WorldWideScience

Sample records for backbone conformational dynamics

  1. Backbone conformational flexibility of the lipid modified membrane anchor of the human N-Ras protein investigated by solid-state NMR and molecular dynamics simulation.

    Science.gov (United States)

    Vogel, Alexander; Reuther, Guido; Roark, Matthew B; Tan, Kui-Thong; Waldmann, Herbert; Feller, Scott E; Huster, Daniel

    2010-02-01

    The lipid modified human N-Ras protein, implicated in human cancer development, is of particular interest due to its membrane anchor that determines the activity and subcellular location of the protein. Previous solid-state NMR investigations indicated that this membrane anchor is highly dynamic, which may be indicative of backbone conformational flexibility. This article aims to address if a dynamic exchange between three structural models exist that had been determined previously. We applied a combination of solid-state nuclear magnetic resonance (NMR) methods and replica exchange molecular dynamics (MD) simulations using a Ras peptide that represents the terminal seven amino acids of the human N-Ras protein. Analysis of correlations between the conformations of individual amino acids revealed that Cys 181 and Met 182 undergo collective conformational exchange. Two major structures constituting about 60% of all conformations could be identified. The two conformations found in the simulation are in rapid exchange, which gives rise to low backbone order parameters and nuclear spin relaxation as measured by experimental NMR methods. These parameters were also determined from two 300 ns conventional MD simulations, providing very good agreement with the experimental data. PMID:19819220

  2. Preferred conformation and dynamics of the glycerol backbone in phospholipids. An NMR and X-ray single-crystal analysis

    International Nuclear Information System (INIS)

    The conformation of the glycerol group of a number of diacyl and monoacyl (lyso) phospholipids differing in the chemical nature of the head group was studied by 1H high-resolution NMR and X-ray crystallography. The NMR measurements were carried out with solutions or micellar dispersions of the lipids in deuteriated organic solvents or 2H2O. Both solutions, in which the lipid is present as monomers, and lipid micelles give rise to good high-resolution NMR spectra exhibiting spin coupling hyperfine interactions. From 1H spin coupling it is concluded that there are two stable conformations about the glycerol C(2)-C(3) bond of phospholipids. By comparison of NMR and single-crystal X-ray data it is obvious that both conformations are minimum free energy conformations. Rotamer A is the conformation prevailing in phospholipid single-crystal structures. The conformation of rotamer B is also found in phospholipid single-crystal structures though to a lesser extent. NMR measurements indicate that in liquid crystals the diacylglycerol part of phospholipids fluctuates between the two stable staggered conformations of rotamers A and B. The transition between rotamers A and B is fast on the NMR time scale and must be accompanied by appropriate changes in the torsion angles β1 to β4 and γ1 to γ4 of the two fatty acyl chains. It is clear from the data presented that the parallel alignment of the hydrocarbon chains or chain stacking in phospholipid aggregates such as bilayers or micelles is the fundamental principle governing the conformation of the C(2)-C(3) glycerol bond

  3. A sampling approach for protein backbone fragment conformations.

    Science.gov (United States)

    Yu, J Y; Zhang, W

    2013-01-01

    In protein structure prediction, backbone fragment bias information can narrow down the conformational space of the whole polypeptide chain significantly. Unlike existing methods that use fragments as building blocks, the paper presents a probabilistic sampling approach for protein backbone torsion angles by modelling angular correlation of (phi, psi) with a directional statistics distribution. Given a protein sequence and secondary structure information, this method samples backbone fragments conformations by using a backtrack sampling algorithm for the hidden Markov model with multiple inputs and a single output. The proposed approach is applied to a fragment library, and some well-known structural motifs are sampled very well on the optimal path. Computational results show that the method can help to obtain native-like backbone fragments conformations. PMID:23777175

  4. Conformational dynamics of an amide-backbone substituted, valine-rich heptapeptide in chloroform and methanol solutions

    Czech Academy of Sciences Publication Activity Database

    Czernek, Jiří

    Praha : Karlova univerzita, 2003. s. 15. [Workshop Modeling Interactions in Biomolecules. 15.09.2003-20.09.2003, Nové Hrady] R&D Projects: GA AV ČR KJB4050311 Institutional research plan: CEZ:AV0Z4050913 Keywords : molecular dynamics * ab initio * oligopeptide Subject RIV: CD - Macromolecular Chemistry

  5. Backbone Dynamics of Triple-helical Collagen-like Structure

    OpenAIRE

    Lazarev, Yu.A.; Lazareva, A.V.; Komarov, V.M.

    1999-01-01

    Some details of the backbone dynamics in the collagen-like triple helix is discussed and the role of backbone dynamics in functioning collagen proteins is illustrated. On a series of oligotripeptides synthetic analogs of collagen formation of high-frequency vibrational backbone dynamics and low-frequency nonlinear backbone dynamics upon stepwise elongation of peptide chain have been described using infrared spectroscopy and hydrogen-exchange method. In the fully completed triple helix the lev...

  6. Elucidating the backbone conformation of photoswitchable foldamers using vibrational circular dichroism

    OpenAIRE

    Domingos, S.R.; Roeters, S.J.; Amirjalayer, S.; Yu, Z.L.; Hecht, S; Woutersen, S.

    2013-01-01

    The backbone conformation of amphiphilic oligo(azobenzene) foldamers is investigated using vibrational circular dichroism (VCD) spectroscopy on a mode involving the stretching of the N=N bonds in the backbone. From denaturation experiments, we find that the VCD response in the helical conformation arises mainly from through-space interaction between the N=N-stretch transition-dipole moments, so that the coupled-oscillator model can be used to predict the VCD spectrum associated with a particu...

  7. Elucidating the backbone conformation of photoswitchable foldamers using vibrational circular dichroism.

    Science.gov (United States)

    Domingos, Sérgio R; Roeters, Steven J; Amirjalayer, Saeed; Yu, Zhilin; Hecht, Stefan; Woutersen, Sander

    2013-10-28

    The backbone conformation of amphiphilic oligo(azobenzene) foldamers is investigated using vibrational circular dichroism (VCD) spectroscopy on a mode involving the stretching of the N=N bonds in the backbone. From denaturation experiments, we find that the VCD response in the helical conformation arises mainly from through-space interaction between the N=N-stretch transition-dipole moments, so that the coupled-oscillator model can be used to predict the VCD spectrum associated with a particular conformation. Using this approach, we elucidate the origin of the VCD signals in the folded conformation, and can assign the observed partial loss of VCD signals upon photo-induced unfolding to specific conformational changes. Our results show that the N=N-stretch VCD response provides an excellent probe of the helical conformation of the N=N bonds in this type of switchable molecular system. PMID:24018416

  8. Backbone dynamics of the human CC-chemokine eotaxin

    International Nuclear Information System (INIS)

    Eotaxin is a CC chemokine with potent chemoattractant activity towards eosinophils. 15N NMR relaxation data have been used to characterize the backbone dynamics of recombinant human eotaxin. 15N longitudinal (R1) and transverse (R2) auto relaxation rates, heteronuclear 1H-15N steady-state NOEs, and transverse cross-relaxation rates (ηxy) were obtained at 30 deg. C for all resolved backbone secondary amide groups using 1 H-detected two-dimensional NMR experiments. Ratios of transverse auto and cross relaxation rates were used to identify NH groups influenced by slow conformational rearrangement. Relaxation data were fit to the extended model free dynamics formalism, yielding parameters describing axially symmetric molecular rotational diffusion and the internal dynamics of each NH group. The molecular rotational correlation time (τm) is 5.09±0.02 ns, indicating that eotaxin exists predominantly as a monomer under the conditions of the NMR study. The ratio of diffusion rates about unique and perpendicular axes (Dparallel/Dperpendicular) is 0.81±0.02. Residues with large amplitudes of subnanosecond motion are clustered in the N-terminal region (residues 1-19), the C-terminus (residues 68-73) and the loop connecting the first two β-strands (residues 30-37). N-terminal flexibility appears to be conserved throughout the chemokine family and may have implications for the mechanism of chemokine receptor activation. Residues exhibiting significant dynamics on the microsecond-millisecond time scale are located close to the two conserved disulfide bonds, suggesting that these motions may be coupled to disulfide bond isomerization

  9. Conformational Dynamics of Insulin

    Directory of Open Access Journals (Sweden)

    Qing-xin eHua

    2011-10-01

    Full Text Available We have exploited a prandial insulin analogue (insulin lispro, the active component of Humalog®; Eli Lilly and Co. to elucidate the underlying structure and dynamics of insulin as a monomer in solution. Whereas NMR-based modeling recapitulates structural relationships of insulin crystals (T-state protomers, dynamic anomalies are revealed by amide-proton exchange kinetics in D2O. Surprisingly, the majority of hydrogen bonds observed in crystal structures are only transiently maintained in solution, including key T-state-specific inter-chain contacts. Long-lived hydrogen bonds (as defined by global exchange kinetics exist only at a subset of four -helical sites (two per chain flanking an internal disulfide bridge (cystine A20-B19; these sites map within the proposed folding nucleus of proinsulin. The anomalous flexibility of insulin otherwise spans its active surface and may facilitate receptor binding. Because conformational fluctuations promote the degradation of pharmaceutical formulations, we envisage that dynamic re-engineering of insulin may enable design of ultra-stable formulations for humanitarian use in the developing world.

  10. A new default restraint library for the protein backbone in Phenix: a conformation-dependent geometry goes mainstream

    Science.gov (United States)

    Moriarty, Nigel W.; Tronrud, Dale E.; Adams, Paul D.; Karplus, P. Andrew

    2016-01-01

    Chemical restraints are a fundamental part of crystallographic protein structure refinement. In response to mounting evidence that conventional restraints have shortcomings, it has previously been documented that using backbone restraints that depend on the protein backbone conformation helps to address these shortcomings and improves the performance of refinements [Moriarty et al. (2014 ▸), FEBS J. 281, 4061–4071]. It is important that these improvements be made available to all in the protein crystallography community. Toward this end, a change in the default geometry library used by Phenix is described here. Tests are presented showing that this change will not generate increased numbers of outliers during validation, or deposition in the Protein Data Bank, during the transition period in which some validation tools still use the conventional restraint libraries. PMID:26894545

  11. An Unusual Conformational Isomer of Verrucosidin Backbone from a Hydrothermal Vent Fungus, Penicillium sp. Y-50-10.

    Science.gov (United States)

    Pan, Chengqian; Shi, Yutong; Auckloo, Bibi Nazia; Chen, Xuegang; Chen, Chen-Tung Arthur; Tao, Xinyi; Wu, Bin

    2016-01-01

    A new verrucosidin derivative, methyl isoverrucosidinol (1), was isolated from the marine fungus Penicillium sp. Y-50-10, dwelling in sulfur rich sediment in the Kueishantao hydrothermal vents off Taiwan. The structure was established by spectroscopic means including HRMS and 2D-NMR spectroscopic analysis. The absolute configuration was defined mainly by comparison of quantum chemical TDDFT calculated and experimental ECD spectra. Among hitherto known compounds with a verrucosidine backbone isolated from natural resource, compound 1 represents the first example of a new conformational isomer of its skeleton, exhibiting antibiotic activity against Bacillus subtilis with MIC value 32 μg/mL. PMID:27548192

  12. An Unusual Conformational Isomer of Verrucosidin Backbone from a Hydrothermal Vent Fungus, Penicillium sp. Y-50-10

    Directory of Open Access Journals (Sweden)

    Chengqian Pan

    2016-08-01

    Full Text Available A new verrucosidin derivative, methyl isoverrucosidinol (1, was isolated from the marine fungus Penicillium sp. Y-50-10, dwelling in sulfur rich sediment in the Kueishantao hydrothermal vents off Taiwan. The structure was established by spectroscopic means including HRMS and 2D-NMR spectroscopic analysis. The absolute configuration was defined mainly by comparison of quantum chemical TDDFT calculated and experimental ECD spectra. Among hitherto known compounds with a verrucosidine backbone isolated from natural resource, compound 1 represents the first example of a new conformational isomer of its skeleton, exhibiting antibiotic activity against Bacillus subtilis with MIC value 32 μg/mL.

  13. STARD6 on steroids: solution structure, multiple timescale backbone dynamics and ligand binding mechanism

    Science.gov (United States)

    Létourneau, Danny; Bédard, Mikaël; Cabana, Jérôme; Lefebvre, Andrée; LeHoux, Jean-Guy; Lavigne, Pierre

    2016-01-01

    START domain proteins are conserved α/β helix-grip fold that play a role in the non-vesicular and intracellular transport of lipids and sterols. The mechanism and conformational changes permitting the entry of the ligand into their buried binding sites is not well understood. Moreover, their functions and the identification of cognate ligands is still an active area of research. Here, we report the solution structure of STARD6 and the characterization of its backbone dynamics on multiple time-scales through 15N spin-relaxation and amide exchange studies. We reveal for the first time the presence of concerted fluctuations in the Ω1 loop and the C-terminal helix on the microsecond-millisecond time-scale that allows for the opening of the binding site and ligand entry. We also report that STARD6 binds specifically testosterone. Our work represents a milestone for the study of ligand binding mechanism by other START domains and the elucidation of the biological function of STARD6. PMID:27340016

  14. Direct Observation of Aggregation-Induced Backbone Conformational Changes in Tau Peptides.

    Science.gov (United States)

    Jiji, A C; Shine, A; Vijayan, Vinesh

    2016-09-12

    In tau proteins, the hexapeptides in the R2 and R3 repeats are known to initiate tau fibril formation, which causes a class of neurodegenerative diseases called the taupathies. We show that in R3, in addition to the presence of the hexapeptides, the correct turn conformation upstream to it is also essential for producing prion-like fibrils that are capable of propagation. A time-dependent NMR aggregation assay of a slow fibril forming R3-S316P peptide revealed a trans to cis equilibrium shift in the peptide-bond conformation preceding P316 during the growth phase of the aggregation process. S316 was identified as the key residue in the turn that confers templating capacity on R3 fibrils to accelerate the aggregation of the R3-S316P peptide. These results on the specific interactions and conformational changes responsible for tau aggregation could prove useful for developing an efficient therapeutic intervention in Alzheimer's disease. PMID:27513615

  15. Assessing protein conformational sampling methods based on bivariate lag-distributions of backbone angles

    KAUST Repository

    Maadooliat, Mehdi

    2012-08-27

    Despite considerable progress in the past decades, protein structure prediction remains one of the major unsolved problems in computational biology. Angular-sampling-based methods have been extensively studied recently due to their ability to capture the continuous conformational space of protein structures. The literature has focused on using a variety of parametric models of the sequential dependencies between angle pairs along the protein chains. In this article, we present a thorough review of angular-sampling-based methods by assessing three main questions: What is the best distribution type to model the protein angles? What is a reasonable number of components in a mixture model that should be considered to accurately parameterize the joint distribution of the angles? and What is the order of the local sequence-structure dependency that should be considered by a prediction method? We assess the model fits for different methods using bivariate lag-distributions of the dihedral/planar angles. Moreover, the main information across the lags can be extracted using a technique called Lag singular value decomposition (LagSVD), which considers the joint distribution of the dihedral/planar angles over different lags using a nonparametric approach and monitors the behavior of the lag-distribution of the angles using singular value decomposition. As a result, we developed graphical tools and numerical measurements to compare and evaluate the performance of different model fits. Furthermore, we developed a web-tool (http://www.stat.tamu. edu/~madoliat/LagSVD) that can be used to produce informative animations. © The Author 2012. Published by Oxford University Press.

  16. An Analytic Method for the Kinematics and Dynamics of a Multiple-Backbone Continuum Robot

    Directory of Open Access Journals (Sweden)

    Bin He

    2013-01-01

    Full Text Available Continuum robots have been the subject of extensive research due to their potential use in a wide range of applications. In this paper, we propose a new continuum robot with three backbones, and provide a unified analytic method for the kinematics and dynamics of a multiple‐backbone continuum robot. The robot achieves actuation by independently pulling three backbones to carry out a bending motion of two‐degrees‐of‐freedom (DoF. A three‐dimensional CAD model of the robot is built and the kinematical equation is established on the basis of the Euler‐Bernoulli beam. The dynamical model of the continuum robot is constructed by using the Lagrange method. The simulation and the experiment’s validation results show the continuum robot can exactly bend into pre‐set angles in the two‐dimensional space (the maximum error is less than 5% of the robot length and can make a circular motion in three‐dimensional space. The results demonstrate that the proposed analytic method for the kinematics and dynamics of a continuum robot is feasible.

  17. Dynamic Resource Allocation and QoS Control Capabilities of the Japanese Academic Backbone Network

    Directory of Open Access Journals (Sweden)

    Michihiro Aoki

    2010-08-01

    Full Text Available Dynamic resource control capabilities have become increasingly important for academic networks that must support big scientific research projects at the same time as less data intensive research and educational activities. This paper describes the dynamic resource allocation and QoS control capabilities of the Japanese academic backbone network, called SINET3, which supports a variety of academic applications with a wide range of network services. The article describes the network architecture, networking technologies, resource allocation, QoS control, and layer-1 bandwidth on-demand services. It also details typical services developed for scientific research, including the user interface, resource control, and management functions, and includes performance evaluations.

  18. On the stochastic dynamics of molecular conformation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An important functioning mechanism of biological macromolecules is the transition between different conformed states due to thermal fluctuation. In the present paper, a biological macromolecule is modeled as two strands with side chains facing each other, and its stochastic dynamics including the statistics of stationary motion and the statistics of conformational transition is studied by using the stochastic averaging method for quasi Hamiltonian systems. The theoretical results are confirmed with the results from Monte Carlo simulation.

  19. Molecular Dynamics simulation of electrical field induced conformational transition and associated frictional performance of monomolecular films

    International Nuclear Information System (INIS)

    Sparse monomolecular film assemblies with polar end groups such as carboxyl have attracted considerable interest because of their ability to undergo conformational transition under electrical fields. We report the results from molecular dynamics simulation of electrical field induced conformational transitions and associated frictional performance of carboxyl-terminated monomolecular films. Simulation results indicate that the density of the monomolecular film has a significant influence on the conformational transition under electrical fields. In the case of loose-packed monomolecular films, carboxyl-terminated chains cluster together to form a disordered film due to large interchain separation. Under the application of a positive electrical field, the chain backbone rotates and lies down on the substrate forming disordered clusters, whereas under the application of negative electrical fields, the chains stand up and cluster together to form disordered clusters. Under shallow indentation with a purely repulsive indenter, loose-packed monomolecular films subjected to a positive electrical field exhibit a lower level of frictional response compared with films subjected to negative and no electrical fields. In the case of close-packed monomolecular films, the molecular chains assemble in an ordered film and the space is not enough for backbone chains to generate large-scale conformational transition. Due to this spatial limitation, the applied electrical field was not found to have any influence on the backbone chain rotation and associated frictional response under shallow indentations with a purely repulsive indenter.

  20. The influence of DNA binding on the backbone dynamics of the yeast cell-cycle protein Mbp1

    International Nuclear Information System (INIS)

    Mbp1 is a transcription factor involved in the regulation of the cell cycle in yeast. The N-terminus of this protein contains a DNA binding domain that includes a winged helix-turn-helix motif. The C-terminal 24 residues of this domain (the 'tail') are disordered in the crystal state, but are important for DNA binding. We have measured 15N NMR relaxation rates at 11.75 and 14.1 T to determine the dynamics of the free protein and in its complex with a specific DNA duplex. The dynamics data were quantitatively analysed using both spectral density mapping and the Lipari-Szabo formalism including the effects of chemical exchange and rotational anisotropy. A detailed analysis has been made of the effect of anisotropy, exchange and experimental precision on the recovered motional parameters. The backbone NH relaxation is affected by motions on a variety of time scales from millisecond to tens of picoseconds. The relaxation data show a structured core of 100 residues corresponding to that observed in the crystal state. Within the core of the protein, two regions on either side of the putative recognition helix (helix B) show slow (ca. 0.2 ms) conformational exchange dynamics that are quenched upon DNA binding. The C-terminal 24 residues are generally more dynamic than in the core. However, in the free protein, a stretch of ∼8 residues in the middle of the tail show relaxation behaviour similar to that in the core, indicating a structured region. NOEs between Ala 114 in this structured part of the tail and residues in the N-terminal beta strand of the core of the protein demonstrate that the tail folds back onto the core of the protein. In the complex with DNA, the structured part of the tail extends by ca. 3 residues. These data provide a framework for understanding the biochemical data on the mechanism and specificity of DNA binding

  1. Vanishing amplitude of backbone dynamics causes a true protein dynamical transition: H2 NMR studies on perdeuterated C-phycocyanin

    Science.gov (United States)

    Kämpf, Kerstin; Kremmling, Beke; Vogel, Michael

    2014-03-01

    Using a combination of H2 nuclear magnetic resonance (NMR) methods, we study internal rotational dynamics of the perdeuterated protein C-phycocyanin (CPC) in dry and hydrated states over broad temperature and dynamic ranges with high angular resolution. Separating H2 NMR signals from methyl deuterons, we show that basically all backbone deuterons exhibit highly restricted motion occurring on time scales faster than microseconds. The amplitude of this motion increases when a hydration shell exists, while it decreases upon cooling and vanishes near 175 K. We conclude that the vanishing of the highly restricted motion marks a dynamical transition, which is independent of the time window and of a fundamental importance. This conclusion is supported by results from experimental and computational studies of the proteins myoglobin and elastin. In particular, we argue based on findings in molecular dynamics simulations that the behavior of the highly restricted motion of proteins at the dynamical transition resembles that of a characteristic secondary relaxation of liquids at the glass transition, namely the nearly constant loss. Furthermore, H2 NMR studies on perdeuterated CPC reveal that, in addition to highly restricted motion, small fractions of backbone segments exhibit weakly restricted dynamics when temperature and hydration are sufficiently high.

  2. S-Shaped Conformation of the Quaterthiophene Molecular Backbone in Two-Dimensional Bisterpyridine-Derivative Self-Assembled Nanoarchitecture.

    Science.gov (United States)

    Kervella, Yann; Shilova, Ekaterina; Latil, Sylvain; Jousselme, Bruno; Silly, Fabien

    2015-12-15

    The conformation and the two-dimensional self-assembly of 4'-(3',4″-dihexyloxy-5,2':5',2″:5″,2‴-quaterthien-2,5‴-diyl)-bis(2,2':6',2″-terpyridine) molecules are theoretically and experimentally investigated. This molecular building block forms a hydrogen-bonded chiral supramolecular nanoarchitecture on graphite at the solid/liquid interface. Scanning tunneling microscopy (STM) shows that the molecule adopts an S-shaped conformation in this structure. DFTB+ calculations reveal that this conformation is not the lowest-energy conformation. The molecular nanoarchitecture appears to be stabilized by hydrogen bonding as well as van der Waals interactions. I-, L-, and D-shaped molecular conformations are, however, locally observed at the domain boundary, but these conformations do not self-assemble into organized 2D structures. PMID:26624809

  3. Conformational Dynamics and Allostery in Pyruvate Kinase.

    Science.gov (United States)

    Donovan, Katherine A; Zhu, Shaolong; Liuni, Peter; Peng, Fen; Kessans, Sarah A; Wilson, Derek J; Dobson, Renwick C J

    2016-04-22

    Pyruvate kinase catalyzes the final step in glycolysis and is allosterically regulated to control flux through the pathway. Two models are proposed to explain how Escherichia coli pyruvate kinase type 1 is allosterically regulated: the "domain rotation model" suggests that both the domains within the monomer and the monomers within the tetramer reorient with respect to one another; the "rigid body reorientation model" proposes only a reorientation of the monomers within the tetramer causing rigidification of the active site. To test these hypotheses and elucidate the conformational and dynamic changes that drive allostery, we performed time-resolved electrospray ionization mass spectrometry coupled to hydrogen-deuterium exchange studies followed by mutagenic analysis to test the activation mechanism. Global exchange experiments, supported by thermostability studies, demonstrate that fructose 1,6-bisphosphate binding to the allosteric domain causes a shift toward a globally more dynamic ensemble of conformations. Mapping deuterium exchange to peptides within the enzyme highlight site-specific regions with altered conformational dynamics, many of which increase in conformational flexibility. Based upon these and mutagenic studies, we propose an allosteric mechanism whereby the binding of fructose 1,6-bisphosphate destabilizes an α-helix that bridges the allosteric and active site domains within the monomeric unit. This destabilizes the β-strands within the (β/α)8-barrel domain and the linked active site loops that are responsible for substrate binding. Our data are consistent with the domain rotation model but inconsistent with the rigid body reorientation model given the increased flexibility at the interdomain interface, and we can for the first time explain how fructose 1,6-bisphosphate affects the active site. PMID:26879751

  4. A New Type of Conformal Dynamics

    CERN Document Server

    Stichel, P C

    2004-01-01

    We consider the Lagrangian particle model introduced in [hep-th/9612017] for zero mass but nonvanishing second central charge of the planar Galilei group. Extended by a magnetic vortex or a Coulomb potential the model exibits conformal symmetry. In the former case we observe an additional SO(2,1) hidden symmetry. By either a canonical transformation with constraints or by freezing scale and special conformal transformations at $t=0$ we reduce the six-dimensional phase-space to the physically required four dimensions. Then we discuss bound states (bounded solutions) in quantum dynamics (classical mechanics). We show that the Schr\\"odinger equation for the pure vortex case may be transformed into the Morse potential problem thus providing us with an explanation of the hidden SO(2,1) symmetry.

  5. A new type of conformal dynamics

    International Nuclear Information System (INIS)

    We consider the Lagrangian particle model introduced in [Ann. Phys. 260 (1997) 224] for zero mass but nonvanishing second central charge of the planar Galilei group. Extended by a magnetic vortex or a Coulomb potential the model exhibits conformal symmetry. In the former case we observe an additional SO(2,1) hidden symmetry. By either a canonical transformation with constraints or by freezing scale and special conformal transformations at t=0 we reduce the six-dimensional phase-space to the physically required four dimensions. Then we discuss bound states (bounded solutions) in quantum dynamics (classical mechanics). We show that the Schroedinger equation for the pure vortex case may be transformed into the Morse potential problem thus providing us with an explanation of the hidden SO(2,1) symmetry

  6. Mechanism of formation of the C-terminal β-hairpin of the B3 domain of the immunoglobulin binding protein G from Streptococcus. Part II. Interplay of local backbone conformational dynamics and long-range hydrophobic interactions in hairpin formation

    OpenAIRE

    Skwierawska, Agnieszka; Żmudzińska, Wioletta; Ołdziej, Stanisław; Liwo, Adam; Scheraga, Harold A.

    2009-01-01

    Two peptides, corresponding to the turn region of the C-terminal β-hairpin of the B3 domain of the immunoglobulin binding protein G from Streptoccocus, consisting of residues 51–56 [IG(51–56)] and 50–57 [IG(50–57)], respectively, were studied by CD and NMR spectroscopy at various temperatures and by differential scanning calorimetry. Our results show that the part of the sequence corresponding to the β-turn in the native structure (DDATKT) of the B3 domain forms bent conformations similar to ...

  7. TRX-LOGOS - a graphical tool to demonstrate DNA information content dependent upon backbone dynamics in addition to base sequence

    OpenAIRE

    Fortin, Connor H.; Schulze, Katharina V.; Babbitt, Gregory A.

    2015-01-01

    Background It is now widely-accepted that DNA sequences defining DNA-protein interactions functionally depend upon local biophysical features of DNA backbone that are important in defining sites of binding interaction in the genome (e.g. DNA shape, charge and intrinsic dynamics). However, these physical features of DNA polymer are not directly apparent when analyzing and viewing Shannon information content calculated at single nucleobases in a traditional sequence logo plot. Thus, sequence lo...

  8. Direct measurement of the correlated dynamics of the protein-backbone and proximal waters of hydration in mechanically strained elastin

    CERN Document Server

    Sun, Cheng; Huang, Jiaxin; Boutis, Gregory S

    2011-01-01

    We report on the direct measurement of the correlation times of the protein backbone carbons and proximal waters of hydration in mechanically strained elastin by nuclear magnetic resonance methods. The experimental data indicate a decrease in the correlation times of the carbonyl carbons as the strain on the biopolymer is increased. These observations are in good agreement with short 4ns molecular dynamics simulations of (VPGVG)3, a well studied mimetic peptide of elastin. The experimental results also indicate a reduction in the correlation time of proximal waters of hydration with increasing strain applied to the elastomer. A simple model is suggested that correlates the increase in the motion of proximal waters of hydration to the increase in frequency of libration of the protein backbone that develops with increasing strain. Together, the reduction in the protein entropy accompanied with the increase in entropy of the proximal waters of hydration with increasing strain, support the notion that the source ...

  9. Backbone dynamics of reduced plastocyanin from the cyanobacterium Anabaena variabilis: Regions involved in electron transfer have enhanced mobility

    DEFF Research Database (Denmark)

    Ma, L.X.; Hass, M.A.S.; Vierick, N.; Kristensen, S.M.; Ulstrup, Jens; Led, J.J.

    2003-01-01

    -free approach. The C-13 relaxation studies were performed using C-13 in natural abundance. Overall, it is found that the protein backbone is rigid. However, the regions that are important for the function of the protein show moderate mobility primarily on the microsecond to millisecond time scale. These regions...... are the "northern" hydrophobic site close to the metal site, the metal site itself, and the "eastern" face of the molecule. In particular, the mobility of the latter region is interesting in light of recent findings indicating that residues also on the eastern face of plastocyanins from prokaryotes...... are important for the function of the protein. The study also demonstrates that relaxation rates and NOEs of the C-13(alpha) nuclei of proteins are valuable supplements to the conventional N-15 relaxation measurements in studies of protein backbone dynamics....

  10. Dynamics and Conformational Energetics of a Peptide Hormone: Vasopressin

    Science.gov (United States)

    Hagler, A. T.; Osguthorpe, D. J.; Dauber-Osguthorpe, P.; Hempel, J. C.

    1985-03-01

    A theoretical methodology for use in conjunction with experiment was applied to the neurohypophyseal hormone lysine vasopressin for elucidation of its accessible molecular conformations and associated flexibility, conformational transitions, and dynamics. Molecular dynamics and energy minimization techniques make possible a description of the conformational properties of a peptide in terms of the precise positions of atoms, their fluctuations in time, and the interatomic forces acting on them. Analysis of the dynamic trajectory of lysine vasopressin shows the ability of a flexible peptide hormone to undergo spontaneous conformational transitions. The excursions of an individual phenylalanine residue exemplify the dynamic flexibility and multiple conformational states available to small peptide hormones and their component residues, even within constraints imposed by a cyclic hexapeptide ring.

  11. Structure and dynamics of the RNA backbone resolved with NMR spin-spin couplings

    Czech Academy of Sciences Publication Activity Database

    Vokáčová, Zuzana; Buděšínský, Miloš; Rosenberg, Ivan; Schneider, Bohdan; Šponer, Jiří; Sychrovský, Vladimír

    Helsinki : University of Helsinki, 2009 - (J. Polvi and H. Ristolainen). s. 320-320 ISBN 978-952-10-5618-5. [International Congress of Quantum Chemistry ICQC /13./. 22.06.2009-27-06.2009, Helsinki] R&D Projects: GA AV ČR IAA400550701 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50040507 Keywords : NMR * nucleic acid backbone * ab initio calculations Subject RIV: CF - Physical ; Theoretical Chemistry

  12. Backbone Dynamics of Alamethicin Bound to Lipid Membranes: Spin-Echo Electron Paramagnetic Resonance of TOAC-Spin Labels

    Science.gov (United States)

    Bartucci, Rosa; Guzzi, Rita; De Zotti, Marta; Toniolo, Claudio; Sportelli, Luigi; Marsh, Derek

    2008-01-01

    Alamethicin F50/5 is a hydrophobic peptide that is devoid of charged residues and that induces voltage-dependent ion channels in lipid membranes. The peptide backbone is likely to be involved in the ion conduction pathway. Electron spin-echo spectroscopy of alamethicin F50/5 analogs in which a selected Aib residue (at position n = 1, 8, or 16) is replaced by the TOAC amino-acid spin label was used to study torsional dynamics of the peptide backbone in association with phosphatidylcholine bilayer membranes. Rapid librational motions of limited angular amplitude were observed at each of the three TOAC sites by recording echo-detected spectra as a function of echo delay time, 2τ. Simulation of the time-resolved spectra, combined with conventional EPR measurements of the librational amplitude, shows that torsional fluctuations of the peptide backbone take place on the subnanosecond to nanosecond timescale, with little temperature dependence. Associated fluctuations in polar fields from the peptide could facilitate ion permeation. PMID:18096632

  13. A New Type of Conformal Dynamics

    OpenAIRE

    Stichel, P. C.; Zakrzewski, W. J.

    2003-01-01

    We consider the Lagrangian particle model introduced in [hep-th/9612017] for zero mass but nonvanishing second central charge of the planar Galilei group. Extended by a magnetic vortex or a Coulomb potential the model exibits conformal symmetry. In the former case we observe an additional SO(2,1) hidden symmetry. By either a canonical transformation with constraints or by freezing scale and special conformal transformations at $t=0$ we reduce the six-dimensional phase-space to the physically ...

  14. On the role of thermal backbone fluctuations in myoglobin ligand gate dynamics

    CERN Document Server

    Krokhotin, Andrey; Peng, Xubiao

    2012-01-01

    We construct an energy function that describes the crystallographic structure of spermwhale myoglobin backbone. As a model in our construction, we use the Protein Data Bank entry 1ABS that has been measured at liquid helium temperature. Consequently the thermal B-factor fluctuations are very small, which is an advantage in our construction. The energy function that we utilize resembles that of the discrete non-linear Schrodinger equation. Likewise, ours supports solitons as local minimum energy configurations. We describe the 1ABS backbone in terms of solitons with a precision that deviates from 1ABS by an average root-mean-square distance, which is less than the experimentally observed Debye-Waller B-factor fluctuation distance. We then subject the multisoliton solution to extensive numerical heating and cooling experiments, over a very wide range of temperatures. We concentrate in particular to temperatures above 300K and below the theta-point unfolding temperature, which is around 348K. We confirm that the...

  15. General order parameter based correlation analysis of protein backbone motions between experimental NMR relaxation measurements and molecular dynamics simulations

    International Nuclear Information System (INIS)

    Internal backbone dynamic motions are essential for different protein functions and occur on a wide range of time scales, from femtoseconds to seconds. Molecular dynamic (MD) simulations and nuclear magnetic resonance (NMR) spin relaxation measurements are valuable tools to gain access to fast (nanosecond) internal motions. However, there exist few reports on correlation analysis between MD and NMR relaxation data. Here, backbone relaxation measurements of 15N-labeled SH3 (Src homology 3) domain proteins in aqueous buffer were used to generate general order parameters (S2) using a model-free approach. Simultaneously, 80 ns MD simulations of SH3 domain proteins in a defined hydrated box at neutral pH were conducted and the general order parameters (S2) were derived from the MD trajectory. Correlation analysis using the Gromos force field indicated that S2 values from NMR relaxation measurements and MD simulations were significantly different. MD simulations were performed on models with different charge states for three histidine residues, and with different water models, which were SPC (simple point charge) water model and SPC/E (extended simple point charge) water model. S2 parameters from MD simulations with charges for all three histidines and with the SPC/E water model correlated well with S2 calculated from the experimental NMR relaxation measurements, in a site-specific manner. - Highlights: • Correlation analysis between NMR relaxation measurements and MD simulations. • General order parameter (S2) as common reference between the two methods. • Different protein dynamics with different Histidine charge states in neutral pH. • Different protein dynamics with different water models

  16. General order parameter based correlation analysis of protein backbone motions between experimental NMR relaxation measurements and molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qing; Shi, Chaowei [Hefei National Laboratory for Physical Sciences at The Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026 (China); Yu, Lu [Hefei National Laboratory for Physical Sciences at The Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026 (China); High Magnetic Field Laboratory, Chinese Academy of Science, Hefei, Anhui, 230031 (China); Zhang, Longhua [Hefei National Laboratory for Physical Sciences at The Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026 (China); Xiong, Ying, E-mail: yxiong73@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at The Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026 (China); Tian, Changlin, E-mail: cltian@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at The Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026 (China); High Magnetic Field Laboratory, Chinese Academy of Science, Hefei, Anhui, 230031 (China)

    2015-02-13

    Internal backbone dynamic motions are essential for different protein functions and occur on a wide range of time scales, from femtoseconds to seconds. Molecular dynamic (MD) simulations and nuclear magnetic resonance (NMR) spin relaxation measurements are valuable tools to gain access to fast (nanosecond) internal motions. However, there exist few reports on correlation analysis between MD and NMR relaxation data. Here, backbone relaxation measurements of {sup 15}N-labeled SH3 (Src homology 3) domain proteins in aqueous buffer were used to generate general order parameters (S{sup 2}) using a model-free approach. Simultaneously, 80 ns MD simulations of SH3 domain proteins in a defined hydrated box at neutral pH were conducted and the general order parameters (S{sup 2}) were derived from the MD trajectory. Correlation analysis using the Gromos force field indicated that S{sup 2} values from NMR relaxation measurements and MD simulations were significantly different. MD simulations were performed on models with different charge states for three histidine residues, and with different water models, which were SPC (simple point charge) water model and SPC/E (extended simple point charge) water model. S{sup 2} parameters from MD simulations with charges for all three histidines and with the SPC/E water model correlated well with S{sup 2} calculated from the experimental NMR relaxation measurements, in a site-specific manner. - Highlights: • Correlation analysis between NMR relaxation measurements and MD simulations. • General order parameter (S{sup 2}) as common reference between the two methods. • Different protein dynamics with different Histidine charge states in neutral pH. • Different protein dynamics with different water models.

  17. Iterated Conformal Dynamics and Laplacian Growth

    OpenAIRE

    Barra, Felipe; Davidovitch, Benny; Procaccia, Itamar

    2001-01-01

    The method of iterated conformal maps for the study of Diffusion Limited Aggregates (DLA) is generalized to the study of Laplacian Growth Patterns and related processes. We emphasize the fundamental difference between these processes: DLA is grown serially with constant size particles, while Laplacian patterns are grown by advancing each boundary point in parallel, proportionally to the gradient of the Laplacian field. We introduce a 2-parameter family of growth patterns that interpolates bet...

  18. Slow conformational dynamics of an endonuclease persist in its complex with its natural protein inhibitor.

    Science.gov (United States)

    Whittaker, S B; Czisch, M; Wechselberger, R; Kaptein, R; Hemmings, A M; James, R; Kleanthous, C; Moore, G R

    2000-04-01

    The bacterial toxin colicin E9 is secreted by producing Escherichia coli cells with its 9.5 kDa inhibitor protein Im9 bound tightly to its 14.5 kDa C-terminal DNase domain. Double- and triple-resonance NMR spectra of the isolated DNase domain uniformly labeled with 13C/15N bound to unlabeled Im9 contain more signals than expected for a single DNase conformer, consistent with the bound DNase being present in more than one form. The presence of chemical exchange cross peaks in 750 MHz 15N-1H-15N HSQC-NOESY-HSQC spectra for backbone NH groups of Asp20, Lys21, Trp22, Leu23, Lys69, and Asn70 showed that the bound DNase was in dynamic exchange. The rate of exchange from the major to the minor form was determined to be 1.1 +/- 0.2 s(-1) at 298 K. Previous NMR studies have shown that the free DNase interchanges between two conformers with a forward rate constant of 1.61 +/- 0.11 s(-1) at 288 K, and that the bound Im9 is fixed in one conformation. The NMR studies of the bound DNase show that Im9 binds similarly to both conformers of the DNase and that the buried Trp22 is involved in the dynamic process. For the free DNase, all NH groups within a 9 A radius of any point of the Trp22 ring exhibit heterogeneity suggesting that a rearrangement of the position of this side chain is connected with the conformational interchange. The possible functional significance of this feature of the DNase is discussed. PMID:10794413

  19. Dynamical realizations of l-conformal Newton–Hooke group

    International Nuclear Information System (INIS)

    The method of nonlinear realizations and the technique previously developed in [A. Galajinsky, I. Masterov, Nucl. Phys. B 866 (2013) 212, (arXiv:1208.1403)] are used to construct a dynamical system without higher derivative terms, which holds invariant under the l-conformal Newton–Hooke group. A configuration space of the model involves coordinates, which parametrize a particle moving in d spatial dimensions and a conformal mode, which gives rise to an effective external field. The dynamical system describes a generalized multi-dimensional oscillator, which undergoes accelerated/decelerated motion in an ellipse in accord with evolution of the conformal mode. Higher derivative formulations are discussed as well. It is demonstrated that the multi-dimensional Pais–Uhlenbeck oscillator enjoys the l=3/2 -conformal Newton–Hooke symmetry for a particular choice of its frequencies

  20. Conformational dynamics of the human propeller telomeric DNA quadruplex on a microsecond time scale

    Science.gov (United States)

    Islam, Barira; Sgobba, Miriam; Laughton, Charlie; Orozco, Modesto; Sponer, Jiri; Neidle, Stephen; Haider, Shozeb

    2013-01-01

    The human telomeric DNA sequence with four repeats can fold into a parallel-stranded propeller-type topology. NMR structures solved under molecular crowding experiments correlate with the crystal structures found with crystal-packing interactions that are effectively equivalent to molecular crowding. This topology has been used for rationalization of ligand design and occurs experimentally in a number of complexes with a diversity of ligands, at least in the crystalline state. Although G-quartet stems have been well characterized, the interactions of the TTA loop with the G-quartets are much less defined. To better understand the conformational variability and structural dynamics of the propeller-type topology, we performed molecular dynamics simulations in explicit solvent up to 1.5 μs. The analysis provides a detailed atomistic account of the dynamic nature of the TTA loops highlighting their interactions with the G-quartets including formation of an A:A base pair, triad, pentad and hexad. The results present a threshold in quadruplex simulations, with regards to understanding the flexible nature of the sugar-phosphate backbone in formation of unusual architecture within the topology. Furthermore, this study stresses the importance of simulation time in sampling conformational space for this topology. PMID:23293000

  1. NMR characterization of structure, backbone dynamics, and glutathione binding of the human macrophage migration inhibitory factor (MIF).

    Science.gov (United States)

    Mühlhahn, P; Bernhagen, J; Czisch, M; Georgescu, J; Renner, C; Ross, A; Bucala, R; Holak, T A

    1996-10-01

    Human macrophage migration inhibitory factor is a 114 amino acid protein that belongs to the family of immunologic cytokines. Assignments of 1H, 15N, and 13C resonances have enabled the determination of the secondary structure of the protein, which consists of two alpha-helices (residues 18-31 and 89-72) and a central four-stranded beta-sheet. In the beta-sheet, two parallel beta-sheets are connected in an antiparallel sense. From the total of three cysteines present in the primary structure of MIF, none was found to form disulfide bridges. 1H-15N heteronuclear T1, T2, and steady-state NOE measurements indicate that the backbone of MIF exists in a rigid structure of limited conformational flexibility (on the nanosecond to picosecond time scale). Several residues located in the loop regions and at the N termini of two helices exhibit internal motions on the 1-3 ns time scale. The capacity to bind glutathione was investigated by titration of a uniform 15N-labeled sample and led us to conclude that MIF has, at best, very low affinity for glutathione. PMID:8897610

  2. Conformal killing tensors and covariant Hamiltonian dynamics

    International Nuclear Information System (INIS)

    A covariant algorithm for deriving the conserved quantities for natural Hamiltonian systems is combined with the non-relativistic framework of Eisenhart, and of Duval, in which the classical trajectories arise as geodesics in a higher dimensional space-time, realized by Brinkmann manifolds. Conserved quantities which are polynomial in the momenta can be built using time-dependent conformal Killing tensors with flux. The latter are associated with terms proportional to the Hamiltonian in the lower dimensional theory and with spectrum generating algebras for higher dimensional quantities of order 1 and 2 in the momenta. Illustrations of the general theory include the Runge-Lenz vector for planetary motion with a time-dependent gravitational constant G(t), motion in a time-dependent electromagnetic field of a certain form, quantum dots, the Hénon-Heiles and Holt systems, respectively, providing us with Killing tensors of rank that ranges from one to six

  3. Security Conformance for the Dynamically Routed Data

    OpenAIRE

    Suma Patra; Dr.V.Janaki; Priyanka suram; Nalubala Ranjeeth Kumar

    2011-01-01

    Secure transmission of data plays a crucial role in the networks. To improve the security many methodologies have been proposed till now, like cryptographic designs, intrusion detection, dynamic routing etc. In this paper we consider that the data transmission is done by using the concept of dynamic routing. Sometimes the sender may be neglecting the security due to the lack of personal interest, but the receiver has to take the utmost care. In such cases the receiver after forcing the sender...

  4. Effects of ion binding on the backbone dynamics of calbindin D9k determined by 15N NMR relaxation.

    Science.gov (United States)

    Akke, M; Skelton, N J; Kördel, J; Palmer, A G; Chazin, W J

    1993-09-21

    The backbone dynamics of apo- and (Cd2+)1-calbindin D9k have been characterized by 15N nuclear magnetic resonance spectroscopy. Spin-lattice and spin-spin relaxation rate constants and steady-state [1H]-15N nuclear Overhauser effects were measured at a magnetic field strength of 11.74 T by two-dimensional, proton-detected heteronuclear NMR experiments using 15N-enriched samples. The relaxation parameters were analyzed using a model-free formalism that characterizes the dynamics of the N-H bond vectors in terms of generalized order parameters and effective correlation times. The data for the apo and (Cd2+)1 states were compared to those for the (Ca2+)2 state [Kördel, J., Skelton, N. J., Akke, M., Palmer, A. G., & Chazin, W. J. (1992) Biochemistry 31, 4856-4866] to ascertain the effects on ion ligation on the backbone dynamics of calbindin D9k. The two binding loops respond differently to ligation by metal ions: high-frequency (10(9)-10(12) s-1) fluctuations of the N-terminal ion-binding loop are not affected by ion binding, whereas residues G57, D58, G59, and E60 in the C-terminal ion-binding loop have significantly lower order parameters in the apo state than in the metal-bound states. The dynamical responses of the four helices to binding of ions are much smaller than that for the C-terminal binding loop, with the strongest effect on helix III, which is located between the linker loop and binding site II. Significant fluctuations on slower time scales also were detected in the unoccupied N-terminal ion-binding loop of the apo and (Cd2+)1 states; the apparent rates were greater for the (Cd2+)1 state. These results on the dynamical response to ion binding in calbindin D9k provide insights into the molecular details of the binding process and qualitative evidence for entropic contributions to the cooperative phenomenon of calcium binding for the pathway in which the ion binds first in the C-terminal site. PMID:8373781

  5. Backbone dynamics of free barnase and its complex with barstar determined by 15N NMR relaxation study.

    Science.gov (United States)

    Sahu, S C; Bhuyan, A K; Udgaonkar, J B; Hosur, R V

    2000-10-01

    Backbone dynamics of uniformly 15N-labeled free barnase and its complex with unlabelled barstar have been studied at 40 degrees C, pH 6.6, using 15N relaxation data obtained from proton-detected 2D [1H]-15N NMR spectroscopy. 15N spin-lattice relaxation rate constants (R1), spin-spin relaxation rate constants (R2), and steady-state heteronuclear [1H]-15N NOEs have been measured at a magnetic field strength of 14.1 Tesla for 91 residues of free barnase and for 90 residues out of a total of 106 in the complex (excluding three prolines and the N-terminal residue) backbone amide 15N sites of barnase. The primary relaxation data for both the cases have been analyzed in the framework of the model-free formalism using both isotropic and axially symmetric models of the rotational diffusion tensor. As per the latter, the overall rotational correlation times (tau(m)) are 5.0 and 9.5 ns for the free and complexed barnase, respectively. The average order parameter is found to be 0.80 for free barnase and 0.86 for the complex. However, the changes are not uniform along the backbone and for about 5 residues near the binding interface there is actually a significant decrease in the order parameters on complex formation. These residues are not involved in the actual binding. For the residues where the order parameter increases, the magnitudes vary significantly. It is observed that the complex has much less internal mobility, compared to free barnase. From the changes in the order parameters, the entropic contribution of NH bond vector motion to the free energy of complex formation has been calculated. It is apparent that these motion's cause significant unfavorable contributions and therefore must be compensated by many other favorable contributions to effect tight complex formation. The observed variations in the motion and their different locations with regard to the binding interface may have important implications for remote effects and regulation of the enzyme action. PMID

  6. Backbone dynamics of free barnase and its complex with barstar determined by 15N NMR relaxation study

    International Nuclear Information System (INIS)

    Backbone dynamics of uniformly 15N-labeled free barnase and its complex with unlabelled barstar have been studied at 40 deg. C, pH 6.6, using 15N relaxation data obtained from proton-detected 2D {1H}-15N NMR spectroscopy. 15N spin-lattice relaxation rate constants (R1), spin-spin relaxation rate constants (R2), and steady-state heteronuclear {1H}-15N NOEs have been measured at a magnetic field strength of 14.1 Tesla for 91 residues of free barnase and for 90 residues out of a total of 106 in the complex (excluding three prolines and the N-terminal residue) backbone amide 15N sites of barnase. The primary relaxation data for both the cases have been analyzed in the framework of the model-free formalism using both isotropic and axially symmetric models of the rotational diffusion tensor. As per the latter, the overall rotational correlation times (τm) are 5.0 and 9.5 ns for the free and complexed barnase, respectively. The average order parameter is found to be 0.80 for free barnase and 0.86 for the complex. However, the changes are not uniform along the backbone and for about 5 residues near the binding interface there is actually a significant decrease in the order parameters on complex formation. These residues are not involved in the actual binding. For the residues where the order parameter increases, the magnitudes vary significantly. It is observed that the complex has much less internal mobility, compared to free barnase. From the changes in the order parameters, the entropic contribution of NH bond vector motion to the free energy of complex formation has been calculated. It is apparent that these motions cause significant unfavorable contributions and therefore must be compensated by many other favorable contributions to effect tight complex formation. The observed variations in the motion and their different locations with regard to the binding interface may have important implications for remote effects and regulation of the enzyme action

  7. Backbone dynamics of free barnase and its complex with barstar determined by 15N NMR relaxation study

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Sarata C. [Tata Institute of Fundamental Research, Department of Chemical Sciences (India); Bhuyan, Abani K.; Udgaonkar, Jayant B. [University of Agricultural Sciences (UAS), National Centre for Biological Sciences, Tata Institute of Fundamental Research (India); Hosur, R.V. [Tata Institute of Fundamental Research, Department of Chemical Sciences (India)

    2000-10-15

    Backbone dynamics of uniformly {sup 15}N-labeled free barnase and its complex with unlabelled barstar have been studied at 40 deg. C, pH 6.6, using {sup 15}N relaxation data obtained from proton-detected 2D {l_brace}{sup 1}H{r_brace}-{sup 15}N NMR spectroscopy. {sup 15}N spin-lattice relaxation rate constants (R{sub 1}), spin-spin relaxation rate constants (R{sub 2}), and steady-state heteronuclear {l_brace}{sup 1}H{r_brace}-{sup 15}N NOEs have been measured at a magnetic field strength of 14.1 Tesla for 91 residues of free barnase and for 90 residues out of a total of 106 in the complex (excluding three prolines and the N-terminal residue) backbone amide {sup 15}N sites of barnase. The primary relaxation data for both the cases have been analyzed in the framework of the model-free formalism using both isotropic and axially symmetric models of the rotational diffusion tensor. As per the latter, the overall rotational correlation times ({tau}{sub m}) are 5.0 and 9.5 ns for the free and complexed barnase, respectively. The average order parameter is found to be 0.80 for free barnase and 0.86 for the complex. However, the changes are not uniform along the backbone and for about 5 residues near the binding interface there is actually a significant decrease in the order parameters on complex formation. These residues are not involved in the actual binding. For the residues where the order parameter increases, the magnitudes vary significantly. It is observed that the complex has much less internal mobility, compared to free barnase. From the changes in the order parameters, the entropic contribution of NH bond vector motion to the free energy of complex formation has been calculated. It is apparent that these motions cause significant unfavorable contributions and therefore must be compensated by many other favorable contributions to effect tight complex formation. The observed variations in the motion and their different locations with regard to the binding interface

  8. Iterated conformal dynamics and Laplacian growth.

    Science.gov (United States)

    Barra, Felipe; Davidovitch, Benny; Procaccia, Itamar

    2002-04-01

    The method of iterated conformal maps for the study of diffusion limited aggregates (DLA) is generalized to the study of Laplacian growth patterns and related processes. We emphasize the fundamental difference between these processes: DLA is grown serially with constant size particles, while Laplacian patterns are grown by advancing each boundary point in parallel, proportional to the gradient of the Laplacian field. We introduce a two-parameter family of growth patterns that interpolates between DLA and a discrete version of Laplacian growth. The ultraviolet putative finite-time singularities are regularized here by a minimal tip size, equivalently for all the models in this family. With this we stress that the difference between DLA and Laplacian growth is not in the manner of ultraviolet regularization, but rather in their deeply different growth rules. The fractal dimensions of the asymptotic patterns depend continuously on the two parameters of the family, giving rise to a "phase diagram" in which DLA and discretized Laplacian growth are at the extreme ends. In particular, we show that the fractal dimension of Laplacian growth patterns is higher than the fractal dimension of DLA, with the possibility of dimension 2 for the former not excluded. PMID:12005963

  9. String with dynamical geometry. Hamiltonian analysis in conformal gauge

    International Nuclear Information System (INIS)

    Canonical formalism is formulated for a string with dynamical geometry in the conformal gauge. It is proved that open strings can only exist if the cosmological constant is nonnegative. It is proved also that the mass of the string is positively definite

  10. Visual-Analytics Tools for Analyzing Polymer Conformational Dynamics

    Science.gov (United States)

    Thakur, Sidharth; Tallury, Syamal; Pasquinelli, Melissa

    2010-03-01

    The goal of this work is to supplement existing methods for analyzing spatial-temporal dynamics of polymer conformations derived from molecular dynamics simulations by adapting standard visual-analytics tools. We intend to use these tools to quantify conformational dynamics and chemical characteristics at interfacial domains, and correlate this information to the macroscopic properties of a material. Our approach employs numerical measures of similarities and provides matrix- and graph-based representations of the similarity relationships for the polymer structures. We will discuss some numerical measures that encapsulate geometric and spatial attributes of polymer molecular configurations. These methods supply information on global and local relationships between polymer conformations, which can be used to inspect important characteristics of stable and persistent polymer conformations in specific environments. Initially, we have applied these tools to investigate the interface in polymer nanocomposites between a polymer matrix and carbon nanotube reinforcements and to correlate this information to the macroscopic properties of the material. The results indicate that our visual-analytic approach can be used to compare spatial dynamics of rigid and non-rigid polymers and properties of families of related polymers.

  11. Strong dynamics, composite Higgs and the conformal window

    CERN Document Server

    Nogradi, Daniel

    2016-01-01

    We review recent progress in the lattice investigations of near-conformal non-abelian gauge theories relevant for dynamical symmetry breaking and model building of composite Higgs models. The emphasis is placed on the mass spectrum and the running renormalized coupling. The role of a light composite scalar isosinglet particle as a composite Higgs particle is highlighted.

  12. Dynamics of DNA conformations and DNA-protein interaction

    DEFF Research Database (Denmark)

    Metzler, R.; Ambjörnsson, T.; Lomholt, Michael Andersen;

    2005-01-01

    Optical tweezers, atomic force microscopes, patch clamping, or fluorescence techniques make it possible to study both the equilibrium conformations and dynamics of single DNA molecules as well as their interaction with binding proteins. In this paper we address the dynamics of local DNA denaturat...... report recent findings on the search process of proteins for a specific target on the DNA. © 2006 Materials Research Society....

  13. Proper time dynamics in general relativity and conformal unified theory

    International Nuclear Information System (INIS)

    The paper is devoted to the analysis of the notion 'proper time' in general relativity. Using as examples the models of the Hamiltonian mechanics, special relativity, and cosmology which are invariant under the reparametrization of time, we discuss the method of Hamiltonian reduction in which one of the initial extended system becomes a parameter of evolution of the reduced system. We derive the equation of dynamics of the 'proper time' of an observer with respect to an evolution parameter of the reduced system. In cosmological models, this equation describes the Friedmann observables (the Hubble law, the red shift). In GR, the ADM-metric and the Lichnerowicz conformal invariant variables allow us to extract the evolution parameter of the reduced system as the global component of the space metric and to derive the Friedmann like equation for the 'proper time' of an observer in the Einstein theory. The principles of correspondence and causality distinguish the conformal time of an observed as more preferable than the proper one. We consider a conformal-invariant theory where the conformal time becomes measurable for an observer. This conformal unified theory (CUT) is based on the standard model of fundamental interactions in which dynamics of the scalar field is described by the Penrose-Chernicov-Tagirov Lagrangian and the elementary particle mass plays part of the evolution parameter. The cosmological evolution of the Universe in CUT is discussed

  14. Thermal adaptation of conformational dynamics in ribonuclease H.

    Directory of Open Access Journals (Sweden)

    Kate A Stafford

    Full Text Available The relationship between inherent internal conformational processes and enzymatic activity or thermodynamic stability of proteins has proven difficult to characterize. The study of homologous proteins with differing thermostabilities offers an especially useful approach for understanding the functional aspects of conformational dynamics. In particular, ribonuclease HI (RNase H, an 18 kD globular protein that hydrolyzes the RNA strand of RNA:DNA hybrid substrates, has been extensively studied by NMR spectroscopy to characterize the differences in dynamics between homologs from the mesophilic organism E. coli and the thermophilic organism T. thermophilus. Herein, molecular dynamics simulations are reported for five homologous RNase H proteins of varying thermostabilities and enzymatic activities from organisms of markedly different preferred growth temperatures. For the E. coli and T. thermophilus proteins, strong agreement is obtained between simulated and experimental values for NMR order parameters and for dynamically averaged chemical shifts, suggesting that these simulations can be a productive platform for predicting the effects of individual amino acid residues on dynamic behavior. Analyses of the simulations reveal that a single residue differentiates between two different and otherwise conserved dynamic processes in a region of the protein known to form part of the substrate-binding interface. Additional key residues within these two categories are identified through the temperature-dependence of these conformational processes.

  15. Backbone dynamics of a biologically active human FGF-1 monomer, complexed to a hexasaccharide heparin-analogue, by {sup 15}N NMR relaxation methods

    Energy Technology Data Exchange (ETDEWEB)

    Canales-Mayordomo, Angeles; Fayos, Rosa [Centro de Investigaciones Biologicas, CSIC, Departamento de Estructura y Funcion de Proteinas (Spain); Angulo, Jesus; Ojeda, Rafael [Instituto de Investigaciones Quimicas, CSIC, Grupo de Carbohidratos (Spain); Martin-Pastor, Manuel [Unidad de RM y Unidad de RMN de Biomoleculas Asociada al CSIC, Laboratorio de Estructura e Estructura de Biomoleculas Jose Carracido (Spain); Nieto, Pedro M.; Martin-Lomas, Manuel [Instituto de Investigaciones Quimicas, CSIC, Grupo de Carbohidratos (Spain); Lozano, Rosa; Gimenez-Gallego, Guillermo; Jimenez-Barbero, Jesus [Centro de Investigaciones Biologicas, CSIC, Departamento de Estructura y Funcion de Proteinas (Spain)], E-mail: jjbarbero@cib.csic.es

    2006-08-15

    The binding site and backbone dynamics of a bioactive complex formed by the acidic fibroblast growth factor (FGF-1) and a specifically designed heparin hexasaccharide has been investigated by HSQC and relaxation NMR methods. The comparison of the relaxation data for the free and bound states has allowed showing that the complex is monomeric, and still induces mutagenesis, and that the protein backbone presents reduced motion in different timescale in its bound state, except in certain points that are involved in the interaction with the fibroblast growth factor receptor (FGFR)

  16. Energies and 2 '-Hydroxyl Group Orientations of RNA Backbone Conformations. Benchmark CCSD(T)/CBS Database, Electronic Analysis, and Assessment of DFT Methods and MD Simulations

    Czech Academy of Sciences Publication Activity Database

    Mládek, Arnošt; Banáš, P.; Jurečka, P.; Otyepka, M.; Zgarbová, M.; Šponer, Jiří

    2014-01-01

    Roč. 10, č. 1 (2014), s. 463-480. ISSN 1549-9618 R&D Projects: GA ČR(CZ) GAP208/12/1878; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081707 Keywords : DENSITY-FUNCTIONAL THEORY * SUGAR-PHOSPHATE BACKBONE * QUANTUM-CHEMICAL CALCULATIONS Subject RIV: BO - Biophysics Impact factor: 5.498, year: 2014

  17. Comparison of backbone dynamics of the type III antifreeze protein and antifreeze-like domain of human sialic acid synthase

    International Nuclear Information System (INIS)

    Antifreeze proteins (AFPs) are found in a variety of cold-adapted (psychrophilic) organisms to promote survival at subzero temperatures by binding to ice crystals and decreasing the freezing temperature of body fluids. The type III AFPs are small globular proteins that consist of one α-helix, three 310-helices, and two β-strands. Sialic acids play important roles in a variety of biological functions, such as development, recognition, and cell adhesion and are synthesized by conserved enzymatic pathways that include sialic acid synthase (SAS). SAS consists of an N-terminal catalytic domain and a C-terminal antifreeze-like (AFL) domain, which is similar to the type III AFPs. Despite having very similar structures, AFL and the type III AFPs exhibit very different temperature-dependent stability and activity. In this study, we have performed backbone dynamics analyses of a type III AFP (HPLC12 isoform) and the AFL domain of human SAS (hAFL) at various temperatures. We also characterized the structural/dynamic properties of the ice-binding surfaces by analyzing the temperature gradient of the amide proton chemical shift and its correlation with chemical shift deviation from random coil. The dynamic properties of the two proteins were very different from each other. While HPLC12 was mostly rigid with a few residues exhibiting slow motions, hAFL showed fast internal motions at low temperature. Our results provide insight into the molecular basis of thermostability and structural flexibility in homologous psychrophilic HPLC12 and mesophilic hAFL proteins

  18. Comparison of backbone dynamics of the type III antifreeze protein and antifreeze-like domain of human sialic acid synthase

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong-Geun [Gyeongsang National University, Department of Chemistry and Research Institute of Natural Science (Korea, Republic of); Park, Chin-Ju [Gwangju Institute of Science and Technology, Division of Liberal Arts and Sciences and Department of Chemistry (Korea, Republic of); Kim, Hee-Eun; Seo, Yeo-Jin; Lee, Ae-Ree; Choi, Seo-Ree; Lee, Shim Sung; Lee, Joon-Hwa, E-mail: joonhwa@gnu.ac.kr [Gyeongsang National University, Department of Chemistry and Research Institute of Natural Science (Korea, Republic of)

    2015-02-15

    Antifreeze proteins (AFPs) are found in a variety of cold-adapted (psychrophilic) organisms to promote survival at subzero temperatures by binding to ice crystals and decreasing the freezing temperature of body fluids. The type III AFPs are small globular proteins that consist of one α-helix, three 3{sub 10}-helices, and two β-strands. Sialic acids play important roles in a variety of biological functions, such as development, recognition, and cell adhesion and are synthesized by conserved enzymatic pathways that include sialic acid synthase (SAS). SAS consists of an N-terminal catalytic domain and a C-terminal antifreeze-like (AFL) domain, which is similar to the type III AFPs. Despite having very similar structures, AFL and the type III AFPs exhibit very different temperature-dependent stability and activity. In this study, we have performed backbone dynamics analyses of a type III AFP (HPLC12 isoform) and the AFL domain of human SAS (hAFL) at various temperatures. We also characterized the structural/dynamic properties of the ice-binding surfaces by analyzing the temperature gradient of the amide proton chemical shift and its correlation with chemical shift deviation from random coil. The dynamic properties of the two proteins were very different from each other. While HPLC12 was mostly rigid with a few residues exhibiting slow motions, hAFL showed fast internal motions at low temperature. Our results provide insight into the molecular basis of thermostability and structural flexibility in homologous psychrophilic HPLC12 and mesophilic hAFL proteins.

  19. MERA: a webserver for evaluating backbone torsion angle distributions in dynamic and disordered proteins from NMR data

    Energy Technology Data Exchange (ETDEWEB)

    Mantsyzov, Alexey B. [M.V. Lomonosov Moscow State University, Faculty of Fundamental Medicine (Russian Federation); Shen, Yang; Lee, Jung Ho [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States); Hummer, Gerhard [Max Planck Institute of Biophysics (Germany); Bax, Ad, E-mail: bax@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2015-09-15

    MERA (Maximum Entropy Ramachandran map Analysis from NMR data) is a new webserver that generates residue-by-residue Ramachandran map distributions for disordered proteins or disordered regions in proteins on the basis of experimental NMR parameters. As input data, the program currently utilizes up to 12 different parameters. These include three different types of short-range NOEs, three types of backbone chemical shifts ({sup 15}N, {sup 13}C{sup α}, and {sup 13}C′), six types of J couplings ({sup 3}J{sub HNHα}, {sup 3}J{sub C′C′}, {sup 3}J{sub C′Hα}, {sup 1}J{sub HαCα}, {sup 2}J{sub CαN} and {sup 1}J{sub CαN}), as well as the {sup 15}N-relaxation derived J(0) spectral density. The Ramachandran map distributions are reported in terms of populations of their 15° × 15° voxels, and an adjustable maximum entropy weight factor is available to ensure that the obtained distributions will not deviate more from a newly derived coil library distribution than required to account for the experimental data. MERA output includes the agreement between each input parameter and its distribution-derived value. As an application, we demonstrate performance of the program for several residues in the intrinsically disordered protein α-synuclein, as well as for several static and dynamic residues in the folded protein GB3.

  20. MERA: a webserver for evaluating backbone torsion angle distributions in dynamic and disordered proteins from NMR data

    International Nuclear Information System (INIS)

    MERA (Maximum Entropy Ramachandran map Analysis from NMR data) is a new webserver that generates residue-by-residue Ramachandran map distributions for disordered proteins or disordered regions in proteins on the basis of experimental NMR parameters. As input data, the program currently utilizes up to 12 different parameters. These include three different types of short-range NOEs, three types of backbone chemical shifts (15N, 13Cα, and 13C′), six types of J couplings (3JHNHα, 3JC′C′, 3JC′Hα, 1JHαCα, 2JCαN and 1JCαN), as well as the 15N-relaxation derived J(0) spectral density. The Ramachandran map distributions are reported in terms of populations of their 15° × 15° voxels, and an adjustable maximum entropy weight factor is available to ensure that the obtained distributions will not deviate more from a newly derived coil library distribution than required to account for the experimental data. MERA output includes the agreement between each input parameter and its distribution-derived value. As an application, we demonstrate performance of the program for several residues in the intrinsically disordered protein α-synuclein, as well as for several static and dynamic residues in the folded protein GB3

  1. Molecular dynamics simulations on structural conformations of rhodopsin and prion proteins

    International Nuclear Information System (INIS)

    Molecular dynamics simulations were performed to investigate the structural conformation of the rhodopsin and prion proteins. We have estimated the effect of specific disease-related amino acid mutations on the dynamics and conformational changes

  2. Lessons in Protein Design from Combined Evolution and Conformational Dynamics

    OpenAIRE

    Swarnendu Tripathi; M Neal Waxham; Cheung, Margaret S.; Yin Liu

    2015-01-01

    Protein-protein interactions play important roles in the control of every cellular process. How natural selection has optimized protein design to produce molecules capable of binding to many partner proteins is a fascinating problem but not well understood. Here, we performed a combinatorial analysis of protein sequence evolution and conformational dynamics to study how calmodulin (CaM), which plays essential roles in calcium signaling pathways, has adapted to bind to a large number of partne...

  3. The Role of Conformation and Conformational Dynamics in the Control of Hemeprotein Reactivity

    Science.gov (United States)

    Friedman, Joel M.

    1998-11-01

    Proteins are a unique class of materials. Proteins are macromolecules with highly complex conformations and dynamics that have been fine-tuned through evolution to generate very specific biological and biochemical functions. A major thrust of molecular biophysics is to understand how structure, conformational motions and biological function are intertwined. Hemoglobin and myoglobin are two related proteins that are especially amenable to detailed biophysical study. The functional process in both systems is the reversible binding of molecular oxygen to a porphyrin-coordinated iron (heme). This seemingly simple functional process can be dissected into distant phases each of which is influenced by both the static and dynamic aspects of the protein that surrounds the oxygen binding site. Whereas myoglobin contains only one such site, hemoglobin is comprised of four myoglobin-like subunits each with a heme group. Hemoglobin also exhibits the phenomenon of cooperative oxygen binding which in part has made it one of the most extensively studied proteins. Despite the fact that both proteins have been extensively studied, there are still major uncertainties regarding the mechanism of protein control of oxygen binding including the molecular details of cooperativity in hemoglobin. That there are still major unanswered questions with respect to the mechanism behind how these two proteins function attests to the overall biophysical complexity of proteins. In this talk we will present recent advances made in exposing the dynamics controlling reactivity through the combination of several laser-based spectroscopies in conjunction with a new sol-gel encapsulation technique. This encapsulation technique allows for the trapping and probing of non-equilibrium protein conformations at ambient temperatures.

