantization. However, there are situations that lack Lagrangian and/or Hamiltonian settings. This paper discusses classical and quantal dynamics of such systems and presents some irresponsible speculations by introducing a certain canonical two-form Ω. By its construction Ω embodies kinetic energy and forces acting within the system (not their potential). A new type of variational principle is introduced, where variation is performed over a set of 'umbilical surfaces' instead of system histories. It provides correct Newton-Lagrange equations of motion and something more. The quantization is inspired by the Feynman functional integral approach. The quintessence is to rearrange path integral into an ''umbilical world-sheet'' integral in accordance with the proposed variational principle. In the case of potential-generated forces, the new approach reduces to the standard quantum mechanics
Fedosov quantization and perturbative quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Collini, Giovanni
2016-12-12
Fedosov has described a geometro-algebraic method to construct in a canonical way a deformation of the Poisson algebra associated with a finite-dimensional symplectic manifold (''phase space''). His algorithm gives a non-commutative, but associative, product (a so-called ''star-product'') between smooth phase space functions parameterized by Planck's constant ℎ, which is treated as a deformation parameter. In the limit as ℎ goes to zero, the star product commutator goes to ℎ times the Poisson bracket, so in this sense his method provides a quantization of the algebra of classical observables. In this work, a generalization of Fedosov's method is developed which applies to the infinite-dimensional symplectic ''manifolds'' that occur in Lagrangian field theories. We show that the procedure remains mathematically well-defined, and we explain the relationship of the method to more standard perturbative quantization schemes in quantum field theory.
On infinite walls in deformation quantization
International Nuclear Information System (INIS)
Kryukov, S.; Walton, M.A.
2005-01-01
We examine the deformation quantization of a single particle moving in one dimension (i) in the presence of an infinite potential wall (ii) confined by an infinite square well, and (iii) bound by a delta function potential energy. In deformation quantization, considered as an autonomous formulation of quantum mechanics, the Wigner function of stationary states must be found by solving the so-called *-genvalue ('stargenvalue') equation for the Hamiltonian. For the cases considered here, this pseudo-differential equation is difficult to solve directly, without an ad hoc modification of the potential. Here we treat the infinite wall as the limit of a solvable exponential potential. Before the limit is taken, the corresponding *-genvalue equation involves the Wigner function at momenta translated by imaginary amounts. We show that it can be converted to a partial differential equation, however, with a well-defined limit. We demonstrate that the Wigner functions calculated from the standard Schroedinger wave functions satisfy the resulting new equation. Finally, we show how our results may be adapted to allow for the presence of another, non-singular part in the potential
Structure Sensitive Hashing With Adaptive Product Quantization.
Liu, Xianglong; Du, Bowen; Deng, Cheng; Liu, Ming; Lang, Bo
2016-10-01
Hashing has been proved as an attractive solution to approximate nearest neighbor search, owing to its theoretical guarantee and computational efficiency. Though most of prior hashing algorithms can achieve low memory and computation consumption by pursuing compact hash codes, however, they are still far beyond the capability of learning discriminative hash functions from the data with complex inherent structure among them. To address this issue, in this paper, we propose a structure sensitive hashing based on cluster prototypes, which explicitly exploits both global and local structures. An alternating optimization algorithm, respectively, minimizing the quantization loss and spectral embedding loss, is presented to simultaneously discover the cluster prototypes for each hash function, and optimally assign unique binary codes to them satisfying the affinity alignment between them. For hash codes of a desired length, an adaptive bit assignment is further appended to the product quantization of the subspaces, approximating the Hamming distances and meanwhile balancing the variance among hash functions. Experimental results on four large-scale benchmarks CIFAR-10, NUS-WIDE, SIFT1M, and GIST1M demonstrate that our approach significantly outperforms state-of-the-art hashing methods in terms of semantic and metric neighbor search.
First quantized noncritical relativistic Polyakov string
International Nuclear Information System (INIS)
Jaskolski, Z.; Meissner, K.A.
1994-01-01
The first quantization of the relativistic Brink-DiVecchia-Howe-Polyakov (BDHP) string in the range 1 < d 25 is considered. It is shown that using the Polyakov sum over bordered surfaces in the Feynman path integral quantization scheme one gets a consistent quantum mechanics of relativistic 1-dim extended objects in the range 1 < d < 25. In particular, the BDHP string propagator is exactly calculated for arbitrary initial and final string configurations and the Hilbert space of physical states of noncritical BDHP string is explicitly constructed. The resulting theory is equivalent to the Fairlie-Chodos-Thorn massive string model. In contrast to the conventional conformal field theory approach to noncritical string and random surfaces in the Euclidean target space the path integral formulation of the Fairlie-Chodos-Thorn string obtained in this paper does not rely on the principle of conformal invariance. Some consequences of this feature for constructing a consistent relativistic string theory based on the ''splitting-joining'' interaction are discussed. (author). 42 refs, 1 fig
Light-front quantization of the sine-Gordon model
International Nuclear Information System (INIS)
Burkardt, M.
1993-01-01
It is shown how to modify the canonical light-front quantization of the (1+1)-dimensional sine-Gordon model such that the zero-mode problem of light-front quantization is avoided. The canonical sine-Gordon Lagrangian is replaced by an effective Lagrangian which does not lead to divergences as k + =(k 0 +k 1 )/ √2 →0. After canonically quantizing the effective Lagrangian, one obtains the effective light-front Hamiltonian which agrees with the naive light-front (LF) Hamiltonian, up to one additional renormalization. The spectrum of the effective LF Hamiltonian is determined using discrete light-cone quantization and agrees with results from equal-time quantization
Parameters Design for Logarithmic Quantizer Based on Zoom Strategy
Directory of Open Access Journals (Sweden)
Jingjing Yan
2017-01-01
Full Text Available This paper is concerned with the problem of designing suitable parameters for logarithmic quantizer such that the closed-loop system is asymptotic convergent. Based on zoom strategy, we propose two methods for quantizer parameters design, under which it ensures that the state of the closed-loop system can load in the invariant sets after some certain moments. Then we obtain that the quantizer is unsaturated, and thus the quantization errors are bounded under the time-varying logarithm quantization strategy. On that basis, we obtain that the closed-loop system is asymptotic convergent. A benchmark example is given to show the usefulness of the proposed methods, and the comparison results are illustrated.
First, Second Quantization and Q-Deformed Harmonic Oscillator
International Nuclear Information System (INIS)
Van Ngu, Man; Vinh, Ngo Gia; Lan, Nguyen Tri; Viet, Nguyen Ai; Thanh, Luu Thi Kim
2015-01-01
Relations between the first, the second quantized representations and deform algebra are investigated. In the case of harmonic oscillator, the axiom of first quantization (the commutation relation between coordinate and momentum operators) and the axiom of second quantization (the commutation relation between creation and annihilation operators) are equivalent. We shown that in the case of q-deformed harmonic oscillator, a violence of the axiom of second quantization leads to a violence of the axiom of first quantization, and inverse. Using the coordinate representation, we study fine structures of the vacuum state wave function depend in the deformation parameter q. A comparison with fine structures of Cooper pair of superconductivity in the coordinate representation is also performed. (paper)
Quantized correlation coefficient for measuring reproducibility of ChIP-chip data
Directory of Open Access Journals (Sweden)
Kuroda Mitzi I
2010-07-01
Full Text Available Abstract Background Chromatin immunoprecipitation followed by microarray hybridization (ChIP-chip is used to study protein-DNA interactions and histone modifications on a genome-scale. To ensure data quality, these experiments are usually performed in replicates, and a correlation coefficient between replicates is used often to assess reproducibility. However, the correlation coefficient can be misleading because it is affected not only by the reproducibility of the signal but also by the amount of binding signal present in the data. Results We develop the Quantized correlation coefficient (QCC that is much less dependent on the amount of signal. This involves discretization of data into set of quantiles (quantization, a merging procedure to group the background probes, and recalculation of the Pearson correlation coefficient. This procedure reduces the influence of the background noise on the statistic, which then properly focuses more on the reproducibility of the signal. The performance of this procedure is tested in both simulated and real ChIP-chip data. For replicates with different levels of enrichment over background and coverage, we find that QCC reflects reproducibility more accurately and is more robust than the standard Pearson or Spearman correlation coefficients. The quantization and the merging procedure can also suggest a proper quantile threshold for separating signal from background for further analysis. Conclusions To measure reproducibility of ChIP-chip data correctly, a correlation coefficient that is robust to the amount of signal present should be used. QCC is one such measure. The QCC statistic can also be applied in a variety of other contexts for measuring reproducibility, including analysis of array CGH data for DNA copy number and gene expression data.
Creation of quantized particles, gravitons, and scalar perturbations by the expanding universe
International Nuclear Information System (INIS)
Parker, Leonard
2015-01-01
equations reduced, in what is now known as the Lifshitz gauge, to two separate classical minimally-coupled massless scalar field equations. These field equations of Lifshitz, when quantized, correspond to the field equations for massless gravitons, one equation for each of the two independent polarization components of the spin-2 massless graviton. I will discuss this further in this article. (paper)
International Nuclear Information System (INIS)
Wang Huawei; Jia Xiaoyun; Ji Yanli; Kong Qingpeng; Zhang Qingjiong; Yao Yonggang; Zhang Yaping
2008-01-01
The penetrance of Leber's hereditary optic neuropathy (LHON) in families with primary mitochondrial DNA (mtDNA) mutations is very complex. Matrilineal and nuclear genetic background, as well as environmental factors, have been reported to be involved in different affected pedigrees. Here we describe two large Chinese families that show a striking difference in the penetrance of LHON, in which 53.3% and 15.0% of members were affected (P < 0.02), respectively. Analysis of the complete mtDNA genome of the two families revealed the presence of the primary mutation G11778A and several other variants suggesting the same haplogroup status G2a. The family with higher penetrance contained a previously described secondary mutation G13708A, which presents a polymorphism in normal Chinese samples and does not affect in vivo mitochondrial oxidative metabolism as described in a previous study. Evolutionary analysis failed to indicate any putatively pathogenic mutation that cosegregated with G11778A in these two pedigrees. Our results suggest that the variable penetrance of LHON in the two Chinese families is independent of both their mtDNA haplotype background and a secondary mutation G13708A. As a result, it is likely that unknown nuclear gene involvement and/or other factors contribute to the strikingly different penetrance of LHON
Energy Technology Data Exchange (ETDEWEB)
Wang Huawei [Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223 (China)]|[Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091 (China); Jia Xiaoyun; Ji Yanli [State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060 (China); Kong Qingpeng [State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 (China); Zhang Qingjiong [State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060 (China)], E-mail: qingjiongzhang@yahoo.com; Yao Yonggang [Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223 (China)]|[State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 (China)], E-mail: ygyaozh@yahoo.com; Zhang Yaping [Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091 (China)]|[State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 (China)
2008-08-25
The penetrance of Leber's hereditary optic neuropathy (LHON) in families with primary mitochondrial DNA (mtDNA) mutations is very complex. Matrilineal and nuclear genetic background, as well as environmental factors, have been reported to be involved in different affected pedigrees. Here we describe two large Chinese families that show a striking difference in the penetrance of LHON, in which 53.3% and 15.0% of members were affected (P < 0.02), respectively. Analysis of the complete mtDNA genome of the two families revealed the presence of the primary mutation G11778A and several other variants suggesting the same haplogroup status G2a. The family with higher penetrance contained a previously described secondary mutation G13708A, which presents a polymorphism in normal Chinese samples and does not affect in vivo mitochondrial oxidative metabolism as described in a previous study. Evolutionary analysis failed to indicate any putatively pathogenic mutation that cosegregated with G11778A in these two pedigrees. Our results suggest that the variable penetrance of LHON in the two Chinese families is independent of both their mtDNA haplotype background and a secondary mutation G13708A. As a result, it is likely that unknown nuclear gene involvement and/or other factors contribute to the strikingly different penetrance of LHON.
Quantum mechanics, gravity and modified quantization relations.
Calmet, Xavier
2015-08-06
In this paper, we investigate a possible energy scale dependence of the quantization rules and, in particular, from a phenomenological point of view, an energy scale dependence of an effective [Formula: see text] (reduced Planck's constant). We set a bound on the deviation of the value of [Formula: see text] at the muon scale from its usual value using measurements of the anomalous magnetic moment of the muon. Assuming that inflation has taken place, we can conclude that nature is described by a quantum theory at least up to an energy scale of about 10(16) GeV. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Partial quantization of Lagrangian-Hamiltonian systems
International Nuclear Information System (INIS)
Amaral, C.M. do; Soares Filho, P.C.
1979-05-01
A classical variational principle is constructed in the Weiss form, for dynamical systems with support spaces of the configuration-phase kind. This extended principle rules the dynamics of classical systems, partially Hamiltonian, in interaction with Lagrangean parameterized subsidiary dynamics. The variational family of equations obtained, consists of an equation of the Hamilton-Jacobi type, coupled to a family of differential equations of the Euler-Lagrange form. The basic dynamical function appearing in the equations is a function of the Routh kind. By means of an ansatz induced by the variationally obtained family, a generalized set of equation, is proposed constituted by a wave equation of Schroedinger type, coupled to a family of equations formaly analog to those Euler-Lagrange equations. A basic operator of Routh type appears in our generalized set of equations. This operator describes the interaction between a quantized Hamiltonian dynamics, with a parameterized classical Lagrangean dynamics in semi-classical closed models. (author) [pt
Vector-Quantization using Information Theoretic Concepts
DEFF Research Database (Denmark)
Lehn-Schiøler, Tue; Hegde, Anant; Erdogmus, Deniz
2005-01-01
interpretation and relies on minimization of a well defined cost-function. It is also shown how the potential field approach can be linked to information theory by use of the Parzen density estimator. In the light of information theory it becomes clear that minimizing the free energy of the system is in fact......The process of representing a large data set with a smaller number of vectors in the best possible way, also known as vector quantization, has been intensively studied in the recent years. Very efficient algorithms like the Kohonen Self Organizing Map (SOM) and the Linde Buzo Gray (LBG) algorithm...... have been devised. In this paper a physical approach to the problem is taken, and it is shown that by considering the processing elements as points moving in a potential field an algorithm equally efficient as the before mentioned can be derived. Unlike SOM and LBG this algorithm has a clear physical...
Canonical quantization inside the Schwarzschild black hole
Yajnik, U. A.; Narayan, K.
1998-05-01
We propose a scheme for quantizing a scalar field over the Schwarzschild manifold including the interior of the horizon. On the exterior, the timelike Killing vector and on the horizon the isometry corresponding to restricted Lorentz boosts can be used to enforce the spectral condition. For the interior we appeal to CPT invariance to construct an explicitly positive-definite operator which allows identification of positive and negative frequencies. This operator is the translation operator corresponding to the inexorable propagation to smaller radii as expected from the classical metric. We also propose an expression for the propagator in the interior and express it as a mode sum. The field theory thus obtained is meaningful for small curvatures far from the classical singularity.
On the general theory of quantized fields
International Nuclear Information System (INIS)
Fredenhagen, K.
1991-10-01
In my lecture I describe the present stage of the general theory of quantized fields on the example of 5 subjects. They are ordered in the direction from large to small distances. The first one is the by now classical problem of the structure of superselection sectors. It involves the behavior of the theory at spacelike infinity and is directly connected with particle statistics and internal symmetries. It has become popular in recent years by the discovery of a lot of nontrivial models in 2d conformal-field theory, by connections to integrable models and critical behavior in statistical mechanics and by the relations to the Jones' theory of subfactors in von Neumann algebras and to the corresponding geometrical objects (braids, knots, 3d manifolds, ...). At large timelike distances the by far most important feature of quantum field theory is the particle structure. This will be the second subject of my lecture. It follows the technically most involved part which is concerned with the behavior at finite distances. Two aspets, nuclearity which emphasizes the finite density of states in phase space, and the modular structure which relies on the infinite number of degrees of freedom present even locally, and their mutual relations will be treated. The next point, involving the structure at infinitesimal distances, is the connection between the Haag-Kastler framework of algebras of local and the framework of Wightman fields. Finally, problems in approaches to quantum gravity will be discussed, as far as they are accessible by the methods of the general theory of quantized fields. (orig.)
Uniqueness of the Fock quantization of scalar fields in spatially flat cosmological spacetimes
Energy Technology Data Exchange (ETDEWEB)
Gomar, Laura Castelló [Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Cortez, Jerónimo [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico D.F. 04510 (Mexico); Blas, Daniel Martín-de; Marugán, Guillermo A. Mena [Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid (Spain); Velhinho, José M., E-mail: laucaste@estumail.ucm.es, E-mail: jacq@ciencias.unam.mx, E-mail: daniel.martin@iem.cfmac.csic.es, E-mail: jvelhi@ubi.pt [Departamento de Física, Faculdade de Ciências, Universidade da Beira Interior, R. Marquês D' Ávila e Bolama, 6201-001 Covilhã (Portugal)
2012-11-01
We study the Fock quantization of scalar fields in (generically) time dependent scenarios, focusing on the case in which the field propagation occurs in –either a background or effective– spacetime with spatial sections of flat compact topology. The discussion finds important applications in cosmology, like e.g. in the description of test Klein-Gordon fields and scalar perturbations in Friedmann-Robertson-Walker spacetime in the observationally favored flat case. Two types of ambiguities in the quantization are analyzed. First, the infinite ambiguity existing in the choice of a Fock representation for the canonical commutation relations, understandable as the freedom in the choice of inequivalent vacua for a given field. Besides, in cosmological situations, it is customary to scale the fields by time dependent functions, which absorb part of the evolution arising from the spacetime, which is treated classically. This leads to an additional ambiguity, this time in the choice of a canonical pair of field variables. We show that both types of ambiguities are removed by the requirements of (a) invariance of the vacuum under the symmetries of the three-torus, and (b) unitary implementation of the dynamics in the quantum theory. In this way, one arrives at a unique class of unitarily equivalent Fock quantizations for the system. This result provides considerable robustness to the quantum predictions and renders meaningful the confrontation with observation.
A Quantized Analog Delay for an ir-UWB Quadrature Downconversion Autocorrelation Receiver
Bagga, S.; Zhang, L.; Serdijn, W.A.; Long, J.R.; Busking, E.B.
2005-01-01
A quantized analog delay is designed as a requirement for the autocorrelation function in the quadrature downconversion autocorrelation receiver (QDAR). The quantized analog delay is comprised of a quantizer, multiple binary delay lines and an adder circuit. Being the foremost element, the quantizer
Quantized correlation coefficient for measuring reproducibility of ChIP-chip data.
Peng, Shouyong; Kuroda, Mitzi I; Park, Peter J
2010-07-27
Chromatin immunoprecipitation followed by microarray hybridization (ChIP-chip) is used to study protein-DNA interactions and histone modifications on a genome-scale. To ensure data quality, these experiments are usually performed in replicates, and a correlation coefficient between replicates is used often to assess reproducibility. However, the correlation coefficient can be misleading because it is affected not only by the reproducibility of the signal but also by the amount of binding signal present in the data. We develop the Quantized correlation coefficient (QCC) that is much less dependent on the amount of signal. This involves discretization of data into set of quantiles (quantization), a merging procedure to group the background probes, and recalculation of the Pearson correlation coefficient. This procedure reduces the influence of the background noise on the statistic, which then properly focuses more on the reproducibility of the signal. The performance of this procedure is tested in both simulated and real ChIP-chip data. For replicates with different levels of enrichment over background and coverage, we find that QCC reflects reproducibility more accurately and is more robust than the standard Pearson or Spearman correlation coefficients. The quantization and the merging procedure can also suggest a proper quantile threshold for separating signal from background for further analysis. To measure reproducibility of ChIP-chip data correctly, a correlation coefficient that is robust to the amount of signal present should be used. QCC is one such measure. The QCC statistic can also be applied in a variety of other contexts for measuring reproducibility, including analysis of array CGH data for DNA copy number and gene expression data.
Coherent states and related quantizations for unbounded motions
International Nuclear Information System (INIS)
Bagrov, V G; Gazeau, J-P; Gitman, D M; Levin, A D
2012-01-01
We discuss the construction of coherent states (CS) for systems with continuous spectra. First, we propose to adopt the Malkin–Manko approach, developed for systems with discrete spectra, to the case under consideration. Following this approach, we consider two examples, a free particle and a particle in a linear potential. Second, we generalize the approach of action-angle CS to systems with continuous spectra. In the first approach we start with a well-defined quantum formulation (canonical quantization) of a physical system and the construction of CS follows from such a quantization. In the second approach, the quantization procedure is inherent to the CS construction itself. (paper)
Networked Predictive Control for Nonlinear Systems With Arbitrary Region Quantizers.
Yang, Hongjiu; Xu, Yang; Xia, Yuanqing; Zhang, Jinhui
2017-04-06
In this paper, networked predictive control is investigated for planar nonlinear systems with quantization by an extended state observer (ESO). The ESO is used not only to deal with nonlinear terms but also to generate predictive states for dealing with network-induced delays. Two arbitrary region quantizers are applied to take effective values of signals in forward channel and feedback channel, respectively. Based on a "zoom" strategy, sufficient conditions are given to guarantee stabilization of the closed-loop networked control system with quantization. A simulation example is proposed to exhibit advantages and availability of the results.
Flux quantization in 'autistic' magnets
Energy Technology Data Exchange (ETDEWEB)
Costa de Beauregard, O.; Vigoureux, J.M.
1974-03-15
The Dirac electron theory for the evanescent wave surrounding an infinitely long cylindrical magnet with zero surface polarization and the requirement of the single valuedness of this wave are used to show that the magnetic flux is quantized in units h/2e emu. The same quantization is shown for a general ''autistic'' magnet (i.e. magnet completely trapping its flux), thus establishing complete external equivalence of the ''autistic'' magnet with the ''perfect solenoid''. An experimental test of the predicted quantization is suggested.
On gauge fixing and quantization of constrained Hamiltonian systems
International Nuclear Information System (INIS)
Dayi, O.F.
