WorldWideScience

Sample records for backbone dihedral angles

  1. Using Excel To Study The Relation Between Protein Dihedral Angle Omega And Backbone Length

    Science.gov (United States)

    Shew, Christopher; Evans, Samari; Tao, Xiuping

    How to involve the uninitiated undergraduate students in computational biophysics research? We made use of Microsoft Excel to carry out calculations of bond lengths, bond angles and dihedral angles of proteins. Specifically, we studied protein backbone dihedral angle omega by examining how its distribution varies with the length of the backbone length. It turns out Excel is a respectable tool for this task. An ordinary current-day desktop or laptop can handle the calculations for midsized proteins in just seconds. Care has to be taken to enter the formulas for the spreadsheet column after column to minimize the computing load. Supported in part by NSF Grant #1238795.

  2. Optimization of Protein Backbone Dihedral Angles by Means of Hamiltonian Reweighting.

    Science.gov (United States)

    Margreitter, Christian; Oostenbrink, Chris

    2016-09-26

    Molecular dynamics simulations depend critically on the accuracy of the underlying force fields in properly representing biomolecules. Hence, it is crucial to validate the force-field parameter sets in this respect. In the context of the GROMOS force field, this is usually achieved by comparing simulation data to experimental observables for small molecules. In this study, we develop new amino acid backbone dihedral angle potential energy parameters based on the widely used 54A7 parameter set by matching to experimental J values and secondary structure propensity scales. In order to find the most appropriate backbone parameters, close to 100 000 different combinations of parameters have been screened. However, since the sheer number of combinations considered prohibits actual molecular dynamics simulations for each of them, we instead predicted the values for every combination using Hamiltonian reweighting. While the original 54A7 parameter set fails to reproduce the experimental data, we are able to provide parameters that match significantly better. However, to ensure applicability in the context of larger peptides and full proteins, further studies have to be undertaken.

  3. Hamiltonian replica-exchange simulations with adaptive biasing of peptide backbone and side chain dihedral angles.

    Science.gov (United States)

    Ostermeir, Katja; Zacharias, Martin

    2014-01-15

    A Hamiltonian Replica-Exchange Molecular Dynamics (REMD) simulation method has been developed that employs a two-dimensional backbone and one-dimensional side chain biasing potential specifically to promote conformational transitions in peptides. To exploit the replica framework optimally, the level of the biasing potential in each replica was appropriately adapted during the simulations. This resulted in both high exchange rates between neighboring replicas and improved occupancy/flow of all conformers in each replica. The performance of the approach was tested on several peptide and protein systems and compared with regular MD simulations and previous REMD studies. Improved sampling of relevant conformational states was observed for unrestrained protein and peptide folding simulations as well as for refinement of a loop structure with restricted mobility of loop flanking protein regions.

  4. Disequilibrium dihedral angles in dolerite sills

    Science.gov (United States)

    Holness, Marian B.; Richardson, Chris; Helz, Rosalind T.

    2012-01-01

    The geometry of clinopyroxene-plagioclase-plagioclase junctions in mafic rocks, measured by the median dihedral angle Θcpp, is created during solidification. In the solidifying Kilauea Iki (Hawaii) lava lake, the wider junctions between plagioclase grains are the first to be filled by pyroxene, followed by the narrower junctions. The final Θcpp, attained when all clinopyroxene-plagioclase-plagioclase junctions are formed, is 78° in the upper crust of the lake, and 85° in the lower solidification front. Θcpp in the 3.5-m-thick Traigh Bhàn na Sgùrra sill (Inner Hebrides) is everywhere 78°. In the Whin Sill (northern England, 38 m thick) and the Portal Peak sill (Antarctica, 129 m thick), Θcpp varies symmetrically, with the lowest values at the margins. The 266-m-thick Basement Sill (Antarctica) has asymmetric variation of Θcpp, attributed to a complex filling history. The chilled margins of the Basement Sill are partially texturally equilibrated, with high Θcpp. The plagioclase grain size in the two widest sills varies asymmetrically, with the coarsest rocks found in the upper third. Both Θcpp and average grain size are functions of model crystallization times. Θcpp increases from 78° to a maximum of ∼100° as the crystallization time increases from 1 to 500 yr. Because the use of grain size as a measure of crystallization time is dependent on an estimate of crystal growth rates, dihedral angles provide a more direct proxy for cooling rates in dolerites.

  5. Measurement of dihedral angles by scanning electron microscopy.

    Science.gov (United States)

    Achutaramayya, G.; Scott, W. D.

    1973-01-01

    The extension of Hoover's (1971) technique to the case of dihedral-angle measurement is described. Dihedral angles are often determined by interferometry on thermally grooved grain boundaries to obtain information on relative interfacial energies. In the technique considered the measured angles approach the true angles as the tilt angle approaches 90 deg. It is pointed out that the scanning electron microscopy method provides a means of seeing the real root of a groove at a lateral magnification which is higher than that obtainable with interferometry.

  6. Dihedral angle preferences of DNA and RNA binding amino acid residues in proteins.

    Science.gov (United States)

    Ponnuraj, Karthe; Saravanan, Konda Mani

    2017-04-01

    A protein can interact with DNA or RNA molecules to perform various cellular processes. Identifying or analyzing DNA/RNA binding site amino acid residues is important to understand molecular recognition process. It is quite possible to accurately model DNA/RNA binding amino acid residues in experimental protein-DNA/RNA complex by using the electron density map whereas, locating/modeling the binding site amino acid residues in the predicted three dimensional structures of DNA/RNA binding proteins is still a difficult task. Considering the above facts, in the present work, we have carried out a comprehensive analysis of dihedral angle preferences of DNA and RNA binding site amino acid residues by using a classical Ramachandran map. We have computed backbone dihedral angles of non-DNA/RNA binding residues and used as control dataset to make a comparative study. The dihedral angle preference of DNA and RNA binding site residues of twenty amino acid type is presented. Our analysis clearly revealed that the dihedral angles (φ, ψ) of DNA/RNA binding amino acid residues prefer to occupy (-89° to -60°, -59° to -30°) bins. The results presented in this paper will help to model/locate DNA/RNA binding amino acid residues with better accuracy.

  7. Decoding low dihedral angles in gabbroic layered intrusions

    Science.gov (United States)

    Holness, M. B.; Humphreys, M.; Veksler, I. V.

    2010-12-01

    Texturally equilibrated rocks are granular with a unimodal grain size, smoothly curved grain boundaries, and angles at three-grain junctions of 110-140°. Gabbros are not texturally equilibrated: primocrysts commonly have planar faces whereas later-formed phases fill in the interstitial spaces. Augite-plagioclase-plagioclase dihedral angles (Θcpp) rarely attain the equilibrium value in gabbros and the population of disequilibrium angles preserves otherwise inaccessible information about rock history. The Θcpp population varies significantly between different basaltic bodies. In a rapidly cooled dolerite Θcpp has a low median (60-70°) and a high standard deviation (20-25°). The plagioclase-augite grain boundaries are generally planar. In more slowly cooled gabbros in layered intrusions, the angle populations have a higher median (80-110°) with a low standard deviation (10-15°). The plagioclase-augite grain boundaries are generally planar far from the triple junction, but curve within 10 microns of the junction. This curvature is commonly asymmetric. The angle population in solidified gabbros infiltrated by low-temperature melts is similar to that in dolerites, although the low angles are associated with cuspate interstitial grains. The dihedral angle is a function of both the original solidification process and subsequent high-temperature (melt-absent) grain boundary migration. Infilling of a melt pocket by overgrowth of the bounding solid phases necessitates supersaturation, and this is easier to attain for planar faces, resulting in inhibition of augite growth into pores bounded by planar plagioclase grains and an asymmetry of the initial augite-plag-plag junction. If the solidified gabbro is kept sufficiently hot these initial junction geometries can change during textural equilibration. In the Skaergaard, Rum and Bushveld intrusions, the median Θcpp varies with liquidus assemblage, increasing step-wise on the addition of a new liquidus phase. Locally

  8. Predicting the side-chain dihedral angle distributions of nonpolar, aromatic, and polar amino acids using hard sphere models.

    Science.gov (United States)

    Zhou, Alice Qinhua; O'Hern, Corey S; Regan, Lynne

    2014-10-01

    The side-chain dihedral angle distributions of all amino acids have been measured from myriad high-resolution protein crystal structures. However, we do not yet know the dominant interactions that determine these distributions. Here, we explore to what extent the defining features of the side-chain dihedral angle distributions of different amino acids can be captured by a simple physical model. We find that a hard-sphere model for a dipeptide mimetic that includes only steric interactions plus stereochemical constraints is able to recapitulate the key features of the back-bone dependent observed amino acid side-chain dihedral angle distributions of Ser, Cys, Thr, Val, Ile, Leu, Phe, Tyr, and Trp. We find that for certain amino acids, performing the calculations with the amino acid of interest in the central position of a short α-helical segment improves the match between the predicted and observed distributions. We also identify the atomic interactions that give rise to the differences between the predicted distributions for the hard-sphere model of the dipeptide and that of the α-helical segment. Finally, we point out a case where the hard-sphere plus stereochemical constraint model is insufficient to recapitulate the observed side-chain dihedral angle distribution, namely the distribution P(χ₃) for Met.

  9. Asymmetric dihedral angle offsets for large-size lunar laser ranging retroreflectors

    Science.gov (United States)

    Otsubo, Toshimichi; Kunimori, Hiroo; Noda, Hirotomo; Hanada, Hideo; Araki, Hiroshi; Katayama, Masato

    2011-08-01

    The distribution of two-dimensional velocity aberration is off-centered by 5 to 6 microradians in lunar laser ranging, due to the stable measurement geometry in the motion of the Earth and the Moon. The optical responses of hollow-type retroreflectors are investigated through numerical simulations, especially focusing on large-size, single-reflector targets that can ultimately minimize the systematic error in future lunar laser ranging. An asymmetric dihedral angle offset, i.e. setting unequal angles between the three back faces, is found to be effective for retroreflectors that are larger than 100 mm in diameter. Our numerical simulation results reveal that the optimized return energy increases approximately 3.5 times more than symmetric dihedral angle cases, and the optimized dihedral angle offsets are 0.65-0.8 arcseconds for one angle, and zeroes for the other two angles.

  10. Predicting dihedral angle probability distributions for protein coil residues from primary sequence using neural networks

    DEFF Research Database (Denmark)

    Helles, Glennie; Fonseca, Rasmus

    2009-01-01

    Predicting the three-dimensional structure of a protein from its amino acid sequence is currently one of the most challenging problems in bioinformatics. The internal structure of helices and sheets is highly recurrent and help reduce the search space significantly. However, random coil segments...... make up nearly 40\\% of proteins, and they do not have any apparent recurrent patterns which complicates overall prediction accuracy of protein structure prediction methods. Luckily, previous work has indicated that coil segments are in fact not completely random in structure and flanking residues do...... seem to have a significant influence on the dihedral angles adopted by the individual amino acids in coil segments. In this work we attempt to predict a probability distribution of these dihedral angles based on the flanking residues. While attempts to predict dihedral angles of coil segments have been...

  11. Dihedral angle of carbonatite melts in mantle residue near the upper mantle and transition zone

    Science.gov (United States)

    Ghosh, S. K.; Rohrbach, A.; Schmidt, M. W.

    2015-12-01

    Carbonate melts are thought to be ideal metasomatic agents in the deep upper mantle (Green & Wallace, 1988) and these melts are low in viscosities (10-1-10-3 Pa·s) compared to primitive basalt (101-102 Pa·s), furthermore the ability to form an interconnected grain-edge melt network at low melt fractions (3 GPa (Dasgupta et al. 2006, Ghosh et al., 2009), dissolve a number of geochemically incompatible elements much better than silicate melts (Blundy and Dalton, 2000). Previous studies of carbonate melt dihedral angles in olivine-dominated matrices yielded 25-30oat 1-3 GPa, relatively independent of melt composition (Watson et al., 1990) and temperature (Hunter and McKenzie, 1989). Dihedral angles of carbonate melts in contact with deep mantle silicate phases (e.g. garnet, wadsleyite, and ringwoodite) which constitute more than 70 % of the deep upper mantle and transition zone have not been studied yet. We have performed multi-anvil experiments on carbonate-bearing peridotites with 5.0 wt% CO2 from 13.5 to 20 GPa 1550 oC to investigate the dihedral angle of magnesio-carbonatite melts in equilibrium with garnet, olivine (and its high-pressure polymorphs), and clinoenstatite. The dihedral angle of carbonate melts in the deep upper mantle and transition zone is ~30° for majorite garnet and olivine (and its polymorphs) dominated matrices. It does not change with increasing pressure in the range 13.5-20 GPa. Our results suggest that very low melt fractions of carbonatite melt forming in the deep upper mantle and transition zone are interconnected at melt fractions less than 0.01. Consistent with geophysical observations, this could possibly explain low velocity regions in the deep mantle and transition zone.

  12. Studies on the Dihedral Angle and Torsional Barriers for 4,4′-Bipyridine

    Institute of Scientific and Technical Information of China (English)

    CHEN Wen-kai; LU Chun-hai; XU Jiao; LI Jun-qian

    2004-01-01

    Using the Hartree-Fock, MP2, and the B3LYP, BLYP, mPW1PW91 density functional methods, each combined with the 6-31G(d), 6-311G(d), 6-311+(d), 6-311++G(d, p) cc-pvdz and cc-pvtz basis sets, the equilibrium geometry of 4,4′ -bipyridine was optimized and the internal rotational potential barriers heights at 0° (AE0), 90° (AE90) were obtained. For the best basis set (cc-pvtz) , the predicted dihedral angle e ranges from 37.0 to 37.8° for all methods except the Hartree-Fock method (43.7). This agreed with the estimation from the electron diffraction experimental measurement (37.2°). The inter-ring C-C distance, ranging from 147.2 to 148.7 pm ( 147 pm experimental), is intermediate between the typical aromatic C-C bond and the aliphatic C-C bond. The results show that the inter-ring o-conjugation between two pyridyl rings stabilizes the co-planar conformer and the steric repulsion between the ortho neighboring hydrogens belonging to different rings favors the non-planar orthogonal conformer.

  13. A simple molecular mechanics integrator in mixed rigid body and dihedral angle space

    Energy Technology Data Exchange (ETDEWEB)

    Vitalis, Andreas, E-mail: a.vitalis@bioc.uzh.ch [Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich (Switzerland); Pappu, Rohit V. [Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130 (United States)

    2014-07-21

    We propose a numerical scheme to integrate equations of motion in a mixed space of rigid-body and dihedral angle coordinates. The focus of the presentation is biomolecular systems and the framework is applicable to polymers with tree-like topology. By approximating the effective mass matrix as diagonal and lumping all bias torques into the time dependencies of the diagonal elements, we take advantage of the formal decoupling of individual equations of motion. We impose energy conservation independently for every degree of freedom and this is used to derive a numerical integration scheme. The cost of all auxiliary operations is linear in the number of atoms. By coupling the scheme to one of two popular thermostats, we extend the method to sample constant temperature ensembles. We demonstrate that the integrator of choice yields satisfactory stability and is free of mass-metric tensor artifacts, which is expected by construction of the algorithm. Two fundamentally different systems, viz., liquid water and an α-helical peptide in a continuum solvent are used to establish the applicability of our method to a wide range of problems. The resultant constant temperature ensembles are shown to be thermodynamically accurate. The latter relies on detailed, quantitative comparisons to data from reference sampling schemes operating on exactly the same sets of degrees of freedom.

  14. Effect of Dihedral Angle and Porosity on Percolating-Sealing Capacity of Texturally Equilibrated Rock Salt

    Science.gov (United States)

    Ghanbarzadeh, S.; Hesse, M. A.; Prodanovic, M.; Gardner, J. E.

    2013-12-01

    Salt deposits in sedimentary basins have long been considered to be a seal against fluid penetration. However, experimental, theoretical and field evidence suggests brine (and oil) can wet salt crystal surfaces at higher pressures and temperatures, which can form a percolating network. This network may act as flow conduits even at low porosities. The aim of this work is to investigate the effects of dihedral angle and porosity on the formation of percolating paths in different salt network lattices. However, previous studies considered only simple homogeneous and isotropic geometries. This work extends the analysis to realistic salt textures by presenting a novel numerical method to describe the texturally equilibrated pore shapes in polycrystalline rock salt and brine systems. First, a theoretical interfacial topology was formulated to minimize the interfacial surface between brine and salt. Then, the resulting nonlinear system of ordinary differential equations was solved using the Newton-Raphson method. Results show that the formation of connected fluid channels is more probable in lower dihedral angles and at higher porosities. The connectivity of the pore network is hysteretic, because the connection and disconnection at the pore throats for processes with increasing or decreasing porosities occur at different porosities. In porous media with anisotropic solids, pores initially connect in the direction of the shorter crystal axis and only at much higher porosities in the other directions. Consequently, even an infinitesimal elongation of the crystal shape can give rise to very strong anisotropy in permeability of the pore network. Also, fluid flow was simulated in the resulting pore network to calculate permeability, capillary entry pressure and velocity field. This work enabled us to investigate the opening of pore space and sealing capacity of rock salts. The obtained pore geometries determine a wide range of petrophysical properties such as permeability and

  15. Disequilibrium dihedral angles in layered intrusions: the microstructural record of fractionation

    Science.gov (United States)

    Holness, Marian; Namur, Olivier; Cawthorn, Grant

    2013-04-01

    The dihedral angle formed at junctions between two plagioclase grains and a grain of augite is only rarely in textural equilibrium in gabbros from km-scale crustal layered intrusions. The median of a population of these disequilibrium angles, Θcpp, varies systematically within individual layered intrusions, remaining constant over large stretches of stratigraphy with significant increases or decreases associated with the addition or reduction respectively of the number of phases on the liquidus of the bulk magma. The step-wise changes in Θcpp are present in Upper Zone of the Bushveld Complex, the Megacyclic Unit I of the Sept Iles Intrusion, and the Layered Series of the Skaergaard Intrusion. The plagioclase-bearing cumulates of Rum have a bimodal distribution of Θcpp, dependent on whether the cumulus assemblage includes clinopyroxene. The presence of the step-wise changes is independent of the order of arrival of cumulus phases and of the composition of either the cumulus phases or the interstitial liquid inferred to be present in the crystal mush. Step-wise changes in the rate of change in enthalpy with temperature (ΔH) of the cooling and crystallizing magma correspond to the observed variation of Θcpp, with increases of both ΔH and Θcpp associated with the addition of another liquidus phase, and decreases of both associated with the removal of a liquidus phase. The replacement of one phase by another (e.g. olivine ⇔ orthpyroxene) has little effect on ΔH and no discernible effect on Θcpp. An increase of ΔH is manifest by an increase in the fraction of the total enthalpy budget that is the latent heat of crystallization (the fractional latent heat). It also results in an increase in the amount crystallized in each incremental temperature drop (the crystal productivity). An increased fractional latent heat and crystal productivity result in an increased rate of plagioclase growth compared to that of augite during the final stages of solidification

  16. Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning.

    Science.gov (United States)

    Heffernan, Rhys; Paliwal, Kuldip; Lyons, James; Dehzangi, Abdollah; Sharma, Alok; Wang, Jihua; Sattar, Abdul; Yang, Yuedong; Zhou, Yaoqi

    2015-01-01

    Direct prediction of protein structure from sequence is a challenging problem. An effective approach is to break it up into independent sub-problems. These sub-problems such as prediction of protein secondary structure can then be solved independently. In a previous study, we found that an iterative use of predicted secondary structure and backbone torsion angles can further improve secondary structure and torsion angle prediction. In this study, we expand the iterative features to include solvent accessible surface area and backbone angles and dihedrals based on Cα atoms. By using a deep learning neural network in three iterations, we achieved 82% accuracy for secondary structure prediction, 0.76 for the correlation coefficient between predicted and actual solvent accessible surface area, 19° and 30° for mean absolute errors of backbone φ and ψ angles, respectively, and 8° and 32° for mean absolute errors of Cα-based θ and τ angles, respectively, for an independent test dataset of 1199 proteins. The accuracy of the method is slightly lower for 72 CASP 11 targets but much higher than those of model structures from current state-of-the-art techniques. This suggests the potentially beneficial use of these predicted properties for model assessment and ranking.

  17. Assessing protein conformational sampling methods based on bivariate lag-distributions of backbone angles

    KAUST Repository

    Maadooliat, Mehdi

    2012-08-27

    Despite considerable progress in the past decades, protein structure prediction remains one of the major unsolved problems in computational biology. Angular-sampling-based methods have been extensively studied recently due to their ability to capture the continuous conformational space of protein structures. The literature has focused on using a variety of parametric models of the sequential dependencies between angle pairs along the protein chains. In this article, we present a thorough review of angular-sampling-based methods by assessing three main questions: What is the best distribution type to model the protein angles? What is a reasonable number of components in a mixture model that should be considered to accurately parameterize the joint distribution of the angles? and What is the order of the local sequence-structure dependency that should be considered by a prediction method? We assess the model fits for different methods using bivariate lag-distributions of the dihedral/planar angles. Moreover, the main information across the lags can be extracted using a technique called Lag singular value decomposition (LagSVD), which considers the joint distribution of the dihedral/planar angles over different lags using a nonparametric approach and monitors the behavior of the lag-distribution of the angles using singular value decomposition. As a result, we developed graphical tools and numerical measurements to compare and evaluate the performance of different model fits. Furthermore, we developed a web-tool (http://www.stat.tamu. edu/~madoliat/LagSVD) that can be used to produce informative animations. © The Author 2012. Published by Oxford University Press.

  18. Quantitative residue-specific protein backbone torsion angle dynamics from concerted measurement of 3J couplings.

    Science.gov (United States)

    Lee, Jung Ho; Li, Fang; Grishaev, Alexander; Bax, Ad

    2015-02-04

    Three-bond (3)J(C'C') and (3)J(HNHα) couplings in peptides and proteins are functions of the intervening backbone torsion angle ϕ. In well-ordered regions, (3)J(HNHα) is tightly correlated with (3)J(C'C'), but the presence of large ϕ angle fluctuations differentially affects the two types of couplings. Assuming the ϕ angles follow a Gaussian distribution, the width of this distribution can be extracted from (3)J(C'C') and (3)J(HNHα), as demonstrated for the folded proteins ubiquitin and GB3. In intrinsically disordered proteins, slow transverse relaxation permits measurement of (3)J(C'C') and (3)J(HNH) couplings at very high precision, and impact of factors other than the intervening torsion angle on (3)J will be minimal, making these couplings exceptionally valuable structural reporters. Analysis of α-synuclein yields rather homogeneous widths of 69 ± 6° for the ϕ angle distributions and (3)J(C'C') values that agree well with those of a recent maximum entropy analysis of chemical shifts, J couplings, and (1)H-(1)H NOEs. Data are consistent with a modest (≤30%) population of the polyproline II region.

  19. A Multi-Objective Approach for Protein Structure Prediction Based on an Energy Model and Backbone Angle Preferences.

    Science.gov (United States)

    Tsay, Jyh-Jong; Su, Shih-Chieh; Yu, Chin-Sheng

    2015-07-03

    Protein structure prediction (PSP) is concerned with the prediction of protein tertiary structure from primary structure and is a challenging calculation problem. After decades of research effort, numerous solutions have been proposed for optimisation methods based on energy models. However, further investigation and improvement is still needed to increase the accuracy and similarity of structures. This study presents a novel backbone angle preference factor, which is one of the factors inducing protein folding. The proposed multiobjective optimisation approach simultaneously considers energy models and backbone angle preferences to solve the ab initio PSP. To prove the effectiveness of the multiobjective optimisation approach based on the energy models and backbone angle preferences, 75 amino acid sequences with lengths ranging from 22 to 88 amino acids were selected from the CB513 data set to be the benchmarks. The data sets were highly dissimilar, therefore indicating that they are meaningful. The experimental results showed that the root-mean-square deviation (RMSD) of the multiobjective optimization approach based on energy model and backbone angle preferences was superior to those of typical energy models, indicating that the proposed approach can facilitate the ab initio PSP.

  20. A Multi-Objective Approach for Protein Structure Prediction Based on an Energy Model and Backbone Angle Preferences

    Directory of Open Access Journals (Sweden)

    Jyh-Jong Tsay

    2015-07-01

    Full Text Available Protein structure prediction (PSP is concerned with the prediction of protein tertiary structure from primary structure and is a challenging calculation problem. After decades of research effort, numerous solutions have been proposed for optimisation methods based on energy models. However, further investigation and improvement is still needed to increase the accuracy and similarity of structures. This study presents a novel backbone angle preference factor, which is one of the factors inducing protein folding. The proposed multiobjective optimisation approach simultaneously considers energy models and backbone angle preferences to solve the ab initio PSP. To prove the effectiveness of the multiobjective optimisation approach based on the energy models and backbone angle preferences, 75 amino acid sequences with lengths ranging from 22 to 88 amino acids were selected from the CB513 data set to be the benchmarks. The data sets were highly dissimilar, therefore indicating that they are meaningful. The experimental results showed that the root-mean-square deviation (RMSD of the multiobjective optimization approach based on energy model and backbone angle preferences was superior to those of typical energy models, indicating that the proposed approach can facilitate the ab initio PSP.

  1. Structural dynamics of protein backbone {phi} angles: extended molecular dynamics simulations versus experimental {sup 3}J scalar couplings

    Energy Technology Data Exchange (ETDEWEB)

    Markwick, Phineus R. L. [CNRS/CEA/UJF, Protein Dynamics and Flexibility, Institut de Biologie Structurale Jean-Pierre Ebel UMR 5075 (France); Showalter, Scott A. [Florida State University, Department of Chemistry and Biochemistry, NHMFL (United States); Bouvignies, Guillaume [CNRS/CEA/UJF, Protein Dynamics and Flexibility, Institut de Biologie Structurale Jean-Pierre Ebel UMR 5075 (France); Brueschweiler, Rafael [Florida State University, Department of Chemistry and Biochemistry, NHMFL (United States)], E-mail: bruschweiler@magnet.fsu.edu; Blackledge, Martin [CNRS/CEA/UJF, Protein Dynamics and Flexibility, Institut de Biologie Structurale Jean-Pierre Ebel UMR 5075 (France)], E-mail: martin.blackledge@ibs.fr

    2009-09-15

    {sup 3}J scalar couplings report on the conformational averaging of backbone {phi} angles in peptides and proteins, and therefore represent a potentially powerful tool for studying the details of both structure and dynamics in solution. We have compared an extensive experimental dataset with J-couplings predicted from unrestrained molecular dynamics simulation using enhanced sampling available from accelerated molecular dynamics or using long timescale trajectories (200 ns). The dynamic fluctuations predicted to be present along the backbone, in agreement with residual dipolar coupling analysis, are compatible with the experimental {sup 3}J scalar couplings providing a slightly better reproduction of these experimental parameters than a high-resolution static structure.

  2. Dihedral flavor symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Alexander Simon

    2009-06-10

    This thesis deals with the possibility of describing the flavor sector of the Standard Model of Particle Physics (with neutrino masses), that is the fermion masses and mixing matrices, with a discrete, non-abelian flavor symmetry. In particular, mass independent textures are considered, where one or several of the mixing angles are determined by group theory alone and are independent of the fermion masses. To this end a systematic analysis of a large class of discrete symmetries, the dihedral groups, is analyzed. Mass independent textures originating from such symmetries are described and it is shown that such structures arise naturally from the minimization of scalar potentials, where the scalars are gauge singlet flavons transforming non-trivially only under the flavor group. Two models are constructed from this input, one describing leptons, based on the group D{sub 4}, the other describing quarks and employing the symmetry D{sub 14}. In the latter model it is the quark mixing matrix element V{sub ud} - basically the Cabibbo angle - which is at leading order predicted from group theory. Finally, discrete flavor groups are discussed as subgroups of a continuous gauge symmetry and it is shown that this implies that the original gauge symmetry is broken by fairly large representations. (orig.)

  3. Tuning cofactor redox potentials: the 2-methoxy dihedral angle generates a redox potential difference greater than 160 mV between the primary (QA) and secondary (QB) quinones of the photosynthetic reaction center

    Science.gov (United States)

    Taguchi, Alexander T.; Mattis, Aidas J.; O'Malley, Patrick J.; Dikanov, Sergei A.; Wraight, Colin A.

    2013-01-01

    Only quinones with a 2-methoxy group can act simultaneously as the primary (QA) and secondary (QB) electron acceptors in photosynthetic reaction centers from Rb. sphaeroides. 13C HYSCORE measurements of the 2-methoxy in the semiquinone states, SQA and SQB, were compared with QM calculations of the 13C couplings as a function of dihedral angle. X-ray structures support dihedral angle assignments corresponding to a redox potential gap (ΔEm) between QA and QB of ~180 mV. This is consistent with the failure of a ubiquinone analog lacking the 2-methoxy to function as QB in mutant reaction centers with a ΔEm ≈ 160–195 mV. PMID:24079813

  4. The determinants of bond angle variability in protein/peptide backbones: A comprehensive statistical/quantum mechanics analysis.

    Science.gov (United States)

    Improta, Roberto; Vitagliano, Luigi; Esposito, Luciana

    2015-11-01

    The elucidation of the mutual influence between peptide bond geometry and local conformation has important implications for protein structure refinement, validation, and prediction. To gain insights into the structural determinants and the energetic contributions associated with protein/peptide backbone plasticity, we here report an extensive analysis of the variability of the peptide bond angles by combining statistical analyses of protein structures and quantum mechanics calculations on small model peptide systems. Our analyses demonstrate that all the backbone bond angles strongly depend on the peptide conformation and unveil the existence of regular trends as function of ψ and/or φ. The excellent agreement of the quantum mechanics calculations with the statistical surveys of protein structures validates the computational scheme here employed and demonstrates that the valence geometry of protein/peptide backbone is primarily dictated by local interactions. Notably, for the first time we show that the position of the H(α) hydrogen atom, which is an important parameter in NMR structural studies, is also dependent on the local conformation. Most of the trends observed may be satisfactorily explained by invoking steric repulsive interactions; in some specific cases the valence bond variability is also influenced by hydrogen-bond like interactions. Moreover, we can provide a reliable estimate of the energies involved in the interplay between geometry and conformations.

  5. Importance of backbone angles versus amino acid configurations in peptide vibrational Raman optical activity spectra

    Science.gov (United States)

    Herrmann, Carmen; Ruud, Kenneth; Reiher, Markus

    2008-01-01

    In this work, we investigate whether the differential scattering of right- and left-circularly polarized light in peptide Raman optical activity spectra are uniquely dominated by the backbone conformation, or whether the configurations of the individual amino acid also play a significant role. This is achieved by calculating Raman optical activity spectra using density functional theory for four structurally related peptides with a common backbone conformation, but with different sequences of amino acid configurations. Furthermore, the ROA signals of the amide normal modes are decomposed into contributions from groups of individual atoms. It is found that the amino acid configuration has a considerable influence on the ROA peaks in the amide I, II, and III regions, although the local decomposition reveals that the side-chain atoms only contribute to those peaks directly in the case of the amide II vibrations. Furthermore, small changes in the amide normal modes may lead to large and irregular modifications in the ROA intensity differences, making it difficult to establish transferable ROA intensity differences even for structurally similar vibrations.

  6. On correlation between protein secondary structure, backbone bond angles, and side-chain orientations

    CERN Document Server

    Lundgren, Martin

    2012-01-01

    We investigate the fine structure of the sp3 hybridized covalent bond geometry that governs the tetrahedral architecture around the central C$_\\alpha$ carbon of a protein backbone, and for this we develop new visualization techniques to analyze high resolution X-ray structures in Protein Data Bank. We observe that there is a correlation between the deformations of the ideal tetrahedral symmetry and the local secondary structure of the protein. We propose a universal coarse grained energy function to describe the ensuing side-chain geometry in terms of the C$_\\beta$ carbon orientations. The energy function can model the side-chain geometry with a sub-atomic precision. As an example we construct the C$_\\alpha$-C$_\\beta$ structure of HP35 chicken villin headpiece. We obtain a configuration that deviates less than 0.4 \\.A in root-mean-square distance from the experimental X-ray structure.

  7. CACA-TOCSY with alternate {sup 13}C-{sup 12}C labeling: a {sup 13}C{sup {alpha}} direct detection experiment for mainchain resonance assignment, dihedral angle information, and amino acid type identification

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Koh [National Institute of Advanced Industrial Science and Technology (AIST), Biomedicinal Information Research Center (BIRC) (Japan); Frueh, Dominique P.; Sun, Zhen-Yu J.; Hiller, Sebastian; Wagner, Gerhard, E-mail: gerhard_wagner@hms.harvard.ed [Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology (United States)

    2010-05-15

    We present a {sup 13}C direct detection CACA-TOCSY experiment for samples with alternate {sup 13}C-{sup 12}C labeling. It provides inter-residue correlations between {sup 13}C{sup {alpha}} resonances of residue i and adjacent C{sup {alpha}s} at positions i - 1 and i + 1. Furthermore, longer mixing times yield correlations to C{sup {alpha}} nuclei separated by more than one residue. The experiment also provides C{sup {alpha}}-to-side chain correlations, some amino acid type identifications and estimates for {psi} dihedral angles. The power of the experiment derives from the alternate {sup 13}C-{sup 12}C labeling with [1,3-{sup 13}C] glycerol or [2-{sup 13}C] glycerol, which allows utilizing the small scalar {sup 3}J{sub CC} couplings that are masked by strong {sup 1}J{sub CC} couplings in uniformly {sup 13}C labeled samples.

  8. Improving the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins by guided-learning through a two-layer neural network.

    Science.gov (United States)

    Faraggi, Eshel; Xue, Bin; Zhou, Yaoqi

    2009-03-01

    This article attempts to increase the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins through improved learning. Most methods developed for improving the backpropagation algorithm of artificial neural networks are limited to small neural networks. Here, we introduce a guided-learning method suitable for networks of any size. The method employs a part of the weights for guiding and the other part for training and optimization. We demonstrate this technique by predicting residue solvent accessibility and real-value backbone torsion angles of proteins. In this application, the guiding factor is designed to satisfy the intuitive condition that for most residues, the contribution of a residue to the structural properties of another residue is smaller for greater separation in the protein-sequence distance between the two residues. We show that the guided-learning method makes a 2-4% reduction in 10-fold cross-validated mean absolute errors (MAE) for predicting residue solvent accessibility and backbone torsion angles, regardless of the size of database, the number of hidden layers and the size of input windows. This together with introduction of two-layer neural network with a bipolar activation function leads to a new method that has a MAE of 0.11 for residue solvent accessibility, 36 degrees for psi, and 22 degrees for phi. The method is available as a Real-SPINE 3.0 server in http://sparks.informatics.iupui.edu.

  9. A maximum entropy approach to the study of residue-specific backbone angle distributions in α-synuclein, an intrinsically disordered protein

    Science.gov (United States)

    Mantsyzov, Alexey B; Maltsev, Alexander S; Ying, Jinfa; Shen, Yang; Hummer, Gerhard; Bax, Ad

    2014-01-01

    α-Synuclein is an intrinsically disordered protein of 140 residues that switches to an α-helical conformation upon binding phospholipid membranes. We characterize its residue-specific backbone structure in free solution with a novel maximum entropy procedure that integrates an extensive set of NMR data. These data include intraresidue and sequential HN–Hα and HN–HN NOEs, values for 3JHNHα, 1JHαCα, 2JCαN, and 1JCαN, as well as chemical shifts of 15N, 13Cα, and 13C′ nuclei, which are sensitive to backbone torsion angles. Distributions of these torsion angles were identified that yield best agreement to the experimental data, while using an entropy term to minimize the deviation from statistical distributions seen in a large protein coil library. Results indicate that although at the individual residue level considerable deviations from the coil library distribution are seen, on average the fitted distributions agree fairly well with this library, yielding a moderate population (20–30%) of the PPII region and a somewhat higher population of the potentially aggregation-prone β region (20–40%) than seen in the database. A generally lower population of the αR region (10–20%) is found. Analysis of 1H–1H NOE data required consideration of the considerable backbone diffusion anisotropy of a disordered protein. PMID:24976112

  10. A maximum entropy approach to the study of residue-specific backbone angle distributions in α-synuclein, an intrinsically disordered protein.

    Science.gov (United States)

    Mantsyzov, Alexey B; Maltsev, Alexander S; Ying, Jinfa; Shen, Yang; Hummer, Gerhard; Bax, Ad

    2014-09-01

    α-Synuclein is an intrinsically disordered protein of 140 residues that switches to an α-helical conformation upon binding phospholipid membranes. We characterize its residue-specific backbone structure in free solution with a novel maximum entropy procedure that integrates an extensive set of NMR data. These data include intraresidue and sequential H(N) − H(α) and H(N) − H(N) NOEs, values for (3) JHNHα, (1) JHαCα, (2) JCαN, and (1) JCαN, as well as chemical shifts of (15)N, (13)C(α), and (13)C' nuclei, which are sensitive to backbone torsion angles. Distributions of these torsion angles were identified that yield best agreement to the experimental data, while using an entropy term to minimize the deviation from statistical distributions seen in a large protein coil library. Results indicate that although at the individual residue level considerable deviations from the coil library distribution are seen, on average the fitted distributions agree fairly well with this library, yielding a moderate population (20-30%) of the PPII region and a somewhat higher population of the potentially aggregation-prone β region (20-40%) than seen in the database. A generally lower population of the αR region (10-20%) is found. Analysis of (1)H − (1)H NOE data required consideration of the considerable backbone diffusion anisotropy of a disordered protein.

  11. MERA: a webserver for evaluating backbone torsion angle distributions in dynamic and disordered proteins from NMR data

    Energy Technology Data Exchange (ETDEWEB)

    Mantsyzov, Alexey B. [M.V. Lomonosov Moscow State University, Faculty of Fundamental Medicine (Russian Federation); Shen, Yang; Lee, Jung Ho [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States); Hummer, Gerhard [Max Planck Institute of Biophysics (Germany); Bax, Ad, E-mail: bax@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2015-09-15

    MERA (Maximum Entropy Ramachandran map Analysis from NMR data) is a new webserver that generates residue-by-residue Ramachandran map distributions for disordered proteins or disordered regions in proteins on the basis of experimental NMR parameters. As input data, the program currently utilizes up to 12 different parameters. These include three different types of short-range NOEs, three types of backbone chemical shifts ({sup 15}N, {sup 13}C{sup α}, and {sup 13}C′), six types of J couplings ({sup 3}J{sub HNHα}, {sup 3}J{sub C′C′}, {sup 3}J{sub C′Hα}, {sup 1}J{sub HαCα}, {sup 2}J{sub CαN} and {sup 1}J{sub CαN}), as well as the {sup 15}N-relaxation derived J(0) spectral density. The Ramachandran map distributions are reported in terms of populations of their 15° × 15° voxels, and an adjustable maximum entropy weight factor is available to ensure that the obtained distributions will not deviate more from a newly derived coil library distribution than required to account for the experimental data. MERA output includes the agreement between each input parameter and its distribution-derived value. As an application, we demonstrate performance of the program for several residues in the intrinsically disordered protein α-synuclein, as well as for several static and dynamic residues in the folded protein GB3.

  12. Dihedral influence on lateral-directional dynamic stability on large aspect ratio tailless flying wing aircraft

    Institute of Scientific and Technical Information of China (English)

    Song Lei; Yang Hua; Zhang Yang; Zhang Haoyu; Huang Jun

    2014-01-01

    The influence of dihedral layout on lateral-directional dynamic stability of the tailless flying wing aircraft is discussed in this paper. A tailless flying wing aircraft with a large aspect ratio is selected as the object of study, and the dihedral angle along the spanwise sections is divided into three segments. The influence of dihedral layouts is studied. Based on the stability derivatives cal-culated by the vortex lattice method code, the linearized small-disturbance equations of the lateral modes are used to determine the mode dynamic characteristics. By comparing 7056 configurations with different dihedral angle layouts, two groups of stability optimized dihedral layout concepts are created. Flight quality close to Level 2 requirements is achieved in these optimized concepts without any electric stability augmentation system.

  13. Reconstructing the free-energy landscape of Met-enkephalin using dihedral Principal Component Analysis and Well-tempered Metadynamics

    CERN Document Server

    Sicard, Francois

    2012-01-01

    Well-Tempered Metadynamics (WTmetaD) is an efficient method to enhance the reconstruction of the free-energy surface of proteins. WTmetaD guarantees a faster convergence in the long time limit in comparison with the standard metadynamics. It still suffers however from the same limitation, i.e. the non trivial choice of pertinent collective variables (CVs). To circumvent this problem, we couple WTmetaD with a set of CVs generated from a dihedral Principal Component Analysis (dPCA) on the Ramachadran dihedral angles describing the backbone structure of the protein. The dPCA provides a generic method to extract relevant CVs built from internal coordinates. We illustrate the robustness of this method in the case of the small and very diffusive Metenkephalin pentapeptide, and highlight a criterion to limit the number of CVs necessary to biased the metadynamics simulation. The free-energy landscape (FEL) of Met-enkephalin built on CVs generated from dPCA is found rugged compared with the FEL built on CVs extracted ...

  14. Computing symmetric colorings of the dihedral group

    Science.gov (United States)

    Zelenyuk, Yuliya

    2016-06-01

    A symmetry on a group G is a mapping G ∋ x ↦ gx-1 g ∈ G, where g ∈ G. A subset A ⊆ G is symmetric if it is invariant under some symmetry, that is, A = gA-1g. The notion of symmetry has interesting relations to enumerative combinatorics. A coloring is symmetric if χ(gx-1g) = χ(x) for some g ∈ G. We discuss an approach how to compute the number of symmetric r-colorings for any finite group. Using this approach we derive the formula for the number of symmetric r-colorings of the dihedral group D3.

  15. Dihedral-Based Segment Identification and Classification of Biopolymers II: Polynucleotides

    Science.gov (United States)

    2013-01-01

    In an accompanying paper (Nagy, G.; Oostenbrink, C. Dihedral-based segment identification and classification of biopolymers I: Proteins. J. Chem. Inf. Model. 2013, DOI: 10.1021/ci400541d), we introduce a new algorithm for structure classification of biopolymeric structures based on main-chain dihedral angles. The DISICL algorithm (short for DIhedral-based Segment Identification and CLassification) classifies segments of structures containing two central residues. Here, we introduce the DISICL library for polynucleotides, which is based on the dihedral angles ε, ζ, and χ for the two central residues of a three-nucleotide segment of a single strand. Seventeen distinct structural classes are defined for nucleotide structures, some of which—to our knowledge—were not described previously in other structure classification algorithms. In particular, DISICL also classifies noncanonical single-stranded structural elements. DISICL is applied to databases of DNA and RNA structures containing 80,000 and 180,000 segments, respectively. The classifications according to DISICL are compared to those of another popular classification scheme in terms of the amount of classified nucleotides, average occurrence and length of structural elements, and pairwise matches of the classifications. While the detailed classification of DISICL adds sensitivity to a structure analysis, it can be readily reduced to eight simplified classes providing a more general overview of the secondary structure in polynucleotides. PMID:24364355

  16. Dihedral-based segment identification and classification of biopolymers II: polynucleotides.

    Science.gov (United States)

    Nagy, Gabor; Oostenbrink, Chris

    2014-01-27

    In an accompanying paper (Nagy, G.; Oostenbrink, C. Dihedral-based segment identification and classification of biopolymers I: Proteins. J. Chem. Inf. Model. 2013, DOI: 10.1021/ci400541d), we introduce a new algorithm for structure classification of biopolymeric structures based on main-chain dihedral angles. The DISICL algorithm (short for DIhedral-based Segment Identification and CLassification) classifies segments of structures containing two central residues. Here, we introduce the DISICL library for polynucleotides, which is based on the dihedral angles ε, ζ, and χ for the two central residues of a three-nucleotide segment of a single strand. Seventeen distinct structural classes are defined for nucleotide structures, some of which--to our knowledge--were not described previously in other structure classification algorithms. In particular, DISICL also classifies noncanonical single-stranded structural elements. DISICL is applied to databases of DNA and RNA structures containing 80,000 and 180,000 segments, respectively. The classifications according to DISICL are compared to those of another popular classification scheme in terms of the amount of classified nucleotides, average occurrence and length of structural elements, and pairwise matches of the classifications. While the detailed classification of DISICL adds sensitivity to a structure analysis, it can be readily reduced to eight simplified classes providing a more general overview of the secondary structure in polynucleotides.

  17. Cross-Correlated Relaxation of Dipolar Coupling and Chemical-Shift Anisotropy in Magic-Angle Spinning R1ρ NMR Measurements: Application to Protein Backbone Dynamics Measurements.

    Science.gov (United States)

    Kurauskas, Vilius; Weber, Emmanuelle; Hessel, Audrey; Ayala, Isabel; Marion, Dominique; Schanda, Paul

    2016-09-01

    Transverse relaxation rate measurements in magic-angle spinning solid-state nuclear magnetic resonance provide information about molecular motions occurring on nanosecond-to-millisecond (ns-ms) time scales. The measurement of heteronuclear ((13)C, (15)N) relaxation rate constants in the presence of a spin-lock radiofrequency field (R1ρ relaxation) provides access to such motions, and an increasing number of studies involving R1ρ relaxation in proteins have been reported. However, two factors that influence the observed relaxation rate constants have so far been neglected, namely, (1) the role of CSA/dipolar cross-correlated relaxation (CCR) and (2) the impact of fast proton spin flips (i.e., proton spin diffusion and relaxation). We show that CSA/D CCR in R1ρ experiments is measurable and that the CCR rate constant depends on ns-ms motions; it can thus provide insight into dynamics. We find that proton spin diffusion attenuates this CCR due to its decoupling effect on the doublet components. For measurements of dynamics, the use of R1ρ rate constants has practical advantages over the use of CCR rates, and this article reveals factors that have so far been disregarded and which are important for accurate measurements and interpretation.

  18. Testing Backbone.js

    CERN Document Server

    Roemer, Ryan

    2013-01-01

    This book is packed with the step by step tutorial and instructions in recipe format helping you setup test infrastructure and gradually advance your skills to plan, develop, and test your backbone applications.If you are a JavaScript developer looking for recipes to create and implement test support for your backbone application, then this book is ideal for you.

  19. Dihedral-Based Segment Identification and Classification of Biopolymers I: Proteins

    Science.gov (United States)

    2013-01-01

    A new structure classification scheme for biopolymers is introduced, which is solely based on main-chain dihedral angles. It is shown that by dividing a biopolymer into segments containing two central residues, a local classification can be performed. The method is referred to as DISICL, short for Dihedral-based Segment Identification and Classification. Compared to other popular secondary structure classification programs, DISICL is more detailed as it offers 18 distinct structural classes, which may be simplified into a classification in terms of seven more general classes. It was designed with an eye to analyzing subtle structural changes as observed in molecular dynamics simulations of biomolecular systems. Here, the DISICL algorithm is used to classify two databases of protein structures, jointly containing more than 10 million segments. The data is compared to two alternative approaches in terms of the amount of classified residues, average occurrence and length of structural elements, and pair wise matches of the classifications by the different programs. In an accompanying paper (Nagy, G.; Oostenbrink, C. Dihedral-based segment identification and classification of biopolymers II: Polynucleotides. J. Chem. Inf. Model. 2013, DOI: 10.1021/ci400542n), the analysis of polynucleotides is described and applied. Overall, DISICL represents a potentially useful tool to analyze biopolymer structures at a high level of detail. PMID:24364820

  20. Dihedral-based segment identification and classification of biopolymers I: proteins.

    Science.gov (United States)

    Nagy, Gabor; Oostenbrink, Chris

    2014-01-27

    A new structure classification scheme for biopolymers is introduced, which is solely based on main-chain dihedral angles. It is shown that by dividing a biopolymer into segments containing two central residues, a local classification can be performed. The method is referred to as DISICL, short for Dihedral-based Segment Identification and Classification. Compared to other popular secondary structure classification programs, DISICL is more detailed as it offers 18 distinct structural classes, which may be simplified into a classification in terms of seven more general classes. It was designed with an eye to analyzing subtle structural changes as observed in molecular dynamics simulations of biomolecular systems. Here, the DISICL algorithm is used to classify two databases of protein structures, jointly containing more than 10 million segments. The data is compared to two alternative approaches in terms of the amount of classified residues, average occurrence and length of structural elements, and pair wise matches of the classifications by the different programs. In an accompanying paper (Nagy, G.; Oostenbrink, C. Dihedral-based segment identification and classification of biopolymers II: Polynucleotides. J. Chem. Inf. Model. 2013, DOI: 10.1021/ci400542n), the analysis of polynucleotides is described and applied. Overall, DISICL represents a potentially useful tool to analyze biopolymer structures at a high level of detail.

  1. Sulfation and Cation Effects on the Conformational Properties of the Glycan Backbone of Chondroitin Sulfate Disaccharides

    Science.gov (United States)

    Faller, Christina E.; Guvench, Olgun

    2015-01-01

    Chondroitin sulfate (CS) is one of several glycosaminoglycans that are major components of proteoglycans. A linear polymer consisting of repeats of the disaccharide -4GlcAβ1-3GalNAcβ1-, CS undergoes differential sulfation resulting in five unique sulfation patterns. Because of the dimer repeat, the CS glycosidic “backbone” has two distinct sets of conformational degrees of freedom defined by pairs of dihedral angles: (ϕ1, ψ1) about the β1-3 glycosidic linkage and (ϕ2, ψ2) about the β1-4 glycosidic linkage. Differential sulfation and the possibility of cation binding, combined with the conformational flexibility and biological diversity of CS, complicate experimental efforts to understand CS three-dimensional structures at atomic resolution. Therefore, all-atom explicit-solvent molecular dynamics simulations with Adaptive Biasing Force sampling of the CS backbone were applied to obtain high resolution, high precision free energies of CS disaccharides as a function of all possible backbone geometries. All ten disaccharides (β1-3 vs. β1-4 linkage x five different sulfation patterns) were studied; additionally, ion effects were investigated by considering each disaccharide in the presence of either neutralizing sodium or calcium cations. GlcAβ1-3GalNAc disaccharides have a single, broad, thermodynamically important free-energy minimum whereas GalNAcβ1-4GlcA disaccharides have two such minima. Calcium cations but not sodium cations bind to the disaccharides, and binding is primarily to the GlcA –COO− moiety as opposed to sulfate groups. This binding alters the glycan backbone thermodynamics in instances where a calcium cation bound to –COO− can act to bridge and stabilize an interaction with an adjacent sulfate group, whereas, in the absence of this cation, the proximity of a sulfate group to –COO− results in two like charges being both desolvated and placed adjacent to each other and is found to be destabilizing. In addition to providing

  2. Blurring and Deblurring Digital Images Using the Dihedral Group

    Directory of Open Access Journals (Sweden)

    Husein Hadi Abbas Jassim

    2015-12-01

    Full Text Available A new method of blurring and deblurring digital images is presented. The approach is based on using new filters generating from average filter and H-filters using the action of the dihedral group. These filters are called HB-filters; used to cause a motion blur and then deblurring affected images. Also, enhancing images using HB-filters is presented as compared to other methods like Average, Gaussian, and Motion. Results and analysis show that the HB-filters are better in peak signal to noise ratio (PSNR and RMSE.

  3. The Representations of Quantum Double of Dihedral Groups

    CERN Document Server

    Dong, Jingcheng

    2011-01-01

    Let $k$ be an algebraically closed field of odd characteristic $p$, and let $D_n$ be the dihedral group of order $2n$ such that $p\\mid 2n$. Let $D(kD_n)$ denote the quantum double of the group algebra $kD_n$. In this paper, we describe the structures of all finite dimensional indecomposable left $D(kD_n)$-modules, equivalently, of all finite dimensional indecomposable Yetter-Drinfeld $kD_n$-modules, and classify them.

  4. Bilangan Kromatik Grap Commuting dan Non Commuting Grup Dihedral

    Directory of Open Access Journals (Sweden)

    Handrini Rahayuningtyas

    2015-11-01

    Full Text Available Commuting graph is a graph that has a set of points X and two different vertices to be connected directly if each commutative in G. Let G non abelian group and Z(G is a center of G. Noncommuting graph is a graph which the the vertex is a set of G\\Z(G and two vertices x and y are adjacent if and only if xy≠yx. The vertex colouring of G is giving k colour at the vertex, two vertices that are adjacent not given the same colour. Edge colouring of G is two edges that have common vertex are coloured with different colour. The smallest number k so that a graph can be coloured by assigning k colours to the vertex and edge called chromatic number. In this article, it is available the general formula of chromatic number of commuting and noncommuting graph of dihedral group

  5. Bistatic 3D Electromagnetic Scattering From a Right-Angle Dihedral at Arbitrary Orientation and Position

    Science.gov (United States)

    2011-03-24

    Nov. 1987. [10] Havrilla , M. “EENG622 lecture notes”. AFIT EENG622 - Advanced Electro- magnetics. [11] Jackson, Julie Ann. Three-Dimensional Feature...Apr. 1984. [19] Peebles, Peyton Z. Radar Principles. John Wiley & Sons, New York, 1998. [20] Ruck, George T., Donald E. Barrick, William D. Stuart

  6. Unique interplay between electronic states and dihedral angle for the molecular rotor diphenyldiacetylene

    DEFF Research Database (Denmark)

    Thulstrup, Peter W.; Hoffmann, Søren Vrønning; Hansen, Bjarke K.V.;

    2011-01-01

    is supported by the results of detailed quantum chemical Time Dependent Density Functional Theory (TD-DFT) calculations. The resulting analysis has profound implications for the understanding of the optical, photochemical, and photophysical characteristics of this and related chromophores, of importance...

  7. Future High Capacity Backbone Networks

    DEFF Research Database (Denmark)

    Wang, Jiayuan

    This thesis - Future High Capacity Backbone Networks - deals with the energy efficiency problems associated with the development of future optical networks. In the first half of the thesis, novel approaches for using multiple/single alternative energy sources for improving energy efficiency...... the context of the integrated control plane structure. Results show improvements of energy efficiency over three types of traffic, while still keeping acceptable QoS levels for high priority traffic....

  8. Fitting of dihedral terms in classical force fields as an analytic linear least-squares problem.

    Science.gov (United States)

    Hopkins, Chad W; Roitberg, Adrian E

    2014-07-28

    The derivation and optimization of most energy terms in modern force fields are aided by automated computational tools. It is therefore important to have algorithms to rapidly and precisely train large numbers of interconnected parameters to allow investigators to make better decisions about the content of molecular models. In particular, the traditional approach to deriving dihedral parameters has been a least-squares fit to target conformational energies through variational optimization strategies. We present a computational approach for simultaneously fitting force field dihedral amplitudes and phase constants which is analytic within the scope of the data set. This approach completes the optimal molecular mechanics representation of a quantum mechanical potential energy surface in a single linear least-squares fit by recasting the dihedral potential into a linear function in the parameters. We compare the resulting method to a genetic algorithm in terms of computational time and quality of fit for two simple molecules. As suggested in previous studies, arbitrary dihedral phases are only necessary when modeling chiral molecules, which include more than half of drugs currently in use, so we also examined a dihedral parametrization case for the drug amoxicillin and one of its stereoisomers where the target dihedral includes a chiral center. Asymmetric dihedral phases are needed in these types of cases to properly represent the quantum mechanical energy surface and to differentiate between stereoisomers about the chiral center.

  9. Adding diverse noncanonical backbones to rosetta: enabling peptidomimetic design.

    Directory of Open Access Journals (Sweden)

    Kevin Drew

    Full Text Available Peptidomimetics are classes of molecules that mimic structural and functional attributes of polypeptides. Peptidomimetic oligomers can frequently be synthesized using efficient solid phase synthesis procedures similar to peptide synthesis. Conformationally ordered peptidomimetic oligomers are finding broad applications for molecular recognition and for inhibiting protein-protein interactions. One critical limitation is the limited set of design tools for identifying oligomer sequences that can adopt desired conformations. Here, we present expansions to the ROSETTA platform that enable structure prediction and design of five non-peptidic oligomer scaffolds (noncanonical backbones, oligooxopiperazines, oligo-peptoids, [Formula: see text]-peptides, hydrogen bond surrogate helices and oligosaccharides. This work is complementary to prior additions to model noncanonical protein side chains in ROSETTA. The main purpose of our manuscript is to give a detailed description to current and future developers of how each of these noncanonical backbones was implemented. Furthermore, we provide a general outline for implementation of new backbone types not discussed here. To illustrate the utility of this approach, we describe the first tests of the ROSETTA molecular mechanics energy function in the context of oligooxopiperazines, using quantum mechanical calculations as comparison points, scanning through backbone and side chain torsion angles for a model peptidomimetic. Finally, as an example of a novel design application, we describe the automated design of an oligooxopiperazine that inhibits the p53-MDM2 protein-protein interaction. For the general biological and bioengineering community, several noncanonical backbones have been incorporated into web applications that allow users to freely and rapidly test the presented protocols (http://rosie.rosettacommons.org. This work helps address the peptidomimetic community's need for an automated and expandable

  10. Dihedral f-tilings of the sphere by rhombi and triangles

    Directory of Open Access Journals (Sweden)

    Ana M. Breda

    2005-12-01

    Full Text Available We classify, up to an isomorphism, the class of all dihedral f-tilings of S 2, whose prototiles are a spherical triangle and a spherical rhombus. The equiangular case was considered and classified in Ana M. Breda and Altino F. Santos, Dihedral f-tilings of the sphere by spherical triangles and equiangular well-centered quadrangles. Here we complete the classification considering the case of non-equiangular rhombi.

  11. Unconventional N-H…N Hydrogen Bonds Involving Proline Backbone Nitrogen in Protein Structures.

    Science.gov (United States)

    Deepak, R N V Krishna; Sankararamakrishnan, Ramasubbu

    2016-05-10

    Contrary to DNA double-helical structures, hydrogen bonds (H-bonds) involving nitrogen as the acceptor are not common in protein structures. We systematically searched N-H…N H-bonds in two different sets of protein structures. Data set I consists of neutron diffraction and ultrahigh-resolution x-ray structures (0.9 Å resolution or better) and the hydrogen atom positions in these structures were determined experimentally. Data set II contains structures determined using x-ray diffraction (resolution ≤ 1.8 Å) and the positions of hydrogen atoms were generated using a computational method. We identified 114 and 14,347 potential N-H…N H-bonds from these two data sets, respectively, and 56-66% of these were of the Ni+1-Hi+1…Ni type, with Ni being the proline backbone nitrogen. To further understand the nature of such unusual contacts, we performed quantum chemical calculations on the model compound N-acetyl-L-proline-N-methylamide (Ace-Pro-NMe) with coordinates taken from the experimentally determined structures. A potential energy profile generated by varying the ψ dihedral angle in Ace-Pro-NMe indicates that the conformation with the N-H…N H-bond is the most stable. An analysis of H-bond-forming proline residues reveals that more than 30% of the proline carbonyl groups are also involved in n → π(∗) interactions with the carbonyl carbon of the preceding residue. Natural bond orbital analyses demonstrate that the strength of N-H…N H-bonds is less than half of that observed for a conventional H-bond. This study clearly establishes the H-bonding capability of proline nitrogen and its prevalence in protein structures. We found many proteins with multiple instances of H-bond-forming prolines. With more than 15% of all proline residues participating in N-H…N H-bonds, we suggest a new, to our knowledge, structural role for proline in providing stability to loops and capping regions of secondary structures in proteins.

  12. PO Analysis for RCS of Nonorthogonal Dihedral Corner Reflectors Coated by RAM

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The backscattering radar cross section (RCS) of nonorthogonal dihedral corner reflectors coated by RAM (radar absorbing materials) is formulated by the method of PO (physical optics), where singly, doubly, and triply reflected contributions are considered. The final expressions are analytical and allow for the incidence nonperpendicular to the fold axis of the reflector. The results are compared with ones of MoM (method of moment), which shows that the trend of backscatter patterr of the dihedral corner reflector can be well predicted by this method.

  13. Exercise: The Backbone of Spine Treatment

    Medline Plus

    Full Text Available Exercise: The Backbone of Spine Treatment | View Video Back About Video Struggling with Low Back Pain? Many people are surprised to learn that carefully selected exercise can actually reduce back pain. Some exercises can ...

  14. A restraint molecular dynamics and simulated annealing approach for protein homology modeling utilizing mean angles

    Directory of Open Access Journals (Sweden)

    Maurer Till

    2005-04-01

    Full Text Available Abstract Background We have developed the program PERMOL for semi-automated homology modeling of proteins. It is based on restrained molecular dynamics using a simulated annealing protocol in torsion angle space. As main restraints defining the optimal local geometry of the structure weighted mean dihedral angles and their standard deviations are used which are calculated with an algorithm described earlier by Döker et al. (1999, BBRC, 257, 348–350. The overall long-range contacts are established via a small number of distance restraints between atoms involved in hydrogen bonds and backbone atoms of conserved residues. Employing the restraints generated by PERMOL three-dimensional structures are obtained using standard molecular dynamics programs such as DYANA or CNS. Results To test this modeling approach it has been used for predicting the structure of the histidine-containing phosphocarrier protein HPr from E. coli and the structure of the human peroxisome proliferator activated receptor γ (Ppar γ. The divergence between the modeled HPr and the previously determined X-ray structure was comparable to the divergence between the X-ray structure and the published NMR structure. The modeled structure of Ppar γ was also very close to the previously solved X-ray structure with an RMSD of 0.262 nm for the backbone atoms. Conclusion In summary, we present a new method for homology modeling capable of producing high-quality structure models. An advantage of the method is that it can be used in combination with incomplete NMR data to obtain reasonable structure models in accordance with the experimental data.

  15. Peptide Backbone Sampling Convergence with the Adaptive Biasing Force Algorithm

    Science.gov (United States)

    Faller, Christina E.; Reilly, Kyle A.; Hills, Ronald D.; Guvench, Olgun

    2013-01-01

    Complete Boltzmann sampling of reaction coordinates in biomolecular systems continues to be a challenge for unbiased molecular dynamics simulations. A growing number of methods have been developed for applying biases to biomolecular systems to enhance sampling while enabling recovery of the unbiased (Boltzmann) distribution of states. The Adaptive Biasing Force (ABF) algorithm is one such method, and works by canceling out the average force along the desired reaction coordinate(s) using an estimate of this force progressively accumulated during the simulation. Upon completion of the simulation, the potential of mean force, and therefore Boltzmann distribution of states, is obtained by integrating this average force. In an effort to characterize the expected performance in applications such as protein loop sampling, ABF was applied to the full ranges of the Ramachandran ϕ/ψ backbone dihedral reaction coordinates for dipeptides of the 20 amino acids using all-atom explicit-water molecular dynamics simulations. Approximately half of the dipeptides exhibited robust and rapid convergence of the potential of mean force as a function of ϕ/ψ in triplicate 50-ns simulations, while the remainder exhibited varying degrees of less complete convergence. The greatest difficulties in achieving converged ABF sampling were seen in the branched-sidechain amino acids threonine and valine, as well as the special case of proline. Proline dipeptide sampling was further complicated by trans-to-cis peptide bond isomerization not observed in unbiased control molecular dynamics simulations. Overall, the ABF method was found to be a robust means of sampling the entire ϕ/ψ reaction coordinate for the 20 amino acids, including high free-energy regions typically inaccessible in standard molecular dynamics simulations. PMID:23215032

  16. Floating volumetric image formation using a dihedral corner reflector array device.

    Science.gov (United States)

    Miyazaki, Daisuke; Hirano, Noboru; Maeda, Yuki; Yamamoto, Siori; Mukai, Takaaki; Maekawa, Satoshi

    2013-01-01

    A volumetric display system using an optical imaging device consisting of numerous dihedral corner reflectors placed perpendicular to the surface of a metal plate is proposed. Image formation by the dihedral corner reflector array (DCRA) is free from distortion and focal length. In the proposed volumetric display system, a two-dimensional real image is moved by a mirror scanner to scan a three-dimensional (3D) space. Cross-sectional images of a 3D object are displayed in accordance with the position of the image plane. A volumetric image is observed as a stack of the cross-sectional images. The use of the DCRA brings compact system configuration and volumetric real image generation with very low distortion. An experimental volumetric display system including a DCRA, a galvanometer mirror, and a digital micro-mirror device was constructed to verify the proposed method. A volumetric image consisting of 1024×768×400 voxels was formed by the experimental system.

  17. Coordination field calculation for rare earth complexes in dihedral symmetry field

    Institute of Scientific and Technical Information of China (English)

    范英芳; 杨频; 潘大丰; 王越奎

    1995-01-01

    The coordination field perturbation matrix element expressions about D2-field of the terms 2S+1Lf (J=0 - 8 and 7=1/2 - 15/2) with fN (N=1 -13) configuration have been derived The concrete forms of the DSCPCF parameters Akm in the dihedral field (D2, C2v) for various ligand numbers (5 -12) and their reducing behavior in the higher symmetry fields (D4, C4v, D2d, D4d, D2k, D4h and Oh) are discussed with the double sphere coordination point charge field (DSCPCF) model and the irreducible operator tensor method. Besides, the corresponding computational schemes have been developed and the computer program DSF.D has been compiled, which is applicable for the spectral analysis of the rare earth ion complexes with arbitrary ligand numbers in the dihedral, tetragonal and cubical symmetry fields.

  18. Green Network Planning Model for Optical Backbones

    DEFF Research Database (Denmark)

    Gutierrez Lopez, Jose Manuel; Riaz, M. Tahir; Jensen, Michael

    2010-01-01

    Communication networks are becoming more essential for our daily lives and critically important for industry and governments. The intense growth in the backbone traffic implies an increment of the power demands of the transmission systems. This power usage might have a significant negative effect...... on the environment in general. In network planning there are existing planning models focused on QoS provisioning, investment minimization or combinations of both and other parameters. But there is a lack of a model for designing green optical backbones. This paper presents novel ideas to be able to define...

  19. Three-dimensional profile measurement of pyramid micro-structure array: research on twice reflection of the dihedral of 90 degrees

    Science.gov (United States)

    Hu, Yao; Shi, Rui

    2016-10-01

    Optical micro-structure array, including microlens array and pyramid array, has the function of integral imaging or diffraction beam-splitting. Careful measurement of the 3D profile of the array is a basic approach for insuring its quality. However, due to the limited numerical aperture of microscopy, when the surface is too steep, typically larger than 45 degrees, little light will be reflected or scattered back to the measurement equipment. The signal-to-noise-ratio will drop below the measurable threshold and information will be lost during measurement. In our case, the dihedral of the sample surface is 90 degrees. Intuitively, the reflected rays should be parallel to the incident rays after twice reflection and can be picked up by the detector. Nevertheless, the white-light interference microscope still showed no information on the 45- degree-inclined surface. In this paper, we study the twice-reflection of the dihedral angle of 90 degrees. We put it in the test beam of a spherical interferometer to simulate the situation in microscope. Simulation and real experiments suggest that the twice-reflection beam is of low spatial coherence and may act as the background intensity in white-light interferogram. This result cannot lead to a novel testing approach directly but points out the problem. We will sprout new idea based on it.

  20. Microsoft Operations Framework implementation for The Backbone

    NARCIS (Netherlands)

    Kienhuis, G.H.

    2007-01-01

    Doel The Backbone ontwerpt, implementeert en beheert IT infrastructuren voor bedrijven en instellingen. Beheer wordt proactief uitgevoerd met behulp van Microsoft Operation Manager (MOM) 2005. MOM is een applicatie die de status en gebeurtenissen van systemen zichtbaar maakt vanuit één locatie. Om

  1. Transforming plastic surfaces with electrophilic backbones from hydrophobic to hydrophilic.

    Science.gov (United States)

    Kim, Samuel; Bowen, Raffick A R; Zare, Richard N

    2015-01-28

    We demonstrate a simple nonaqueous reaction scheme for transforming the surface of plastics from hydrophobic to hydrophilic. The chemical modification is achieved by base-catalyzed trans-esterification with polyols. It is permanent, does not release contaminants, and causes no optical or mechanical distortion of the plastic. We present contact angle measurements to show successful modification of several types of plastics including poly(ethylene terephthalate) (PET) and polycarbonate (PC). Its applicability to blood analysis is explored using chemically modified PET blood collection tubes and found to be quite satisfactory. We expect this approach will reduce the cost of manufacturing plastic devices with optimized wettability and can be generalized to other types of plastic materials having an electrophilic linkage as its backbone.