  4. Conformity of LINAC-Based Stereotactic Radiosurgery Using Dynamic Conformal Arcs and Micro-Multileaf Collimator

    International Nuclear Information System (INIS)

    Purpose: To assess the conformity of dynamic conformal arc linear accelerator-based stereotactic radiosurgery and to describe a standardized method of isodose surface (IDS) selection. Methods and Materials: In 174 targets, the conformity index (CI) at the prescription IDS used for treatment was calculated as CI = (PIV/PVTV)/(PVTV/TV), where TV is the target volume, PIV (prescription isodose volume) is the total volume encompassed by the prescription IDS, and PVTV is the TV encompassed by the IDS. In addition, a 'standardized' prescription IDS (sIDS) was chosen according to the following criteria: 95% of the TV was encompassed by the PIV and 99% of TV was covered by 95% of the prescription dose. The CIs at the sIDS were also calculated. Results: The median CI at the prescription IDS and sIDS was 1.63 and 1.47, respectively (p < 0.001). In 132 of 174 cases, the volume of normal tissue in the PIV was reduced by the prescription to the sIDS compared with the prescription IDS, in 20 cases it remained unchanged, and in 22 cases it was increased. Conclusion: The CIs obtained with linear accelerator-based stereotactic radiosurgery are comparable to those previously reported for gamma knife stereotactic radiosurgery. Using a uniform method to select the sIDS, adequate target coverage was usually achievable with prescription to an IDS greater than that chosen by the treating physician (prescription IDS), providing sparing of normal tissue. Thus, the sIDS might aid physicians in identifying a prescription IDS that balances coverage and conformity

  5. Conformal nonlinear fluid dynamics from gravity in arbitrary dimensions

    International Nuclear Information System (INIS)

    We generalize recent work to construct a map from the conformal Navier Stokes equations with holographically determined transport coefficients, in d spacetime dimensions, to the set of asymptotically locally AdSd+1 long wavelength solutions of Einstein's equations with a negative cosmological constant, for all d>2. We find simple explicit expressions for the stress tensor (slightly generalizing the recent result by Haack and Yarom (arXiv:0806.4602)), the full dual bulk metric and an entropy current of this strongly coupled conformal fluid, to second order in the derivative expansion, for arbitrary d>2. We also rewrite the well known exact solutions for rotating black holes in AdSd+1 space in a manifestly fluid dynamical form, generalizing earlier work in d = 4. To second order in the derivative expansion, this metric agrees with our general construction of the metric dual to fluid flows.

  6. Influence of conformational molecular dynamics on matter wave interferometry

    CERN Document Server

    Gring, Michael; Eibenberger, Sandra; Nimmrichter, Stefan; Berrada, Tarik; Arndt, Markus; Ulbricht, Hendrik; Hornberger, Klaus; Müri, Marcel; Mayor, Marcel; Böckmann, Marcus; Doltsinis, Nikos

    2014-01-01

    We investigate the influence of thermally activated internal molecular dynamics on the phase shifts of matter waves inside a molecule interferometer. While de Broglie physics generally describes only the center-of-mass motion of a quantum object, our experiment demonstrates that the translational quantum phase is sensitive to dynamic conformational state changes inside the diffracted molecules. The structural flexibility of tailor-made hot organic particles is sufficient to admit a mixture of strongly fluctuating dipole moments. These modify the electric susceptibility and through this the quantum interference pattern in the presence of an external electric field. Detailed molecular dynamics simulations combined with density functional theory allow us to quantify the time-dependent structural reconfigurations and to predict the ensemble-averaged square of the dipole moment which is found to be in good agreement with the interferometric result. The experiment thus opens a new perspective on matter wave interfe...

  7. Subpicosecond conformational dynamics of small peptides probed by two-dimensional vibrational spectroscopy

    Science.gov (United States)

    Woutersen, Sander; Mu, Yuguang; Stock, Gerhard; Hamm, Peter

    2001-09-01

    The observation of subpicosecond fluctuations in the conformation of a small peptide in water is demonstrated. We use an experimental method that is specifically sensitive to conformational dynamics taking place on an ultrafast time scale. Complementary molecular-dynamics simulations confirm that the conformational fluctuations exhibit a subpicosecond component, the time scale and amplitude of which agree well with those derived from the experiment.

  8. A Conformal Truncation Framework for Infinite-Volume Dynamics

    CERN Document Server

    Katz, Emanuel; Walters, Matthew T

    2016-01-01

    We present a new framework for studying conformal field theories deformed by one or more relevant operators. The original CFT is described in infinite volume using a basis of states with definite momentum, $P$, and conformal Casimir, $\\mathcal{C}$. The relevant deformation is then considered using lightcone quantization, with the resulting Hamiltonian expressed in terms of this CFT basis. Truncating to states with $\\mathcal{C} \\leq \\mathcal{C}_{\\max}$, one can numerically find the resulting spectrum, as well as other dynamical quantities, such as spectral densities of operators. This method requires the introduction of an appropriate regulator, which can be chosen to preserve the conformal structure of the basis. We check this framework in three dimensions for various perturbative deformations of a free scalar CFT, and for the case of a free $O(N)$ CFT deformed by a mass term and a non-perturbative quartic interaction at large-$N$. In all cases, the truncation scheme correctly reproduces known analytic result...

  9. Solution structure and backbone dynamics of an antigen-free heavy chain variable domain (VHH) from Llama.

    Science.gov (United States)

    Renisio, Jean-Guillaume; Pérez, Janice; Czisch, Michael; Guenneugues, Marc; Bornet, Olivier; Frenken, Leon; Cambillau, Christian; Darbon, Hervé

    2002-06-01

    Camelids, (dromedaries, camels, and llamas) produce heavy-chains antibodies, with their antigen recognition sites composed of a single VH-like domain, referred to as VHH. The solution structure of one of these VHHs domains (VHH-H14), raised against the alpha subunit of the human chorionic gonadotropin hormone (hCG), has been determined by (15)N heteronuclear three-dimensional NMR spectroscopy. The framework is well resolved within the set of 20 best-calculated NMR structures and is close to that of classical VH domains from vertebrate antibodies, consisting of two antiparallel beta-sheets organized in a beta-barrel. Loops display a lower precision, especially the Complementarity Determining Regions (CDRs), involved in antigen recognition. Comparison of the three-dimensional VHH-H14 solution structure with its previously solved crystal structure (Spinelli et al., Nature Struct. Biol. 1996;3:752-757) reveals a high similarity to the framework, whereas significant conformational differences occur on CDRs, leading to the assumption that the antigen recognition site is a more mobile part. In order to deepen our insights into the dynamics of VHH-H14 in solution, (15)N relaxation was measured with longitudinal R1 and transverse R2 self-relaxation rates, and (15)N steady-state heteronuclear nuclear Overhauser enhancements (NOE), making it possible to probe picosecond-to-millisecond internal motions. Determination of dynamic parameters (S(2), tau(e), and Rex) through the Lipari-Szabo Model-free approach enables the identification of several regions with enhanced dynamics. Especially, the mobility measurements from NMR confirm that the antigen recognition site is the most mobile part of the VHH-H14 domain on picosecond-to-nanosecond fast time scales. Several residues belonging to the three CDRs are submitted to chemical exchange processes occurring on slow microsecond-to-millisecond time scales, suggesting that the formation of the VHH/antigen complex should be accompanied

  10. Conformational dynamics and aggregation behavior of piezoelectric diphenylalanine peptides in an external electric field.

    Science.gov (United States)

    Kelly, Catherine M; Northey, Thomas; Ryan, Kate; Brooks, Bernard R; Kholkin, Andrei L; Rodriguez, Brian J; Buchete, Nicolae-Viorel

    2015-01-01

    Aromatic peptides including diphenylalanine (FF) have the capacity to self-assemble into ordered, biocompatible nanostructures with piezoelectric properties relevant to a variety of biomedical applications. Electric fields are commonly applied to align FF nanotubes, yet little is known about the effect of the electric field on the assembly process. Using all-atom molecular dynamics with explicit water molecules, we examine the response of FF monomers to the application of a constant external electric field over a range of intensities. We probe the aggregation mechanism of FF peptides, and find that the presence of even relatively weak fields can accelerate ordered aggregation, primarily by facilitating the alignment of individual molecular dipole moments. This is modulated by the conformational response of individual FF peptides (e.g., backbone stretching) and by the cooperative alignment of neighboring FF and water molecules. These observations may facilitate future studies on the controlled formation of nanostructured aggregates of piezoelectric peptides and the understanding of their electro-mechanical properties. PMID:25240398

  11. a Combined Molecular Dynamics and NMR Spectroscopic Protocol for the Conformational Analysis of Oligosaccharides.

    Science.gov (United States)

    Varma, Vikram

    A combined experimental and theoretical protocol for the conformational analysis of oligosaccharides is presented. Three disaccharides, methyl alpha - scD-mannopyranosyl-(1 to 3)-alpha- scD-mannopyranoside, methyl beta- scD-galactopyranosyl-(1 to 4)-beta- scD-glucopyranoside, and propyl beta- scD-2-acetamido -2-deoxy glucopyranosyl-(1 to 3)- alpha- scL-rhamnopyranoside, are used to evaluate a protocol for conformational analysis that makes use of molecular dynamics calculations with the CHARMM force field. Dynamics trajectories computed in vacuo and in water are used to calculate time-averaged NMR parameters such as spin-lattice relaxation times (T_1 ), Nuclear Overhauser Enhancements (NOE), and heteronuclear spin-spin coupling constants (^3J _{rm CH}). The calculated NMR parameters are then compared to experimental values and used to evaluate the computational procedure. The energetically accessible conformations are effectively sampled by the simulations. The method has been extended to the conformational analysis of higher-order oligosaccharides corresponding to the cell-wall polysaccharide of the Streptococcus Group A, and the Shigella flexneri Y O-antigen. The Streptococcus Group A cell-wall polysaccharide is comprised of a backbone of rhamnopyranosyl units connected by alternating alpha- scL-(1 to 3) and alpha- scL -(1 to 2) linkages, to which are attached N-acetyl-beta- scD-glucosamine ( beta- scD-GlcpNAc) residues at the 3 positions of the rhamnose backbone.rm A&rm B^'qquad A^'& rm Bqquad Acr[{-alpha}{-}L{-}Rha {it p}{-}(1to2){-alpha }{-}L{-}Rha{it p} {-}(1to3){-alpha}{ -}L{-}Rha{it p}-(1to2) -alpha-L-Rha{it p}{-}(1 to3){-alpha}{-}L{- }Rha{it p}{-}cr&uparrow(1 to3)&uparrow(1to3)crbeta {-}D{-}&rm Glc{it p }NAcqquadbeta{-}D{-}& rm Glc{it p}NAccr&rm C ^'&rm C] A branched trisaccharide (A^' -(C)B), a tetrasaccharide (A^' -(C)B-A), a pentasaccharide (C^' -B^'-A ^'-(C)B), and two hexasaccharides (C^'-B^ '-A^' -(C)B-A) and (A-(C^')B ^'-A^' -(C)B), have been chosen

  12. Time-resolved infrared studies of protein conformational dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, W.H.; Causgrove, T.P.; Dyer, R.B. [Los Alamos National Laboratory, NM (United States); Callender, R.H. [Univ. of New York, NY (United States)

    1994-12-01

    We have demonstrated that TRIR in the amide I region gives structural information regarding protein conformational changes in realtime, both on processes involved in the development of the functional structure (protein folding) and on protein structural changes that accompany the functional dynamics of the native structure. Assignment of many of the amide I peaks to specific amide or sidechain structures will require much additional effort. Specifically, the congestion and complexity of the protein vibrational spectra dictate that isotope studies are an absolute requirement for more than a qualitative notion of the structural interpretation of these measurements. It is clear, however, that enormous potential exists for elucidating structural relaxation dynamics and energetics with a high degree of structural specificity using this approach.

  13. Equilibrium conformational dynamics in an RNA tetraloop from massively parallel molecular dynamics.

    Science.gov (United States)

    DePaul, Allison J; Thompson, Erik J; Patel, Sarav S; Haldeman, Kristin; Sorin, Eric J

    2010-08-01

    Conformational equilibrium within the ubiquitous GNRA tetraloop motif was simulated at the ensemble level, including 10 000 independent all-atom molecular dynamics trajectories totaling over 110 micros of simulation time. This robust sampling reveals a highly dynamic structure comprised of 15 conformational microstates. We assemble a Markov model that includes transitions ranging from the nanosecond to microsecond timescales and is dominated by six key loop conformations that contribute to fluctuations around the native state. Mining of the Protein Data Bank provides an abundance of structures in which GNRA tetraloops participate in tertiary contact formation. Most predominantly observed in the experimental data are interactions of the native loop structure within the minor groove of adjacent helical regions. Additionally, a second trend is observed in which the tetraloop assumes non-native conformations while participating in multiple tertiary contacts, in some cases involving multiple possible loop conformations. This tetraloop flexibility can act to counterbalance the energetic penalty associated with assuming non-native loop structures in forming tertiary contacts. The GNRA motif has thus evolved not only to readily participate in simple tertiary interactions involving native loop structure, but also to easily adapt tetraloop secondary conformation in order to participate in larger, more complex tertiary interactions. PMID:20223768

  14. Solution conformations of the B-loop fragments of human transforming growth factor α and epidermal growth factor by 1H nuclear magnetic resonance and restrained molecular dynamics

    International Nuclear Information System (INIS)

    A restrained molecular dynamics simulation approach that explicitly includes the effect of the surrounding solvent molecules is applied to the NMR determination of the conformations of the B-loop fragments of human transforming growth factor α and epidermal growth factor. Backbone interproton distance restraints are obtained by using two-dimensional rotating frame nuclear Overhauser effect spectroscopy (ROESY). The simulations are carried out both in vacuum and in water. The results are discussed in terms of the energetics, agreement with the NMR distances, and the flexibility of the peptides

  15. [Functionally-relevant conformational dynamics of water-soluble proteins].

    Science.gov (United States)

    Novikov, G V; Sivozhelezov, V S; Shaĭtan, K V

    2013-01-01

    A study is reported of the functional-relevant dynamics of three typical water-soluble proteins: Calmodulin, Src-tyrosine kinase as well as repressor of Trp operon. Application of the state-of-art methods of structural bioinformatics allowed to identify dynamics seen in the X-ray structures of the investigated proteins associated with their specific biological functions. In addition, Normal Mode analysis technique revealed the most probable directions of the functionally-relevant motions for all that proteins were also predicted. Importantly, overall type of the motions observed on the lowest-frequency modes was very similar to the motions seen from the analysis of the X-ray data of the examined macromolecules. Thereby it was shown that the large-scale as well as local conformational motions of the proteins might be predetermined already at the level of their tertiary structures. In particular, the determining factor might be the specific fold of the alpha-helixes. Thus functionally-relevant in vivo dynamics of the investigated proteins might be evolutionally formed by means of natural selection at the level of the spatial topology. PMID:23705506

  16. Dynamics of ultraviolet-induced DNA lesions: Dewar formation guided by pre-tension induced by the backbone

    International Nuclear Information System (INIS)

    The photophysical and photochemical processes driving the formation of the ultraviolet (UV)-induced DNA Dewar lesion from the T(6-4)T dimer are investigated by time-resolved spectroscopy and quantum chemical modelling. Time-resolved absorption and emission spectroscopy in the UV revealed a biexponential decay of the electronically excited state (S1) with time constants in the 100 ps and 1 ns range. From the S1 state the system forms the Dewar lesion (proven by time-resolved infrared spectroscopy), the triplet state of the T(6-4)T dimer and the ground state of the original T(6-4)T dimer. The decay process from the excited singlet is activated and thus temperature dependent. Quantum chemical modelling is used to describe the reaction path via a minimum on the excited electronic potential energy surface in close proximity to a triplet state. The transition to the Dewar isomer competes with internal conversion and with triplet formation. Only if the backbone between the two thymines is closed, is the Dewar isomer formed with a significant yield. The simulations reveal that the tension built up by the backbone is required for guiding the reaction to the conical intersection leading to the Dewar isomer. (paper)

  17. Molecular dynamics simulation study on zwitterionic structure to maintain the normal conformations of Glutathione

    Institute of Scientific and Technical Information of China (English)

    YAN; Han; ZHU; HaoMiao; SHEN; Jian

    2007-01-01

    Molecular dynamics simulations were applied to normal conformational Glutathione (GSH) and GSH over zwitterionic and hydrophobic surfaces respectively. Conformational analysis of GSH during the simulation time on RMSD, conformational flexibility and dihedral distribution were performed. The results showed that zwitterionic structure maintains the normal conformations of GSH to a better extent, which should be a first good proof of the hypothesis of "maintain of normal structure".

  18. Binary cluster collision dynamics and minimum energy conformations

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, Francisco [Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Germany); Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Avenida Ecuador 3493, Santiago (Chile); Rogan, José; Valdivia, J.A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Avenida Ecuador 3493, Santiago (Chile); Varas, A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Nano-Bio Spectroscopy Group, ETSF Scientific Development Centre, Departamento de Física de Materiales, Universidad del País Vasco UPV/EHU, Av. Tolosa 72, E-20018 San Sebastián (Spain); Kiwi, Miguel, E-mail: m.kiwi.t@gmail.com [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Avenida Ecuador 3493, Santiago (Chile)

    2013-10-15

    The collision dynamics of one Ag or Cu atom impinging on a Au{sub 12} cluster is investigated by means of DFT molecular dynamics. Our results show that the experimentally confirmed 2D to 3D transition of Au{sub 12}→Au{sub 13} is mostly preserved by the resulting planar Au{sub 12}Ag and Au{sub 12}Cu minimum energy clusters, which is quite remarkable in view of the excess energy, well larger than the 2D–3D potential barrier height. The process is accompanied by a large s−d hybridization and charge transfer from Au to Ag or Cu. The dynamics of the collision process mainly yields fusion of projectile and target, however scattering and cluster fragmentation also occur for large energies and large impact parameters. While Ag projectiles favor fragmentation, Cu favors scattering due to its smaller mass. The projectile size does not play a major role in favoring the fragmentation or scattering channels. By comparing our collision results with those obtained by an unbiased minimum energy search of 4483 Au{sub 12}Ag and 4483 Au{sub 12}Cu configurations obtained phenomenologically, we find that there is an extra bonus: without increase of computer time collisions yield the planar lower energy structures that are not feasible to obtain using semi-classical potentials. In fact, we conclude that phenomenological potentials do not even provide adequate seeds for the search of global energy minima for planar structures. Since the fabrication of nanoclusters is mainly achieved by synthesis or laser ablation, the set of local minima configurations we provide here, and their distribution as a function of energy, are more relevant than the global minimum to analyze experimental results obtained at finite temperatures, and is consistent with the dynamical coexistence of 2D and 3D liquid Au clusters conformations obtained previously.

  19. Binary cluster collision dynamics and minimum energy conformations

    International Nuclear Information System (INIS)

    The collision dynamics of one Ag or Cu atom impinging on a Au12 cluster is investigated by means of DFT molecular dynamics. Our results show that the experimentally confirmed 2D to 3D transition of Au12→Au13 is mostly preserved by the resulting planar Au12Ag and Au12Cu minimum energy clusters, which is quite remarkable in view of the excess energy, well larger than the 2D–3D potential barrier height. The process is accompanied by a large s−d hybridization and charge transfer from Au to Ag or Cu. The dynamics of the collision process mainly yields fusion of projectile and target, however scattering and cluster fragmentation also occur for large energies and large impact parameters. While Ag projectiles favor fragmentation, Cu favors scattering due to its smaller mass. The projectile size does not play a major role in favoring the fragmentation or scattering channels. By comparing our collision results with those obtained by an unbiased minimum energy search of 4483 Au12Ag and 4483 Au12Cu configurations obtained phenomenologically, we find that there is an extra bonus: without increase of computer time collisions yield the planar lower energy structures that are not feasible to obtain using semi-classical potentials. In fact, we conclude that phenomenological potentials do not even provide adequate seeds for the search of global energy minima for planar structures. Since the fabrication of nanoclusters is mainly achieved by synthesis or laser ablation, the set of local minima configurations we provide here, and their distribution as a function of energy, are more relevant than the global minimum to analyze experimental results obtained at finite temperatures, and is consistent with the dynamical coexistence of 2D and 3D liquid Au clusters conformations obtained previously

  20. Subpicosecond conformational dynamics of small peptides probed by two-dimensional vibrational spectroscopy

    Science.gov (United States)

    Woutersen, Sander; Mu, Yuguang; Stock, Gerhard; Hamm, Peter

    2001-01-01

    The observation of subpicosecond fluctuations in the conformation of a small peptide in water is demonstrated. We use an experimental method that is specifically sensitive to conformational dynamics taking place on an ultrafast time scale. Complementary molecular-dynamics simulations confirm that the conformational fluctuations exhibit a subpicosecond component, the time scale and amplitude of which agree well with those derived from the experiment. PMID:11553784

  1. Ultrafast vibrational dynamics of the DNA backbone at different hydration levels mapped by two-dimensional infrared spectroscopy.

    Science.gov (United States)

    Guchhait, Biswajit; Liu, Yingliang; Siebert, Torsten; Elsaesser, Thomas

    2016-07-01

    DNA oligomers are studied at 0% and 92% relative humidity, corresponding to N  20 water molecules per base pair. Two-dimensional (2D) infrared spectroscopy of DNA backbone modes between 920 and 1120 cm(-1) maps fluctuating interactions at the DNA surface. At both hydration levels, a frequency fluctuation correlation function with a 300 fs decay and a slow decay beyond 10 ps is derived from the 2D lineshapes. The fast component reflects motions of DNA helix, counterions, and water shell. Its higher amplitude at high hydration level reveals a significant contribution of water to the fluctuating forces. The slow component reflects disorder-induced inhomogeneous broadening. PMID:26798841

  2. Testing Backbone.js

    CERN Document Server

    Roemer, Ryan

    2013-01-01

    This book is packed with the step by step tutorial and instructions in recipe format helping you setup test infrastructure and gradually advance your skills to plan, develop, and test your backbone applications.If you are a JavaScript developer looking for recipes to create and implement test support for your backbone application, then this book is ideal for you.

  3. Allostery without conformation change: modelling protein dynamics at multiple scales

    International Nuclear Information System (INIS)

    The original ideas of Cooper and Dryden, that allosteric signalling can be induced between distant binding sites on proteins without any change in mean structural conformation, has proved to be a remarkably prescient insight into the rich structure of protein dynamics. It represents an alternative to the celebrated Monod–Wyman–Changeux mechanism and proposes that modulation of the amplitude of thermal fluctuations around a mean structure, rather than shifts in the structure itself, give rise to allostery in ligand binding. In a complementary approach to experiments on real proteins, here we take a theoretical route to identify the necessary structural components of this mechanism. By reviewing and extending an approach that moves from very coarse-grained to more detailed models, we show that, a fundamental requirement for a body supporting fluctuation-induced allostery is a strongly inhomogeneous elastic modulus. This requirement is reflected in many real proteins, where a good approximation of the elastic structure maps strongly coherent domains onto rigid blocks connected by more flexible interface regions. (paper)

  4. Lessons in Protein Design from Combined Evolution and Conformational Dynamics.

    Science.gov (United States)

    Tripathi, Swarnendu; Waxham, M Neal; Cheung, Margaret S; Liu, Yin

    2015-01-01

    Protein-protein interactions play important roles in the control of every cellular process. How natural selection has optimized protein design to produce molecules capable of binding to many partner proteins is a fascinating problem but not well understood. Here, we performed a combinatorial analysis of protein sequence evolution and conformational dynamics to study how calmodulin (CaM), which plays essential roles in calcium signaling pathways, has adapted to bind to a large number of partner proteins. We discovered that amino acid residues in CaM can be partitioned into unique classes according to their degree of evolutionary conservation and local stability. Holistically, categorization of CaM residues into these classes reveals enriched physico-chemical interactions required for binding to diverse targets, balanced against the need to maintain the folding and structural modularity of CaM to achieve its overall function. The sequence-structure-function relationship of CaM provides a concrete example of the general principle of protein design. We have demonstrated the synergy between the fields of molecular evolution and protein biophysics and created a generalizable framework broadly applicable to the study of protein-protein interactions. PMID:26388515

  5. Peptide backbone orientation and dynamics in spider dragline silk and two-photon excitation in nuclear magnetic and quadrupole resonance

    International Nuclear Information System (INIS)

    In the first part of the dissertation, spider dragline silk is studied by solid state NMR techniques. The dependence of NMR frequency on molecular orientation is exploited using the DECODER experiment to determine the orientation of the protein backbone within the silk fibre. Practical experimental considerations require that the silk fibres be wound about a cylindrical axis perpendicular to the external magnetic field, complicating the reconstruction of the underlying orientation distribution and necessitating the development of numerical techniques for this purpose. A two-component model of silk incorporating static b-sheets and polyglycine II helices adequately fits the NMR data and suggests that the b-sheets are well aligned along the silk axis (20 FWHM) while the helices are poorly aligned (68 FWHM). The effects of fibre strain, draw rate and hydration on orientation are measured. Measurements of the time-scale for peptide backbone motion indicate that when wet, a strain-dependent fraction of the poorly aligned component becomes mobile. This suggests a mechanism for the supercontraction of silk involving latent entropic springs that undergo a local strain-dependent phase transition, driving supercontraction. In the second part of this dissertation a novel method is developed for exciting NMR and nuclear quadrupole resonance (NQR) by rf irradiation at multiple frequencies that sum to (or differ by) the resonance frequency. This is fundamentally different than traditional NMR experiments where irradiation is applied on-resonance. With excitation outside the detection bandwidth, two-photon excitation allows for detection of free induction signals during excitation, completely eliminating receiver dead-time. A theoretical approach to describing two-photon excitation is developed based on average Hamiltonian theory. An intuition for two-photon excitation is gained by analogy to the coherent absorption of multiple photons requiring conservation of total energy and

  6. 2D IR Spectroscopy of Histidine: Probing Side-Chain Structure and Dynamics via Backbone Amide Vibrations

    OpenAIRE

    Ghosh, Ayanjeet; Tucker, Matthew J.; Gai, Feng

    2014-01-01

    It is well known that histidine is involved in many biological functions due to the structural versatility of its side chain. However, probing the conformational transitions of histidine in proteins, especially those occurring on an ultrafast time scale, is difficult. Herein we show, using a histidine dipeptide as a model, that it is possible to probe the tautomer and protonation status of a histidine residue by measuring the two-dimensional infrared (2D IR) spectrum of its amide I vibrationa...

  7. Molecular Dynamics Simulations Elucidate Conformational Dynamics Responsible for the Cyclization Reaction in TEAS.

    Science.gov (United States)

    Zhang, Fan; Chen, Nanhao; Wu, Ruibo

    2016-05-23

    The Mg-dependent 5-epi-aristolochene synthase from Nicotiana tabacum (called TEAS) could catalyze the linear farnesyl pyrophosphate (FPP) substrate to form bicyclic hydrocarbon 5-epi-aristolochene. The cyclization reaction mechanism of TEAS was proposed based on static crystal structures and quantum chemistry calculations in a few previous studies, but substrate FPP binding kinetics and protein conformational dynamics responsible for the enzymatic catalysis are still unclear. Herein, by elaborative and extensive molecular dynamics simulations, the loop conformation change and several crucial residues promoting the cyclization reaction in TEAS are elucidated. It is found that the unusual noncatalytic NH2-terminal domain is essential to stabilize Helix-K and the adjoining J-K loop of the catalytic COOH-terminal domain. It is also illuminated that the induce-fit J-K/A-C loop dynamics is triggered by Y527 and the optimum substrate binding mode in a "U-shape" conformation. The U-shaped ligand binding pose is maintained well with the cooperative interaction of the three Mg(2+)-containing coordination shell and conserved residue W273. Furthermore, the conserved Arg residue pair R264/R266 and aromatic residue pair Y527/W273, whose spatial orientations are also crucial to promote the closure of the active site to a hydrophobic pocket, as well as to form π-stacking interactions with the ligand, would facilitate the carbocation migration and electrophilic attack involving the catalytic reaction. Our investigation more convincingly proves the greater roles of the protein local conformational dynamics than do hints from the static crystal structure observations. Thus, these findings can act as a guide to new protein engineering strategies on diversifying the sesquiterpene products for drug discovery. PMID:27082764

  8. Exotic Galilean Conformal Symmetry and its Dynamical Realisations

    CERN Document Server

    Lukierski, J; Zakrzewski, W J

    2006-01-01

    The six-dimensional exotic Galilean algebra in (2+1) dimensions with two central charges $m$ and $\\theta$, is extended when $m=0$, to a ten-dimensional Galilean conformal algebra with dilatation, expansion, two acceleration generators and the central charge $\\theta$. A realisation of such a symmetry is provided by a model with higher derivatives recently discussed in \\cite{peterwojtek}. We consider also a realisation of the Galilean conformal symmetry for the motion with a Coulomb potential and a magnetic vortex interaction. Finally, we study the restriction, as well as the modification, of the Galilean conformal algebra obtained after the introduction of the minimally coupled constant electric and magnetic fields.

  9. Ligand induced conformational changes of the human serotonin transporter revealed by molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Heidi Koldsø

    Full Text Available The competitive inhibitor cocaine and the non-competitive inhibitor ibogaine induce different conformational states of the human serotonin transporter. It has been shown from accessibility experiments that cocaine mainly induces an outward-facing conformation, while the non-competitive inhibitor ibogaine, and its active metabolite noribogaine, have been proposed to induce an inward-facing conformation of the human serotonin transporter similar to what has been observed for the endogenous substrate, serotonin. The ligand induced conformational changes within the human serotonin transporter caused by these three different types of ligands, substrate, non-competitive and competitive inhibitors, are studied from multiple atomistic molecular dynamics simulations initiated from a homology model of the human serotonin transporter. The results reveal that diverse conformations of the human serotonin transporter are captured from the molecular dynamics simulations depending on the type of the ligand bound. The inward-facing conformation of the human serotonin transporter is reached with noribogaine bound, and this state resembles a previously identified inward-facing conformation of the human serotonin transporter obtained from molecular dynamics simulation with bound substrate, but also a recently published inward-facing conformation of a bacterial homolog, the leucine transporter from Aquifex Aoelicus. The differences observed in ligand induced behavior are found to originate from different interaction patterns between the ligands and the protein. Such atomic-level understanding of how an inhibitor can dictate the conformational response of a transporter by ligand binding may be of great importance for future drug design.

  10. Ligand induced conformational changes of the human serotonin transporter revealed by molecular dynamics simulations.

    Science.gov (United States)

    Koldsø, Heidi; Autzen, Henriette Elisabeth; Grouleff, Julie; Schiøtt, Birgit

    2013-01-01

    The competitive inhibitor cocaine and the non-competitive inhibitor ibogaine induce different conformational states of the human serotonin transporter. It has been shown from accessibility experiments that cocaine mainly induces an outward-facing conformation, while the non-competitive inhibitor ibogaine, and its active metabolite noribogaine, have been proposed to induce an inward-facing conformation of the human serotonin transporter similar to what has been observed for the endogenous substrate, serotonin. The ligand induced conformational changes within the human serotonin transporter caused by these three different types of ligands, substrate, non-competitive and competitive inhibitors, are studied from multiple atomistic molecular dynamics simulations initiated from a homology model of the human serotonin transporter. The results reveal that diverse conformations of the human serotonin transporter are captured from the molecular dynamics simulations depending on the type of the ligand bound. The inward-facing conformation of the human serotonin transporter is reached with noribogaine bound, and this state resembles a previously identified inward-facing conformation of the human serotonin transporter obtained from molecular dynamics simulation with bound substrate, but also a recently published inward-facing conformation of a bacterial homolog, the leucine transporter from Aquifex Aoelicus. The differences observed in ligand induced behavior are found to originate from different interaction patterns between the ligands and the protein. Such atomic-level understanding of how an inhibitor can dictate the conformational response of a transporter by ligand binding may be of great importance for future drug design. PMID:23776432

  11. Exotic Galilean Conformal Symmetry and its Dynamical Realisations

    OpenAIRE

    Lukierski, J.; Stichel, P. C.; Zakrzewski, W. J.

    2005-01-01

    The six-dimensional exotic Galilean algebra in (2+1) dimensions with two central charges $m$ and $\\theta$, is extended when $m=0$, to a ten-dimensional Galilean conformal algebra with dilatation, expansion, two acceleration generators and the central charge $\\theta$. A realisation of such a symmetry is provided by a model with higher derivatives recently discussed in \\cite{peterwojtek}. We consider also a realisation of the Galilean conformal symmetry for the motion with a Coulomb potential a...

  12. Mapping the conformational landscape of a dynamic enzyme by multitemperature and XFEL crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Keedy, Daniel A.; Kenner, Lillian R.; Warkentin, Matthew; Woldeyes, Rahel A.; Hopkins, Jesse B.; Thompson, Michael C.; Brewster, Aaron S.; Van Benschoten, Andrew H.; Baxter, Elizabeth L.; Uervirojnangkoorn, Monarin; McPhillips, Scott E.; Song, Jinhu; Alonso-Mori, Roberto; Holton, James M.; Weis, William I.; Brunger, Axel T.; Soltis, S. Michael; Lemke, Henrik; Gonzalez, Ana; Sauter, Nicholas K.; Cohen, Aina E.; van den Bedem, Henry; Thorne, Robert E.; Fraser, James S.

    2015-09-30

    Determining the interconverting conformations of dynamic proteins in atomic detail is a major challenge for structural biology. Conformational heterogeneity in the active site of the dynamic enzyme cyclophilin A (CypA) has been previously linked to its catalytic function, but the extent to which the different conformations of these residues are correlated is unclear. Here we compare the conformational ensembles of CypA by multitemperature synchrotron crystallography and fixed-target X-ray free-electron laser (XFEL) crystallography. The diffraction-before-destruction nature of XFEL experiments provides a radiation-damage-free view of the functionally important alternative conformations of CypA, confirming earlier synchrotron-based results. We monitored the temperature dependences of these alternative conformations with eight synchrotron datasets spanning 100-310 K. Multiconformer models show that many alternative conformations in CypA are populated only at 240 K and above, yet others remain populated or become populated at 180 K and below. These results point to a complex evolution of conformational heterogeneity between 180-–240 K that involves both thermal deactivation and solvent-driven arrest of protein motions in the crystal. The lack of a single shared conformational response to temperature within the dynamic active-site network provides evidence for a conformation shuffling model, in which exchange between rotamer states of a large aromatic ring in the middle of the network shifts the conformational ensemble for the other residues in the network. Together, our multitemperature analyses and XFEL data motivate a new generation of temperature- and time-resolved experiments to structurally characterize the dynamic underpinnings of protein function.

  13. Exotic Galilean conformal symmetry and its dynamical realisations

    Energy Technology Data Exchange (ETDEWEB)

    Lukierski, J. [Institute for Theoretical Physics, University of Wroclaw, pl. Maxa Borna 9, 50-205 Wroclaw (Poland)]. E-mail: lukier@ift.uni.wroc.pl; Stichel, P.C. [An der Krebskuhle 21, D-33619 Bielefeld (Germany)]. E-mail: peter@physik.uni-bielefeld.de; Zakrzewski, W.J. [Department of Mathematical Sciences, University of Durham, Durham DH1 3LE (United Kingdom)]. E-mail: w.j.zakrzewski@durham.ac.uk

    2006-08-28

    The six-dimensional exotic Galilean algebra in (2+1) dimensions with two central charges m and {theta}, is extended when m=0, to a ten-dimensional Galilean conformal algebra with dilatation, expansion, two acceleration generators and the central charge {theta}. A realisation of such a symmetry is provided by a model with higher derivatives recently discussed in [P.C. Stichel, W.J. Zakrzewski, Ann. Phys. 310 (2004) 158]. We consider also a realisation of the Galilean conformal symmetry for the motion with a Coulomb potential and a magnetic vortex interaction. Finally, we study the restriction, as well as the modification, of the Galilean conformal algebra obtained after the introduction of the minimally coupled constant electric and magnetic fields.

  14. Exotic Galilean conformal symmetry and its dynamical realisations

    International Nuclear Information System (INIS)

    The six-dimensional exotic Galilean algebra in (2+1) dimensions with two central charges m and θ, is extended when m=0, to a ten-dimensional Galilean conformal algebra with dilatation, expansion, two acceleration generators and the central charge θ. A realisation of such a symmetry is provided by a model with higher derivatives recently discussed in [P.C. Stichel, W.J. Zakrzewski, Ann. Phys. 310 (2004) 158]. We consider also a realisation of the Galilean conformal symmetry for the motion with a Coulomb potential and a magnetic vortex interaction. Finally, we study the restriction, as well as the modification, of the Galilean conformal algebra obtained after the introduction of the minimally coupled constant electric and magnetic fields

  15. Conformational dynamics of ATP/Mg:ATP in motor proteins via data mining and molecular simulation

    Science.gov (United States)

    Bojovschi, A.; Liu, Ming S.; Sadus, Richard J.

    2012-08-01

    The conformational diversity of ATP/Mg:ATP in motor proteins was investigated using molecular dynamics and data mining. Adenosine triphosphate (ATP) conformations were found to be constrained mostly by inter cavity motifs in the motor proteins. It is demonstrated that ATP favors extended conformations in the tight pockets of motor proteins such as F1-ATPase and actin whereas compact structures are favored in motor proteins such as RNA polymerase and DNA helicase. The incorporation of Mg2+ leads to increased flexibility of ATP molecules. The differences in the conformational dynamics of ATP/Mg:ATP in various motor proteins was quantified by the radius of gyration. The relationship between the simulation results and those obtained by data mining of motor proteins available in the protein data bank is analyzed. The data mining analysis of motor proteins supports the conformational diversity of the phosphate group of ATP obtained computationally.

  16. Conformational flexibility of β-secretase:molecular dynamics simulation and essential dynamics analysis

    Institute of Scientific and Technical Information of China (English)

    Bing XIONG; Xiao-qin HUANG; Ling-ling SHEN; Jian-hua SHEN; Xiao-min LUO; Xu SHEN; Hua-liang JIANG; Kai-xian CHEN

    2004-01-01

    AIM: Based on the structural analysis to reveal the mechanism of ligand binding to β-secretase and the specificity of each binding sub-site. METHODS: Molecular dynamics was used to simulate on the ligand free β-secretase and ligand bound β-secretase. The trajectories were analyzed using the essential dynamics, and the significant conformational change was illustrated employing the DynDom program. RESULTS: The essential dynamics and DynDom analyses clearly showed that the β-secretase experienced a large conformational change upon the substrate or inhibitor binding. The flap structure adopted a swing motion, gradually covering the active site to facilitate the ligand binding process. Residues Ser86 and Ile87 served as the hinge point. Inhibitor-enzyme interaction analysis revealed that residues at P2, Pl, and P1' positions of the inhibitor were very important for the binding, and residues at P2' and P3' positions may be modified to improve the binding specificity. S3 subsite of the enzyme still had space to modify the inhibitors in increasing the binding affinity. CONCLUSION: The information presented here is valuable and could be used to identify small molecular inhibitors of β-secretase.

  17. Backbone Relaxation Coupled to the Ionization of Internal Groups in Proteins: A Self-Guided Langevin Dynamics Study

    OpenAIRE

    Damjanović, Ana; Wu, Xiongwu; García-Moreno E., Bertrand; Brooks, Bernard R.

    2008-01-01

    Pathways of structural relaxation triggered by ionization of internal groups in staphylococcal nuclease (SNase) were studied through multiple self-guided Langevin dynamics (SGLD) simulations. Circular dichroism, steady-state Trp fluorescence, and nuclear magnetic resonance spectroscopy have shown previously that variants of SNase with internal Glu, Asp, and Lys at positions 66 or 92, and Arg at position 66, exhibit local reorganization or global unfolding when the internal ionizable group is ...

  18. Comparison of fast backbone dynamics at amide nitrogen and carbonyl sites in dematin headpiece C-terminal domain and its S74E mutant

    International Nuclear Information System (INIS)

    We perform a detailed comparison of fast backbone dynamics probed at amide nitrogen versus carbonyl carbon sites for dematin headpiece C-terminal domain (DHP) and its S74E mutant (DHPS74E). Carbonyl dynamics is probed via auto-correlated longitudinal rates and transverse C'/C'-Cα CSA/dipolar and C'/C'-N CSA/dipolar cross-correlated rates, while 15N data are taken from a previous study. Resulting values of effective order parameters and internal correlation times support the conclusion that C' relaxation reports on a different subset of fast motions compared to those probed at N-H bond vectors in the same peptide planes. 13C' order parameters are on the average 0.08 lower than 15N order parameters with the exception of the flexible loop region in DHP. The reduction of mobility in the loop region upon the S74E mutation can be seen from the 15N order parameters but not from the 13C order parameters. Internal correlation times at 13C' sites are on the average an order of magnitude longer than those at 15N sites for the well-structured C-terminal subdomains, while the more flexible N-terminal subdomains have more comparable average internal correlation times.

  19. Backbone amide linker strategy

    DEFF Research Database (Denmark)

    Shelton, Anne Pernille Tofteng; Jensen, Knud Jørgen

    2013-01-01

    In the backbone amide linker (BAL) strategy, the peptide is anchored not at the C-terminus but through a backbone amide, which leaves the C-terminal available for various modifications. This is thus a very general strategy for the introduction of C-terminal modifications. The BAL strategy was...... assemble the final peptide. One useful application of this strategy is in the synthesis of C-terminal peptide aldehydes. The C-terminal aldehyde is masked as an acetal during synthesis and then conveniently demasked in the final cleavage step to generate the free aldehyde. Another application is in the...

  20. Increased dynamics in the 40-57 Ω-loop of the G41S variant of human cytochrome c promote its pro-apoptotic conformation.

    Science.gov (United States)

    Karsisiotis, Andreas Ioannis; Deacon, Oliver M; Wilson, Michael T; Macdonald, Colin; Blumenschein, Tharin M A; Moore, Geoffrey R; Worrall, Jonathan A R

    2016-01-01

    Thrombocytopenia 4 is an inherited autosomal dominant thrombocytopenia, which occurs due to mutations in the human gene for cytochrome c that results in enhanced mitochondrial apoptotic activity. The Gly41Ser mutation was the first to be reported. Here we report stopped-flow kinetic studies of azide binding to human ferricytochrome c and its Gly41Ser variant, together with backbone amide H/D exchange and (15)N-relaxation dynamics using NMR spectroscopy, to show that alternative conformations are kinetically and thermodynamically more readily accessible for the Gly41Ser variant than for the wild-type protein. Our work reveals a direct conformational link between the 40-57 Ω-loop in which residue 41 resides and the dynamical properties of the axial ligand to the heme iron, Met80, such that the replacement of glycine by serine promotes the dissociation of the Met80 ligand, thereby increasing the population of a peroxidase active state, which is a key non-native conformational state in apoptosis. PMID:27461282

  1. Hexapeptides that inhibit processing of branched DNA structures induce a dynamic ensemble of Holliday junction conformations.

    Science.gov (United States)

    Cannon, Brian; Kachroo, Aashiq H; Jarmoskaite, Inga; Jayaram, Makkuni; Russell, Rick

    2015-09-11

    Holliday junctions are critical intermediates in DNA recombination, repair, and restart of blocked replication. Hexapeptides have been identified that bind to junctions and inhibit various junction-processing enzymes, and these peptides confer anti-microbial and anti-tumor properties. Earlier studies suggested that inhibition results from stabilization of peptide-bound Holliday junctions in the square planar conformation. Here, we use single molecule fluorescence resonance energy transfer (smFRET) and two model junctions, which are AT- or GC-rich at the branch points, to show that binding of the peptide KWWCRW induces a dynamic ensemble of junction conformations that differs from both the square planar and stacked X conformations. The specific features of the conformational distributions differ for the two peptide-bound junctions, but both junctions display greatly decreased Mg(2+) dependence and increased conformational fluctuations. The smFRET results, complemented by gel mobility shift and small angle x-ray scattering analyses, reveal structural effects of peptides and highlight the sensitivity of smFRET for analyzing complex mixtures of DNA structures. The peptide-induced conformational dynamics suggest multiple stacking arrangements of aromatic amino acids with the nucleobases at the junction core. This conformational heterogeneity may inhibit DNA processing by increasing the population of inactive junction conformations, thereby preventing the binding of processing enzymes and/or resulting in their premature dissociation. PMID:26209636

  2. Conformational and functional analysis of molecular dynamics trajectories by Self-Organising Maps

    Directory of Open Access Journals (Sweden)

    Stella Fabio

    2011-05-01

    Full Text Available Abstract Background Molecular dynamics (MD simulations are powerful tools to investigate the conformational dynamics of proteins that is often a critical element of their function. Identification of functionally relevant conformations is generally done clustering the large ensemble of structures that are generated. Recently, Self-Organising Maps (SOMs were reported performing more accurately and providing more consistent results than traditional clustering algorithms in various data mining problems. We present a novel strategy to analyse and compare conformational ensembles of protein domains using a two-level approach that combines SOMs and hierarchical clustering. Results The conformational dynamics of the α-spectrin SH3 protein domain and six single mutants were analysed by MD simulations. The Cα's Cartesian coordinates of conformations sampled in the essential space were used as input data vectors for SOM training, then complete linkage clustering was performed on the SOM prototype vectors. A specific protocol to optimize a SOM for structural ensembles was proposed: the optimal SOM was selected by means of a Taguchi experimental design plan applied to different data sets, and the optimal sampling rate of the MD trajectory was selected. The proposed two-level approach was applied to single trajectories of the SH3 domain independently as well as to groups of them at the same time. The results demonstrated the potential of this approach in the analysis of large ensembles of molecular structures: the possibility of producing a topological mapping of the conformational space in a simple 2D visualisation, as well as of effectively highlighting differences in the conformational dynamics directly related to biological functions. Conclusions The use of a two-level approach combining SOMs and hierarchical clustering for conformational analysis of structural ensembles of proteins was proposed. It can easily be extended to other study cases and to

  3. Characterizing Protein Structure, Dynamics and Conformation in Lyophilized Solids

    OpenAIRE

    Moorthy, Balakrishnan S.; Iyer, Lavanya K.; Topp, Elizabeth M.

    2015-01-01

    The long-term stability of protein therapeutics in the solid-state depends on the preservation of native structure during lyophilization and in the lyophilized powder. Proteins can reversibly or irreversibly unfold upon lyophilization, acquiring conformations susceptible to degradation during storage. Therefore, characterizing proteins in the dried state is crucial for the design of safe and efficacious formulations. This review summarizes the basic principles and applications of the analytic...

  4. Inflation and the semiclassical dynamics of a conformal scalar field

    International Nuclear Information System (INIS)

    We derive the semiclassical evolution of massless conformally coupled scalar matter in the de Sitter space-time from the Born-Oppenheimer reduction of the Wheeler-DeWitt equation. We find a remarkable difference with respect to the minimally coupled case: the effect of the quantum gravitational corrections does not depend on the momentum of the scalar mode up to second order in the Planck length and, therefore, there are no relevant corrections to the dispersion relation

  5. Terbium luminescence-lifetime heterogeneity and protein equilibrium conformational dynamics.

    OpenAIRE

    Austin, R H; Stein, D. L.; Wang, J.

    1987-01-01

    The fluorescence decay of the rare earth terbium when bound to the protein calmodulin changes from a simple exponential decay to a complex nonexponential decay as the temperature is lowered below 200 K. We have fit the observed decay curves by assuming that the terbium emission is a forced electric dipole transition and proteins have a distribution of continuous conformational states. Quantitative fits to the data indicate that the root-mean-square configurational deviation of the atoms surro...

  6. Comparison of the backbone dynamics of wild-type Hydrogenobacter thermophilus cytochrome c{sub 552} and its b-type variant

    Energy Technology Data Exchange (ETDEWEB)

    Tozawa, Kaeko; Ferguson, Stuart J.; Redfield, Christina, E-mail: christina.redfield@bioch.ox.ac.uk [University of Oxford, Department of Biochemistry (United Kingdom); Smith, Lorna J., E-mail: lorna.smith@chem.ox.ac.uk [University of Oxford, Department of Chemistry (United Kingdom)

    2015-06-15

    Cytochrome c{sub 552} from the thermophilic bacterium Hydrogenobacter thermophilus is a typical c-type cytochrome which binds heme covalently via two thioether bonds between the two heme vinyl groups and two cysteine thiol groups in a CXXCH sequence motif. This protein was converted to a b-type cytochrome by substitution of the two cysteine residues by alanines (Tomlinson and Ferguson in Proc Natl Acad Sci USA 97:5156–5160, 2000a). To probe the significance of the covalent attachment of the heme in the c-type protein, {sup 15}N relaxation and hydrogen exchange studies have been performed for the wild-type and b-type proteins. The two variants share very similar backbone dynamic properties, both proteins showing high {sup 15}N order parameters in the four main helices, with reduced values in an exposed loop region (residues 18–21), and at the C-terminal residue Lys80. Some subtle changes in chemical shift and hydrogen exchange protection are seen between the wild-type and b-type variant proteins, not only for residues at and neighbouring the mutation sites, but also for some residues in the heme binding pocket. Overall, the results suggest that the main role of the covalent linkages between the heme group and the protein chain must be to increase the stability of the protein.

  7. Conformational dynamics of abasic DNA upon interactions with AP endonuclease 1 revealed by stopped-flow fluorescence analysis.

    Science.gov (United States)

    Kanazhevskaya, Lyubov Yu; Koval, Vladimir V; Vorobjev, Yury N; Fedorova, Olga S

    2012-02-14

    Apurinic/apyrimidinic (AP) sites are abundant DNA lesions arising from exposure to UV light, ionizing radiation, alkylating agents, and oxygen radicals. In human cells, AP endonuclease 1 (APE1) recognizes this mutagenic lesion and initiates its repair via a specific incision of the phosphodiester backbone 5' to the AP site. We have investigated a detailed mechanism of APE1 functioning using fluorescently labeled DNA substrates. A fluorescent adenine analogue, 2-aminopurine, was introduced into DNA substrates adjacent to the abasic site to serve as an on-site reporter of conformational transitions in DNA during the catalytic cycle. Application of a pre-steady-state stopped-flow technique allows us to observe changes in the fluorescence intensity corresponding to different stages of the process in real time. We also detected an intrinsic Trp fluorescence of the enzyme during interactions with 2-aPu-containing substrates. Our data have revealed a conformational flexibility of the abasic DNA being processed by APE1. Quantitative analysis of fluorescent traces has yielded a minimal kinetic scheme and appropriate rate constants consisting of four steps. The results obtained from stopped-flow data have shown a substantial influence of the 2-aPu base location on completion of certain reaction steps. Using detailed molecular dynamics simulations of the DNA substrates, we have attributed structural distortions of AP-DNA to realization of specific binding, effective locking, and incision of the damaged DNA. The findings allowed us to accurately discern the step that corresponds to insertion of specific APE1 amino acid residues into the abasic DNA void in the course of stabilization of the precatalytic complex. PMID:22243137

  8. Using local states to drive the sampling of global conformations in proteins

    OpenAIRE

    Pandini, A; Fornili, A

    2016-01-01

    Conformational changes associated with protein function often occur beyond the time scale currently accessible to unbiased molecular dynamics (MD) simulations, so that different approaches have been developed to accelerate their sampling. Here we investigate how the knowledge of backbone conformations preferentially adopted by protein fragments, as contained in precalculated libraries known as structural alphabets (SA), can be used to explore the landscape of protein conformations in MD simul...

  9. Extracting Conformational Ensembles of Small Molecules from Molecular Dynamics Simulations: Ampicillin as a Test Case

    Directory of Open Access Journals (Sweden)

    Giuliano Malloci

    2016-01-01

    Full Text Available The accurate and exhaustive description of the conformational ensemble sampled by small molecules in solution, possibly at different physiological conditions, is of primary interest in many fields of medicinal chemistry and computational biology. Recently, we have built an on-line database of compounds with antimicrobial properties, where we provide all-atom force-field parameters and a set of molecular properties, including representative structures extracted from cluster analysis over μs-long molecular dynamics (MD trajectories. In the present work, we used a medium-sized antibiotic from our sample, namely ampicillin, to assess the quality of the conformational ensemble. To this aim, we compared the conformational landscape extracted from previous unbiased MD simulations to those obtained by means of Replica Exchange MD (REMD and those originating from three freely-available conformer generation tools widely adopted in computer-aided drug-design. In addition, for different charge/protonation states of ampicillin, we made available force-field parameters and static/dynamic properties derived from both Density Functional Theory and MD calculations. For the specific system investigated here, we found that: (i the conformational statistics extracted from plain MD simulations is consistent with that obtained from REMD simulations; (ii overall, our MD-based approach performs slightly better than any of the conformer generator tools if one takes into account both the diversity of the generated conformational set and the ability to reproduce experimentally-determined structures.

  10. From Conformal Invariance towards Dynamical Symmetries of the Collisionless Boltzmann Equation

    Directory of Open Access Journals (Sweden)

    Stoimen Stoimenov

    2015-09-01

    Full Text Available Dynamical symmetries of the collisionless Boltzmann transport equation, or Vlasov equation, but under the influence of an external driving force, are derived from non-standard representations of the 2D conformal algebra. In the case without external forces, the symmetry of the conformally-invariant transport equation is first generalized by considering the particle momentum as an independent variable. This new conformal representation can be further extended to include an external force. The construction and possible physical applications are outlined.

  11. Molecular modeling of the conformational dynamics of the cellular prion protein

    Science.gov (United States)

    Nguyen, Charles; Colling, Ian; Bartz, Jason; Soto, Patricia

    2014-03-01

    Prions are infectious agents responsible for transmissible spongiform encephalopathies (TSEs), a type of fatal neurodegenerative disease in mammals. Prions propagate biological information by conversion of the non-pathological version of the prion protein to the infectious conformation, PrPSc. A wealth of knowledge has shed light on the nature and mechanism of prion protein conversion. In spite of the significance of this problem, we are far from fully understanding the conformational dynamics of the cellular isoform. To remedy this situation we employ multiple biomolecular modeling techniques such as docking and molecular dynamics simulations to map the free energy landscape and determine what specific regions of the prion protein are most conductive to binding. The overall goal is to characterize the conformational dynamics of the cell form of the prion protein, PrPc, to gain insight into inhibition pathways against misfolding. NE EPSCoR FIRST Award to Patricia Soto.

  12. Molecular dynamics simulations of conformation changes of HIV-1 regulatory protein on graphene

    Science.gov (United States)

    Zhao, Daohui; Li, Libo; He, Daohang; Zhou, Jian

    2016-07-01

    The fragment of viral protein R (Vpr), Vpr13-33, plays an important role in regulating nuclear importing of HIV genes through channel formation in which it adopts a leucine-zipper-like alpha-helical conformation. A recent experimental study reported that helical Vpr13-33 would transform to β-sheet or random coil structures and aggregate on the surface of graphene or graphene oxide through hydrophobic interactions. Due to experimental limitations, however, there is still a considerable lack of understanding on the adsorption dynamics at the early stage of the conformational transition at water-graphene interface and the underlying driving force at molecular level. In this study, atomistic molecular dynamics simulations were used to explore the conformation transition phenomena. Vpr13-33 kept α-helical structure in solution, but changed to β-sheet structure when strongly adsorbed onto graphene. Preferential adsorption of Vpr13-33 on graphene is dominated by hydrophobic interactions. The cluster analysis identified the most significant populated conformation and the early stage of structure conversion from α-helical to β-sheet was found, but the full β-sheet propagation was not observed. Free energy landscape analysis further complemented the transformation analysis of peptide conformations. These findings are consistent with experimental results, and give a molecular level interpretation for the reduced cytotoxicity of Vpr13-33 to some extent upon graphene exposure. Meanwhile, this study provides some significant insights into the detailed mechanism of graphene-induced protein conformation transition.

  13. Conformal symmetry and non-relativistic second-order fluid dynamics

    International Nuclear Information System (INIS)

    We study the constraints imposed by conformal symmetry on the equations of fluid dynamics at second order in the gradients of the hydrodynamic variables. At zeroth order, conformal symmetry implies a constraint on the equation of state, E0=2/3 P, where E0 is the energy density and P is the pressure. At first order, conformal symmetry implies that the bulk viscosity must vanish. We show that at second order, conformal invariance requires that two-derivative terms in the stress tensor must be traceless, and that it determines the relaxation of dissipative stresses to the Navier–Stokes form. We verify these results by solving the Boltzmann equation at second order in the gradient expansion. We find that only a subset of the terms allowed by conformal symmetry appear. - Highlights: ► We derive conformal constraints for the stress tensor of a scale invariant fluid. ► We determine the relaxation time in kinetic theory. ► We compute the rate of entropy production in second-order fluid dynamics.

  14. Backbone dynamics of a model membrane protein: assignment of the carbonyl carbon 13C NMR resonances in detergent-solubilized M13 coat protein

    International Nuclear Information System (INIS)

    The major coat protein of the filamentous bacteriophage M13 is a 50-residue amphiphilic polypeptide which is inserted, as an integral membrane-spanning protein, in the inner membrane of the Escherichia coli host during infection. 13C was incorporated biosynthetically into a total of 23 of the peptide carbonyls using labeled amino acids (alanine, glycine, lysine, phenylalanine, and proline). The structure and dynamics of carbonyl-labeled M13 coat protein were monitored by 13C nuclear magnetic resonance (NMR) spectroscopy. Assignment of many resonances was achieved by using protease digestion, pH titration, or labeling of the peptide bond with both 13C and 15N. The carbonyl region of the natural-abundance 13C NMR spectrum of M13 coat protein in sodium dodecyl sulfate solution shows approximately eight backbone carbonyl resonances with line widths much narrower than the rest. Three of these more mobile residues correspond to assigned peaks (glycine-3, lysine-48, and alanine-49) in the individual amino acid spectra, and another almost certainly arises from glutamic acid-2. A ninth residue, alanine-1, also gives rise to a very narrow carbonyl resonance if the pH is well above or below the pK/sub a/ of the terminal amino group. These data suggest that only about four residues at either end of the protein experience large-amplitude spatial fluctuations; the rest of the molecule is essentially rigid on the time scale of the overall rotational tumbling of the protein-detergent complex. The relative exposure of different regions of detergent-bound protein was monitored by limited digestion with proteinase K. Comparable spectra and digestion patterns were obtained when the protein was solubilized in sodium deoxycholate, suggesting that the coat protein binds both amphiphiles in a similar fashion

  15. Single-molecule spectroscopy of protein conformational dynamics in live eukaryotic cells.

    Science.gov (United States)

    König, Iwo; Zarrine-Afsar, Arash; Aznauryan, Mikayel; Soranno, Andrea; Wunderlich, Bengt; Dingfelder, Fabian; Stüber, Jakob C; Plückthun, Andreas; Nettels, Daniel; Schuler, Benjamin

    2015-08-01

    Single-molecule methods have become widely used for quantifying the conformational heterogeneity and structural dynamics of biomolecules in vitro. Their application in vivo, however, has remained challenging owing to shortcomings in the design and reproducible delivery of labeled molecules, the range of applicable analysis methods, and suboptimal cell culture conditions. By addressing these limitations in an integrated approach, we demonstrate the feasibility of probing protein dynamics from milliseconds down to the nanosecond regime in live eukaryotic cells with confocal single-molecule Förster resonance energy transfer (FRET) spectroscopy. We illustrate the versatility of the approach by determining the dimensions and submicrosecond chain dynamics of an intrinsically disordered protein; by detecting even subtle changes in the temperature dependence of protein stability, including in-cell cold denaturation; and by quantifying the folding dynamics of a small protein. The methodology opens possibilities for assessing the effect of the cellular environment on biomolecular conformation, dynamics and function. PMID:26147918

  16. Conformational dynamics of ligand-dependent alternating access in LeuT.

    Science.gov (United States)

    Kazmier, Kelli; Sharma, Shruti; Quick, Matthias; Islam, Shahidul M; Roux, Benoît; Weinstein, Harel; Javitch, Jonathan A; McHaourab, Hassane S

    2014-05-01

    The leucine transporter (LeuT) from Aquifex aeolicus is a bacterial homolog of neurotransmitter/sodium symporters (NSSs) that catalyze reuptake of neurotransmitters at the synapse. Crystal structures of wild-type and mutants of LeuT have been interpreted as conformational states in the coupled transport cycle. However, the mechanistic identities inferred from these structures have not been validated, and the ligand-dependent conformational equilibrium of LeuT has not been defined. Here, we used distance measurements between spin-label pairs to elucidate Na(+)- and leucine-dependent conformational changes on the intracellular and extracellular sides of the transporter. The results identify structural motifs that underlie the isomerization of LeuT between outward-facing, inward-facing and occluded states. The conformational changes reported here present a dynamic picture of the alternating-access mechanism of LeuT and NSSs that is different from the inferences reached from currently available structural models. PMID:24747939

  17. Orientation-dependent backbone-only residue pair scoring functions for fixed backbone protein design

    Directory of Open Access Journals (Sweden)

    Bordner Andrew J

    2010-04-01

    Full Text Available Abstract Background Empirical scoring functions have proven useful in protein structure modeling. Most such scoring functions depend on protein side chain conformations. However, backbone-only scoring functions do not require computationally intensive structure optimization and so are well suited to protein design, which requires fast score evaluation. Furthermore, scoring functions that account for the distinctive relative position and orientation preferences of residue pairs are expected to be more accurate than those that depend only on the separation distance. Results Residue pair scoring functions for fixed backbone protein design were derived using only backbone geometry. Unlike previous studies that used spherical harmonics to fit 2D angular distributions, Gaussian Mixture Models were used to fit the full 3D (position only and 6D (position and orientation distributions of residue pairs. The performance of the 1D (residue separation only, 3D, and 6D scoring functions were compared by their ability to identify correct threading solutions for a non-redundant benchmark set of protein backbone structures. The threading accuracy was found to steadily increase with increasing dimension, with the 6D scoring function achieving the highest accuracy. Furthermore, the 3D and 6D scoring functions were shown to outperform side chain-dependent empirical potentials from three other studies. Next, two computational methods that take advantage of the speed and pairwise form of these new backbone-only scoring functions were investigated. The first is a procedure that exploits available sequence data by averaging scores over threading solutions for homologs. This was evaluated by applying it to the challenging problem of identifying interacting transmembrane alpha-helices and found to further improve prediction accuracy. The second is a protein design method for determining the optimal sequence for a backbone structure by applying Belief Propagation

  18. Allostery and conformational dynamics in cAMP-binding acyltransferases.

    Science.gov (United States)

    Podobnik, Marjetka; Siddiqui, Nida; Rebolj, Katja; Nambi, Subhalaxmi; Merzel, Franci; Visweswariah, Sandhya S

    2014-06-01

    Mycobacteria harbor unique proteins that regulate protein lysine acylation in a cAMP-regulated manner. These lysine acyltransferases from Mycobacterium smegmatis (KATms) and Mycobacterium tuberculosis (KATmt) show distinctive biochemical properties in terms of cAMP binding affinity to the N-terminal cyclic nucleotide binding domain and allosteric activation of the C-terminal acyltransferase domain. Here we provide evidence for structural features in KATms that account for high affinity cAMP binding and elevated acyltransferase activity in the absence of cAMP. Structure-guided mutational analysis converted KATms from a cAMP-regulated to a cAMP-dependent acyltransferase and identified a unique asparagine residue in the acyltransferase domain of KATms that assists in the enzymatic reaction in the absence of a highly conserved glutamate residue seen in Gcn5-related N-acetyltransferase-like acyltransferases. Thus, we have identified mechanisms by which properties of similar proteins have diverged in two species of mycobacteria by modifications in amino acid sequence, which can dramatically alter the abundance of conformational states adopted by a protein. PMID:24748621

  19. Lipid Regulated Intramolecular Conformational Dynamics of SNARE-Protein Ykt6

    Science.gov (United States)

    Dai, Yawei; Seeger, Markus; Weng, Jingwei; Song, Song; Wang, Wenning; Tan, Yan-Wen

    2016-08-01

    Cellular informational and metabolic processes are propagated with specific membrane fusions governed by soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNARE). SNARE protein Ykt6 is highly expressed in brain neurons and plays a critical role in the membrane-trafficking process. Studies suggested that Ykt6 undergoes a conformational change at the interface between its longin domain and the SNARE core. In this work, we study the conformational state distributions and dynamics of rat Ykt6 by means of single-molecule Förster Resonance Energy Transfer (smFRET) and Fluorescence Cross-Correlation Spectroscopy (FCCS). We observed that intramolecular conformational dynamics between longin domain and SNARE core occurred at the timescale ~200 μs. Furthermore, this dynamics can be regulated and even eliminated by the presence of lipid dodecylphoshpocholine (DPC). Our molecular dynamic (MD) simulations have shown that, the SNARE core exhibits a flexible structure while the longin domain retains relatively stable in apo state. Combining single molecule experiments and theoretical MD simulations, we are the first to provide a quantitative dynamics of Ykt6 and explain the functional conformational change from a qualitative point of view.

  20. Lipid Regulated Intramolecular Conformational Dynamics of SNARE-Protein Ykt6.

    Science.gov (United States)

    Dai, Yawei; Seeger, Markus; Weng, Jingwei; Song, Song; Wang, Wenning; Tan, Yan-Wen

    2016-01-01

    Cellular informational and metabolic processes are propagated with specific membrane fusions governed by soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNARE). SNARE protein Ykt6 is highly expressed in brain neurons and plays a critical role in the membrane-trafficking process. Studies suggested that Ykt6 undergoes a conformational change at the interface between its longin domain and the SNARE core. In this work, we study the conformational state distributions and dynamics of rat Ykt6 by means of single-molecule Förster Resonance Energy Transfer (smFRET) and Fluorescence Cross-Correlation Spectroscopy (FCCS). We observed that intramolecular conformational dynamics between longin domain and SNARE core occurred at the timescale ~200 μs. Furthermore, this dynamics can be regulated and even eliminated by the presence of lipid dodecylphoshpocholine (DPC). Our molecular dynamic (MD) simulations have shown that, the SNARE core exhibits a flexible structure while the longin domain retains relatively stable in apo state. Combining single molecule experiments and theoretical MD simulations, we are the first to provide a quantitative dynamics of Ykt6 and explain the functional conformational change from a qualitative point of view. PMID:27493064

  1. Radiosurgery of multiple brain metastases with single-isocenter dynamic conformal arcs (SIDCA)

    International Nuclear Information System (INIS)

    Purpose: To propose single-isocenter dynamic conformal arcs (SIDCA), a novel technique for radiosurgery of multiple brain metastases, and to compare SIDCA with volumetric modulated arc therapy (VMAT) and multiple-isocenter dynamic conformal arcs (MIDCA) for plan quality. Methods and materials: SIDCA, MIDCA, and VMAT plans were created on 6 patients with 3–5 metastases. Plans were evaluated using Radiation Therapy Oncology Group conformity index (RCI), Paddick conformity index (PCI), gradient index (GI), volumes that received more than 100% (V100%), 50% (V50%), 25% (V25%) and 10% (V10%) of prescription dose, total monitor units (MUs), and delivery time (DT). Results: SIDCA achieved conformal plans (RCI = 1.38 ± 0.12, PCI = 0.72 ± 0.06) with steep dose fall-off (GI = 3.97 ± 0.51). MIDCA plans had comparable plan quality and MUs as SIDCA, but 52% longer DT. The VMAT plans had better conformity (RCI = 1.15 ± 0.09, p < 0.01 and PCI = 0.86 ± 0.06, p < 0.01) than SIDCA, worse GI (4.34 ± 0.46, p < 0.01), higher V25% (p = 0.05) and V10% (p = 0.02), 49% less MUs and 46% shorter DT. Conclusions: All three techniques achieved conformal plans with steep dose fall-off from targets. SIDCA plans had similar plan quality as MIDCA but more efficient to delivery. SIDCA plans had lower peripheral dose spread than VMAT; VMAT plans had better conformity and faster delivery time than SIDCA

  2. Is DNA a nonlinear dynamical system where solitary conformational waves are possible?

    Indian Academy of Sciences (India)

    Ludmila V Yakushevich

    2001-09-01

    DNA is considered as a nonlinear dynamical system in which solitary conformational waves can be excited. The history of the approach, the main results, and arguments in favour and against are presented. Perspectives are discussed pertaining to studies of DNA’s nonlinear properties.

  3. Peptide conformational heterogeneity revealed from nonlinear vibrational spectroscopy and molecular-dynamics simulations

    Science.gov (United States)

    Woutersen, Sander; Pfister, Rolf; Hamm, Peter; Mu, Yuguang; Kosov, Daniel S.; Stock, Gerhard

    2002-10-01

    Nonlinear time-resolved vibrational spectroscopy is used to compare spectral broadening of the amide I band of the small peptide trialanine with that of N-methylacetamide, a commonly used model system for the peptide bond. In contrast to N-methylacetamide, the amide I band of trialanine is significantly inhomogeneously broadened. Employing classical molecular-dynamics simulations combined with density-functional-theory calculations, the origin of the spectral inhomogeneity is investigated. While both systems exhibit similar hydrogen-bonding dynamics, it is found that the conformational dynamics of trialanine causes a significant additional spectral broadening. In particular, transitions between the poly(Gly)II and the αR conformations are identified as the main source of the additional spectral inhomogeneity of trialanine. The experimental and computational results suggest that trialanine adopts essentially two conformations: poly(Gly)II (80%) and αR (20%). The potential of the joint experimental and computational approach to explore conformational dynamics of peptides is discussed.

  4. Imatinib (Gleevec@) conformations observed in single crystals, protein-Imatinib co-crystals and molecular dynamics: Implications for drug selectivity

    Science.gov (United States)

    Golzarroshan, B.; Siddegowda, M. S.; Li, Hong qi; Yathirajan, H. S.; Narayana, B.; Rathore, R. S.

    2012-06-01

    Structure and dynamics of the Leukemia drug, Imatinib, were examined using X-ray crystallography and molecular dynamics studies. Comparison of conformations observed in single crystals with several reported co-crystals of protein-drug complexes suggests existence of two conserved conformations of Imatinib, extended and compact (or folded), corresponding to two binding modes of interaction with the receptor. Furthermore, these conformations are conserved throughout a dynamics simulation. The present study attempts to draw a parallel on conformations and binding patterns of interactions, obtained from small-molecule single-crystal and macromolecule co-crystal studies, and provides structural insights for understanding the high selectivity of this drug molecule.

