WorldWideScience

Sample records for bacillus subtilis natto

  1. Whole genome assembly of a natto production strain Bacillus subtilis natto from very short read data

    Directory of Open Access Journals (Sweden)

    Fujiyama Asao

    2010-04-01

    Full Text Available Abstract Background Bacillus subtilis natto is closely related to the laboratory standard strain B. subtilis Marburg 168, and functions as a starter for the production of the traditional Japanese food "natto" made from soybeans. Although re-sequencing whole genomes of several laboratory domesticated B. subtilis 168 derivatives has already been attempted using short read sequencing data, the assembly of the whole genome sequence of a closely related strain, B. subtilis natto, from very short read data is more challenging, particularly with our aim to assemble one fully connected scaffold from short reads around 35 bp in length. Results We applied a comparative genome assembly method, which combines de novo assembly and reference guided assembly, to one of the B. subtilis natto strains. We successfully assembled 28 scaffolds and managed to avoid substantial fragmentation. Completion of the assembly through long PCR experiments resulted in one connected scaffold for B. subtilis natto. Based on the assembled genome sequence, our orthologous gene analysis between natto BEST195 and Marburg 168 revealed that 82.4% of 4375 predicted genes in BEST195 are one-to-one orthologous to genes in 168, with two genes in-paralog, 3.2% are deleted in 168, 14.3% are inserted in BEST195, and 5.9% of genes present in 168 are deleted in BEST195. The natto genome contains the same alleles in the promoter region of degQ and the coding region of swrAA as the wild strain, RO-FF-1. These are specific for γ-PGA production ability, which is related to natto production. Further, the B. subtilis natto strain completely lacked a polyketide synthesis operon, disrupted the plipastatin production operon, and possesses previously unidentified transposases. Conclusions The determination of the whole genome sequence of Bacillus subtilis natto provided detailed analyses of a set of genes related to natto production, demonstrating the number and locations of insertion sequences that B

  2. Enhanced secretion of natto phytase by Bacillus subtilis.

    Science.gov (United States)

    Tsuji, Shogo; Tanaka, Kosei; Takenaka, Shinji; Yoshida, Ken-ichi

    2015-01-01

    Phytases comprise a group of phosphatases that trim inorganic phosphates from phytic acid (IP6). In this study, we aimed to achieve the efficient secretion of phytase by Bacillus subtilis. B. subtilis laboratory standard strain 168 and its derivatives exhibit no phytase activity, whereas a natto starter secretes phytase actively. The natto phytase gene was cloned into strain RIK1285, a protease-defective derivative of 168, to construct a random library of its N-terminal fusions with 173 different signal peptides (SPs) identified in the 168 genome. The library was screened to assess the efficiency of phytase secretion based on clear zones around colonies on plates, which appeared when IP6 was hydrolyzed. The pbp SP enhanced the secretion of the natto phytase most efficiently, i.e. twice that of the original SP. Thus, the secreted natto phytase was purified and found to remove up to 3 phosphates from IP6.

  3. Functional myo-inositol catabolic genes of Bacillus subtilis Natto are involved in depletion of pinitol in Natto (fermented soybean).

    Science.gov (United States)

    Morinaga, Tetsuro; Yamaguchi, Masanori; Makino, Yuki; Nanamiya, Hideaki; Takahashi, Kiwamu; Yoshikawa, Hirofumi; Kawamura, Fujio; Ashida, Hitoshi; Yoshida, Ken-Ichi

    2006-08-01

    Soybeans are rich in pinitol (PI; 3-O-methyl-D-chiro-inositol), which improves health by treating conditions associated with insulin resistance, such as diabetes mellitus and obesity. Natto is a food made from soybeans fermented by strains of Bacillus subtilis natto. In the chromosome of natto strain OK2, there is a putative promoter region almost identical to the iol promoter for myo-inositol (MI) catabolic genes of B. subtilis 168. In the presence of MI, the putative iol promoter functioned to induce inositol dehydrogenase, the enzyme for the first-step reaction in the MI catabolic pathway. PI also induced inositol dehydrogenase and the promoter was indispensable for the utilization of PI as well as MI, suggesting that PI might be an alternative carbon source metabolized in a way involving the MI catabolic genes. Natto fermentation studies have revealed that the parental natto strain consumed PI while a mutant defective in the iol promoter did not do so at all. These results suggest that inactivating the MI catabolic genes might prevent PI consumption, retaining it in natto for enrichment of possible health-promoting properties.

  4. A process for high-efficiency isoflavone deglycosylation using Bacillus subtilis natto NTU-18.

    Science.gov (United States)

    Kuo, Lun-Cheng; Wu, Ren-Yu; Lee, Kung-Ta

    2012-06-01

    In order to produce isoflavone aglycosides effectively, a process of isoflavone hydrolysis by Bacillus subtilis natto NTU-18 (BCRC 80390) was established. This process integrates the three stages for the production of isoflavone aglycosides in one single fermenter, including the growth of B. subtilis natto, production of β-glucosidase, deglycosylation of fed isoflavone glycosides. After 8 h of batch culture of B. subtilis natto NTU-18 in 2 L of soy medium, a total of 3 L of soy isoflavone glucoside solution containing 3.0 mg/mL of daidzin and 1.0 mg/mL of genistin was fed continuously over 34 h. The percentage deglycosylation of daidzin and genistin was 97.7% and 94.6%, respectively. The concentration of daidzein and genistein in the broth reached 1,066.8 μg/mL (4.2 mM) and 351 μg/mL (1.3 mM), respectively, and no residual daidzin or genistin was detected. The productivity of the bioconversion of daidzein and genistein over the 42 h of culture was 25.6 mg/L/h and 8.5 mg/L/h, respectively. This showed that this is an efficient bioconversion process for selective estrogen receptor modulator production.

  5. Magnetic immobilization of Bacillus subtilis natto cells for menaquinone-7 fermentation.

    Science.gov (United States)

    Ebrahiminezhad, Alireza; Varma, Vikas; Yang, Shuyi; Berenjian, Aydin

    2016-01-01

    Production of menaquinone-7 (MK-7) by Bacillus subtilis natto is associated with major drawbacks. To address the current challenges in MK-7 fermentation, studying the effect of magnetic nanoparticles on the bacterial cells can open up a new domain for intensified bioprocesses. This article introduces the new concept of application of iron oxide nanoparticles (IONs) as a pioneer tool for MK-7 process intensification. In this order, IONs with the average size of 11 nm were successfully fabricated and characterized for possible in situ removal of target substances from the fermentation media. The prepared particles were used for decoration and immobilization of B. subtilis natto cells. Presence of iron oxide nanoparticles significantly enhanced the MK-7 specific yield (15 %) as compared to the control samples. In addition, fabricated IONs showed a promising ability for in situ recovery of bacterial cells from the fermentation media with more than 95 % capture efficiency. Based on the results, IONs can be implemented successfully as a novel tool for MK-7 production. This study provides a considerable interest for industrial application of magnetic nanoparticles and their future role in designing an intensified biological process.

  6. Agar Plates Made from Common Supermarket Substances and Bacillus subtilis Natto as an Inexpensive Approach to Microbiology Education

    Directory of Open Access Journals (Sweden)

    Franz-Josef Scharfenberg

    2015-08-01

    Full Text Available To address the possible limitations that financial restrictions may have on students’ independent experimentation at school, we developed and implemented an inexpensive approach for basic microbiology education. We describe four nutrient agars consisting only of everyday substances available from the supermarket or online that we developed to replace standard agars and specific agars. Additionally, we selected Bacillus subtilis natto as an example of a pure-culture species. Our tip first reports the four supermarket-substance agar variants; second, it suggests utilizing them to introduce basic microbiological techniques; and third, it introduces B. subtilis natto in the context of the antibacterial effects of antibiotics as well as of supermarket products which students can bring to class from home. We implemented our approach in microbiology education at school as well as in pre-service teacher education and in in-service teacher professional development courses at our university. Finally, our paper provides worksheets for all the experiments. Editor's Note:The ASM advocates that students must successfully demonstrate the ability to explain and practice safe laboratory techniques. For more information, read the laboratory safety section of the ASM Curriculum Recommendations: Introductory Course in Microbiology and the Guidelines for Biosafety in Teaching Laboratories, available at www.asm.org. The Editors of JMBE recommend that adopters of the protocols included in this article follow a minimum of Biosafety Level 1 practices. If the soil plates described in the activity are opened, a minimum of Biosafety Level 2 is required.

  7. Comparison of soybean cultivars for enhancement of the polyamine contents in the fermented soybean natto using Bacillus subtilis (natto).

    Science.gov (United States)

    Kobayashi, Kazuya; Horii, Yuichiro; Watanabe, Satoshi; Kubo, Yuji; Koguchi, Kumiko; Hoshi, Yoshihiro; Matsumoto, Ken-Ichi; Soda, Kuniyasu

    2017-03-01

    Polyamines have beneficial properties to prevent aging-associated diseases. Raw soybean has relatively high polyamine contents; and the fermented soybean natto is a good source of polyamines. However, detailed information of diversity of polyamine content in raw soybean is lacking. The objectives of this study were to evaluate differences of polyamines among raw soybeans and select the high polyamine-containing cultivar for natto production. Polyamine contents were measured chromatographically in 16 samples of soybean, which showed high variation among soybeans as follows: 93-861 nmol/g putrescine, 1055-2306 nmol/g spermidine, and 177-578 nmol/g spermine. We then confirmed the high correlations of polyamine contents between raw soybean and natto (r = 0.96, 0.95, and 0.94 for putrescine, spermidine, and spermine, respectively). Furthermore, comparison of the polyamine contents among 9 Japanese cultivars showed that 'Nakasen-nari' has the highest polyamine contents, suggesting its suitability for enhancement of polyamine contents of natto.

  8. Effect of feeding Bacillus subtilis natto fermentation product on milk production and composition, blood metabolites and rumen fermentation in early lactation dairy cows.

    Science.gov (United States)

    Peng, H; Wang, J Q; Kang, H Y; Dong, S H; Sun, P; Bu, D P; Zhou, L Y

    2012-06-01

    This experiment was conducted to determine the effect of Bacillus subtilis natto fermentation product supplementation on blood metabolites, rumen fermentation and milk production and composition in early lactation dairy cows. Thirty-six multiparous Holstein cows (DIM = 29 ± 6 days, parity = 2.8 ± 1.1) were blocked by DIM and parity and then randomly assigned to three treatments (12 per treatment) in a 9-week trial. Cows in control, DFM1 and DFM2 were fed TMR diets supplemented with 0, 6 and 12 g of B. subtilis natto solid-state fermentation product per day per cow respectively. Plasma non-esterified fatty acids were lower (p = 0.03) in DFM1 and DFM2 compared with control cows (633 and 639 vs. 685 μm). Ruminal propionate increased (23.9 vs. 26.3 and 26.9/100 mol, control vs. DFM1 and DFM2 respectively) and acetate decreased (64.2 vs. 62.7 and 62.1/100 mol, control vs. DFM1 and DFM2 respectively) with increasing B. subtilis natto fermentation product supplementation. DMI of the cows in three treatments was not affected by B. subtilis natto fermentation product supplementation, but milk yield was 3.1 and 3.2 kg/day higher for DFM1 and DFM2 than that for control cows on average across the 9-week trial, and significant differences were observed during weeks 5-9 of the trial, which resulted in 9.5% and 11.7% increase in feed efficiency. B. subtilis natto fermentation product supplementation did not affect milk fat percentage and protein yield but increased (p < 0.05) milk fat yield and lactose percentage (p < 0.01) and tended to decrease protein percentage (p = 0.06). The findings show that B. subtilis natto fermentation product was effective in increasing lactation performance of early lactation dairy cows possibly by altering the rumen fermentation pattern without any negative effects on blood metabolites.

  9. Effects of Bacillus subtilis var. natto and Saccharomyces cerevisiae fermented liquid feed on growth performance, relative organ weight, intestinal microflora, and organ antioxidant status in Landes geese.