1989-06-01
In constrained Hamiltonian systems which possess first class constraints some subsidiary conditions should be imposed for detecting physical observables. This issue and quantization of the system are clarified. It is argued that the reduced phase space and Dirac method of quantization, generally, differ only in the definition of the Hilbert space one should use. For the dynamical systems possessing second class constraints the definition of physical Hilbert space in the BFV-BRST operator quantization method is different from the usual definition. (author). 18 refs
From the geometric quantization to conformal field theory
International Nuclear Information System (INIS)
Alekseev, A.; Shatashvili, S.
1990-01-01
Investigation of 2d conformal field theory in terms of geometric quantization is given. We quantize the so-called model space of the compact Lie group, Virasoro group and Kac-Moody group. In particular, we give a geometrical interpretation of the Virasoro discrete series and explain that this type of geometric quantization reproduces the chiral part of CFT (minimal models, 2d-gravity, WZNW theory). In the appendix we discuss the relation between classical (constant) r-matrices and this geometrical approach. (orig.)
Semiclassical versus exact quantization of the Sinh-Gordon model
Energy Technology Data Exchange (ETDEWEB)
Grossehelweg, Juliane
2009-12-15
In this work we investigate the semiclassics of the Sinh-Gordon model. The Sinh-Gordon model is integrable, its explicit solutions of the classical and the quantum model are well known. This allows for a comprehensive investigation of the semiclassical quantization of the classical model as well as of the semiclassical limit of the exact quantum solution. Semiclassical means in this case that the key objects of quantum theory are constructed as formal power series. A quantity playing an important role in the quantum theory is the Q-function. The purpose of this work is to investigate to what extend the classical integrability of the model admits of a construction of the semiclassical expansion of the Q-function. Therefore we used two conceptual independent approaches. In the one approach we start from the exact nonperturbative solution of the quantum model and calculate the semiclassical limit up to the next to leading order. Thereby we found the spectral curve, as well as the semiclassical expansion of the Q-function and of the eigenvalue of the monodromy matrix. In the other approach we constructed the first two orders of the semiclassical expansion of the Q-function, starting from the classical solution theory. The results of both approaches coincide. (orig.)
The fiber bundle formalism for the quantization in curved spaces
International Nuclear Information System (INIS)
Wyrozumski, T.
1989-01-01
We set up a geometrical formulation of the canonical quantization of free Klein-Gordon field on a gravitational background. We introduce the notion of the Bogolubov bundle as the principal fiber bundle over the space of all Cauchy surfaces belonging to some fixed foliation of space-time, with the Bogolubov group as the structure group, as a tool in considering local Bogolubov transformations. Sections of the associated complex structure bundle have the meaning of attaching Hilbert spaces to Cauchy surfaces. We single out, as physical, sections defined by the equation of parallel transport on the Bogolubov bundle. The connection is then subjected to a certain nonlinear differential equation. We find a particular solution, which happens to coincide with a formula given by L.Parker for Robertson-Walker space-times. Finally, we adopt the adiabatic hypothesis as the physical input to the formalism and fix in this way a free parameter in the connection. Concluding, we comment on a possible geometrical interpretation of the regularization of stress-energy tensor and on generalizations of the formalism toward quantum gravity. 14 refs. (Author)
A few comments on general theory of quantized fields
International Nuclear Information System (INIS)
Yamaguchi, Yoshio
2005-01-01
Several important comments on General Theory of Quantized Fields shall be supplemented here. Our theory is based on (Riemannian) momentum spaces with finite volumes. Our theory is formulated in the specific inertial frame, i.e., the rest frame of the cosmic back-ground radiation (RF-CBR). To go to other reference frame, we reply on general co-ordinate (in our case, energy and momentum variables, p-representation) transformations and the principle of general relativity. We find the degeneracy on energy levels of all elementary particles (same values of all particle energies appear twice) (as compared to the conventional field theories). This doubling of energy levels might be important at the beginning (very early stage) of our evolutional universe. However, we may not wish to have such a doubling at the present epoch. We can avoid the doubling by introducing appropriate (natural and rational, of course) Yukawa interactions among fermions and bosons. Then it is easy to realize the situation in which elementary particles populated in the half of the energy levels (called 'our particles' having normal spin multiplicity) shall not 'interact' with particles populated in the other half of energy levels except gravity. The particles in the latter group may be called 'dark matter particles', which give the most natural candidates of dark matter. We have already emphasized that other candidates of dark matter are zero-point vibration energy of all elementary particles and the energy of the vacuum due to interaction Hamiltonians. (author)
AdS pure spinor superstring in constant backgrounds
International Nuclear Information System (INIS)
Chandia, Osvaldo; Bevilaqua, L. Ibiapina; Vallilo, Brenno Carlini
2014-01-01
In this paper we study the pure spinor formulation of the superstring in AdS_5×S"5 around point particle solutions of the classical equations of motion. As a particular example we quantize the pure spinor string in the BMN background
AdS pure spinor superstring in constant backgrounds
Energy Technology Data Exchange (ETDEWEB)
Chandia, Osvaldo [Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez,Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez,Diagonal Las Torres 2640, Peñalolén, Santiago (Chile); Bevilaqua, L. Ibiapina [Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte,Caixa Postal 1524, 59072-970, Natal, RN (Brazil); Vallilo, Brenno Carlini [Facultad de Ciencias Exactas, Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago (Chile)
2014-06-05
In this paper we study the pure spinor formulation of the superstring in AdS{sub 5}×S{sup 5} around point particle solutions of the classical equations of motion. As a particular example we quantize the pure spinor string in the BMN background.
On quantization of systems with couplings depending on time
International Nuclear Information System (INIS)
Gadzhiev, S.A.; Dzhafarov, R.K.
1990-01-01
Two main moments, on which the Gitman T yutin quantization is based: formal introduction of pulse, conjugated time and postulate of special nonunitary time dependence of the Schroeinger operators, have been interpreted. 4 refs
A quantization scheme for scale-invariant pure gauge theories
International Nuclear Information System (INIS)
Hortacsu, M.
1988-01-01
A scheme is suggested for the quantization of the recently proposed scale-invariant gauge theories in higher dimensions. The model is minimally coupled to a spinor field. Regularization algorithms are proposed. (orig.)
A possibility to solve the problems with quantizing gravity
International Nuclear Information System (INIS)
Hossenfelder, Sabine
2013-01-01
It is generally believed that quantum gravity is necessary to resolve the known tensions between general relativity and the quantum field theories of the standard model. Since perturbatively quantized gravity is non-renormalizable, the problem how to unify all interactions in a common framework has been open since the 1930s. Here, I propose a possibility to circumvent the known problems with quantizing gravity, as well as the known problems with leaving it unquantized: By changing the prescription for second quantization, a perturbative quantization of gravity is sufficient as an effective theory because matter becomes classical before the perturbative expansion breaks down. This is achieved by considering the vanishing commutator between a field and its conjugated momentum as a symmetry that is broken at low temperatures, and by this generates the quantum phase that we currently live in, while at high temperatures Planck's constant goes to zero
Quantized Passive Dynamic Output Feedback Control with Actuator Failure
Directory of Open Access Journals (Sweden)
Zu-Xin Li
2016-01-01
Full Text Available This paper investigates the problem of passive dynamic output feedback control for fuzzy discrete nonlinear systems with quantization and actuator failures, where the measurement output of the system is quantized by a logarithmic quantizer before being transferred to the fuzzy controller. By employing the fuzzy-basis-dependent Lyapunov function, sufficient condition is established to guarantee the closed-loop system to be mean-square stable and the prescribed passive performance. Based on the sufficient condition, the fuzzy dynamic output feedback controller is proposed for maintaining acceptable performance levels in the case of actuator failures and quantization effects. Finally, a numerical example is given to show the usefulness of the proposed method.
Minimum uncertainty and squeezing in diffusion processes and stochastic quantization
Demartino, S.; Desiena, S.; Illuminati, Fabrizo; Vitiello, Giuseppe
1994-01-01
We show that uncertainty relations, as well as minimum uncertainty coherent and squeezed states, are structural properties for diffusion processes. Through Nelson stochastic quantization we derive the stochastic image of the quantum mechanical coherent and squeezed states.
Remarks on the geometric quantization of the Kepler problem
International Nuclear Information System (INIS)
Gaeta, G.; Spera, M.
1988-01-01
The geometric quantization of the (three-dimensional) Kepler problem is readily obtained from the one of the harmonic oscillator using a Segre map. The physical meaning of the latter is discussed. (orig.)
New approach to the problem of gauge field quantization
International Nuclear Information System (INIS)
Skachkov, N.B.; Shevchenko, O.Yu.
1987-01-01
A new scheme of calibration field quantization containing considerable change of the procedure of calibration conditions application on field variables is suggested. The above approach is based on a proved theorem on the subordination of fields to the additional Lorenz condition when applying a wide class of initial calibration conditions on these fields. This condition has the sense of the secondary bond, which must be included in the system of bonds during field quantization. The fact of secondary bond presence in the form of Lorenz condition was not earlier considered in literature and used in quantization. Due to this, the report suggests modification of all existing methods of field quantization: according to Dirac-Bergman, covariant approach using an indefinite metric and the method of functional integration
Effect of threshold quantization in opportunistic splitting algorithm
Nam, Haewoon; Alouini, Mohamed-Slim
2011-01-01
This paper discusses algorithms to find the optimal threshold and also investigates the impact of threshold quantization on the scheduling outage performance of the opportunistic splitting scheduling algorithm. Since this algorithm aims at finding
On the quantization of sectorially Hamiltonian dissipative systems
Energy Technology Data Exchange (ETDEWEB)
Castagnino, M. [Instituto de Fisica de Rosario, 2000 Rosario (Argentina); Instituto de Astronomia y Fisica del Espacio, Casilla de Correos 67, Sucursal 28, 1428 Buenos Aires (Argentina); Gadella, M. [Instituto de Fisica de Rosario, 2000 Rosario (Argentina); Departamento de Fisica Teorica, Atomica y Optica, Facultad de Ciencias, Universidad de Valladolid, 47005 Valladolid (Spain)], E-mail: manuelgadella@yahoo.com.ar; Lara, L.P. [Instituto de Fisica de Rosario, 2000 Rosario (Argentina); Facultad Regional Rosario, UTN, 2000 Rosario (Argentina)
2009-10-15
We present a theoretical discussion showing that, although some dissipative systems may have a sectorial Hamiltonian description, this description does not allow for canonical quantization. However, a quantum Liouville counterpart of these systems is possible, although it is not unique.
On the quantization of sectorially Hamiltonian dissipative systems
International Nuclear Information System (INIS)
Castagnino, M.; Gadella, M.; Lara, L.P.
2009-01-01
We present a theoretical discussion showing that, although some dissipative systems may have a sectorial Hamiltonian description, this description does not allow for canonical quantization. However, a quantum Liouville counterpart of these systems is possible, although it is not unique.
Gupta-Bleuler Photon Quantization in the SME
Colladay, Don; Potting, Robertus
2014-01-01
Photon quantization is implemented in the standard model extension (SME) using the Gupta-Bleuler method and BRST concepts. The quantization prescription applies to both the birefringent and non-birefringent CPT-even couplings. A curious incompatibility is found between the presence of the Lorentz-violating terms and the existence of a nontrivial conjugate momentum $\\Pi^0$ yielding problems with covariant quantization procedure. Introduction of a mass regulator term can avoid the vanishing of $\\Pi^0$ and allows for the implementation of a covariant quantization procedure. Field-theoretic calculations involving the SME photons can then be performed using the mass regulator, similar to the conventional procedure used in electrodynamics for infrared-divergence regulation.
A physically motivated quantization of the electromagnetic field
International Nuclear Information System (INIS)
Bennett, Robert; Barlow, Thomas M; Beige, Almut
2016-01-01
The notion that the electromagnetic field is quantized is usually inferred from observations such as the photoelectric effect and the black-body spectrum. However accounts of the quantization of this field are usually mathematically motivated and begin by introducing a vector potential, followed by the imposition of a gauge that allows the manipulation of the solutions of Maxwell’s equations into a form that is amenable for the machinery of canonical quantization. By contrast, here we quantize the electromagnetic field in a less mathematically and more physically motivated way. Starting from a direct description of what one sees in experiments, we show that the usual expressions of the electric and magnetic field observables follow from Heisenberg’s equation of motion. In our treatment, there is no need to invoke the vector potential in a specific gauge and we avoid the commonly used notion of a fictitious cavity that applies boundary conditions to the field. (paper)
DEFF Research Database (Denmark)
Zandersen, Marianne; Hyytiäinen, Kari; Saraiva, Sofia
This document serves as a background material to the BONUS Pilot Scenario Workshop, which aims to develop harmonised regional storylines of socio-ecological futures in the Baltic Sea region in a collaborative effort together with other BONUS projects and stakeholders.......This document serves as a background material to the BONUS Pilot Scenario Workshop, which aims to develop harmonised regional storylines of socio-ecological futures in the Baltic Sea region in a collaborative effort together with other BONUS projects and stakeholders....
A note on the BFV-BRST operator quantization method
International Nuclear Information System (INIS)
Dayi, O.F.
1988-03-01
The BFV-BRST operator quantization method is applied to massive, abelian (Yang-Mills) theory which has only second class constraints. A nilpotent BFV-BRST-charge is derived and used to define a unitarizing hamiltonian. Unphysical degrees of freedom can be eliminated either in a canonical gauge or in a relativistic one. In the latter gauge this is a general feature (at least locally) of the BFV-BRST quantization of the systems with irreducible constraints. (author). 23 refs
Vector potential quantization and the photon wave-particle representation
International Nuclear Information System (INIS)
Meis, C; Dahoo, P R
2016-01-01
The quantization procedure of the vector potential is enhanced at a single photon state revealing the possibility for a simultaneous representation of the wave-particle nature of the photon. Its relationship to the quantum vacuum results naturally. A vector potential amplitude operator is defined showing the parallelism with the Hamiltonian of a massless particle. It is further shown that the quantized vector potential satisfies both the wave propagation equation and a linear time-dependent Schrödinger-like equation. (paper)
Poincare invariant algebra from instant to light-front quantization
International Nuclear Information System (INIS)
Ji, Chueng-Ryong; Mitchell, Chad
2001-01-01
We present the Poincare algebra interpolating between instant and light-front time quantizations. The angular momentum operators satisfying SU(2) algebra are constructed in an arbitrary interpolation angle and shown to be identical to the ordinary angular momentum and Leutwyler-Stern angular momentum in the instant and light-front quantization limits, respectively. The exchange of the dynamical role between the transverse angular mometum and the boost operators is manifest in our newly constructed algebra
Covarient quantization of heterotic strings in supersymmetric chiral boson formulation
International Nuclear Information System (INIS)
Yu, F.
1992-01-01
This dissertation presents the covariant supersymmetric chiral boson formulation of the heterotic strings. The main feature of this formulation is the covariant quantization of the so-called leftons and rightons -- the (1,0) supersymmetric generalizations of the world-sheet chiral bosons -- that constitute basic building blocks of general heterotic-type string models. Although the (Neveu-Schwarz-Ramond or Green-Schwarz) heterotic strings provide the most realistic string models, their covariant quantization, with the widely-used Siegel formalism, has never been rigorously carried out. It is clarified in this dissertation that the covariant Siegel formalism is pathological upon quantization. As a test, a general classical covariant (NSR) heterotic string action that has the Siegel symmetry is constructed in arbitrary curved space-time coupled to (1,0) world-sheet super-gravity. In the light-cone gauge quantization, the critical dimensions are derived for such an action with leftons and rightons compactified on group manifolds G L x G R . The covariant quantization of this action does not agree with the physical results in the light-cone gauge quantization. This dissertation establishes a new formalism for the covariant quantization of heterotic strings. The desired consistent covariant path integral quantization of supersymmetric chiral bosons, and thus the general (NSR) heterotic-type strings with leftons and rightons compactified on torus circle-times d L S 1 x circle-times d R S 1 are carried out. An infinite set of auxiliary (1,0) scalar superfields is introduced to convert the second-class chiral constraint into first-class ones. The covariant gauge-fixed action has an extended BRST symmetry described by the graded algebra GL(1/1). A regularization respecting this symmetry is proposed to deal with the contributions of the infinite towers of auxiliary fields and associated ghosts
On the Fedosov deformation quantization beyond the regular Poisson manifolds
International Nuclear Information System (INIS)
Dolgushev, V.A.; Isaev, A.P.; Lyakhovich, S.L.; Sharapov, A.A.
2002-01-01
A simple iterative procedure is suggested for the deformation quantization of (irregular) Poisson brackets associated to the classical Yang-Baxter equation. The construction is shown to admit a pure algebraic reformulation giving the Universal Deformation Formula (UDF) for any triangular Lie bialgebra. A simple proof of classification theorem for inequivalent UDF's is given. As an example the explicit quantization formula is presented for the quasi-homogeneous Poisson brackets on two-plane
Renormalization of an abelian gauge theory in stochastic quantization
International Nuclear Information System (INIS)
Chaturvedi, S.; Kapoor, A.K.; Srinivasan, V.
1987-01-01
The renormalization of an abelian gauge field coupled to a complex scalar field is discussed in the stochastic quantization method. The super space formulation of the stochastic quantization method is used to derive the Ward Takahashi identities associated with supersymmetry. These Ward Takahashi identities together with previously derived Ward Takahashi identities associated with gauge invariance are shown to be sufficient to fix all the renormalization constants in terms of scaling of the fields and of the parameters appearing in the stochastic theory. (orig.)
Manifestly super-Poincare covariant quantization of the Green-Schwarz superstring
International Nuclear Information System (INIS)
Nissimov, E.R.; Pacheva, S.J.
1987-11-01
The Green-Schwarz (GS) superstring is reformulated in a physically equivalent way by embedding it into a larger system containing additional fermionic string- as well as bosonic harmonic variables and possessing additional gauge invariances. The main feature of the new GS superstring system is that it contains covariant and functionally independent first-class constraints only. This allows straightforward application of the BFV-BRST formalism for a manifestly super-Poincare covariant canonical quantization. The corresponding BRST charge turns out to be of second rank and, therefore, the BFV-BRST action contains fourth order ghost terms. (author). 20 refs
Energy Technology Data Exchange (ETDEWEB)
Hack, Thomas-Paul; Makedonski, Mathias [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik
2011-06-15
We first introduce a set of conditions which assure that a free spin (3)/(2) field with m{>=}0 can be consistently ('unitarily') quantized on all four-dimensional curved spacetimes, i.e. also on spacetimes which are not assumed to be solutions of the Einstein equations. We discuss a large - and, as we argue, exhaustive - class of spin (3)/(2) field equations obtained from the Rarita-Schwinger equation by the addition of non-minimal couplings and prove that no equation in this class fulfils all sufficient conditions. Afterwards, we investigate the situation in supergravity, where the curved background is usually assumed to satisfy the Einstein equations and, hence, detailed knowledge on the spacetime curvature is available. We provide a necessary condition for the unitary quantization of a spin (3)/(2) Majorana field and prove that this condition is not met by supergravity models in four-dimensional Robertson-Walker spacetimes if local supersymmetry is broken. Our proof is model-independent as we merely assume that the gravitino has the standard kinetic term. (orig.)
Canonical quantization of so-called non-Lagrangian systems
Energy Technology Data Exchange (ETDEWEB)
Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318-CEP, Sao Paulo, S.P. (Brazil); Kupriyanov, V.G. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318-CEP, Sao Paulo, S.P. (Brazil); Tomsk State University, Physics Department, Tomsk (Russian Federation)
2007-04-15
We present an approach to the canonical quantization of systems with equations of motion that are historically called non-Lagrangian equations. Our viewpoint of this problem is the following: despite the fact that a set of differential equations cannot be directly identified with a set of Euler-Lagrange equations, one can reformulate such a set in an equivalent first-order form that can always be treated as the Euler-Lagrange equations of a certain action. We construct such an action explicitly. It turns out that in the general case the hamiltonization and canonical quantization of such an action are non-trivial problems, since the theory involves time-dependent constraints. We adopt the general approach of hamiltonization and canonical quantization for such theories as described in D.M. Gitman, I.V. Tyutin, Quantization of Fields with Constraints (Springer, Berlin, 1990). to the case under consideration. There exists an ambiguity (that cannot be reduced to the addition of a total time derivative) in associating a Lagrange function with a given set of equations. We present a complete description of this ambiguity. The proposed scheme is applied to the quantization of a general quadratic theory. In addition, we consider the quantization of a damped oscillator and of a radiating point-like charge. (orig.)
Canonical quantization of so-called non-Lagrangian systems
International Nuclear Information System (INIS)
Gitman, D.M.; Kupriyanov, V.G.
2007-01-01
We present an approach to the canonical quantization of systems with equations of motion that are historically called non-Lagrangian equations. Our viewpoint of this problem is the following: despite the fact that a set of differential equations cannot be directly identified with a set of Euler-Lagrange equations, one can reformulate such a set in an equivalent first-order form that can always be treated as the Euler-Lagrange equations of a certain action. We construct such an action explicitly. It turns out that in the general case the hamiltonization and canonical quantization of such an action are non-trivial problems, since the theory involves time-dependent constraints. We adopt the general approach of hamiltonization and canonical quantization for such theories as described in D.M. Gitman, I.V. Tyutin, Quantization of Fields with Constraints (Springer, Berlin, 1990). to the case under consideration. There exists an ambiguity (that cannot be reduced to the addition of a total time derivative) in associating a Lagrange function with a given set of equations. We present a complete description of this ambiguity. The proposed scheme is applied to the quantization of a general quadratic theory. In addition, we consider the quantization of a damped oscillator and of a radiating point-like charge. (orig.)