  2. Orientation-dependent backbone-only residue pair scoring functions for fixed backbone protein design

    Directory of Open Access Journals (Sweden)

    Bordner Andrew J

    2010-04-01

    Full Text Available Abstract Background Empirical scoring functions have proven useful in protein structure modeling. Most such scoring functions depend on protein side chain conformations. However, backbone-only scoring functions do not require computationally intensive structure optimization and so are well suited to protein design, which requires fast score evaluation. Furthermore, scoring functions that account for the distinctive relative position and orientation preferences of residue pairs are expected to be more accurate than those that depend only on the separation distance. Results Residue pair scoring functions for fixed backbone protein design were derived using only backbone geometry. Unlike previous studies that used spherical harmonics to fit 2D angular distributions, Gaussian Mixture Models were used to fit the full 3D (position only and 6D (position and orientation distributions of residue pairs. The performance of the 1D (residue separation only, 3D, and 6D scoring functions were compared by their ability to identify correct threading solutions for a non-redundant benchmark set of protein backbone structures. The threading accuracy was found to steadily increase with increasing dimension, with the 6D scoring function achieving the highest accuracy. Furthermore, the 3D and 6D scoring functions were shown to outperform side chain-dependent empirical potentials from three other studies. Next, two computational methods that take advantage of the speed and pairwise form of these new backbone-only scoring functions were investigated. The first is a procedure that exploits available sequence data by averaging scores over threading solutions for homologs. This was evaluated by applying it to the challenging problem of identifying interacting transmembrane alpha-helices and found to further improve prediction accuracy. The second is a protein design method for determining the optimal sequence for a backbone structure by applying Belief Propagation

  3. Concerted dihedral rotations give rise to internal friction in unfolded proteins.

    Science.gov (United States)

    Echeverria, Ignacia; Makarov, Dmitrii E; Papoian, Garegin A

    2014-06-18

    Protein chains undergo conformational diffusion during folding and dynamics, experiencing both thermal kicks and viscous drag. Recent experiments have shown that the corresponding friction can be separated into wet friction, which is determined by the solvent viscosity, and dry friction, where frictional effects arise due to the interactions within the protein chain. Despite important advances, the molecular origins underlying dry friction in proteins have remained unclear. To address this problem, we studied the dynamics of the unfolded cold-shock protein at different solvent viscosities and denaturant concentrations. Using extensive all-atom molecular dynamics simulations we estimated the internal friction time scales and found them to agree well with the corresponding experimental measurements (Soranno et al. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 17800-17806). Analysis of the reconfiguration dynamics of the unfolded chain further revealed that hops in the dihedral space provide the dominant mechanism of internal friction. Furthermore, the increased number of concerted dihedral moves at physiological conditions suggest that, in such conditions, the concerted motions result in higher frictional forces. These findings have important implications for understanding the folding kinetics of proteins as well as the dynamics of intrinsically disordered proteins.

  4. Constructing backbone network by using tinker algorithm

    Science.gov (United States)

    He, Zhiwei; Zhan, Meng; Wang, Jianxiong; Yao, Chenggui

    2017-01-01

    Revealing how a biological network is organized to realize its function is one of the main topics in systems biology. The functional backbone network, defined as the primary structure of the biological network, is of great importance in maintaining the main function of the biological network. We propose a new algorithm, the tinker algorithm, to determine this core structure and apply it in the cell-cycle system. With this algorithm, the backbone network of the cell-cycle network can be determined accurately and efficiently in various models such as the Boolean model, stochastic model, and ordinary differential equation model. Results show that our algorithm is more efficient than that used in the previous research. We hope this method can be put into practical use in relevant future studies.

  5. Numerical analysis of magnetic states mixing in the Heisenberg model with the dihedral symmetry

    Directory of Open Access Journals (Sweden)

    Jaśniewicz-Pacer K.

    2013-01-01

    Full Text Available The total spin number S is not a ‘good quantum number for’ the Heisenberg model with singleion anisotropy, so the Hamiltonian eigenstates with different S may form linear combinations. Sometimes it is assumed that S can be used as an ‘approximate quantum number’, though some results show that mixing of S-states is important in investigations of magnetic molecules. Some small spin systems with the dihedral symmetry are analyzed to investigate different schemes of mixing and its dependence on the anisotropy parameter. The results show various behavior of the magnetic state mixing. The mean (over a state value of total spin is quite stable for the ground state, but in other cases this dependence is nonlinear and sometimes non-monotonic.

  6. s-REGULAR DIHEDRAL COVERINGS OF THE COMPLETE GRAPH OF ORDER 4

    Institute of Scientific and Technical Information of China (English)

    FENG YANQUAN(冯衍全); J.H. KWAK

    2004-01-01

    A graph is s-regular if its automorphism group acts regularly on the set of its s-arcs. An infinite family of cubic 1-regular graphs was constructed in [7] as cyclic coverings of the three-dimensional Hypercube, and a classification of all s-regular cyclic coverings of the complete bipartite graph of order 6 was given in [8] for each s ≥ 1, whose fibre preserving automorphism subgroups act arc-transitively. In this paper, the authors classify all s-regular dihedral coverings of the complete graph of order 4 for each s ≥ 1, whose fibre-preserving automorphism subgroups act arc-transitively. As a result, a new infinite family of cubic 1-regular graphs is constructed.

  7. Porous solid backbone impregnation for electrochemical energy conversion systems

    KAUST Repository

    Boulfrad, Samir

    2013-09-19

    An apparatus and method for impregnating a porous solid backbone. The apparatus may include a platform for holding a porous solid backbone, an ink jet nozzle configured to dispense a liquid solution onto the porous solid backbone, a positioning mechanism configured to position the ink jet nozzle proximate to a plurality of locations of the porous solid backbone, and a control unit configured to control the positioning mechanism to position the ink jet nozzle proximate to the plurality of locations and cause the ink jet nozzle to dispense the liquid solution onto the porous solid backbone.

  8. Peptoid-Peptide hybrid backbone architectures

    DEFF Research Database (Denmark)

    Olsen, Christian Adam

    2010-01-01

    -amino acids (alpha/beta-peptides) have been investigated in some detail as well. The present Minireview is a survey of the literature concerning hybrid structures of alpha-amino acids and peptoids, including beta-peptoids (N-alkyl-beta-alanine oligomers), and is intended to give an overview of this area......Peptidomimetic oligomers and foldamers have received considerable attention for over a decade, with beta-peptides and the so-called peptoids (N-alkylglycine oligomers) representing prominent examples of such architectures. Lately, hybrid or mixed backbones consisting of both alpha- and beta...

  9. Instant Backbone.js application development

    CERN Document Server

    Hunter, Thomas

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. This book is a practical, step-by-step tutorial that will teach you to build Backbone.js applications quickly and efficiently.This book is targeted towards developers. It is assumed that you have at least a basic understanding of JavaScript and jQuery selectors. If you are interested in building dynamic Single Page Applications that interact heavily with a backend server, then this is the book for you.

  10. Solvent-induced differentiation of protein backbone hydrogen bonds in calmodulin.

    Science.gov (United States)

    Juranić, Nenad; Atanasova, Elena; Streiff, John H; Macura, Slobodan; Prendergast, Franklyn G

    2007-07-01

    In apo and holoCaM, almost half of the hydrogen bonds (H-bonds) at the protein backbone expected from the corresponding NMR or X-ray structures were not detected by h3JNC' couplings. The paucity of the h3JNC' couplings was considered in terms of dynamic features of these structures. We examined a set of seven proteins and found that protein-backbone H-bonds form two groups according to the h3JNC' couplings measured in solution. H-bonds that have h3JNC' couplings above the threshold of 0.2 Hz show distance/angle correlation among the H-bond geometrical parameters, and appear to be supported by the backbone dynamics in solution. The other H-bonds have no such correlation; they populate the water-exposed and flexible regions of proteins, including many of the CaM helices. The observed differentiation in a dynamical behavior of backbone H-bonds in apo and holoCaM appears to be related to protein functions.

  11. Extracting the information backbone in online system

    CERN Document Server

    Zhang, Qian-Ming; Shang, Ming-Sheng

    2013-01-01

    Information overload is a serious problem in modern society and many solutions such as recommender system have been proposed to filter out irrelevant information. In the literature, researchers mainly dedicated to improve the recommendation performance (accuracy and diversity) of the algorithms while overlooked the influence of topology of the online user-object bipartite networks. In this paper, we find that some information provided by the bipartite networks is not only redundant but also misleading. With such "less can be more" feature, we design some algorithms to improve the recommendation performance by eliminating some links from the original networks. Moreover, we propose a hybrid method combining the time-aware and topology-aware link removal algorithms to extract the backbone which contains the essential information for the recommender systems. From the practical point of view, our method can improve the performance and reduce the computational time of the recommendation system, thus improve both of...

  12. Sofosbuvir as backbone of interferon free treatments.

    Science.gov (United States)

    Bourlière, Marc; Oules, Valèrie; Ansaldi, Christelle; Adhoute, Xavier; Castellani, Paul

    2014-12-15

    Sofosbuvir is the first-in-class NS5B nucleotide analogues to be launched for hepatitis C virus (HCV) treatment. Its viral potency, pangenotypic activity and high barrier to resistance make it the ideal candidate to become a backbone for several IFN-free regimens. Recent data demonstrated that sofosbuvir either with ribavirin alone or in combination with other direct-acting antivirals (DAAs) as daclatasvir, ledipasvir or simeprevir are able to cure HCV in at least 90% or over of patients. Treatment experienced genotype 3 population may remain the most difficult to treat population, but ongoing DAA combination studies will help to fill this gap. Safety profile of sofosbuvir or combination with other DAAs is good. Resistance to sofosbuvir did not appear as a significant issue. The rationale for using this class of drug and the available clinical data are reviewed.

  13. Extracting the information backbone in online system.

    Science.gov (United States)

    Zhang, Qian-Ming; Zeng, An; Shang, Ming-Sheng

    2013-01-01

    Information overload is a serious problem in modern society and many solutions such as recommender system have been proposed to filter out irrelevant information. In the literature, researchers have been mainly dedicated to improving the recommendation performance (accuracy and diversity) of the algorithms while they have overlooked the influence of topology of the online user-object bipartite networks. In this paper, we find that some information provided by the bipartite networks is not only redundant but also misleading. With such "less can be more" feature, we design some algorithms to improve the recommendation performance by eliminating some links from the original networks. Moreover, we propose a hybrid method combining the time-aware and topology-aware link removal algorithms to extract the backbone which contains the essential information for the recommender systems. From the practical point of view, our method can improve the performance and reduce the computational time of the recommendation system, thus improving both of their effectiveness and efficiency.

  14. Backbone analysis and algorithm design for the quadratic assignment problem

    Institute of Scientific and Technical Information of China (English)

    JIANG He; ZHANG XianChao; CHEN GuoLiang; LI MingChu

    2008-01-01

    As the hot line in NP-hard problems research in recent years, backbone analysis is crucial for phase transition, hardness, and algorithm design. Whereas theoretical analysis of backbone and its applications in algorithm design are still at a begin-ning state yet, this paper took the quadratic assignment problem (QAP) as a case study and proved by theoretical analysis that it is NP-hard to find the backbone, l.e., no algorithm exists to obtain the backbone of a QAP in polynomial time. Results of this paper showed that it is reasonable to acquire approximate backbone by inter-section of local optimal solutions. Furthermore, with the method of constructing biased instances, this paper proposed a new meta-heuristic - biased instance based approximate backbone (BI-AB), whose basic idea is as follows: firstly, con-struct a new biased instance for every QAP instance (the optimal solution of the new instance is also optimal for the original one); secondly, the approximate backbone is obtained by intersection of multiple local optimal solutions computed by some existing algorithm; finally, search for the optimal solutions in the reduced space by fixing the approximate backbone. Work of the paper enhanced the re-search area of theoretical analysis of backbone. The meta-heuristic proposed in this paper provided a new way for general algorithm design of NP-hard problems as well.

  15. Limits on variations in protein backbone dynamics from precise measurements of scalar couplings.

    Science.gov (United States)

    Vögeli, Beat; Ying, Jinfa; Grishaev, Alexander; Bax, Ad

    2007-08-01

    3JHN,Halpha, 3JHN,Cbeta, and 3JHN,C' couplings, all related to the backbone torsion angle phi, were measured for the third immunoglobulin binding domain of protein G, or GB3. Measurements were carried out using both previously published methods and novel sequences based on the multiple-quantum principle, which limit attenuation of experimental couplings caused by finite lifetimes of the spin states of passive spins. High reproducibility between the multiple-quantum and conventional approaches confirms the accuracy of the measurements. With few exceptions, close agreement between 3JHN,Halpha, 3JHN,Cbeta, and 3JHN,C' and values predicted by their respective Karplus equations is observed. For the three types of couplings, up to 20% better agreement is obtained when fitting the experimental couplings to a dynamic ensemble NMR structure, which has a phi angle root-mean-square spread of 9 +/- 4 degrees and was previously calculated on the basis of a very extensive set of residual dipolar couplings, than for any single static NMR structure. Fits of 3J couplings to a 1.1-A X-ray structure, with hydrogens added in idealized positions, are 40-90% worse. Approximately half of the improvement when fitting to the NMR structures relates to the amide proton deviating from its idealized, in-peptide-plane position, indicating that the positioning of hydrogens relative to the backbone atoms is one of the factors limiting the accuracy at which the backbone torsion angle phi can be extracted from 3J couplings. Introducing an additional, residue-specific variable for the amplitude of phi angle fluctuations does not yield a statistically significant improvement when fitting to a set of dynamic Karplus curves, pointing to a homogeneous behavior of these amplitudes.

  16. NHC Backbone Configuration in Ruthenium-Catalyzed Olefin Metathesis

    Directory of Open Access Journals (Sweden)

    Veronica Paradiso

    2016-01-01

    Full Text Available The catalytic properties of olefin metathesis ruthenium complexes bearing N-heterocyclic carbene ligands with stereogenic centers on the backbone are described. Differences in catalytic behavior depending on the backbone configurations of symmetrical and unsymmetrical NHCs are discussed. In addition, an overview on asymmetric olefin metathesis promoted by chiral catalysts bearing C2-symmetric and C1-symmetric NHCs is provided.

  17. NHC Backbone Configuration in Ruthenium-Catalyzed Olefin Metathesis.

    Science.gov (United States)

    Paradiso, Veronica; Costabile, Chiara; Grisi, Fabia

    2016-01-20

    The catalytic properties of olefin metathesis ruthenium complexes bearing N-heterocyclic carbene ligands with stereogenic centers on the backbone are described. Differences in catalytic behavior depending on the backbone configurations of symmetrical and unsymmetrical NHCs are discussed. In addition, an overview on asymmetric olefin metathesis promoted by chiral catalysts bearing C₂-symmetric and C₁-symmetric NHCs is provided.

  18. The Backbone of the Climate Networks

    Science.gov (United States)

    Zou, Y.; Donges, J. F.; Marwan, N.; Kurths, J.

    2009-12-01

    We propose a method to reconstruct and analyze a complex network from data generated by a spatio-temporal dynamical system, relying on the nonlinear mutual information of time series analysis and betweenness centrality of complex network theory. We show, that this approach reveals a rich internal structure in complex climate networks constructed from reanalysis and model surface air temperature data. Our novel method uncovers peculiar wave-like structures of high energy flow, that we relate to global surface ocean currents. This points to a major role of the oceanic surface circulation in coupling and stabilizing the global temperature field in the long term mean (140 years for the model run and 60 years for reanalysis data). We find that these results cannot be obtained using classical linear methods of multivariate data analysis. Furthermore, we introduce significance tests to quantify the robustness of measured network properties to uncertainties. References: [1] J.F. Donges, Y. Zou, N. Marwan, and J. Kurths. Complex networks in climate dynamics -- -- Comparing linear and nonlinear network construction methods. European Physical Journal -- Special Topics, 174, 157-179, 2009. [2] J.F. Donges, Y. Zou, N. Marwan, and J. Kurths. Backbone of the climate network. Europhysics Letters, in press, 2009.

  19. Extracting the information backbone in online system.

    Directory of Open Access Journals (Sweden)

    Qian-Ming Zhang

    Full Text Available Information overload is a serious problem in modern society and many solutions such as recommender system have been proposed to filter out irrelevant information. In the literature, researchers have been mainly dedicated to improving the recommendation performance (accuracy and diversity of the algorithms while they have overlooked the influence of topology of the online user-object bipartite networks. In this paper, we find that some information provided by the bipartite networks is not only redundant but also misleading. With such "less can be more" feature, we design some algorithms to improve the recommendation performance by eliminating some links from the original networks. Moreover, we propose a hybrid method combining the time-aware and topology-aware link removal algorithms to extract the backbone which contains the essential information for the recommender systems. From the practical point of view, our method can improve the performance and reduce the computational time of the recommendation system, thus improving both of their effectiveness and efficiency.

  20. NET amyloidogenic backbone in human activated neutrophils.

    Science.gov (United States)

    Pulze, L; Bassani, B; Gini, E; D'Antona, P; Grimaldi, A; Luini, A; Marino, F; Noonan, D M; Tettamanti, G; Valvassori, R; de Eguileor, M

    2016-03-01

    Activated human neutrophils produce a fibrillar DNA network [neutrophil extracellular traps (NETs)] for entrapping and killing bacteria, fungi, protozoa and viruses. Our results suggest that the neutrophil extracellular traps show a resistant amyloidogenic backbone utilized for addressing reputed proteins and DNA against the non-self. The formation of amyloid fibrils in neutrophils is regulated by the imbalance of reactive oxygen species (ROS) in the cytoplasm. The intensity and source of the ROS signal is determinant for promoting stress-associated responses such as amyloidogenesis and closely related events: autophagy, exosome release, activation of the adrenocorticotrophin hormone/α-melanocyte-stimulating hormone (ACTH/α-MSH) loop and synthesis of specific cytokines. These interconnected responses in human activated neutrophils, that have been evaluated from a morphofunctional and quantitative viewpoint, represent primitive, but potent, innate defence mechanisms. In invertebrates, circulating phagocytic immune cells, when activated, show responses similar to those described previously for activated human neutrophils. Invertebrate cells within endoplasmic reticulum cisternae produce a fibrillar material which is then assembled into an amyloidogenic scaffold utilized to convey melanin close to the invader. These findings, in consideration to the critical role played by NET in the development of several pathologies, could explain the structural resistance of these scaffolds and could provide the basis for developing new diagnostic and therapeutic approaches in immunomediated diseases in which the innate branch of the immune system has a pivotal role.

  1. High Speed Fibre Optic Backbone LAN

    Science.gov (United States)

    Tanimoto, Masaaki; Hara, Shingo; Kajita, Yuji; Kashu, Fumitoshi; Ikeuchi, Masaru; Hagihara, Satoshi; Tsuzuki, Shinji

    1987-09-01

    Our firm has developed the SUMINET-4100 series, a fibre optic local area network (LAN), to serve the communications system trunk line needs for facilities, such as steel refineries, automobile plants and university campuses, that require large transmission capacity, and for the backbone networks used in intelligent building systems. The SUMINET-4100 series is already in service in various fields of application. Of the networks available in this series, the SUMINET-4150 has a trunk line speed of 128 Mbps and the multiplexer used for time division multiplexing (TDM) was enabled by designing an ECL-TTL gate array (3000 gates) based custom LSI. The synchronous, full-duplex V.24 and V.3.5 interfaces (SUMINET-2100) are provided for use with general purpose lines. And the IBM token ring network, the SUMINET-3200, designed for heterogeneous PCs and the Ethernet can all be connected to sub loops. Further, the IBM 3270 TCA and 5080 CADAM can be connected in the local mode. Interfaces are also provided for the NTT high-speed digital service, the digital PBX systems, and the Video CODEC system. The built-in loop monitor (LM) and network supervisory processor (NSP) provide management of loop utilization and send loop status signals to the host CPU's network configuration and control facility (NCCF). These built-in functions allow both the computer system and LAN to be managed from a single source at the host. This paper outlines features of the SUMINET-4150 and provides an example of its installation.

  2. High Performance Infiltrated Backbones for Cathode-Supported SOFC's

    DEFF Research Database (Denmark)

    Gil, Vanesa; Kammer Hansen, Kent

    2014-01-01

    The concept of using highly ionic conducting backbones with subsequent infiltration of electronically conducting particles has widely been used to develop alternative anode-supported SOFC's. In this work, the idea was to develop infiltrated backbones as an alternative design based on cathode......-supported SOFC. The cathodes are obtained by infiltrating LSM into a sintered either thick (300 μm) yttria stabilized zirconia (YSZ) backbone or a thin YSZ backbone (10-15 μm) integrated onto a thick (300 μm) porous strontium substituted lanthanum manganite (LSM) and YSZ composite. Fabrication challenges...... printed symmetrical cells. Samples with LSM/YSZ composite and YSZ backbones made with graphite+PMMA as pore formers exhibited comparable Rp values to the screen printed LSM/YSZ cathode. This route was chosen as the best to fabricate the cathode supported cells. SEM micrograph of a cathode supported cell...

  3. Polarizable Simulations with Second order Interaction Model (POSSIM) force field: Developing parameters for alanine peptides and protein backbone

    Science.gov (United States)

    Ponomarev, Sergei Y.; Kaminski, George A.

    2011-01-01

    A previously introduced POSSIM (POlarizable Simulations with Second order Interaction Model) force field has been extended to include parameters for alanine peptides and protein backbones. New features were introduced into the fitting protocol, as compared to the previous generation of the polarizable force field for proteins. A reduced amount of quantum mechanical data was employed in fitting the electrostatic parameters. Transferability of the electrostatics between our recently developed NMA model and the protein backbone was confirmed. Binding energy and geometry for complexes of alanine dipeptide with a water molecule were estimated and found in a good agreement with high-level quantum mechanical results (for example, the intermolecular distances agreeing within ca. 0.06Å). Following the previously devised procedure, we calculated average errors in alanine di- and tetra-peptide conformational energies and backbone angles and found the agreement to be adequate (for example, the alanine tetrapeptide extended-globular conformational energy gap was calculated to be 3.09 kcal/mol quantim mechanically and 3.14 kcal/mol with the POSSIM force field). However, we have now also included simulation of a simple alpha-helix in both gas-phase and water as the ultimate test of the backbone conformational behavior. The resulting alanine and protein backbone force field is currently being employed in further development of the POSSIM fast polarizable force field for proteins. PMID:21743799

  4. An Analytic Method for the Kinematics and Dynamics of a Multiple-Backbone Continuum Robot

    Directory of Open Access Journals (Sweden)

    Bin He

    2013-01-01

    Full Text Available Continuum robots have been the subject of extensive research due to their potential use in a wide range of applications. In this paper, we propose a new continuum robot with three backbones, and provide a unified analytic method for the kinematics and dynamics of a multiple‐backbone continuum robot. The robot achieves actuation by independently pulling three backbones to carry out a bending motion of two‐degrees‐of‐freedom (DoF. A three‐dimensional CAD model of the robot is built and the kinematical equation is established on the basis of the Euler‐Bernoulli beam. The dynamical model of the continuum robot is constructed by using the Lagrange method. The simulation and the experiment’s validation results show the continuum robot can exactly bend into pre‐set angles in the two‐dimensional space (the maximum error is less than 5% of the robot length and can make a circular motion in three‐dimensional space. The results demonstrate that the proposed analytic method for the kinematics and dynamics of a continuum robot is feasible.

  5. High Performance Infiltrated Backbones for Cathode-Supported SOFC's

    DEFF Research Database (Denmark)

    Gil, Vanesa; Kammer Hansen, Kent

    2014-01-01

    A four-step infiltration method has been developed to infiltrate La0.75Sr0.25MnO3+δ (LSM25) nanoparticles into porous structures (YSZ or LSM-YSZ backbones). The pore size distribution in the backbones is obtained either by using PMMA and/or graphites as pore formers or by leaching treatment of sa...... of samples with Ni remained in the YSZ structure at high temperatures. All impregnated backbones, presented Rs comparable to a standard screen printed cathode, which proves that LSM nanoparticles forms a pathway for electron conduction....

  6. A backbone lever-arm effect enhances polymer mechanochemistry

    Science.gov (United States)

    Klukovich, Hope M.; Kouznetsova, Tatiana B.; Kean, Zachary S.; Lenhardt, Jeremy M.; Craig, Stephen L.

    2013-02-01

    Mechanical forces along a polymer backbone can be used to bring about remarkable reactivity in embedded mechanically active functional groups, but little attention has been paid to how a given polymer backbone delivers that force to the reactant. Here, single-molecule force spectroscopy was used to directly quantify and compare the forces associated with the ring opening of gem-dibromo and gem-dichlorocyclopropanes affixed along the backbone of cis-polynorbornene and cis-polybutadiene. The critical force for isomerization drops by about one-third in the polynorbornene scaffold relative to polybutadiene. The root of the effect lies in more efficient chemomechanical coupling through the polynorbornene backbone, which acts as a phenomenological lever with greater mechanical advantage than polybutadiene. The experimental results are supported computationally and provide the foundation for a new strategy by which to engineer mechanochemical reactivity.

  7. LOAD AWARE ADAPTIVE BACKBONE SYNTHESIS IN WIRELESS MESH NETWORKS

    Institute of Scientific and Technical Information of China (English)

    Yuan Yuan; Zheng Baoyu

    2009-01-01

    Wireless Mesh Networks (WMNs) are envisioned to support the wired backbone with a wireless Backbone Networks (BNet) for providing internet connectivity to large-scale areas.With a wide range of internet-oriented applications with different Quality of Service (QoS) requirement,the large-scale WMNs should have good scalability and large bandwidth.In this paper,a Load Aware Adaptive Backbone Synthesis (LAABS) algorithm is proposed to automatically balance the traffic flow in the WMNs.The BNet will dynamically split into smaller size or merge into bigger one according to statistic load information of Backbone Nodes (BNs).Simulation results show LAABS generates moderate BNet size and converges quickly,thus providing scalable and stable BNet to facilitate traffic flow.

  8. On Backbone Structure for a Future Multipurpose Network

    DEFF Research Database (Denmark)

    Gutierrez Lopez, Jose Manuel; Cuevas, Ruben; Riaz, M. Tahir

    2008-01-01

    Telecommunications are evolving towards the unification of services and infrastructures. This unification must be achieved at the highest hierarchical level for a complete synergy of services. Therefore, one of the requirements is a multipurpose backbone network capable of supporting all the curr......Telecommunications are evolving towards the unification of services and infrastructures. This unification must be achieved at the highest hierarchical level for a complete synergy of services. Therefore, one of the requirements is a multipurpose backbone network capable of supporting all...

  9. Backbone topology, access, and the commercial Internet, 1997 - 2000

    OpenAIRE

    Morton E O'Kelly; Grubesic, Tony H.

    2002-01-01

    As the Internet grows in popularity, telecommunications infrastructure in the United States continues to increase in capacity and geographic reach to meet market demand. Important components of this infrastructure include the commercial fiber-optic backbones used to transport digital information between locations. The spatial organization of commercial Internet backbones reflects an increasingly competitive privatized market for service provision, in which certain locations are more accessibl...

  10. Triazine-Based Sequence-Defined Polymers with Side-Chain Diversity and Backbone-Backbone Interaction Motifs.

    Science.gov (United States)

    Grate, Jay W; Mo, Kai-For; Daily, Michael D

    2016-03-14

    Sequence control in polymers, well-known in nature, encodes structure and functionality. Here we introduce a new architecture, based on the nucleophilic aromatic substitution chemistry of cyanuric chloride, that creates a new class of sequence-defined polymers dubbed TZPs. Proof of concept is demonstrated with two synthesized hexamers, having neutral and ionizable side chains. Molecular dynamics simulations show backbone-backbone interactions, including H-bonding motifs and pi-pi interactions. This architecture is arguably biomimetic while differing from sequence-defined polymers having peptide bonds. The synthetic methodology supports the structural diversity of side chains known in peptides, as well as backbone-backbone hydrogen-bonding motifs, and will thus enable new macromolecules and materials with useful functions.

  11. Refinement of the Sugar-Phosphate Backbone Torsion Beta for AMBER Force Fields Improves the Description of Z- and B-DNA.

    Science.gov (United States)

    Zgarbová, Marie; Šponer, Jiří; Otyepka, Michal; Cheatham, Thomas E; Galindo-Murillo, Rodrigo; Jurečka, Petr

    2015-12-01

    Z-DNA duplexes are a particularly complicated test case for current force fields. We performed a set of explicit solvent molecular dynamics (MD) simulations with various AMBER force field parametrizations including our recent refinements of the ε/ζ and glycosidic torsions. None of these force fields described the ZI/ZII and other backbone substates correctly, and all of them underpredicted the population of the important ZI substate. We show that this underprediction can be attributed to an inaccurate potential for the sugar-phosphate backbone torsion angle β. We suggest a refinement of this potential, β(OL1), which was derived using our recently introduced methodology that includes conformation-dependent solvation effects. The new potential significantly increases the stability of the dominant ZI backbone substate and improves the overall description of the Z-DNA backbone. It also has a positive (albeit small) impact on another important DNA form, the antiparallel guanine quadruplex (G-DNA), and improves the description of the canonical B-DNA backbone by increasing the population of BII backbone substates, providing a better agreement with experiment. We recommend using β(OL1) in combination with our previously introduced corrections, εζ(OL1) and χ(OL4), (the combination being named OL15) as a possible alternative to the current β torsion potential for more accurate modeling of nucleic acids.

  12. Angle Tree: Nearest Neighbor Search in High Dimensions with Low Intrinsic Dimensionality

    CERN Document Server

    Zvedeniouk, Ilia

    2010-01-01

    We propose an extension of tree-based space-partitioning indexing structures for data with low intrinsic dimensionality embedded in a high dimensional space. We call this extension an Angle Tree. Our extension can be applied to both classical kd-trees as well as the more recent rp-trees. The key idea of our approach is to store the angle (the "dihedral angle") between the data region (which is a low dimensional manifold) and the random hyperplane that splits the region (the "splitter"). We show that the dihedral angle can be used to obtain a tight lower bound on the distance between the query point and any point on the opposite side of the splitter. This in turn can be used to efficiently prune the search space. We introduce a novel randomized strategy to efficiently calculate the dihedral angle with a high degree of accuracy. Experiments and analysis on real and synthetic data sets shows that the Angle Tree is the most efficient known indexing structure for nearest neighbor queries in terms of preprocessing ...

  13. APPECT: An Approximate Backbone-Based Clustering Algorithm for Tags

    DEFF Research Database (Denmark)

    Zong, Yu; Xu, Guandong; Jin, Pin

    2011-01-01

    algorithm for Tags (APPECT). The main steps of APPECT are: (1) we execute the K-means algorithm on a tag similarity matrix for M times and collect a set of tag clustering results Z={C1,C2,…,Cm}; (2) we form the approximate backbone of Z by executing a greedy search; (3) we fix the approximate backbone...... resulting from the severe difficulty of ambiguity, redundancy and less semantic nature of tags. Clustering method is a useful tool to address the aforementioned difficulties. Most of the researches on tag clustering are directly using traditional clustering algorithms such as K-means or Hierarchical...

  14. Optimal sink placement in backbone assisted wireless sensor networks

    Directory of Open Access Journals (Sweden)

    I. Snigdh

    2016-07-01

    Full Text Available This article proposes a scheme for selecting the best site for sink placement in WSN applications employing backbone assisted communications. By placing the sink at a specific position, energy scavenging and delay constraints can effectively be controlled. In contrast to the conventional scheme for base station placement at the geographical centre or random placement at the end of the region of interest, the proposed scheme places the base station at either the graph theoretical centre or centroid of the backbone connecting nodes in the region of interest. This strategy shows a considerable reduction in the total number of hops that each packet needs to travel to reach the sink. The proposed scheme is applied on all the families of graphs prevalent in backbone assisted sensor networks to confirm the performance consistency and improvement in network parameters of the communication backbone measured in terms of delay, the carried load and the total energy consumption, eventually affected by the average number of hops for the message to reach the sink.

  15. The Graphical Representation of the Digital Astronaut Physiology Backbone

    Science.gov (United States)

    Briers, Demarcus

    2010-01-01

    This report summarizes my internship project with the NASA Digital Astronaut Project to analyze the Digital Astronaut (DA) physiology backbone model. The Digital Astronaut Project (DAP) applies integrated physiology models to support space biomedical operations, and to assist NASA researchers in closing knowledge gaps related to human physiologic responses to space flight. The DA physiology backbone is a set of integrated physiological equations and functions that model the interacting systems of the human body. The current release of the model is HumMod (Human Model) version 1.5 and was developed over forty years at the University of Mississippi Medical Center (UMMC). The physiology equations and functions are scripted in an XML schema specifically designed for physiology modeling by Dr. Thomas G. Coleman at UMMC. Currently it is difficult to examine the physiology backbone without being knowledgeable of the XML schema. While investigating and documenting the tags and algorithms used in the XML schema, I proposed a standard methodology for a graphical representation. This standard methodology may be used to transcribe graphical representations from the DA physiology backbone. In turn, the graphical representations can allow examination of the physiological functions and equations without the need to be familiar with the computer programming languages or markup languages used by DA modeling software.

  16. Protonation–deprotonation of the glycine backbone as followed by Raman scattering and multiconformational analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, Belén; Pflüger, Fernando [Groupe de Biophysique Moléculaire, UFR Santé-Médecine-Biologie Humaine, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93017 Bobigny cedex (France); Kruglik, Sergei G. [Laboratoire Jean Perrin, FRE 3231, Université Pierre et Marie Curie (Paris 6), Case courrier 138, 75252 Paris Cedex 05 (France); Ghomi, Mahmoud, E-mail: mahmoud.ghomi@univ-paris13.fr [Groupe de Biophysique Moléculaire, UFR Santé-Médecine-Biologie Humaine, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93017 Bobigny cedex (France)

    2013-11-08

    Highlights: • New pH-dependent Raman spectra in the middle wavenumber region (1800-300 cm{sup −1}). • New quantum mechanical calculations for exploring the Gly conformational landscape. • Construction of muticonformation based theoretical Raman spectra. - Abstract: Because of the absence of the side chain in its chemical structure and its well defined Raman spectra, glycine was selected here to follow its backbone protonation–deprotonation. The scan of the recorded spectra in the 1800–300 cm{sup −1} region led us to assign those obtained at pH 1, 6 and 12 to the cationic, zwitterionic and anionic species, respectively. These data complete well those previously published by Bykov et al. (2008) [16] devoted to the high wavenumber Raman spectra (>2500 cm{sup −1}). To reinforce our discussion, DFT calculations were carried out on the clusters of glycine + 5H{sub 2}O, mimicking reasonably the first hydration shell of the amino acid. Geometry optimization of 141 initial clusters, reflecting plausible combinations of the backbone torsion angles, allowed exploration of the conformational features, as well as construction of the theoretical Raman spectra by considering the most stable clusters containing each glycine species.

  17. Identification of systems containing nonlinear stiffnesses using backbone curves

    Science.gov (United States)

    Londoño, Julián M.; Cooper, Jonathan E.; Neild, Simon A.

    2017-02-01

    This paper presents a method for the dynamic identification of structures containing discrete nonlinear stiffnesses. The approach requires the structure to be excited at a single resonant frequency, enabling measurements to be made in regimes of large displacements where nonlinearities are more likely to be significant. Measured resonant decay data is used to estimate the system backbone curves. Linear natural frequencies and nonlinear parameters are identified using these backbone curves assuming a form for the nonlinear behaviour. Numerical and experimental examples, inspired by an aerospace industry test case study, are considered to illustrate how the method can be applied. Results from these models demonstrate that the method can successfully deliver nonlinear models able to predict the response of the test structure nonlinear dynamics.

  18. Variation of protein backbone amide resonance by electrostatic field

    OpenAIRE

    Sharley, John N.

    2015-01-01

    Amide resonance is found to be sensitive to electrostatic field with component parallel or antiparallel the amide C-N bond. This effect is linear and without threshold in the biologically plausible electrostatic field range -0.005 to 0.005 au. Variation of amide resonance varies Resonance-Assisted Hydrogen Bonding such as occurs in the hydrogen bonded chains of backbone amides of protein secondary structures such as beta sheet and alpha helix, varying the stability of the secondary structure....

  19. Backbone decomposition for continuous-state branching processes with immigration

    CERN Document Server

    Ren, A E Kyprianou Y-X

    2011-01-01

    In the spirit of Duqesne and Winkel (2007) and Berestycki et al. (2011) we show that supercritical continuous-state branching process with a general branching mechanism and general immigration mechanism is equal in law to a continuous-time Galton Watson process with immigration with Poissonian dressing. The result also characterises the limiting backbone decomposition which is predictable from the work on consistent growth of Galton-Watson trees with immigration in Cao and Winkel (2010).

  20. Extracting the multiscale backbone of complex weighted networks

    Science.gov (United States)

    Serrano, M. Ángeles; Boguñá, Marián; Vespignani, Alessandro

    2009-01-01

    A large number of complex systems find a natural abstraction in the form of weighted networks whose nodes represent the elements of the system and the weighted edges identify the presence of an interaction and its relative strength. In recent years, the study of an increasing number of large-scale networks has highlighted the statistical heterogeneity of their interaction pattern, with degree and weight distributions that vary over many orders of magnitude. These features, along with the large number of elements and links, make the extraction of the truly relevant connections forming the network's backbone a very challenging problem. More specifically, coarse-graining approaches and filtering techniques come into conflict with the multiscale nature of large-scale systems. Here, we define a filtering method that offers a practical procedure to extract the relevant connection backbone in complex multiscale networks, preserving the edges that represent statistically significant deviations with respect to a null model for the local assignment of weights to edges. An important aspect of the method is that it does not belittle small-scale interactions and operates at all scales defined by the weight distribution. We apply our method to real-world network instances and compare the obtained results with alternative backbone extraction techniques. PMID:19357301

  1. Solid State Nuclear Magnetic Resonance Investigation of Polymer Backbone Dynamics in Poly(Ethylene Oxide) Based Lithium and Sodium Polyether-ester-sulfonate Ionomers

    Energy Technology Data Exchange (ETDEWEB)

    Roach, David J.; Dou, Shichen; Colby, Ralph H.; Mueller, Karl T.

    2013-01-01

    Polymer backbone dynamics of single ion conducting poly(ethylene oxide) (PEO)-based ionomer samples with low glass transition temperatures (Tg) have been investigated using solid-state nuclear magnetic resonance (NMR). Experiments detecting 13C with 1H decoupling under magic angle spinning (MAS) conditions identified the different components of the polymer backbone (PEO spacer and isophthalate groups) and their relative mobilities for a suite of lithium- and sodium-containing ionomer samples with varying cation contents. Variable temperature (203-373 K) 1H-13C cross-polarization MAS (CP-MAS) experiments also provided qualitative assessment of the differences in the motions of the polymer backbone components as a function of cation content and identity. Each of the main backbone components exhibit distinct motions, following the trends expected for motional characteristics based on earlier Quasi Elastic Neutron Scattering and 1H spin-lattice relaxation rate measurements. Previous 1H and 7Li spin-lattice relaxation measurements focused on both the polymer backbone and cation motion on the nanosecond timescale. The studies presented here assess the slower timescale motion of the polymer backbone allowing for a more comprehensive understanding of the polymer dynamics. The temperature dependences of 13C linewidths were used to both qualitatively and quantitatively examine the effects of cation content and identity on PEO spacer mobility. Variable contact time 1H-13C CP-MAS experiments were used to further assess the motions of the polymer backbone on the microsecond timescale. The motion of the PEO spacer, reported via the rate of magnetization transfer from 1H to 13C nuclei, becomes similar for T ≳ 1.1 Tg in all ionic samples, indicating that at similar elevated reduced temperatures the motions of the polymer backbones on the microsecond timescale become insensitive to ion interactions. These results present an improved picture, beyond those of previous findings, for

  2. Human furin Cys198 imposes dihedral and positional restraints on His194 for optimal Ser386-proton transfer.

    Science.gov (United States)

    Omotuyi, Olaposi I; Hamada, Tsuyoshi

    2015-01-01

    Inhibitors of human furin may represent the clinical remedy for very aggressive cancer, viral, and bacterial infections. Most of the currently available inhibitors are weak in terms of potency, drug-likeness, and furin specificity thereby necessitating the development of newer compounds especially mechanism-based inhibitors. Here, the roles of active site Cys198 (C198), His194 (H194), and Ser386 (S386) were investigated using computational-site-directed mutagenesis and molecular dynamics (MD) simulation. Data were obtained from six (6) biosystems: wildtype (C198/S386), furin-C198G (S386), furin-S386G (C198), and their peptide (nascent hydrolyzed peptide H2N-RTRR-CO2) bound complexes. The results strongly supported that in wildtype furin but not S386G and C198G mutants, following S386/scissile carbon attack (4.0 Å), the peptide retracted from the active site, representing peptide release post hydrolysis. Furthermore, in S386G mutant, C194 side chain thiolate ion may act as the nucleophile replacement but competing electron-rich centers (H194, H364) and energetically unattainable geometric strain on the peptide may constitute the limiting factors. In biosystems not complexed with peptide (representative of pre-attack state), C198 preferentially engaged H194 imidazole moiety via sulfur-π bond system causing a dihedral and positional restraints on the imidazole ring for ultimate alignment of its NE2 hydrogen atom with the side chain enolate oxygen of S364 required for optimal proton transfer. In summary, small-molecular-weight compounds with dual serine and cysteine protease inhibitory actions may represent a new class of potent and furin-selective compounds for future clinical applications.

  3. RNABC: forward kinematics to reduce all-atom steric clashes in RNA backbone.

    Science.gov (United States)

    Wang, Xueyi; Kapral, Gary; Murray, Laura; Richardson, David; Richardson, Jane; Snoeyink, Jack

    2008-01-01

    Although accurate details in RNA structure are of great importance for understanding RNA function, the backbone conformation is difficult to determine, and most existing RNA structures show serious steric clashes (>or= 0.4 A overlap) when hydrogen atoms are taken into account. We have developed a program called RNABC (RNA Backbone Correction) that performs local perturbations to search for alternative conformations that avoid those steric clashes or other local geometry problems. Its input is an all-atom coordinate file for an RNA crystal structure (usually from the MolProbity web service), with problem areas specified. RNABC rebuilds a suite (the unit from sugar to sugar) by anchoring the phosphorus and base positions, which are clearest in crystallographic electron density, and reconstructing the other atoms using forward kinematics. Geometric parameters are constrained within user-specified tolerance of canonical or original values, and torsion angles are constrained to ranges defined through empirical database analyses. Several optimizations reduce the time required to search the many possible conformations. The output results are clustered and presented to the user, who can choose whether to accept one of the alternative conformations. Two test evaluations show the effectiveness of RNABC, first on the S-motifs from 42 RNA structures, and second on the worst problem suites (clusters of bad clashes, or serious sugar pucker outliers) in 25 unrelated RNA structures. Among the 101 S-motifs, 88 had diagnosed problems, and RNABC produced clash-free conformations with acceptable geometry for 71 of those (about 80%). For the 154 worst problem suites, RNABC proposed alternative conformations for 72. All but 8 of those were judged acceptable after examining electron density (where available) and local conformation. Thus, even for these worst cases, nearly half the time RNABC suggested corrections suitable to initiate further crystallographic refinement. The program is

  4. Design of an IPTV Multicast System for Internet Backbone Networks

    OpenAIRE

    T. H. Szymanski; Gilbert, D

    2010-01-01

    The design of an IPTV multicast system for the Internet backbone network is presented and explored through extensive simulations. In the proposed system, a resource reservation algorithm such as RSVP, IntServ, or DiffServ is used to reserve resources (i.e., bandwidth and buffer space) in each router in an IP multicast tree. Each router uses an Input-Queued, Output-Queued, or Crosspoint-Queued switch architecture with unity speedup. A recently proposed Recursive Fair Stochastic Matrix Decompos...

  5. Application of Multicast-based Video Conference on CERNET Backbone

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Multicast-based video conference is a representative application in advanced network. In multi-point video conference using multicast can get better efficiency facilitated by inner-group broadcast mechanism. In the application, the multicast-based network resources assignment, management and security should be considered together. This paper presents a framework model of multicast-based video conferencing application with three layers. And a practical multicast-based video conferencing is implemented in CERNET(China Education and Research Network) backbone. The practice is valuable for the development of multicast-based video conferencing application in China.

  6. Resistance of Feynman diagrams and the percolation backbone dimension.

    Science.gov (United States)

    Janssen, H K; Stenull, O; Oerding, K

    1999-06-01

    We present an alternative view of Feynman diagrams for the field theory of random resistor networks, in which the diagrams are interpreted as being resistor networks themselves. This simplifies the field theory considerably as we demonstrate by calculating the fractal dimension D(B) of the percolation backbone to three loop order. Using renormalization group methods we obtain D(B)=2+epsilon/21-172epsilon(2)/9261+2epsilon(3)[-74 639+22 680zeta(3)]/4 084 101, where epsilon=6-d with d being the spatial dimension and zeta(3)=1.202 057... .

  7. Unique optimal solution instance and computational complexity of backbone in the graph bi-partitioning problem

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    As an important tool for heuristic design of NP-hard problems, backbone analysis has become a hot spot in theoretical computer science in recent years. Due to the difficulty in the research on computational complexity of the backbone, many researchers analyzed the backbone by statistic ways. Aiming to increase the backbone size which is usually very small by the existing methods, the unique optimal solution instance construction (UOSIC) is proposed for the graph bi-partitioning problem (GBP). Also, we prove by using the UOSIC that it is NP-hard to obtain the backbone, i.e. no algorithm exists to obtain the backbone of a GBP in polynomial time under the assumption that P ( NP. Our work expands the research area of computational complexity of the backbone. And the UOSIC provides a new way for heuristic design of NP-hard problems.

  8. Process-based network decomposition reveals backbone motif structure.

    Science.gov (United States)

    Wang, Guanyu; Du, Chenghang; Chen, Hao; Simha, Rahul; Rong, Yongwu; Xiao, Yi; Zeng, Chen

    2010-06-08

    A central challenge in systems biology today is to understand the network of interactions among biomolecules and, especially, the organizing principles underlying such networks. Recent analysis of known networks has identified small motifs that occur ubiquitously, suggesting that larger networks might be constructed in the manner of electronic circuits by assembling groups of these smaller modules. Using a unique process-based approach to analyzing such networks, we show for two cell-cycle networks that each of these networks contains a giant backbone motif spanning all the network nodes that provides the main functional response. The backbone is in fact the smallest network capable of providing the desired functionality. Furthermore, the remaining edges in the network form smaller motifs whose role is to confer stability properties rather than provide function. The process-based approach used in the above analysis has additional benefits: It is scalable, analytic (resulting in a single analyzable expression that describes the behavior), and computationally efficient (all possible minimal networks for a biological process can be identified and enumerated).

  9. Characterizing Aciniform Silk Repetitive Domain Backbone Dynamics and Hydrodynamic Modularity

    Directory of Open Access Journals (Sweden)

    Marie-Laurence Tremblay

    2016-08-01

    Full Text Available Spider aciniform (wrapping silk is a remarkable fibrillar biomaterial with outstanding mechanical properties. It is a modular protein consisting, in Argiope trifasciata, of a core repetitive domain of 200 amino acid units (W units. In solution, the W units comprise a globular folded core, with five α-helices, and disordered tails that are linked to form a ~63-residue intrinsically disordered linker in concatemers. Herein, we present nuclear magnetic resonance (NMR spectroscopy-based 15N spin relaxation analysis, allowing characterization of backbone dynamics as a function of residue on the ps–ns timescale in the context of the single W unit (W1 and the two unit concatemer (W2. Unambiguous mapping of backbone dynamics throughout W2 was made possible by segmental NMR active isotope-enrichment through split intein-mediated trans-splicing. Spectral density mapping for W1 and W2 reveals a striking disparity in dynamics between the folded core and the disordered linker and tail regions. These data are also consistent with rotational diffusion behaviour where each globular domain tumbles almost independently of its neighbour. At a localized level, helix 5 exhibits elevated high frequency dynamics relative to the proximal helix 4, supporting a model of fibrillogenesis where this helix unfolds as part of the transition to a mixed α-helix/β-sheet fibre.

  10. Backbone building from quadrilaterals: a fast and accurate algorithm for protein backbone reconstruction from alpha carbon coordinates.

    Science.gov (United States)

    Gront, Dominik; Kmiecik, Sebastian; Kolinski, Andrzej

    2007-07-15

    In this contribution, we present an algorithm for protein backbone reconstruction that comprises very high computational efficiency with high accuracy. Reconstruction of the main chain atomic coordinates from the alpha carbon trace is a common task in protein modeling, including de novo structure prediction, comparative modeling, and processing experimental data. The method employed in this work follows the main idea of some earlier approaches to the problem. The details and careful design of the present approach are new and lead to the algorithm that outperforms all commonly used earlier applications. BBQ (Backbone Building from Quadrilaterals) program has been extensively tested both on native structures as well as on near-native decoy models and compared with the different available existing methods. Obtained results provide a comprehensive benchmark of existing tools and evaluate their applicability to a large scale modeling using a reduced representation of protein conformational space. The BBQ package is available for downloading from our website at http://biocomp.chem.uw.edu.pl/services/BBQ/. This webpage also provides a user manual that describes BBQ functions in detail.

  11. Changing the topology of protein backbone: the effect of backbone cyclization on the structure and dynamics of a SH3 domain

    Directory of Open Access Journals (Sweden)

    Frank H Schumann

    2015-04-01

    Full Text Available Understanding of the effects of the backbone cyclization on the structure and dynamics of a protein is essential for using protein topology engineering to alter protein stability and function. Here we have determined, for the first time, the structure and dynamics of the linear and various circular constructs of the N-SH3 domain from protein c-Crk. These constructs differ in the length and amino acid composition of the cyclization region. The backbone cyclization was carried out using intein-mediated intramolecular chemical ligation between the juxtaposed N- and the C-termini. The structure and backbone dynamics studies were performed using solution NMR. Our data suggest that the backbone cyclization has little effect on the overall three-dimensional structure of the SH3 domain: besides the termini, only minor structural changes were found in the proximity of the cyclization region. In contrast to the structure, backbone dynamics are significantly affected by the cyclization. On the subnanosecond time scale, the backbone of all circular constructs on average appears more rigid than that of the linear SH3 domain; this effect is observed over the entire backbone and is not limited to the cyclization site. The backbone mobility of the circular constructs becomes less restricted with increasing length of the circularization loop. In addition, significant conformational exchange motions (on the sub-millisecond time scale were found in the N-Src loop and in the adjacent β-strands in all circular constructs studied in this work. These effects of backbone cyclization on protein dynamics have potential implications for the stability of the protein fold and for ligand binding.

  12. Variation of protein backbone amide resonance by electrostatic field

    CERN Document Server

    Sharley, John N

    2015-01-01

    Amide resonance is found to be sensitive to electrostatic field with component parallel or antiparallel the amide C-N bond. This effect is linear and without threshold in the biologically plausible electrostatic field range -0.005 to 0.005 au. Variation of amide resonance varies Resonance Assisted Hydrogen Bonding such as occurs in the hydrogen bonded chains of backbone amides of protein secondary structures such as beta sheet and non-polyproline helix such as alpha helix, varying the stability of the secondary structure. The electrostatic properties including permittivity of amino acid residue sidegroups influence the electrostatic field component parallel or antiparallel the C-N bond of each amide. The significance of this factor relative to other factors in protein folding depends on the magnitude of electrostatic field component parallel or antiparallel the C-N bond of each amide, and preliminary protein-scale calculations of the magnitude of these components suggest this factor warrants investigation in ...

  13. Backbones of evolutionary history test biodiversity theory for microbes.

    Science.gov (United States)

    O'Dwyer, James P; Kembel, Steven W; Sharpton, Thomas J

    2015-07-07

    Identifying the ecological and evolutionary mechanisms that determine biological diversity is a central question in ecology. In microbial ecology, phylogenetic diversity is an increasingly common and relevant means of quantifying community diversity, particularly given the challenges in defining unambiguous species units from environmental sequence data. We explore patterns of phylogenetic diversity across multiple bacterial communities drawn from different habitats and compare these data to evolutionary trees generated using theoretical models of biodiversity. We have two central findings. First, although on finer scales the empirical trees are highly idiosyncratic, on coarse scales the backbone of these trees is simple and robust, consistent across habitats, and displays bursts of diversification dotted throughout. Second, we find that these data demonstrate a clear departure from the predictions of standard neutral theories of biodiversity and that an alternative family of generalized models provides a qualitatively better description. Together, these results lay the groundwork for a theoretical framework to connect ecological mechanisms to observed phylogenetic patterns in microbial communities.

  14. Phase Transitions and Backbones of the Asymmetric Traveling Salesman Problem

    CERN Document Server

    Zhang, W

    2011-01-01

    In recent years, there has been much interest in phase transitions of combinatorial problems. Phase transitions have been successfully used to analyze combinatorial optimization problems, characterize their typical-case features and locate the hardest problem instances. In this paper, we study phase transitions of the asymmetric Traveling Salesman Problem (ATSP), an NP-hard combinatorial optimization problem that has many real-world applications. Using random instances of up to 1,500 cities in which intercity distances are uniformly distributed, we empirically show that many properties of the problem, including the optimal tour cost and backbone size, experience sharp transitions as the precision of intercity distances increases across a critical value. Our experimental results on the costs of the ATSP tours and assignment problem agree with the theoretical result that the asymptotic cost of assignment problem is pi ^2 /6 the number of cities goes to infinity. In addition, we show that the average computation...

  15. Bioactivities of fish protein hydrolysates from defatted salmon backbones

    Directory of Open Access Journals (Sweden)

    Rasa Slizyte

    2016-09-01

    Full Text Available Bioactivities of bulk fish protein hydrolysates (FPH from defatted salmon backbones obtained with eight different commercial enzymes and their combinations were tested. All FPH showed antioxidative activity in vitro. DPPH scavenging activity increased, while iron chelating ability decreased with increasing time of hydrolysis. All FPH showed ACE inhibiting effect which depended on type of enzyme and increased with time of hydrolysis. The highest effect was found for FPH produced with Trypsin. Bromelain + Papain hydrolysates reduced the uptake of radiolabelled glucose into CaCo-2 cells, a model of human enterocytes, indicating a potential antidiabetic effect of FPH. FPH obtained by Trypsin, Bromelain + Papain and Protamex showed the highest ACE inhibitory, cellular glucose transporter (GLUT/SGLT inhibitory and in vitro antioxidative activities, respectively. Correlation was observed between the measured bioactivities, degree of hydrolysis and molecular weight profiles, supporting prolonged hydrolysis to obtain high bioactivities.

  16. Design of an IPTV Multicast System for Internet Backbone Networks

    Directory of Open Access Journals (Sweden)

    T. H. Szymanski

    2010-01-01

    Full Text Available The design of an IPTV multicast system for the Internet backbone network is presented and explored through extensive simulations. In the proposed system, a resource reservation algorithm such as RSVP, IntServ, or DiffServ is used to reserve resources (i.e., bandwidth and buffer space in each router in an IP multicast tree. Each router uses an Input-Queued, Output-Queued, or Crosspoint-Queued switch architecture with unity speedup. A recently proposed Recursive Fair Stochastic Matrix Decomposition algorithm used to compute near-perfect transmission schedules for each IP router. The IPTV traffic is shaped at the sources using Application-Specific Token Bucker Traffic Shapers, to limit the burstiness of incoming network traffic. The IPTV traffic is shaped at the destinations using Application-Specific Playback Queues, to remove residual network jitter and reconstruct the original bursty IPTV video streams at each destination. All IPTV traffic flows are regenerated at the destinations with essentially zero delay jitter and essentially-perfect QoS. The destination nodes deliver the IPTV streams to the ultimate end users using the same IPTV multicast system over a regional Metropolitan Area Network. It is shown that all IPTV traffic is delivered with essentially-perfect end-to-end QoS, with deterministic bounds on the maximum delay and jitter on each video frame. Detailed simulations of an IPTV distribution system, multicasting several hundred high-definition IPTV video streams over several essentially saturated IP backbone networks are presented.

  17. Reconstruction of Protein Backbones from the BriX Collection of Canonical Protein Fragments

    OpenAIRE

    Lies Baeten; Joke Reumers; Vicente Tur; François Stricher; Tom Lenaerts; Luis Serrano; Frederic Rousseau; Joost Schymkowitz

    2008-01-01

    As modeling of changes in backbone conformation still lacks a computationally efficient solution, we developed a discretisation of the conformational states accessible to the protein backbone similar to the successful rotamer approach in side chains. The BriX fragment database, consisting of fragments from 4 to 14 residues long, was realized through identification of recurrent backbone fragments from a non-redundant set of high-resolution protein structures. BriX contains an alphabet of more ...

  18. Thin Films Formed from Conjugated Polymers with Ionic, Water-Soluble Backbones.

    Science.gov (United States)

    Voortman, Thomas P; Chiechi, Ryan C

    2015-12-30

    This paper compares the morphologies of films of conjugated polymers in which the backbone (main chain) and pendant groups are varied between ionic/hydrophilic and aliphatic/hydrophobic. We observe that conjugated polymers in which the pendant groups and backbone are matched, either ionic-ionic or hydrophobic-hydrophobic, form smooth, structured, homogeneous films from water (ionic) or tetrahydrofuran (hydrophobic). Mismatched conjugated polymers, by contrast, form inhomogeneous films with rough topologies. The polymers with ionic backbone chains are conjugated polyions (conjugated polymers with closed-shell charges in the backbone), which are semiconducting materials with tunable bad-gaps, not unlike uncharged conjugated polymers.

  19. A hierarchical virtual backbone construction protocol for mobile ad hoc networks

    Directory of Open Access Journals (Sweden)

    Bharti Sharma

    2016-07-01

    Full Text Available We propose a hierarchical backbone construction protocol for mobile ad hoc networks. Our protocol is based on the idea of using an efficient extrema finding method to create clusters comprising the nodes that are within certain prespecified wireless hop distance. Afterward, we apply our ‘diameter’ algorithm among clusters to identify the dominating nodes that are, finally, connected via multi-hop virtual links to construct the backbone. We present the analytic as well as simulation study of our algorithm and also a method for the dynamic maintenance of constructed backbone. In the end, we illustrate the use of the virtual backbone with the help of an interesting application.

  20. A new angle on the Euler angles

    Science.gov (United States)

    Markley, F. Landis; Shuster, Malcolm D.

    1995-01-01

    We present a generalization of the Euler angles to axes beyond the twelve conventional sets. The generalized Euler axes must satisfy the constraint that the first and the third are orthogonal to the second; but the angle between the first and third is arbitrary, rather than being restricted to the values 0 and pi/2, as in the conventional sets. This is the broadest generalization of the Euler angles that provides a representation of an arbitrary rotation matrix. The kinematics of the generalized Euler angles and their relation to the attitude matrix are presented. As a side benefit, the equations for the generalized Euler angles are universal in that they incorporate the equations for the twelve conventional sets of Euler angles in a natural way.

  1. Structure and backbone dynamics of a microcrystalline metalloprotein by solid-state NMR.

    Science.gov (United States)

    Knight, Michael J; Pell, Andrew J; Bertini, Ivano; Felli, Isabella C; Gonnelli, Leonardo; Pierattelli, Roberta; Herrmann, Torsten; Emsley, Lyndon; Pintacuda, Guido

    2012-07-10

    We introduce a new approach to improve structural and dynamical determination of large metalloproteins using solid-state nuclear magnetic resonance (NMR) with (1)H detection under ultrafast magic angle spinning (MAS). The approach is based on the rapid and sensitive acquisition of an extensive set of (15)N and (13)C nuclear relaxation rates. The system on which we demonstrate these methods is the enzyme Cu, Zn superoxide dismutase (SOD), which coordinates a Cu ion available either in Cu(+) (diamagnetic) or Cu(2+) (paramagnetic) form. Paramagnetic relaxation enhancements are obtained from the difference in rates measured in the two forms and are employed as structural constraints for the determination of the protein structure. When added to (1)H-(1)H distance restraints, they are shown to yield a twofold improvement of the precision of the structure. Site-specific order parameters and timescales of motion are obtained by a gaussian axial fluctuation (GAF) analysis of the relaxation rates of the diamagnetic molecule, and interpreted in relation to backbone structure and metal binding. Timescales for motion are found to be in the range of the overall correlation time in solution, where internal motions characterized here would not be observable.

  2. Glaucoma, Open-Angle

    Science.gov (United States)

    ... Programs Home > Statistics and Data > Glaucoma, Open-angle Glaucoma, Open-angle Open-angle Glaucoma Defined In open-angle glaucoma, the fluid passes ... 2010 2010 U.S. Age-Specific Prevalence Rates for Glaucoma by Age and Race/Ethnicity The prevalence of ...

  3. Thin Films Formed from Conjugated Polymers with Ionic, Water-Soluble Backbones

    NARCIS (Netherlands)

    Voortman, Thomas P; Chiechi, Ryan C

    2015-01-01

    This paper compares the morphologies of films of conjugated polymers in which the backbone (main chain) and pendant groups are varied between ionic/hydrophilic and aliphatic/hydrophobic. We observe that conjugated polymers in which the pendant groups and backbone are matched, either ionic-ionic or h

  4. Backbone Assignment of the MALT1 Paracaspase by Solution NMR.

    Science.gov (United States)

    Unnerståle, Sofia; Nowakowski, Michal; Baraznenok, Vera; Stenberg, Gun; Lindberg, Jimmy; Mayzel, Maxim; Orekhov, Vladislav; Agback, Tatiana

    2016-01-01

    Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is a unique paracaspase protein whose protease activity mediates oncogenic NF-κB signalling in activated B cell-like diffuse large B cell lymphomas (ABC-DLBCLs). ABC-DLBCLs are aggressive lymphomas with high resistance to current chemotherapies. Low survival rate among patients emphasizes the urgent need for alternative treatment options. The characterization of the MALT1 will be an essential tool for developing new target-directed drugs against MALT1 dependent disorders. As the first step in the atomic-level NMR studies of the system, here we report, the (15)N/(13)C/(1)H backbone assignment of the apo form of the MALT1 paracaspase region together with the third immunoglobulin-like (Ig3) domain, 44 kDa, by high resolution NMR. In addition, the non-uniform sampling (NUS) based targeted acquisition procedure is evaluated as a mean of decreasing acquisition and analysis time for larger proteins.

  5. Backbone Assignment of the MALT1 Paracaspase by Solution NMR.

    Directory of Open Access Journals (Sweden)

    Sofia Unnerståle

    Full Text Available Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1 is a unique paracaspase protein whose protease activity mediates oncogenic NF-κB signalling in activated B cell-like diffuse large B cell lymphomas (ABC-DLBCLs. ABC-DLBCLs are aggressive lymphomas with high resistance to current chemotherapies. Low survival rate among patients emphasizes the urgent need for alternative treatment options. The characterization of the MALT1 will be an essential tool for developing new target-directed drugs against MALT1 dependent disorders. As the first step in the atomic-level NMR studies of the system, here we report, the (15N/(13C/(1H backbone assignment of the apo form of the MALT1 paracaspase region together with the third immunoglobulin-like (Ig3 domain, 44 kDa, by high resolution NMR. In addition, the non-uniform sampling (NUS based targeted acquisition procedure is evaluated as a mean of decreasing acquisition and analysis time for larger proteins.

  6. Data acquisition backbone core DABC release v1.0

    Energy Technology Data Exchange (ETDEWEB)

    Adamczewski-Musch, Joern; Essel, Hans G.; Kurz, Nikolaus; Linev, S. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany)

    2010-07-01

    The new experiments at FAIR require new concepts of data acquisition systems for the distribution of self-triggered, time stamped data streams over high performance networks for event building. The Data Acquisition Backbone Core (DABC) is a general purpose software framework developed for the implementation of such data acquisition systems. A DABC application consists of functional components like data input, combiner, scheduler, event builder, filter, analysis and storage which can be configured at runtime. Application specific code including the support of all kinds of data channels (front-end systems) is implemented by C++ program plug-ins. DABC is also well suited as environment for various detector and readout components test beds. A set of DABC plug-ins has been developed for the FAIR experiment CBM (Compressed Baryonic Matter) at GSI. This DABC application is used as DAQ system for test beamtimes. Front-end boards equipped with n-XYTER ASICs and ADCs are connected to read-out controller boards (ROC). From there the data is sent over Ethernet (UDP), or over optics and PCIe interface cards into Linux PCs. DABC does the controlling, event building, archiving and data serving. The first release of DABC was published in 2009 and is available under GPL license.

  7. Backbone of complex networks of corporations: The flow of control

    Science.gov (United States)

    Glattfelder, J. B.; Battiston, S.

    2009-09-01

    We present a methodology to extract the backbone of complex networks based on the weight and direction of links, as well as on nontopological properties of nodes. We show how the methodology can be applied in general to networks in which mass or energy is flowing along the links. In particular, the procedure enables us to address important questions in economics, namely, how control and wealth are structured and concentrated across national markets. We report on the first cross-country investigation of ownership networks, focusing on the stock markets of 48 countries around the world. On the one hand, our analysis confirms results expected on the basis of the literature on corporate control, namely, that in Anglo-Saxon countries control tends to be dispersed among numerous shareholders. On the other hand, it also reveals that in the same countries, control is found to be highly concentrated at the global level, namely, lying in the hands of very few important shareholders. Interestingly, the exact opposite is observed for European countries. These results have previously not been reported as they are not observable without the kind of network analysis developed here.

  8. Backbone of complex networks of corporations: the flow of control.

    Science.gov (United States)

    Glattfelder, J B; Battiston, S

    2009-09-01

    We present a methodology to extract the backbone of complex networks based on the weight and direction of links, as well as on nontopological properties of nodes. We show how the methodology can be applied in general to networks in which mass or energy is flowing along the links. In particular, the procedure enables us to address important questions in economics, namely, how control and wealth are structured and concentrated across national markets. We report on the first cross-country investigation of ownership networks, focusing on the stock markets of 48 countries around the world. On the one hand, our analysis confirms results expected on the basis of the literature on corporate control, namely, that in Anglo-Saxon countries control tends to be dispersed among numerous shareholders. On the other hand, it also reveals that in the same countries, control is found to be highly concentrated at the global level, namely, lying in the hands of very few important shareholders. Interestingly, the exact opposite is observed for European countries. These results have previously not been reported as they are not observable without the kind of network analysis developed here.

  9. Contact Angle Goniometer

    Data.gov (United States)

    Federal Laboratory Consortium — Description:The FTA32 goniometer provides video-based contact angle and surface tension measurement. Contact angles are measured by fitting a mathematical expression...

  10. MCBT: Multi-Hop Cluster Based Stable Backbone Trees for Data Collection and Dissemination in WSNs.

    Science.gov (United States)

    Shin, Inyoung; Kim, Moonseong; Mutka, Matt W; Choo, Hyunseung; Lee, Tae-Jin

    2009-01-01

    We propose a stable backbone tree construction algorithm using multi-hop clusters for wireless sensor networks (WSNs). The hierarchical cluster structure has advantages in data fusion and aggregation. Energy consumption can be decreased by managing nodes with cluster heads. Backbone nodes, which are responsible for performing and managing multi-hop communication, can reduce the communication overhead such as control traffic and minimize the number of active nodes. Previous backbone construction algorithms, such as Hierarchical Cluster-based Data Dissemination (HCDD) and Multicluster, Mobile, Multimedia radio network (MMM), consume energy quickly. They are designed without regard to appropriate factors such as residual energy and degree (the number of connections or edges to other nodes) of a node for WSNs. Thus, the network is quickly disconnected or has to reconstruct a backbone. We propose a distributed algorithm to create a stable backbone by selecting the nodes with higher energy or degree as the cluster heads. This increases the overall network lifetime. Moreover, the proposed method balances energy consumption by distributing the traffic load among nodes around the cluster head. In the simulation, the proposed scheme outperforms previous clustering schemes in terms of the average and the standard deviation of residual energy or degree of backbone nodes, the average residual energy of backbone nodes after disseminating the sensed data, and the network lifetime.