    Science.gov (United States)

    Chen, W; Zhu, X Z; Wang, J P; Wang, Z X; Huang, Y Q

    2013-02-01

    The aim of this study was to investigate the effect of Bacillus subtilis var. natto N21 (BAC) and Saccharomyces cerevisiae Y10 (SAC) fermented liquid feed (FLF) during different incubation times on the growth performance, relative organ weight, intestinal microflora, and organ antioxidative status in Landes geese. Two hundred forty male Landes geese (10 wk old) with the BW of 4.163 ± 0.108 kg were selected for a 3-wk trial and randomly allotted to 3 treatments according to their BW (10 replicates/treatment and 8 geese/replicate). The treatments included 1) CON, dry basal feed (corn-soybean basal diet mixed with water) before feeding (2:1 wt/wt), 2) FLF24, 24 h FLF, and 3) FLF48, 48 h FLF. The FLF diet was prepared by storing basal diet with 10(9) cfu/g feed of each BAC and SAC and water (2:1 wt/wt) in a closed tank at 20°C fermented for 24 or 48 h. The BW gain and feed intake of geese fed FLF24 and FLF48 was greater (P Feeding geese with FLF24 and FLF48 feeds increased (P feeding geese with BAC and SAC mix FLF can improve growth and feed intake, modulate the intestine ecology, and decrease the blood cholesterol concentrations; it also can improve the antioxidative status of organs and breast muscle.

  10. 产蛋白酶和纤维素酶纳豆芽孢杆菌益生菌株的筛选及其生长特性研究%Screening of protease and cellulase producino Bacillus subtilis Natto strain and its growth characteristics

    Institute of Scientific and Technical Information of China (English)

    孙妍; 王加启; 奚晓琦; 魏宏阳; 周凌云

    2011-01-01

    According to the biological qualification of hydrolysised casein and CMC of Bacillus subtilis Natto, 10 strains were screened by pour plate method from their parent strains of Bacillus subtilis natto NB-1 and NR-1. The strain named NY-3 was selected with higher protease activity and cellulase activity through the test of protease activity and cellulase activity in 48 h fermenting medium among 10 strains. Further research of its growth characteristics showed that the best time of inoculation and fermentation were 14 and 48 h, respectively.%根据纳豆芽孢杆菌(Bacillus subtilis natto)水解酪蛋白和羧甲基纤维素的生物学特性,以菌株NB-1和NR-l为出发菌株,采用稀释涂平板法获得10株初筛纳豆芽孢杆菌,通过测定初筛菌株48 h发酵液中蛋白酶活性和纤维素酶活性,确定NY-3产蛋白酶和纤维素酶活性均相对较高.同时对该菌株生长特性进行了研究.结果表明,NY-3的最佳接种时间和最佳发酵时间分别为14和48 h.

  11. Essential Bacillus subtilis genes

    DEFF Research Database (Denmark)

    Kobayashi, K.; Ehrlich, S.D.; Albertini, A.

    2003-01-01

    To estimate the minimal gene set required to sustain bacterial life in nutritious conditions, we carried out a systematic inactivation of Bacillus subtilis genes. Among approximate to4,100 genes of the organism, only 192 were shown to be indispensable by this or previous work. Another 79 genes were...

  12. Taxonomy Icon Data: Bacillus subtilis [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available g Bacillus_subtilis_S.png Bacillus_subtilis_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Bacillus...+subtilis&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Bacillus+subtilis&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Bacillus+subtilis&t=S http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Bacillus+subtilis&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=214 ...

  13. 75 FR 862 - Bacillus subtilis; Registration Review Proposed Decision; Notice of Availability

    Science.gov (United States)

    2010-01-06

    ... AGENCY Bacillus subtilis; Registration Review Proposed Decision; Notice of Availability AGENCY... proposed registration review decision for the pesticide Bacillus subtilis (case 6012) and opens a public... EPA's proposed registration review decision Bacillus subtilis (case 6012). The Bacillus subtilis...

  14. The supercoiling of Bacillus subtilis

    Science.gov (United States)

    Mendelson, Neil H.

    2003-03-01

    Cylindrical shaped cells of Bacillus subtilis (0.7 X 4 mm) grow with twist and when prevented from separating at cell division form long filaments that writhe and supercoil to produce plectonemic fibers. By repetition macrofibers arise consisting of structures mm in length with loops at both ends of a twisted shaft. The entire structure is topologically a single filament. All the cells in a macrofiber also grow with twist consequently as a fiber elongates its loop ends rotate about the axis of the fiber shaft in opposite directions relative to one another. This holds for both right and left-handed structures, with any degree of twist. Although the individual cells grow with constant twist, the rate of loop rotation increases as a function of fiber length. Theory suggests that there is a gradient of rotation rates along the length of a fiber ranging from maxima at the loop ends to zero at the center of its length. In fibers prevented from rotating at one end the rotation rate gradient ranges from zero at the blocked end to maximum at the free end as shown here. When loop rotation at both ends is blocked fibers supercoil and their loop ends move toward one another. Newly designed force gauges were used to measure the tension engendered by supercoiling of such fibers. The findings illustrate a micromachine -like behavior of macrofibers, powered by cell growth, twisting and supercoiling. Biological functions of the micromachine such as self-assembly, translational motions over solid surfaces, and the dragging objects over surfaces appear to utilize only a small fraction of the total power available from the macrofiber micromachine. Collaborators: J.J. Thwaites, P. Shipman, D. Roy, and L. Cheng.

  15. Protein-Tyrosine Phosphorylation in Bacillus subtilis

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Petranovic, Dina; Bottini, N.

    2005-01-01

    phosphorylation, indicating that this post-translational modifi cation could regulate physiological processes ranging from stress response and exopolysaccharide synthesis to DNA metabolism. Some interesting work in this fi eld was done in Bacillus subtilis , and we here present the current state of knowledge...

  16. Complete Genome of Bacillus subtilis Myophage Grass

    OpenAIRE

    Miller, Stanton Y.; Colquhoun, Jennifer M.; Perl, Abbey L.; Chamakura, Karthik R.; Kuty Everett, Gabriel F.

    2013-01-01

    Bacillus subtilis is a ubiquitous Gram-positive model organism. Here, we describe the complete genome of B. subtilus myophage Grass. Aside from genes encoding core proteins pertinent to the life cycle of the phage, Grass has several interesting features, including an FtsK/SpoIIIE protein.

  17. Mutations determining mitomycin resistance in Bacillus subtilis.

    Science.gov (United States)

    Iyer, V N

    1966-12-01

    Iyer, V. N. (Microbiology Research Institute, Canada Department of Agriculture, Ottawa, Canada). Mutations determining mitomycin resistance in Bacillus subtilis. J. Bacteriol. 92:1663-1669. 1966.-The pattern of development of genetic resistance in Bacillus subtilis to mitomycin C was studied, and spontaneous single and multistep mutants were obtained. The transmission and expression of these mutations in sensitive strains proved possible by means of genetic transformation. The mutations were genetically studied in relation to a chromosomal mutation, mac-1, which confers resistance to the macrolide antibiotic erythromycin and which has been previously localized in the early-replicating segment of the B. subtilis chromosome. The results indicate that all of three primary mutations studied in this manner, as well as a secondary and tertiary mutation derived from one of the primary mutations, are clustered in this early-replicating segment. It appears that the secondary and tertiary mutations enhance the resistance conferred by the primary mutation, apparently without themselves conferring any resistance.

  18. Complete Genome Sequence of Bacillus subtilis subsp. subtilis Strain 3NA

    OpenAIRE

    Reuß, Daniel R.; Schuldes, Jörg; Daniel, Rolf; Altenbuchner, Josef

    2015-01-01

    Bacillus subtilis 3NA reaches high cell densities during fed-batch fermentation and is an interesting target for further optimization as a production strain. Here, we announce the full genome of B. subtilis 3NA. The presence of specific Bacillus subtilis 168 and W23 genetic features suggests that 3NA is a hybrid of these strains.

  19. 75 FR 16113 - Bacillus subtilis; Registration Review Final Decision; Notice of Availability

    Science.gov (United States)

    2010-03-31

    ... AGENCY Bacillus subtilis; Registration Review Final Decision; Notice of Availability AGENCY... final registration review decision for the pesticide Bacillus subtilis, case 6012. Registration review... availability of EPA's final registration review decision for Bacillus subtilis, case 6012. The...

  20. Isolation and identification of Bacillus natto strains and their antagonism towards Vibrio parahaemolyticus%纳豆菌的分离、鉴定及其副溶血弧菌拮抗作用

    Institute of Scientific and Technical Information of China (English)

    丁振涛; 谢艳姣; 赵燕华; 叶克难; 蓝德安

    2012-01-01

    Nine Bacillus strains were isolated and purified from natto and Bacillus natto preparation.Then six of these strains were identified as Bacillus subtilis natto according to their physiological and biochemical characters.In the first study,agar diffusion m%从纳豆和纳豆菌制剂中分离、纯化得到9个芽孢杆菌菌株,经生理生化实验鉴定其中6株为纳豆芽孢杆菌。首先采用琼脂扩散法研究纳豆菌在不同温度(37、32、28℃)和不同发酵时间(12、24、36、48h)的发酵液对副溶血弧菌的拮抗作用。然后,选择优势菌株BN-5在28℃时与副溶血弧菌共培养,以研究纳豆菌对副溶血弧菌生长的影响。结果表明,37℃纳豆菌发酵液均有明显抑菌效果,抑菌效果随发酵温度的降低和发酵时间的延长而迅速减弱;纳豆菌初始浓度/副溶血弧菌初始浓度≥100时,在24h以内可以有效抑制弧菌生长。

  1. Construction and Expression of Methionine-rich and Lysine-rich Fusion Gene inBacillus natto

    Institute of Scientific and Technical Information of China (English)

    Zhang Shuang; Luo Chao-chao; Wu Cai-xia; Gao Xue-jun

    2015-01-01

    Methionine and lysine are restrictive essential amino acids of livestock, they are also the most attentive indexes in the feed production to carry out the quality control and quality evaluation. Their contents in feed directly affect livestock protein synthesis. Bacillus natto has excellent probiotic properties. In this experiment, we used the genetic engineering method, fusion PCR technique, to connect methionine-rich gene (zein) from maize endosperm protein with lysine-rich gene (Cflr) from the pepper anther, then the fusion gene was inserted into the expression vector pHT43, and the recombinant plasmid pHT43/zein-Cflr was constructed. The recombinant plasmid was transferred intoBacillus natto, and induced by IPTG for the expression of the fusion gene. We found an apparent band at 40 ku site for the recombinant strain by SDS-PAGE. The contents of methionine and lysine were individually detected with HPLC, the quantities of methionine and lysine in the recombinant strain increased by 18.37% and 24.68% than the wild one, respectively. We also verified the stability of the recombinant bacterium during passaging, and found the stability was 100%. This study provided research-basis for the application of the recombinedBacillus nattoas feed additive.

  2. Bacillus subtilis as potential producer for polyhydroxyalkanoates

    Directory of Open Access Journals (Sweden)

    Patel Sanjay KS

    2009-07-01

    Full Text Available Abstract Polyhydroxyalkanoates (PHAs are biodegradable polymers produced by microbes to overcome environmental stress. Commercial production of PHAs is limited by the high cost of production compared to conventional plastics. Another hindrance is the brittle nature and low strength of polyhydroxybutyrate (PHB, the most widely studied PHA. The needs are to produce PHAs, which have better elastomeric properties suitable for biomedical applications, preferably from inexpensive renewable sources to reduce cost. Certain unique properties of Bacillus subtilis such as lack of the toxic lipo-polysaccharides, expression of self-lysing genes on completion of PHA biosynthetic process – for easy and timely recovery, usage of biowastes as feed enable it to compete as potential candidate for commercial production of PHA.

  3. FORMALDEHYDE GAS INACTIVATION OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACE MATERIALS.

    Science.gov (United States)

    Research evaluated the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface material using formaldehyde gas. Spores were dried on seven types of indoor surfaces and exposed to 1100 ppm formaldehyde gas for 10 hr. Fo...

  4. Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism

    DEFF Research Database (Denmark)

    Buescher, Joerg Martin; Liebermeister, Wolfram; Jules, Matthieu

    2012-01-01

    Adaptation of cells to environmental changes requires dynamic interactions between metabolic and regulatory networks, but studies typically address only one or a few layers of regulation. For nutritional shifts between two preferred carbon sources of Bacillus subtilis, we combined statistical...