The BRST quantization and the no-ghost theorem for AdS3
International Nuclear Information System (INIS)
Asano, Masako; Natsuume, Makoto
2003-01-01
In our previous papers, we prove the no-ghost theorem without light-cone directions. We point out that our results are valid for more general backgrounds. In particular, we prove the no-ghost theorem for AdS 3 in the context of the BRST quantization (with the standard restriction on the spin). We compare our BRST proof with the OCQ proof and establish the BRST-OCQ equivalence for AdS 3 . The key in both approaches lies in the certain structure of the matter Hilbert space as a product of two Verma modules. We also present the no-ghost theorem in the most general form. (author)
Quantized gauge invariant periodic TDHF solutions
International Nuclear Information System (INIS)
Kan, K.-K.; Griffin, J.J.; Lichtner, P.C.; Dworzecka, M.
1979-01-01
Time-dependent Hartree-Fock (TDHF) is used to study steady state large amplitude nuclear collective motions, such as vibration and rotation. As is well known the small amplitude TDHF leads to the RPA equation. The analysis of periodicity in TDHF is not trivial because TDHF is a nonlinear theory and it is not known under what circumstances a nonlinear theory can support periodic solutions. It is also unknown whether such periodic solution, if they exist, form a continuous or a discrete set. But, these properties may be important in obtaining the energy spectrum of the collective states from the TDHF description. The periodicity and Gauge Invariant Periodicity of solutions are investigated for that class of models whose TDHF solutions depend on time through two parameters. In such models TDHF supports a continuous family of periodic solutions, but only a discrete subset of these is gauge invariant. These discrete Gauge Invariant Periodic solutions obey the Bohr-Summerfeld quantization rule. The energy spectrum of the Gauge Invariant Periodic solutions is compared with the exact eigenergies in one specific example
Quantized Abelian principle connections on Lorentzian manifolds
International Nuclear Information System (INIS)
Benini, Marco; Schenkel, Alexander
2013-03-01
We construct a covariant functor from a category of Abelian principal bundles over globally hyperbolic spacetimes to a category of *-algebras that describes quantized principal connections. We work within an appropriate differential geometric setting by using the bundle of connections and we study the full gauge group, namely the group of vertical principal bundle automorphisms. Properties of our functor are investigated in detail and, similar to earlier works, it is found that due to topological obstructions the locality property of locally covariant quantum field theory is violated. Furthermore, we prove that, for Abelian structure groups containing a nontrivial compact factor, the gauge invariant Borchers- Uhlmann algebra of the vector dual of the bundle of connections is not separating on gauge equivalence classes of principal connections. We introduce a topological generalization of the concept of locally covariant quantum fields. As examples, we construct for the full subcategory of principal U(1)-bundles two natural transformations from singular homology functors to the quantum field theory functor that can be interpreted as the Euler class and the electric charge. In this case we also prove that the electric charges can be consistently set to zero, which yields another quantum field theory functor that satisfies all axioms of locally covariant quantum field theory.
Quantized Abelian principle connections on Lorentzian manifolds
Energy Technology Data Exchange (ETDEWEB)
Benini, Marco [Pavia Univ. (Italy); Istituto Nazionale di Fisica Nucleare, Pavia (Italy); Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Dappiaggi, Claudio [Pavia Univ. (Italy); Istituto Nazionale di Fisica Nucleare, Pavia (Italy); Schenkel, Alexander [Bergische Univ., Wuppertal (Germany). Fachgruppe Mathematik
2013-03-15
We construct a covariant functor from a category of Abelian principal bundles over globally hyperbolic spacetimes to a category of *-algebras that describes quantized principal connections. We work within an appropriate differential geometric setting by using the bundle of connections and we study the full gauge group, namely the group of vertical principal bundle automorphisms. Properties of our functor are investigated in detail and, similar to earlier works, it is found that due to topological obstructions the locality property of locally covariant quantum field theory is violated. Furthermore, we prove that, for Abelian structure groups containing a nontrivial compact factor, the gauge invariant Borchers- Uhlmann algebra of the vector dual of the bundle of connections is not separating on gauge equivalence classes of principal connections. We introduce a topological generalization of the concept of locally covariant quantum fields. As examples, we construct for the full subcategory of principal U(1)-bundles two natural transformations from singular homology functors to the quantum field theory functor that can be interpreted as the Euler class and the electric charge. In this case we also prove that the electric charges can be consistently set to zero, which yields another quantum field theory functor that satisfies all axioms of locally covariant quantum field theory.
Light-cone quantization and hadron structure
International Nuclear Information System (INIS)
Brodsky, S.J.
1996-04-01
Quantum chromodynamics provides a fundamental description of hadronic and nuclear structure and dynamics in terms of elementary quark and gluon degrees of freedom. In practice, the direct application of QCD to reactions involving the structure of hadrons is extremely complex because of the interplay of nonperturbative effects such as color confinement and multi-quark coherence. In this talk, the author will discuss light-cone quantization and the light-cone Fock expansion as a tractable and consistent representation of relativistic many-body systems and bound states in quantum field theory. The Fock state representation in QCD includes all quantum fluctuations of the hadron wavefunction, including fax off-shell configurations such as intrinsic strangeness and charm and, in the case of nuclei, hidden color. The Fock state components of the hadron with small transverse size, which dominate hard exclusive reactions, have small color dipole moments and thus diminished hadronic interactions. Thus QCD predicts minimal absorptive corrections, i.e., color transparency for quasi-elastic exclusive reactions in nuclear targets at large momentum transfer. In other applications, such as the calculation of the axial, magnetic, and quadrupole moments of light nuclei, the QCD relativistic Fock state description provides new insights which go well beyond the usual assumptions of traditional hadronic and nuclear physics
Perturbation theory for quantized string fields
International Nuclear Information System (INIS)
Thorn, C.B.; Florida Univ., Gainesville
1987-01-01
We discuss the problem of gauge fixing in string field theory. We show that BRST invariance requires the gauge-fixed action to contain terms cubic in the ghost... of ghost of ghost fields. The final BRST invariant gauge-fixed action for the gauge b 0 A=0 is extremely simple: with the proper interpretation (as given in this article), it is essentially the one anticipated earlier in the work of Giddings, Martinec, and Witten in their analysis of the BRST invariant world-sheet approach to string theory. We derive the Feynman rules from this action and explain in detail how the sum over sufaces of the BRST first-quantized string is reproduced. This result depends crucially on the correct assignment for the Grassmann character of the string field and its ghost... of ghost of ghost string fields. If all these fields are unified in a single string field Φ containing all ghost numbers, the requirements is that Φ be uniformly Grassmann odd. Finally, we do some sample calculations which provide some simple checks on our general results. (orig.)
Casimir-Polder interaction in second quantization
Energy Technology Data Exchange (ETDEWEB)
Schiefele, Juergen
2011-03-21
The Casimir-Polder interaction between a single neutral atom and a nearby surface, arising from the (quantum and thermal) fluctuations of the electromagnetic field, is a cornerstone of cavity quantum electrodynamics (cQED), and theoretically well established. Recently, Bose-Einstein condensates (BECs) of ultracold atoms have been used to test the predictions of cQED. The purpose of the present thesis is to upgrade single-atom cQED with the many-body theory needed to describe trapped atomic BECs. Tools and methods are developed in a second-quantized picture that treats atom and photon fields on the same footing. We formulate a diagrammatic expansion using correlation functions for both the electromagnetic field and the atomic system. The formalism is applied to investigate, for BECs trapped near surfaces, dispersion interactions of the van der Waals-Casimir-Polder type, and the Bosonic stimulation in spontaneous decay of excited atomic states. We also discuss a phononic Casimir effect, which arises from the quantum fluctuations in an interacting BEC. (orig.)
Casimir-Polder interaction in second quantization
International Nuclear Information System (INIS)
Schiefele, Juergen
2011-01-01
The Casimir-Polder interaction between a single neutral atom and a nearby surface, arising from the (quantum and thermal) fluctuations of the electromagnetic field, is a cornerstone of cavity quantum electrodynamics (cQED), and theoretically well established. Recently, Bose-Einstein condensates (BECs) of ultracold atoms have been used to test the predictions of cQED. The purpose of the present thesis is to upgrade single-atom cQED with the many-body theory needed to describe trapped atomic BECs. Tools and methods are developed in a second-quantized picture that treats atom and photon fields on the same footing. We formulate a diagrammatic expansion using correlation functions for both the electromagnetic field and the atomic system. The formalism is applied to investigate, for BECs trapped near surfaces, dispersion interactions of the van der Waals-Casimir-Polder type, and the Bosonic stimulation in spontaneous decay of excited atomic states. We also discuss a phononic Casimir effect, which arises from the quantum fluctuations in an interacting BEC. (orig.)
Faddeev-Jackiw quantization and constraints
International Nuclear Information System (INIS)
Barcelos-Neto, J.; Wotzasek, C.
1992-01-01
In a recent Letter, Faddeev and Jackiw have shown that the reduction of constrained systems into its canonical, first-order form, can bring some new insight into the research of this field. For sympletic manifolds the geometrical structure, called Dirac or generalized bracket, is obtained directly from the inverse of the nonsingular sympletic two-form matrix. In the cases of nonsympletic manifolds, this two-form is degenerated and cannot be inverted to provide the generalized brackets. This singular behavior of the sympletic matrix is indicative of the presence of constraints that have to be carefully considered to yield to consistent results. One has two possible routes to treat this problem: Dirac has taught us how to implement the constraints into the potential part (Hamiltonian) of the canonical Lagrangian, leading to the well-known Dirac brackets, which are consistent with the constraints and can be mapped into quantum commutators (modulo ordering terms). The second route, suggested by Faddeev and Jackiw, and followed in this paper, is to implement the constraints directly into the canonical part of the first order Lagrangian, using the fact that the consistence condition for the stability of the constrained manifold is linear in the time derivative. This algorithm may lead to an invertible two-form sympletic matrix from where the Dirac brackets are readily obtained. This algorithm is used in this paper to investigate some aspects of the quantization of constrained systems with first- and second-class constraints in the sympletic approach
Quantized vortices in interacting gauge theories
International Nuclear Information System (INIS)
Butera, Salvatore; Valiente, Manuel; Öhberg, Patrik
2016-01-01
We consider a two-dimensional weakly interacting ultracold Bose gas whose constituents are two-level atoms. We study the effects of a synthetic density-dependent gauge field that arises from laser–matter coupling in the adiabatic limit with a laser configuration such that the single-particle zeroth-order vector potential corresponds to a constant synthetic magnetic field. We find a new exotic type of current nonlinearity in the Gross–Pitaevskii equation which affects the dynamics of the order parameter of the condensate. We investigate the rotational properties of this system in the Thomas–Fermi limit, focusing in particular on the physical conditions that make the existence of a quantized vortex in the system energetically favourable with respect to the non-rotating solution. We point out that two different physical interpretations can be given to this new nonlinearity: firstly it can be seen as a local modification of the mean field coupling constant, whose value depends on the angular momentum of the condensate. Secondly, it can be interpreted as a density modulated angular velocity given to the cloud. Looking at the problem from both of these viewpoints, we show that the effect of the new nonlinearity is to induce a rotation to the condensate, where the transition from non-rotating to rotating states depends on the density of the cloud. (paper)
Shifman, M.; Yung, A.
2018-03-01
Non-Abelian strings are considered in non-supersymmetric theories with fermions in various appropriate representations of the gauge group U(N). We derive the electric charge quantization conditions and the index theorems counting fermion zero modes in the string background both for the left-handed and right-handed fermions. In both cases we observe a non-trivial N dependence.
International Nuclear Information System (INIS)
Arnott, D.
1985-01-01
The effects of background radiation, whether natural or caused by man's activities, are discussed. The known biological effects of radiation in causing cancers or genetic mutations are explained. The statement that there is a threshold below which there is no risk is examined critically. (U.K.)
Stochastic quantization of a topological quantum mechanical model
International Nuclear Information System (INIS)
Antunes, Sergio; Krein, Gastao; Menezes, Gabriel; Svaiter, Nami Fux
2011-01-01
Full text: Stochastic quantization of complex actions has been extensively studied in the literature. In these models, a Markovian Langevin equation is used in order to study the quantization of such systems. In such papers, the advantages of the Markovian stochastic quantization method were explored and exposed. However, many drawbacks of the method were also pointed out, such as instability of the simulations with absence of convergence and sometimes convergence to the wrong limit. Indeed, although several alternative methods have been proposed to deal with interesting physical systems where the action is complex, these approaches do not suggest any general way of solving the particular difficulties that arise in each situation. Here, we wish to make contributions to the program of stochastic quantization of theories with imaginary action by investigating the consequences of a non-Markovian stochastic quantization in a particular situation, namely a quantum mechanical topological action. We analyze the Markovian stochastic quantization for a topological quantum mechanical action which is analog to a Maxwell-Chern-Simons action in the Weyl gauge. Afterwards we consider a Langevin equation with memory kernel and Einstein's relations with colored noise. We show that convergence towards equilibrium is achieved in both regimes. We also sketch a simple numerical analysis to investigate the possible advantages of non-Markovian procedure over the usual Markovian quantization. Both retarded Green's function for the diffusion problem are considered in such analysis. We show that, although the results indicated that the effect of memory kernel, as usually expected, is to delay the convergence to equilibrium, non-Markovian systems imply a faster decay compared to Markovian ones as well as smoother convergence to equilibrium. (author)
Remote Sensing and Quantization of Analog Sensors
Strauss, Karl F.
2011-01-01
This method enables sensing and quantization of analog strain gauges. By manufacturing a piezoelectric sensor stack in parallel (physical) with a piezoelectric actuator stack, the capacitance of the sensor stack varies in exact proportion to the exertion applied by the actuator stack. This, in turn, varies the output frequency of the local sensor oscillator. The output, F(sub out), is fed to a phase detector, which is driven by a stable reference, F(sub ref). The output of the phase detector is a square waveform, D(sub out), whose duty cycle, t(sub W), varies in exact proportion according to whether F(sub out) is higher or lower than F(sub ref). In this design, should F(sub out) be precisely equal to F(sub ref), then the waveform has an exact 50/50 duty cycle. The waveform, D(sub out), is of generally very low frequency suitable for safe transmission over long distances without corruption. The active portion of the waveform, t(sub W), gates a remotely located counter, which is driven by a stable oscillator (source) of such frequency as to give sufficient digitization of t(sub W) to the resolution required by the application. The advantage to this scheme is that it negates the most-common, present method of sending either very low level signals (viz. direct output from the sensors) across great distances (anything over one-half meter) or the need to transmit widely varying higher frequencies over significant distances thereby eliminating interference [both in terms of beat frequency generation and in-situ EMI (electromagnetic interference)] caused by ineffective shielding. It also results in a significant reduction in shielding mass.
Quantization and Superselection Sectors I:. Transformation Group C*-ALGEBRAS
Landsman, N. P.
Quantization is defined as the act of assigning an appropriate C*-algebra { A} to a given configuration space Q, along with a prescription mapping self-adjoint elements of { A} into physically interpretable observables. This procedure is adopted to solve the problem of quantizing a particle moving on a homogeneous locally compact configuration space Q=G/H. Here { A} is chosen to be the transformation group C*-algebra corresponding to the canonical action of G on Q. The structure of these algebras and their representations are examined in some detail. Inequivalent quantizations are identified with inequivalent irreducible representations of the C*-algebra corresponding to the system, hence with its superselection sectors. Introducing the concept of a pre-Hamiltonian, we construct a large class of G-invariant time-evolutions on these algebras, and find the Hamiltonians implementing these time-evolutions in each irreducible representation of { A}. “Topological” terms in the Hamiltonian (or the corresponding action) turn out to be representation-dependent, and are automatically induced by the quantization procedure. Known “topological” charge quantization or periodicity conditions are then identically satisfied as a consequence of the representation theory of { A}.
Direct comparison of fractional and integer quantized Hall resistance
Ahlers, Franz J.; Götz, Martin; Pierz, Klaus
2017-08-01
We present precision measurements of the fractional quantized Hall effect, where the quantized resistance {{R}≤ft[ 1/3 \\right]} in the fractional quantum Hall state at filling factor 1/3 was compared with a quantized resistance {{R}[2]} , represented by an integer quantum Hall state at filling factor 2. A cryogenic current comparator bridge capable of currents down to the nanoampere range was used to directly compare two resistance values of two GaAs-based devices located in two cryostats. A value of 1-(5.3 ± 6.3) 10-8 (95% confidence level) was obtained for the ratio ({{R}≤ft[ 1/3 \\right]}/6{{R}[2]} ). This constitutes the most precise comparison of integer resistance quantization (in terms of h/e 2) in single-particle systems and of fractional quantization in fractionally charged quasi-particle systems. While not relevant for practical metrology, such a test of the validity of the underlying physics is of significance in the context of the upcoming revision of the SI.
Becchi-Rouet-Stora-Tyutin quantization of histories electrodynamics
International Nuclear Information System (INIS)
Noltingk, Duncan
2002-01-01
This article is a continuation of earlier work where a classical history theory of pure electrodynamics was developed in which the history fields have five components. The extra component is associated with an extra constraint, thus enlarging the gauge group of histories electrodynamics. In this article we quantize the classical theory developed previously by two methods. First we quantize the reduced classical history space to obtain a reduced quantum history theory. Second we quantize the classical BRST-extended history space, and use the Becchi-Rouet-Stora-Tyutin charge to define a 'cohomological' quantum history theory. Finally, we show that the reduced history theory is isomorphic (as a history theory) to the cohomological history theory
Hitchin's connection, Toeplitz operators, and symmetry invariant deformation quantization
DEFF Research Database (Denmark)
Andersen, Jørgen Ellegaard
2012-01-01
We introduce the notion of a rigid family of Kähler structures on a symplectic manifold. We then prove that a Hitchin connection exists for any rigid holomorphic family of Kähler structures on any compact pre-quantizable symplectic manifold which satisfies certain simple topological constraints...... a mapping class group invariant formal quantization of the smooth symplectic leaves of the moduli space of flat SU(n)-connections on any compact surface....... quantization. Finally, these results are applied to the moduli space situation in which Hitchin originally constructed his connection. First we get a proof that the Hitchin connection in this case is the same as the connection constructed by Axelrod, Della Pietra, and Witten. Second we obtain in this way...
Augmenting Phase Space Quantization to Introduce Additional Physical Effects
Robbins, Matthew P. G.
Quantum mechanics can be done using classical phase space functions and a star product. The state of the system is described by a quasi-probability distribution. A classical system can be quantized in phase space in different ways with different quasi-probability distributions and star products. A transition differential operator relates different phase space quantizations. The objective of this thesis is to introduce additional physical effects into the process of quantization by using the transition operator. As prototypical examples, we first look at the coarse-graining of the Wigner function and the damped simple harmonic oscillator. By generalizing the transition operator and star product to also be functions of the position and momentum, we show that additional physical features beyond damping and coarse-graining can be introduced into a quantum system, including the generalized uncertainty principle of quantum gravity phenomenology, driving forces, and decoherence.
Complex and real Hermite polynomials and related quantizations
International Nuclear Information System (INIS)
Cotfas, Nicolae; Gazeau, Jean Pierre; Gorska, Katarzyna
2010-01-01
It is known that the anti-Wick (or standard coherent state) quantization of the complex plane produces both canonical commutation rule and quantum spectrum of the harmonic oscillator (up to the addition of a constant). In this work, we show that these two issues are not necessarily coupled: there exists a family of separable Hilbert spaces, including the usual Fock-Bargmann space, and in each element in this family there exists an overcomplete set of unit-norm states resolving the unity. With the exception of the Fock-Bargmann case, they all produce non-canonical commutation relation whereas the quantum spectrum of the harmonic oscillator remains the same up to the addition of a constant. The statistical aspects of these non-equivalent coherent state quantizations are investigated. We also explore the localization aspects in the real line yielded by similar quantizations based on real Hermite polynomials.
Adaptive Watermarking Scheme Using Biased Shift of Quantization Index
Directory of Open Access Journals (Sweden)
Young-Ho Seo
2010-01-01
Full Text Available We propose a watermark embedding and extracting method for blind watermarking. It uses the characteristics of a scalar quantizer to comply with the recommendation in JPEG, MPEG series, or JPEG2000. Our method performs embedding of a watermark bit by shifting the corresponding frequency transform coefficient (the watermark position to a quantization index according to the value of the watermark bit, which prevents from losing the watermark information during the data compression process. The watermark can be embedded simultaneously to the quantization process without an additional process for watermarking, which means it can be performed at the same speed to the compression process. In the embedding process, a Linear Feedback Shift Register (LFSR is used to hide the watermark informations and the watermark positions. The experimental results showed that the proposed method satisfies enough robustness and imperceptibility that are the major requirements for watermarking.
Landau quantization of Dirac fermions in graphene and its multilayers
Yin, Long-Jing; Bai, Ke-Ke; Wang, Wen-Xiao; Li, Si-Yu; Zhang, Yu; He, Lin
2017-08-01
When electrons are confined in a two-dimensional (2D) system, typical quantum-mechanical phenomena such as Landau quantization can be detected. Graphene systems, including the single atomic layer and few-layer stacked crystals, are ideal 2D materials for studying a variety of quantum-mechanical problems. In this article, we review the experimental progress in the unusual Landau quantized behaviors of Dirac fermions in monolayer and multilayer graphene by using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Through STS measurement of the strong magnetic fields, distinct Landau-level spectra and rich level-splitting phenomena are observed in different graphene layers. These unique properties provide an effective method for identifying the number of layers, as well as the stacking orders, and investigating the fundamentally physical phenomena of graphene. Moreover, in the presence of a strain and charged defects, the Landau quantization of graphene can be significantly modified, leading to unusual spectroscopic and electronic properties.
Modeling quantization effects in field effect transistors
International Nuclear Information System (INIS)
Troger, C.