  11. Ruthenium-catalyzed olefin metathesis accelerated by the steric effect of the backbone substituent in cyclic (alkyl)(amino) carbenes.

    Science.gov (United States)

    Zhang, Jun; Song, Shangfei; Wang, Xiao; Jiao, Jiajun; Shi, Min

    2013-10-21

    Three ruthenium complexes bearing backbone-monosubstituted CAACs were prepared and displayed dramatic improvement in catalytic efficiency not only in RCM reaction but also in the ethenolysis of methyl oleate, compared to those bearing backbone-disubstituted CAACs.

  12. Pseudo 5D HN(C)N Experiment to Facilitate the Assignment of Backbone Resonances in Proteins Exhibiting High Backbone Shift Degeneracy

    CERN Document Server

    Kumar, Dinesh; Shukla, Vaibhav Kumar; Pandey, Himanshu; Arora, Ashish; Guleria, Anupam

    2014-01-01

    Assignment of protein backbone resonances is most routinely carried out using triple resonance three dimensional NMR experiments involving amide 1H and 15N resonances. However for intrinsically unstructured proteins, alpha-helical proteins or proteins containing several disordered fragments, the assignment becomes problematic because of high degree of backbone shift degeneracy. In this backdrop, a novel reduced dimensionality (RD) experiment -(5,3)D-hNCO-CANH- is presented to facilitate (and/or to validate) the sequential backbone resonance assignment in such proteins. The proposed 3D NMR experiment makes use of the modulated amide 15N chemical shifts (resulting from the joint sampling along both its indirect dimensions) to resolve the ambiguity involved in connecting the neighboring amide resonances (i.e. HiNi and Hi-1Ni-1) for overlapping amide NH peaks. The experiment -encoding 5D spectral information- leads to a conventional 3D spectrum with significantly reduced spectral crowding and complexity. The impr...

  13. A comparison of the structures of some 2- and 3-substituted chromone derivatives: a structural study on the importance of the secondary carboxamide backbone for the inhibitory activity of MAO-B

    Directory of Open Access Journals (Sweden)

    Ligia R. Gomes

    2015-11-01

    Full Text Available The crystal structures of the 3-substituted tertiary chromone carboxamide derivative, C17H13NO3, N-methyl-4-oxo-N-phenyl-4H-chromene-3-carboxamide (1, and the chromone carbonyl pyrrolidine derivatives, C14H13NO3, 3-(pyrrolidine-1-carbonyl-4H-chromen-4-one (3 and 2-(pyrrolidine-1-carbonyl-4H-chromen-4-one (4 have been determined. Their structural features are discussed and compared with similar compounds namely with respect to their MAO-B inhibitory activities. The chromone carboxamide presents a –syn conformation with the aromatic rings twisted with respect to each other [the dihedral angle between the mean planes of the chromone system and the exocyclic phenyl ring is 58.48 (8°]. The pyrrolidine derivatives also display a significant twist: the dihedral angles between the chromone system and the best plane formed by the pyrrolidine atoms are 48.9 (2 and 23.97 (12° in (3 and (4, respectively. Compound (3 shows a short C—H...O intramolecular contact forming an S(7 ring. The supramolecular structures for each compound are defined by weak C—H...O hydrogen bonds, which link the molecules into chains and sheets. The Cambridge Structural Database gave 45 hits for compounds with a pyrrolidinecarbonyl group. A simple statistical analysis of their geometric parameters is made in order to compare them with those of the molecules determined in the present work.

  14. A Distributed Virtual Backbone Formation for Wireless Ad Hoc and Sensor Networks

    Institute of Scientific and Technical Information of China (English)

    CAO Yong-tao; HE Chen; JIANG Ling-ge

    2007-01-01

    The virtual backbone is an approach for solving routing problems in wireless ad hoc and sensor networks. A connected dominating set (CDS) was proposed as a virtual backbone to improve the performance of wireless networks. The quality of a virtual backbone is measured not only by approximation factor, which is the ratio of its size to that of minimum CDS, but also time complexity and message complexity. In this paper, a distributed algorithm is presented to construct a minimum CDS for ad hoc and sensor networks. By destroying triangular loops in the virtual backbone, the proposed algorithm can effectively construct a CDS with smaller size. Moreover, our algorithm, which is fully localized, has a constant approximation ratio, linear message and time complexity, and low implementation complexity. The simulation results and theoretical analysis show that our algorithm has better efficiency and performance than conventional approaches.

  15. Laccase-assisted grafting of poly(3-hydroxybutyrate) onto the bacterial cellulose as backbone polymer: development and characterisation.

    Science.gov (United States)

    Iqbal, Hafiz M N; Kyazze, Godfrey; Tron, Thierry; Keshavarz, Tajalli

    2014-11-26

    Bacterial cellulose (BC) exhibits high purity, mechanical strength and an ultra-fine fibrous 3-D network structure with bio-compatible and bio-degradable characteristics, while P(3 HB) are a bio-degradable matrix material derived from natural resources. Herein, we report a mild and eco-friendly fabrication of indigenously isolated P(3 HB) based novel composites consisting of BC (a straight-chain polysaccharide) as a backbone polymer and laccase was used as a grafting tool. The resulting composites were characterised by Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), dynamic mechanical analyser (DMA) and water contact angle analyser (WCA). The FTIR spectra of the pure P(3 HB) and P(3 HB) containing graft composites [P(3 HB)-g-BC] showed their strong characteristic bands at 3358 cm(-1), 1721 cm(-1) and 1651 cm(-1), respectively. A homogenous dispersion of P(3 HB) in the backbone polymer of BC was achieved as evident by the SEM micrographs. XRD pattern for P(3 HB) showed distinct peaks at 2θ values that represent the crystalline nature of P(3 HB). While, in comparison with those of neat P(3 HB), the degree of crystallinity for P(3 HB)-g-BC decreased and this reduction is mainly because of the new cross-linking of P(3 HB) within the backbone polymer that changes the morphology and destroys the crystallites. Laccase-assisted graft composite prepared from P(3 HB) and BC was fairly flexible and strong, judged by the tensile strength (64.5 MPa), elongations at break (15.7%), and Young's modulus (0.98 GPa) because inherently high strength of BC allowed the mechanical properties of P(3 HB) to improve in the P(3 HB)-g-BC composite. The hydrophilic property of the P(3 HB)-g-BC was much better than that of the individual counterparts which is also a desired characteristic to enhance the biocompatibility of the materials for proper cell adhesion and proliferation.

  16. Synthesis and properties of polybenzazoles containing flexible methylene in backbone

    Institute of Scientific and Technical Information of China (English)

    Xiaohui XU; Xiaoyun LIU; Chengjun ZHOU; Qixin ZHUANG; Zhewen HAN

    2008-01-01

    A novel series of polybenzazoles with rigid-rod benzoxazole cycle and soft methylene segment was designed and synthesized via solution condensation poly-merizations from 4,6-diamino-l,3-benzenediol dipho-sphate, terephthalic acid and aliphatic dicarboxylic acid. The structures of polybenzazoles were characterized by means of FT-IR,1H NMR and Wide-angle X-ray diffrac-tion (WAXRD). All the polymers show excellent thermal stability and the TdS was above 471℃, The intrinsic vis-cosities [η] of the polymers ranged from 0.8 to 0.9. The UV-Vis absorption peaks of the polymers in MSA were blue-shifted from 429 nm for PBO to 291 nm for PBOC7, and the Stokes shifts in PL spectra enlarged.

  17. Reading Angles in Maps

    Science.gov (United States)

    Izard, Véronique; O'Donnell, Evan; Spelke, Elizabeth S.

    2014-01-01

    Preschool children can navigate by simple geometric maps of the environment, but the nature of the geometric relations they use in map reading remains unclear. Here, children were tested specifically on their sensitivity to angle. Forty-eight children (age 47:15-53:30 months) were presented with fragments of geometric maps, in which angle sections…

  18. Photoelectric angle converter

    Science.gov (United States)

    Podzharenko, Volodymyr A.; Kulakov, Pavlo I.

    2001-06-01

    The photo-electric angle transmitter of rotation is offered, at which the output voltage is linear function of entering magnitude. In a transmitter the linear phototransducer is used on the basis of pair photo diode -- operating amplifier, which output voltage is linear function of the area of an illuminated photosensitive stratum, and modulator of a light stream of the special shape, which ensures a linear dependence of this area from an angle of rotation. The transmitter has good frequent properties and can be used for dynamic measurements of an angular velocity and angle of rotation, in systems of exact drives and systems of autocontrol.

  19. Gender features of functional condition of backbone of teenagers with scoliotic posture

    Directory of Open Access Journals (Sweden)

    Sergiy Afanasiev

    2016-10-01

    Full Text Available Purpose: to study mobility of backbone, endurance of muscles of a trunk and to define gender features of functional condition of backbone at children of the middle school age with scoliotic posture depending on the direction of the top of arch of curvature of spine. Material & Methods: 40 girls and 40 boys, including 18 girls and 18 boys with the right-side deformation of backbone in the thoracic department, the left-side – 22 girls and 22 boys are examined. Results: features of changes of indicators, depending on sex of children and frontage of the top of arch of curvature of spine column, are revealed when studying the level of flexibility of backbone and endurance of muscles of a trunk at children of the middle school age with scoliotic posture. Conclusions: it is established that the level of decrease in flexibility of backbone is higher at boys, than at girls, whereas indicators of contractile ability and tone of muscles of "muscular corset" are higher at boys.

  20. Angle-Ply Weaving

    Science.gov (United States)

    Farley, Gary L.

    1990-01-01

    Bias-direction or angle-ply weaving is proposed new process for weaving fibers along bias in conventional planar fabric or in complicated three-dimensional multilayer fabric preform of fiber-reinforced composite structure. Based upon movement of racks of needles and corresponding angle yarns across fabric as fabric being formed. Fibers woven along bias increases shear stiffness and shear strength of preform, increasing value of preform as structural member.

  1. INFLUENCE OF BACKBONE RIGIDITY ON THE LIQUID CRYSTALLINITY OF MESOGEN-CONTAINING POLYACETYLENES

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Two acetylene polymers containing cyanobiphenyl-based mesogens,poly{10-[((4'-cyano-4-biphenylyl)oxy)carbonyl]-1-decyne} (PA8CN), which has a relatively flexible polyalkyne backbone, and poly {[4-(((12-((4'-cyano-4-biphenylyl)oxy)dodecyl)oxy)carbonyl) phenyl]-acetylene} (PB12CN), which has a fairly rigid poly(phenylacetylene)backbone, were synthesized using respectively WCl6 and [Rh(nbd)Cl]2 as the catalysts.PA8CN exhibits enantiotropic interdigitated smectic A phase (SAd) over a temperature range as wide as ca. 100℃, whereas PB12CN is non-mesomorphic, demonstrating that the backbone rigidity plays an important role in determining the liquid crystallinity of the polyacetylenes.

  2. Wetting of nonconserved residue-backbones: A feature indicative of aggregation associated regions of proteins.

    Science.gov (United States)

    Pradhan, Mohan R; Pal, Arumay; Hu, Zhongqiao; Kannan, Srinivasaraghavan; Chee Keong, Kwoh; Lane, David P; Verma, Chandra S

    2016-02-01

    Aggregation is an irreversible form of protein complexation and often toxic to cells. The process entails partial or major unfolding that is largely driven by hydration. We model the role of hydration in aggregation using "Dehydrons." "Dehydrons" are unsatisfied backbone hydrogen bonds in proteins that seek shielding from water molecules by associating with ligands or proteins. We find that the residues at aggregation interfaces have hydrated backbones, and in contrast to other forms of protein-protein interactions, are under less evolutionary pressure to be conserved. Combining evolutionary conservation of residues and extent of backbone hydration allows us to distinguish regions on proteins associated with aggregation (non-conserved dehydron-residues) from other interaction interfaces (conserved dehydron-residues). This novel feature can complement the existing strategies used to investigate protein aggregation/complexation.

  3. Side-Chain-Induced Rigid Backbone Organization of Polymer Semiconductors through Semifluoroalkyl Side Chains.

    Science.gov (United States)

    Kang, Boseok; Kim, Ran; Lee, Seon Baek; Kwon, Soon-Ki; Kim, Yun-Hi; Cho, Kilwon

    2016-03-23

    While high-mobility p-type conjugated polymers have been widely reported, high-mobility n-type conjugated polymers are still rare. In the present work, we designed semifluorinated alkyl side chains and introduced them into naphthalene diimide-based polymers (PNDIF-T2 and PNDIF-TVT). We found that the strong self-organization of these side chains induced a high degree of order in the attached polymer backbones by forming a superstructure composed of "backbone crystals" and "side-chain crystals". This phenomenon was shown to greatly enhance the ordering along the backbone direction, and the resulting polymers thus exhibited unipolar n-channel transport in field-effect transistors with remarkably high electron mobility values of up to 6.50 cm(2) V(-1) s(-1) and with a high on-off current ratio of 10(5).

  4. No-Enclave Percolation Corresponds to Holes in the Cluster Backbone

    Science.gov (United States)

    Hu, Hao; Ziff, Robert M.; Deng, Youjin

    2016-10-01

    The no-enclave percolation (NEP) model introduced recently by Sheinman et al. can be mapped to a problem of holes within a standard percolation backbone, and numerical measurements of such holes give the same size-distribution exponent τ =1.82 (1 ) as found for the NEP model. An argument is given that τ =1 +dB/2 ≈1.822 for backbone holes, where dB is the backbone dimension. On the other hand, a model of simple holes within a percolation cluster yields τ =1 +df/2 =187 /96 ≈1.948 , where df is the fractal dimension of the cluster, and this value is consistent with the experimental results of gel collapse of Sheinman et al., which give τ =1.91 (6 ). This suggests that the gel clusters are of the universality class of percolation cluster holes. Both models give a discontinuous maximum hole size at pc, signifying explosive percolation behavior.

  5. Impact of Backbone Fluorination on π-Conjugated Polymers in Organic Photovoltaic Devices: A Review

    Directory of Open Access Journals (Sweden)

    Nicolas Leclerc

    2016-01-01

    Full Text Available Solution-processed bulk heterojunction solar cells have experienced a remarkable acceleration in performances in the last two decades, reaching power conversion efficiencies above 10%. This impressive progress is the outcome of a simultaneous development of more advanced device architectures and of optimized semiconducting polymers. Several chemical approaches have been developed to fine-tune the optoelectronics and structural polymer parameters required to reach high efficiencies. Fluorination of the conjugated polymer backbone has appeared recently to be an especially promising approach for the development of efficient semiconducting polymers. As a matter of fact, most currently best-performing semiconducting polymers are using fluorine atoms in their conjugated backbone. In this review, we attempt to give an up-to-date overview of the latest results achieved on fluorinated polymers for solar cells and to highlight general polymer properties’ evolution trends related to the fluorination of their conjugated backbone.

  6. Study of Sweep and Induced Dihedral Effects in Subsonic Axial Flow Compressor Passages—Part I: Design Considerations—Changes in Incidence, Deflection, and Streamline Curvature

    Directory of Open Access Journals (Sweden)

    P. V. Ramakrishna

    2009-01-01

    Full Text Available This article presents the study of Tip Chordline Sweeping (TCS and Axial Sweeping (AXS of low-speed axial compressor rotor blades against the performance of baseline unswept rotor (UNS for different tip clearance levels. The first part of the paper discusses the changes in design parameters when the blades are swept, while the second part throws light on the effect of sweep on tip leakage flow-related phenomena. 15 domains are studied with 5 sweep configurations (0∘, 20∘ TCS, 30∘ TCS, 20∘ AXS, and 30∘ AXS and for 3 tip clearances (0.0%, 0.7%, and 2.7% of the blade chord. A commercial CFD package is employed for the flow simulations and analysis. Results are well validated with experimental data. Forward sweep reduced the flow incidences. This is true all over the span with axial sweeping while little higher incidences below the mid span are observed with tip chordline sweeping. Sweeping is observed to lessen the flow turning. AXS rotors demonstrated more efficient energy transfer among the rotors. Tip chordline sweep deflected the flow towards the hub while effective positive dihedral induced with axial sweeping resulted in outward deflection of flow streamlines. These deflections are more at lower mass flow rates.

  7. Limited Angle Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Kyung; Cho, Min Kook; Kim, Seong Sik [Pusan National University, Busan (Korea, Republic of)

    2007-07-01

    In computed tomography (CT), many situations are restricted to obtain enough number of projections or views to avoid artifacts such as streaking and geometrical distortion in the reconstructed images. Speed of motion of an object to be imaged can limit the number of views. Cardiovascular imaging is a representative example. Size of an object can also limit the complete traverse motion or geometrical complexity can obscure to be imaged at certain range of angles. These situations are frequently met in industrial nondestructive testing and evaluation. Dental CT also suffers from similar situation because cervical spine causes less x-ray penetration from some directions such that the available information is not sufficient for standard reconstruction algorithms. The limited angle tomography is now greatly paid attention as a new genre in medical and industrial imaging, popularly known as digital tomosynthesis. In this study, we introduce a modified filtered backprojection method in limited angle tomography and demonstrate its application for the dental imaging.

  8. Dynamical angled brane

    Science.gov (United States)

    Maeda, Kei-ichi; Uzawa, Kunihito

    2016-12-01

    We discuss the dynamical D p -brane solutions describing any number of D p branes whose relative orientations are given by certain SU(2) rotations. These are the generalization of the static angled D p -brane solutions. We study the collision of the dynamical D3 brane with angles in type-II string theory, and show that the particular orientation of the smeared D3-brane configuration can provide an example of colliding branes if they have the same charges. Otherwise a singularity appears before D3 branes collide.

  9. (1) H NMR Spectra. Part 28: Proton chemical shifts and couplings in three-membered rings. A ring current model for cyclopropane and a novel dihedral angle dependence for (3) J(HH) couplings involving the epoxy proton.

    Science.gov (United States)

    Abraham, Raymond J; Leonard, Paul; Tormena, Cláudio F

    2012-04-01

    The (1) H chemical shifts of selected three-membered ring compounds in CDCl(3) solvent were obtained. This allowed the determination of the substituent chemical shifts of the substituents in the three-membered rings and the long-range effect of these rings on the distant protons. The substituent chemical shifts of common substituents in the cyclopropane ring differ considerably from the same substituents in acyclic fragments and in cyclohexane and were modelled in terms of a three-bond (γ)-effect. For long-range protons (more than three bonds removed), the substituent effects of the cyclopropane ring were analysed in terms of the cyclopropane magnetic anisotropy and steric effect. The cyclopropane magnetic anisotropy (ring current) shift was modelled by (a) a single equivalent dipole perpendicular to and at the centre of the cyclopropane ring and (b) by three identical equivalent dipoles perpendicular to the ring placed at each carbon atom. Model (b) gave a more accurate description of the (1) H chemical shifts and was the selected model. After parameterization, the overall root mean square error for the dataset of 289 entries was 0.068 ppm. The anisotropic effects are significant for the cyclopropane protons (ca 1 ppm) but decrease rapidly with distance. The heterocyclic rings of oxirane, thiirane and aziridine do not possess a ring current. (3) J(HH) couplings of the epoxy ring proton with side-chain protons were obtained and shown to be dependent on both the H-C-C-H and H-C-C-O orientations. Both density functional theory calculations and a simple Karplus-type equation gave general agreement with the observed couplings (root mean square error 0.5 Hz over a 10-Hz range).

  10. Influence of structures of polymer backbones on cooperative photoreorientation behavior of p-cyanoazobenzene side chains

    DEFF Research Database (Denmark)

    Han, Mina; Kidowaki, Masatoshi; Ichimura, Kunihiro;

    2001-01-01

    Photoinduced orientational behavior of a polymethacrylate (CN6) and a polyester (p6a12) with p-cyanoazobenzene side chains was studied to reveal the structural effect of the liquid crystalline polymer backbones. Irradiation with linearly polarized W light resulted in the reorientation of the azob...

  11. Analysis of components of conserved "backbone sequences" among genomes of Shigella spp. strains

    Institute of Scientific and Technical Information of China (English)

    LIU Hong; PENG Junping; YANG Jian; SUN Lilian; CHEN Shuxia; Jin Qi

    2004-01-01

    Difference in the genomic compositions of prokaryotes is the basis of the diversity in their biological characters. However, besides their flora- or strain-specific genes, those floras with closer relationship in the evolution also have conserved "backbone sequences", which reveal the marks of their origin and evolution, and these "backbone sequences" are just the basis of their elementary living abilities and common biological properties. Shigella is very closely related to E. coli in the origin and evolution, and may turn out to belong to the same genus. In this study, a microarray containing E. coli K-12 whole genome and Sf301 specific ORFs is used to investigate the genomic components of four Shigella strains. The results indicate that 16%-22% K-12 ORFs sequences are not detected in the genome of Shigella strains while the genome of Shigella contains at least 2800 conserved ORFs, which compose the common "backbone sequences". Advanced analysis indicated that the "backbone sequences" are the essential components in maintaining the normal physiological activities of intestinal bacteria. Furthermore, only 20% Sf301-specific ORFs exist in other strains simultaneously, which demonstrate the great genome heterogeneity and the genetic diversity among the strains.

  12. Peptide-functionalized semiconductor surfaces: strong surface electronic effects from minor alterations to backbone composition.

    Science.gov (United States)

    Matmor, Maayan; Lengyel, George A; Horne, W Seth; Ashkenasy, Nurit

    2017-02-22

    The use of non-canonical amino acids is a powerful way to control protein structure. Here, we show that subtle changes to backbone composition affect the ability of a dipeptide to modify solid surface electronic properties. The extreme sensitivity of the interactions to the peptide structure suggests potential applications in improving the performance of electronic devices.

  13. Integrative technology of massage manipulations in physical rehabilitation of students with backbone pathology

    Directory of Open Access Journals (Sweden)

    Kotelevskiy V.I.

    2016-06-01

    Full Text Available Purpose: to analyze effectiveness of massage manipulations’ integrative technology in physical rehabilitation of higher educational establishments’ students with backbone pathology. Material: in the research 195 students of 19-20 years’ age participated. All students had periodical initial neurological symptoms of functional pathology and first stage osteochondrosis in different parts of backbone. We conducted a course of 10 sessions of therapeutic massage. Results: the sense of massage integrative technology is that every specialist shall have certain optimal set of skills and knowledge in technique of manipulation sessions of massage. Integrative technology of massage manipulations consists of psycho-corrective and manipulation parts. It considers psycho-somatic, mechanical and reflex rehabilitation aspects of patho-genesis of backbone functional disorders and vertebral osteochondrosis. Conclusions: depending on pathological process or backbone functional state of every person (peculiarities of his (her psycho-somatic status or, even, his (her bents. Individual approach in choice of strategy, tactic and methodological provisioning of massage session shall be used.

  14. Sequential insertion of three different organometallics into a versatile building block containing a PNA backbone.

    Science.gov (United States)

    Patra, Malay; Gasser, Gilles; Bobukhov, Dmytro; Merz, Klaus; Shtemenko, Alexander V; Metzler-Nolte, Nils

    2010-06-28

    In the view of developing a synthetic route for the controlled insertion of distinct organometallic moieties into peptide nucleic acid (PNA) oligomers, a proof-of-principle study of the chemoselective insertion of three different organometallics into a building block containing both a PNA backbone and an alkyne side-chain is presented in this study.

  15. Treatment Results of Injuries of Thoracic and Lumbar Backbone Departments at Osteoporosis Patients

    Directory of Open Access Journals (Sweden)

    D.Y. Sumin

    2009-06-01

    Full Text Available Information relates to radiologic (computer tomography manifestations providing the visualization of thoracic and lumbar backbone department injuries at osteoporotic patients. Contemporary methods of transcutaneous and trans-pedicle vertebroplasty with bone cement allows to obtain a stable positive healing effect against such pathologies.

  16. Synthesis of a Backbone Hexasaccharide Fragment of the Pectic Polysaccharide Rhamnogalacturonan I

    DEFF Research Database (Denmark)

    Zakharova, Alexandra N.; Madsen, Robert; Clausen, Mads H.

    2013-01-01

    Synthesis of the fully unprotected hexasaccharide backbone of the pectic polysaccharide rhamnogalacturonan I is described. The strategy relies on iterative coupling of a common pentenyl disaccharide glycosyl donor followed by a late-stage oxidation of the C-6 positions of the galactose residues. ...

  17. Interconnection and Competition Among Asymmetric Networks in the Internet Backbone Market

    NARCIS (Netherlands)

    Jahn, E.; Prüfer, J.

    2006-01-01

    We examine the interrelation between interconnection and competition in the internet backbone market.Networks asymmetric in size choose among different interconnection regimes and compete for end-users.We show that a direct interconnection regime, Peering, softens competition compared to indirect in

  18. Graduate Education in Kinesiology: Are We Part of "America's Backbone for Competitiveness and Innovation"?

    Science.gov (United States)

    DePauw, Karen P.

    2008-01-01

    Graduate education in the United States has been identified as being the backbone of American competitiveness and innovation in a recent report by the Council of Graduate Schools. The report provides a framework for examining the role of graduate education in partnership with business and government to advance an action agenda for achieving…

  19. Animals without Backbones: The Invertebrate Story. Grade Level 5-9.

    Science.gov (United States)

    Jerome, Brian; Fuqua, Paul

    This guide, when used in tandem with the videotape "Animals Without Backbones," helps students learn about invertebrates. These materials promote hands-on discovery and learning. The guide is composed of six curriculum-based teaching units: (1) "Getting Started"; (2) "Porifera"; (3) "Cnidarians"; (4) "Worms"; (5) "Mollusks"; (6) "Arthropods"; and…

  20. Freeman-Durden Decomposition with Oriented Dihedral Scattering%引入有取向二面角散射的Freeman-Durden分解

    Institute of Scientific and Technical Information of China (English)

    闫剑; 李洋; 尹嫱; 洪文

    2014-01-01

    In this paper, when the azimuth direction of polarimetric Synthetic Aperature Radars (SAR) differs from the planting direction of crops, the double bounce of the incident electromagnetic waves from the terrain surface to the growing crops is investigated and compared with the normal double bounce. Oriented dihedral scattering model is developed to explain the investigated double bounce and is introduced into the Freeman-Durden decomposition. The decomposition algorithm corresponding to the improved decomposition is then proposed. The airborne polarimetric SAR data for agricultural land covering two flight tracks are chosen to validate the algorithm; the decomposition results show that for agricultural vegetated land, the improved Freeman-Durden decomposition has the advantage of increasing the decomposition coherency among the polarimetric SAR data along the different flight tracks.%该文首先考察了当极化SAR方位向与农作物种植行向不一致时,入射电磁波到地表、农作物的二次散射与一般二次散射的区别。其次,为描述这种二次散射,建立了有取向的二面角散射模型,并将该模型引入到Freeman-Durden目标分解中,设计了相应的目标分解算法。最后,选取同一农作物种植区两种航迹的机载全极化SAR 数据实现了该分解算法。实验结果证明,对于农作物种植区,改进后的 Freeman-Durden分解能提升不同航迹下的极化SAR数据目标分解的一致性。

  1. The quadriceps angle

    DEFF Research Database (Denmark)

    Miles, James Edward; Frederiksen, Jane V.; Jensen, Bente Rona

    2012-01-01

    : Pelvic limbs from red foxes (Vulpes vulpes). METHODS: Q angles were measured on hip dysplasia (HD) and whole limb (WL) view radiographs of each limb between the acetabular rim, mid-point (Q1: patellar center, Q2: femoral trochlea), and tibial tuberosity. Errors of 0.5-2.0 mm at measurement landmarks...

  2. The lateral angle revisited

    DEFF Research Database (Denmark)

    Morgan, Jeannie; Lynnerup, Niels; Hoppa, R.D.

    2013-01-01

    measurements taken from computed tomography (CT) scans. Previous reports have observed that the lateral angle size in females is significantly larger than in males. The method was applied to an independent series of 77 postmortem CT scans (42 males, 35 females) to validate its accuracy and reliability...... method appears to be of minimal practical use in forensic anthropology and archeology. © 2013 American Academy of Forensic Sciences....

  3. Contact angle hysteresis explained.

    Science.gov (United States)

    Gao, Lichao; McCarthy, Thomas J

    2006-07-04

    A view of contact angle hysteresis from the perspectives of the three-phase contact line and of the kinetics of contact line motion is given. Arguments are made that advancing and receding are discrete events that have different activation energies. That hysteresis can be quantified as an activation energy by the changes in interfacial area is argued. That this is an appropriate way of viewing hysteresis is demonstrated with examples.

  4. Polysulfide anions II: structure and vibrational spectra of the S4(2-) and S5(2-) anions. Influence of the cations on bond length, valence, and torsion angle.

    Science.gov (United States)

    el Jaroudi, O; Picquenard, E; Demortier, A; Lelieur, J P; Corset, J

    2000-06-12

    The influence of the cations on bond length, valence, and torsion angle of S4(2-) and S5(2-) anions was examined in a series of solid alkali tetra- and pentasulfides by relating their Raman spectra to their known X-ray structures through a force-field analysis. The IR and Raman spectra of BaS4.H2O and the Raman spectra of (NH4)2S4.nNH3, gamma-Na2S4, and delta-Na2S5 are presented. The similarity of spectra of gamma-Na2S4 with those of BaS4.H2O suggests similar structures of the S4(2-) anions in these two compounds with a torsion angle smaller than 90 degrees. The variations of SS bond length, SSS valence angle, and dihedral angle of Sn2- anions are related to the polarization of the lone pair and electronic charge of the anion by the electric field of the cations. A correlation between the torsion angle and the SSS valence angle is shown as that previously reported between the length of the bond around which the torsion takes place and the dihedral angle value. These geometry changes are explained by the hyperconjugation concept and the electron long-pair repulsion.

  5. A Classification Method of Simple Polygons Based on Dihedral Group%二面体群作用下简单多边形的分类

    Institute of Scientific and Technical Information of China (English)

    徐嘉

    2012-01-01

    针对简单多边形的分类问题,将对称情况看成是相同类别进行分类来简化分类数,提出一种分类方法.首先分析简单多边形顶点的凹凸性,根据简单多边形顶点处凸点和凹点的分布情况,定义了简单多边形的标记矩阵;然后利用标记矩阵将简单多边形的分类问题归结为二面体群作用在状态集(全体标记矩阵组成的集合)上的轨道划分问题;最后利用熟知的Pólya计数定理求解轨道的个数,并给出了新的分类公式.实验结果表明,当简单多边形边数为6时,采用文中方法的分类数小于原来分类数,并且随着边数的增大,这种差距逐渐变大.%In this paper, a new classification method of simple polygons is presented.Being different from the old method, we take the polygons and their mirror reflections into one class in the new classification method, which will reduce the number of classification.The process is as follows.First, the concave-convex property of simple polygons is considered in order to establish an identification matrix which is used to represent a simple polygon.Then we transform the classification problem of simple polygons into computing the number of orbits when the dihedral group acts on the state set that consists of all of the identification matrices.Finally, the number of group obits can be solved by Polya enumeration theorem.The tables in the end of paper show that the classification number computed by the new classification method is less than the one computed by the old method when the sides of a polygon is 6.Also, with the increase of the number of sides, the gap between the two classification numbers is gradually larger.

  6. Analytical Model based on Green Criteria for Optical Backbone Network Interconnection

    DEFF Research Database (Denmark)

    Gutierrez Lopez, Jose Manuel; Riaz, M. Tahir; Pedersen, Jens Myrup

    2011-01-01

    to the evaluation of the environmental impact of networks from physical interconnection point of view. Networks deployment, usage, and disposal are analyzed as contributing elements to ICT’s (Information and Communications Technology) CO2 emissions. This paper presents an analytical model for evaluating...... and quantifying the CO2 emissions of optical backbone networks during their lifetime. The main goal of this work is to present the model and illustrate how to evaluate the physical interconnection of backbones from an environmental perspective. This model can be applied as a new type of decision support criteria...... for backbone’s interconnection, since minimization of CO2 emissions is becoming an important factor. In addition, two case studies are presented to illustrate the use and application of this model, and the need for de facto and international standards to reduce CO2 emissions through good network planning....

  7. Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.

    Science.gov (United States)

    Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush

    2016-08-01

    This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming.

  8. Backbone cyclization of a recombinant cystine-knot peptide by engineered Sortase A.

    Science.gov (United States)

    Stanger, Karen; Maurer, Till; Kaluarachchi, Harini; Coons, Mary; Franke, Yvonne; Hannoush, Rami N

    2014-11-28

    Cyclotides belong to the family of cyclic cystine-knot peptides and have shown promise as scaffolds for protein engineering and pharmacological modulation of cellular protein activity. Cyclotides are characterized by a cystine-knotted topology and a head-to-tail cyclic polypeptide backbone. While they are primarily produced in plants, cyclotides have also been obtained by chemical synthesis. However, there is still a need for methods to generate cyclotides in high yields to near homogeneity. Here, we report a biomimetic approach which utilizes an engineered version of the enzyme Sortase A to catalyze amide backbone cyclization of the recombinant cyclotide MCoTI-II, thereby allowing the efficient production of active homogenous species in high yields. Our results provide proof of concept for using engineered Sortase A to produce cyclic MCoTI-II and should be generally applicable to generating other cyclic cystine-knot peptides.

  9. Protein and peptide alkoxyl radicals can give rise to C-terminal decarboxylation and backbone cleavage

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan

    1996-01-01

    when the free amino acid does not, and that hydroperoxides can be formed on both the backbone (at alpha-carbon positions) and the side chain. Decomposition of alpha-carbon hydroperoxides by Fe(II)-EDTA gives initially an alkoxyl radical via a pseudo-Fenton reaction; these radicals fragment rapidly...... with k estimated as > or = 10(7) s(-1). With N-acetyl amino acids and dipeptides beta-scission of an alkoxyl radical at the C-terminal alpha-carbon results in C-terminal decarboxylation, with release of CO2.-; the corresponding amides undergo deamidation with release of .C(O)NH2. Cyclic dipeptides...... undergo analogous reactions with cleavage of the alpha-carbon to carbonyl-carbon bond and formation of .C(O)NHR radicals. With substrates with large aliphatic side chains, radicals from side-chain hydroperoxides are also observed. C-terminal decarboxylation and backbone fragmentation are also observed...

  10. Aromatic Copolyamides with Anthrazoline Units in the Backbone: Synthesis, Characterization, Pervaporation Application

    Directory of Open Access Journals (Sweden)

    Galina A. Polotskaya

    2016-10-01

    Full Text Available Copolyamides with anthrazoline units in the backbone (coPA were synthesized and dense nonporous films were prepared by solvent evaporation. Glass transition temperature, density, and fractional free volume were determined for the dense nonporous films composed of polyamide and two of its copolymers containing 20 and 30 mol % anthrazoline units in the backbone. Transport properties of the polymer films were estimated by sorption and pervaporation tests toward methanol, toluene, and their mixtures. An increase in anthrazoline fragments content leads to an increasing degree of methanol sorption but to a decreasing degree of toluene sorption. Pervaporation of a methanol–toluene mixture was studied over a wide range of feed concentration (10–90 wt % methanol. Maximal separation factor was observed for coPA-20 containing 20 mol % fragments with anthrazoline units; maximal total flux was observed for coPA-30 with the highest fractional free volume.

  11. Energy Efficient Low-Cost Virtual Backbone Construction for Optimal Routing in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    K. Mohaideen Pitchai

    2014-01-01

    Full Text Available Many prominent applications in wireless sensor networks which require collected information have to be routed to end nodes in an efficient manner. In general, weighted connected dominating Sets (WCDS based routing is a promising approach for enhancing the routing efficiency in sensor networks. Backbone has been used extensively in routing. Here an efficient WCDS algorithm for constructing a virtual backbone with low total cost, hop spanning ratio, and minimum number of dominators is proposed. We report a systematic approach, which has three phases. Initial phase considers the issues of revoking a partial CDS tree from a complete CDS tree. Secondary and final phases make the design of the complete algorithm by considering the determination of dominators using an iteration process. Our findings reveal better performance than the existing algorithms in terms of total cost, hop spanning ratio, and number of dominators.

  12. Synthesis, Characterization and Structure of Chiral Amino Acids and Their Corresponding Amino Alcohols with Camphoric Backbone

    Institute of Scientific and Technical Information of China (English)

    QIAN Hui-Fen; HUANG Wei; LI Hui-Hui; YAO Cheng

    2006-01-01

    Chiral amino acids and their corresponding amino alcohols bearing camphoric backbone were prepared from D-(+)-camphoric imide and characterized by infrared, elemental analysis, ESI-MS, and NMR measurements. Among them, one intermediate (lS,3R)-3-amino-2,2,3-trimethyl cyclopentane-1-carboxylic acid hydrochloride 3 was structurally elucidated by X-ray diffraction techniques. Versatile intermolecular hydrogen bonding interactions observed in its packing structure result in a two-dimensional framework.

  13. Inferential protein structure determination and refinement using fast, electronic structure based backbone amide chemical shift predictions

    CERN Document Server

    Christensen, Anders S

    2015-01-01

    This report covers the development of a new, fast method for calculating the backbone amide proton chemical shifts in proteins. Through quantum chemical calculations, structure-based forudsiglese the chemical shift for amidprotonen in protein has been parameterized. The parameters are then implemented in a computer program called Padawan. The program has since been implemented in protein folding program Phaistos, wherein the method andvendes to de novo folding of the protein structures and to refine the existing protein structures.

  14. Protein backbone dynamics revealed by quasi spectral density function analysis of amide N-15 nuclei.

    Science.gov (United States)

    Ishima, R; Nagayama, K

    1995-03-14

    Spectral density functions J(0), J(omega N), and J(omega H + omega N) of individual amide N-15 nuclei in proteins were approximated by a quasi spectral density function (QSDF). Using this function, the backbone dynamics were analyzed for seven protein systems on which data have been published. We defined J(0; omega N) as the difference between the J(0) and the J(omega N) values, which describes motions slower than 50 (or 60) MHz, and J(omega N; omega H+N) as the difference between the J(omega N) and the J(omega H + omega N) values, which describes motions slower than 450 (or 540) MHz. The QSDF analysis can easily extract the J(0; omega N) of protein backbones, which have often some relation to biologically relevant reactions. Flexible N-terminal regions in eglin c and glucose permease IIA and a loop region in eglin c showed smaller values of both the J(0; omega N) and the J(omega N; omega H+N) as compared with the other regions, indicating increases in motions faster than nanosecond. The values of the J(0; omega N) for the backbone of the FK506 binding protein showed a large variation in the apoprotein but fell in a very narrow range after the binding of FK506. Characteristic increase or decrease in the values of J(0) and J(omega N) was observed in two or three residues located between secondary structures.

  15. NMR backbone dynamics of VEK-30 bound to the human plasminogen kringle 2 domain.

    Science.gov (United States)

    Wang, Min; Prorok, Mary; Castellino, Francis J

    2010-07-07

    To gain insights into the mechanisms for the tight and highly specific interaction of the kringle 2 domain of human plasminogen (K2(Pg)) with a 30-residue internal peptide (VEK-30) from a group A streptococcal M-like protein, the dynamic properties of free and bound K2(Pg) and VEK-30 were investigated using backbone amide (15)N-NMR relaxation measurements. Dynamic parameters, namely the generalized order parameter, S(2), the local correlation time, tau(e), and the conformational exchange contribution, R(ex), were obtained for this complex by Lipari-Szabo model-free analysis. The results show that VEK-30 displays distinctly different dynamic behavior as a consequence of binding to K2(Pg), manifest by decreased backbone flexibility, particularly at the binding region of the peptide. In contrast, the backbone dynamics parameters of K2(Pg) displayed similar patterns in the free and bound forms, but, nonetheless, showed interesting differences. Based on our previous structure-function studies of this interaction, we also made comparisons of the VEK-30/K2(Pg) dynamics results from different kringle modules complexed with small lysine analogs. The differences in dynamics observed for kringles with different ligands provide what we believe to be new insights into the interactions responsible for protein-ligand recognition and a better understanding of the differences in binding affinity and binding specificity of kringle domains with various ligands.

  16. Systematic determination of the mosaic structure of bacterial genomes: species backbone versus strain-specific loops

    Directory of Open Access Journals (Sweden)

    Gendrault-Jacquemard A

    2005-07-01

    Full Text Available Abstract Background Public databases now contain multitude of complete bacterial genomes, including several genomes of the same species. The available data offers new opportunities to address questions about bacterial genome evolution, a task that requires reliable fine comparison data of closely related genomes. Recent analyses have shown, using pairwise whole genome alignments, that it is possible to segment bacterial genomes into a common conserved backbone and strain-specific sequences called loops. Results Here, we generalize this approach and propose a strategy that allows systematic and non-biased genome segmentation based on multiple genome alignments. Segmentation analyses, as applied to 13 different bacterial species, confirmed the feasibility of our approach to discern the 'mosaic' organization of bacterial genomes. Segmentation results are available through a Web interface permitting functional analysis, extraction and visualization of the backbone/loops structure of documented genomes. To illustrate the potential of this approach, we performed a precise analysis of the mosaic organization of three E. coli strains and functional characterization of the loops. Conclusion The segmentation results including the backbone/loops structure of 13 bacterial species genomes are new and available for use by the scientific community at the URL: http://genome.jouy.inra.fr/mosaic.

  17. East vergent structure of Backbone Range: Insights from A-Lan-Yi area and sandbox modeling

    Science.gov (United States)

    Lee, C. A.; Lu, C. Y.

    2015-12-01

    Southern Taiwan, including Pingtung peninsula and Taitung, is the incipient oblique collision zone of Eurasian plate and Philippine Sea plate. The Luzon volcanic arc converged toward Taiwan Island and formed Hengchun Ridge south offshore Taiwan. Thus, Taiwan mountain belt developed from north to south as the Backbone Range, so that we can infer the incipient feature structure from the topography and outcrop study of southern Taiwan. Our field survey of this study concentrated at the southeast coastline of Taiwan, also known as A-Lan-Yi Trail. According to previous study, the deformational structures such as faults and folds are consistent with regional kinematic processes, and the preserved transpression structure is the most important evidence of incipient collision. In this study, we use the sedimentary sequences of study area to trace the regional tectonics from north to south. Discovered structures in this area show the similar kinematic history as the eastern flank of Backbone Range, so that we suggest they are at the same series of a tectonic event. To complete the regional structure mapping in this accessible area, besides the field geological data, we also applied the LiDAR-derived DTM which is a 3D visualization technology to improve our topography information. In addition, we use the sandbox modeling to demonstrate the development of structures in the eastern flank of Backbone Range. After combining the results of field observation and regional structure mapping, this study provides a strong evidence of backthrusting and backfolding deformation during the incipient oblique collision stage.

  18. Variable angle correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y K [Univ. of California, Berkeley, CA (United States)

    1994-05-01

    In this dissertation, a novel nuclear magnetic resonance (NMR) technique, variable angle correlation spectroscopy (VACSY) is described and demonstrated with {sup 13}C nuclei in rapidly rotating samples. These experiments focus on one of the basic problems in solid state NMR: how to extract the wealth of information contained in the anisotropic component of the NMR signal while still maintaining spectral resolution. Analysis of the anisotropic spectral patterns from poly-crystalline systems reveal information concerning molecular structure and dynamics, yet in all but the simplest of systems, the overlap of spectral patterns from chemically distinct sites renders the spectral analysis difficult if not impossible. One solution to this problem is to perform multi-dimensional experiments where the high-resolution, isotropic spectrum in one dimension is correlated with the anisotropic spectral patterns in the other dimensions. The VACSY technique incorporates the angle between the spinner axis and the static magnetic field as an experimental parameter that may be incremented during the course of the experiment to help correlate the isotropic and anisotropic components of the spectrum. The two-dimensional version of the VACSY experiments is used to extract the chemical shift anisotropy tensor values from multi-site organic molecules, study molecular dynamics in the intermediate time regime, and to examine the ordering properties of partially oriented samples. The VACSY technique is then extended to three-dimensional experiments to study slow molecular reorientations in a multi-site polymer system.

  19. Angle-deviation optical profilometer

    Institute of Scientific and Technical Information of China (English)

    Chen-Tai Tan; Yuan-Sheng Chan; Zhen-Chin Lin; Ming-Hung Chiu

    2011-01-01

    @@ We propose a new optical profilometer for three-dimensional (3D) surface profile measurement in real time.The deviation angle is based on geometrical optics and is proportional to the apex angle of a test plate.Measuring the reflectivity of a parallelogram prism allows detection of the deviation angle when the beam is incident at the nearby critical angle. The reflectivity is inversely proportional to the deviation angle and proportional to the apex angle and surface height. We use a charge-coupled device (CCD) camera at the image plane to capture the reflectivity profile and obtain the 3D surface profile directly.%We propose a new optical profilometer for three-dimensional (3D) surface profile measurement in real time.The deviation angle is based on geometrical optics and is proportional to the apex angle of a test plate.Measuring the refiectivity of a parallelogram prism allows detection of the deviation angle when the beam is incident at the nearby critical angle. The refiectivity is inversely proportional to the deviation angle and proportional to the apex angle and surface height. We use a charge-coupled device (CCD) camera at the image plane to capture the refiectivity profile and obtain the 3D surface profile directly.

  20. Heterodyne Interferometer Angle Metrology

    Science.gov (United States)

    Hahn, Inseob; Weilert, Mark A.; Wang, Xu; Goullioud, Renaud

    2010-01-01

    A compact, high-resolution angle measurement instrument has been developed that is based on a heterodyne interferometer. The common-path heterodyne interferometer metrology is used to measure displacements of a reflective target surface. In the interferometer setup, an optical mask is used to sample the measurement laser beam reflecting back from a target surface. Angular rotations, around two orthogonal axes in a plane perpendicular to the measurement- beam propagation direction, are determined simultaneously from the relative displacement measurement of the target surface. The device is used in a tracking telescope system where pitch and yaw measurements of a flat mirror were simultaneously performed with a sensitivity of 0.1 nrad, per second, and a measuring range of 0.15 mrad at a working distance of an order of a meter. The nonlinearity of the device is also measured less than one percent over the measurement range.

  1. Membrane adsorption and binding, cellular uptake and cytotoxicity of cell-penetrating peptidomimetics with α-peptide/β-peptoid backbone

    DEFF Research Database (Denmark)

    Jing, Xiaona; Yang, Mingjun; Kasimova, Marina Robertovna

    2012-01-01

    Cell-penetrating peptides (CPPs) provide a promising approach for enhancing intracellular delivery of therapeutic biomacromolecules by increasing transport through membrane barriers. Here, proteolytically stable cell-penetrating peptidomimetics with α-peptide/β-peptoid backbone were studied to ev...

  2. Synthesis and Molecular Recognition of Novel Cyclic Pseudopeptides Containing L-Glutamic Acid or L-Aspartic Acid Backbones

    Institute of Scientific and Technical Information of China (English)

    WANG Tao王涛; HUANG Xiao-Yi黄小毅; XIA Chuan-Qin夏传琴; YU Xiao-Qi余孝其; XIE Ru-Gang谢如刚

    2004-01-01

    Novel cyclic pseudopeptides containing L-glutamic acid or L-aspartic acid backbone structures were efficiently synthesized and characterized. Their chiral recognition properties for L- and D-amino acid methyl ester hydrochloride were discussed also.

  3. Oxidation Responsive Polymers with a Triggered Degradation via Arylboronate Self-Immolative Motifs on a Polyphosphazene Backbone

    Science.gov (United States)

    2017-01-01

    Oxidation responsive polymers with triggered degradation pathways have been prepared via attachment of self-immolative moieties onto a hydrolytically unstable polyphosphazene backbone. After controlled main-chain growth, postpolymerization functionalization allows the preparation of hydrolytically stable poly(organo)phosphazenes decorated with a phenylboronic ester caging group. In oxidative environments, triggered cleavage of the caging group is followed by self-immolation, exposing the unstable glycine-substituted polyphosphazene which subsequently undergoes to backbone degradation to low-molecular weight molecules. As well as giving mechanistic insights, detailed GPC and 1H and 31P NMR analysis reveal the polymers to be stable in aqueous solutions, but show a selective, fast degradation upon exposure to hydrogen peroxide containing solutions. Since the post-polymerization functionalization route allows simple access to polymer backbones with a broad range of molecular weights, the approach of using the inorganic backbone as a platform significantly expands the toolbox of polymers capable of stimuli-responsive degradation.

  4. Synthesis of novel cationic lipids with fully or partially non-scissile linkages between the hydrocarbon chains and pseudoglyceryl backbone

    Indian Academy of Sciences (India)

    Santanu Bhattacharya; Saubhik Haldar

    2002-06-01

    Five novel cationic lipids with fully or partially non-scissile linkage regions between the pseudoglyceryl backbone and the hydrocarbon chains have been synthesized. The membrane-forming properties of these new lipids are briefly presented.

  5. Equilibrium contact angle or the most-stable contact angle?

    Science.gov (United States)

    Montes Ruiz-Cabello, F J; Rodríguez-Valverde, M A; Cabrerizo-Vílchez, M A

    2014-04-01

    It is well-established that the equilibrium contact angle in a thermodynamic framework is an "unattainable" contact angle. Instead, the most-stable contact angle obtained from mechanical stimuli of the system is indeed experimentally accessible. Monitoring the susceptibility of a sessile drop to a mechanical stimulus enables to identify the most stable drop configuration within the practical range of contact angle hysteresis. Two different stimuli may be used with sessile drops: mechanical vibration and tilting. The most stable drop against vibration should reveal the changeless contact angle but against the gravity force, it should reveal the highest resistance to slide down. After the corresponding mechanical stimulus, once the excited drop configuration is examined, the focus will be on the contact angle of the initial drop configuration. This methodology needs to map significantly the static drop configurations with different stable contact angles. The most-stable contact angle, together with the advancing and receding contact angles, completes the description of physically realizable configurations of a solid-liquid system. Since the most-stable contact angle is energetically significant, it may be used in the Wenzel, Cassie or Cassie-Baxter equations accordingly or for the surface energy evaluation.

  6. Effect of Liquid-Crystalline Epoxy Backbone Structure on Thermal Conductivity of Epoxy-Alumina Composites

    Science.gov (United States)

    Giang, Thanhkieu; Kim, Jinhwan

    2017-01-01

    In a series of papers published recently, we clearly demonstrated that the most important factor governing the thermal conductivity of epoxy-Al2O3 composites is the backbone structure of the epoxy. In this study, three more epoxies based on diglycidyl ester-terminated liquid-crystalline epoxy (LCE) have been synthesized to draw conclusions regarding the effect of the epoxy backbone structure on the thermal conductivity of epoxy-alumina composites. The synthesized structures were characterized by proton nuclear magnetic resonance (1H-NMR) and Fourier-transform infrared (FT-IR) spectroscopy. Differential scanning calorimetry, thermogravimetric analysis, and optical microscopy were also employed to examine the thermal and optical properties of the synthesized LCEs and the cured composites. All three LCE resins exhibited typical liquid-crystalline behaviors: clear solid crystalline state below the melting temperature ( T m), sharp crystalline melting at T m, and transition to nematic phase above T m with consequent isotropic phase above the isotropic temperature ( T i). The LCE resins displayed distinct nematic liquid-crystalline phase over a wide temperature range and retained liquid-crystalline phase after curing, with high thermal conductivity of the resulting composite. The thermal conductivity values ranged from 3.09 W/m-K to 3.89 W/m-K for LCE-Al2O3 composites with 50 vol.% filler loading. The steric effect played a governing role in the difference. The neat epoxy resin thermal conductivity was obtained as 0.35 W/m-K to 0.49 W/m-K based on analysis using the Agari-Uno model. The results clearly support the objective of this study in that the thermal conductivity of the LCE-containing networks strongly depended on the epoxy backbone structure and the degree of ordering in the cured network.

  7. Predicting the tolerated sequences for proteins and protein interfaces using RosettaBackrub flexible backbone design.

    Directory of Open Access Journals (Sweden)

    Colin A Smith

    Full Text Available Predicting the set of sequences that are tolerated by a protein or protein interface, while maintaining a desired function, is useful for characterizing protein interaction specificity and for computationally designing sequence libraries to engineer proteins with new functions. Here we provide a general method, a detailed set of protocols, and several benchmarks and analyses for estimating tolerated sequences using flexible backbone protein design implemented in the Rosetta molecular modeling software suite. The input to the method is at least one experimentally determined three-dimensional protein structure or high-quality model. The starting structure(s are expanded or refined into a conformational ensemble using Monte Carlo simulations consisting of backrub backbone and side chain moves in Rosetta. The method then uses a combination of simulated annealing and genetic algorithm optimization methods to enrich for low-energy sequences for the individual members of the ensemble. To emphasize certain functional requirements (e.g. forming a binding interface, interactions between and within parts of the structure (e.g. domains can be reweighted in the scoring function. Results from each backbone structure are merged together to create a single estimate for the tolerated sequence space. We provide an extensive description of the protocol and its parameters, all source code, example analysis scripts and three tests applying this method to finding sequences predicted to stabilize proteins or protein interfaces. The generality of this method makes many other applications possible, for example stabilizing interactions with small molecules, DNA, or RNA. Through the use of within-domain reweighting and/or multistate design, it may also be possible to use this method to find sequences that stabilize particular protein conformations or binding interactions over others.

  8. ngs_backbone: a pipeline for read cleaning, mapping and SNP calling using Next Generation Sequence

    Directory of Open Access Journals (Sweden)

    Cañizares Joaquin

    2011-06-01

    Full Text Available Abstract Background The possibilities offered by next generation sequencing (NGS platforms are revolutionizing biotechnological laboratories. Moreover, the combination of NGS sequencing and affordable high-throughput genotyping technologies is facilitating the rapid discovery and use of SNPs in non-model species. However, this abundance of sequences and polymorphisms creates new software needs. To fulfill these needs, we have developed a powerful, yet easy-to-use application. Results The ngs_backbone software is a parallel pipeline capable of analyzing Sanger, 454, Illumina and SOLiD (Sequencing by Oligonucleotide Ligation and Detection sequence reads. Its main supported analyses are: read cleaning, transcriptome assembly and annotation, read mapping and single nucleotide polymorphism (SNP calling and selection. In order to build a truly useful tool, the software development was paired with a laboratory experiment. All public tomato Sanger EST reads plus 14.2 million Illumina reads were employed to test the tool and predict polymorphism in tomato. The cleaned reads were mapped to the SGN tomato transcriptome obtaining a coverage of 4.2 for Sanger and 8.5 for Illumina. 23,360 single nucleotide variations (SNVs were predicted. A total of 76 SNVs were experimentally validated, and 85% were found to be real. Conclusions ngs_backbone is a new software package capable of analyzing sequences produced by NGS technologies and predicting SNVs with great accuracy. In our tomato example, we created a highly polymorphic collection of SNVs that will be a useful resource for tomato researchers and breeders. The software developed along with its documentation is freely available under the AGPL license and can be downloaded from http://bioinf.comav.upv.es/ngs_backbone/ or http://github.com/JoseBlanca/franklin.

  9. Exposing Hidden Alternative Backbone Conformations in X-ray Crystallography Using qFit.

    Directory of Open Access Journals (Sweden)

    Daniel A Keedy

    2015-10-01

    Full Text Available Proteins must move between different conformations of their native ensemble to perform their functions. Crystal structures obtained from high-resolution X-ray diffraction data reflect this heterogeneity as a spatial and temporal conformational average. Although movement between natively populated alternative conformations can be critical for characterizing molecular mechanisms, it is challenging to identify these conformations within electron density maps. Alternative side chain conformations are generally well separated into distinct rotameric conformations, but alternative backbone conformations can overlap at several atomic positions. Our model building program qFit uses mixed integer quadratic programming (MIQP to evaluate an extremely large number of combinations of sidechain conformers and backbone fragments to locally explain the electron density. Here, we describe two major modeling enhancements to qFit: peptide flips and alternative glycine conformations. We find that peptide flips fall into four stereotypical clusters and are enriched in glycine residues at the n+1 position. The potential for insights uncovered by new peptide flips and glycine conformations is exemplified by HIV protease, where different inhibitors are associated with peptide flips in the "flap" regions adjacent to the inhibitor binding site. Our results paint a picture of peptide flips as conformational switches, often enabled by glycine flexibility, that result in dramatic local rearrangements. Our results furthermore demonstrate the power of large-scale computational analysis to provide new insights into conformational heterogeneity. Overall, improved modeling of backbone heterogeneity with high-resolution X-ray data will connect dynamics to the structure-function relationship and help drive new design strategies for inhibitors of biomedically important systems.

  10. Exposing Hidden Alternative Backbone Conformations in X-ray Crystallography Using qFit.

    Science.gov (United States)

    Keedy, Daniel A; Fraser, James S; van den Bedem, Henry

    2015-10-01

    Proteins must move between different conformations of their native ensemble to perform their functions. Crystal structures obtained from high-resolution X-ray diffraction data reflect this heterogeneity as a spatial and temporal conformational average. Although movement between natively populated alternative conformations can be critical for characterizing molecular mechanisms, it is challenging to identify these conformations within electron density maps. Alternative side chain conformations are generally well separated into distinct rotameric conformations, but alternative backbone conformations can overlap at several atomic positions. Our model building program qFit uses mixed integer quadratic programming (MIQP) to evaluate an extremely large number of combinations of sidechain conformers and backbone fragments to locally explain the electron density. Here, we describe two major modeling enhancements to qFit: peptide flips and alternative glycine conformations. We find that peptide flips fall into four stereotypical clusters and are enriched in glycine residues at the n+1 position. The potential for insights uncovered by new peptide flips and glycine conformations is exemplified by HIV protease, where different inhibitors are associated with peptide flips in the "flap" regions adjacent to the inhibitor binding site. Our results paint a picture of peptide flips as conformational switches, often enabled by glycine flexibility, that result in dramatic local rearrangements. Our results furthermore demonstrate the power of large-scale computational analysis to provide new insights into conformational heterogeneity. Overall, improved modeling of backbone heterogeneity with high-resolution X-ray data will connect dynamics to the structure-function relationship and help drive new design strategies for inhibitors of biomedically important systems.

  11. RosettaRemodel: a generalized framework for flexible backbone protein design.

    Directory of Open Access Journals (Sweden)

    Po-Ssu Huang

    Full Text Available We describe RosettaRemodel, a generalized framework for flexible protein design that provides a versatile and convenient interface to the Rosetta modeling suite. RosettaRemodel employs a unified interface, called a blueprint, which allows detailed control over many aspects of flexible backbone protein design calculations. RosettaRemodel allows the construction and elaboration of customized protocols for a wide range of design problems ranging from loop insertion and deletion, disulfide engineering, domain assembly, loop remodeling, motif grafting, symmetrical units, to de novo structure modeling.

  12. Backbone resonance assignments of the micro-RNA precursor binding region of human TRBP.

    Science.gov (United States)

    Benoit, Matthieu P M H; Plevin, Michael J

    2013-10-01

    TAR-RNA binding protein (TRBP) is a multidomain human protein involved in micro-RNA (miRNA) biogenesis. TRBP is a component of both the Dicer complex, which processes precursor miRNAs, and the RNA-induced silencing complex-loading complex. In addition, TRBP is implicated in the human immunodeficiency virus replication cycle and interferon-protein kinase R activity. TRBP contains 3 double-stranded RNA binding domains the first two of which have been shown to interact with miRNA precursors. Here we present the backbone resonance assignments and secondary structure of residues 19-228 of human TRBP2.

  13. SEVA Linkers: A Versatile and Automatable DNA Backbone Exchange Standard for Synthetic Biology

    DEFF Research Database (Denmark)

    Kim, Se Hyeuk; Cavaleiro, Mafalda; Rennig, Maja

    2016-01-01

    DNA vectors serve to maintain and select recombinant DNA in cell factories, and as design complexity increases, there is a greater need for well-characterized parts and methods for their assembly. Standards in synthetic biology are top priority, but standardizing molecular cloning contrasts...... flexibility, and different researchers prefer and master different molecular technologies. Here, we describe a new, highly versatile and automatable standard “SEVA linkers” for vector exchange. SEVA linkers enable backbone swapping with 20 combinations of classical enzymatic restriction/ligation, Gibson...... to the synthetic biology community....

  14. Backbone tuning in indenylidene–ruthenium complexes bearing an unsaturated N-heterocyclic carbene

    Directory of Open Access Journals (Sweden)

    César A. Urbina-Blanco

    2010-11-01

    Full Text Available The steric and electronic influence of backbone substitution in IMes-based (IMes = 1,3-bis(2,4,6-trimethylphenylimidazol-2-ylidene N-heterocyclic carbenes (NHC was probed by synthesizing the [RhCl(CO2(NHC] series of complexes to quantify experimentally the Tolman electronic parameter (electronic and the percent buried volume (%Vbur, steric parameters. The corresponding ruthenium–indenylidene complexes were also synthesized and tested in benchmark metathesis transformations to establish possible correlations between reactivity and NHC electronic and steric parameters.

  15. Synthesis of Aminophosphine Ligands with Binaphthyl Backbones for Silver(I)-catalyzed Enantioselective Allylation of Benzaldehyde

    Institute of Scientific and Technical Information of China (English)

    WANG,Yi(王以); JI,Bao-Ming(吉保明); DING,Kui-Ling(丁奎岭)

    2002-01-01

    A series of aminophosphine ligands was synthesized from 2amino-2′-hydroxy-1,1′-binaphthyl (NOBIN). Their asymmetric induction efficiency was examined for silver(I)catalyzed enantioselective allylation reaction of benzaldehyde with allyltributyltin.Under the optimized reaction conditions,quantitative yield as well as moderate ee value (54.5% ee)of product was achieved by the catalysis with silver(I)/3 complex. The effects of the binaphthyl backbone and the substituted situated at chelating N, Patoms on enantioselectivity of the reaction were also discussed.

  16. Relative specificities of water and ammonia losses from backbone fragments in collision-activated dissociation

    DEFF Research Database (Denmark)

    Savitski, Mikhail M; Kjeldsen, Frank; Nielsen, Michael L

    2007-01-01

    Analysis of a database containing over 20,000 high-resolution collision-activation mass spectra of tryptic peptide dications was employed to study the relative specificity of neutral losses from backbone fragments. The high resolution of the FTMS instrument allowed for the first time the first...... isotope of the water loss and the monoisotope of the ammonia loss to be distinguished. Contrary to a popular belief, water losses from y' ions are not specific enough to rely upon for detecting the presence of amino acids with oxygen in the side chains. At the same time, ammonia loss from b ions...

  17. Redox-controlled backbone dynamics of human cytochrome c revealed by {sup 15}N NMR relaxation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Koichi [Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan); Kamiya, Masakatsu [Graduate School of Life Science, Hokkaido University, Sapporo 060-0810 (Japan); Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810 (Japan); Uchida, Takeshi [Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan); Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Kawano, Keiichi [Graduate School of Life Science, Hokkaido University, Sapporo 060-0810 (Japan); Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810 (Japan); Ishimori, Koichiro, E-mail: koichiro@sci.hokudai.ac.jp [Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan); Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan)

    2010-07-23

    Research highlights: {yields} The dynamic parameters for the backbone dynamics in Cyt c were determined. {yields} The backbone mobility of Cyt c is highly restricted due to the covalently bound heme. {yields} The backbone mobility of Cyt c is more restricted upon the oxidation of the heme. {yields} The redox-dependent dynamics are shown in the backbone of Cyt c. {yields} The backbone dynamics of Cyt c would regulate the electron transfer from Cyt c. -- Abstract: Redox-controlled backbone dynamics in cytochrome c (Cyt c) were revealed by 2D {sup 15}N NMR relaxation experiments. {sup 15}N T{sub 1} and T{sub 2} values and {sup 1}H-{sup 15}N NOEs of uniformly {sup 15}N-labeled reduced and oxidized Cyt c were measured, and the generalized order parameters (S{sup 2}), the effective correlation time for internal motion ({tau}{sub e}), the {sup 15}N exchange broadening contributions (R{sub ex}) for each residue, and the overall correlation time ({tau}{sub m}) were estimated by model-free dynamics formalism. These dynamic parameters clearly showed that the backbone dynamics of Cyt c are highly restricted due to the covalently bound heme that functions as the stable hydrophobic core. Upon oxidation of the heme iron in Cyt c, the average S{sup 2} value was increased from 0.88 {+-} 0.01 to 0.92 {+-} 0.01, demonstrating that the mobility of the backbone is further restricted in the oxidized form. Such increases in the S{sup 2} values were more prominent in the loop regions, including amino acid residues near the thioether bonds to the heme moiety and positively charged region around Lys87. Both of the regions are supposed to form the interaction site for cytochrome c oxidase (CcO) and the electron pathway from Cyt c to CcO. The redox-dependent mobility of the backbone in the interaction site for the electron transfer to CcO suggests an electron transfer mechanism regulated by the backbone dynamics in the Cyt c-CcO system.

  18. Generalization of the Euler Angles

    Science.gov (United States)

    Bauer, Frank H. (Technical Monitor); Shuster, Malcolm D.; Markley, F. Landis

    2002-01-01

    It is shown that the Euler angles can be generalized to axes other than members of an orthonormal triad. As first shown by Davenport, the three generalized Euler axes, hereafter: Davenport axes, must still satisfy the constraint that the first two and the last two axes be mutually perpendicular if these axes are to define a universal set of attitude parameters. Expressions are given which relate the generalized Euler angles, hereafter: Davenport angles, to the 3-1-3 Euler angles of an associated direction-cosine matrix. The computation of the Davenport angles from the attitude matrix and their kinematic equation are presented. The present work offers a more direct development of the Davenport angles than Davenport's original publication and offers additional results.

  19. Small angle neutron scattering

    Directory of Open Access Journals (Sweden)

    Cousin Fabrice

    2015-01-01

    Full Text Available Small Angle Neutron Scattering (SANS is a technique that enables to probe the 3-D structure of materials on a typical size range lying from ∼ 1 nm up to ∼ a few 100 nm, the obtained information being statistically averaged on a sample whose volume is ∼ 1 cm3. This very rich technique enables to make a full structural characterization of a given object of nanometric dimensions (radius of gyration, shape, volume or mass, fractal dimension, specific area… through the determination of the form factor as well as the determination of the way objects are organized within in a continuous media, and therefore to describe interactions between them, through the determination of the structure factor. The specific properties of neutrons (possibility of tuning the scattering intensity by using the isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons make it particularly interesting in the fields of soft matter, biophysics, magnetic materials and metallurgy. In particular, the contrast variation methods allow to extract some informations that cannot be obtained by any other experimental techniques. This course is divided in two parts. The first one is devoted to the description of the principle of SANS: basics (formalism, coherent scattering/incoherent scattering, notion of elementary scatterer, form factor analysis (I(q→0, Guinier regime, intermediate regime, Porod regime, polydisperse system, structure factor analysis (2nd Virial coefficient, integral equations, characterization of aggregates, and contrast variation methods (how to create contrast in an homogeneous system, matching in ternary systems, extrapolation to zero concentration, Zero Averaged Contrast. It is illustrated by some representative examples. The second one describes the experimental aspects of SANS to guide user in its future experiments: description of SANS spectrometer, resolution of the spectrometer, optimization of

  20. The structure of the carbohydrate backbone of the lipopolysaccharide of Pectinatus frisingensis strain VTT E-79104.

    Science.gov (United States)

    Vinogradov, Evgeny; Li, Jianjun; Sadovskaya, Irina; Jabbouri, Said; Helander, Ilkka M

    2004-06-22

    The structure of the carbohydrate backbone of the lipopolysaccharide from Pectinatus frisingensis strain VTT E-79104 was analyzed using chemical degradations, NMR spectroscopy, mass spectrometry, and chemical methods. The LPS contains two major structural variants, differing in the presence or absence of an octasaccharide fragment. The largest structure of the carbohydrate backbone of the LPS, that could be deduced from experimental results, consists of 20 monosaccharides arranged in a nonrepetitive sequence: [carbohydrate structure: see text] where R is H or 4-O-Me-alpha-L-Fuc-(1-2)-4-O-Me-beta-Hep-(1-3)-alpha-GlcNAc-(1-2)-beta-Man-(1-3)-beta-ManNAc-(1-4)-alpha-Gal-(1-4)-beta-Hep-(1-3)-beta-GalNAc-(1- where Hep is a residue of D-glycero-D-galacto-heptose; all monosaccharides have the D-configuration except for 4-O-Me-L-Fuc and L-Ara4N. This structure is architecturally similar to the oligosaccharide system reported previously in P. frisingensis VTT E-82164 LPS, but differs from the latter in composition and also in the size of the outer region.