  5. Two Genes Encoding Uracil Phosphoribosyltransferase Are Present in Bacillus subtilis

    DEFF Research Database (Denmark)

    Martinussen, Jan; Glaser, Philippe; Andersen, Paal S.

    1995-01-01

    Uracil phosphoribosyltransferase (UPRTase) catalyzes the key reaction in the salvage of uracil in many microorganisms. Surprisingly, two genes encoding UPRTase activity were cloned from Bacillus subtilis by complementation of an Escherichia coli mutant. The genes were sequenced, and the putative...

  6. Development of Bacillus subtilis mutants to produce tryptophan in pigs

    DEFF Research Database (Denmark)

    Bjerre, Karin; Cantor, Mette D.; Nørgaard, Jan Værum

    2017-01-01

    Objectives To generate tryptophan-overproducing Bacillus subtilis strains for in situ use in pigs, to reduce the feed cost for farmers and nitrogen pollution. Results A novel concept has been investigated—to generate B. subtilis strains able to produce tryptophan (Trp) in situ in pigs. Mutagenesis...

  7. Engineering of Bacillus subtilis 168 for increased nisin resistance

    DEFF Research Database (Denmark)

    Hansen, Mette; Wangari, Romilda; Hansen, Egon Bech

    2009-01-01

    . Bacillus subtilis had been suggested as a potential host for the biosynthesis of nisin but was discarded due to its sensitivity to the lethal action of nisin. In this study, we have reevaluated the potential of B. subtilis as a host organism for the heterologous production of nisin. We applied...

  8. Bacillus subtilis Vegetative Catalase Is an Extracellular Enzyme

    OpenAIRE

    Naclerio, G; Baccigalupi, L; Caruso, C; De Felice, M; Ricca, E

    1995-01-01

    Strong catalase activity was secreted by Bacillus subtilis cells during stationary growth phase in rich medium but not in sporulation-inducing medium. N-terminal sequencing indicated that the secreted activity was due to the vegetative catalase KatA, previously considered an endocellular enzyme. Extracellular catalase protected B. subtilis cells from oxidative assault.

  9. Comparative genome analysis of Bacillus cereus group genomes with Bacillus subtilis

    OpenAIRE

    Anderson, Iain; Sorokin, Alexei; Kapatral, Vinayak; Reznik, Gary; Bhattacharya, Anamitra; Mikhailova, Natalia; Burd, Henry; Joukov, Victor; Kaznadzey, Denis; Walunas, Theresa; D'Souza, Mark; Larsen, Niels; Pusch, Gordon; Liolios, Konstantinos; Grechkin, Yuri

    2005-01-01

    Genome features of the Bacillus cereus group genomes (representative strains of Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis sub spp israelensis) were analyzed and compared with the Bacillus subtilis genome. A core set of 1,381 protein families among the four Bacillus genomes, with an additional set of 933 families common to the B. cereus group, was identified. Differences in signal transduction pathways, membrane transporters, cell surface structures, cell wall, and S-...

  10. DECONTAMINATION ASSESSMENT OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS, AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACTS USING A HYDROGEN PERIOXIDE GAS GENERATOR

    Science.gov (United States)

    Aims: To evaluate the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials using hydrogen peroxide gas. Methods and Results: B. anthracis, B. subtilis, and G. Stearothermophilus spores were dried on seven...

  11. Transformation of undomesticated strains of Bacillus subtilis by protoplast electroporation.

    Science.gov (United States)

    Romero, Diego; Pérez-García, Alejandro; Veening, Jan-Willem; de Vicente, Antonio; Kuipers, Oscar P

    2006-09-01

    A rapid method combining the use of protoplasts and electroporation was developed to transform recalcitrant wild strains of Bacillus subtilis. The method described here allows transformation with both replicative and integrative plasmids, as well as with chromosomal DNA, and provides a valuable tool for molecular genetic analysis of interesting Bacillus strains, which are hard to transform by conventional methods.

  12. Co-production of surfactin and a novel bacteriocin by Bacillus subtilis subsp. subtilis H4 isolated from bikalga, an African alkaline Hibiscus sabdariffa seed fermented condiment

    DEFF Research Database (Denmark)

    Compaore, C. S.; Nielsen, Dennis S.; Ouoba, L. I. I.;

    2013-01-01

    Bikalga is a Hibiscus sabdariffa seed fermented condiment widely consumed in Burkina Faso and neighboring countries. The fermentation is dominated by Bacillus subtilis group species. Ten B. subtilis subsp. subtilis (six isolates) and Bacillus licheniformis (four isolates) isolated from traditiona...

  13. 77 FR 73934 - Bacillus subtilis Strain QST 713 Variant Soil; Amendment to an Exemption From the Requirement of...

    Science.gov (United States)

    2012-12-12

    ... AGENCY 40 CFR Part 180 Bacillus subtilis Strain QST 713 Variant Soil; Amendment to an Exemption From the Requirement of a Tolerance for Bacillus subtilis Strain QST 713 To Include Residues of Bacillus subtilis... Bacillus subtilis strain QST 713 in or on all food commodities by including residues of Bacillus...

  14. Food Chemical Evaluation of Fermented Okara Products, Okara-Natto and Okara-Tempeh (B. LIVING SCIENCE)

    OpenAIRE

    河端, 信/田口 邦子/大槻 耕三; MAKOTO/TAGUCHI KUNIKO/OHTSUKI KOZO, KAWABATA; 京都府立大学生活科学部食物学科食品学講座/京都府立大学生活科学部食物学科食品学講座/京都府立大学生活科学部食物学科食品学講座; Laboratory of Food Chemistry, Department of Food Science, Kyoto Prefectural University/Laboratory of Food Chemistry, Department of Food Science, Kyoto Prefectural University/Laboratory of Food Chemistry, Department of Food Science, Kyoto Prefectural University/Kyoto Prefectural Tea Research Institute

    1986-01-01

    Okara, a residue of water-extracted ground soybean, is produced in large amount as the by-products of tofu and soybean milk manufacturing industry. Although it contains large amount of dietary fiber, 4.8% protein, 3.6% fat and 100mg% calcium, its dietetic value is low because of poor taste, rough texture and indigestibility. In this study, natto and tempeh were prepared from okara by fermenting with Bacillus subtilis (natto) and Rhizopus oligosporus or R. oryzae. Dietetic and nutritional valu...

  15. Construction of acetoin high-producing Bacillus subtilis strain

    Directory of Open Access Journals (Sweden)

    Yanjun Tian

    2016-07-01

    Full Text Available This paper describes the construction and selection of a high-producing mutant, Bacillus subtilis HB-32, with enhanced acetoin yield and productivity. The mutant was obtained by the protoplast fusion of a Bacillus subtilis mutant TH-49 (Val− producing acetoin and Bacillus licheniformis AD-30 producing α-acetolactate decarboxylase, with the fusogen polyethylene glycol and after the regeneration and selection, etc. of the fusant. The acetoin production reached 49.64 g/L, which is an increase of 61.8% compared to that of B. subtilis strain TH-49. Random amplified polymorphic DNA analysis was performed to determine the mutagenic and protoplast fusion effects and the genomic changes in the acetoin high-producing strain compared to the parent strains at the molecular level. The constructed strain was shown to be promising for large-scale acetoin production. Future studies should focus on the application of the mutant strain in practice.

  16. 40 CFR 180.1128 - Bacillus subtilis MBI 600; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus subtilis MBI 600; exemption... FOOD Exemptions From Tolerances § 180.1128 Bacillus subtilis MBI 600; exemption from the requirement of... biofungicide Bacillus subtilis MBI 600 in or on all food commodities, including residues resulting from...

  17. 40 CFR 180.1111 - Bacillus subtilis GB03; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus subtilis GB03; exemption from... FOOD Exemptions From Tolerances § 180.1111 Bacillus subtilis GB03; exemption from the requirement of a tolerance. The biofungicide Bacillus subtilis GB03 is exempted from the requirement of a tolerance in or...

  18. Evaluation of in situ valine production by Bacillus subtilis in young pigs

    DEFF Research Database (Denmark)

    Nørgaard, Jan Værum; Canibe, Nuria; Assadi Soumeh, Elham;

    2016-01-01

    Mutants of Bacillus subtilis can be developed to overproduce Val in vitro. It was hypothesized that addition of Bacillus subtilis mutants to pig diets can be a strategy to supply the animal with Val. The objective was to investigate the effect of Bacillus subtilis mutants on growth performance an...

  19. Sigma A recognition sites in the Bacillus subtilis genome

    DEFF Research Database (Denmark)

    Jarmer, Hanne Østergaard; Larsen, Thomas Schou; Krogh, Anders Stærmose

    2001-01-01

    A hidden Markov model of sigma (A) RNA polymerase cofactor recognition sites in Bacillus subtilis, containing either the common or the extended -10 motifs, has been constructed based on experimentally verified sigma (A) recognition sites. This work suggests that more information exists at the ini......A hidden Markov model of sigma (A) RNA polymerase cofactor recognition sites in Bacillus subtilis, containing either the common or the extended -10 motifs, has been constructed based on experimentally verified sigma (A) recognition sites. This work suggests that more information exists...

  20. Transformation of Bacillus Subtilis with cloned thymidylate synthetases

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, Edward M.

    1980-01-01

    Bacillus subtilis carries two genes, thyA and thyB, each encoding different protein products, with thymidylate synthetase (TSase) activity. Either of these genes alone is sufficient for thymidine independence in B. subtilis. In addition there exist two B. subtilis temperate bacteriophages which upon infection of thymine requiring auxotrophs results in conversion of the organism to thymine independence. Chimeric plasmids selected for Thy/sup +/ transforming activity in E. coli were constructed and then used as a source of defined highly enriched DNA with which to transform competent B. subtilis. These plasmids were studied for their: (1) abiility to transform B. subtilis to thymine independence; (2) site of integration within the B. subtilis chromosome upon transformation; (3) phenotype of Thy/sup +/ plasmid generated transformants; and (4) nucleotide sequence homology among the cloned DNA fragments conferring thymine independence. Plasmids containing the two bacteriophage thy genes displayed the phenotype associated with thyA, whereas the plasmids containing the cloned B. subtilis chromosomal genes displayed the phenotype associated with thyB. Utilizing similar technology, the ability of an entirely foreign hybred bacterial plasmiid to transform B. subtilis was examined. In this case the gene from E. coli encoding thymidylate synthetase was cloned in the plasmid pBR322. The resulting chimeric plasmid was effective in transforming both E. coli and B. subtilis to thymine prototrophy. Uncloned linear E. coli chromosomal DNA was unable to transform thymine requiring strains of B. subtilis to thymine independence. Although the Thy/sup +/ transformants of E. coli contained plasmid DNA, the Thy/sup +/ transformants derived from the transformation of B. subtilis did not contain detectable extrachromosomal DNA. Instead the DNA from the chimeric plasmid was integrated into the chromosome of B. subtilis. (ERB)

  1. High Production of Thermostable β-Galactosidase of Bacillus stearothermophilus in Bacillus subtilis

    OpenAIRE

    1985-01-01

    By cloning the β-galactosidase gene of Bacillus stearothermophilus IAM11001 (ATCC 8005) into Bacillus subtilis, enzyme production was enhanced 50 times. β-Galactosidase could be purified to 80% homogeneity by incubating the cell extract of B. subtilis at 70°C for 15 min, followed by centrifugation to remove the denatured proteins. Because of its heat stability and ease of production, β-galactosidase is suitable for application in industrial processes.

  2. Transformation of undomesticated strains of Bacillus subtilis by protoplast electroporation

    OpenAIRE

    Romero, Diego; Perez-Garcia, Alejandro; Veening, Jan-Willem; Vicente, Antonio; Oscar P. Kuipers; Vicente A.

    2006-01-01

    A rapid method combining the use of protoplasts and electroporation was developed to transform recalcitrant wild strains of Bacillus subtilis. The method described here allows transformation with both replicative and integrative plasmids, as well as with chromosomal DNA, and provides a valuable tool for molecular genetic analysis of interesting Bacillus strains, which are hard to transform by conventional methods. (c) 2006 Elsevier B.V. All rights reserved.