  5. Beyond Crystallography: Investigating the Conformational Dynamics of the Purine Riboswitch

    Science.gov (United States)

    Stoddard, Colby D.; Batey, Robert T.

    Riboswitches are structured elements located in the 5'-untranslated regions of numerous bacterial mRNAs that serve to regulate gene expression via their ability to specifically bind metabolites. The purine riboswitch ligand-binding domain has emerged as an important model system for investigating the relationship between RNA structure and function. Directed by NMR and crystallographically generated structures of this RNA, a variety of biophysical and biochemical techniques have been utilized to understand its dynamic nature. In this review, we describe these various approaches and what they reveal about the purine riboswitch.

  6. Long range dynamic effects of point-mutations trap a response regulator in an active conformation

    OpenAIRE

    Bobay, Benjamin G.; Thompson, Richele J.; Hoch, James A.; Cavanagh, John

    2010-01-01

    When a point-mutation in a protein elicits a functional change, it is most common to assign this change to local structural perturbations. Here we show that point-mutations, distant from an essential highly dynamic kinase recognition loop in the response regulator Spo0F, lock this loop in an active conformation. This ‘conformational trapping’ results in functionally hyperactive Spo0F. Consequently, point-mutations are seen to affect functionally critical motions both close to and far from the...

  7. Molecular dynamics simulations of biological membranes and membrane proteins using enhanced conformational sampling algorithms.

    Science.gov (United States)

    Mori, Takaharu; Miyashita, Naoyuki; Im, Wonpil; Feig, Michael; Sugita, Yuji

    2016-07-01

    This paper reviews various enhanced conformational sampling methods and explicit/implicit solvent/membrane models, as well as their recent applications to the exploration of the structure and dynamics of membranes and membrane proteins. Molecular dynamics simulations have become an essential tool to investigate biological problems, and their success relies on proper molecular models together with efficient conformational sampling methods. The implicit representation of solvent/membrane environments is reasonable approximation to the explicit all-atom models, considering the balance between computational cost and simulation accuracy. Implicit models can be easily combined with replica-exchange molecular dynamics methods to explore a wider conformational space of a protein. Other molecular models and enhanced conformational sampling methods are also briefly discussed. As application examples, we introduce recent simulation studies of glycophorin A, phospholamban, amyloid precursor protein, and mixed lipid bilayers and discuss the accuracy and efficiency of each simulation model and method. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov. PMID:26766517

  8. Conformational dynamics of a G-protein α subunit is tightly regulated by nucleotide binding.

    Science.gov (United States)

    Goricanec, David; Stehle, Ralf; Egloff, Pascal; Grigoriu, Simina; Plückthun, Andreas; Wagner, Gerhard; Hagn, Franz

    2016-06-28

    Heterotrimeric G proteins play a pivotal role in the signal-transduction pathways initiated by G-protein-coupled receptor (GPCR) activation. Agonist-receptor binding causes GDP-to-GTP exchange and dissociation of the Gα subunit from the heterotrimeric G protein, leading to downstream signaling. Here, we studied the internal mobility of a G-protein α subunit in its apo and nucleotide-bound forms and characterized their dynamical features at multiple time scales using solution NMR, small-angle X-ray scattering, and molecular dynamics simulations. We find that binding of GTP analogs leads to a rigid and closed arrangement of the Gα subdomain, whereas the apo and GDP-bound forms are considerably more open and dynamic. Furthermore, we were able to detect two conformational states of the Gα Ras domain in slow exchange whose populations are regulated by binding to nucleotides and a GPCR. One of these conformational states, the open state, binds to the GPCR; the second conformation, the closed state, shows no interaction with the receptor. Binding to the GPCR stabilizes the open state. This study provides an in-depth analysis of the conformational landscape and the switching function of a G-protein α subunit and the influence of a GPCR in that landscape. PMID:27298341

  9. Conformations and dynamics of dendrimers and cascade macromolecules

    Science.gov (United States)

    La Ferla, Roberto

    1997-01-01

    The Rouse-Zimm discrete hydrodynamic model is extended to acyclic macromolecules of any topology, and particular attention is devoted to starlike dendrimers and other symmetric cascade structures. As a first approximation, freely rotating models are built for branched structures by means of appropriate choices of topology-dependent stiffness parameters. Relevant dynamic observables (depending on the spectrum of viscoelastic relaxation rates) are studied as functions of local stiffness, of branching topology, and of dendrimer generational growth. The present results show that a moderate increase of local stiffness accounts for the molecular dimensions of dendrimers as previously calculated by Mansfield and Klushin [J. Phys. Chem. 96, 3994 (1992)] by Monte Carlo methods, and reproduces with good precision their results for the intrinsic viscosity (upper-bound calculations). Thus omission of excluded-volume interactions within the present models can be at least partially compensated for by suitable choices of local stiffness parameters, provided that the chain portions between branching points are not very long. In addition, the inaccuracy caused by preaveraging of hydrodynamic interactions (as estimated by computing exact and preaveraged first cumulant of the structure factor) does not seem to obscure the essential conclusions.

  10. On the analysis and comparison of conformer-specific essential dynamics upon ligand binding to a protein

    International Nuclear Information System (INIS)

    The native state of a protein consists of an equilibrium of conformational states on an energy landscape rather than existing as a single static state. The co-existence of conformers with different ligand-affinities in a dynamical equilibrium is the basis for the conformational selection model for ligand binding. In this context, the development of theoretical methods that allow us to analyze not only the structural changes but also changes in the fluctuation patterns between conformers will contribute to elucidate the differential properties acquired upon ligand binding. Molecular dynamics simulations can provide the required information to explore these features. Its use in combination with subsequent essential dynamics analysis allows separating large concerted conformational rearrangements from irrelevant fluctuations. We present a novel procedure to define the size and composition of essential dynamics subspaces associated with ligand-bound and ligand-free conformations. These definitions allow us to compare essential dynamics subspaces between different conformers. Our procedure attempts to emphasize the main similarities and differences between the different essential dynamics in an unbiased way. Essential dynamics subspaces associated to conformational transitions can also be analyzed. As a test case, we study the glutaminase interacting protein (GIP), composed of a single PDZ domain. Both GIP ligand-free state and glutaminase L peptide-bound states are analyzed. Our findings concerning the relative changes in the flexibility pattern upon binding are in good agreement with experimental Nuclear Magnetic Resonance data

  11. Conformational space of clindamycin studied by ab initio and full-atom molecular dynamics.

    Science.gov (United States)

    Kulczycka-Mierzejewska, Katarzyna; Trylska, Joanna; Sadlej, Joanna

    2016-01-01

    Molecular dynamics (MD) simulations allow determining internal flexibility of molecules at atomic level. Using ab initio Born-Oppenheimer molecular dynamics (BOMD), one can simulate in a reasonable time frame small systems with hundreds of atoms, usually in vacuum. With quantum mechanics/molecular mechanics (QM/MM) or full-atom molecular dynamics (FAMD), the influence of the environment can also be simulated. Here, we compare three types of MD calculations: ab initio BOMD, hybrid QM/MM, and classical FAMD. As a model system, we use a small antibiotic molecule, clindamycin, which is one of the lincosamide antibiotics. Clindamycin acquires two energetically stable forms and we investigated the transition between these two experimentally known conformers. We performed 60-ps BOMD simulations in vacuum, 50-ps QM/MM, and 100-ns FAMD in explicit water. The transition between two antibiotic conformers was observed using both BOMD and FAMD methods but was not noted in the QM/MM simulations. PMID:26733483

  12. Coarse-grained model of conformation-dependent electrophoretic mobility and its influence on DNA dynamics.

    Science.gov (United States)

    Pandey, Harsh; Underhill, Patrick T

    2015-11-01

    The electrophoretic mobility of molecules such as λ-DNA depends on the conformation of the molecule. It has been shown that electrohydrodynamic interactions between parts of the molecule lead to a mobility that depends on conformation and can explain some experimental observations. We have developed a new coarse-grained model that incorporates these changes of mobility into a bead-spring chain model. Brownian dynamics simulations have been performed using this model. The model reproduces the cross-stream migration that occurs in capillary electrophoresis when pressure-driven flow is applied parallel or antiparallel to the electric field. The model also reproduces the change of mobility when the molecule is stretched significantly in an extensional field. We find that the conformation-dependent mobility can lead to a new type of unraveling of the molecule in strong fields. This occurs when different parts of the molecule have different mobilities and the electric field is large. PMID:26651689

  13. Conformal house

    DEFF Research Database (Denmark)

    Ryttov, Thomas Aaby; Sannino, Francesco

    2010-01-01

    fixed point. As a consistency check we recover the previously investigated bounds of the conformal windows when restricting to a single matter representation. The earlier conformal windows can be imagined to be part now of the new conformal house. We predict the nonperturbative anomalous dimensions at...... the infrared fixed points. We further investigate the effects of adding mass terms to the condensates on the conformal house chiral dynamics and construct the simplest instanton induced effective Lagrangian terms...

  14. Nucleotide-induced conformational dynamics in ABC transporters from structure-based coarse grained modelling.

    Science.gov (United States)

    Flechsig, Holger

    2016-02-01

    ATP-binding cassette (ABC) transporters are integral membrane proteins which mediate the exchange of diverse substrates across membranes powered by ATP molecules. Our understanding of their activity is still hampered since the conformational dynamics underlying the operation of such proteins cannot yet be resolved in detailed molecular dynamics studies. Here a coarse grained model which allows to mimic binding of nucleotides and follow subsequent conformational motions of full-length transporter structures in computer simulations is proposed and implemented. To justify its explanatory quality, the model is first applied to the maltose transporter system for which multiple conformations are known and we find that the model predictions agree remarkably well with the experimental data. For the MalK subunit the switching from open to the closed dimer configuration upon ATP binding is reproduced and, moreover, for the full-length maltose transporter, progression from inward-facing to the outward-facing state is correctly obtained. For the heme transporter HmuUV, for which only the free structure could yet be determined, the model was then applied to predict nucleotide-induced conformational motions. Upon binding of ATP-mimicking ligands the structure changed from a conformation in which the nucleotide-binding domains formed an open shape, to a conformation in which they were found in tight contact, while, at the same time, a pronounced rotation of the transmembrane domains was observed. This finding is supported by normal mode analysis, and, comparison with structural data of the homologous vitamin B12 transporter BtuCD suggests that the observed rotation mechanism may contribute a common functional aspect for this class of ABC transporters. Although in HmuuV noticeable rearrangement of essential transmembrane helices was detected, there are no indications from our simulations that ATP binding alone may facilitate propagation of substrate molecules in this transporter

  15. Conformational Selection in a Protein-Protein Interaction Revealed by Dynamic Pathway Analysis

    Directory of Open Access Journals (Sweden)

    Kalyan S. Chakrabarti

    2016-01-01

    Full Text Available Molecular recognition plays a central role in biology, and protein dynamics has been acknowledged to be important in this process. However, it is highly debated whether conformational changes happen before ligand binding to produce a binding-competent state (conformational selection or are caused in response to ligand binding (induced fit. Proposals for both mechanisms in protein/protein recognition have been primarily based on structural arguments. However, the distinction between them is a question of the probabilities of going via these two opposing pathways. Here, we present a direct demonstration of exclusive conformational selection in protein/protein recognition by measuring the flux for rhodopsin kinase binding to its regulator recoverin, an important molecular recognition in the vision system. Using nuclear magnetic resonance (NMR spectroscopy, stopped-flow kinetics, and isothermal titration calorimetry, we show that recoverin populates a minor conformation in solution that exposes a hydrophobic binding pocket responsible for binding rhodopsin kinase. Protein dynamics in free recoverin limits the overall rate of binding.

  16. Parallel cascade selection molecular dynamics (PaCS-MD) to generate conformational transition pathway

    Science.gov (United States)

    Harada, Ryuhei; Kitao, Akio

    2013-07-01

    Parallel Cascade Selection Molecular Dynamics (PaCS-MD) is proposed as a molecular simulation method to generate conformational transition pathway under the condition that a set of "reactant" and "product" structures is known a priori. In PaCS-MD, the cycle of short multiple independent molecular dynamics simulations and selection of the structures close to the product structure for the next cycle are repeated until the simulated structures move sufficiently close to the product. Folding of 10-residue mini-protein chignolin from the extended to native structures and open-close conformational transition of T4 lysozyme were investigated by PaCS-MD. In both cases, tens of cycles of 100-ps MD were sufficient to reach the product structures, indicating the efficient generation of conformational transition pathway in PaCS-MD with a series of conventional MD without additional external biases. Using the snapshots along the pathway as the initial coordinates, free energy landscapes were calculated by the combination with multiple independent umbrella samplings to statistically elucidate the conformational transition pathways.

  17. Conformal optical design with combination of static and dynamic aberration corrections

    Institute of Scientific and Technical Information of China (English)

    Li Yan; Li Lin; Huang Yi-Fan; Liu Jia-Guo

    2009-01-01

    Conformal domes that are shaped to meet aerodynamic requirements can increase range and speed for the host platform. Because these domes typically deviate greatly from spherical surface descriptions, a variety of aberrations are induced which vary with the field-of-regard (FOR) angle. A system for correcting optical aberrations created by a conformal dome has an outer surface and an inner surface. Optimizing the inner surface is regard as static aberration correction. A deformable mirror is placed at the position of the secondary mirror in the two-mirror all reflective imaging system, which is the dynamic aberration correction. An ellipsoidal MgF2 conformal dome with a fineness ratio of 1.0 is designed as an example. The FOR angle is 00°-30°, and the design wavelength is 4 μm. After the optimization at 7zoom positions by using the design tools Code V, the root-mean-square (RMS) spot size is reduced to approximately 0.99 to 1.48 times the diffraction limit. The design results show that the performances of the conformal optical systems can be greatly improved by the combination of the static correction and the dynamic correction.

  18. Conformational Selection in a Protein-Protein Interaction Revealed by Dynamic Pathway Analysis.

    Science.gov (United States)

    Chakrabarti, Kalyan S; Agafonov, Roman V; Pontiggia, Francesco; Otten, Renee; Higgins, Matthew K; Schertler, Gebhard F X; Oprian, Daniel D; Kern, Dorothee

    2016-01-01

    Molecular recognition plays a central role in biology, and protein dynamics has been acknowledged to be important in this process. However, it is highly debated whether conformational changes happen before ligand binding to produce a binding-competent state (conformational selection) or are caused in response to ligand binding (induced fit). Proposals for both mechanisms in protein/protein recognition have been primarily based on structural arguments. However, the distinction between them is a question of the probabilities of going via these two opposing pathways. Here, we present a direct demonstration of exclusive conformational selection in protein/protein recognition by measuring the flux for rhodopsin kinase binding to its regulator recoverin, an important molecular recognition in the vision system. Using nuclear magnetic resonance (NMR) spectroscopy, stopped-flow kinetics, and isothermal titration calorimetry, we show that recoverin populates a minor conformation in solution that exposes a hydrophobic binding pocket responsible for binding rhodopsin kinase. Protein dynamics in free recoverin limits the overall rate of binding. PMID:26725117

  19. Collective dynamics of belief evolution under cognitive coherence and social conformity

    CERN Document Server

    Rodriguez, Nathaniel; Ahn, Yong-Yeol

    2015-01-01

    Human history has been marked by social instability and conflict, often driven by the irreconcilability of opposing sets of beliefs, ideologies, and religious dogmas. The dynamics of belief systems has been studied mainly from two distinct perspectives, namely how cognitive biases lead to individual belief rigidity and how social influence leads to social conformity. Here we propose a unifying framework that connects cognitive and social forces together in order to study the dynamics of societal belief evolution. Each individual is endowed with a network of interacting beliefs that evolves through interaction with other individuals in a social network. The adoption of beliefs is affected by both internal coherence and social conformity. Our framework explains how social instabilities can arise in otherwise homogeneous populations, how small numbers of zealots with highly coherent beliefs can overturn societal consensus, and how belief rigidity protects fringe groups and cults against invasion from mainstream ...

  20. Conformation and dynamics of the hinge peptide: a potential carrier for antigenic sequences

    Czech Academy of Sciences Publication Activity Database

    Maloň, Petr; Urbanová, M.; Buděšínský, Miloš; Gut, Vladimír; Hlaváček, Jan; Niederhafner, Petr; Dlouhá, Helena; Palivec, L.; Jankovská, Vendula; Wünsch, E.

    Geneva : Kenes International, 2005 - (Flegl, M.; Fridkin, M.; Gilon, C.; Slaninová, J.), s. 1039-1040 ISBN 965-90833-0-0. [Peptides 2004. International and European Peptide Symposium /3./ /29./. Praha (CZ), 05.09.2004-10.09.2004] R&D Projects: GA ČR(CZ) GA203/02/0328 Institutional research plan: CEZ:AV0Z40500505 Keywords : conformation * dynamics * antigenic sequences * VCD Subject RIV: CE - Biochemistry

  1. Probing the Impact of Local Structural Dynamics of Conformational Epitopes on Antibody Recognition.

    Science.gov (United States)

    Liang, Yu; Guttman, Miklos; Davenport, Thaddeus M; Hu, Shiu-Lok; Lee, Kelly K

    2016-04-19

    Antibody-antigen interactions are governed by recognition of specific residues and structural complementarity between the antigen epitope and antibody paratope. While X-ray crystallography has provided detailed insights into static conformations of antibody-antigen complexes, factors such as conformational flexibility and dynamics, which are not readily apparent in the structures, can also have an impact on the binding event. Here we investigate the contribution of dynamics in the HIV-1 gp120 glycoprotein to antibody recognition of conserved conformational epitopes, including the CD4- and coreceptor-binding sites, and an inner domain site that is targeted by ADCC-active antibodies. Hydrogen/deuterium-exchange mass spectrometry (HDX-MS) was used to measure local structural dynamics across a panel of variable loop truncation mutants of HIV-1 gp120, including full-length gp120, ΔV3, ΔV1/V2, and extended core, which includes ΔV1/V2 and V3 loop truncations. CD4-bound full-length gp120 was also examined as a reference state. HDX-MS revealed a clear trend toward an increased level of order of the conserved subunit core resulting from loop truncation. Combined with biolayer interferometry and enzyme-linked immunosorbent assay measurements of antibody-antigen binding, we demonstrate that an increased level of ordering of the subunit core was associated with better recognition by an array of antibodies targeting complex conformational epitopes. These results provide detailed insight into the influence of structural dynamics on antibody-antigen interactions and suggest the importance of characterizing the structural stability of vaccine candidates to improve antibody recognition of complex epitopes. PMID:27003615

  2. Conformational Properties of Comb-Like Polyelectrolytes: A Coarse-Grained MD Study.

    Science.gov (United States)

    Ghelichi, Mahdi; Eikerling, Michael H

    2016-03-17

    This article presents a coarse-grained molecular dynamics study of single comb-like polyelectrolyte or ionomer chains in aqueous solution. The model polymer is comprised of a hydrophobic backbone chain with grafted side chains that terminate in anionic headgroups. The comb-polymer is modeled at a coarse-grained level with implicit treatment of the solvent. The computational study rationalizes conformational properties of the backbone chain and localization of counterions as functions of side chain length, grafting density of side chains, backbone stiffness, and counterion valence. The main interplay that determines the ionomer properties unfolds between electrostatic interactions among charged groups, hydrophobic backbone interactions, and steric effects induced by the pendant side chains. Depending on the density of branching sites, we have found two opposing effects of side chain length on the backbone gyration radius and local persistence length. Variation in comb-polyelectrolyte architecture is shown to have nontrivial effects on the localization of mobile counterions. Changes in Bjerrum length and counterion valence are also shown to alter the strength of Coulomb interactions and emphasize the role of excluded-volume effects on controlling the backbone conformational behavior. The results of simulations are in qualitative agreement with existing experimental and theoretical studies. The comprehensive conformational picture provides a framework for future studies of comb-polyelectrolyte systems. PMID:26910617

  3. Exchange NMR spectroscopy in solids: application in large-scale conformational biopolymer dynamics studies

    International Nuclear Information System (INIS)

    The exchange NMR experiment compares resonant frequencies of a magnetic nucleus before and after the so-called mixing time, thereby gaining molecular dynamics information on millisecond and second correlation time scales. Although exchange NMR experiments on solutions have a long history, conducting them on solids presents methodological challenges, and it was only in the late 1990s that solid-state exchange spectroscopy matured to the level where such complex entities as biopolymers could be addressed. In this review, major methodological advances in the field are examined and the application of exchange NMR experiments to conformational molecular dynamics of solid-state biopolymers is described. (reviews of topical problems)

  4. Living Without Supersymmetry -- the Conformal Alternative and a Dynamical Higgs Boson

    CERN Document Server

    Mannheim, Philip D

    2015-01-01

    We show that key results of supersymmetry can be achieved via conformal symmetry. We propose that the Higgs boson be a dynamical bound state rather than a fundamental scalar, so that there is no quadratic divergence self-energy problem for it and no need to invoke supersymmetry to resolve it. We study a conformal invariant theory of interacting fermions and gauge bosons, in which there is scaling with anomalous dimensions and dynamical symmetry breaking, with the dynamical dimension of $\\bar{\\psi}\\psi$ being reduced from 3 to 2. With this reduction we augment the theory with a then renormalizable 4-fermion interaction with dynamical dimension equal to 4. We reinterpret the theory as a renormalizable version of the Nambu-Jona-Lasinio (NJL) model, with the gauge theory sector with its now massive fermion being the mean field and the 4-fermion interaction being the residual interaction. It is this residual interaction that generates dynamical Goldstone and Higgs states, states that, as noted by Baker and Johnson...

  5. Conformation study of ɛ-cyclodextrin: Replica exchange molecular dynamics simulations.

    Science.gov (United States)

    Khuntawee, Wasinee; Rungrotmongkol, Thanyada; Wolschann, Peter; Pongsawasdi, Piamsook; Kungwan, Nawee; Okumura, Hisashi; Hannongbua, Supot

    2016-05-01

    There is growing interest in large-ring cyclodextrins (LR-CDs) which are known to be good host molecules for larger ligands. The isolation of a defined size LR-CD is an essential prerequisite for studying their structural properties. Unfortunately the purification procedure of these substances turned out to be very laborious. Finally the problem could be circumvented by a theoretical consideration: the highly advantageous replica exchange molecular dynamics (REMD) simulation (particularly suitable for studies of conformational changes) offers an ideal approach for studying the conformational change of ɛ-cyclodextrin (CD10), a smaller representative of LR-CDs. Three carbohydrate force fields and three solvent models were tested. The conformational behavior of CD10 was analyzed in terms of the flip (turn) of the glucose subunits within the macrocyclic ring. In addition a ranking of conformations with various numbers of turns was preformed. Our findings might be also helpful in the temperature controlled synthesis of LR-CDs as well as other experimental conditions, in particular for the host-guest reaction. PMID:26877001

  6. Getting started with Backbone Marionette

    CERN Document Server

    Armendariz, Raymundo

    2014-01-01

    This book is written with an easy-to-understand approach with the intention of giving small but concrete examples that will help you to quickly understand each component of Marionette. Follow along as we work together to build a practical application using Backbone Marionette.If you are a web application developer interested in using Backbone Marionette for a real-life project, then this book is for you. As a prerequisite, knowledge of JavaScript and a working knowledge of Backbone.js is required.

  7. Conformational entropy changes upon lactose binding to the carbohydrate recognition domain of galectin-3

    International Nuclear Information System (INIS)

    The conformational entropy of proteins can make significant contributions to the free energy of ligand binding. NMR spin relaxation enables site-specific investigation of conformational entropy, via order parameters that parameterize local reorientational fluctuations of rank-2 tensors. Here we have probed the conformational entropy of lactose binding to the carbohydrate recognition domain of galectin-3 (Gal3), a protein that plays an important role in cell growth, cell differentiation, cell cycle regulation, and apoptosis, making it a potential target for therapeutic intervention in inflammation and cancer. We used 15N spin relaxation experiments and molecular dynamics simulations to monitor the backbone amides and secondary amines of the tryptophan and arginine side chains in the ligand-free and lactose-bound states of Gal3. Overall, we observe good agreement between the experimental and computed order parameters of the ligand-free and lactose-bound states. Thus, the 15N spin relaxation data indicate that the molecular dynamics simulations provide reliable information on the conformational entropy of the binding process. The molecular dynamics simulations reveal a correlation between the simulated order parameters and residue-specific backbone entropy, re-emphasizing that order parameters provide useful estimates of local conformational entropy. The present results show that the protein backbone exhibits an increase in conformational entropy upon binding lactose, without any accompanying structural changes

  8. Improved ligand binding energies derived from molecular dynamics: replicate sampling enhances the search of conformational space.

    Science.gov (United States)

    Adler, Marc; Beroza, Paul

    2013-08-26

    Does a single molecular trajectory provide an adequate sample conformational space? Our calculations indicate that for Molecular Mechanics--Poisson-Boltzmann Surface Area (MM-PBSA) measurement of protein ligand binding, a single molecular dynamics trajectory does not provide a representative sampling of phase space. For a single trajectory, the binding energy obtained by averaging over a number of molecular dynamics frames in an equilibrated system will converge after an adequate simulation time. A separate trajectory with nearly identical starting coordinates (1% randomly perturbed by 0.001 Å), however, can lead to a significantly different calculated binding energy. Thus, even though the calculated energy converges for a single molecular dynamics run, the variation across separate runs implies that a single run inadequately samples the system. The divergence in the trajectories is reflected in the individual energy components, such as the van der Waals and the electrostatics terms. These results indicate that the trajectories sample different conformations that are not in rapid exchange. Extending the length of the dynamics simulation does not resolve the energy differences observed between different trajectories. By averaging over multiple simulations, each with a nearly equivalent starting structure, we find the standard deviation in the calculated binding energy to be ∼1.3 kcal/mol. The work presented here indicates that combining MM-PBSA with multiple samples of the initial starting coordinates will produce more precise and accurate estimates of protein/ligand affinity. PMID:23845109

  9. On dynamical realizations of l-conformal Galilei and Newton-Hooke algebras

    CERN Document Server

    Galajinsky, Anton

    2015-01-01

    In two recent papers [N. Aizawa, Y. Kimura, J. Segar, J. Phys. A 46 (2013) 405204] and [N. Aizawa, Z. Kuznetsova, F. Toppan, J. Math. Phys. 56 (2015) 031701], representation theory of the centrally extended l-conformal Galilei algebra has been applied so as to construct second order differential equations exhibiting the l-conformal Galilei group as kinematical symmetry. It was suggested to treat them as the Schrodinger equations which involve Hamiltonians describing dynamical systems without higher derivatives. The Hamiltonians possess two unusual features, however. First, they involve the standard kinetic term only for one degree of freedom, while the remaining variables provide contributions linear in momenta. This is typical for Ostrogradski's canonical approach to the description of higher derivative systems. Second, the Hamiltonian in the second paper is not Hermitian in the conventional sense. In this work, we study the classical limit of the quantum Hamiltonians and demonstrate that the first of them i...

  10. Earle K. Plyler Prize for Molecular Spectroscopy and Dynamics Lecture: 2D IR Spectroscopy of Peptide Conformation

    Science.gov (United States)

    Tokmakoff, Andrei

    2012-02-01

    Descriptions of protein and peptide conformation are colored by the methods we use to study them. Protein x-ray and NMR structures often lead to impressions of rigid or well-defined conformations, even though these are dynamic molecules. The conformational fluctuations and disorder of proteins and peptides is more difficult to quantify. This presentation will describe an approach toward characterizing and quantifying structural heterogeneity and disorder in peptides using 2D IR spectroscopy. Using amide I vibrational spectroscopy, isotope labeling strategies, and computational modeling based on molecular dynamics simulations and Markov state models allows us to characterize distinct peptide conformers and conformational variation. The examples illustrated include the beta-hairpin tripzip2 and elastin-like peptides.

  11. Sequence-dependent nanometer-scale conformational dynamics of individual RecBCD-DNA complexes.

    Science.gov (United States)

    Carter, Ashley R; Seaberg, Maasa H; Fan, Hsiu-Fang; Sun, Gang; Wilds, Christopher J; Li, Hung-Wen; Perkins, Thomas T

    2016-07-01

    RecBCD is a multifunctional enzyme that possesses both helicase and nuclease activities. To gain insight into the mechanism of its helicase function, RecBCD unwinding at low adenosine triphosphate (ATP) (2-4 μM) was measured using an optical-trapping assay featuring 1 base-pair (bp) precision. Instead of uniformly sized steps, we observed forward motion convolved with rapid, large-scale (∼4 bp) variations in DNA length. We interpret this motion as conformational dynamics of the RecBCD-DNA complex in an unwinding-competent state, arising, in part, by an enzyme-induced, back-and-forth motion relative to the dsDNA that opens and closes the duplex. Five observations support this interpretation. First, these dynamics were present in the absence of ATP. Second, the onset of the dynamics was coupled to RecBCD entering into an unwinding-competent state that required a sufficiently long 5' strand to engage the RecD helicase. Third, the dynamics were modulated by the GC-content of the dsDNA. Fourth, the dynamics were suppressed by an engineered interstrand cross-link in the dsDNA that prevented unwinding. Finally, these dynamics were suppressed by binding of a specific non-hydrolyzable ATP analog. Collectively, these observations show that during unwinding, RecBCD binds to DNA in a dynamic mode that is modulated by the nucleotide state of the ATP-binding pocket. PMID:27220465

  12. Global Conformational Dynamics of HIV-1 Reverse Transcriptase Bound to Non-Nucleoside Inhibitors

    Directory of Open Access Journals (Sweden)

    Peter V. Coveney

    2012-07-01

    Full Text Available HIV-1 Reverse Transcriptase (RT is a multifunctional enzyme responsible for the transcription of the RNA genome of the HIV virus into DNA suitable for incorporation within the DNA of human host cells. Its crucial role in the viral life cycle has made it one of the major targets for antiretroviral drug therapy. The Non-Nucleoside RT Inhibitor (NNRTI class of drugs binds allosterically to the enzyme, affecting many aspects of its activity. We use both coarse grained network models and atomistic molecular dynamics to explore the changes in protein dynamics induced by NNRTI binding. We identify changes in the flexibility and conformation of residue Glu396 in the RNaseH primer grip which could provide an explanation for the acceleration in RNaseH cleavage rate observed experimentally in NNRTI bound HIV-1 RT. We further suggest a plausible path for conformational and dynamic changes to be communicated from the vicinity of the NNRTI binding pocket to the RNaseH at the other end of the enzyme.

  13. Hadron spectroscopy and dynamics from light-front holography and conformal symmetry

    Directory of Open Access Journals (Sweden)

    de Téramond Guy F.

    2014-06-01

    Full Text Available To a first semiclassical approximation one can reduce the multi-parton light-front problem in QCD to an effective one-dimensional quantum field theory, which encodes the fundamental conformal symmetry of the classical QCD Lagrangian. This procedure leads to a relativistic light-front wave equation for arbitrary spin which incorporates essential spectroscopic and non-perturbative dynamical features of hadron physics. The mass scale for confinement and higher dimensional holographic mapping to AdS space are also emergent properties of this framework.

  14. Conformity, anticonformity and polarization of opinions: insights from a mathematical model of opinion dynamics

    CERN Document Server

    Krüger, Tyll; Weron, Tomasz

    2016-01-01

    Understanding and quantifying polarization in social systems is important because of many reasons. It could for instance help to avoid segregation and conflicts in the society (DiMaggio et al. 1996) or to control polarized debates and predict their outcomes (Walton 1991). In a recent paper (Siedlecki et al. 2016) we used an agent-based model of a segmented society to check if the polarization may be induced by a competition between conformity and anticonformity. Among other things we have shown that the interplay of intra-clique conformity and inter-clique anticonformity may indeed lead to a bi-polarized state of the system. This paper is a continuation of the work done in (Siedlecki et al. 2016). We consider here a slightly modified version of the model that allows for mathematical treatment and gives more insight into the dynamics of the system. We determine conditions needed to arrive at consensus in a double-clique network with conformity and anticonformity as types of social influence and find regimes, i...

  15. Dynamic Conformations of Nucleosome Arrays in Solution from Small-Angle X-ray Scattering

    Science.gov (United States)

    Howell, Steven C.

    Chromatin conformation and dynamics remains unsolved despite the critical role of the chromatin in fundamental genetic functions such as transcription, replication, and repair. At the molecular level, chromatin can be viewed as a linear array of nucleosomes, each consisting of 147 base pairs (bp) of double-stranded DNA (dsDNA) wrapped around a protein core and connected by 10 to 90 bp of linker dsDNA. Using small-angle X-ray scattering (SAXS), we investigated how the conformations of model nucleosome arrays in solution are modulated by ionic condition as well as the effect of linker histone proteins. To facilitate ensemble modeling of these SAXS measurements, we developed a simulation method that treats coarse-grained DNA as a Markov chain, then explores possible DNA conformations using Metropolis Monte Carlo (MC) sampling. This algorithm extends the functionality of SASSIE, a program used to model intrinsically disordered biological molecules, adding to the previous methods for simulating protein, carbohydrates, and single-stranded DNA. Our SAXS measurements of various nucleosome arrays together with the MC generated models provide valuable solution structure information identifying specific differences from the structure of crystallized arrays.

  16. New binding site conformations of the dengue virus NS3 protease accessed by molecular dynamics simulation.

    Directory of Open Access Journals (Sweden)

    Hugo de Almeida

    Full Text Available Dengue fever is caused by four distinct serotypes of the dengue virus (DENV1-4, and is estimated to affect over 500 million people every year. Presently, there are no vaccines or antiviral treatments for this disease. Among the possible targets to fight dengue fever is the viral NS3 protease (NS3PRO, which is in part responsible for viral processing and replication. It is now widely recognized that virtual screening campaigns should consider the flexibility of target protein by using multiple active conformational states. The flexibility of the DENV NS3PRO could explain the relatively low success of previous virtual screening studies. In this first work, we explore the DENV NS3PRO conformational states obtained from molecular dynamics (MD simulations to take into account protease flexibility during the virtual screening/docking process. To do so, we built a full NS3PRO model by multiple template homology modeling. The model comprised the NS2B cofactor (essential to the NS3PRO activation, a glycine flexible link and the proteolytic domain. MD simulations had the purpose to sample, as closely as possible, the ligand binding site conformational landscape prior to inhibitor binding. The obtained conformational MD sample was clustered into four families that, together with principal component analysis of the trajectory, demonstrated protein flexibility. These results allowed the description of multiple binding modes for the Bz-Nle-Lys-Arg-Arg-H inhibitor, as verified by binding plots and pair interaction analysis. This study allowed us to tackle protein flexibility in our virtual screening campaign against the dengue virus NS3 protease.

  17. Relationship between conformational dynamics and electron transfer in a desolvated peptide. Part II. Temperature dependence.

    Science.gov (United States)

    Parks, Joel H; Semrouni, David; Clavaguéra, Carine; Ohanessian, Gilles

    2013-02-14

    Recent time-resolved lifetime measurements studied the quenching of the fluorescence emitted by a dye covalently bound to the desolvated peptide Dye-Pro(4)-Arg(+)-Trp. This peptide sequence was chosen for study since intramolecular interactions constrain all large-scale fluctuations except for those of the interacting dye and Trp side chain. It was shown that quenching occurred as a result of interaction between the excited dye and tryptophan side chain. These measurements exhibited a temperature dependence that suggested the quenching mechanism was related to electron transfer. This paper presents a comparison of the experimental quenching rate with the Marcus electron transfer model performed with molecular dynamics (MD) calculations. Taking advantage of the AMOEBA force field that explicitly includes polarizability ensures that the intramolecular electrostatic and polarization interactions in this desolvated peptide ion are treated realistically. MD calculations identify both large-scale fluctuations between conformations as well as small-scale fluctuations within a conformation that are shown to be correlated with torsional dynamics of the Trp side chain. Trajectories of the Dye-Trp distance identify the occurrence of close separations required for efficient electron transfer. The temperature dependence of the quenching rate closely follows the rate predicted by the Marcus electron transfer model within uncertainties resulting from statistical averages. Estimates of the energy parameters characterizing the Marcus model indicate the electronic coupling matrix element and the reaction free energy derived from the fits are consistent with published values for transfer in polyproline bridged peptides. These calculations help to provide a molecular basis for investigating conformational changes in desolvated biomolecular ions by fluorescence quenching measurements. PMID:23297809

  18. Efficient Algorithms for Extension of Mobile Backbone Networks

    Directory of Open Access Journals (Sweden)

    Eswaramoorthi. R

    2012-03-01

    Full Text Available Network wide communication is an essential criterion for all wireless sensor networks, to transmit the collected data from environment to base station (sink node in an efficient way. The wide network coverage is provided by constructing Mobile Backbone Networks (MBN, which are dynamic networks. These networks have two types of nodes. They are Mobile backbone nodes and Regular nodes. The Mobile backbone nodes have superior mobility and communication capability than regular nodes. All the information needs to be routed through mobile backbone nodes to regular nodes. The communication between clusters is done through backbone node so that transmission overhead is less. In this paper, we are mainly concentrates on throughput optimization and assigning new regular nodes. First the throughput range is calculated for each cluster, and then data packets are transmitted in such a way that the calculated range of throughput for each cluster is satisfied. The number of regular nodes that can be successfully assigned to mobile backbone nodes can be improved by means of adopting network design formulation technique. In case of any failure of mobile backbone node ,new cluster head is elected based on high energy first (HEF algorithm, where the residual energy of the nodes are considered for election.

  19. Schwinger-Dyson Study for Walking/Conformal Dynamics with IR Cutoffs

    CERN Document Server

    Miura, Kohtaroh; Shibata, Akihiro

    2015-01-01

    Motivated by recent progress on many flavor QCD on a lattice, we investigate conformal/walking dynamics by using Schwinger-Dyson (SD) equation within an improved ladder approximation for two-loop running coupling. By numerically solving the SD equation, we obtain a pole mass $m_{p}$, pion decay constant $f_{\\pi}$, and investigate the chiral symmetry breaking and mass anomalous dimension $\\gamma_{m}$ in the presence of IR cutoffs $\\Lambda_{\\mathrm{IR}}$. We find that the chiral symmetry breaking is suppressed \\ if IR cutoff $\\Lambda_{\\mathrm{IR}}$ becomes larger than the critical \\ value near the dynamical mass ($\\Lambda_{\\mathrm{IR}}$ $\\simeq m_{D}$) In the conformal phase the $\\gamma_{m}$ is strongly suppressed by IR cutoffs for $\\Lambda _{\\mathrm{IR}}$ $\\simeq m_{p}$. We, then, obtain finite size hyperscaling (FSS) relation by adapting a linearized approximation for the SD equation, and examine the $\\gamma_{m}$ The results offer valuable insight and suggestion for analyses in lattice gauge theories.

  20. Relationship between conformational dynamics and electron transfer in a desolvated peptide. Part I. Structures.

    Science.gov (United States)

    Semrouni, David; Clavaguéra, Carine; Ohanessian, Gilles; Parks, Joel H

    2013-02-14

    The structures, dynamics and energetics of the protonated, derivatized peptide DyeX-(Pro)(4)-Arg(+)-Trp, where "Dye" stands for the BODIPY analogue of tetramethylrhodamine and X is a (CH(2))(5) linker, have been investigated using a combination of modeling approaches in order to provide a numerical framework to the interpretation of fluorescence quenching data in the gas phase. Molecular dynamics (MD) calculations using the new generation AMOEBA force field were carried out using a representative set of conformations, at eight temperatures ranging from 150 to 500 K. Force field parameters were derived from ab initio calculations for the Dye. Strong electrostatic, polarization and dispersion interactions combine to shape this charged peptide. These effects arise in particular from the electric field generated by the charge of the protonated arginine and from several hydrogen bonds that can be established between the Dye linker and the terminal Trp. This conclusion is based on both the analysis of all structures generated in the MD simulations and on an energy decomposition analysis at classical and quantum mechanical levels. Structural analysis of the simulations at the different temperatures reveals that the relatively rigid polyproline segment allows for the Dye and Trp indole side chain to adopt stacking conformations favorable to electron transfer, yielding support to a model in which it is electron transfer from tryptophan to the dye that drives fluorescence quenching. PMID:23297778

  1. Thermal fluctuations of haemoglobin from different species: adaptation to temperature via conformational dynamics.

    Science.gov (United States)

    Stadler, A M; Garvey, C J; Bocahut, A; Sacquin-Mora, S; Digel, I; Schneider, G J; Natali, F; Artmann, G M; Zaccai, G

    2012-11-01

    Thermodynamic stability, configurational motions and internal forces of haemoglobin (Hb) of three endotherms (platypus, Ornithorhynchus anatinus; domestic chicken, Gallus gallus domesticus and human, Homo sapiens) and an ectotherm (salt water crocodile, Crocodylus porosus) were investigated using circular dichroism, incoherent elastic neutron scattering and coarse-grained Brownian dynamics simulations. The experimental results from Hb solutions revealed a direct correlation between protein resilience, melting temperature and average body temperature of the different species on the 0.1 ns time scale. Molecular forces appeared to be adapted to permit conformational fluctuations with a root mean square displacement close to 1.2 Å at the corresponding average body temperature of the endotherms. Strong forces within crocodile Hb maintain the amplitudes of motion within a narrow limit over the entire temperature range in which the animal lives. In fully hydrated powder samples of human and chicken, Hb mean square displacements and effective force constants on the 1 ns time scale showed no differences over the whole temperature range from 10 to 300 K, in contrast to the solution case. A complementary result of the study, therefore, is that one hydration layer is not sufficient to activate all conformational fluctuations of Hb in the pico- to nanosecond time scale which might be relevant for biological function. Coarse-grained Brownian dynamics simulations permitted to explore residue-specific effects. They indicated that temperature sensing of human and chicken Hb occurs mainly at residues lining internal cavities in the β-subunits. PMID:22696485

  2. Conformational Search on the Lewis X Structure by Molecular Dynamic: Study of Tri- and Pentasaccharide

    Directory of Open Access Journals (Sweden)

    N. Khebichat

    2012-01-01

    Full Text Available Carbohydrates play vital roles in many biological processes, such as recognition, adhesion, and signalling between cells. The Lewis X determinant is a trisaccharide fragment implicated as a specific differentiation antigen, tumor antigen, and key component of the ligand for the endothelial leukocyte adhesion molecule, so it is necessary or essential to determine and to know their conformational and structural properties. In this work, conformational analysis was performed using molecular dynamics (MD simulation with the AMBER10 program package in order to study the dynamic behavior of of the Lewis X trisaccharide (β-D-Gal-(1,4-[α-L-Fuc-(1,3]-β-D-GlcNAc-OMe and the Lewis X pentasaccharide (β-D-Gal-(1,4-[α-L-Fuc-(1,3]-β-D-GlcNAc-(1,3-β-D-Gal-(1,4-β-D-Glu-OMe in explicit water model at 300 K for 10 ns using the GLYCAM 06 force field.

  3. Stereolability of chiral ruthenium catalysts with frozen NHC ligand conformations investigated by dynamic-HPLC.

    Science.gov (United States)

    Menta, Sergio; Pierini, Marco; Cirilli, Roberto; Grisi, Fabia; Perfetto, Alessandra; Ciogli, Alessia

    2015-10-01

    The stereolability of chiral Hoveyda-Grubbs II type ruthenium complexes bearing N-heterocyclic carbene (NHC) ligands with Syn-phenyl groups on the backbone and Syn- or Anti-oriented o-tolyl N-substituents was studied by resorting to dynamic high-performance liquid chromatography (D-HPLC). A complete chromatographic picture of the involved stereoisomers (four for Anti- and two for Syn-complexes) was achieved at very low temperatures (-53°C and -40°C respectively), at which the NHC-Ru bond rotations were frozen out. Inspection of the chromatographic profiles recorded at higher temperatures revealed the presence of plateau zones between the couples of either Syn or Anti stereoisomers, attesting to the active interconversion between the eluted species. Such dynamic chromatograms were successfully simulated through procedures based on both theoretical plate and classical stochastic models. The good superimposition achieved between experimental and simulated chromatographic profiles allowed determination of the related isomerization energy barriers (ΔGisom (#) ), all derived by rotation around the NHC-Ru bond. The obtained diastereomerization barriers between the Anti isomers were found in very good agreement with those previously measured by experimental nuclear magnetic resonance (NMR) and assessed through Density Functional Theory (DFT) calculations. With the same approach, for the first time we also determined the enantiomerization barrier of the Syn isomer. Focused changes to the structure of complex Syn, studied by a molecular modeling approach, were found suitable to strongly reduce the stereolability arising from rotation around the NHC-Ru bond. PMID:26250890

  4. Adding diverse noncanonical backbones to rosetta: enabling peptidomimetic design.

    Directory of Open Access Journals (Sweden)

    Kevin Drew

    Full Text Available Peptidomimetics are classes of molecules that mimic structural and functional attributes of polypeptides. Peptidomimetic oligomers can frequently be synthesized using efficient solid phase synthesis procedures similar to peptide synthesis. Conformationally ordered peptidomimetic oligomers are finding broad applications for molecular recognition and for inhibiting protein-protein interactions. One critical limitation is the limited set of design tools for identifying oligomer sequences that can adopt desired conformations. Here, we present expansions to the ROSETTA platform that enable structure prediction and design of five non-peptidic oligomer scaffolds (noncanonical backbones, oligooxopiperazines, oligo-peptoids, [Formula: see text]-peptides, hydrogen bond surrogate helices and oligosaccharides. This work is complementary to prior additions to model noncanonical protein side chains in ROSETTA. The main purpose of our manuscript is to give a detailed description to current and future developers of how each of these noncanonical backbones was implemented. Furthermore, we provide a general outline for implementation of new backbone types not discussed here. To illustrate the utility of this approach, we describe the first tests of the ROSETTA molecular mechanics energy function in the context of oligooxopiperazines, using quantum mechanical calculations as comparison points, scanning through backbone and side chain torsion angles for a model peptidomimetic. Finally, as an example of a novel design application, we describe the automated design of an oligooxopiperazine that inhibits the p53-MDM2 protein-protein interaction. For the general biological and bioengineering community, several noncanonical backbones have been incorporated into web applications that allow users to freely and rapidly test the presented protocols (http://rosie.rosettacommons.org. This work helps address the peptidomimetic community's need for an automated and expandable

  5. LOAD AWARE ADAPTIVE BACKBONE SYNTHESIS IN WIRELESS MESH NETWORKS

    Institute of Scientific and Technical Information of China (English)

    Yuan Yuan; Zheng Baoyu

    2009-01-01

    Wireless Mesh Networks (WMNs) are envisioned to support the wired backbone with a wireless Backbone Networks (BNet) for providing internet connectivity to large-scale areas.With a wide range of internet-oriented applications with different Quality of Service (QoS) requirement,the large-scale WMNs should have good scalability and large bandwidth.In this paper,a Load Aware Adaptive Backbone Synthesis (LAABS) algorithm is proposed to automatically balance the traffic flow in the WMNs.The BNet will dynamically split into smaller size or merge into bigger one according to statistic load information of Backbone Nodes (BNs).Simulation results show LAABS generates moderate BNet size and converges quickly,thus providing scalable and stable BNet to facilitate traffic flow.

  6. SU-E-T-139: Dynamic Conformal Arcs Vs. VMAT for Stereotactic Lung Target Treatment Planning

    International Nuclear Information System (INIS)

    Purpose: To investigate if Dynamic Conformal Arcs (DCA) can be used to achieve similar target coverage and conformality as that of using VMAT for Stereotactic Body Radiation Therapy (SBRT) for Lung cases. Methods: We retrospectively re-planned 11 patients that were treated with SBRT for lung tumors using only a single conformal arc, broken into three or four arc segments and weighted differentially in order to achieve the dosimetric constraints as outlined in RTOG 0915 protocol. These re-plans of using DCA were compared with those of using VMAT in terms of the Planning Tumor Volume (PTV) coverage goals, Maximum Dose 2 cm away (D 2cm), High Dose Spillage, Intermediate Dose Spillage, Lung volume getting 5 Gy (V5), and number of monitor units (MU). Results: Of the 11 cases, only three DCA plans failed the D2cm parameter, and one VMAT plan failed. None of the 11 patients failed the High Dose Spillage in either technique. For Intermediate Dose Spillage, one DCA plan failed and none failed for VMAT plans. The average V5 for DCA was 10.5 percent, with VMAT reporting 11.7 percent. The average number of MU for DCA and VMAT were 2605 and 3451, respectively. Conclusion: DCA is able to achieve very similar treatment planning goals as that of using VMAT in treating SBRT Lung tumors in most cases with simplicity. In addition, the DCA technique produces an acceptable plan with lower V5 in less MU when dose to OAR concerns are at minimum. However, DCA has shown its limitations when the target is close to multiple OAR

  7. Folding simulations of gramicidin A into the β-helix conformations: Simulated annealing molecular dynamics study

    Science.gov (United States)

    Mori, Takaharu; Okamoto, Yuko

    2009-10-01

    Gramicidin A is a linear hydrophobic 15-residue peptide which consists of alternating D- and L-amino acids and forms a unique tertiary structure, called the β6.3-helix, to act as a cation-selective ion channel in the natural conditions. In order to investigate the intrinsic ability of the gramicidin A monomer to form secondary structures, we performed the folding simulation of gramicidin A using a simulated annealing molecular dynamics (MD) method in vacuum mimicking the low-dielectric, homogeneous membrane environment. The initial conformation was a fully extended one. From the 200 different MD runs, we obtained a right-handed β4.4-helix as the lowest-potential-energy structure, and left-handed β4.4-helix, right-handed and left-handed β6.3-helix as local-minimum energy states. These results are in accord with those of the experiments of gramicidin A in homogeneous organic solvent. Our simulations showed a slight right-hand sense in the lower-energy conformations and a quite β-sheet-forming tendency throughout almost the entire sequence. In order to examine the stability of the obtained right-handed β6.3-helix and β4.4-helix structures in more realistic membrane environment, we have also performed all-atom MD simulations in explicit water, ion, and lipid molecules, starting from these β-helix structures. The results suggested that β6.3-helix is more stable than β4.4-helix in the inhomogeneous, explicit membrane environment, where the pore water and the hydrogen bonds between Trp side-chains and lipid-head groups have a role to further stabilize the β6.3-helix conformation.

  8. Evolution of conformational changes in the dynamics of small biological molecules: a hybrid MD/RRK approach.

    Science.gov (United States)

    Segev, Elad; Grumbach, Mikael; Gerber, Robert Benny

    2006-11-14

    The dynamics of long timescale evolution of conformational changes in small biological molecules is described by a hybrid molecular dynamics/RRK algorithm. The approach employs classical trajectories for transitions between adjacent structures separated by a low barrier, and the classical statistical RRK approximation when the barrier involved is high. In determining the long-time dynamics from an initial structure to a final structure of interest, an algorithm is introduced for determining the most efficient pathways (sequence of the intermediate conformers). This method uses the Dijkstra algorithm for finding optimal paths on networks. Three applications of the method using an AMBER force field are presented: a detailed study of conformational transitions in a blocked valine dipeptide; a multiple reaction path study of the blocked valine tripeptide; and the evolution in time from the beta hairpin to alpha helix structure of a blocked alanine hexapeptide. Advantages and limitations of the method are discussed in light of the results. PMID:17066182

  9. DNA Conformational Variations Induced by Stretching 3'5'-Termini Studied by Molecular Dynamics Simulations

    International Nuclear Information System (INIS)

    Investigating the interaction between protein and stretched DNA molecules has become a new way to study the protein DNA interaction. The conformations from different stretching methods give us a further understanding of the interaction between protein and DNA. We study the conformational variations of a 22-mer DNA caused by stretching both 3'- and 5'-termini by molecular dynamics simulations. It requires 250 kJ/mol to stretch the DNA molecule by 3'5'-termini for 3.5 nm and the force plateau is at 123.8 pN. The stretching 3'5'-termini leads to large values of the angle opening and the dihedral propeller between bases in one base pair, the double helix untwists from 34° to 20° and the successive base pairs rolls to the side of the DNA major groove. The distances between successive base pairs increases from 3.2 Å to 5.6 Å. (cross-disciplinary physics and related areas of science and technology)

  10. NATO Advanced Study Institute on Photophysical and Photochemical Tools in Polymer Science : Conformation, Dynamics, Morphology

    CERN Document Server

    1986-01-01

    In 1980 the New York Academy of Sciences sponsored a three-day conference on luminescence in biological and synthetic macromolecules. After that meeting, Professor Frans DeSchryver and I began to discuss the possibility of organizing a different kind of meeting, with time for both informal and in-depth discussions, to examine certain aspects of the application of fluorescence and phosphorescence spectroscopy to polymers. Our ideas developed through discussions with many others, particularly Professor Lucien Monnerie. By 1983, when we submitted our proposal to NATO for an Advanced Study Institute, the area had grown enormous ly. It is interesting in retrospect to look back on the points which emerged from these discussions as the basis around which the scientific program would be organized and the speakers chosen. We decided early on to focus on applications of these methods to provide information about polymer molecules and polymer systems: The topics would all relate to the conformation and dynamics of macro...

  11. Monitoring the conformational dynamics of a single potassium transporter by ALEX-FRET

    CERN Document Server

    Zarrabi, N; Greie, J C; Boersch, M

    2008-01-01

    Conformational changes of single proteins are monitored in real time by Forster-type resonance energy transfer, FRET. Two different fluorophores have to be attached to those protein domains, which move during function. The distance between the fluorophores is measured by relative fluorescence intensity changes of FRET donor and acceptor fluorophore, or by fluorescence lifetime changes of the FRET donor. The fluorescence spectrum of a single FRET donor fluorophore is influenced by local protein environment dynamics causing apparent fluorescence intensity changes on the FRET donor and acceptor detector channels. To discriminate between those spectral fluctuations and distance-dependent FRET, alternating pulsed excitation schemes (ALEX) have recently been introduced which simultaneously probe the existence of a FRET acceptor fluorophore. Here we employ single-molecule FRET measurements to a membrane protein. The membrane-embedded KdpFABC complex transports potassium ions across a lipid bilayer using ATP hydrolys...

  12. Mapping the Conformational Dynamics of E-selectin upon Interaction with its Ligands

    KAUST Repository

    Aleisa, Fajr A

    2013-05-15

    Selectins are key adhesion molecules responsible for initiating a multistep process that leads a cell out of the blood circulation and into a tissue or organ. The adhesion of cells (expressing ligands) to the endothelium (expressing the selectin i.e.,E-selectin) occurs through spatio-temporally regulated interactions that are mediated by multiple intra- and inter-cellular components. The mechanism of cell adhesion is investigated primarily using ensemble-based experiments, which provides indirect information about how individual molecules work in such a complex system. Recent developments in single-molecule (SM) fluorescence detection allow for the visualization of individual molecules with a good spatio-temporal resolution nanometer spatial resolution and millisecond time resolution). Furthermore, advanced SM fluorescence techniques such as Förster Resonance Energy Transfer (FRET) and super-resolution microscopy provide unique opportunities to obtain information about nanometer-scale conformational dynamics of proteins as well as nano-scale architectures of biological samples. Therefore, the state-of-the-art SM techniques are powerful tools for investigating complex biological system such as the mechanism of cell adhesion. In this project, several constructs of fluorescently labeled E-selectin will be used to study the conformational dynamics of E-selectin binding to its ligand(s) using SM-FRET and combination of SM-FRET and force microscopy. These studies will be beneficial to fully understand the mechanistic details of cell adhesion and migration of cells using the established model system of hematopoietic stem cells (HSCs) adhesion to the selectin expressing endothelial cells (such as the E-selectin expressing endothelial cells in the bone marrow).

  13. Tracking Transitions in Spider Wrapping Silk Conformation and Dynamics by (19)F Nuclear Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    Sarker, Muzaddid; Orrell, Kathleen E; Xu, Lingling; Tremblay, Marie-Laurence; Bak, Jessi J; Liu, Xiang-Qin; Rainey, Jan K

    2016-05-31

    Aciniform silk protein (AcSp1) is the primary component of wrapping silk, the toughest of the spider silks because of a combination of high tensile strength and extensibility. Argiope trifasciata AcSp1 contains a core repetitive domain with at least 14 homogeneous 200-amino acid units ("W" units). Upon fibrillogenesis, AcSp1 converts from an α-helix-rich soluble state to a mixed α-helical/β-sheet conformation. Solution-state nuclear magnetic resonance (NMR) spectroscopy allowed demonstration of variable local stability within the W unit, but comprehensive characterization was confounded by spectral overlap, which was exacerbated by decreased chemical shift dispersion upon denaturation. Here, (19)F NMR spectroscopy, in the context of a single W unit (W1), is applied to track changes in structure and dynamics. Four strategic positions in the W unit were mutated to tryptophan and biosynthetically labeled with 5-fluorotryptophan (5F-Trp). Simulated annealing-based structure calculations implied that these substitutions should be tolerated, while circular dichroism (CD) spectroscopy and (1)H-(15)N chemical shift displacements indicated minimal structural perturbation in W1 mutants. Fiber formation by W2 concatemers containing 5F-Trp substitutions in both W units demonstrated retention of functionality, a somewhat surprising finding in light of sequence conservation between species. Each 5F-Trp-labeled W1 exhibited a unique (19)F chemical shift, line width, longitudinal relaxation time constant (T1), and solvent isotope shift. Perturbation to (19)F chemical shift and nuclear spin relaxation parameters reflected changes in the conformation and dynamics at each 5F-Trp site upon addition of urea and dodecylphosphocholine (DPC). (19)F NMR spectroscopy allowed unambiguous localized tracking throughout titration with each perturbant, demonstrating distinct behavior for each perturbant not previously revealed by heteronuclear NMR experiments. PMID:27153372

  14. Role of the Subunits Interactions in the Conformational Transitions in Adult Human Hemoglobin: an Explicit Solvent Molecular Dynamics Study

    CERN Document Server

    Yusuff, Olaniyi K; Bussi, Giovanni; Raugei, Simone

    2012-01-01

    Hemoglobin exhibits allosteric structural changes upon ligand binding due to the dynamic interactions between the ligand binding sites, the amino acids residues and some other solutes present under physiological conditions. In the present study, the dynamical and quaternary structural changes occurring in two unligated (deoxy-) T structures, and two fully ligated (oxy-) R, R2 structures of adult human hemoglobin were investigated with molecular dynamics. It is shown that, in the sub-microsecond time scale, there is no marked difference in the global dynamics of the amino acids residues in both the oxy- and the deoxy- forms of the individual structures. In addition, the R, R2 are relatively stable and do not present quaternary conformational changes within the time scale of our simulations while the T structure is dynamically more flexible and exhibited the T\\rightarrow R quaternary conformational transition, which is propagated by the relative rotation of the residues at the {\\alpha}1{\\beta}2 and {\\alpha}2{\\b...

  15. Free backbone carbonyls mediate rhodopsin activation.

    Science.gov (United States)

    Kimata, Naoki; Pope, Andreyah; Sanchez-Reyes, Omar B; Eilers, Markus; Opefi, Chikwado A; Ziliox, Martine; Reeves, Philip J; Smith, Steven O

    2016-08-01

    Conserved prolines in the transmembrane helices of G-protein-coupled receptors (GPCRs) are often considered to function as hinges that divide the helix into two segments capable of independent motion. Depending on their potential to hydrogen-bond, the free C=O groups associated with these prolines can facilitate conformational flexibility, conformational switching or stabilization of the receptor structure. To address the role of conserved prolines in family A GPCRs through solid-state NMR spectroscopy, we focus on bovine rhodopsin, a GPCR in the visual receptor subfamily. The free backbone C=O groups on helices H5 and H7 stabilize the inactive rhodopsin structure through hydrogen-bonds to residues on adjacent helices. In response to light-induced isomerization of the retinal chromophore, hydrogen-bonding interactions involving these C=O groups are released, thus facilitating repacking of H5 and H7 onto the transmembrane core of the receptor. These results provide insights into the multiple structural and functional roles of prolines in membrane proteins. PMID:27376589

  16. Conformations of some lower-size large-ring cyclodextrins derived from conformational search with molecular dynamics and principal component analysis

    Science.gov (United States)

    Ivanov, Petko

    2012-02-01

    Computational studies were conducted on the conformations of some lower-size large-ring cyclodextrins, CDn (n = 11, 12, 13, 15, 16, 17). Principal component analysis (PCA) was applied for post-processing of trajectories from conformational search based on 100.0 ns molecular dynamics (MD) simulations. The dominant PCA modes for concerted motions of the macroring atoms were monitored in a lower-dimensions subspace. The first six lowest indexed principal components contribute more than 90% of the total atomic motions in all cases, with about 70% (CD12) to 90% (CD17) contribution coming from the three highest-eigenvalue principal components. Representative average geometries of the cyclodextrin macrorings were also obtained for the whole simulation and for the ten 10.0 ns time intervals of the simulation. We concluded that the whole set of structures could be sorted into two clearly distinguished groups, separated by the figure-eight conformation of CD14: (i) open bent boat-like macrorings (CD11 to CD13), and (ii) two winded single helical strands (an anti-parallel double helix with foldbacks at each end), CD15 to CD17, shaped as number eight for the odd-number-residues cases, CD15 and CD17. CD13 and CD14 mark the borderline between lower and higher flexibilities of the lower-size LR-CDs macrorings.

  17. Molecular Dynamics Simulations of the STAS Domains of Rat Prestin and Human Pendrin Reveal Conformational Motions in Conserved Flexible Regions

    Directory of Open Access Journals (Sweden)

    Alok K. Sharma

    2014-02-01

    Full Text Available Background: Molecular dynamics (MD simulations provide valuable information on the conformational changes that accompany time-dependent motions in proteins. The reported crystal structure of rat prestin (PDB 3LLO is remarkable for an α1-α2 inter-helical angle that differs substantially from those observed in bacterial STAS domains of SulP anion transporters and anti-sigma factor antagonists. However, NMR data on the rat prestin STAS domain in solution suggests dynamic features at or near the α1-α2 helical region (Pasqualetto et al JMB, 2010. We therefore performed a 100 ns 300K MD simulation study comparing the STAS domains of rat prestin and (modeled human pendrin, to explore possible conformational flexibility in the region of the α1 and α2 helices. Methods: The conformation of the loop missing in the crystal structure of rat prestin STAS (11 amino acids between helix α1 and strand β3 was built using Modeller. MD simulations were performed with GROMACSv4.6 using GROMOS96 53a6 all-atom force field. Results: A subset of secondary structured elements of the STAS domains exhibits significant conformational changes during the simulation time course. The conformationally perturbed segments include the majority of loop regions, as well as the α1 and α2 helices. A significant decrease in the α1-α2 inter-helical angle observed across the simulation trajectory leads to closer helical packing at their C-termini. The end-simulation conformations of the prestin and pendrin STAS domains, including their decreased α1-α2 inter-helical angles, resemble more closely the packing of corresponding helices in the STAS structures of bacterial SulP transporters Rv1739c and ychM, as well as those of the anti-sigma factor antagonists. Several structural segments of the modeled human pendrin STAS domain exhibit larger atomic motions and greater conformational deviations than the corresponding regions of rat prestin, predicting that the human pendrin STAS

  18. Dosimetric effect on pediatric conformal treatment plans using dynamic jaw with Tomotherapy HDA

    International Nuclear Information System (INIS)

    It is important to minimize the radiation dose delivered to healthy tissues in pediatric cancer treatment because of the risk of secondary malignancies. Tomotherapy HDA provides a dynamic jaw (DJ) delivery mode that creates a sharper penumbra at the craniocaudal ends of a target in addition to a fixed jaw (FJ) delivery mode. The purpose of this study was to evaluate its dosimetric effect on the pediatric cancer cases. We included 6 pediatric cases in this study. The dose profiles and plan statistics—target dose conformity, uniformity, organ-at-risk (OAR) mean dose, beam-on time, and integral dose—were compared for each case. Consequently, the target dose coverage and uniformity were similar for different jaw settings. The OAR dose sparing depended on its relative location to the target and disease sites. For example, in the head and neck cancer cases, the brain stem dose using DJ 2.5 was reduced by more than two-fold (2.4 Gy vs. 6.3 Gy) than that obtained with FJ 2.5. The integral dose with DJ 2.5 decreased by more than 9% compared with that with FJ 2.5. Thus, using dynamic jaw in pediatric cases could be critical to reduce a probability of a secondary malignancy

  19. Mechanism of Mcl-1 Conformational Regulation Upon Small Molecule Binding Revealed by Molecular Dynamic Simulation.

    Science.gov (United States)

    Wang, Anhui; Song, Ting; Wang, Ziqian; Liu, Yubo; Fan, Yudan; Zhang, Yahui; Zhang, Zhichao

    2016-04-01

    Inhibition of interactions between Mcl-1 and proapoptotic proteins is considered to be a therapeutic strategy to induce apoptosis in cancer cells. Here, we adopted molecular dynamics simulation with molecular mechanics-Poisson Boltzmann/surface area method (MM-PB/SA) to study the inhibition mechanism of three Mcl-1 inhibitors, compounds 1, 2 and 3. Analysis of energy components shows that the better binding free energy of compound 3 than compounds 1 and 2 is attributable to the van der Waals energy (ΔEvdw ) and non-polar solvation energy (ΔGnp ) upon binding. In addition to the excellent agreement with previous experimentally determined affinities, our simulation results further show a bend of helix 4 on Mcl-1 upon compound 3 binding, which is driven by hydrophobic interaction with residue Val(253) , leading to a narrowed BH3-binding groove to impede Puma(BH) (3) binding. The computational result is consistent with our competitive isothermal titration calorimetry (ITC) assays, which shows that the competitive ability of compound 3 toward Mcl-1/Puma(BH) (3) complex is improved beyond its direct binding affinity toward Mcl-1 itself, and compound 3 exhibits much more efficiency to compete with Puma(BH) (3) than compound 2. Our study provides a new strategy to improve inhibitory activity on Mcl-1 based on the conformational dynamic change. PMID:26518611

  20. Dosimetric effect on pediatric conformal treatment plans using dynamic jaw with Tomotherapy HDA

    Energy Technology Data Exchange (ETDEWEB)

    Han, Eun Young, E-mail: eyhan@uams.edu [Department of Radiation Oncology, University of Arkansas Medical Sciences, Little Rock, AR (United States); Kim, Dong-Wook [Department of Radiation Oncology, Kyung Hee University Hospital, Seoul (Korea, Republic of); Zhang, Xin; Penagaricano, Jose; Liang, Xiaoying; Hardee, Matthew; Morrill, Steve; Ratanatharathorn, Vaneerat [Department of Radiation Oncology, University of Arkansas Medical Sciences, Little Rock, AR (United States)

    2015-10-01

    It is important to minimize the radiation dose delivered to healthy tissues in pediatric cancer treatment because of the risk of secondary malignancies. Tomotherapy HDA provides a dynamic jaw (DJ) delivery mode that creates a sharper penumbra at the craniocaudal ends of a target in addition to a fixed jaw (FJ) delivery mode. The purpose of this study was to evaluate its dosimetric effect on the pediatric cancer cases. We included 6 pediatric cases in this study. The dose profiles and plan statistics—target dose conformity, uniformity, organ-at-risk (OAR) mean dose, beam-on time, and integral dose—were compared for each case. Consequently, the target dose coverage and uniformity were similar for different jaw settings. The OAR dose sparing depended on its relative location to the target and disease sites. For example, in the head and neck cancer cases, the brain stem dose using DJ 2.5 was reduced by more than two-fold (2.4 Gy vs. 6.3 Gy) than that obtained with FJ 2.5. The integral dose with DJ 2.5 decreased by more than 9% compared with that with FJ 2.5. Thus, using dynamic jaw in pediatric cases could be critical to reduce a probability of a secondary malignancy.

  1. Conformation and translational diffusion of a xanthan polyelectrolyte chain: Brownian dynamics simulation and single molecule tracking

    Science.gov (United States)

    Chun, Myung-Suk; Kim, Chongyoup; Lee, Duck E.

    2009-05-01

    In our recent Brownian dynamics (BD) simulation study, the structure and dynamics of anionic polyelectrolyte xanthan in bulk solution as well as confined spaces of slitlike channel were examined by applying a coarse-grained model with nonlinear bead-spring discretization of a whole chain [J. Jeon and M.-S. Chun, J. Chem. Phys. 126, 154904 (2007)]. This model goes beyond other simulations as they did not consider both long-range electrostatic and hydrodynamic interactions between pairs of beads. Simulation parameters are obtained from the viscometric method of rheology data on the native and sonicated xanthan polysaccharides, which have a contour length less than 1μm . The size of the semiflexible polyelectrolyte can be well described by the wormlike chain model once the electrostatic effects are taken into account by the persistence length measured at a long length scale. For experimental verifications, single molecule visualization was performed on fluorescein-labeled xanthan using an inverted fluorescence microscope, and the motion of an individual molecule was quantified. Experimental results on the conformational changes in xanthan chain in the electrolyte solution have a reasonable trend to agree with the prediction by BD simulations. In the translational diffusion induced by the Debye screening effect, the simulation prediction reveals slightly higher values compared to those of our measurements, although it agrees with the literature data. Considering the experimental restrictions, our BD simulations are verified to model the single polyelectrolyte well.