  1. A fusion networking model for smart grid power distribution backbone communication network based on PTN

    Directory of Open Access Journals (Sweden)

    Wang Hao

    2016-01-01

    Full Text Available In current communication network for distribution in Chinese power grid systems, the fiber communication backbone network for distribution and TD-LTE power private wireless backhaul network of power grid are both bearing by the SDH optical transmission network, which also carries the communication network of transformer substation and main electric. As the data traffic of the distribution communication and TD-LTE power private wireless network grow rapidly in recent years, it will have a big impact with the SDH network’s bearing capacity which is mainly used for main electric communication in high security level. This paper presents a fusion networking model which use a multiple-layer PTN network as the unified bearing of the TD-LTE power private wireless backhaul network and fiber communication backbone network for distribution. Network dataflow analysis shows that this model can greatly reduce the capacity pressure of the traditional SDH network as well as ensure the reliability of the transmission of the communication network for distribution and TD-LTE power private wireless network.

  2. Control of polymer-packing orientation in thin films through synthetic tailoring of backbone coplanarity

    KAUST Repository

    Chen, Mark S.

    2013-10-22

    Controlling solid-state order of π-conjugated polymers through macromolecular design is essential for achieving high electronic device performance; yet, it remains a challenge, especially with respect to polymer-packing orientation. Our work investigates the influence of backbone coplanarity on a polymer\\'s preference to pack face-on or edge-on relative to the substrate. Isoindigo-based polymers were synthesized with increasing planarity by systematically substituting thiophenes for phenyl rings in the acceptor comonomer. This increasing backbone coplanarity, supported by density functional theory (DFT) calculations of representative trimers, leads to the narrowing of polymer band gaps as characterized by ultraviolet-visible-near infrared (UV-vis-NIR) spectroscopy and cyclic voltammetry. Among the polymers studied, regiosymmetric II and TII polymers exhibited the highest hole mobilities in organic field-effect transistors (OFETs), while in organic photovoltaics (OPVs), TBII polymers that display intermediate levels of planarity provided the highest power conversion efficiencies. Upon thin-film analysis by atomic force microscropy (AFM) and grazing-incidence X-ray diffraction (GIXD), we discovered that polymer-packing orientation could be controlled by tuning polymer planarity and solubility. Highly soluble, planar polymers favor face-on orientation in thin films while the less soluble, nonplanar polymers favor an edge-on orientation. This study advances our fundamental understanding of how polymer structure influences nanostructural order and reveals a new synthetic strategy for the design of semiconducting materials with rationally engineered solid-state properties. © 2013 American Chemical Society.

  3. Di-Isocyanate Crosslinked Aerogels with 1, 6-Bis (Trimethoxysilyl) Hexane Incorporated in Silica Backbone

    Science.gov (United States)

    Vivod, Stephanie L.; Meador, Mary Ann B.; Nguyen, Baochau N.; Quade, Derek; Randall, Jason; Perry, Renee

    2008-01-01

    Silica aerogels are desirable materials for many applications that take advantage of their light weight and low thermal conductivity. Addition of a conformal polymer coating which bonds with the amine decorated surface of the silica network improves the strength of the aerogels by as much as 200 times. Even with vast improvement in strength they still tend to undergo brittle failure due to the rigid silica backbone. We hope to increase the flexibility and elastic recovery of the silica based aerogel by altering the silica back-bone by incorporation of more flexible hexane links. To this end, we investigated the use of 1,6-bis(trimethoxysilyl)hexane (BTMSH), a polysilsesquioxane precursor3, as an additional co-reactant to prepare silica gels which were subsequently cross-linked with di-isocyanate. Previously, this approach of adding flexibility by BTMSH incorporation was demonstrated with styrene cross-linked aerogels. In our study, we varied silane concentration, mol % of silicon from BTMSH and di-isocyanate concentration by weight percent to attempt to optimize both the flexibility and the strength of the aerogels.

  4. Structure and assembly of group B streptococcus pilus 2b backbone protein.

    Science.gov (United States)

    Cozzi, Roberta; Malito, Enrico; Lazzarin, Maddalena; Nuccitelli, Annalisa; Castagnetti, Andrea; Bottomley, Matthew J; Margarit, Immaculada; Maione, Domenico; Rinaudo, C Daniela

    2015-01-01

    Group B Streptococcus (GBS) is a major cause of invasive disease in infants. Like other Gram-positive bacteria, GBS uses a sortase C-catalyzed transpeptidation mechanism to generate cell surface pili from backbone and ancillary pilin precursor substrates. The three pilus types identified in GBS contain structural subunits that are highly immunogenic and are promising candidates for the development of a broadly-protective vaccine. Here we report the X-ray crystal structure of the backbone protein of pilus 2b (BP-2b) at 1.06Å resolution. The structure reveals a classical IgG-like fold typical of the pilin subunits of other Gram-positive bacteria. The crystallized portion of the protein (residues 185-468) encompasses domains D2 and D3 that together confer high stability to the protein due to the presence of an internal isopeptide bond within each domain. The D2+D3 region, lacking the N-terminal D1 domain, was as potent as the entire protein in conferring protection against GBS challenge in a well-established mouse model. By site-directed mutagenesis and complementation studies in GBS knock-out strains we identified the residues and motives essential for assembly of the BP-2b monomers into high-molecular weight complexes, thus providing new insights into pilus 2b polymerization.

  5. Structure and assembly of group B streptococcus pilus 2b backbone protein.

    Directory of Open Access Journals (Sweden)

    Roberta Cozzi

    Full Text Available Group B Streptococcus (GBS is a major cause of invasive disease in infants. Like other Gram-positive bacteria, GBS uses a sortase C-catalyzed transpeptidation mechanism to generate cell surface pili from backbone and ancillary pilin precursor substrates. The three pilus types identified in GBS contain structural subunits that are highly immunogenic and are promising candidates for the development of a broadly-protective vaccine. Here we report the X-ray crystal structure of the backbone protein of pilus 2b (BP-2b at 1.06Å resolution. The structure reveals a classical IgG-like fold typical of the pilin subunits of other Gram-positive bacteria. The crystallized portion of the protein (residues 185-468 encompasses domains D2 and D3 that together confer high stability to the protein due to the presence of an internal isopeptide bond within each domain. The D2+D3 region, lacking the N-terminal D1 domain, was as potent as the entire protein in conferring protection against GBS challenge in a well-established mouse model. By site-directed mutagenesis and complementation studies in GBS knock-out strains we identified the residues and motives essential for assembly of the BP-2b monomers into high-molecular weight complexes, thus providing new insights into pilus 2b polymerization.

  6. Automatic assignment of protein backbone resonances by direct spectrum inspection in targeted acquisition of NMR data.

    Science.gov (United States)

    Wong, Leo E; Masse, James E; Jaravine, Victor; Orekhov, Vladislav; Pervushin, Konstantin

    2008-10-01

    The necessity to acquire large multidimensional datasets, a basis for assignment of NMR resonances, results in long data acquisition times during which substantial degradation of a protein sample might occur. Here we propose a method applicable for such a protein for automatic assignment of backbone resonances by direct inspection of multidimensional NMR spectra. In order to establish an optimal balance between completeness of resonance assignment and losses of cross-peaks due to dynamic processes/degradation of protein, assignment of backbone resonances is set as a stirring criterion for dynamically controlled targeted nonlinear NMR data acquisition. The result is demonstrated with the 12 kDa (13)C,(15) N-labeled apo-form of heme chaperone protein CcmE, where hydrolytic cleavage of 29 C-terminal amino acids is detected. For this protein, 90 and 98% of manually assignable resonances are automatically assigned within 10 and 40 h of nonlinear sampling of five 3D NMR spectra, respectively, instead of 600 h needed to complete the full time domain grid. In addition, resonances stemming from degradation products are identified. This study indicates that automatic resonance assignment might serve as a guiding criterion for optimal run-time allocation of NMR resources in applications to proteins prone to degradation.

  7. Automatic assignment of protein backbone resonances by direct spectrum inspection in targeted acquisition of NMR data

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Leo E. [Nanyang Technological University, School of Biological Sciences (Singapore); Masse, James E. [National Institutes of Health (United States); Jaravine, Victor [J. W. Goethe-University Frankfurt, Institute of Biophysical Chemistry (Germany); Orekhov, Vladislav [Gothenburg University, Swedish NMR Centre (Sweden); Pervushin, Konstantin [Nanyang Technological University, School of Biological Sciences (Singapore)], E-mail: kpervushin@ntu.edu.sg

    2008-10-15

    The necessity to acquire large multidimensional datasets, a basis for assignment of NMR resonances, results in long data acquisition times during which substantial degradation of a protein sample might occur. Here we propose a method applicable for such a protein for automatic assignment of backbone resonances by direct inspection of multidimensional NMR spectra. In order to establish an optimal balance between completeness of resonance assignment and losses of cross-peaks due to dynamic processes/degradation of protein, assignment of backbone resonances is set as a stirring criterion for dynamically controlled targeted nonlinear NMR data acquisition. The result is demonstrated with the 12 kDa {sup 13}C,{sup 15} N-labeled apo-form of heme chaperone protein CcmE, where hydrolytic cleavage of 29 C-terminal amino acids is detected. For this protein, 90 and 98% of manually assignable resonances are automatically assigned within 10 and 40 h of nonlinear sampling of five 3D NMR spectra, respectively, instead of 600 h needed to complete the full time domain grid. In addition, resonances stemming from degradation products are identified. This study indicates that automatic resonance assignment might serve as a guiding criterion for optimal run-time allocation of NMR resources in applications to proteins prone to degradation.

  8. Cellulose nanofiber backboned Prussian blue nanoparticles as powerful adsorbents for the selective elimination of radioactive cesium

    Science.gov (United States)

    Vipin, Adavan Kiliyankil; Fugetsu, Bunshi; Sakata, Ichiro; Isogai, Akira; Endo, Morinobu; Li, Mingda; Dresselhaus, Mildred S.

    2016-11-01

    On 11 March 2011, the day of the unforgettable disaster of the 9 magnitude Tohoku earthquake and quickly followed by the devastating Tsunami, a damageable amount of radionuclides had dispersed from the Fukushima Daiichi’s damaged nuclear reactors. Decontamination of the dispersed radionuclides from seawater and soil, due to the huge amounts of coexisting ions with competitive functionalities, has been the topmost difficulty. Ferric hexacyanoferrate, also known as Prussian blue (PB), has been the most powerful material for selectively trapping the radioactive cesium ions; its high tendency to form stable colloids in water, however, has made PB to be impossible for the open-field radioactive cesium decontamination applications. A nano/nano combinatorial approach, as is described in this study, has provided an ultimate solution to this intrinsic colloid formation difficulty of PB. Cellulose nanofibers (CNF) were used to immobilize PB via the creation of CNF-backboned PB. The CNF-backboned PB (CNF/PB) was found to be highly tolerant to water and moreover, it gave a 139 mg/g capability and a million (106) order of magnitude distribution coefficient (Kd) for absorbing of the radioactive cesium ion. Field studies on soil and seawater decontaminations in Fukushima gave satisfactory results, demonstrating high capabilities of CNF/PB for practical applications.

  9. On the role of thermal backbone fluctuations in myoglobin ligand gate dynamics

    CERN Document Server

    Krokhotin, Andrey; Peng, Xubiao

    2012-01-01

    We construct an energy function that describes the crystallographic structure of spermwhale myoglobin backbone. As a model in our construction, we use the Protein Data Bank entry 1ABS that has been measured at liquid helium temperature. Consequently the thermal B-factor fluctuations are very small, which is an advantage in our construction. The energy function that we utilize resembles that of the discrete non-linear Schrodinger equation. Likewise, ours supports solitons as local minimum energy configurations. We describe the 1ABS backbone in terms of solitons with a precision that deviates from 1ABS by an average root-mean-square distance, which is less than the experimentally observed Debye-Waller B-factor fluctuation distance. We then subject the multisoliton solution to extensive numerical heating and cooling experiments, over a very wide range of temperatures. We concentrate in particular to temperatures above 300K and below the theta-point unfolding temperature, which is around 348K. We confirm that the...

  10. RNA-Redesign: a web server for fixed-backbone 3D design of RNA.

    Science.gov (United States)

    Yesselman, Joseph D; Das, Rhiju

    2015-07-01

    RNA is rising in importance as a design medium for interrogating fundamental biology and for developing therapeutic and bioengineering applications. While there are several online servers for design of RNA secondary structure, there are no tools available for the rational design of 3D RNA structure. Here we present RNA-Redesign (http://rnaredesign.stanford.edu), an online 3D design tool for RNA. This resource utilizes fixed-backbone design to optimize the sequence identity and nucleobase conformations of an RNA to match a desired backbone, analogous to fundamental tools that underlie rational protein engineering. The resulting sequences suggest thermostabilizing mutations that can be experimentally verified. Further, sequence preferences that differ between natural and computationally designed sequences can suggest whether natural sequences possess functional constraints besides folding stability, such as cofactor binding or conformational switching. Finally, for biochemical studies, the designed sequences can suggest experimental tests of 3D models, including concomitant mutation of base triples. In addition to the designs generated, detailed graphical analysis is presented through an integrated and user-friendly environment.

  11. Influence of Backbone Fluorination in Regioregular Poly(3-alkyl-4-fluoro)thiophenes

    KAUST Repository

    Fei, Zhuping

    2015-06-03

    © 2015 American Chemical Society. We report two strategies toward the synthesis of 3-alkyl-4-fluorothiophenes containing straight (hexyl and octyl) and branched (2-ethylhexyl) alkyl groups. We demonstrate that treatment of the dibrominated monomer with 1 equiv of alkyl Grignard reagent leads to the formation of a single regioisomer as a result of the pronounced directing effect of the fluorine group. Polymerization of the resulting species affords highly regioregular poly(3-alkyl-4-fluoro)thiophenes. Comparison of their properties to those of the analogous non-fluorinated polymers shows that backbone fluorination leads to an increase in the polymer ionization potential without a significant change in optical band gap. Fluorination also results in an enhanced tendency to aggregate in solution, which is ascribed to a more co-planar backbone on the basis of Raman and DFT calculations. Average charge carrier mobilities in field-effect transistors are found to increase by up to a factor of 5 for the fluorinated polymers.

  12. Improving VANETs Connectivity with a Totally Ad Hoc Living Mobile Backbone

    Directory of Open Access Journals (Sweden)

    Joilson Alves Junior

    2015-01-01

    Full Text Available The vehicular ad hoc network (VANET for intelligent transportation systems is an emerging concept to improve transportation security, reliability, and management. The network behavior can be totally different in topological aspects because of the mobility of vehicular nodes. The topology can be fully connected when the flow of vehicles is high and may have low connectivity or be invalid when the flow of vehicles is low or unbalanced. In big cities, the metropolitan buses that travel on exclusive lanes may be used to set up a metropolitan vehicular data network (backbone, raising the connectivity among the vehicles. Therefore, this paper proposes the implementation of a living mobile backbone, totally ad hoc (MOB-NET, which will provide infrastructure and raise the network connectivity. In order to show the viability of MOB-NET, statistical analyses were made with real data of express buses that travel through exclusive lanes, besides evaluations through simulations and analytic models. The statistic, analytic, and simulation results prove that the buses that travel through exclusive lanes can be used to build a communication network totally ad hoc and provide connectivity in more than 99% of the time, besides raising the delivery rate up to 95%.

  13. Computational Study of Environmental Effects on Torsional Free Energy Surface of N-Acetyl-N'-methyl-L-alanylamide Dipeptide

    Science.gov (United States)

    Carlotto, Silvia; Zerbetto, Mirco

    2014-01-01

    We propose an articulated computational experiment in which both quantum mechanics (QM) and molecular mechanics (MM) methods are employed to investigate environment effects on the free energy surface for the backbone dihedral angles rotation of the small dipeptide N-Acetyl-N'-methyl-L-alanylamide. This computation exercise is appropriate for an…

  14. HIV-1 phenotypic reverse transcriptase inhibitor drug resistance test interpretation is not dependent on the subtype of the virus backbone.

    Directory of Open Access Journals (Sweden)

    Michelle Bronze

    Full Text Available To date, the majority of HIV-1 phenotypic resistance testing has been performed with subtype B virus backbones (e.g. HXB2. However, the relevance of using this backbone to determine resistance in non-subtype B HIV-1 viruses still needs to be assessed. From 114 HIV-1 subtype C clinical samples (36 ARV-naïve, 78 ARV-exposed, pol amplicons were produced and analyzed for phenotypic resistance using both a subtype B- and C-backbone in which the pol fragment was deleted. Phenotypic resistance was assessed in resulting recombinant virus stocks (RVS for a series of antiretroviral drugs (ARV's and expressed as fold change (FC, yielding 1660 FC comparisons. These Antivirogram® derived FC values were categorized as having resistant or sensitive susceptibility based on biological cut-off values (BCOs. The concordance between resistance calls obtained for the same clinical sample but derived from two different backbones (i.e. B and C accounted for 86.1% (1429/1660 of the FC comparisons. However, when taking the assay variability into account, 95.8% (1590/1660 of the phenotypic data could be considered as being concordant with respect to their resistance call. No difference in the capacity to detect resistance associated with M184V, K103N and V106M mutations was noted between the two backbones. The following was concluded: (i A high level of concordance was shown between the two backbone phenotypic resistance profiles; (ii Assay variability is largely responsible for discordant results (i.e. for FC values close to BCO; (iii Confidence intervals should be given around the BCO's, when assessing resistance in HIV-1 subtype C; (iv No systematic resistance under- or overcalling of subtype C amplicons in the B-backbone was observed; (v Virus backbone subtype sequence variability outside the pol region does not contribute to phenotypic FC values. In conclusion the HXB2 virus backbone remains an acceptable vector for phenotyping HIV-1 subtype C pol amplicons.

  15. Tuning backbones and side-chains of cationic conjugated polymers for optical signal amplification of fluorescent DNA detection.

    Science.gov (United States)

    Huang, Yan-Qin; Liu, Xing-Fen; Fan, Qu-Li; Wang, Lihua; Song, Shiping; Wang, Lian-Hui; Fan, Chunhai; Huang, Wei

    2009-06-15

    Three cationic conjugated polymers (CCPs) exhibiting different backbone geometries and charge densities were used to investigate how their conjugated backbone and side chain properties, together with the transitions of DNA amphiphilic properties, interplay in the CCP/DNA-C* (DNA-C*: fluorophore-labeled DNA) complexes to influence the optical signal amplification of fluorescent DNA detection based on Förster resonance energy transfer (FRET). By examining the FRET efficiencies to dsDNA-C* (dsDNA: double-stranded DNA) and ssDNA-C* (ssDNA: single-stranded DNA) for each CCP, twisted conjugated backbones and higher charge densities were proved to facilitate electrostatic attraction in CCP/dsDNA-C* complexes, and induced improved sensitivity to DNA hybridization. Especially, by using the CCP with twisted conjugated backbone and the highest charge density, a more than 7-fold higher efficiency of FRET to dsDNA-C* was found than to ssDNA-C*, indicating a high signal amplification for discriminating between dsDNA and ssDNA. By contrast, linear conjugated backbones and lower charge density were demonstrated to favor hydrophobic interactions in CCP/ssDNA-C* complexes. These findings provided guidelines for the design of novel sensitive CCP, which can be useful to recognize many other important DNA activities involving transitions of DNA amphiphilic properties like DNA hybridization, such as specific DNA binding with ions, some secondary or tertiary structural changes of DNA, and so forth.

  16. Effect of backbone chemistry on hybridization thermodynamics of oligonucleic acids: a coarse-grained molecular dynamics simulation study.

    Science.gov (United States)

    Ghobadi, Ahmadreza F; Jayaraman, Arthi

    2016-02-28

    In this paper we study how varying oligonucleic acid backbone chemistry affects the hybridization/melting thermodynamics of oligonucleic acids. We first describe the coarse-grained (CG) model with tunable parameters that we developed to enable the study of both naturally occurring oligonucleic acids, such as DNA, and their chemically-modified analogues, such as peptide nucleic acids (PNAs) and locked nucleic acids (LNAs). The DNA melting curves obtained using such a CG model and molecular dynamics simulations in an implicit solvent and with explicit ions match with the melting curves obtained using the empirical nearest-neighbor models. We use these CG simulations to then elucidate the effect of backbone flexibility, charge, and nucleobase spacing along the backbone on the melting curves, potential energy and conformational entropy change upon hybridization and base-pair hydrogen bond residence time. We find that increasing backbone flexibility decreases duplex thermal stability and melting temperature mainly due to increased conformational entropy loss upon hybridization. Removing charges from the backbone enhances duplex thermal stability due to the elimination of electrostatic repulsion and as a result a larger energetic gain upon hybridization. Lastly, increasing nucleobase spacing decreases duplex thermal stability due to decreasing stacking interactions that are important for duplex stability.

  17. Comb-type prepolymers consisting of a polyacrylamide backbone and poly(L-lysine) graft chains for multivalent ligands.

    Science.gov (United States)

    Asayama, S; Maruyama, A; Akaike, T

    1999-01-01

    The comb-type copolymers consisting of a polyacrylamide (PAAm) backbone and poly(L-lysine) (PLL) graft chains have been prepared as the "prepolymer" for designing multivalent ligands. To regulate the length and density of the clusters of primary amino groups, the Nalpha-carboxyanhydride of Nepsilon-carbobenzoxy (CBZ)-L-lysine was first polymerized using p-vinylbenzylamine as an initiator. The resulting poly(CBZ-L-lysine) macromonomer was then radically copolymerized with AAm, followed by the deprotection of amino groups. For the model study, the reactive clusters of primary amino groups were completely converted into anion clusters by the reaction with succinic anhydride. The model multivalent ligands having the biotin label on the PAAm backbone were prepared by the terpolymerization of the macromonomer, AAm, and the biotin derivative having a vinyl group. The enzyme-linked immunosorbent assay showed that the biotin with no spacer on the PAAm backbone was recognized by the avidin-peroxidase conjugate specifically. Therefore, the highly sensitive detection of the interaction between cells and various model multivalent ligands was possible. The selective labeling onto the PAAm backbone revealed that the converted anion clusters of graft chains interacted exclusively with the cell and that the backbone was inert to the interaction with the cell. These results indicate that the various PAAm-graft-PLL comb-type copolymers with the defined length and density of the PLL-grafts are the potential prepolymers to investigate and to optimize the affinity of the multivalent ligands for receptors.

  18. From lattice BF gauge theory to area-angle Regge calculus

    CERN Document Server

    Bonzom, Valentin

    2009-01-01

    We consider Riemannian 4d BF lattice gauge theory, on a triangulation of spacetime. Introducing the simplicity constraints which turn BF theory into simplicial gravity, some geometric quantities of Regge calculus, areas, and 3d and 4d dihedral angles, are identified. The parallel transport conditions are taken care of to ensure a consistent gluing of simplices. We show that these gluing relations, together with the simplicity constraints, contain the constraints of area-angle Regge calculus in a simple way, via the group structure of the underlying BF gauge theory. This provides a precise road from constrained BF theory to area-angle Regge calculus. Doing so, a framework combining variables of lattice BF theory and Regge calculus is built. The action takes a form {\\it \\`a la Regge} and includes the contribution of the Immirzi parameter. In the absence of simplicity constraints, the standard spin foam model for BF theory is recovered. Insertions of local observables are investigated, leading to Casimir inserti...

  19. CORBA and MPI-based 'backbone' for coupling advanced simulation tools

    Energy Technology Data Exchange (ETDEWEB)

    Seydaliev, M.; Caswell, D., E-mail: marat.seydaliev@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2014-12-01

    There is a growing international interest in using coupled, multidisciplinary computer simulations for a variety of purposes, including nuclear reactor safety analysis. Reactor behaviour can be modeled using a suite of computer programs simulating phenomena or predicting parameters that can be categorized into disciplines such as Thermalhydraulics, Neutronics, Fuel, Fuel Channels, Fission Product Release and Transport, Containment and Atmospheric Dispersion, and Severe Accident Analysis. Traditionally, simulations used for safety analysis individually addressed only the behaviour within a single discipline, based upon static input data from other simulation programs. The limitation of using a suite of stand-alone simulations is that phenomenological interdependencies or temporal feedback between the parameters calculated within individual simulations cannot be adequately captured. To remove this shortcoming, multiple computer simulations for different disciplines must exchange data during runtime to address these interdependencies. This article describes the concept of a new framework, which we refer to as the 'Backbone', to provide the necessary runtime exchange of data. The Backbone, currently under development at AECL for a preliminary feasibility study, is a hybrid design using features taken from the Common Object Request Broker Architecture (CORBA), a standard defined by the Object Management Group, and the Message Passing Interface (MPI), a standard developed by a group of researchers from academia and industry. Both have well-tested and efficient implementations, including some that are freely available under the GNU public licenses. The CORBA component enables individual programs written in different languages and running on different platforms within a network to exchange data with each other, thus behaving like a single application. MPI provides the process-to-process intercommunication between these programs. This paper outlines the different

  20. Probing the role of backbone hydrogen bonds in protein-peptide interactions by amide-to-ester mutations

    DEFF Research Database (Denmark)

    Eildal, Jonas N N; Hultqvist, Greta; Balle, Thomas;

    2013-01-01

    -protein interactions, those of the PDZ domain family involve formation of intermolecular hydrogen bonds: C-termini or internal linear motifs of proteins bind as β-strands to form an extended antiparallel β-sheet with the PDZ domain. Whereas extensive work has focused on the importance of the amino acid side chains...... of the protein ligand, the role of the backbone hydrogen bonds in the binding reaction is not known. Using amide-to-ester substitutions to perturb the backbone hydrogen-bonding pattern, we have systematically probed putative backbone hydrogen bonds between four different PDZ domains and peptides corresponding...... to natural protein ligands. Amide-to-ester mutations of the three C-terminal amides of the peptide ligand severely affected the affinity with the PDZ domain, demonstrating that hydrogen bonds contribute significantly to ligand binding (apparent changes in binding energy, ΔΔG = 1.3 to >3.8 kcal mol(-1...

  1. Hysteresis during contact angles measurement.

    Science.gov (United States)

    Diaz, M Elena; Fuentes, Javier; Cerro, Ramon L; Savage, Michael D

    2010-03-15

    A theory, based on the presence of an adsorbed film in the vicinity of the triple contact line, provides a molecular interpretation of intrinsic hysteresis during the measurement of static contact angles. Static contact angles are measured by placing a sessile drop on top of a flat solid surface. If the solid surface has not been previously in contact with a vapor phase saturated with the molecules of the liquid phase, the solid surface is free of adsorbed liquid molecules. In the absence of an adsorbed film, molecular forces configure an advancing contact angle larger than the static contact angle. After some time, due to an evaporation/adsorption process, the interface of the drop coexists with an adsorbed film of liquid molecules as part of the equilibrium configuration, denoted as the static contact angle. This equilibrium configuration is metastable because the droplet has a larger vapor pressure than the surrounding flat film. As the drop evaporates, the vapor/liquid interface contracts and the apparent contact line moves towards the center of the drop. During this process, the film left behind is thicker than the adsorbed film and molecular attraction results in a receding contact angle, smaller than the equilibrium contact angle.

  2. Maximum entropy reconstruction of joint {phi}, {psi}-distribution with a coil-library prior: the backbone conformation of the peptide hormone motilin in aqueous solution from {phi} and {psi}-dependent J-couplings

    Energy Technology Data Exchange (ETDEWEB)

    Massad, Tariq; Jarvet, Jueri [Stockholm University, Department of Biochemistry and Biophysics (Sweden); Tanner, Risto [National Institute of Chemical Physics and Biophysics (Estonia); Tomson, Katrin; Smirnova, Julia; Palumaa, Peep [Tallinn Technical University, Inst. of Gene Technology (Estonia); Sugai, Mariko; Kohno, Toshiyuki [Mitsubishi Kagaku Institute of Life Sciences (MITILS) (Japan); Vanatalu, Kalju [Tallinn Technical University, Inst. of Gene Technology (Estonia); Damberg, Peter [Stockholm University, Department of Biochemistry and Biophysics (Sweden)], E-mail: peter.damberg@dbb.su.se

    2007-06-15

    In this paper, we present a new method for structure determination of flexible 'random-coil' peptides. A numerical method is described, where the experimentally measured {sup 3}J{sup H{sup N}}{sup H{sup {alpha}}} and {sup 3}J{sup H{sup {alpha}}}{sup N{sup I}+1} couplings, which depend on the {phi} and {psi} dihedral angles, are analyzed jointly with the information from a coil-library through a maximum entropy approach. The coil-library is the distribution of dihedral angles found outside the elements of the secondary structure in the high-resolution protein structures. The method results in residue specific joint {phi},{psi}-distribution functions, which are in agreement with the experimental J-couplings and minimally committal to the information in the coil-library. The 22-residue human peptide hormone motilin, uniformly {sup 15}N-labeled was studied. The {sup 3}J{sup H{sup {alpha}}}{sup N{sup I}+1} were measured from the E.COSY pattern in the sequential NOESY cross-peaks. By employing homodecoupling and an in-phase/anti-phase filter, sharp H{sup {alpha}}-resonances (about 5 Hz) were obtained enabling accurate determination of the coupling with minimal spectral overlap. Clear trends in the resulting {phi},{psi}-distribution functions along the sequence are observed, with a nascent helical structure in the central part of the peptide and more extended conformations of the receptor binding N-terminus as the most prominent characteristics. From the {phi},{psi}-distribution functions, the contribution from each residue to the thermodynamic entropy, i.e., the segmental entropies, are calculated and compared to segmental entropies estimated from {sup 15}N-relaxation data. Remarkable agreement between the relaxation and J-couplings based methods is found. Residues belonging to the nascent helix and the C-terminus show segmental entropies, of approximately -20 J K{sup -1} mol{sup -1} and -12 J K{sup -1} mol{sup -1}, respectively, in both series. The agreement

  3. Maximum entropy reconstruction of joint phi, psi-distribution with a coil-library prior: the backbone conformation of the peptide hormone motilin in aqueous solution from phi and psi-dependent J-couplings.

    Science.gov (United States)

    Massad, Tariq; Jarvet, Jüri; Tanner, Risto; Tomson, Katrin; Smirnova, Julia; Palumaa, Peep; Sugai, Mariko; Kohno, Toshiyuki; Vanatalu, Kalju; Damberg, Peter

    2007-06-01

    In this paper, we present a new method for structure determination of flexible "random-coil" peptides. A numerical method is described, where the experimentally measured 3J(H(alpha)Nalpha) and [3J(H(alpha)Nalpha+1 couplings, which depend on the phi and psi dihedral angles, are analyzed jointly with the information from a coil-library through a maximum entropy approach. The coil-library is the distribution of dihedral angles found outside the elements of the secondary structure in the high-resolution protein structures. The method results in residue specific joint phi,psi-distribution functions, which are in agreement with the experimental J-couplings and minimally committal to the information in the coil-library. The 22-residue human peptide hormone motilin, uniformly 15N-labeled was studied. The 3J(H(alpha)-N(i+1)) were measured from the E.COSY pattern in the sequential NOESY cross-peaks. By employing homodecoupling and an in-phase/anti-phase filter, sharp H(alpha)-resonances (about 5 Hz) were obtained enabling accurate determination of the coupling with minimal spectral overlap. Clear trends in the resulting phi,psi-distribution functions along the sequence are observed, with a nascent helical structure in the central part of the peptide and more extended conformations of the receptor binding N-terminus as the most prominent characteristics. From the phi,psi-distribution functions, the contribution from each residue to the thermodynamic entropy, i.e., the segmental entropies, are calculated and compared to segmental entropies estimated from 15N-relaxation data. Remarkable agreement between the relaxation and J-couplings based methods is found. Residues belonging to the nascent helix and the C-terminus show segmental entropies, of approximately -20 J K(-1) mol(-1) and -12 J K(-1) mol(-1), respectively, in both series. The agreement between the two estimates of the segmental entropy, the agreement with the observed J-couplings, the agreement with the CD experiments

  4. A renormalization approach to describe charge transport in quasiperiodic dangling backbone ladder (DBL)-DNA molecules

    Energy Technology Data Exchange (ETDEWEB)

    Sarmento, R.G. [Departamento de Fisica, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil); Fulco, U.L. [Departamento de Biofisica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil); Albuquerque, E.L., E-mail: eudenilson@gmail.com [Departamento de Biofisica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil); Caetano, E.W.S. [Instituto Federal de Educacao, Ciencia e Tecnologia do Ceara, 60040-531 Fortaleza, CE (Brazil); Freire, V.N. [Departamento de Fisica, Universidade Federal do Ceara, 60455-760 Fortaleza, CE (Brazil)

    2011-10-31

    Highlights: → One-step renormalization approach to describe the DBL-DNA molecule. → Electronic tight-binding Hamiltonian model. → A quasiperiodic sequence to mimic the DNA nucleotides arrangement. → Electronic transmission spectra. → I-V characteristics. -- Abstract: We study the charge transport properties of a dangling backbone ladder (DBL)-DNA molecule focusing on a quasiperiodic arrangement of its constituent nucleotides forming a Rudin-Shapiro (RS) and Fibonacci (FB) Poly (CG) sequences, as well as a natural DNA sequence (Ch22) for the sake of comparison. Making use of a one-step renormalization process, the DBL-DNA molecule is modeled in terms of a one-dimensional tight-binding Hamiltonian to investigate its transmissivity and current-voltage (I-V) profiles. Beyond the semiconductor I-V characteristics, a striking similarity between the electronic transport properties of the RS quasiperiodic structure and the natural DNA sequence was found.

  5. Polystyrene Backbone Polymers Consisting of Alkyl-Substituted Triazine Side Groups for Phosphorescent OLEDs

    Directory of Open Access Journals (Sweden)

    Beatrice Ch. D. Salert

    2012-01-01

    Full Text Available This paper describes the synthesis of new electron-transporting styrene monomers and their corresponding polystyrenes all with a 2,4,6-triphenyl-1,3,5-triazine basic structure in the side group. The monomers differ in the alkyl substitution and in the meta-/paralinkage of the triazine to the polymer backbone. The thermal and spectroscopic properties of the new electron-transporting polymers are discussed in regard to their chemical structures. Phosphorescent OLEDs were prepared using the obtained electron-transporting polymers as the emissive layer material in blend systems together with a green iridium-based emitter 13 and a small molecule as an additional cohost with wideband gap characteristics (CoH-001. The performance of the OLEDs was characterized and discussed in regard to the chemical structure of the new electron-transporting polymers.

  6. The Effects of NHC-Backbone Substitution on Efficiency in Ruthenium-based Olefin Metathesis

    Science.gov (United States)

    Kuhn, Kevin M.; Bourg, Jean-Baptiste; Chung, Cheol K.; Virgil, Scott C.; Grubbs, Robert H.

    2009-01-01

    A series of ruthenium olefin metathesis catalysts bearing N-heterocyclic carbene (NHC) ligands with varying degrees of backbone and N-aryl substitution have been prepared. These complexes show greater resistance to decomposition through C–H activation of the N-aryl group, resulting in increased catalyst lifetimes. This work has utilized robotic technology to examine the activity and stability of each catalyst in metathesis, providing insights into the relationship between ligand architecture and enhanced efficiency. The development of this robotic methodology has also shown that, under optimized conditions, catalyst loadings as low as 25 ppm can lead to 100% conversion in the ring-closing metathesis of diethyl diallylmalonate. PMID:19351207

  7. Extensive Air Showers: from the muonic smoking guns to the hadronic backbone

    Directory of Open Access Journals (Sweden)

    Cazon L.

    2013-06-01

    Full Text Available Extensive Air Showers are complex macroscopic objects initiated by single ultra-high energy particles. They are the result of millions of high energy reactions in the atmosphere and can be described as the superposition of hadronic and electromagnetic cascades. The hadronic cascade is the air shower backbone, and it is mainly made of pions. Decays of neutral pions initiate electromagnetic cascades, while the decays of charged pions produce muons which leave the hadronic core and travel many kilometers almost unaffected. Muons are smoking guns of the hadronic cascade: the energy, transverse momentum, spatial distribution and depth of production are key to reconstruct the history of the air shower. In this work, we overview the phenomenology of muons on the air shower and its relation to the hadronic cascade. We briefly review the experimental efforts to analyze muons within air showers and discuss possible paths to use this information.

  8. A recombinant, chimeric tetravalent dengue vaccine candidate based on a dengue virus serotype 2 backbone.

    Science.gov (United States)

    Osorio, Jorge E; Wallace, Derek; Stinchcomb, Dan T

    2016-01-01

    Dengue fever is caused by infection with one of four dengue virus (DENV) serotypes (DENV-1-4), necessitating tetravalent dengue vaccines that can induce protection against all four DENV. Takeda's live attenuated tetravalent dengue vaccine candidate (TDV) comprises an attenuated DENV-2 strain plus chimeric viruses containing the prM and E genes of DENV-1, -3 and -4 cloned into the attenuated DENV-2 'backbone'. In Phase 1 and 2 studies, TDV was well tolerated by children and adults aged 1.5-45 years, irrespective of prior dengue exposure; mild injection-site symptoms were the most common adverse events. TDV induced neutralizing antibody responses and seroconversion to all four DENV as well as cross-reactive T cell-mediated responses that may be necessary for broad protection against dengue fever.

  9. Icosahedral medium-range orders and backbone formation in an amorphous alloy

    Science.gov (United States)

    Lee, Mirim; Kim, Hong-Kyu; Lee, Jae-Chul

    2010-12-01

    Analyses of metallic amorphous solids constructed using molecular dynamics (MD) simulations have demonstrated that individual short-range orders (SROs) are linked with neighboring SROs and form various medium-range orders (MROs). These MROs have been observed to have different structural stability depending on their linking patterns. On the basis of the assessment of the structural stability of various MROs, we propose new types of structural organization, namely, icosahedral medium-range orders (I-MROs) and their extended-range order that forms the backbone of amorphous solids. We also discuss why the atomic-scale structure of an amorphous alloy can be more appropriately described in terms of I-MROs, rather than by the degree of short-range ordering as characterized by the fractions of SROs.

  10. A renormalization approach to describe charge transport in quasiperiodic dangling backbone ladder (DBL)-DNA molecules

    Science.gov (United States)

    Sarmento, R. G.; Fulco, U. L.; Albuquerque, E. L.; Caetano, E. W. S.; Freire, V. N.

    2011-10-01

    We study the charge transport properties of a dangling backbone ladder (DBL)-DNA molecule focusing on a quasiperiodic arrangement of its constituent nucleotides forming a Rudin-Shapiro (RS) and Fibonacci (FB) Poly (CG) sequences, as well as a natural DNA sequence (Ch22) for the sake of comparison. Making use of a one-step renormalization process, the DBL-DNA molecule is modeled in terms of a one-dimensional tight-binding Hamiltonian to investigate its transmissivity and current-voltage (I-V) profiles. Beyond the semiconductor I-V characteristics, a striking similarity between the electronic transport properties of the RS quasiperiodic structure and the natural DNA sequence was found.

  11. Solid-phase synthesis of lidocaine and procainamide analogues using backbone amide linker (BAL) anchoring.

    Science.gov (United States)

    Shannon, Simon K; Peacock, Mandy J; Kates, Steven A; Barany, George

    2003-01-01

    New solid-phase strategies have been developed for the synthesis of lidocaine (1) and procainamide (2) analogues, using backbone amide linker (BAL) anchoring. Both sets were prepared starting from a common resin-bound intermediate, followed by four general steps: (i) attachment of a primary aliphatic or aromatic amine to the solid support via reductive amination (as monitored by a novel test involving reaction of 2,4-dinitrophenylhydrazine with residual aldehyde groups); (ii) acylation of the resultant secondary amine; (iii) displacement of halide with an amine; and (iv) trifluoroacetic acid-mediated release from the support. A manual parallel strategy was followed to provide 60 novel compounds, of which two dozen have not been previously described. In most cases, initial crude purities were >80%, and overall isolated yields were in the 40-88% range.

  12. Design of a sialylglycopolymer with a chitosan backbone having efficient inhibitory activity against influenza virus infection.

    Science.gov (United States)

    Umemura, Myco; Itoh, Masae; Makimura, Yutaka; Yamazaki, Kohji; Umekawa, Midori; Masui, Ayano; Matahira, Yoshiharu; Shibata, Mari; Ashida, Hisashi; Yamamoto, Kenji

    2008-08-14

    We verified here the inhibitory activity of a sialylglycopolymer prepared from natural products, chitosan and hen egg yolk, against influenza virus infection and estimated the requirements of the molecule for efficient inhibition. The inhibitory activity clearly depended on two factors, the length (the degree of polymerization: DP) of the chitosan backbone and the amount (the degree of substitution: DS) of conjugated sialyloligosaccharide side chain. The inhibitory efficiency increased in accordance with the DP value, with the highest inhibitory activity obtained when the DP was 1430. The inhibition of virus infection reached more than 90% as the DS value increased up to 15.6% when the neighboring sialyloligosaccharide side chains came as close as 4 nm, which was nearly the distance between two receptor-binding pockets in a hemagglutinin trimer. These results demonstrate that the sialylglycopolymer could be an excellent candidate of the safe and efficient anti-influenza drug.

  13. Sequential backbone assignment based on dipolar amide-to-amide correlation experiments.

    Science.gov (United States)

    Xiang, ShengQi; Grohe, Kristof; Rovó, Petra; Vasa, Suresh Kumar; Giller, Karin; Becker, Stefan; Linser, Rasmus

    2015-07-01

    Proton detection in solid-state NMR has seen a tremendous increase in popularity in the last years. New experimental techniques allow to exploit protons as an additional source of information on structure, dynamics, and protein interactions with their surroundings. In addition, sensitivity is mostly improved and ambiguity in assignment experiments reduced. We show here that, in the solid state, sequential amide-to-amide correlations turn out to be an excellent, complementary way to exploit amide shifts for unambiguous backbone assignment. For a general assessment, we compare amide-to-amide experiments with the more common (13)C-shift-based methods. Exploiting efficient CP magnetization transfers rather than less efficient INEPT periods, our results suggest that the approach is very feasible for solid-state NMR.

  14. Sequential backbone assignment based on dipolar amide-to-amide correlation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, ShengQi; Grohe, Kristof; Rovó, Petra; Vasa, Suresh Kumar; Giller, Karin; Becker, Stefan; Linser, Rasmus, E-mail: rali@nmr.mpibpc.mpg.de [Max Planck Institute for Biophysical Chemistry, Department for NMR-Based Structural Biology (Germany)

    2015-07-15

    Proton detection in solid-state NMR has seen a tremendous increase in popularity in the last years. New experimental techniques allow to exploit protons as an additional source of information on structure, dynamics, and protein interactions with their surroundings. In addition, sensitivity is mostly improved and ambiguity in assignment experiments reduced. We show here that, in the solid state, sequential amide-to-amide correlations turn out to be an excellent, complementary way to exploit amide shifts for unambiguous backbone assignment. For a general assessment, we compare amide-to-amide experiments with the more common {sup 13}C-shift-based methods. Exploiting efficient CP magnetization transfers rather than less efficient INEPT periods, our results suggest that the approach is very feasible for solid-state NMR.

  15. Modification of rifamycin polyketide backbone leads to improved drug activity against rifampicin-resistant Mycobacterium tuberculosis.

    Science.gov (United States)

    Nigam, Aeshna; Almabruk, Khaled H; Saxena, Anjali; Yang, Jongtae; Mukherjee, Udita; Kaur, Hardeep; Kohli, Puneet; Kumari, Rashmi; Singh, Priya; Zakharov, Lev N; Singh, Yogendra; Mahmud, Taifo; Lal, Rup

    2014-07-25

    Rifamycin B, a product of Amycolatopsis mediterranei S699, is the precursor of clinically used antibiotics that are effective against tuberculosis, leprosy, and AIDS-related mycobacterial infections. However, prolonged usage of these antibiotics has resulted in the emergence of rifamycin-resistant strains of Mycobacterium tuberculosis. As part of our effort to generate better analogs of rifamycin, we substituted the acyltransferase domain of module 6 of rifamycin polyketide synthase with that of module 2 of rapamycin polyketide synthase. The resulting mutants (rifAT6::rapAT2) of A. mediterranei S699 produced new rifamycin analogs, 24-desmethylrifamycin B and 24-desmethylrifamycin SV, which contained modification in the polyketide backbone. 24-Desmethylrifamycin B was then converted to 24-desmethylrifamycin S, whose structure was confirmed by MS, NMR, and X-ray crystallography. Subsequently, 24-desmethylrifamycin S was converted to 24-desmethylrifampicin, which showed excellent antibacterial activity against several rifampicin-resistant M. tuberculosis strains.

  16. Essential roles of four-carbon backbone chemicals in the control of metabolism

    Institute of Scientific and Technical Information of China (English)

    Sabrina; Chriett; Luciano; Pirola

    2015-01-01

    The increasing incidence of obesity worldwide and its related cardiometabolic complications is an urgent public health problem. While weight gain results from a negative balance between the energy expenditure and calorie intake, recent research has demonstrated that several small organic molecules containing a four-carbon backbone can modulate this balance by favoring energy expenditure, and alleviating endoplasmic reticulum stress and oxidative stress. Such small molecules include the bacterially produced short chain fatty acid butyric acid, its chemically produced derivative 4-phenylbutyric acid, the main ketone body D-β-hydroxybutyrate- synthesized by the liver- and the recently discovered myokine β-aminoisobutyric acid. Conversely, another butyraterelated molecule, α-hydroxybutyrate, has been found to be an early predictor of insulin resistance and glucose intolerance. In this minireview, we summarize recent advances in the understanding of the mechanism of action of these molecules, and discuss their use as therapeutics to improve metabolic homeostasis or their detection as early biomarkers of incipient insulin resistance.

  17. Quality of service estimation based on maximum bottleneck algorithm for domain aggregation in backbone networks

    Institute of Scientific and Technical Information of China (English)

    WANG Yang; ZHAN Yi-chun; YU Shao-hua

    2007-01-01

    This paper investigates the routing among autonomous systems (ASs) with quality of service (QoS) requirements. To avoid the intractability of the problem, abstract QoS capability must be informed among ASs, because the routhing which constrained QoS has been proved to be nondeterministic polynomial-time (NP) hard even inside an AS. This paper employs the modified Dijkstra algorithm to compute the maximum bottleneck bandwidth inside an AS. This approach lays a basis for the AS-level switching capability on which interdomain advertisement can be performed. Furthermore, the paper models the aggregated traffic in backbone network with fractional Brownian motion (FBM), and by integrating along the time axis in short intervals, a good estimation of the distribution of queue length in the next short intervals can be obtained. The proposed advertisement mechanism can be easily implemented with the current interdomain routing protocols. Numerical study indicates that the presented scheme is effective and feasible.

  18. Side chain and backbone contributions of Phe508 to CFTR folding

    Energy Technology Data Exchange (ETDEWEB)

    Thibodeau, Patrick H.; Brautigam, Chad A.; Machius, Mischa; Thomas, Philip J. (U. of Texas-SMED)

    2010-12-07

    Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), an integral membrane protein, cause cystic fibrosis (CF). The most common CF-causing mutant, deletion of Phe508, fails to properly fold. To elucidate the role Phe508 plays in the folding of CFTR, missense mutations at this position were generated. Only one missense mutation had a pronounced effect on the stability and folding of the isolated domain in vitro. In contrast, many substitutions, including those of charged and bulky residues, disrupted folding of full-length CFTR in cells. Structures of two mutant nucleotide-binding domains (NBDs) reveal only local alterations of the surface near position 508. These results suggest that the peptide backbone plays a role in the proper folding of the domain, whereas the side chain plays a role in defining a surface of NBD1 that potentially interacts with other domains during the maturation of intact CFTR.

  19. An Infinite Family of One-regular and 4-valent Cayley Graphs of Quasi-dihedral Groups%拟二面体群的一个无限类1-正则4度Cayley图

    Institute of Scientific and Technical Information of China (English)

    王长群; 熊胜利

    2004-01-01

    A Cayley graph X=Cay(G,S) of group G is said to be normal if R(G),the group of right multiplications,is normal in Aut(X).An infinite family of normal one-regular Cayley graphs Cay(G,S) of quasi-dihedral groups G=〈x,y|x2m=y2=1,xy=xm+1〉 is obtained,where S={x,x-1,xs+1y,xs-1y},m=2s,and s is an even greater than 4.In addition,the normal and one-regular and 4-valent Cayley graphs of quasi-dihedral groups of order 2r are classified.It is proved that any 4-valent normal and one-regular Cayley graphs of quasi-dihedral ghoups G of order 2r are isomorphic to Cay(G,{x,x-1,xs+1 y,xs-1y}) where s=2r-2,r>3.%群G的一个Cayley图X=Cay(G,S)称为正规的,如果右乘变换群R(G)在Aut(X)中正规.得到了拟二面体群G=〈x,y|x2m=y2=1,xy=xm+1〉(其中m=2s,s为大于4的偶数)的一个无限类4度正规1-正则Cayley图 Cay(G,S),其中S={x,x-1,xs+1y,xs-1y},并且对2r阶拟二面体群的正规1-正则4度Cayley图进行了分类,其中r>3.证明了2r阶拟二面体群的任意4度正规1-正则Cayley图同构于Cay(G,{x,x-1,xs+1y,xs-1y}),其中s=2r-2.

  20. Contribution of Peptide Backbone to Anti-Citrullinated Peptide Antibody Reactivity.

    Directory of Open Access Journals (Sweden)

    Nicole Hartwig Trier

    Full Text Available Rheumatoid arthritis (RA is one of the most common autoimmune diseases, affecting approximately 1-2% of the world population. One of the characteristic features of RA is the presence of autoantibodies. Especially the highly specific anti-citrullinated peptide antibodies (ACPAs, which have been found in up to 70% of RA patients' sera, have received much attention. Several citrullinated proteins are associated with RA, suggesting that ACPAs may react with different sequence patterns, separating them from traditional antibodies, whose reactivity usually is specific towards a single target. As ACPAs have been suggested to be involved in the development of RA, knowledge about these antibodies may be crucial. In this study, we examined the influence of peptide backbone for ACPA reactivity in immunoassays. The antibodies were found to be reactive with a central Cit-Gly motif being essential for ACPA reactivity and to be cross-reactive between the selected citrullinated peptides. The remaining amino acids within the citrullinated peptides were found to be of less importance for antibody reactivity. Moreover, these findings indicated that the Cit-Gly motif in combination with peptide backbone is essential for antibody reactivity. Based on these findings it was speculated that any amino acid sequence, which brings the peptide into a properly folded structure for antibody recognition is sufficient for antibody reactivity. These findings are in accordance with the current hypothesis that structural homology rather than sequence homology are favored between citrullinated epitopes. These findings are important in relation to clarifying the etiology of RA and to determine the nature of ACPAs, e.g., why some Cit-Gly-containing sequences are not targeted by ACPAs.

  1. Effects of Tryptophan Content and Backbone Spacing on the Uptake Efficiency of Cell-Penetrating Peptides

    KAUST Repository

    Rydberg, Hanna A.

    2012-07-10

    Cell-penetrating peptides (CPPs) are able to traverse cellular membranes and deliver macromolecular cargo. Uptake occurs through both endocytotic and nonendocytotic pathways, but the molecular requirements for efficient internalization are not fully understood. Here we investigate how the presence of tryptophans and their position within an oligoarginine influence uptake mechanism and efficiency. Flow cytometry and confocal fluorescence imaging are used to estimate uptake efficiency, intracellular distribution and toxicity in Chinese hamster ovarian cells. Further, membrane leakage and lipid membrane affinity are investigated. The peptides contain eight arginine residues and one to four tryptophans, the tryptophans positioned either at the N-terminus, in the middle, or evenly distributed along the amino acid sequence. Our data show that the intracellular distribution varies among peptides with different tryptophan content and backbone spacing. Uptake efficiency is higher for the peptides with four tryptophans in the middle, or evenly distributed along the peptide sequence, than for the peptide with four tryptophans at the N-terminus. All peptides display low cytotoxicity except for the one with four tryptophans at the N-terminus, which was moderately toxic. This finding is consistent with their inability to induce efficient leakage of dye from lipid vesicles. All peptides have comparable affinities for lipid vesicles, showing that lipid binding is not a decisive parameter for uptake. Our results indicate that tryptophan content and backbone spacing can affect both the CPP uptake efficiency and the CPP uptake mechanism. The low cytotoxicity of these peptides and the possibilities of tuning their uptake mechanism are interesting from a therapeutic point of view. © 2012 American Chemical Society.

  2. Preparation of stable spherical micelles with rigid backbones based on polyaryletherketone copolymers containing lateral pyridyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuling; Liu, Lingzhi; Guo, Yunliang; Jiang, Zhenhua; Wang, Guibin, E-mail: wgb@jlu.edu.cn

    2013-07-15

    A new bisphenol monomer, 3-(3,4-dihydroxyphenylimine) pyridine (PYPH), was synthesized via a deoxidization reaction of an amine. A series of novel polyaryletherketone copolymers containing lateral pyridyl groups (PY-PAEKs) based on PYPH, 2,2-di(4-hydroxyphenyl)propane and 4,4′-difluorobenzophenone were prepared by nucleophilic aromatic substitution polycondensation reactions. Furthermore, spherical micelles with rigid PY-PAEKs as the inner cores and flexible polyacrylic acid (PAA) as the outer shells were obtained in a selective solvent (H{sub 2}O) successfully. The formation of the spherical micelles was confirmed by scanning electron and transmission electron microscopy as well as by surface tension measurements. The formation and size of the spherical micelles depended on the weight ratio of PAA/PY-PAEK, the concentration and pH value of the mixed solution containing the PY-PAEK and PAA, and the number of pyridyl groups in the PY-PAEK. The structure of the spherical micelles could be stabilized by a cross-linking reaction between the pyridyl groups of the PY-PAEKs and 1,4-dibromobutane. The diameter of the spherical micelles decreased because of the removal of the PAA shell from the PY-PAEK core after the cross-linking reaction. The resulting stable spherical micelles with rigid backbones did not dissolve in a number of polar solvents and remained unaffected by changes in the pH values. - Graphical abstract: Display Omitted - Highlights: • Polyaryletherketone copolymers containing lateral pyridyl groups were synthesized. • Spherical micelles were prepared using these copolymers and polyacrylic acid. • The copolymers and polyacrylic acid formed the core and the shell of the micelles, respectively. • The obtained micelles were stabilized by a cross-linking reaction. • The cross-linked micelles had rigid backbones, independent of solvents and pH values.

  3. Backbone-hydrazone-containing biodegradable copolymeric micelles for anticancer drug delivery

    Science.gov (United States)

    Xu, Jing; Luan, Shujuan; Qin, Benkai; Wang, Yingying; Wang, Kai; Qi, Peilan; Song, Shiyong

    2016-11-01

    Well-defined biodegradable, pH-sensitive amphiphilic block polymers, poly(ethylene glycol)-Hyd-poly(lactic acid) (mPEG-Hyd-PLA) which have acid-cleavable linkages in their backbones, were synthesized via ring-opening polymerization initiated from hydrazone-containing macroinitiators. Introducing a hydrazone bond onto the backbone of an amphiphilic copolymer will find a broad-spectrum encapsulation of hydrophobic drugs. Dynamic light scattering (DLS) and transmission electron microscopy showed that the diblock copolymers self-assembled into stable micelles with average diameters of 100 nm. The mean diameters and size distribution of the hydrazone-containing micelles changed obviously in mildly acidic pH (multiple peaks from 1 to 202 nm appeared under a pH 4.0 condition) than in neutral, while there were no changes in the case of non-sensitive ones. Doxorubicin (DOX) and paclitaxel (PTX) were loaded with drug loading content ranging from 2.4 to 3.5 %, respectively. Interestingly, the anticancer drugs released from mPEG-Hyd-PLA micelles could also be promoted by the increased acidity. An in vitro cytotoxicity study showed that the DOX-loaded mPEG-Hyd-PLA micelles have significantly enhanced cytotoxicity against HepG2 cells compared with the non-sensitive poly(ethylene glycol)-block-poly(lactic acid) (mPEG-PLA) micelles. Confocal microscopy observation indicated that more DOX were delivered into the nuclei of cells following 6 or 12 h incubation with DOX-loaded mPEG-Hyd-PLA micelles. In vivo studies on H22-bearing Swiss mice demonstrated the superior anticancer activity of DOX-loaded mPEG-Hyd-PLA micelles over free DOX and DOX-loaded mPEG-PLA micelles. These hydrazone-containing pH-responsive degradable micelles provide a useful strategy for antitumor drug delivery.

  4. Subpicosecond protein backbone changes detected during the green-absorbing proteorhodopsin primary photoreaction.

    Science.gov (United States)

    Amsden, Jason J; Kralj, Joel M; Chieffo, Logan R; Wang, Xihua; Erramilli, Shyamsunder; Spudich, Elena N; Spudich, John L; Ziegler, Lawrence D; Rothschild, Kenneth J

    2007-10-11

    Recent studies demonstrate that photoactive proteins can react within several picoseconds to photon absorption by their chromophores. Faster subpicosecond protein responses have been suggested to occur in rhodopsin-like proteins where retinal photoisomerization may impulsively drive structural changes in nearby protein groups. Here, we test this possibility by investigating the earliest protein structural changes occurring in proteorhodopsin (PR) using ultrafast transient infrared (TIR) spectroscopy with approximately 200 fs time resolution combined with nonperturbing isotope labeling. PR is a recently discovered microbial rhodopsin similar to bacteriorhodopsin (BR) found in marine proteobacteria and functions as a proton pump. Vibrational bands in the retinal fingerprint (1175-1215 cm(-1)) and ethylenic stretching (1500-1570 cm(-1)) regions characteristic of all-trans to 13-cis chromophore isomerization and formation of a red-shifted photointermediate appear with a 500-700 fs time constant after photoexcitation. Bands characteristic of partial return to the ground state evolve with a 2.0-3.5 ps time constant. In addition, a negative band appears at 1548 cm(-1) with a time constant of 500-700 fs, which on the basis of total-15N and retinal C15D (retinal with a deuterium on carbon 15) isotope labeling is assigned to an amide II peptide backbone mode that shifts to near 1538 cm(-1) concomitantly with chromophore isomerization. Our results demonstrate that one or more peptide backbone groups in PR respond with a time constant of 500-700 fs, almost coincident with the light-driven retinylidene chromophore isomerization. The protein changes we observe on a subpicosecond time scale may be involved in storage of the absorbed photon energy subsequently utilized for proton transport.

  5. Enhanced biosynthetically directed fractional carbon-13 enrichment of proteins for backbone NMR assignments.

    Science.gov (United States)

    Wenrich, Broc R; Sonstrom, Reilly E; Gupta, Riju A; Rovnyak, David

    2015-11-01

    Routes to carbon-13 enrichment of bacterially expressed proteins include achieving uniform or positionally selective (e.g. ILV-Me, or (13)C', etc.) enrichment. We consider the potential for biosynthetically directed fractional enrichment (e.g. carbon-13 incorporation in the protein less than 100%) for performing routine n-(D)dimensional NMR spectroscopy of proteins. First, we demonstrate an approach to fractional isotope addition where the initial growth media containing natural abundance glucose is replenished at induction with a small amount (e.g. 10%(w/w)u-(13)C-glucose) of enriched nutrient. The approach considered here is to add 10% (e.g. 200mg for a 2g/L culture) u-(13)C-glucose at the induction time (OD600=0.8), resulting in a protein with enhanced (13)C incorporation that gives almost the same NMR signal levels as an exact 20% (13)C sample. Second, whereas fractional enrichment is used for obtaining stereospecific methyl assignments, we find that (13)C incorporation levels no greater than 20%(w/w) yield (13)C and (13)C-(13)C spin pair incorporation sufficient to conduct typical 3D-bioNMR backbone experiments on moderate instrumentation (600 MHz, RT probe). Typical 3D-bioNMR experiments of a fractionally enriched protein yield expected backbone connectivities, and did not show amino acid biases in this work, with one exception. When adding 10% u-(13)C glucose to expression media at induction, there is poor preservation of (13)Cα-(13)Cβ spin pairs in the amino acids ILV, leading to the absence of Cβ signals in HNCACB spectra for ILV, a potentially useful editing effect. Enhanced fractional carbon-13 enrichment provides lower-cost routes to high throughput protein NMR studies, and makes modern protein NMR more cost-accessible.

  6. Backbone dynamics of reduced plastocyanin from the cyanobacterium Anabaena variabilis: Regions involved in electron transfer have enhanced mobility

    DEFF Research Database (Denmark)

    Ma, L.X.; Hass, M.A.S.; Vierick, N.;

    2003-01-01

    The dynamics of the backbone of the electron-transfer protein plastocyanin from the cyanobacterium Anabaena variabilis were determined from the N-15 and C-13(alpha) R-1 and R-2) relaxation rates and steady-state [H-1]-N-15 and [H-1]-C-13 nuclear Overhauser effects (NOEs) using the model-free appr......The dynamics of the backbone of the electron-transfer protein plastocyanin from the cyanobacterium Anabaena variabilis were determined from the N-15 and C-13(alpha) R-1 and R-2) relaxation rates and steady-state [H-1]-N-15 and [H-1]-C-13 nuclear Overhauser effects (NOEs) using the model...

  7. The extension of a DNA double helix by an additional Watson-Crick base pair on the same backbone

    DEFF Research Database (Denmark)

    Kumar, P.; Sharma, P. K.; Madsen, Charlotte S.

    2013-01-01

    Additional base pair: The DNA duplex can be extended with an additional Watson-Crick base pair on the same backbone by the use of double-headed nucleotides. These also work as compressed dinucleotides and form two base pairs with cognate nucleobases on the opposite strand.......Additional base pair: The DNA duplex can be extended with an additional Watson-Crick base pair on the same backbone by the use of double-headed nucleotides. These also work as compressed dinucleotides and form two base pairs with cognate nucleobases on the opposite strand....

  8. Two Comments on Bond Angles

    Science.gov (United States)

    Glaister, P.

    1997-09-01

    Tetrahedral Bond Angle from Elementary Trigonometry The alternative approach of using the scalar (or dot) product of vectors enables the determination of the bond angle in a tetrahedral molecule in a simple way. There is, of course, an even more straightforward derivation suitable for students who are unfamiliar with vectors, or products thereof, but who do know some elementary trigonometry. The starting point is the figure showing triangle OAB. The point O is the center of a cube, and A and B are at opposite corners of a face of that cube in which fits a regular tetrahedron. The required bond angle alpha = AÔB; and using Pythagoras' theorem, AB = 2(square root 2) is the diagonal of a face of the cube. Hence from right-angled triangle OEB, tan(alpha/2) = (square root 2) and therefore alpha = 2tan-1(square root 2) is approx. 109° 28' (see Fig. 1).

  9. Oriented angles in affine space

    Directory of Open Access Journals (Sweden)

    Włodzimierz Waliszewski

    2004-05-01

    Full Text Available The concept of a smooth oriented angle in an arbitrary affine space is introduced. This concept is based on a kinematics concept of a run. Also, a concept of an oriented angle in such a space is considered. Next, it is shown that the adequacy of these concepts holds if and only if the affine space, in question, is of dimension 2 or 1.

  10. Small-angle X-ray scattering: a bridge between RNA secondary structures and three-dimensional topological structures

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Xianyang [National Inst. of Health (NIH), Bethesda, MD (United States). National Cancer Inst., NCI Small Angle X-ray Scattering Core Facility; Stagno, Jason R. [National Inst. of Health (NIH), Bethesda, MD (United States). National Cancer Inst., Protein-Nucleic Acid Interaction Section, Structural Biophysics Lab.; Bhandari, Yuba R. [National Inst. of Health (NIH), Bethesda, MD (United States). National Cancer Inst., Protein-Nucleic Acid Interaction Section, Structural Biophysics Lab.; Zuo, Xiaobing [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS); Wang, Yun-Xing [National Inst. of Health (NIH), Bethesda, MD (United States). National Cancer Inst., NCI Small Angle X-ray Scattering Core Facility; National Inst. of Health (NIH), Bethesda, MD (United States). National Cancer Inst., Protein-Nucleic Acid Interaction Section, Structural Biophysics Lab.

    2015-02-01

    Whereas the structures of small to medium-sized well folded RNA molecules often can be determined by either X-ray crystallography or NMR spectroscopy, obtaining structural information for large RNAs using experimental, computational, or combined approaches remains a major interest and challenge. RNA is very sensitive to small-angle X-ray scattering (SAXS) due to high electron density along phosphate-sugar backbones, whose scattering contribution dominates SAXS intensity. For this reason, SAXS is particularly useful in obtaining global RNA structural information that outlines backbone topologies and, therefore, molecular envelopes. Such information is extremely valuable in bridging the gap between the secondary structures and three-dimensional topological structures of RNAmolecules, particularly those that have proven difficult to study using other structuredetermination methods. Here we review published results of RNA topological structures derived from SAXS data or in combination with other experimental data, as well as details on RNA sample preparation for SAXS experiments.

  11. The Semiotic and Conceptual Genesis of Angle

    Science.gov (United States)

    Tanguay, Denis; Venant, Fabienne

    2016-01-01

    In the present study, we try to understand how students at the end of primary school conceive of angle: Is an angle a magnitude for them or a geometric figure, and how do they manage to coordinate the two aspects in their understanding of the concepts of angle and of angle measurement? With the aim of better grasping the way "angle" is…

  12. Backbone amide linker strategy for the synthesis of 1,4-triazole-containing cyclic tetra- and pentapeptides

    NARCIS (Netherlands)

    Springer, J.; de Cuba, K.R.; Calvet-Vitale, S.; Geenevasen, J.A.J.; Hermkens, P.H.H.; Hiemstra, H.; van Maarseveen, J.H.

    2008-01-01

    A backbone amide linker strategy was chosen for the solid-phase synthesis of triazole-containing Cyclic tetra- and pentapeptides. An alkyne-substituted linker derived from 4-hydroxy-2-methoxybenzaldehyde was elongated by using standard "Fmoc-based" solid phase chemistry and terminated by coupling of

  13. Alkali metal salts of formazanate ligands : diverse coordination modes as a result of the nitrogen-rich [NNCNN] ligand backbone

    NARCIS (Netherlands)

    Travieso-Puente, Raquel; Chang, Mu-Chieh; Otten, Edwin

    2014-01-01

    Alkali metal salts of redox-active formazanate ligands were prepared, and their structures in the solid-state and in solution are determined. The nitrogen-rich [NNCNN] backbone of formazanates results in a varied coordination chemistry, with both the internal and terminal nitrogen atoms available fo

  14. VPLS: alternativa de interconexión a través del backbone IP/MPLS de ETECSA

    Directory of Open Access Journals (Sweden)

    Osmel Barreto Prieto

    2013-03-01

    Full Text Available La Empresa de Telecomunicaciones de Cuba (ETECSA maneja en condiciones de exclusividad la infraestructura de telecomunicaciones del país, por lo que el resto de los proveedores necesitan utilizar dicha infraestructura como soporte para la interconexión de los nodos que componen sus redes. Teniendo en cuenta el desarrollo de las tecnologías de las telecomunicaciones, ETECSA ha apostado por la implementación de un backbone IP/MPLS (Internet Protocol over  MultiProtocol Label Switching: Protocolo de Internet sobre Conmutación Multiprotocolo basada en Etiquetas en su red, el cual se espera absorba todos los servicios actualmente soportados por el backbone ATM (Asynchronous Transfer Mode/Frame Relay. Sin embargo, en estos momentos, la red IP/MPLS solamente oferta servicios VPN (Virtual Private Network: Red Privada Virtual a nivel de red (nivel tres del modelo OSI, cuestión que, para los otros proveedores, resulta inadmisible. El presente artículo describe una propuesta de implementación de una entidad VPLS (Virtual Private LAN Service: Servicio de LAN Privada Virtual como alternativa para la migración de los servicios de VPN de nivel dos que actualmente se soportan sobre el backbone ATM/Frame Relay, hacia el backbone IP/MPLS, variante que garantiza la independencia por parte de los proveedores que son clientes de ETECSA en la operación y enrutamiento de su red.