  3. N-terminal amino acid sequence of Bacillus licheniformis alpha-amylase: comparison with Bacillus amyloliquefaciens and Bacillus subtilis Enzymes.

    OpenAIRE

    Kuhn, H.; Fietzek, P P; Lampen, J O

    1982-01-01

    The thermostable, liquefying alpha-amylase from Bacillus licheniformis was immunologically cross-reactive with the thermolabile, liquefying alpha-amylase from Bacillus amyloliquefaciens. Their N-terminal amino acid sequences showed extensive homology with each other, but not with the saccharifying alpha-amylases of Bacillus subtilis.

  4. Combined Bacillus licheniformis and Bacillus subtilis infection in a patient with oesophageal perforation.

    Science.gov (United States)

    Jeon, You La; Yang, John Jeongseok; Kim, Min Jin; Lim, Gayoung; Cho, Sun Young; Park, Tae Sung; Suh, Jin-Tae; Park, Yong Ho; Lee, Mi Suk; Kim, Soo Cheol; Lee, Hee Joo

    2012-12-01

    Species of the genus Bacillus are a common laboratory contaminant, therefore, isolation of these organisms from blood cultures does not always indicate infection. In fact, except for Bacillus anthracis and Bacillus cereus, most species of the genus Bacillus are not considered human pathogens, especially in immunocompetent individuals. Here, we report an unusual presentation of bacteraemia and mediastinitis due to co-infection with Bacillus subtilis and Bacillus licheniformis, which were identified by 16S RNA gene sequencing, in a patient with an oesophageal perforation.

  5. Global Network Reorganization During Dynamic Adaptations of Bacillus subtilis Metabolism

    NARCIS (Netherlands)

    Buescher, Joerg Martin; Liebermeister, Wolfram; Jules, Matthieu; Uhr, Markus; Muntel, Jan; Botella, Eric; Hessling, Bernd; Kleijn, Roelco Jacobus; Le Chat, Ludovic; Lecointe, Francois; Maeder, Ulrike; Nicolas, Pierre; Piersma, Sjouke; Ruegheimer, Frank; Becher, Doerte; Bessieres, Philippe; Bidnenko, Elena; Denham, Emma L.; Dervyn, Etienne; Devine, Kevin M.; Doherty, Geoff; Drulhe, Samuel; Felicori, Liza; Fogg, Mark J.; Goelzer, Anne; Hansen, Annette; Harwood, Colin R.; Hecker, Michael; Hubner, Sebastian; Hultschig, Claus; Jarmer, Hanne; Klipp, Edda; Leduc, Aurelie; Lewis, Peter; Molina, Frank; Noirot, Philippe; Peres, Sabine; Pigeonneau, Nathalie; Pohl, Susanne; Rasmussen, Simon; Rinn, Bernd; Schaffer, Marc; Schnidder, Julian; Schwikowski, Benno; Van Dijl, Jan Maarten; Veiga, Patrick; Walsh, Sean; Wilkinson, Anthony J.; Stelling, Joerg; Aymerich, Stephane; Sauer, Uwe

    2012-01-01

    Adaptation of cells to environmental changes requires dynamic interactions between metabolic and regulatory networks, but studies typically address only one or a few layers of regulation. For nutritional shifts between two preferred carbon sources of Bacillus subtilis, we combined statistical and mo

  6. The transcriptionally active regions in the genome of Bacillus subtilis

    DEFF Research Database (Denmark)

    Rasmussen, Simon; Nielsen, Henrik Bjørn; Jarmer, Hanne Østergaard

    2009-01-01

    The majority of all genes have so far been identified and annotated systematically through in silico gene finding. Here we report the finding of 3662 strand-specific transcriptionally active regions (TARs) in the genome of Bacillus subtilis by the use of tiling arrays. We have measured the genome...

  7. A New Saponin Transformed from Ginsenoside Rhl by Bacillus subtilis

    Institute of Scientific and Technical Information of China (English)

    Guo Hong LI; Yue Mao SHEN; Ke Qin ZHANG

    2005-01-01

    A novel saponin was isolated from the transformed products of ginsenoside Rh1 by Bacillus subtilis. It's structure was determined to be 3-O-β-D-glucopyranosyl-6-O-β-D-glucopyranosyl-20 (S)-protopanaxatriol on the basis of the spectral data.

  8. Bilirubin Oxidase Activity of Bacillus subtilis CotA

    OpenAIRE

    Sakasegawa, S; Ishikawa, H.; Imamura, S.; Sakuraba, H.; Goda, S.; Ohshima, T.

    2006-01-01

    The spore coat protein CotA from Bacillus subtilis was previously identified as a laccase. We have now found that CotA also shows strong bilirubin oxidase activity and markedly higher affinity for bilirubin than conventional bilirubin oxidase. This is the first characterization of bilirubin oxidase activity in a bacterial protein.

  9. The impact of manganese on biofilm development of Bacillus subtilis

    NARCIS (Netherlands)

    Mhatre, Eisha; Troszok, Agnieszka; Gallegos-Monterrosa, Ramses; Lindstädt, Stefanie; Hölscher, Theresa; Kuipers, Oscar P.; Kovács, Ákos T.

    2016-01-01

    Bacterial biofilms are dynamic and structurally complex communities, involving cell-to-cell interactions. In recent years, various environmental signals were identified that induce the complex biofilm development of the Gram-positive bacterium Bacillus subtilis. These signaling molecules are often m

  10. Bacillus subtilis Biosensor Engineered To Assess Meat Spoilage

    NARCIS (Netherlands)

    Daszczuk, Alicja; Dessalegne, Yonathan; Drenth, Ismael; Hendriks, Elbrich; Jo, Emeraldo; van Lente, Tom; Oldebesten, Arjan; Parrish, Jonathon; Poljakova, Wlada; Purwanto, Annisa A.; van Raaphorst, Renske; Boonstra, Mirjam; van Heel, Auke; Herber, Martijn; van der Meulen, Sjoerd; Siebring, Jeroen; Sorg, Robin A.; Heinemann, Matthias; Kuipers, Oscar P.; Veening, Jan-Willem

    2014-01-01

    Here, we developed a cell-based biosensor that can assess meat freshness using the Gram-positive model bacterium Bacillus subtilis as a chassis. Using transcriptome analysis, we identified promoters that are specifically activated by volatiles released from spoiled meat. The most strongly activated

  11. Transformation of undomesticated strains of Bacillus subtilis by protoplast electroporation

    NARCIS (Netherlands)

    Romero, Diego; Perez-Garcia, Alejandro; Veening, Jan-Willem; de Vicente, Antonio; Kuipers, Oscar P.; de, Vicente A.

    2006-01-01

    A rapid method combining the use of protoplasts and electroporation was developed to transform recalcitrant wild strains of Bacillus subtilis. The method described here allows transformation with both replicative and integrative plasmids, as well as with chromosomal DNA, and provides a valuable tool

  12. [Asymmetric biosynthesis of d-pseudoephedrine by recombinant Bacillus subtilis].

    Science.gov (United States)

    Peng, Yanhong; Zhang, Liang; Ding, Zhongyang; Wang, Zhengxiang; Shi, Guiyang

    2011-07-01

    In order to successfully express the carbonyl reductase gene mldh in Bacillus subtilis and complete coenzyme regeneration by B. subtilis glucose dehydrogenase, the promoter PrpsD and the terminator TrpsD from B. subtilis rpsD gene were used as the expression cassette to be a recombinant plasmid pHY300plk-PrpsD-TrpsD. After that, the carbonyl reductase gene mldh was inserted into the previous plasmid and a plasmid pHY300plk-PrpsD-mldh-TrpsD was achieved, followed by transformed into B. subtilis Wb600 to obtain a recombinant B. subtilis Wb600 (pHY300plk-PrpsD-mldh-TrpsD). Subsequently, the results for whole-cell biotransformation from recombinant B. subtilis showed that it could be used to catalyze MAK (1-phenyl- 1-keto-2-methylaminopropane) to d-pseudoephedrine in the presence of glucose. The yield of d-pseudoephedrine could be up to 97.5 mg/L and the conversion rate of MAK was 24.1%. This study indicates the possibility of biotransformation production of d-pseudoephedrine from recombinant B. subtilis.

  13. Formation of succinyl genistin and succinyl daidzin by Bacillus species.

    Science.gov (United States)

    Park, Chan Uk; Jeong, Min Kyu; Park, Min Hee; Yeu, JooDong; Park, Myeong Soo; Kim, Mi-Ja; Ahn, Seon Min; Chang, Pahn-Shick; Lee, JaeHwan

    2010-01-01

    6''-O-Succinyl-4'-hydroxyisoflavone-7-O-beta-D-glucopyranoside (succinyl-beta-daidzin) and 6''-O-succinyl-6,4'-dihydroxyisoflavone-7-O-beta-D-glucopyranoside (succinyl-beta-genistin), 2 new isoflavone metabolites, are found in cheonggukjang or natto, traditional soy-based foods fermented with Bacillus species. Standard isoflavones including daidzin, genistin, daidzein, and genistein, and mixtures of isoflavones extracted from roasted soybeans were added to the medium growing Bacillus subtilis or B. subtilis natto and formation of succinyl-beta-daidzin and succinyl-beta-genistin were monitored by high-performance liquid chromatography (HPLC). Samples containing Bacillus with daidzin and genistin produced succinyl-beta-daidzin and succinyl-beta-genistin, respectively, while those with daidzein and genistein did not produce succinyl derivatives. Daidzin in samples with B. subtilis and B. subtilis natto decreased by 39.7% and 10.7%, respectively, for 4 h incubation while genistin decreased by 66.8% and 17.6%, respectively. Genistein decreased faster than daidzein during incubation with B. subtilis or B. subtilis natto without formation of succinyl derivatives. In the case of mixture of isoflavones, succinyl derivatives increased and beta-glucosides and aglycones of isoflavones decreased significantly for 8 h incubation (P < 0.05).

  14. 77 FR 1633 - Bacillus Subtilis Strain CX-9060; Exemption From the Requirement of a Tolerance

    Science.gov (United States)

    2012-01-11

    ... AGENCY 40 CFR Part 180 Bacillus Subtilis Strain CX-9060; Exemption From the Requirement of a Tolerance... an exemption from the requirement of a tolerance for residues of the microbial pesticide Bacillus... eliminates the need to establish a maximum permissible level for residues of Bacillus subtilis strain...

  15. Bacillus subtilis Hfq: A role in chemotaxis and motility

    Indian Academy of Sciences (India)

    CHANDRAKANT B JAGTAP; PRADEEP KUMAR; K KRISHNAMURTHY RAO

    2016-09-01

    Hfq is a global post-transcriptional regulator that modulates the translation and stability of target mRNAs and therebyregulates pleiotropic functions, such as growth, stress, virulence and motility, in many Gram-negative bacteria.However, comparatively little is known about the regulation and function(s) of Hfq in Gram-positive bacteria.Recently, in Bacillus subtilis, a role for Hfq in stationary phase survival has been suggested, although the possibilityof Hfq having an additional role(s) cannot be ruled out. In this study we show that an ortholog of Hfq in B. subtilis isregulated by the stress sigma factor, σB, in addition to the stationary phase sigma factor, σH. We further demonstratethat Hfq positively regulates the expression of flagellum and chemotaxis genes (fla/che) that control chemotaxis andmotility, thus assigning a new function for Hfq in B. subtilis.

  16. INCORPORATION OF BACTERIOPHAGE GENOME BY SPORES OF BACILLUS SUBTILIS.

    Science.gov (United States)

    TAKAHASHI, I

    1964-06-01

    Takahashi, I. (Microbiology Research Institute, Ottawa, Ontario, Canada). Incorporation of bacteriophage genome by spores of Bacillus subtilis. J. Bacteriol. 87:1499-1502. 1964-The buoyant density in a CsCl gradient of deoxyribonucleic acid (DNA) extracted from spores of Bacillus subtilis was found to be identical to that of DNA from vegetative cells. Density-gradient centrifugation of DNA of spores derived from cultures infected with phage PBS 1 revealed the presence of a minor band whose density corresponded to that of the phage DNA in addition to the spore DNA. No intermediate bands were present. The relative amount of the phage DNA present in the spores was estimated to be 11%, suggesting that spores of this organism may incorporate several copies of the phage genome. Although the possibility that true lysogeny may occur cannot be entirely eliminated, the results seem to indicate that the phage genomes incorporated into spores are not attached to the host chromosome in this system.