2001-06-01
Numerical simulation in the field of semiconductor device development advanced to a valuable, cost-effective and flexible facility. The most widely used simulators are based on classical models, as they need to satisfy time and memory constraints. To improve the performance of field effect transistors such as MOSFETs and HEMTs these devices are continuously scaled down in their dimensions. Consequently the characteristics of such devices are getting more and more determined by quantum mechanical effects arising from strong transversal fields in the channel. In this work an approach based on a two-dimensional electron gas is used to describe the confinement of the carriers. Quantization is considered in one direction only. For the derivation of a one-dimensional Schroedinger equation in the effective mass framework a non-parabolic correction for the energy dispersion due to Kane is included. For each subband a non-parabolic dispersion relation characterized by subband masses and subband non-parabolicity coefficients is introduced and the parameters are calculated via perturbation theory. The method described in this work has been implemented in a software tool that performs a self-consistent solution of Schroedinger- and Poisson-equation for a one-dimensional cut through a MOS structure or heterostructure. The calculation of the carrier densities is performed assuming Fermi-Dirac statistics. In the case of a MOS structure a metal or a polysilicon gate is considered and an arbitrary gate bulk voltage can be applied. This allows investigating quantum mechanical effects in capacity calculations, to compare the simulated data with measured CV curves and to evaluate the results obtained with a quantum mechanical correction for the classical electron density. The behavior of the defined subband parameters is compared to the value of the mass and the non-parabolicity coefficient from the model due to Kane. Finally the presented characterization of the subbands is applied
Quantization selection in the high-throughput H.264/AVC encoder based on the RD
Pastuszak, Grzegorz
2013-10-01
In the hardware video encoder, the quantization is responsible for quality losses. On the other hand, it allows the reduction of bit rates to the target one. If the mode selection is based on the rate-distortion criterion, the quantization can also be adjusted to obtain better compression efficiency. Particularly, the use of Lagrangian function with a given multiplier enables the encoder to select the most suitable quantization step determined by the quantization parameter QP. Moreover, the quantization offset added before discarding the fraction value after quantization can be adjusted. In order to select the best quantization parameter and offset in real time, the HD/SD encoder should be implemented in the hardware. In particular, the hardware architecture should embed the transformation and quantization modules able to process the same residuals many times. In this work, such an architecture is used. Experimental results show what improvements in terms of compression efficiency are achievable for Intra coding.
AIRS/Aqua Level 3 Pentad quantization in physical units (AIRS-only) V005
National Aeronautics and Space Administration — AIRS/Aqua Level 3 pentad quantization product in physical units (AIRS Only). The quantization products (QP) are distributional summaries derived from the Level-2...
Aqua AIRS Level 3 Quantization in Physical Units (AIRS+AMSU) V006
National Aeronautics and Space Administration — AIRS/Aqua Level 3 monthly quantization product in physical units (Without HSB). The quantization products (QP) are distributional summaries derived from the Level-2...
AIRS/Aqua Level 3 Pentad quantization in physical units (AIRS+AMSU+HSB) V005
National Aeronautics and Space Administration — AIRS/Aqua Level 3 pentad quantization product in physical units (With HSB). The quantization products (QP) are distributional summaries derived from the Level-2...
International Nuclear Information System (INIS)
Pickett, T.J.; Shirts, R.B.
1991-01-01
Based on work by Martens and Ezra and partially developed independently by Eaker, we apply an improved method of approximating the quantum energy levels of a system of coupled oscillators using the fast-Fourier transform of classical coordinates and momenta to find quantizing trajectories. Application is made to a two-dimensional system modeling the stretching motions of the HDO molecule. The results are in excellent agreement with quantum calculations. This method is useful because: (1) it gives results which are independent of any separability of the Hamiltonian, (2) it is not limited in the number of degrees of freedom that can be handled, and (3) no zero-order approximation to the system is necessary. Results are equally valid inside and outside of resonance zones
BRS symmetry in stochastic quantization of the gravitational field
International Nuclear Information System (INIS)
Nakazawa, Naohito.
1989-12-01
We study stochastic quantization of gravity in terms of a BRS invariant canonical operator formalism. By introducing artificially canonical momentum variables for the original field variables, a canonical formulation of stochastic quantization is proposed in a sense that the Fokker-Planck hamiltonian is the generator of the fictitious time translation. Then we show that there exists a nilpotent BRS symmetry in an enlarged phase space for gravity (in general, for the first-class constrained systems). The stochastic action of gravity includes explicitly an unique De Witt's type superspace metric which leads to a geometrical interpretation of quantum gravity analogous to nonlinear σ-models. (author)
The general theory of quantized fields in the 1950s
International Nuclear Information System (INIS)
Wightman, A.S.
1989-01-01
This review describes developments in theoretical particle physics in the 1950s which were important in the race to develop a putative general theory of quantized fields, especially ideas that offered a mathematically rigorous theory. Basic theoretical concepts then available included the Hamiltonian formulation of quantum dynamics, canonical quantization, perturbative renormalization theory and the theory of distributions. Following a description of various important theoretical contributions of this era, the review ends with a summary of the most important contributions of axiomatic field theory to concrete physics applications. (UK)
Deparametrization and path integral quantization of cosmological models
Simeone, Claudio
2001-01-01
The problem of time is a central feature of quantum cosmology: differing from ordinary quantum mechanics, in cosmology there is nothing "outside" the system which plays the role of clock, and this makes difficult the obtention of a consistent quantization. A possible solution is to assume that a subset of the variables describing the state of the universe can be a clock for the remaining of the system. Following this line, in this book a new proposal consisting in the previous identification of time by means of gauge fixation is applied to the quantization of homogeneous cosmological models. B
Group quantization on configuration space: Gauge symmetries and linear fields
International Nuclear Information System (INIS)
Navarro, M.; Aldaya, V.; Calixto, M.
1997-01-01
A new, configuration-space picture of a formalism of group quantization, the GAQ formalism, is presented in the context of a previous algebraic generalization. This presentation serves to make a comprehensive discussion in which other extensions of the formalism, principally to incorporate gauge symmetries, are developed as well. Both images are combined in order to analyze, in a systematic manner and with complete generality, the case of linear fields (Abelian current groups). To illustrate these developments we particularize them for several fields and, in particular, we carry out the quantization of the Abelian Chern endash Simons models over an arbitrary closed surface in detail. copyright 1997 American Institute of Physics
BRST operator quantization of generally covariant gauge systems
International Nuclear Information System (INIS)
Ferraro, R.; Sforza, D.M.
1997-01-01
The BRST generator is realized as a Hermitian nilpotent operator for a finite-dimensional gauge system featuring a quadratic super-Hamiltonian and linear supermomentum constraints. As a result, the emerging ordering for the Hamiltonian constraint is not trivial, because the potential must enter the kinetic term in order to obtain a quantization invariant under scaling. Namely, BRST quantization does not lead to the curvature term used in the literature as a means to get that invariance. The inclusion of the potential in the kinetic term, far from being unnatural, is beautifully justified in light of the Jacobi's principle. copyright 1997 The American Physical Society
Theory of the quantized Hall effect. Pt. 3
International Nuclear Information System (INIS)
Levine, H.; Pruisken, A.M.M.; Libby, S.B.
1984-01-01
In the previous paper, we have demonstrated the need for a phase transition as a function of theta in the non-liner sigma-model describing the quantized Hall effect. In this work, we present arguments for the occurrence of exactly such a transition. We make use of a dilute gas instanton approximation as well as present a more rigorous duality argument to show that the usual scaling of the conductivity to zero at large distances is altered whenever sigmasub(xy)sup((0)) approx.= 1/2ne 2 /h, n integer. This then completes our theory of the quantized Hall effect. (orig.)
Renormalization group equations in the stochastic quantization scheme
International Nuclear Information System (INIS)
Pugnetti, S.
1987-01-01
We show that there exists a remarkable link between the stochastic quantization and the theory of critical phenomena and dynamical statistical systems. In the stochastic quantization of a field theory, the stochastic Green functions coverge to the quantum ones when the frictious time goes to infinity. We therefore use the typical techniques of the Renormalization Group equations developed in the framework of critical phenomena to discuss some features of the convergence of the stochastic theory. We are also able, in this way, to compute some dynamical critical exponents and give new numerical valuations for them. (orig.)
On precanonical quantization of gravity in spin connection variables
Energy Technology Data Exchange (ETDEWEB)
Kanatchikov, I. V. [National Center of Quantum Information in Gdansk (KCIK), 81-824 Sopot (Poland)
2013-02-21
The basics of precanonical quantization and its relation to the functional Schroedinger picture in QFT are briefly outlined. The approach is then applied to quantization of Einstein's gravity in vielbein and spin connection variables and leads to a quantum dynamics described by the covariant Schroedinger equation for the transition amplitudes on the bundle of spin connection coefficients over space-time, that yields a novel quantum description of space-time geometry. A toy model of precanonical quantum cosmology based on the example of flat FLRW universe is considered.
Universal R-matrix for quantized (super) algebras
International Nuclear Information System (INIS)
Khoroshkin, S.M.; Tolstoj, V.N.
1991-01-01
For quantum deformations of finite-dimensional contragredient Lie (super)algebras an explicit formula for the universal R-matrix is given. This formula generalizes the analogous formulae for quantized semisimple Lie algebras obtained by M. Rosso, A.N. Kirillov and N. Reshetikhin, Yas.S. Soibelman and S.Z. Levendorskii. Approach is based on careful analysis of quantized rank 1 and 2 (super)algebras, a combinatorial structure of the root systems and algebraic properties of q-exponential functions. Quantum Weyl group is not used. 19 refs.; 2 tabs
On the quantization of systems with anticommuting variables
International Nuclear Information System (INIS)
Casalbuoni, R.
1976-01-01
The paper considers the pseudomechanics, that is the mechanics of a system described by ordinary canonical variables and by Grassmann variables. The canonical formalism is studied and in particular the Poisson brackets are defined. It is shown that the algebra of the Poisson brackets is graded Lie algebra. Using this fact as a hint for quantization it is shown that the corresponding quantized theory is the ordinary quantum theory with Fermi operators. It follows that the classical limit of the quantum theory is, in general, the pseudo-mechanics
Conductance quantization suppression in the quantum Hall regime
DEFF Research Database (Denmark)
Caridad, José M.; Power, Stephen R.; Lotz, Mikkel R.
2018-01-01
Conductance quantization is the quintessential feature of electronic transport in non-interacting mesoscopic systems. This phenomenon is observed in quasi one-dimensional conductors at zero magnetic field B, and the formation of edge states at finite magnetic fields results in wider conductance...... conduction channels. Despite being a universal effect, this regime has proven experimentally elusive because of difficulties in realizing one-dimensional systems with sufficiently hard-walled, disorder-free confinement. Here, we experimentally demonstrate the suppression of conductance quantization within...
Exact quantization conditions for the relativistic Toda lattice
International Nuclear Information System (INIS)
Hatsuda, Yasuyuki; Mariño, Marcos
2016-01-01
Inspired by recent connections between spectral theory and topological string theory, we propose exact quantization conditions for the relativistic Toda lattice of N particles. These conditions involve the Nekrasov-Shatashvili free energy, which resums the perturbative WKB expansion, but they require in addition a non-perturbative contribution, which is related to the perturbative result by an S-duality transformation of the Planck constant. We test the quantization conditions against explicit calculations of the spectrum for N=3. Our proposal can be generalized to arbitrary toric Calabi-Yau manifolds and might solve the corresponding quantum integrable system of Goncharov and Kenyon.
Constraints and Hamiltonian in light-front quantized field theory
International Nuclear Information System (INIS)
Srivastava, P.P.
1993-01-01
Self-consistent hamiltonian formulation of scalar theory on the null plane is constructed and quantized following the Dirac procedure. The theory contains also constraint equations which would give, if solved, to a nonlocal Hamiltonian. In contrast to the equal-time formulation we obtain a different description of the spontaneous symmetry breaking in the continuum and the symmetry generators are found to annihilate the light-front vacuum. Two examples are given where the procedure cannot be applied self-consistently. The corresponding theories are known to be ill-defined from the equal-time quantization. (author)
Covariant canonical quantization of fields and Bohmian mechanics
International Nuclear Information System (INIS)
Nikolic, H.
2005-01-01
We propose a manifestly covariant canonical method of field quantization based on the classical De Donder-Weyl covariant canonical formulation of field theory. Owing to covariance, the space and time arguments of fields are treated on an equal footing. To achieve both covariance and consistency with standard non-covariant canonical quantization of fields in Minkowski spacetime, it is necessary to adopt a covariant Bohmian formulation of quantum field theory. A preferred foliation of spacetime emerges dynamically owing to a purely quantum effect. The application to a simple time-reparametrization invariant system and quantum gravity is discussed and compared with the conventional non-covariant Wheeler-DeWitt approach. (orig.)
Loop quantum cosmology of the Bianchi I model: complete quantization
International Nuclear Information System (INIS)
Martín-Benito, M; Garay, L J; Mena Marugán, G A; Wilson-Ewing, E
2012-01-01
We complete the canonical quantization of the vacuum Bianchi I model within the improved dynamics scheme of loop quantum cosmology, characterizing the Hilbert structure of the physical states and providing a complete set of observables acting on them. In order to achieve this task, it has been essential to determine the structure of the separable superselection sectors that arise owing to the polymeric quantization, and to prove that the initial value problem obtained when regarding the Hamiltonian constraint as an evolution equation, interpreting the volume as the evolution parameter, is well-posed.
Quantization analysis of speckle intensity measurements for phase retrieval
DEFF Research Database (Denmark)
Maallo, Anne Margarette S.; Almoro, Percival F.; Hanson, Steen Grüner
2010-01-01
Speckle intensity measurements utilized for phase retrieval (PR) are sequentially taken with a digital camera, which introduces quantization error that diminishes the signal quality. Influences of quantization on the speckle intensity distribution and PR are investigated numerically...... and experimentally in the static wavefront sensing setup. Resultsshowthat 3 to 4 bits are adequate to represent the speckle intensities and yield acceptable reconstructions at relatively fast convergence rates. Computer memory requirements may be eased down by 2.4 times if a 4 bit instead of an 8 bit camera is used...
Electromagnetically induced transparency with quantized fields in optocavity mechanics
International Nuclear Information System (INIS)
Huang Sumei; Agarwal, G. S.
2011-01-01
We report electromagnetically induced transparency (EIT) using quantized fields in optomechanical systems. The weak probe field is a narrowband squeezed field. We present a homodyne detection of EIT in the output quantum field. We find that the EIT dip exists even though the photon number in the squeezed vacuum is at the single-photon level. The EIT with quantized fields can be seen even at temperatures on the order of 100 mK, thus paving the way for using optomechanical systems as memory elements.
Uniqueness of the Fock quantization of the Gowdy T3 model
International Nuclear Information System (INIS)
Cortez, Jeronimo; Marugan, Guillermo A. Mena; Velhinho, Jose M.
2007-01-01
After its reduction by a gauge-fixing procedure, the family of linearly polarized Gowdy T 3 cosmologies admits a scalar field description whose evolution is governed by a Klein-Gordon type equation in a flat background in 1+1 dimensions with the spatial topology of S 1 , though in the presence of a time-dependent potential. The model is still subject to a homogeneous constraint, which generates S 1 -translations. Recently, a Fock quantization of this scalar field was introduced and shown to be unique under the requirements of unitarity of the dynamics and invariance under the gauge group of S 1 -translations. In this work, we extend and complete this uniqueness result by considering other possible scalar field descriptions, resulting from reasonable field reparametrizations of the induced metric of the reduced model. In the reduced phase space, these alternate descriptions can be obtained by means of a time-dependent scaling of the field, the inverse scaling of its canonical momentum, and the possible addition of a time-dependent, linear contribution of the field to this momentum. Demanding again unitarity of the field dynamics and invariance under the gauge group, we prove that the alternate canonical pairs of fieldlike variables admit a Fock representation if and only if the scaling of the field is constant in time. In this case, there exists essentially a unique Fock representation, provided by the quantization constructed by Corichi, Cortez, and Mena Marugan. In particular, our analysis shows that the scalar field description proposed by Pierri does not admit a Fock quantization with the above unitarity and invariance properties
Quantization of the Poisson SU(2) and its Poisson homogeneous space - the 2-sphere
International Nuclear Information System (INIS)
Sheu, A.J.L.
1991-01-01
We show that deformation quantizations of the Poisson structures on the Poisson Lie group SU(2) and its homogeneous space, the 2-sphere, are compatible with Woronowicz's deformation quantization of SU(2)'s group structure and Podles' deformation quantization of 2-sphere's homogeneous structure, respectively. So in a certain sense the multiplicativity of the Lie Poisson structure on SU(2) at the classical level is preserved under quantization. (orig.)
Berezin-Toeplitz Quantization for Compact Kähler Manifolds. A Review of Results
Directory of Open Access Journals (Sweden)
Martin Schlichenmaier
2010-01-01
Full Text Available This article is a review on Berezin-Toeplitz operator and Berezin-Toeplitz deformation quantization for compact quantizable Kähler manifolds. The basic objects, concepts, and results are given. This concerns the correct semiclassical limit behaviour of the operator quantization, the unique Berezin-Toeplitz deformation quantization (star product, covariant and contravariant Berezin symbols, and Berezin transform. Other related objects and constructions are also discussed.
Creation of particles in the gravitational field and the boundary conditions for quantized fields
International Nuclear Information System (INIS)
Khrustalev, O.A.; Silaev, P.K.
1995-01-01
We prove, that if one impose the linear constraints on the quantized fields that satisfy different boundary conditions, it can leads to such a transformation between creation-annihilation operators, that corresponds to particle creation. We also prove, that the correspondence between field, quantized in Minkowski space and the field, quantized in Rindler space has Rindler space can't be observed. 7 refs
Generalized quantization scheme for two-person non-zero sum games
International Nuclear Information System (INIS)
Nawaz, Ahmad; Toor, A H
2004-01-01
We proposed a generalized quantization scheme for non-zero sum games which can be reduced to the two existing quantization schemes under an appropriate set of parameters. Some other important situations are identified which are not apparent in the two existing quantization schemes
Binary Biometric Representation through Pairwise Adaptive Phase Quantization
Chen, C.; Veldhuis, Raymond N.J.
Extracting binary strings from real-valued biometric templates is a fundamental step in template compression and protection systems, such as fuzzy commitment, fuzzy extractor, secure sketch, and helper data systems. Quantization and coding is the straightforward way to extract binary representations
Quantization of bosonic closed strings and the Liouville model
International Nuclear Information System (INIS)
Paycha, S.
1988-01-01
The author shows that by means of a reasonable interpretation of the Lebesgue measure describing the partition function the quantization of closed bosonic strings described by compact surfaces of genus p>1 can be related to that of the Liouville model. (HSI)
Quantization of edge currents for continuous magnetic operators
Kellendonk, J
2003-01-01
For a magnetic Hamiltonian on a half-plane given as the sum of the Landau operator with Dirichlet boundary conditions and a random potential, a quantization theorem for the edge currents is proven. This shows that the concept of edge channels also makes sense in presence of disorder. Moreover, gaussian bounds on the heat kernel and its covariant derivatives are obtained.
Scattering and conductance quantization in three-dimensional metal nanocontacts
DEFF Research Database (Denmark)
Brandbyge, Mads; Jacobsen, Karsten Wedel; Nørskov, Jens Kehlet
1997-01-01
The transmission through three-dimensional nanocontacts is calculated in the presence of localized scattering centers and boundary scattering using a coupled-channel recursion method. Simple confining potentials are used to investigate how robust the observation of quantized conductance is with r...
2-Step scalar deadzone quantization for bitplane image coding.
Auli-Llinas, Francesc
2013-12-01
Modern lossy image coding systems generate a quality progressive codestream that, truncated at increasing rates, produces an image with decreasing distortion. Quality progressivity is commonly provided by an embedded quantizer that employs uniform scalar deadzone quantization (USDQ) together with a bitplane coding strategy. This paper introduces a 2-step scalar deadzone quantization (2SDQ) scheme that achieves same coding performance as that of USDQ while reducing the coding passes and the emitted symbols of the bitplane coding engine. This serves to reduce the computational costs of the codec and/or to code high dynamic range images. The main insights behind 2SDQ are the use of two quantization step sizes that approximate wavelet coefficients with more or less precision depending on their density, and a rate-distortion optimization technique that adjusts the distortion decreases produced when coding 2SDQ indexes. The integration of 2SDQ in current codecs is straightforward. The applicability and efficiency of 2SDQ are demonstrated within the framework of JPEG2000.
Optimal context quantization in lossless compression of image data sequences
DEFF Research Database (Denmark)
Forchhammer, Søren; Wu, X.; Andersen, Jakob Dahl
2004-01-01
In image compression context-based entropy coding is commonly used. A critical issue to the performance of context-based image coding is how to resolve the conflict of a desire for large templates to model high-order statistic dependency of the pixels and the problem of context dilution due...... to insufficient sample statistics of a given input image. We consider the problem of finding the optimal quantizer Q that quantizes the K-dimensional causal context C/sub t/=(X/sub t-t1/,X/sub t-t2/,...,X/sub t-tK/) of a source symbol X/sub t/ into one of a set of conditioning states. The optimality of context...... quantization is defined to be the minimum static or minimum adaptive code length of given a data set. For a binary source alphabet an optimal context quantizer can be computed exactly by a fast dynamic programming algorithm. Faster approximation solutions are also proposed. In case of m-ary source alphabet...
Multispectral data compression through transform coding and block quantization
Ready, P. J.; Wintz, P. A.
1972-01-01
Transform coding and block quantization techniques are applied to multispectral aircraft scanner data, and digitized satellite imagery. The multispectral source is defined and an appropriate mathematical model proposed. The Karhunen-Loeve, Fourier, and Hadamard encoders are considered and are compared to the rate distortion function for the equivalent Gaussian source and to the performance of the single sample PCM encoder.
The Gribov problem in the frame of stochastic quantization
Energy Technology Data Exchange (ETDEWEB)
Parrinello, C. (Rome-1 Univ. (Italy). Dipt. di Fisica)
1990-09-01
We review the Gribov problem in the Landau gauge, from the point of view of stochastic quantization, and briefly sketch a numerical investigation based on a minimization algorithm, with the purpose of collecting wide information about Gribov copies within the first Gribov horizon. (orig.).
On covariant quantization of massive superparticle with first class constraints
International Nuclear Information System (INIS)
Huq, M.