  15. Tailor-made synthesis of various backbone-substituted imidazolinium salts by triflic anhydride mediated intramolecular cyclisation.

    Science.gov (United States)

    Zhang, Jun; Su, Xiaolong; Fu, Jun; Qin, Xinke; Zhao, Meixin; Shi, Min

    2012-09-21

    We have found a Tf(2)O-mediated intramolecular cyclization reaction and have revealed an intriguing stereoselectivity and a regioselectivity during the preparation of intermediate alcohols, which allow for the tailor-made synthesis of various backbone-substituted imidazolinium salts, and structurally specific syn-4,5-disubstituted imidazolinium salts.

  16. Interaction of Al-induced peptide backbone ring structure with the sidechains of His, Phe, Trp and Tyr

    Institute of Scientific and Technical Information of China (English)

    吴清雷; 宋波

    2015-01-01

    Aluminium is widely used as an antimicrobial coagulant, food additive, and cookware. However, many reports indicate that aluminium may be a critical factor in many amyloid diseases, such as Alzheimer’s disease and Parkinson’s disease. Unfortunately, the underlying mechanism is still poorly understood, which limits efforts to prevent and treat these diseases. In this paper, using an ab initio method, we studied the interaction of Al-backbone ring structure with theπ-electron-rich sidechains of His, Phe, Trp, and Tyr. We found that in the absence of water, the Al-backbone ring can stably bind with those sidechains. In the presence of water, the Al-backbone ring can bind to the His sidechain and cannot bind to the other sidechains. As revealed by further investigations, this could be attributed to the fact that there was a coordinate bond of the Al-backbone ring with the His sidechain, while there were theπ-πstacking and cation-π-like interactions with the other sidechains. These findings potentially provide a molecular understanding of Al-related toxicity, and may be helpful in designing drugs for those aforementioned aluminum-linked diseases and encourage treatment of Al-polluted water.

  17. In the Near Future Backbone Aluminum Enterprises will Close Down About 2.4 million Tonnes of Capacity

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    On August 21,China Nonferrous Metals Industry Association Aluminum Industry Branch assembled some backbone aluminum enterprises and Henan Nonferrous Metal Industry Association to hold a discussion meeting in Beijing over the current operation trend of aluminum industry,dilemma and opportunity ahead and measures to diffuse surplus capacity,the meeting also discussed the

  18. Influence of backbone rigidness on single chain conformation of thiophene-based conjugated polymers.

    Science.gov (United States)

    Hu, Zhongjian; Liu, Jianhua; Simón-Bower, Lauren; Zhai, Lei; Gesquiere, Andre J

    2013-04-25

    Structural order of conjugated polymers at different length scales directs the optoelectronic properties of the corresponding materials; thus it is of critical importance to understand and control conjugated polymer morphology for successful application of these materials in organic optoelectronics. Herein, with the aim of probing the dependence of single chain folding properties on the chemical structure and rigidness of the polymer backbones, single molecule fluorescence spectroscopy was applied to four thiophene-based conjugated polymers. These include regioregular poly(3-hexylthiophene) (RR-P3HT), poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT-14), poly(2,5-bis(3-tetradecylthiophen-2-yl)thiophene-2-yl)thiophen-2-ylthiazolo[5,4-d]thiazole) (PTzQT-12), and poly(3,3-didodecylquaterthiophene)] (PQT-12). Our previous work has shown that RR-P3HT and PBTTT-14 polymer chains fold in their nanostructures, whereas PQT-12 and PTzQT-12 do not fold in their nanostructures. At the single molecule level, it was found that RR-P3HT single chains almost exclusively fold into loosely and strongly aggregated conformations, analogous to the folding properties in nanostructures. PQT-12 displays significant chain folding as well, but only into loosely aggregated conformations, showing an absence of strongly aggregated polymer chains. PBTTT-14 exhibits a significant fraction of rigid polymer chain. The findings made for single molecules of PQT-12 and PBTTT-14 are thus in contrast with the observations made in their corresponding nanostructures. PTzQT-12 appears to be the most rigid and planar conjugated polymer of these four polymers. However, although the presumably nonfolding polymers PQT-12 and PTzQT-12 exhibit less folding than RR-P3HT, there is still a significant occurrence of chain folding for these polymers at the single molecule level. These results suggest that the folding properties of conjugated polymers can be influenced by the architecture of the

  19. Frequency scaling for angle gathers

    KAUST Repository

    Zuberi, M. A H

    2014-01-01

    Angle gathers provide an extra dimension to analyze the velocity after migration. Space-shift and time shift-imaging conditions are two methods used to obtain angle gathers, but both are reasonably expensive. By scaling the time-lag axis of the time-shifted images, the computational cost of the time shift imaging condition can be considerably reduced. In imaging and more so Full waveform inversion, frequencydomain Helmholtz solvers are used more often to solve for the wavefields than conventional time domain extrapolators. In such cases, we do not need to extend the image, instead we scale the frequency axis of the frequency domain image to obtain the angle gathers more efficiently. Application on synthetic data demonstrate such features.

  20. Systematic variations in divergence angle

    CERN Document Server

    Okabe, Takuya

    2012-01-01

    Practical methods for quantitative analysis of radial and angular coordinates of leafy organs of vascular plants are presented and applied to published phyllotactic patterns of various real systems from young leaves on a shoot tip to florets on a flower head. The constancy of divergence angle is borne out with accuracy of less than a degree. It is shown that apparent fluctuations in divergence angle are in large part systematic variations caused by the invalid assumption of a fixed center and/or by secondary deformations, while random fluctuations are of minor importance.

  1. Scaling of misorientation angle distributions

    DEFF Research Database (Denmark)

    Hughes, D.A.; Chrzan, D.C.; Liu, Q.

    1998-01-01

    The measurement of misorientation angle distributions following different amounts of deformation in cold-rolled aluminum and nickel and compressed stainless steel is reported. The sealing of the dislocation cell boundary misorientation angle distributions is studied. Surprisingly, the distributions...... for the small to large strain regimes for aluminum, 304L stainless steel, nickel, and copper (taken from the literature )appear to be identical. Hence the distributions may be "universal." These results have significant implications for the development of dislocation based deformation models. [S0031...

  2. Backbone, side chain and heme resonance assignments of cytochrome OmcF from Geobacter sulfurreducens.

    Science.gov (United States)

    Dantas, Joana M; Silva E Sousa, Marta; Salgueiro, Carlos A; Bruix, Marta

    2015-10-01

    Gene knockout studies on Geobacter sulfurreducens (Gs) cells showed that the outer membrane cytochrome OmcF is involved in respiratory pathways leading to the extracellular reduction of Fe(III) citrate and U(VI) oxide. In addition, microarray analysis of OmcF-deficient mutant versus the wild-type strain revealed that many of the genes with decreased transcript level were those whose expression is upregulated in cells grown with a graphite electrode as electron acceptor. This suggests that OmcF also regulates the electron transfer to electrode surfaces and the concomitant electrical current production by Gs in microbial fuel cells. Extracellular electron transfer processes (EET) constitute nowadays the foundations to develop biotechnological applications in biofuel production, bioremediation and bioenergy. Therefore, the structural characterization of OmcF is a fundamental step to understand the mechanisms underlying EET. Here, we report the complete assignment of the heme proton signals together with (1)H, (13)C and (15)N backbone and side chain assignments of the OmcF, excluding the hydrophobic residues of the N-terminal predicted lipid anchor.

  3. Phylogenomics resolves a spider backbone phylogeny and rejects a prevailing paradigm for orb web evolution.

    Science.gov (United States)

    Bond, Jason E; Garrison, Nicole L; Hamilton, Chris A; Godwin, Rebecca L; Hedin, Marshal; Agnarsson, Ingi

    2014-08-04

    Spiders represent an ancient predatory lineage known for their extraordinary biomaterials, including venoms and silks. These adaptations make spiders key arthropod predators in most terrestrial ecosystems. Despite ecological, biomedical, and biomaterial importance, relationships among major spider lineages remain unresolved or poorly supported. Current working hypotheses for a spider "backbone" phylogeny are largely based on morphological evidence, as most molecular markers currently employed are generally inadequate for resolving deeper-level relationships. We present here a phylogenomic analysis of spiders including taxa representing all major spider lineages. Our robust phylogenetic hypothesis recovers some fundamental and uncontroversial spider clades, but rejects the prevailing paradigm of a monophyletic Orbiculariae, the most diverse lineage, containing orb-weaving spiders. Based on our results, the orb web either evolved much earlier than previously hypothesized and is ancestral for a majority of spiders or else it has multiple independent origins, as hypothesized by precladistic authors. Cribellate deinopoid orb weavers that use mechanically adhesive silk are more closely related to a diverse clade of mostly webless spiders than to the araneoid orb-weaving spiders that use adhesive droplet silks. The fundamental shift in our understanding of spider phylogeny proposed here has broad implications for interpreting the evolution of spiders, their remarkable biomaterials, and a key extended phenotype--the spider web.

  4. Is there a Climate Network - A Backbone of the Climate System? (Invited)

    Science.gov (United States)

    Kurths, J.

    2010-12-01

    We consider an inverse problem: Is there a backbone-like structure underlying the climate system? For this we propose a method to reconstruct and analyze a complex network from data generated by a spatio-temporal dynamical system. This technique is then applied to reanalysis and model surface air temperature data. Parameters of this network, as betweenness centrality, uncover relations to global circulation patterns in oceans and atmosphere. We especially study the role of hubs and of long range connections, called teleconnections, in the flows of energy and matter in the climate system. The global scale view on climate networks offers promising new perspectives for detecting dynamical structures based on nonlinear physical processes in the climate system. References Arenas, A., A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, Phys. Reports 2008, 469, 93. Donges, J., Y. Zou, N. Marwan, and J. Kurths, Europ. Phys. J. ST 2009, 174, 157-179. Donges, J., Y. Zou, N. Marwan, and J. Kurths, Europhys. Lett. 2009, 87, 48007. Nawrath, J. et al., Phys. Rev. Lett. 2010, 104, 038701. Donner, R., Y. Zou, J. Donges, N. Marwan, and J. Kurths, Phys. Rev. E 2010, 81, 015101(R ).

  5. APSY-NMR for protein backbone assignment in high-throughput structural biology

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Samit Kumar; Serrano, Pedro; Proudfoot, Andrew; Geralt, Michael [The Scripps Research Institute, Department of Integrative Structural and Computational Biology (United States); Pedrini, Bill [Paul Scherrer Institute (PSI), SwissFEL Project (Switzerland); Herrmann, Torsten [Université de Lyon, Institut des Sciences Analytiques, Centre de RMN à Très Hauts Champs, UMR 5280 CNRS, ENS Lyon, UCB Lyon 1 (France); Wüthrich, Kurt, E-mail: wuthrich@scripps.edu [The Scripps Research Institute, Department of Integrative Structural and Computational Biology (United States)

    2015-01-15

    A standard set of three APSY-NMR experiments has been used in daily practice to obtain polypeptide backbone NMR assignments in globular proteins with sizes up to about 150 residues, which had been identified as targets for structure determination by the Joint Center for Structural Genomics (JCSG) under the auspices of the Protein Structure Initiative (PSI). In a representative sample of 30 proteins, initial fully automated data analysis with the software UNIO-MATCH-2014 yielded complete or partial assignments for over 90 % of the residues. For most proteins the APSY data acquisition was completed in less than 30 h. The results of the automated procedure provided a basis for efficient interactive validation and extension to near-completion of the assignments by reference to the same 3D heteronuclear-resolved [{sup 1}H,{sup 1}H]-NOESY spectra that were subsequently used for the collection of conformational constraints. High-quality structures were obtained for all 30 proteins, using the J-UNIO protocol, which includes extensive automation of NMR structure determination.

  6. Navigating the massive world of reddit: using backbone networks to map user interests in social media

    Directory of Open Access Journals (Sweden)

    Randal S. Olson

    2015-05-01

    Full Text Available In the massive online worlds of social media, users frequently rely on organizing themselves around specific topics of interest to find and engage with like-minded people. However, navigating these massive worlds and finding topics of specific interest often proves difficult because the worlds are mostly organized haphazardly, leaving users to find relevant interests by word of mouth or using a basic search feature. Here, we report on a method using the backbone of a network to create a map of the primary topics of interest in any social network. To demonstrate the method, we build an interest map for the social news web site reddit and show how such a map could be used to navigate a social media world. Moreover, we analyze the network properties of the reddit social network and find that it has a scale-free, small-world, and modular community structure, much like other online social networks such as Facebook and Twitter. We suggest that the integration of interest maps into popular social media platforms will assist users in organizing themselves into more specific interest groups, which will help alleviate the overcrowding effect often observed in large online communities.

  7. An Enhanced Backbone-Assisted Reliable Framework for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Amna Ali

    2010-03-01

    Full Text Available An extremely reliable source to sink communication is required for most of the contemporary WSN applications especially pertaining to military, healthcare and disaster-recovery. However, due to their intrinsic energy, bandwidth and computational constraints, Wireless Sensor Networks (WSNs encounter several challenges in reliable source to sink communication. In this paper, we present a novel reliable topology that uses reliable hotlines between sensor gateways to boost the reliability of end-to-end transmissions. This reliable and efficient routing alternative reduces the number of average hops from source to the sink. We prove, with the help of analytical evaluation, that communication using hotlines is considerably more reliable than traditional WSN routing. We use reliability theory to analyze the cost and benefit of adding gateway nodes to a backbone-assisted WSN. However, in hotline assisted routing some scenarios where source and the sink are just a couple of hops away might bring more latency, therefore, we present a Signature Based Routing (SBR scheme. SBR enables the gateways to make intelligent routing decisions, based upon the derived signature, hence providing lesser end-to-end delay between source to the sink communication. Finally, we evaluate our proposed hotline based topology with the help of a simulation tool and show that the proposed topology provides manifold increase in end-to-end reliability.

  8. Dependence of crystallite formation and preferential backbone orientations on the side chain pattern in PBDTTPD polymers

    KAUST Repository

    El Labban, Abdulrahman

    2014-11-26

    (Figure Presented) Alkyl substituents appended to the π-conjugated main chain account for the solution-processability and film-forming properties of most π-conjugated polymers for organic electronic device applications, including field-effect transistors (FETs) and bulk-heterojunction (BHJ) solar cells. Beyond film-forming properties, recent work has emphasized the determining role that side-chain substituents play on polymer self-assembly and thin-film nanostructural order, and, in turn, on device performance. However, the factors that determine polymer crystallite orientation in thin-films, implying preferential backbone orientation relative to the device substrate, are a matter of some debate, and these structural changes remain difficult to anticipate. In this report, we show how systematic changes in the side-chain pattern of poly(benzo[1,2-b:4,5-b′]dithiophene-alt-thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymers can (i) influence the propensity of the polymer to order in the π-stacking direction, and (ii) direct the preferential orientation of the polymer crystallites in thin films (e.g., "face-on" vs "edge-on"). Oriented crystallites, specifically crystallites that are well-ordered in the π-stacking direction, are believed to be a key contributor to improved thin-film device performance in both FETs and BHJ solar cells.

  9. Noise assisted excitation energy transfer in a linear model of a selectivity filter backbone strand.

    Science.gov (United States)

    Bassereh, Hassan; Salari, Vahid; Shahbazi, Farhad

    2015-07-15

    In this paper, we investigate the effect of noise and disorder on the efficiency of excitation energy transfer (EET) in a N = 5 sites linear chain with 'static' dipole-dipole couplings. In fact, here, the disordered chain is a toy model for one strand of the selectivity filter backbone in ion channels. It has recently been discussed that the presence of quantum coherence in the selectivity filter is possible and can play a role in mediating ion-conduction and ion-selectivity in the selectivity filter. The question is 'how a quantum coherence can be effective in such structures while the environment of the channel is dephasing (i.e. noisy)?' Basically, we expect that the presence of the noise should have a destructive effect in the quantum transport. In fact, we show that such expectation is valid for ordered chains. However, our results indicate that introducing the dephasing in the disordered chains leads to the weakening of the localization effects, arising from the multiple back-scatterings due to the randomness, and then increases the efficiency of quantum energy transfer. Thus, the presence of noise is crucial for the enhancement of EET efficiency in disordered chains. We also show that the contribution of both classical and quantum mechanical effects are required to improve the speed of energy transfer along the chain. Our analysis may help for better understanding of fast and efficient functioning of the selectivity filters in ion channels.

  10. Dependence of crystallite formation and preferential backbone orientations on the side chain pattern in PBDTTPD polymers.

    Science.gov (United States)

    El Labban, Abdulrahman; Warnan, Julien; Cabanetos, Clément; Ratel, Olivier; Tassone, Christopher; Toney, Michael F; Beaujuge, Pierre M

    2014-11-26

    Alkyl substituents appended to the π-conjugated main chain account for the solution-processability and film-forming properties of most π-conjugated polymers for organic electronic device applications, including field-effect transistors (FETs) and bulk-heterojunction (BHJ) solar cells. Beyond film-forming properties, recent work has emphasized the determining role that side-chain substituents play on polymer self-assembly and thin-film nanostructural order, and, in turn, on device performance. However, the factors that determine polymer crystallite orientation in thin-films, implying preferential backbone orientation relative to the device substrate, are a matter of some debate, and these structural changes remain difficult to anticipate. In this report, we show how systematic changes in the side-chain pattern of poly(benzo[1,2-b:4,5-b']dithiophene-alt-thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymers can (i) influence the propensity of the polymer to order in the π-stacking direction, and (ii) direct the preferential orientation of the polymer crystallites in thin films (e.g., "face-on" vs "edge-on"). Oriented crystallites, specifically crystallites that are well-ordered in the π-stacking direction, are believed to be a key contributor to improved thin-film device performance in both FETs and BHJ solar cells.

  11. STARD6 on steroids: solution structure, multiple timescale backbone dynamics and ligand binding mechanism

    Science.gov (United States)

    Létourneau, Danny; Bédard, Mikaël; Cabana, Jérôme; Lefebvre, Andrée; Lehoux, Jean-Guy; Lavigne, Pierre

    2016-06-01

    START domain proteins are conserved α/β helix-grip fold that play a role in the non-vesicular and intracellular transport of lipids and sterols. The mechanism and conformational changes permitting the entry of the ligand into their buried binding sites is not well understood. Moreover, their functions and the identification of cognate ligands is still an active area of research. Here, we report the solution structure of STARD6 and the characterization of its backbone dynamics on multiple time-scales through 15N spin-relaxation and amide exchange studies. We reveal for the first time the presence of concerted fluctuations in the Ω1 loop and the C-terminal helix on the microsecond-millisecond time-scale that allows for the opening of the binding site and ligand entry. We also report that STARD6 binds specifically testosterone. Our work represents a milestone for the study of ligand binding mechanism by other START domains and the elucidation of the biological function of STARD6.

  12. Amino acid preference against beta sheet through allowing backbone hydration enabled by the presence of cation

    CERN Document Server

    Sharley, John N

    2016-01-01

    It is known that steric blocking by peptide sidechains of hydrogen bonding, HB, between water and peptide groups, PGs, in beta sheets accords with an amino acid intrinsic beta sheet preference. The present observations with Quantum Molecular Dynamics, QMD, simulation with quantum mechanical treatment of every water molecule solvating a beta sheet that would be transient in nature suggest that this steric blocking is not applicable in a hydrophobic region unless a cation is present, so that the amino acid beta sheet preference due to this steric blocking is only effective in the presence of a cation. We observed backbone hydration in a polyalanine and to a lesser extent polyvaline alpha helix without a cation being present, but a cation could increase the strength of these HBs. Parallel beta sheets have a greater tendency than antiparallel beta sheets of equivalent small size to retain regular structure in solvated QMD, and a 4 strand 4 inter-PG HB chain parallel beta sheet was used. Stability was reinforced b...

  13. Comparison of the backbone dynamics of a natural and a consensus designed 3-TPR domain.

    Science.gov (United States)

    Jarymowycz, Virginia A; Cortajarena, Aitziber L; Regan, Lynne; Stone, Martin J

    2008-07-01

    The tetratricopeptide repeat (TPR) is a 34-amino acid helix-turn-helix motif that occurs in tandem arrays in numerous proteins. Here we compare the backbone dynamics of a natural 3-repeat TPR domain, from the protein UBP, with the behavior of a designed protein CTPR3, which consists of three identical consensus TPR units. Although the three tandem TPR repeats in both CTPR3 and UBP behave as a single unit, with no evidence of independent repeat motions, the data indicate that certain positions in UBP are significantly more flexible than are the corresponding positions in CTPR3. Most of the dynamical changes occur at or adjacent to positions that are involved in intra-repeat packing interactions. These observations lead us to suggest that the three-TPR domain of UBP does not incorporate optimized packing, compared to that seen in the idealized CTPR. The natural TPR domain is not only less stable overall than CTPR3, but also presents increased local flexibility at the positions where the sequences differs from the conserved consensus.

  14. Noise assisted excitation energy transfer in a linear model of a selectivity filter backbone strand

    Science.gov (United States)

    Bassereh, Hassan; Salari, Vahid; Shahbazi, Farhad

    2015-07-01

    In this paper, we investigate the effect of noise and disorder on the efficiency of excitation energy transfer (EET) in a N=5 sites linear chain with ‘static’ dipole-dipole couplings. In fact, here, the disordered chain is a toy model for one strand of the selectivity filter backbone in ion channels. It has recently been discussed that the presence of quantum coherence in the selectivity filter is possible and can play a role in mediating ion-conduction and ion-selectivity in the selectivity filter. The question is ‘how a quantum coherence can be effective in such structures while the environment of the channel is dephasing (i.e. noisy)?’ Basically, we expect that the presence of the noise should have a destructive effect in the quantum transport. In fact, we show that such expectation is valid for ordered chains. However, our results indicate that introducing the dephasing in the disordered chains leads to the weakening of the localization effects, arising from the multiple back-scatterings due to the randomness, and then increases the efficiency of quantum energy transfer. Thus, the presence of noise is crucial for the enhancement of EET efficiency in disordered chains. We also show that the contribution of both classical and quantum mechanical effects are required to improve the speed of energy transfer along the chain. Our analysis may help for better understanding of fast and efficient functioning of the selectivity filters in ion channels.

  15. Contactless angle detection using permalloy

    NARCIS (Netherlands)

    Eijkel, Kees J.; Rijk, Rolf

    1988-01-01

    An overview is given of measurements on angle detectors. The detectors consist of a pair of planar-Hall elements opposite to a rotatable magnet. The measurements are performed on a number of planar-Hall elements of different shape and size, and show good agreement with a previously described theoret

  16. Dolutegravir treatment response by baseline viral load and NRTI backbone in treatment-naïve HIV-infected individuals

    Directory of Open Access Journals (Sweden)

    C Small

    2012-11-01

    Full Text Available Background: In two 48-week studies in naïve subjects, dolutegravir with NRTI of choice has shown non-inferiority to raltegravir and, with ABC/3TC, superiority to Atripla. Factors that influenced choice of NRTIs included viral load, resistance and safety. Methods: We analysed response rates and time to virologic failure by NRTI backbone and baseline viral load in the pivotal DTG-naïve studies. SPRING-2 randomized participants to DTG 50 mg QD or RAL 400 mg BID, each in combination with investigator-selected NRTIs (TDF/FTC or ABC/3TC. SINGLE randomised participants to DTG 50 mg+ABC/3TC QD or TDF/FTC/EFV (Atripla QD. In SPRING-2, changes in serum creatinine were examined by INI and NRTI backbone. Results: The two studies randomized and treated 1655 subjects, of whom 249 (15% were female, 388 (23% non-white, 495 (30% had HIV-1 RNA >100,000 c/ml, and 224 (14% had CD4+ count <200 cells/mm3. Primary analyses demonstrated non-inferiority of DTG to RAL in SPRING-2 (Δ=2.5%; 95% CI:−2.2% to +7.1%, excluding −10%, and superiority of the DTG regimen in SINGLE (7.4%; +2.5% to +12.3%. In SPRING-2, response rates by NRTI backbone were comparable in each viral load stratum. In SINGLE, a 7% difference in response (favoring DTG+ABC/3TC was observed in each viral load stratum. Exploratory analyses examining time-to-virologic failure showed no difference in response rates between the NRTIs irrespective of baseline viral load or study. Resistance to INIs or NRTIs was not demonstrated in any subject on DTG-based therapy through 48 weeks. Withdrawals due to AEs on DTG-based regimen were few (2% in both studies. In SPRING-2, no significant differences were observed in serum creatinine change from baseline to Week 48 by NRTI backbones. Conclusions: In SPRING-2 and SINGLE, DTG was effective with both ABC/3TC and TDF/FTC, and in subjects with high and low viral load. DTG was well tolerated in both studies. Renal safety also was similar by NRTI backbone. DTG is a once

  17. An Angle Criterion for Riesz Bases

    DEFF Research Database (Denmark)

    Lindner, Alexander M; Bittner, B.

    1999-01-01

    We present a characterization of Riesz bases in terms ofthe angles between certain finite dimensional subspaces. Correlationsbetween the bounds of the Riesz basis and the size of the angles arederived.......We present a characterization of Riesz bases in terms ofthe angles between certain finite dimensional subspaces. Correlationsbetween the bounds of the Riesz basis and the size of the angles arederived....

  18. A new mixed-backbone oligonucleotide against glucosylceramide synthase sensitizes multidrug-resistant tumors to apoptosis.

    Directory of Open Access Journals (Sweden)

    Gauri A Patwardhan

    Full Text Available Enhanced ceramide glycosylation catalyzed by glucosylceramide synthase (GCS limits therapeutic efficiencies of antineoplastic agents including doxorubicin in drug-resistant cancer cells. Aimed to determine the role of GCS in tumor response to chemotherapy, a new mixed-backbone oligonucleotide (MBO-asGCS with higher stability and efficiency has been generated to silence human GCS gene. MBO-asGCS was taken up efficiently in both drug-sensitive and drug-resistant cells, but it selectively suppressed GCS overexpression, and sensitized drug-resistant cells. MBO-asGCS increased doxorubicin sensitivity by 83-fold in human NCI/ADR-RES, and 43-fold in murine EMT6/AR1 breast cancer cells, respectively. In tumor-bearing mice, MBO-asGCS treatment dramatically inhibited the growth of multidrug-resistant NCI/ADR-RE tumors, decreasing tumor volume to 37%, as compared with scrambled control. Furthermore, MBO-asGCS sensitized multidrug-resistant tumors to chemotherapy, increasing doxorubicin efficiency greater than 2-fold. The sensitization effects of MBO-asGCS relied on the decreases of gene expression and enzyme activity of GCS, and on the increases of C(18-ceramide and of caspase-executed apoptosis. MBO-asGCS was accumulation in tumor xenografts was greater in other tissues, excepting liver and kidneys; but MBO-asGCS did not exert significant toxic effects on liver and kidneys. This study, for the first time in vivo, has demonstrated that GCS is a promising therapeutic target for cancer drug resistance, and MBO-asGCS has the potential to be developed as an antineoplastic agent.

  19. Soluble and Membrane-Bound β-Glucosidases Are Involved in Trimming the Xyloglucan Backbone.

    Science.gov (United States)

    Sampedro, Javier; Valdivia, Elene R; Fraga, Patricia; Iglesias, Natalia; Revilla, Gloria; Zarra, Ignacio

    2017-02-01

    In many flowering plants, xyloglucan is a major component of primary cell walls, where it plays an important role in growth regulation. Xyloglucan can be degraded by a suite of exoglycosidases that remove specific sugars. In this work, we show that the xyloglucan backbone, formed by (1→4)-linked β-d-glucopyranosyl residues, can be attacked by two different Arabidopsis (Arabidopsis thaliana) β-glucosidases from glycoside hydrolase family 3. While BGLC1 (At5g20950; for β-glucosidase active against xyloglucan 1) is responsible for all or most of the soluble activity, BGLC3 (At5g04885) is usually a membrane-anchored protein. Mutations in these two genes, whether on their own or combined with mutations in other exoglycosidase genes, resulted in the accumulation of partially digested xyloglucan subunits, such as GXXG, GXLG, or GXFG. While a mutation in BGLC1 had significant effects on its own, lack of BGLC3 had only minor effects. On the other hand, double bglc1 bglc3 mutants revealed a synergistic interaction that supports a role for membrane-bound BGLC3 in xyloglucan metabolism. In addition, bglc1 bglc3 was complemented by overexpression of either BGLC1 or BGLC3 In overexpression lines, BGLC3 activity was concentrated in a microsome-enriched fraction but also was present in soluble form. Finally, both genes were generally expressed in the same cell types, although, in some cases, BGLC3 was expressed at earlier stages than BGLC1 We propose that functional specialization could explain the separate localization of both enzymes, as a membrane-bound β-glucosidase could specifically digest soluble xyloglucan without affecting the wall-bound polymer.

  20. Backbone structures in human milk oligosaccharides: trans-glycosylation by metagenomic β-N-acetylhexosaminidases.

    Science.gov (United States)

    Nyffenegger, Christian; Nordvang, Rune Thorbjørn; Zeuner, Birgitte; Łężyk, Mateusz; Difilippo, Elisabetta; Logtenberg, Madelon J; Schols, Henk A; Meyer, Anne S; Mikkelsen, Jørn Dalgaard

    2015-10-01

    This paper describes the discovery and characterization of two novel β-N-acetylhexosaminidases HEX1 and HEX2, capable of catalyzing the synthesis of human milk oligosaccharides (HMO) backbone structures with fair yields using chitin oligomers as β-N-acetylglucosamine (GlcNAc) donor. The enzyme-encoding genes were identified by functional screening of a soil-derived metagenomic library. The β-N-acetylhexosaminidases were expressed in Escherichia coli with an N-terminal His6-tag and were purified by nickel affinity chromatography. The sequence similarities of the enzymes with their respective closest homologues are 59 % for HEX1 and 51 % for HEX2 on the protein level. Both β-N-acetylhexosaminidases are classified into glycosyl hydrolase family 20 (GH 20) are able to hydrolyze para-nitrophenyl-β-N-acetylglucosamine (pNP-GlcNAc) as well as para-nitrophenyl-β-N-acetylgalactosamine (pNP-GalNAc) and exhibit pH optima of 8 and 6 for HEX1 and HEX2, respectively. The enzymes are able to hydrolyze N-acetylchitooligosaccharides with a degree of polymerization of two, three, and four. The major findings were, that HEX1 and HEX2 catalyze trans-glycosylation reactions with lactose as acceptor, giving rise to the human milk oligosaccharide precursor lacto-N-triose II (LNT2) with yields of 2 and 8 % based on the donor substrate. In total, trans-glycosylation reactions were tested with the disaccharide acceptors β-lactose, sucrose, and maltose, as well as with the monosaccharides galactose and glucose resulting in the successful attachment of GlcNAc to the acceptor in all cases.

  1. Role of monomer sequence and backbone structure in polypeptoid and polypeptide polymers for anti-fouling applications

    Science.gov (United States)

    Patterson, Anastasia; Rizis, Georgios; Wenning, Brandon; Finlay, John; Ober, Christopher; Segalman, Rachel

    Polymeric coatings rely on a fine balance of surface properties to achieve biofouling resistance. Bioinsipired polymers and oligomers provide a modular strategy for the inclusion of multiple functionalities with controlled architecture, sequence and surface properties. In this work, polypeptoid and polypeptide functionalized coatings based on PEO and PDMS block copolymers were compared with respect to surface presentation and fouling by Ulva linza. While polypeptoids and polypeptides are simple isomers of each other, the lack of backbone chirality and hydrogen bonding in polypeptoids leads to surprisingly different surface behavior. Specifically, the polypeptoids surface segregate much more strongly than analogous polypeptide functionalized polymers, which in turn affects the performance of the coating. Indeed, polypeptoid functionalized surfaces were significantly better both in terms of anti-fouling and fouling release than the corresponding polypeptide-bearing polymers. The role of specific monomer sequence and backbone chemistry will be further discussed in this poster.

  2. Progress in palladium-based catalytic systems for the sustainable synthesis of annulated heterocycles: a focus on indole backbones.

    Science.gov (United States)

    Platon, Mélanie; Amardeil, Régine; Djakovitch, Laurent; Hierso, Jean-Cyrille

    2012-05-21

    A survey highlighting the most recent palladium catalytic systems produced and their performances for progress in direct synthesis of indole backbones by heterocarbocyclization of reactive substrates is provided. The discussion is developed in relation with the principles of sustainable chemistry concerning atom and mass economy. In this respect, the general convergent character of the syntheses is of particular interest (one-pot, domino, cascade or tandem reactions), and the substrates accessibility and reactivity, together with the final waste production, are also important. This critical review clearly indicates that the development of ligand chemistry, mainly phosphines and carbenes, in the last few decades gave a significant impetus to powerful functionalization of indoles at virtually all positions of this ubiquitous backbone (118 references).

  3. Direct measurement of the correlated dynamics of the protein-backbone and proximal waters of hydration in mechanically strained elastin

    CERN Document Server

    Sun, Cheng; Huang, Jiaxin; Boutis, Gregory S

    2011-01-01

    We report on the direct measurement of the correlation times of the protein backbone carbons and proximal waters of hydration in mechanically strained elastin by nuclear magnetic resonance methods. The experimental data indicate a decrease in the correlation times of the carbonyl carbons as the strain on the biopolymer is increased. These observations are in good agreement with short 4ns molecular dynamics simulations of (VPGVG)3, a well studied mimetic peptide of elastin. The experimental results also indicate a reduction in the correlation time of proximal waters of hydration with increasing strain applied to the elastomer. A simple model is suggested that correlates the increase in the motion of proximal waters of hydration to the increase in frequency of libration of the protein backbone that develops with increasing strain. Together, the reduction in the protein entropy accompanied with the increase in entropy of the proximal waters of hydration with increasing strain, support the notion that the source ...

  4. Reduced Dimensionality (4,3)D-hnCOCANH Experiment: An Efficient Backbone Assignment tool for NMR studies of Proteins

    CERN Document Server

    Kumar, Dinesh

    2013-01-01

    Sequence specific resonance assignment and secondary structure determination of proteins form the basis for variety of structural and functional proteomics studies by NMR. In this context, an efficient standalone method for rapid assignment of backbone (1H, 15N, 13Ca and 13C') resonances and secondary structure determination of proteins has been presented here. Compared to currently available strategies used for the purpose, the method employs only a single reduced dimensionality (RD) experiment -(4,3)D-hnCOCANH and exploits the linear combinations of backbone (13Ca and 13C') chemical shifts to achieve a dispersion relatively better compared to those of individual chemical shifts (see the text) for efficient and rapid data analysis. Further, the experiment leads to the spectrum with direct distinction of self (intra-residue) and sequential (inter-residue) carbon correlation peaks; these appear opposite in signs and therefore can easily be discriminated without using an additional complementary experiment. On ...

  5. The Q-angle and sport

    DEFF Research Database (Denmark)

    Hahn, Thomas; Foldspang, Anders

    1997-01-01

    Quadriceps muscle contraction tends to straighten the Q angle. We expected that sports comprising a high amount of quadriceps training could be associated with low Q angles. The aim of the present study was to estimate the Q angle in athletes and to investigate its potential associations with par......Quadriceps muscle contraction tends to straighten the Q angle. We expected that sports comprising a high amount of quadriceps training could be associated with low Q angles. The aim of the present study was to estimate the Q angle in athletes and to investigate its potential associations...... with participation in sport. Three hundred and thirty-nine athletes had their Q angle measured. The mean of right-side Q angles was higher than left side, and the mean Q angle was higher in women than in men. The Q angle was positively associated with years of jogging, and negatively with years of soccer, swimming...

  6. Generation of marker- and/or backbone-free transgenic wheat plants via Agrobacterium-mediated transformation

    Directory of Open Access Journals (Sweden)

    Wang Genping

    2016-09-01

    Full Text Available Horizontal transfer of antibiotic resistance genes to animals and vertical transfer of herbicide resistance genes to the weedy relatives are perceived as major biosafety concerns in genetically modified (GM crops. In this study, five novel vectors which used gusA and bar as a reporter gene and a selection marker gene, respectively, were constructed based on the pCLEAN dual binary vector system. Among these vectors, 1G7B and 5G7B carried two T-DNAs located on two respective plasmids with 5G7B possessing an additional virGwt gene. 5LBTG154 and 5TGTB154 carried two T-DNAs in the target plasmid with either one or double right borders, and 5BTG154 carried the selectable marker gene on the backbone outside of the T-DNA left border in the target plasmid. In addition, 5BTG154, 5LBTG154 and 5TGTB154 used pAL154 as a helper plasmid which contains Komari fragment to facilitate transformation. These five dual binary vector combinations were transformed into Agrobacterium strain AGL1 and used to transform durum wheat cv Stewart 63. Evaluation of the co-transformation efficiencies, the frequencies of marker-free transgenic plants and integration of backbone sequences in the obtained transgenic lines indicated that two vectors (5G7B and 5TGTB154 were more efficient in generating marker-free transgenic wheat plants with no or minimal integration of backbone sequences in the wheat genome. The vector series developed in this study for generation of marker- and/or backbone-free transgenic wheat plants via Agrobacterium-mediated transformation will be useful to facilitate the creation of ‘clean’ GM wheat containing only the foreign genes of agronomic importance.

  7. Generation of Marker- and/or Backbone-Free Transgenic Wheat Plants via Agrobacterium-Mediated Transformation

    Science.gov (United States)

    Wang, Gen-Ping; Yu, Xiu-Dao; Sun, Yong-Wei; Jones, Huw D.; Xia, Lan-Qin

    2016-01-01

    Horizontal transfer of antibiotic resistance genes to animals and vertical transfer of herbicide resistance genes to the weedy relatives are perceived as major biosafety concerns in genetically modified (GM) crops. In this study, five novel vectors which used gusA and bar as a reporter gene and a selection marker gene, respectively, were constructed based on the pCLEAN dual binary vector system. Among these vectors, 1G7B and 5G7B carried two T-DNAs located on two respective plasmids with 5G7B possessing an additional virGwt gene. 5LBTG154 and 5TGTB154 carried two T-DNAs in the target plasmid with either one or double right borders, and 5BTG154 carried the selectable marker gene on the backbone outside of the T-DNA left border in the target plasmid. In addition, 5BTG154, 5LBTG154, and 5TGTB154 used pAL154 as a helper plasmid which contains Komari fragment to facilitate transformation. These five dual binary vector combinations were transformed into Agrobacterium strain AGL1 and used to transform durum wheat cv Stewart 63. Evaluation of the co-transformation efficiencies, the frequencies of marker-free transgenic plants, and integration of backbone sequences in the obtained transgenic lines indicated that two vectors (5G7B and 5TGTB154) were more efficient in generating marker-free transgenic wheat plants with no or minimal integration of backbone sequences in the wheat genome. The vector series developed in this study for generation of marker- and/or backbone-free transgenic wheat plants via Agrobacterium-mediated transformation will be useful to facilitate the creation of “clean” GM wheat containing only the foreign genes of agronomic importance. PMID:27708648

  8. Multi-angle compound imaging

    DEFF Research Database (Denmark)

    Jespersen, Søren Kragh; Wilhjelm, Jens Erik; Sillesen, Henrik

    1998-01-01

    to conventional B-mode imaging MACI offers better defined tissue boundaries and lower variance of the speckle pattern, resulting in an image with reduced random variations. Design and implementation of a compound imaging system is described, images of rubber tubes and porcine aorta are shown and effects......This paper reports on a scanning technique, denoted multi-angle compound imaging (MACI), using spatial compounding. The MACI method also contains elements of frequency compounding, as the transmit frequency is lowered for the highest beam angles in order to reduce grating lobes. Compared...... on visualization are discussed. The speckle reduction is analyzed numerically and the results are found to be in excellent agreement with existing theory. An investigation of detectability of low-contrast lesions shows significant improvements compared to conventional imaging. Finally, possibilities for improving...

  9. Optimisation of Fan Blade Angle

    Directory of Open Access Journals (Sweden)

    Swaroop M P

    2017-01-01

    Full Text Available This report represents the optimization of fan blade angle in accordance with the various room temperatures that can be in the tropical area like India. We took this work mainly because cooling is an important factor now a days in every area where construction and rooms are there and ceiling fans are the most common device that is commonly used. So it is of utmost importance to tweak the performance of this ceiling fan so that it can function in its most optimal condition. We have modeled the fan in a modeling software (SOLIDWORKS and imported that into an analyzing software (ANSYS and a result is generated on the various blade angles (0, 4, 8 and 12.5 degrees in accordance to room conditions. A trend line curve with the obtained data is expected as the result which can be crucial for designing of future fans

  10. The Role of Backbone Hydrogen Bonds in the Transition State for Protein Folding of a PDZ Domain.

    Directory of Open Access Journals (Sweden)

    Søren W. Pedersen

    Full Text Available Backbone hydrogen bonds are important for the structure and stability of proteins. However, since conventional site-directed mutagenesis cannot be applied to perturb the backbone, the contribution of these hydrogen bonds in protein folding and stability has been assessed only for a very limited set of small proteins. We have here investigated effects of five amide-to-ester mutations in the backbone of a PDZ domain, a 90-residue globular protein domain, to probe the influence of hydrogen bonds in a β-sheet for folding and stability. The amide-to-ester mutation removes NH-mediated hydrogen bonds and destabilizes hydrogen bonds formed by the carbonyl oxygen. The overall stability of the PDZ domain generally decreased for all amide-to-ester mutants due to an increase in the unfolding rate constant. For this particular region of the PDZ domain, it is therefore clear that native hydrogen bonds are formed after crossing of the rate-limiting barrier for folding. Moreover, three of the five amide-to-ester mutants displayed an increase in the folding rate constant suggesting that the hydrogen bonds are involved in non-native interactions in the transition state for folding.

  11. Coupling Protein Side-Chain and Backbone Flexibility Improves the Re-design of Protein-Ligand Specificity.

    Directory of Open Access Journals (Sweden)

    Noah Ollikainen

    Full Text Available Interactions between small molecules and proteins play critical roles in regulating and facilitating diverse biological functions, yet our ability to accurately re-engineer the specificity of these interactions using computational approaches has been limited. One main difficulty, in addition to inaccuracies in energy functions, is the exquisite sensitivity of protein-ligand interactions to subtle conformational changes, coupled with the computational problem of sampling the large conformational search space of degrees of freedom of ligands, amino acid side chains, and the protein backbone. Here, we describe two benchmarks for evaluating the accuracy of computational approaches for re-engineering protein-ligand interactions: (i prediction of enzyme specificity altering mutations and (ii prediction of sequence tolerance in ligand binding sites. After finding that current state-of-the-art "fixed backbone" design methods perform poorly on these tests, we develop a new "coupled moves" design method in the program Rosetta that couples changes to protein sequence with alterations in both protein side-chain and protein backbone conformations, and allows for changes in ligand rigid-body and torsion degrees of freedom. We show significantly increased accuracy in both predicting ligand specificity altering mutations and binding site sequences. These methodological improvements should be useful for many applications of protein-ligand design. The approach also provides insights into the role of subtle conformational adjustments that enable functional changes not only in engineering applications but also in natural protein evolution.

  12. (Z-N-{(E-10-[(2,6-Diisopropylphenylimino]-9,10-dihydrophenanthren-9-ylidene}-2,6-dimethylaniline

    Directory of Open Access Journals (Sweden)

    Haiying Liang

    2012-03-01

    Full Text Available The title compound, C34H34N2, adopts a Z,E configuration with respect to the N=C—C=N backbone, with an N—C—C—N torsion angle of 41.1 (4° The dihedral angle between the benzene rings in the 9,10-dihydrophenanthrene moiety is 18.0 (1°.

  13. LHC Report: playing with angles

    CERN Multimedia

    Mike Lamont for the LHC team

    2016-01-01

    Ready (after a machine development period), steady (running), go (for a special run)!   The crossing angles are an essential feature of the machine set-up. They have to be big enough to reduce the long-range beam-beam effect. The LHC has recently enjoyed a period of steady running and managed to set a new record for “Maximum Stable Luminosity Delivered in 7 days” of 3.29 fb-1 between 29 August and 4 September. The number of bunches per beam remains pegged at 2220 because of the limitations imposed by the SPS beam dump. The bunch population is also somewhat reduced due to outgassing near one of the injection kickers at point 8. Both limitations will be addressed during the year-end technical stop, opening the way for increased performance in 2017. On 10 and 11 September, a two day machine development (MD) period took place. The MD programme included a look at the possibility of reducing the crossing angle at the high-luminosity interaction points. The crossing angles are an ess...

  14. Occultation observations of atmosphere and climate change from space: a backbone for the GCOS

    Science.gov (United States)

    Kirchengast, G.

    2003-04-01

    , involving the heavily calibration-dependent Microwave Sounding Unit (MSU) data, could have been presumably saved had suitable occultation data been available. This talk will highlight, along the lines outlined above, the general principles, properties, capabilities, and exploitation possibilities of occultation methods with a focus on how they provide key contributions to a better understanding of the Earth's climate system and to better prediction of its future evolution. A properly designed occultation observing system has the capacity to become the leading backbone of the Global Climate Observing System (GCOS) for monitoring climate change and variability in fundamental atmospheric variables such as temperature, humidity, ozone, and geopotential height from global scales to meso-scales (order 100 km) and from the planetary boundary layer to the mesopause.

  15. Quantitative evaluation of positive ϕ angle propensity in flexible regions of proteins from three-bond J couplings.

    Science.gov (United States)

    Lee, Jung Ho; Ying, Jinfa; Bax, Ad

    2016-02-17

    (3)JHNHα and (3)JC'C' couplings can be readily measured in isotopically enriched proteins and were shown to contain precise information on the backbone torsion angles, ϕ, sampled in disordered regions of proteins. However, quantitative interpretation of these couplings required the population of conformers with positive ϕ angles to be very small. Here, we demonstrate that this restriction can be removed by measurement of (3)JC'Hα values. Even though the functional forms of the (3)JC'Hα and (3)JHNHα Karplus equations are the same, large differences in their coefficients enable accurate determination of the fraction of time that positive ϕ angles are sampled. A four-dimensional triple resonance HACANH[C'] E.COSY experiment is introduced to simultaneously measure (3)JC'Hα and (3)JHNC' in the typically very congested spectra of disordered proteins. High resolution in these spectra is obtained by non-uniform sampling (in the 0.1-0.5% range). Application to the intrinsically disordered protein α-synuclein shows that while most residues have close-to-zero positive ϕ angle populations, up to 16% positive ϕ population is observed for Asn residues. Positive ϕ angle populations determined with the new approach agree closely with consensus values from protein coil libraries and prior analysis of a large set of other NMR parameters. The combination of (3)JHNC' and (3)JC'C' provides information about the amplitude of ϕ angle dynamics.

  16. The Construction of Metal-Organic Framework with Active Backbones by the Utilization of Reticular Chemistry

    Science.gov (United States)

    Choi, Eunwoo

    With the principles of reticular chemistry, metal-organic frameworks with ultra-high porosity, chiral-recognition unit as a chiral stationary phase, metalloporhyrins for enhanced hydrogen adsorption and an intrinsic conductivity to form porous conductors, have been prepared. This dissertation presents how the principles of reticular chemistry were utilized to achieve in the preparations of metal-organic frameworks with a large surface area and active backbones. Through the simple isoreticular (having the same framework topology) expansion from MOF-177 composed with 1,3,5-tris(4'-carboxyphenyl-)benzene (BTB3-) as the strut; MOF-200 was prepared with 4,4',4"-(benzene-1,3,5-triyl-tris(benzene-4,1-diy1))tribenzoic acid an extension from BTB3- by a phenylene unit to yield one of the most porous MOFs with a Langmuir surface area of 10,400 m2. and the lowest density of 0.22 cm3.g-1. A successful thermal polymerization reaction at 325 °C inside of the pores of highly porous MOF, MOF-177, was performed and verified the integrity of the MOF structure even after the thermal reaction. 1,4-Diphenylbutadiyne that is known to polymerize upon heating to form a conjugated backbone was impregnated via solution-diffusion into MOF-177 and then subsequently polymerized by heat to form polymer impregnated MOF-177. Characterization was carried out using powder X-ray diffraction and volumetric sorption analyzer. MOF-1020 with a linear quaterphenyl dicarboxylate-based strut was designed to contain a chiral bisbinaphthyl crown-ether moiety for alkyl ammonium resolution was precisely placed into a Zn4O(CO2)6-based cubic MOF structure. Unfortunately, the chiral resolution was not achieved due to the sensitivity and the pore environment of MOF-1020. However, an interesting phenomenon was observed, where the loss of crystallinity occurs upon solvent removal while the crystallites remain shiny and crystalline, but it readily is restored upon re-solvation of the crystallites. This rare

  17. Theta angle in holographic QCD

    CERN Document Server

    Jarvinen, Matti

    2016-01-01

    V-QCD is a class of effective holographic models for QCD which fully includes the backreaction of quarks to gluon dynamics. The physics of the theta-angle and the axial anomaly can be consistently included in these models. We analyze their phase diagrams over ranges of values of the quark mass, N_f/N_c, and theta, computing observables such as the topological susceptibility and the meson masses. At small quark mass, where effective chiral Lagrangians are reliable, they agree with the predictions of V-QCD.

  18. Small angle scattering and polymers

    Energy Technology Data Exchange (ETDEWEB)

    Cotton, J.P. [Laboratoire Leon Brillouin (LLB) - Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)

    1996-12-31

    The determination of polymer structure is a problem of interest for both statistical physics and industrial applications. The average polymer structure is defined. Then, it is shown why small angle scattering, associated with isotopic substitution, is very well suited to the measurement of the chain conformation. The corresponding example is the old, but pedagogic, measurement of the chain form factor in the polymer melt. The powerful contrast variation method is illustrated by a recent determination of the concentration profile of a polymer interface. (author) 12 figs., 48 refs.

  19. Device for Measuring Landslide Critical Angle

    Institute of Scientific and Technical Information of China (English)

    Li Xueling; Xia Weisheng; Huang Daoyou; Yu Yun

    2016-01-01

    The mountain landslide has high destructive effects, discussion of its landslide critical angle has always been one of the major concerns, and we designed a system that can automatically measure the landslide critical angle. This equipment consists of the

  20. 30 CFR 56.19037 - Fleet angles.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fleet angles. 56.19037 Section 56.19037 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Sheaves § 56.19037 Fleet angles. Fleet angles on hoists installed after November 15, 1979, shall not...

  1. 30 CFR 57.19037 - Fleet angles.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fleet angles. 57.19037 Section 57.19037 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Sheaves § 57.19037 Fleet angles. Fleet angles on hoists installed after November 15, 1979, shall not...

  2. Aptamer-Functionalized and Backbone Redox-Responsive Hyperbranched Polymer for Targeted Drug Delivery in Cancer Therapy.

    Science.gov (United States)

    Zhuang, Yuanyuan; Deng, Hongping; Su, Yue; He, Lin; Wang, Ruibin; Tong, Gangsheng; He, Dannong; Zhu, Xinyuan

    2016-06-13

    A novel type of backbone redox-responsive hyperbranched poly(2-((2-(acryloyloxy)ethyl)disulfanyl)ethyl 4-cyano-4-(((propylthio)carbonothioyl)-thio)-pentanoate-co-poly(ethylene glycol) methacrylate) (HPAEG) has been designed and prepared successfully via the combination of reversible addition-fragmentation chain-transfer (RAFT) polymerization and self-condensing vinyl polymerization (SCVP). Owing to the existence of surface vinyl groups, HPAEG could be efficiently functionalized by DNA aptamer AS1411 via Michael addition reaction to obtain an active tumor targeting drug delivery carrier (HPAEG-AS1411). The amphiphilic HPAEG-AS1411 could form nanoparticles by macromolecular self-assembly strategy. Cell Counting Kit-8 (CCK-8) assay illustrated that HPAEG-AS1411 nanoparticles had low cytotoxicity to normal cell line. Flow cytometry and confocal laser scanning microscopy (CLSM) results demonstrated that HPAEG-AS1411 nanoparticles could be internalized into tumor cells via aptamer-mediated endocytosis. Compared with pure HPAEG nanoparticles, HPAEG-AS1411 nanoparticles displayed enhanced tumor cell uptake. When the HPAEG-AS1411 nanoparticles loaded with anticancer drug doxorubicin (DOX) were internalized into tumor cells, the disulfide bonds in the backbone of HPAEG-AS1411 were cleaved by glutathione (GSH) in the cytoplasm, so that DOX was released rapidly. Therefore, DOX-loaded HPAEG-AS1411 nanoparticles exhibited a high tumor cellular proliferation inhibition rate and low cytotoxicity to normal cells. This aptamer-functionalized and backbone redox-responsive hyperbranched polymer provides a promising platform for targeted drug delivery in cancer therapy.

  3. Design and synthesis of peptide YY analogues with c-terminal backbone amide-to-ester modifications

    DEFF Research Database (Denmark)

    Albertsen, Louise; Andersen, J.J.; Paulsson, J.F.;

    2013-01-01

    Peptide YY (PYY) is a gut hormone that activates the G protein-coupled neuropeptide Y (NPY) receptors, and because of its appetite reducing actions, it is evaluated as an antiobesity drug candidate. The C-terminal tail of PYY is crucial for activation of the NPY receptors. Here, we describe...... the design and preparation of a series of PYY(3-36) depsipeptide analogues, in which backbone amide-to-ester modifications were systematically introduced in the C-terminal. Functional NPY receptor assays and circular dichroism revealed that the ψ(CONH) bonds at positions 30-31 and 33-34 are particularly...

  4. 1H, 15N and 13C backbone resonance assignments of the archetypal serpin α1-antitrypsin.

    Science.gov (United States)

    Nyon, Mun Peak; Kirkpatrick, John; Cabrita, Lisa D; Christodoulou, John; Gooptu, Bibek

    2012-10-01

    Alpha(1)-antitrypsin is a 45-kDa (394-residue) serine protease inhibitor synthesized by hepatocytes, which is released into the circulatory system and protects the lung from the actions of neutrophil elastase via a conformational transition within a dynamic inhibitory mechanism. Relatively common point mutations subvert this transition, causing polymerisation of α(1)-antitrypsin and deficiency of the circulating protein, predisposing carriers to severe lung and liver disease. We have assigned the backbone resonances of α(1)-antitrypsin using multidimensional heteronuclear NMR spectroscopy. These assignments provide the starting point for a detailed solution state characterization of the structural properties of this highly dynamic protein via NMR methods.

  5. Backbone structures in human milk oligosaccharides: trans-glycosylation by metagenomic β-N-acetylhexosaminidases

    DEFF Research Database (Denmark)

    Nyffenegger, Christian; Nordvang, Rune Thorbjørn; Zeuner, Birgitte

    2015-01-01

    This paper describes the discovery and characterization of two novel β-N-acetylhexosaminidases HEX1 and HEX2, capable of catalyzing the synthesis of human milk oligosaccharides (HMO) backbone structures with fair yields using chitin oligomers as β-N-acetylglucosamine (GlcNAc) donor. The enzyme......-encoding genes were identified by functional screening of a soil-derived metagenomic library. The β-N-acetylhexosaminidases were expressed in Escherichia coli with an N-terminal His6-tag and were purified by nickel affinity chromatography. The sequence similarities of the enzymes with their respective closest...

  6. Conformation-specific spectroscopy of capped glutamine-containing peptides: role of a single glutamine residue on peptide backbone preferences.

    Science.gov (United States)

    Walsh, Patrick S; Dean, Jacob C; McBurney, Carl; Kang, Hyuk; Gellman, Samuel H; Zwier, Timothy S

    2016-04-28

    The conformational preferences of a series of short, aromatic-capped, glutamine-containing peptides have been studied under jet-cooled conditions in the gas phase. This work seeks a bottom-up understanding of the role played by glutamine residues in directing peptide structures that lead to neurodegenerative diseases. Resonant ion-dip infrared (RIDIR) spectroscopy is used to record single-conformation infrared spectra in the NH stretch, amide I and amide II regions. Comparison of the experimental spectra with the predictions of calculations carried out at the DFT M05-2X/6-31+G(d) level of theory lead to firm assignments for the H-bonding architectures of a total of eight conformers of four molecules, including three in Z-Gln-OH, one in Z-Gln-NHMe, three in Ac-Gln-NHBn, and one in Ac-Ala-Gln-NHBn. The Gln side chain engages actively in forming H-bonds with nearest-neighbor amide groups, forming C8 H-bonds to the C-terminal side, C9 H-bonds to the N-terminal side, and an amide-stacked geometry, all with an extended (C5) peptide backbone about the Gln residue. The Gln side chain also stabilizes an inverse γ-turn in the peptide backbone by forming a pair of H-bonds that bridge the γ-turn and stabilize it. Finally, the entire conformer population of Ac-Ala-Gln-NHBn is funneled into a single structure that incorporates the peptide backbone in a type I β-turn, stabilized by the Gln side chain forming a C7 H-bond to the central amide group in the β-turn not otherwise involved in a hydrogen bond. This β-turn backbone structure is nearly identical to that observed in a series of X-(AQ)-Y β-turns in the protein data bank, demonstrating that the gas-phase structure is robust to perturbations imposed by the crystalline protein environment.

  7. Microsecond molecular dynamics simulation shows effect of slow loop dynamics on backbone amide order parameters of proteins

    DEFF Research Database (Denmark)

    Maragakis, Paul; Lindorff-Larsen, Kresten; Eastwood, Michael P

    2008-01-01

    methods. However, apparent systematic discrepancies between order parameters extracted from simulations and experiments are common, particularly for elements of noncanonical secondary structure. In this paper, results from a 1.2 micros explicit solvent MD simulation of the protein ubiquitin are compared...... with previously determined backbone order parameters derived from NMR relaxation experiments [Tjandra, N.; Feller, S. E.; Pastor, R. W.; Bax, A. J. Am. Chem. Soc. 1995, 117, 12562-12566]. The simulation reveals fluctuations in three loop regions that occur on time scales comparable to or longer than...

  8. IMMUNOMODULATION OF SYNTHESIZED POLYMERS CONTAINING PHOSPHORUS IN THE BACKBONE —EFFECT ON THE PROLIFERATION OF LYMPHOCYTES

    Institute of Scientific and Technical Information of China (English)

    ZhuoRenxi; WangJun; 等

    1997-01-01

    The immunomodulation of several Charged synthetic polymers containing phosphorus in the backbone was studied in vitro through examining their inhibition or promotion effect on the proliferatioin of both T and B lymphocytes,It is found that polymers based on long chain alkyl ester of tyrosine exhibit immunomodulative activity.Negatively charged polymers show stimulative activity on LPS-induced B lymphocytes proliferation.Positively charged polymers exhibit inhibitory activity on both Con A-induced T lymphocytes and LPS-induced B lymplhyocytes proliferation.

  9. Nucleic acid structure characterization by small angle X-ray scattering (SAXS)

    Science.gov (United States)

    Burke, Jordan E.; Butcher, Samuel E.

    2013-01-01

    Small angle X-ray scattering (SAXS) is a powerful method for investigating macromolecular structure in solution. SAXS data provide information about the size and shape of a molecule with a resolution of approximately 2–3 nm. SAXS is particularly useful for the investigation of nucleic acids, which scatter X-rays strongly due to the electron-rich phosphate backbone. Therefore, SAXS has become an increasingly popular method for modeling nucleic acid structures, an endeavor made tractable by the highly regular helical nature of nucleic acid secondary structures. Recently, we used SAXS in combination with NMR to filter and refine all-atom models of a U2/U6 small nuclear RNA complex. In this unit we present general protocols for sample preparation, data acquisition, and data analysis and processing. Additionally, examples of correctly and incorrectly processed SAXS data and expected results are provided. PMID:23255205

  10. Rapid proton-detected NMR assignment for proteins with fast magic angle spinning.

    Science.gov (United States)

    Barbet-Massin, Emeline; Pell, Andrew J; Retel, Joren S; Andreas, Loren B; Jaudzems, Kristaps; Franks, W Trent; Nieuwkoop, Andrew J; Hiller, Matthias; Higman, Victoria; Guerry, Paul; Bertarello, Andrea; Knight, Michael J; Felletti, Michele; Le Marchand, Tanguy; Kotelovica, Svetlana; Akopjana, Inara; Tars, Kaspars; Stoppini, Monica; Bellotti, Vittorio; Bolognesi, Martino; Ricagno, Stefano; Chou, James J; Griffin, Robert G; Oschkinat, Hartmut; Lesage, Anne; Emsley, Lyndon; Herrmann, Torsten; Pintacuda, Guido

    2014-09-03

    Using a set of six (1)H-detected triple-resonance NMR experiments, we establish a method for sequence-specific backbone resonance assignment of magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of 5-30 kDa proteins. The approach relies on perdeuteration, amide (2)H/(1)H exchange, high magnetic fields, and high-spinning frequencies (ωr/2π ≥ 60 kHz) and yields high-quality NMR data, enabling the use of automated analysis. The method is validated with five examples of proteins in different condensed states, including two microcrystalline proteins, a sedimented virus capsid, and two membrane-embedded systems. In comparison to contemporary (13)C/(15)N-based methods, this approach facilitates and accelerates the MAS NMR assignment process, shortening the spectral acquisition times and enabling the use of unsupervised state-of-the-art computational data analysis protocols originally developed for solution NMR.

  11. Individualized optimal release angles in discus throwing.

    Science.gov (United States)

    Leigh, Steve; Liu, Hui; Hubbard, Mont; Yu, Bing

    2010-02-10

    The purpose of this study was to determine individualized optimal release angles for elite discus throwers. Three-dimensional coordinate data were obtained for at least 10 competitive trials for each subject. Regression relationships between release speed and release angle, and between aerodynamic distance and release angle were determined for each subject. These relationships were linear with subject-specific characteristics. The subject-specific relationships between release speed and release angle may be due to subjects' technical and physical characteristics. The subject-specific relationships between aerodynamic distance and release angle may be due to interactions between the release angle, the angle of attack, and the aerodynamic distance. Optimal release angles were estimated for each subject using the regression relationships and equations of projectile motion. The estimated optimal release angle was different for different subjects, and ranged from 35 degrees to 44 degrees . The results of this study demonstrate that the optimal release angle for discus throwing is thrower-specific. The release angles used by elite discus throwers in competition are not necessarily optimal for all discus throwers, or even themselves. The results of this study provide significant information for understanding the biomechanics of discus throwing techniques.

  12. Transcription and the Pitch Angle of DNA

    CERN Document Server

    Olsen, Kasper W

    2013-01-01

    The question of the value of the pitch angle of DNA is visited from the perspective of a geometrical analysis of transcription. It is suggested that for transcription to be possible, the pitch angle of B-DNA must be smaller than the angle of zero-twist. At the zero-twist angle the double helix is maximally rotated and its strain-twist coupling vanishes. A numerical estimate of the pitch angle for B-DNA based on differential geometry is compared with numbers obtained from existing empirical data. The crystallographic studies shows that the pitch angle is approximately 38 deg., less than the corresponding zero-twist angle of 41.8 deg., which is consistent with the suggested principle for transcription.

  13. Coupling Protein Side-Chain and Backbone Flexibility Improves the Re-design of Protein-Ligand Specificity

    Science.gov (United States)

    Ollikainen, Noah; de Jong, René M.; Kortemme, Tanja

    2015-01-01

    Interactions between small molecules and proteins play critical roles in regulating and facilitating diverse biological functions, yet our ability to accurately re-engineer the specificity of these interactions using computational approaches has been limited. One main difficulty, in addition to inaccuracies in energy functions, is the exquisite sensitivity of protein–ligand interactions to subtle conformational changes, coupled with the computational problem of sampling the large conformational search space of degrees of freedom of ligands, amino acid side chains, and the protein backbone. Here, we describe two benchmarks for evaluating the accuracy of computational approaches for re-engineering protein-ligand interactions: (i) prediction of enzyme specificity altering mutations and (ii) prediction of sequence tolerance in ligand binding sites. After finding that current state-of-the-art “fixed backbone” design methods perform poorly on these tests, we develop a new “coupled moves” design method in the program Rosetta that couples changes to protein sequence with alterations in both protein side-chain and protein backbone conformations, and allows for changes in ligand rigid-body and torsion degrees of freedom. We show significantly increased accuracy in both predicting ligand specificity altering mutations and binding site sequences. These methodological improvements should be useful for many applications of protein – ligand design. The approach also provides insights into the role of subtle conformational adjustments that enable functional changes not only in engineering applications but also in natural protein evolution. PMID:26397464

  14. Thermodynamic contribution of backbone conformational entropy in the binding between SH3 domain and proline-rich motif.

    Science.gov (United States)

    Zeng, Danyun; Shen, Qingliang; Cho, Jae-Hyun

    2017-02-26

    Biological functions of intrinsically disordered proteins (IDPs), and proteins containing intrinsically disordered regions (IDRs) are often mediated by short linear motifs, like proline-rich motifs (PRMs). Upon binding to their target proteins, IDPs undergo a disorder-to-order transition which is accompanied by a large conformational entropy penalty. Hence, the molecular mechanisms underlying control of conformational entropy are critical for understanding the binding affinity and selectivity of IDPs-mediated protein-protein interactions (PPIs). Here, we investigated the backbone conformational entropy change accompanied by binding of the N-terminal SH3 domain (nSH3) of CrkII and PRM derived from guanine nucleotide exchange factor 1 (C3G). In particular, we focused on the estimation of conformational entropy change of disordered PRM upon binding to the nSH3 domain. Quantitative characterization of conformational dynamics of disordered peptides like PRMs is limited. Hence, we combined various methods, including NMR model-free analysis, δ2D, DynaMine, and structure-based calculation of entropy loss. This study demonstrates that the contribution of backbone conformational entropy change is significant in the PPIs mediated by IDPs/IDRs.

  15. Improved site-specific recombinase-based method to produce selectable marker- and vector-backbone-free transgenic cells

    Science.gov (United States)

    Yu, Yuan; Tong, Qi; Li, Zhongxia; Tian, Jinhai; Wang, Yizhi; Su, Feng; Wang, Yongsheng; Liu, Jun; Zhang, Yong

    2014-02-01

    PhiC31 integrase-mediated gene delivery has been extensively used in gene therapy and animal transgenesis. However, random integration events are observed in phiC31-mediated integration in different types of mammalian cells; as a result, the efficiencies of pseudo attP site integration and evaluation of site-specific integration are compromised. To improve this system, we used an attB-TK fusion gene as a negative selection marker, thereby eliminating random integration during phiC31-mediated transfection. We also excised the selection system and plasmid bacterial backbone by using two other site-specific recombinases, Cre and Dre. Thus, we generated clean transgenic bovine fetal fibroblast cells free of selectable marker and plasmid bacterial backbone. These clean cells were used as donor nuclei for somatic cell nuclear transfer (SCNT), indicating a similar developmental competence of SCNT embryos to that of non-transgenic cells. Therefore, the present gene delivery system facilitated the development of gene therapy and agricultural biotechnology.

  16. Multi-source micro-friction identification for a class of cable-driven robots with passive backbone

    Science.gov (United States)

    Tjahjowidodo, Tegoeh; Zhu, Ke; Dailey, Wayne; Burdet, Etienne; Campolo, Domenico

    2016-12-01

    This paper analyses the dynamics of cable-driven robots with a passive backbone and develops techniques for their dynamic identification, which are tested on the H-Man, a planar cabled differential transmission robot for haptic interaction. The mechanism is optimized for human-robot interaction by accounting for the cost-benefit-ratio of the system, specifically by eliminating the necessity of an external force sensor to reduce the overall cost. As a consequence, this requires an effective dynamic model for accurate force feedback applications which include friction behavior in the system. We first consider the significance of friction in both the actuator and backbone spaces. Subsequently, we study the required complexity of the stiction model for the application. Different models representing different levels of complexity are investigated, ranging from the conventional approach of Coulomb to an advanced model which includes hysteresis. The results demonstrate each model's ability to capture the dynamic behavior of the system. In general, it is concluded that there is a trade-off between model accuracy and the model cost.