  17. Effect of Bacillus subtilis microecological probiotics on livestock breeding

    Directory of Open Access Journals (Sweden)

    Xiaohui ZHOU

    2016-10-01

    Full Text Available As a kind of green and healthy microecologics, Bacillus subtilis could balance the intestinal flora, promote the nutrient absorption and enhance immunity. Microecologics is one of the ideal antibiotics alternative, which are effective in preventing and treating animal disease and promoting the growth and development of the animal. Because of its advantages, such as no toxin side effect and no residual or drug-resistant, microecologics has been used in livestock breeding widely. Here, we concluded the characteristics and mechanism of Bacillus subtilis,elaborated application of microecologics on livestock breeding, discussed its problems and suggested its solved methods. In the end, the future of microecologics was expected in order to provide a reference for subsequent livestock breeding.

  18. Biodegradation of furfural by Bacillus subtilis strain DS3.

    Science.gov (United States)

    Zheng, Dan; Bao, Jianguo; Lu, Jueming; Lv, Quanxi

    2015-07-01

    An aerobic bacterial strain DS3, capable of growing on furfural as sole carbon source, was isolated from actived sludge of wastewater treatment plant in a diosgenin factory after enrichment. Based on morphological physiological tests as well as 16SrDNA sequence and Biolog analyses it was identified as Bacillus subtilis. The study revealed that strain DS3 utilized furfural, as analyzed by high-performance liquid chromatography (HPLC). Under following conditions: pH 8.0, temperature 35 degrees C, 150 rpm and 10% inoculum, strain DS3 showed 31.2% furfural degradation. Furthermore, DS3 strain was found to tolerate furfural concentration as high as 6000 mg(-1). The ability of Bacillus subtilis strain DS3 to degrade furfural has been demonstrated for the first time in the present study.

  19. Structural Analysis of Bacillus subtilis Spore Peptidoglycan During Sporulation

    OpenAIRE

    2000-01-01

    Structural analysis of Bacillus subtilis spore peptidoglycan during sporulation:Jennifer L. Meador-Parton:David L. Popham, Chairman:Department of Biology:(ABSTRACT):Bacterial spore peptidoglycan (PG) is very loosely cross-linked relative to vegetative PG. Theories suggest that loosely cross-linked spore PG may have a flexibility which contributes to the attainment of spore core dehydration. The structure of the PG found in fully dormant spores has previously been examined in wild type and m...

  20. Bacillus subtilis chromosome organization oscillates between two distinct patterns

    OpenAIRE

    Wang, Xindan; Montero Llopis, Paula; Rudner, David Z.

    2014-01-01

    In bacteria, faithful and efficient DNA segregation is intimately linked to the spatial organization of the chromosome. Two distinct organization patterns have been described for bacterial chromosomes (ori-ter and left-ori-right) that appear to arise from distinct segregation mechanisms. Here, we show that the Bacillus subtilis chromosome oscillates between them during a replication–segregation cycle. Our data further suggest that the highly conserved condensin complex and the parABS partitio...

  1. Genome engineering using a synthetic gene circuit in Bacillus subtilis.

    Science.gov (United States)

    Jeong, Da-Eun; Park, Seung-Hwan; Pan, Jae-Gu; Kim, Eui-Joong; Choi, Soo-Keun

    2015-03-31

    Genome engineering without leaving foreign DNA behind requires an efficient counter-selectable marker system. Here, we developed a genome engineering method in Bacillus subtilis using a synthetic gene circuit as a counter-selectable marker system. The system contained two repressible promoters (B. subtilis xylA (Pxyl) and spac (Pspac)) and two repressor genes (lacI and xylR). Pxyl-lacI was integrated into the B. subtilis genome with a target gene containing a desired mutation. The xylR and Pspac-chloramphenicol resistant genes (cat) were located on a helper plasmid. In the presence of xylose, repression of XylR by xylose induced LacI expression, the LacIs repressed the Pspac promoter and the cells become chloramphenicol sensitive. Thus, to survive in the presence of chloramphenicol, the cell must delete Pxyl-lacI by recombination between the wild-type and mutated target genes. The recombination leads to mutation of the target gene. The remaining helper plasmid was removed easily under the chloramphenicol absent condition. In this study, we showed base insertion, deletion and point mutation of the B. subtilis genome without leaving any foreign DNA behind. Additionally, we successfully deleted a 2-kb gene (amyE) and a 38-kb operon (ppsABCDE). This method will be useful to construct designer Bacillus strains for various industrial applications.

  2. [Effect of Bacillus natto-fermented product (BIOZYME) on blood alcohol, aldehyde concentrations after whisky drinking in human volunteers, and acute toxicity of acetaldehyde in mice].

    Science.gov (United States)

    Sumi, H; Yatagai, C; Wada, H; Yoshida, E; Maruyama, M

    1995-04-01

    Effects of Bacillus natto-fermented product (BIOZYME) on blood alcohol and aldehyde concentrations after drinking whisky (corresponding to 30-65 ml ethanol) were studied in 21 healthy volunteers. When 100 ml of BIOZYME was orally administrated to the volunteers before drinking whisky, the time delay of both blood factors to attain maximum concentrations were observed. The maximum decrease in blood alcohol and aldehyde concentrations were about 23% and 45% (p whisky. The aldehyde lowering effect of BIOZYME was continued for at least 4 hr after whisky drinking. Concentration of the breath alcohol was also sharply decreased by BIOZYME administration. The breath alcohol concentration in the administered group (0.18 +/- 0.11 mg/l) was found to be lowered about 44% than that of the control group (0.32 +/- 0.11 mg/l) (p whisky. In acute toxicity experiments of aldehyde in mice (12 mmol AcH/mg), BIOZYME showed the survival effect as with alpha-D-Ala (134% increase of the living, at 40 min after i.p. administration) (p < 0.005, n = 22). These findings reveal the Bacillus natto produced BIOZYME as a reasonable, safety and useful anti-hangover agent.

  3. Metabolic engineering of Bacillus subtilis for terpenoid production.

    Science.gov (United States)

    Guan, Zheng; Xue, Dan; Abdallah, Ingy I; Dijkshoorn, Linda; Setroikromo, Rita; Lv, Guiyuan; Quax, Wim J

    2015-11-01

    Terpenoids are the largest group of small-molecule natural products, with more than 60,000 compounds made from isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). As the most diverse group of small-molecule natural products, terpenoids play an important role in the pharmaceutical, food, and cosmetic industries. For decades, Escherichia coli (E. coli) and Saccharomyces cerevisiae (S. cerevisiae) were extensively studied to biosynthesize terpenoids, because they are both fully amenable to genetic modifications and have vast molecular resources. On the other hand, our literature survey (20 years) revealed that terpenoids are naturally more widespread in Bacillales. In the mid-1990s, an inherent methylerythritol phosphate (MEP) pathway was discovered in Bacillus subtilis (B. subtilis). Since B. subtilis is a generally recognized as safe (GRAS) organism and has long been used for the industrial production of proteins, attempts to biosynthesize terpenoids in this bacterium have aroused much interest in the scientific community. This review discusses metabolic engineering of B. subtilis for terpenoid production, and encountered challenges will be discussed. We will summarize some major advances and outline future directions for exploiting the potential of B. subtilis as a desired "cell factory" to produce terpenoids.

  4. Anaerobic growth of a "strict aerobe" (Bacillus subtilis).

    Science.gov (United States)

    Nakano, M M; Zuber, P

    1998-01-01

    There was a long-held belief that the gram-positive soil bacterium Bacillus subtilis is a strict aerobe. But recent studies have shown that B. subtilis will grow anaerobically, either by using nitrate or nitrite as a terminal electron acceptor, or by fermentation. How B. subtilis alters its metabolic activity according to the availability of oxygen and alternative electron acceptors is but one focus of study. A two-component signal transduction system composed of a sensor kinase, ResE, and a response regulator, ResD, occupies an early stage in the regulatory pathway governing anaerobic respiration. One of the essential roles of ResD and ResE in anaerobic gene regulation is induction of fnr transcription upon oxygen limitation. FNR is a transcriptional activator for anaerobically induced genes, including those for respiratory nitrate reductase, narGHJI.B. subtilis has two distinct nitrate reductases, one for the assimilation of nitrate nitrogen and the other for nitrate respiration. In contrast, one nitrite reductase functions both in nitrite nitrogen assimilation and nitrite respiration. Unlike many anaerobes, which use pyruvate formate lyase, B. subtilis can carry out fermentation in the absence of external electron acceptors wherein pyruvate dehydrogenase is utilized to metabolize pyruvate.

  5. Production of Bioactive Compounds by Bacillus subtilis against Sclerotium rolfsii

    Directory of Open Access Journals (Sweden)

    Nalisha, I.

    2006-01-01

    Full Text Available This study aims to investigate the characteristic of bioactive compound produced by Bacillus subtilis against Sclerotium rolfsii and the influence of additive supplements on the antagonistic activity of B. subtilis. The fact that B. subtilis produced an antifungal substance which has inhibitory effect on wide range of fungi, including S. rolfsii, is well known. To learn the effect of pH, temperature and light condition on the production of antifungal compound, B. subtilis was inoculated in Potato Dextrose Broth at various initial pH, temperatures and light conditions, respectively. This antagonist was found to produce antifungal compound that stable at 80C with 58.3 % inhibition on S. rolfsii. The activity was constant within a wide range of pH (3–11. However, treatment with pH11 lead to higher antifungal activity (31.57 % inhibition and it was also found to produce substance that can endure dark condition (46.24 % inhibition with fungicidal effect on S. rolfsii. A series of experiments also been carried out to enhance the antifungal production by supplementing different carbon source preparation into bacterial liquid culture. B. subtilis were grown in minimal medium containing 1 % of oil palm root, Ganoderma lucidum or chitin, respectively prior to bioassay. Crude culture from oil palm root supplemented culture shown significantly reduction in S. rolfsii growth compared to other carbon source crude culture or the antagonism alone, suggesting that this approach may provide improved biocontrol efficiency.

  6. Tracking the Elusive Function of Bacillus subtilis Hfq.

    Science.gov (United States)

    Rochat, Tatiana; Delumeau, Olivier; Figueroa-Bossi, Nara; Noirot, Philippe; Bossi, Lionello; Dervyn, Etienne; Bouloc, Philippe

    2015-01-01

    RNA-binding protein Hfq is a key component of the adaptive responses of many proteobacterial species including Escherichia coli, Salmonella enterica and Vibrio cholera. In these organisms, the importance of Hfq largely stems from its participation to regulatory mechanisms involving small non-coding RNAs. In contrast, the function of Hfq in Gram-positive bacteria has remained elusive and somewhat controversial. In the present study, we have further addressed this point by comparing growth phenotypes and transcription profiles between wild-type and an hfq deletion mutant of the model Gram-positive bacterium, Bacillus subtilis. The absence of Hfq had no significant consequences on growth rates under nearly two thousand metabolic conditions and chemical treatments. The only phenotypic difference was a survival defect of B. subtilis hfq mutant in rich medium in stationary phase. Transcriptomic analysis correlated this phenotype with a change in the levels of nearly one hundred transcripts. Albeit a significant fraction of these RNAs (36%) encoded sporulation-related functions, analyses in a strain unable to sporulate ruled out sporulation per se as the basis of the hfq mutant's stationary phase fitness defect. When expressed in Salmonella, B. subtilis hfq complemented the sharp loss of viability of a degP hfq double mutant, attenuating the chronic σE-activated phenotype of this strain. However, B. subtilis hfq did not complement other regulatory deficiencies resulting from loss of Hfq-dependent small RNA activity in Salmonella indicating a limited functional overlap between Salmonella and B. subtilis Hfqs. Overall, this study confirmed that, despite structural similarities with other Hfq proteins, B. subtilis Hfq does not play a central role in post-transcriptional regulation but might have a more specialized function connected with stationary phase physiology. This would account for the high degree of conservation of Hfq proteins in all 17 B. subtilis strains whose

  7. Comparative genome analysis of Bacillus cereus group genomes withBacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain; Sorokin, Alexei; Kapatral, Vinayak; Reznik, Gary; Bhattacharya, Anamitra; Mikhailova, Natalia; Burd, Henry; Joukov, Victor; Kaznadzey, Denis; Walunas, Theresa; D' Souza, Mark; Larsen, Niels; Pusch,Gordon; Liolios, Konstantinos; Grechkin, Yuri; Lapidus, Alla; Goltsman,Eugene; Chu, Lien; Fonstein, Michael; Ehrlich, S. Dusko; Overbeek, Ross; Kyrpides, Nikos; Ivanova, Natalia

    2005-09-14

    Genome features of the Bacillus cereus group genomes (representative strains of Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis sub spp israelensis) were analyzed and compared with the Bacillus subtilis genome. A core set of 1,381 protein families among the four Bacillus genomes, with an additional set of 933 families common to the B. cereus group, was identified. Differences in signal transduction pathways, membrane transporters, cell surface structures, cell wall, and S-layer proteins suggesting differences in their phenotype were identified. The B. cereus group has signal transduction systems including a tyrosine kinase related to two-component system histidine kinases from B. subtilis. A model for regulation of the stress responsive sigma factor sigmaB in the B. cereus group different from the well studied regulation in B. subtilis has been proposed. Despite a high degree of chromosomal synteny among these genomes, significant differences in cell wall and spore coat proteins that contribute to the survival and adaptation in specific hosts has been identified.