1990-02-01
We use the technique of Batalin and Fradkin to convert the second class fermionic constraints of the massive superparticle into first class constraints. Then the Batalin-Vilkovisky formalism has been used to quantize covariantly the resulting theory. Appropriate gauge fixing conditions lead to a completely quadratic action. Some interesting properties of the physical space wave functions are discussed. (author). 16 refs
Appropriate quantization of asymmetric games with continuous strategies
International Nuclear Information System (INIS)
Qin Gan; Chen Xi; Sun Min; Zhou Xianyi; Du Jiangfeng
2005-01-01
We establish a new quantization scheme to study the asymmetric Bertrand duopoly with differentiated products. This scheme is more efficient than the previous symmetric one because it can exactly make the optimal cooperative payoffs at quantum Nash equilibrium. It is also a necessary condition for general asymmetric games with continuous strategies to reach such payoffs
Statistical amplitude scale estimation for quantization-based watermarking
Shterev, I.D.; Lagendijk, I.L.; Heusdens, R.
2004-01-01
Quantization-based watermarking schemes are vulnerable to amplitude scaling. Therefore the scaling factor has to be accounted for either at the encoder, or at the decoder, prior to watermark decoding. In this paper we derive the marginal probability density model for the watermarked and attacked
Remarks on the application of group extensions to quantization
International Nuclear Information System (INIS)
Mozrzymas, J.; Rzewuski, J.
1976-01-01
Quantization is described in the language of the theory of group extensions. Under the assumption of analyticity the most general form of factor of the extension is derived. A realization of the extended group in terms of functionals is described in the case of quantum field theory. The homomorphism of the extended group with the Weyl group of canonical commutation relations is demonstrated. (author)
Quantized layer growth at liquid-crystal surfaces
DEFF Research Database (Denmark)
Ocko, B. M.; Braslau, A.; Pershan, P. S.
1986-01-01
of the specular reflectivity is consistent with a sinusoidal density modulation, starting at the surface and terminating abruptly, after an integral number of bilayers. As the transition is approached the number of layers increases in quantized steps from zero to five before the bulk undergoes a first...
Magnetic resonance image compression using scalar-vector quantization
Mohsenian, Nader; Shahri, Homayoun
1995-12-01
A new coding scheme based on the scalar-vector quantizer (SVQ) is developed for compression of medical images. SVQ is a fixed-rate encoder and its rate-distortion performance is close to that of optimal entropy-constrained scalar quantizers (ECSQs) for memoryless sources. The use of a fixed-rate quantizer is expected to eliminate some of the complexity issues of using variable-length scalar quantizers. When transmission of images over noisy channels is considered, our coding scheme does not suffer from error propagation which is typical of coding schemes which use variable-length codes. For a set of magnetic resonance (MR) images, coding results obtained from SVQ and ECSQ at low bit-rates are indistinguishable. Furthermore, our encoded images are perceptually indistinguishable from the original, when displayed on a monitor. This makes our SVQ based coder an attractive compression scheme for picture archiving and communication systems (PACS), currently under consideration for an all digital radiology environment in hospitals, where reliable transmission, storage, and high fidelity reconstruction of images are desired.
On the quantization of spin systems and Fermi systems
International Nuclear Information System (INIS)
Combe, P.; Rodriguez, R.; Sirugue, M.
1978-03-01
It is shown that spin operators and Fermi operators can be interpreted as the Weyl quantization of some functions on a classical phase space which is a compact group. Moreover the transition from quantum spin to Fermi operators is an isomorphism of the classical phase space preserving the Haar measure
Phase transitions in vector quantization and neural gas
Witoelar, Aree; Biehl, Michael
The statistical physics of off-learning is applied to winner-takes-all (WTA) and rank-based vector quantization (VQ), including the neural gas (NG). The analysis is based on the limit of high training temperatures and the annealed approximation. The typical learning behavior is evaluated for systems
Note on path integral quantization of hydrogen atom
International Nuclear Information System (INIS)
Storchak, S.N.
1988-01-01
For path integrals whose integration measures are generated by stochastic processes of a definite form (Stratonovich-type equations are a local form for stochastic differential equations of these processes) it has been shown that under quantization of hydrogen atom the reparametrization and reduction Jacobians are mutually cancelled. 12 refs
Another scheme for quantization of scale invariant gauge theories
International Nuclear Information System (INIS)
Hortacsu, M.
1987-10-01
A new scheme is proposed for the quantization of scale invariant gauge theories for all even dimensions when they are minimally coupled to a spinor field. A cut-off procedure suggests an algorithm which may regularize the theory. (author). 10 refs
Electric charge quantization and the muon anomalous magnetic moment
International Nuclear Information System (INIS)
Pires, C.A.S. de; Rodrigues da Silva, P.S.
2002-01-01
We investigate some proposals to solve the electric charge quantization puzzle that simultaneously explain the recent measured deviation on the muon anomalous magnetic moment. For this we assess extensions of the electro-weak standard model spanning modifications on the scalar sector only. It is interesting to verify that one can have modest extensions which easily account for the solution for both problems
Field-Theoretic Weyl Deformation Quantization of Enlarged Poisson Algebras
Directory of Open Access Journals (Sweden)
Lothar Schlafer
2008-05-01
Full Text Available C*-algebraic Weyl quantization is extended by allowing also degenerate pre-symplectic forms for the Weyl relations with infinitely many degrees of freedom, and by starting out from enlarged classical Poisson algebras. A powerful tool is found in the construction of Poisson algebras and non-commutative twisted Banach-*-algebras on the stage of measures on the not locally compact test function space. Already within this frame strict deformation quantization is obtained, but in terms of Banach-*-algebras instead of C*-algebras. Fourier transformation and representation theory of the measure Banach-*-algebras are combined with the theory of continuous projective group representations to arrive at the genuine C*-algebraic strict deformation quantization in the sense of Rieffel and Landsman. Weyl quantization is recognized to depend in the first step functorially on the (in general infinite dimensional, pre-symplectic test function space; but in the second step one has to select a family of representations, indexed by the deformation parameter h. The latter ambiguity is in the present investigation connected with the choice of a folium of states, a structure, which does not necessarily require a Hilbert space representation.
Dynamics, stability analysis and quantization of β-Fermi–Pasta ...
Indian Academy of Sciences (India)
Keywords. Phonon; Fermi–Pasta–Ulam lattice; Floquet theory; semiclassical quantization. PACS Nos 05.45.−a; 45.20.Jj; 47.10.Df; 03.65.Sq. 1. Introduction. Some of the fundamental questions underlying equilibrium statistical mechanics are related to equipartition and ergodicity [1]. These questions for macroscopic systems ...
Quantized Roentgen Effect in Bose-Einstein Condensates
Leonhardt, U.; Piwnicki, P.
1998-01-01
A classical dielectric moving in a charged capacitor can create a magnetic field (Roentgen effect). A quantum dielectric, however, will not produce a magnetization, except at vortices. The magnetic field outside the quantum dielectric appears as the field of quantized monopoles.
Quantization of Robertson-Walker geometry coupled to fermionic matter
International Nuclear Information System (INIS)
Christodoulakis, T.; Zanelli, J.
1983-06-01
A Robertson-Walker universe coupled to a spin 1/2 Dirac field is quantized following Dirac's formalism for constrained Hamiltonian systems. It is found that in nearly all cases it can be asserted that the universe avoids the collapse. (author)
Canonical quantization of the Bateman-Morse-Feshbach damped oscillator
International Nuclear Information System (INIS)
Rideau, G.; Anderson, R.L.; Hebda, P.W.
1991-01-01
The Bateman-Morse-Feshbach classical formulation of the damped oscillator is canonically quantized. The spectrum of the Hamiltonian is given. It is shown that the wavefunctions behave asymptotically as a superposition of damped oscillators when their initial values belong to an appropriately-selected dense subset of the Hilbert space. (orig.)
The cosmological ‘constant’ and quantization in five dimensions
International Nuclear Information System (INIS)
Wesson, Paul S.
2011-01-01
Campbell's theorem ensures that all vacuum space-times in general relativity can be embedded in five dimensions, with the 4D scalar curvature expressed as an effective cosmological ‘constant’ Λ which depends on the extra coordinate. This Λ-landscape can be used to give insight to certain physical phenomena, such as the big bang and quantized particles.
Effect of threshold quantization in opportunistic splitting algorithm
Nam, Haewoon
2011-12-01
This paper discusses algorithms to find the optimal threshold and also investigates the impact of threshold quantization on the scheduling outage performance of the opportunistic splitting scheduling algorithm. Since this algorithm aims at finding the user with the highest channel quality within the minimal number of mini-slots by adjusting the threshold every mini-slot, optimizing the threshold is of paramount importance. Hence, in this paper we first discuss how to compute the optimal threshold along with two tight approximations for the optimal threshold. Closed-form expressions are provided for those approximations for simple calculations. Then, we consider linear quantization of the threshold to take the limited number of bits for signaling messages in practical systems into consideration. Due to the limited granularity for the quantized threshold value, an irreducible scheduling outage floor is observed. The numerical results show that the two approximations offer lower scheduling outage probability floors compared to the conventional algorithm when the threshold is quantized. © 2006 IEEE.
Macroscopic charge quantization in single-electron devices
Burmistrov, I.S.; Pruisken, A.M.M.
2010-01-01
In a recent paper by the authors [I. S. Burmistrov and A. M. M. Pruisken, Phys. Rev. Lett. 101, 056801 (2008)] it was shown that single-electron devices (single-electron transistor or SET) display "macroscopic charge quantization" which is completely analogous to the quantum Hall effect observed on
On the quantization of the Poincare gange model
International Nuclear Information System (INIS)
Aldrovandi, R.; Pereira, J.G.
1986-01-01
A gauge model based on the Yang-Mills equations for the Poincare group cannot be consistently quantized, at least in a perturbative approach. The problem is related to the absence of a Lagrangian. Adding the counterterms required by consistency and renormalizability turns the model into a gauge theory for a de Sitter group. (Author) [pt
Quantizing non-Lagrangian gauge theories: an augmentation method
International Nuclear Information System (INIS)
Lyakhovich, Simon L.; Sharapov, Alexei A.
2007-01-01
We discuss a recently proposed method of quantizing general non-Lagrangian gauge theories. The method can be implemented in many different ways, in particular, it can employ a conversion procedure that turns an original non-Lagrangian field theory in d dimensions into an equivalent Lagrangian, topological field theory in d+1 dimensions. The method involves, besides the classical equations of motion, one more geometric ingredient called the Lagrange anchor. Different Lagrange anchors result in different quantizations of one and the same classical theory. Given the classical equations of motion and Lagrange anchor as input data, a new procedure, called the augmentation, is proposed to quantize non-Lagrangian dynamics. Within the augmentation procedure, the originally non-Lagrangian theory is absorbed by a wider Lagrangian theory on the same space-time manifold. The augmented theory is not generally equivalent to the original one as it has more physical degrees of freedom than the original theory. However, the extra degrees of freedom are factorized out in a certain regular way both at classical and quantum levels. The general techniques are exemplified by quantizing two non-Lagrangian models of physical interest
Consensus of second-order multi-agent dynamic systems with quantized data
Energy Technology Data Exchange (ETDEWEB)
Guan, Zhi-Hong, E-mail: zhguan@mail.hust.edu.cn [Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China); Meng, Cheng [Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China); Liao, Rui-Quan [Petroleum Engineering College,Yangtze University, Jingzhou, 420400 (China); Zhang, Ding-Xue, E-mail: zdx7773@163.com [Petroleum Engineering College,Yangtze University, Jingzhou, 420400 (China)
2012-01-09
The consensus problem of second-order multi-agent systems with quantized link is investigated in this Letter. Some conditions are derived for the quantized consensus of the second-order multi-agent systems by the stability theory. Moreover, a result characterizing the relationship between the eigenvalues of the Laplacians matrix and the quantized consensus is obtained. Examples are given to illustrate the theoretical analysis. -- Highlights: ► A second-order multi-agent model with quantized data is proposed. ► Two sufficient and necessary conditions are obtained. ► The relationship between the eigenvalues of the Laplacians matrix and the quantized consensus is discovered.
Improved stability and performance from sigma-delta modulators using 1-bit vector quantization
DEFF Research Database (Denmark)
Risbo, Lars
1993-01-01
A novel class of sigma-delta modulators is presented. The usual scalar 1-b quantizer in a sigma-delta modulator is replaced by a 1-b vector quantizer with a N-dimensional input state-vector from the linear feedback filter. Generally, the vector quantizer changes the nonlinear dynamics...... of the modulator, and a proper choice of vector quantizer can improve both system stability and coding performance. It is shown how to construct the vector quantizer in order to limit the excursions in state-space. The proposed method is demonstrated graphically for a simple second-order modulator...
Quantization of (2 + 1)-spinning particles and bifermionic constraint problem
Energy Technology Data Exchange (ETDEWEB)
Fresneda, R [Instituto de FIsica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, SP (Brazil); Gavrilov, S P [Instituto de FIsica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, SP (Brazil); Gitman, D M [Instituto de FIsica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, SP (Brazil); Moshin, P Yu [Instituto de FIsica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, SP (Brazil)
2004-03-21
This work is a natural continuation of our recent study in quantizing relativistic particles. There it was demonstrated that, by applying a consistent quantization scheme to the classical model of a spinless relativistic particle as well as to the Berezin-Marinov model of a 3 + 1 Dirac particle, it is possible to obtain a consistent relativistic quantum mechanics of such particles. In the present paper, we apply a similar approach to the problem of quantizing the massive 2 + 1 Dirac particle. However, we stress that such a problem differs in a nontrivial way from the one in 3 + 1 dimensions. The point is that in 2 + 1 dimensions each spin polarization describes different fermion species. Technically this fact manifests itself through the presence of a bifermionic constant and of a bifermionic first-class constraint. In particular, this constraint does not admit a conjugate gauge condition at the classical level. The quantization problem in 2 + 1 dimensions is also interesting from the physical viewpoint (e.g., anyons). In order to quantize the model, we first derive a classical formulation in an effective phase space, restricted by constraints and gauges. Then the condition of preservation of the classical symmetries allows us to realize the operator algebra in an unambiguous way and construct an appropriate Hilbert space. The physical sector of the constructed quantum mechanics contains spin-1/2 particles and antiparticles without an infinite number of negative-energy levels, and exactly reproduces the one-particle sector of the 2 + 1 quantum theory of a spinor field.
Quantization and Quantum-Like Phenomena: A Number Amplitude Approach
Robinson, T. R.; Haven, E.
2015-12-01
Historically, quantization has meant turning the dynamical variables of classical mechanics that are represented by numbers into their corresponding operators. Thus the relationships between classical variables determine the relationships between the corresponding quantum mechanical operators. Here, we take a radically different approach to this conventional quantization procedure. Our approach does not rely on any relations based on classical Hamiltonian or Lagrangian mechanics nor on any canonical quantization relations, nor even on any preconceptions of particle trajectories in space and time. Instead we examine the symmetry properties of certain Hermitian operators with respect to phase changes. This introduces harmonic operators that can be identified with a variety of cyclic systems, from clocks to quantum fields. These operators are shown to have the characteristics of creation and annihilation operators that constitute the primitive fields of quantum field theory. Such an approach not only allows us to recover the Hamiltonian equations of classical mechanics and the Schrödinger wave equation from the fundamental quantization relations, but also, by freeing the quantum formalism from any physical connotation, makes it more directly applicable to non-physical, so-called quantum-like systems. Over the past decade or so, there has been a rapid growth of interest in such applications. These include, the use of the Schrödinger equation in finance, second quantization and the number operator in social interactions, population dynamics and financial trading, and quantum probability models in cognitive processes and decision-making. In this paper we try to look beyond physical analogies to provide a foundational underpinning of such applications.
ADC border effect and suppression of quantization error in the digital dynamic measurement
International Nuclear Information System (INIS)
Bai Li-Na; Liu Hai-Dong; Zhou Wei; Zhai Hong-Qi; Cui Zhen-Jian; Zhao Ming-Ying; Gu Xiao-Qian; Liu Bei-Ling; Huang Li-Bei; Zhang Yong
2017-01-01
The digital measurement and processing is an important direction in the measurement and control field. The quantization error widely existing in the digital processing is always the decisive factor that restricts the development and applications of the digital technology. In this paper, we find that the stability of the digital quantization system is obviously better than the quantization resolution. The application of a border effect in the digital quantization can greatly improve the accuracy of digital processing. Its effective precision has nothing to do with the number of quantization bits, which is only related to the stability of the quantization system. The high precision measurement results obtained in the low level quantization system with high sampling rate have an important application value for the progress in the digital measurement and processing field. (paper)
The Theory of Quantized Fields. III
Schwinger, J.
1953-05-01
In this paper we discuss the electromagnetic field, as perturbed by a prescribed current. All quantities of physical interest in various situations, eigenvalues, eigenfunctions, and transformation probabilities, are derived from a general transformation function which is expressed in a non-Hermitian representation. The problems treated are: the determination of the energy-momentum eigenvalues and eigenfunctions for the isolated electromagnetic field, and the energy eigenvalues and eigenfunctions for the field perturbed by a time-independent current that departs from zero only within a finite time interval, and for a time-dependent current that assumes non-vanishing time-independent values initially and finally. The results are applied in a discussion of the intra-red catastrophe and of the adiabatic theorem. It is shown how the latter can be exploited to give a uniform formulation for all problems requiring the evaluation of transition probabilities or eigenvalue displacements.
Open string in the constant B-field background
International Nuclear Information System (INIS)
Jing Jian; Long Zhengwen
2005-01-01
A new method is proposed to quantize open strings in this paper. To illustrate our method, we analyze free open string as well as open string in the D-brane background with a nonvanishing B-field, respectively. The Poisson brackets among Fourier components are obtained firstly then we get the Poisson brackets among open string's coordinates. The noncommutativity of coordinates along the D-brane is reproduced. Some ambiguities in the previous discussions can be avoided
Covariant quantization of the d=4 Brink-Schwarz superparticle using Lorentz harmonics
International Nuclear Information System (INIS)
Zima, V.G.; Fedoryuk, S.A.
1995-01-01
Covariant first and second quantizations of the free d=4 massless superparticle are implemented with the introduction of purely gauge auxiliary spinor Lorentz harmonics. It is shown that the general solution of the condition of masslessness is a sum of two independent chiral superfields with each of them corresponding to finite superspin. A translationally covariant, in general bijective correspondence between harmonic and massless superfields is constructed. By calculation of the commutation function it is shown that in the considered approach only harmonic fields with the correct connection between spin and statistics and with integer negative homogeneity index satisfy the microcausality condition. It is emphasized that the harmonic fields that arise are reducible at integer points. The index spinor technique is used to describe infinite-component fields of finite spin; the equations of motion of such fields are obtained, and for them Weinberg's theorem on the connection between massless helicity particles and the type of nongauge field that describes them is generalized
Finite approximations in discrete-time stochastic control quantized models and asymptotic optimality
Saldi, Naci; Yüksel, Serdar
2018-01-01
In a unified form, this monograph presents fundamental results on the approximation of centralized and decentralized stochastic control problems, with uncountable state, measurement, and action spaces. It demonstrates how quantization provides a system-independent and constructive method for the reduction of a system with Borel spaces to one with finite state, measurement, and action spaces. In addition to this constructive view, the book considers both the information transmission approach for discretization of actions, and the computational approach for discretization of states and actions. Part I of the text discusses Markov decision processes and their finite-state or finite-action approximations, while Part II builds from there to finite approximations in decentralized stochastic control problems. This volume is perfect for researchers and graduate students interested in stochastic controls. With the tools presented, readers will be able to establish the convergence of approximation models to original mo...
Are Independent Probes Truly Independent?
Camp, Gino; Pecher, Diane; Schmidt, Henk G.; Zeelenberg, Rene
2009-01-01
The independent cue technique has been developed to test traditional interference theories against inhibition theories of forgetting. In the present study, the authors tested the critical criterion for the independence of independent cues: Studied cues not presented during test (and unrelated to test cues) should not contribute to the retrieval…
Unitary evolution and uniqueness of the Fock quantization in flat cosmologies
International Nuclear Information System (INIS)
Marugán, G A Mena; Błas, D Martín-de; Gomar, L Castelló
2013-01-01
We study the Fock quantization of scalar fields with a time dependent mass in cosmological scenarios with flat compact spatial sections. This framework describes physically interesting situations like, e.g., cosmological perturbations in flat Friedmann-Robertson-Walker spacetimes, generally including a suitable scaling of them by a background function. We prove that the requirements of vacuum invariance under the spatial isometries and of a unitary quantum dynamics select (a) a unique canonical pair of field variables among all those related by time dependent canonical transformations which scale the field configurations, and (b) a unique Fock representation for the canonical commutation relations of this pair of variables. The proof is generalizable to any compact spatial topology in three or less dimensions, though we focus on the case of the three-torus owing to the especially relevant implications.
On the quantization of the massless Bateman system
Takahashi, K.
2018-03-01
The so-called Bateman system for the damped harmonic oscillator is reduced to a genuine dual dissipation system (DDS) by setting the mass to zero. We explore herein the condition under which the canonical quantization of the DDS is consistently performed. The roles of the observable and auxiliary coordinates are discriminated. The results show that the complete and orthogonal Fock space of states can be constructed on the stable vacuum if an anti-Hermite representation of the canonical Hamiltonian is adopted. The amplitude of the one-particle wavefunction is consistent with the classical solution. The fields can be quantized as bosonic or fermionic. For bosonic systems, the quantum fluctuation of the field is directly associated with the dissipation rate.
Precise quantization of anomalous Hall effect near zero magnetic field
Energy Technology Data Exchange (ETDEWEB)
Bestwick, A. J. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Fox, E. J. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Kou, Xufeng [Univ. of California, Los Angeles, CA (United States); Pan, Lei [Univ. of California, Los Angeles, CA (United States); Wang, Kang L. [Univ. of California, Los Angeles, CA (United States); Goldhaber-Gordon, D. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
2015-05-04
In this study, we report a nearly ideal quantum anomalous Hall effect in a three-dimensional topological insulator thin film with ferromagnetic doping. Near zero applied magnetic field we measure exact quantization in the Hall resistance to within a part per 10,000 and a longitudinal resistivity under 1 Ω per square, with chiral edge transport explicitly confirmed by nonlocal measurements. Deviations from this behavior are found to be caused by thermally activated carriers, as indicated by an Arrhenius law temperature dependence. Using the deviations as a thermometer, we demonstrate an unexpected magnetocaloric effect and use it to reach near-perfect quantization by cooling the sample below the dilution refrigerator base temperature in a process approximating adiabatic demagnetization refrigeration.