  2. Characterization of the overall and local dynamics of a protein with intermediate rotational anisotropy: Differentiating between conformational exchange and anisotropic diffusion in the B3 domain of protein G

    International Nuclear Information System (INIS)

    Because the overall tumbling provides a major contribution to protein spectral densities measured in solution, the choice of a proper model for this motion is critical for accurate analysis of protein dynamics. Here we study the overall and backbone dynamics of the B3 domain of protein G using 15N relaxation measurements and show that the picture of local motions is markedly dependent on the model of overall tumbling. The main difference is in the interpretation of the elevated R2 values in the α-helix: the isotropic model results in conformational exchange throughout the entire helix, whereas no exchange is predicted by anisotropic models that place the longitudinal axis of diffusion tensor almost parallel to the helix axis. Due to small size (fast tumbling) of the protein, the T1 values have low sensitivity to NH bond orientation. The diffusion tensor derived from orientation dependence of R2/R1 is anisotropic (Dparallel/Dperpendicular=1.4), with a small rhombic component. In order to distinguish the correct picture of motion, we apply model-independent methods that are sensitive to conformational exchange and do not require knowledge of protein structure or assumptions about its dynamics. A comparison of the CSA/dipolar cross-correlation rate constants with 15N relaxation rates and the estimation of Rex terms from relaxation data at 9.4 and 14.1 T indicate no conformational exchange in the helix, in support of the anisotropic models. The experimentally derived diffusion tensor is in excellent agreement with theoretical predictions from hydrodynamic calculations; a detailed comparison with various hydrodynamic models revealed optimal parameters for hydrodynamic calculations

  3. Characterization of the overall and local dynamics of a protein with intermediate rotational anisotropy: Differentiating between conformational exchange and anisotropic diffusion in the B3 domain of protein G

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Jennifer B.; Fushman, David [University of Maryland, Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization (United States)], E-mail: fushman@wam.umd.edu

    2003-11-15

    Because the overall tumbling provides a major contribution to protein spectral densities measured in solution, the choice of a proper model for this motion is critical for accurate analysis of protein dynamics. Here we study the overall and backbone dynamics of the B3 domain of protein G using {sup 15}N relaxation measurements and show that the picture of local motions is markedly dependent on the model of overall tumbling. The main difference is in the interpretation of the elevated R{sub 2} values in the {alpha}-helix: the isotropic model results in conformational exchange throughout the entire helix, whereas no exchange is predicted by anisotropic models that place the longitudinal axis of diffusion tensor almost parallel to the helix axis. Due to small size (fast tumbling) of the protein, the T{sub 1} values have low sensitivity to NH bond orientation. The diffusion tensor derived from orientation dependence of R{sub 2}/R{sub 1} is anisotropic (D{sub parallel}/D{sub perpendicular}=1.4), with a small rhombic component. In order to distinguish the correct picture of motion, we apply model-independent methods that are sensitive to conformational exchange and do not require knowledge of protein structure or assumptions about its dynamics. A comparison of the CSA/dipolar cross-correlation rate constants with {sup 15}N relaxation rates and the estimation of R{sub ex} terms from relaxation data at 9.4 and 14.1 T indicate no conformational exchange in the helix, in support of the anisotropic models. The experimentally derived diffusion tensor is in excellent agreement with theoretical predictions from hydrodynamic calculations; a detailed comparison with various hydrodynamic models revealed optimal parameters for hydrodynamic calculations.

  4. Hydrogen exchange: A sensitive analytical window into protein conformation and dynamics

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Rand, Kasper Dyrberg

    distributed along the polypeptide backbone and form the fundamental hydrogen-bonding networks of basic secondary structure. The effect of pressure on HX in unstructured polypeptides (poly-dl-lysine and oxidatively unfolded ribonuclease A) and native folded proteins (lysozyme and ribonuclease A) was evaluated...

  5. Molecular dynamics analysis of conformational change of paramyxovirus F protein during the initial steps of membrane fusion

    International Nuclear Information System (INIS)

    Highlights: ► Initial conformational change of paramyxovirus F protein is caused only by mechanical forces. ► HRA region undergoes a structural change from a beta + alpha conformation to an extended coil and then to an all-alpha conformation. ► HRS domains of F protein form three single α-helices prior to generation of the coiled coil. -- Abstract: The fusion of paramyxovirus to the cell membrane is mediated by fusion protein (F protein) present in the virus envelope, which undergoes a dramatic conformational change during the process. Unlike hemagglutinin in orthomyxovirus, this change is not mediated by an alteration of environmental pH, and its cause remains unknown. Steered molecular dynamics analysis leads us to suggest that the conformational modification is mediated only by stretching mechanical forces once the transmembrane fusion peptide of the protein is anchored to the cell membrane. Such elongating forces will generate major secondary structure rearrangement in the heptad repeat A region of the F protein; from β-sheet conformation to an elongated coil and then spontaneously to an α-helix. In addition, it is proposed that the heptad repeat A region adopts a final three-helix coiled coil and that this structure appears after the formation of individual helices in each monomer.

  6. Molecular dynamics analysis of conformational change of paramyxovirus F protein during the initial steps of membrane fusion

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Garcia, Fernando; Mendieta-Moreno, Jesus Ignacio; Mendieta, Jesus [Centro de Biologia Molecular ' Severo Ochoa' (CSIC/UAM), C/ Nicolas Cabrera, 1, Cantoblanco, 28049 Madrid (Spain); Biomol-Informatics SL, Parque Cientifico de Madrid, C/ Faraday, 7, Cantoblanco, 28049 Madrid (Spain); Gomez-Puertas, Paulino, E-mail: pagomez@cbm.uam.es [Centro de Biologia Molecular ' Severo Ochoa' (CSIC/UAM), C/ Nicolas Cabrera, 1, Cantoblanco, 28049 Madrid (Spain)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Initial conformational change of paramyxovirus F protein is caused only by mechanical forces. Black-Right-Pointing-Pointer HRA region undergoes a structural change from a beta + alpha conformation to an extended coil and then to an all-alpha conformation. Black-Right-Pointing-Pointer HRS domains of F protein form three single {alpha}-helices prior to generation of the coiled coil. -- Abstract: The fusion of paramyxovirus to the cell membrane is mediated by fusion protein (F protein) present in the virus envelope, which undergoes a dramatic conformational change during the process. Unlike hemagglutinin in orthomyxovirus, this change is not mediated by an alteration of environmental pH, and its cause remains unknown. Steered molecular dynamics analysis leads us to suggest that the conformational modification is mediated only by stretching mechanical forces once the transmembrane fusion peptide of the protein is anchored to the cell membrane. Such elongating forces will generate major secondary structure rearrangement in the heptad repeat A region of the F protein; from {beta}-sheet conformation to an elongated coil and then spontaneously to an {alpha}-helix. In addition, it is proposed that the heptad repeat A region adopts a final three-helix coiled coil and that this structure appears after the formation of individual helices in each monomer.

  7. Photon-counting single-molecule spectroscopy for studying conformational dynamics and macromolecular interactions

    Energy Technology Data Exchange (ETDEWEB)

    Laurence, Ted Alfred

    2002-07-30

    Single-molecule methods have the potential to provide information about conformational dynamics and molecular interactions that cannot be obtained by other methods. Removal of ensemble averaging provides several benefits, including the ability to detect heterogeneous populations and the ability to observe asynchronous reactions. Single-molecule diffusion methodologies using fluorescence resonance energy transfer (FRET) are developed to monitor conformational dynamics while minimizing perturbations introduced by interactions between molecules and surfaces. These methods are used to perform studies of the folding of Chymotrypsin Inhibitor 2, a small, single-domain protein, and of single-stranded DNA (ssDNA) homopolymers. Confocal microscopy is used in combination with sensitive detectors to detect bursts of photons from fluorescently labeled biomolecules as they diffuse through the focal volume. These bursts are analyzed to extract fluorescence resonance energy transfer (FRET) efficiency. Advances in data acquisition and analysis techniques that are providing a more complete picture of the accessible molecular information are discussed. Photon Arrival-time Interval Distribution (PAID) analysis is a new method for monitoring macromolecular interactions by fluorescence detection with simultaneous determination of coincidence, brightness, diffusion time, and occupancy (proportional to concentration) of fluorescently-labeled molecules undergoing diffusion in a confocal detection volume. This method is based on recording the time of arrival of all detected photons, and then plotting the two-dimensional histogram of photon pairs, where one axis is the time interval between each pair of photons 1 and 2, and the second axis is the number of other photons detected in the time interval between photons 1 and 2. PAID is related to Fluorescence Correlation Spectroscopy (FCS) by a collapse of this histogram onto the time interval axis. PAID extends auto- and cross-correlation FCS

  8. Photon-counting single-molecule spectroscopy for studying conformational dynamics and macromolecular interactions

    International Nuclear Information System (INIS)

    Single-molecule methods have the potential to provide information about conformational dynamics and molecular interactions that cannot be obtained by other methods. Removal of ensemble averaging provides several benefits, including the ability to detect heterogeneous populations and the ability to observe asynchronous reactions. Single-molecule diffusion methodologies using fluorescence resonance energy transfer (FRET) are developed to monitor conformational dynamics while minimizing perturbations introduced by interactions between molecules and surfaces. These methods are used to perform studies of the folding of Chymotrypsin Inhibitor 2, a small, single-domain protein, and of single-stranded DNA (ssDNA) homopolymers. Confocal microscopy is used in combination with sensitive detectors to detect bursts of photons from fluorescently labeled biomolecules as they diffuse through the focal volume. These bursts are analyzed to extract fluorescence resonance energy transfer (FRET) efficiency. Advances in data acquisition and analysis techniques that are providing a more complete picture of the accessible molecular information are discussed. Photon Arrival-time Interval Distribution (PAID) analysis is a new method for monitoring macromolecular interactions by fluorescence detection with simultaneous determination of coincidence, brightness, diffusion time, and occupancy (proportional to concentration) of fluorescently-labeled molecules undergoing diffusion in a confocal detection volume. This method is based on recording the time of arrival of all detected photons, and then plotting the two-dimensional histogram of photon pairs, where one axis is the time interval between each pair of photons 1 and 2, and the second axis is the number of other photons detected in the time interval between photons 1 and 2. PAID is related to Fluorescence Correlation Spectroscopy (FCS) by a collapse of this histogram onto the time interval axis. PAID extends auto- and cross-correlation FCS

  9. Prediction of protein secondary structure based on residue pair types and conformational states using dynamic programming algorithm.

    Science.gov (United States)

    Sadeghi, Mehdi; Parto, Sahar; Arab, Shahriar; Ranjbar, Bijan

    2005-06-20

    We have used a statistical approach for protein secondary structure prediction based on information theory and simultaneously taking into consideration pairwise residue types and conformational states. Since the prediction of residue secondary structure by one residue window sliding make ambiguity in state prediction, we used a dynamic programming algorithm to find the path with maximum score. A score system for residue pairs in particular conformations is derived for adjacent neighbors up to ten residue apart in sequence. The three state overall per-residue accuracy, Q3, of this method in a jackknife test with dataset created from PDBSELECT is more than 70%. PMID:15936021

  10. Analyzing slowly exchanging protein conformations by ion mobility mass spectrometry: study of the dynamic equilibrium of prolyl oligopeptidase.

    Science.gov (United States)

    López, Abraham; Vilaseca, Marta; Madurga, Sergio; Varese, Monica; Tarragó, Teresa; Giralt, Ernest

    2016-07-01

    Ion mobility mass spectrometry (IMMS) is a biophysical technique that allows the separation of isobaric species on the basis of their size and shape. The high separation capacity, sensitivity and relatively fast time scale measurements confer IMMS great potential for the study of proteins in slow (µs-ms) conformational equilibrium in solution. However, the use of this technique for examining dynamic proteins is still not generalized. One of the major limitations is the instability of protein ions in the gas phase, which raises the question as to what extent the structures detected reflect those in solution. Here, we addressed this issue by analyzing the conformational landscape of prolyl oligopeptidase (POP) - a model of a large dynamic enzyme in the µs-ms range - by native IMMS and compared the results obtained in the gas phase with those obtained in solution. In order to interpret the experimental results, we used theoretical simulations. In addition, the stability of POP gaseous ions was explored by charge reduction and collision-induced unfolding experiments. Our experiments disclosed two species of POP in the gas phase, which correlated well with the open and closed conformations in equilibrium in solution; moreover, a gas-phase collapsed form of POP was also detected. Therefore, our findings not only support the potential of IMMS for the study of multiple co-existing conformations of large proteins in slow dynamic equilibrium in solution but also stress the need for careful data analysis to avoid artifacts. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27434808

  11. A transfer matrix for the backbone exponent of two-dimensional percolation

    International Nuclear Information System (INIS)

    Rephrasing the backbone of two-dimensional percolation as a monochromatic path crossing problem, we investigate the latter by a transfer matrix approach. Conformal invariance links the backbone dimension Db to the highest eigenvalue of the transfer matrix T, and we obtain the result Db=1.6431±0.0006. For a strip of width L, T is roughly of size 23L, but we manage to reduce it to ∼L!. We find that the value of Db is stable with respect to inclusion of additional 'blobs' tangent to the backbone in a finite number of points. (author)

  12. SCit: web tools for protein side chain conformation analysis.

    Science.gov (United States)

    Gautier, R; Camproux, A-C; Tufféry, P

    2004-07-01

    SCit is a web server providing services for protein side chain conformation analysis and side chain positioning. Specific services use the dependence of the side chain conformations on the local backbone conformation, which is described using a structural alphabet that describes the conformation of fragments of four-residue length in a limited library of structural prototypes. Based on this concept, SCit uses sets of rotameric conformations dependent on the local backbone conformation of each protein for side chain positioning and the identification of side chains with unlikely conformations. The SCit web server is accessible at http://bioserv.rpbs.jussieu.fr/SCit. PMID:15215438

  13. Comparative dosimetric study of three-dimensional conformal, dynamic conformal arc, and intensity-modulated radiotherapy for brain tumor treatment using Novalis system

    International Nuclear Information System (INIS)

    Purpose: To investigate the dosimetric differences among three-dimensional conformal radiotherapy (3D-CRT), dynamic conformal arc therapy (DCAT), and intensity-modulated radiotherapy (IMRT) for brain tumor treatment. Methods and Materials: Fifteen patients treated with Novalis were selected. We performed 3D-CRT, DCAT, and IMRT plans for all patients. The margin for the planning target volume (PTV) was 1 mm, and the specific prescription dose was 90% for all plans. The target coverage at the prescription dose, conformity index (CI), and heterogeneity index were analyzed for all plans. Results: For small tumors (PTV ≤2 cm3), the three dosimetric parameters had approximate values for both 3D-CRT and DCAT plans. The CI for the IMRT plans was high. For medium tumors (PTV >2 to ≤100 cm3), the three plans were competitive with each other. The IMRT plans had a greater CI, better target coverage at the prescription dose, and a better heterogeneity index. For large tumors (PTV >100 cm3), the IMRT plan had good target coverage at the prescription dose and heterogeneity index and approximate CI values as those in the 3D-CRT and DCAT plans. Conclusion: The results of our study have shown that DCAT is suitable for most cases in the treatment of brain tumors. For a small target, 3D-CRT is useful, and IMRT is not recommended. For larger tumors, IMRT is superior to 3D-CRT and very competitive in sparing critical structures, especially for big tumors

  14. Ligand Induced Conformational Changes of the Human Serotonin Transporter Revealed by Molecular Dynamics Simulations

    OpenAIRE

    Koldsø, Heidi; Autzen, Henriette Elisabeth; Grouleff, Julie; Schiøtt, Birgit

    2013-01-01

    The competitive inhibitor cocaine and the non-competitive inhibitor ibogaine induce different conformational states of the human serotonin transporter. It has been shown from accessibility experiments that cocaine mainly induces an outward-facing conformation, while the non-competitive inhibitor ibogaine, and its active metabolite noribogaine, have been proposed to induce an inward-facing conformation of the human serotonin transporter similar to what has been observed for the endogenous subs...

  15. Probing local conformation and dynamics of molecular complexes using phase-selective fluorescence correlation and coherence spectroscopy

    Science.gov (United States)

    Lott, Geoffrey Adam

    When two or more fluorescent chromophores are closely spaced in a macromolecular complex, dipolar coupling leads to delocalization of the excited states, forming excitons. The relative transition frequencies and magnitudes are sensitive to conformation, which can then be studied with optical spectroscopy. Non-invasive fluorescence spectroscopy techniques are useful tools for the study of dilute concentrations of such naturally fluorescent or fluorescently labeled biological systems. This dissertation presents two phase-selective fluorescence spectroscopy techniques for the study of dynamical processes in bio-molecular systems across a wide range of timescales. Polarization-modulated Fourier imaging correlation spectroscopy (PM-FICS) is a novel phase-selective fluorescence spectroscopy for simultaneous study of translational and conformational dynamics. We utilize modulated polarization and intensity gratings with phase-sensitive signal collection to monitor the collective fluctuations of an ensemble of fluorescent molecules. The translational and conformational dynamics can be separated and analyzed separately to generate 2D spectral densities and joint probability distributions. We present results of PM-FICS experiments on DsRed, a fluorescent protein complex. Detailed information on thermally driven dipole-coupled optical switching pathways is found, for which we propose a conformation transition mechanism. 2D phase-modulation electronic coherence spectroscopy is a third-order nonlinear spectroscopy that uses collinear pulse geometry and acousto-optic phase modulation to isolate rephasing and nonrephasing contributions to the collected fluorescence signal. We generate 2D spectra, from which we are able to determine relative dipole orientations, and therefore structural conformation, in addition to detailed coupling information. We present results of experiments on magnesium tetraphenylporphyrin dimers in lipid vesicle bilayers. The 2D spectra show clearly

  16. Insight into Conformational Change for 14-3-3σ Protein by Molecular Dynamics Simulation

    Directory of Open Access Journals (Sweden)

    Guodong Hu

    2014-02-01

    Full Text Available 14-3-3σ is a member of a highly conserved family of 14-3-3 proteins that has a double-edged sword role in human cancers. Former reports have indicated that the 14-3-3 protein may be in an open or closed state. In this work, we found that the apo-14-3-3σ is in an open state compared with the phosphopeptide bound 14-3-3σ complex which is in a more closed state based on our 80 ns molecular dynamics (MD simulations. The interaction between the two monomers of 14-3-3σ in the open state is the same as that in the closed state. In both open and closed states, helices A to D, which are involved in dimerization, are stable. However, large differences are found in helices E and F. The hydrophobic contacts and hydrogen bonds between helices E and G in apo-14-3-3σ are different from those in the bound 14-3-3σ complex. The restrained and the mutated (Arg56 or Arg129 to alanine MD simulations indicate that the conformation of four residues (Lys49, Arg56, Arg129 and Tyr130 may play an important role to keep the 14-3-3σ protein in an open or closed state. These results would be useful to evaluate the 14-3-3σ protein structure-function relationship.

  17. On dynamical realizations of l-conformal Galilei and Newton-Hooke algebras

    Science.gov (United States)

    Galajinsky, Anton; Masterov, Ivan

    2015-07-01

    In two recent papers (Aizawa et al., 2013 [15]) and (Aizawa et al., 2015 [16]), representation theory of the centrally extended l-conformal Galilei algebra with half-integer l has been applied so as to construct second order differential equations exhibiting the corresponding group as kinematical symmetry. It was suggested to treat them as the Schrödinger equations which involve Hamiltonians describing dynamical systems without higher derivatives. The Hamiltonians possess two unusual features, however. First, they involve the standard kinetic term only for one degree of freedom, while the remaining variables provide contributions linear in momenta. This is typical for Ostrogradsky's canonical approach to the description of higher derivative systems. Second, the Hamiltonian in the second paper is not Hermitian in the conventional sense. In this work, we study the classical limit of the quantum Hamiltonians and demonstrate that the first of them is equivalent to the Hamiltonian describing free higher derivative nonrelativistic particles, while the second can be linked to the Pais-Uhlenbeck oscillator whose frequencies form the arithmetic sequence ωk = (2 k - 1), k = 1, …, n. We also confront the higher derivative models with a genuine second order system constructed in our recent work (Galajinsky and Masterov, 2013 [5]) which is discussed in detail for l =3/2.

  18. On dynamical realizations of l-conformal Galilei and Newton–Hooke algebras

    Directory of Open Access Journals (Sweden)

    Anton Galajinsky

    2015-07-01

    Full Text Available In two recent papers (Aizawa et al., 2013 [15] and (Aizawa et al., 2015 [16], representation theory of the centrally extended l-conformal Galilei algebra with half-integer l has been applied so as to construct second order differential equations exhibiting the corresponding group as kinematical symmetry. It was suggested to treat them as the Schrödinger equations which involve Hamiltonians describing dynamical systems without higher derivatives. The Hamiltonians possess two unusual features, however. First, they involve the standard kinetic term only for one degree of freedom, while the remaining variables provide contributions linear in momenta. This is typical for Ostrogradsky's canonical approach to the description of higher derivative systems. Second, the Hamiltonian in the second paper is not Hermitian in the conventional sense. In this work, we study the classical limit of the quantum Hamiltonians and demonstrate that the first of them is equivalent to the Hamiltonian describing free higher derivative nonrelativistic particles, while the second can be linked to the Pais–Uhlenbeck oscillator whose frequencies form the arithmetic sequence ωk=(2k−1, k=1,…,n. We also confront the higher derivative models with a genuine second order system constructed in our recent work (Galajinsky and Masterov, 2013 [5] which is discussed in detail for l=32.

  19. Chiral phase transition at finite temperature and conformal dynamics in large Nf QCD

    CERN Document Server

    Miura, Kohtaroh

    2011-01-01

    We investigate the chiral phase transition at finite temperature (T) in colour SU(Nc=3) Quantum Chromodynamics (QCD) with six species of fermions (Nf=6) in the fundamental representation by using lattice QCD with improved staggered fermions. By considering lattices with several temporal extensions Nt, we observe asymptotic scaling for Nt > 4. We then extract the dimensionless ratio Tc/Lambda_L (Lambda_L = Lattice Lambda-parameter) for Nf = 6 and Nf = 8, the latter relying on our earlier results. Further, we collect the critical couplings beta^c for the chiral phase transition at Nf = 0 (quenched), and Nf = 4 at a fixed Nt = 6. The results are consistent with enhanced fermionic screening at larger Nf. The Tc/Lambda_L depends very mildly on Nf in the Nf = 0 - 4 region, starts increasing at Nf = 6, and becomes significantly larger at Nf = 8, close to the edge of the conformal window. We discuss interpretations of these results as well as their possible interrelation with preconformal dynamics in the light of a f...

  20. Probing conformational stability and dynamics of erythroid and nonerythroid spectrin: effects of urea and guanidine hydrochloride.

    Science.gov (United States)

    Patra, Malay; Mukhopadhyay, Chaitali; Chakrabarti, Abhijit

    2015-01-01

    We have studied the conformational stability of the two homologous membrane skeletal proteins, the erythroid and non-erythroid spectrins, in their dimeric and tetrameric forms respectively during unfolding in the presence of urea and guanidine hydrochloride (GuHCl). Fluorescence and circular dichroism (CD) spectroscopy have been used to study the changes of intrinsic tryptophan fluorescence, anisotropy, far UV-CD and extrinsic fluorescence of bound 1-anilinonapthalene-8-sulfonic acid (ANS). Chemical unfolding of both proteins were reversible and could be described as a two state transition. The folded erythroid spectrin and non-erythroid spectrin were directly converted to unfolded monomer without formation of any intermediate. Fluorescence quenching, anisotropy, ANS binding and dynamic light scattering data suggest that in presence of low concentrations of the denaturants (up-to 1M) hydrogen bonding network and van der Waals interaction play a role inducing changes in quaternary as well as tertiary structures without complete dissociation of the subunits. This is the first report of two large worm like, multi-domain proteins obeying twofold rule which is commonly found in small globular proteins. The free energy of stabilization (ΔGuH20) for the dimeric spectrin has been 20 kcal/mol lesser than the tetrameric from. PMID:25617632

  1. Probing conformational stability and dynamics of erythroid and nonerythroid spectrin: effects of urea and guanidine hydrochloride.

    Directory of Open Access Journals (Sweden)

    Malay Patra

    Full Text Available We have studied the conformational stability of the two homologous membrane skeletal proteins, the erythroid and non-erythroid spectrins, in their dimeric and tetrameric forms respectively during unfolding in the presence of urea and guanidine hydrochloride (GuHCl. Fluorescence and circular dichroism (CD spectroscopy have been used to study the changes of intrinsic tryptophan fluorescence, anisotropy, far UV-CD and extrinsic fluorescence of bound 1-anilinonapthalene-8-sulfonic acid (ANS. Chemical unfolding of both proteins were reversible and could be described as a two state transition. The folded erythroid spectrin and non-erythroid spectrin were directly converted to unfolded monomer without formation of any intermediate. Fluorescence quenching, anisotropy, ANS binding and dynamic light scattering data suggest that in presence of low concentrations of the denaturants (up-to 1M hydrogen bonding network and van der Waals interaction play a role inducing changes in quaternary as well as tertiary structures without complete dissociation of the subunits. This is the first report of two large worm like, multi-domain proteins obeying twofold rule which is commonly found in small globular proteins. The free energy of stabilization (ΔGuH20 for the dimeric spectrin has been 20 kcal/mol lesser than the tetrameric from.

  2. Comparison of Chain Conformation of Poly(vinyl alcohol) in Solutions and Melts from Quantum Chemistry Based Molecular Dynamics Simulations

    Science.gov (United States)

    Jaffe, Richard; Han, Jie; Matsuda, Tsunetoshi; Yoon, Do; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    Confirmations of 2,4-dihydroxypentane (DHP), a model molecule for poly(vinyl alcohol), have been studied by quantum chemistry (QC) calculations and molecular dynamics (MD) simulations. QC calculations at the 6-311G MP2 level show the meso tt conformer to be lowest in energy followed by the racemic tg, due to intramolecular hydrogen bond between the hydroxy groups. The Dreiding force field has been modified to reproduce the QC conformer energies for DHP. MD simulations using this force field have been carried out for DHP molecules in the gas phase, melt, and CHCl3 and water solutions. Extensive intramolecular hydrogen bonding is observed for the gas phase and CHCl3 solution, but not for the melt or aqueous solution, Such a condensed phase effect due to intermolecular interactions results in a drastic change in chain conformations, in agreement with experiments.

  3. Effects of polymerization and nucleotide identity on the conformational dynamics of the bacterial actin homolog MreB

    OpenAIRE

    Colavin, Alexandre; Hsin, Jen; Huang, Kerwyn Casey

    2014-01-01

    Cytoskeletal filaments drive many dynamic cellular processes, such as the regulation of shape by actin networks in eukaryotes and by the actin homolog MreB in rod-shaped bacteria. Here, we use all-atom molecular dynamics simulations to demonstrate close parallels between the conformational dynamics of actin and MreB, in which polymerization induces flattening of MreB subunits that restructures the ATP binding pocket to promote hydrolysis. We also find that ATP-bound MreB filaments are substan...

  4. Another way to view the chain conformation broadening of the line-width distribution measured in dynamic light scattering

    Institute of Scientific and Technical Information of China (English)

    吴奇; 牛爱珍

    1999-01-01

    In dynamic laser light scattering (LLS), for a given polydisperse sample, a line-width distribution G(Γ) or the translational diffusion coefficient distribution G(D) can be obtained from the measured time correlation function. For rigid colloid particles, G(Γ) can be directly related to the hydrodynamic size distribution. However, for flexible polymer chains, G(Γ) depends not only on the chain length distribution, but also on the relaxation of the chain conformation; that is, even for a monodisperse polymer sample there still exists a chain conformation distribution. If the time scale of the chain conformation relaxation is comparable to that of the translational diffusion, such as in the case of a very long polymer chain, the conformation relaxation might lead to an additional broadening in G (Γ). This "conformation broadening" has been directly observed for the first time by comparing two G(Γ) s obtained from a poly(N-isopropyl-acrylamide) solution at~25℃ and~32℃ at which the solution is ther

  5. NMR-based conformation and dynamics of a tetrasaccharide-repeating sulfated fucan substituted by different counterions.

    Science.gov (United States)

    Soares, Paulo A G; Queiroz, Ismael N L; Santos, Gustavo R C; Mourão, Paulo A S; Pomin, Vitor H

    2016-11-01

    The sulfated fucan from the sea urchin Lytechinus variegatus is composed of the repetitive sequence [-3)-α-l-Fucp-4( OSO3-)-(1-3)-α-l-Fucp-2,4-di( OSO3-)-(1-3)-α-l-Fucp-2( OSO3-)-(1-3)-α-l-Fucp-2( OSO3-)-(1-]n . Conformation (of rings and chains) and dynamics of this tetrasaccharide-repeating sulfated fucan substituted by Na(+) , Ca(2+) , and Li(+) as counterions have been examined through experiments of liquid-state nuclear magnetic resonance spectroscopy. Scalar coupling and nuclear Overhauser effect (NOE)-based data have confirmed that all composing units occur as (1) C4 chair conformer regardless of the cation type, unit position within the repeating sequence, and sulfation type. Chain conformation determined by NOE signal pattern assisted by molecular modeling for a theoretical octasaccharide has shown a similar linear 3D structure for the three differently substituted forms. Data derived from spin-relaxation measurements have indicated a contribution of counterion type to dynamics. The calcium-based preparation has shown the highest mobility while the sodiated one showed the lowest mobility. The set of results from this work suggests that counterion type can affect the physicochemical properties of the structurally well-defined sulfated fucan. The counterion effect seems to impact more on the structural mobility than on average conformation of the studied sulfated glycan in solution. PMID:27434759

  6. Speed of conformational change: comparing explicit and implicit solvent molecular dynamics simulations.

    Science.gov (United States)

    Anandakrishnan, Ramu; Drozdetski, Aleksander; Walker, Ross C; Onufriev, Alexey V

    2015-03-10

    Adequate sampling of conformation space remains challenging in atomistic simulations, especially if the solvent is treated explicitly. Implicit-solvent simulations can speed up conformational sampling significantly. We compare the speed of conformational sampling between two commonly used methods of each class: the explicit-solvent particle mesh Ewald (PME) with TIP3P water model and a popular generalized Born (GB) implicit-solvent model, as implemented in the AMBER package. We systematically investigate small (dihedral angle flips in a protein), large (nucleosome tail collapse and DNA unwrapping), and mixed (folding of a miniprotein) conformational changes, with nominal simulation times ranging from nanoseconds to microseconds depending on system size. The speedups in conformational sampling for GB relative to PME simulations, are highly system- and problem-dependent. Where the simulation temperatures for PME and GB are the same, the corresponding speedups are approximately onefold (small conformational changes), between ∼1- and ∼100-fold (large changes), and approximately sevenfold (mixed case). The effects of temperature on speedup and free-energy landscapes, which may differ substantially between the solvent models, are discussed in detail for the case of miniprotein folding. In addition to speeding up conformational sampling, due to algorithmic differences, the implicit solvent model can be computationally faster for small systems or slower for large systems, depending on the number of solute and solvent atoms. For the conformational changes considered here, the combined speedups are approximately twofold, ∼1- to 60-fold, and ∼50-fold, respectively, in the low solvent viscosity regime afforded by the implicit solvent. For all the systems studied, 1) conformational sampling speedup increases as Langevin collision frequency (effective viscosity) decreases; and 2) conformational sampling speedup is mainly due to reduction in solvent viscosity rather than

  7. Conformational properties of bottle-brush polymers

    Science.gov (United States)

    Denesyuk, N. A.

    2003-05-01

    General and renormalized perturbation theories are used to study the conformational properties of a bottle-brush molecule, composed of multiarmed polymer stars grafted regularly onto a flexible backbone. The end-to-end distances of the backbone and of an arm of the middle star are calculated within the first order of perturbation theory. For the high grafting densities of stars, the calculated expressions are generalized with the help of the scaling arguments to give the equivalent power laws. According to these laws, the molecule may adopt a sequence of three different conformations (star-rod-coil) as the length of the backbone grows.

  8. Conformational properties of bottle-brush polymers.

    Science.gov (United States)

    Denesyuk, N A

    2003-05-01

    General and renormalized perturbation theories are used to study the conformational properties of a bottle-brush molecule, composed of multiarmed polymer stars grafted regularly onto a flexible backbone. The end-to-end distances of the backbone and of an arm of the middle star are calculated within the first order of perturbation theory. For the high grafting densities of stars, the calculated expressions are generalized with the help of the scaling arguments to give the equivalent power laws. According to these laws, the molecule may adopt a sequence of three different conformations (star-rod-coil) as the length of the backbone grows. PMID:12786171

  9. Cardiac Exposure in the Dynamic Conformal Arc Therapy, Intensity-Modulated Radiotherapy and Volumetric Modulated Arc Therapy of Lung Cancer

    OpenAIRE

    Xin Ming; Yuanming Feng; Huan Liu; Ying Zhang; Li Zhou; Jun Deng

    2015-01-01

    Purpose To retrospectively evaluate the cardiac exposure in three cohorts of lung cancer patients treated with dynamic conformal arc therapy (DCAT), intensity-modulated radiotherapy (IMRT), or volumetric modulated arc therapy (VMAT) at our institution in the past seven years. Methods and Materials A total of 140 lung cancer patients were included in this institutional review board approved study: 25 treated with DCAT, 70 with IMRT and 45 with VMAT. All plans were generated in a same commercia...

  10. Considerations for a cosmological extension of modified Newtonian dynamics connections to conformal gravity and Rindler force theories

    OpenAIRE

    Pazy, Ehoud

    2013-01-01

    Modified Newtonian dynamics (MOND) can be obtained by modifying the entropic formulation of gravity, this is achieved by considering the quantum statistical nature of the degrees of freedom on the holographic screen. Through this frame work, we find some constraints on a cosmological extension for MOND, with no additional auxiliary fields. The connections between MOND to conformal gravity and Rindler force gravity are examined. These two alternative gravity theories are subsequently considere...

  11. The EF loop in green proteorhodopsin affects conformation and photocycle dynamics.

    Science.gov (United States)

    Mehler, Michaela; Scholz, Frank; Ullrich, Sandra J; Mao, Jiafei; Braun, Markus; Brown, Lynda J; Brown, Richard C D; Fiedler, Sarah A; Becker-Baldus, Johanna; Wachtveitl, Josef; Glaubitz, Clemens

    2013-07-16

    The proteorhodopsin family consists of retinal proteins of marine bacterial origin with optical properties adjusted to their local environments. For green proteorhodopsin, a highly specific mutation in the EF loop, A178R, has been found to cause a surprisingly large redshift of 20 nm despite its distance from the chromophore. Here, we analyze structural and functional consequences of this EF loop mutation by time-resolved optical spectroscopy and solid-state NMR. We found that the primary photoreaction and the formation of the K-like photo intermediate is almost pH-independent and slower compared to the wild-type, whereas the decay of the K-intermediate is accelerated, suggesting structural changes within the counterion complex upon mutation. The photocycle is significantly elongated mainly due to an enlarged lifetime of late photo intermediates. Multidimensional MAS-NMR reveals mutation-induced chemical shift changes propagating from the EF loop to the chromophore binding pocket, whereas dynamic nuclear polarization-enhanced (13)C-double quantum MAS-NMR has been used to probe directly the retinylidene conformation. Our data show a modified interaction network between chromophore, Schiff base, and counterion complex explaining the altered optical and kinetic properties. In particular, the mutation-induced distorted structure in the EF loop weakens interactions, which help reorienting helix F during the reprotonation step explaining the slower photocycle. These data lead to the conclusion that the EF loop plays an important role in proton uptake from the cytoplasm but our data also reveal a clear interaction pathway between the EF loop and retinal binding pocket, which might be an evolutionary conserved communication pathway in retinal proteins. PMID:23870260

  12. A direct electrifying algorithm for backbone identification

    International Nuclear Information System (INIS)

    This paper proposes a new algorithm for identifying backbones in the application of percolation theory. This algorithm is based on the current-carrying definition of backbone and is carried out on the predetermined spanning cluster. It is fairly easy to implement and further parallelize. The efficiency is enhanced by the fact that the conductivity of a percolating system can be obtained in the same processing of backbone identification. The critical exponents of backbone mass, red bonds (sites) and conductivity obtained by this algorithm are in very good agreement with the existing results

  13. Impact of an extruded nucleotide on cleavage activity and dynamic catalytic core conformation of the hepatitis delta virus ribozyme

    Czech Academy of Sciences Publication Activity Database

    Šefčíková, J.; Krasovská, Maryna V.; Špačková, Naďa; Šponer, Jiří; Walter, N.G.

    2007-01-01

    Roč. 85, 5-6 (2007), s. 392-406. ISSN 0006-3525 R&D Projects: GA ČR(CZ) GA203/05/0388; GA ČR(CZ) GA203/05/0009; GA AV ČR(CZ) 1QS500040581; GA MŠk(CZ) LC512 Institutional research plan: CEZ:AV0Z50040702 Keywords : conformational dynamics * hepatitis delta virus * molecular dynamics Subject RIV: BO - Biophysics Impact factor: 2.389, year: 2007

  14. Quantitative sampling of conformational heterogeneity of a DNA hairpin using molecular dynamics simulations and ultrafast fluorescence spectroscopy.

    Science.gov (United States)

    Voltz, Karine; Léonard, Jérémie; Touceda, Patricia Tourón; Conyard, Jamie; Chaker, Ziyad; Dejaegere, Annick; Godet, Julien; Mély, Yves; Haacke, Stefan; Stote, Roland H

    2016-04-20

    Molecular dynamics (MD) simulations and time resolved fluorescence (TRF) spectroscopy were combined to quantitatively describe the conformational landscape of the DNA primary binding sequence (PBS) of the HIV-1 genome, a short hairpin targeted by retroviral nucleocapsid proteins implicated in the viral reverse transcription. Three 2-aminopurine (2AP) labeled PBS constructs were studied. For each variant, the complete distribution of fluorescence lifetimes covering 5 orders of magnitude in timescale was measured and the populations of conformers experimentally observed to undergo static quenching were quantified. A binary quantification permitted the comparison of populations from experimental lifetime amplitudes to populations of aromatically stacked 2AP conformers obtained from simulation. Both populations agreed well, supporting the general assumption that quenching of 2AP fluorescence results from pi-stacking interactions with neighboring nucleobases and demonstrating the success of the proposed methodology for the combined analysis of TRF and MD data. Cluster analysis of the latter further identified predominant conformations that were consistent with the fluorescence decay times and amplitudes, providing a structure-based rationalization for the wide range of fluorescence lifetimes. Finally, the simulations provided evidence of local structural perturbations induced by 2AP. The approach presented is a general tool to investigate fine structural heterogeneity in nucleic acid and nucleoprotein assemblies. PMID:26896800

  15. Large-Scale Conformational Dynamics Control H5N1 Influenza Polymerase PB2 Binding to Importin α.

    Science.gov (United States)

    Delaforge, Elise; Milles, Sigrid; Bouvignies, Guillaume; Bouvier, Denis; Boivin, Stephane; Salvi, Nicola; Maurin, Damien; Martel, Anne; Round, Adam; Lemke, Edward A; Jensen, Malene Ringkjøbing; Hart, Darren J; Blackledge, Martin

    2015-12-01

    Influenza A RNA polymerase complex is formed from three components, PA, PB1, and PB2. PB2 is independently imported into the nucleus prior to polymerase reconstitution. All crystallographic structures of the PB2 C-terminus (residues 536-759) reveal two globular domains, 627 and NLS, that form a tightly packed heterodimer. The molecular basis of the affinity of 627-NLS for importins remained unclear from these structures, apparently requiring large-scale conformational changes prior to importin binding. Using a combination of solution-state NMR, small-angle neutron scattering, small-angle X-ray scattering (SAXS), and Förster resonance energy transfer (FRET), we show that 627-NLS populates a temperature-dependent dynamic equilibrium between closed and open states. The closed state is stabilized by a tripartite salt bridge involving the 627-NLS interface and the linker, that becomes flexible in the open state, with 627 and NLS dislocating into a highly dynamic ensemble. Activation enthalpies and entropies associated with the rupture of this interface were derived from simultaneous analysis of temperature-dependent chemical exchange saturation transfer measurements, revealing a strong temperature dependence of both open-state population and exchange rate. Single-molecule FRET and SAXS demonstrate that only the open-form is capable of binding to importin α and that, upon binding, the 627 domain samples a dynamic conformational equilibrium in the vicinity of the C-terminus of importin α. This intrinsic large-scale conformational flexibility therefore enables 627-NLS to bind importin through conformational selection from a temperature-dependent equilibrium comprising both functional forms of the protein. PMID:26424125

  16. Interactions and dynamics of two extended conformation adapting phosphatidylcholines in model biomembranes.

    Science.gov (United States)

    Amirkavei, Mooud; Kinnunen, Paavo K J

    2016-02-01

    In order to obtain molecular level insight into the biophysics of the apoptosis promoting phospholipid 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC) we studied its partitioning into different lipid phases by isothermal titration calorimetry (ITC). To aid the interpretation of these data for PazePC, we additionally characterized by both ITC and fluorescence spectroscopy the fluorescent phospholipid analog 1-palmitoyl-2-{6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]hexanoyl}-sn-glycero-3-phosphocholine (NBD-C6-PC), which similarly to PazePC can adopt extended conformation in lipid bilayers. With the NBD-hexanoyl chain reversing its direction and extending into the aqueous space out of the bilayer, 7-nitro-2,1,3-benzoxadiazol-4-yl (NBD) becomes accessible to the water soluble dithionite, which reduces to non-fluorescent product. Our results suggest that these phospholipid derivatives first partition and penetrate into the outer bilayer leaflet of liquid disordered phase liposomes composed of unsaturated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Upon increase up to 2 mol% PazePC and NBD-C6-PC of the overall content, flip-flop from the outer into the inner bilayer leaflet commences. Interestingly, the presence of 40 mol% cholesterol in POPC liposomes did not abrogate the partitioning of PazePC into the liquid ordered phase. In contrast, only insignificant partitioning of PazePC and NBD-C6-PC into sphingomyelin/cholesterol liposomes was evident, highlighting a specific membrane permeability barrier function of this particular lipid composition against oxidatively truncated PazePC, thus emphasizing the importance of detailed characterization of the biophysical properties of membranes found in different cellular organelles, in terms of providing barriers for lipid-mediated cellular signals in processes such as apoptosis. Our data suggest NBD-C6-PC to represent useful fluorescent probe to study the cellular dynamics of oxidized phospholipid

  17. Green Network Planning Model for Optical Backbones

    DEFF Research Database (Denmark)

    Gutierrez Lopez, Jose Manuel; Riaz, M. Tahir; Jensen, Michael;

    2010-01-01

    Communication networks are becoming more essential for our daily lives and critically important for industry and governments. The intense growth in the backbone traffic implies an increment of the power demands of the transmission systems. This power usage might have a significant negative effect...... an analytical model to consider environmental aspects in the planning stage of backbones design....

  18. A unified conformal model for fundamental interactions without dynamical Higgs field

    CERN Document Server

    Pawlowski, M; Marek Pawlowski; Ryszard Raczka

    1994-01-01

    A Higgsless model for strong, electro-weak and gravitational interactions is proposed. This model is based on the local symmetry group SU(3)xSU(2)xU(1)xC where C is the local conformal symmetry group. The natural minimal conformally invariant form of total lagrangian is postulated. It contains all Standard Model fields and gravitational interaction. Using the unitary gauge and the conformal scale fixing conditions we can eliminate all four real components of the Higgs doublet in this model. However the masses of vector mesons, leptons and quarks are automatically generated and are given by the same formulas as in the conventional Standard Model. The gravitational sector is analyzed and it is shown that the model admits in the classical limit the Einsteinian form of gravitational interactions. No figures.

  19. Single-molecule diffusion and conformational dynamics by spatial integration of temporal fluctuations

    KAUST Repository

    Bayoumi, Maged Fouad

    2014-10-06

    Single-molecule localization and tracking has been used to translate spatiotemporal information of individual molecules to map their diffusion behaviours. However, accurate analysis of diffusion behaviours and including other parameters, such as the conformation and size of molecules, remain as limitations to the method. Here, we report a method that addresses the limitations of existing single-molecular localization methods. The method is based on temporal tracking of the cumulative area occupied by molecules. These temporal fluctuations are tied to molecular size, rates of diffusion and conformational changes. By analysing fluorescent nanospheres and double-stranded DNA molecules of different lengths and topological forms, we demonstrate that our cumulative-area method surpasses the conventional single-molecule localization method in terms of the accuracy of determined diffusion coefficients. Furthermore, the cumulative-area method provides conformational relaxation times of structurally flexible chains along with diffusion coefficients, which together are relevant to work in a wide spectrum of scientific fields.

  20. Intramolecular interactions stabilizing compact conformations of the intrinsically disordered kinase-inhibitor domain of Sic1: a molecular dynamics investigation.

    Directory of Open Access Journals (Sweden)

    ElenaPapaleo

    2012-11-01

    The yeast CKI Sic1 is a 284-amino acid IDP that binds to Cdk1 in complex with the Clb5,6 cyclins, preventing phosphorylation of G1 substrates and, therefore, entrance to the S phase. Sic1 degradation, triggered by multiple phosphorylation events, promotes cell-cycle progression. Previous experimental studies pointed out a propensity of Sic1 and its isolated domains to populate both extended and compact conformations. The present contribution provides models of the compact conformations of the Sic1 kinase-inhibitory domain (KID by all-atom molecular-dynamics simulations in explicit solvent and in the absence of interactors. The results are integrated by spectroscopic and spectrometric data. Helical IFSUs are identified, along with networks of intramolecular interactions. The results identify a group of hub residues and electrostatic interactions which are likely to be involved in the stabilization of globular states.

  1. Couplings between hierarchical conformational dynamics from multi-time correlation functions and two-dimensional lifetime spectra: Application to adenylate kinase

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Junichi [Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki 444-8585 (Japan); Takada, Shoji [Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki 444-8585 (Japan); Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Saito, Shinji, E-mail: shinji@ims.ac.jp [Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki 444-8585 (Japan); The Graduate University for Advanced Studies, Okazaki 444-8585 (Japan)

    2015-06-07

    An analytical method based on a three-time correlation function and the corresponding two-dimensional (2D) lifetime spectrum is developed to elucidate the time-dependent couplings between the multi-timescale (i.e., hierarchical) conformational dynamics in heterogeneous systems such as proteins. In analogy with 2D NMR, IR, electronic, and fluorescence spectroscopies, the waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra can provide a quantitative description of the dynamical correlations between the conformational motions with different lifetimes. The present method is applied to intrinsic conformational changes of substrate-free adenylate kinase (AKE) using long-time coarse-grained molecular dynamics simulations. It is found that the hierarchical conformational dynamics arise from the intra-domain structural transitions among conformational substates of AKE by analyzing the one-time correlation functions and one-dimensional lifetime spectra for the donor-acceptor distances corresponding to single-molecule Förster resonance energy transfer experiments with the use of the principal component analysis. In addition, the complicated waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra for the donor-acceptor distances is attributed to the fact that the time evolution of the couplings between the conformational dynamics depends upon both the spatial and temporal characters of the system. The present method is expected to shed light on the biological relationship among the structure, dynamics, and function.

  2. Children's Gender Identity Development: The Dynamic Negotiation Process between Conformity and Authenticity

    Science.gov (United States)

    Brinkman, Britney G; Rabenstein, Kelly L.; Rosén, Lee A.; Zimmerman, Toni S.

    2014-01-01

    In the current study, 45 girls and 41 boys participated in focus groups following a program designed to teach them about social justice. The children articulated the discrepancy between their own gender identity and gender role stereotypes and discussed potential problems with conforming to gender role expectations as well as consequences of…

  3. From flexibility to function: Molecular dynamics simulations of conformational changes in chaperones and photoreceptors

    NARCIS (Netherlands)

    K. Singhal

    2016-01-01

    Proteins are uniquely-shaped macromolecules that function as biological machines, and regulate a living cell’s behavior. Crucial to protein function is the folding of the polypeptide chain into a unique well-defined three-dimensional conformation. In complex cell environments, the spontaneous unassi

  4. Periodic orbits and 10 cases of unbounded dynamics for one Hamiltonian system defined by the conformally coupled field

    Energy Technology Data Exchange (ETDEWEB)

    Starkov, Konstantin E., E-mail: kstarkov@ipn.mx

    2015-07-03

    In this paper we study invariant domains with unbounded dynamics for one cosmological Hamiltonian system which is formed by the conformally coupled field; this system was introduced by Maciejewski et al. (2007). We find a few groups of conditions imposed on parameters of this system for which all trajectories are unbounded in both of time directions. Further, we present a few groups of other conditions imposed on system parameters under which we localize the invariant domain with unbounded dynamics; this domain is defined with help of bounds for values of the Hamiltonian level surface parameter. We describe one group of conditions when our system possesses two periodic orbits found explicitly. In some of rest cases we get localization bounds for compact invariant sets. - Highlights: • Equations for periodic orbits are got for many level sets. • Domains with unbounded dynamics are localized. • Localizations for compact invariant sets are obtained.

  5. Modulation of Ultrafast Conformational Dynamics in Allosteric Interaction of Gal Repressor Protein with Different Operator DNA Sequences.

    Science.gov (United States)

    Choudhury, Susobhan; Naiya, Gitashri; Singh, Priya; Lemmens, Peter; Roy, Siddhartha; Pal, Samir Kumar

    2016-04-01

    Although all forms of dynamical behaviour of a protein under allosteric interaction with effectors are predicted, little evidence of ultrafast dynamics in the interaction has been reported. Here, we demonstrate the efficacy of a combined approach involving picosecond-resolved FRET and polarisation-gated fluorescence for the exploration of ultrafast dynamics in the allosteric interaction of the Gal repressor (GalR) protein dimer with DNA operator sequences OE and OI . FRET from the single tryptophan residue to a covalently attached probe IAEDANS at a cysteine residue in the C-terminal domain of GalR shows structural perturbation and conformational dynamics during allosteric interaction. Polarisation-gated fluorescence spectroscopy of IAEDANS and another probe (FITC) covalently attached to the operator directly revealed the essential dynamics for cooperativity in the protein-protein interaction. The ultrafast resonance energy transfer from IAEDANS in the protein to FITC also revealed different dynamic flexibility in the allosteric interaction. An attempt was made to correlate the dynamic changes in the protein dimers with OE and OI with the consequent protein-protein interaction (tetramerisation) to form a DNA loop encompassing the promoter segment. PMID:26914958

  6. Conformational Interconversions of Amino Acid Derivatives.

    Science.gov (United States)

    Kaminský, Jakub; Jensen, Frank

    2016-02-01

    Exhaustive conformational interconversions including transition structure analyses of N-acetyl-l-glycine-N-methylamide as well as its alanine, serine, and cysteine analogues have been investigated at the MP2/6-31G** level, yielding a total of 142 transition states. Improved estimates of relative energies were obtained by separately extrapolating the Hartree-Fock and MP2 energies to the basis set limit and adding the difference between CCSD(T) and MP2 results with the cc-pVDZ basis set to the extrapolated MP2 results. The performance of eight empirical force fields (AMBER94, AMBER14SB, MM2, MM3, MMFFs, CHARMM22_CMAP, OPLS_2005, and AMOEBAPRO13) in reproducing ab initio energies of transition states was tested. Our results indicate that commonly used class I force fields employing a fixed partial charge model for the electrostatic interaction provide mean errors in the ∼10 kJ/mol range for energies of conformational transition states for amino acid conformers. Modern reparametrized versions, such as CHARMM22_CMAP, and polarizable force fields, such as AMOEBAPRO13, have slightly lower mean errors, but maximal errors are still in the 35 kJ/mol range. There are differences between the force fields in their ability for reproducing conformational transitions classified according to backbone/side-chain or regions in the Ramachandran angles, but the data set is likely too small to draw any general conclusions. Errors in conformational interconversion barriers by ∼10 kJ/mol suggest that the commonly used force field may bias certain types of transitions by several orders of magnitude in rate and thus lead to incorrect dynamics in simulations. It is therefore suggested that information for conformational transition states should be included in parametrizations of new force fields. PMID:26691979

  7. Analyzing conformational dynamics of single P-glycoprotein transporters by Förster resonance energy transfer using hidden Markov models.

    Science.gov (United States)

    Zarrabi, Nawid; Ernst, Stefan; Verhalen, Brandy; Wilkens, Stephan; Börsch, Michael

    2014-03-15

    Single-molecule Förster resonance energy (smFRET) transfer has become a powerful tool for observing conformational dynamics of biological macromolecules. Analyzing smFRET time trajectories allows to identify the state transitions occuring on reaction pathways of molecular machines. Previously, we have developed a smFRET approach to monitor movements of the two nucleotide binding domains (NBDs) of P-glycoprotein (Pgp) during ATP hydrolysis driven drug transport in solution. One limitation of this initial work was that single-molecule photon bursts were analyzed by visual inspection with manual assignment of individual FRET levels. Here a fully automated analysis of Pgp smFRET data using hidden Markov models (HMM) for transitions up to 9 conformational states is applied. We propose new estimators for HMMs to integrate the information of fluctuating intensities in confocal smFRET measurements of freely diffusing lipid bilayer bound membrane proteins in solution. HMM analysis strongly supports that under conditions of steady state turnover, conformational states with short NBD distances and short dwell times are more populated compared to conditions without nucleotide or transport substrate present. PMID:23891547

  8. Molecular dynamics simulation and experimental studies on the visual pigment rhodopsin: multiple conformational states and structural changes

    International Nuclear Information System (INIS)

    Based on the MD simulations with a supercomputer and the special-purposes MDGRAPE-2 machine we have performed 3-ns MD calculations on the rhodopsin molecule and presented the structure analysis data for its dark-adapted state. We have fulfilled the RMSD (root-mean-square deviation) and structural analysis for the rhodopsin (with 11-cis retinal), generated the pictures of the atomic-scale processes for the binding pocket, surrounding the chromophore retinal, and compared the helical deviations for the beta-ionone ring and Schiff base linkage regions of the protein. The most remarkable point of our observations is that the rhodopsin helical distortions in the dark state are accompanied with the transformation of the retinal chromophore, viz. with the rotation of the beta-ionone ring inside the protein binding pocket. The low-temperature absorption spectroscopy technique has been used to study the primary stages or rhodopsin photolysis. The structural transformation properties of rhodopsin were discussed in due course of the simulations and experimental observations. It is proposed that the appearance of more than one intermediate at each stage of rhodopsin photolysis reflects the existence of multiple conformational states of the retinal chromophore in a rhodopsin molecule in the dark-adapted state. As a summary of our observations we suggest that the conformational dynamics of the opsin helices determines the most probable chromophore (11-cis retinal) configuration, so that a favorable retinal conformation has to be adjusted by the protein surroundings

  9. Enhanced Conformational Sampling in Molecular Dynamics Simulations of Solvated Peptides: Fragment-Based Local Elevation Umbrella Sampling.

    Science.gov (United States)

    Hansen, Halvor S; Daura, Xavier; Hünenberger, Philippe H

    2010-09-14

    A new method, fragment-based local elevation umbrella sampling (FB-LEUS), is proposed to enhance the conformational sampling in explicit-solvent molecular dynamics (MD) simulations of solvated polymers. The method is derived from the local elevation umbrella sampling (LEUS) method [ Hansen and Hünenberger , J. Comput. Chem. 2010 , 31 , 1 - 23 ], which combines the local elevation (LE) conformational searching and the umbrella sampling (US) conformational sampling approaches into a single scheme. In LEUS, an initial (relatively short) LE build-up (searching) phase is used to construct an optimized (grid-based) biasing potential within a subspace of conformationally relevant degrees of freedom, which is then frozen and used in a (comparatively longer) US sampling phase. This combination dramatically enhances the sampling power of MD simulations but, due to computational and memory costs, is only applicable to relevant subspaces of low dimensionalities. As an attempt to expand the scope of the LEUS approach to solvated polymers with more than a few relevant degrees of freedom, the FB-LEUS scheme involves an US sampling phase that relies on a superposition of low-dimensionality biasing potentials optimized using LEUS at the fragment level. The feasibility of this approach is tested using polyalanine (poly-Ala) and polyvaline (poly-Val) oligopeptides. Two-dimensional biasing potentials are preoptimized at the monopeptide level, and subsequently applied to all dihedral-angle pairs within oligopeptides of 4,  6,  8, or 10 residues. Two types of fragment-based biasing potentials are distinguished: (i) the basin-filling (BF) potentials act so as to "fill" free-energy basins up to a prescribed free-energy level above the global minimum; (ii) the valley-digging (VD) potentials act so as to "dig" valleys between the (four) free-energy minima of the two-dimensional maps, preserving barriers (relative to linearly interpolated free-energy changes) of a prescribed magnitude

  10. The broadband microwave spectra of the monoterpenoids thymol and carvacrol: Conformational landscape and internal dynamics

    International Nuclear Information System (INIS)

    The rotational spectra of the monoterpenoids thymol and carvacrol are reported in the frequency range 2–8.5 GHz, obtained with broadband Fourier-transform microwave spectroscopy. For carvacrol four different conformations were identified in the cold conditions of the molecular jet, whereas only three conformations were observed for thymol. The rotational constants and other molecular parameters are reported and compared with quantum chemical calculations. For both molecules, line splittings due to methyl group internal rotation were observed and the resulting barrier heights could be determined. The experimental barrier heights, 4.0863(25) kJ/mol for trans-carvacrol-A, 4.4024(16) kJ/mol for trans-carvacrol-B, and 0.3699(11) kJ/mol for trans-thymol-A, are compared with similar molecules

  11. The broadband microwave spectra of the monoterpenoids thymol and carvacrol: Conformational landscape and internal dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, D.; Shubert, V. A. [Max Planck Institute for the Structure and Dynamics of Matter, Hamburg (Germany); The Center for Free-Electron Laser Science, Hamburg (Germany); Giuliano, B. M. [Center for Astrobiology, INTA-CSIC, Torrejón de Ardoz, Madrid (Spain); Schnell, M., E-mail: melanie.schnell@mpsd.mpg.de [Max Planck Institute for the Structure and Dynamics of Matter, Hamburg (Germany); The Center for Free-Electron Laser Science, Hamburg (Germany); The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Hamburg (Germany)

    2014-07-21

    The rotational spectra of the monoterpenoids thymol and carvacrol are reported in the frequency range 2–8.5 GHz, obtained with broadband Fourier-transform microwave spectroscopy. For carvacrol four different conformations were identified in the cold conditions of the molecular jet, whereas only three conformations were observed for thymol. The rotational constants and other molecular parameters are reported and compared with quantum chemical calculations. For both molecules, line splittings due to methyl group internal rotation were observed and the resulting barrier heights could be determined. The experimental barrier heights, 4.0863(25) kJ/mol for trans-carvacrol-A, 4.4024(16) kJ/mol for trans-carvacrol-B, and 0.3699(11) kJ/mol for trans-thymol-A, are compared with similar molecules.

  12. Conformational Dynamics of hSGLT1 during Na+/Glucose Cotransport

    DEFF Research Database (Denmark)

    Loo, D. D.; Hirayama, B. A.; Karakossian, M. H.;

    2006-01-01

    This study examines the conformations of the Na+/glucose cotransporter (SGLT1) during sugar transport using charge and fluorescence measurements on the human SGLT1 mutant G507C expressed in Xenopus oocytes. The mutant exhibited similar steady-state and presteady-state kinetics as wild-type SGLT1...... membrane voltage elicited presteady-state currents (charge movements) that decay to the steady state with time constants med (3-20 ms, medium) and slow (15-70 ms, slow). Concurrently, SGLT1 rhodamine fluorescence intensity increased with depolarizing and decreased with hyperpolarizing voltages ( F). The...... previously described. This rate-limiting step at maximal inward Na+/sugar cotransport (saturating voltage and external Na+ and sugar concentrations) is the slow release of Na+ from the internal surface of SGLT1. The high affinity blocker phlorizin locks the cotransporter in an inactive conformation....

  13. A data acquisition backbone core library

    International Nuclear Information System (INIS)

    For the new experiments at FAIR new concepts of data acquisition systems have to be developed like the distribution of self-triggered, time stamped data streams over high performance networks for event building. The data acquisition backbone core (DABC) is a general purpose software framework designed for the implementation of such data acquisition systems. It provides the event building over networks like InfiniBand or Gigabit Ethernet. All kinds of data channels (front-end systems) are supported by program plug-ins into functional components of DABC like data input, combiner, scheduler, event builder, analysis and storage components. Commands and parameters of DABC and its application plug-ins are published by DIM servers. A Java based Graphical User Interface provides the dynamic control and visualization of these components. Application specific GUIs can be added. After a testing phase, DABC can be used to develop high performance data acquisition systems. Besides that DABC will be used for the implementation of various test beds needed for the final design of data acquisition systems at FAIR like detector tests, readout components test, and data flow investigations

  14. Conformation and dynamics of biopharmaceuticals: transition of mass spectrometry-based tools from academe to industry

    OpenAIRE

    Kaltashov, Igor A.; Bobst, Cedric E.; Abzalimov, Rinat R.; Berkowitz, Steven A; Houde, Damian

    2009-01-01

    Mass spectrometry plays a very visible role in biopharmaceutical industry, although its use in development, characterization and quality control of protein drugs is mostly limited to the analysis of covalent structure (amino acid sequence and post-translational modifications). Despite the centrality of protein conformation to biological activity, stability and safety of biopharmaceutical products, the expanding arsenal of mass spectrometry-based methods that are currently available to probe h...

  15. Finite-Size Conformational Transitions: A Unifying Concept Underlying Chromosome Dynamics

    International Nuclear Information System (INIS)

    Investigating average thermodynamic quantities is not sufficient to understand conformational transitions of a finite-size polymer. We propose that such transitions are better described in terms of the probability distribution of some finite-size order parameter, and the evolution of this distribution as a control parameter varies. We demonstrate this claim for the coil-globule transition of a linear polymer and its mapping onto a two-state model. In a biological context, polymer models delineate the physical constraints experienced by the genome at different levels of organization, from DNA to chromatin to chromosome. We apply our finite-size approach to the formation of plectonemes in a DNA segment submitted to an applied torque and the ensuing helix-coil transition that can be numerically observed, with a coexistence of the helix and coil states in a range of parameters. Polymer models are also essential to analyze recent in vivo experiments providing the frequency of pairwise contacts between genomic loci. The probability distribution of these contacts yields quantitative information on the conformational fluctuations of chromosome regions. The changes observed in the shape of the distribution when the cell type or the physiological conditions vary may reveal an epigenetic modulation of the conformational constraints experienced by the chromosomes. (condensed matter: structural, mechanical, and thermal properties)

  16. Conformational dynamics of nucleic acid molecules studied by PELDOR spectroscopy with rigid spin labels

    Science.gov (United States)

    Prisner, T. F.; Marko, A.; Sigurdsson, S. Th.

    2015-03-01

    Nucleic acid molecules can adopt a variety of structures and exhibit a large degree of conformational flexibility to fulfill their various functions in cells. Here we describe the use of Pulsed Electron-Electron Double Resonance (PELDOR or DEER) to investigate nucleic acid molecules where two cytosine analogs have been incorporated as spin probes. Because these new types of spin labels are rigid and incorporated into double stranded DNA and RNA molecules, there is no additional flexibility of the spin label itself present. Therefore the magnetic dipole-dipole interaction between both spin labels encodes for the distance as well as for the mutual orientation between the spin labels. All of this information can be extracted by multi-frequency/multi-field PELDOR experiments, which gives very precise and valuable information about the structure and conformational flexibility of the nucleic acid molecules. We describe in detail our procedure to obtain the conformational ensembles and show the accuracy and limitations with test examples and application to double-stranded DNA.

  17. A novel D-leucine-containing Conus peptide: diverse conformational dynamics in the contryphan family.

    Science.gov (United States)

    Jacobsen, R B; Jimenez, E C; De la Cruz, R G; Gray, W R; Cruz, L J; Olivera, B M

    1999-08-01

    A Conus peptide family (the contryphans) is noteworthy because of the presence of a post-translationally modified D-amino acid in all members of the family. A new contryphan peptide, Leu-contryphan-P, was isolated from the venom of Conus purpurascens; the sequence of this peptide is: Gly-Cys-Val-D-Leu-Leu-Pro-Trp-Cys-OH. This is the first known occurrence of D-leucine in a Conus peptide. The discovery of Leu-contryphan-P suggests that there may be branches of the contryphan peptide family that diverge much more in sequence than previously anticipated. Several natural contryphans provide dramatic examples of interconversion between multiple conformational states in small constrained peptides. The contryphans that have 4-trans-hydroxyproline and D-tryptophan in positions 3 and 4, respectively, exhibit two peaks under reverse-phase HPLC conditions, indicating interconversion between two discrete conformations. However, [L-Trp4]contryphan-Sm (with L-Trp substituted for D-Trp) exhibits a single, broad peak that elutes later than the natural peptide, suggesting that D-Trp stabilizes a conformation in which hydrophobic residues are buried. Leucontryphan-P which has valine and D-leucine instead of 4-trans-hydroxyproline and D-tryptophan shows only a single peak that elutes much later than the other contryphans. PMID:10461743

  18. Finite-Size Conformational Transitions: A Unifying Concept Underlying Chromosome Dynamics

    Science.gov (United States)

    Bertrand, R. Caré; Pascal, Carrivain; Thierry, Forné; Jean-Marc, Victor; Annick, Lesne

    2014-10-01

    Investigating average thermodynamic quantities is not sufficient to understand conformational transitions of a finite-size polymer. We propose that such transitions are better described in terms of the probability distribution of some finite-size order parameter, and the evolution of this distribution as a control parameter varies. We demonstrate this claim for the coil-globule transition of a linear polymer and its mapping onto a two-state model. In a biological context, polymer models delineate the physical constraints experienced by the genome at different levels of organization, from DNA to chromatin to chromosome. We apply our finite-size approach to the formation of plectonemes in a DNA segment submitted to an applied torque and the ensuing helix-coil transition that can be numerically observed, with a coexistence of the helix and coil states in a range of parameters. Polymer models are also essential to analyze recent in vivo experiments providing the frequency of pairwise contacts between genomic loci. The probability distribution of these contacts yields quantitative information on the conformational fluctuations of chromosome regions. The changes observed in the shape of the distribution when the cell type or the physiological conditions vary may reveal an epigenetic modulation of the conformational constraints experienced by the chromosomes.

  19. Proton and tritium NMR relaxation studies of peptide inhibitor binding to bacterial collagenase: Conformation and dynamics

    International Nuclear Information System (INIS)

    The interaction of succinyl-Pro-Ala, a competitive inhibitor of Achromobacter iophagus collagenase, with the enzyme was studied by longitudinal proton and tritium relaxation. Specific deuterium and tritium labeling of the succinyl part at vicinal positions allowed the measurement of the cross-relaxation rates of individual proton or tritium spin pairs in the inhibitor-enzyme complex as well as in the free inhibitor. Overall correlation times, internuclear distances, and qualitative information on the internal mobility in Suc1 (as provided by the generalized order parameter S2) could be deduced by the comparison of proton and tritium cross-relaxation of spin pairs at complementary positions in the -CH2- CH2- moiety as analyzed in terms of the model-free approach by Lipari and Szabo. The conformational and motional parameters of the inhibitor in the free and enzyme-bound state were directly compared by this method. The measurement of proton cross-relaxation in the Ala residue provided additional information on the inhibitor binding. The determination of the order parameter in different parts of the inhibitor molecule in the bound state indicates that the succinyl and alanyl residues are primarily involved in the interaction with the enzyme activity site. The succinyl moiety, characterized in solution by the conformational equilibrium among the three staggered rotamers--i.e., trans: 50%; g+: 20%; g-: 30%--adopted in the bound state the unique trans conformation

  20. Molecular dynamics simulation of phosphorylation-induced conformational transitions in the mycobacterium tuberculosis response regulator PrrA

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Guo [Los Alamos National Laboratory; Mcmahon, Benjamin H [Los Alamos National Laboratory; Tung, Chang - Shung [Los Alamos National Laboratory

    2008-01-01

    Phosphorylation-activated modulation of response regulators (RR) is predominantly used by bacteria as a strategy in regulating their two-component signaling (TCS) systems, the underlying molecular mechanisms are however far from fully understood. In this work we have conducted a molecular dynamics (MD) simulation of the phosphorylation-induced conformational transitions of RRs with the Mycobacterium Tuberculosis PrrA as a particular example. Starting from the full-length inactive structure of PrrA we introduced a local disturbance by phosphorylating the conserved aspartic acid residue, Asp-58, in the regulatory domain. A Go-model-type algorithm packaged with AMBER force fields was then applied to simulate the dynamics upon phosphorylation. The MD simulation shows that the phosphorylation of Asp-58 facilitates PrrA, whose inactive state has a compact conformation with a closed interdomain interface, to open up with its interdomain separation being increased by an average of about 1.5 {angstrom} for a simulation of 20 ns. The trans-activation loop, which is completely buried within the interdomain interface in the inactive PrrA, is found to become more exposed with the phosphorylated structure as well. These results provide more structural details of how the phosphorylation of a local aspartate activates PrrA to undergo a global conformational rearrangement toward its extended active state. This work also indicates that MD simulations can serve as a fast tool to unravel the regulation mechanisms of all RRs, which is especially valuable when the structures of full-length active RRs are currently unavailable.

  1. Single DNA molecules on freestanding and supported cationic lipid bilayers: diverse conformational dynamics controlled by the local bilayer properties

    Science.gov (United States)

    Herold, Christoph; Schwille, Petra; Petrov, Eugene P.