  8. Homolactic fermentation from glucose and cellobiose using Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Martinez Alfredo

    2009-04-01

    Full Text Available Abstract Backgroung Biodegradable plastics can be made from polylactate, which is a polymer made from lactic acid. This compound can be produced from renewable resources as substrates using microorganisms. Bacillus subtilis is a Gram-positive bacterium recognized as a GRAS microorganism (generally regarded as safe by the FDA. B. subtilis produces and secretes different kind of enzymes, such as proteases, cellulases, xylanases and amylases to utilize carbon sources more complex than the monosaccharides present in the environment. Thus, B. subtilis could be potentially used to hydrolyze carbohydrate polymers contained in lignocellulosic biomass to produce chemical commodities. Enzymatic hydrolysis of the cellulosic fraction of agroindustrial wastes produces cellobiose and a lower amount of glucose. Under aerobic conditions, B. subtilis grows using cellobiose as substrate. Results In this study, we proved that under non-aerated conditions, B. subtilis ferments cellobiose to produce L-lactate with 82% of the theoretical yield, and with a specific rate of L-lactate production similar to that one obtained fermenting glucose. Under fermentative conditions in a complex media supplemented with glucose, B. subtilis produces L-lactate and a low amount of 2,3-butanediol. To increase the L-lactate production of this organism, we generated the B subtilis CH1 alsS- strain that lacks the ability to synthesize 2,3-butanediol. Inactivation of this pathway, that competed for pyruvate availability, let a 15% increase in L-lactate yield from glucose compared with the parental strain. CH1 alsS- fermented 5 and 10% of glucose to completion in mineral medium supplemented with yeast extract in four and nine days, respectively. CH1 alsS- produced 105 g/L of L-lactate in this last medium supplemented with 10% of glucose. The L-lactate yield was up to 95% using mineral media, and the optical purity of L-lactate was of 99.5% since B. subtilis has only one gene (lctE that

  9. Investigation of biosurfactant production by Bacillus pumilus 1529 and Bacillus subtilis WPI

    Directory of Open Access Journals (Sweden)

    shila khajavi shojaei

    2016-06-01

    Full Text Available Introduction: Biosurfactants are unique amphipathic molecules with extensive application in removing organic and metal contaminants. The purpose of this study was to investigate production of biosurfactant and determine optimal conditions to produce biosurfactant by Bacillus pumilus 1529 and Bacillus subtilis WPI. Materials and methods: In this study, effect of carbon source, temperature and incubation time on biosurfactant production was evaluated. Hemolytic activity, emulsification activity, oil spreading, drop collapse, cell hydrophobicity and measurement of surface tension were used to detect biosurfactant production. Then, according to the results, the optimal conditions for biosurfactant production by and Bacillus subtilis WPI was determined. Results: In this study, both bacteria were able to produce biosurfactant at an acceptable level. Glucose, kerosene, sugarcane molasses and phenanthrene used as a sole carbon source and energy for the mentioned bacteria. Bacillus subtilis WPI produced maximum biosurfactant in the medium containing kerosene and reduced surface tension of the medium to 33.1 mN/m after 156 hours of the cultivation at 37°C. Also, the highest surface tension reduction by Bacillus pumilus 1529 occurred in the medium containing sugarcane molasses and reduce the surface tension of culture medium after 156 hours at 37°C from 50.4 to 28.83 mN/m. Discussion and conclusion: Bacillus pumilus 1529 and Bacillus subtilis WPI had high potential in production of biosurfactant and degradation of petroleum hydrocarbons and Phenanthrene. Therefore, it could be said that these bacteria had a great potential for applications in bioremediation and other environmental process.

  10. Effects of Bacillus subtilis KD1 on broiler intestinal flora.

    Science.gov (United States)

    Wu, B Q; Zhang, T; Guo, L Q; Lin, J F

    2011-11-01

    A novel Bacillus subtilis KD1 strain was isolated and identified from healthy broilers, and its phylogenetic classification was subsequently analyzed. To evaluate its probiotic availability, its growth characteristics and tolerance for the gut environment were evaluated in vitro. The results suggest that B. subtilis KD1 is superior in secreting neutral protease and is highly tolerant of gastric acid and bile salt. In the logarithmic growth phase, the neutral protease reached a maximum of 1,369.3 U/mL. When all live bacteria had become spores in the broth, B. subtilis KD1 was freeze dried and fed to broilers at 10(9), 5 × 10(9), and 10(10) bacilli/kg of feed. The animal trial results suggest that the addition of the new strain significantly improved intestinal flora by increasing lactobacilli and reducing Escherichia coli (P < 0.05) as compared with the control; hence, B. subtilis KD1 is a promising probiotic organism in broilers.

  11. Sporicidal characteristics of heated dolomite powder against Bacillus subtilis spores.

    Science.gov (United States)

    Yasue, Syogo; Sawai, Jun; Kikuchi, Mikio; Nakakuki, Takahito; Sano, Kazuo; Kikuchi, Takahide

    2014-01-01

    Dolomite is a double salt composed of calcium carbonate (CaCO3) and magnesium carbonate (MgCO3). The heat treatment of CaCO3 and MgCO3 respectively generates calcium oxide (CaO) and magnesium oxide (MgO), which have antimicrobial activity. In this study, heated dolomite powder (HDP) slurry was investigated for its sporicidal activity against Bacillus subtilis ATCC 6633 spores. The B. subtilis spores used in this study were not affected by acidic (pH 1) or alkaline (pH 13) conditions, indicating that they were highly resistant. However, dolomite powder heated to 1000℃ for 1 h could kill B. subtilis spores, even at pH 12.7. Sporicidal activity was only apparent when the dolomite powder was heated to 800℃ or higher, and sporicidal activity increased with increases in the heating temperature. This temperature corresponded to that of the generation of CaO. We determined that MgO did not contribute to the sporicidal activity of HDP. To elucidate the sporicidal mechanism of the HDP against B. subtilis spores, the generation of active oxygen from HDP slurry was examined by chemiluminescence analysis. The generation of active oxygen increased when the HDP slurry concentration rose. The results suggested that, in addition to its alkalinity, the active oxygen species generated from HDP were associated with sporicidal activity.

  12. An improved protocol for harvesting Bacillus subtilis colony biofilms.

    Science.gov (United States)

    Fuchs, Felix Matthias; Driks, Adam; Setlow, Peter; Moeller, Ralf

    2017-03-01

    Bacterial biofilms cause severe problems in medicine and industry due to the high resistance to disinfectants and environmental stress of organisms within biofilms. Addressing challenges caused by biofilms requires full understanding of the underlying mechanisms for bacterial resistance and survival in biofilms. However, such work is hampered by a relative lack of systems for biofilm cultivation that are practical and reproducible. To address this problem, we developed a readily applicable method to culture Bacillus subtilis biofilms on a membrane filter. The method results in biofilms with highly reproducible characteristics, and which can be readily analyzed by a variety of methods with little further manipulation. This biofilm preparation method simplifies routine generation of B. subtilis biofilms for molecular and cellular analysis, and could be applicable to other microbial systems.

  13. Effect of the electroimmobilization process on Bacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Mogilevich, N.F.; Garbara, S.V.

    1980-11-01

    The culture of Bacillus subtilis 21 was subjected to the action of nonuniform electric field, and the effect of the latter on the bacterial survival and biochemical activity was studied. The action of the field on the cells was shown to depend on the material of a load on which the culture was immobilized. The studied properties of Bac. subtilis 21 did not change when the culture was immobilized on cellulose fiber. About 50 to 60% of the cells died on silica gel under the action of the field; the respiration activity and the rate of hexamethylene diamine destruction did not change. Almost all of the bacterial cells lost their viability upon electroimmobilization on ion-exchange resins. The destructive properties of the culture retained by the field exceed the activity of the control variants.

  14. 40 CFR 180.1209 - Bacillus subtilis strain QST 713; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus subtilis strain QST 713... RESIDUES IN FOOD Exemptions From Tolerances § 180.1209 Bacillus subtilis strain QST 713; exemption from the... the microbial pesticide Bacillus subtilis strain QST 713 when used in or on all food commodities....

  15. 40 CFR 180.1243 - Bacillus subtilis var. amyloliquefaciens strain FZB24; exemption from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus subtilis var... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1243 Bacillus subtilis... the requirement of a tolerance for residues of the Bacillus subtilis var. amyloliquefaciens...

  16. Molecular cloning with bifunctional plasmid vectors in Bacillus subtilis: isolation of a spontaneous mutant of Bacillus subtilis with enhanced transformability for Escherichia coli-propagated chimeric plasmid DNA.

    OpenAIRE

    Ostroff, G. R.; Pène, J. J.

    1983-01-01

    Hybrid plasmid DNA cloned in Escherichia coli undergoes deletions when returned to competent Bacillus subtilis, even in defined restriction and modification mutants of strain 168. We have isolated a mutant of B. subtilis MI112 which is stably transformed at high frequency by chimeric plasmid DNA propagated in E. coli.

  17. Isolation and characterization of protease from Bacillus subtilis 1012M15

    Directory of Open Access Journals (Sweden)

    ELFI SUSANTI

    2003-01-01

    Full Text Available A local strain of Bacillus sp. BAC4, is known to produce penicillin G acylase (PGA enzyme with relatively high activity. This strain secretes the PGA into the culture medium. However, it has been reported that PGA activity fall and rise during culture, and the activity plummets during storege at –200C, which probably due to usage protease activity of Bacillus sp. BAC4. To study the possible use of Bacillus subtilis 1012M15 as a host cell for cloning the pga gene from Bacillus sp. BAC4, the protease activity of Bacillus subtilis 1012M15 were studied. Protease activity was determined by Horikoshi method. In this experiment, maximum protease activity in Bacillus subtilis 1012M15 culture was obsereved after 8 hours. At this optimum condition, protease activity of Bacillus sp. BAC4 is five time higher than that of Bacillus subtilis 1012M15. This situation promised the possible usage of Bacillus subtilis 1012M15 as a host cell for pga expression. For protease characterization, the bacterial culture had been separated from the cell debris by centrifugation. The filtrate was concentrated by freeze drying, fractionated by ammonium sulphate, dialyzed in selovan tube, and then fractionated by ion exchance chromatography employing DEAE-cellulose. The five peaks resulted indicated the presence of five protease. Based on inhibitor and activator influence analysis, it could be concluded that proteases from Bacillus subtilis 1012M15 contained of serin protease as well as metalloprotease and serin protease mixture.