  17. Circular permutation prediction reveals a viable backbone disconnection for split proteins: an approach in identifying a new functional split intein.

    Directory of Open Access Journals (Sweden)

    Yun-Tzai Lee

    Full Text Available Split-protein systems have emerged as a powerful tool for detecting biomolecular interactions and reporting biological reactions. However, reliable methods for identifying viable split sites are still unavailable. In this study, we demonstrated the feasibility that valid circular permutation (CP sites in proteins have the potential to act as split sites and that CP prediction can be used to search for internal permissive sites for creating new split proteins. Using a protein ligase, intein, as a model, CP predictor facilitated the creation of circular permutants in which backbone opening imposes the least detrimental effects on intein folding. We screened a series of predicted intein CPs and identified stable and native-fold CPs. When the valid CP sites were introduced as split sites, there was a reduction in folding enthalpy caused by the new backbone opening; however, the coincident loss in entropy was sufficient to be compensated, yielding a favorable free energy for self-association. Since split intein is exploited in protein semi-synthesis, we tested the related protein trans-splicing (PTS activities of the corresponding split inteins. Notably, a novel functional split intein composed of the N-terminal 36 residues combined with the remaining C-terminal fragment was identified. Its PTS activity was shown to be better than current reported two-piece intein with a short N-terminal segment. Thus, the incorporation of in silico CP prediction facilitated the design of split intein as well as circular permutants.

  18. Hydrogen-deuterium exchange mass spectrometry for investigation of backbone dynamics of oxidized and reduced cytochrome P450cam.

    Science.gov (United States)

    Hamuro, Yoshitomo; Molnar, Kathleen S; Coales, Stephen J; OuYang, Bo; Simorellis, Alana K; Pochapsky, Thomas C

    2008-02-01

    Backbone dynamics of the camphor monoxygenase cytochrome P450(cam) (CYP101) as a function of oxidation/ligation state of the heme iron were investigated via hydrogen/deuterium exchange (H/D exchange) as monitored by mass spectrometry. Main chain amide NH hydrogens can exchange readily with solvent and the rate of this exchange depends upon, among other things, dynamic fluctuations in local structural elements. A fluxional region of the polypeptide will exchange more quickly with solvent than one that is more constrained. In most regions of the enzyme, exchange rates were similar between oxidized high-spin camphor-bound and reduced camphor- and CO-bound CYP101 (CYP-S and CYP-S-CO, respectively). However, in regions of the protein that have previously been implicated in substrate access by structural and molecular dynamics investigations, the reduced enzyme shows significantly slower exchange rates than the oxidized CYP-S. This observation corresponds to increased flexibility of the oxidized enzyme relative to the reduced form. Structural features previously found to be perturbed in CYP-S-CO upon binding of the biologically relevant effector and reductant putidaredoxin (Pdx) as determined by nuclear magnetic resonance are also more protected from exchange in the reduced state. To our knowledge, this study represents the first experimental investigation of backbone dynamics within the P450 family using this methodology.

  19. Meningiomas of the cerebellopontine angle.

    Science.gov (United States)

    Matthies, C; Carvalho, G; Tatagiba, M; Lima, M; Samii, M

    1996-01-01

    Meningiomas of the cerebellopontine angle (CPA) represent a clinically and surgically interesting entity. The opportunity of complete surgical excision and the incidence of impairment of nerval structures largely depend on the tumour biology that either leads to displacement of surrounding structures by an expansive type of growth or to an enveloping of nerval and vascular structures by an en plaque type of growth. As the origin and the direction of growth are very variable, the exact tumour extension in relation to the nerval structures and the tumour origin can be identified sometimes only at the time of surgery. Out of a series of 230 meningiomas of the posterior skull base operated between 1978 and 1993, data of 134 meningiomas involving the cerebellopontine angle are presented. There were 20% male and 80% female patients, age at the time of surgery ranging from 18 to 76 years, on the average 51 years. The clinical presentation was characterized by a predominant disturbance of the cranial nerves V (19%), VII (11%), VIII (67%) and the caudal cranial nerves (6%) and signs of ataxia (28%). 80% of the meningiomas were larger than 30 mm in diameter, 53% led to evident brainstem compression or dislocation and 85% extended anteriorly to the internal auditory canal. Using the lateral suboccipital approach in the majority of cases and a combined presigmoidal or combined suboccipital and subtemporal approaches in either sequence in 5%, complete tumour removal (Simpson I and II) was accomplished in 95% and subtotal tumour removal in 5%. Histologically the meningiotheliomatous type was most common (49%) followed by the mixed type (19%), fibroblastic (16%), psammomatous (7%), hemangioblastic (7%) and anaplastic (2%) types. Major post-operative complications were CSF leakage (8%) requiring surgical revision in 2% and hemorrhage (3%) requiring revision in 2%. While the majority of neurological disturbances showed signs of recovery, facial nerve paresis or paralysis was

  20. Quantitative analysis of backbone motion in proteins using MAS solid-state NMR spectroscopy.

    Science.gov (United States)

    Chevelkov, Veniamin; Fink, Uwe; Reif, Bernd

    2009-09-01

    We present a comprehensive analysis of protein dynamics for a micro-crystallin protein in the solid-state. Experimental data include (15)N T (1) relaxation times measured at two different magnetic fields as well as (1)H-(15)N dipole, (15)N CSA cross correlated relaxation rates which are sensitive to the spectral density function J(0) and are thus a measure of T (2) in the solid-state. In addition, global order parameters are included from a (1)H,(15)N dipolar recoupling experiment. The data are analyzed within the framework of the extended model-free Clore-Lipari-Szabo theory. We find slow motional correlation times in the range of 5 and 150 ns. Assuming a wobbling in a cone motion, the amplitude of motion of the respective amide moiety is on the order of 10 degrees for the half-opening angle of the cone in most of the cases. The experiments are demonstrated using a perdeuterated sample of the chicken alpha-spectrin SH3 domain.

  1. Dynamic contact angle measurements on superhydrophobic surfaces

    Science.gov (United States)

    Kim, Jeong-Hyun; Kavehpour, H. Pirouz; Rothstein, Jonathan P.

    2015-03-01

    In this paper, the dynamic advancing and receding contact angles of a series of aqueous solutions were measured on a number of hydrophobic and superhydrophobic surfaces using a modified Wilhelmy plate technique. Superhydrophobic surfaces are hydrophobic surfaces with micron or nanometer sized surface roughness. These surfaces have very large static advancing contact angles and little static contact angle hysteresis. In this study, the dynamic advancing and dynamic receding contact angles on superhydrophobic surfaces were measured as a function of plate velocity and capillary number. The dynamic contact angles measured on a smooth hydrophobic Teflon surface were found to obey the scaling with capillary number predicted by the Cox-Voinov-Tanner law, θD3 ∝ Ca. The response of the dynamic contact angle on the superhydrophobic surfaces, however, did not follow the same scaling law. The advancing contact angle was found to remain constant at θA = 160∘, independent of capillary number. The dynamic receding contact angle measurements on superhydrophobic surfaces were found to decrease with increasing capillary number; however, the presence of slip on the superhydrophobic surface was found to result in a shift in the onset of dynamic contact angle variation to larger capillary numbers. In addition, a much weaker dependence of the dynamic contact angle on capillary number was observed for some of the superhydrophobic surfaces tested.

  2. High performance and highly durable infiltrated cathodes using Pr-modified Ce0.9Gd0.1O1.95 backbone

    DEFF Research Database (Denmark)

    Samson, Alfred Junio; Søgaard, Martin; Bonanos, Nikolaos;

    2014-01-01

    the CGO backbone with Pr through infiltration into the structure followed by firing. The Pr – modified CGO backbone is then infiltrated with LSC. The electrochemical performance of the infiltrated cathodes with and without Pr modification in the backbone was studied by impedance spectroscopy on symmetric...... °C (without Pr: Rp from 0.094 to 0.45 Ω cm2, Rs from 0.74 to 0.79 Ω cm2; with Pr: Rp from 0.051 to 0.32 Ω cm2, Rs from 0.74 to 0.71 Ω cm2). The improved performance and heat treatment tolerance is thought to originate from the imparted electronic conductivity into the CGO backbone by introducing Pr.......Infiltration of electrocatalysts into ionic conducting backbones (e.g. Sr – doped LaCoO3 (LSC) into Ce0.9Gd0.1O1.95 (CGO)) is becoming a widely popular means of preparing composite cathodes for SOFCs. The high surface area nanoparticle grains of the electrocatalyst obtained using the method...

  3. Caustic graphene plasmons with Kelvin angle

    CERN Document Server

    Shi, Xihang; Gao, Fei; Xu, Hongyi; Yang, Zhaoju; Zhang, Baile

    2015-01-01

    A century-long argument made by Lord Kelvin that all swimming objects have an effective Mach number of 3, corresponding to the Kelvin angle of 19.5 degree for ship waves, has been recently challenged with the conclusion that the Kelvin angle should gradually transit to the Mach angle as the ship velocity increases. Here we show that a similar phenomenon can happen for graphene plasmons. By analyzing the caustic wave pattern of graphene plasmons stimulated by a swift charged particle moving uniformly above graphene, we show that at low velocities of the charged particle, the caustics of graphene plasmons form the Kelvin angle. At large velocities of the particle, the caustics disappear and the effective semi-angle of the wave pattern approaches the Mach angle. Our study introduces caustic wave theory to the field of graphene plasmonics, and reveals a novel physical picture of graphene plasmon excitation during electron energy-loss spectroscopy measurement.

  4. Assignment of congested NMR spectra: Carbonyl backbone enrichment via the Entner Doudoroff pathway

    Science.gov (United States)

    Goldbourt, Amir; Day, Loren A.; McDermott, Ann E.

    2007-12-01

    In NMR spectra of complex proteins, sparse isotope enrichment can be important, in that the removal of many 13C- 13C homonuclear J-couplings can narrow the lines and thereby facilitate the process of spectral assignment and structure elucidation. We present a simple scheme for selective yet extensive isotopic enrichment applicable for production of proteins in organisms utilizing the Entner-Doudoroff (ED) metabolic pathway. An enrichment scheme so derived is demonstrated in the context of a magic-angle spinning solid-state NMR (MAS SSNMR) study of Pf1 bacteriophage, the host of which is Pseudomonas aeruginosa, strain K (PAK), an organism that uses the ED pathway for glucose catabolism. The intact and infectious Pf1 phage in this study was produced by infected PAK cells grown on a minimal medium containing 1- 13C D-glucose ( 13C in position 1) as the sole carbon source, as well as 15NH 4Cl as the only nitrogen source. The 37 MDa Pf1 phage consists of about 93% major coat protein, 1% minor coat proteins, and 6% single-stranded, circular DNA. As a consequence of this composition and the enrichment scheme, the resonances in the MAS SSNMR spectra of the Pf1 sample were almost exclusively due to carbonyl carbons in the major coat protein. Moreover, 3D heteronuclear NCOCX correlation experiments also show that the amino acids leucine, serine, glycine, and tyrosine were not isotopically enriched in their carbonyl positions (although most other amino acids were), which is as expected based upon considerations of the ED metabolic pathway. 3D NCOCX NMR data and 2D 15N- 15N data provided strong verification of many previous assignments of 15N amide and 13C carbonyl shifts in this highly congested spectrum; both the semi-selective enrichment patterns and the narrowed linewidths allowed for greater certainty in the assignments as compared with use of uniformly enriched samples alone.

  5. Contact angle measurements under thermodynamic equilibrium conditions.

    Science.gov (United States)

    Lages, Carol; Méndez, Eduardo

    2007-08-01

    The precise control of the ambient humidity during contact angle measurements is needed to obtain stable and valid data. For a such purpose, a simple low-cost device was designed, and several modified surfaces relevant to biosensor design were studied. Static contact angle values for these surfaces are lower than advancing contact angles published for ambient conditions, indicating that thermodynamic equilibrium conditions are needed to avoid drop evaporation during the measurements.

  6. Thermoresponsive Poly(2-oxazoline) Molecular Brushes by Living Ionic Polymerization: Kinetic Investigations of Pendant Chain Grafting and Cloud Point Modulation by Backbone and Side Chain Length Variation

    KAUST Repository

    Zhang, Ning

    2012-04-17

    Molecular brushes of poly(2-oxazoline)s were prepared by living anionic polymerization of 2-iso-propenyl-2-oxazoline to form the backbone and subsequent living cationic ring-opening polymerization of 2-n- or 2-iso-propyl-2-oxazoline for pendant chain grafting. In situ kinetic studies indicate that the initiation efficiency and polymerization rates are independent from the number of initiator functions per initiator molecule. This was attributed to the high efficiency of oxazolinium salt and the stretched conformation of the backbone, which is caused by the electrostatic repulsion of the oxazolinium moieties along the macroinitiator. The resulting molecular brushes showed thermoresponsive properties, that is, having a defined cloud point (CP). The dependence of the CP as a function of backbone and side chain length as well as concentration was studied. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Contact angle hysteresis on fluoropolymer surfaces.

    Science.gov (United States)

    Tavana, H; Jehnichen, D; Grundke, K; Hair, M L; Neumann, A W

    2007-10-31

    Contact angle hysteresis of liquids with different molecular and geometrical properties on high quality films of four fluoropolymers was studied. A number of different causes are identified for hysteresis. With n-alkanes as probe liquids, contact angle hysteresis is found to be strongly related to the configuration of polymer chains. The largest hysteresis is obtained with amorphous polymers whereas the smallest hysteresis occurs for polymers with ordered molecular chains. This is explained in terms of sorption of liquid by the solid and penetration of liquid into the polymer film. Correlation of contact angle hysteresis with the size of n-alkane molecules supports this conclusion. On the films of two amorphous fluoropolymers with different molecular configurations, contact angle hysteresis of one and the same liquid with "bulky" molecules is shown to be quite different. On the surfaces of Teflon AF 1600, with stiff molecular chains, the receding angles of the probe liquids are independent of contact time between solid and liquid and similar hysteresis is obtained for all the liquids. Retention of liquid molecules on the solid surface is proposed as the most likely cause of hysteresis in these systems. On the other hand, with EGC-1700 films that consist of flexible chains, the receding angles are strongly time-dependent and the hysteresis is large. Contact angle hysteresis increases even further when liquids with strong dipolar intermolecular forces are used. In this case, major reorganization of EGC-1700 chains due to contact with the test liquids is suggested as the cause. The effect of rate of motion of the three-phase line on the advancing and receding contact angles, and therefore contact angle hysteresis, is investigated. For low viscous liquids, contact angles are independent of the drop front velocity up to approximately 10 mm/min. This agrees with the results of an earlier study that showed that the rate-dependence of the contact angles is an issue only

  8. Modernización del IP Backbone del Core de Voz para Telefónica Ecuador

    OpenAIRE

    Echeverria Medina, Jorge Leonardo

    2015-01-01

    En el mercado de las telecomunicaciones, la alta disponibilidad de las redes celulares hace muchos años atrás dejó de ser una meta y hoy en día es un requisito básico para cualquier operador. Siguiendo el continuo evolucionar de las empresas celulares consideradas grandes a nivel mundial, la compañía Telefónica Ecuador a mediados del año 2014 entró en un proceso de modernización de toda su red, modernización que incluyó el Backbone IP para su red de Voz a nivel nacional. Telefónica Ecuador cu...

  9. Purification, crystallization and preliminary crystallographic analysis of the SpaA backbone-pilin subunit from probiotic Lactobacillus rhamnosus GG.

    Science.gov (United States)

    Singh, Deepak; von Ossowski, Ingemar; Palva, Airi; Krishnan, Vengadesan

    2013-10-01

    Lactobacillus rhamnosus GG, a widely used Gram-positive probiotic strain, is clinically well known for its perceived health-promoting effects. It has recently been shown to display proteinaceous pilus fibres (called SpaCBA) on its cell surface. Structurally, SpaCBA pili possess a characteristic three-pilin polymerized architecture, with repeating SpaA major pilins that form the backbone and two types of minor subunits (SpaB and SpaC). In this study, recombinant SpaA protein was purified, characterized and crystallized. The crystals diffracted to a resolution of 2.0 Å and belonged to space group C2, with unit-cell parameters a=227.9, b=63.2, c=104.3 Å, β=95.1°.

  10. Proton-detected MAS NMR experiments based on dipolar transfers for backbone assignment of highly deuterated proteins

    Science.gov (United States)

    Chevelkov, Veniamin; Habenstein, Birgit; Loquet, Antoine; Giller, Karin; Becker, Stefan; Lange, Adam

    2014-05-01

    Proton-detected solid-state NMR was applied to a highly deuterated insoluble, non-crystalline biological assembly, the Salmonella typhimurium type iii secretion system (T3SS) needle. Spectra of very high resolution and sensitivity were obtained at a low protonation level of 10-20% at exchangeable amide positions. We developed efficient experimental protocols for resonance assignment tailored for this system and the employed experimental conditions. Using exclusively dipolar-based interspin magnetization transfers, we recorded two sets of 3D spectra allowing for an almost complete backbone resonance assignment of the needle subunit PrgI. The additional information provided by the well-resolved proton dimension revealed the presence of two sets of resonances in the N-terminal helix of PrgI, while in previous studies employing 13C detection only a single set of resonances was observed.

  11. TACN-based cationic lipids with amino acid backbone and double tails: materials for non-viral gene delivery.

    Science.gov (United States)

    Wang, Bing; Yi, Wen-Jing; Zhang, Ji; Zhang, Qin-Fang; Xun, Miao-Miao; Yu, Xiao-Qi

    2014-04-01

    Cationic lipids have become an efficient type of non-viral vectors for gene delivery. In this Letter, four cationic lipids containing 1,4,7-triazacyclononane (TACN) headgroup, glutamic/aspartic acid backbone and dioleyl tails were designed and synthesized. The TACN headgroup gives these lipids excellent pH buffering capacities, which were higher than branched 25 kDa PEI. Cationic liposomes prepared from these lipids and DOPE showed good DNA affinity, and full DNA condensation was found at N/P ratio of 3 via agarose gel electrophoresis. The lipoplexes were characterized by dynamic light scattering (DLS) assay, which gave proper particle sizes and zeta-potentials for transfection. In vitro gene transfection results in two cell lines reveal that TAN (with aspartic acid and amide bond in the structure) shows the best transfection efficiency, which is close to commercially available transfection agent Lipofectamine 2000.

  12. Poly(meta-phenylene) Derivative with Rigid Twisted Biphenyl Units in Backbone: Synthesis, Structural Characterization,Photophysical Properties and Electroluminescence

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yan; YANG Bing; ZHANG Hai-quan; LU Ping; SHEN Fang-zhong; LIU Lin-lin; XU Hai; YANG Guang-di; MA Yu-guang

    2007-01-01

    A soluble poly(meta-phenylene) derivative with rigid twisted biphenyl unit was synthesized by the Yamamoto coupling reaction. The polymer is soluble in common organic solvents, and the number-average molecular weight is about 6500. The UV-Vis and quantum chemical calculation indicate that the different conformation segments named "conformers" exist in the polymer backbones; it was also further confirmed by the single crystal X-ray diffraction study of the dimeric model compound. The π-π* transition of biphenyl segments of twisted and planar conformations made the polymer exhibit a strong absorption around 256 nm and a weak absorption at about 300 nm. Furthermore,the polymer exhibits a strong UV photoluminescence at 372 nm when the excitation wavelengths are longer than 300 nm. The ultraviolet-emitting electroluminescence(EL) device with the single layer structure shows EL λmax of the derivative at 370 nm.

  13. BEAMS: backbone extraction and merge strategy for the global many-to-many alignment of multiple PPI networks

    DEFF Research Database (Denmark)

    Alkan, Ferhat; Erten, Cesim

    2014-01-01

    MOTIVATION: Global many-to-many alignment of biological networks has been a central problem in comparative biological network studies. Given a set of biological interaction networks, the informal goal is to group together related nodes. For the case of protein-protein interaction networks...... are conserved across the input networks. We provide a formal definition of the global many-to-many alignment of multiple protein-protein interaction networks that captures this informal objective. We show the computational intractability of the suggested definition. We provide a heuristic method based...... on backbone extraction and merge strategy (BEAMS) for the problem. We finally show, through experiments based on biological significance tests, that the proposed BEAMS algorithm performs better than the state-of-the-art approaches. Furthermore, the computational burden of the BEAMS algorithm in terms...

  14. Backbone structure of Yersinia pestis Ail determined in micelles by NMR-restrained simulated annealing with implicit membrane solvation

    Energy Technology Data Exchange (ETDEWEB)

    Marassi, Francesca M., E-mail: fmarassi@sbmri.org; Ding, Yi [Sanford-Burnham Medical Research Institute (United States); Schwieters, Charles D. [National Institutes of Health, Division of Computational Bioscience, Center for Information Technology (United States); Tian, Ye; Yao, Yong [Sanford-Burnham Medical Research Institute (United States)

    2015-09-15

    The outer membrane protein Ail (attachment invasion locus) is a virulence factor of Yersinia pestis that mediates cell invasion, cell attachment and complement resistance. Here we describe its three-dimensional backbone structure determined in decyl-phosphocholine (DePC) micelles by NMR spectroscopy. The NMR structure was calculated using the membrane function of the implicit solvation potential, eefxPot, which we have developed to facilitate NMR structure calculations in a physically realistic environment. We show that the eefxPot force field guides the protein towards its native fold. The resulting structures provide information about the membrane-embedded global position of Ail, and have higher accuracy, higher precision and improved conformational properties, compared to the structures calculated with the standard repulsive potential.

  15. Comparison of solid-state dipolar couplings and solution relaxation data provides insight into protein backbone dynamics.

    Science.gov (United States)

    Chevelkov, Veniamin; Xue, Yi; Linser, Rasmus; Skrynnikov, Nikolai R; Reif, Bernd

    2010-04-14

    Analyses of solution (15)N relaxation data and solid-state (1)H(N)-(15)N dipolar couplings from a small globular protein, alpha-spectrin SH3 domain, produce a surprisingly similar pattern of order parameters. This result suggests that there is little or no ns-mus dynamics throughout most of the sequence and, in particular, in the structured portion of the backbone. At the same time, evidence of ns-mus motions is found in the flexible loops and termini. These findings, corroborated by the MD simulations of alpha-spectrin SH3 in a hydrated crystalline environment and in solution, are consistent with the picture of protein dynamics that has recently emerged from the solution studies employing residual dipolar couplings.

  16. Formation of Hierarchical Structure Composed of (Co/Ni)Mn-LDH Nanosheets on MWCNT Backbones for Efficient Electrocatalytic Water Oxidation.

    Science.gov (United States)

    Jia, Gan; Hu, Yingfei; Qian, Qinfeng; Yao, Yingfang; Zhang, Shiying; Li, Zhaosheng; Zou, Zhigang

    2016-06-15

    Active, stable, and cost-effective electrocatalysts are attractive alternatives to the noble metal oxides that have been used in water splitting. The direct nucleation and growth of electrochemically active LDH materials on chemically modified MWCNTs exhibit considerable electrocatalytic activity toward oxygen evolution from water oxidation. CoMn-based and NiMn-based hybrids were synthesized using a facile chemical bath deposition method and the as-synthesized materials exhibited three-dimensional hierarchical configurations with tunable Co/Mn and Ni/Mn ratio. Benefiting from enhanced electrical conductivity with MWCNT backbones and LDH lamellar structure, the Co5Mn-LDH/MWCNT and Ni5Mn-LDH/MWCNT could generated a current density of 10 mA cm(-2) at overpotentials of ∼300 and ∼350 mV, respectively, in 1 M KOH. In addition, the materials also exhibited outstanding long-term electrocatalytic stability.

  17. Marburg virus VP35 can both fully coat the backbone and cap the ends of dsRNA for interferon antagonism.

    Directory of Open Access Journals (Sweden)

    Shridhar Bale

    2012-09-01

    Full Text Available Filoviruses, including Marburg virus (MARV and Ebola virus (EBOV, cause fatal hemorrhagic fever in humans and non-human primates. All filoviruses encode a unique multi-functional protein termed VP35. The C-terminal double-stranded (dsRNA-binding domain (RBD of VP35 has been implicated in interferon antagonism and immune evasion. Crystal structures of the VP35 RBD from two ebolaviruses have previously demonstrated that the viral protein caps the ends of dsRNA. However, it is not yet understood how the expanses of dsRNA backbone, between the ends, are masked from immune surveillance during filovirus infection. Here, we report the crystal structure of MARV VP35 RBD bound to dsRNA. In the crystal structure, molecules of dsRNA stack end-to-end to form a pseudo-continuous oligonucleotide. This oligonucleotide is continuously and completely coated along its sugar-phosphate backbone by the MARV VP35 RBD. Analysis of dsRNA binding by dot-blot and isothermal titration calorimetry reveals that multiple copies of MARV VP35 RBD can indeed bind the dsRNA sugar-phosphate backbone in a cooperative manner in solution. Further, MARV VP35 RBD can also cap the ends of the dsRNA in solution, although this arrangement was not captured in crystals. Together, these studies suggest that MARV VP35 can both coat the backbone and cap the ends, and that for MARV, coating of the dsRNA backbone may be an essential mechanism by which dsRNA is masked from backbone-sensing immune surveillance molecules.

  18. Investigating the role of a backbone to substrate hydrogen bond in OMP decarboxylase using a site-specific amide to ester substitution.

    Science.gov (United States)

    Desai, Bijoy J; Goto, Yuki; Cembran, Alessandro; Fedorov, Alexander A; Almo, Steven C; Gao, Jiali; Suga, Hiroaki; Gerlt, John A

    2014-10-21

    Hydrogen bonds between backbone amide groups of enzymes and their substrates are often observed, but their importance in substrate binding and/or catalysis is not easy to investigate experimentally. We describe the generation and kinetic characterization of a backbone amide to ester substitution in the orotidine 5'-monophosphate (OMP) decarboxylase from Methanobacter thermoautotrophicum (MtOMPDC) to determine the importance of a backbone amide-substrate hydrogen bond. The MtOMPDC-catalyzed reaction is characterized by a rate enhancement (∼10(17)) that is among the largest for enzyme-catalyzed reactions. The reaction proceeds through a vinyl anion intermediate that may be stabilized by hydrogen bonding interaction between the backbone amide of a conserved active site serine residue (Ser-127) and oxygen (O4) of the pyrimidine moiety and/or electrostatic interactions with the conserved general acidic lysine (Lys-72). In vitro translation in conjunction with amber suppression using an orthogonal amber tRNA charged with L-glycerate ((HO)S) was used to generate the ester backbone substitution (S127(HO)S). With 5-fluoro OMP (FOMP) as substrate, the amide to ester substitution increased the value of Km by ∼1.5-fold and decreased the value of kcat by ∼50-fold. We conclude that (i) the hydrogen bond between the backbone amide of Ser-127 and O4 of the pyrimidine moiety contributes a modest factor (∼10(2)) to the 10(17) rate enhancement and (ii) the stabilization of the anionic intermediate is accomplished by electrostatic interactions, including its proximity of Lys-72. These conclusions are in good agreement with predictions obtained from hybrid quantum mechanical/molecular mechanical calculations.

  19. Controlled Conjugated Backbone Twisting for an Increased Open-Circuit Voltage while Having a High Short-Circuit Current in Poly(hexylthiophene) Derivatives

    KAUST Repository

    Ko, Sangwon

    2012-03-21

    Conjugated polymers with nearly planar backbones have been the most commonly investigated materials for organic-based electronic devices. More twisted polymer backbones have been shown to achieve larger open-circuit voltages in solar cells, though with decreased short-circuit current densities. We systematically impose twists within a family of poly(hexylthiophene)s and examine their influence on the performance of polymer:fullerene bulk heterojunction (BHJ) solar cells. A simple chemical modification concerning the number and placement of alkyl side chains along the conjugated backbone is used to control the degree of backbone twisting. Density functional theory calculations were carried out on a series of oligothiophene structures to provide insights on how the sterically induced twisting influences the geometric, electronic, and optical properties. Grazing incidence X-ray scattering measurements were performed to investigate how the thin-film packing structure was affected. The open-circuit voltage and charge-transfer state energy of the polymer:fullerene BHJ solar cells increased substantially with the degree of twist induced within the conjugated backbone-due to an increase in the polymer ionization potential-while the short-circuit current decreased as a result of a larger optical gap and lower hole mobility. A controlled, moderate degree of twist along the poly(3,4-dihexyl-2,2′:5′,2′′- terthiophene) (PDHTT) conjugated backbone led to a 19% enhancement in the open-circuit voltage (0.735 V) vs poly(3-hexylthiophene)-based devices, while similar short-circuit current densities, fill factors, and hole-carrier mobilities were maintained. These factors resulted in a power conversion efficiency of 4.2% for a PDHTT:[6,6]-phenyl-C 71-butyric acid methyl ester (PC 71BM) blend solar cell without thermal annealing. This simple approach reveals a molecular design avenue to increase open-circuit voltage while retaining the short-circuit current. © 2012 American

  20. General order parameter based correlation analysis of protein backbone motions between experimental NMR relaxation measurements and molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qing; Shi, Chaowei [Hefei National Laboratory for Physical Sciences at The Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026 (China); Yu, Lu [Hefei National Laboratory for Physical Sciences at The Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026 (China); High Magnetic Field Laboratory, Chinese Academy of Science, Hefei, Anhui, 230031 (China); Zhang, Longhua [Hefei National Laboratory for Physical Sciences at The Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026 (China); Xiong, Ying, E-mail: yxiong73@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at The Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026 (China); Tian, Changlin, E-mail: cltian@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at The Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026 (China); High Magnetic Field Laboratory, Chinese Academy of Science, Hefei, Anhui, 230031 (China)

    2015-02-13

    Internal backbone dynamic motions are essential for different protein functions and occur on a wide range of time scales, from femtoseconds to seconds. Molecular dynamic (MD) simulations and nuclear magnetic resonance (NMR) spin relaxation measurements are valuable tools to gain access to fast (nanosecond) internal motions. However, there exist few reports on correlation analysis between MD and NMR relaxation data. Here, backbone relaxation measurements of {sup 15}N-labeled SH3 (Src homology 3) domain proteins in aqueous buffer were used to generate general order parameters (S{sup 2}) using a model-free approach. Simultaneously, 80 ns MD simulations of SH3 domain proteins in a defined hydrated box at neutral pH were conducted and the general order parameters (S{sup 2}) were derived from the MD trajectory. Correlation analysis using the Gromos force field indicated that S{sup 2} values from NMR relaxation measurements and MD simulations were significantly different. MD simulations were performed on models with different charge states for three histidine residues, and with different water models, which were SPC (simple point charge) water model and SPC/E (extended simple point charge) water model. S{sup 2} parameters from MD simulations with charges for all three histidines and with the SPC/E water model correlated well with S{sup 2} calculated from the experimental NMR relaxation measurements, in a site-specific manner. - Highlights: • Correlation analysis between NMR relaxation measurements and MD simulations. • General order parameter (S{sup 2}) as common reference between the two methods. • Different protein dynamics with different Histidine charge states in neutral pH. • Different protein dynamics with different water models.

  1. Selecting Question-Specific Genes to Reduce Incongruence in Phylogenomics: A Case Study of Jawed Vertebrate Backbone Phylogeny.

    Science.gov (United States)

    Chen, Meng-Yun; Liang, Dan; Zhang, Peng

    2015-11-01

    Incongruence between different phylogenomic analyses is the main challenge faced by phylogeneticists in the genomic era. To reduce incongruence, phylogenomic studies normally adopt some data filtering approaches, such as reducing missing data or using slowly evolving genes, to improve the signal quality of data. Here, we assembled a phylogenomic data set of 58 jawed vertebrate taxa and 4682 genes to investigate the backbone phylogeny of jawed vertebrates under both concatenation and coalescent-based frameworks. To evaluate the efficiency of extracting phylogenetic signals among different data filtering methods, we chose six highly intractable internodes within the backbone phylogeny of jawed vertebrates as our test questions. We found that our phylogenomic data set exhibits substantial conflicting signal among genes for these questions. Our analyses showed that non-specific data sets that are generated without bias toward specific questions are not sufficient to produce consistent results when there are several difficult nodes within a phylogeny. Moreover, phylogenetic accuracy based on non-specific data is considerably influenced by the size of data and the choice of tree inference methods. To address such incongruences, we selected genes that resolve a given internode but not the entire phylogeny. Notably, not only can this strategy yield correct relationships for the question, but it also reduces inconsistency associated with data sizes and inference methods. Our study highlights the importance of gene selection in phylogenomic analyses, suggesting that simply using a large amount of data cannot guarantee correct results. Constructing question-specific data sets may be more powerful for resolving problematic nodes.

  2. The backbone of the post-synaptic density originated in a unicellular ancestor of choanoflagellates and metazoans

    Directory of Open Access Journals (Sweden)

    Manuel Michaël

    2010-02-01

    Full Text Available Abstract Background Comparative genomics of the early diverging metazoan lineages and of their unicellular sister-groups opens new window to reconstructing the genetic changes which preceded or accompanied the evolution of multicellular body plans. A recent analysis found that the genome of the nerve-less sponges encodes the homologues of most vertebrate post-synaptic proteins. In vertebrate excitatory synapses, these proteins assemble to form the post-synaptic density, a complex molecular platform linking membrane receptors, components of their signalling pathways, and the cytoskeleton. Newly available genomes from Monosiga brevicollis (a member of Choanoflagellata, the closest unicellular relatives of animals and Trichoplax adhaerens (a member of Placozoa: besides sponges, the only nerve-less metazoans offer an opportunity to refine our understanding of post-synaptic protein evolution. Results Searches for orthologous proteins and reconstruction of gene gains/losses based on the taxon phylogeny indicate that post-synaptic proteins originated in two main steps. The backbone scaffold proteins (Shank, Homer, DLG and some of their partners were acquired in a unicellular ancestor of choanoflagellates and metazoans. A substantial additional set appeared in an exclusive ancestor of the Metazoa. The placozoan genome contains most post-synaptic genes but lacks some of them. Notably, the master-scaffold protein Shank might have been lost secondarily in the placozoan lineage. Conclusions The time of origination of most post-synaptic proteins was not concomitant with the acquisition of synapses or neural-like cells. The backbone of the scaffold emerged in a unicellular context and was probably not involved in cell-cell communication. Based on the reconstructed protein composition and potential interactions, its ancestral function could have been to link calcium signalling and cytoskeleton regulation. The complex later became integrated into the evolving

  3. Unraveling the complexity of protein backbone dynamics with combined (13)C and (15)N solid-state NMR relaxation measurements.

    Science.gov (United States)

    Lamley, Jonathan M; Lougher, Matthew J; Sass, Hans Juergen; Rogowski, Marco; Grzesiek, Stephan; Lewandowski, Józef R

    2015-09-14

    Typically, protein dynamics involve a complex hierarchy of motions occurring on different time scales between conformations separated by a range of different energy barriers. NMR relaxation can in principle provide a site-specific picture of both the time scales and amplitudes of these motions, but independent relaxation rates sensitive to fluctuations in different time scale ranges are required to obtain a faithful representation of the underlying dynamic complexity. This is especially pertinent for relaxation measurements in the solid state, which report on dynamics in a broader window of time scales by more than 3 orders of magnitudes compared to solution NMR relaxation. To aid in unraveling the intricacies of biomolecular dynamics we introduce (13)C spin-lattice relaxation in the rotating frame (R1ρ) as a probe of backbone nanosecond-microsecond motions in proteins in the solid state. We present measurements of (13)C'R1ρ rates in fully protonated crystalline protein GB1 at 600 and 850 MHz (1)H Larmor frequencies and compare them to (13)C'R1, (15)N R1 and R1ρ measured under the same conditions. The addition of carbon relaxation data to the model free analysis of nitrogen relaxation data leads to greatly improved characterization of time scales of protein backbone motions, minimizing the occurrence of fitting artifacts that may be present when (15)N data is used alone. We also discuss how internal motions characterized by different time scales contribute to (15)N and (13)C relaxation rates in the solid state and solution state, leading to fundamental differences between them, as well as phenomena such as underestimation of picosecond-range motions in the solid state and nanosecond-range motions in solution.

  4. Phi ({Phi}) and psi ({Psi}) angles involved in malarial peptide bonds determine sterile protective immunity

    Energy Technology Data Exchange (ETDEWEB)

    Patarroyo, Manuel E., E-mail: mepatarr@gmail.com [Fundacion Instituto de Inmunologia de Colombia (FIDIC), Bogota (Colombia); Universidad Nacional de Colombia, Bogota (Colombia); Moreno-Vranich, Armando; Bermudez, Adriana [Fundacion Instituto de Inmunologia de Colombia (FIDIC), Bogota (Colombia)

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer Phi ({Phi}) and psi ({Psi}) angles determine sterile protective immunity. Black-Right-Pointing-Pointer Modified peptide's tendency to assume a regular conformation related to a PPII{sub L}. Black-Right-Pointing-Pointer Structural modifications in mHABPs induce Ab and protective immunity. Black-Right-Pointing-Pointer mHABP backbone atom's interaction with HLA-DR{beta}1{sup Asterisk-Operator} is stabilised by H-bonds. -- Abstract: Modified HABP (mHABP) regions interacting with HLA-DR{beta}1{sup Asterisk-Operator} molecules have a more restricted conformation and/or sequence than other mHABPs which do not fit perfectly into their peptide binding regions (PBR) and do not induce an acceptable immune response due to the critical role of their {Phi} and {Psi} torsion angles. These angle's critical role was determined in such highly immunogenic, protection-inducing response against experimental malaria using the conformers (mHABPs) obtained by {sup 1}H-NMR and superimposed into HLA-DR{beta}1{sup Asterisk-Operator }-like Aotus monkey molecules; their phi ({Phi}) and psi ({Psi}) angles were measured and the H-bond formation between these molecules was evaluated. The aforementioned mHABP propensity to assume a regular conformation similar to a left-handed polyproline type II helix (PPII{sub L}) led to suggesting that favouring these conformations according to their amino acid sequence would lead to high antibody titre production and sterile protective immunity induction against malaria, thereby adding new principles or rules for vaccine development, malaria being one of them.

  5. Acute angle closure glaucoma following ileostomy surgery

    Directory of Open Access Journals (Sweden)

    Mariana Meirelles Lopes

    2015-02-01

    Full Text Available Angle-closure glaucoma can be induced by drugs that may cause pupillary dilatation. We report a case of a patient that developed bilateral angle closure glaucoma after an ileostomy surgery because of systemic atropine injection. This case report highlights the importance of a fast ophthalmologic evaluation in diseases with ocular involvement in order to make accurate diagnoses and appropriate treatments.

  6. Automatic cobb angle determination from radiographic images

    NARCIS (Netherlands)

    Sardjono, Tri Arief; Wilkinson, Michael H.F.; Veldhuizen, Albert G.; Ooijen, van Peter M.A.; Purnama, Ketut E.; Verkerke, Gijsbertus J.

    2013-01-01

    Study Design. Automatic measurement of Cobb angle in patients with scoliosis. Objective. To test the accuracy of an automatic Cobb angle determination method from frontal radiographical images. Summary of Background Data. Thirty-six frontal radiographical images of patients with scoliosis. Met

  7. Automatic Cobb Angle Determination From Radiographic Images

    NARCIS (Netherlands)

    Sardjono, Tri Arief; Wilkinson, Michael H. F.; Veldhuizen, Albert G.; van Ooijen, Peter M. A.; Purnama, Ketut E.; Verkerke, Gijsbertus J.

    2013-01-01

    Study Design. Automatic measurement of Cobb angle in patients with scoliosis. Objective. To test the accuracy of an automatic Cobb angle determination method from frontal radiographical images. Summary of Background Data. Thirty-six frontal radiographical images of patients with scoliosis. Methods.

  8. Backbone dynamics of a biologically active human FGF-1 monomer, complexed to a hexasaccharide heparin-analogue, by {sup 15}N NMR relaxation methods

    Energy Technology Data Exchange (ETDEWEB)

    Canales-Mayordomo, Angeles; Fayos, Rosa [Centro de Investigaciones Biologicas, CSIC, Departamento de Estructura y Funcion de Proteinas (Spain); Angulo, Jesus; Ojeda, Rafael [Instituto de Investigaciones Quimicas, CSIC, Grupo de Carbohidratos (Spain); Martin-Pastor, Manuel [Unidad de RM y Unidad de RMN de Biomoleculas Asociada al CSIC, Laboratorio de Estructura e Estructura de Biomoleculas Jose Carracido (Spain); Nieto, Pedro M.; Martin-Lomas, Manuel [Instituto de Investigaciones Quimicas, CSIC, Grupo de Carbohidratos (Spain); Lozano, Rosa; Gimenez-Gallego, Guillermo; Jimenez-Barbero, Jesus [Centro de Investigaciones Biologicas, CSIC, Departamento de Estructura y Funcion de Proteinas (Spain)], E-mail: jjbarbero@cib.csic.es

    2006-08-15

    The binding site and backbone dynamics of a bioactive complex formed by the acidic fibroblast growth factor (FGF-1) and a specifically designed heparin hexasaccharide has been investigated by HSQC and relaxation NMR methods. The comparison of the relaxation data for the free and bound states has allowed showing that the complex is monomeric, and still induces mutagenesis, and that the protein backbone presents reduced motion in different timescale in its bound state, except in certain points that are involved in the interaction with the fibroblast growth factor receptor (FGFR)

  9. Apparent contact angle and contact angle hysteresis on liquid infused surfaces.

    Science.gov (United States)

    Semprebon, Ciro; McHale, Glen; Kusumaatmaja, Halim

    2016-12-21

    We theoretically investigate the apparent contact angle and contact angle hysteresis of a droplet placed on a liquid infused surface. We show that the apparent contact angle is not uniquely defined by material parameters, but also has a dependence on the relative size between the droplet and its surrounding wetting ridge formed by the infusing liquid. We derive a closed form expression for the contact angle in the limit of vanishing wetting ridge, and compute the correction for small but finite ridge, which corresponds to an effective line tension term. We also predict contact angle hysteresis on liquid infused surfaces generated by the pinning of the contact lines by the surface corrugations. Our analytical expressions for both the apparent contact angle and contact angle hysteresis can be interpreted as 'weighted sums' between the contact angles of the infusing liquid relative to the droplet and surrounding gas phases, where the weighting coefficients are given by ratios of the fluid surface tensions.

  10. Apparent contact angle and contact angle hysteresis on liquid infused surfaces

    Science.gov (United States)

    Semprebon, Ciro; McHale, Glen; Kusumaatmaja, Halim

    We theoretically investigate the apparent contact angle and contact angle hysteresis of a droplet placed on a liquid infused surface. We show that the apparent contact angle is not uniquely defined by material parameters, but also has a strong dependence on the relative size between the droplet and its surrounding wetting ridge formed by the infusing liquid. We derive a closed form expression for the contact angle in the limit of vanishing wetting ridge, and compute the correction for small but finite ridge, which corresponds to an effective line tension term. We also predict contact angle hysteresis on liquid infused surfaces generated by the pinning of the contact lines by the surface corrugations. Our analytical expressions for both the apparent contact angle and contact angle hysteresis can be interpreted as `weighted sums' between the contact angles of the infusing liquid relative to the droplet and surrounding gas phases, where the weighting coefficients are given by ratios of the fluid surface tensions.

  11. Reliable measurement of the receding contact angle.

    Science.gov (United States)

    Korhonen, Juuso T; Huhtamäki, Tommi; Ikkala, Olli; Ras, Robin H A

    2013-03-26

    Surface wettability is usually evaluated by the contact angle between the perimeter of a water drop and the surface. However, this single measurement is not enough for proper characterization, and the so-called advancing and receding contact angles also need to be measured. Measuring the receding contact angle can be challenging, especially for extremely hydrophobic surfaces. We demonstrate a reliable procedure by using the common needle-in-the-sessile-drop method. Generally, the contact line movement needs to be followed, and true receding movement has to be distinguished from "pseudo-movement" occurring before the receding angle is reached. Depending on the contact angle hysteresis, the initial size of the drop may need to be surprisingly large to achieve a reliable result. Although our motivation for this work was the characterization of superhydrophobic surfaces, we also show that this method works universally ranging from hydrophilic to superhydrophobic surfaces.

  12. Nanodrop contact angles from molecular dynamics simulations

    Science.gov (United States)

    Ravipati, Srikanth; Aymard, Benjamin; Yatsyshin, Petr; Galindo, Amparo; Kalliadasis, Serafim

    2016-11-01

    The contact angle between three phases being in thermodynamic equilibrium is highly sensitive to the nature of the intermolecular forces as well as to various fluctuation effects. Determining the Young contact angle of a sessile drop sitting on a substrate from molecular dynamics (MD) simulations is a highly non-trivial task. Most commonly employed methods for finding droplet contact angles from MD simulation data either require large numbers of particles or are system-dependent. We propose a systematic geometry based methodology for extracting the contact angle from simulated sessile droplets by analysing an appropriately coarse-grained density field. To demonstrate the method, we consider Lennard-Jones (LJ) and SPC/E water nanodroplets of different sizes sitting on planar LJ walls. Our results are in good agreement with Young contact angle values computed employing test-area perturbation method.

  13. Apparent contact angle and contact angle hysteresis on liquid infused surfaces

    OpenAIRE

    Semprebon, Ciro; McHale, Glen; Kusumaatmaja, Halim

    2017-01-01

    We theoretically investigate the apparent contact angle and contact angle hysteresis of a droplet placed on a liquid infused surface. We show that the apparent contact angle is not uniquely defined by material parameters, but also has a strong dependence on the relative size between the droplet and its surrounding wetting ridge formed by the infusing liquid. We derive a closed form expression for the contact angle in the limit of vanishing wetting ridge, and compute the correction for small b...

  14. Contact angle hysteresis of microbead suspensions.

    Science.gov (United States)

    Waghmare, Prashant R; Mitra, Sushanta K

    2010-11-16

    Microbead suspensions are often used in microfluidic devices for transporting biomolecules. An experimental investigation on the wettability of microbead suspension is presented in this study. The variation in the surface tension and the equilibrium contact angle with the change in the volume fraction of the microbead is presented here. The surface tension of the microbead suspension is measured with the pendant drop technique, whereas the dynamic contact angle measurements, i.e., advancing and receding contact angles, are measured with the sessile drop technique. An equilibrium contact angle of a suspension with particular volume fraction is determined by computing an average over the measured advancing and receding contact angles. It is observed that the surface tension and the equilibrium contact angle determined from advancing and receding contact angles vary with the magnitude of the microbeads volume fraction in the suspension. A decrease in the surface tension with an increase in the volume fraction of the microbead suspension is observed. The advancement and the recession in contact line for dynamic contact angle measurements are achieved with the motorized dosing mechanism. For microbead suspensions, the advancement of the contact line is faster as compared to the recession of the contact line for the same flow rate. The presence of microbeads assists in the advancement and the recession of the contact line of the suspension. A decrease in the equilibrium contact angles with an increase in the microbead suspension volume fraction is observed. Inclusion of microbeads in the suspension increases the wetting capability for the considered combination of the microbead suspension and substrate. Finally, empirical correlations for the surface tension and the contact angle of the suspension as a function of microbead volume fraction are proposed. Such correlations can readily be used to develop mechanistic models for the capillary transport of microbead

  15. Density Estimation for Protein Conformation Angles Using a Bivariate von Mises Distribution and Bayesian Nonparametrics.

    Science.gov (United States)

    Lennox, Kristin P; Dahl, David B; Vannucci, Marina; Tsai, Jerry W

    2009-06-01

    Interest in predicting protein backbone conformational angles has prompted the development of modeling and inference procedures for bivariate angular distributions. We present a Bayesian approach to density estimation for bivariate angular data that uses a Dirichlet process mixture model and a bivariate von Mises distribution. We derive the necessary full conditional distributions to fit the model, as well as the details for sampling from the posterior predictive distribution. We show how our density estimation method makes it possible to improve current approaches for protein structure prediction by comparing the performance of the so-called "whole" and "half" position distributions. Current methods in the field are based on whole position distributions, as density estimation for the half positions requires techniques, such as ours, that can provide good estimates for small datasets. With our method we are able to demonstrate that half position data provides a better approximation for the distribution of conformational angles at a given sequence position, therefore providing increased efficiency and accuracy in structure prediction.

  16. Contact angle hysteresis, adhesion, and marine biofouling.

    Science.gov (United States)

    Schmidt, Donald L; Brady, Robert F; Lam, Karen; Schmidt, Dale C; Chaudhury, Manoj K

    2004-03-30

    Adhesive and marine biofouling release properties of coatings containing surface-oriented perfluoroalkyl groups were investigated. These coatings were prepared by cross-linking a copolymer of 1H,1H,2H,2H-heptadecafluorodecyl acrylate and acrylic acid with a copolymer of poly(2-isopropenyl-2-oxazoline) and methyl methacrylate at different molar ratios. The relationships between contact angle, contact angle hysteresis, adhesion, and marine biofouling were studied. Adhesion was determined by peel tests using pressure-sensitive adhesives. The chemical nature of the surfaces was studied by using X-ray photoelectron spectroscopy. Resistance to marine biofouling of an optimized coating was studied by immersion in seawater and compared to previous, less optimized coatings. The adhesive release properties of the coatings did not correlate well with the surface energies of the coatings estimated from the static and advancing contact angles nor with the amount of fluorine present on the surface. The adhesive properties of the surfaces, however, show a correlation with water receding contact angles and contact angle hysteresis (or wetting hysteresis) resulting from surface penetration and surface reconstruction. Coatings having the best release properties had both the highest cross-link density and the lowest contact angle hysteresis. An optimized coating exhibited unprecedented resistance to marine biofouling. Water contact angle hysteresis appears to correlate with marine biofouling resistance.

  17. Globographic visualisation of three dimensional joint angles.

    Science.gov (United States)

    Baker, Richard

    2011-07-07

    Three different methods for describing three dimensional joint angles are commonly used in biomechanics. The joint coordinate system and Cardan/Euler angles are conceptually quite different but are known to represent the same underlying mathematics. More recently the globographic method has been suggested as an alternative and this has proved particularly attractive for the shoulder joint. All three methods can be implemented in a number of ways leading to a choice of angle definitions. Very recently Rab has demonstrated that the globographic method is equivalent to one implementation of the joint coordinate system. This paper presents a rigorous analysis of the three different methods and proves their mathematical equivalence. The well known sequence dependence of Cardan/Euler is presented as equivalent to configuration dependence of the joint coordinate system and orientation dependence of globographic angles. The precise definition of different angle sets can be easily visualised using the globographic method using analogues of longitude, latitude and surface bearings with which most users will already be familiar. The method implicitly requires one axis of the moving segment to be identified as its principal axis and this can be extremely useful in helping define the most appropriate angle set to describe the orientation of any particular joint. Using this technique different angle sets are considered to be most appropriate for different joints and examples of this for the hip, knee, ankle, pelvis and axial skeleton are outlined.

  18. Bite Angle Effects in Hydroformylation Catalysis

    Institute of Scientific and Technical Information of China (English)

    van LEEUWEN

    2001-01-01

    Recent advances in rhodium catalyzed hydroformylation using xanthene-based ligands will be reviewed.The calculated natural bite angles of the ligands discussed are in the range 100-123℃ While the general trend is clear-higher 1:b ratios at wider angles, small changes in the bite angle do not exhibit a regular effect on the selectivity of the reaction.The same is true for the rate of CO dissociation;the larger the rate of the CO dissociation, the larger the rate of hydroformylation, but for small changes the effects do not comply with this rule.

  19. Intermittent acute angle closure glaucoma and chronic angle closure following topiramate use with plateau iris configuration

    Directory of Open Access Journals (Sweden)

    Rajjoub LZ

    2014-07-01

    Full Text Available Lamise Z Rajjoub, Nisha Chadha, David A Belyea Department of Ophthalmology, The George Washington University, Washington, DC, USA Abstract: This is a case report describing recurrent intermittent acute angle closure episodes in the setting of topiramate use in a female suffering from migraines. Despite laser peripheral iridotomy placement for the pupillary block component, and the discontinuation of topiramate, the acute angle closure did not resolve in the left eye with chronic angle closure and the patient required urgent trabeculectomy. The right eye responded to laser peripheral iridotomy immediately and further improved after the cessation of topiramate. While secondary angle closure glaucoma due to topiramate use has been widely reported, its effects in patients with underlying primary angle closure glaucoma have not been discussed. Our report highlights the importance of recognizing the often multifactorial etiology of angle closure glaucoma to help guide clinical management. Keywords: angle closure glaucoma, plateau iris, topiramate, secondary glaucoma, drug-induced glaucoma

  20. Sphingolipid-dependent fusion of Semliki Forest virus with cholesterol-containing liposomes requires both the 3-hydroxyl group and the double bond of the sphingolipid backbone

    DEFF Research Database (Denmark)

    Corver, J; Moesby, Lise; Erukulla, R K;

    1995-01-01

    , we demonstrate that sphingolipid-dependent fusion of SFV with cholesterol-containing liposomes exhibits remarkable molecular specificity, the 3-hydroxyl group and the 4,5-trans carbon-carbon double bond of the sphingosine backbone being critical for the sphingolipid to mediate the process...

  1. Investigation of novel solid oxide fuel cell cathodes based on impregnation of SrTixFe1-xO3-δ into ceria-based backbones

    DEFF Research Database (Denmark)

    Brinch-Larsen, Mathias; Søgaard, Martin; Hjelm, Johan;

    2013-01-01

    and electrochemical stability as a thin film electrode have been reported for these materials. XRD measurements showed a high degree of secondary phase formation in the infiltrate as well as reaction with the CGO backbone. Microstructural analysis showed that the STF infiltrate had formed a coating on the CGO...

  2. Typing of core and backbone domains of mucin-type oligosaccharides from human ovarian-cyst glycoproteins by 500-MHz 1H-NMR spectroscopy

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Mutsaers, J.H.G.M.; Halbeek, H. van; Wu, A.M.; Kabat, E.A.

    1986-01-01

    Human blood-group A active glycoproteins from ovarian-cyst fluid were subjected to Smith degradation and subsequent beta-elimination. The resulting oligosaccharide-alditols represent the core and backbone domains of the O-linked carbohydrate chains. Nine of these, ranging in size from disaccharides

  3. The ortho backbone amide linker (o-BAL) is an easily prepared and highly acid-labile handle for solid-phase synthesis

    DEFF Research Database (Denmark)

    Boas, Ulrik; Brask, Jesper; Christensen, J.B.;

    2002-01-01

    The tris(alkoxy)benzyl backbone amide linker (BAL) has found widespread application in solid-phase synthesis. The key intermediate for preparation of para BAL (p-BAL) is 2,6-dimethoxy-4-hydroxybenzaldehyde; several reports on its synthesis have appeared. However, the ortho analogue of the handle (o...

  4. Peptide backbone orientation and dynamics in spider dragline silk and two-photon excitation in nuclear magnetic and quadrupole resonance

    Energy Technology Data Exchange (ETDEWEB)

    Eles, P.T

    2005-07-01

    In the first part of the dissertation, spider dragline silk is studied by solid state NMR techniques. The dependence of NMR frequency on molecular orientation is exploited using the DECODER experiment to determine the orientation of the protein backbone within the silk fibre. Practical experimental considerations require that the silk fibres be wound about a cylindrical axis perpendicular to the external magnetic field, complicating the reconstruction of the underlying orientation distribution and necessitating the development of numerical techniques for this purpose. A two-component model of silk incorporating static b-sheets and polyglycine II helices adequately fits the NMR data and suggests that the b-sheets are well aligned along the silk axis (20 FWHM) while the helices are poorly aligned (68 FWHM). The effects of fibre strain, draw rate and hydration on orientation are measured. Measurements of the time-scale for peptide backbone motion indicate that when wet, a strain-dependent fraction of the poorly aligned component becomes mobile. This suggests a mechanism for the supercontraction of silk involving latent entropic springs that undergo a local strain-dependent phase transition, driving supercontraction. In the second part of this dissertation a novel method is developed for exciting NMR and nuclear quadrupole resonance (NQR) by rf irradiation at multiple frequencies that sum to (or differ by) the resonance frequency. This is fundamentally different than traditional NMR experiments where irradiation is applied on-resonance. With excitation outside the detection bandwidth, two-photon excitation allows for detection of free induction signals during excitation, completely eliminating receiver dead-time. A theoretical approach to describing two-photon excitation is developed based on average Hamiltonian theory. An intuition for two-photon excitation is gained by analogy to the coherent absorption of multiple photons requiring conservation of total energy and

  5. Broadly Neutralizing Anti-Influenza Virus Antibodies: Enhancement of Neutralizing Potency in Polyclonal Mixtures and IgA Backbones

    Science.gov (United States)

    He, Wenqian; Mullarkey, Caitlin E.; Duty, J. Andrew; Moran, Thomas M.; Palese, Peter

    2015-01-01

    ABSTRACT Current influenza virus vaccines rely upon the accurate prediction of circulating virus strains months in advance of the actual influenza season in order to allow time for vaccine manufacture. Unfortunately, mismatches occur frequently, and even when perfect matches are achieved, suboptimal vaccine efficacy leaves several high-risk populations vulnerable to infection. However, the recent discovery of broadly neutralizing antibodies that target the hemagglutinin (HA) stalk domain has renewed hope that the development of “universal” influenza virus vaccines may be within reach. Here, we examine the functions of influenza A virus hemagglutinin stalk-binding antibodies in an endogenous setting, i.e., as polyclonal preparations isolated from human sera. Relative to monoclonal antibodies that bind to the HA head domain, the neutralization potency of monoclonal stalk-binding antibodies was vastly inferior in vitro but was enhanced by several orders of magnitude in the polyclonal context. Furthermore, we demonstrated a surprising enhancement in IgA-mediated HA stalk neutralization relative to that achieved by antibodies of IgG isotypes. Mechanistically, this could be explained in two ways. Identical variable regions consistently neutralized virus more potently when in an IgA backbone compared to an IgG backbone. In addition, HA-specific memory B cells isolated from human peripheral blood were more likely to be stalk specific when secreting antibodies of IgA isotypes compared to those secreting IgG. Taken together, our data provide strong evidence that HA stalk-binding antibodies perform optimally when in a polyclonal context and that the targeted elicitation of HA stalk-specific IgA should be an important consideration during “universal” influenza virus vaccine design. IMPORTANCE Influenza viruses remain one of the most worrisome global public health threats due to their capacity to cause pandemics. While seasonal vaccines fail to protect against the

  6. Nanofluid surface wettability through asymptotic contact angle.

    Science.gov (United States)

    Vafaei, Saeid; Wen, Dongsheng; Borca-Tasciuc, Theodorian

    2011-03-15

    This investigation introduces the asymptotic contact angle as a criterion to quantify the surface wettability of nanofluids and determines the variation of solid surface tensions with nanofluid concentration and nanoparticle size. The asymptotic contact angle, which is only a function of gas-liquid-solid physical properties, is independent of droplet size for ideal surfaces and can be obtained by equating the normal component of interfacial force on an axisymmetric droplet to that of a spherical droplet. The technique is illustrated for a series of bismuth telluride nanofluids where the variation of surface wettability is measured and evaluated by asymptotic contact angles as a function of nanoparticle size, concentration, and substrate material. It is found that the variation of nanofluid concentration, nanoparticle size, and substrate modifies both the gas-liquid and solid surface tensions, which consequently affects the force balance at the triple line, the contact angle, and surface wettability.

  7. EMERGENCE ANGLE OF FLOW OVER AN AERATOR

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Aerator is an important device for release works of hydraulic structures with high-speed flow in order to protect them from cavitation damage. This kind of protecting effect is related closely to cavity length below the aerator, while the cavity length is dominated by the emergence angle over the aerator. Therefore it is crucial to determine this angle accurately. In the present paper the affecting intensities of flow depth and the fluctuating velocity on this angle were analyzed through two introduced parameters. Furthermore, the improved expressions of emergence angle estimation, for both ramp-type and step-type aerators, were presented by means of 68 sets of experimental data from 6 projects based on error theory. The results showed that the present method has higher accuracy than the previously reported methods.

  8. Lateral angle and cranial base sexual dimorphism

    DEFF Research Database (Denmark)

    Duquesnel Mana, Mathilde; Adalian, Pascal; Lynnerup, Niels

    2016-01-01

    SUMMARY: Previous studies have yielded very different results in sex estimation based on measurements of the lateral angle (LA) of the temporal bone. The purpose of this study was to, first, investigate if the bad results obtained by the LA method could be due to the methodology and then, second......, to examine sexual dimorphism in the relationship between the lateral angle and cranial base shape. The lateral angle method was tested using a forensic sample of 102 CT scans of the head with known sex. We measured the angle using two methods: measurements directly on the CT slide, the method usually applied......, and by use of a new method, using a "virtual cast". The cranial base was quantified by placing 12 landmarks in the posterior fossa. Procrustes analysis, principal component analysis, discriminant analysis and cross-validation test were performed. The "cast method" was found to be less accurate than...

  9. Contact angle hysteresis on superhydrophobic stripes.

    Science.gov (United States)

    Dubov, Alexander L; Mourran, Ahmed; Möller, Martin; Vinogradova, Olga I

    2014-08-21

    We study experimentally and discuss quantitatively the contact angle hysteresis on striped superhydrophobic surfaces as a function of a solid fraction, ϕS. It is shown that the receding regime is determined by a longitudinal sliding motion of the deformed contact line. Despite an anisotropy of the texture the receding contact angle remains isotropic, i.e., is practically the same in the longitudinal and transverse directions. The cosine of the receding angle grows nonlinearly with ϕS. To interpret this we develop a theoretical model, which shows that the value of the receding angle depends both on weak defects at smooth solid areas and on the strong defects due to the elastic energy of the deformed contact line, which scales as ϕS(2)lnϕS. The advancing contact angle was found to be anisotropic, except in a dilute regime, and its value is shown to be determined by the rolling motion of the drop. The cosine of the longitudinal advancing angle depends linearly on ϕS, but a satisfactory fit to the data can only be provided if we generalize the Cassie equation to account for weak defects. The cosine of the transverse advancing angle is much smaller and is maximized at ϕS ≃ 0.5. An explanation of its value can be obtained if we invoke an additional energy due to strong defects in this direction, which is shown to be caused by the adhesion of the drop on solid sectors and is proportional to ϕS(2). Finally, the contact angle hysteresis is found to be quite large and generally anisotropic, but it becomes isotropic when ϕS ≤ 0.2.

  10. A microscopic view on contact angle selection

    OpenAIRE

    Snoeijer, Jacco H.; Andreotti, Bruno

    2008-01-01

    We discuss the equilibrium condition for a liquid that partially wets a solid on the level of intermolecular forces. Using a mean field continuum description, we generalize the capillary pressure from variation of the free energy and show at what length scale the equilibrium contact angle is selected. After recovering Young's law for homogeneous substrates, it is shown how hysteresis of the contact angle can be incorporated in a self-consistent fashion. In all cases the liquid-vapor interface...

  11. Pressure dependence of the contact angle.

    Science.gov (United States)

    Wu, Jiyu; Farouk, T; Ward, C A

    2007-06-07

    When a liquid and its vapor contact a smooth, homogeneous surface, Gibbsian thermodynamics indicates that the contact angle depends on the pressure at the three-phase line of an isothermal system. When a recently proposed adsorption isotherm for a solid-vapor interface is combined with the equilibrium conditions and the system is assumed to be in a cylinder where the liquid-vapor interface can be approximated as spherical, the contact-angle-pressure relation can be made explicit. It indicates that a range of contact angles can be observed on a smooth homogeneous surface by changing the pressure at the three-phase line, but it also indicates that the adsorption at the solid-liquid interface is negative, and leads to the prediction that the contact angle increases with pressure. The predicted dependence of the contact angle on pressure is investigated experimentally in a system that has an independent mechanism for determining when thermodynamic equilibrium is reached. The predictions are in agreement with the measurements. The results provide a possible explanation for contact angle hysteresis.

  12. Winding angles of long lattice walks

    Science.gov (United States)

    Hammer, Yosi; Kantor, Yacov

    2016-07-01

    We study the winding angles of random and self-avoiding walks (SAWs) on square and cubic lattices with number of steps N ranging up to 107. We show that the mean square winding angle of random walks converges to the theoretical form when N → ∞. For self-avoiding walks on the square lattice, we show that the ratio /2 converges slowly to the Gaussian value 3. For self-avoiding walks on the cubic lattice, we find that the ratio /2 exhibits non-monotonic dependence on N and reaches a maximum of 3.73(1) for N ≈ 104. We show that to a good approximation, the square winding angle of a self-avoiding walk on the cubic lattice can be obtained from the summation of the square change in the winding angles of lnN independent segments of the walk, where the ith segment contains 2i steps. We find that the square winding angle of the ith segment increases approximately as i0.5, which leads to an increase of the total square winding angle proportional to (lnN)1.5.

  13. Positional distribution of fatty acids on the glycerol backbone during the biosynthesis of glycerolipids in Ectocarpus fasciculatus

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The biosynthesis of glycolipids in E. fasciculatus was studied by 14C label and chase. The fatty acids in sulphoquinovosyl diacylglycerol (SQDG) were almost 16-car- bon and 18-carbon ones. In addition to the two fatty acids, monogalactosyl diacylglycerol (MGDG) and digalactosyl diacylglycerol (DGDG) contained 8.5 mol% and 31.0 mol% of eicosapentaenoic acid (20∶5), respectively, and this fatty acid was usually distributed in the sn-1 position of the glycerol backbone. When plants were incubated with [2-14C] acetate, differences existed in the positional distribution of the labeled fatty acids in sn-1 and sn-2 among the three glycerolipids. In SQDG, 14C-labeled fatty acids were distributed uniformly in the sn-1 and sn-2 positions. In DGDG, 14C-labeled fatty acids were mainly distributed in the sn-2 position. In MGDG, the radioactivity of fatty acids in sn-1 position was far greater than that in sn-2 position after a 30 min pulse label, and the difference in radioactivity between the two positions decreased rapidly. The above results indicated that differences in the positional distribution of 14C-labeled fatty acids between sn-1 and sn-2 positions might be related to 20∶5 and the biosynthesis of DGDG. Our results also suggested that E. fasciculatus had the same DGDG biosynthetic pathway as that in higher plants and galactosyl transferase was selective for MGDG.

  14. Impairment assessment of orthogonal frequency division multiplexing over dispersion-managed links in backbone and backhaul networks

    Science.gov (United States)

    Tamilarasan, Ilavarasan; Saminathan, Brindha; Murugappan, Meenakshi

    2016-04-01

    The past decade has seen the phenomenal usage of orthogonal frequency division multiplexing (OFDM) in the wired as well as wireless communication domains, and it is also proposed in the literature as a future proof technique for the implementation of flexible resource allocation in cognitive optical networks. Fiber impairment assessment and adaptive compensation becomes critical in such implementations. A comprehensive analytical model for impairments in OFDM-based fiber links is developed. The proposed model includes the combined impact of laser phase fluctuations, fiber dispersion, self phase modulation, cross phase modulation, four-wave mixing, the nonlinear phase noise due to the interaction of amplified spontaneous emission with fiber nonlinearities, and the photodetector noises. The bit error rate expression for the proposed model is derived based on error vector magnitude estimation. The performance analysis of the proposed model is presented and compared for dispersion compensated and uncompensated backbone/backhaul links. The results suggest that OFDM would perform better for uncompensated links than the compensated links due to the negligible FWM effects and there is a need for flexible compensation. The proposed model can be employed in cognitive optical networks for accurate assessment of fiber-related impairments.

  15. Structure of the exceptionally large nonrepetitive carbohydrate backbone of the lipopolysaccharide of Pectinatus frisingensis strain VTT E-82164.