    2016-02-01

    We present experimental results on the interaction of DNA macromolecules with cationic lipid membranes with different properties, including freestanding membranes in the fluid and gel state, and supported lipid membranes in the fluid state and under conditions of fluid-gel phase coexistence. We observe diverse conformational dynamics of membrane-bound DNA molecules controlled by the local properties of the lipid bilayer. In case of fluid-state freestanding lipid membranes, the behaviour of DNA on the membrane is controlled by the membrane charge density: whereas DNA bound to weakly charged membranes predominantly behaves as a 2D random coil, an increase in the membrane charge density leads to membrane-driven irreversible DNA collapse and formation of subresolution-sized DNA globules. On the other hand, electrostatic binding of DNA macromolecules to gel-state freestanding membranes leads to completely arrested diffusion and conformational dynamics of membrane-adsorbed DNA. A drastically different picture is observed in case of DNA interaction with supported cationic lipid bilayers: When the supported bilayer is in the fluid state, membrane-bound DNA molecules undergo 2D translational Brownian motion and conformational fluctuations, irrespectively of the charge density of the supported bilayer. At the same time, when the supported cationic membrane shows fluid-gel phase coexistence, membrane-bound DNA molecules are strongly attracted to micrometre-sized gel-phase domains enriched with the cationic lipid, which results in 2D compaction of the membrane-bound macromolecules. This DNA compaction, however, is fully reversible, and disappears as soon as the membrane is heated above the fluid-gel coexistence. We also discuss possible biological implications of our experimental findings.

  2. Exercise: The Backbone of Spine Treatment

    Medline Plus

    Full Text Available Exercise: The Backbone of Spine Treatment | View Video Back Purchase Video Struggling with Low Back Pain? Many people are surprised to learn that carefully selected exercise can ...

  3. Exercise: The Backbone of Spine Treatment

    Science.gov (United States)

    Exercise: The Backbone of Spine Treatment | View Video Back Purchase Video Struggling with Low Back Pain? Many people are surprised to learn that carefully selected exercise can actually reduce back pain. Some exercises can ...

  4. Exercise: The Backbone of Spine Treatment

    Medline Plus

    Full Text Available Exercise: The Backbone of Spine Treatment | View Video Back Purchase Video Struggling with Low Back Pain? Many people are surprised to learn that carefully selected exercise can actually reduce back pain. Some exercises can ...

  5. Use of 1–4 interaction scaling factors to control the conformational equilibrium between α-helix and β-strand

    International Nuclear Information System (INIS)

    Highlights: • 1–4 interaction scaling factors are used to adjust conformational energy. • This article reports the effects of these factors on protein conformations. • Reducing these factors changes a helix to a strand in molecular dynamics simulation. • Increasing these factors causes the reverse conformational change. • These factors control the conformational equilibrium between helix and strand. - Abstract: 1–4 interaction scaling factors are used in AMBER forcefields to reduce the exaggeration of short-range repulsion caused by the 6–12 Lennard-Jones potential and a nonpolarizable charge model and to obtain better agreements of small-molecule conformational energies with experimental data. However, the effects of these scaling factors on protein secondary structure conformations have not been investigated until now. This article reports the finding that the 1–4 interactions among the protein backbone atoms separated by three consecutive covalent bonds are more repulsive in the α-helix conformation than in two β-strand conformations. Therefore, the 1–4 interaction scaling factors of protein backbone torsions ϕ and ψ control the conformational equilibrium between α-helix and β-strand. Molecular dynamics simulations confirm that reducing the ϕ and ψ scaling factors readily converts the α-helix conformation of AcO-(AAQAA)3-NH2 to a β-strand conformation, and the reverse occurs when these scaling factors are increased. These results suggest that the ϕ and ψ scaling factors can be used to generate the α-helix or β-strand conformation in situ and to control the propensities of a forcefield for adopting secondary structure elements

  6. Future High Capacity Backbone Networks

    DEFF Research Database (Denmark)

    Wang, Jiayuan

    studied in details with dynamic network simulations using OPNET. Dynamic routing optimization methods are proposed. The influences of re-routing and load-balancing factors on the algorithm are evaluated with a focus on different re-routing thresholds. Results from dynamic network simulations show that re......-routing strategies can further lower CO2 emissions compared to basic energy source routing scheme, and that a lower re-routing threshold achieves more savings. The increased blocking probability brought by using rerouting schemes can be compensated by applying load balancing criteria. A trade-off between blocking...... methods and the control over QoS. In the presented case, the integrated control plane collects the network energy related information and the QoS requirements of different types of traffic. This information is used to define the routing behavior for a specific class of service. Due to the flexibility of...

  7. A wrench in the works of human acetylcholinesterase: soman induced conformational changes revealed by molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Brian J Bennion

    Full Text Available Irreversible inactivation of human acetylcholinesterase (hAChE by organophosphorous pesticides (OPs and chemical weapon agents (CWA has severe morbidity and mortality consequences. We present data from quantum mechanics/molecular mechanics (QM/MM and 80 classical molecular dynamics (MD simulations of the apo and soman-adducted forms of hAChE to investigate the effects on the dynamics and protein structure when the catalytic Serine 203 is phosphonylated. We find that the soman phosphonylation of the active site Ser203 follows a water assisted addition-elimination mechanism with the elimination of the fluoride ion being the highest energy barrier at 6.5 kcal/mole. We observe soman-dependent changes in backbone and sidechain motions compared to the apo form of the protein. These alterations restrict the soman-adducted hAChE to a structural state that is primed for the soman adduct to be cleaved and removed from the active site. The altered motions and resulting structures provide alternative pathways into and out of the hAChE active site. In the soman-adducted protein both side and back door pathways are viable for soman adduct access. Correlation analysis of the apo and soman adducted MD trajectories shows that the correlation of gorge entrance and back door motion is disrupted when hAChE is adducted. This supports the hypothesis that substrate and product can use two different pathways as entry and exit sites in the apo form of the protein. These alternative pathways have important implications for the rational design of medical countermeasures.

  8. Slow conformational dynamics of an endonuclease persist in its complex with its natural protein inhibitor.

    OpenAIRE

    Whittaker, S. B.; Czisch, M.; Wechselberger, R.; Kaptein, R; Hemmings, A. M.; James, R.; Kleanthous, C; Moore, G. R.

    2000-01-01

    The bacterial toxin colicin E9 is secreted by producing Escherichia coli cells with its 9.5 kDa inhibitor protein Im9 bound tightly to its 14.5 kDa C-terminal DNase domain. Double- and triple-resonance NMR spectra of the isolated DNase domain uniformly labeled with 13C/15N bound to unlabeled Im9 contain more signals than expected for a single DNase conformer, consistent with the bound DNase being present in more than one form. The presence of chemical exchange cross peaks in 750 MHz 15N-1H-15...

  9. A Transfer Matrix for the Backbone Exponent of Two-Dimensional Percolation

    OpenAIRE

    Jacobsen, J. L.; Zinn-Justin, P.

    2001-01-01

    Rephrasing the backbone of two-dimensional percolation as a monochromatic path crossing problem, we investigate the latter by a transfer matrix approach. Conformal invariance links the backbone dimension D_b to the highest eigenvalue of the transfer matrix T, and we obtain the result D_b=1.6431 \\pm 0.0006. For a strip of width L, T is roughly of size 2^{3^L}, but we manage to reduce it to \\sim L!. We find that the value of D_b is stable with respect to inclusion of additional ``blobs'' tangen...

  10. Conformation and dynamics of melittin bound to magnetically oriented lipid bilayers by solid-state (31)P and (13)C NMR spectroscopy.

    OpenAIRE

    Naito, A.; T. Nagao; Norisada, K; Mizuno, T; Tuzi, S.; Saitô, H.

    2000-01-01

    The conformation and dynamics of melittin bound to the dimyristoylphosphatidylcholine (DMPC) bilayer and the magnetic orientation in the lipid bilayer systems were investigated by solid-state (31)P and (13)C NMR spectroscopy. Using (31)P NMR, it was found that melittin-lipid bilayers form magnetically oriented elongated vesicles with the long axis parallel to the magnetic field above the liquid crystalline-gel phase transition temperature (T(m) = 24 degrees C). The conformation, orientation, ...

  11. Conformal and non Conformal Dilaton Gravity

    CERN Document Server

    Alvarez, Enrique; Mart'\\in, C P

    2014-01-01

    The quantum dynamics of the gravitational field non-minimally coupled to an (also dynamical) scalar field is studied in the broken phase. For a particular value of the coupling the system is classically conformal, and can actually be understood as the group averaging of Einstein-Hilbert's action under conformal transformations. Contradicting cherished beliefs, a conformal anomaly is found in the trace of the equations of motion. To one loop order, this anomaly vanishes on shell. Arguments are given supporting the fact that this does not happen to two loop order, where the anomaly is argued to be a real physical effect.

  12. Structural analysis of prolyl oligopeptidases using molecular docking and dynamics: insights into conformational changes and ligand binding.

    Directory of Open Access Journals (Sweden)

    Swati Kaushik

    Full Text Available Prolyl oligopeptidase (POP is considered as an important pharmaceutical target for the treatment of numerous diseases. Despite enormous studies on various aspects of POPs structure and function still some of the questions are intriguing like conformational dynamics of the protein and interplay between ligand entry/egress. Here, we have used molecular modeling and docking based approaches to unravel questions like differences in ligand binding affinities in three POP species (porcine, human and A. thaliana. Despite high sequence and structural similarity, they possess different affinities for the ligands. Interestingly, human POP was found to be more specific, selective and incapable of binding to a few planar ligands which showed extrapolation of porcine POP in human context is more complicated. Possible routes for substrate entry and product egress were also investigated by detailed analyses of molecular dynamics (MD simulations for the three proteins. Trajectory analysis of bound and unbound forms of three species showed differences in conformational dynamics, especially variations in β-propeller pore size, which was found to be hidden by five lysine residues present on blades one and seven. During simulation, β-propeller pore size was increased by ∼2 Å in porcine ligand-bound form which might act as a passage for smaller product movement as free energy barrier was reduced, while there were no significant changes in human and A. thaliana POPs. We also suggest that these differences in pore size could lead to fundamental differences in mode of product egress among three species. This analysis also showed some functionally important residues which can be used further for in vitro mutagenesis and inhibitor design. This study can help us in better understanding of the etiology of POPs in several neurodegenerative diseases.

  13. Conformational Stability!? : Synthesis and Conformational Studies of Unnatural Backbone Modified Peptides

    OpenAIRE

    Norgren, Anna S.

    2006-01-01

    The beauty of the wide functionality of proteins and peptides in Nature is determined by their ability to adopt three-dimensional structures. This thesis describes artificial molecules developed to mimic secondary structures similar to those found crucial for biological activities. In the first part of this thesis, we focused on post-translational modifications of a class of unnatural oligomers known as β-peptides. Through the design and synthesis of a glycosylated β3-peptide, the first such ...

  14. Steered molecular dynamics simulations of a type IV pilus probe initial stages of a force-induced conformational transition.

    Directory of Open Access Journals (Sweden)

    Joseph L Baker

    2013-04-01

    Full Text Available Type IV pili are long, protein filaments built from a repeating subunit that protrudes from the surface of a wide variety of infectious bacteria. They are implicated in a vast array of functions, ranging from bacterial motility to microcolony formation to infection. One of the most well-studied type IV filaments is the gonococcal type IV pilus (GC-T4P from Neisseria gonorrhoeae, the causative agent of gonorrhea. Cryo-electron microscopy has been used to construct a model of this filament, offering insights into the structure of type IV pili. In addition, experiments have demonstrated that GC-T4P can withstand very large tension forces, and transition to a force-induced conformation. However, the details of force-generation, and the atomic-level characteristics of the force-induced conformation, are unknown. Here, steered molecular dynamics (SMD simulation was used to exert a force in silico on an 18 subunit segment of GC-T4P to address questions regarding the nature of the interactions that lead to the extraordinary strength of bacterial pili. SMD simulations revealed that the buried pilin α1 domains maintain hydrophobic contacts with one another within the core of the filament, leading to GC-T4P's structural stability. At the filament surface, gaps between pilin globular head domains in both the native and pulled states provide water accessible routes between the external environment and the interior of the filament, allowing water to access the pilin α1 domains as reported for VC-T4P in deuterium exchange experiments. Results were also compared to the experimentally observed force-induced conformation. In particular, an exposed amino acid sequence in the experimentally stretched filament was also found to become exposed during the SMD simulations, suggesting that initial stages of the force induced transition are well captured. Furthermore, a second sequence was shown to be initially hidden in the native filament and became exposed upon

  15. On the role of conformal three-geometries in the dynamics of general relativity

    International Nuclear Information System (INIS)

    It is shown that the Chern-Simons functional, built in the spinor representation from the initial data on spacelike hypersurfaces, is invariant with respect to infinitesimal conformal rescalings if and only if the vacuum Einstein equations are satisfied. As a consequence, we show that in the phase space the Hamiltonian constraint of vacuum general relativity is the Poisson bracket of the imaginary part of this Chern-Simons functional and Misner's time (essentially the 3-volume). Hence, the vacuum Hamiltonian constraint is the condition on the canonical variables that the imaginary part of the Chern-Simons functional be constant along the volume flow. The vacuum momentum constraint can also be reformulated in a similar way as a (more complicated) condition on the change of the imaginary part of the Chern-Simons functional along the flow of York's time

  16. Application of modified dynamic conformal arc (MDCA) technique on liver stereotactic body radiation therapy (SBRT) planning following RTOG 0438 guideline

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Chengyu, E-mail: shicy1974@yahoo.com; Chen, Yong; Fang, Deborah; Iannuzzi, Christopher

    2015-04-01

    Liver stereotactic body radiation therapy (SBRT) is a feasible treatment method for the nonoperable, patient with early-stage liver cancer. Treatment planning for the SBRT is very important and has to consider the simulation accuracy, planning time, treatment efficiency effects etc. The modified dynamic conformal arc (MDCA) technique is a 3-dimensional conformal arc planning method, which has been proposed for liver SBRT planning at our center. In this study, we compared the MDCA technique with the RapidArc technique in terms of planning target volume (PTV) coverage and sparing of organs at risk (OARs). The results show that the MDCA technique has comparable plan quality to RapidArc considering PTV coverage, hot spots, heterogeneity index, and effective liver volume. For the 5 PTVs studied among 4 patients, the MDCA plan, when compared with the RapidArc plan, showed 9% more hot spots, more heterogeneity effect, more sparing of OARs, and lower liver effective volume. The monitor unit (MU) number for the MDCA plan is much lower than for the RapidArc plans. The MDCA plan has the advantages of less planning time, no-collision treatment, and a lower MU number.

  17. Implementation and evaluation of modified dynamic conformal arc (MDCA) technique for lung SBRT patients following RTOG protocols

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Chengyu, E-mail: shicy1974@gmail.com [St. Vincent' s Medical Center, Bridgeport, CT (United States); Tazi, Adam; Fang, Deborah Xiangdong; Iannuzzi, Christopher [St. Vincent' s Medical Center, Bridgeport, CT (United States)

    2013-10-01

    To implement modified dynamic conformal arc (MDCA) technique and Radiation Therapy Oncology Group (RTOG) protocols in our clinic for stereotactic body radiation therapy (SBRT) treatment of patients with Stage I/II non–small cell lung cancer. Five patients with non–small cell lung cancer have been treated with SBRT. All the patients were immobilized using CIVCO Body Pro-Lok system and scanned using GE 4-slice computed tomography. The MDCA technique that was previously published was adopted as our planning technique, and RTOG protocols for the lung SBRT were followed. The patients were treated on Novalis Tx system with cone-beam computed tomography imaging guidance. All the patient plans passed the RTOG criteria. The conformal index ranges from 0.99 to 1.12 for the planning target volume, and the biological equivalent dose for the planning target volume is overall 100 Gy. Critical structures (lung, spinal cord, brachial plexus, skin, and chest wall) also meet RTOG protocols or published data. A 6-month follow-up of one of the patients shows good local disease control. We have successfully implemented the MDCA technique into our clinic for the lung SBRT program. It shows that the MDCA is useful and efficient for the lung SBRT planning, with the plan quality meeting the RTOG protocols.

  18. Reconstruction of protein backbones from the BriX collection of canonical protein fragments.

    Science.gov (United States)

    Baeten, Lies; Reumers, Joke; Tur, Vicente; Stricher, François; Lenaerts, Tom; Serrano, Luis; Rousseau, Frederic; Schymkowitz, Joost

    2008-05-01

    As modeling of changes in backbone conformation still lacks a computationally efficient solution, we developed a discretisation of the conformational states accessible to the protein backbone similar to the successful rotamer approach in side chains. The BriX fragment database, consisting of fragments from 4 to 14 residues long, was realized through identification of recurrent backbone fragments from a non-redundant set of high-resolution protein structures. BriX contains an alphabet of more than 1,000 frequently observed conformations per peptide length for 6 different variation levels. Analysis of the performance of BriX revealed an average structural coverage of protein structures of more than 99% within a root mean square distance (RMSD) of 1 Angstrom. Globally, we are able to reconstruct protein structures with an average accuracy of 0.48 Angstrom RMSD. As expected, regular structures are well covered, but, interestingly, many loop regions that appear irregular at first glance are also found to form a recurrent structural motif, albeit with lower frequency of occurrence than regular secondary structures. Larger loop regions could be completely reconstructed from smaller recurrent elements, between 4 and 8 residues long. Finally, we observed that a significant amount of short sequences tend to display strong structural ambiguity between alpha helix and extended conformations. When the sequence length increases, this so-called sequence plasticity is no longer observed, illustrating the context dependency of polypeptide structures. PMID:18483555

  19. Automatic state partitioning for multibody systems (APM): an efficient algorithm for constructing Markov state models to elucidate conformational dynamics of multibody systems.

    Science.gov (United States)

    Sheong, Fu Kit; Silva, Daniel-Adriano; Meng, Luming; Zhao, Yutong; Huang, Xuhui

    2015-01-13

    The conformational dynamics of multibody systems plays crucial roles in many important problems. Markov state models (MSMs) are powerful kinetic network models that can predict long-time-scale dynamics using many short molecular dynamics simulations. Although MSMs have been successfully applied to conformational changes of individual proteins, the analysis of multibody systems is still a challenge because of the complexity of the dynamics that occur on a mixture of drastically different time scales. In this work, we have developed a new algorithm, automatic state partitioning for multibody systems (APM), for constructing MSMs to elucidate the conformational dynamics of multibody systems. The APM algorithm effectively addresses different time scales in the multibody systems by directly incorporating dynamics into geometric clustering when identifying the metastable conformational states. We have applied the APM algorithm to a 2D potential that can mimic a protein-ligand binding system and the aggregation of two hydrophobic particles in water and have shown that it can yield tremendous enhancements in the computational efficiency of MSM construction and the accuracy of the models. PMID:26574199

  20. A transfer matrix for the backbone exponent of two-dimensional percolation

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Jesper Lykke; Zinn-Justin, Paul [Laboratoire de Physique Theorique et Modeles Statistiques, Universite Paris-Sud, Orsay (France)

    2002-03-08

    Rephrasing the backbone of two-dimensional percolation as a monochromatic path crossing problem, we investigate the latter by a transfer matrix approach. Conformal invariance links the backbone dimension D{sub b} to the highest eigenvalue of the transfer matrix T, and we obtain the result D{sub b}=1.6431{+-}0.0006. For a strip of width L, T is roughly of size 2{sup 3L}, but we manage to reduce it to {approx}L{exclamation_point}. We find that the value of D{sub b} is stable with respect to inclusion of additional 'blobs' tangent to the backbone in a finite number of points. (author)

  1. Conformational studies of [Nphe5]SFTI-1 by means of 2D NMR spectroscopy in conjunction with molecular dynamics calculations

    Science.gov (United States)

    Brzozowski, K.; Stawikowski, M.; Ślusarz, R.; Sikorska, E.; Lesner, A.; Łęgowska, A.; Rolka, K.

    2015-11-01

    Trypsin inhibitor SFTI-1 is the smallest and the most potent among BBI inhibitors. It is also an interesting object for SAR studies since it is cyclic 14 amino acid molecule which additionally contains disulfide bridge. We showed that elimination of head-to-tail cycliztion did not influence its activity. Moreover peptoid monomers of Nlys and Nphe introduced in the substrate specificity P1 position of monocyclic SFTI-1 preserved trypsin and chymotripsin inhibitory activity respectively and made P1-P1‧ bond proteolytically stable. These findings motivated us to perform conformational analysis of [Nphe5]SFTI-1 by means of 2D NMR spectroscopy and molecular dynamics calculations. Obtained structure occurred to be in a good agreement with published structures for wild-type SFTI-1, its monocyclic analog with disulfide bridge only as well as one containing Nlys peptoid monomer in P1 position.

  2. Electronic Energy Transfer Modulation in a Dynamic Foldaxane: Proof-of-Principle of a Lifetime-Based Conformation Probe.

    Science.gov (United States)

    Denisov, Sergey A; Gan, Quan; Wang, Xiang; Scarpantonio, Luca; Ferrand, Yann; Kauffmann, Brice; Jonusauskas, Gediminas; Huc, Ivan; McClenaghan, Nathan D

    2016-01-22

    Abiotic aromatic oligoamide foldamers are shown to self-assemble in solution to form a double helix, which can accommodate a bichromophoric thread in its central void. While in solution reversible electronic energy transfer is instilled between chromophoric termini of the free, flexible thread as evidenced through delayed luminescence, upon rigidification of the rod the chromophores are mutually distanced and effectively decoupled. Consequently, the chromophores display their individual photophysical characteristics. The observed conformation-dependent changes of dynamic luminescence properties, which are particularly sensitive to distance, offers a new strategy for lifetime-based detection of geometry on the molecular scale as demonstrated through real-time luminescence detection of molecular complexation leading to foldaxane formation. PMID:26663612

  3. Conformations, Transverse Fluctuations and Crossover Dynamics of a Semi-Flexible Chain in Two Dimensions

    CERN Document Server

    Huang, Aiqun; Binder, Kurt

    2014-01-01

    We present a unified scaling theory for the dynamics of monomers of a semiflexible chain under good solvent condition in the free draining limit. We consider both the cases where the contour length $L$ is comparable to the persistence length $\\ell_p$ and the case $L\\gg \\ell_p$. Our theory captures the early time monomer dynamics of a stiff chain characterized by $t^{3/4}$ dependence for the mean square displacement(MSD) of the monomers, but predicts a first crossover to the Rouse regime of $t^{2\

  4. Assignment of Side-Chain Conformation Using Adiabatic Energy Mapping, Free Energy Perturbation, and Molecular Dynamic Simulations

    DEFF Research Database (Denmark)

    Frimurer, Thomas M.; Günther, Peter H.; Sørensen, Morten Dahl;

    1999-01-01

    adiabatic mapping, conformational change, essentialdynamics, free energy simulations, Kunitz type inhibitor *ga3(VI)......adiabatic mapping, conformational change, essentialdynamics, free energy simulations, Kunitz type inhibitor *ga3(VI)...

  5. Conformational dynamics of bacterial and human cytoplasmic models of the ribosomal A-site

    Czech Academy of Sciences Publication Activity Database

    Panecka, J.; Šponer, Jiří; Trylska, J.

    112C, MAY 2015 (2015), s. 96-110. ISSN 0300-9084 R&D Projects: GA ČR(CZ) GBP305/12/G034; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081707 Keywords : MOLECULAR-DYNAMICS * DECODING SITE * CRYSTAL-STRUCTURE Subject RIV: BO - Biophysics Impact factor: 2.963, year: 2014

  6. Thermal fluctuations of haemoglobin from different species: adaptation to temperature via conformational dynamics

    OpenAIRE

    Stadler, A.M.; Garvey, C J; Bocahut, A.; Sacquin-Mora, S.; Digel, I.; Schneider, G. J.; Natali, F.; Artmann, G. M.; Zaccai, G.

    2012-01-01

    Thermodynamic stability, configurational motions and internal forces of haemoglobin (Hb) of three endotherms (platypus, Ornithorhynchus anatinus; domestic chicken, Gallus gallus domesticus and human, Homo sapiens) and an ectotherm (salt water crocodile, Crocodylus porosus) were investigated using circular dichroism, incoherent elastic neutron scattering and coarse-grained Brownian dynamics simulations. The experimental results from Hb solutions revealed a direct correlation between protein re...

  7. Conformational Sampling by Ab Initio Molecular Dynamics Simulations Improves NMR Chemical Shift Predictions

    Czech Academy of Sciences Publication Activity Database

    Dračínský, Martin; Möller, H. M.; Exner, T. E.

    2013-01-01

    Roč. 9, č. 8 (2013), s. 3806-3815. ISSN 1549-9618 R&D Projects: GA ČR GA13-24880S Institutional support: RVO:61388963 Keywords : ab initio molecular dynamics * NMR spectroscopy * DFT calculations * hydration Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.310, year: 2013

  8. Dynamic and Static Water Molecules Complement the TN16 Conformational Heterogeneity inside the Tubulin Cavity.

    Science.gov (United States)

    Majumdar, Sarmistha; Maiti, Satyabrata; Ghosh Dastidar, Shubhra

    2016-01-19

    TN16 is one of the most promising inhibitors of α, β dimer of tubulin that occupies the cavity in the β-subunit located at the dimeric interface, known as the colchicine binding site. The experimentally determined structure of the complex (Protein Data Bank entry 3HKD) presents the conformation and position of the ligand based on the "best fit", keeping the controversy of other significant binding modes open for further investigation. Computation has already revealed that TN16 experiences fluctuations within the binding pocket, but the insight from that previous report was limited by the shorter windows of sampling and by the approximations on the surrounding environment by implicit solvation. This article reports that in most of the cases straightforward MMGBSA calculations of binding energy revealed a gradual loss of stabilization that was inconsistent with the structural observations, and thus, it indicated the lack of consideration of stabilizing factors with appropriate weightage. Consideration of the structurally packed water molecules in the space between the ligand and receptor successfully eliminated such discrepancies between the structure and stability, serving as the "litmus test" of the importance of explicit consideration of such structurally packed water in the calculations. Such consideration has further evidenced a quasi-degenerate character of the different binding modes of TN16 that has rationalized the observed intrinsic fluctuations of TN16 within the pocket, which is likely to be the most critical insight into its entropy-dominated binding. Quantum mechanical calculations have revealed a relay of electron density from TN16 to the protein via a water molecule in a concerted manner. PMID:26666704

  9. Solution Conformation and Dynamics of the HIV-1 Integrase Core Domain*

    OpenAIRE

    Fitzkee, Nicholas C.; Masse, James E.; Shen, Yang; Davies, David R.; Bax, Ad

    2010-01-01

    The human immunodeficiency virus type 1 (HIV-1) integrase (IN) is a critical enzyme involved in infection. It catalyzes two reactions to integrate the viral cDNA into the host genome, 3′ processing and strand transfer, but the dynamic behavior of the active site during catalysis of these two processes remains poorly characterized. NMR spectroscopy can reveal important structural details about enzyme mechanisms, but to date the IN catalytic core domain has proven resistant to such an analysis....

  10. Conformational dynamics of the human propeller telomeric DNA quadruplex on a microsecond time scale

    Czech Academy of Sciences Publication Activity Database

    Islam, B.; Sgobba, M.; Laughton, C.; Orozco, M.; Šponer, Jiří; Neidle, S.; Haider, S.

    2013-01-01

    Roč. 41, č. 4 (2013), s. 2723-2735. ISSN 0305-1048 R&D Projects: GA ČR(CZ) GAP208/11/1822 Grant ostatní: GA ČR(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081707 Keywords : MOLECULAR-DYNAMICS * CRYSTAL-STRUCTURE * B-DNA Subject RIV: BO - Biophysics Impact factor: 8.808, year: 2013

  11. Molecular dynamics and quantum mechanics of RNA: Conformational and chemical change we can believe in

    Czech Academy of Sciences Publication Activity Database

    Ditzler, M.A.; Otyepka, M.; Šponer, Jiří; Walter, N.G.

    2010-01-01

    Roč. 43, č. 1 (2010), s. 40-47. ISSN 0001-4842 R&D Projects: GA AV ČR(CZ) IAA400040802; GA MŠk(CZ) LC06030; GA ČR(CZ) GA203/09/1476 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : molecular dynamics * quantum chemistry * RNA Subject RIV: BO - Biophysics Impact factor: 21.840, year: 2010

  12. Applications of hydrogen deuterium exchange (HDX for the characterization of conformational dynamics in light-activated photoreceptors

    Directory of Open Access Journals (Sweden)

    Robert eLindner

    2015-06-01

    Full Text Available Rational design of optogenetic tools is inherently linked to the understanding of photoreceptor function. Structural analysis of elements involved in signal integration in individual sensor domains provides an initial idea of their mode of operation, but understanding how local structural rearrangements eventually affect signal transmission to output domains requires inclusion of the effector regions in the characterization. However, the dynamic nature of these assemblies renders their structural analysis challenging and therefore a combination of high- and low-resolution techniques is required to appreciate functional aspects of photoreceptors.This review focuses on the potential of Hydrogen-Deuterium exchange coupled to mass spectrometry (HDX-MS for complementing the structural characterization of photoreceptors. In this respect, the ability of HDX-MS to provide information on the conformational dynamics and the possibility to address multiple functionally relevant states in solution render this methodology ideally suitable. We highlight recent examples demonstrating the potential of HDX-MS and discuss how these results can help to improve existing optogenetic systems or guide the design of novel optogenetic tools.

  13. Conformational flexibility in calcitonin: The dynamic properties of human and salmon calcitonin in solution

    International Nuclear Information System (INIS)

    We have studied the dynamic properties of human (h) and salmon (s) calcitonin (CT) in solution. For both hormones, distance geometry in torsion-angle space has been used to generate three-dimensional structures consistent with NMR data obtained in sodium dodecyl sulfate micelles. For sCT and hCT we used, respectively, 356 and 275 interproton distances together with hydrogen-bonds as restraints. To better characterize their flexibility and dynamic properties two fully unrestrained 1100-ps molecular dynamics (MD) simulations in methanol were performed on the lowest-energy structures of both hormones. Statistical analyses of average geometric parameters and of their fluctuations performed in the last 1000 ps of the MD run show typical helical values for residues 9-19 of sCT during the whole trajectory. For hCT a shorter helix was observed involving residues 13-21, with a constant helical region in the range 13-19. Angular order parameters S(φ) and S(ψ) indicate that hCT exhibits a higher flexibility, distributed along the whole chain, including the helix, while the only flexible amino acid residues in sCT connect three well-defined domains. Finally, our study shows that simulated annealing in torsion-angle space can efficiently be extended to NMR-based three-dimensional structure calculations of helical polypeptides. Furthermore, provided that a sufficient number of NMR restraints describes the system, the method allows the detection of equilibria in solution. This identification occurs through the generation of 'spurious' high-energy structures, which, for right-handed α-helices, are likely to be represented by left-handed α-helices

  14. Bacterial Community Dynamics during Production of Registered Designation of Origin Salers Cheese as Evaluated by 16S rRNA Gene Single-Strand Conformation Polymorphism Analysis

    OpenAIRE

    Duthoit, F.; Godon, Jean-Jacques; Montel, Marie-Christine

    2003-01-01

    Microbial dynamics during processing and ripening of traditional cheeses such as registered designation of origin Salers cheese, an artisanal cheese produced in France, play an important role in the elaboration of sensory qualities. The aim of the present study was to obtain a picture of the dynamics of the microbial ecosystem of RDO Salers cheese by using culture-independent methods. This included DNA extraction, PCR, and single-strand conformation polymorphism (SSCP) analysis. Bacterial and...

  15. Detailed conformation dynamics and activation process of wild type c-Abl and T315I mutant

    Science.gov (United States)

    Yang, Li-Jun; Zhao, Wen-Hua; Liu, Qian

    2014-10-01

    Bcr-Abl is an important target for therapy against chronic myelogenous leukemia (CML) and acute lymphocytic leukemia (ALL). The synergistic effect between myristyl pocket and the ATP pocket has been found. But its detailed information based on molecular level still has not been achieved. In this study, conventional molecular dynamics (CMD) and target molecular dynamics (TMD) simulations were performed to explore the effect of T315I mutation on dynamics and activation process of Abl containing the N-terminal cap (Ncap). The CMD simulation results reveal the increasing flexibility of ATP pocket in kinase domain (KD) after T315I mutation which confirms the disability of ATP-pocket inhibitors to the Abl-T315I mutant. On the contrary, the T315I mutation decreased the flexibility of remote helix αI which suggests the synergistic effect between them. The mobility of farther regions containing Ncap, SH3, SH2 and SH2-KD linker were not affected by T315I mutation. The TMD simulation results show that the activation process of wild type Abl and Abl-T315I mutant experienced global conformation change. Their differences were elucidated by the activation motion of subsegments including A-loop, P-loop and Ncap. Besides, the T315I mutation caused decreasing energy barrier and increasing intermediate number in activation process, which results easier activation process. The TMD and CMD results indicate that a drug targeting only the ATP pocket is not enough to inhibit the Abl-T315I mutant. An effective way to inhibit the abnormal activity of Abl-T315I mutant is to combine the ATP-pocket inhibitors with inhibitors binding at non-ATP pockets mainly related to Ncap, SH2-KD linker and myristyl pocket.

  16. Deciphering DNA replication dynamics in eukaryotic cell populations in relation with their averaged chromatin conformations

    Science.gov (United States)

    Goldar, A.; Arneodo, A.; Audit, B.; Argoul, F.; Rappailles, A.; Guilbaud, G.; Petryk, N.; Kahli, M.; Hyrien, O.

    2016-03-01

    We propose a non-local model of DNA replication that takes into account the observed uncertainty on the position and time of replication initiation in eukaryote cell populations. By picturing replication initiation as a two-state system and considering all possible transition configurations, and by taking into account the chromatin’s fractal dimension, we derive an analytical expression for the rate of replication initiation. This model predicts with no free parameter the temporal profiles of initiation rate, replication fork density and fraction of replicated DNA, in quantitative agreement with corresponding experimental data from both S. cerevisiae and human cells and provides a quantitative estimate of initiation site redundancy. This study shows that, to a large extent, the program that regulates the dynamics of eukaryotic DNA replication is a collective phenomenon that emerges from the stochastic nature of replication origins initiation.

  17. Crystal Structures of Precise Functional Copolymers: Atomistic Molecular Dynamics Simulations and Comparisons with Experiments

    Science.gov (United States)

    Trigg, Edward B.; Stevens, Mark J.; Winey, Karen I.

    Layered crystal structures have been observed in linear poly(ethylene-co-acrylic acid) in which the carboxylic acid groups are placed precisely every 21 carbon atoms along the backbone. The alkane segments form structures resembling orthorhombic polyethylene crystals, while the acid groups form continuous domains that may act as pathways for ion conduction. Further details of the crystal structure have been difficult to elucidate experimentally, but could be important for understanding structure-property relationships. Here, two classes of crystal structures are evaluated via atomistic molecular dynamics: extended chain structures, wherein the polymer backbones are highly extended in near-trans conformations, and adjacent reentry structures, wherein the polymer backbones conform in adjacent reentry loops near the site of each covalently-bonded acid group. Energies of relaxed structures and hydrogen bonding states are compared, and X-ray scattering and other experimental data is compared with the simulation results.

  18. Conformational sampling enhancement of replica exchange molecular dynamics simulations using swarm particle intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Kamberaj, Hiqmet, E-mail: hkamberaj@ibu.edu.mk [Department of Computer Engineering, International Balkan University, Tashko Karadza 11A, Skopje (Macedonia, The Former Yugoslav Republic of)

    2015-09-28

    In this paper, we present a new method based on swarm particle social intelligence for use in replica exchange molecular dynamics simulations. In this method, the replicas (representing the different system configurations) are allowed communicating with each other through the individual and social knowledge, in additional to considering them as a collection of real particles interacting through the Newtonian forces. The new method is based on the modification of the equations of motion in such way that the replicas are driven towards the global energy minimum. The method was tested for the Lennard-Jones clusters of N = 4,  5, and 6 atoms. Our results showed that the new method is more efficient than the conventional replica exchange method under the same practical conditions. In particular, the new method performed better on optimizing the distribution of the replicas among the thermostats with time and, in addition, ergodic convergence is observed to be faster. We also introduce a weighted histogram analysis method allowing analyzing the data from simulations by combining data from all of the replicas and rigorously removing the inserted bias.

  19. Conformational dynamics of Rouse chains during creep/recovery processes: a review

    International Nuclear Information System (INIS)

    The Rouse model is a well-established model for non-entangled polymer chains and also serves as a fundamental model for entangled chains. The dynamic behaviour of this model under strain-controlled conditions has been fully analysed in the literature. However, despite the importance of the Rouse model, no analysis has been made so far of the orientational anisotropy of the Rouse eigenmodes during the stress-controlled, creep and recovery processes. For completeness of the analysis of the model, the Rouse equation of motion is solved to calculate this anisotropy for monodisperse chains and their binary blends during the creep/recovery processes. The calculation is simple and straightforward, but the result is intriguing in the sense that each Rouse eigenmode during these processes has a distribution in the retardation times. This behaviour, reflecting the interplay/correlation among the Rouse eigenmodes of different orders (and for different chains in the blends) under the constant stress condition, is quite different from the behaviour under rate-controlled flow (where each eigenmode exhibits retardation/relaxation associated with a single characteristic time). Furthermore, the calculation indicates that the Rouse chains exhibit affine deformation on sudden imposition/removal of the stress and the magnitude of this deformation is inversely proportional to the number of bond vectors per chain. In relation to these results, a difference between the creep and relaxation properties is also discussed for chains obeying multiple relaxation mechanisms (Rouse and reptation mechanisms). (topical review)

  20. Conformational sampling enhancement of replica exchange molecular dynamics simulations using swarm particle intelligence

    Science.gov (United States)

    Kamberaj, Hiqmet

    2015-09-01

    In this paper, we present a new method based on swarm particle social intelligence for use in replica exchange molecular dynamics simulations. In this method, the replicas (representing the different system configurations) are allowed communicating with each other through the individual and social knowledge, in additional to considering them as a collection of real particles interacting through the Newtonian forces. The new method is based on the modification of the equations of motion in such way that the replicas are driven towards the global energy minimum. The method was tested for the Lennard-Jones clusters of N = 4, 5, and 6 atoms. Our results showed that the new method is more efficient than the conventional replica exchange method under the same practical conditions. In particular, the new method performed better on optimizing the distribution of the replicas among the thermostats with time and, in addition, ergodic convergence is observed to be faster. We also introduce a weighted histogram analysis method allowing analyzing the data from simulations by combining data from all of the replicas and rigorously removing the inserted bias.

  1. Conformational sampling enhancement of replica exchange molecular dynamics simulations using swarm particle intelligence

    International Nuclear Information System (INIS)

    In this paper, we present a new method based on swarm particle social intelligence for use in replica exchange molecular dynamics simulations. In this method, the replicas (representing the different system configurations) are allowed communicating with each other through the individual and social knowledge, in additional to considering them as a collection of real particles interacting through the Newtonian forces. The new method is based on the modification of the equations of motion in such way that the replicas are driven towards the global energy minimum. The method was tested for the Lennard-Jones clusters of N = 4,  5, and 6 atoms. Our results showed that the new method is more efficient than the conventional replica exchange method under the same practical conditions. In particular, the new method performed better on optimizing the distribution of the replicas among the thermostats with time and, in addition, ergodic convergence is observed to be faster. We also introduce a weighted histogram analysis method allowing analyzing the data from simulations by combining data from all of the replicas and rigorously removing the inserted bias

  2. Net neutrality at internet backbone provider level

    OpenAIRE

    Baglioni, Laura; Calabrese, Armando; Ghiron, Nathan Levialdi

    2013-01-01

    This paper analysis the Internet interconnection market and combine the main technical (i.e. service quality) and economic aspects (i.e. profits and utility) characterizing relations between market players (end users, EUs; Internet Service Providers, ISPs; Internet Backbone Providers, IBPs) in order to determine possible economic outcomes in the strategic interaction between them. The proposed model enables a comparison to be made between expected values of social welfare (i.e. EU utility and...

  3. Probing the ATP-induced conformational flexibility of the PcrA helicase protein using molecular dynamics simulation.

    Science.gov (United States)

    Mhashal, Anil R; Choudhury, Chandan Kumar; Roy, Sudip

    2016-03-01

    Helicases are enzymes that unwind double-stranded DNA (dsDNA) into its single-stranded components. It is important to understand the binding and unbinding of ATP from the active sites of helicases, as this knowledge can be used to elucidate the functionality of helicases during the unwinding of dsDNA. In this work, we investigated the unbinding of ATP and its effect on the active-site residues of the helicase PcrA using molecular dynamic simulations. To mimic the unbinding process of ATP from the active site of the helicase, we simulated the application of an external force that pulls ATP from the active site and computed the free-energy change during this process. We estimated an energy cost of ~85 kJ/mol for the transformation of the helicase from the ATP-bound state (1QHH) to the ATP-free state (1PJR). Unbinding led to conformational changes in the residues of the protein at the active site. Some of the residues at the ATP-binding site were significantly reoriented when the ATP was pulled. We observed a clear competition between reorientation of the residues and energy stabilization by hydrogen bonds between the ATP and active-site residues. We also checked the flexibility of the PcrA protein using a principal component analysis of domain motion. We found that the ATP-free state of the helicase is more flexible than the ATP-bound state. PMID:26860503

  4. Conformational Dynamics of the Focal Adhesion Targeting Domain Control Specific Functions of Focal Adhesion Kinase in Cells

    KAUST Repository

    Kadaré, Gress

    2015-01-02

    Focal adhesion (FA) kinase (FAK) regulates cell survival and motility by transducing signals from membrane receptors. The C-terminal FA targeting (FAT) domain of FAK fulfils multiple functions, including recruitment to FAs through paxillin binding. Phosphorylation of FAT on Tyr925 facilitates FA disassembly and connects to the MAPK pathway through Grb2 association, but requires dissociation of the first helix (H1) of the four-helix bundle of FAT. We investigated the importance of H1 opening in cells by comparing the properties of FAK molecules containing wild-type or mutated FAT with impaired or facilitated H1 openings. These mutations did not alter the activation of FAK, but selectively affected its cellular functions, including self-association, Tyr925 phosphorylation, paxillin binding, and FA targeting and turnover. Phosphorylation of Tyr861, located between the kinase and FAT domains, was also enhanced by the mutation that opened the FAT bundle. Similarly phosphorylation of Ser910 by ERK in response to bombesin was increased by FAT opening. Although FAK molecules with the mutation favoring FAT opening were poorly recruited at FAs, they efficiently restored FA turnover and cell shape in FAK-deficient cells. In contrast, the mutation preventing H1 opening markedly impaired FAK function. Our data support the biological importance of conformational dynamics of the FAT domain and its functional interactions with other parts of the molecule.

  5. Interconverting conformations of variants of the human amyloidogenic protein beta2-microglobulin quantitatively characterized by dynamic capillary electrophoresis and computer simulation

    DEFF Research Database (Denmark)

    Heegaard, Niels H H; Jørgensen, Thomas J D; Cheng, Lei; Schou, Christian; Nissen, Mogens H; Trapp, Oliver

    2006-01-01

    unified theory for dynamic chromatography and dynamic electrophoresis. The results are correlated with the outcome of independent experiments based on mass spectrometric measurement of H/D exchange. This study illustrates that dynamic capillary electrophoresis is suitable for the investigation of the......Capillary electrophoretic separation profiles of cleaved variants of beta2-microglobulin (beta2m) reflect the conformational equilibria existing in solutions of these proteins. The characterization of these equilibria is of interest since beta2m is responsible for amyloid formation in dialysis...

  6. Hamming distance geometry of a protein conformational space. Application to the clustering of a 4 ns molecular dynamics trajectory of the HIV-1 integrase catalytic core

    CERN Document Server

    Laboulais, C; Le Bret, M; Gabarro-Arpa, J; Laboulais, Cyril; Ouali, Mohammed; Bret, Marc Le; Gabarro-Arpa, Jacques

    2001-01-01

    Protein structures can be encoded into binary sequences, these are used to define a Hamming distance in conformational space: the distance between two different molecular conformations is the number of different bits in their sequences. Each bit in the sequence arises from a partition of conformational space in two halves. Thus, the information encoded in the binary sequences is also used to characterize the regions of conformational space visited by the system. We apply this distance and their associated geometric structures, to the clustering and analysis of conformations sampled during a 4 ns molecular dynamics simulation of the HIV-1 integrase catalytic core. The cluster analysis of the simulation shows a division of the trajectory into two segments of 2.6 and 1.4 ns length, which are qualitatively different: the data points to the fact that equilibration is only reached at the end of the first segment. Some length of the paper is devoted to compare the Hamming distance to the r.m.s. deviation measure. Th...

  7. Femtosecond Heterodyne Transient Grating Detection of Conformational Dynamics in the S0 (11Ag-) State of Carotenoids After Nonradiative Decay of the S2 (11Bu+) State

    Science.gov (United States)

    Roscioli, Jerome D.; Ghosh, Soumen; Bishop, Michael M.; Lafountain, Amy M.; Frank, Harry A.; Beck, Warren F.

    Transient grating spectroscopy was used to study the dynamics of nonradiative decay of the S1 (21Ag-) state in ß-carotene and peridinin after optical preparation of the S2) state. The kinetics of the recovery of the absorption and dispersion components of the third-order signal exhibit significantly different time constants. For β-carotene in benzonitrile, the absorption and dispersion recovery time constants are 11.6 and 10.2 ps. For peridinin in methanol, the time constants are 9.9 and 7.4 ps. These results indicate that the initial product of the decay of the S1 state is a conformationally displaced structure. The decay rate for the S1 state and the conformational relaxation rate are both slowed in peridinin as the polarity of the solvent decreases; in ethyl acetate, the conformational relaxation time constant is 45 ps, which rules out a dominant contribution from vibrational cooling. These results indicate that the S1 state develops intramolecular charge transfer character owing to distortions along torsional and out-of-plane coordinates, with a pyramidal structure favored as the most stable conformation. Recovery of the photoselected ground state conformation involves a reverse charge-transfer event followed by relaxation to a planar structure. Work supported by Photosynthetic Systems Program of the U.S. Department of Energy under Grant DE-SC0010847.

  8. Phase behaviour of two-component bottle-brush polymers with flexible backbones under poor solvent conditions

    International Nuclear Information System (INIS)

    The phase behaviour of two-component bottle-brush polymers with fully flexible backbones under poor solvent conditions is studied via molecular-dynamics simulations, using a coarse-grained bead-spring model and side chains of up to N = 40 effective monomers. We consider a symmetric model where side chains of type A and B are grafted alternately onto a flexible backbone. The aim of this study is to explore the phase behaviour of two-component bottle-brushes depending on parameters, such as as the grafting density σ, the backbone length Nb, the side-chain length N, and the temperature T. Based on a cluster analysis, we identify for our range of parameters the regimes of fully phase separated systems, i.e., A-type side chains form one cluster and B-type chains another, while the interface that separates these two clusters contains the backbone monomers. We find that pearl-necklace or Janus-like structures, which normally occur for bottle-brush polymers with rigid backbones under poor solvent conditions, are fully attributed to the backbone rigidity, and, therefore, such structures are unlikely in the case of bottle brushes with fully flexible backbones. Also, a comparative discussion with earlier work on the phase behaviour of single-component bottle-brush polymers with flexible backbones is performed. (paper)

  9. Conformational landscape of an amyloid intra-cellular domain and Landau-Ginzburg-Wilson paradigm in protein dynamics

    Science.gov (United States)

    Dai, Jin; Niemi, Antti J.; He, Jianfeng

    2016-07-01

    The Landau-Ginzburg-Wilson paradigm is proposed as a framework, to investigate the conformational landscape of intrinsically unstructured proteins. A universal Cα-trace Landau free energy is deduced from general symmetry considerations, with the ensuing all-atom structure modeled using publicly available reconstruction programs Pulchra and Scwrl. As an example, the conformational stability of an amyloid precursor protein intra-cellular domain (AICD) is inspected; the reference conformation is the crystallographic structure with code 3DXC in Protein Data Bank (PDB) that describes a heterodimer of AICD and a nuclear multi-domain adaptor protein Fe65. Those conformations of AICD that correspond to local or near-local minima of the Landau free energy are identified. For this, the response of the original 3DXC conformation to variations in the ambient temperature is investigated, using the Glauber algorithm. The conclusion is that in isolation the AICD conformation in 3DXC must be unstable. A family of degenerate conformations that minimise the Landau free energy is identified, and it is proposed that the native state of an isolated AICD is a superposition of these conformations. The results are fully in line with the presumed intrinsically unstructured character of isolated AICD and should provide a basis for a systematic analysis of AICD structure in future NMR experiments.

  10. Quantification of protein backbone hydrogen-deuterium exchange rates by solid state NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lopez del Amo, Juan-Miguel; Fink, Uwe; Reif, Bernd, E-mail: reif@tum.d [Leibniz-Institut fuer Molekulare Pharmakologie (FMP) (Germany)

    2010-12-15

    We present the quantification of backbone amide hydrogen-deuterium exchange rates (HDX) for immobilized proteins. The experiments make use of the deuterium isotope effect on the amide nitrogen chemical shift, as well as on proton dilution by deuteration. We find that backbone amides in the microcrystalline {alpha}-spectrin SH3 domain exchange rather slowly with the solvent (with exchange rates negligible within the individual {sup 15}N-T{sub 1} timescales). We observed chemical exchange for 6 residues with HDX exchange rates in the range from 0.2 to 5 s{sup -1}. Backbone amide {sup 15}N longitudinal relaxation times that we determined previously are not significantly affected for most residues, yielding no systematic artifacts upon quantification of backbone dynamics (Chevelkov et al. 2008b). Significant exchange was observed for the backbone amides of R21, S36 and K60, as well as for the sidechain amides of N38, N35 and for W41{epsilon}. These residues could not be fit in our previous motional analysis, demonstrating that amide proton chemical exchange needs to be considered in the analysis of protein dynamics in the solid-state, in case D{sub 2}O is employed as a solvent for sample preparation. Due to the intrinsically long {sup 15}N relaxation times in the solid-state, the approach proposed here can expand the range of accessible HDX rates in the intermediate regime that is not accessible so far with exchange quench and MEXICO type experiments.

  11. Orientation Preferences of Backbone Secondary Amide Functional Groups in Peptide Nucleic Acid Complexes: Quantum Chemical Calculations Reveal an Intrinsic Preference of Cationic D-Amino Acid-Based Chiral PNA Analogues for the P-form

    OpenAIRE

    Topham, Christopher M.; Smith, Jeremy C.

    2006-01-01

    Geometric descriptions of nonideal interresidue hydrogen bonding and backbone-base water bridging in the minor groove are established in terms of polyamide backbone carbonyl group orientation from analyses of residue junction conformers in experimentally determined peptide nucleic acid (PNA) complexes. Two types of interresidue hydrogen bonding are identified in PNA conformers in heteroduplexes with nucleic acids that adopt A-like basepair stacking. Quantum chemical calculations on the bindin...

  12. Conformational selection in the recognition of phosphorylated substrates by the catalytic domain of human Pin1.

    Science.gov (United States)

    Velazquez, Hector A; Hamelberg, Donald

    2011-11-01

    Post-translational phosphorylation and the related conformational changes in signaling proteins are responsible for regulating a wide range of subcellular processes. Human Pin1 is central to many of these cell signaling pathways in normal and aberrant subcellular processes, catalyzing cis-trans isomerization of the peptide ω-bond in phosphorylated serine/threonine-proline motifs in many proteins. Pin1 has therefore been identified as a possible drug target in many diseases, including cancer and Alzheimer's. The effects of phosphorylation on Pin1 substrates, and the atomistic basis for Pin1 recognition and catalysis, are not well understood. Here, we determine the conformational consequences of phosphorylation on Pin1 substrate analogues and the mechanism of recognition by the catalytic domain of Pin1 using all-atom molecular dynamics simulations. We show that phosphorylation induces backbone conformational changes on the peptide substrate analogues. We also show that Pin1 recognizes specific conformations of its substrate by conformational selection. Furthermore, dynamical correlated motions in the free Pin1 enzyme are present in the enzyme of the enzyme-substrate complex when the substrate is in the transition state configuration, suggesting that these motions play significant roles during catalytic turnover. These results provide a detailed atomistic picture of the mechanism of Pin1 recognition that can be exploited for drug design purposes and further our understanding of the synergistic complexities of post-translational phosphorylation and cis-trans isomerization. PMID:21967280

  13. Porous solid backbone impregnation for electrochemical energy conversion systems

    KAUST Repository

    Boulfrad, Samir

    2013-09-19

    An apparatus and method for impregnating a porous solid backbone. The apparatus may include a platform for holding a porous solid backbone, an ink jet nozzle configured to dispense a liquid solution onto the porous solid backbone, a positioning mechanism configured to position the ink jet nozzle proximate to a plurality of locations of the porous solid backbone, and a control unit configured to control the positioning mechanism to position the ink jet nozzle proximate to the plurality of locations and cause the ink jet nozzle to dispense the liquid solution onto the porous solid backbone.

  14. Backbone Guided Local Search for the Weighted Maximum Satisfiability Problem

    OpenAIRE

    Jiang, He; Xuan, Jifeng

    2009-01-01

    In this chapter, analytical results on the backbone in weighted MAX-SAT were presented in this paper. We showed that it is intractable to retrieve the backbone in weighted MAX-SAT with any performance guarantee under the assumption that P NP . And a backbone guided local search algorithm was proposed for weighted MAX-SAT. Results of this paper imply a new way to incorporate the backbone in heuristics. The approximate backbone used to guide the flipping of literals in those local search based...

  15. Conformation dynamics and polarization effect of α,α-trehalose in a vacuum and in aqueous and salt solutions.

    Science.gov (United States)

    Kan, Zigui; Yan, Xiufen; Ma, Jing

    2015-03-01

    Conformational changes of α,α-trehalose in a vacuum, water, and 0-20 wt % NaCl solutions were investigated by means of molecular dynamics (MD) simulations at different levels of density function theory (DFT) and with fixed-charge nonpolarizable and variable-charge force fields (FFs), respectively. The relative thermodynamic stability of trehalose is enhanced by the formation of intercycle and/or intracycle hydrogen bonds, but some thermodynamically unfavorable structures can be sampled in the DFT-based ab initio MD simulation. The polarization effects of polar trehalose molecule in aqueous and NaCl solutions were studied by a series of MD simulations with both the conventional nonpolarizable and polarizable force field models. In the polarizable model, the partial charges of trehalose were updated every 2 ps using DFT calculations and fused with the other FF parameters for the energy calculation and MD simulation. Around the trehalose, water molecules located in an asymmetry model and trehalose have a stronger tendency to bind with water molecules than Na(+) and Cl(-) ions. When the trehalose concentration is increased from 3.26 to 6.31 wt % in salt aqueous solution, the two trehalose molecules periodically approach each other in a nearly anhydrate state and leave a way to keep the favorable hydration structure with the mean trehalose-trehalose distance of 8.6 Å. The similarity between the solvated dimer packing styles (shoulder-by-shoulder or head-to-head) and crystal stacking can be used to make an extrapolation to higher sugar concentrations and to rationalize the bioprotection function of trehalose in high salt concentration. PMID:25506668

  16. Cardiac Exposure in the Dynamic Conformal Arc Therapy, Intensity-Modulated Radiotherapy and Volumetric Modulated Arc Therapy of Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Xin Ming

    Full Text Available To retrospectively evaluate the cardiac exposure in three cohorts of lung cancer patients treated with dynamic conformal arc therapy (DCAT, intensity-modulated radiotherapy (IMRT, or volumetric modulated arc therapy (VMAT at our institution in the past seven years.A total of 140 lung cancer patients were included in this institutional review board approved study: 25 treated with DCAT, 70 with IMRT and 45 with VMAT. All plans were generated in a same commercial treatment planning system and have been clinically accepted and delivered. The dose distribution to the heart and the effects of tumor laterality, the irradiated heart volume and the beam-to-heart distance on the cardiac exposure were investigated.The mean dose to the heart among all 140 plans was 4.5 Gy. Specifically, the heart received on average 2.3, 5.2 and 4.6 Gy in the DCAT, IMRT and VMAT plans, respectively. The mean heart doses for the left and right lung tumors were 4.1 and 4.8 Gy, respectively. No patients died with evidence of cardiac disease. Three patients (2% with preexisting cardiac condition developed cardiac disease after treatment. Furthermore, the cardiac exposure was found to increase linearly with the irradiated heart volume while decreasing exponentially with the beam-to-heart distance.Compared to old technologies for lung cancer treatment, modern radiotherapy treatment modalities demonstrated better heart sparing. But the heart dose in lung cancer radiotherapy is still higher than that in the radiotherapy of breast cancer and Hodgkin's disease where cardiac complications have been extensively studied. With strong correlations of mean heart dose with beam-to-heart distance and irradiated heart volume, cautions should be exercised to avoid long-term cardiac toxicity in the lung cancer patients undergoing radiotherapy.

  17. Quantum Chemical Benchmark Study on 46 RNA Backbone Families Using a Dinucleotide Unit

    Czech Academy of Sciences Publication Activity Database

    Kruse, H.; Mládek, Arnošt; Gkionis, Konstantinos; Hansen, A.; Grimme, S.; Šponer, Jiří

    2015-01-01

    Roč. 11, č. 10 (2015), s. 4972-4991. ISSN 1549-9618 R&D Projects: GA ČR(CZ) GBP305/12/G034 Institutional support: RVO:68081707 Keywords : MOLECULAR-DYNAMICS SIMULATIONS * DENSITY-FUNCTIONAL THEORY * SUGAR-PHOSPHATE BACKBONE Subject RIV: BO - Biophysics Impact factor: 5.498, year: 2014

  18. Toward Improved Description of DNA Backbone: Revisiting Epsilon and Zeta Torsion Force Field Parameters

    Czech Academy of Sciences Publication Activity Database

    Zgarbová, M.; Luque, F. J.; Šponer, Jiří; Cheatham III, Thomas E.; Otyepka, M.; Jurečka, P.

    2013-01-01

    Roč. 9, č. 5 (2013), s. 2339-2354. ISSN 1549-9618 Grant ostatní: GA ČR(CZ) GAP208/10/1742 Institutional support: RVO:68081707 Keywords : MOLECULAR- DYNAMICS SIMULATIONS * PHOSPHORUS CHEMICAL-SHIFTS * SUGAR-PHOSPHATE BACKBONE Subject RIV: BO - Biophysics Impact factor: 5.310, year: 2013

  19. Understanding VoIP from Backbone Measurements

    OpenAIRE

    Birke, Robert Rene' Maria; Petracca, Michele; Mellia, Marco

    2007-01-01

    VoIP has widely been addressed as the technology that will change the Telecommunication model opening the path for convergence. Still today this revolution is far from being complete, since the majority of telephone calls are originated by circuit-oriented networks. In this paper for the first time to the best of our knowledge, we present a large dataset of measurements collected from the FastWeb backbone, which is one of the first worldwide Telecom operator to offer VoIP and high-speed data ...

  20. Peptoid-Peptide hybrid backbone architectures

    DEFF Research Database (Denmark)

    Olsen, Christian Adam

    2010-01-01

    Peptidomimetic oligomers and foldamers have received considerable attention for over a decade, with beta-peptides and the so-called peptoids (N-alkylglycine oligomers) representing prominent examples of such architectures. Lately, hybrid or mixed backbones consisting of both alpha- and beta......-amino acids (alpha/beta-peptides) have been investigated in some detail as well. The present Minireview is a survey of the literature concerning hybrid structures of alpha-amino acids and peptoids, including beta-peptoids (N-alkyl-beta-alanine oligomers), and is intended to give an overview of this area...

  1. Development of a Backbone Cyclic Peptide Library as Potential Antiparasitic Therapeutics Using Microwave Irradiation.

    Science.gov (United States)

    Qvit, Nir; Kornfeld, Opher S

    2016-01-01

    Protein-protein interactions (PPIs) are intimately involved in almost all biological processes and are linked to many human diseases. Therefore, there is a major effort to target PPIs in basic research and in the pharmaceutical industry. Protein-protein interfaces are usually large, flat, and often lack pockets, complicating the discovery of small molecules that target such sites. Alternative targeting approaches using antibodies have limitations due to poor oral bioavailability, low cell-permeability, and production inefficiency. Using peptides to target PPI interfaces has several advantages. Peptides have higher conformational flexibility, increased selectivity, and are generally inexpensive. However, peptides have their own limitations including poor stability and inefficiency crossing cell membranes. To overcome such limitations, peptide cyclization can be performed. Cyclization has been demonstrated to improve peptide selectivity, metabolic stability, and bioavailability. However, predicting the bioactive conformation of a cyclic peptide is not trivial. To overcome this challenge, one attractive approach it to screen a focused library to screen in which all backbone cyclic peptides have the same primary sequence, but differ in parameters that influence their conformation, such as ring size and position. We describe a detailed protocol for synthesizing a library of backbone cyclic peptides targeting specific parasite PPIs. Using a rational design approach, we developed peptides derived from the scaffold protein Leishmania receptor for activated C-kinase (LACK). We hypothesized that sequences in LACK that are conserved in parasites, but not in the mammalian host homolog, may represent interaction sites for proteins that are critical for the parasites' viability. The cyclic peptides were synthesized using microwave irradiation to reduce reaction times and increase efficiency. Developing a library of backbone cyclic peptides with different ring sizes facilitates a

  2. Conformal Symmetry and Unification

    CERN Document Server

    Pawlowski, M

    1998-01-01

    The Weyl-Weinberg-Salam model is presented. It is based on the local conformal gauge symmetry. The model identifies the Higgs scalar field in SM with the Penrose-Chernikov-Tagirov scalar field of the conformal theory of gravity. Higgs mechanism for generation of particle masses is replaced by the originated in Weyl's ideas conformal gauge scale fixing. Scalar field is no longer a dynamical field of the model and does not lead to quantum particle-like excitations that could be observed in HE experiments. Cosmological constant is naturally generated by the scalar quadric term. The model admits Weyl vector bosons that can mix with photon and weak bosons.

  3. Quantum conformal mechanics

    CERN Document Server

    Andrzejewski, K

    2015-01-01

    The quantum mechanics of one degree of freedom exhibiting the exact conformal SL(2,R) symmetry is presented. The starting point is the classification of the unitary irreducible representations of the SL(2,R) group (or, to some extent, its universal covering). The coordinate representation is defined as the basis diagonalizing the special conformal generator K. It is indicated how the resulting theory emerges from the canonical/geometric quantization of the Hamiltonian dynamics on the relevant coadjoint orbits.

  4. Mean-field calculations of chain packing and conformational statistics in lipid bilayers: comparison with experiments and molecular dynamics studies.

    OpenAIRE

    Fattal, D R; Ben-Shaul, A

    1994-01-01

    A molecular, mean-field theory of chain packing statistics in aggregates of amphiphilic molecules is applied to calculate the conformational properties of the lipid chains comprising the hydrophobic cores of dipalmitoyl-phosphatidylcholine (DPPC), dioleoyl-phosphatidylcholine (DOPC), and palmitoyl-oleoyl-phosphatidylcholine (POPC) bilayers in their fluid state. The central quantity in this theory, the probability distribution of chain conformations, is evaluated by minimizing the free energy ...

  5. Restricted Conformation Dynamics of Single Functionalized Perylene Bisimide Molecules on SiO2 Surfaces and in Thin Polymer Films

    OpenAIRE

    Kowerko, Danny; Schuster, Jörg; Von Borczyskowski, Christian

    2009-01-01

    Abstract Intramolecular conformational dynamics caused by the bay groups of perylene bisimide (PBI) molecules have been investigated by single molecule spectroscopy in thin PMMA polymer films and on SiO2 surfaces. All dynamic processes occur in a jump-like fashion on SiO2 but in a likewise continuous way in PMMA. Surface attachment on SiO2 is accomplished by pyridyl functionalisation of PBI demonstrating a nearly perpendicular orientation of the long axis of perylene as has been co...

  6. The determinants of bond angle variability in protein/peptide backbones: A comprehensive statistical/quantum mechanics analysis.

    Science.gov (United States)

    Improta, Roberto; Vitagliano, Luigi; Esposito, Luciana

    2015-11-01

    The elucidation of the mutual influence between peptide bond geometry and local conformation has important implications for protein structure refinement, validation, and prediction. To gain insights into the structural determinants and the energetic contributions associated with protein/peptide backbone plasticity, we here report an extensive analysis of the variability of the peptide bond angles by combining statistical analyses of protein structures and quantum mechanics calculations on small model peptide systems. Our analyses demonstrate that all the backbone bond angles strongly depend on the peptide conformation and unveil the existence of regular trends as function of ψ and/or φ. The excellent agreement of the quantum mechanics calculations with the statistical surveys of protein structures validates the computational scheme here employed and demonstrates that the valence geometry of protein/peptide backbone is primarily dictated by local interactions. Notably, for the first time we show that the position of the H(α) hydrogen atom, which is an important parameter in NMR structural studies, is also dependent on the local conformation. Most of the trends observed may be satisfactorily explained by invoking steric repulsive interactions; in some specific cases the valence bond variability is also influenced by hydrogen-bond like interactions. Moreover, we can provide a reliable estimate of the energies involved in the interplay between geometry and conformations. PMID:26264789

  7. Coupling Protein Side-Chain and Backbone Flexibility Improves the Re-design of Protein-Ligand Specificity.

    Directory of Open Access Journals (Sweden)

    Noah Ollikainen

    Full Text Available Interactions between small molecules and proteins play critical roles in regulating and facilitating diverse biological functions, yet our ability to accurately re-engineer the specificity of these interactions using computational approaches has been limited. One main difficulty, in addition to inaccuracies in energy functions, is the exquisite sensitivity of protein-ligand interactions to subtle conformational changes, coupled with the computational problem of sampling the large conformational search space of degrees of freedom of ligands, amino acid side chains, and the protein backbone. Here, we describe two benchmarks for evaluating the accuracy of computational approaches for re-engineering protein-ligand interactions: (i prediction of enzyme specificity altering mutations and (ii prediction of sequence tolerance in ligand binding sites. After finding that current state-of-the-art "fixed backbone" design methods perform poorly on these tests, we develop a new "coupled moves" design method in the program Rosetta that couples changes to protein sequence with alterations in both protein side-chain and protein backbone conformations, and allows for changes in ligand rigid-body and torsion degrees of freedom. We show significantly increased accuracy in both predicting ligand specificity altering mutations and binding site sequences. These methodological improvements should be useful for many applications of protein-ligand design. The approach also provides insights into the role of subtle conformational adjustments that enable functional changes not only in engineering applications but also in natural protein evolution.

  8. Dynamic MLC tracking of moving targets with a single kV imager for 3D conformal and IMRT treatments

    International Nuclear Information System (INIS)

    Background. Tumor motion during radiotherapy is a major challenge for accurate dose delivery, in particular for hypofractionation and dose painting. The motion may be compensated by dynamic multileaf collimator (DMLC) tracking. Previous work has demonstrated that a single kV imager can accurately localize moving targets for DMLC tracking during rotational delivery, however this method has not been investigated for the static gantry geometry used for conformal and IMRT treatments. In this study we investigate the accuracy of single kV-imager based DMLC tracking for static-gantry delivery. Material and methods. A 5-field treatment plan with circular field shape and 200 MU per field was delivered in 20 s per field to a moving phantom with an embedded gold marker. Fluoroscopic kV images were acquired at 5 Hz perpendicular to the treatment beam axis during a 120 deg pre-treatment gantry rotation, during treatment delivery, and during inter-field gantry rotations. The three-dimensional marker position was estimated from the kV images and used for MLC adaptation. Experiments included 12 thoracic/abdominal tumor trajectories and five prostate trajectories selected from databases with 160 and 548 trajectories, respectively. The tracking error was determined as the mismatch between the marker position and the MLC aperture center in portal images. Simulations extended the study to all trajectories in the databases and to treatments with prolonged duration of 60 s per field. Results. In the experiments, the mean root-mean-square (rms) tracking error was 0.9 mm (perpendicular to MLC) and 1.1 mm (parallel to MLC) for thoracic/abdominal tumor trajectories and 0.6 mm (perpendicular) and 0.5 mm (parallel) for prostate trajectories. Simulations of these experiments agreed to within 0.1 mm. Simulations of all trajectories in the databases resulted in mean rms tracking errors of 0.6 mm (perpendicular) and 0.9 mm (parallel) for thorax/abdomen tumors and 0.4 mm (perpendicular) and 0

  9. Workers’ Conformism

    Directory of Open Access Journals (Sweden)

    Nikolay Ivantchev

    2013-10-01

    Full Text Available Conformism was studied among 46 workers with different kinds of occupations by means of two modified scales measuring conformity by Santor, Messervey, and Kusumakar (2000 – scale for perceived peer pressure and scale for conformism in antisocial situations. The hypothesis of the study that workers’ conformism is expressed in a medium degree was confirmed partly. More than a half of the workers conform in a medium degree for taking risk, and for the use of alcohol and drugs, and for sexual relationships. More than a half of the respondents conform in a small degree for anti-social activities (like a theft. The workers were more inclined to conform for risk taking (10.9%, then – for the use of alcohol, drugs and for sexual relationships (8.7%, and in the lowest degree – for anti-social activities (6.5%. The workers who were inclined for the use of alcohol and drugs tended also to conform for anti-social activities.

  10. Exploring the conformational and binding properties of unphosphorylated/phosphorylated monomeric and trimeric Bcl-2 through docking and molecular dynamics simulations.