  18. Inhibitory Effect of Anti-Candida Substance Produced bv Bacillus natto

    OpenAIRE

    鎌口,有秀/秋貞,泰輔/馬場,久衛; カマグチ,アリヒデ/アキサダ,タイスケ/ババ,ヒサエ; KAMAGUCHI,Arihide/AKISADA,Taisuke/BABA,Hisae

    1984-01-01

    Bacillus nattoがCandida albicansとC.stellatoideaに対してはその発育を阻止するが,他のCandida種の発育は阻止しない抗真菌物質を菌体外に産生することを確認した。B.nattoの培養上澄より活性炭の添加と限外ろ過(分子量 10,000)処理により粗抗カンジダ物質(ACS)を得た。粗ACSは供試したC.albicans154株の全株の発育を阻止したが,C.tropicalisの全株(5株)は発育が阻止されないことをペーパーディスク法により確認した。この方法により,粗ACSはこの2種のカンジダを明確に分別できることが判明した。粗ACSのC.albicansに対するMICは400μg/mlであったが,C.tropicalisは12,800μg/mlでも発育は阻止されなかった。-20℃に保存した粗ACSと4℃又は-20℃に保存した粗ACS溶液は初期の活性を8週間保持した。粗ACSのC.albicansに対する作用は主に静菌的であり,また弱く殺菌的にも作用した。この結果は粗ACSで処理したC.albicansの形態変化とも一致した。粗ACS含有サ...

  19. PRODUKSI ANTIBIOTIKA OLEH Bacillus subtilis M10 DALAM MEDIA UREA-SORBITOL

    Directory of Open Access Journals (Sweden)

    Supartono Supartono

    2012-04-01

    Full Text Available PRODUCTION OF ANTIBIOTICS BY Bacillus subtilis M10 IN UREA-SORBITOL MEDIUM. Infection diseases still become the main health problems that suffered by people in Indonesia. Besides, there were many pathogen bacteria found to be resistant to the some antibiotics. Therefore, the efforts to get a new antibiotic require to be done continuously. A new local strain of Bacillus subtilis BAC4 has been known producing an antibiotic that inhibit Serratia marcescens ATCC 27117 growth. To make efficient the local strain, mutation on Bacillus subtilis BAC4 was done by using acridine orange and a mutant cell of Bacillus subtilis M10 that overproduction for producing antibiotic was obtained. Nevertheless, the production kinetics of antibiotic by this mutant has not been reported. The objective of this research was to study the production kinetics of antibiotic by Bacillus subtilis M10 mutant. The production of antibiotic was conducted using batch fermentation and antibiotic assay was performed with agar absorption method using Serratia marcescens ATCC 27117 as bacteria assay. Research result provided that Bacillus subtilis M10 mutant with overproduction of antibiotic produced an antibiotic since 8th hour’s fermentation and optimum of it production was at 14th hours after inoculation.  Penyakit infeksi masih menjadi masalah yang utama diderita oleh masyarakat Indonesia. Di samping itu, banyak bakteri patogen yang ditemukan resisten terhadap beberapa antibiotika. Oleh karena itu, upaya-upaya untuk mendapatkan antibiotika baru perlu dilakukan secara terus-menerus. Suatu galur lokal baru Bacillus subtilis BAC4 teridentifikasi memproduksi senyawa antibiotika yang menghambat pertumbuhan Serratia marcescens ATCC27117. Untuk memberdayakan galur tersebut, terhadap Bacillus subtilis BAC4 dilakukan mutasi dengan larutan akridin oranye dan diperoleh mutan Bacillus subtilis M10 yang memproduksi antibiotika berlebihan. Namun, kinetika produksi antibiotika oleh Bacillus

  20. Isolation and Identification of the Antimicrobial Substance Produced by Bacillus subtilis fmbR%Bacillus subtilis fmbR抗菌物质的分离和鉴定

    Institute of Scientific and Technical Information of China (English)

    别小妹; 陆兆新; 吕凤霞; 赵海珍; 杨胜远; 孙力军

    2006-01-01

    [目的]对Bacillus subtilis fmbR产生的抗菌物质进行分离和鉴定研究,以确定抗菌物质的组成和结构.[方法]采用HPLC和TLC层析对Bacillus subtilis fmbR抗菌物质进行分离纯化,通过ESI-MS和MALDI-MS分析对抗菌物质的组成和结构进行初步鉴定.[结果]HPLC层析表明了Bacillus subtilis fmbR抗菌物质含有保留时间与surfactin相似的成分.TLC层析和原位酸解证明了Bacillus subtilis fmbR抗菌物质含有闭合肽键类的物质,其中之一为相对迁移率Rf与标样surfactin相近的组分.采用ESI-MS分析检测到Bacillus subtilis fmbR抗菌物质含有分子量与surfactinA相同的m/z1009.1、m/z1023.2 和m/z1037.0等3种同系物;通过MALDI-MS分析获得[M+H]+为m/z 3403.95抗菌物质,该物质分子量与Bacillus subtilis 168产生的细菌素subtilosin的m/z3403.3 相同.[结论]Bacillus subtilis fmbR抗菌物质由C13~C15的3种surfactinA同系物和一种羊毛硫抗生素subtilosin组成.

  1. High Pressure Germination of Bacillus subtilis Spores with Alterations in Levels and Types of Germination Proteins

    Science.gov (United States)

    2014-01-01

    1ITLE AND SUBTITLE 5a CONTRACTNUMBER High pressure germination of Bacillus subtilis spores with W911NF-09-l-0286 alterations in levels and types of...A moderate high pressure (mHP) of 150 megaPascals (MPa) triggers germination of Bacillus subtilis spores via germinant receptors (GRs), while...germination by a very high pressure (vHP) of550 MPa is GR-independent. The mHP and vHP germination of Bacillus subtilis spores with different levels ofGRs

  2. [Features of Bacillus subtilis IMB B-7023 and its streptomycin-resistant strain].

    Science.gov (United States)

    Roĭ, A A; Iatsenko, I P; Gordienko, A S; Kurdish, I K

    2011-01-01

    Features of phosphate-mobilizing bacteria Bacillus subtilis IMB B-7023 and its streptomycin-resistant strain were investigated. While cultivated in medium with glucose and glycerophosphate, the growth rate of the antibiotic-marked strain was approximately similar to this parameter for Bacillus subtilis IMB B-7023 but cell sizes were 1.3-fold less. Both strains significantly stimulated the germinating of plant seeds, attached to their roots, and insignificantly differed in antagonistic activity toward phytopathogens and quantitative content of cell fatty acids and phosphatase activity. Streptomycin-resistant strain may be used for monitoring of Bacillus subtilis introduced to agroecosystem.

  3. Genome Sequencing of Bacillus subtilis SC-8, Antagonistic to the Bacillus cereus Group, Isolated from Traditional Korean Fermented-Soybean Food

    Science.gov (United States)

    Yeo, In-Cheol; Lee, Nam Keun

    2012-01-01

    Bacillus subtilis SC-8 is a Gram-positive bacterium displaying narrow antagonistic activity for the Bacillus cereus group. B. subtilis SC-8 was isolated from Korean traditional fermented-soybean food. Here we report the draft genome sequence of B. subtilis SC-8, including biosynthetic genes for antibiotics that may have beneficial effects for control of food-borne pathogens. PMID:22207744

  4. Safety evaluation of a xylanase expressed in Bacillus subtilis.

    Science.gov (United States)

    Harbak, L; Thygesen, H V

    2002-01-01

    A programme of studies was conducted to establish the safety of a xylanase expressed in a self-cloned strain of Bacillus subtilis to be used as a processing aid in the baking industry. To assess acute and subchronic oral toxicity, rat feeding studies were conducted. In addition, the potential of the enzyme to cause mutagenicity and chromosomal aberrations was assessed in microbial and tissue culture in vitro studies. Acute and subchronic oral toxicity was not detected at the highest dose recommended by OECD guidelines. There was no evidence of mutagenic potential or chromosomal aberrations. Furthermore, the organism used for production of the xylanase is already accepted as safe by several major national regulatory agencies.

  5. The ESX system in Bacillus subtilis mediates protein secretion.

    Directory of Open Access Journals (Sweden)

    Laura A Huppert

    Full Text Available Esat-6 protein secretion systems (ESX or Ess are required for the virulence of several human pathogens, most notably Mycobacterium tuberculosis and Staphylococcus aureus. These secretion systems are defined by a conserved FtsK/SpoIIIE family ATPase and one or more WXG100 family secreted substrates. Gene clusters coding for ESX systems have been identified amongst many organisms including the highly tractable model system, Bacillus subtilis. In this study, we demonstrate that the B. subtilis yuk/yue locus codes for a nonessential ESX secretion system. We develop a functional secretion assay to demonstrate that each of the locus gene products is specifically required for secretion of the WXG100 virulence factor homolog, YukE. We then employ an unbiased approach to search for additional secreted substrates. By quantitative profiling of culture supernatants, we find that YukE may be the sole substrate that depends on the FtsK/SpoIIIE family ATPase for secretion. We discuss potential functional implications for secretion of a unique substrate.

  6. Inactivation of Bacillus Subtilis by Atomic Oxygen Radical Anion

    Institute of Scientific and Technical Information of China (English)

    LI Longchun; WANG Lian; YU Zhou; LV Xuanzhong; LI Quanxin

    2007-01-01

    UAtomic oxygen radical anion (O- ) is one of the most active oxygen species, and has extremely high oxidation ability toward small-molecules of hydrocarbons. However, to our knowledge, little is known about the effects of O- on cells of micro-organisms. This work showed that O- could quickly react with the Bacillus subtilis cells and seriously damage the cell walls a s well as their other contents, leading to a fast and irreversible inactivation. SEM micrographs revealed that the cell structures were dramatically destroyed by their exposure to O-. The inactivation efficiencies of B. subtilis depend on the O-- intensity, the initial population of cells and the treatment temperature, but not on the pH in the range of our investigation. For a cell concentration of 106 cfu/ml, the number of survived cells dropped from 106 cfu/ml to 103 cfu/ml after about five-minute irradiation by an O- flux in an intensity of 233 nA/cm2 under a dry argon environment (30 ℃, 1 atm, exposed size: 1.8 cm2). The inactivation mechanism of micro-organisms induced by O- is also discussed.

  7. Inhibition of Bacillus subtilis growth and sporulation by threonine.

    Science.gov (United States)

    Lamb, D H; Bott, K F

    1979-01-01

    A 1-mg/ml amount of threonine (8.4 mM) inhibited growth and sporulation of Bacillus subtilis 168. Inhibition of sporulation was efficiently reversed by valine and less efficiently by pyruvate, arginine, glutamine, and isoleucine. Inhibition of vegetative growth was reversed by asparate and glutamate as well as by valine, arginine, or glutamine. Cells in minimal growth medium were inhibited only transiently by very high concentrations of threonine, whereas inhibition of sporulation was permanent. Addition of threonine prevented the normal increase in alkaline phosphatase and reduced the production of extracellular protease by about 50%, suggesting that threonine blocked the sporulation process relatively early. 2-Ketobutyrate was able to mimic the effect of threonine on sporulation. Sporulation in a strain selected for resistance to azaleucine was partially resistant. Seventy-five percent of the mutants selected for the ability to grow vegetatively in the presence of high threonine concentrations were found to be simultaneously isoleucine auxotrophs. In at least one of these mutants, the threonine resistance phenotpye could not be dissociated from the isoleucine requirement by transformation. This mutation was closely linked to a known ilvA mutation (recombination index, 0.16). This strain also had reduced intracellular threonine deaminase activity. These results suggest that threonine inhibits B. subtilis by causing valine starvation.

  8. The minimal Bacillus subtilis nonhomologous end joining repair machinery.

    Directory of Open Access Journals (Sweden)

    Miguel de Vega

    Full Text Available It is widely accepted that repair of double-strand breaks in bacteria that either sporulate or that undergo extended periods of stationary phase relies not only on homologous recombination but also on a minimal nonhomologous end joining (NHEJ system consisting of a dedicated multifunctional ATP-dependent DNA Ligase D (LigD and the DNA-end-binding protein Ku. Bacillus subtilis is one of the bacterial members with a NHEJ system that contributes to genome stability during the stationary phase and germination of spores, having been characterized exclusively in vivo. Here, the in vitro analysis of the functional properties of the purified B. subtilis LigD (BsuLigD and Ku (BsuKu proteins is presented. The results show that the essential biochemical signatures exhibited by BsuLigD agree with its proposed function in NHEJ: i inherent polymerization activity showing preferential insertion of NMPs, ii specific recognition of the phosphate group at the downstream 5' end, iii intrinsic ligase activity, iv ability to promote realignments of the template and primer strands during elongation of mispaired 3' ends, and v it is recruited to DNA by BsuKu that stimulates the inherent polymerization and ligase activities of the enzyme allowing it to deal with and to hold different and unstable DNA realignments.