    Science.gov (United States)

    Vinogradov, Evgeny; Petersen, Bent O; Sadovskaya, Irina; Jabbouri, Said; Duus, Jens Ø; Helander, Ilkka M

    2003-07-01

    The structures of the oligosaccharides obtained after acetic acid hydrolysis and alkaline deacylation of the rough-type lipopolysaccharide (LPS) from Pectinatus frisingensis strain VTT E-82164 were analysed using NMR spectroscopy, MS and chemical methods. The LPS contains two major structural variants, differing by a decasaccharide fragment, and some minor variants lacking the terminal glucose residue. The largest structure of the carbohydrate backbone of the LPS that could be deduced from experimental results consists of 25 monosaccharides (including the previously found Ara4NP residue in lipid A) arranged in a well-defined nonrepetitive structure: We presume that the shorter variant with R1 = H represents the core-lipid A part of the LPS, and the additional fragment is present instead of the O-specific polysaccharide. Structures of this type have not been previously described. Analysis of the deacylation products obtained from the LPS of the smooth strain, VTT E-79100T, showed that it contains a very similar core but with one different glycosidic linkage.

  16. Conformational energetics of cationic backbone rearrangements in triterpenoid biosynthesis provide an insight into enzymatic control of product.

    Science.gov (United States)

    Kürti, László; Chein, Rong-Jie; Corey, E J

    2008-07-16

    2,3-( S)-Oxidosqualene (C 30H 50O) serves as a versatile starting point for the remarkable biosynthesis of many isomeric naturally occurring triterpenoids of formula C 30H 50O. These biosyntheses all involve polycyclization via cationic intermediates. The fully cyclized primary products then are converted to various structures by cationic rearrangements involving the polycyclic backbone. The energetics of these rearrangements has been examined by B3LYP 6-31 G* DFT calculations and by ab initio Hartree-Fock calculations at the 6-31G* or 3-21G(*) level. The results have led to the conclusion that the biosynthesis of friedelin, the most drastically rearranged of the pentacyclic triterpenes, involves a complex nonstop process, with no stable intermediates between 2,3-( S)-oxidosqualene and friedelin. It is proposed that this single-reaction biosynthesis consists of pentacyclization to the lupanyl cation followed directly by a sequence of 10 suprafacial 1,2-shifts of carbon and hydrogen, driven by the large exergonicity of the pentacyclization and electrostatic acceleration of the rearrangement steps.

  17. Alkali metal salts of formazanate ligands: diverse coordination modes as a result of the nitrogen-rich [NNCNN] ligand backbone.

    Science.gov (United States)

    Travieso-Puente, Raquel; Chang, Mu-Chieh; Otten, Edwin

    2014-12-28

    Alkali metal salts of redox-active formazanate ligands were prepared, and their structures in the solid-state and in solution are determined. The nitrogen-rich [NNCNN] backbone of formazanates results in a varied coordination chemistry, with both the internal and terminal nitrogen atoms available for bonding with the alkali metal. The potassium salt K[PhNNC(p-tol)NNPh]·2THF (1-K) is dimeric in the solid state and even in THF solution, as a result of the K atom bridging via interaction with a terminal N atom and the aromatic ring of a second unit. Conversely, for the compounds Na[MesNNC(CN)NNMes]·2THF (2-Na) and Na[PhNNC((t)Bu)NNPh] (3-Na) polymeric and hexameric structures are found in the solid state respectively. The preference for binding the alkali metal through internal N atoms (1-K and 2-Na) to give a 4-membered chelate, or via internal/external N atoms (5-membered chelate in 3-Na), contrasts with the 6-membered chelate mode observed in our recently reported formazanate zinc complexes.

  18. Aggregation and Gelation of Aromatic Polyamides with Parallel and Anti-parallel Alignment of Molecular Dipole Along the Backbone

    Science.gov (United States)

    Zhu, Dan; Shang, Jing; Ye, Xiaodong; Shen, Jian

    2016-12-01

    The understanding of macromolecular structures and interactions is important but difficult, due to the facts that a macromolecules are of versatile conformations and aggregate states, which vary with environmental conditions and histories. In this work two polyamides with parallel or anti-parallel dipoles along the linear backbone, named as ABAB (parallel) and AABB (anti-parallel) have been studied. By using a combination of methods, the phase behaviors of the polymers during the aggregate and gelation, i.e., the forming or dissociation processes of nuclei and fibril, cluster of fibrils, and cluster-cluster aggregation have been revealed. Such abundant phase behaviors are dominated by the inter-chain interactions, including dispersion, polarity and hydrogen bonding, and correlatd with the solubility parameters of solvents, the temperature, and the polymer concentration. The results of X-ray diffraction and fast-mode dielectric relaxation indicate that AABB possesses more rigid conformation than ABAB, and because of that AABB aggregates are of long fibers while ABAB is of hairy fibril clusters, the gelation concentration in toluene is 1 w/v% for AABB, lower than the 3 w/v% for ABAB.

  19. N-H stretching modes around 3300 wavenumber from peptide backbones observed by chiral sum frequency generation vibrational spectroscopy.

    Science.gov (United States)

    Fu, Li; Wang, Zhuguang; Yan, Elsa C Y

    2014-09-01

    We present a detailed analysis of the molecular origin of the chiral sum frequency generation (SFG) signals of proteins and peptides at interfaces in the N-H stretching vibrational region. The N-H stretching can be a probe for investigating structural and functional properties of proteins, but remains technically difficult to analyze due to the overlapping with the O-H stretching of water molecules. Chiral SFG spectroscopy offers unique tools to study the N-H stretching from proteins at interfaces without interference from the water background. However, the molecular origin of the N-H stretching signals of proteins is still unclear. This work provides a justification of the origin of chiral N-H signals by analyzing the vibrational frequencies, examining chiral SFG theory, studying proton (hydrogen/deuterium) exchange kinetics, and performing optical control experiments. The results demonstrate that the chiral N-H stretching signals at ~3300 cm(-1) originate from the amide group of the protein backbones. This chiral N-H stretching signal offers an in situ, real-time, and background-free probe for interrogating the protein structures and dynamics at interfaces at the molecular level.

  20. a Proposal for a General Method for Determining Semi-Experimental Equilibrium Structures of Carbon Atom Backbones

    Science.gov (United States)

    Craig, Norman C.

    2010-06-01

    Semi-experimental equilibrium structures are determined from ground state rotational constants derived from the analysis of rotational transitions in high-resolution spectra and from the quantum chemical calculation of spectroscopic alphas. In the full application of this method, spectra of numerous isotopic species must be investigated. Most of these isotopic species require specialized synthesis. We now propose focusing on the carbon atoms, for which microwave spectroscopy routinely yields spectra for polar molecules with 13C substitution in natural abundance. Needed spectroscopic alphas can be computed with Gaussian software. Application of the Kraitchman substitution relationships gives Cartesian coordinates for the carbon atoms and thence bond parameters for the carbon backbone. This method will be evaluated with ethylene, 1,1-difluoroethylene, 1,1-difluorocyclopropane, propene, and butadiene. The method will then be applied to cis-hexatriene and the two conformers of glycidol. R. D. Suenram, B. H. Pate, A. Lessari, J. L. Neill, S. Shipman, R. A. Holmes, M. C. Leyden, and N. C. Craig, J. Phys. Chem. A 113, 1864-1868 (2009). A. R. Conrad, N. H. Teumelsan, P. E. Wang, and M. J. Tubergen, J. Phys. Chem. A 114, 336-342 (2010).

  1. Design of an all-fiber erbium-doped laser system for simulating power load in backbone networks

    Science.gov (United States)

    Pobořil, Radek; Bednárek, Lukáš; Vanderka, Aleš; Hájek, Lukáš; Zbořil, Ondřej; Vašinek, Vladimír

    2016-12-01

    This article is focused on the design of an all-fiber laser that was supposed to be used for simulating power load similar to the power load in backbone networks. The first part of the article is a brief introduction to the topic of lasers and erbium doped fiber amplifiers. The following parts present design of a fiber laser with ring cavity, and measuring the ideal length of a doped fiber and the split ratio of the output coupler. After proposing the first stage -a laser- we focused on the construction of the two following stages -EDFA preamplifier and EDFA amplifier. There were used fibers with various levels of erbium ion density, namely ISO-GAIN I6, and Liekki ER110-4/125. The resulting output power of the whole system was 320 mW. This value is sufficient when we take into account that we used only single-mode fibers with energy pumped directly to the fiber core. The output wavelength of the whole laser system was 1559 nm.

  2. An improved algorithm for finding community structure in networks with an application to IPv6 backbone network

    Institute of Scientific and Technical Information of China (English)

    GUO Yingxin; XU Ke

    2007-01-01

    The discovery of community structure in a large number of complex networks has attracted lots of interest in recent years.One category of algorithms for detecting community structure,the divisive algorithms,has been proposed and improved impressively.In this paper,we propose an improved divisive algorithm,the basic idea of which is to take more than one parameters into consideration to describe the networks from different points of view.Although its basic idea appears to be a little simple,it is shown experimentally that it outperforms some other algorithms when it is applied to the networks with a relatively obscure community structure.We also demonstrate its effectiveness by applying it to IPv6 backbone network.The communities detected by our algorithm indicate that although underdeveloped compared with IPv4 network,IPv6 network has already exhibited a preliminary community structure.Moreover,our algorithm can be further extended and adapted in the future.In fact,it suggests a simple yet possibly efficient way to improve algorithms.

  3. A Network Flow Approach to Predict Protein Targets and Flavonoid Backbones to Treat Respiratory Syncytial Virus Infection

    Directory of Open Access Journals (Sweden)

    José Eduardo Vargas

    2015-01-01

    Full Text Available Background. Respiratory syncytial virus (RSV infection is the major cause of respiratory disease in lower respiratory tract in infants and young children. Attempts to develop effective vaccines or pharmacological treatments to inhibit RSV infection without undesired effects on human health have been unsuccessful. However, RSV infection has been reported to be affected by flavonoids. The mechanisms underlying viral inhibition induced by these compounds are largely unknown, making the development of new drugs difficult. Methods. To understand the mechanisms induced by flavonoids to inhibit RSV infection, a systems pharmacology-based study was performed using microarray data from primary culture of human bronchial cells infected by RSV, together with compound-proteomic interaction data available for Homo sapiens. Results. After an initial evaluation of 26 flavonoids, 5 compounds (resveratrol, quercetin, myricetin, apigenin, and tricetin were identified through topological analysis of a major chemical-protein (CP and protein-protein interacting (PPI network. In a nonclustered form, these flavonoids regulate directly the activity of two protein bottlenecks involved in inflammation and apoptosis. Conclusions. Our findings may potentially help uncovering mechanisms of action of early RSV infection and provide chemical backbones and their protein targets in the difficult quest to develop new effective drugs.

  4. High resolution 4D HPCH experiment for sequential assignment of {sup 13}C-labeled RNAs via phosphodiester backbone

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Saurabh; Stanek, Jan [University of Warsaw, Faculty of Chemistry, Biological and Chemical Research Centre (Poland); Cevec, Mirko; Plavec, Janez [National Institute of Chemistry, Slovenian NMR Centre (Slovenia); Koźmiński, Wiktor, E-mail: kozmin@chem.uw.edu.pl [University of Warsaw, Faculty of Chemistry, Biological and Chemical Research Centre (Poland)

    2015-11-15

    The three-dimensional structure determination of RNAs by NMR spectroscopy requires sequential resonance assignment, often hampered by assignment ambiguities and limited dispersion of {sup 1}H and {sup 13}C chemical shifts, especially of C4′/H4′. Here we present a novel through-bond 4D HPCH NMR experiment involving phosphate backbone where C4′–H4′ correlations are resolved along the {sup 1}H3′–{sup 31}P spectral planes. The experiment provides high peak resolution and effectively removes ambiguities encountered during assignments. Enhanced peak dispersion is provided by the inclusion of additional {sup 31}P and {sup 1}H3′ dimensions and constant-time evolution of chemical shifts. High spectral resolution is obtained by using non-uniform sampling in three indirect dimensions. The experiment fully utilizes the isotopic {sup 13}C-labeling with evolution of C4′ carbons. Band selective {sup 13}C inversion pulses are used to achieve selectivity and prevent signal dephasing due to the C4′–C3′ and C4′–C5′ homonuclear couplings. Multiple quantum line narrowing is employed to minimize sensitivity loses. The 4D HPCH experiment is verified and successfully applied to a non-coding 34-nt RNA consisting typical structure elements and a 14-nt RNA hairpin capped by cUUCGg tetraloop.

  5. Three-Dimensional Protein Fold Determination from Backbone Amide Pseudocontact Shifts Generated by Lanthanide Tags at Multiple Sites

    KAUST Repository

    Yagi, Hiromasa

    2013-06-01

    Site-specific attachment of paramagnetic lanthanide ions to a protein generates pseudocontact shifts (PCS) in the nuclear magnetic resonance (NMR) spectra of the protein that are easily measured as changes in chemical shifts. By labeling the protein with lanthanide tags at four different sites, PCSs are observed for most amide protons and accurate information is obtained about their coordinates in three-dimensional space. The approach is demonstrated with the chaperone ERp29, for which large differences have been reported between X-ray and NMR structures of the C-terminal domain, ERp29-C. The results unambiguously show that the structure of rat ERp29-C in solution is similar to the crystal structure of human ERp29-C. PCSs of backbone amides were the only structural restraints required. Because these can be measured for more dilute protein solutions than other NMR restraints, the approach greatly widens the range of proteins amenable to structural studies in solution. © 2013 Elsevier Ltd. All rights reserved.

  6. Pressure dependence of backbone chemical shifts in the model peptides Ac-Gly-Gly-Xxx-Ala-NH2.

    Science.gov (United States)

    Erlach, Markus Beck; Koehler, Joerg; Crusca, Edson; Kremer, Werner; Munte, Claudia E; Kalbitzer, Hans Robert

    2016-06-01

    For a better understanding of nuclear magnetic resonance (NMR) detected pressure responses of folded as well as unstructured proteins the availability of data from well-defined model systems are indispensable. In this work we report the pressure dependence of chemical shifts of the backbone atoms (1)H(α), (13)C(α) and (13)C' in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH2 (Xxx one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of these nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The polynomial pressure coefficients B 1 and B 2 are dependent on the type of amino acid studied. The coefficients of a given nucleus show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure are also weakly correlated.

  7. Contact angle hysteresis: study by dynamic cycling contact angle measurements and variable angle spectroscopic ellipsometry on polyimide.

    Science.gov (United States)

    Hennig, A; Eichhorn, K-J; Staudinger, U; Sahre, K; Rogalli, M; Stamm, M; Neumann, A W; Grundke, K

    2004-08-03

    The phenomenon of contact angle hysteresis was studied on smooth films of polyimide, a polymer type used in the microelectronic industry, by dynamic cycling contact angle measurements based on axisymmetric drop shape analysis-profile in combination with variable angle spectroscopic ellipsometry (VASE). It was found that both advancing and receding contact angles became smaller with increasing the number of cycles and are, therefore, not a property of the dry solid alone. The changes of the wetting behavior during these dynamic cycling contact angle measurements are attributed mainly to swelling and/or liquid retention. To reveal the water-induced changes of the polymer film, the polyimide surface was studied before and after the contact with a water droplet by VASE. Both the experimental ellipsometric spectrum for Delta and that for Psi as well as the corresponding simulations show characteristic shifts due to the contact with water. The so-called effective medium approximation was applied to recover information about the thickness and effective optical constants of the polymer layer from the ellipsometrically measured values of Delta and Psi. On the basis of these results, the swelling and retention behavior of the polyimide films in contact with water droplets were discussed.

  8. Bioelectric impedance phase angle in breast carcinoma

    Directory of Open Access Journals (Sweden)

    Ruchi Tyagi

    2014-01-01

    Full Text Available Context: Worldwide breast cancer is the most frequently diagnosed life threatening cancer and the leading cause of death in women. Bioelectric impedance analysis (BIA affords an emerging opportunity to assess prognosis because of its ability to non invasively assess cell and plasma membrane structure and function by means of phase angle. Aims: To compare the phase angle between patients of breast cancer and their matched control with the help of BIA. Settings and Design: After taking clearance from ethical committee, a total of 34 female cases of histologically proven infiltrating ductal breast carcinoma were included from the surgery IPD, department of surgery. Equal numbers of the matched controls were recruited from the friends and relatives of cases. Materials and Methods: Bio Electrical Impedance Analyzer (BIA BODY STAT QUAD SCAN 4000 was used to measure resistance (R and reactance (Xc by recording a voltage drop in applied current. Phase angle is the ratio of reactance to resistance and is a measure of cell vitality. Statistical analysis used: Unpaired "t" test was applied. Results: In control group, the phase angle showed a mean of 5.479 whereas in test group, it showed a mean value of 4.726. The P value showed a significant difference (P < 0.0001. The smaller the phase angle values were higher was the tumor, nodes, metastases (TNM staging. The phase angles differed significantly from the healthy age matched control values. Conclusions: This study demonstrated that phase angle is a strong predictor of severity of breast cancer and differed significantly between the two groups.

  9. Fractal Approach in Petrology: Combining Ultra-Small Angle (USANA) and Small Angle Neutron Scattering (SANS)

    Energy Technology Data Exchange (ETDEWEB)

    LoCelso, F.; Triolo, F.; Triolo, A.; Lin, J.S.; Lucido, G.; Triolo, R.

    1999-10-14

    Ultra small angle neutron scattering instruments have recently covered the gap between the size resolution available with conventional intermediate angle neutron scattering and small angle neutron scattering instruments on one side and optical microscopy on the other side. Rocks showing fractal behavior in over two decades of momentum transfer and seven orders of magnitude of intensity are examined and fractal parameters are extracted from the combined USANS and SANS curves.

  10. Benchmark quantum-chemical calculations on a complete set of rotameric families of the DNA sugar-phosphate backbone and their comparison with modern density functional theory.

    Science.gov (United States)

    Mládek, Arnošt; Krepl, Miroslav; Svozil, Daniel; Cech, Petr; Otyepka, Michal; Banáš, Pavel; Zgarbová, Marie; Jurečka, Petr; Sponer, Jiří

    2013-05-21

    The DNA sugar-phosphate backbone has a substantial influence on the DNA structural dynamics. Structural biology and bioinformatics studies revealed that the DNA backbone in experimental structures samples a wide range of distinct conformational substates, known as rotameric DNA backbone conformational families. Their correct description is essential for methods used to model nucleic acids and is known to be the Achilles heel of force field computations. In this study we report the benchmark database of MP2 calculations extrapolated to the complete basis set of atomic orbitals with aug-cc-pVTZ and aug-cc-pVQZ basis sets, MP2(T,Q), augmented by ΔCCSD(T)/aug-cc-pVDZ corrections. The calculations are performed in the gas phase as well as using a COSMO solvent model. This study includes a complete set of 18 established and biochemically most important families of DNA backbone conformations and several other salient conformations that we identified in experimental structures. We utilize an electronically sufficiently complete DNA sugar-phosphate-sugar (SPS) backbone model system truncated to prevent undesired intramolecular interactions. The calculations are then compared with other QM methods. The BLYP and TPSS functionals supplemented with Grimme's D3(BJ) dispersion term provide the best tradeoff between computational demands and accuracy and can be recommended for preliminary conformational searches as well as calculations on large model systems. Among the tested methods, the best agreement with the benchmark database has been obtained for the double-hybrid DSD-BLYP functional in combination with a quadruple-ζ basis set, which is, however, computationally very demanding. The new hybrid density functionals PW6B95-D3 and MPW1B95-D3 yield outstanding results and even slightly outperform the computationally more demanding PWPB95 double-hybrid functional. B3LYP-D3 is somewhat less accurate compared to the other hybrids. Extrapolated MP2(D,T) calculations are not as

  11. Energies and 2'-Hydroxyl Group Orientations of RNA Backbone Conformations. Benchmark CCSD(T)/CBS Database, Electronic Analysis, and Assessment of DFT Methods and MD Simulations.

    Science.gov (United States)

    Mládek, Arnošt; Banáš, Pavel; Jurečka, Petr; Otyepka, Michal; Zgarbová, Marie; Šponer, Jiří

    2014-01-14

    Sugar-phosphate backbone is an electronically complex molecular segment imparting RNA molecules high flexibility and architectonic heterogeneity necessary for their biological functions. The structural variability of RNA molecules is amplified by the presence of the 2'-hydroxyl group, capable of forming multitude of intra- and intermolecular interactions. Bioinformatics studies based on X-ray structure database revealed that RNA backbone samples at least 46 substates known as rotameric families. The present study provides a comprehensive analysis of RNA backbone conformational preferences and 2'-hydroxyl group orientations. First, we create a benchmark database of estimated CCSD(T)/CBS relative energies of all rotameric families and test performance of dispersion-corrected DFT-D3 methods and molecular mechanics in vacuum and in continuum solvent. The performance of the DFT-D3 methods is in general quite satisfactory. The B-LYP-D3 method provides the best trade-off between accuracy and computational demands. B3-LYP-D3 slightly outperforms the new PW6B95-D3 and MPW1B95-D3 and is the second most accurate density functional of the study. The best agreement with CCSD(T)/CBS is provided by DSD-B-LYP-D3 double-hybrid functional, although its large-scale applications may be limited by high computational costs. Molecular mechanics does not reproduce the fine energy differences between the RNA backbone substates. We also demonstrate that the differences in the magnitude of the hyperconjugation effect do not correlate with the energy ranking of the backbone conformations. Further, we investigated the 2'-hydroxyl group orientation preferences. For all families, we conducted a QM and MM hydroxyl group rigid scan in gas phase and solvent. We then carried out set of explicit solvent MD simulations of folded RNAs and analyze 2'-hydroxyl group orientations of different backbone families in MD. The solvent energy profiles determined primarily by the sugar pucker match well with the

  12. Backbone.js cookbook

    CERN Document Server

    Mirgorod, Vadim

    2013-01-01

    Written in a friendly, example driven Beginner's Guide format, there are plenty of step-by-step instructions to get you started fast!Pentaho 4.0 By Example: Beginner's Guide is the ideal companion for a wide-variety of developers. Whether you are new to the world of Business Intelligence reporting, or an experienced BI analyst, this book will guide you through the creation of your first reports in Pentaho. We assume some knowledge of the SQL language and database systems.

  13. Dicyclopropylmethyl peptide backbone protectant.

    Science.gov (United States)

    Carpino, Louis A; Nasr, Khaled; Abdel-Maksoud, Adel Ali; El-Faham, Ayman; Ionescu, Dumitru; Henklein, Peter; Wenschuh, Holger; Beyermann, Michael; Krause, Eberhard; Bienert, Michael

    2009-08-20

    The N-dicyclopropylmethyl (Dcpm) residue, introduced into amino acids via reaction of dicyclopropylmethanimine hydrochloride with an amino acid ester followed by sodium cyanoborohydride or triacetoxyborohydride reduction, can be used as an amide bond protectant for peptide synthesis. Examples which demonstrate the amelioration of aggregation effects include syntheses of the alanine decapeptide and the prion peptide (106-126). Avoidance of cyclization to the aminosuccinimide followed substitution of Fmoc-(Dcpm)Gly-OH for Fmoc-Gly-OH in the assembly of sequences containing the sensitive Asp-Gly unit.

  14. Backbone.js essentials

    CERN Document Server

    Walker, Jeremy

    2015-01-01

    If you are a developer with baseline JavaScript proficiency and are familiar with the jQuery library, then this book is ideal for you. Whether you've tried building complex web applications before and been frustrated by the challenge of doing so without the proper tools, or whether you've only built simple websites and are now looking to create full-featured web applications, this book has everything you need to get ahead of the curve.

  15. Backbone amide linker strategy

    DEFF Research Database (Denmark)

    Shelton, Anne Pernille Tofteng; Jensen, Knud Jørgen

    2013-01-01

    amino acid residue by reductive amination. This can be used as a general approach for the introduction of other C-terminal modifications as well as functionalities, such as fluorophors. The second step is an acylation of a secondary amine, followed by standard Fmoc-based solid-phase synthesis...

  16. Nitrogen Backbone Oligomers.

    Science.gov (United States)

    Wang, Hongbo; Eremets, Mikhail I; Troyan, Ivan; Liu, Hanyu; Ma, Yanming; Vereecken, Luc

    2015-08-19

    We found that nitrogen and hydrogen directly react at room temperature and pressures of ~35 GPa forming chains of single-bonded nitrogen atom with the rest of the bonds terminated with hydrogen atoms - as identified by IR absorption, Raman, X-ray diffraction experiments and theoretical calculations. At releasing pressures below ~10 GPa, the product transforms into hydrazine. Our findings might open a way for the practical synthesis of these extremely high energetic materials as the formation of nitrogen-hydrogen compounds is favorable already at pressures above 2 GPa according to the calculations.

  17. Bicycle helmet ventilation and comfort angle dependence.

    Science.gov (United States)

    Brühwiler, Paul A; Ducas, Charline; Huber, Roman; Bishop, Phillip A

    2004-09-01

    Five modern bicycle helmets were studied to elucidate some of the variations in ventilation performance, using both a heated manikin headform and human subjects (n = 7). Wind speed and head angle were varied to test their influence on the measured steady-state heat exchange (cooling power) in the skull section of the headform. The cooling power transmitted by the helmets varied from about 60% to over 90% of that of the nude headform, illustrating the range of present manufacturer designs. Angling the head forward by 30 degrees was found to provide better cooling power to the skull (up to 25%) for three of the helmets and almost equal cooling power in the remaining two cases. Comparisons of skull ventilation at these angles with human subjects strongly supported the headform results.

  18. Precision measurements of the CKM angle gamma

    CERN Document Server

    CERN. Geneva

    2016-01-01

    The level of CP-violation permitted within the Standard Model cannot account for the matter dominated universe in which we live. Within the Standard Model the CKM matrix, which describes the quark couplings, is expected to be unitary. By making precise measurements of the CKM matrix parameters new physics models can be constrained, or with sufficient precision the effects of physics beyond the standard model might become apparent. The CKM angle gamma is the least well known angle of the unitarity triangle. It is the only angle easily accessible at tree-level, and furthermore has almost no theoretical uncertainties. Therefore it provides an invaluable Standard Model benchmark against which other new physics sensitive tests of the CP-violation can be made. I will discuss recent measurements of gamma using the the Run 1 LHCb dataset, which improve our knowledge of this key parameter.

  19. Three paths toward the quantum angle operator

    Science.gov (United States)

    Gazeau, Jean Pierre; Szafraniec, Franciszek Hugon

    2016-12-01

    We examine mathematical questions around angle (or phase) operator associated with a number operator through a short list of basic requirements. We implement three methods of construction of quantum angle. The first one is based on operator theory and parallels the definition of angle for the upper half-circle through its cosine and completed by a sign inversion. The two other methods are integral quantization generalizing in a certain sense the Berezin-Klauder approaches. One method pertains to Weyl-Heisenberg integral quantization of the plane viewed as the phase space of the motion on the line. It depends on a family of "weight" functions on the plane. The third method rests upon coherent state quantization of the cylinder viewed as the phase space of the motion on the circle. The construction of these coherent states depends on a family of probability distributions on the line.

  20. Tunable contact angle hysteresis on micropatterned surfaces

    CERN Document Server

    Debuisson, Damien; Arscott, Steve

    2011-01-01

    Micropatterned surfaces composed of concentric circular defects having a smooth trench-like profile are formed using a photoresist (SU-8). When an evaporating droplet encounters the micropatterned surface an evaporation phase is observed consisting of distinct discontinuities and steps in the droplet wetting contact angle and base radius respectively. The addition of gaps into the circular defects enables tuning of the contact angle hysteresis; the receding contact angle of fluorocarbon coated SU-8 can be tuned between 34.6{\\deg} and 89.1{\\deg} and that of SU-8 surfaces from 5.6{\\deg} to 43.3{\\deg} depending on the gap length. In addition, a model is developed which accurately predicts the observed behavior.

  1. Michelson interferometer for precision angle measurement.

    Science.gov (United States)

    Ikram, M; Hussain, G

    1999-01-01

    An angle-measuring technique based on an optical interferometer is reported. The technique exploits a Michelson interferometric configuration in which a right-angle prism and a glass strip are introduced into a probe beam. Simultaneous rotation of both components along an axis results in an optical path difference between the reference and the probe beams. In a second arrangement two right-angle prisms and glass strips are introduced into two beams of a Michelson interferometer. The prisms and the strips are rotated simultaneously to introduce an optical path difference between the two beams. In our arrangement, optimization of various parameters makes the net optical path difference between the two beams approximately linear for a rotation as great as +/-20 degrees . Results are simulated that show an improvement of 2-3 orders of magnitude in error and nonlinearity compared with a previously reported technique.

  2. Magic-angle thermal desorption mass spectroscopy

    Science.gov (United States)

    Pauls, Steven W.; Campbell, Charles T.

    1990-02-01

    Accurate quantitative measurements of desorption rates or adsorbate coverages in thermal desorption mass spectroscopy (TDS) using line-of-sight mass spectrometers are hindered by the fact that the angular distributions of desorption flux can vary widely from desorbate to desorbate, ranging from cos 1ø to cos 9 ø for most species studied to date (ø = polar angle from surface normal). These differences can easily lead to errors exceeding 400% in measuring the relative desorption rates of different species. We show here that, by placing the mass spectrometer's ion source or entrance aperture at a "magic-angle" ø mthese errors can be reduced to less than 26% maximum deviation (or ± 7% standard deviation). Depending upon the sample-to-detector distance, ø m varies from ~ 42° to 34°. It is recommended that TDS experiments be performed at this "magic-angle" for improvement in the quantitative accuracy of coverage or rate measurements.

  3. Weak lensing using only galaxy position angles

    CERN Document Server

    Whittaker, Lee; Battye, Richard

    2013-01-01

    We develop a method for performing a weak lensing analysis using only measurements of galaxy position angles. By analyzing the statistical properties of the galaxy orientations given a known intrinsic ellipticity distribution, we show that it is possible to obtain estimates of the shear by minimizing a $\\chi^2$ statistic. The method is demonstrated using simulations where the components of the intrinsic ellipticity are taken to be Gaussian distributed. Uncertainties on the position angle measurements introduce a bias into the shear estimates which can be reduced to negligible levels by introducing a correction term into the formalism. We generalize our approach by developing an algorithm to obtain direct shear estimators given any azimuthally symmetric intrinsic ellipticity distribution. We demonstrate this technique by applying it to simulations where the ellipticities are taken to follow a log-normal distribution. We compare the performance of the position angle only method with the standard method based on...

  4. Notes on large angle crossing graphs

    CERN Document Server

    Dujmovic, Vida; Morin, Pat; Wolle, Thomas

    2009-01-01

    A graph G is an a-angle crossing (aAC) graph if every pair of crossing edges in G intersect at an angle of at least a. The concept of right angle crossing (RAC) graphs (a=Pi/2) was recently introduced by Didimo et. al. It was shown that any RAC graph with n vertices has at most 4n-10 edges and that there are infinitely many values of n for which there exists a RAC graph with n vertices and 4n-10 edges. In this paper, we give upper and lower bounds for the number of edges in aAC graphs for all 0 < a < Pi/2.

  5. Head flexion angle while using a smartphone.

    Science.gov (United States)

    Lee, Sojeong; Kang, Hwayeong; Shin, Gwanseob

    2015-01-01

    Repetitive or prolonged head flexion posture while using a smartphone is known as one of risk factors for pain symptoms in the neck. To quantitatively assess the amount and range of head flexion of smartphone users, head forward flexion angle was measured from 18 participants when they were conducing three common smartphone tasks (text messaging, web browsing, video watching) while sitting and standing in a laboratory setting. It was found that participants maintained head flexion of 33-45° (50th percentile angle) from vertical when using the smartphone. The head flexion angle was significantly larger (p neck pain of heavy smartphone users. Practitioner Summary: In this laboratory study, the severity of head flexion of smartphone users was quantitatively evaluated when conducting text messaging, web browsing and video watching while sitting and standing. Study results indicate that text messaging while sitting caused the largest head flexion than that of other task conditions.

  6. Methodology for high accuracy contact angle measurement.

    Science.gov (United States)

    Kalantarian, A; David, R; Neumann, A W

    2009-12-15

    A new version of axisymmetric drop shape analysis (ADSA) called ADSA-NA (ADSA-no apex) was developed for measuring interfacial properties for drop configurations without an apex. ADSA-NA facilitates contact angle measurements on drops with a capillary protruding into the drop. Thus a much simpler experimental setup, not involving formation of a complete drop from below through a hole in the test surface, may be used. The contact angles of long-chained alkanes on a commercial fluoropolymer, Teflon AF 1600, were measured using the new method. A new numerical scheme was incorporated into the image processing to improve the location of the contact points of the liquid meniscus with the solid substrate to subpixel resolution. The images acquired in the experiments were also analyzed by a different drop shape technique called theoretical image fitting analysis-axisymmetric interfaces (TIFA-AI). The results were compared with literature values obtained by means of the standard ADSA for sessile drops with the apex. Comparison of the results from ADSA-NA with those from TIFA-AI and ADSA reveals that, with different numerical strategies and experimental setups, contact angles can be measured with an accuracy of less than 0.2 degrees. Contact angles and surface tensions measured from drops with no apex, i.e., by means of ADSA-NA and TIFA-AI, were considerably less scattered than those from complete drops with apex. ADSA-NA was also used to explore sources of improvement in contact angle resolution. It was found that using an accurate value of surface tension as an input enhances the accuracy of contact angle measurements.

  7. Positron Emission Mammography with Multiple Angle Acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Mark F. Smith; Stan Majewski; Raymond R. Raylman

    2002-11-01

    Positron emission mammography (PEM) of F-18 fluorodeoxyglucose (FbG) uptake in breast tumors with dedicated detectors typically has been accomplished with two planar detectors in a fixed position with the breast under compression. The potential use of PEM imaging at two detector positions to guide stereotactic breast biopsy has motivated us to use PEM coincidence data acquired at two or more detector positions together in a single image reconstruction. Multiple angle PEM acquisition and iterative image reconstruction were investigated using point source and compressed breast phantom acquisitions with 5, 9, 12 and 15 mm diameter spheres and a simulated tumor:background activity concentration ratio of 6:1. Image reconstruction was performed with an iterative MLEM algorithm that used coincidence events between any two detector pixels on opposed detector heads at each detector position. This present study compared two acquisition protocols: 2 angle acquisition with detector angular positions of -15 and +15 degrees and 11 angle acquisition with detector positions spaced at 3 degree increments over the range -15 to +15 degrees. Three-dimensional image resolution was assessed for the point source acquisitions, and contrast and signal-to-noise metrics were evaluated for the compressed breast phantom with different simulated tumor sizes. Radial and tangential resolutions were similar for the two protocols, while normal resolution was better for the 2 angle acquisition. Analysis is complicated by the asymmetric point spread functions. Signal- to-noise vs. contrast tradeoffs were better for 11 angle acquisition for the smallest visible 9 mm sphere, while tradeoff results were mixed for the larger and more easily visible 12 mm and 15 mm diameter spheres. Additional study is needed to better understand the performance of limited angle tomography for PEM. PEM tomography experiments with complete angular sampling are planned.

  8. Positron Emission Mammography with Multiple Angle Acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Mark F. Smith; Stan Majewski; Raymond R. Raylman

    2002-11-01

    Positron emission mammography (PEM) of F-18 fluorodeoxyglucose (FDG) uptake in breast tumors with dedicated detectors typically has been accomplished with two planar detectors in a fixed position with the breast under compression. The potential use of PEM imaging at two detector positions to guide stereotactic breast biopsy has motivated us to use PEM coincidence data acquired at two or more detector positions together in a single image reconstruction. Multiple angle PEM acquisition and iterative image reconstruction were investigated using point source and compressed breast phantom acquisitions with 5, 9, 12 and 15 mm diameter spheres and a simulated tumor:background activity concentration ratio of 6:1. Image reconstruction was performed with an iterative MLEM algorithm that used coincidence events between any two detector pixels on opposed detector heads at each detector position. This present study compared two acquisition protocols: 2 angle acquisition with detector angular positions of -15 and +15 degrees and 11 angle acquisition with detector positions spaced at 3 degree increments over the range -15 to +15 degrees. Three- dimensional image resolution was assessed for the point source acquisitions, and contrast and signal-to-noise metrics were evaluated for the compressed breast phantom with different simulated tumor sizes. Radial and tangential resolutions were similar for the two protocols, while normal resolution was better for the 2 angle acquisition. Analysis is complicated by the asymmetric point spread functions. Signal- to-noise vs. contrast tradeoffs were better for 11 angle acquisition for the smallest visible 9 mm sphere, while tradeoff results were mixed for the larger and more easily visible 12 mm and 15 mm diameter spheres. Additional study is needed to better understand the performance of limited angle tomography for PEM. PEM tomography experiments with complete angular sampling are planned.

  9. Combining automated peak tracking in SAR by NMR with structure-based backbone assignment from 15N-NOESY

    KAUST Repository

    Jang, Richard

    2012-03-21

    Background: Chemical shift mapping is an important technique in NMR-based drug screening for identifying the atoms of a target protein that potentially bind to a drug molecule upon the molecule\\'s introduction in increasing concentrations. The goal is to obtain a mapping of peaks with known residue assignment from the reference spectrum of the unbound protein to peaks with unknown assignment in the target spectrum of the bound protein. Although a series of perturbed spectra help to trace a path from reference peaks to target peaks, a one-to-one mapping generally is not possible, especially for large proteins, due to errors, such as noise peaks, missing peaks, missing but then reappearing, overlapped, and new peaks not associated with any peaks in the reference. Due to these difficulties, the mapping is typically done manually or semi-automatically, which is not efficient for high-throughput drug screening.Results: We present PeakWalker, a novel peak walking algorithm for fast-exchange systems that models the errors explicitly and performs many-to-one mapping. On the proteins: hBclXL, UbcH5B, and histone H1, it achieves an average accuracy of over 95% with less than 1.5 residues predicted per target peak. Given these mappings as input, we present PeakAssigner, a novel combined structure-based backbone resonance and NOE assignment algorithm that uses just 15N-NOESY, while avoiding TOCSY experiments and 13C-labeling, to resolve the ambiguities for a one-to-one mapping. On the three proteins, it achieves an average accuracy of 94% or better.Conclusions: Our mathematical programming approach for modeling chemical shift mapping as a graph problem, while modeling the errors directly, is potentially a time- and cost-effective first step for high-throughput drug screening based on limited NMR data and homologous 3D structures. 2012 Jang et al.; licensee BioMed Central Ltd.

  10. Comparison of backbone dynamics of the type III antifreeze protein and antifreeze-like domain of human sialic acid synthase

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong-Geun [Gyeongsang National University, Department of Chemistry and Research Institute of Natural Science (Korea, Republic of); Park, Chin-Ju [Gwangju Institute of Science and Technology, Division of Liberal Arts and Sciences and Department of Chemistry (Korea, Republic of); Kim, Hee-Eun; Seo, Yeo-Jin; Lee, Ae-Ree; Choi, Seo-Ree; Lee, Shim Sung; Lee, Joon-Hwa, E-mail: joonhwa@gnu.ac.kr [Gyeongsang National University, Department of Chemistry and Research Institute of Natural Science (Korea, Republic of)

    2015-02-15

    Antifreeze proteins (AFPs) are found in a variety of cold-adapted (psychrophilic) organisms to promote survival at subzero temperatures by binding to ice crystals and decreasing the freezing temperature of body fluids. The type III AFPs are small globular proteins that consist of one α-helix, three 3{sub 10}-helices, and two β-strands. Sialic acids play important roles in a variety of biological functions, such as development, recognition, and cell adhesion and are synthesized by conserved enzymatic pathways that include sialic acid synthase (SAS). SAS consists of an N-terminal catalytic domain and a C-terminal antifreeze-like (AFL) domain, which is similar to the type III AFPs. Despite having very similar structures, AFL and the type III AFPs exhibit very different temperature-dependent stability and activity. In this study, we have performed backbone dynamics analyses of a type III AFP (HPLC12 isoform) and the AFL domain of human SAS (hAFL) at various temperatures. We also characterized the structural/dynamic properties of the ice-binding surfaces by analyzing the temperature gradient of the amide proton chemical shift and its correlation with chemical shift deviation from random coil. The dynamic properties of the two proteins were very different from each other. While HPLC12 was mostly rigid with a few residues exhibiting slow motions, hAFL showed fast internal motions at low temperature. Our results provide insight into the molecular basis of thermostability and structural flexibility in homologous psychrophilic HPLC12 and mesophilic hAFL proteins.

  11. Backbone resonance assignments for G protein α(i3) subunit in the GDP-bound state.

    Science.gov (United States)

    Mase, Yoko; Yokogawa, Mariko; Osawa, Masanori; Shimada, Ichio

    2014-10-01

    Guanine-nucleotide binding proteins (G proteins) serve as molecular switches in signaling pathways, by coupling the activation of G protein-coupled receptors (GPCRs) at the cell surface to intracellular responses. In the resting state, G protein forms a heterotrimer, consisting of the G protein α subunit with GDP (Gα·GDP) and the G protein βγ subunit (Gβγ). Ligand binding to GPCRs promotes the GDP-GTP exchange on Gα, leading to the dissociation of the GTP-bound form of Gα (Gα·GTP) and Gβγ. Then, Gα·GTP and Gβγ bind to their downstream effector enzymes or ion channels and regulate their activities, leading to a variety of cellular responses. Finally, Gα hydrolyzes the bound GTP to GDP and returns to the resting state by re-associating with Gβγ. The G proteins are classified with four major families based on the amino acid sequences of Gα: i/o, s, q/11, and 12/13. Here, we established the backbone resonance assignments of human Gαi3, a member of the i/o family with a molecular weight of 41 K, in complex with GDP. The chemical shifts were compared with those of Gα(i3) in complex with a GTP-analogue, GTPγS, which we recently reported, indicating that the residues with significant chemical shift differences are mostly consistent with the regions with the structural differences between the GDP- and GTPγS-bound states, as indicated in the crystal structures. The assignments of Gα(i3)·GDP would be useful for the analyses of the dynamics of Gα(i3) and its interactions with various target molecules.

  12. Characterization of the Burkholderia mallei tonB Mutant and Its Potential as a Backbone Strain for Vaccine Development.

    Directory of Open Access Journals (Sweden)

    Tiffany M Mott

    Full Text Available In this study, a Burkholderia mallei tonB mutant (TMM001 deficient in iron acquisition was constructed, characterized, and evaluated for its protective properties in acute inhalational infection models of murine glanders and melioidosis.Compared to the wild-type, TMM001 exhibits slower growth kinetics, siderophore hyper-secretion and the inability to utilize heme-containing proteins as iron sources. A series of animal challenge studies showed an inverse correlation between the percentage of survival in BALB/c mice and iron-dependent TMM001 growth. Upon evaluation of TMM001 as a potential protective strain against infection, we found 100% survival following B. mallei CSM001 challenge of mice previously receiving 1.5 x 10(4 CFU of TMM001. At 21 days post-immunization, TMM001-treated animals showed significantly higher levels of B. mallei-specific IgG1, IgG2a and IgM when compared to PBS-treated controls. At 48 h post-challenge, PBS-treated controls exhibited higher levels of serum inflammatory cytokines and more severe pathological damage to target organs compared to animals receiving TMM001. In a cross-protection study of acute inhalational melioidosis with B. pseudomallei, TMM001-treated mice were significantly protected. While wild type was cleared in all B. mallei challenge studies, mice failed to clear TMM001.Although further work is needed to prevent chronic infection by TMM001 while maintaining immunogenicity, our attenuated strain demonstrates great potential as a backbone strain for future vaccine development against both glanders and melioidosis.

  13. Structural basis for the enhanced stability of protein model compounds and peptide backbone unit in ammonium ionic liquids.

    Science.gov (United States)

    Vasantha, T; Attri, Pankaj; Venkatesu, Pannuru; Devi, R S Rama

    2012-10-04

    Protein folding/unfolding is a fascinating study in the presence of cosolvents, which protect/disrupt the native structure of protein, respectively. The structure and stability of proteins and their functional groups may be modulated by the addition of cosolvents. Ionic liquids (ILs) are finding a vast array of applications as novel cosolvents for a wide variety of biochemical processes that include protein folding. Here, the systematic and quantitative apparent transfer free energies (ΔG'(tr)) of protein model compounds from water to ILs through solubility measurements as a function of IL concentration at 25 °C have been exploited to quantify and interpret biomolecular interactions between model compounds of glycine peptides (GPs) with ammonium based ILs. The investigated aqueous systems consist of zwitterionic glycine peptides: glycine (Gly), diglycine (Gly(2)), triglycine (Gly(3)), tetraglycine (Gly(4)), and cyclic glycylglycine (c(GG)) in the presence of six ILs such as diethylammonium acetate (DEAA), diethylammonium hydrogen sulfate (DEAS), triethylammonium acetate (TEAA), triethylammonium hydrogen sulfate (TEAS), triethylammonium dihydrogen phosphate (TEAP), and trimethylammonium acetate (TMAA). We have observed positive values of ΔG'(tr) for GPs from water to ILs, indicating that interactions between ILs and GPs are unfavorable, which leads to stabilization of the structure of model protein compounds. Moreover, our experimental data ΔG'(tr) is used to obtain transfer free energies (Δg'(tr)) of the peptide backbone unit (or glycyl unit) (-CH(2)C═ONH-), which is the most numerous group in globular proteins, from water to IL solutions. To obtain the mechanism events of the ILs' role in enhancing the stability of the model compounds, we have further obtained m-values for GPs from solubility limits. These results explicitly elucidate that all alkyl ammonium ILs act as stabilizers for model compounds through the exclusion of ILs from model compounds of

  14. Soluble and Membrane-Bound β-Glucosidases Are Involved in Trimming the Xyloglucan Backbone1[OPEN

    Science.gov (United States)

    Fraga, Patricia

    2017-01-01

    In many flowering plants, xyloglucan is a major component of primary cell walls, where it plays an important role in growth regulation. Xyloglucan can be degraded by a suite of exoglycosidases that remove specific sugars. In this work, we show that the xyloglucan backbone, formed by (1→4)-linked β-d-glucopyranosyl residues, can be attacked by two different Arabidopsis (Arabidopsis thaliana) β-glucosidases from glycoside hydrolase family 3. While BGLC1 (At5g20950; for β-glucosidase active against xyloglucan 1) is responsible for all or most of the soluble activity, BGLC3 (At5g04885) is usually a membrane-anchored protein. Mutations in these two genes, whether on their own or combined with mutations in other exoglycosidase genes, resulted in the accumulation of partially digested xyloglucan subunits, such as GXXG, GXLG, or GXFG. While a mutation in BGLC1 had significant effects on its own, lack of BGLC3 had only minor effects. On the other hand, double bglc1 bglc3 mutants revealed a synergistic interaction that supports a role for membrane-bound BGLC3 in xyloglucan metabolism. In addition, bglc1 bglc3 was complemented by overexpression of either BGLC1 or BGLC3. In overexpression lines, BGLC3 activity was concentrated in a microsome-enriched fraction but also was present in soluble form. Finally, both genes were generally expressed in the same cell types, although, in some cases, BGLC3 was expressed at earlier stages than BGLC1. We propose that functional specialization could explain the separate localization of both enzymes, as a membrane-bound β-glucosidase could specifically digest soluble xyloglucan without affecting the wall-bound polymer. PMID:27956490

  15. Solution NMR analysis of the interaction between the actinoporin sticholysin I and DHPC micelles--correlation with backbone dynamics.

    Science.gov (United States)

    López-Castilla, Aracelys; Pazos, Fabiola; Schreier, Shirley; Pires, José Ricardo

    2014-06-01

    Sticholysin I (StI), an actinoporin expressed as a water-soluble protein by the sea anemone Stichodactyla helianthus, binds to natural and model membranes, forming oligomeric pores. It is proposed that the first event of a multistep pore formation mechanism consists of the monomeric protein attachment to the lipid bilayer. To date there is no high-resolution structure of the actinoporin pore or other membrane-bound form available. Here we evaluated StI:micelle complexes of variable lipid composition to look for a suitable model for NMR studies. Micelles of pure or mixed lysophospholipids and of dihexanoyl phosphatidylcholine (DHPC) were examined. The StI:DHPC micelle was found to be the best system, yielding a stable sample and good quality spectra. A comprehensive chemical shift perturbation analysis was performed to map the StI membrane recognition site in the presence of DHPC micelles. The region mapped (residues F(51), R(52), S(53) in loop 3; F(107), D(108), Y(109), W(111), Y(112), W(115) in loop 7; Q(129), Y(132), D(134), M(135), Y(136), Y(137), G(138) in helix-α2) is in agreement with previously reported data, but additional residues were found to interact, especially residues V(81), A(82), T(83), G(84) in loop 5, and A(85), A(87) in strand-β5. Backbone dynamics measurements of StI free in solution and bound to micelles highlighted the relevance of protein flexibility for membrane binding and suggested that a conformer selection process may take place during protein-membrane interaction. We conclude that the StI:DHPC micelles system is a suitable model for further characterization of an actinoporin membrane-bound form by solution NMR.

  16. Combining ambiguous chemical shift mapping with structure-based backbone and NOE assignment from 15N-NOESY

    KAUST Repository

    Jang, Richard

    2011-01-01

    Chemical shift mapping is an important technique in NMRbased drug screening for identifying the atoms of a target protein that potentially bind to a drug molecule upon the molecule\\'s introduction in increasing concentrations. The goal is to obtain a mapping of peaks with known residue assignment from the reference spectrum of the unbound protein to peaks with unknown assignment in the target spectrum of the bound protein. Although a series of perturbed spectra help to trace a path from reference peaks to target peaks, a one-to-one mapping generally is not possible, especially for large proteins, due to errors, such as noise peaks, missing peaks, missing but then reappearing, overlapped, and new peaks not associated with any peaks in the reference. Due to these difficulties, the mapping is typically done manually or semi-automatically. However, automated methods are necessary for high-throughput drug screening. We present PeakWalker, a novel peak walking algorithm for fast-exchange systems that models the errors explicitly and performs many-to-one mapping. On the proteins: hBclXL, UbcH5B, and histone H1, it achieves an average accuracy of over 95% with less than 1.5 residues predicted per target peak. Given these mappings as input, we present PeakAssigner, a novel combined structure-based backbone resonance and NOE assignment algorithm that uses just 15N-NOESY, while avoiding TOCSY experiments and 13C- labeling, to resolve the ambiguities for a one-toone mapping. On the three proteins, it achieves an average accuracy of 94% or better. Copyright © 2011 ACM.

  17. Angle-Resolved Spectroscopy of Parametric Fluorescence

    CERN Document Server

    Hsu, Feng-kuo

    2013-01-01

    The parametric fluorescence from a nonlinear crystal forms a conical radiation pattern. We measure the angular and spectral distributions of parametric fluorescence in a beta-barium borate crystal pumped by a 405-nm diode laser employing angle-resolved imaging spectroscopy. The experimental angle-resolved spectra and the generation efficiency of parametric down conversion are compared with a plane-wave theoretical analysis. The parametric fluorescence is used as a broadband light source for the calibration of the instrument spectral response function in the wavelength range from 450 to 1000 nm.

  18. Understanding Angle and Angle Measure: A Design-Based Research Study Using Context Aware Ubiquitous Learning

    Science.gov (United States)

    Crompton, Helen

    2015-01-01

    Mobile technologies are quickly becoming tools found in the educational environment. The researchers in this study use a form of mobile learning to support students in learning about angle concepts. Design-based research is used in this study to develop an empirically-substantiated local instruction theory about students' develop of angle and…

  19. Sulfur-infiltrated graphene-backboned mesoporous carbon nanosheets with a conductive polymer coating for long-life lithium-sulfur batteries

    Science.gov (United States)

    Dong, Yanfeng; Liu, Shaohong; Wang, Zhiyu; Liu, Yang; Zhao, Zongbin; Qiu, Jieshan

    2015-04-01

    Sandwich-type, two-dimensional hybrid nanosheets were fabricated by the infiltration of nanosized sulfur into graphene-backboned mesoporous carbon with a PPy nanocoating. They exhibit a high reversible capacity for as long as 400 cycles with an ultra slow decay rate of 0.05% per cycle at the high rate of 1-3 C due to the efficient immobilization of polysulfides.Sandwich-type, two-dimensional hybrid nanosheets were fabricated by the infiltration of nanosized sulfur into graphene-backboned mesoporous carbon with a PPy nanocoating. They exhibit a high reversible capacity for as long as 400 cycles with an ultra slow decay rate of 0.05% per cycle at the high rate of 1-3 C due to the efficient immobilization of polysulfides. Electronic supplementary information (ESI) available: Experimental details, BET, SEM, XPS and more electrochemical data. See DOI: 10.1039/c5nr01015b

  20. 1H, 15N and 13C backbone assignments of GDP-bound human H-Ras mutant G12V.

    Science.gov (United States)

    Amin, Nader; Chiarparin, Elisabetta; Coyle, Joe; Nietlispach, Daniel; Williams, Glyn

    2016-04-01

    Harvey Ras (H-Ras) is a membrane-associated GTPase with critical functions in cell proliferation and differentiation. The G12V mutant of H-Ras is one of the most commonly encountered oncoproteins in human cancer. This mutation disrupts the GTPase activity of H-Ras, leading to constitutive activation and aberrant downstream signalling. Here we report the backbone resonance assignments of human H-Ras mutant G12V lacking the C-terminal membrane attachment domain.

  1. Study on softening Tilapia backbone by high pressure steam cooking%高压蒸煮软化罗非鱼鱼骨的研究

    Institute of Scientific and Technical Information of China (English)

    吴克刚; 张文祥; 柴向华; 何文龙

    2013-01-01

    To study softening Tilapia backbone by high pressure steam cooking,with pH,cooking pressure,steaming time and material/water ratio for study factors,the hardness of Tilapia backbone was evaluated with its maximum bearable pressure on universal testing machine.Results of single-factor experiments and orthogonal experiments showed that the softening effect of backbone was the best with the treatment condition of pH6.5,pressure of 0.13MPa,steaming time of 75min and material/water ratio of 1∶1.Under this condition,the hardness of Tilapia backbone was 33.0N.%以罗非鱼鱼骨为实验对象,以pH、蒸煮压力、蒸煮时间以及料液比为研究因素,采用万能试验机测量鱼骨最大承受压力来评价其硬度,研究高压蒸煮软化工艺.通过单因素实验及正交实验表明:当pH为6.5、蒸煮压力为0.13MPa、时间为75min、料液比为1∶1时,对鱼骨的软化效果最好,此工艺下所得鱼骨硬度为33.0N.

  2. Selective Acid Hydrolysis Condition for the Composition and Linkage with a Fructofuranosyl Backbone of a Polysaccharide from Angelica sinensis (Oliv) Diels

    Institute of Scientific and Technical Information of China (English)

    Gui Yun XU; Yang CHEN; Ru Xian CHEN

    2006-01-01

    A new polysaccharide was extracted and purified from the roots of Angelica sinensis (Oliv) Diels (ASD). Its composition and linkage was elucidated by selective hydrolysis and GC/MS analysis of its derivatives. The polysaccharide was made of→1) Fruf(2→and→6) GlCp (1→as its backbone with highly branched structure. To our best knowledge, this is the first report of the fructose residue in polysaccharides from the roots of the ASD.

  3. Mnn10 Maintains Pathogenicity in Candida albicans by Extending α-1,6-Mannose Backbone to Evade Host Dectin-1 Mediated Antifungal Immunity.

    Directory of Open Access Journals (Sweden)

    Shi Qun Zhang

    2016-05-01

    Full Text Available The cell wall is a dynamic structure that is important for the pathogenicity of Candida albicans. Mannan, which is located in the outermost layer of the cell wall, has been shown to contribute to the pathogenesis of C. albicans, however, the molecular mechanism by which this occurs remains unclear. Here we identified a novel α-1,6-mannosyltransferase encoded by MNN10 in C. albicans. We found that Mnn10 is required for cell wall α-1,6-mannose backbone biosynthesis and polysaccharides organization. Deletion of MNN10 resulted in significant attenuation of the pathogenesis of C. albicans in a murine systemic candidiasis model. Inhibition of α-1,6-mannose backbone extension did not, however, impact the invasive ability of C. albicans in vitro. Notably, mnn10 mutant restored the invasive capacity in athymic nude mice, which further supports the notion of an enhanced host antifungal defense related to this backbone change. Mnn10 mutant induced enhanced Th1 and Th17 cell mediated antifungal immunity, and resulted in enhanced recruitment of neutrophils and monocytes for pathogen clearance in vivo. We also demonstrated that MNN10 could unmask the surface β-(1,3-glucan, a crucial pathogen-associated molecular pattern (PAMP of C. albicans recognized by host Dectin-1. Our results demonstrate that mnn10 mutant could stimulate an enhanced Dectin-1 dependent immune response of macrophages in vitro, including the activation of nuclear factor-κB, mitogen-activated protein kinase pathways, and secretion of specific cytokines such as TNF-α, IL-6, IL-1β and IL-12p40. In summary, our study indicated that α-1,6-mannose backbone is critical for the pathogenesis of C. albicans via shielding β-glucan from recognition by host Dectin-1 mediated immune recognition. Moreover, our work suggests that inhibition of α-1,6-mannose extension by Mnn10 may represent a novel modality to reduce the pathogenicity of C. albicans.

  4. Rapid analysis of protein backbone resonance assignments using cryogenic probes, a distributed Linux-based computing architecture, and an integrated set of spectral analysis tools.

    Science.gov (United States)

    Monleón, Daniel; Colson, Kimberly; Moseley, Hunter N B; Anklin, Clemens; Oswald, Robert; Szyperski, Thomas; Montelione, Gaetano T

    2002-01-01

    Rapid data collection, spectral referencing, processing by time domain deconvolution, peak picking and editing, and assignment of NMR spectra are necessary components of any efficient integrated system for protein NMR structure analysis. We have developed a set of software tools designated AutoProc, AutoPeak, and AutoAssign, which function together with the data processing and peak-picking programs NMRPipe and Sparky, to provide an integrated software system for rapid analysis of protein backbone resonance assignments. In this paper we demonstrate that these tools, together with high-sensitivity triple resonance NMR cryoprobes for data collection and a Linux-based computer cluster architecture, can be combined to provide nearly complete backbone resonance assignments and secondary structures (based on chemical shift data) for a 59-residue protein in less than 30 hours of data collection and processing time. In this optimum case of a small protein providing excellent spectra, extensive backbone resonance assignments could also be obtained using less than 6 hours of data collection and processing time. These results demonstrate the feasibility of high throughput triple resonance NMR for determining resonance assignments and secondary structures of small proteins, and the potential for applying NMR in large scale structural proteomics projects.

  5. In Sup35p filaments (the [PSI+] prion), the globular C-terminal domains are widely offset from the amyloid fibril backbone

    Energy Technology Data Exchange (ETDEWEB)

    Baxa, U.; Wall, J.; Keller, P. W.; Cheng, N.; Steven, A. C.

    2011-01-01

    In yeast cells infected with the [PSI+] prion, Sup35p forms aggregates and its activity in translation termination is downregulated. Transfection experiments have shown that Sup35p filaments assembled in vitro are infectious, suggesting that they reproduce or closely resemble the prion. We have used several EM techniques to study the molecular architecture of filaments, seeking clues as to the mechanism of downregulation. Sup35p has an N-terminal 'prion' domain; a highly charged middle (M-)domain; and a C-terminal domain with the translation termination activity. By negative staining, cryo-EM and scanning transmission EM (STEM), filaments of full-length Sup35p show a thin backbone fibril surrounded by a diffuse 65-nm-wide cloud of globular C-domains. In diameter ({approx}8 nm) and appearance, the backbones resemble amyloid fibrils of N-domains alone. STEM mass-per-unit-length data yield -1 subunit per 0.47 nm for N-fibrils, NM-filaments and Sup35p filaments, further supporting the fibril backbone model. The 30 nm radial span of decorating C-domains indicates that the M-domains assume highly extended conformations, offering an explanation for the residual Sup35p activity in infected cells, whereby the C-domains remain free enough to interact with ribosomes.

  6. Sulfolobus acidocaldarius UDG Can Remove dU from the RNA Backbone: Insight into the Specific Recognition of Uracil Linked with Deoxyribose

    Directory of Open Access Journals (Sweden)

    Gang-Shun Yi

    2017-01-01

    Full Text Available Sulfolobus acidocaldarius encodes family 4 and 5 uracil-DNA glycosylase (UDG. Two recombinant S. acidocaldarius UDGs (SacUDG were prepared and biochemically characterized using oligonucleotides carrying a deaminated base. Both SacUDGs can remove deoxyuracil (dU base from both double-stranded DNA and single-stranded DNA. Interestingly, they can remove U linked with deoxyribose from single-stranded RNA backbone, suggesting that the riboses on the backbone have less effect on the recognition of dU and hydrolysis of the C-N glycosidic bond. However, the removal of rU from DNA backbone is inefficient, suggesting strong steric hindrance comes from the 2′ hydroxyl of ribose linked to uracil. Both SacUDGs cannot remove 2,2′-anhydro uridine, hypoxanthine, and 7-deazaxanthine from single-stranded DNA and single-stranded DNA. Compared with the family 2 MUG, other family UDGs have an extra N-terminal structure consisting of about 50 residues. Removal of the 46 N-terminal residues of family 5 SacUDG resulted in only a 40% decrease in activity, indicating that the [4Fe-4S] cluster and truncated secondary structure are not the key elements in hydrolyzing the glycosidic bond. Combining our biochemical and structural results with those of other groups, we discussed the UDGs’ catalytic mechanism and the possible repair reactions of deaminated bases in prokaryotes.

  7. Sulfolobus acidocaldarius UDG Can Remove dU from the RNA Backbone: Insight into the Specific Recognition of Uracil Linked with Deoxyribose.

    Science.gov (United States)

    Yi, Gang-Shun; Wang, Wei-Wei; Cao, Wei-Guo; Wang, Feng-Ping; Liu, Xi-Peng

    2017-01-18

    Sulfolobus acidocaldarius encodes family 4 and 5 uracil-DNA glycosylase (UDG). Two recombinant S. acidocaldarius UDGs (SacUDG) were prepared and biochemically characterized using oligonucleotides carrying a deaminated base. Both SacUDGs can remove deoxyuracil (dU) base from both double-stranded DNA and single-stranded DNA. Interestingly, they can remove U linked with deoxyribose from single-stranded RNA backbone, suggesting that the riboses on the backbone have less effect on the recognition of dU and hydrolysis of the C-N glycosidic bond. However, the removal of rU from DNA backbone is inefficient, suggesting strong steric hindrance comes from the 2' hydroxyl of ribose linked to uracil. Both SacUDGs cannot remove 2,2'-anhydro uridine, hypoxanthine, and 7-deazaxanthine from single-stranded DNA and single-stranded DNA. Compared with the family 2 MUG, other family UDGs have an extra N-terminal structure consisting of about 50 residues. Removal of the 46 N-terminal residues of family 5 SacUDG resulted in only a 40% decrease in activity, indicating that the [4Fe-4S] cluster and truncated secondary structure are not the key elements in hydrolyzing the glycosidic bond. Combining our biochemical and structural results with those of other groups, we discussed the UDGs' catalytic mechanism and the possible repair reactions of deaminated bases in prokaryotes.

  8. Using MUSIC and CC(CONH for Backbone Assignment of Two Medium-Sized Proteins Not Fully Accessible to Standard 3D NMR

    Directory of Open Access Journals (Sweden)

    Annette K. Brenner

    2014-06-01

    Full Text Available The backbone assignment of medium-sized proteins is rarely as straightforward as that of small proteins, and thus often requires creative solutions. Here, we describe the application of a combination of standard 3D heteronuclear methods with CC(CONH and a variety of MUltiplicity Selective In-phase Coherence transfer (MUSIC experiments. Both CC(CONH and MUSIC are, in theory, very powerful methods for the backbone assignment of proteins. Due to low sensitivity, their use has usually been linked to small proteins only. However, we found that combining CC(CONH and MUSIC experiments simplified the assignment of two challenging medium-sized proteins of 13 and 19.5 kDa, respectively. These methods are to some extent complementary to each other: CC(CONH acquired with a long isotropic mixing time can identify amino acids with large aliphatic side chains. Whereas the most sensitive MUSIC experiments identify amino acid types that cannot be detected by CC(CONH, comprising the residues with acid and amide groups, and aromatic rings in their side chains. Together these methods provide a means of identifying the majority of peaks in the 2D 15N HSQC spectrum which simplifies the backbone assignment work even for proteins, e.g., small kinases, whose standard spectra resulted in little spectral resolution and low signal intensities.

  9. Wind Turbine Blade with Angled Girders

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a reinforced blade for a wind turbine, particularly to a blade having a new arrangement of two or more girders in the blade, wherein each of the girders is connected to the upper part and the lower part of the shell and forms an angle with another girder thereby...

  10. Incidence angle normalization of radar backscatter data

    Science.gov (United States)

    NASA’s Soil Moisture Passive Active (SMAP) satellite (~2014) will include a radar system that will provide L-band multi-polarization backscatter at a constant incidence angle of 40º. During the pre-launch phase of the project there is a need for observations that will support the radar-based soil mo...

  11. Constant Angle Surfaces in the Heisenberg Group

    Institute of Scientific and Technical Information of China (English)

    Johan FASTENAKELS; Marian Ioan MUNTEANU; Joeri VAN DER VEKEN

    2011-01-01

    In this article we extend the notion of constant angle surfaces in S2 × R and H2 × R to general Bianchi-Cartan-Vranceanu spaces. We show that these surfaces have constant Gaussian curvature and we give a complete local classification in the Heisenberg group.

  12. A thin-film magnetoresistive angle detector

    NARCIS (Netherlands)

    Eijkel, Kees J.M.; Wieberdink, Johan W.; Fluitman, Jan H.J; Popma, Theo J.A.; Groot, Peter; Leeuwis, Henk

    1990-01-01

    An overview is given of the results of our research on a contactless angle detector based on the anisotropic magnetoresistance effect (AMR effect) in a permalloy thin film. The results of high-temperature annealing treatment of the pemalloy film are discussed. Such a treatment suppresses the effects

  13. Testing CMB polarization data using position angles

    CERN Document Server

    Preece, Michael

    2014-01-01

    We consider a novel null test for contamination which can be applied to CMB polarization data that involves analysis of the statistics of the polarization position angles. Specifically, we will concentrate on using histograms of the measured position angles to illustrate the idea. Such a test has been used to identify systematics in the NVSS point source catalogue with an amplitude well below the noise level. We explore the statistical properties of polarization angles in CMB maps. If the polarization angle is not correlated between pixels, then the errors follow a simple $\\sqrt{N_{pix}}$ law. However this is typically not the case for CMB maps since these have correlations which result in an increase in the variance since the effective number of independent pixels is reduced. Then we illustrate how certain classes of systematic errors can result in very obvious patterns in these histograms, and thus that these errors could possibly be identified using this method. We discuss how this idea might be applied in...

  14. Statistical analysis of Contact Angle Hysteresis

    Science.gov (United States)

    Janardan, Nachiketa; Panchagnula, Mahesh

    2015-11-01

    We present the results of a new statistical approach to determining Contact Angle Hysteresis (CAH) by studying the nature of the triple line. A statistical distribution of local contact angles on a random three-dimensional drop is used as the basis for this approach. Drops with randomly shaped triple lines but of fixed volumes were deposited on a substrate and their triple line shapes were extracted by imaging. Using a solution developed by Prabhala et al. (Langmuir, 2010), the complete three dimensional shape of the sessile drop was generated. A distribution of the local contact angles for several such drops but of the same liquid-substrate pairs is generated. This distribution is a result of several microscopic advancing and receding processes along the triple line. This distribution is used to yield an approximation of the CAH associated with the substrate. This is then compared with measurements of CAH by means of a liquid infusion-withdrawal experiment. Static measurements are shown to be sufficient to measure quasistatic contact angle hysteresis of a substrate. The approach also points towards the relationship between microscopic triple line contortions and CAH.

  15. Measurement of the angle alpha at BABAR

    CERN Document Server

    Pérez, A

    2009-01-01

    We present recent measurements of the CKM angle alpha using data collected by the BABAR detector at the PEP-II asymmetric-energy e^+e^- collider at the SLAC National Accelerator Laboratory, operating at the Upsilon(4S) resonance. We present constraints on alpha from B->pipi, B->rhorho and B->rhopi decays.