    Science.gov (United States)

    Zacarías-Lara, Oscar J; Correa-Basurto, José; Bello, Martiniano

    2016-07-01

    B-cell lymphoma (Bcl-2) is commonly associated with the progression and preservation of cancer and certain lymphomas; therefore, it is considered as a biological target against cancer. Nevertheless, evidence of all its structural binding sites has been hidden because of the lack of a complete Bcl-2 model, given the presence of a flexible loop domain (FLD), which is responsible for its complex behavior. FLD region has been implicated in phosphorylation, homotrimerization, and heterodimerization associated with Bcl-2 antiapoptotic function. In this contribution, homology modeling, molecular dynamics (MD) simulations in the microsecond (µs) time-scale and docking calculations were combined to explore the conformational complexity of unphosphorylated/phosphorylated monomeric and trimeric Bcl-2 systems. Conformational ensembles generated through MD simulations allowed for identifying the most populated unphosphorylated/phosphorylated monomeric conformations, which were used as starting models to obtain trimeric complexes through protein-protein docking calculations, also submitted to µs MD simulations. Principal component analysis showed that FLD represents the main contributor to total Bcl-2 mobility, and is affected by phosphorylation and oligomerization. Subsequently, based on the most representative unphosphorylated/phosphorylated monomeric and trimeric Bcl-2 conformations, docking studies were initiated to identify the ligand binding site of several known Bcl-2 inhibitors to explain their influence in homo-complex formation and phosphorylation. Docking studies showed that the different conformational states experienced by FLD, such as phosphorylation and oligomerization, play an essential role in the ability to make homo and hetero-complexes. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 393-413, 2016. PMID:27016043

  11. Continuous wave W- and D-Band EPR spectroscopy offer “sweet-spots” for characterizing conformational changes and dynamics in intrinsically disordered proteins

    International Nuclear Information System (INIS)

    Highlights: • W- and D-Band line shapes are sensitive to motions in the 0.1–2 ns time regime. • These frequencies effectively report on conformational dynamics of IDPs. • W-band spectra reflecting helical formation in IA3 is experimentally demonstrated. - Abstract: Site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy is a powerful tool for characterizing conformational sampling and dynamics in biological macromolecules. Here we demonstrate that nitroxide spectra collected at frequencies higher than X-band (∼9.5 GHz) have sensitivity to the timescale of motion sampled by highly dynamic intrinsically disordered proteins (IDPs). The 68 amino acid protein IA3, was spin-labeled at two distinct sites and a comparison of X-band, Q-band (35 GHz) and W-band (95 GHz) spectra are shown for this protein as it undergoes the helical transition chemically induced by tri-fluoroethanol. Experimental spectra at W-band showed pronounced line shape dispersion corresponding to a change in correlation time from ∼0.3 ns (unstructured) to ∼0.6 ns (α-helical) as indicated by comparison with simulations. Experimental and simulated spectra at X- and Q-bands showed minimal dispersion over this range, illustrating the utility of SDSL EPR at higher frequencies for characterizing structural transitions and dynamics in IDPs

  12. Geometry motivated alternative view on local protein backbone structures

    OpenAIRE

    Zacharias, Jan; Knapp, Ernst Walter

    2013-01-01

    We present an alternative to the classical Ramachandran plot (R-plot) to display local protein backbone structure. Instead of the (ϕ, ψ)-backbone angles relating to the chemical architecture of polypeptides generic helical parameters are used. These are the rotation or twist angle ϑ and the helical rise parameter d. Plots with these parameters provide a different view on the nature of local protein backbone structures. It allows to display the local structures in polar (d, ϑ)-coordinates, whi...

  13. Molecular Dynamics Simulations of the O-glycosylated 21-residue MUC1 Peptides

    Directory of Open Access Journals (Sweden)

    S. Sherman

    2004-03-01

    Full Text Available Abstract: The conformational propensities of the 21-residue peptide and its Oglycosylated analogs were studied by molecular dynamics (MD simulations. This polypeptide motif comprises the tandem repeat of the human mucin (MUC1 protein core that is differently glycosylated in normal and cancer cells. To evaluate the structural effects of O-glycosylation on the polypeptide backbone, conformations of the nonglycosylated peptide and its glycosylated analogs were monitored during the 1 ns MD simulations. Radius gyration for whole peptide and its fragments, as well as root-meansquare-deviation between coordinate sets of the backbone atoms of starting structures and generated structures, were calculated. It was shown that O-glycosylation promotes and stabilizes the extended conformations of the whole peptide and its central PDTRP fragment. O-glycosylation of the specific Thr residues significantly affects the conformational distributions of the flanking Ser residues. It was also shown that Oglycosylation promoted backbone conformations of the immunodominant region PDTRP that were similar to the structural features of the peptides presented by the major histocompatability complex (MHC to T-cell receptors.

  14. Quantum chemical benchmark study on 46 RNA backbone families using a dinucleotide unit.

    Science.gov (United States)

    Kruse, Holger; Mladek, Arnost; Gkionis, Konstantinos; Hansen, Andreas; Grimme, Stefan; Sponer, Jiri

    2015-10-13

    We have created a benchmark set of quantum chemical structure-energy data denoted as UpU46, which consists of 46 uracil dinucleotides (UpU), representing all known 46 RNA backbone conformational families. Penalty-function-based restrained optimizations with COSMO TPSS-D3/def2-TZVP ensure a balance between keeping the target conformation and geometry relaxation. The backbone geometries are close to the clustering-means of their respective RNA bioinformatics family classification. High-level wave function methods (DLPNO-CCSD(T) as reference) and a wide-range of dispersion-corrected or inclusive DFT methods (DFT-D3, VV10, LC-BOP-LRD, M06-2X, M11, and more) are used to evaluate the conformational energies. The results are compared to the Amber RNA bsc0χOL3 force field. Most dispersion-corrected DFT methods surpass the Amber force field significantly in accuracy and yield mean absolute deviations (MADs) for relative conformational energies of ∼0.4-0.6 kcal/mol. Double-hybrid density functionals represent the most accurate class of density functionals. Low-cost quantum chemical methods such as PM6-D3H+, HF-3c, DFTB3-D3, as well as small basis set calculations corrected for basis set superposition errors (BSSEs) by the gCP procedure are also tested. Unfortunately, the presently available low-cost methods are struggling to describe the UpU conformational energies with satisfactory accuracy. The UpU46 benchmark is an ideal test for benchmarking and development of fast methods to describe nucleic acids, including force fields. PMID:26574283

  15. Millisecond dynamics in glutaredoxin during catalytic turnover is dependent on substrate binding and absent in the resting states

    DEFF Research Database (Denmark)

    Jensen, Kristine Steen; Winther, Jakob R; Teilum, Kaare

    2011-01-01

    time scale of catalytic turnover were not observed for the enzyme in the resting states, implying that alternative conformers do not accumulate to significant concentrations. These results infer that the turnover rate in glutaredoxin is governed by formation of a productive enzyme-substrate encounter......Conformational dynamics is important for enzyme function. Which motions of enzymes determine catalytic efficiency and whether the same motions are important for all enzymes, however, are not well understood. Here we address conformational dynamics in glutaredoxin during catalytic turnover with a...... tuned to exchange on the millisecond time scale. The conformational changes of the protein backbone during catalysis were followed by (15)N nuclear spin relaxation dispersion experiments. A conformational transition that is well described by a two-state process with an exchange rate corresponding to the...

  16. Different conformational dynamics of β-arrestin1 and β-arrestin2 analyzed by hydrogen/deuterium exchange mass spectrometry

    International Nuclear Information System (INIS)

    Highlights: • The conformational dynamics of β-arrestin1 or β-arrestin2 were analyzed by HDX-MS. • β-Strands II through IV were more dynamic in β-arrestin2 than in β-arrestin1. • The middle loop was less dynamic in β-arrestin2 than in β-arrestin1. • Upon pre-activation by the R169E mutation, β-arrestins became more dynamic. • Pre-activation affected a wider region of β-arrestin1 compared to β-arrestin2. - Abstract: Arrestins have important roles in G protein-coupled receptor (GPCR) signaling including desensitization of GPCRs and G protein-independent signaling. There have been four arrestins identified: arrestin1, arrestin2 (e.g. β-arrestin1), arrestin3 (e.g. β-arrestin2), and arrestin4. β-Arrestin1 and β-arrestin2 are ubiquitously expressed and regulate a broad range of GPCRs, while arrestin1 and arrestin4 are expressed in the visual system. Although the functions of β-arrestin1 and β-arrestin2 widely overlap, β-arrestin2 has broader receptor selectivity, and a few studies have suggested that β-arrestin1 and β-arrestin2 have distinct cellular functions. Here, we compared the conformational dynamics of β-arrestin1 and β-arrestin2 by hydrogen/deuterium exchange mass spectrometry (HDX-MS). We also used the R169E mutant as a pre-activation model system. HDX-MS data revealed that β-strands II through IV were more dynamic in β-arrestin2 in the basal state, while the middle loop was more dynamic in β-arrestin1. With pre-activation, both β-arrestin1 and β-arrestin2 became more flexible, but broader regions of β-arrestin1 became flexible compared to β-arrestin2. The conformational differences between β-arrestin1 and β-arrestin2 in both the basal and pre-activated states might determine their different receptor selectivities and different cellular functions

  17. Different conformational dynamics of β-arrestin1 and β-arrestin2 analyzed by hydrogen/deuterium exchange mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Youngjoo; Kim, Dong Kyun [School of Pharmacy, Sungkyunkwan University, Suwon (Korea, Republic of); Seo, Min-Duk [College of Pharmacy & Department of Molecular Science and Technology, Ajou University, Suwon (Korea, Republic of); Kim, Kyeong-Man [College of Pharmacy, Chonnam National University, Gwang-Ju (Korea, Republic of); Chung, Ka Young, E-mail: kychung2@skku.edu [School of Pharmacy, Sungkyunkwan University, Suwon (Korea, Republic of)

    2015-01-30

    Highlights: • The conformational dynamics of β-arrestin1 or β-arrestin2 were analyzed by HDX-MS. • β-Strands II through IV were more dynamic in β-arrestin2 than in β-arrestin1. • The middle loop was less dynamic in β-arrestin2 than in β-arrestin1. • Upon pre-activation by the R169E mutation, β-arrestins became more dynamic. • Pre-activation affected a wider region of β-arrestin1 compared to β-arrestin2. - Abstract: Arrestins have important roles in G protein-coupled receptor (GPCR) signaling including desensitization of GPCRs and G protein-independent signaling. There have been four arrestins identified: arrestin1, arrestin2 (e.g. β-arrestin1), arrestin3 (e.g. β-arrestin2), and arrestin4. β-Arrestin1 and β-arrestin2 are ubiquitously expressed and regulate a broad range of GPCRs, while arrestin1 and arrestin4 are expressed in the visual system. Although the functions of β-arrestin1 and β-arrestin2 widely overlap, β-arrestin2 has broader receptor selectivity, and a few studies have suggested that β-arrestin1 and β-arrestin2 have distinct cellular functions. Here, we compared the conformational dynamics of β-arrestin1 and β-arrestin2 by hydrogen/deuterium exchange mass spectrometry (HDX-MS). We also used the R169E mutant as a pre-activation model system. HDX-MS data revealed that β-strands II through IV were more dynamic in β-arrestin2 in the basal state, while the middle loop was more dynamic in β-arrestin1. With pre-activation, both β-arrestin1 and β-arrestin2 became more flexible, but broader regions of β-arrestin1 became flexible compared to β-arrestin2. The conformational differences between β-arrestin1 and β-arrestin2 in both the basal and pre-activated states might determine their different receptor selectivities and different cellular functions.

  18. Short-time dynamics of pH-dependent conformation and substrate binding in the active site of beta-glucosidases: A computational study.

    Science.gov (United States)

    Flannelly, David F; Aoki, Thalia G; Aristilde, Ludmilla

    2015-09-01

    The complete degradation of cellulose to glucose is essential to carbon turnover in terrestrial ecosystems and to engineered biofuel production. A rate-limiting step in this pathway is catalyzed by beta-glucosidase (BG) enzymes, which convert cellulobiose into two glucose molecules. The activity of these enzymes has been shown to vary with solution pH. However, it is not well understood how pH influences the enzyme conformation required for catalytic action on the substrate. A structural understanding of this pH effect is important for predicting shifts in BG activity in bioreactors and environmental matrices, in addition to informing targeted protein engineering. Here we applied molecular dynamics simulations to explore conformational and substrate binding dynamics in two well-characterized BGs of bacterial (Clostridium cellulovorans) and fungal (Trichoderma reesei) origins as a function of pH. The enzymes were simulated in an explicit solvated environment, with NaCl as electrolytes, at their prominent ionization states obtained at pH 5, 6, 7, and 7.5. Our findings indicated that pH-dependent changes in the ionization states of non-catalytic residues localized outside of the immediate active site led to pH-dependent disruption of the active site conformation. This disruption interferes with favorable H-bonding interactions with catalytic residues required to initiate catalysis on the substrate. We also identified specific non-catalytic residues that are involved in stabilizing the substrate at the optimal pH for enzyme activity. The simulations further revealed the dynamics of water-bridging interactions both outside and inside the substrate binding cleft during structural changes in the enzyme-substrate complex. These findings provide new structural insights into the pH-dependent substrate binding specificity in BGs. PMID:26160737

  19. Conformal Infinity

    Directory of Open Access Journals (Sweden)

    Frauendiener Jörg

    2004-01-01

    Full Text Available The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, 'conformal infinity' is related to almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved from physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation, and how it lends itself very naturally to the solution of radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.

  20. Conformal Infinity

    Directory of Open Access Journals (Sweden)

    Frauendiener Jörg

    2000-08-01

    Full Text Available The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, ``conformal infinity'' is related with almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved out of physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation and how it lends itself very naturally to solve radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.

  1. Dynamics and structural changes induced by ATP and/or substrate binding in the inward-facing conformation state of P-glycoprotein

    Science.gov (United States)

    Watanabe, Yurika; Hsu, Wei-Lin; Chiba, Shuntaro; Hayashi, Tomohiko; Furuta, Tadaomi; Sakurai, Minoru

    2013-02-01

    P-glycoprotein (P-gp) is a multidrug transporter that catalyzes the transport of a substrate. To elucidate the underlying mechanism of this type of substrate transport, we performed molecular dynamics (MD) simulations using the X-ray crystal structure of P-gp, which has an inward-facing conformation. Our simulations indicated that the dimerization of the nucleotide binding domains (NBDs) is driven by the binding of ATP to the NBDs and/or the binding of the substrate to a cavity in the transmembrane domains (TMDs). Based on these results, we discuss a role of ATP in the allosteric communication that occurs between the NBDs and the TMDs.

  2. High-dose radiotherapy in inoperable nonsmall cell lung cancer: comparison of volumetric modulated arc therapy, dynamic IMRT and 3D conformal radiotherapy.

    Science.gov (United States)

    Bree, Ingrid de; van Hinsberg, Mariëlle G E; van Veelen, Lieneke R

    2012-01-01

    Conformal 3D radiotherapy (3D-CRT) combined with chemotherapy for inoperable non-small cell lung cancer (NSCLC) to the preferable high dose is often not achievable because of dose-limiting organs. This reduces the probability of regional tumor control. Therefore, the surplus value of using intensity-modulated radiation therapy (IMRT) techniques, specifically volumetric modulated arc therapy (RapidArc [RA]) and dynamic IMRT (d-IMRT) has been investigated. RA and d-IMRT plans were compared with 3D-CRT treatment plans for 20 patients eligible for concurrent high-dose chemoradiotherapy, in whom a dose of 60 Gy was not achievable. Comparison of dose delivery in the target volume and organs at risk was carried out by evaluating 3D dose distributions and dose-volume histograms. Quality of the dose distribution was assessed using the inhomogeneity and conformity index. For most patients, a higher dose to the target volume can be delivered using RA or d-IMRT; in 15% of the patients a dose ≥60 Gy was possible. Both IMRT techniques result in a better conformity of the dose (p < 0.001). There are no significant differences in homogeneity of dose in the target volume. IMRT techniques for NSCLC patients allow higher dose to the target volume, thus improving regional tumor control. PMID:22459649

  3. High-dose radiotherapy in inoperable nonsmall cell lung cancer: Comparison of volumetric modulated arc therapy, dynamic IMRT and 3D conformal radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Bree, Ingrid de, E-mail: i.de.bree@zrti.nl [Zeeuws Radiotherapeutisch Instituut, Vlissingen (Netherlands); Hinsberg, Marieelle G.E. van; Veelen, Lieneke R. van [Zeeuws Radiotherapeutisch Instituut, Vlissingen (Netherlands)

    2012-01-01

    Conformal 3D radiotherapy (3D-CRT) combined with chemotherapy for inoperable non-small cell lung cancer (NSCLC) to the preferable high dose is often not achievable because of dose-limiting organs. This reduces the probability of regional tumor control. Therefore, the surplus value of using intensity-modulated radiation therapy (IMRT) techniques, specifically volumetric modulated arc therapy (RapidArc [RA]) and dynamic IMRT (d-IMRT) has been investigated. RA and d-IMRT plans were compared with 3D-CRT treatment plans for 20 patients eligible for concurrent high-dose chemoradiotherapy, in whom a dose of 60 Gy was not achievable. Comparison of dose delivery in the target volume and organs at risk was carried out by evaluating 3D dose distributions and dose-volume histograms. Quality of the dose distribution was assessed using the inhomogeneity and conformity index. For most patients, a higher dose to the target volume can be delivered using RA or d-IMRT; in 15% of the patients a dose {>=}60 Gy was possible. Both IMRT techniques result in a better conformity of the dose (p < 0.001). There are no significant differences in homogeneity of dose in the target volume. IMRT techniques for NSCLC patients allow higher dose to the target volume, thus improving regional tumor control.

  4. High-dose radiotherapy in inoperable nonsmall cell lung cancer: Comparison of volumetric modulated arc therapy, dynamic IMRT and 3D conformal radiotherapy

    International Nuclear Information System (INIS)

    Conformal 3D radiotherapy (3D-CRT) combined with chemotherapy for inoperable non–small cell lung cancer (NSCLC) to the preferable high dose is often not achievable because of dose-limiting organs. This reduces the probability of regional tumor control. Therefore, the surplus value of using intensity-modulated radiation therapy (IMRT) techniques, specifically volumetric modulated arc therapy (RapidArc [RA]) and dynamic IMRT (d-IMRT) has been investigated. RA and d-IMRT plans were compared with 3D-CRT treatment plans for 20 patients eligible for concurrent high-dose chemoradiotherapy, in whom a dose of 60 Gy was not achievable. Comparison of dose delivery in the target volume and organs at risk was carried out by evaluating 3D dose distributions and dose-volume histograms. Quality of the dose distribution was assessed using the inhomogeneity and conformity index. For most patients, a higher dose to the target volume can be delivered using RA or d-IMRT; in 15% of the patients a dose ≥60 Gy was possible. Both IMRT techniques result in a better conformity of the dose (p < 0.001). There are no significant differences in homogeneity of dose in the target volume. IMRT techniques for NSCLC patients allow higher dose to the target volume, thus improving regional tumor control.

  5. Deuterium NMR Studies of the Structure and Dynamics of Gramicidin.

    Science.gov (United States)

    Hing, Andrew William

    1990-01-01

    The structure and dynamics of the membrane peptide gramicidin are investigated by deuterium NMR. A specific structural and dynamical question about the peptide backbone of gramicidin is investigated by deuterating the alpha carbon of the third alanine residue. Deuterium NMR experiments performed on this analog in oriented lipid bilayers indicate that the c_alpha- ^2H bond makes an angle relative to the helical axis that is in agreement with the bond angle predicted by the beta^{6.3} helical model. A second structural and dynamical question about the peptide backbone of gramicidin is investigated by deuterating the formyl group of two different analogs. Deuterium NMR experiments performed on these analogs show that the spectra of the two analogs are very similar. However, the analog possessing D-leucine as the second residue also appears to exist in a second, minor conformation which does not seem to exist for the analog possessing glycine as the second residue.

  6. Monitoring Backbone Hydrogen-Bond Formation in β-Barrel Membrane Protein Folding.

    Science.gov (United States)

    Raschle, Thomas; Rios Flores, Perla; Opitz, Christian; Müller, Daniel J; Hiller, Sebastian

    2016-05-10

    β-barrel membrane proteins are key components of the outer membrane of bacteria, mitochondria and chloroplasts. Their three-dimensional structure is defined by a network of backbone hydrogen bonds between adjacent β-strands. Here, we employ hydrogen-deuterium (H/D) exchange in combination with NMR spectroscopy and mass spectrometry to monitor backbone hydrogen bond formation during folding of the outer membrane protein X (OmpX) from E. coli in detergent micelles. Residue-specific kinetics of interstrand hydrogen-bond formation were found to be uniform in the entire β-barrel and synchronized to formation of the tertiary structure. OmpX folding thus propagates via a long-lived conformational ensemble state in which all backbone amide protons exchange with the solvent and engage in hydrogen bonds only transiently. Stable formation of the entire OmpX hydrogen bond network occurs downhill of the rate-limiting transition state and thus appears cooperative on the overall folding time scale. PMID:27062600

  7. Contralog: a Prolog conform forward-chaining environment and its application for dynamic programming and natural language parsing

    Directory of Open Access Journals (Sweden)

    Kilián Imre

    2016-06-01

    Full Text Available The backward-chaining inference strategy of Prolog is inefficient for a number of problems. The article proposes Contralog: a Prolog-conform, forward-chaining language and an inference engine that is implemented as a preprocessor-compiler to Prolog. The target model is Prolog, which ensures mutual switching from Contralog to Prolog and back. The Contralog compiler is implemented using Prolog's de facto standardized macro expansion capability. The article goes into details regarding the target model.

  8. High Performance Infiltrated Backbones for Cathode-Supported SOFC's

    DEFF Research Database (Denmark)

    Gil, Vanesa; Kammer Hansen, Kent

    2014-01-01

    A four-step infiltration method has been developed to infiltrate La0.75Sr0.25MnO3+δ (LSM25) nanoparticles into porous structures (YSZ or LSM-YSZ backbones). The pore size distribution in the backbones is obtained either by using PMMA and/or graphites as pore formers or by leaching treatment of...

  9. Determination of Protein Backbone Structures from Residual Dipolar Couplings

    OpenAIRE

    Prestegard, J H; Mayer, K. L.; Valafar, H.; Benison, G. C.

    2005-01-01

    There are a number of circumstances where a focus on determination of the backbone structure of a protein, as opposed to a complete all-atom structure, may be appropriate. This is particularly the case for structures determined as a part of a structural genomics initiative where computational modeling of many sequentially related structures from the backbone of a single family representative is anti...

  10. Hash: a program to accurately predict protein H{sup {alpha}} shifts from neighboring backbone shifts

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Jianyang, E-mail: zengjy@gmail.com [Tsinghua University, Institute for Interdisciplinary Information Sciences (China); Zhou Pei [Duke University Medical Center, Department of Biochemistry (United States); Donald, Bruce Randall [Duke University, Department of Computer Science (United States)

    2013-01-15

    Chemical shifts provide not only peak identities for analyzing nuclear magnetic resonance (NMR) data, but also an important source of conformational information for studying protein structures. Current structural studies requiring H{sup {alpha}} chemical shifts suffer from the following limitations. (1) For large proteins, the H{sup {alpha}} chemical shifts can be difficult to assign using conventional NMR triple-resonance experiments, mainly due to the fast transverse relaxation rate of C{sup {alpha}} that restricts the signal sensitivity. (2) Previous chemical shift prediction approaches either require homologous models with high sequence similarity or rely heavily on accurate backbone and side-chain structural coordinates. When neither sequence homologues nor structural coordinates are available, we must resort to other information to predict H{sup {alpha}} chemical shifts. Predicting accurate H{sup {alpha}} chemical shifts using other obtainable information, such as the chemical shifts of nearby backbone atoms (i.e., adjacent atoms in the sequence), can remedy the above dilemmas, and hence advance NMR-based structural studies of proteins. By specifically exploiting the dependencies on chemical shifts of nearby backbone atoms, we propose a novel machine learning algorithm, called Hash, to predict H{sup {alpha}} chemical shifts. Hash combines a new fragment-based chemical shift search approach with a non-parametric regression model, called the generalized additive model, to effectively solve the prediction problem. We demonstrate that the chemical shifts of nearby backbone atoms provide a reliable source of information for predicting accurate H{sup {alpha}} chemical shifts. Our testing results on different possible combinations of input data indicate that Hash has a wide rage of potential NMR applications in structural and biological studies of proteins.

  11. Backbone flexibility in protein design theory and experiment

    Science.gov (United States)

    Su, Alyce

    The role of backbone flexibility in protein design was studied. First, the effect of explicit backbone motion on the selection of amino acids in protein design was assessed in the core of the streptococcal protein Gβ1 domain (Gβ1). Concerted backbone motion was introduced by varying Gβ1's supersecondary structure parameter values. The stability and structural flexibility of seven of the redesigned proteins were determined experimentally. Core variants containing as many as six of ten possible mutations retained native-like properties. This result demonstrates that backbone flexibility can be combined with amino acid side-chain selection and that the selection algorithm is sufficiently robust to tolerate perturbations as large as 15% of the native parameter values. Second, a general, quantitative design method for computing de novo backbone templates was developed. The method had to compute atomic resolution backbones compatible with the atomistic sequence selection algorithm we were using and it had to be applicable to all protein motifs. We again developed a method that uses super-secondary structure parameters to determine the orientation among secondary structural elements, given a target protein fold. Possible backbone arrangements were screened using a cost function which evaluates core packing, hydrogen bonding, loop closure, and backbone torsional geometry. Given a specified number of residues for each secondary structural element, a family of optimal configurations was found. We chose three motifs to test our method (ββα, βαβ, and αα) since their combination could be used to approximate most possible backbone fold. The best structure found for the ββα motif is similar to a zinc finger, and the best structure for the ββα motif is similar to a segment of a β-barrel. The backbone obtained for the αα motif resembles minimized protein A. Last, our backbone design method was evaluated by testing the thermal stability and structural properties

  12. Identical repeated backbone of the human genome

    Directory of Open Access Journals (Sweden)

    Gonzaga-Jauregui Claudia

    2010-01-01

    Full Text Available Abstract Background Identical sequences with a minimal length of about 300 base pairs (bp have been involved in the generation of various meiotic/mitotic genomic rearrangements through non-allelic homologous recombination (NAHR events. Genomic disorders and structural variation, together with gene remodelling processes have been associated with many of these rearrangements. Based on these observations, we identified and integrated all the 100% identical repeats of at least 300 bp in the NCBI version 36.2 human genome reference assembly into non-overlapping regions, thus defining the Identical Repeated Backbone (IRB of the reference human genome. Results The IRB sequences are distributed all over the genome in 66,600 regions, which correspond to ~2% of the total NCBI human genome reference assembly. Important structural and functional elements such as common repeats, segmental duplications, and genes are contained in the IRB. About 80% of the IRB bp overlap with known copy-number variants (CNVs. By analyzing the genes embedded in the IRB, we were able to detect some identical genes not previously included in the Ensembl release 50 annotation of human genes. In addition, we found evidence of IRB gene copy-number polymorphisms in raw sequence reads of two diploid sequenced genomes. Conclusions In general, the IRB offers new insight into the complex organization of the identical repeated sequences of the human genome. It provides an accurate map of potential NAHR sites which could be used in targeting the study of novel CNVs, predicting DNA copy-number variation in newly sequenced genomes, and improve genome annotation.

  13. Use of the neutron diffraction - H/D exchange technique to determine the conformational dynamics of trypsin

    International Nuclear Information System (INIS)

    Reported here are studies analyzing the extent and nature of the inherent conformational fluctuations in trypsin by neutron diffraction - hydrogen exchange techniques. The pattern of exchange investigates systematic relationships between exchangeable sites and the structural and chemical properties of the molecule. Our findings that pH 7, 200 and 1 year of soaking all sites of trypsin are fully exchanged except those which are especially well protected by the structure. Essentially all the sites in which the peptide hydrogens are bonded directly to water molecules - either in the bulk solvent regions or in interior clusters - are fully exchanged. 41 references, 10 figures

  14. Radiation safety system (RSS) backbones: Design, engineering, fabrication and installation

    Energy Technology Data Exchange (ETDEWEB)

    Wilmarth, J.E.; Sturrock, J.C.; Gallegos, F.R.

    1998-12-01

    The Radiation Safety System (RSS) Backbones are part of an electrical/electronic/mechanical system insuring safe access and exclusion of personnel to areas at the Los Alamos Neutron Science Center (LANSCE) accelerator. The RSS Backbones control the safety fusible beam plugs which terminate transmission of accelerated ion beams in response to predefined conditions. Any beam or access fault of the backbone inputs will cause insertion of the beam plugs in the low energy beam transport. The Backbones serve the function of tying the beam plugs to the access control systems, beam spill monitoring systems and current-level limiting systems. In some ways the Backbones may be thought of as a spinal column with beam plugs at the head and nerve centers along the spinal column. The two Linac Backbone segments and experimental area segments form a continuous cable plant over 3,500 feet from beam plugs to the tip on the longest tail. The Backbones were installed in compliance with current safety standards, such as installation of the two segments in separate conduits or tray. Monitoring for ground-faults and input wiring verification was an added enhancement to the system. The system has the capability to be tested remotely.

  15. Radiation safety system (RSS) backbones: Design, engineering, fabrication and installation

    International Nuclear Information System (INIS)

    The Radiation Safety System (RSS) Backbones are part of an electrical/electronic/mechanical system insuring safe access and exclusion of personnel to areas at the Los Alamos Neutron Science Center (LANSCE) accelerator. The RSS Backbones control the safety fusible beam plugs which terminate transmission of accelerated ion beams in response to predefined conditions. Any beam or access fault of the backbone inputs will cause insertion of the beam plugs in the low energy beam transport. The Backbones serve the function of tying the beam plugs to the access control systems, beam spill monitoring systems and current-level limiting systems. In some ways the Backbones may be thought of as a spinal column with beam plugs at the head and nerve centers along the spinal column. The two Linac Backbone segments and experimental area segments form a continuous cable plant over 3,500 feet from beam plugs to the tip on the longest tail. The Backbones were installed in compliance with current safety standards, such as installation of the two segments in separate conduits or tray. Monitoring for ground-faults and input wiring verification was an added enhancement to the system. The system has the capability to be tested remotely

  16. Security in Packet-Switched Land Mobile Radio Backbone Networks

    OpenAIRE

    Thomschutz, Hans Olaf Rutger

    2005-01-01

    Spurred by change in government regulations and to leverage lower-cost technology and services, many land mobile radio (LMR) operators have begun transitioning from circuit-switched to packet-switched backbone networks to handle their future communication needs. Due to the unique demands of packet-switched backbone networks for LMR, it may not be wise to carry over the previously implemented security methods used with circuit-switch systems or to treat an LMR backbone as a regular packet-swit...

  17. Using Local States To Drive the Sampling of Global Conformations in Proteins.

    Science.gov (United States)

    Pandini, Alessandro; Fornili, Arianna

    2016-03-01

    Conformational changes associated with protein function often occur beyond the time scale currently accessible to unbiased molecular dynamics (MD) simulations, so that different approaches have been developed to accelerate their sampling. Here we investigate how the knowledge of backbone conformations preferentially adopted by protein fragments, as contained in precalculated libraries known as structural alphabets (SA), can be used to explore the landscape of protein conformations in MD simulations. We find that (a) enhancing the sampling of native local states in both metadynamics and steered MD simulations allows the recovery of global folded states in small proteins; (b) folded states can still be recovered when the amount of information on the native local states is reduced by using a low-resolution version of the SA, where states are clustered into macrostates; and (c) sequences of SA states derived from collections of structural motifs can be used to sample alternative conformations of preselected protein regions. The present findings have potential impact on several applications, ranging from protein model refinement to protein folding and design. PMID:26808351

  18. Conformational changes and slow dynamics through microsecond polarized atomistic molecular simulation of an integral Kv1.2 ion channel

    DEFF Research Database (Denmark)

    Bjelkmar, Pär; Niemelä, Perttu S; Vattulainen, Ilpo;

    2009-01-01

    the crystal structure where the hyperpolarization destabilizes S4-lipid hydrogen bonds, which leads to the helix rotating to keep the arginine side chains away from the hydrophobic phase, and the driving force for final relaxation by downward translation is partly entropic, which would explain the......, including up to 120 degrees rotation of the S4 segment, changes in hydrogen-bonding patterns, but only low amounts of translation. A smaller rotation ( approximately 35 degrees ) of the extracellular end of all S4 segments is present also in a reference 0.5 micros simulation without applied field, which...... indicates that the crystal structure might be slightly different from the natural state of the voltage sensor. The conformation change upon hyperpolarization is closely coupled to an increase in 3(10) helix contents in S4, starting from the intracellular side. This could support a model for transition from...

  19. Smooth, seamless, and structured grid generation with flexibility in resolution distribution on a sphere based on conformal mapping and the spring dynamics method

    Science.gov (United States)

    Iga, Shin-ichi

    2015-09-01

    A generation method for smooth, seamless, and structured triangular grids on a sphere with flexibility in resolution distribution is proposed. This method is applicable to many fields that deal with a sphere on which the required resolution is not uniform. The grids were generated using the spring dynamics method, and adjustments were made using analytical functions. The mesh topology determined its resolution distribution, derived from a combination of conformal mapping factors: polar stereographic projection (PSP), Lambert conformal conic projection (LCCP), and Mercator projection (MP). Their combination generated, for example, a tropically fine grid that had a nearly constant high-resolution belt around the equator, with a gradual decrease in resolution distribution outside of the belt. This grid can be applied to boundary-less simulations of tropical meteorology. The other example involves a regionally fine grid with a nearly constant high-resolution circular region and a gradually decreasing resolution distribution outside of the region. This is applicable to regional atmospheric simulations without grid nesting. The proposed grids are compatible with computer architecture because they possess a structured form. Each triangle of the proposed grids was highly regular, implying a high local isotropy in resolution. Finally, the proposed grids were examined by advection and shallow water simulations.

  20. 使用Backbone JS搭建SPA

    Institute of Scientific and Technical Information of China (English)

    吕婷

    2012-01-01

    Backbone JSR从2010年发布以来,受到了业界的广泛关注。“豆瓣说”和“豆瓣阅读(阅读器)”是两款以它为基础框架搭建的SPA,本文将结合这两款产品,向读者介绍BackboneJS的方方面面。

  1. Side chain and backbone ordering in a polypeptide

    CERN Document Server

    Wei, Y; Hansmann, U H E

    2006-01-01

    We report results from multicanonical simulations of polyglutamic acid chains of length of ten residues. For this simple polypeptide we observe a decoupling of backbone and side-chain ordering in the folding process. While the details of the two transitions vary between the peptide in gas phase and in an implicit solvent, our results indicate that, independent of the specific surroundings, upon continuously lowering the temperature side-chain ordering occurs only after the backbone topology is completely formed.

  2. Large-scale measurement and modeling of backbone Internet traffic

    Science.gov (United States)

    Roughan, Matthew; Gottlieb, Joel

    2002-07-01

    There is a brewing controversy in the traffic modeling community concerning how to model backbone traffic. The fundamental work on self-similarity in data traffic appears to be contradicted by recent findings that suggest that backbone traffic is smooth. The traffic analysis work to date has focused on high-quality but limited-scope packet trace measurements; this limits its applicability to high-speed backbone traffic. This paper uses more than one year's worth of SNMP traffic data covering an entire Tier 1 ISP backbone to address the question of how backbone network traffic should be modeled. Although the limitations of SNMP measurements do not permit us to comment on the fine timescale behavior of the traffic, careful analysis of the data suggests that irrespective of the variation at fine timescales, we can construct a simple traffic model that captures key features of the observed traffic. Furthermore, the model's parameters are measurable using existing network infrastructure, making this model practical in a present-day operational network. In addition to its practicality, the model verifies basic statistical multiplexing results, and thus sheds deep insight into how smooth backbone traffic really is.

  3. Orientation Preferences of Backbone Secondary Amide Functional Groups in Peptide Nucleic Acid Complexes: Quantum Chemical Calculations Reveal an Intrinsic Preference of Cationic D-Amino Acid-Based Chiral PNA Analogues for the P-form

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jeremy C [ORNL; Topham, Christopher [University of Heidelberg

    2007-01-01

    Geometric descriptions of nonideal interresidue hydrogen bonding and backbone-base water bridging in the minor groove are established in terms of polyamide backbone carbonyl group orientation from analyses of residue junction conformers in experimentally determined peptide nucleic acid (PNA) complexes. Two types of interresidue hydrogen bonding are identified in PNA conformers in heteroduplexes with nucleic acids that adopt A-like base pair stacking. Quantum chemical calculations on the binding of a water molecule to an O2 base atom in glycine-based PNA thymine dimers indicate that junctions modeled with P-form backbone conformations are lower in energy than a dimer comprising the predominant conformation observed in A-like helices. It is further shown in model systems that PNA analogs based on D-lysine are better able to preorganize in a conformation exclusive to P-form helices than is glycine-based PNA. An intrinsic preference for this conformation is also exhibited by positively charged chiral PNA dimers carrying 3-amino-D-alanine or 4-aza-D-leucine residue units that provide for additional rigidity by side-chain hydrogen bonding to the backbone carbonyl oxygen. Structural modifications stabilizing P-form helices may obviate the need for large heterocycles to target DNA pyrimidine bases via PNADNA-PNA triplex formation. Quantum chemical modeling methods are used to propose candidate PNA Hoogsteen strand designs.

  4. Orientation preferences of backbone secondary amide functional groups in peptide nucleic acid complexes: quantum chemical calculations reveal an intrinsic preference of cationic D-amino acid-based chiral PNA analogues for the P-form.

    Science.gov (United States)

    Topham, Christopher M; Smith, Jeremy C

    2007-02-01

    Geometric descriptions of nonideal interresidue hydrogen bonding and backbone-base water bridging in the minor groove are established in terms of polyamide backbone carbonyl group orientation from analyses of residue junction conformers in experimentally determined peptide nucleic acid (PNA) complexes. Two types of interresidue hydrogen bonding are identified in PNA conformers in heteroduplexes with nucleic acids that adopt A-like basepair stacking. Quantum chemical calculations on the binding of a water molecule to an O2 base atom in glycine-based PNA thymine dimers indicate that junctions modeled with P-form backbone conformations are lower in energy than a dimer comprising the predominant conformation observed in A-like helices. It is further shown in model systems that PNA analogs based on D-lysine are better able to preorganize in a conformation exclusive to P-form helices than is glycine-based PNA. An intrinsic preference for this conformation is also exhibited by positively charged chiral PNA dimers carrying 3-amino-D-alanine or 4-aza-D-leucine residue units that provide for additional rigidity by side-chain hydrogen bonding to the backbone carbonyl oxygen. Structural modifications stabilizing P-form helices may obviate the need for large heterocycles to target DNA pyrimidine bases via PNA.DNA-PNA triplex formation. Quantum chemical modeling methods are used to propose candidate PNA Hoogsteen strand designs. PMID:17071666

  5. Poly(meta-phenylene) Derivative with Rigid Twisted Biphenyl Units in Backbone: Synthesis, Structural Characterization,Photophysical Properties and Electroluminescence

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yan; YANG Bing; ZHANG Hai-quan; LU Ping; SHEN Fang-zhong; LIU Lin-lin; XU Hai; YANG Guang-di; MA Yu-guang

    2007-01-01

    A soluble poly(meta-phenylene) derivative with rigid twisted biphenyl unit was synthesized by the Yamamoto coupling reaction. The polymer is soluble in common organic solvents, and the number-average molecular weight is about 6500. The UV-Vis and quantum chemical calculation indicate that the different conformation segments named "conformers" exist in the polymer backbones; it was also further confirmed by the single crystal X-ray diffraction study of the dimeric model compound. The π-π* transition of biphenyl segments of twisted and planar conformations made the polymer exhibit a strong absorption around 256 nm and a weak absorption at about 300 nm. Furthermore,the polymer exhibits a strong UV photoluminescence at 372 nm when the excitation wavelengths are longer than 300 nm. The ultraviolet-emitting electroluminescence(EL) device with the single layer structure shows EL λmax of the derivative at 370 nm.

  6. Characterization of the conformational space of a triple-stranded beta-sheet forming peptide with molecular dynamics simulations

    NARCIS (Netherlands)

    Soto, P; Colombo, G

    2004-01-01

    Molecular dynamics (MD) simulations have been performed on a series of mutants of the 20 amino acid peptide Betanova in order to critically assess the ability of MD simulations to reproduce the folding and stability of small beta-sheet-forming peptides on currently accessible timescales. Simulations

  7. Conformational determination of potent antagonist analogues of oxytocin by nuclear magnetic resonance spectroscopy and molecular dynamics simulations

    Czech Academy of Sciences Publication Activity Database

    Kritsi, E.; Potamitis, C.; Zoumpoulakis, P.; Borovičková, Lenka; Slaninová, Jiřina; Assimomytis, N. L.; Magafa, V.; Cordopatis, P.

    2014-01-01

    Roč. 20, Suppl S1 (2014), S200-S201. ISSN 1075-2617. [European Peptide Symposium /33./. 31.08.2014-05.09.2014, Sofia] Institutional support: RVO:61388963 Keywords : oxytocin analogues * antagonistic activity * NMR * molecular dynamics Subject RIV: CC - Organic Chemistry

  8. Investigation of the dynamics of the viral immediate-early protein 1 in different conformations and oligomerization states.

    Science.gov (United States)

    Stump, Joachim D; Sticht, Heinrich

    2016-05-01

    The viral immediate-early protein 1 (IE1) is crucial for efficient replication of cytomegalovirus (CMV). A recent crystal structure of the IE1 protein from rhesus CMV revealed that the protein exhibits a novel fold and crystallizes in two slightly different dimeric arrangements. Molecular dynamics simulations and energetic analyses performed in this study show that both dimers are stable and allowed us to identify a common set of five residues that appear particularly important for dimer formation. These residues are distributed over the entire dimer interface and do not form a typical hot spot for protein interactions. In addition, the dimer interface of IE1 proved to include a high portion of hydrophilic interactions pointing toward the transient nature of dimer formation. Characterization of monomeric and dimeric IE1 revealed three sequentially discontinuous dynamic domains that exhibit correlated motion within the domain and are simultaneously anti-correlated to the adjacent domains. The hinge motions observed between the dynamic domains increase the shape complementarity to the coiled-coil region of tripartite motif proteins, suggesting that the detected dynamics of IE1 might be physiologically important by enabling a better interaction with its cellular target molecules. PMID:26104474

  9. Molecular dynamics studies of the inhibitory mechanism of copper(Ⅱ) on aggregation of amyloid β-peptide

    Institute of Scientific and Technical Information of China (English)

    Yong Jiao; Pin Yang

    2007-01-01

    The inhibitory mechanism of copper(Ⅱ) on the aggregation of amyloid β-peptide (Aβ) was investigated by molecular dynamics simulations. The binding mode of copper(Ⅱ) with Aβ is characterized by the imidazole nitrogen atom, Nπ, of the histidine residue H13,acting as the anchoring site, and the backbone's deprotoned amide nitrogen atoms as the main binding sites. Drove by the coordination bonds and their induced hydrogen bond net, the conformations of Aβ converted from β-sheet non-β-sheet conformations, which destabilized the aggregation of Aβ into fibrils.

  10. The Cerebellum: New Computational Model that Reveals its Primary Function to Calculate Multibody Dynamics Conform to Lagrange-Euler Formulation

    OpenAIRE

    Kurtaj, Lavdim; Limani, Ilir; Shatri, Vjosa; Skeja, Avni

    2014-01-01

    Cerebellum is part of the brain that occupies only 10% of the brain volume, but it contains about 80% of total number of brain neurons. New cerebellar function model is developed that sets cerebellar circuits in context of multibody dynamics model computations, as important step in controlling balance and movement coordination, functions performed by two oldest parts of the cerebellum. Model gives new functional interpretation for granule cells-Golgi cell circuit, including distinct function ...

  11. Conformational analysis on the wild type and mutated forms of human ORF1p: a molecular dynamics study.

    Science.gov (United States)

    Muthukumaran, Rajagopalan; Sangeetha, Balasubramanian; Amutha, Ramaswamy

    2015-07-01

    The protein ORF1p, encoded by the LINE-1 retrotransposon, is responsible for the packaging and transposition of its RNA transcript and is reported to be involved in various genetic disorders. The three domains of ORF1p co-ordinate together to facilitate the transposition, and the mechanism of nucleic acid binding is not yet clear. The C-terminal domain of ORF1p adopts a lifted, twisted or rested state, which is regulated by several inter- and intra-domain interactions that are explored in this study. The residues, Glu147, Asp151, Lys154, Arg261 and Tyr282, are majorly involved in mediating the functional dynamics of ORF1p by forming H-bonds and π-interactions. The importance of these residues was elucidated by performing molecular dynamics simulations on both native as well as mutated ORF1p. The Q147A-D151A-K154A mutant expressed unique dynamics featuring the lifting motion of the CTD core alone, while the R261A mutant resulted in the oscillatory motion of CTD. In both cases, the CTDs were held in place by Tyr282 and in its absence, the structural stability of CTDs in the trimeric unit was significantly affected. Additional interactions responsible for stabilizing the trimeric ORF1p to express its native dynamics were extracted in this study. The central role of Tyr282 in maintaining the functional state of ORF1p to facilitate nucleic acid binding and formation of ribonucleoprotein complex is well highlighted. The knowledge gained from this study forms the basis for understanding the nucleic acid binding mechanism of ORF1p, which could further provide additional support in exploring various genetic disorders. PMID:25953691

  12. Conformational determination of potent antagonistic analogues of oxytocin by nuclear magnetic resonance spectroscopy and molecular dynamics simulations

    Czech Academy of Sciences Publication Activity Database

    Magafa, V.; Kritsi, E.; Potamitis, C.; Zoumpoulakis, P.; Assimomytis, N. L.; Borovičková, Lenka; Slaninová, Jiřina; Cordopatis, P.

    Sofia : Bulgarian Peptide Society, 2015 - (Naydenova, E.; Pajpanova, T.; Danalev, D.), s. 198-199 ISBN 978-619-90427-2-4. [Peptides 2014. European Peptide Symposium /33./. Sofia (BG), 31.08.2014-05.09.2014] Institutional support: RVO:61388963 Keywords : oxytocin * NMR spectroscopy * molecular dynamics simulations Subject RIV: CE - Biochemistry http://bulpepsoc.info/wp-content/uploads/2015/06/PEPTIDES-2014-electronic-version.pdf

  13. Local conformity induced global oscillation

    Science.gov (United States)

    Li, Dong; Li, Wei; Hu, Gang; Zheng, Zhigang

    2009-04-01

    The game ‘rock-paper-scissors’ model, with the consideration of the effect of the psychology of conformity, is investigated. The interaction between each two agents is global, but the strategy of the conformity is local for individuals. In the statistical opinion, the probability of the appearance of each strategy is uniform. The dynamical analysis of this model indicates that the equilibrium state may lose its stability at a threshold and is replaced by a globally oscillating state. The global oscillation is induced by the local conformity, which is originated from the synchronization of individual strategies.

  14. Evidence from molecular dynamics simulations of conformational preorganization in the ribonuclease H active site [v2; ref status: indexed, http://f1000r.es/3pc

    Directory of Open Access Journals (Sweden)

    Kate A. Stafford

    2014-06-01

    Full Text Available Ribonuclease H1 (RNase H enzymes are well-conserved endonucleases that are present in all domains of life and are particularly important in the life cycle of retroviruses as domains within reverse transcriptase. Despite extensive study, especially of the E. coli homolog, the interaction of the highly negatively charged active site with catalytically required magnesium ions remains poorly understood. In this work, we describe molecular dynamics simulations of the E. coli homolog in complex with magnesium ions, as well as simulations of other homologs in their apo states. Collectively, these results suggest that the active site is highly rigid in the apo state of all homologs studied and is conformationally preorganized to favor the binding of a magnesium ion. Notably, representatives of bacterial, eukaryotic, and retroviral RNases H all exhibit similar active-site rigidity, suggesting that this dynamic feature is only subtly modulated by amino acid sequence and may primarily be imposed by the distinctive RNase H protein fold.

  15. Phosphorylation-dependent changes in nucleotide binding, conformation, and dynamics of the first nucleotide binding domain (NBD1) of the sulfonylurea receptor 2B (SUR2B).

    Science.gov (United States)

    de Araujo, Elvin D; Alvarez, Claudia P; López-Alonso, Jorge P; Sooklal, Clarissa R; Stagljar, Marijana; Kanelis, Voula

    2015-09-11

    The sulfonylurea receptor 2B (SUR2B) forms the regulatory subunit of ATP-sensitive potassium (KATP) channels in vascular smooth muscle. Phosphorylation of the SUR2B nucleotide binding domains (NBD1 and NBD2) by protein kinase A results in increased channel open probability. Here, we investigate the effects of phosphorylation on the structure and nucleotide binding properties of NBD1. Phosphorylation sites in SUR2B NBD1 are located in an N-terminal tail that is disordered. Nuclear magnetic resonance (NMR) data indicate that phosphorylation of the N-terminal tail affects multiple residues in NBD1, including residues in the NBD2-binding site, and results in altered conformation and dynamics of NBD1. NMR spectra of NBD1 lacking the N-terminal tail, NBD1-ΔN, suggest that phosphorylation disrupts interactions of the N-terminal tail with the core of NBD1, a model supported by dynamic light scattering. Increased nucleotide binding of phosphorylated NBD1 and NBD1-ΔN, compared with non-phosphorylated NBD1, suggests that by disrupting the interaction of the NBD core with the N-terminal tail, phosphorylation also exposes the MgATP-binding site on NBD1. These data provide insights into the molecular basis by which phosphorylation of SUR2B NBD1 activates KATP channels. PMID:26198630

  16. Automated protein backbone assignment using the projection-decomposition approach

    International Nuclear Information System (INIS)

    Spectral projection experiments by NMR in conjunction with decomposition analysis have been previously introduced for the backbone assignment of proteins; various pulse sequences as well as the behaviour with low signal-to-noise or chemical shift degeneracy have been illustrated. As a guide for routine applications of this combined tool, we provide here a systematic analysis on different types of proteins using welldefined run-time parameters. As a second result of this study, the backbone assignment module SHABBA was extensively rewritten and improved. Calculations on ubiquitin yielded again fully correct and nearly complete backbone and CHβ assignments. For the 128 residue long azurin, missing assignments mostly affect Hα and Hβ. Among the remaining backbone (plus Cβ) nuclei 97.5% could be assigned with 1.0% differences to a reference. Finally, the new SHABBA algorithm was applied to projections recorded for a yeast histone protein domain at room temperature, where the protein is subject to partial unfolding: this leads to unobservable resonances (about a dozen missing signals in a normal 15N-HSQC) and extensive degeneracy among the resonances. From the clearly observable residues, 97.5% of the backbone and CHβresonances could be assigned, of which only 0.8 % showed differences to published shifts. An additional study on the protein MMP20, which exhibits spectral difficulties to an even larger extent, explores the limitations of the approach.

  17. Backbone Fragility and the Local Search Cost Peak

    CERN Document Server

    Gent, I P; Smaill, A; 10.1613/jair.711

    2011-01-01

    The local search algorithm WSat is one of the most successful algorithms for solving the satisfiability (SAT) problem. It is notably effective at solving hard Random 3-SAT instances near the so-called `satisfiability threshold', but still shows a peak in search cost near the threshold and large variations in cost over different instances. We make a number of significant contributions to the analysis of WSat on high-cost random instances, using the recently-introduced concept of the backbone of a SAT instance. The backbone is the set of literals which are entailed by an instance. We find that the number of solutions predicts the cost well for small-backbone instances but is much less relevant for the large-backbone instances which appear near the threshold and dominate in the overconstrained region. We show a very strong correlation between search cost and the Hamming distance to the nearest solution early in WSat's search. This pattern leads us to introduce a measure of the backbone fragility of an instance, ...

  18. Complete resonance assignment for the polypeptide backbone of interleukin 1β using three-dimensional heteronuclear NMR spectroscopy

    International Nuclear Information System (INIS)

    The complete sequence-specific assignment of the 15N and 1H backbone resonances of the NMR spectrum of recombinant human interleukin 1β has been obtained by using primarily 15N-1H heteronuclear three-dimensional (3D) NMR techniques in combination with 15N-1H heteronuclear and 1H homonuclear two-dimensional NMR. The fingerprint region of the spectrum was analyzed by using a combination of 3D heteronuclear 1H Hartmann-Hahn 15N-1H multiple quantum coherence (3D HOHAHA-HMQC) and 3D heteronuclear 1H nuclear Overhauser 15N-1H multiple quantum coherence (3D NOESY-HMQC) spectroscopies. The authors show that the problems of amide NH and CαH chemical shift degeneracy that are prevalent for proteins of the size are readily overcome by using the 3D heteronuclear NMR technique. A doubling of some peaks in the spectrum was found to be due to N-terminal heterogeneity of the 15N-labeled protein, corresponding to a mixture of wild-type and des-Ala-1-interleukin 1β. The complete list of 15N and 1H assignments is given for all the amide NH and CαH resonances of all non-proline residues, as well as the 1H assignments for some of the amino acid side chains. This first example of the sequence-specific assignment of a protein using heteronuclear 3D NMR provides a basis for further conformational and dynamic studies of interleukin 1β

  19. Dynamic conformations of nucleophosmin (NPM1 at a key monomer-monomer interface affect oligomer stability and interactions with granzyme B.

    Directory of Open Access Journals (Sweden)

    Wei D Duan-Porter

    Full Text Available Nucleophosmin (NPM1 is an abundant, nucleolar tumor antigen with important roles in cell proliferation and putative contributions to oncogenesis. Wild-type NPM1 forms pentameric oligomers through interactions at the amino-terminal core domain. A truncated form of NPM1 found in some hepatocellular carcinoma tissue formed an unusually stable oligomer and showed increased susceptibility to cleavage by granzyme B. Initiation of translation at the seventh methionine generated a protein (M7-NPM that shared all these properties. We used deuterium exchange mass spectrometry (DXMS to perform a detailed structural analysis of wild-type NPM1 and M7-NPM, and found dynamic conformational shifts or local "unfolding" at a specific monomer-monomer interface which included the β-hairpin "latch." We tested the importance of interactions at the β-hairpin "latch" by replacing a conserved tyrosine in the middle of the β-hairpin loop with glutamic acid, generating Y67E-NPM. Y67E-NPM did not form stable oligomers and further, prevented wild-type NPM1 oligomerization in a dominant-negative fashion, supporting the critical role of the β-hairpin "latch" in monomer-monomer interactions. Also, we show preferential cleavage by granzyme B at one of two available aspartates (either D161 or D122 in M7-NPM and Y67E-NPM, whereas wild-type NPM1 was cleaved at both sites. Thus, we observed a correlation between the propensity to form oligomers and granzyme B cleavage site selection in nucleophosmin proteins, suggesting that a small change at an important monomer-monomer interface can affect conformational shifts and impact protein-protein interactions.

  20. Conformational and dynamics simulation study of antimicrobial peptide hedistin-heterogeneity of its helix-turn-helix motif.

    Science.gov (United States)

    Xu, Guohua; Wu, Min; Wang, Lin; Zhang, Xu; Cao, Shufen; Liu, Maili; Cui, Yanfang

    2009-12-01

    Hedistin is an antimicrobial peptide isolated from the coelomocytes of Nereis diversicolor, possessing activity against a large spectrum of bacteria including the methicillin resistant Staphylococcus aureus and Vibrio alginolyticus. The three-dimensional structure of hedistin in both aqueous solution and deuterated dodecylphosphocholine (DPC) micelles was examined using circular dichroism (CD) and nuclear magnetic resonance (NMR) techniques. And, the early events of the antibacterial process of hedistin were simulated using palmitoyl-oleoyl-phophatidylcholine (POPC) lipid bilayers and molecular dynamics (MD) simulation methods. Hedistin lacks secondary structure in aqueous solution, however, in DPC micelles, it features with a heterogeneous helix-turn-helix moiety and exhibits obvious amphipathic nature. The turn region (residues Val9-Thr12) in the moiety is a four-residue hinge, lying in between the first N-terminal alpha-helix (residues Leu5-Lys8) and the second alpha-helix (residues Val13-Ala17) regions and causing an approximately 120 degrees angle between the axes of the two helices. The segmental and nonlinear nature of hedistin structure is referred to as the heterogeneity of its helix-turn-helix motif which was found to be corresponding to a kind of discrete dynamics behavior, herein coined as its dynamical heterogeneity, at the early stage (0-50 ns) of the MD simulations. That is, the first helix segment, prior to (at 310 K) or following (at 363 K) the second helix, binds to the lipid head-group region and subsequently permeates into the hydrophobic lipid tail region, and the hinge is the last portion entering the lipid environment. This result implies that hedistin may adopt a "carpet" model action when disrupting bacterial membrane. PMID:19819221

  1. Influence of a charged graphene surface on the orientation and conformation of covalently attached oligonucleotides: a molecular dynamics study

    Czech Academy of Sciences Publication Activity Database

    Kabeláč, Martin; Kroutil, O.; Předota, M.; Lankaš, Filip; Šíp, M.

    2012-01-01

    Roč. 14, č. 12 (2012), s. 4217-4229. ISSN 1463-9076 R&D Projects: GA ČR GC204/09/J010; GA MŠk LC512; GA AV ČR IAA400550808 Grant ostatní: GA ČR(CZ) GA203/08/0094; GA MŠk(CZ) LM2010005 Institutional research plan: CEZ:AV0Z40550506 Keywords : DNA * graphene * charge density * molecular dynamics * Amber Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.829, year: 2012

  2. Protein backbone motions viewed by intraresidue and sequential HN-Hα residual dipolar couplings

    International Nuclear Information System (INIS)

    Triple resonance E.COSY-based techniques were used to measure intra-residue and sequential HN-Hα residual dipolar couplings (RDCs) for the third IgG-binding domain of protein G (GB3), aligned in Pf1 medium. Measurements closely correlate with values predicted on the basis of an NMR structure, previously determined on the basis of a large number of one-bond backbone RDCs measured in five alignment media. However, in particular the sequential HN-Hα RDCs are smaller than predicted for a static structure, suggesting a degree of motion for these internuclear vectors that exceeds that of the backbone amide N-H vectors. Of all experimentally determined GB3 structures available, the best correlation between experimental 1H-1H couplings is observed for a GB3 ensemble, previously derived to generate a realistic picture of the conformational space sampled by GB3 (Clore and Schwieters, J Mol Biol 355:879-886, 2006). However, for both NMR and X-ray-derived structures the 1H-1H couplings are found to be systematically smaller than expected on the basis of alignment tensors derived from 15N-1H amide RDCs, assuming librationally corrected N-H bond lengths of 1.041 A

  3. Di-Isocyanate Crosslinked Aerogels with 1, 6-Bis (Trimethoxysilyl) Hexane Incorporated in Silica Backbone

    Science.gov (United States)

    Vivod, Stephanie L.; Meador, Mary Ann B.; Nguyen, Baochau N.; Quade, Derek; Randall, Jason; Perry, Renee

    2008-01-01

    Silica aerogels are desirable materials for many applications that take advantage of their light weight and low thermal conductivity. Addition of a conformal polymer coating which bonds with the amine decorated surface of the silica network improves the strength of the aerogels by as much as 200 times. Even with vast improvement in strength they still tend to undergo brittle failure due to the rigid silica backbone. We hope to increase the flexibility and elastic recovery of the silica based aerogel by altering the silica back-bone by incorporation of more flexible hexane links. To this end, we investigated the use of 1,6-bis(trimethoxysilyl)hexane (BTMSH), a polysilsesquioxane precursor3, as an additional co-reactant to prepare silica gels which were subsequently cross-linked with di-isocyanate. Previously, this approach of adding flexibility by BTMSH incorporation was demonstrated with styrene cross-linked aerogels. In our study, we varied silane concentration, mol % of silicon from BTMSH and di-isocyanate concentration by weight percent to attempt to optimize both the flexibility and the strength of the aerogels.

  4. Thermoresponsive Poly(2-oxazoline) Molecular Brushes by Living Ionic Polymerization: Kinetic Investigations of Pendant Chain Grafting and Cloud Point Modulation by Backbone and Side Chain Length Variation

    KAUST Repository

    Zhang, Ning

    2012-04-17

    Molecular brushes of poly(2-oxazoline)s were prepared by living anionic polymerization of 2-iso-propenyl-2-oxazoline to form the backbone and subsequent living cationic ring-opening polymerization of 2-n- or 2-iso-propyl-2-oxazoline for pendant chain grafting. In situ kinetic studies indicate that the initiation efficiency and polymerization rates are independent from the number of initiator functions per initiator molecule. This was attributed to the high efficiency of oxazolinium salt and the stretched conformation of the backbone, which is caused by the electrostatic repulsion of the oxazolinium moieties along the macroinitiator. The resulting molecular brushes showed thermoresponsive properties, that is, having a defined cloud point (CP). The dependence of the CP as a function of backbone and side chain length as well as concentration was studied. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Sequential backbone resonance assignments of the E. coli dihydrofolate reductase Gly67Val mutant: folate complex.

    Science.gov (United States)

    Puthenpurackal Narayanan, Sunilkumar; Maeno, Akihiro; Wada, Yuji; Tate, Shin-Ichi; Akasaka, Kazuyuki

    2016-04-01

    Occasionally, a mutation in an exposed loop region causes a significant change in protein function and/or stability. A single mutation Gly67Val of E. coli dihydrofolate reductase (DHFR) in the exposed CD loop is such an example. We have carried out the chemical shift assignments for H(N), N(H), C(α) and C(β) atoms of the Gly67Val mutant of E. coli DHFR complexed with folate at pH 7.0, 35 °C, and then evaluated the H(N), N(H), C(α) and C(β) chemical shift changes caused by the mutation. The result indicates that, while the overall secondary structure remains the same, the single mutation Gly67Val causes site-specific conformational changes of the polypeptide backbone restricted around the adenosine-binding subdomain (residues 38-88) and not in the distant catalytic domain. PMID:26482924

  6. The backbone of the climate network

    CERN Document Server

    Donges, Jonathan F; Marwan, Norbert; Kurths, Juergen; 10.1209/0295-5075/87/48007

    2010-01-01

    We propose a method to reconstruct and analyze a complex network from data generated by a spatio-temporal dynamical system, relying on the nonlinear mutual information of time series analysis and betweenness centrality of complex network theory. We show, that this approach reveals a rich internal structure in complex climate networks constructed from reanalysis and model surface air temperature data. Our novel method uncovers peculiar wave-like structures of high energy flow, that we relate to global surface ocean currents. This points to a major role of the oceanic surface circulation in coupling and stabilizing the global temperature field in the long term mean (140 years for the model run and 60 years for reanalysis data). We find that these results cannot be obtained using classical linear methods of multivariate data analysis, and have ensured their robustness by intensive significance testing.

  7. High Performance Infiltrated Backbones for Cathode-Supported SOFC's

    DEFF Research Database (Denmark)

    Gil, Vanesa; Kammer Hansen, Kent

    2014-01-01

    The concept of using highly ionic conducting backbones with subsequent infiltration of electronically conducting particles has widely been used to develop alternative anode-supported SOFC's. In this work, the idea was to develop infiltrated backbones as an alternative design based on cathode-supported...... printed symmetrical cells. Samples with LSM/YSZ composite and YSZ backbones made with graphite+PMMA as pore formers exhibited comparable Rp values to the screen printed LSM/YSZ cathode. This route was chosen as the best to fabricate the cathode supported cells. SEM micrograph of a cathode supported cell...... with infiltrated LSM nanoparticles is shown in Fig. 1. Figure 1. Cross section of LSM infiltrated cathode supported cell. [Formula]...

  8. Enhanced conformational space sampling improves the prediction of chemical shifts in proteins.

    Science.gov (United States)

    Markwick, Phineus R L; Cervantes, Carla F; Abel, Barrett L; Komives, Elizabeth A; Blackledge, Martin; McCammon, J Andrew

    2010-02-01

    A biased-potential molecular dynamics simulation method, accelerated molecular dynamics (AMD), was combined with the chemical shift prediction algorithm SHIFTX to calculate (1)H(N), (15)N, (13)Calpha, (13)Cbeta, and (13)C' chemical shifts of the ankyrin repeat protein IkappaBalpha (residues 67-206), the primary inhibitor of nuclear factor kappa-B (NF-kappaB). Free-energy-weighted molecular ensembles were generated over a range of acceleration levels, affording systematic enhancement of the conformational space sampling of the protein. We have found that the predicted chemical shifts, particularly for the (15)N, (13)Calpha, and (13)Cbeta nuclei, improve substantially with enhanced conformational space sampling up to an optimal acceleration level. Significant improvement in the predicted chemical shift data coincides with those regions of the protein that exhibit backbone dynamics on longer time scales. Interestingly, the optimal acceleration level for reproduction of the chemical shift data has previously been shown to best reproduce the experimental residual dipolar coupling (RDC) data for this system, as both chemical shift data and RDCs report on an ensemble and time average in the millisecond range. PMID:20063881

  9. Conformational and nuclear dynamics effects in molecular Auger spectra: fluorine core-hole decay in CF4

    International Nuclear Information System (INIS)

    In a molecular Auger spectrum information on the decaying state is implicitly ensemble-averaged. For a repulsive core-ionized state, for example, contributions from all parts of its potential curve are superimposed in the Auger spectrum. Using carbon tetrafluoride (CF4, tetrafluoromethane), we demonstrate for the first time that these contributions can be disentangled by recording photoelectron–Auger electron coincidence spectra with high energy resolution. For the F K-VV spectrum of CF4, there are significant differences in the Auger decay at different intermediate state (single core hole) geometries. With the help of calculations, we show that these differences result primarily from zero-point fluctuations in the neutral molecular ground state, but are amplified by the nuclear dynamics during Auger decay. (paper)

  10. A conformational analysis of mouse Nalp3 domain structures by molecular dynamics simulations, and binding site analysis.

    Science.gov (United States)

    Sahoo, Bikash R; Maharana, Jitendra; Bhoi, Gopal K; Lenka, Santosh K; Patra, Mahesh C; Dikhit, Manas R; Dubey, Praveen K; Pradhan, Sukanta K; Behera, Bijay K

    2014-05-01

    Scrutinizing various nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) genes in higher eukaryotes is very important for understanding the intriguing mechanism of the host defense against pathogens. The nucleotide-binding domain (NACHT), leucine-rich repeat (LRR), and pyrin domains (PYD)-containing protein 3 (Nalp3), is an intracellular innate immune receptor and is associated with several immune system related disorders. Despite Nalp3's protective role during a pathogenic invasion, the molecular features and structural organization of this crucial protein is poorly understood. Using comparative modeling and molecular dynamics simulations, we have studied the structural architecture of Nalp3 domains, and characterized the dynamic and energetic parameters of adenosine triphosphate (ATP) binding in NACHT, and pathogen-derived ligands muramyl dipeptide (MDP) and imidazoquinoline with LRR domains. The results suggested that walker A, B and extended walker B motifs were the key ATP binding regions in NACHT that mediate self-oligomerization. The analysis of the binding sites of MDP and imidazoquinoline revealed LRR 7-9 to be the most energetically favored site for imidazoquinoline interaction. However, the binding free energy calculations using the Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) method indicated that MDP is incompatible for activating the Nalp3 molecule in its monomeric form, and suggest its complex interaction with NOD2 or other NLRs accounts for MDP recognition. The high binding affinity of ATP with NACHT was correlated to the experimental data for human NLRs. Our binding site prediction for imidazoquinoline in LRR warrants further investigation via in vivo models. This is the first study that provides ligand recognition in mouse Nalp3 and its spatial structural arrangements. PMID:24595807

  11. APPECT: An Approximate Backbone-Based Clustering Algorithm for Tags

    DEFF Research Database (Denmark)

    Zong, Yu; Xu, Guandong; Jin, Pin;

    2011-01-01

    resulting from the severe difficulty of ambiguity, redundancy and less semantic nature of tags. Clustering method is a useful tool to address the aforementioned difficulties. Most of the researches on tag clustering are directly using traditional clustering algorithms such as K-means or Hierarchical...... algorithm for Tags (APPECT). The main steps of APPECT are: (1) we execute the K-means algorithm on a tag similarity matrix for M times and collect a set of tag clustering results Z={C1,C2,…,Cm}; (2) we form the approximate backbone of Z by executing a greedy search; (3) we fix the approximate backbone as...

  12. Self-assembling dipeptides: conformational sampling in solvent-free coarse-grained simulation.

    Science.gov (United States)

    Villa, Alessandra; Peter, Christine; van der Vegt, Nico F A

    2009-03-28

    We discuss the development of a coarse-grained (CG) model for molecular dynamics (MD) simulation of a hydrophobic dipeptide, diphenylalanine, in aqueous solution. The peptide backbone is described with two CG beads per amino acid, the side groups and charged end groups are each described with one CG bead. In the derivation of interaction functions between CG beads we follow a bottom-up strategy where we devise potentials such that the resulting CG simulation reproduces the conformational sampling and the intermolecular interactions observed in an atomistic simulation of the same peptide. In the CG model, conformational flexibility of the peptide is accounted for through a set of intra-molecular (bonded) potentials. The approach followed to obtain the bonded potentials is discussed in detail. The CG potentials for nonbonded interactions are based on potentials of mean force obtained by atomistic simulations in aqueous solution. Following this approach, solvent mediation effects are included in the effective bead-bead nonbonded interactions and computationally very efficient (solvent-free) simulations of self-assembly processes can be performed. We show that the conformational properties of the all-atom dipeptide in explicit solvent can be accurately reproduced with the CG model. Moreover, preliminary simulations of peptide self-assembly performed with the CG model illustrate good agreement with results obtained from all-atom, explicit solvent simulations. PMID:19280018

  13. Conformational Analysis of the Oligosaccharides Related to Side Chains of Holothurian Fucosylated Chondroitin Sulfates

    Directory of Open Access Journals (Sweden)

    Alexey G. Gerbst

    2015-02-01

    Full Text Available Anionic polysaccharides fucosylated chondroitin sulfates (FCS from holothurian species were shown to affect various biological processes, such as metastasis, angiogenesis, clot formation, thrombosis, inflammation, and some others. To understand the mechanism of FCSs action, knowledge about their spatial arrangement is required. We have started the systematic synthesis, conformational analysis, and study of biological activity of the oligosaccharides related to various fragments of these types of natural polysaccharides. In this communication, five molecules representing distinct structural fragments of chondroitin sulfate have been studied by means of molecular modeling and NMR. These are three disaccharides and two trisaccharides containing fucose and glucuronic acid residues with one sulfate group per each fucose residue or without it. Long-range C–H coupling constants were used for the verification of the theoretical models. The presence of two conformers for both linkage types was revealed. For the Fuc–GlA linkage, the dominant conformer was the same as described previously in a literature as the molecular dynamics (MD average in a dodechasaccharide FCS fragment representing the backbone chain of the polysaccharide including GalNAc residues. This shows that the studied oligosaccharides, in addition to larger ones, may be considered as reliable models for Quantitative Structure-Activity Relationship (QSAR studies to reveal pharmacophore fragments of FCS.