Wavelet/scalar quantization compression standard for fingerprint images
Energy Technology Data Exchange (ETDEWEB)
Brislawn, C.M.
1996-06-12
US Federal Bureau of Investigation (FBI) has recently formulated a national standard for digitization and compression of gray-scale fingerprint images. Fingerprints are scanned at a spatial resolution of 500 dots per inch, with 8 bits of gray-scale resolution. The compression algorithm for the resulting digital images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition (wavelet/scalar quantization method). The FBI standard produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. The compression standard specifies a class of potential encoders and a universal decoder with sufficient generality to reconstruct compressed images produced by any compliant encoder, allowing flexibility for future improvements in encoder technology. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations.
Quantization with maximally degenerate Poisson brackets: the harmonic oscillator!
International Nuclear Information System (INIS)
Nutku, Yavuz
2003-01-01
Nambu's construction of multi-linear brackets for super-integrable systems can be thought of as degenerate Poisson brackets with a maximal set of Casimirs in their kernel. By introducing privileged coordinates in phase space these degenerate Poisson brackets are brought to the form of Heisenberg's equations. We propose a definition for constructing quantum operators for classical functions, which enables us to turn the maximally degenerate Poisson brackets into operators. They pose a set of eigenvalue problems for a new state vector. The requirement of the single-valuedness of this eigenfunction leads to quantization. The example of the harmonic oscillator is used to illustrate this general procedure for quantizing a class of maximally super-integrable systems
TBA-like integral equations from quantized mirror curves
Energy Technology Data Exchange (ETDEWEB)
Okuyama, Kazumi [Department of Physics, Shinshu University,Matsumoto 390-8621 (Japan); Zakany, Szabolcs [Département de Physique Théorique, Université de Genève,Genève, CH-1211 (Switzerland)
2016-03-15
Quantizing the mirror curve of certain toric Calabi-Yau (CY) three-folds leads to a family of trace class operators. The resolvent function of these operators is known to encode topological data of the CY. In this paper, we show that in certain cases, this resolvent function satisfies a system of non-linear integral equations whose structure is very similar to the Thermodynamic Bethe Ansatz (TBA) systems. This can be used to compute spectral traces, both exactly and as a semiclassical expansion. As a main example, we consider the system related to the quantized mirror curve of local ℙ{sup 2}. According to a recent proposal, the traces of this operator are determined by the refined BPS indices of the underlying CY. We use our non-linear integral equations to test that proposal.
TBA-like integral equations from quantized mirror curves
Okuyama, Kazumi; Zakany, Szabolcs
2016-03-01
Quantizing the mirror curve of certain toric Calabi-Yau (CY) three-folds leads to a family of trace class operators. The resolvent function of these operators is known to encode topological data of the CY. In this paper, we show that in certain cases, this resolvent function satisfies a system of non-linear integral equations whose structure is very similar to the Thermodynamic Bethe Ansatz (TBA) systems. This can be used to compute spectral traces, both exactly and as a semiclassical expansion. As a main example, we consider the system related to the quantized mirror curve of local P2. According to a recent proposal, the traces of this operator are determined by the refined BPS indices of the underlying CY. We use our non-linear integral equations to test that proposal.
Quantization State of Baryonic Mass in Clusters of Galaxies
Directory of Open Access Journals (Sweden)
Potter F.
2007-01-01
Full Text Available The rotational velocity curves for clusters of galaxies cannot be explained by Newtonian gravitation using the baryonic mass nor does MOND succeed in reducing this discrepancy to acceptable differences. The dark matter hypothesis appears to offer a solution; however, non-baryonic dark matter has never been detected. As an alternative approach, quantum celestial mechanics (QCM predicts that galactic clusters are in quantization states determined solely by the total baryonic mass of the cluster and its total angular momentum. We find excellent agreement with QCM for ten galactic clusters, demonstrating that dark matter is not needed to explain the rotation velocities and providing further support to the hypothesis that all gravitationally bound systems have QCM quantization states.
On the quantization of Hall currents in presence of disorder
Combes, J; Hislop, P
2005-01-01
We review recent results of two of the authors concerning the quantization of Hall currents, in particular a general quantization formula for the difference of edge Hall conductances in semi-infinite samples with and without a confining wall. We then study the case where the Fermi energy is located in a region of localized states and discuss new regularizations. We also sketch the proof of localization for 2D-models with constant magnetic field with random potential located in a half-plane in two different situations: 1) with a zero potential in the other half plane and for energies away from the Landau levels and 2) with a confining potential in the other half plane and on an interval of energies that covers an arbitrary number of Landau levels.
Subband directional vector quantization in radiological image compression
Akrout, Nabil M.; Diab, Chaouki; Prost, Remy; Goutte, Robert; Amiel, Michel
1992-05-01
The aim of this paper is to propose a new scheme for image compression. The method is very efficient for images which have directional edges such as the tree-like structure of the coronary vessels in digital angiograms. This method involves two steps. First, the original image is decomposed at different resolution levels using a pyramidal subband decomposition scheme. For decomposition/reconstruction of the image, free of aliasing and boundary errors, we use an ideal band-pass filter bank implemented in the Discrete Cosine Transform domain (DCT). Second, the high-frequency subbands are vector quantized using a multiresolution codebook with vertical and horizontal codewords which take into account the edge orientation of each subband. The proposed method reduces the blocking effect encountered at low bit rates in conventional vector quantization.
Scattering of quantized solitary waves in the cubic Schrodinger equation
International Nuclear Information System (INIS)
Dolan, L.
1976-01-01
The quantum mechanics for N particles interacting via a delta-function potential in one space dimension and one time dimension is known. The second-quantized description of this system has for its Euler-Lagrange equations of motion the cubic Schrodinger equation. This nonlinear differential equation supports solitary wave solutions. A quantization of these solitons reproduces the weak-coupling limit to the known quantum mechanics. The phase shift for two-body scattering and the energy of the N-body bound state is derived in this approximation. The nonlinear Schrodinger equation is contrasted with the sine-Gordon theory in respect to the ideas which the classical solutions play in the description of the quantum states
q-Derivatives, quantization methods and q-algebras
International Nuclear Information System (INIS)
Twarock, Reidun
1998-01-01
Using the example of Borel quantization on S 1 , we discuss the relation between quantization methods and q-algebras. In particular, it is shown that a q-deformation of the Witt algebra with generators labeled by Z is realized by q-difference operators. This leads to a discrete quantum mechanics. Because of Z, the discretization is equidistant. As an approach to a non-equidistant discretization of quantum mechanics one can change the Witt algebra using not the number field Z as labels but a quadratic extension of Z characterized by an irrational number τ. This extension is denoted as quasi-crystal Lie algebra, because this is a relation to one-dimensional quasicrystals. The q-deformation of this quasicrystal Lie algebra is discussed. It is pointed out that quasicrystal Lie algebras can be considered also as a 'deformed' Witt algebra with a 'deformation' of the labeling number field. Their application to the theory is discussed
Slavnov-Taylor constraints for nontrivial backgrounds
International Nuclear Information System (INIS)
Binosi, D.; Quadri, A.
2011-01-01
We devise an algebraic procedure for the evaluation of Green's functions in SU(N) Yang-Mills theory in the presence of a nontrivial background field. In the ghost-free sector the dependence of the vertex functional on the background is shown to be uniquely determined by the Slavnov-Taylor identities in terms of a certain 1-PI correlator of the covariant derivatives of the ghost and the antighost fields. At nonvanishing background this amplitude is shown to encode the quantum deformations to the tree-level background-quantum splitting. The approach only relies on the functional identities of the model (Slavnov-Taylor identities, b-equation, antighost equation) and thus it is valid beyond perturbation theory, and, in particular, in a lattice implementation of the background field method. As an example of the formalism we analyze the ghost two-point function and the Kugo-Ojima function in an instanton background in SU(2) Yang-Mills theory, quantized in the background Landau gauge.
Black Hole Area Quantization rule from Black Hole Mass Fluctuations
Schiffer, Marcelo
2016-01-01
We calculate the black hole mass distribution function that follows from the random emission of quanta by Hawking radiation and with this function we calculate the black hole mass fluctuation. From a complete different perspective we regard the black hole as quantum mechanical system with a quantized event horizon area and transition probabilities among the various energy levels and then calculate the mass dispersion. It turns out that there is a perfect agreement between the statistical and ...
Loop quantum gravity and black hole entropy quantization
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Using the spin networks and the asymptotic quasinormal mode frequencies of black holes given by loop quantum gravity,the minimum horizon area gap is obtained.Then the quantum area spectrum of black holes is derived and the black hole entropy is a realized quantization.The results show that the black hole entropy given by loop quantum gravity is in full accord with the Bekenstein-Hawking entropy with a suitable Immirzi.
Torus as phase space: Weyl quantization, dequantization, and Wigner formalism
Energy Technology Data Exchange (ETDEWEB)
Ligabò, Marilena, E-mail: marilena.ligabo@uniba.it [Dipartimento di Matematica, Università di Bari, I-70125 Bari (Italy)
2016-08-15
The Weyl quantization of classical observables on the torus (as phase space) without regularity assumptions is explicitly computed. The equivalence class of symbols yielding the same Weyl operator is characterized. The Heisenberg equation for the dynamics of general quantum observables is written through the Moyal brackets on the torus and the support of the Wigner transform is characterized. Finally, a dequantization procedure is introduced that applies, for instance, to the Pauli matrices. As a result we obtain the corresponding classical symbols.
Matsubara-Fradkin thermodynamical quantization of Podolsky electrodynamics
International Nuclear Information System (INIS)
Bonin, C. A.; Pimentel, B. M.
2011-01-01
In this work, we apply the Matsubara-Fradkin formalism and the Nakanishi's auxiliary field method to the quantization of the Podolsky electrodynamics in thermodynamic equilibrium. This approach allows us to write consistently the path integral representation for the partition function of gauge theories in a simple manner. Furthermore, we find the Dyson-Schwinger-Fradkin equations and the Ward-Fradkin-Takahashi identities for the Podolsky theory. We also write the most general form for the polarization tensor in thermodynamic equilibrium.
Formality theory from Poisson structures to deformation quantization
Esposito, Chiara
2015-01-01
This book is a survey of the theory of formal deformation quantization of Poisson manifolds, in the formalism developed by Kontsevich. It is intended as an educational introduction for mathematical physicists who are dealing with the subject for the first time. The main topics covered are the theory of Poisson manifolds, star products and their classification, deformations of associative algebras and the formality theorem. Readers will also be familiarized with the relevant physical motivations underlying the purely mathematical construction.
Quantized fluctuational electrodynamics for three-dimensional plasmonic structures
DEFF Research Database (Denmark)
Partanen, Mikko; Häyrynen, Teppo; Tulkki, Jukka
2017-01-01
We recently introduced a quantized fluctuational electrodynamics (QFED) formalism that provides a physically insightful definition of an effective position-dependent photon-number operator and the associated ladder operators. However, this far the formalism has been applicable only for the normal...... formalism, we apply it to study the local steady-state photon numbers and field temperatures in a light-emitting near-surface InGaN quantum-well structure with a metallic coating supporting surface plasmons....
Quantized TDHF for isoscalar giant quadrupole resonances in spherical nuclei
International Nuclear Information System (INIS)
Drozdz, S.; Okolowicz, J.; Ploszajczak, M.; Caurier, E.
1988-01-01
The time-dependent Hartree-Fock theory supplemented with the regularity and single-valuedness quantization condition for the gauge invariant component of the wavefunction is applied to the description of the centroid energy and escape width of isoscalar giant quadrupole resonances in 16 O, 40 Ca and 110 Zr. Calculations are performed using the Skyrme SIII effective interaction. An important role of the finite oscillation amplitude in the mean-field dynamics is emphasized. (orig.)
The Third Quantization: To Tunnel or Not to Tunnel?
Directory of Open Access Journals (Sweden)
Mariam Bouhmadi-López
2018-02-01
Full Text Available Within the framework of the third quantization, we consider the possibility that an initially recollapsing baby universe can enter a stage of near de Sitter inflation by tunnelling through a Euclidean wormhole that connects the recollapsing and inflationary geometries. We present the solutions for the evolution of the scale factor in the Lorentzian and Euclidean regions as well as the probability that the baby universe indeed crosses the wormhole when it reaches its maximum size.
Quantization ambiguity and non-trivial vacuum structure
International Nuclear Information System (INIS)
Rothe, H.J.; Swieca, J.A.
1978-01-01
It is pointed out that there is an ambiguity in quantization of any system whose configuration space has a non-trivial topology characterized by a Chern number. In field theories this ambiguity manifests itself through the existence of theta-sectors. The point of view adopted gives a simple interpretation of the difference between the temporal and Coulomb gauge descriptions of instantons. The general ideas are exemplified in the O(3) non-linear sigma-model in two dimensions [pt
Canonical action-angle formalism for quantized nonlinear fields
International Nuclear Information System (INIS)
Garbaczewki, P.
1987-01-01
The canonical quantizations of field and action-angle coordinates which (locally) parameterize the phase manifold for the same nonlinear field theory model (e.g. sine-Gordon and nonlinear Schrodinger with the attractive coupling) are reconciled on the common for both cases state space. The classical-quantum relationship is maintained in the mean: coherent state expectation values of operators give rise to classical objects
Energy quantization for approximate H-surfaces and applications
Directory of Open Access Journals (Sweden)
Shenzhou Zheng
2013-07-01
Full Text Available We consider weakly convergent sequences of approximate H-surface maps defined in the plane with their tension fields bounded in $L^p$ for p> 4/3, and establish an energy quantization that accounts for the loss of their energies by the sum of energies over finitely many nontrivial bubbles maps on $mathbb{R}^2$. As a direct consequence, we establish the energy identity at finite singular time to their H-surface flows.
Quantized fields and operators on a partial inner product space
International Nuclear Information System (INIS)
Shabani, J.
1985-11-01
We investigate the connection between the space OpV of all operators on a partial inner product space V and the weak sequential completion of the * algebra L + (Vsup(no.)) of all operators X such that Vsup(no.) is contained in D(X) intersection D(X*) and both X and its adjoint X* leave Vsup(no.) invariant. This connection gives a mathematical description of quantized fields in terms of elements of OpV. (author)
Fractional statistics and fractional quantized Hall effect. Revision
International Nuclear Information System (INIS)
Tao, R.; Wu, Y.S.
1984-01-01
We suggest that the origin of the odd denominator rule observed in the fractional quantized Hall effect (FQHE) may lie in fractional statistics which governs quasiparticles in FQHE. A theorem concerning statistics of clusters of quasiparticles implies that fractional statistics does not allow coexistence of a large number of quasiparticles at fillings with an even denominator. Thus no Hall plateau can be formed at these fillings, regardless of the presence of an energy gap. 15 references
Noncanonical quantization-on the coexistence of particles and ghosts
International Nuclear Information System (INIS)
Saller, H.
1988-01-01
Local interactions of quantized fields are sometimes parametrized with the aid of ghostlike degrees of freedom, e.g., in non-Abelian gauge theories. These ghosts do not necessarily lead to eigenstates of energy. Such a situation requires a discussion of the asymptotic boundary condition for the ghosts, leading to ghost propagation only for timelike distance. Coexisting particle and ghost degrees of freedom in one basic field operator allow the formulation of interactions for such a field without local ambiguities
Possible evidence for the quantization of particle lifetimes
International Nuclear Information System (INIS)
Ehrlich, R.
1976-01-01
An analysis of widths of resonant states supports the hypothesis that particle lifetimes are quantized in units of 1/2 or possibly 1/4 the lifetime of the rho meson: (4.40 +- 0.06) x 10 -24 seconds. The probability that the observed regularity in resonance widths (lifetimes) is simply due to chance is estimated to be less than 2 x 10 -4 . Possible ramifications of this result are considered
A zeta function approach to the semiclassical quantization of maps
International Nuclear Information System (INIS)
Smilansky, Uzi.
1993-11-01
The quantum analogue of an area preserving map on a compact phase space is a unitary (evolution) operator which can be represented by a matrix of dimension L∝ℎ -1 . The semiclassical theory for spectrum of the evolution operator will be reviewed with special emphasize on developing a dynamical zeta function approach, similar to the one introduced recently for a semiclassical quantization of hamiltonian systems. (author)
Projective Fourier duality and Weyl quantization
International Nuclear Information System (INIS)
Aldrovandi, R.; Saeger, L.A.
1996-08-01
The Weyl-Wigner correspondence prescription, which makes large use of Fourier duality, is reexamined from the point of view of Kac algebras, the most general background for non-commutative Fourier analysis allowing for that property. It is shown how the standard Kac structure has to be extended in order to accommodate the physical requirements. An Abelian and a symmetric projective Kac algebras are shown to provide, in close parallel to the standard case, a new dual framework and a well-defined notion of projective Fourier duality for the group of translations on the plane. The Weyl formula arises naturally as an irreducible component of the duality mapping between these projective algebras. (author). 29 refs
Supporting Dynamic Quantization for High-Dimensional Data Analytics.
Guzun, Gheorghi; Canahuate, Guadalupe
2017-05-01
Similarity searches are at the heart of exploratory data analysis tasks. Distance metrics are typically used to characterize the similarity between data objects represented as feature vectors. However, when the dimensionality of the data increases and the number of features is large, traditional distance metrics fail to distinguish between the closest and furthest data points. Localized distance functions have been proposed as an alternative to traditional distance metrics. These functions only consider dimensions close to query to compute the distance/similarity. Furthermore, in order to enable interactive explorations of high-dimensional data, indexing support for ad-hoc queries is needed. In this work we set up to investigate whether bit-sliced indices can be used for exploratory analytics such as similarity searches and data clustering for high-dimensional big-data. We also propose a novel dynamic quantization called Query dependent Equi-Depth (QED) quantization and show its effectiveness on characterizing high-dimensional similarity. When applying QED we observe improvements in kNN classification accuracy over traditional distance functions. Gheorghi Guzun and Guadalupe Canahuate. 2017. Supporting Dynamic Quantization for High-Dimensional Data Analytics. In Proceedings of Ex-ploreDB'17, Chicago, IL, USA, May 14-19, 2017, 6 pages. https://doi.org/http://dx.doi.org/10.1145/3077331.3077336.
Hamiltonian theories quantization based on a probability operator
International Nuclear Information System (INIS)
Entral'go, E.E.
1986-01-01
The quantization method with a linear reflection of classical coordinate-momentum-time functions Λ(q,p,t) at quantum operators in a space of quantum states ψ, is considered. The probability operator satisfies a system of equations representing the principles of dynamical and canonical correspondences between the classical and quantum theories. The quantization based on a probability operator leads to a quantum theory with a nonnegative joint coordinate-momentum distribution function for any state ψ. The main consequences of quantum mechanics with a probability operator are discussed in comparison with the generally accepted quantum and classical theories. It is shown that a probability operator leads to an appearance of some new notions called ''subquantum'' ones. Hence the quantum theory with a probability operator does not pretend to any complete description of physical reality in terms of classical variables and by this reason contains no problems like Einstein-Podolsky-Rosen paradox. The results of some concrete problems are given: a free particle, a harmonic oscillator, an electron in the Coulomb field. These results give hope on the possibility of an experimental verification of the quantization based on a probability operator
ROBUST CONTROL ALGORITHM FOR MULTIVARIABLE PLANTS WITH QUANTIZED OUTPUT
Directory of Open Access Journals (Sweden)
A. A. Margun
2017-01-01
Full Text Available The paper deals with robust output control algorithm for multivariable plants under disturbances. A plant is described by the system of linear differential equations with known relative degrees. Plant parameters are unknown but belong to the known closed bounded set. Plant state vector is unmeasured. Plant output is measured only via static quantizer. Control system algorithm is based on the high gain feedback method. Developed controller provides exponential convergence of tracking error to the bounded area. The area bounds depend on quantizer parameters and the value of external disturbances. Experimental approbation of the proposed control algorithm is performed with the use of Twin Rotor MIMO System laboratory bench. This bench is a helicopter like model with two degrees of freedom (pitch and yaw. DC motors are used as actuators. The output signals are measured via optical encoders. Mathematical model of laboratory bench is obtained. Proposed algorithm was compared with proportional - integral – differential controller in conditions of output quantization. Obtained results have confirmed the efficiency of proposed controller.
Combinatorial quantization of the Hamiltonian Chern-Simons theory
International Nuclear Information System (INIS)
Alekseev, A.Yu.; Grosse, H.; Schomerus, V.
1996-01-01
This paper further develops the combinatorial approach to quantization of the Hamiltonian Chern Simons theory. Using the theory of quantum Wilson lines, we show how the Verlinde algebra appears within the context of quantum group gauge theory. This allows to discuss flatness of quantum connections so that we can give a mathematically rigorous definition of the algebra of observables A CS of the Chern Simons model. It is a *-algebra of ''functions on the quantum moduli space of flat connections'' and comes equipped with a positive functional ω (''integration''). We prove that this data does not depend on the particular choices which have been made in the construction. The algebra A CS provides a deformation quantization of the algebra of functions on the moduli space along the natural Poisson bracket induced by the Chern Simons action. We evaluate a volume of the quantized moduli space and prove that it coincides with the Verlinde number. This answer is also interpreted as a partition partition function of the lattice Yang-Mills theory corresponding to a quantum gauge group. (orig.). With 1 fig
Einstein's photoemission emission from heavily-doped quantized structures
Ghatak, Kamakhya Prasad
2015-01-01
This monograph solely investigates the Einstein's Photoemission(EP) from Heavily Doped(HD) Quantized Structures on the basis of newly formulated electron dispersion laws. The materials considered are quantized structures of HD non-linear optical, III-V, II-VI, Ge, Te, Platinum Antimonide, stressed materials, GaP, Gallium Antimonide, II-V, Bismuth Telluride together with various types of HD superlattices and their Quantized counterparts respectively. The EP in HD opto-electronic materials and their nanostructures is studied in the presence of strong light waves and intense electric fields that control the studies of such quantum effect devices. The suggestions for the experimental determinations of different important physical quantities in HD 2D and 3D materials and the importance of measurement of band gap in HD optoelectronic materials under intense built-in electric field in nano devices and strong external photo excitation (for measuring physical properties in the presence of intense light waves w...