  16. Contact Angle Effects in Boiling Heat Transfer

    OpenAIRE

    Urquiola, Erwin; Fujita, Yasunobu

    2002-01-01

    This paper reports boiling experiments with pure water and surfactant solutions of SDS on horizontal heating surface. The static contact angle, rather than the surface tension value, was found to be the leading factor for the results and probably its prev

  17. Molecular mechanisms underlying primary open angle glaucoma

    NARCIS (Netherlands)

    Janssen, S.F.

    2014-01-01

    Primary open angle glaucoma (POAG) is a complex, multigenetic and heterogeneous optic neuropathy. It is an insidious disease that untreated leads to irreversible visual field loss and blindness. Worldwide, glaucoma causes around 12% of blindness. Although various risk factors have been established,

  18. [Cerebellopontine angle meningeal melanocytoma: a benign tumor?].

    Science.gov (United States)

    González-Tortosa, J; Ferri-Níguez, B; Ros de San Pedro, J

    2009-08-01

    We report a case of a rare meningeal melanocytoma in the cerebellopontine angle. One year after tumor gross total removal, the patient suffered a sudden and devastating meningeal melanomatosis. The relevant literature is reviewed looking for the keys to establish preoperative diagnosis and to obtain information about its treatment and postsurgical management.

  19. Camber Angle Inspection for Vehicle Wheel Alignments

    Science.gov (United States)

    Young, Jieh-Shian; Hsu, Hong-Yi; Chuang, Chih-Yuan

    2017-01-01

    This paper introduces an alternative approach to the camber angle measurement for vehicle wheel alignment. Instead of current commercial approaches that apply computation vision techniques, this study aims at realizing a micro-control-unit (MCU)-based camber inspection system with a 3-axis accelerometer. We analyze the precision of the inspection system for the axis misalignments of the accelerometer. The results show that the axes of the accelerometer can be aligned to the axes of the camber inspection system imperfectly. The calibrations that can amend these axis misalignments between the camber inspection system and the accelerometer are also originally proposed since misalignments will usually happen in fabrications of the inspection systems. During camber angle measurements, the x-axis or z-axis of the camber inspection system and the wheel need not be perfectly aligned in the proposed approach. We accomplished two typical authentic camber angle measurements. The results show that the proposed approach is applicable with a precision of ±0.015∘ and therefore facilitates the camber measurement process without downgrading the precision by employing an appropriate 3-axis accelerometer. In addition, the measured results of camber angles can be transmitted via the medium such as RS232, Bluetooth, and Wi-Fi. PMID:28165365

  20. Camber Angle Inspection for Vehicle Wheel Alignments

    Directory of Open Access Journals (Sweden)

    Jieh-Shian Young

    2017-02-01

    Full Text Available This paper introduces an alternative approach to the camber angle measurement for vehicle wheel alignment. Instead of current commercial approaches that apply computation vision techniques, this study aims at realizing a micro-control-unit (MCU-based camber inspection system with a 3-axis accelerometer. We analyze the precision of the inspection system for the axis misalignments of the accelerometer. The results show that the axes of the accelerometer can be aligned to the axes of the camber inspection system imperfectly. The calibrations that can amend these axis misalignments between the camber inspection system and the accelerometer are also originally proposed since misalignments will usually happen in fabrications of the inspection systems. During camber angle measurements, the x-axis or z-axis of the camber inspection system and the wheel need not be perfectly aligned in the proposed approach. We accomplished two typical authentic camber angle measurements. The results show that the proposed approach is applicable with a precision of ± 0.015 ∘ and therefore facilitates the camber measurement process without downgrading the precision by employing an appropriate 3-axis accelerometer. In addition, the measured results of camber angles can be transmitted via the medium such as RS232, Bluetooth, and Wi-Fi.

  1. Properties of polyimide liquid crystal alignment layer with different backbone structure%聚酰亚胺主链结构对液晶取向膜性能的影响

    Institute of Scientific and Technical Information of China (English)

    刘露露; 刘明; 龚世铭; 汪映寒

    2015-01-01

    A series polyimides (PIs)were prepared by one-step method.These PIs were comprised of a functional diamine N,N-bis (4-aminophenyl )-4-(dodecylo-xy-biphenyl )-4′-amino-phenylether (C1 2 -BAAPE),one of two commercially available diamines 2,2′-Bis(trifluoromethy-l)-4,4′-diaminobiphe-nyl (TFDB),4,4′-Oxydianiline (ODA)and one of two dianhydride 4,4′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA)and 4,4′-Oxydiphthalic anhydride (ODPA)in order to get different backbone structures.The structures and thermo properties of these PIs were characterized by NMR, FT-IR,DSC and TGA.Pretilt angles and alignment abilities were carried out by pretilt angle tester and polarization microscope.Solubility of PIs was tested by dissolving PIs in various organic solvents. DSC and TGA curves showed that PI-2 had higher glass transition temperature (T g )and decomposi-tion temperature (T d )than PI-1 and PI-3.Three PI films presented vertical alignment before mechan-ical rubbing and only PI-2 maintained it after rubbing process.Conformations of these PIs were simu-lated by Material Studio (MS).The vertical conformation existed in PI-2 ’s backbones improved rubbing resistance and showed vertical alignment ability after rubbing.%采用一步法,以 N,N-二(4-氨基苯基)-4-(十二烷氧基联苯基)-4’-氨基苯醚(C12-BAAPE)为控制预倾角的功能性二胺,2,2’-双三氟甲基-4,4’-联苯二胺(TFDB)或4,4’-二氨基二苯醚(ODA)为辅助二胺,分别与2,2’-双(3,4-二羧苯基)六氟丙烷四羧酸二酐(6FDA)和4,4’-联苯醚二酐(ODPA)聚合,得到三种主链结构不同的聚酰亚胺(PI-1、PI-2和PI-3)。利用 NMR、FT-IR、DSC、TGA、偏光显微镜和预倾角测试仪对聚合物的结构、热性能以及制备的液晶盒的取向性进行了表征,同时测试了3种 PI 的溶解性能。结果表明,PI-2液晶取向膜的耐摩擦性能明显优于 PI-1和 PI-3,且具有更高的玻璃化转变温度(T g )和分解温度(T d ),更好

  2. Protein folding with implicit crowders: a study of conformational states using the Wang-Landau method.

    Science.gov (United States)

    Hoppe, Travis; Yuan, Jian-Min

    2011-03-10

    In this paper we introduce the idea of the implicit crowding method to study the statistical mechanical behaviors of folding of β-sheet peptides. Using a simple bead-lattice model, we are able to consider, separately, the conformational entropy involving the bond angles along the backbone and the orientational entropy associated with the dihedral angles. We use a Ising-like model to partially account for the dihedral angle entropy and, implicitly, the hydrogen-bond formations. We also compare our results to recent experiments and find good quantitative agreement on the predicted folded fraction. On the basis of the predictions from the scaled particle theory, we investigate changes in the melting temperature of the protein, suggesting crowding enhanced stability for a variant of trpzip hairpin and a slight instability for the larger β-sheet designed proteins.

  3. n Silico Analysis of Envelope Dengue Virus-2 and Envelope Dengue Virus-3 Protein as the Backbone of Dengue Virus Tetravalent Vaccine by Using Homology Modeling Method

    Directory of Open Access Journals (Sweden)

    Rizky I. Taufik

    2009-01-01

    Full Text Available Problem statement: Dengue fever, which was caused by Dengue virus infection, had became a major public health problem in the tropic and subtropical countries. Dengue virus (DENV had four serotypes (DENV-1, DENV-2, DENV-3 and DENV-4, based on their immunogenic in the human body. Preventive measure will be necessary to decrease the prevalence of dengue fever, by developing modern vaccine. Approach: This research was focused on in silico study of dengue virus vaccines, by using envelope (E protein of DENV-2 and DENV-3 as their backbones. T cell epitope prediction was determined by using MULTIPRED server and B cell epitope prediction was determined by using Conformational Epitope Prediction server (CEP. Homology modeling study of E DENV-3 protein as the vaccine backbone had produced six dengue vaccine peptides (HMM Vaccine 1-6. Moreover, homology modeling study of E DENV-2 protein as vaccine backbone had produced six dengue vaccine peptides (ANN vaccine 1-6. Results: The BLAST analysis of HMM and ANN vaccines had produced 93% and 91% identity, respectively. The Ramachandran Plot of both vaccines had shown less than 15% non glycine residue in the disallowed region, therefore it showed the solid stability of the proteins. The VAST analysis of E DENV-3 backbone vaccines had determined, that HMM4 and HMM6 had the highest structure similarity with native E DENV-3. HMM4 and HMM6 had the highest VAST score of 64.5. Moreover, the VAST analysis of E DENV-2 backbone vaccines had determined, that ANN1, ANN3, ANN4, ANN5 and ANN6 had the highest structure similarity with native E DENV-2. ANN1, ANN3, ANN4, ANN5 and ANN6 have the highest VAST score of 64.7. Conclusion/Recommendation: It could be inferred from this research that HMM4; HMM6; ANN1; ANN3; ANN4; ANN5; and ANN6 were the best in silico vaccine design, based on their similarity with native E DENV Proteins. This research could be applied for the wet

  4. Small-angle neutron scattering investigation of polyurethane aged in dry and wet air

    Directory of Open Access Journals (Sweden)

    Q. Tian

    2014-05-01

    Full Text Available The microstructures of Estane 5703 aged at 70°C in dry and wet air have been studied by small-angle neutron scattering. The samples were swollen in deuterated toluene for enhancing the contrast. The scattering data show the characteristic domain structure of polyurethanes consisting of soft and hard segments. Debye-Anderson-Brumberger function used with hard sphere structure factor, and the Teubner-Strey model are used to analyze the two-phase domain structure of the polymer. The combined effects of temperature and humidity have a strong disruption effect on the microstructures of Estane. For the sample aged at 70°C in wet air for 1 month, the domain size, described by the correlation length, increases from 2.3 to 3.8 nm and their distance, expressed by hard-sphere interaction radius, increases from 8.4 to 10.6 nm. The structure development is attributed to degradation of polymer chains as revealed by gel permeation chromatography. The hydrolysis of ester links on polymer backbone at 70°C in the presence of water humidity is the main reason for the changes of the microstructure. These findings can contribute to developing predictive models for the safety, performance, and lifetime of polyurethanes.

  5. Structure of fully protonated proteins by proton-detected magic-angle spinning NMR.

    Science.gov (United States)

    Andreas, Loren B; Jaudzems, Kristaps; Stanek, Jan; Lalli, Daniela; Bertarello, Andrea; Le Marchand, Tanguy; Cala-De Paepe, Diane; Kotelovica, Svetlana; Akopjana, Inara; Knott, Benno; Wegner, Sebastian; Engelke, Frank; Lesage, Anne; Emsley, Lyndon; Tars, Kaspars; Herrmann, Torsten; Pintacuda, Guido

    2016-08-16

    Protein structure determination by proton-detected magic-angle spinning (MAS) NMR has focused on highly deuterated samples, in which only a small number of protons are introduced and observation of signals from side chains is extremely limited. Here, we show in two fully protonated proteins that, at 100-kHz MAS and above, spectral resolution is high enough to detect resolved correlations from amide and side-chain protons of all residue types, and to reliably measure a dense network of (1)H-(1)H proximities that define a protein structure. The high data quality allowed the correct identification of internuclear distance restraints encoded in 3D spectra with automated data analysis, resulting in accurate, unbiased, and fast structure determination. Additionally, we find that narrower proton resonance lines, longer coherence lifetimes, and improved magnetization transfer offset the reduced sample size at 100-kHz spinning and above. Less than 2 weeks of experiment time and a single 0.5-mg sample was sufficient for the acquisition of all data necessary for backbone and side-chain resonance assignment and unsupervised structure determination. We expect the technique to pave the way for atomic-resolution structure analysis applicable to a wide range of proteins.

  6. Selectively dispersed isotope labeling for protein structure determination by magic angle spinning NMR

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, Matthew T. [Massachusetts Institute of Technology, Department of Chemistry (United States); Belenky, Marina [Brandeis University, Department of Chemistry (United States); Sivertsen, Astrid C. [Massachusetts Institute of Technology, Francis Bitter Magnet Laboratory (United States); Griffin, Robert G. [Massachusetts Institute of Technology, Department of Chemistry (United States); Herzfeld, Judith, E-mail: herzfeld@brandeis.edu [Brandeis University, Department of Chemistry (United States)

    2013-10-15

    The power of nuclear magnetic resonance spectroscopy derives from its site-specific access to chemical, structural and dynamic information. However, the corresponding multiplicity of interactions can be difficult to tease apart. Complimentary approaches involve spectral editing on the one hand and selective isotope substitution on the other. Here we present a new 'redox' approach to the latter: acetate is chosen as the sole carbon source for the extreme oxidation numbers of its two carbons. Consistent with conventional anabolic pathways for the amino acids, [1-{sup 13}C] acetate does not label {alpha} carbons, labels other aliphatic carbons and the aromatic carbons very selectively, and labels the carboxyl carbons heavily. The benefits of this labeling scheme are exemplified by magic angle spinning spectra of microcrystalline immunoglobulin binding protein G (GB1): the elimination of most J-couplings and one- and two-bond dipolar couplings provides narrow signals and long-range, intra- and inter-residue, recoupling essential for distance constraints. Inverse redox labeling, from [2-{sup 13}C] acetate, is also expected to be useful: although it retains one-bond couplings in the sidechains, the removal of CA-CO coupling in the backbone should improve the resolution of NCACX spectra.

  7. Experimental Validation of the Invariance of Electrowetting Contact Angle Saturation

    NARCIS (Netherlands)

    Chevalliot, S.; Dhindsa, M.; Kuiper, S.; Heikenfeld, J.

    2011-01-01

    Basic electrowetting theory predicts that a continued increase in applied voltage will allow contact angle modulation to zero degrees. In practice, the effect of contact angle saturation has always been observed to limit the contact angle modulation, often only down to a contact angle of 60 to 70°.

  8. The Deuterator: software for the determination of backbone amide deuterium levels from H/D exchange MS data

    Directory of Open Access Journals (Sweden)

    Tsinoremas NF

    2007-05-01

    Full Text Available Abstract Background The combination of mass spectrometry and solution phase amide hydrogen/deuterium exchange (H/D exchange experiments is an effective method for characterizing protein dynamics, and protein-protein or protein-ligand interactions. Despite methodological advancements and improvements in instrumentation and automation, data analysis and display remains a tedious process. The factors that contribute to this bottleneck are the large number of data points produced in a typical experiment, each requiring manual curation and validation, and then calculation of the level of backbone amide exchange. Tools have become available that address some of these issues, but lack sufficient integration, functionality, and accessibility required to address the needs of the H/D exchange community. To date there is no software for the analysis of H/D exchange data that comprehensively addresses these issues. Results We have developed an integrated software system for the automated analysis and representation of H/D exchange data that has been titled "The Deuterator". Novel approaches have been implemented that enable high throughput analysis, automated determination of deuterium incorporation, and deconvolution of overlapping peptides. This has been achieved by using methods involving iterative theoretical envelope fitting, and consideration of peak data within expected m/z ranges. Existing common file formats have been leveraged to allow compatibility with the output from the myriad of MS instrument platforms and peptide sequence database search engines. A web-based interface is used to integrate the components of The Deuterator that are able to analyze and present mass spectral data from instruments with varying resolving powers. The results, if necessary, can then be confirmed, adjusted, re-calculated and saved. Additional tools synchronize the curated calculation parameters with replicate time points, increasing throughput. Saved results can then

  9. Tridentate Lewis Acids Based on 1,3,5-Trisilacyclohexane Backbones and an Example of Their Host-Guest Chemistry.

    Science.gov (United States)

    Weisheim, Eugen; Reuter, Christian G; Heinrichs, Peter; Vishnevskiy, Yury V; Mix, Andreas; Neumann, Beate; Stammler, Hans-Georg; Mitzel, Norbert W

    2015-08-24

    Directed tridentate Lewis acids based on the 1,3,5-trisilacyclohexane skeleton with three ethynyl groups [CH2Si(Me)(C2H)]3 were synthesised and functionalised by hydroboration with HB(C6F5)2, yielding the ethenylborane {CH2Si(Me)[C2H2B(C6F5)2]}3, and by metalation with gallium and indium organyls affording {CH2Si(Me)[C2M(R)2]}3 (M = Ga, In, R = Me, Et). In the synthesis of the backbone the influence of substituents (MeO, EtO and iPrO groups at Si) on the orientation of the methyl group was studied with the aim to increase the abundance of the all-cis isomer. New compounds were identified by elemental analyses, multi-nuclear NMR spectroscopy and in some cases by IR spectroscopy. Crystal structures were obtained for cis-trans-[CH2Si(Me)(Cl)]3, all-cis-[CH2Si(Me)(H)]3, all-cis-[CH2Si(Me)(C2H)]3, cis-trans-[CH2Si(Me)(C2H)]3 and all-cis-[CH2Si(Me)(C2SiMe3)]3. A gas-phase electron diffraction experiment for all-cis-[CH2Si(Me)(C2H)]3 provides information on the relative stabilities of the all-equatorial and all-axial form; the first is preferred in both solid and gas phase. The gallium-based Lewis acid {CH2Si(Me)[C2Ga(Et)2]}3 was reacted with a tridentate Lewis base (1,3,5-trimethyl-1,3,5-triazacyclohexane) in an NMR titration experiment. The generated host-guest complexes involved in the equilibria during this reaction were identified by DOSY NMR spectroscopy by comparing measured diffusion coefficients with those of the suitable reference compounds of same size and shape.

  10. On some relations between advancing, receding and Young's contact angles.

    Science.gov (United States)

    Chibowski, Emil

    2007-05-31

    Problems of experimental determination and theoretical verification of equilibrium contact angles are discussed basing on the literature data. A relationship between the advancing and receding contact angles versus the equilibrium contact angle is described and then verified using the literature contact angles determined on paraffin wax and polypropylene. Using the proposed relationship and experimentally determined equilibrium contact angles, obtained by plotting the advancing and receding contact angles versus the contact angle hysteresis or by applying vibration of the system liquid drop/solid surface, it is found that the same value of the surface free energy for paraffin wax is calculated from the contact angles of water and ethylene glycol. However, in the case of polypropylene some inconsistency appears between the equilibrium contact angles of the probe liquid used and the calculated surface free energy. More experimental data of the equilibrium contact angle are needed to verify further the relationship.

  11. Perturbation of the O-U-O Angle in Uranyl by Coordination to a 12-Membered Macrocycle.

    Science.gov (United States)

    Pedrick, Elizabeth A; Schultz, Jason W; Wu, Guang; Mirica, Liviu M; Hayton, Trevor W

    2016-06-06

    Reaction of [UO2Cl2(THF)2]2 (THF = tetrahydrofuran) with 2 equiv of (H)N4 ((H)N4 = 2,11-diaza[3,3](2,6) pyridinophane) or (Me)N4 ((Me)N4 = N,N'-dimethyl-2,11-diaza[3,3](2,6) pyridinophane), in MeCN, results in the formation of UO2Cl2((R)N4) (R = H; 1; Me, 2), which were isolated as yellow-orange solids in good yields. Similarly, reaction of UO2(OTf)2(THF)3 with (H)N4 in MeCN results in the formation of UO2(OTf)2((H)N4) (3), as an orange powder in 76% yield. Finally, reaction of UO2(OTf)2(THF)3 with (Me)N4 in THF results in the formation of [UO2(OTf)(THF)((H)N4)][OTf] (4), as an orange powder in 73% yield. Complexes 1-4 were fully characterized, including characterization by X-ray crystallography. These complexes exhibit the smallest O-U-O bond angles measured to date, ranging from 168.2(3)° (for 2) to 161.7(5)° (for 4), a consequence of an unfavorable steric interaction between the oxo ligands and the macrocycle backbone. A Raman spectroscopic study of 1-4 reveals no correlation between O-U-O angle and the U═O νsym mode. However, complexes 1 and 2 do feature lower U═O νsym modes than complexes 3 and 4, which can be rationalized by the stronger donor strength of Cl(-) versus OTf(-). This observation suggests that the identity of the equatorial ligands has a greater effect on the U═O νsym frequency than does a change in O-U-O angle, at least when the changes in the O-U-O angles are small.

  12. Contact angle and contact angle hysteresis measurements using the capillary bridge technique.

    Science.gov (United States)

    Restagno, Frédéric; Poulard, Christophe; Cohen, Céline; Vagharchakian, Laurianne; Léger, Liliane

    2009-09-15

    A new experimental technique is proposed to easily measure both advancing and receding contact angles of a liquid on a solid surface, with unprecedented accuracy. The technique is based on the analysis of the evolution of a capillary bridge formed between a liquid bath and a solid surface (which needs to be spherical) when the distance between the surface and the liquid bath is slowly varied. The feasibility of the technique is demonstrated using a low-energy perfluorinated surface with two different test liquids (water and hexadecane). A detailed description of both experimental procedures and computational modeling are given, allowing one to determine contact angle values. It is shown that the origin of the high accuracy of this technique relies on the fact that the contact angles are automatically averaged over the whole periphery of the contact. This method appears to be particularly adapted to the characterization of surfaces with very low contact angle hysteresis.

  13. The Contact Angle in Inviscid Fluid Mechanics

    Indian Academy of Sciences (India)

    P N Shankar; R Kidambi

    2005-05-01

    We show that in general, the specification of a contact angle condition at the contact line in inviscid fluid motions is incompatible with the classical field equations and boundary conditions generally applicable to them. The limited conditions under which such a specification is permissible are derived;however, these include cases where the static meniscus is not flat. In view of this situation, the status of the many `solutions’ in the literature which prescribe a contact angle in potential flows comes into question. We suggest that these solutions which attempt to incorporate a phenomenological, but incompatible, condition are in some, imprecise sense `weak-type solutions’;they satisfy or are likely to satisfy, at least in the limit, the governing equations and boundary conditions everywhere except in the neighbourhood of the contact line. We discuss the implications of the result for the analysis of inviscid flows with free surfaces.

  14. The small angle diffractometer SANS at PSI

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    With the start-up of SINQ an instrument for small angle neutron scattering will be operational which compares well with the world`s largest and most powerful facilities of this kind. Following the classical principle of the D11-instrument of ILL, it is equipped with state-of-the-art components as are nowadays available, including options for further upgrading. Great emphasis was laid upon providing a flexible, universal multi-user facility which guarantees a comfortable and reliable operation. In the present paper, the principle layout of the instrument is presented, and the individual components are described in detail. The paper concludes with model application of small angle scattering to a system of dilute CuCo alloys which undergo a phase separation under thermal treatment, forming spherical Co-precipitates dispersed in a Cu-rich matrix. (author) 3 figs., 1 tab., 14 refs.

  15. Absorbing angles, Steiner minimal trees, and antipodality

    CERN Document Server

    Martini, Horst; de Wet, P Oloff; 10.1007/s10957-009-9552-1

    2011-01-01

    We give a new proof that a star $\\{op_i:i=1,...,k\\}$ in a normed plane is a Steiner minimal tree of its vertices $\\{o,p_1,...,p_k\\}$ if and only if all angles formed by the edges at o are absorbing [Swanepoel, Networks \\textbf{36} (2000), 104--113]. The proof is more conceptual and simpler than the original one. We also find a new sufficient condition for higher-dimensional normed spaces to share this characterization. In particular, a star $\\{op_i: i=1,...,k\\}$ in any CL-space is a Steiner minimal tree of its vertices $\\{o,p_1,...,p_k\\}$ if and only if all angles are absorbing, which in turn holds if and only if all distances between the normalizations $\\frac{1}{\\|p_i\\|}p_i$ equal 2. CL-spaces include the mixed $\\ell_1$ and $\\ell_\\infty$ sum of finitely many copies of $R^1$.

  16. Reactor mixing angle from hybrid neutrino masses

    CERN Document Server

    Sierra, D Aristizabal

    2014-01-01

    In terms of its eigenvector decomposition, the neutrino mass matrix (in the basis where the charged lepton mass matrix is diagonal) can be understood as originating from a tribimaximal dominant structure with small deviations, as demanded by data. If neutrino masses originate from at least two different mechanisms, referred to as "hybrid neutrino masses", the experimentally observed structure naturally emerges provided one mechanism accounts for the dominant tribimaximal structure while the other is responsible for the deviations. We demonstrate the feasibility of this picture in a fairly model-independent way by using lepton-number-violating effective operators, whose structure we assume becomes dictated by an underlying $A_4$ flavor symmetry. We show that if a second mechanism is at work, the requirement of generating a reactor angle within its experimental range always fixes the solar and atmospheric angles in agreement with data, in contrast to the case where the deviations are induced by next-to-leading ...

  17. Picoliter water contact angle measurement on polymers.

    Science.gov (United States)

    Taylor, Michael; Urquhart, Andrew J; Zelzer, Mischa; Davies, Martyn C; Alexander, Morgan R

    2007-06-19

    Water contact angle measurement is the most common method for determining a material's wettability, and the sessile drop approach is the most frequently used. However, the method is generally limited to macroscopic measurements because the base diameter of the droplet is usually greater than 1 mm. Here we report for the first time on a dosing system to dispense smaller individual droplets with control of the position and investigate whether water contact angles determined from picoliter volume water droplets are comparable with those obtained from the conventional microliter volume water droplets. This investigation was conducted on a group of commonly used polymers. To demonstrate the higher spatial resolution of wettability that can be achieved using picoliter volume water droplets, the wettability of a radial plasma polymer gradient was mapped using a 250 microm interval grid.

  18. Gaia: focus, straylight and basic angle

    CERN Document Server

    Mora, A; Bombrun, A; Boyadian, J; Chassat, F; Corberand, P; Davidson, M; Doyle, D; Escolar, D; Gielesen, W L M; Guilpain, T; Hernandez, J; Kirschner, V; Klioner, S A; Koeck, C; Laine, B; Lindegren, L; Serpell, E; Tatry, P; Thoral, P

    2016-01-01

    The Gaia all-sky astrometric survey is challenged by several issues affecting the spacecraft stability. Amongst them, we find the focus evolution, straylight and basic angle variations Contrary to pre-launch expectations, the image quality is continuously evolving, during commissioning and the nominal mission. Payload decontaminations and wavefront sensor assisted refocuses have been carried out to recover optimum performance. An ESA-Airbus DS working group analysed the straylight and basic angle issues and worked on a detailed root cause analysis. In parallel, the Gaia scientists have also analysed the data, most notably comparing the BAM signal to global astrometric solutions, with remarkable agreement. In this contribution, a status review of these issues will be provided, with emphasis on the mitigation schemes and the lessons learned for future space missions where extreme stability is a key requirement.

  19. Gaia: focus, straylight and basic angle

    Science.gov (United States)

    Mora, A.; Biermann, M.; Bombrun, A.; Boyadjian, J.; Chassat, F.; Corberand, P.; Davidson, M.; Doyle, D.; Escolar, D.; Gielesen, W. L. M.; Guilpain, T.; Hernandez, J.; Kirschner, V.; Klioner, S. A.; Koeck, C.; Laine, B.; Lindegren, L.; Serpell, E.; Tatry, P.; Thoral, P.

    2016-07-01

    The Gaia all-sky astrometric survey is challenged by several issues affecting the spacecraft stability. Amongst them, we find the focus evolution, straylight and basic angle variations Contrary to pre-launch expectations, the image quality is continuously evolving, during commissioning and the nominal mission. Payload decontaminations and wavefront sensor assisted refocuses have been carried out to recover optimum performance. An ESA-Airbus DS working group analysed the straylight and basic angle issues and worked on a detailed root cause analysis. In parallel, the Gaia scientists have also analysed the data, most notably comparing the BAM signal to global astrometric solutions, with remarkable agreement. In this contribution, a status review of these issues will be provided, with emphasis on the mitigation schemes and the lessons learned for future space missions where extreme stability is a key requirement.

  20. Sparse regularization in limited angle tomography

    CERN Document Server

    Frikel, Jürgen

    2011-01-01

    We investigate the reconstruction problem of limited angle tomography. Such problems arise naturally in applications like digital breast tomosynthesis, dental tomography, electron microscopy etc. Since the acquired tomographic data is highly incomplete, the reconstruction problem is severely ill-posed and the traditional reconstruction methods, such as filtered backprojection (FBP), do not perform well in such situations. To stabilize the reconstruction procedure additional prior knowledge about the unknown object has to be integrated into the reconstruction process. In this work, we propose the use of the sparse regularization technique in combination with curvelets. We argue that this technique gives rise to an edge-preserving reconstruction. Moreover, we show that the dimension of the problem can be significantly reduced in the curvelet domain. To this end, we give a characterization of the kernel of limited angle Radon transform in terms of curvelets and derive a characterization of solutions obtained thr...

  1. AGN jet physics and apparent opening angles

    CERN Document Server

    Clausen-Brown, Eric; Pushkarev, Alexander B; Kovalev, Yuri Y; Lister, Matthew L

    2013-01-01

    We present a new method to measure Gamma*theta_j in flux-limited samples of active galactic nuclei (AGN) jets, where Gamma is the bulk Lorentz factor and theta_j is the jet's half-opening angle. The Gamma*theta_j parameter is physically important for models of jet launching, and also determines the effectiveness of jet instabilities and magnetic reconnection. We measure Gamma*theta_j by analyzing the observed distribution of apparent opening angles in very long baseline interferometry (VLBI) flux-limited samples of jets, given some prior knowledge of the active galactic nuclei (AGN) radio luminosity function. We then apply this method to the MOJAVE flux-limited sample of radio loud objects and find Gamma*theta_j = 0.1 +- 0.03, which implies that AGN jets are subject to a variety of physical processes that require causal connection.

  2. Wireless Orbiter Hang-Angle Inclinometer System

    Science.gov (United States)

    Lucena, Angel; Perotti, Jose; Green, Eric; Byon, Jonathan; Burns, Bradley; Mata, Carlos; Randazzo, John; Blalock, Norman

    2011-01-01

    A document describes a system to reliably gather the hang-angle inclination of the orbiter. The system comprises a wireless handheld master station (which contains the main station software) and a wireless remote station (which contains the inclinometer sensors, the RF transceivers, and the remote station software). The remote station is designed to provide redundancy to the system. It includes two RF transceivers, two power-management boards, and four inclinometer sensors.

  3. Black hole microstates from branes at angle

    CERN Document Server

    Pieri, Lorenzo

    2016-01-01

    We derive the leading g_s perturbation of the SUGRA fields generated by a supersymmetric configuration of respectively 1, 2 or 4 D3-branes intersecting at an arbitrary angle via the computation of the string theory disk scattering amplitude of one massless NSNS field interacting with open strings stretched between the branes. The configuration with four branes is expected to be relevant for black hole microstate counting in four dimensions.

  4. Target Localization Based on Angle of Arrivals

    Institute of Scientific and Technical Information of China (English)

    Yi-Chao Cao

    2007-01-01

    Mobile location using angle of arrival (AOA) measurements has received considerable attention. This paper presents an approximation of maximum likelihood estimator (MLE) for localizing a source based on AOA measurements. By introducing an intermediate variable, the nonlinear equations relating AOA estimates can be transformed into a set of equations which are linear in the unknown parameters. It is an approximate realization of the MLE. Simulations show that the proposed algorithm outperforms the previous contribution.

  5. On accurate determination of contact angle

    Science.gov (United States)

    Concus, P.; Finn, R.

    1992-01-01

    Methods are proposed that exploit a microgravity environment to obtain highly accurate measurement of contact angle. These methods, which are based on our earlier mathematical results, do not require detailed measurement of a liquid free-surface, as they incorporate discontinuous or nearly-discontinuous behavior of the liquid bulk in certain container geometries. Physical testing is planned in the forthcoming IML-2 space flight and in related preparatory ground-based experiments.

  6. Contact angle hysteresis at the nanometer scale.

    Science.gov (United States)

    Delmas, Mathieu; Monthioux, Marc; Ondarçuhu, Thierry

    2011-04-01

    Using atomic force microscopy with nonconventional carbon tips, the pinning of a liquid contact line on individual nanometric defects was studied. This mechanism is responsible for the occurrence of the contact angle hysteresis. The presence of weak defects which do not contribute to the hysteresis is evidenced for the first time. The dissipated energy associated with strong defects is also measured down to values in the range of kT, which correspond to defect sizes in the order of 1 nm.

  7. Primary open-angle glaucoma genes

    OpenAIRE

    Fingert, J.H.

    2011-01-01

    A substantial fraction of glaucoma has a genetic basis. About 5% of primary open angle glaucoma (POAG) is currently attributed to single-gene or Mendelian forms of glaucoma (ie glaucoma caused by mutations in myocilinor optineurin). Mutations in these genes have a high likelihood of leading to glaucoma and are rarely seen in normal subjects. Other cases of POAG have a more complex genetic basis and are caused by the combined effects of many genetic and environmental risk factors, each of whic...

  8. Measurement of the angle alpha at BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Perez, A.; /Orsay, LAL

    2009-06-25

    The authors present recent measurements of the CKM angle {alpha} using data collected by the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} collider at the SLAC National Accelerator Laboratory, operating at the {Upsilon}(4S) resonance. They present constraints on {alpha} from B {yields} {pi}{pi}, B {yields} {rho}{rho} and B {yields} {rho}{pi} decays.

  9. Off-Angle Iris Correction Methods

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Villalobos, Hector J [ORNL; Thompson, Joseph T [ORNL; Karakaya, Mahmut [ORNL; Boehnen, Chris Bensing [ORNL

    2016-01-01

    In many real world iris recognition systems obtaining consistent frontal images is problematic do to inexperienced or uncooperative users, untrained operators, or distracting environments. As a result many collected images are unusable by modern iris matchers. In this chapter we present four methods for correcting off-angle iris images to appear frontal which makes them compatible with existing iris matchers. The methods include an affine correction, a retraced model of the human eye, measured displacements, and a genetic algorithm optimized correction. The affine correction represents a simple way to create an iris image that appears frontal but it does not account for refractive distortions of the cornea. The other method account for refraction. The retraced model simulates the optical properties of the cornea. The other two methods are data driven. The first uses optical flow to measure the displacements of the iris texture when compared to frontal images of the same subject. The second uses a genetic algorithm to learn a mapping that optimizes the Hamming Distance scores between off-angle and frontal images. In this paper we hypothesize that the biological model presented in our earlier work does not adequately account for all variations in eye anatomy and therefore the two data-driven approaches should yield better performance. Results are presented using the commercial VeriEye matcher that show that the genetic algorithm method clearly improves over prior work and makes iris recognition possible up to 50 degrees off-angle.

  10. Wide Angle Effects in Galaxy Surveys

    CERN Document Server

    Yoo, Jaiyul

    2013-01-01

    Current and future galaxy surveys cover a large fraction of the entire sky with a significant redshift range, and the recent theoretical development shows that general relativistic effects are present in galaxy clustering on very large scales. This trend has renewed interest in the wide angle effect in galaxy clustering measurements, in which the distant-observer approximation is often adopted. Using the full wide-angle formula for computing the redshift-space correlation function, we show that compared to the sample variance, the deviation in the redshift-space correlation function from the simple Kaiser formula with the distant-observer approximation is negligible in the SDSS and is completely irrelevant in future galaxy surveys such as Euclid and the BigBOSS, if the theoretical prediction from the Kaiser formula is averaged over the survey volume and the non-uniform distribution of cosine angle between the line-of-sight and the pair separation directions is properly considered. We also find small correctio...

  11. Constitutive modeling of contact angle hysteresis.

    Science.gov (United States)

    Vedantam, Srikanth; Panchagnula, Mahesh V

    2008-05-15

    We introduce a phase field model of wetting of surfaces by sessile drops. The theory uses a two-dimensional non-conserved phase field variable to parametrize the Gibbs free energy of the three-dimensional system. Contact line tension and contact angle hysteresis arise from the gradient term in the free energy and the kinetic coefficient respectively. A significant advantage of this approach is in the constitutive specification of hysteresis. The advancing and receding angles of a surface, the liquid-vapor interfacial energy and three-phase line tension are the only required constitutive inputs to the model. We first simulate hysteresis on a smooth chemically homogeneous surface using this theory. Next we show that it is possible to study heterogeneous surfaces whose component surfaces are themselves hysteretic. We use this theory to examine the wetting of a surface containing a circular heterogeneous island. The contact angle for this case is found to be determined solely by the material properties at the contact line in accord with recent experimental data.

  12. Dynamic contact angle cycling homogenizes heterogeneous surfaces.

    Science.gov (United States)

    Belibel, R; Barbaud, C; Mora, L

    2016-12-01

    In order to reduce restenosis, the necessity to develop the appropriate coating material of metallic stent is a challenge for biomedicine and scientific research over the past decade. Therefore, biodegradable copolymers of poly((R,S)-3,3 dimethylmalic acid) (PDMMLA) were prepared in order to develop a new coating exhibiting different custom groups in its side chain and being able to carry a drug. This material will be in direct contact with cells and blood. It consists of carboxylic acid and hexylic groups used for hydrophilic and hydrophobic character, respectively. The study of this material wettability and dynamic surface properties is of importance due to the influence of the chemistry and the potential motility of these chemical groups on cell adhesion and polymer kinetic hydrolysis. Cassie theory was used for the theoretical correction of contact angles of these chemical heterogeneous surfaces coatings. Dynamic Surface Analysis was used as practical homogenizer of chemical heterogeneous surfaces by cycling during many cycles in water. In this work, we confirmed that, unlike receding contact angle, advancing contact angle is influenced by the difference of only 10% of acidic groups (%A) in side-chain of polymers. It linearly decreases with increasing acidity percentage. Hysteresis (H) is also a sensitive parameter which is discussed in this paper. Finally, we conclude that cycling provides real information, thus avoiding theoretical Cassie correction. H(10)is the most sensible parameter to %A.

  13. The Brewster angle effect in SAR polarimetry

    Science.gov (United States)

    Chapman, B.

    1993-01-01

    For the double bounce case, where the radar signal is reflected twice before returning to the radar antenna, some polarization effects may be observed related to the dielectric constant of the two surfaces causing the reflections. The most noticeable effect would be that the returned signal would be preferentially H polarized. In fact, it may be possible to discern the Brewster angle for both surfaces. The locations of the Brewster angle will depend on the dielectric constant and permittivity of each surface. If it is assumed that both reflections are in the same plane of incidence, and that both surfaces are smooth and flat, there is a straightforward relationship between the degree of linear polarization m and both the dielectric constants of the two reflecting surfaces and the angle of incidence of the illuminating wave: m carat = cos 2(arccot (square root of (R(sub v) / R(sub h)))) where R(sub v,h) are the V and H polarized Fresnel reflection coefficients for two surfaces perpendicular to each other. The degree of linear polarization may be calculated from AIRSAR compressed Stokes data and compared with the given equation. The degree of linear polarization may also be calculated using tree models and compared with AIRSAR data. With further work, it may be possible to use the degree of linear polarization to determine surface parameters of certain imaged areas.

  14. Protein Amyloidogenesis Investigated by Small Angle Scattering.

    Science.gov (United States)

    Ricci, Caterina; Spinozzi, Francesco; Mariani, Paolo; Ortore, Maria Grazia

    2016-01-01

    In the last decades, the study of the mechanisms inducing amyloid fibril formation has involved several experimental and theoretical biophysical approaches. Many efforts have been made by scientist at the borderline between biology, chemistry, biochemistry and physics in order to understand why and in which way a protein starts its amyloidogenic pattern. This fundamental research issue is evolving in parallel to the development of drugs and inhibitors able to modify protein self assembly towards amyloid fibrils. Small angle xray and neutron scattering experiments represent suitable methods to investigate protein amyloidogenesis and the possible effects of inhibitors: they are in-solution techniques, require low amount of sample and their time-resolution makes it possible to follow aggregation pattern. In this paper we review small angle x-ray and neutron scattering studies dedicated to investigate amyloid β peptide and α-synuclein, related to Alzheimer`s and Parkinson`s diseases, respectively, together with some other studies that introduced innovative models to describe with small angle scattering techniques amyloid fibrillation processes.

  15. Pair Creation at Large Inherent Angles

    Energy Technology Data Exchange (ETDEWEB)

    Chen, P.; Tauchi, T.; Schroeder, D.V.; /SLAC

    2007-04-25

    In the next-generation linear colliders, the low-energy e{sup +}e{sup -} pairs created during the collision of high-energy e{sup +}e{sup -} beams would cause potential deleterious background problems to the detectors. At low collider energies, the pairs are made essentially by the incoherent process, where the pair is created by the interaction of beamstrahlung photons on the individual particles in the oncoming beam. This problem was first identified by Zolotarev, et al[1]. At energies where the beamstrahlung parameter {Upsilon} lies approximately in the range 0.6 {approx}< {Upsilon} {approx}< 100, pair creation from the beamstrahlung photons is dominated by a coherent process, first noted by Chen[2]. The seriousness of this pair creation problem lies in the transverse momenta that the pair particles carry when leaving the interaction point (IP) with large angles. One source of transverse momentum is from the kick by the field of the oncoming beam which results in an outcoming angle {theta} {proportional_to} 1/{radical}x, where x is the fractional energy of the particle relative to the initial beam particle energy[2,3]. As was shown in Ref. 131, there in fact exists an energy threshold for the coherent pairs, where x{sub th} {approx}> 1/2{Upsilon}. Thus within a tolerable exiting angle, there exists an upper limit for {Upsilon} where all coherent pairs would leave the detector through the exhaust port[4]. A somewhat different analysis has been done by Schroeder[5]. In the next generation of linear colliders, as it occurs, the coherent pairs can be exponentially suppressed[2] by properly choosing the {Upsilon}({approx}< 0.6). When this is achieved, the incoherent pairs becomes dominant. Since the central issue is the transverse momentum for particles with large angles, we notice that there is another source for it. Namely, when the pair particles are created at low energies, the intrinsic angles of these pairs when produced may already be large. This issue was

  16. Research on recognition of ramp angle based on transducer

    Directory of Open Access Journals (Sweden)

    Wenhao GU

    2015-12-01

    Full Text Available Focusing on the recognition of ramp angle, the relationship between the signal of vehicle transducer and real ramp angle is studied. The force change of vehicle on the ramp, and the relationship between the body tilt angle and front and rear suspension scale is discussed. According to the suspension and tire deformation, error angle of the ramp angle is deduced. A mathematical model is established with Matlab/Simulink and used for simulation to generate error curve of ramp angle. The results show that the error angle increases with the increasing of the ramp angle, and the limit value can reach 6.5%, while the identification method can effectively eliminate this error, and enhance the accuracy of ramp angle recognition.

  17. 1H, 13C and 15N backbone and side-chain chemical shift assignment of the Fyn SH2 domain and its complex with a phosphotyrosine peptide.

    Science.gov (United States)

    Huculeci, Radu; Buts, Lieven; Lenaerts, Tom; van Nuland, Nico A J

    2011-10-01

    SH2 domains are interaction modules uniquely dedicated to recognize phosphotyrosine sites, playing a central role in for instance the activation of tyrosine kinases or phosphatases. Here we report the (1)H, (15)N and (13)C backbone and side-chain chemical shift assignments of the SH2 domain of the human protein tyrosine kinase Fyn, both in its free state and bound to a high-affinity phosphotyrosine peptide corresponding to a specific sequence in the hamster middle-T antigen. The BMRB accession numbers are 17,368 and 17,369, respectively.

  18. Direct Formation of the C5′-Radical in the Sugar-Phosphate Backbone of DNA by High Energy Radiation

    Science.gov (United States)

    Adhikary, Amitava; Becker, David; Palmer, Brian J.; Heizer, Alicia N.; Sevilla, Michael D.

    2012-01-01

    Neutral sugar radicals formed in DNA sugar-phosphate backbone are well-established as precursors of biologically important damage such as DNA-strand scission and crosslinking. In this work, we present electron spin resonance (ESR) evidence showing that the sugar radical at C5′ (C5′•) is one of the most abundant (ca. 30%) sugar radicals formed by γ- and Ar ion-beam irradiated hydrated DNA samples. Taking dimethyl phosphate as a model of sugar-phosphate backbone, ESR and theoretical (DFT) studies of γ-irradiated dimethyl phosphate were carried out. CH3OP(O2−)OCH2• is formed via deprotonation from the methyl group of directly ionized dimethyl phosphate at 77 K. Formation of CH3OP(O2−)OCH2• is independent of dimethyl phosphate concentration (neat or in aqueous solution) or pH. ESR spectra of C5′• found in DNA and of CH3OP(O2−)OCH2• do not show an observable β-phosphorous hyperfine coupling (HFC). Further, C5′• found in DNA does not show a significant C4′-H β–proton HFC. Applying the DFT/B3LYP/6-31G(d) method, a study of conformational dependence of the phosphorous HFC in CH3OP(O2−)OCH2• shows that in its minimum energy conformation, CH3OP(O2−)OCH2• has a negligible β-phosphorous HFC. Based on these results, formation of radiation-induced C5′• is proposed to occur via a very rapid deprotonation from the directly ionized sugar-phosphate backbone and rate of this deprotonation must be faster than that of energetically downhill transfer of the unpaired spin (hole) from ionized sugar-phosphate backbone to the DNA bases. Moreover, C5′• in irradiated DNA is found to be in a conformation that does not exhibit β proton or β phosphorous HFCs. PMID:22553971

  19. Effects of a vanadium post-metallocene catalyst-induced polymer backbone inhomogeneity on UV oxidative degradation of the resulting polyethylene film

    KAUST Repository

    Atiqullah, M.

    2012-07-01

    A Group 5 post-metallocene precatalyst, (ONO)VCl(THF) 2 (ONO = a bis(phenolate)pyridine LX 2 pincer ligand), activated with modified methylaluminoxane (MMAO-3A) produced a linear ethylene homopolymer (nm-HomoPE)and an unusual inhomogeneous copolymer (nm-CopolyPE) with 1-hexene having very low backbone unsaturation. The nm-CopolyPE inhomogeneity was reflected in the distributions of short chain branches, 1-hexene composition, and methylene sequence length. The 1-hexene incorporation into the polyethylene backbone strongly depended on the molecular weight of the growing polymer chain. (ONO)VCl(THF) 2, because of site diversity and easier removal of a tertiary (vs. a secondary) hydrogen, produced a skewed short chain branching (SCB) profile, incorporating 1-hexene more efficiently in the low molecular weight region than in the high molecular weight region. The significant decrease in molecular weight by 1-hexene showed that the (ONO)VCl(THF) 2 catalytic sites were also highly responsive to chain-transfer directly to 1-hexene itself, producing vinyl and trans-vinylene termini. Subsequently, the effect of backbone inhomogeneity on the UV oxidative degradation of films made from both polyethylenes was investigated. The major functional group accumulated in the branched nm-CopolyPE film was carbonyl followed by carboxyl, then vinyl/ester, whereas that in the linear nm-HomoPE film was carboxyl. However, (carbonyl, carboxyl, vinyl, and ester) nm-CopolyPE film >> (carboxyl) nm-HomoPE film). The distributions of the tertiary C-H sites and methylene sequence length in the branched nm-CopolyPE film enhanced abstraction of H, decomposition of hydroperoxide group ROOH, and generation of carbonyl compounds as compared with those in the linear nm-HomoPE film. This clearly establishes the role played by the backbone inhomogeneity. The effect of short chain branches and sequence length distributions on peak melting temperature T pm, and most probably lamellar thickness L o, was

  20. Residual dipolar couplings in short peptidic foldamers: combined analyses of backbone and side-chain conformations and evaluation of structure coordinates of rigid unnatural amino acids.

    Science.gov (United States)

    Schmid, Markus B; Fleischmann, Matthias; D'Elia, Valerio; Reiser, Oliver; Gronwald, Wolfram; Gschwind, Ruth M

    2009-02-13

    A flexible tool for rigid systems. Residual dipolar couplings (RDCs) have proven to be valuable NMR structural parameters that provide insights into the backbone conformations of short linear peptidic foldamers, as illustrated here. This study demonstrates that RDCs at natural abundance can provide essential structural information even in the case of short linear peptides with unnatural amino acids. In addition, they allow for the detection of proline side-chain conformations and are used as a quality check for the parameterizations of rigid unnatural amino acids.

  1. Determining surface wave arrival angle anomalies

    Science.gov (United States)

    Larson, Erik W. F.; Ekström, Göran

    2002-06-01

    A new method for measuring arrival angles of teleseismic Love and Rayleigh waves is developed. The new method utilizes estimates of surface wave dispersion to create a phase-matched filter to isolate the Love or Rayleigh wave in three-component recordings. The polarization of the filtered wave group is determined in the time domain by application of a variation of the complex polarization method of Vidale [1986]. Orientation, linearity, and ellipticity of particle motion are estimated in several frequency bands to determine the frequency-dependent polarization. The method employs an iterative scheme, by which a predicted Love wave, based on the estimated dispersion and polarization, is subtracted from the three-component data prior to the estimation of Rayleigh wave polarization, and vice versa. The method is applied to an extensive set of Global Seismographic Network data covering the years 1989-1998. Between 4244 and 15,075 measurements are collected for fundamental mode Love and Rayleigh waves at nine different periods (37 to 150 s). Measurement uncertainties are estimated using the statistics of observations for pairwise similar paths and are generally of the order of 15-50% of the total signal, depending on the period and the wave type. Large and azimuthally invariant angle anomalies are documented for several stations and are consistent with misorientation of the horizontal seismometers. Two schemes are employed to determine the misorientations: (1) an azimuthally weighted average at each station, and (2) a joint inversion for seismometer misorientation and globally heterogeneous phase velocities. The determined corrections are robust and correlate well with those reported in earlier studies. Azimuthally varying arrival angle anomalies are shown to agree qualitatively with predictions of wave refraction calculated for recent phase velocity maps, which explain up to 30% of the variance in the new measurements.

  2. A simple method to obtain consistent and clinically meaningful pelvic angles from euler angles during gait analysis.

    Science.gov (United States)

    Wren, Tishya A L; Mitiguy, Paul C

    2007-08-01

    Clinical gait analysis usually describes joint kinematics using Euler angles, which depend on the sequence of rotation. Studies have shown that pelvic obliquity angles from the traditional tilt-obliquity-rotation (TOR) Euler angle sequence can deviate considerably from clinical expectations and have suggested that a rotation-obliquity-tilt (ROT) Euler angle sequence be used instead. We propose a simple alternate approach in which clinical joint angles are defined and exactly calculated in terms of Euler angles from any rotation sequence. Equations were derived to calculate clinical pelvic elevation, progression, and lean angles from TOR and ROT Euler angles. For the ROT Euler angles, obliquity was exactly the same as the clinical elevation angle, rotation was similar to the clinical progression angle, and tilt was similar to the clinical lean angle. Greater differences were observed for TOR. These results support previous findings that ROT is preferable to TOR for calculating pelvic Euler angles for clinical interpretation. However, we suggest that exact clinical angles can and should be obtained through a few extra calculations as demonstrated in this technical note.

  3. Optimum Staging with Varying Thrust Attitude Angle

    Directory of Open Access Journals (Sweden)

    T. N. Srivastava

    1966-07-01

    Full Text Available Optimum staging programme for step rockets of arbitrary number of stages having different specific impulses and mass fractions with stages is derived, the optimization criterion being minimum take-off weight for a desired burntout velocity at an assigned altitude. Variation of thrust attitude angle from stage to stage and effects of gravity factor are taken into account. Analysis is performed for a degenerate problem obtained by relaxing the altitude constraint and it has been shown that problems of Weisbord, Subotowicz, Hall & Zambelli and Malina & Summerfield are the particular cases of the degenerate problem.

  4. Rapidly-Indexing Incremental-Angle Encoder

    Science.gov (United States)

    Christon, Philip R.; Meyer, Wallace W.

    1989-01-01

    Optoelectronic system measures relative angular position of shaft or other device to be turned, also measures absolute angular position after device turned through small angle. Relative angular position measured with fine resolution by optoelectronically counting finely- and uniformly-spaced light and dark areas on encoder disk as disk turns past position-sensing device. Also includes track containing coarsely- and nonuniformly-spaced light and dark areas, angular widths varying in proportion to absolute angular position. This second track provides gating and indexing signal.

  5. Angle of arrival estimation using spectral interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Z.W.; Harrington, C.; Thiel, C.W.; Babbitt, W.R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Krishna Mohan, R., E-mail: krishna@spectrum.montana.ed [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States)

    2010-09-15

    We have developed a correlative signal processing concept based on a Mach-Zehnder interferometer and spatial-spectral (S2) materials that enables direct mapping of RF spectral phase as well as power spectral recording. This configuration can be used for precise frequency resolved time delay estimation between signals received by a phased antenna array system that in turn could be utilized to estimate the angle of arrival. We present an analytical theoretical model and a proof-of-principle demonstration of the concept of time difference of arrival estimation with a cryogenically cooled Tm:YAG crystal that operates on microwave signals modulated onto a stabilized optical carrier at 793 nm.

  6. Cluster headache or narrow angle glaucoma?

    Directory of Open Access Journals (Sweden)

    Prasad Palimar

    1991-01-01

    Full Text Available A 47 year old man with episodes of attacks of pain, redness and mild blurring of vision was investigated for narrow angle glaucoma in view of shallow anterior chambers and a cupped optic disc. The history was reviewed following a spontaneous attack in hospital, which had features other than acute glaucoma. A diagnosis of cluster headache was made on the basis of tests. Cluster headache has been defined as unilateral intense pain, involving the eye and head on one side, usually associated with flushing, nasal congestion and lacrimation; the attacks recurring one or more times daily and lasting 20 - 120 minutes. Such attacks commonly continue for weeks or months and are separated by an asymptomatic period of months to years. This episodic nature, together with unilaterality and tendency to occur at night, closely mimics narrow angle glaucoma. Further, if patients have shallow anterior chambers and disc cupping, the differentiation becomes more difficult yet critical. Resource to provocative tests is often the only answer as the following case report demonstrates.

  7. Vertical Crossing Angle in IR8

    CERN Document Server

    Holzer , B J; Alemany, R

    2013-01-01

    The operation of the LHCb spectrometer dipole has a considerably larger and more challenging impact on the geometry of the LHC beams than the magnets in the high luminosity regions [1]. The integrated dipole field of 4 Tm deflects the beams in the horizontal plane, and using a set of three dipole magnets, called "compensators" a closed horizontal orbit bump is created. This paper summarizes the basic layout of the beam geometry in IR8 under the influence of the LHCb dipole and its compensators and shows the theoretically expected beam orbits, envelopes and aperture needs in the originally designed version. LHCb operation with both field polarities leads to unequal net crossing angles between the two beams and affects the experiment acceptance. It had been proposed therefore to establish a LHC operation mode where the originally designed horizontal crossing angle is shifted at high energy into the vertical plane leading to a vertical crossing scheme at luminosity operation. The new scheme has been successfully...

  8. Active limited-angle tomographic phase microscope.

    Science.gov (United States)

    Kus, Arkadiusz; Krauze, Wojciech; Kujawinska, Malgorzata

    2015-01-01

    We demonstrate an active, holographic tomography system, working with limited angle of projections, realized by optical-only, diffraction-based beam steering. The system created for this purpose is a Mach–Zehnder interferometer modified to serve as a digital holographic microscope with a high numerical aperture illumination module and a spatial light modulator (SLM). Such a solution is fast and robust. Apart from providing an elegant solution to viewing angle shifting, it also adds new capabilities of the holographic microscope system. SLM, being an active optical element, allows wavefront correction in order to improve measurement accuracy. Integrated phase data captured with different illumination scenarios within a highly limited angular range are processed by a new tomographic reconstruction algorithm based on the compressed sensing technique: total variation minimization, which is applied here to reconstruct nonpiecewise constant samples. Finally, the accuracy of full measurement and the proposed processing path is tested for a calibrated three-dimensional micro-object as well as a biological object--C2C12 myoblast cell.

  9. Hidden topological angles and Lefschetz thimbles

    CERN Document Server

    Behtash, Alireza; Schaefer, Thomas; Unsal, Mithat

    2015-01-01

    We demonstrate the existence of hidden topological angles (HTAs) in a large class of quantum field theories and quantum mechanical systems. HTAs are distinct from theta-parameters in the lagrangian. They arise as invariant angle associated with saddle points of the complexified path integral and their descent manifolds (Lefschetz thimbles). Physical effects of HTAs become most transparent upon analytic continuation in $n_f$ to non-integer number of flavors, reducing in the integer $n_f$ limit to a $\\mathbb Z_2$ valued phase difference between dominant saddles. In ${\\cal N}=1$ super Yang-Mills theory we demonstrate the microscopic mechanism for the vanishing of the gluon condensate. The same effect leads to an anomalously small condensate in a QCD-like $SU(N)$ gauge theory with fermions in the two-index representation. The basic phenomenon is that, contrary to folklore, the gluon condensate can receive both positive and negative contributions in a semi-classical expansion. In quantum mechanics, a HTA leads to ...

  10. A Hydrodynamic Model of Dynamic Contact Angle Hysteresis.

    Science.gov (United States)

    contact angle hysteresis is developed in terms of the interaction of capillary, viscous, and...used to obtain the equations which describe the contact angle region and thereby to define the dynamic contact angle . The analysis is limited to...velocity dependence of the receding contact angle and of the thickness of the deposited film of the receding interface of a wetting liquid are determined as functions of the capillary, viscous, and disjoining forces.

  11. Studying of the Contact Angle Hysteresis on Various Surfaces

    OpenAIRE

    Kirichenko E. O.; Gatapova E. Ya.

    2016-01-01

    This paper is devoted to investigation of the contact angle hysteresis on various surfaces. It was carried out by two different methods: measuring the advancing and the receding contact angles and measuring the contact angles at water droplet evaporation under isothermal conditions. Data obtained using two methods have been compared. The influence of the contact angle hysteresis on the mode of the drop evaporation has been shown.

  12. Studying of the Contact Angle Hysteresis on Various Surfaces

    Directory of Open Access Journals (Sweden)

    Kirichenko E. O.

    2016-01-01

    Full Text Available This paper is devoted to investigation of the contact angle hysteresis on various surfaces. It was carried out by two different methods: measuring the advancing and the receding contact angles and measuring the contact angles at water droplet evaporation under isothermal conditions. Data obtained using two methods have been compared. The influence of the contact angle hysteresis on the mode of the drop evaporation has been shown.

  13. 繁忙铁路干线区段TDCS升级方案%TDCS Upgrading Scheme of Heavy Traffic Backbone Railway Line

    Institute of Scientific and Technical Information of China (English)

    苗义烽; 王涛; 赵随海; 严频

    2011-01-01

    已开通TDCS的繁忙铁路干线区段,由于车流密度大、沿线各站客货作业繁忙、调度区段管辖里程长等特点,行车指挥工作对TDCS系统的依赖度很高,由TDCS系统升级到CTC系统,必须要保障运输生产秩序不受影响,做到平稳、无缝的过渡。以北京局管内京九线为例探讨了TDCS升级为CTC系统的解决方案。%As for open backbone railway lines,the train dispatching and command operation relies deeply on TDCS because of the characteristics of railway backbone lines,namely great train density,busy passenger transportation and freight operations,and long-distance of dispatching section.Upgrading from the TDCS to a CTC system,it was guaranteed that the order of transportation production should not be affected and steady and seamless transition should be steady and no-breaking.In the case of Beijing-Kowloon line,this article explored the upgrading solution from TDCS to CTC system.

  14. Significant Role of DNA Backbone in Mediating the Transition Origin of Electronic Excitations of B-DNA - Implication from Long Range Corrected TDDFT and Quantified NTO Analysis

    CERN Document Server

    Li, Jian-Hao; Guo, Guang-Yu; Hayashi, Michitoshi

    2011-01-01

    We systematically investigate the possible complex transition origin of electronic excitations of giant molecular systems by using the recently proposed QNTO analysis [J.-H. Li, J.-D. Chai, G. Y. Guo and M. Hayashi, Chem. Phys. Lett., 2011, 514, 362.] combined with long-range corrected TDDFT calculations. Thymine (Thy) related excitations of biomolecule B-DNA are then studied as examples, where the model systems have been constructed extracting from the perfect or a X-ray crystal (PDB code 3BSE) B-DNA structure with at least one Thy included. In the first part, we consider the systems composed of a core molecular segment (e.g. Thy, di-Thy) and a surrounding physical/chemical environment of interest (e.g. backbone, adjacent stacking nucleobases) and examine how the excitation properties of the core vary in response to the environment. We find that the orbitals contributed from DNA backbone and surrounding nucleobases often participate in a transition of Thy-related excitations affecting their composition, abso...

  15. Molecular Data for a Biochemical Model of DNA Radiation Damage: Electron Impact Ionization and Dissociative Ionization of DNA Bases and Sugar-Phosphate Backbone

    Science.gov (United States)

    Dateo, Christopher E.; Fletcher, Graham D.

    2004-01-01

    As part of the database for building up a biochemical model of DNA radiation damage, electron impact ionization cross sections of sugar-phosphate backbone and DNA bases have been calculated using the improved binary-encounter dipole (iBED) model. It is found that the total ionization cross sections of C3'- and C5'-deoxyribose-phospate, two conformers of the sugar-phosphate backbone, are close to each other. Furthermore, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3'- and C5'-deoxyribose-phospate cross sections, differing by less than 10%. Of the four DNA bases, the ionization cross section of guanine is the largest, then in decreasing order, adenine, thymine, and cytosine. The order is in accordance with the known propensity of oxidation of the bases by ionizing radiation. Dissociative ionization (DI), a process that both ionizes and dissociates a molecule, is investigated for cytosine. The DI cross section for the formation of H and (cytosine-Hl)(+), with the cytosine ion losing H at the 1 position, is also reported. The threshold of this process is calculated to be 17.1 eV. Detailed analysis of ionization products such as in DI is important to trace the sequential steps in the biochemical process of DNA damage.

  16. Differential Gelation and Self-Sorting Properties of Two Isomeric Polyamides Due to the Parallel vs Anti-Parallel Alignment of Backbone Dipoles.

    Science.gov (United States)

    Leung, Chui-Fan; Chow, Hak-Fun

    2017-02-14

    Two isomeric bottlebrush polyamides P-1 and A-1 having the same repeating monomer dipole units aligned along the polymer backbone in pseudo-parallel and pseudo-anti-parallel, respectively, were synthesized and characterized. Both polymers can form thermoreversible gels with aromatic solvents but P-1 was found to show inferior gelation strength as compared to that of A-1. Furthermore, despite their close structural resemblance, a 1:1 mixture of the P-1 and A-1 polymers was shown to exhibit self-sorting in the gel state. Gel formation was found to be a kinetically trapped process via H-bonding, π-π stacking interactions and side chain interdigitation. The differential gelation and self-sorting properties can be explained by the local dipole-dipole interactions originated from the different modes of backbone dipole alignment. In single gel systems, the antiparallel-aligned dipoles in A-1 facilitated a more compact molecular packing due to the enthalpically more favorable polymer chain association. On the other hand, the parallel-aligned dipoles in P-1 gave rise to a less stable head-to-head packing, which had difficulties to convert to the more stable head-to-tail packing in a kinetically trapped environment. In the mixed gel system, it is the unfavorable hetero-polymer mismatch dipole-dipole interaction that inhibited the mixing of the A-1 and P-1 polymers and led to self-sorting.

  17. A facile route to backbone-tethered N-heterocyclic carbene (NHC) ligands via NHC to aNHC rearrangement in NHC silicon halide adducts.

    Science.gov (United States)

    Schneider, Heidi; Schmidt, David; Radius, Udo

    2015-02-09

    The reaction of 1,3-diisopropylimidazolin-2-ylidene (iPr2 Im) with diphenyldichlorosilane (Ph2 SiCl2 ) leads to the adduct (iPr2 Im)SiCl2 Ph2 1. Prolonged heating of isolated 1 at 66 °C in THF affords the backbone-tethered bis(imidazolium) salt [((a) HiPr2 Im)2 SiPh2 ](2+)  2 Cl(-) 2 ("(a) " denotes "abnormal" coordination of the NHC), which can be synthesized in high yields in one step starting from two equivalents of iPr2 Im and Ph2 SiCl2 . Imidazolium salt 2 can be deprotonated in THF at room temperature using sodium hydride as a base and catalytic amounts of sodium tert-butoxide to give the stable N-heterocyclic dicarbene ((a) iPr2 Im)2 SiPh2 3, in which two NHCs are backbone-tethered with a SiPh2 group. This easy-to-synthesize dicarbene 3 can be used as a novel ligand type in transition metal chemistry for the preparation of dinuclear NHC complexes, as exemplified by the synthesis of the homodinuclear copper(I) complex [{(a) (ClCuiPr2 Im)}2 SiPh2 ] 4.

  18. Rational design of a cytotoxic dinuclear Cu2 complex that binds by molecular recognition at two neighboring phosphates of the DNA backbone.

    Science.gov (United States)

    Jany, Thomas; Moreth, Alexander; Gruschka, Claudia; Sischka, Andy; Spiering, Andre; Dieding, Mareike; Wang, Ying; Samo, Susan Haji; Stammler, Anja; Bögge, Hartmut; Fischer von Mollard, Gabriele; Anselmetti, Dario; Glaser, Thorsten

    2015-03-16

    The mechanism of the cytotoxic function of cisplatin and related anticancer drugs is based on their binding to the nucleobases of DNA. The development of new classes of anticancer drugs requires establishing other binding modes. Therefore, we performed a rational design for complexes that target two neighboring phosphates of the DNA backbone by molecular recognition resulting in a family of dinuclear complexes based on 2,7-disubstituted 1,8-naphthalenediol. This rigid backbone preorganizes the two metal ions for molecular recognition at the distance of two neighboring phosphates in DNA of 6-7 Å. Additionally, bulky chelating pendant arms in the 2,7-position impede nucleobase complexation by steric hindrance. We successfully synthesized the Cu(II)2 complex of the designed family of dinuclear complexes and studied its binding to dsDNA by independent ensemble and single-molecule methods like gel electrophoresis, precipitation, and titration experiments followed by UV-vis spectroscopy, atomic force microscopy (AFM), as well as optical tweezers (OT) and magnetic tweezers (MT) DNA stretching. The observed irreversible binding of our dinuclear Cu(II)2 complex to dsDNA leads to a blocking of DNA synthesis as studied by polymerase chain reactions and cytotoxicity for human cancer cells.

  19. Improved validation of IDP ensembles by one-bond Cα–Hα scalar couplings

    Energy Technology Data Exchange (ETDEWEB)

    Gapsys, Vytautas [Max Planck Institute for Biophysical Chemistry, Computational Biomolecular Dynamics Group (Germany); Narayanan, Raghavendran L.; Xiang, ShengQi [Max Planck Institute for Biophysical Chemistry, Department for NMR-Based Structural Biology (Germany); Groot, Bert L. de [Max Planck Institute for Biophysical Chemistry, Computational Biomolecular Dynamics Group (Germany); Zweckstetter, Markus, E-mail: markus.zweckstetter@dzne.de [Max Planck Institute for Biophysical Chemistry, Department for NMR-Based Structural Biology (Germany)

    2015-11-15

    Intrinsically disordered proteins (IDPs) are best described by ensembles of conformations and a variety of approaches have been developed to determine IDP ensembles. Because of the large number of conformations, however, cross-validation of the determined ensembles by independent experimental data is crucial. The {sup 1}J{sub CαHα} coupling constant is particularly suited for cross-validation, because it has a large magnitude and mostly depends on the often less accessible dihedral angle ψ. Here, we reinvestigated the connection between {sup 1}J{sub CαHα} values and protein backbone dihedral angles. We show that accurate amino-acid specific random coil values of the {sup 1}J{sub CαHα} coupling constant, in combination with a reparameterized empirical Karplus-type equation, allow for reliable cross-validation of molecular ensembles of IDPs.

  20. Maximum Atmospheric Entry Angle for Specified Retrofire Impulse

    Directory of Open Access Journals (Sweden)

    T. N. Srivastava

    1969-07-01

    Full Text Available Maximum atmospheric entry angles for vehicles initially moving in elliptic orbits are investigated and it is shown that tangential retrofire impulse at the apogee results in the maximum entry angle. Equivalence of maximizing the entry angle and minimizing the retrofire impulse is also established.