  14. Conformations of Prolyl-Peptide Bonds in the Bradykinin 1-5 Fragment in Solution and in the Gas Phase.

    Science.gov (United States)

    Voronina, Liudmila; Masson, Antoine; Kamrath, Michael; Schubert, Franziska; Clemmer, David; Baldauf, Carsten; Rizzo, Thomas

    2016-07-27

    The dynamic nature of intrinsically disordered peptides makes them a challenge to characterize by solution-phase techniques. In order to gain insight into the relation between the disordered state and the environment, we explore the conformational space of the N-terminal 1-5 fragment of bradykinin (BK[1-5](2+)) in the gas phase by combining drift tube ion mobility, cold-ion spectroscopy, and first-principles simulations. The ion-mobility distribution of BK[1-5](2+) consists of two well-separated peaks. We demonstrate that the conformations within the peak with larger cross-section are kinetically trapped, while the more compact peak contains low-energy structures. This is a result of cis-trans isomerization of the two prolyl-peptide bonds in BK[1-5](2+). Density-functional theory calculations reveal that the compact structures have two very different geometries with cis-trans and trans-cis backbone conformations. Using the experimental CCSs to guide the conformational search, we find that the kinetically trapped species have a trans-trans configuration. This is consistent with NMR measurements performed in a solution, which show that 82% of the molecules adopt a trans-trans configuration and behave as a random coil. PMID:27366919

  15. Solution conformation and dynamics of a tetrasaccharide related to the LewisX antigen deduced by NMR relaxation measurements

    International Nuclear Information System (INIS)

    1H-NMR cross-relaxation rates and nonselective longitudinal relaxation times have been obtained at two magnetic fields (7.0 and 11.8 T) and at a variety of temperatures for the branched tetrasaccharide methyl 3-O-α-N-acetyl-galactosaminyl-β-galactopyranosyl-(1→4)[3-O-α-fucosyl] -glucopyranoside (1), an inhibitor of astrocyte growth. In addition, 13C-NMR relaxation data have also been recorded at both fields. The 1H-NMR relaxation data have been interpreted using different motional models to obtain proton-proton correlation times. The results indicate that the GalNAc and Fuc rings display more extensive local motion than the two inner Glc and Gal moieties, since those present significantly shorter local correlation times. The13C-NMR relaxation parameters have been interpreted in terms of the Lipari-Szabo model-free approach. Thus, order parameters and internal motion correlation times have been deduced. As obtained for the1H-NMR relaxation data, the two outer residues possess smaller order parameters than the two inner rings. Internal correlation times are in the order of 100 ps. The hydroxymethyl groups have also different behaviour,with the exocyclic carbon on the glucopyranoside unit showing the highestS2. Molecular dynamics simulations using a solvated system have also been performed and internal motion correlation functions have been deduced from these calculations. Order parameters and interproton distances have been compared to those inferred from the NMR measurements. The obtained results are in fair agreement with the experimental data

  16. Resolution of Two Sub-Populations of Conformers and Their Individual Dynamics by Time Resolved Ensemble Level FRET Measurements.

    Directory of Open Access Journals (Sweden)

    Gil Rahamim

    Full Text Available Most active biopolymers are dynamic structures; thus, ensembles of such molecules should be characterized by distributions of intra- or intermolecular distances and their fast fluctuations. A method of choice to determine intramolecular distances is based on Förster resonance energy transfer (FRET measurements. Major advances in such measurements were achieved by single molecule FRET measurements. Here, we show that by global analysis of the decay of the emission of both the donor and the acceptor it is also possible to resolve two sub-populations in a mixture of two ensembles of biopolymers by time resolved FRET (trFRET measurements at the ensemble level. We show that two individual intramolecular distance distributions can be determined and characterized in terms of their individual means, full width at half maximum (FWHM, and two corresponding diffusion coefficients which reflect the rates of fast ns fluctuations within each sub-population. An important advantage of the ensemble level trFRET measurements is the ability to use low molecular weight small-sized probes and to determine nanosecond fluctuations of the distance between the probes. The limits of the possible resolution were first tested by simulation and then by preparation of mixtures of two model peptides. The first labeled polypeptide was a relatively rigid Pro7 and the second polypeptide was a flexible molecule consisting of (Gly-Ser7 repeats. The end to end distance distributions and the diffusion coefficients of each peptide were determined. Global analysis of trFRET measurements of a series of mixtures of polypeptides recovered two end-to-end distance distributions and associated intramolecular diffusion coefficients, which were very close to those determined from each of the pure samples. This study is a proof of concept study demonstrating the power of ensemble level trFRET based methods in resolution of subpopulations in ensembles of flexible macromolecules.

  17. Solution conformation and dynamics of a tetrasaccharide related to the Lewis{sup X} antigen deduced by NMR relaxation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Poveda, Ana [Universidad Autonoma de Madrid, Servicio Interdepartamental de Investigacion (Spain); Asensio, Juan Luis; Martin-Pastor, Manuel; Jimenez-Barbero, Jesus [Instituto de Quimica Organica, CSIC, Grupo de Carbohidratos (Spain)

    1997-07-15

    {sup 1}H-NMR cross-relaxation rates and nonselective longitudinal relaxation times have been obtained at two magnetic fields (7.0 and 11.8 T) and at a variety of temperatures for the branched tetrasaccharide methyl 3-O-{alpha}-N-acetyl-galactosaminyl-{beta}-galactopyranosyl-(1{sup {yields}}4)[3-O-{alpha}-fucosyl] -glucopyranoside (1), an inhibitor of astrocyte growth. In addition, {sup 13}C-NMR relaxation data have also been recorded at both fields. The {sup 1}H-NMR relaxation data have been interpreted using different motional models to obtain proton-proton correlation times. The results indicate that the GalNAc and Fuc rings display more extensive local motion than the two inner Glc and Gal moieties, since those present significantly shorter local correlation times. The{sup 13}C-NMR relaxation parameters have been interpreted in terms of the Lipari-Szabo model-free approach. Thus, order parameters and internal motion correlation times have been deduced. As obtained for the{sup 1}H-NMR relaxation data, the two outer residues possess smaller order parameters than the two inner rings. Internal correlation times are in the order of 100 ps. The hydroxymethyl groups have also different behaviour,with the exocyclic carbon on the glucopyranoside unit showing the highestS{sup 2}. Molecular dynamics simulations using a solvated system have also been performed and internal motion correlation functions have been deduced from these calculations. Order parameters and interproton distances have been compared to those inferred from the NMR measurements. The obtained results are in fair agreement with the experimental data.

  18. Molecular dynamics characterization of the conformational landscape of small peptides: A series of hands-on collaborative practical sessions for undergraduate students.

    Science.gov (United States)

    Rodrigues, João P G L M; Melquiond, Adrien S J; Bonvin, Alexandre M J J

    2016-01-01

    Molecular modelling and simulations are nowadays an integral part of research in areas ranging from physics to chemistry to structural biology, as well as pharmaceutical drug design. This popularity is due to the development of high-performance hardware and of accurate and efficient molecular mechanics algorithms by the scientific community. These improvements are also benefitting scientific education. Molecular simulations, their underlying theory, and their applications are particularly difficult to grasp for undergraduate students. Having hands-on experience with the methods contributes to a better understanding and solidification of the concepts taught during the lectures. To this end, we have created a computer practical class, which has been running for the past five years, composed of several sessions where students characterize the conformational landscape of small peptides using molecular dynamics simulations in order to gain insights on their binding to protein receptors. In this report, we detail the ingredients and recipe necessary to establish and carry out this practical, as well as some of the questions posed to the students and their expected results. Further, we cite some examples of the students' written reports, provide statistics, and share their feedbacks on the structure and execution of the sessions. These sessions were implemented alongside a theoretical molecular modelling course but have also been used successfully as a standalone tutorial during specialized workshops. The availability of the material on our web page also facilitates this integration and dissemination and lends strength to the thesis of open-source science and education. PMID:26751257

  19. The Graphical Representation of the Digital Astronaut Physiology Backbone

    Science.gov (United States)

    Briers, Demarcus

    2010-01-01

    This report summarizes my internship project with the NASA Digital Astronaut Project to analyze the Digital Astronaut (DA) physiology backbone model. The Digital Astronaut Project (DAP) applies integrated physiology models to support space biomedical operations, and to assist NASA researchers in closing knowledge gaps related to human physiologic responses to space flight. The DA physiology backbone is a set of integrated physiological equations and functions that model the interacting systems of the human body. The current release of the model is HumMod (Human Model) version 1.5 and was developed over forty years at the University of Mississippi Medical Center (UMMC). The physiology equations and functions are scripted in an XML schema specifically designed for physiology modeling by Dr. Thomas G. Coleman at UMMC. Currently it is difficult to examine the physiology backbone without being knowledgeable of the XML schema. While investigating and documenting the tags and algorithms used in the XML schema, I proposed a standard methodology for a graphical representation. This standard methodology may be used to transcribe graphical representations from the DA physiology backbone. In turn, the graphical representations can allow examination of the physiological functions and equations without the need to be familiar with the computer programming languages or markup languages used by DA modeling software.

  20. Determination of backbone chain direction of PDA using FFM

    Science.gov (United States)

    Jo, Sadaharu; Okamoto, Kentaro; Takenaga, Mitsuru

    2010-01-01

    The effect of backbone chains on friction force was investigated on both Langmuir-Blodgett (LB) films of 10,12-heptacosadiynoic acid and the (0 1 0) surfaces of single crystals of 2,4-hexadiene-1,6-diol using friction force microscopy (FFM). It was observed that friction force decreased when the scanning direction was parallel to the [0 0 1] direction in both samples. Moreover, friction force decreased when the scanning direction was parallel to the crystallographic [1 0 2], [1 0 1], [1 0 0] and [1 0 1¯] directions in only the single crystals. For the LB films, the [0 0 1] direction corresponds to the backbone chain direction of 10,12-heptacosadiynoic acid. For the single crystals, both the [0 0 1] and [1 0 1] directions correspond to the backbone chain direction, and the [1 0 2], [1 0 0] and [1 0 1¯] directions correspond to the low-index crystallographic direction. In both the LB films and single crystals, the friction force was minimized when the directions of scanning and the backbone chain were parallel.

  1. Protein-Backbone Thermodynamics across the Membrane Interface.

    Science.gov (United States)

    Bereau, Tristan; Kremer, Kurt

    2016-07-01

    The thermodynamics of insertion of a protein in a membrane depends on the fine interplay between backbone and side-chain contributions interacting with the lipid environment. Using computer simulations, we probe how different descriptions of the backbone glycyl unit affect the thermodynamics of insertion of individual residues, dipeptides, and entire transmembrane helices. Due to the lack of reference data, we first introduce an efficient methodology to estimate atomistic potential of mean force (PMF) curves from a series of representative and uncorrelated coarse-grained (CG) snapshots. We find strong discrepancies between two CG models, Martini and PLUM, against reference atomistic PMFs and experiments. Atomistic simulations suggest a weak free energy of insertion between water and a POPC membrane for the glycyl unit, in overall agreement with experimental results despite severe assumptions in our calculations. We show that refining the backbone contribution in PLUM significantly improves the PMF of insertion of the WALP16 transmembrane peptide. An improper balance between the glycyl backbone and the attached side chain will lead to energetic artifacts, rationalizing Martini's overstabilization of WALP's adsorbed interfacial state. It illustrates difficulties associated with free-energy-based parametrizations of single-residue models, as the relevant free energy of partitioning used for force-field parametrization does not arise from the entire residue but rather the solvent-accessible chemical groups. PMID:27138459

  2. Effect of the Spacer and Aliphatic Tail Length on the Conformation of “Side-on Fixed” Liquid Crystal Polyacrylates: “SANS” Experiments

    OpenAIRE

    Lecommandoux, S.; Noirez, L.; Richard, H.; Achard, M.; Strazielle, C.; Hardouin, F.

    1996-01-01

    The backbone conformation of two different “side-on fixed” liquid crystalline polyacrylates is studied by Small Angle Neutron Scattering experiments in the nematic phase. We observe the influence of a very large spacer and a large aliphatic extremities length on the prolate anisotropy of the polymer backbone. In both situations we find a strong decrease in the conformation anisotropy of the main chain.

  3. Comparing two strategies of dynamic intensity modulated radiation therapy (dIMRT with 3-dimensional conformal radiation therapy (3DCRT in the hypofractionated treatment of high-risk prostate cancer

    Directory of Open Access Journals (Sweden)

    Yartsev Slav

    2008-01-01

    Full Text Available Abstract Background To compare two strategies of dynamic intensity modulated radiation therapy (dIMRT with 3-dimensional conformal radiation therapy (3DCRT in the setting of hypofractionated high-risk prostate cancer treatment. Methods 3DCRT and dIMRT/Helical Tomotherapy(HT planning with 10 CT datasets was undertaken to deliver 68 Gy in 25 fractions (prostate and simultaneously delivering 45 Gy in 25 fractions (pelvic lymph node targets in a single phase. The paradigms of pelvic vessel targeting (iliac vessels with margin are used to target pelvic nodes and conformal normal tissue avoidance (treated soft tissues of the pelvis while limiting dose to identified pelvic critical structures were assessed compared to 3DCRT controls. Both dIMRT/HT and 3DCRT solutions were compared to each other using repeated measures ANOVA and post-hoc paired t-tests. Results When compared to conformal pelvic vessel targeting, conformal normal tissue avoidance delivered more homogenous PTV delivery (2/2 t-test comparisons; p dose, 1–3 Gy over 5/10 dose points; p Conclusion dIMRT/HT nodal and pelvic targeting is superior to 3DCRT in dose delivery and critical structure sparing in the setting of hypofractionation for high-risk prostate cancer. The pelvic targeting paradigm is a potential solution to deliver highly conformal pelvic radiation treatment in the setting of nodal location uncertainty in prostate cancer and other pelvic malignancies.

  4. SU-E-T-62: Cardiac Toxicity in Dynamic Conformal Arc Therapy, Intensity-Modulated Radiation Therapy and Volumetric Modulated Arc Therapy of Lung Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Ming, X; Zhang, Y [Tianjin University, Tianjin (China); Yale University, New Haven, CT, US (United States); Feng, Y [Tianjin University, Tianjin (China); Zhou, L [West China Hospital, Sichuan (China); Yale University, New Haven, CT, US (United States); Deng, J [Yale University, New Haven, CT, US (United States)

    2014-06-01

    Purpose: The cardiac toxicity for lung cancer patients, each treated with dynamic conformal arc therapy (DAT), intensity-modulated radiation therapy (IMRT), or volumetric modulated arc therapy (VMAT) is investigated. Methods: 120 lung patients were selected for this study: 25 treated with DAT, 50 with IMRT and 45 with VMAT. For comparison, all plans were generated in the same treatment planning system, normalized such that the 100% isodose lines encompassed 95% of planning target volume. The plan quality was evaluated in terms of homogeneity index (HI) and 95% conformity index (%95 CI) for target dose coverage and mean dose, maximum dose, V{sub 30} Gy as well as V{sub 5} Gy for cardiac toxicity analysis. Results: When all the plans were analyzed, the VMAT plans offered the best target coverage with 95% CI = 0.992 and HI = 1.23. The DAT plans provided the best heart sparing with mean heart dose = 2.3Gy and maximum dose = 11.6Gy, as compared to 5.7 Gy and 31.1 Gy by IMRT as well as 4.6 Gy and 30.9 Gy by VMAT. The mean V30Gy and V5Gy of the heart in the DAT plans were up to 11.7% lower in comparison to the IMRT and VMAT plans. When the tumor volume was considered, the VMAT plans spared up to 70.9% more doses to the heart when the equivalent diameter of the tumor was larger than 4cm. Yet the maximum dose to the heart was reduced the most in the DAT plans with up to 139.8% less than that of the other two plans. Conclusion: Overall, the VMAT plans achieved the best target coverage among the three treatment modalities, and would spare the heart the most for the larger tumors. The DAT plans appeared advantageous in delivering the least maximum dose to the heart as compared to the IMRT and VMAT plans.

  5. Attitudinal Conformity and Anonymity

    Science.gov (United States)

    Tyson, Herbert; Kaplowitz, Stan

    1977-01-01

    Tested college students for conformity when conditions contributing to conformity were absent. Found that social pressures (responding in public, being surveyed by fellow group members) are necessary to produce conformity. (RL)

  6. Conformations and Conformational Processes of Hexahydrobenzazocines by NMR and DFT Studies.

    Science.gov (United States)

    Musielak, Bogdan; Holak, Tad A; Rys, Barbara

    2015-09-18

    Conformational processes that occur in hexahydrobenzazocines have been studied with the (1)H and (13)C dynamic nuclear magnetic resonance (DNMR) spectroscopy. The coalescence effects are assigned to two different conformational processes: the ring-inversion of the ground-state conformations and the interconversion between two different conformers. The barriers for these processes are in the range of 42-52 and 42-43 kJ mol(-1), respectively. Molecular modeling on the density functional theory (DFT) level and the gauge invariant atomic orbitals (GIAO)-DFT calculations of isotropic shieldings and coupling constants for the set of low-energy conformations were compared with the experimental NMR data. The ground-state of all compounds in solution is the boat-chair (BC) conformation. The BC form adopts two different conformations because the nitrogen atom can be in the boat or chair parts of the BC structure. These two conformers are engaged in the interconversion process. PMID:26317238

  7. Constructing Battery-Aware Virtual Backbones in Wireless Sensor Networks

    OpenAIRE

    Chi Ma; Yuanyuan Yang; Zhenghao Zhang

    2007-01-01

    A critical issue in battery-powered sensor networks is to construct energy efficient virtual backbones for network routing. Recent study in battery technology reveals that batteries tend to discharge more power than needed and reimburse the over-discharged power if they are recovered. In this paper we first provide a mathematical battery model suitable for implementation in sensor networks. We then introduce the concept of battery-aware connected dominating set (BACDS) and show that in gener...

  8. Primerjava JavaScript ogrodij Angular, Backbone in Ember

    OpenAIRE

    Simin, Matija

    2016-01-01

    Diplomsko delo primerja tri JavaScript ogrodja za razvoj spletnih aplikacij, in sicer AngularJS, Ember.js in Backbone.js. V okviru dela smo primerjali njihovo implementacijo MVC arhitekturnega modela ali različice le-tega. Poleg implementacije MVC arhitekturnega modela smo primerjali njihove funkcionalnosti in lastnosti, kot so sistem predlog, implementacija usmerjevalnika, komunikacija s strežnikom, podatkovne povezave, prilagodljivosti, velikost in aktivnost skupnosti, kvaliteta obstoje...

  9. Comparison of JavaScript frameworks, Angular, Backbone, and Ember

    OpenAIRE

    Simin, Matija

    2016-01-01

    The thesis compares three JavaScript frameworks for developing web applications: AngularJS, Ember.js and Backbone.js. In the thesis we compared their implementation of the MVC design pattern and their subversions. Besides their implementation of MVC design pattern we compared their functionalities and features, such as templating system, routing implementation, communications with a server, data binding, adjustability, size and activity of the community, quality of existing documentation, pos...

  10. Backbone decomposition for continuous-state branching processes with immigration

    CERN Document Server

    Ren, A E Kyprianou Y-X

    2011-01-01

    In the spirit of Duqesne and Winkel (2007) and Berestycki et al. (2011) we show that supercritical continuous-state branching process with a general branching mechanism and general immigration mechanism is equal in law to a continuous-time Galton Watson process with immigration with Poissonian dressing. The result also characterises the limiting backbone decomposition which is predictable from the work on consistent growth of Galton-Watson trees with immigration in Cao and Winkel (2010).

  11. Variation of protein backbone amide resonance by electrostatic field

    OpenAIRE

    Sharley, John N.

    2015-01-01

    Amide resonance is found to be sensitive to electrostatic field with component parallel or antiparallel the amide C-N bond. This effect is linear and without threshold in the biologically plausible electrostatic field range -0.005 to 0.005 au. Variation of amide resonance varies Resonance-Assisted Hydrogen Bonding such as occurs in the hydrogen bonded chains of backbone amides of protein secondary structures such as beta sheet and alpha helix, varying the stability of the secondary structure....

  12. Increasing protein production by directed vector backbone evolution

    OpenAIRE

    Jakob, Felix; Lehmann, Christian; Martinez, Ronny; Schwaneberg, Ulrich

    2013-01-01

    Recombinant protein production in prokaryotic and eukaryotic organisms was a key enabling technology for the rapid development of industrial and molecular biotechnology. However, despite all progress the improvement of protein production is an ongoing challenge and of high importance for cost-effective enzyme production. With the epMEGAWHOP mutagenesis protocol for vector backbone optimization we report a novel directed evolution based approach to increase protein production levels by randoml...

  13. A Method for Extracting the Free Energy Surface and Conformational Dynamics of Fast-Folding Proteins from Single Molecule Photon Trajectories

    OpenAIRE

    Ramanathan, Ravishankar; Muñoz, Victor

    2015-01-01

    Single molecule fluorescence spectroscopy holds the promise of providing direct measurements of protein folding free energy landscapes and conformational motions. However, fulfilling this promise has been prevented by technical limitations, most notably, the difficulty in analyzing the small packets of photons per millisecond that are typically recorded from individual biomolecules. Such limitation impairs the ability to accurately determine conformational distributions and resolve sub-millis...

  14. Solution structure and dynamics of the I214V mutant of the rabbit prion protein.

    Directory of Open Access Journals (Sweden)

    Yi Wen

    Full Text Available BACKGROUND: The conformational conversion of the host-derived cellular prion protein (PrP(C into the disease-associated scrapie isoform (PrP(Sc is responsible for the pathogenesis of transmissible spongiform encephalopathies (TSEs. Various single-point mutations in PrP(Cs could cause structural changes and thereby distinctly influence the conformational conversion. Elucidation of the differences between the wild-type rabbit PrP(C (RaPrP(C and various mutants would be of great help to understand the ability of RaPrP(C to be resistant to TSE agents. METHODOLOGY/PRINCIPAL FINDINGS: We determined the solution structure of the I214V mutant of RaPrP(C(91-228 and detected the backbone dynamics of its structured C-terminal domain (121-228. The I214V mutant displays a visible shift of surface charge distribution that may have a potential effect on the binding specificity and affinity with other chaperones. The number of hydrogen bonds declines dramatically. Urea-induced transition experiments reveal an obvious decrease in the conformational stability. Furthermore, the NMR dynamics analysis discloses a significant increase in the backbone flexibility on the pico- to nanosecond time scale, indicative of lower energy barrier for structural rearrangement. CONCLUSIONS/SIGNIFICANCE: Our results suggest that both the surface charge distribution and the intrinsic backbone flexibility greatly contribute to species barriers for the transmission of TSEs, and thereby provide valuable hints for understanding the inability of the conformational conversion for RaPrP(C.

  15. Synthesis, characterisation, conformational preferences, dynamic NMR studies and antimicrobial evaluation of N-nitroso- and N-formyl-c-3,t-3-dimethyl-r-2,c-7-diphenyl-1,4-diazepan-5-ones

    Science.gov (United States)

    Ponnuswamy, S.; Akila, A.; Kiruthiga devi, D.; Maheshwaran, V.; Ponnuswamy, M. N.

    2016-04-01

    The stereochemical preferences of N-nitroso- and N-formyl-c-3,t-3-dimethyl-r-2,c-7-diphenyl-1,4-diazepan-5-ones 3 & 4, respectively, have been determined using 1D and 2D NMR spectral techniques. Interestingly, the N-nitroso compound 3 is found to prefer an equilibrium between alternate chair conformations with diaxial phenyl groups, while the N-formyl compound 4 prefers flattened boat conformation. This is stereochemically a novel report on the flexible rings adopting a chair conformation with diaxial phenyl groups. The X-ray crystal structure of N-nitroso-c-3,t-3-dimethyl-r-2,c-7-diphenyl-1,4-diazepan-5-one (3) also supports the chair conformation with diaxial phenyl groups. Dynamic 1H NMR spectral studies have been carried out on the N-nitroso and N-formyl diazepan-5-ones 3 &4 and the energy barriers for N-NO and N-CO rotations are found to be 88.7 and 75.7 kJ/mol, respectively. The antimicrobial activities have been determined for the compounds 2-4 and it is found that all the compounds exhibit significant antibacterial and antifungal activities when compared to the standard chloramphenicol.

  16. Conformal transformations and conformal invariance in gravitation

    OpenAIRE

    Dabrowski, Mariusz P.; Garecki, Janusz; Blaschke, David B.

    2008-01-01

    Conformal transformations are frequently used tools in order to study relations between various theories of gravity and the Einstein relativity. In this paper we discuss the rules of these transformations for geometric quantities as well as for the matter energy-momentum tensor. We show the subtlety of the matter energy-momentum conservation law which refers to the fact that the conformal transformation "creates" an extra matter term composed of the conformal factor which enters the conservat...

  17. Simulation study of the effects of surface chemistry and temperature on the conformations of ssDNA oligomers near hydrophilic and hydrophobic surfaces

    International Nuclear Information System (INIS)

    We study the effects of the presence of a hydrophilic and a hydrophobic surface on the conformations and interactions of a single-stranded DNA (ssDNA) oligomer using atomistic molecular dynamics, umbrella sampling, and temperature-replica exchange. Our simulations capture the expected interactions between the ssDNA and the two surfaces (e.g., hydrogen bonds, hydrophobic interactions), but we find that the surface chemistry does not strongly affect the exposure of the relatively hydrophobic nucleobases or the hydrophilic phosphate backbone in a 16-base ssDNA. Likewise, the surfaces do not strongly affect the preferred size of the ssDNA compared to bulk solution, although the hydrophilic surface does favor slightly more compact ssDNA conformations than the hydrophobic surface. In more compact conformations, the negative charge of the ssDNA is more concentrated, and the energetic interactions of the DNA and DNA-bound counterions with the hydrophilic surface are more favorable, which consequently favors smaller ssDNA sizes. Increasing temperature, regardless of the presence or chemistry of a surface, makes it less unfavorable for the ssDNA to assume both compact and extended conformations. With increasing temperature the free energy cost of assuming a compact conformation is reduced to a greater extent than the cost of assuming an extended conformation. The reason for this difference is the entropically favorable release of DNA-bound water molecules upon assuming a compact conformation. Increasing temperature decreases water-DNA interactions while surprisingly increasing counterion-DNA interactions, changes which are attributed to the relative balance of entropic and energetic contributions for water molecules and counterions bound to the ssDNA

  18. Magic Angle Spinning NMR Reveals Sequence-Dependent Structural Plasticity, Dynamics, and the Spacer Peptide 1 Conformation in HIV-1 Capsid Protein Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yun; Hou, Guangjin; Suiter, Christopher L.; Ahn, Jinwoo; Byeon, In-Ja L.; Lipton, Andrew S.; Burton, Sarah D.; Hung, Ivan; Gorkov, Peter L.; Gan, Zhehong; Brey, William W.; Rice, David M.; Gronenborn, Angela M.; Polenova, Tatyana E.

    2013-11-27

    Maturation of HIV-1 virus into an infectious virion requires cleavage of the Gag polyprotein into its constituent domains and formation of a conical capsid core that encloses viral RNA and a small complement of proteins for replication. The final step of this process is the cleavage of the SP1 peptide from the CA-SP1 maturation intermediate, which triggers the condensation of the CA protein into a conical capsid. The mechanism of this step, including the conformation of the SP1 peptide in CA-SP1, is under intense debate. In this report, we examine the tubular assemblies of CA and the CA-SP1 maturation intermediate using Magic Angle Spinning NMR spectroscopy. At the magnetic fields of 19.9 T and above, tubular CA and CA-SP1 assemblies yield outstanding-quality 2D and 3D MAS NMR spectra, which are amenable to resonance assignments and detailed structural characterization. Dipolar- and scalar-based correlation experiments unequivocally indicate that SP1 peptide is in a random coil conformation and mobile in the assembled CA-SP1. Analysis of two sequence variants reveals that remarkably, the conformation of SP1 tail, of the functionally important CypA loop, and of the loop preceding helix 8 are sequence dependent and modulated by the residue variations at distal sites. These findings challenge the role of SP1 as a conformational switch in the maturation process and establish sequence-dependent conformational plasticity in CA.

  19. Tracking the dynamic seroma cavity using fiducial markers in patients treated with accelerated partial breast irradiation using 3D conformal radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Ning J.; Haffty, Bruce G.; Goyal, Sharad [Department of Radiation Oncology, Cancer Institute of New Jersey, UMDNJ/Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903 (United States); Kearney, Thomas; Kirstein, Laurie [Division of Surgical Oncology, Cancer Institute of New Jersey, UMDNJ/Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903 (United States); Chen Sining [Department of Biostatistics, Cancer Institute of New Jersey, UMDNJ/School of Public Health, New Brunswick, NJ 08901 (United States)

    2013-02-15

    Purpose: The purpose of the present study was to perform an analysis of the changes in the dynamic seroma cavity based on fiducial markers in early stage breast cancer patients treated with accelerated partial breast irradiation (APBI) using three-dimensional conformal external beam radiotherapy (3D-CRT). Methods: A prospective, single arm trial was designed to investigate the utility of gold fiducial markers in image guided APBI using 3D-CRT. At the time of lumpectomy, four to six suture-type gold fiducial markers were sutured to the walls of the cavity. Patients were treated with a fractionation scheme consisting of 15 fractions with a fractional dose of 333 cGy. Treatment design and planning followed NSABP/RTOG B-39 guidelines. During radiation treatment, daily kV imaging was performed and the markers were localized and tracked. The change in distance between fiducial markers was analyzed based on the planning CT and daily kV images. Results: Thirty-four patients were simulated at an average of 28 days after surgery, and started the treatment on an average of 39 days after surgery. The average intermarker distance (AiMD) between fiducial markers was strongly correlated to seroma volume. The average reduction in AiMD was 19.1% (range 0.0%-41.4%) and 10.8% (range 0.0%-35.6%) for all the patients between simulation and completion of radiotherapy, and between simulation and beginning of radiotherapy, respectively. The change of AiMD fits an exponential function with a half-life of seroma shrinkage. The average half-life for seroma shrinkage was 15 days. After accounting for the reduction which started to occur after surgery through CT simulation and treatment, radiation was found to have minimal impact on the distance change over the treatment course. Conclusions: Using the marker distance change as a surrogate for seroma volume, it appears that the seroma cavity experiences an exponential reduction in size. The change in seroma size has implications in the size of

  20. Comparing two strategies of dynamic intensity modulated radiation therapy (dIMRT) with 3-dimensional conformal radiation therapy (3DCRT) in the hypofractionated treatment of high-risk prostate cancer

    International Nuclear Information System (INIS)

    To compare two strategies of dynamic intensity modulated radiation therapy (dIMRT) with 3-dimensional conformal radiation therapy (3DCRT) in the setting of hypofractionated high-risk prostate cancer treatment. 3DCRT and dIMRT/Helical Tomotherapy(HT) planning with 10 CT datasets was undertaken to deliver 68 Gy in 25 fractions (prostate) and simultaneously delivering 45 Gy in 25 fractions (pelvic lymph node targets) in a single phase. The paradigms of pelvic vessel targeting (iliac vessels with margin are used to target pelvic nodes) and conformal normal tissue avoidance (treated soft tissues of the pelvis while limiting dose to identified pelvic critical structures) were assessed compared to 3DCRT controls. Both dIMRT/HT and 3DCRT solutions were compared to each other using repeated measures ANOVA and post-hoc paired t-tests. When compared to conformal pelvic vessel targeting, conformal normal tissue avoidance delivered more homogenous PTV delivery (2/2 t-test comparisons; p < 0.001), similar nodal coverage (8/8 t-test comparisons; p = ns), higher and more homogenous pelvic tissue dose (6/6 t-test comparisons; p < 0.03), at the cost of slightly higher critical structure dose (Ddose, 1–3 Gy over 5/10 dose points; p < 0.03). The dIMRT/HT approaches were superior to 3DCRT in sparing organs at risk (22/24 t-test comparisons; p < 0.05). dIMRT/HT nodal and pelvic targeting is superior to 3DCRT in dose delivery and critical structure sparing in the setting of hypofractionation for high-risk prostate cancer. The pelvic targeting paradigm is a potential solution to deliver highly conformal pelvic radiation treatment in the setting of nodal location uncertainty in prostate cancer and other pelvic malignancies

  1. Design of an IPTV Multicast System for Internet Backbone Networks

    OpenAIRE

    Gilbert, D.; Szymanski, T. H.

    2010-01-01

    The design of an IPTV multicast system for the Internet backbone network is presented and explored through extensive simulations. In the proposed system, a resource reservation algorithm such as RSVP, IntServ, or DiffServ is used to reserve resources (i.e., bandwidth and buffer space) in each router in an IP multicast tree. Each router uses an Input-Queued, Output-Queued, or Crosspoint-Queued switch architecture with unity speedup. A recently proposed Recursive Fair Stochastic Matrix Decompos...

  2. Performance of Flow-Aware Networking in LTE backbone

    DEFF Research Database (Denmark)

    Sniady, Aleksander; Soler, José

    2012-01-01

    According to traffic predictions, the growth in data networks usage will be increasing in the coming years, what will be especially visible in the mobile access networks. This brings new challenges in terms of traffic differentiation and network resource sharing, which need to be faced by wireless...... technologies, such as Long Term Evolution (LTE). This paper proposes usage of a modified Flow Aware Networking (FAN) technique for enhancing Quality of Service (QoS) in the all-IP transport networks underlying LTE backbone. The results obtained with OPNET Modeler show that FAN, in spite of being relatively...

  3. Synthesis of Polynucleotide Analogs Containing a Polyvinyl Alcohol Backbone

    Directory of Open Access Journals (Sweden)

    Per Carlsen

    2008-03-01

    Full Text Available Water soluble homo-base polynucleotide analogues were synthesized in whichpolyvinyl alcohol and partially phosphonated polyvinyl alcohol constituted the backbones,onto which were grafted uracil or adenine via 1,3-dioxane spacers formed by acetalformation with the 1,3-diol moieties in PVA. The resulting adenine-PVA polynucleotideanalogs exhibited hyperchromic effects, which was not the case for the correspondinguracil compounds. Mixtures of the adenine- and aracil PVA-phosphate polynucleotideanalogs in solutions exhibited characteristic S-shaped UV-absorbance vs temperature andmelting curves with melting points at approximately 40 oC.

  4. Application of Multicast-based Video Conference on CERNET Backbone

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Multicast-based video conference is a representative application in advanced network. In multi-point video conference using multicast can get better efficiency facilitated by inner-group broadcast mechanism. In the application, the multicast-based network resources assignment, management and security should be considered together. This paper presents a framework model of multicast-based video conferencing application with three layers. And a practical multicast-based video conferencing is implemented in CERNET(China Education and Research Network) backbone. The practice is valuable for the development of multicast-based video conferencing application in China.

  5. Coarse-graining RNA nanostructures for molecular dynamics simulations

    International Nuclear Information System (INIS)

    A series of coarse-grained models have been developed for study of the molecular dynamics of RNA nanostructures. The models in the series have one to three beads per nucleotide and include different amounts of detailed structural information. Such a treatment allows us to reach, for systems of thousands of nucleotides, a time scale of microseconds (i.e. by three orders of magnitude longer than in full atomistic modeling) and thus to enable simulations of large RNA polymers in the context of bionanotechnology. We find that the three-beads-per-nucleotide models, described by a set of just a few universal parameters, are able to describe different RNA conformations and are comparable in structural precision to the models where detailed values of the backbone P-C4' dihedrals taken from a reference structure are included. These findings are discussed in the context of RNA conformation classes

  6. Constructing Battery-Aware Virtual Backbones in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chi Ma

    2007-05-01

    Full Text Available A critical issue in battery-powered sensor networks is to construct energy efficient virtual backbones for network routing. Recent study in battery technology reveals that batteries tend to discharge more power than needed and reimburse the over-discharged power if they are recovered. In this paper we first provide a mathematical battery model suitable for implementation in sensor networks. We then introduce the concept of battery-aware connected dominating set (BACDS and show that in general the minimum BACDS (MBACDS can achieve longer lifetime than the previous backbone structures. Then we show that finding a MBACDS is NP-hard and give a distributed approximation algorithm to construct the BACDS. The resulting BACDS constructed by our algorithm is at most (8+Δopt size, where Δ is the maximum node degree and opt is the size of an optimal BACDS. Simulation results show that the BACDS can save a significant amount of energy and achieve up to 30% longer network lifetime than previous schemes.

  7. Long-term forecasting of internet backbone traffic.

    Science.gov (United States)

    Papagiannaki, Konstantina; Taft, Nina; Zhang, Zhi-Li; Diot, Christophe

    2005-09-01

    We introduce a methodology to predict when and where link additions/upgrades have to take place in an Internet protocol (IP) backbone network. Using simple network management protocol (SNMP) statistics, collected continuously since 1999, we compute aggregate demand between any two adjacent points of presence (PoPs) and look at its evolution at time scales larger than 1 h. We show that IP backbone traffic exhibits visible long term trends, strong periodicities, and variability at multiple time scales. Our methodology relies on the wavelet multiresolution analysis (MRA) and linear time series models. Using wavelet MRA, we smooth the collected measurements until we identify the overall long-term trend. The fluctuations around the obtained trend are further analyzed at multiple time scales. We show that the largest amount of variability in the original signal is due to its fluctuations at the 12-h time scale. We model inter-PoP aggregate demand as a multiple linear regression model, consisting of the two identified components. We show that this model accounts for 98% of the total energy in the original signal, while explaining 90% of its variance. Weekly approximations of those components can be accurately modeled with low-order autoregressive integrated moving average (ARIMA) models. We show that forecasting the long term trend and the fluctuations of the traffic at the 12-h time scale yields accurate estimates for at least 6 months in the future. PMID:16252820

  8. Alternative conformal quantum mechanics

    OpenAIRE

    Ho, Shih-Hao

    2011-01-01

    We investigate a one dimensional quantum mechanical model, which is invariant under translations and dilations but does not respect the conventional conformal invariance. We describe the possibility of modifying the conventional conformal transformation such that a scale invariant theory is also invariant under this new conformal transformation.

  9. Superspace conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Quella, Thomas [Koeln Univ. (Germany). Inst. fuer Theoretische Physik; Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-07-15

    Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.

  10. Superspace conformal field theory

    International Nuclear Information System (INIS)

    Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.

  11. APSY-NMR for protein backbone assignment in high-throughput structural biology

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Samit Kumar; Serrano, Pedro; Proudfoot, Andrew; Geralt, Michael [The Scripps Research Institute, Department of Integrative Structural and Computational Biology (United States); Pedrini, Bill [Paul Scherrer Institute (PSI), SwissFEL Project (Switzerland); Herrmann, Torsten [Université de Lyon, Institut des Sciences Analytiques, Centre de RMN à Très Hauts Champs, UMR 5280 CNRS, ENS Lyon, UCB Lyon 1 (France); Wüthrich, Kurt, E-mail: wuthrich@scripps.edu [The Scripps Research Institute, Department of Integrative Structural and Computational Biology (United States)

    2015-01-15

    A standard set of three APSY-NMR experiments has been used in daily practice to obtain polypeptide backbone NMR assignments in globular proteins with sizes up to about 150 residues, which had been identified as targets for structure determination by the Joint Center for Structural Genomics (JCSG) under the auspices of the Protein Structure Initiative (PSI). In a representative sample of 30 proteins, initial fully automated data analysis with the software UNIO-MATCH-2014 yielded complete or partial assignments for over 90 % of the residues. For most proteins the APSY data acquisition was completed in less than 30 h. The results of the automated procedure provided a basis for efficient interactive validation and extension to near-completion of the assignments by reference to the same 3D heteronuclear-resolved [{sup 1}H,{sup 1}H]-NOESY spectra that were subsequently used for the collection of conformational constraints. High-quality structures were obtained for all 30 proteins, using the J-UNIO protocol, which includes extensive automation of NMR structure determination.

  12. APSY-NMR for protein backbone assignment in high-throughput structural biology

    International Nuclear Information System (INIS)

    A standard set of three APSY-NMR experiments has been used in daily practice to obtain polypeptide backbone NMR assignments in globular proteins with sizes up to about 150 residues, which had been identified as targets for structure determination by the Joint Center for Structural Genomics (JCSG) under the auspices of the Protein Structure Initiative (PSI). In a representative sample of 30 proteins, initial fully automated data analysis with the software UNIO-MATCH-2014 yielded complete or partial assignments for over 90 % of the residues. For most proteins the APSY data acquisition was completed in less than 30 h. The results of the automated procedure provided a basis for efficient interactive validation and extension to near-completion of the assignments by reference to the same 3D heteronuclear-resolved [1H,1H]-NOESY spectra that were subsequently used for the collection of conformational constraints. High-quality structures were obtained for all 30 proteins, using the J-UNIO protocol, which includes extensive automation of NMR structure determination

  13. The introduction of hydrogen bond and hydrophobicity effects into the rotational isomeric states model for conformational analysis of unfolded peptides

    International Nuclear Information System (INIS)

    Relative contributions of local and non-local interactions to the unfolded conformations of peptides are examined by using the rotational isomeric states model which is a Markov model based on pairwise interactions of torsion angles. The isomeric states of a residue are well described by the Ramachandran map of backbone torsion angles. The statistical weight matrices for the states are determined by molecular dynamics simulations applied to monopeptides and dipeptides. Conformational properties of tripeptides formed from combinations of alanine, valine, tyrosine and tryptophan are investigated based on the Markov model. Comparison with molecular dynamics simulation results on these tripeptides identifies the sequence-distant long-range interactions that are missing in the Markov model. These are essentially the hydrogen bond and hydrophobic interactions that are obtained between the first and the third residue of a tripeptide. A systematic correction is proposed for incorporating these long-range interactions into the rotational isomeric states model. Preliminary results suggest that the Markov assumption can be improved significantly by renormalizing the statistical weight matrices to include the effects of the long-range correlations

  14. Jumping Dynamics

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2013-01-01

    We propose an alternative paradigm to the conjectured Miransky scaling potentially underlying the physics describing the transition from the conformally broken to the conformally restored phase when tuning certain parameters such as the number of flavors in gauge theories. According to the new pa...... without particle interpretation. The jumping scenario, therefore, does not support a near-conformal dynamics of walking type. We will also discuss the impact of jumping dynamics on the construction of models of dynamical electroweak symmetry breaking....

  15. Conformational dynamics of human FXR-LBD ligand interactions studied by hydrogen/deuterium exchange mass spectrometry: Insights into the antagonism of the hypolipidemic agent Z-guggulsterone

    OpenAIRE

    YANG, LIPING; Broderick, David; Jiang, Yuan; Hsu, Victor; Maier, Claudia S.

    2014-01-01

    Farnesoid X Receptor (FXR) is a member of the nuclear receptor superfamily of transcription factors that plays a key role in the regulation of bile acids, lipid and glucose metabolisms. The regulative function of FXR is governed by conformational changes of the ligand binding domain (LBD) upon ligand binding. Although FXR is a highly researched potential therapeutic target, only a limited number of FXR-agonist complexes have been successfully crystallized and subsequently yielded high resolut...

  16. The effect of the structure and conformational dynamics on quenching of triplet states of porphyrins and their chemical dimers by molecular oxygen and on singlet oxygen generation

    Science.gov (United States)

    Ivashin, N. V.; Shchupak, E. E.; Sagun, E. I.

    2015-01-01

    Quantum-chemical calculations are performed to analyze the factors affecting rate constant k T of quenching of the lowest triplet state by molecular oxygen and quantum yield γΔ of singlet oxygen generation in chemical dimers of porphyrins bound by phenyl spacers at one of the meso positions (OEP)2-Ph, (TPP)2, and their Zn complexes. It is established that, for both types of dimers, the triplet excitation is localized on one of the macrocycles. The steric hindrance of macrocycles at the site of the phenyl ring of (OEP)2-Ph, (ZnOEP)2-Ph, and their monomeric analogues OEP-Ph and ZnOEP-Ph facilitates its rotation by 90° in the triplet state. The lowest triplet state energy in this ( U) conformation is lower than 7800 cm-1, which makes impossible electronic excitation energy transfer to molecular oxygen. The potential barrier of transformation to the U conformation is considerably lower for dimers than for monomers. Because of this, the rate of conformational transformations for dimers is higher and some of the (OEP)2-Ph and (ZnOEP)2-Ph molecules have time to transform into the new U conformation before diffusion collision with O2 molecules in solution. This leads to a noticeable decrease in γΔ in accordance with experimental data. It is shown that the behavior of k T in the series of the studied dimers, their monomeric analogues, and relative compounds corresponds to the model of dipole-dipole electronic excitation energy transfer 1(3M⋯3Σ{g/-}) → 1(1M0⋯1Δg) in collisional complexes.

  17. Backbone structure of Yersinia pestis Ail determined in micelles by NMR-restrained simulated annealing with implicit membrane solvation

    Energy Technology Data Exchange (ETDEWEB)

    Marassi, Francesca M., E-mail: fmarassi@sbmri.org; Ding, Yi [Sanford-Burnham Medical Research Institute (United States); Schwieters, Charles D. [National Institutes of Health, Division of Computational Bioscience, Center for Information Technology (United States); Tian, Ye; Yao, Yong [Sanford-Burnham Medical Research Institute (United States)

    2015-09-15

    The outer membrane protein Ail (attachment invasion locus) is a virulence factor of Yersinia pestis that mediates cell invasion, cell attachment and complement resistance. Here we describe its three-dimensional backbone structure determined in decyl-phosphocholine (DePC) micelles by NMR spectroscopy. The NMR structure was calculated using the membrane function of the implicit solvation potential, eefxPot, which we have developed to facilitate NMR structure calculations in a physically realistic environment. We show that the eefxPot force field guides the protein towards its native fold. The resulting structures provide information about the membrane-embedded global position of Ail, and have higher accuracy, higher precision and improved conformational properties, compared to the structures calculated with the standard repulsive potential.

  18. Backbone structure of Yersinia pestis Ail determined in micelles by NMR-restrained simulated annealing with implicit membrane solvation

    International Nuclear Information System (INIS)

    The outer membrane protein Ail (attachment invasion locus) is a virulence factor of Yersinia pestis that mediates cell invasion, cell attachment and complement resistance. Here we describe its three-dimensional backbone structure determined in decyl-phosphocholine (DePC) micelles by NMR spectroscopy. The NMR structure was calculated using the membrane function of the implicit solvation potential, eefxPot, which we have developed to facilitate NMR structure calculations in a physically realistic environment. We show that the eefxPot force field guides the protein towards its native fold. The resulting structures provide information about the membrane-embedded global position of Ail, and have higher accuracy, higher precision and improved conformational properties, compared to the structures calculated with the standard repulsive potential

  19. Conformational dynamics of human FXR-LBD ligand interactions studied by hydrogen/deuterium exchange mass spectrometry: insights into the antagonism of the hypolipidemic agent Z-guggulsterone.

    Science.gov (United States)

    Yang, Liping; Broderick, David; Jiang, Yuan; Hsu, Victor; Maier, Claudia S

    2014-09-01

    Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily of transcription factors that plays a key role in the regulation of bile acids, lipid and glucose metabolisms. The regulative function of FXR is governed by conformational changes of the ligand binding domain (LBD) upon ligand binding. Although FXR is a highly researched potential therapeutic target, only a limited number of FXR-agonist complexes have been successfully crystallized and subsequently yielded high resolution structures. There is currently no structural information of any FXR-antagonist complexes publically available. We therefore explored the use of amide hydrogen/deuterium exchange (HDX) coupled with mass spectrometry for characterizing conformational changes in the FXR-LBD upon ligand binding. Ligand-specific deuterium incorporation profiles were obtained for three FXR ligand chemotypes: GW4064, a synthetic non-steroidal high affinity agonist; the bile acid chenodeoxycholic acid (CDCA), the endogenous low affinity agonist of FXR; and Z-guggulsterone (GG), an in vitro antagonist of the steroid chemotype. A comparison of the HDX profiles of their ligand-bound FXR-LBD complexes revealed a unique mode of interaction for GG. The conformational features of the FXR-LBD-antagonist interaction are discussed. PMID:24953769

  20. Reconstruction of the Sunspot Group Number: the Backbone Method

    CERN Document Server

    Svalgaard, Leif

    2015-01-01

    We have reconstructed the sunspot group count, not by comparisons with other reconstructions and correcting those where they were deemed to be deficient, but by a re-assessment of original sources. The resulting series is a pure solar index and does not rely on input from other proxies, e.g. radionuclides, auroral sightings, or geomagnetic records. 'Backboning' the data sets, our chosen method, provides substance and rigidity by using long-time observers as a stiffness character. Solar activity, as defined by the Group Number, appears to reach and sustain for extended intervals of time the same level in each of the last three centuries since 1700 and the past several decades do not seem to have been exceptionally active, contrary to what is often claimed.

  1. Variation of protein backbone amide resonance by electrostatic field

    CERN Document Server

    Sharley, John N

    2015-01-01

    Amide resonance is found to be sensitive to electrostatic field with component parallel or antiparallel the amide C-N bond. This effect is linear and without threshold in the biologically plausible electrostatic field range -0.005 to 0.005 au. Variation of amide resonance varies Resonance Assisted Hydrogen Bonding such as occurs in the hydrogen bonded chains of backbone amides of protein secondary structures such as beta sheet and non-polyproline helix such as alpha helix, varying the stability of the secondary structure. The electrostatic properties including permittivity of amino acid residue sidegroups influence the electrostatic field component parallel or antiparallel the C-N bond of each amide. The significance of this factor relative to other factors in protein folding depends on the magnitude of electrostatic field component parallel or antiparallel the C-N bond of each amide, and preliminary protein-scale calculations of the magnitude of these components suggest this factor warrants investigation in ...

  2. Design of an IPTV Multicast System for Internet Backbone Networks

    Directory of Open Access Journals (Sweden)

    D. Gilbert

    2010-01-01

    Full Text Available The design of an IPTV multicast system for the Internet backbone network is presented and explored through extensive simulations. In the proposed system, a resource reservation algorithm such as RSVP, IntServ, or DiffServ is used to reserve resources (i.e., bandwidth and buffer space in each router in an IP multicast tree. Each router uses an Input-Queued, Output-Queued, or Crosspoint-Queued switch architecture with unity speedup. A recently proposed Recursive Fair Stochastic Matrix Decomposition algorithm used to compute near-perfect transmission schedules for each IP router. The IPTV traffic is shaped at the sources using Application-Specific Token Bucker Traffic Shapers, to limit the burstiness of incoming network traffic. The IPTV traffic is shaped at the destinations using Application-Specific Playback Queues, to remove residual network jitter and reconstruct the original bursty IPTV video streams at each destination. All IPTV traffic flows are regenerated at the destinations with essentially zero delay jitter and essentially-perfect QoS. The destination nodes deliver the IPTV streams to the ultimate end users using the same IPTV multicast system over a regional Metropolitan Area Network. It is shown that all IPTV traffic is delivered with essentially-perfect end-to-end QoS, with deterministic bounds on the maximum delay and jitter on each video frame. Detailed simulations of an IPTV distribution system, multicasting several hundred high-definition IPTV video streams over several essentially saturated IP backbone networks are presented.

  3. Evidence from molecular dynamics simulations of conformational preorganization in the ribonuclease H active site [v1; ref status: indexed, http://f1000r.es/2z7

    Directory of Open Access Journals (Sweden)

    Kate A. Stafford

    2014-03-01

    Full Text Available Ribonuclease H1 (RNase H enzymes are well-conserved endonucleases that are present in all domains of life and are particularly important in the life cycle of retroviruses as domains within reverse transcriptase. Despite extensive study, especially of the E. coli homolog, the interaction of the highly negatively charged active site with catalytically required magnesium ions remains poorly understood. In this work, we describe molecular dynamics simulations of the E. coli homolog in complex with magnesium ions, as well as simulations of other homologs in their apo states. Collectively, these results suggest that the active site is highly rigid in the apo state of all homologs studied and is conformationally preorganized to favor the binding of a magnesium ion. Notably, representatives of bacterial, eukaryotic, and retroviral RNases H all exhibit similar active-site rigidity, suggesting that this dynamic feature is only subtly modulated by amino acid sequence and is primarily imposed by the distinctive RNase H protein fold.

  4. Conformal symmetries of spacetimes

    International Nuclear Information System (INIS)

    In this paper, we give a unified and global new approach to the study of the conformal structure of the three classical Riemannian spaces as well as of the six relativistic and non-relativistic spacetimes (Minkowskian, de Sitter, anti-de Sitter, and both Newton-Hooke and Galilean). We obtain general expressions within a Cayley-Klein framework, holding simultaneously for all these nine spaces, whose cycles (including geodesics and circles) are explicitly characterized in a new way. The corresponding cycle-preserving symmetries, which give rise to (Moebius-like) conformal Lie algebras, together with their differential realizations are then deduced without having to resort to solving the conformal Killing equations. We show that each set of three spaces with the same signature type and any curvature have isomorphic conformal algebras; these are related through an apparently new conformal duality. Laplace and wave-type differential equations with conformal algebra symmetry are finally constructed. (author)

  5. Beam intensity modulation using tissue compensators or dynamic multileaf collimation in three-dimensional conformal radiotherapy of primary cancers of the oropharynx and larynx, including the elective neck

    International Nuclear Information System (INIS)

    Introduction: The treatment of midline tumors in the head and neck by conventional radiotherapy almost invariably results in xerostomia. This study analyzes whether a simple three-dimensional conformal radiotherapy (3D-CRT) technique with beam intensity modulation (BIM) (using a 10-MV beam of the MM50 Racetrack Microtron) can spare parotid and submandibular glands without compromising the dose distribution in the planning target volume (PTV). Methods: For 15 T2 tumors of the tonsillar fossa with extension into the soft palate (To) and 15 T3 tumors of the supraglottic larynx (SgL), conventional treatment plans, consisting of lateral parallel opposed beams, were used for irradiation of both the primary tumor (70 Gy) and the elective neck regions (46 Gy). Separately, for each tumor a 3-D conformal treatment plan was developed using the 3-D computer planning system, CadPlan, and Optimize, a noncommercial program to compute optimal beam profiles. Beam angles were selected with the intention of optimal sparing of the salivary glands. The intensity of the beams was then modulated to achieve a homogeneous dose distribution in the target for the given 3D-CRT techniques. The dose distributions, dose-volume histograms (DVHs) of target and salivary glands, tumor control probabilities (TCPs), salivary gland volumes absorbing a biologically equivalent dose of greater than 40 or 50 Gy, and normal tissue complication probabilities (NTCPs) of each treatment plan were computed. The parameters of the 3D-CRT plans were compared with those of the conventional plans. Results: In comparison with the conventional technique, the dose homogeneity in the target volume was improved by the conformal technique for both tumor sites. In addition, for the SgL conformal technique, the average volumes of the parotid glands absorbing a BED of greater than 40 Gy (V40) decreased by 23%, and of the submandibular glands by 7% (V40) and 6% (V50). Consequently, the average NTCPs for the parotid and

  6. High-resolution structures of the D-alanyl carrier protein (Dcp) DltC from Bacillus subtilis reveal equivalent conformations of apo- and holo-forms.

    Science.gov (United States)

    Zimmermann, Stephan; Pfennig, Sabrina; Neumann, Piotr; Yonus, Huma; Weininger, Ulrich; Kovermann, Michael; Balbach, Jochen; Stubbs, Milton T

    2015-08-19

    D-Alanylation of lipoteichoic acids plays an important role in modulating the properties of Gram-positive bacteria cell walls. The D-alanyl carrier protein DltC from Bacillus subtilis has been solved in apo- and two cofactor-modified holo-forms, whereby the entire phosphopantetheine moiety is defined in one. The atomic resolution of the apo-structure allows delineation of alternative conformations within the hydrophobic core of the 78 residue four helix bundle. In contrast to previous reports for a peptidyl carrier protein from a non-ribosomal peptide synthetase, no obvious structural differences between apo- and holo-DltC forms are observed. Solution NMR spectroscopy confirms these findings and demonstrates in addition that the two forms exhibit similar backbone dynamics on the ps-ns and ms timescales. PMID:26193422

  7. Conformal Anomalies in Hydrodynamics

    CERN Document Server

    Eling, Christopher; Theisen, Stefan; Yankielowicz, Shimon

    2013-01-01

    We study the effect of conformal anomalies on the hydrodynamic description of conformal field theories in four spacetime dimensions. We consider equilibrium curved backgrounds characterized by a time-like Killing vector and construct a local low energy effective action that captures the conformal anomalies. Using as a special background the Rindler spacetime we derive a formula for the effect of the anomaly on the hydrodynamic pressure.

  8. Galilean Conformal Electrodynamics

    OpenAIRE

    Bagchi, Arjun; Basu, Rudranil; Mehra, Aditya

    2014-01-01

    Maxwell’s Electrodynamics admits two distinct Galilean limits called the Electric and Magnetic limits. We show that the equations of motion in both these limits are invariant under the Galilean Conformal Algebra in D = 4, thereby exhibiting non-relativistic conformal symmetries. Remarkably, the symmetries are infinite dimensional and thus Galilean Electrodynamics give us the first example of an infinitely extended Galilean Conformal Field Theory in D > 2. We examine details of the theory by l...

  9. Juvenile Delinquency and Conformism

    OpenAIRE

    Patacchini, Eleonora; Zenou, Yves

    2010-01-01

    This paper studies whether conformism behavior affects individual outcomes in crime. We present a social network model of peer effects with ex-ante heterogeneous agents and show how conformism and deterrence affect criminal activities. We then bring the model to the data by using a very detailed dataset of adolescent friendship networks. A novel social network-based empirical strategy allows us to identify peer effects for different types of crimes. We find that conformity plays an important ...

  10. Trends for isolated amino acids and dipeptides: Conformation, divalent ion binding, and remarkable similarity of binding to calcium and lead

    CERN Document Server

    Ropo, Matti; Baldauf, Carsten

    2016-01-01

    We derive structural and binding energy trends for twenty amino acids, their dipeptides, and their interactions with the divalent cations Ca$^{2+}$, Ba$^{2+}$, Sr$^{2+}$, Cd$^{2+}$, Pb$^{2+}$, and Hg$^{2+}$. The underlying data set consists of 45,892 first-principles predicted conformers with relative energies up to about 4 eV (about 400kJ/mol). We show that only very few distinct backbone structures of isolated amino acids and their dipeptides emerge as lowest-energy conformers. The isolated amino acids predominantly adopt structures that involve an acidic proton shared between the carboxy and amino function. Dipeptides adopt one of two intramolecular-hydrogen bonded conformations C$_5$ or equatorial C$_7$. Upon complexation with a divalent cation, the accessible conformational space shrinks and intramolecular hydrogen bonding is prevented due to strong electrostatic interaction of backbone and side chain functional groups with cations. Clear correlations emerge from the binding energies of the six divalent ...

  11. Galilean Conformal Electrodynamics

    CERN Document Server

    Bagchi, Arjun; Mehra, Aditya

    2014-01-01

    Maxwell's Electrodynamics admits two distinct Galilean limits called the Electric and Magnetic limits. We show that the equations of motion in both these limits are invariant under the Galilean Conformal Algebra in D=4, thereby exhibiting non-relativistic conformal symmetries. Remarkably, the symmetries are infinite dimensional and thus Galilean Electrodynamics give us the first example of an infinitely extended Galilean Conformal Field Theory in D>2. We examine details of the theory by looking at purely non-relativistic conformal methods and also use input from the limit of the relativistic theory.

  12. Galilean conformal electrodynamics

    Science.gov (United States)

    Bagchi, Arjun; Basu, Rudranil; Mehra, Aditya

    2014-11-01

    Maxwell's Electrodynamics admits two distinct Galilean limits called the Electric and Magnetic limits. We show that the equations of motion in both these limits are invariant under the Galilean Conformal Algebra in D = 4, thereby exhibiting non-relativistic conformal symmetries. Remarkably, the symmetries are infinite dimensional and thus Galilean Electrodynamics give us the first example of an infinitely extended Galilean Conformal Field Theory in D > 2. We examine details of the theory by looking at purely non-relativistic conformal methods and also use input from the limit of the relativistic theory.

  13. Conformal Bootstrap in Mellin Space

    CERN Document Server

    Gopakumar, Rajesh; Sen, Kallol; Sinha, Aninda

    2016-01-01

    We propose a new approach towards analytically solving for the dynamical content of Conformal Field Theories (CFTs) using the bootstrap philosophy. This combines the original bootstrap idea of Polyakov with the modern technology of the Mellin representation of CFT amplitudes. We employ exchange Witten diagrams with built in crossing symmetry as our basic building blocks rather than the conventional conformal blocks in a particular channel. Demanding consistency with the operator product expansion (OPE) implies an infinite set of constraints on operator dimensions and OPE coefficients. We illustrate the power of this method in the epsilon expansion of the Wilson-Fisher fixed point by computing operator dimensions and, strikingly, OPE coefficients to higher orders in epsilon than currently available using other analytic techniques (including Feynman diagram calculations). Our results enable us to get a somewhat better agreement of certain observables in the 3d Ising model, with the precise numerical values that...

  14. NMR study of stacking interactions and conformational adjustment in the dinucleotide-carcinogen adduct 2'-deoxycytidylyl-(3 → 5)-2'deoxy-8-(N-flouren-2-ylacetamido)guanosine

    International Nuclear Information System (INIS)

    The conformation and dynamics of the dinucleotide d-CpG modified at the C(8) position of the guanine ring by the carcinogen 2-(acetylamino)fluorene has been investigated by high-field 1H NMR spectroscopy. A two-state analysis of chemical shift data has enabled estimation of the extent of intramolecular stacking in aqueous solution as a function of temperature. The stacking, which is mostly fluorene-cytosine, is virtually complete in the low-temperature range. The 500-MHz 1H NMR spectrum consists of two subspectra near ambient temperatures due to a 14.3 +/- 0.3 kcal/mol barrier to internal rotation about the amide bond in the stacked form. Problems of self-association and chemical exchange were identified and overcome to enable analysis of the sugar-phosphate backbone conformation utilizing coupling constants. For the exocyclic C(4')-C(5') bond of the deoxyguanosine moiety, there is a high gauche+ conformer population, which is uncommon for a purine nucleotide with a syn orientation about the glycosyl bond. The gauche- conformation, which is normally present in syn purine nucleotides in solution, was not detected. The exocyclic C(5')-O(5') torsion of the deoxyguanosine moiety remains near the classical energy minimum in the major stacked conformations. The sugar ring of the deoxycytidine moiety is predominantly in the C2'-endo conformation, while the deoxyguanosine ring is a mixture of conformations, one of which appears to be unusually puckered. The results support intercalation models of modified DNA and suggest a looped-out structure, with the modified guanine being the first base in the loop. Such structures could explain the relatively rapid rate of repair and the frame-shift mutations of this type of adduct

  15. Imaging of conformational changes

    Energy Technology Data Exchange (ETDEWEB)

    Michl, Josef [Univ. of Colorado, Boulder, CO (United States)

    2016-03-13

    Control of intramolecular conformational change in a small number of molecules or even a single one by an application of an outside electric field defined by potentials on nearby metal or dielectric surfaces has potential applications in both 3-D and 2-D nanotechnology. Specifically, the synthesis, characterization, and understanding of designed solids with controlled built-in internal rotational motion of a dipole promises a new class of materials with intrinsic dielectric, ferroelectric, optical and optoelectronic properties not found in nature. Controlled rotational motion is of great interest due to its expected utility in phenomena as diverse as transport, current flow in molecular junctions, diffusion in microfluidic channels, and rotary motion in molecular machines. A direct time-resolved observation of the dynamics of motion on ps or ns time scale in a single molecule would be highly interesting but is also very difficult and has yet to be accomplished. Much can be learned from an easier but still challenging comparison of directly observed initial and final orientational states of a single molecule, which is the basis of this project. The project also impacts the understanding of surface-enhanced Raman spectroscopy (SERS) and single-molecule spectroscopic detection, as well as the synthesis of solid-state materials with tailored properties from designed precursors.

  16. Conformal Bootstrap in Embedding Space

    CERN Document Server

    Fortin, Jean-François

    2016-01-01

    It is shown how to obtain conformal blocks from embedding space with the help of the operator product expansion. The minimal conformal block originates from scalar exchange in a four-point correlation functions of four scalars. All remaining conformal blocks are simple derivatives of the minimal conformal block. With the help of the orthogonality properties of the conformal blocks, the analytic conformal bootstrap can be implemented directly in embedding space, leading to a Jacobi-like definition of conformal field theories.

  17. Conformal bootstrap in embedding space

    Science.gov (United States)

    Fortin, Jean-François; Skiba, Witold

    2016-05-01

    It is shown how to obtain conformal blocks from embedding space with the help of the operator product expansion. The minimal conformal block originates from scalar exchange in a four-point correlation function of four scalars. All remaining conformal blocks are simple derivatives of the minimal conformal block. With the help of the orthogonality properties of the conformal blocks, the analytic conformal bootstrap can be implemented directly in embedding space, leading to a Jacobi-like definition of conformal field theories.

  18. In Sup35p filaments (the [PSI+] prion), the globular C-terminal domains are widely offset from the amyloid fibril backbone

    Energy Technology Data Exchange (ETDEWEB)

    Baxa, U.; Wall, J.; Keller, P. W.; Cheng, N.; Steven, A. C.

    2011-01-01

    In yeast cells infected with the [PSI+] prion, Sup35p forms aggregates and its activity in translation termination is downregulated. Transfection experiments have shown that Sup35p filaments assembled in vitro are infectious, suggesting that they reproduce or closely resemble the prion. We have used several EM techniques to study the molecular architecture of filaments, seeking clues as to the mechanism of downregulation. Sup35p has an N-terminal 'prion' domain; a highly charged middle (M-)domain; and a C-terminal domain with the translation termination activity. By negative staining, cryo-EM and scanning transmission EM (STEM), filaments of full-length Sup35p show a thin backbone fibril surrounded by a diffuse 65-nm-wide cloud of globular C-domains. In diameter ({approx}8 nm) and appearance, the backbones resemble amyloid fibrils of N-domains alone. STEM mass-per-unit-length data yield -1 subunit per 0.47 nm for N-fibrils, NM-filaments and Sup35p filaments, further supporting the fibril backbone model. The 30 nm radial span of decorating C-domains indicates that the M-domains assume highly extended conformations, offering an explanation for the residual Sup35p activity in infected cells, whereby the C-domains remain free enough to interact with ribosomes.

  19. Polarizable protein model for Dissipative Particle Dynamics

    Science.gov (United States)

    Peter, Emanuel; Lykov, Kirill; Pivkin, Igor

    2015-11-01

    In this talk, we present a novel polarizable protein model for the Dissipative Particle Dynamics (DPD) simulation technique, a coarse-grained particle-based method widely used in modeling of fluid systems at the mesoscale. We employ long-range electrostatics and Drude oscillators in combination with a newly developed polarizable water model. The protein in our model is resembled by a polarizable backbone and a simplified representation of the sidechains. We define the model parameters using the experimental structures of 2 proteins: TrpZip2 and TrpCage. We validate the model on folding of five other proteins and demonstrate that it successfully predicts folding of these proteins into their native conformations. As a perspective of this model, we will give a short outlook on simulations of protein aggregation in the bulk and near a model membrane, a relevant process in several Amyloid diseases, e.g. Alzheimer's and Diabetes II.