A diagrammatic construction of formal E-independent model hamiltonian
International Nuclear Information System (INIS)
Kvasnicka, V.
1977-01-01
A diagrammatic construction of formal E-independent model interaction (i.e., without second-quantization formalism) is suggested. The construction starts from the quasi-degenerate Brillouin-Wigner perturbation theory, in the framework of which an E-dependent model Hamiltonian is simply constructed. Applying the ''E-removing'' procedure to this E-dependent model Hamiltonian, the E-independent formal model Hamiltonian either Hermitian or non-Hermitian can diagrammatically be easily derived. For the formal E-independent model Hamiltonian the separability theorem is proved, which can be profitably used for a rather ''formalistic ''construction of a many-body E-independent model Hamiltonian
Canonical quantization of the generalized axial gauge
International Nuclear Information System (INIS)
Haller, K.
1990-01-01
The incompatibility of the constraint A 3 =0 with canonical commutation rules is discussed. A canonical formulation is given of QED and QCD in the axial gauge with n 1 =n 2 =0, n 3 =α and n 0 =β, where α and β are arbitrary real numbers. A Hilbert space is established for the perturbative theory, and a propagator is derived by obtaining an expression for the interaction picture gauge fields, and evaluating the vacuum expectation value of its time-ordered products in the perturbative vacuum. The propagator is expressed in terms of the parameter γ=α/β and is shown to reproduce the light cone gauge propagator when γ=1, and the temporal gauge propagator when γ=0, accommodating various prescriptions for the spurious propagator pole, including the Mandelstam-Leibbrandt and principal value prescriptions. When γ→∞, the generalized axial gauge propagator leads to an expression for the propagator in the A 3 =0 gauge, though in that case the order in which the integration over k 0 is performed, and the limit γ→∞ is taken, affects the resulting expression. Another Hilbert space is established, in which the constraints that include all interactions are implemented in a time independent fashion. It is pointed out that this Hilbert space, and the Hilbert space of the perturbative theory are unitarily equivalent in QED, but that they cannot be unitarily equivalent in QCD. Implications of this fact for the nonperturbative states of QCD are discussed. (orig.)
Width dependent transition of quantized spin-wave modes in Ni80Fe20 square nanorings
Banerjee, Chandrima; Saha, Susmita; Barman, Saswati; Rousseau, Olivier; Otani, YoshiChika; Barman, Anjan
2014-10-01
We investigated optically induced ultrafast magnetization dynamics in square shaped Ni80Fe20 nanorings with varying ring width. Rich spin-wave spectra are observed whose frequencies showed a strong dependence on the ring width. Micromagnetic simulations showed different types of spin-wave modes, which are quantized upto very high quantization number. In the case of widest ring, the spin-wave mode spectrum shows quantized modes along the applied field direction, which is similar to the mode spectrum of an antidot array. As the ring width decreases, additional quantization in the azimuthal direction appears causing mixed modes. In the narrowest ring, the spin-waves exhibit quantization solely in azimuthal direction. The different quantization is attributed to the variation in the internal field distribution for different ring width as obtained from micromagnetic analysis and supported by magnetic force microscopy.
International Nuclear Information System (INIS)
Prykarpatsky, A.K.; Bogoliubov, N.N. Jr.; Golenia, J.; Taneri, U.
2007-09-01
Introductive backgrounds of a new mathematical physics discipline - Quantum Mathematics - are discussed and analyzed both from historical and analytical points of view. The magic properties of the second quantization method, invented by V. Fock in 1934, are demonstrated, and an impressive application to the nonlinear dynamical systems theory is considered. (author)
Depth of quantization in signals of the digital X-ray television
International Nuclear Information System (INIS)
Beuthan, J.
1989-01-01
The technological realization of image acquisition and processing in digital X-ray television in methodical dependence on the image-forming purpose places particular requirements in signal quantization. By evaluation of experimental results with simultaneous modification of a special calculation method an optimum quantization stage is ascertained with method-relevant quantization characteristic. In addition to consideration made so far in this field a self-contained solution is presented with inclusion of vision physiology and information gain. (author)
The BRST formalism and the quantization of hamiltonian systems with first class constraints
International Nuclear Information System (INIS)
Gamboa, J.; Rivelles, V.O.
1989-04-01
The quantization of hamiltonian system with first class constraints using the BFV formalism is studied. Two examples, the quantization of the relativistic particle and the relativistic spinning particle, are worked out in detail, showing that the BFV formalism is a powerful method for quantizing theories with gauge freedom. Several points not discussed is the literature are pointed out and the correct expression for the Feynman propagator in both cases is found. (L.C.)
Comments on exact quantization conditions and non-perturbative topological strings
International Nuclear Information System (INIS)
Hatsuda, Yasuyuki
2015-12-01
We give some remarks on exact quantization conditions associated with quantized mirror curves of local Calabi-Yau threefolds, conjectured in arXiv:1410.3382. It is shown that they characterize a non-perturbative completion of the refined topological strings in the Nekrasov-Shatashvili limit. We find that the quantization conditions enjoy an exact S-dual invariance. We also discuss Borel summability of the semi-classical spectrum.
Ivanov, K. A.; Nikolaev, V. V.; Gubaydullin, A. R.; Kaliteevski, M. A.
2017-10-01
Based on the scattering matrix formalism, we have developed a method of quantization of an electromagnetic field in two-dimensional photonic nanostructures ( S-quantization in the two-dimensional case). In this method, the fields at the boundaries of the quantization box are expanded into a Fourier series and are related with each other by the scattering matrix of the system, which is the product of matrices describing the propagation of plane waves in empty regions of the quantization box and the scattering matrix of the photonic structure (or an arbitrary inhomogeneity). The quantization condition (similarly to the onedimensional case) is formulated as follows: the eigenvalues of the scattering matrix are equal to unity, which corresponds to the fact that the set of waves that are incident on the structure (components of the expansion into the Fourier series) is equal to the set of waves that travel away from the structure (outgoing waves). The coefficients of the matrix of scattering through the inhomogeneous structure have been calculated using the following procedure: the structure is divided into parallel layers such that the permittivity in each layer varies only along the axis that is perpendicular to the layers. Using the Fourier transform, the Maxwell equations have been written in the form of a matrix that relates the Fourier components of the electric field at the boundaries of neighboring layers. The product of these matrices is the transfer matrix in the basis of the Fourier components of the electric field. Represented in a block form, it is composed by matrices that contain the reflection and transmission coefficients for the Fourier components of the field, which, in turn, constitute the scattering matrix. The developed method considerably simplifies the calculation scheme for the analysis of the behavior of the electromagnetic field in structures with a two-dimensional inhomogeneity. In addition, this method makes it possible to obviate
Length quantization of DNA partially expelled from heads of a bacteriophage T3 mutant
Energy Technology Data Exchange (ETDEWEB)
Serwer, Philip, E-mail: serwer@uthscsa.edu [Department of Biochemistry, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900 (United States); Wright, Elena T. [Department of Biochemistry, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900 (United States); Liu, Zheng; Jiang, Wen [Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN 47907 (United States)
2014-05-15
DNA packaging of phages phi29, T3 and T7 sometimes produces incompletely packaged DNA with quantized lengths, based on gel electrophoretic band formation. We discover here a packaging ATPase-free, in vitro model for packaged DNA length quantization. We use directed evolution to isolate a five-site T3 point mutant that hyper-produces tail-free capsids with mature DNA (heads). Three tail gene mutations, but no head gene mutations, are present. A variable-length DNA segment leaks from some mutant heads, based on DNase I-protection assay and electron microscopy. The protected DNA segment has quantized lengths, based on restriction endonuclease analysis: six sharp bands of DNA missing 3.7–12.3% of the last end packaged. Native gel electrophoresis confirms quantized DNA expulsion and, after removal of external DNA, provides evidence that capsid radius is the quantization-ruler. Capsid-based DNA length quantization possibly evolved via selection for stalling that provides time for feedback control during DNA packaging and injection. - Graphical abstract: Highlights: • We implement directed evolution- and DNA-sequencing-based phage assembly genetics. • We purify stable, mutant phage heads with a partially leaked mature DNA molecule. • Native gels and DNase-protection show leaked DNA segments to have quantized lengths. • Native gels after DNase I-removal of leaked DNA reveal the capsids to vary in radius. • Thus, we hypothesize leaked DNA quantization via variably quantized capsid radius.
International Nuclear Information System (INIS)
Vajnberg, Eh.I.; Fajngojz, M.L.
1984-01-01
The sources and forms of manifestation of errors in quantization and interpolation of projections in case of X-ray computerized tomography are considered and quantitative criteria of their evaluation are formulated. The dominating role of the interaction of two successive quantizations of projections - one-dimensional and two-dimensional ones is revealed. The necessity of joint optimization of the two-dimensional quantization range, expansion and form of interpolation function, quantized convolution nucleus is substantiated. The experimental results at aspect ratio of tomograms 256x256 and 480 projections are presented
Quantum algebras as quantizations of dual Poisson–Lie groups
International Nuclear Information System (INIS)
Ballesteros, Ángel; Musso, Fabio
2013-01-01
A systematic computational approach for the explicit construction of any quantum Hopf algebra (U z (g), Δ z ) starting from the Lie bialgebra (g, δ) that gives the first-order deformation of the coproduct map Δ z is presented. The procedure is based on the well-known ‘quantum duality principle’, namely the fact that any quantum algebra can be viewed as the quantization of the unique Poisson–Lie structure (G*, Λ g ) on the dual group G*, which is obtained by exponentiating the Lie algebra g* defined by the dual map δ*. From this perspective, the coproduct for U z (g) is just the pull-back of the group law for G*, and the Poisson analogues of the quantum commutation rules for U z (g) are given by the unique Poisson–Lie structure Λ g on G* whose linearization is the Poisson analogue of the initial Lie algebra g. This approach is shown to be a very useful technical tool in order to solve the Lie bialgebra quantization problem explicitly since, once a Lie bialgebra (g, δ) is given, the full dual Poisson–Lie group (G*, Λ) can be obtained either by applying standard Poisson–Lie group techniques or by implementing the algorithm presented here with the aid of symbolic manipulation programs. As a consequence, the quantization of (G*, Λ) will give rise to the full U z (g) quantum algebra, provided that ordering problems are appropriately fixed through the choice of certain local coordinates on G* whose coproduct fulfils a precise ‘quantum symmetry’ property. The applicability of this approach is explicitly demonstrated by reviewing the construction of several instances of quantum deformations of physically relevant Lie algebras such as sl(2,R), the (2+1) anti-de Sitter algebra so(2, 2) and the Poincaré algebra in (3+1) dimensions. (paper)
Quantization of a non-linearly realized supersymmetric theory
International Nuclear Information System (INIS)
Shima, Kazunari
1976-01-01
The two-dimensional version of the Volkov-Akulov's Lagrngian, where the super-symmetry is realized non-linearly by means of a single Majorana spinor psi(x), is quantized. The equal time anti-commutators for the field are not c-numbers but functions of the field itself. By the explicite calculation we shall show that supersymmetry charges of the model form the supersymmetry algebra(the graded Lie algebra) and the supersymmetry charges exactly generate a constant translation of psi(x) in the spinor space. In this work we restrict our investigation to the two-dimensional space-time for the sake of simplicity. (auth.)
Charge quantization of wormholes and the finiteness of Newton's constant
International Nuclear Information System (INIS)
Grinstein, B.
1989-01-01
We derive, from first principles, the equations of Lee which exhibit wormhole solutions. The interpretation of such solutions becomes more transparent: they are local extrema of the action which contribute to transition amplitudes between states of definite charge. Hence the charge carried by the wormhole is quantized. We briefly review Coleman's mechanism for the vanishing of the cosmological constant, with emphasis on the problem of the vanishing of Newton's constant G. A mechanism is proposed that could naturally make 1/G a bounded function of the wormhole parameters. (orig.)
Quantized Algebras of Functions on Homogeneous Spaces with Poisson Stabilizers
Neshveyev, Sergey; Tuset, Lars
2012-05-01
Let G be a simply connected semisimple compact Lie group with standard Poisson structure, K a closed Poisson-Lie subgroup, 0 topology on the spectrum of C( G q / K q ). Next we show that the family of C*-algebras C( G q / K q ), 0 < q ≤ 1, has a canonical structure of a continuous field of C*-algebras and provides a strict deformation quantization of the Poisson algebra {{C}[G/K]} . Finally, extending a result of Nagy, we show that C( G q / K q ) is canonically KK-equivalent to C( G/ K).
Noncommutative solitons: moduli spaces, quantization, finite θ effects and stability
Hadasz, Leszek; Rocek, Martin; Lindström, Ulf; von Unge, Rikard
2001-06-01
We find the N-soliton solution at infinite θ, as well as the metric on the moduli space corresponding to spatial displacements of the solitons. We use a perturbative expansion to incorporate the leading θ-1 corrections, and find an effective short range attraction between solitons. We study the stability of various solutions. We discuss the finite θ corrections to scattering, and find metastable orbits. Upon quantization of the two-soliton moduli space, for any finite θ, we find an s-wave bound state.
Generalized field quantization and statistics of elementary particles
International Nuclear Information System (INIS)
Govorkov, A.V.
1994-01-01
Generalized schemes for the quantization of free fields based on the deformed trilinear relations of Green are investigated. A theorem shows that in reality continuous deformation is impossible. In particular, it is shown that a open-quotes smallclose quotes violation of the ordinary Fermi and Bose statistics is impossible both in the framework of local field theory, corresponding to parastatistics of finite orders, and in the framework of nonlocal field theory, corresponding to infinite statistics. The existence of antiparticles plays a decisive role in establishing the matter case. 23 refs
Logarithmic corrections in a quantization rule. The polaron spectrum
International Nuclear Information System (INIS)
Karasev, M.V.; Pereskokov, A.V.
1994-01-01
A nonlinear integrodifferential equation that arises in polaron theory is considered. The integral nonlinearity is given by a convolution with the Coulomb potential. Radially symmetric solutions are sought. In the semiclassical limit, an equation for the self-consistent potential is found and studied. The potential has a logarithmic singularity at the origin, and also a turning point at 1. The phase shifts at these points are determined. The quantization rule that takes into account the logarithmic corrections gives a simple asymptotic formula for the polaron spectrum. Global semiclassical solutions of the original nonlinear equation are constructed. 18 refs., 1 tab
On quantization, the generalised Schroedinger equation and classical mechanics
International Nuclear Information System (INIS)
Jones, K.R.W.
1991-01-01
A ψ-dependent linear functional operator, was defined, which solves the problem of quantization in non-relativistic quantum mechanics. Weyl ordering is implemented automatically and permits derivation of many of the quantum to classical correspondences. The parameter λ presents a natural C ∞ deformation of the dynamical structure of quantum mechanics via a non-linear integro-differential 'Generalised Schroedinger Equation', admitting an infinite family of soliton solutions. All these solutions are presented and it is shown that this equation gives an exact dynamic and energetic reproduction of classical mechanics with the correct measurement theoretic limit. 23 refs
Gauged BPS baby Skyrmions with quantized magnetic flux
Adam, C.; Wereszczynski, A.
2017-06-01
A new type of gauged BPS baby Skyrme model is presented, where the derivative term is just the Schroers current (i.e., gauge invariant and conserved version of the topological current) squared. This class of models has a topological bound saturated for solutions of the pertinent Bogomolnyi equations supplemented by a so-called superpotential equation. In contrast to the gauged BPS baby Skyrme models considered previously, the superpotential equation is linear and, hence, completely solvable. Furthermore, the magnetic flux is quantized in units of 2 π , which allows, in principle, to define this theory on a compact manifold without boundary, unlike all gauged baby Skyrme models considered so far.
Harmonic generation and flux quantization in granular superconductors
International Nuclear Information System (INIS)
Lam, Q.H.; Jeffries, C.D.
1989-01-01
Simple dynamical models of granular superconductors are used to compute the generation of harmonic power in ac and dc magnetic fields. In zero order, the model is a single superconducting loop, with or without a weak link. The sample-average power is predicted by averaging over suitable distribution functions for loop areas and orientations in a dc magnetic field. In a first-order model, inductance and resistance are also included. In all models the power at high harmonics shows strikingly sharp dips periodic in the dc field, revealing flux quantization in the prototype loops
Quantized Eigenstates of a Classical Particle in a Ponderomotive Potential
International Nuclear Information System (INIS)
Dodin, I.Y.; Fisch, N.J.
2004-01-01
The average dynamics of a classical particle under the action of a high-frequency radiation resembles quantum particle motion in a conservative field with an effective de Broglie wavelength λ equal to the particle average displacement on a period of oscillations. In a ''quasi-classical'' field, with a spatial scale large compared to λ, the guiding center motion is adiabatic. Otherwise, a particle exhibits quantized eigenstates in a ponderomotive potential well, can tunnel through classically forbidden regions and experience reflection from an attractive potential. Discrete energy levels are also found for a ''crystal'' formed by multiple ponderomotive barriers
Quantized Dirac field interacting with a classical Maxwell field
International Nuclear Information System (INIS)
Kolsrud, M.
1987-10-01
The S operator for the quantized and the s matrix for the unquantized Dirac field, both fields interacting with an unquantized Maxwell field, are shown to be related in the following way: S=exp(-ic†kc) and s=exp(-ik). Here c is the column matrix of the particle operators, and k is a Hermitian matrix. With splitting of c into an electron and a positron part, a corresponding factorization of S is performed. Exact expressions for the probability amplitude for various electron and/or positron processes are then obtained
Categorical Cell Decomposition of Quantized Symplectic Algebraic Varieties
Bellamy, Gwyn; Dodd, Christopher; McGerty, Kevin; Nevins, Thomas
2013-01-01
We prove a new symplectic analogue of Kashiwara’s equivalence from D–module\\ud theory. As a consequence, we establish a structure theory for module categories over\\ud deformation-quantizations that mirrors, at a higher categorical level, the BiałynickiBirula\\ud stratification of a variety with an action of the multiplicative group Gm . The\\ud resulting categorical cell decomposition provides an algebrogeometric parallel to the\\ud structure of Fukaya categories of Weinstein manifolds. From it,...
Michael Marinov memorial volume multiple facets of quantization and supersymmetry
Vainshtein, A I
2002-01-01
This book is dedicated to the memory of Michael Marinov, the theorist who, together with Felix Berezin, introduced the classical description of spin by anticommuting Grassmann variables. It contains original papers and reviews by physicists and mathematicians written specifically for the book. These articles reflect the current status and recent developments in the areas of Marinov's research: quantum tunneling, quantization of constrained systems, supersymmetry, and others. The personal recollections included portray the human face of M Marinov, a person of great knowledge and integrity.
Canonical quantization of general relativity in discrete space-times.
Gambini, Rodolfo; Pullin, Jorge
2003-01-17
It has long been recognized that lattice gauge theory formulations, when applied to general relativity, conflict with the invariance of the theory under diffeomorphisms. We analyze discrete lattice general relativity and develop a canonical formalism that allows one to treat constrained theories in Lorentzian signature space-times. The presence of the lattice introduces a "dynamical gauge" fixing that makes the quantization of the theories conceptually clear, albeit computationally involved. The problem of a consistent algebra of constraints is automatically solved in our approach. The approach works successfully in other field theories as well, including topological theories. A simple cosmological application exhibits quantum elimination of the singularity at the big bang.
Quantization conditions and functional equations in ABJ(M) theories
International Nuclear Information System (INIS)
Grassi, Alba; Marino, Marcos; Hatsuda, Yasuyuki
2014-12-01
The partition function of ABJ(M) theories on the three-sphere can be regarded as the canonical partition function of an ideal Fermi gas with a non-trivial Hamiltonian. We propose an exact expression for the spectral determinant of this Hamiltonian, which generalizes recent results obtained in the maximally supersymmetric case. As a consequence, we find an exact WKB quantization condition determining the spectrum which is in agreement with numerical results. In addition, we investigate the factorization properties and functional equations for our conjectured spectral determinants. These functional equations relate the spectral determinants of ABJ theories with consecutive ranks of gauge groups but the same Chern-Simons coupling.
Two dimensional topological insulator in quantizing magnetic fields
Olshanetsky, E. B.; Kvon, Z. D.; Gusev, G. M.; Mikhailov, N. N.; Dvoretsky, S. A.
2018-05-01
The effect of quantizing magnetic field on the electron transport is investigated in a two dimensional topological insulator (2D TI) based on a 8 nm (013) HgTe quantum well (QW). The local resistance behavior is indicative of a metal-insulator transition at B ≈ 6 T. On the whole the experimental data agrees with the theory according to which the helical edge states transport in a 2D TI persists from zero up to a critical magnetic field Bc after which a gap opens up in the 2D TI spectrum.
Are lepton and quark families quantized dynamical systems
International Nuclear Information System (INIS)
Krolikowski, W.
1980-04-01
Lepton and quark families (#betta#sub(N)), (esub(N))) and (usub(N)), (dsub(N) are conjectured to be quantum-dynamical systems in the space of generations N = 0,1,2,... Such a conjecture, called the ''zeroth quantization'', implies the form of lepton and quark mass spectra, if lepton and quark families are supposed to be almost in thermal equilibrium with the rest of the Universe. Toponium is predicted at about 38 GeV, while the next charged lepton at 28.5 GeV. (author)
New inner products for physical states in BRST quantization
International Nuclear Information System (INIS)
Marnelius, R.; Oegren, M.