  20. A New Secondary Structure Assignment Algorithm Using Cα Backbone Fragments.

    Science.gov (United States)

    Cao, Chen; Wang, Guishen; Liu, An; Xu, Shutan; Wang, Lincong; Zou, Shuxue

    2016-01-01

    The assignment of secondary structure elements in proteins is a key step in the analysis of their structures and functions. We have developed an algorithm, SACF (secondary structure assignment based on Cα fragments), for secondary structure element (SSE) assignment based on the alignment of Cα backbone fragments with central poses derived by clustering known SSE fragments. The assignment algorithm consists of three steps: First, the outlier fragments on known SSEs are detected. Next, the remaining fragments are clustered to obtain the central fragments for each cluster. Finally, the central fragments are used as a template to make assignments. Following a large-scale comparison of 11 secondary structure assignment methods, SACF, KAKSI and PROSS are found to have similar agreement with DSSP, while PCASSO agrees with DSSP best. SACF and PCASSO show preference to reducing residues in N and C cap regions, whereas KAKSI, P-SEA and SEGNO tend to add residues to the terminals when DSSP assignment is taken as standard. Moreover, our algorithm is able to assign subtle helices (310-helix, π-helix and left-handed helix) and make uniform assignments, as well as to detect rare SSEs in β-sheets or long helices as outlier fragments from other programs. The structural uniformity should be useful for protein structure classification and prediction, while outlier fragments underlie the structure-function relationship. PMID:26978354

  1. Solid state radiation chemistry of the DNA backbone

    International Nuclear Information System (INIS)

    The long term goal of this program is to determine the fundamental rules needed to predict the type and yield of damage produced in DNA due to direct effects of ionizing radiation. The focus is on damage to the sugar-phosphate backbone, damage that would lead to strand breaks. Model systems have been chosen that permit various aspects of this problem to be investigated. The emphasis will be on single crystals of monosaccharides, nucleosides, and nucleotides but will also include some powder work on polynucleotides. In these model systems, free radical products and reactions are observed by electron spin resonance (ESR) and electron nuclear double resonance (ENDOR) techniques. The information thus gained is used in constructing rules that predict what primary free radicals are formed in single crystals of model compounds and the reactions stemming from the primary radicals. The formulation of a set of rules that work in model systems will represent a major advance toward formulating a set of rules that predict the direct damage in DNA itself. In a broader context this program is part of the effort to understand and predict the effects of exposure to ionizing radiation received at low dose rates over long periods of time. Assessment of low dose effects requires a basic understanding of the action of radiation at the molecular level. By contributing to that basic understanding, this program will help solve the problems of risk assessment under low dose conditions. 5 refs., 3 figs

  2. Backbone of complex networks of corporations: The flow of control

    Science.gov (United States)

    Glattfelder, J. B.; Battiston, S.

    2009-09-01

    We present a methodology to extract the backbone of complex networks based on the weight and direction of links, as well as on nontopological properties of nodes. We show how the methodology can be applied in general to networks in which mass or energy is flowing along the links. In particular, the procedure enables us to address important questions in economics, namely, how control and wealth are structured and concentrated across national markets. We report on the first cross-country investigation of ownership networks, focusing on the stock markets of 48 countries around the world. On the one hand, our analysis confirms results expected on the basis of the literature on corporate control, namely, that in Anglo-Saxon countries control tends to be dispersed among numerous shareholders. On the other hand, it also reveals that in the same countries, control is found to be highly concentrated at the global level, namely, lying in the hands of very few important shareholders. Interestingly, the exact opposite is observed for European countries. These results have previously not been reported as they are not observable without the kind of network analysis developed here.

  3. Data acquisition backbone core DABC release v1.0

    International Nuclear Information System (INIS)

    The new experiments at FAIR require new concepts of data acquisition systems for the distribution of self-triggered, time stamped data streams over high performance networks for event building. The Data Acquisition Backbone Core (DABC) is a general purpose software framework developed for the implementation of such data acquisition systems. A DABC application consists of functional components like data input, combiner, scheduler, event builder, filter, analysis and storage which can be configured at runtime. Application specific code including the support of all kinds of data channels (front-end systems) is implemented by C++ program plug-ins. DABC is also well suited as environment for various detector and readout components test beds. A set of DABC plug-ins has been developed for the FAIR experiment CBM (Compressed Baryonic Matter) at GSI. This DABC application is used as DAQ system for test beamtimes. Front-end boards equipped with n-XYTER ASICs and ADCs are connected to read-out controller boards (ROC). From there the data is sent over Ethernet (UDP), or over optics and PCIe interface cards into Linux PCs. DABC does the controlling, event building, archiving and data serving. The first release of DABC was published in 2009 and is available under GPL license.

  4. Long-term outcomes of dynamic conformal arc irradiation combined with neoadjuvant hormonal therapy in Japanese patients with T1c-T2N0M0 prostate cancer. Case series study

    International Nuclear Information System (INIS)

    There are few reports of the outcomes of external beam radiotherapy in Asian males with localized prostate cancer. The aim of this study is to evaluate the long-term outcomes of external beam irradiation using three-dimensional two-dynamic conformal arc therapy, combined with neoadjuvant hormonal therapy, in patients with T1c-T2N0M0 prostate cancer. Between March 2003 and August 2007, 150 Japanese patients with T1c-T2N0M0 prostate cancer were definitively treated with three-dimensional two-dynamic conformal arc therapy. The median age, pretreatment prostate-specific antigen values and neoadjuvant hormonal therapy period were 73 years, 9.4 ng/ml and 6 months, respectively. In principle, 74 Gy was delivered to the planning target volume, although the total dose was reduced to 70 Gy in patients with unfavorable risk factors, such as severe diabetes mellitus or anticoagulant therapy. No adjuvant hormonal therapy was given to any patient. Salvage hormonal therapy was started when the prostate-specific antigen value exceeded 4 ng/ml in a monotonically increasing manner. The median follow-up period was 79 months. Salvage hormonal therapy was initiated in 10 patients and the median prostate-specific antigen value at the initiation was 4.7 ng/ml. The 5-year Kaplan-Meier estimates of the biochemical relapse-free survival rate, the salvage hormonal therapy -free rate and the overall survival rate were 83.3% (95% confidence interval=77.1-89.6%), 94.3% (95% confidence interval=90.4-98.1%) and 96.3% (95% confidence interval=93.1-99.5%), respectively. The 5-year cumulative incidence rates of developing more than Grade 2 late rectal and urinary toxicities were 5.5 and 2.9%, respectively. Three-dimensional two-dynamic conformal arc therapy, with up to 74 Gy, in patients with T1c-T2N0M0 prostate cancer with neoadjuvant hormonal therapy was well tolerated and achieved good biochemical control and survival outcomes. (author)

  5. Conformal invariance in supergravity

    International Nuclear Information System (INIS)

    In this thesis the author explains the role of conformal invariance in supergravity. He presents the complete structure of extended conformal supergravity for N <= 4. The outline of this work is as follows. In chapter 2 he briefly summarizes the essential properties of supersymmetry and supergravity and indicates the use of conformal invariance in supergravity. The idea that the introduction of additional symmetry transformations can make clear the structure of a field theory is not reserved to supergravity only. By means of some simple examples it is shown in chapter 3 how one can always introduce additional gauge transformations in a theory of massive vector fields. Moreover it is shown how the gauge invariant formulation sometimes explains the quantum mechanical properties of the theory. In chapter 4 the author defines the conformal transformations and summarizes their main properties. He explains how these conformal transformations can be used to analyse the structure of gravity. The supersymmetric extension of these results is discussed in chapter 5. Here he describes as an example how N=1 supergravity can be reformulated in a conformally-invariant way. He also shows that beyond N=1 the gauge fields of the superconformal symmetries do not constitute an off-shell field representation of extended conformal supergravity. Therefore, in chapter 6, a systematic method to construct the off-shell formulation of all extended conformal supergravity theories with N <= 4 is developed. As an example he uses this method to construct N=1 conformal supergravity. Finally, in chapter 7 N=4 conformal supergravity is discussed. (Auth.)

  6. Polyelectrolyte conformational transition in aqueous solvent mixture influenced by hydrophobic interactions and hydrogen bonding effects: PAA-water-ethanol.

    Science.gov (United States)

    Sappidi, Praveenkumar; Natarajan, Upendra

    2016-03-01

    Molecular dynamics simulations of poly(acrylic acid) PAA chain in water-ethanol mixture were performed for un-ionized and ionized cases at different degree-of-ionization 0%, 80% and 100% of PAA chain by Na(+) counter-ions and co-solvent (ethanol) concentration in the range 0-90vol% ethanol. Aspects of structure and dynamics were investigated via atom pair correlation functions, number and relaxation of hydrogen bonds, nearest-neighbor coordination numbers, and dihedral angle distribution function for back-bone and side-groups of the chain. With increase in ethanol concentration, chain swelling is observed for un-ionized chain (f=0) and on the contrary chain shrinkage is observed for partially and fully ionized cases (i.e., f=0.8 and 1). For un-ionized PAA, with increase in ethanol fraction ϕeth the number of PAA-ethanol hydrogen bonds increases while PAA-water decreases. Increase in ϕeth leads to PAA chain expansion for un-ionized case and chain shrinkage for ionized case, in agreement with experimental observations on this system. For ionized-PAA case, chain shrinkage is found to be influenced by intermolecular hydrogen bonding with water as well as ethanol. The localization of ethanol molecules near the un-ionized PAA backbone at higher levels of ethanol is facilitated by a displacement of water molecules indicating presence of specific ethanol hydration shell, as confirmed by results of the RDF curves and coordination number calculations. This behavior, controlled by hydrogen bonding provides a significant contribution to such a conformational transition behavior of the polyelectrolyte chain. The interactions between counter-ions and charges on the PAA chain also influence chain collapse. The underlying origins of polyelectrolyte chain collapse in water-alcohol mixtures are brought out for the first time via explicit MD simulations by this study. PMID:26803232

  7. Background Free Quantum Gravity based on Conformal Gravity and Conformal Field Theory on M^4

    CERN Document Server

    Hamada, Ken-ji

    2011-01-01

    We study four dimensional quantum gravity formulated as a certain conformal field theory at the ultraviolet fixed point, whose dynamics is described by the combined system of Riegert-Wess-Zumino and Weyl actions. Background free nature comes out as quantum diffeomorphism symmetry by quantizing the conformal factor of the metric field non-perturbatively. In this paper, Minkowski background $M^4$ is employed in practice. The generator of quantum diffeomorphism that forms conformal algebra is constructed. Using it, we study the composite scalar operator that becomes a good conformal field. We find that physical fields are described by such scalar fields with conformal dimensions 4. Consequently, tensor fields outside the unitarity bound are excluded. Computations of quantum algebra on $M^4$ are carried out in the coordinate space using operator products of the fields. The nilpotent BRST operator is also constructed.

  8. Mapping the dynamics of ligand reorganization via 13CH3 and 13CH2 relaxation dispersion at natural abundance

    International Nuclear Information System (INIS)

    Flexible ligands pose challenges to standard structure-activity studies since they frequently reorganize their conformations upon protein binding and catalysis. Here, we demonstrate the utility of side chain 13C relaxation dispersion measurements to identify and quantify the conformational dynamics that drive this reorganization. The dispersion measurements probe methylene 13CH2 and methyl 13CH3 groups; the latter are highly prevalent side chain moieties in known drugs. Combining these side chain studies with existing backbone dispersion studies enables a comprehensive investigation of μs-ms conformational dynamics related to binding and catalysis. We perform these measurements at natural 13C abundance, in congruence with common pharmaceutical research settings. We illustrate these methods through a study of the interaction of a phosphopeptide ligand with the peptidyl-prolyl isomerase, Pin1. The results illuminate the side-chain moieties that undergo conformational readjustments upon complex formation. In particular, we find evidence that multiple exchange processes influence the side chain dispersion profiles. Collectively, our studies illustrate how side-chain relaxation dispersion can shed light on ligand conformational transitions required for activity, and thereby suggest strategies for its optimization

  9. Conformational transitions of a weak polyampholyte

    KAUST Repository

    Narayanan Nair, Arun Kumar

    2014-10-07

    Using grand canonical Monte Carlo simulations of a flexible polyelectrolyte where the charges are in contact with a reservoir of constant chemical potential given by the solution pH, we study the behavior of weak polyelectrolytes in poor and good solvent conditions for polymer backbone. We address the titration behavior and conformational properties of a flexible diblock polyampholyte chain formed of two oppositely charged weak polyelectrolyte blocks, each containing equal number of identical monomers. The change of solution pH induces charge asymmetry in a diblock polyampholyte. For diblock polyampholyte chains in poor solvents, we demonstrate that a discontinuous transition between extended (tadpole) and collapsed (globular) conformational states is attainable by varying the solution pH. The double-minima structure in the probability distribution of the free energy provides direct evidence for the first-order like nature of this transition. At the isoelectric point electrostatically driven coil-globule transition of diblock polyampholytes in good solvents is found to consist of different regimes identified with increasing electrostatic interaction strength. At pH values above or below the isoelectric point diblock chains are found to have polyelectrolyte-like behavior due to repulsion between uncompensated charges along the chain.

  10. Nuclear magnetic resonance secondary shifts of a light-harvesting 2 complex reveal local backbone perturbations induced by its higher-order interactions.

    Science.gov (United States)

    Pandit, Anjali; Wawrzyniak, Piotr K; van Gammeren, Adriaan J; Buda, Francesco; Ganapathy, Swapna; de Groot, Huub J M

    2010-01-26

    Protein nuclear magnetic resonance (NMR) secondary chemical shifts are widely used to predict the secondary structure, and in solid-state NMR, they are often the only unambiguous structural parameters available. However, the employed prediction methods are empirical in nature, relying on the assumption that secondary shifts are only affected by shielding effects of neighboring atoms. We analyzed the secondary shifts of a photosynthetic membrane protein with a high density of chromophores and very tight packing, the light-harvesting 2 (LH2) complex of Rhodopseudomonas acidophila. A relation was found between secondary shift anomalies and protein-protein or pigment-protein tertiary and quaternary contacts. For several residues, including the bacteriochlorophyll-coordinating histidines (alphaH31 and betaH30) and the phenylalanine alphaF41 that has strongly twisted C(b)-C(a)-C and C(a)-C-N conformations in the LH2 crystal structure, the perturbing effects on the backbone chemical shifts were tested by density functional theory (DFT) calculations. We propose that higher-order interactions in the tightly packed complex can induce localized perturbations of the backbone conformation and electronic structure, related to functional pigment-protein or protein-protein interactions. PMID:19954238

  11. Resistance issues with new nucleoside/nucleotide backbone options.

    Science.gov (United States)

    Wainberg, Mark A; Turner, Dan

    2004-09-01

    The nucleoside and nucleotide reverse transcriptase inhibitors (NRTIs/NtRTIs) remain an enduring feature of combination therapy. As NRTI/NtRTI options continue to expand, questions arise about how best to combine these agents to create effective dual NRTI/NtRTI backbones in antiretroviral regimens while avoiding treatment-emergent drug resistance. Clinicians must consider how NRTIs/NtRTIs such as tenofovir DF (TDF), abacavir (ABC), and emtricitabine (FTC), as well as new once-daily and coformulated NRTIs/NtRTIs, interact with older agents when combined in novel regimens and how sequencing the new NRTIs can preserve future treatment options. Resistance data from clinical trials have revealed important information on the patterns, prevalence, and effects of resistance seen among patients experiencing virologic failure. In recent years, the prevalence of some mutations such as M184V and Q151M has remained relatively constant, while the L74V mutation, the 69 insertions, and thymidine analogue mutations have decreased in prevalence. Other mutations such as K65R and Y115F, while still relatively uncommon, are increasing in prevalence. This increase may be due to the use of new treatment combinations that select for these mutations at a higher rate. Clinical trials suggest that new regimens containing TDF or ABC select for K65R and that this mutation is observed more frequently with TDF; in contrast, L74V is observed more frequently in ABC-containing regimens but is not commonly selected by TDF-containing regimens. Several lines of evidence are converging to suggest that the presence of zidovudine may decrease the risk of L74V and K65R in ABC- or TDF-containing regimens. This review summarizes the clinical implications of resistance profiles associated with new NRTI/NtRTI regimens in current use and in advanced clinical studies. PMID:15319668

  12. Locally conformal symplectic manifolds

    Directory of Open Access Journals (Sweden)

    Izu Vaisman

    1985-01-01

    Full Text Available A locally conformal symplectic (l. c. s. manifold is a pair (M2n,Ω where M2n(n>1 is a connected differentiable manifold, and Ω a nondegenerate 2-form on M such that M=⋃αUα (Uα- open subsets. Ω/Uα=eσαΩα, σα:Uα→ℝ, dΩα=0. Equivalently, dΩ=ω∧Ω for some closed 1-form ω. L. c. s. manifolds can be seen as generalized phase spaces of Hamiltonian dynamical systems since the form of the Hamilton equations is, in fact, preserved by homothetic canonical transformations. The paper discusses first Hamiltonian vector fields, and infinitesimal automorphisms (i. a. on l. c. s. manifolds. If (M,Ω has an i. a. X such that ω(X≠0, we say that M is of the first kind and Ω assumes the particular form Ω=dθ−ω∧θ. Such an M is a 2-contact manifold with the structure forms (ω,θ, and it has a vertical 2-dimensional foliation V. If V is regular, we can give a fibration theorem which shows that M is a T2-principal bundle over a symplectic manifold. Particularly, V is regular for some homogeneous l. c. s, manifolds, and this leads to a general construction of compact homogeneous l. c. s, manifolds. Various related geometric results, including reductivity theorems for Lie algebras of i. a. are also given. Most of the proofs are adaptations of corresponding proofs in symplectic and contact geometry. The paper ends with an Appendix which states an analogous fibration theorem in Riemannian geometry.

  13. An explicit-solvent conformation search method using open software

    Science.gov (United States)

    Gaalswyk, Kari

    2016-01-01

    Computer modeling is a popular tool to identify the most-probable conformers of a molecule. Although the solvent can have a large effect on the stability of a conformation, many popular conformational search methods are only capable of describing molecules in the gas phase or with an implicit solvent model. We have developed a work-flow for performing a conformation search on explicitly-solvated molecules using open source software. This method uses replica exchange molecular dynamics (REMD) to sample the conformational states of the molecule efficiently. Cluster analysis is used to identify the most probable conformations from the simulated trajectory. This work-flow was tested on drug molecules α-amanitin and cabergoline to illustrate its capabilities and effectiveness. The preferred conformations of these molecules in gas phase, implicit solvent, and explicit solvent are significantly different. PMID:27280078

  14. Studying the Conformation of a Silaffin-Derived Pentalysine Peptide Embedded in Bioinspired Silica using Solution and Dynamic Nuclear Polarization Magic-Angle Spinning NMR.

    Science.gov (United States)

    Geiger, Yasmin; Gottlieb, Hugo E; Akbey, Ümit; Oschkinat, Hartmut; Goobes, Gil

    2016-05-01

    Smart materials are created in nature at interfaces between biomolecules and solid materials. The ability to probe the structure of functional peptides that engineer biogenic materials at this heterogeneous setting can be facilitated tremendously by use of DNP-enhanced solid-state NMR spectroscopy. This sensitive NMR technique allows simple and quick measurements, often without the need for isotope enrichment. Here, it is used to characterize a pentalysine peptide, derived from a diatom's silaffin protein. The peptide accelerates the formation of bioinspired silica and gets embedded inside the material as it is formed. Two-dimensional DNP MAS NMR of the silica-bound peptide and solution NMR of the free peptide are used to derive its secondary structure in the two states and to pinpoint some subtle conformational changes that the peptide undergoes in order to adapt to the silica environment. In addition, interactions between abundant lysine residues and silica surface are identified, and proximity of other side chains to silica and to neighboring peptide molecules is discussed. PMID:26451953

  15. Conformal Invariant Teleparallel Cosmology

    CERN Document Server

    Momeni, Davood

    2014-01-01

    Teleparallel gravities revisited under conformal transformations. We find several kinds of the Lagrangians, all invariant under conformal transformation. Motivated by observational data,we investigate FRW cosmological solutions in the vacuum. To include the matter fields,we mention that we have few possibilities for our matter Lagrangian to respect the conformal symmetry. FRW equations,have been derived in terms of the effective energy and pressure components. In vacuum we find an exact solution for Hubble parameter which is compatible with the observational data but it is valid only in the range of $z\\ge 0.07$. Scalar torsion models in which we have the extra scalar field is examined under FRW spacetime. We introduce the potential term $\\frac{1}{4!}\\mu\\phi^4$ as the minimal self interaction with conformal symmetry.

  16. [Conformers of carnosine].

    Science.gov (United States)

    Kliuev, S A

    2006-01-01

    The geometric and energetic parameters of most stable conformations of carnosine were calculated by the semiempirical guantum-chemical method PM3. The carnosine-water-zinc (II) clusters were simulated. PMID:16909845

  17. Effect of the aminoacid composition of model α-helical peptides on the physical properties of lipid bilayers and peptide conformation: a molecular dynamics simulation

    Czech Academy of Sciences Publication Activity Database

    Melicherčík, Milan; Holúbeková, A.; Hianik, T.; Urban, J.

    2013-01-01

    Roč. 19, č. 11 (2013), s. 4723-4730. ISSN 1610-2940 Institutional support: RVO:67179843 Keywords : Bilayer lipid membranes * Helical peptides * Molecular dynamics simulations * Phase transitions Subject RIV: BO - Biophysics Impact factor: 1.867, year: 2013

  18. Conformational dynamics is key to understanding loss-of-function of NQO1 cancer-associated polymorphisms and its correction by pharmacological ligands

    Science.gov (United States)

    Encarnación, Medina-Carmona; Palomino-Morales, Rogelio J.; Fuchs, Julian E.; Esperanza, Padín-Gonzalez; Noel, Mesa-Torres; Salido, Eduardo; Timson, David J.; Pey, Angel L.

    2016-02-01

    Protein dynamics is essential to understand protein function and stability, even though is rarely investigated as the origin of loss-of-function due to genetic variations. Here, we use biochemical, biophysical, cell and computational biology tools to study two loss-of-function and cancer-associated polymorphisms (p.R139W and p.P187S) in human NAD(P)H quinone oxidoreductase 1 (NQO1), a FAD-dependent enzyme which activates cancer pro-drugs and stabilizes several oncosuppressors. We show that p.P187S strongly destabilizes the NQO1 dimer in vitro and increases the flexibility of the C-terminal domain, while a combination of FAD and the inhibitor dicoumarol overcome these alterations. Additionally, changes in global stability due to polymorphisms and ligand binding are linked to the dynamics of the dimer interface, whereas the low activity and affinity for FAD in p.P187S is caused by increased fluctuations at the FAD binding site. Importantly, NQO1 steady-state protein levels in cell cultures correlate primarily with the dynamics of the C-terminal domain, supporting a directional preference in NQO1 proteasomal degradation and the use of ligands binding to this domain to stabilize p.P187S in vivo. In conclusion, protein dynamics are fundamental to understanding loss-of-function in p.P187S, and to develop new pharmacological therapies to rescue this function.

  19. Quantum massive conformal gravity

    OpenAIRE

    Faria, F. F.

    2016-01-01

    We first find the linear approximation of the second plus fourth order derivative massive conformal gravity action. Then we reduce the linearized action to separated second order derivative terms, which allows us to quantize the theory by using the standard first order canonical quantization method. It is shown that quantum massive conformal gravity is renormalizable but has ghost states. A possible decoupling of these ghost states at high energies is discussed.

  20. Quantum massive conformal gravity

    Science.gov (United States)

    Faria, F. F.

    2016-04-01

    We first find the linear approximation of the second plus fourth order derivative massive conformal gravity action. Then we reduce the linearized action to separated second order derivative terms, which allows us to quantize the theory by using the standard first order canonical quantization method. It is shown that quantum massive conformal gravity is renormalizable but has ghost states. A possible decoupling of these ghost states at high energies is discussed.

  1. Quantum massive conformal gravity

    International Nuclear Information System (INIS)

    We first find the linear approximation of the second plus fourth order derivative massive conformal gravity action. Then we reduce the linearized action to separated second order derivative terms, which allows us to quantize the theory by using the standard first order canonical quantization method. It is shown that quantum massive conformal gravity is renormalizable but has ghost states. A possible decoupling of these ghost states at high energies is discussed. (orig.)

  2. Delineating the conformal window

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal; Pickup, Thomas; Teper, Michael

    We identify and characterise the conformal window in gauge theories relevant for beyond the standard model building, e.g. Technicolour, using the criteria of metric confinement and causal analytic couplings, which are known to be consistent with the phase diagram of supersymmetric QCD from Seiberg...... duality. Using these criteria we find perturbation theory to be consistent throughout the predicted conformal window for several of these gauge theories and we discuss recent lattice results in the light of our findings....

  3. Pseudo 5D HN(C)N Experiment to Facilitate the Assignment of Backbone Resonances in Proteins Exhibiting High Backbone Shift Degeneracy

    CERN Document Server

    Kumar, Dinesh; Shukla, Vaibhav Kumar; Pandey, Himanshu; Arora, Ashish; Guleria, Anupam

    2014-01-01

    Assignment of protein backbone resonances is most routinely carried out using triple resonance three dimensional NMR experiments involving amide 1H and 15N resonances. However for intrinsically unstructured proteins, alpha-helical proteins or proteins containing several disordered fragments, the assignment becomes problematic because of high degree of backbone shift degeneracy. In this backdrop, a novel reduced dimensionality (RD) experiment -(5,3)D-hNCO-CANH- is presented to facilitate (and/or to validate) the sequential backbone resonance assignment in such proteins. The proposed 3D NMR experiment makes use of the modulated amide 15N chemical shifts (resulting from the joint sampling along both its indirect dimensions) to resolve the ambiguity involved in connecting the neighboring amide resonances (i.e. HiNi and Hi-1Ni-1) for overlapping amide NH peaks. The experiment -encoding 5D spectral information- leads to a conventional 3D spectrum with significantly reduced spectral crowding and complexity. The impr...

  4. Conformation dependent electronic transport in a DNA double-helix

    International Nuclear Information System (INIS)

    We present a tight-binding study of conformation dependent electronic transport properties of DNA double-helix including its helical symmetry. We have studied the changes in the localization properties of DNA as we alter the number of stacked bases within every pitch of the double-helix keeping fixed the total number of nitrogen bases within the DNA molecule. We take three DNA sequences, two of them are periodic and one is random and observe that in all the cases localization length increases as we increase the radius of DNA double-helix i.e., number of nucleobases within a pitch. We have also investigated the effect of backbone energetic on the I-V response of the system and found that in presence of helical symmetry, depending on the interplay of conformal variation and disorder, DNA can be found in either metallic, semiconducting and insulating phases, as observed experimentally

  5. Conformation dependent electronic transport in a DNA double-helix

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Sourav, E-mail: sourav.kundu@saha.ac.in; Karmakar, S. N., E-mail: sachindranath.karmakar@saha.ac.in [Condensed Matter Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700 064 (India)

    2015-10-15

    We present a tight-binding study of conformation dependent electronic transport properties of DNA double-helix including its helical symmetry. We have studied the changes in the localization properties of DNA as we alter the number of stacked bases within every pitch of the double-helix keeping fixed the total number of nitrogen bases within the DNA molecule. We take three DNA sequences, two of them are periodic and one is random and observe that in all the cases localization length increases as we increase the radius of DNA double-helix i.e., number of nucleobases within a pitch. We have also investigated the effect of backbone energetic on the I-V response of the system and found that in presence of helical symmetry, depending on the interplay of conformal variation and disorder, DNA can be found in either metallic, semiconducting and insulating phases, as observed experimentally.

  6. Programmed Switching of Single Polymer Conformation on DNA Origami

    DEFF Research Database (Denmark)

    Krissanaprasit, Abhichart; Madsen, Mikael; Knudsen, Jakob Bach; Gudnason, Daniel Aron; Surareungchai, Werasak; Birkedal, Victoria; Gothelf, Kurt Vesterager

    2016-01-01

    DNA hybridization directed by single-stranded guiding strands and ssDNA tracks extending from the origami surface and polymer handle. We demonstrate switching of a conjugated organic polymer conformation between left- and right-turned conformations of the polymer on DNA origami based on toehold......DNA nanotechnology offers precise geometrical control of the positioning of materials, and it is increasingly also being used in the development of nanomechanical devices. Here we describe the development of a nanomechanical device that allows switching of the position of a single......-molecule conjugated polymer. The polymer is functionalized with short single-stranded (ss) DNA strands that extend from the backbone of the polymer and serve as handles. The DNA polymer conjugate can be aligned on DNA origami in three well-defined geometries (straight line, left-turned, and right-turned pattern) by...

  7. Conformal gravity from AdS/CFT

    International Nuclear Information System (INIS)

    We explicitly calculate the induced gravity theory at the boundary of an asymptotically Anti-de Sitter five dimensional Einstein gravity. We also display the action that encodes the dynamics of radial diffeomorphisms. It is found that the induced theory is a four dimensional conformal gravity plus a scalar field. This calculation confirms some previous results found by a different approach.

  8. A synthetic HIV-1 subtype C backbone generates comparable PR and RT resistance profiles to a subtype B backbone in a recombinant virus assay.

    Directory of Open Access Journals (Sweden)

    David Nauwelaers

    Full Text Available In order to determine phenotypic protease and reverse transcriptase inhibitor-associated resistance in HIV subtype C virus, we have synthetically constructed an HIV-1 subtype C (HIV-1-C viral backbone for use in a recombinant virus assay. The in silico designed viral genome was divided into 4 fragments, which were chemically synthesized and joined together by conventional subcloning. Subsequently, gag-protease-reverse-transcriptase (GPRT fragments from 8 HIV-1 subtype C-infected patient samples were RT-PCR-amplified and cloned into the HIV-1-C backbone (deleted for GPRT using In-Fusion reagents. Recombinant viruses (1 to 5 per patient sample were produced in MT4-eGFP cells where cyto-pathogenic effect (CPE, p24 and Viral Load (VL were monitored. The resulting HIV-1-C recombinant virus stocks (RVS were added to MT4-eGFP cells in the presence of serial dilutions of antiretroviral drugs (PI, NNRTI, NRTI to determine the fold-change in IC50 compared to the IC50 of wild-type HIV-1 virus. Additionally, viral RNA was extracted from the HIV-1-C RVS and the amplified GPRT products were used to generate recombinant virus in a subtype B backbone. Phenotypic resistance profiles in a subtype B and subtype C backbone were compared. The following observations were made: i functional, infectious HIV-1 subtype C viruses were generated, confirmed by VL and p24 measurements; ii their rate of infection was slower than viruses generated in the subtype B backbone; iii they did not produce clear CPE in MT4 cells; and iv drug resistance profiles generated in both backbones were very similar, including re-sensitizing effects like M184V on AZT.

  9. Aggregation tendencies in the p53 family are modulated by backbone hydrogen bonds.

    Science.gov (United States)

    Cino, Elio A; Soares, Iaci N; Pedrote, Murilo M; de Oliveira, Guilherme A P; Silva, Jerson L

    2016-01-01

    The p53 family of proteins is comprised of p53, p63 and p73. Because the p53 DNA binding domain (DBD) is naturally unstable and possesses an amyloidogenic sequence, it is prone to form amyloid fibrils, causing loss of functions. To develop p53 therapies, it is necessary to understand the molecular basis of p53 instability and aggregation. Light scattering, thioflavin T (ThT) and high hydrostatic pressure (HHP) assays showed that p53 DBD aggregates faster and to a greater extent than p63 and p73 DBDs, and was more susceptible to denaturation. The aggregation tendencies of p53, p63, and p73 DBDs were strongly correlated with their thermal stabilities. Molecular Dynamics (MD) simulations indicated specific regions of structural heterogeneity unique to p53, which may be promoted by elevated incidence of exposed backbone hydrogen bonds (BHBs). The results indicate regions of structural vulnerability in the p53 DBD, suggesting new targetable sites for modulating p53 stability and aggregation, a potential approach to cancer therapy. PMID:27600721

  10. Highly automated protein backbone resonance assignment within a few hours: the strategy and software package

    International Nuclear Information System (INIS)

    Sequential resonance assignment represents an essential step towards the investigation of protein structure, dynamics, and interaction surfaces. Although the experimental sensitivity has significantly increased in recent years, with the availability of high field magnets and cryogenically cooled probes, resonance assignment, even of small globular proteins, still generally requires several days of data collection and analysis using standard protocols. Here we introduce the BATCH strategy for fast and highly automated backbone resonance assignment of 13C, 15N-labelled proteins. BATCH makes use of the fast data acquisition and analysis tools BEST, ASCOM, COBRA, and HADAMAC, recently developed in our laboratory. An improved Hadamard encoding scheme, presented here, further increases the performance of the HADAMAC experiment. A new software platform, interfaced to the NMRView software package, has been developed that enables highly automated NMR data processing and analysis, sequential resonance assignment, and 13C chemical shift extraction. We demonstrate for four small globular proteins that sequential resonance assignment can be routinely obtained within a few hours, or less, in a highly automated and robust way

  11. Reversible Self-Assembly of Backbone-Thermoresponsive Long Chain Hyperbranched Poly(N-Isopropyl Acrylamide

    Directory of Open Access Journals (Sweden)

    Ting-Ting Liu

    2016-01-01

    Full Text Available In this paper, we mainly described the reversible self-assembly of a backbone-thermoresponsive, long-chain, hyperbranched poly(N-isopropyl acrylamide (LCHBPNIPAM in aqueous solution. Here, we revealed a reversible self-assembly behavior of LCHBPNIPAM aqueous solution derived from temperature. By controlling the temperature of LCHBPNIPAM aqueous solution, we tune the morphology of the LCHBPNIPAM self-assemblies. When the solution temperature increased from the room temperature to the lower critical solution temperature of PNIPAM segments, LCHBPNIPAM self-assembled from multi-compartment vesicles into solid micelles. The morphology of LCHBPNIPAM self-assemblies changed from solid micelles to multi-compartment vesicles again when the temperature decreased back to the room temperature. The size presented, at first, an increase, and then a decrease, tendency in the heating-cooling process. The above thermally-triggered self-assembly behavior of LCHBPNIPAM aqueous solution was investigated by dynamic/static light scattering, transmission electron microscopy, atomic force microscopy, fluorescence spectroscopy, 1H nuclear magnetic resonance in D2O, and attenuated total reflectance Fourier transform infrared spectroscopy. These results indicated that LCHBPNIPAM aqueous solution presents a reversible self-assembly process. The controlled release behaviors of doxorubicin from the vesicles and micelles formed by LCHBPNIPAM further proved the feasibility of these self-assemblies as the stimulus-responsive drug delivery system.

  12. Aggregation tendencies in the p53 family are modulated by backbone hydrogen bonds

    Science.gov (United States)

    Cino, Elio A.; Soares, Iaci N.; Pedrote, Murilo M.; de Oliveira, Guilherme A. P.; Silva, Jerson L.

    2016-01-01

    The p53 family of proteins is comprised of p53, p63 and p73. Because the p53 DNA binding domain (DBD) is naturally unstable and possesses an amyloidogenic sequence, it is prone to form amyloid fibrils, causing loss of functions. To develop p53 therapies, it is necessary to understand the molecular basis of p53 instability and aggregation. Light scattering, thioflavin T (ThT) and high hydrostatic pressure (HHP) assays showed that p53 DBD aggregates faster and to a greater extent than p63 and p73 DBDs, and was more susceptible to denaturation. The aggregation tendencies of p53, p63, and p73 DBDs were strongly correlated with their thermal stabilities. Molecular Dynamics (MD) simulations indicated specific regions of structural heterogeneity unique to p53, which may be promoted by elevated incidence of exposed backbone hydrogen bonds (BHBs). The results indicate regions of structural vulnerability in the p53 DBD, suggesting new targetable sites for modulating p53 stability and aggregation, a potential approach to cancer therapy. PMID:27600721

  13. A Novel Method for Sampling Alpha-Helical Protein Backbones

    Science.gov (United States)

    Fain, Boris; Levitt, Michael

    2001-01-01

    We present a novel technique of sampling the configurations of helical proteins. Assuming knowledge of native secondary structure, we employ assembly rules gathered from a database of existing structures to enumerate the geometrically possible 3-D arrangements of the constituent helices. We produce a library of possible folds for 25 helical protein cores. In each case the method finds significant numbers of conformations close to the native structure. In addition we assign coordinates to all atoms for 4 of the 25 proteins. In the context of database driven exhaustive enumeration our method performs extremely well, yielding significant percentages of structures (0.02%--82%) within 6A of the native structure. The method's speed and efficiency make it a valuable contribution towards the goal of predicting protein structure.

  14. Binding, conformational transition and dimerization of amyloid-β peptide on GM1-containing ternary membrane: insights from molecular dynamics simulation.

    Directory of Open Access Journals (Sweden)

    Moutusi Manna

    Full Text Available Interactions of amyloid-β (Aβ with neuronal membrane are associated with the progression of Alzheimer's disease (AD. Ganglioside GM1 has been shown to promote the structural conversion of Aβ and increase the rate of peptide aggregation; but the exact nature of interaction driving theses processes remains to be explored. In this work, we have carried out atomistic-scale computer simulations (totaling 2.65 µs to investigate the behavior of Aβ monomer and dimers in GM1-containing raft-like membrane. The oligosaccharide head-group of GM1 was observed to act as scaffold for Aβ-binding through sugar-specific interactions. Starting from the initial helical peptide conformation, a β-hairpin motif was formed at the C-terminus of the GM1-bound Aβ-monomer; that didn't appear in absence of GM1 (both in fluid POPC and liquid-ordered cholesterol/POPC bilayers and also in aqueous medium within the simulation time span. For Aβ-dimers, the β-structure was further enhanced by peptide-peptide interactions, which might influence the propensity of Aβ to aggregate into higher-ordered structures. The salt-bridges and inter-peptide hydrogen bonds were found to account for dimer stability. We observed spontaneous formation of intra-peptide D(23-K(28 salt-bridge and a turn at V(24GSN(27 region - long been accepted as characteristic structural-motifs for amyloid self-assembly. Altogether, our results provide atomistic details of Aβ-GM1 and Aβ-Aβ interactions and demonstrate their importance in the early-stages of GM1-mediated Aβ-oligomerisation on membrane surface.

  15. Controlling complex networks with conformity behavior

    Science.gov (United States)

    Wang, Xu-Wen; Nie, Sen; Wang, Wen-Xu; Wang, Bing-Hong

    2015-09-01

    Controlling complex networks accompanied by common conformity behavior is a fundamental problem in social and physical science. Conformity behavior that individuals tend to follow the majority in their neighborhood is common in human society and animal communities. Despite recent progress in understanding controllability of complex networks, the existent controllability theories cannot be directly applied to networks associated with conformity. Here we propose a simple model to incorporate conformity-based decision making into the evolution of a network system, which allows us to employ the exact controllability theory to explore the controllability of such systems. We offer rigorous theoretical results of controllability for representative regular networks. We also explore real networks in different fields and some typical model networks, finding some interesting results that are different from the predictions of structural and exact controllability theory in the absence of conformity. We finally present an example of steering a real social network to some target states to further validate our controllability theory and tools. Our work offers a more realistic understanding of network controllability with conformity behavior and can have potential applications in networked evolutionary games, opinion dynamics and many other complex networked systems.

  16. Molecular dynamic study of MlaC protein in Gram-negative bacteria: conformational flexibility, solvent effect and protein-phospholipid binding.

    Science.gov (United States)

    Huang, Yu-Ming M; Miao, Yinglong; Munguia, Jason; Lin, Leo; Nizet, Victor; McCammon, J Andrew

    2016-08-01

    The composition of the outer membrane in Gram-negative bacteria is asymmetric, with the lipopolysaccharides found in the outer leaflet and phospholipids in the inner leaflet. The MlaC protein transfers phospholipids from the outer to inner membrane to maintain such lipid asymmetry in the Mla pathway. In this work, we have performed molecular dynamics simulations on apo and phospholipid-bound systems to study the dynamical properties of MlaC. Our simulations show that the phospholipid forms hydrophobic interactions with the protein. Residues surrounding the entrance of the binding site exhibit correlated motions to control the site opening and closing. Lipid binding leads to increase of the binding pocket volume and precludes entry of the water molecules. However, in the absence of the phospholipid, water molecules can freely move in and out of the binding site when the pocket is open. Dehydration occurs when the pocket closes. This study provides dynamic information of the MlaC protein and may facilitate the design of antibiotics against the Mla pathway of Gram-negative bacteria. PMID:27111825

  17. The impact of amino acid side chain mutations in conformational design of peptides and proteins

    OpenAIRE

    Laufer, B.; Frank, A.O.; Chatterjee, J; Neubauer, T; Mas Moruno, Carlos; Kummerlöwe, G.; Kessler, H.

    2010-01-01

    Local energetic effects of amino acid replacements are often considered to have only a moderate influence on the backbone conformation of proteins or peptides. As these effects are difficult to determine experimentally, no comparison has yet been performed. However, knowledge of the influence of side chain mutations is essential in protein homology modeling and in optimizing biologically active peptide ligands in medicinal chemistry. Furthermore, the tool of N-methylation of peptides is of in...

  18. Molecular dynamics study of linear and comb-like polyelectrolytes in aqueous solution: effect of Ca2+ ions

    Science.gov (United States)

    Tong, Kefeng; Song, Xingfu; Sun, Shuying; Xu, Yanxia; Yu, Jianguo

    2014-08-01

    All-atom molecular dynamics simulations were employed to provide microscopic mechanism for the salt tolerance of polyelectrolytes dispersants. The conformational variation of polyelectrolytes and interactions between COO- groups and counterions/water molecules were also studied via radius of gyration and pair correlations functions. Sodium polyacrylate (NaPA) and sodium salts of poly(acrylic acid)-poly(ethylene oxide) (NaPA-PEO) were selected as the representative linear and comb-like polyelectrolyte, respectively. The results show that Ca2+ ions interact with COO- groups much stronger than Na+ ions and can bring ion-bridging interaction between intermolecular COO- groups in the NaPA systems. While in the NaPA-PEO systems, the introduced PEO side chains can prevent backbone chains from ion-bridging interactions and weaken the conformational changes. The present results can help in selecting and designing new-type efficient polyelectrolyte dispersants with good salt tolerance.

  19. Increasing Sequence Diversity with Flexible Backbone Protein Design: The Complete Redesign of a Protein Hydrophobic Core

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Grant S.; Mills, Jeffrey L.; Miley, Michael J.; Machius, Mischa; Szyperski, Thomas; Kuhlman, Brian (UNC); (Buffalo)

    2015-10-15

    Protein design tests our understanding of protein stability and structure. Successful design methods should allow the exploration of sequence space not found in nature. However, when redesigning naturally occurring protein structures, most fixed backbone design algorithms return amino acid sequences that share strong sequence identity with wild-type sequences, especially in the protein core. This behavior places a restriction on functional space that can be explored and is not consistent with observations from nature, where sequences of low identity have similar structures. Here, we allow backbone flexibility during design to mutate every position in the core (38 residues) of a four-helix bundle protein. Only small perturbations to the backbone, 12 {angstrom}, were needed to entirely mutate the core. The redesigned protein, DRNN, is exceptionally stable (melting point >140C). An NMR and X-ray crystal structure show that the side chains and backbone were accurately modeled (all-atom RMSD = 1.3 {angstrom}).

  20. Mapping the dynamics of ligand reorganization via {sup 13}CH{sub 3} and {sup 13}CH{sub 2} relaxation dispersion at natural abundance

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jeffrey W., E-mail: jpeng@nd.edu; Wilson, Brian D.; Namanja, Andrew T. [University of Notre Dame, Department of Chemistry and Biochemistry (United States)

    2009-09-15

    Flexible ligands pose challenges to standard structure-activity studies since they frequently reorganize their conformations upon protein binding and catalysis. Here, we demonstrate the utility of side chain {sup 13}C relaxation dispersion measurements to identify and quantify the conformational dynamics that drive this reorganization. The dispersion measurements probe methylene {sup 13}CH{sub 2} and methyl {sup 13}CH{sub 3} groups; the latter are highly prevalent side chain moieties in known drugs. Combining these side chain studies with existing backbone dispersion studies enables a comprehensive investigation of {mu}s-ms conformational dynamics related to binding and catalysis. We perform these measurements at natural {sup 13}C abundance, in congruence with common pharmaceutical research settings. We illustrate these methods through a study of the interaction of a phosphopeptide ligand with the peptidyl-prolyl isomerase, Pin1. The results illuminate the side-chain moieties that undergo conformational readjustments upon complex formation. In particular, we find evidence that multiple exchange processes influence the side chain dispersion profiles. Collectively, our studies illustrate how side-chain relaxation dispersion can shed light on ligand conformational transitions required for activity, and thereby suggest strategies for its optimization.

  1. Conformational study of C8 diazocine turn mimics using 3JCH coupling constants with 13C in natural abundance

    International Nuclear Information System (INIS)

    The conformations of two diazocine turn mimics, which were later incorporated into GPIIb/IIIa peptide antagonists, were investigated using nuclear magnetic resonance techniques. The two compounds, methyl (2,5-dioxo-3-(S)-(3-ω-tosylguanidino-propyl)-4-methyl-octahydro-1,4-dazocin-1-yl)acetate (1) and methyl (2,5-dioxo-3-(S)-(3-ω-tosyl-guanidino-propyl)-octahydro-1,5-diazocin-1-yl)acetate (2), differ only in their substituent at the diazocine position 4 nitrogen, yet this substitution results in a marked difference in the affinity of the resulting analogs for the GPIIb/IIIa receptor. It was of interest to determine if the difference observed in the antagonistic potency between these analogs was related to constitutional or, perhaps, conformational differences. The backbone conformations of these two molecules can be determined by measuring vicinal coupling constants along the trimethylene portion of the C8 ring backbone and by measuring interproton NOE intensities between the diazocine methine proton and the protons of the trimethylene group. For compound 1, 3JHH values measured from a P.E.COSY spectrum and interproton distances calculated from ROESY buildup curves indicated the presence of a single C8 ring backbone conformation where the trimethylene bridge adopted a staggered conformation and the Hα1 and Hγ1 protons of the trimethylene group were 2.2 A from the methine proton. For compound 2, however, partial overlap of the central Hβ1 and Hβ2 protons made it impossible to measure 3JHH values from the P.E.COSY spectrum. We therefore used a 13C-filtered TOCSY experiment to measure the 3JCH values in both compounds 1 and 2. These heteronuclear vicinal coupling constants measured with 13C in natural abundance in conjunction with measured interproton NOE intensities indicate that these compounds share a common C8 ring backbone conformation

  2. Polyolefin Backbone Substitution in Binders for Low Temperature Powder Injection Moulding Feedstocks

    OpenAIRE

    Berenika Hausnerova; Ivo Kuritka; Davit Bleyan

    2014-01-01

    This paper reports the substitution of polyolefin backbone binder components with low melting temperature carnauba wax for powder injection moulding applications. The effect of various binder compositions of Al2O3 feedstock on thermal degradation parameters is investigated by thermogravimetric analysis. Within the experimental framework 29 original feedstock compositions were prepared and the superiority of carnauba wax over the polyethylene binder backbone was demonstrated in compositions co...

  3. Beta-scission of alkoxyl radicals on peptides and proteins can give rise to backbone cleavage and loss of side-chains

    International Nuclear Information System (INIS)

    Full text: Exposure of proteins to radicals in the presence of O2 brings about multiple changes including side-chain oxidation, backbone fragmentation, cross-linking, unfolding, changes in hydrophobicity and conformation, altered susceptibility to proteolytic enzymes and formation of new reactive groups (e.g. hydroperoxides and 3,4-dihydroxyphenylalanine). All of these processes can result in loss of structural or enzymatic activity. The mechanisms that give rise to backbone cleavage are only partly understood. Whilst it is known that direct hydrogen atom abstraction at a-carbon sites gives backbone cleavages it has also been proposed that initial attack at side-chain sites might also give rise to backbone cleavage. In this study we have examined whether initial attack at the β- (C-3) position can give rise to α-carbon radicals (and hence backbone cleavage) via the formation, and subsequent β- scission, of C-3 alkoxyl radicals. This process has been observed previously with protected amino acids in organic solvents (J. Chem. Soc. Perkin Trans. 2, 1997, 503-507) but the occurrence of such reactions with proteins in aqueous solution has not been explored. Alkoxyl radicals were generated at the C-3 position of a variety of protected amino acids and small peptides by two methods: metal-ion catalysed decomposition of hydroperoxides formed as a result of γ-radiolysis in the presence of O2, and UV photolysis of nitrate esters. In most cases radicals have been detected by EPR spectroscopy using nitroso and nitrone spin traps, which can be assigned by comparison with literature data to α-carbon radicals; in some case assignments were confirmed by the generation of the putative species by other routes. With Ala peptide hydroperoxides and nitrate esters, and MNP as the spin trap, the major radical detected in each case has been assigned to the adduct of an α-carbon radical with partial structure - NH-.CH-C(O) - consistent with the rapid occurrence of the above reaction

  4. Nonperturbative results for two-index conformal windows

    DEFF Research Database (Denmark)

    Bergner, Georg; Ryttov, Thomas A.; Sannino, Francesco

    2015-01-01

    Via large and small $N_c$ relations we derive nonperturbative results about the conformal window of two-index theories. Using Schwinger-Dyson methods as well as four-loops results we estimate subleading corrections and show that naive large number of colors extrapolations are unreliable when $N......_c$ two-index conformal window is twice the conformal window of the adjoint representation (which can be determined at small $N_c$) expressed in terms of Dirac fermions; Lattice results for adjoint matter can be used to provide independent information on the conformal dynamics of two-index theories such...

  5. Conformational analysis of Infectious bursal disease virus (IBDV derived cell penetrating peptide (CPP analogs

    Directory of Open Access Journals (Sweden)

    Vinay G. Joshi

    2013-12-01

    Full Text Available Aim: This study was designed to develop peptide analogs of Infectious Bursal Disease (IBD virus VP5 protein segment having cell penetrating ability to improve their interaction with cargo molecule (Nucleic acid without affecting the backbone conformation. Materials and Methods: IBDV VP5 protein segment designated as RATH peptide were synthesized using solid phase peptide synthesis and their solution conformation was elucidated using CD spectroscopy in polar (water and apolar (TFE solvents. Cell penetrating ability of RATH-CONH2 was observed using FITC labeled peptide internalization in to HeLa cells under fluorescent microscopy. The efficacy of RATH analog interactions with nucleic acids was evaluated using FITC labeled oligonucleotides by fluorescence spectroscopy and plasmid constructs in gel retardation assay. Results: CD spectra of RATH analogs in water and apolar trifluroethanol (TFE helped to compare their secondary structures which were almost similar with dominant beta conformations suggesting successful induction of positive charge in the analogs without affecting back bone conformation of CPP designed. Cell penetrating ability of RATH CONH2 in HeLa cell was more than 90%. The fluorescence spectroscopy and plasmid constructs in gel retardation assay demonstrated successful interaction of amide analogs with nucleic acid. Conclusion: Intentional changes made in IBDV derived peptide RATH COOH to RATH CONH2 did not showed major changes in backbone conformation and such modifications may help to improve the cationic charge in most CPPs to interact with nucleic acid. [Vet World 2013; 6(6.000: 307-312

  6. Real-space visualization of conformation-independent oligothiophene electronic structure

    Science.gov (United States)

    Taber, Benjamen N.; Kislitsyn, Dmitry A.; Gervasi, Christian F.; Mills, Jon M.; Rosenfield, Ariel E.; Zhang, Lei; Mannsfeld, Stefan C. B.; Prell, James S.; Briseno, Alejandro L.; Nazin, George V.

    2016-05-01

    We present scanning tunneling microscopy and spectroscopy (STM/STS) investigations of the electronic structures of different alkyl-substituted oligothiophenes on the Au(111) surface. STM imaging showed that on Au(111), oligothiophenes adopted distinct straight and bent conformations. By combining STS maps with STM images, we visualize, in real space, particle-in-a-box-like oligothiophene molecular orbitals. We demonstrate that different planar conformers with significant geometrical distortions of oligothiophene backbones surprisingly exhibit very similar electronic structures, indicating a low degree of conformation-induced electronic disorder. The agreement of these results with gas-phase density functional theory calculations implies that the oligothiophene interaction with the Au(111) surface is generally insensitive to molecular conformation.

  7. n Silico Analysis of Envelope Dengue Virus-2 and Envelope Dengue Virus-3 Protein as the Backbone of Dengue Virus Tetravalent Vaccine by Using Homology Modeling Method

    Directory of Open Access Journals (Sweden)

    Rizky I. Taufik

    2009-01-01

    Full Text Available Problem statement: Dengue fever, which was caused by Dengue virus infection, had became a major public health problem in the tropic and subtropical countries. Dengue virus (DENV had four serotypes (DENV-1, DENV-2, DENV-3 and DENV-4, based on their immunogenic in the human body. Preventive measure will be necessary to decrease the prevalence of dengue fever, by developing modern vaccine. Approach: This research was focused on in silico study of dengue virus vaccines, by using envelope (E protein of DENV-2 and DENV-3 as their backbones. T cell epitope prediction was determined by using MULTIPRED server and B cell epitope prediction was determined by using Conformational Epitope Prediction server (CEP. Homology modeling study of E DENV-3 protein as the vaccine backbone had produced six dengue vaccine peptides (HMM Vaccine 1-6. Moreover, homology modeling study of E DENV-2 protein as vaccine backbone had produced six dengue vaccine peptides (ANN vaccine 1-6. Results: The BLAST analysis of HMM and ANN vaccines had produced 93% and 91% identity, respectively. The Ramachandran Plot of both vaccines had shown less than 15% non glycine residue in the disallowed region, therefore it showed the solid stability of the proteins. The VAST analysis of E DENV-3 backbone vaccines had determined, that HMM4 and HMM6 had the highest structure similarity with native E DENV-3. HMM4 and HMM6 had the highest VAST score of 64.5. Moreover, the VAST analysis of E DENV-2 backbone vaccines had determined, that ANN1, ANN3, ANN4, ANN5 and ANN6 had the highest structure similarity with native E DENV-2. ANN1, ANN3, ANN4, ANN5 and ANN6 have the highest VAST score of 64.7. Conclusion/Recommendation: It could be inferred from this research that HMM4; HMM6; ANN1; ANN3; ANN4; ANN5; and ANN6 were the best in silico vaccine design, based on their similarity with native E DENV Proteins. This research could be applied for the wet

  8. Killing tensors and conformal Killing tensors from conformal Killing vectors

    International Nuclear Information System (INIS)

    Koutras has proposed some methods to construct reducible proper conformal Killing tensors and Killing tensors (which are, in general, irreducible) when a pair of orthogonal conformal Killing vectors exist in a given space. We give the completely general result demonstrating that this severe restriction of orthogonality is unnecessary. In addition, we correct and extend some results concerning Killing tensors constructed from a single conformal Killing vector. A number of examples demonstrate that it is possible to construct a much larger class of reducible proper conformal Killing tensors and Killing tensors than permitted by the Koutras algorithms. In particular, by showing that all conformal Killing tensors are reducible in conformally flat spaces, we have a method of constructing all conformal Killing tensors, and hence all the Killing tensors (which will in general be irreducible) of conformally flat spaces using their conformal Killing vectors

  9. Charged conformal Killing spinors

    International Nuclear Information System (INIS)

    We study the twistor equation on pseudo-Riemannian Spinc-manifolds whose solutions we call charged conformal Killing spinors (CCKSs). We derive several integrability conditions for the existence of CCKS and study their relations to spinor bilinears. A construction principle for Lorentzian manifolds admitting CCKS with nontrivial charge starting from CR-geometry is presented. We obtain a partial classification result in the Lorentzian case under the additional assumption that the associated Dirac current is normal conformal and complete the classification of manifolds admitting CCKS in all dimensions and signatures ≤5 which has recently been initiated in the study of supersymmetric field theories on curved space

  10. Conformation-controlled binding kinetics of antibodies

    Science.gov (United States)

    Galanti, Marta; Fanelli, Duccio; Piazza, Francesco

    2016-01-01

    Antibodies are large, extremely flexible molecules, whose internal dynamics is certainly key to their astounding ability to bind antigens of all sizes, from small hormones to giant viruses. In this paper, we build a shape-based coarse-grained model of IgG molecules and show that it can be used to generate 3D conformations in agreement with single-molecule Cryo-Electron Tomography data. Furthermore, we elaborate a theoretical model that can be solved exactly to compute the binding rate constant of a small antigen to an IgG in a prescribed 3D conformation. Our model shows that the antigen binding process is tightly related to the internal dynamics of the IgG. Our findings pave the way for further investigation of the subtle connection between the dynamics and the function of large, flexible multi-valent molecular machines.

  11. Proton Beam Therapy Versus Conformal Photon Radiation Therapy for Childhood Craniopharyngioma: Multi-institutional Analysis of Outcomes, Cyst Dynamics, and Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, Andrew J. [Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States); Greenfield, Brad [Department of Radiation Oncology, Baylor College of Medicine, Houston, Texas (United States); Mahajan, Anita [Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States); Paulino, Arnold C. [Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States); Department of Radiation Oncology, Baylor College of Medicine, Houston, Texas (United States); Okcu, M. Fatih [Department of Pediatrics, Texas Children' s Cancer and Hematology Center, Baylor College of Medicine, Houston, Texas (United States); Allen, Pamela K. [Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States); Chintagumpala, Murali [Department of Pediatrics, Texas Children' s Cancer and Hematology Center, Baylor College of Medicine, Houston, Texas (United States); Kahalley, Lisa S. [Section of Psychology, Texas Children' s Cancer and Hematology Center, Baylor College of Medicine, Houston, Texas (United States); McAleer, Mary F.; McGovern, Susan L. [Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States); Whitehead, William E. [Department of Neurosurgery, Texas Children' s Cancer and Hematology Center, Baylor College of Medicine, Houston, Texas (United States); Grosshans, David R., E-mail: dgrossha@mdanderson.org [Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States)

    2014-10-01

    Purpose: We compared proton beam therapy (PBT) with intensity modulated radiation therapy (IMRT) for pediatric craniopharyngioma in terms of disease control, cyst dynamics, and toxicity. Methods and Materials: We reviewed records from 52 children treated with PBT (n=21) or IMRT (n=31) at 2 institutions from 1996-2012. Endpoints were overall survival (OS), disease control, cyst dynamics, and toxicity. Results: At 59.6 months' median follow-up (PBT 33 mo vs IMRT 106 mo; P<.001), the 3-year outcomes were 96% for OS, 95% for nodular failure-free survival and 76% for cystic failure-free survival. Neither OS nor disease control differed between treatment groups (OS P=.742; nodular failure-free survival P=.546; cystic failure-free survival P=.994). During therapy, 40% of patients had cyst growth (20% requiring intervention); immediately after therapy, 17 patients (33%) had cyst growth (transient in 14), more commonly in the IMRT group (42% vs 19% PBT; P=.082); and 27% experienced late cyst growth (32% IMRT, 19% PBT; P=.353), with intervention required in 40%. Toxicity did not differ between groups. On multivariate analysis, cyst growth was related to visual and hypothalamic toxicity (P=.009 and .04, respectively). Patients given radiation as salvage therapy (for recurrence) rather than adjuvant therapy had higher rates of visual and endocrine (P=.017 and .024, respectively) dysfunction. Conclusions: Survival and disease-control outcomes were equivalent for PBT and IMRT. Cyst growth is common, unpredictable, and should be followed during and after therapy, because it contributes to late toxicity. Delaying radiation therapy until recurrence may result in worse visual and endocrine function.

  12. Proton Beam Therapy Versus Conformal Photon Radiation Therapy for Childhood Craniopharyngioma: Multi-institutional Analysis of Outcomes, Cyst Dynamics, and Toxicity

    International Nuclear Information System (INIS)

    Purpose: We compared proton beam therapy (PBT) with intensity modulated radiation therapy (IMRT) for pediatric craniopharyngioma in terms of disease control, cyst dynamics, and toxicity. Methods and Materials: We reviewed records from 52 children treated with PBT (n=21) or IMRT (n=31) at 2 institutions from 1996-2012. Endpoints were overall survival (OS), disease control, cyst dynamics, and toxicity. Results: At 59.6 months' median follow-up (PBT 33 mo vs IMRT 106 mo; P<.001), the 3-year outcomes were 96% for OS, 95% for nodular failure-free survival and 76% for cystic failure-free survival. Neither OS nor disease control differed between treatment groups (OS P=.742; nodular failure-free survival P=.546; cystic failure-free survival P=.994). During therapy, 40% of patients had cyst growth (20% requiring intervention); immediately after therapy, 17 patients (33%) had cyst growth (transient in 14), more commonly in the IMRT group (42% vs 19% PBT; P=.082); and 27% experienced late cyst growth (32% IMRT, 19% PBT; P=.353), with intervention required in 40%. Toxicity did not differ between groups. On multivariate analysis, cyst growth was related to visual and hypothalamic toxicity (P=.009 and .04, respectively). Patients given radiation as salvage therapy (for recurrence) rather than adjuvant therapy had higher rates of visual and endocrine (P=.017 and .024, respectively) dysfunction. Conclusions: Survival and disease-control outcomes were equivalent for PBT and IMRT. Cyst growth is common, unpredictable, and should be followed during and after therapy, because it contributes to late toxicity. Delaying radiation therapy until recurrence may result in worse visual and endocrine function

  13. Pseudo 5D HN(C)N experiment to facilitate the assignment of backbone resonances in proteins exhibiting high backbone shift degeneracy

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Dinesh, E-mail: dineshcbmr@gmail.com [Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raibareli Road, Lucknow 226014 (India); Raikwal, Nisha [Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raibareli Road, Lucknow 226014 (India); Shukla, Vaibhav Kumar; Pandey, Himanshu; Arora, Ashish [Molecular and Structural Biology Division, CSIR, Central Drug Research Institute, Lucknow 226031 (India); Guleria, Anupam, E-mail: anuguleriaphy@gmail.com [Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raibareli Road, Lucknow 226014 (India)

    2014-09-30

    Graphical abstract: - Highlights: • A reduced dimensionality experiment – referred as pseudo 5D HN(C)N- is presented. • Encodes highly resolved 5D spectral information in a 3D spectrum. • Superior in terms of peak dispersion. • Facilitates assignment of crowded HSQC spectra of moderately sized proteins. • Modulated {sup 15}N chemical shifts are used to break the amide shift degeneracy. - Abstract: Assignment of protein backbone resonances is most routinely carried out using triple resonance three-dimensional NMR experiments involving amide {sup 1}H/{sup 15}N resonances. However for intrinsically unstructured proteins, alpha-helical proteins or proteins containing several disordered fragments, the assignment becomes problematic because of high-degree of backbone shift degeneracy. In this backdrop, a novel reduced-dimensionality (RD) experiment –(5, 3)D-hNCO-CANH- is presented to facilitate/validate the sequential backbone resonance assignment in such proteins. The proposed 3D NMR experiment makes use of the modulated amide {sup 15}N chemical shifts (resulting from the joint sampling along both its indirect dimensions) to resolve the ambiguity involved in connecting the neighboring amide resonances (i.e. H{sub i}N{sub i} and H{sub i−1}N{sub i−1}) for overlapping amide-NH peaks. The experiment -in combination with routine triple resonance 3D-NMR experiments involving backbone amide ({sup 1}H/{sup 15}N) and carbon ({sup 13}C{sup α}/{sup 13}C′) chemical shifts- will serve as a powerful complementary tool to achieve the nearly complete assignment of protein backbone resonances in a time efficient manner.

  14. Conformational transformations induced by the charge-curvature interaction

    OpenAIRE

    Gaididei, Yu B.; Christiansen, Peter Leth; Zakrzewski, W. J.

    2005-01-01

    A simple phenomenological model for describing the conformational dynamics of biological macromolecules via the nonlinearity-induced instabilities is proposed. It is shown that the interaction between charges and bending degrees of freedom of closed molecular aggregates may act as drivers giving impetus to conformational dynamics of biopolymers. It is demonstrated that initially circular aggregates may undergo transformation to polygonal shapes and possible application to aggregates of bacter...

  15. PepShell: Visualization of Conformational Proteomics Data

    OpenAIRE

    Vandermarliere, Elien; Maddelein, Davy; Hulstaert, Niels; Stes, Elisabeth; Di Michele, Michela; Gevaert, Kris; Jacoby, Edgar; Brehmer, Dirk; Martens, Lennart

    2015-01-01

    Proteins are dynamic molecules; they undergo crucial conformational changes induced by post-translational modifications and by binding of cofactors or other molecules. The characterization of these conformational changes and their relation to protein function is a central goal of structural biology. Unfortunately, most conventional methods to obtain structural information do not provide information on protein dynamics. Therefore, mass spectrometry-based approaches, such as limited proteolysis...

  16. Programmed Switching of Single Polymer Conformation on DNA Origami.

    Science.gov (United States)

    Krissanaprasit, Abhichart; Madsen, Mikael; Knudsen, Jakob Bach; Gudnason, Daniel; Surareungchai, Werasak; Birkedal, Victoria; Gothelf, Kurt Vesterager

    2016-02-23

    DNA nanotechnology offers precise geometrical control of the positioning of materials, and it is increasingly also being used in the development of nanomechanical devices. Here we describe the development of a nanomechanical device that allows switching of the position of a single-molecule conjugated polymer. The polymer is functionalized with short single-stranded (ss) DNA strands that extend from the backbone of the polymer and serve as handles. The DNA polymer conjugate can be aligned on DNA origami in three well-defined geometries (straight line, left-turned, and right-turned pattern) by DNA hybridization directed by single-stranded guiding strands and ssDNA tracks extending from the origami surface and polymer handle. We demonstrate switching of a conjugated organic polymer conformation between left- and right-turned conformations of the polymer on DNA origami based on toehold-mediated strand displacement. The switching is observed by atomic force microscopy and by Förster resonance energy transfer between the polymer and two different organic dyes positioned in close proximity to the respective patterns. Using this method, the polymer conformation can be switched six times successively. This controlled nanomechanical switching of conjugated organic polymer conformation demonstrates unique control of the shape of a single polymer molecule, and it may constitute a new component for the development of reconfigurable nanophotonic and nanoelectronic devices. PMID:26766635

  17. Conformal inflation coupled to matter

    International Nuclear Information System (INIS)

    We formulate new conformal models of inflation and dark energy which generalise the Higgs-Dilaton scenario. We embed these models in unimodular gravity whose effect is to break scale invariance in the late time Universe. In the early Universe, inflation occurs close to a maximum of both the scalar potential and the scalar coupling to the Ricci scalar in the Jordan frame. At late times, the dilaton, which decouples from the dynamics during inflation, receives a potential term from unimodular gravity and leads to the acceleration of the Universe. We address two central issues in this scenario. First we show that the Damour-Polyalov mechanism, when non-relativistic matter is present prior to the start of inflation, sets the initial conditions for inflation at the maximum of the scalar potential. We then show that conformal invariance implies that matter particles are not coupled to the dilaton in the late Universe at the classical level. When fermions acquire masses at low energy, scale invariance is broken and quantum corrections induce a coupling between the dilaton and matter which is still small enough to evade the gravitational constraints in the solar system

  18. Quantifying macromolecular conformational transition pathways

    Science.gov (United States)

    Seyler, Sean; Kumar, Avishek; Thorpe, Michael; Beckstein, Oliver

    2015-03-01

    Diverse classes of proteins function through large-scale conformational changes that are challenging for computer simulations. A range of fast path-sampling techniques have been used to generate transitions, but it has been difficult to compare paths from (and assess the relative strengths of) different methods. We introduce a comprehensive method (pathway similarity analysis, PSA) for quantitatively characterizing and comparing macromolecular pathways. The Hausdorff and Fréchet metrics (known from computational geometry) are used to quantify the degree of similarity between polygonal curves in configuration space. A strength of PSA is its use of the full information available from the 3 N-dimensional configuration space trajectory without requiring additional specific knowledge about the system. We compare a sample of eleven different methods for the closed-to-open transitions of the apo enzyme adenylate kinase (AdK) and also apply PSA to an ensemble of 400 AdK trajectories produced by dynamic importance sampling MD and the Geometrical Pathways algorithm. We discuss the method's potential to enhance our understanding of transition path sampling methods, validate them, and help guide future research toward deeper physical insights into conformational transitions.

  19. Particle creation phenomenology and conformal gravity

    CERN Document Server

    Berezin, Victor; Eroshenko, Yury

    2016-01-01

    We constructed the conformally invariant model for scalar particle creation induced by strong gravitational fields. Starting from the "usual" hydrodynamical description of the particle motion written in the Eulerian coordinates we substituted the particle number conservation law (which enters the formalism) by "the particle creation law", proportional to the square of the Weyl tensor (following the famous result by Ya. B. Zel`dovich and A. A.Starobinsky). Then, demanding the conformal invariance of the whole dynamical system, we have got both the (Weyl)-conformal gravity and the Einstein-Hilbert-dilaton gravity action integral. Thus, we obtained something like the induced gravity suggested first by A. D. Sakharov. It is shown that the resulting system is self-consistent. Some future developments of the theory are discussed in the Conclusion.

  20. Conformational flexibility related to enzyme activity: evidence for a dynamic active-site gatekeeper function of Tyr(215) in Aerococcus viridans lactate oxidase.

    Science.gov (United States)

    Stoisser, Thomas; Brunsteiner, Michael; Wilson, David K; Nidetzky, Bernd

    2016-01-01

    L-Lactate oxidase (LOX) belongs to a large family of flavoenzymes that catalyze oxidation of α-hydroxy acids. How in these enzymes the protein structure controls reactivity presents an important but elusive problem. LOX contains a prominent tyrosine in the substrate binding pocket (Tyr(215) in Aerococcus viridans LOX) that is partially responsible for securing a flexible loop which sequesters the active site. To characterize the role of Tyr(215), effects of substitutions of the tyrosine (Y215F, Y215H) were analyzed kinetically, crystallographically and by molecular dynamics simulations. Enzyme variants showed slowed flavin reduction and oxidation by up to 33-fold. Pyruvate release was also decelerated and in Y215F, it was the slowest step overall. A 2.6-Å crystal structure of Y215F in complex with pyruvate shows the hydrogen bond between the phenolic hydroxyl and the keto oxygen in pyruvate is replaced with a potentially stronger hydrophobic interaction between the phenylalanine and the methyl group of pyruvate. Residues 200 through 215 or 216 appear to be disordered in two of the eight monomers in the asymmetric unit suggesting that they function as a lid controlling substrate entry and product exit from the active site. Substitutions of Tyr(215) can thus lead to a kinetic bottleneck in product release. PMID:27302031