1991-01-01
In a BRST quantization involving operators with continuous eigenvalues the naive inner products of physical states are usually undefined. In order to include such cases we propose new inner products defined by , where ρ is an odd gauge-fixing operator. In this definition, which requires the use of dynamical Lagrange multipliers, the factor exp i[ρ,Q] is naturally provided by the choice of dynamics. Several examples are worked out. In particular it is shown that the worldline supersymmetric model for a massless spin-1/2 particle leads to fermions whose chiral projections have opposite norms. (orig.)
Renormalization in the stochastic quantization of field theories
International Nuclear Information System (INIS)
Brunelli, J.C.
1991-01-01
In the stochastic quantization scheme of Parisi and Wu the renormalization of the stochastic theory of some models in field theory is studied. Following the path integral approach for stochastic process the 1/N expansion of the non linear sigma model is performed and, using a Ward identity obtained, from a BRS symmetry of the effective action of this formulation. It is shown the renormalizability of the model. Using the Langevin approach for stochastic process the renormalizability of the massive Thirring model is studied showing perturbatively the vanishing of the renormalization group's beta functions at finite fictitious time. (author)
On second quantization methods applied to classical statistical mechanics
International Nuclear Information System (INIS)
Matos Neto, A.; Vianna, J.D.M.
1984-01-01
A method of expressing statistical classical results in terms of mathematical entities usually associated to quantum field theoretical treatment of many particle systems (Fock space, commutators, field operators, state vector) is discussed. It is developed a linear response theory using the 'second quantized' Liouville equation introduced by Schonberg. The relationship of this method to that of Prigogine et al. is briefly analyzed. The chain of equations and the spectral representations for the new classical Green's functions are presented. Generalized operators defined on Fock space are discussed. It is shown that the correlation functions can be obtained from Green's functions defined with generalized operators. (Author) [pt
BRST quantization of Polyakov's two-dimensional gravity
International Nuclear Information System (INIS)
Itoh, Katsumi
1990-01-01
Two-dimensional gravity coupled to minimal models is quantized in the chiral gauge by the BRST method. By using the Wakimoto construction for the gravity sector, we show how the quartet mechanism of Kugo and Ojima works and solve the physical state condition. As a result the positive semi-definiteness of the physical subspace is shown. The formula of Knizhnik et al. for gravitational scaling dimensions is rederived from the physical state condition. We also observe a relation between the chiral gauge and the conformal gauge. (orig.)
Elliptic Genera of Symmetric Products and Second Quantized Strings
Dijkgraaf, R; Verlinde, Erik; Verlinde, Herman L
1997-01-01
In this note we prove an identity that equates the elliptic genus partition function of a supersymmetric sigma model on the $N$-fold symmetric product $M^N/S_N$ of a manifold $M$ to the partition function of a second quantized string theory on the space $M \\times S^1$. The generating function of these elliptic genera is shown to be (almost) an automorphic form for $O(3,2,\\Z)$. In the context of D-brane dynamics, this result gives a precise computation of the free energy of a gas of D-strings inside a higher-dimensional brane.
d=3 Chern-Simons action, supergravity and quantization
International Nuclear Information System (INIS)
Dayi, O.F.
1989-01-01
An interpretation of three-dimensional simple supergravity as a pure Chern-Simons gauge action is shown to be valid up to the one loop level. Canonical quantization of this system does not lead to an explicit definition of the physical Hilbert space. Hence another formulation of the N = 1 three-dimensional supergravity is introduced. In this formalism an explicit definition of the physical Hilbert space is possible, but still one has to solve the problems of showing that there exists a global set of coordinates and of defining the inner product. (author). 10 refs
Quantized fields in interaction with external fields. Pt. 1
International Nuclear Information System (INIS)
Bellissard, J.
1975-01-01
We consider a massive, charged, scalar quantized field interacting with an external classical field. Guided by renormalized perturbation theory we show that whenever the integral equations defining the Feynman or retarded or advanced interaction kernel possess non perturbative solutions, there exists an S-operator which satisfies, up to a phase, the axioms of Bogoliubov, and is given for small external fields by a power series which converges on coherent states. Furthermore this construction is shown to be equivalent to the one based on the Yang-Kaellen-Feldman equation. This is a consequence of the relations between chronological and retarded Green's functions which are described in detail. (orig.) [de
International Nuclear Information System (INIS)
Janin, Marion; Ghilane, Jalal; Lacroix, Jean-Christophe
2012-01-01
Highlights: ► Electrochemistry and SECM to generate copper nanowires with quantized conductance. ► Stable atomic contacts lasting for several hundreds of seconds have been obtained. ► The quantized conductances are independent of the tip and gap size. ► The method allows contacts to be generated in the presence of chosen molecules. ► Four-electrode configuration opens the route to redox gated atomic contact. - Abstract: Scanning electrochemical microscopy, SECM, is proposed as a tool for the fabrication of copper nanowires. In a first step, configuration based on two electrodes, a platinum UME (cathode) and a copper substrate (anode), operating in the SECM configuration was employed. For nanowires generated in water the conductance changes stepwise and varies by integer values of the conductance quantum G 0 . The formation of atomic contacts is supported by the ohmic behavior of the I–V curve. It depends neither on the UME tip radius nor on the initial gap size between tip and substrate. Atomic contacts generated in aqueous solutions of sodium dodecyl sulfate (SDS) below the critical micellar concentration (CMC) have conductances below 1G 0 attributed to molecular adsorption on the contact. In some cases, the nanowires have low conductance, 0.01G 0 . The corresponding I–V curve shows tunneling rather than ohmic behavior, suggesting that molecular junctions are formed with a few surfactant molecules trapped between the two electrodes. Finally, copper nanowires with quantized conductance have been generated using the SECM operating in a four-electrode setup. Thanks to the reference electrode, this configuration leads to better control of the potential of each working electrode; this setup will make it possible to evaluate the conductance variation and/or modulation upon electrochemical stimuli.
L. Anet Neto; P. Chanclou; Z. Tayq; B. C. Zabada; F. Saliou; G. Simon
2016-01-01
We experimentally assess compression with scalar and vector quantization for fixed-mobile convergent networks. We show that four-dimensional vector quantization allows 73% compression compliant with 3GPP EVM recommendations for transmissions over 25 km SSMF with 1:16 split ratio.
Implementability of gauge transformations and quantization of fermions in external fields
International Nuclear Information System (INIS)
Grosse, H.; Karner, G.
1986-01-01
Quantization of fermions in an external soliton field, leading to a representation of the CAR which is inequivalent to the representation connected to the massive Dirac operator, is studied. We determine classes of gauge and axial gauge transformations which can be unitarily implemented. In the latter case quantization conditions for gauge functions are obtained; integers entering can be interpreted as winding numbers. (Author)
Educational Information Quantization for Improving Content Quality in Learning Management Systems
Rybanov, Alexander Aleksandrovich
2014-01-01
The article offers the educational information quantization method for improving content quality in Learning Management Systems. The paper considers questions concerning analysis of quality of quantized presentation of educational information, based on quantitative text parameters: average frequencies of parts of speech, used in the text; formal…
Modeling and analysis of energy quantization effects on single electron inverter performance
Dan, Surya Shankar; Mahapatra, Santanu
2009-08-01
In this paper, for the first time, the effects of energy quantization on single electron transistor (SET) inverter performance are analyzed through analytical modeling and Monte Carlo simulations. It is shown that energy quantization mainly changes the Coulomb blockade region and drain current of SET devices and thus affects the noise margin, power dissipation, and the propagation delay of SET inverter. A new analytical model for the noise margin of SET inverter is proposed which includes the energy quantization effects. Using the noise margin as a metric, the robustness of SET inverter is studied against the effects of energy quantization. A compact expression is developed for a novel parameter quantization threshold which is introduced for the first time in this paper. Quantization threshold explicitly defines the maximum energy quantization that an SET inverter logic circuit can withstand before its noise margin falls below a specified tolerance level. It is found that SET inverter designed with CT:CG=1/3 (where CT and CG are tunnel junction and gate capacitances, respectively) offers maximum robustness against energy quantization.
Exact quantization conditions, toric Calabi-Yau and non-perturbative topological string
Energy Technology Data Exchange (ETDEWEB)
Sun, Kaiwen [Department of Mathematics, University of Science and Technology of China,96 Jinzhai Road, Hefei, Anhui 230026 (China); Wang, Xin; Huang, Min-xin [Interdisciplinary Center for Theoretical Study,Department of Modern Physics, University of Science and Technology of China,96 Jinzhai Road, Hefei, Anhui 230026 (China)
2017-01-16
We establish the precise relation between the Nekrasov-Shatashvili (NS) quantization scheme and Grassi-Hatsuda-Mariño conjecture for the mirror curve of arbitrary toric Calabi-Yau threefold. For a mirror curve of genus g, the NS quantization scheme leads to g quantization conditions for the corresponding integrable system. The exact NS quantization conditions enjoy a self S-duality with respect to Planck constant ℏ and can be derived from the Lockhart-Vafa partition function of non-perturbative topological string. Based on a recent observation on the correspondence between spectral theory and topological string, another quantization scheme was proposed by Grassi-Hatsuda-Mariño, in which there is a single quantization condition and the spectra are encoded in the vanishing of a quantum Riemann theta function. We demonstrate that there actually exist at least g nonequivalent quantum Riemann theta functions and the intersections of their theta divisors coincide with the spectra determined by the exact NS quantization conditions. This highly nontrivial coincidence between the two quantization schemes requires infinite constraints among the refined Gopakumar-Vafa invariants. The equivalence for mirror curves of genus one has been verified for some local del Pezzo surfaces. In this paper, we generalize the correspondence to higher genus, and analyze in detail the resolved ℂ{sup 3}/ℤ{sub 5} orbifold and several SU(N) geometries. We also give a proof for some models at ℏ=2π/k.
Quantization and harmonic analysis on nilpotent Lie groups
International Nuclear Information System (INIS)
Wildberger, N.J.
1983-01-01
Weyl Quantization is a procedure for associating a function on which the canonical commutation relations are realized. If G is a simply-connected, connected nilpotent Lie group with Lie algebra g and dual g/sup */, it is shown how to inductively construct symplectic isomorphisms between every co-adjoint orbit O and the bundle in Hilbert Space for some m. Weyl Quantization can then be used to associate to each orbit O a unitary representation rho 0 of G, recovering the classification of the unitary dual by Kirillov. It is used to define a geometric Fourier transform, F : L 1 (G) → functions on g/sup */, and it is shown that the usual operator-valued Fourier transform can be recovered from F, characters are inverse Fourier transforms of invariant measures on orbits, and matrix coefficients are inverse Fourier transforms of non-invariant measures supported on orbits. Realizations of the representations rho 0 in subspaces of L 2 (O) are obtained.. Finally, the kernel function is computed for the upper triangular unipotent group and one other example
Quantization and representation theory of finite W algebras
International Nuclear Information System (INIS)
Boer, J. de; Tjin, T.
1993-01-01
In this paper we study the finitely generated algebras underlying W algebras. These so called 'finite W algebras' are constructed as Poisson reductions of Kirillov Poisson structures on simple Lie algebras. The inequivalent reductions are labeled by the inequivalent embeddings of sl 2 into the simple Lie algebra in question. For arbitrary embeddings a coordinate free formula for the reduced Poisson structure is derived. We also prove that any finite W algebra can be embedded into the Kirillov Poisson algebra of a (semi)simple Lie algebra (generalized Miura map). Furthermore it is shown that generalized finite Toda systems are reductions of a system describing a free particle moving on a group manifold and that they have finite W symmetry. In the second part we BRST quantize the finite W algebras. The BRST cohomoloy is calculated using a spectral sequence (which is different from the one used by Feigin and Frenkel). This allows us to quantize all finite W algebras in one stroke. Examples are given. In the last part of the paper we study the representation theory of finite W algebras. It is shown, using a quantum inversion of the generalized Miura transformation, that the representations of finite W algebras can be constructed from the representations of a certain Lie subalgebra of the original simple Lie algebra. As a byproduct of this we are able to construct the Fock realizations of arbitrary finite W algebras. (orig.)
q-bosons and the q-analogue quantized field
International Nuclear Information System (INIS)
Nelson, C.A.
1994-01-01
The q-analogue coherent states |z > q are used to identify physical signatures for the presence of a q-analogue quantized radiation field in the | > q classical limit where |z| is large. In this quantum-optics-like limit, the fractional uncertainties of most physical quantities (momentum, position, amplitude, phase) which characterize the quantum field are O(1). They only vanish as O(1/|z|) when q = 1. However, for the number operator, N, and the N-Hamiltonian for a free q-boson gas, H N = ℎω(N + 1/2), the fractional uncertainties do still approach zero. A signature for q-boson counting statistics is that (ΔN) 2 / → 0 as |z| → ∞. Except for its O(1) fractional uncertainty, the q-generalization of the Hermitian phase operator of Pegg and Barnett, φ q , still exhibits normal classical behavior. The standard number-phase uncertainty-relation, ΔN Δφ q = 1/2, and the approximate commutation relation, [N,φ q ] = i, still hold for the single-mode q-analogue quantized field. So, N and φ q are almost canonically conjugate operators in the |z > q classical limit. The |z > q CS's minimize this uncertainty relation for moderate |z| 2
Minimizing embedding impact in steganography using trellis-coded quantization
Filler, Tomáš; Judas, Jan; Fridrich, Jessica
2010-01-01
In this paper, we propose a practical approach to minimizing embedding impact in steganography based on syndrome coding and trellis-coded quantization and contrast its performance with bounds derived from appropriate rate-distortion bounds. We assume that each cover element can be assigned a positive scalar expressing the impact of making an embedding change at that element (single-letter distortion). The problem is to embed a given payload with minimal possible average embedding impact. This task, which can be viewed as a generalization of matrix embedding or writing on wet paper, has been approached using heuristic and suboptimal tools in the past. Here, we propose a fast and very versatile solution to this problem that can theoretically achieve performance arbitrarily close to the bound. It is based on syndrome coding using linear convolutional codes with the optimal binary quantizer implemented using the Viterbi algorithm run in the dual domain. The complexity and memory requirements of the embedding algorithm are linear w.r.t. the number of cover elements. For practitioners, we include detailed algorithms for finding good codes and their implementation. Finally, we report extensive experimental results for a large set of relative payloads and for different distortion profiles, including the wet paper channel.
Quantized Average Consensus on Gossip Digraphs with Reduced Computation
Cai, Kai; Ishii, Hideaki
The authors have recently proposed a class of randomized gossip algorithms which solve the distributed averaging problem on directed graphs, with the constraint that each node has an integer-valued state. The essence of this algorithm is to maintain local records, called “surplus”, of individual state updates, thereby achieving quantized average consensus even though the state sum of all nodes is not preserved. In this paper we study a modified version of this algorithm, whose feature is primarily in reducing both computation and communication effort. Concretely, each node needs to update fewer local variables, and can transmit surplus by requiring only one bit. Under this modified algorithm we prove that reaching the average is ensured for arbitrary strongly connected graphs. The condition of arbitrary strong connection is less restrictive than those known in the literature for either real-valued or quantized states; in particular, it does not require the special structure on the network called balanced. Finally, we provide numerical examples to illustrate the convergence result, with emphasis on convergence time analysis.
Topos quantum theory on quantization-induced sheaves
International Nuclear Information System (INIS)
Nakayama, Kunji
2014-01-01
In this paper, we construct a sheaf-based topos quantum theory. It is well known that a topos quantum theory can be constructed on the topos of presheaves on the category of commutative von Neumann algebras of bounded operators on a Hilbert space. Also, it is already known that quantization naturally induces a Lawvere-Tierney topology on the presheaf topos. We show that a topos quantum theory akin to the presheaf-based one can be constructed on sheaves defined by the quantization-induced Lawvere-Tierney topology. That is, starting from the spectral sheaf as a state space of a given quantum system, we construct sheaf-based expressions of physical propositions and truth objects, and thereby give a method of truth-value assignment to the propositions. Furthermore, we clarify the relationship to the presheaf-based quantum theory. We give translation rules between the sheaf-based ingredients and the corresponding presheaf-based ones. The translation rules have “coarse-graining” effects on the spaces of the presheaf-based ingredients; a lot of different proposition presheaves, truth presheaves, and presheaf-based truth-values are translated to a proposition sheaf, a truth sheaf, and a sheaf-based truth-value, respectively. We examine the extent of the coarse-graining made by translation
Collective quantization of three-flavored Skyrmions reexamined
International Nuclear Information System (INIS)
Cherman, Aleksey; Cohen, Thomas D.; Dulaney, Timothy R.; Lynch, Erin M.
2005-01-01
A self-consistent large N c approach is developed for the collective quantization of SU(3) flavor hedgehog solitons, such as the Skyrmion. The key to this analysis is the determination of all of the zero-modes associated with small fluctuations around the hedgehog. These are used in the conventional way to construct collective coordinates. This approach differs from previous work in that it does not implicitly assume that each static zero-mode is associated with a dynamical zero-mode. It is demonstrated explicitly in the context of the Skyrmion that there are fewer dynamical zero-modes than static ones due to the Witten-Wess-Zumino term in the action. Group-theoretic methods are employed to identify the physical states resulting from canonical quantization of the collectively rotating soliton. The collective states fall into representations of SU(3) flavor labeled by (p,q) and are given by (2J,(Nc/2)-J) where J=(1/2),(3/2),··· is the spin of the collective state. States with strangeness S>0 do not arise as collective states from this procedure; thus the θ + (pentaquark) resonance does not arise as a collective excitation in models of this type
Zero modes in discretized light-front quantization
International Nuclear Information System (INIS)
Martinovic, E.
1997-01-01
The current understanding of the role of bosonic zero modes in field-theoretical models quantized at the equal light-front time is reviewed. After a brief discussion of the main features of the light-front field theories - in particular the simplicity of the physical vacuum - the light-front canonical formalism for the quantum electrodynamics and the Yukawa model is sketched. The zero mode of Maskawa and Yamawaki is reviewed. Reasons for the appearance of the constrained and/or dynamical zero modes are explained along with the subtleties of the gauge fixing in presence of boundary conditions. Perturbative treatment of the corresponding constraint equations in the Yukawa model and quantum electrodynamics (3+1) is outlined. The next topic is the manifestation of the symmetry breaking in the light-front field theory. A pattern of multiple solutions to the zero-mode constraint equations replacing physical picture of multiple vacua of the conventionally quantized field theories is illustrated on an example of 2-dimensional theory. The importance of a (regularized) constrained zero mode of the pion field for the consistency of the Nambu-Goldstone phase of the discretized light-front linear a/model is demonstrated. Finally, a non-trivial physical vacuum based on the dynamical zero mode is constructed for the two-dimensional light-front quantum electrodynamics. (authors)
BFV-BRST quantization of 2D supergravity
International Nuclear Information System (INIS)
Fujiwara, T.; Igarashi, Y.; Kuriki, R.; Tabei, T.
1995-02-01
Two-dimensional supergravity theory is quantized as an anomalous gauge theory. In the Batalin-Fradkin (BF) formalism, the anomaly-canceling super-Liouville fields are introduced to identify the original second-class constrained system with a gauge-fixed version of a first-class system. The BFV-BRST quantization applies to formulate the theory in the most general class of gauges. A local effective action constructed in the configuration space contains two super-Liouville actions; one is a noncovariant but local functional written only in terms of 2D supergravity fields, and the other contains the super-Liouville fields canceling the super-Weyl anomaly. Auxiliary fields for the Liouville and the gravity super-multiplets are introduced to make the BRST algebra close off-shell. Inclusion of them turns out to be essentially important especially in the super-lightcone gauge-fixing, where the super-curvature equations (δ - 3 g ++ =δ - 2 χ ++ =0) are obtained as a result of BRST invariance of the theory. Our approach reveals the origin of the OSp (1,2) current algebra symmetry in a transparent manner. (author)
Noncanonical quantization of two particles interacting via a harmonic potential
International Nuclear Information System (INIS)
Palev, T.D.
1981-01-01
Following the ideas of Wigner a non-canonical quantization of a system of two non-relativistic point particles, interacting via a harmonic potential is studied. The center-of-mass phase-space variables are quantized in a canonical way, whereas the internal momentum and the coordinates are assumed to be operators, generating finite-dimensional representations of the Lie superalgebra A(0, 2). It turns out that the operators of the internal Hamiltonian, the relative distance, the internal momentum and the orbital momentum commute with each other. The spectrum of these operators is finite. In particular the distance between the particles is preserved in time and can have four different values so that the particles are confined. Every coordinate operator can be diagonalized, however, the position of the particles cannot be localized, since the operators of the Cartesian cooordinates do not commute. The angular momentum of the system can be either zero or one (in units h/2π/2) [ru
A quantized microwave quadrupole insulator with topologically protected corner states
Peterson, Christopher W.; Benalcazar, Wladimir A.; Hughes, Taylor L.; Bahl, Gaurav
2018-03-01
The theory of electric polarization in crystals defines the dipole moment of an insulator in terms of a Berry phase (geometric phase) associated with its electronic ground state. This concept not only solves the long-standing puzzle of how to calculate dipole moments in crystals, but also explains topological band structures in insulators and superconductors, including the quantum anomalous Hall insulator and the quantum spin Hall insulator, as well as quantized adiabatic pumping processes. A recent theoretical study has extended the Berry phase framework to also account for higher electric multipole moments, revealing the existence of higher-order topological phases that have not previously been observed. Here we demonstrate experimentally a member of this predicted class of materials—a quantized quadrupole topological insulator—produced using a gigahertz-frequency reconfigurable microwave circuit. We confirm the non-trivial topological phase using spectroscopic measurements and by identifying corner states that result from the bulk topology. In addition, we test the critical prediction that these corner states are protected by the topology of the bulk, and are not due to surface artefacts, by deforming the edges of the crystal lattice from the topological to the trivial regime. Our results provide conclusive evidence of a unique form of robustness against disorder and deformation, which is characteristic of higher-order topological insulators.