  9. Comparative proteome analysis of two antagonist Bacillus subtilis strains.

    Science.gov (United States)

    Zhang, C X; Zhao, X; Han, F; Yang, M F; Chen, H; Chida, T; Shen, S H

    2009-04-01

    Natural wild-type strains of Bacillus subtilis are extensively used in agriculture as biocontrol agents for plants. This study examined two antagonist B. subtilis strains, KB-1111 and KB-1122, and the results illustrated that KB-1122 was a more potent inhibitor of the indicator pathogen than KB- 1111. Thus, to investigate the intrinsic differences between the two antagonist strains under normal culture conditions, samples of KB-1111 and KB-1122 were analyzed using MALDI-TOF-MS. The main differences were related to 20 abundant intracellular and 17 extracellular proteins. When searching the NCBI database, a number of the differentially expressed proteins were identified, including 11 cellular proteins and 10 secretory proteins. Among these proteins, class III stress-response-related ATPase, aconitate hydratase, alpha-amylase precursor, and a secretory protein, endo-1, 4-beta-glucanase, were differentially expressed by the two strains. These results are useful to comprehend the intrinsic differences between the antagonism of KB-1111 and KB-1122.

  10. Regiospecific Addition of Uracil to Acrylates Catalyzed by Alkaline Protease from Bacillus subtilis

    Institute of Scientific and Technical Information of China (English)

    Ying CAI; Jian Yi WU; Na WANG; Xiao Feng SUN; Xian Fu LIN

    2004-01-01

    Michael addition reactions of uracil to acrylates were catalyzed by an alkaline protease from Bacillus subtilis in dimethyl sulfoxide at 55 ℃ for 72 h. The adducts were determined by TLC, IR and 1H NMR.

  11. Bacillus subtilis HJ18-4 from traditional fermented soybean food inhibits Bacillus cereus growth and toxin-related genes.

    Science.gov (United States)

    Eom, Jeong Seon; Lee, Sun Young; Choi, Hye Sun

    2014-11-01

    Bacillus subtilis HJ18-4 isolated from buckwheat sokseongjang, a traditional Korean fermented soybean food, exhibits broad-spectrum antimicrobial activity against foodborne pathogens, including Bacillus cereus. In this study, we investigated the antibacterial efficacy and regulation of toxin gene expression in B. cereus by B. subtilis HJ18-4. Expression of B. cereus toxin-related genes (groEL, nheA, nheC, and entFM) was downregulated by B. subtilis HJ18-4, which also exhibited strong antibacterial activity against B. cereus. We also found that water extracts of soy product fermented with B. subtilis HJ18-4 significantly inhibited the growth of B. cereus and toxin expression. These results indicate that B. subtilis HJ18-4 could be used as an antimicrobial agent to control B. cereus in the fermented soybean food industry. Our findings also provide an opportunity to develop an efficient biological control agent against B. cereus.

  12. Biosynthesis of Active Bacillus subtilis Urease in the Absence of Known Urease Accessory Proteins

    OpenAIRE

    Kim, Jong Kyong; Mulrooney, Scott B.; Hausinger, Robert P.

    2005-01-01

    Bacillus subtilis contains urease structural genes but lacks the accessory genes typically required for GTP-dependent incorporation of nickel. Nevertheless, B. subtilis was shown to possess a functional urease, and the recombinant enzyme conferred low levels of nickel-dependent activity to Escherichia coli. Additional investigations of the system lead to the suggestion that B. subtilis may use unidentified accessory proteins for in vivo urease activation.

  13. Isolation and Characterization of Phages Infecting Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Anna Krasowska

    2015-01-01

    Full Text Available Bacteriophages have been suggested as an alternative approach to reduce the amount of pathogens in various applications. Bacteriophages of various specificity and virulence were isolated as a means of controlling food-borne pathogens. We studied the interaction of bacteriophages with Bacillus species, which are very often persistent in industrial applications such as food production due to their antibiotic resistance and spore formation. A comparative study using electron microscopy, PFGE, and SDS-PAGE as well as determination of host range, pH and temperature resistance, adsorption rate, latent time, and phage burst size was performed on three phages of the Myoviridae family and one phage of the Siphoviridae family which infected Bacillus subtilis strains. The phages are morphologically different and characterized by icosahedral heads and contractile (SIOΦ, SUBω, and SPOσ phages or noncontractile (ARπ phage tails. The genomes of SIOΦ and SUBω are composed of 154 kb. The capsid of SIOΦ is composed of four proteins. Bacteriophages SPOσ and ARπ have genome sizes of 25 kbp and 40 kbp, respectively. Both phages as well as SUBω phage have 14 proteins in their capsids. Phages SIOΦ and SPOσ are resistant to high temperatures and to the acid (4.0 and alkaline (9.0 and 10.0 pH.

  14. [Joint cultivation of Bacillus subtilis and Escherichia coli strains promising for obtaining complex probiotic].

    Science.gov (United States)

    Tsaruk'ianova, I G; Osadchaia, A I

    2007-01-01

    The ability of joint cultivation of Bacillus subtilis UCM B-5007 and Escherichia coli M-17 in subsurface conditions has been studied. These strains are available for creation of a new complex probiotic. Symbiotic relationships between these microorganisms were proved. Bacillus subtilis and Escherichia coli strains use different growth "strategy". The most optimum ratio of cultures (1:1) for growth, biomass accumulation, and for antagonism to test-cultures has been chosen.

  15. Tryptophan provision by dietary supplementation of a Bacillus subtilis mutant strain in piglets

    DEFF Research Database (Denmark)

    Torres-Pitarch, A; Nielsen, B.; Canibe, Nuria

    2015-01-01

    Supplementing Bacillus (B.) subtilis mutants selected to overproduce a specific amino acid (AA) may be an alternative method to provide essential AA in pig diets. Two experiments on a B. subtilis strain selected to overproduce Trp were conducted using 8-kg pigs fed Trp-deficient diets for 20 d. B...

  16. Biochemical properties and three-dimensional structures of two extracellular lipolytic enzymes from Bacillus subtilis

    NARCIS (Netherlands)

    Eggert, Thorsten; Pouderoyen, Gertie van; Pencreac’h, Gaëlle; Douchet, Isabelle; Verger, Robert; Dijkstra, Bauke W.; Jaeger, Karl-Erich

    2002-01-01

    This article reviews our present knowledge on the extracellular lipolytic enzymes LipA and LipB from Bacillus subtilis. Growth of B. subtilis to the late logarithmic growth phase results in a total lipolytic activity of 12–18 units per liter of culture supernatant. Immunodetection with LipA- and Lip

  17. Genetic or chemical protease inhibition causes significant changes in the Bacillus subtilis exoproteome

    NARCIS (Netherlands)

    Westers, Lidia; Westers, Helga; Zanen, Geeske; Antelmann, Haike; Hecker, Michael; Noone, David; Devine, Kevin M.; van Dijl, Jan Maarten; Quax, Wim J.

    2008-01-01

    Bacillus subtilis is a prolific producer of enzymes and biopharmaceuticals. However, the susceptibility of heterologous proteins to degradation by (extracellular) proteases is a major limitation for use of B. subtilis as a protein cell factory. An increase in protein production levels has previously

  18. Non-functional expression of Escherichia coli signal peptidase I in Bacillus subtilis

    NARCIS (Netherlands)

    van Dijl, J M; de Jong, A; Smith, H; Bron, S; Venema, G

    1991-01-01

    The Escherichia coli lep gene, encoding signal peptidase I (SPase I) was provided with Bacillus subtilis transcription/translation signals and expressed in this organism. When present on a low-copy-number plasmid, the amount of E. coli SPase I produced (per mg cell protein) in B. subtilis was half t

  19. Complete genome sequence of Bacillus subtilis SG6 antagonistic against Fusarium graminearum.

    Science.gov (United States)

    Zhao, Yueju; Sangare, Lancine; Wang, Yao; Folly, Yawa Minnie Elodie; Selvaraj, Jonathan Nimal; Xing, Fuguo; Zhou, Lu; Wang, Yan; Liu, Yang

    2015-01-20

    Bacillus subtilis SG6 exhibited a high antifungal effect on the mycelium growth, sporulation and DON production of F. graminearum and significantly reduced disease incidence, Fusarium head blight (FHB) index and DON in the field. Here, we present the complete genome sequence of B. subtilis SG6, providing insights into the genomic basis of its effects and facilitating its application in FHB control.

  20. Metabolic protein interactions in Bacillus subtilis studied at the single cell level

    NARCIS (Netherlands)

    Detert Oude Weme, Ruud Gerardus Johannes

    2015-01-01

    We have investigated protein-protein interactions in live Bacillus subtilis cells (a bacterium). B. subtilis’ natural habitat is the soil and the roots of plants, but also the human microbiota. B. subtilis is used worldwide as a model organism. Unlike eukaryotic cells, bacteria do not have organelle

  1. The Rok protein of Bacillus subtilis represses genes for cell surface and extracellular functions

    NARCIS (Netherlands)

    Albano, M; Smits, WK; Ho, LTY; Kraigher, B; Mandic-Mulec, [No Value; Kuipers, OP; Dubnau, D; Smits, Wiep Klaas; Ho, Linh T.Y.; Mandic-Mulec, Ines

    2005-01-01

    Rok is a repressor of the transcriptional activator ComK and is therefore an important regulator of competence in Bacillus subtilis (T. T. Hoa, P. Tortosa, M. Albano, and D. Dubnau, Mol. Microbiol. 43:15-26, 2002). To address the wider role of Rok in the physiology of B. subtilis, we have used a com

  2. NONFUNCTIONAL EXPRESSION OF ESCHERICHIA-COLI SIGNAL PEPTIDASE-I IN BACILLUS-SUBTILIS

    NARCIS (Netherlands)

    VANDIJL, JM; DEJONG, A; SMITH, H; BRON, S; VENEMA, G; van Dijl, Jan Maarten

    1991-01-01

    The Escherichia coli lep gene, encoding signal peptidase I (SPase I) was provided with Bacillus subtilis transcription/translation signals and expressed in this organism. When present on a low-copy-number plasmid, the amount of E. coli SPase I produced (per mg cell protein) in B. subtilis was half t

  3. Optimization of liquid fermentation condition for Bacillus natto FK-3%纳豆芽孢杆菌 FK-3液体发酵条件优化

    Institute of Scientific and Technical Information of China (English)

    赵彩春; 区毅垣; 史宝军

    2016-01-01

    文章旨在研究一株纳豆芽孢杆菌(Bacillus natto)FK-3液体发酵的最佳发酵条件及培养基配方。采用单因素试验以及正交试验,对培养条件如温度、转速、装液量、接种量、初始pH值以及培养基配方的碳源、氮源、无机盐等因素进行研究,试验数据通过SPSS 22软件展开单因素方差分析、正交试验极差分析及方差分析。结果表明,该菌株的最适培养条件是初始pH值为7.5,温度33℃,摇床转速190 r/min,装液量为60 ml/250 ml三角瓶,接种量为4%,种龄是20 h,收获时间为20 h。培养基配方为米糠1.0%,玉米粉1.0%,玉米淀粉2.0%,豆粕4%,酵母膏1.0%,磷酸氢二钠0.1%,硫酸镁0.05%,氯化钙0.05%,硫酸锰0.01%。FK-3在15 L发酵罐中发酵活菌量达1.41×1010 cfu/ml,芽孢数为1.37×1010 cfu/ml,芽孢率为97%。%This experiment was conducted to study the optimization of liquid fermentation condition and medium for a Bacillus natto strain FK-3. The single-factor method and orthogonal experimental method were used to optimize the fermentation condition of initial pH, temperature, rotation speed, in⁃oculation amount and the fermentation medium factors of carbon sources, nitrogen sources and inorgan⁃ic salts. ANOVA and orthogonal test range analysis and variance analysis were conducted by SPSS 22. The result showed the optimization condition for Bacillus natto strain FK-3 are as following: initial pH was 7.5, temperature was 33 ℃, rotation speed was 190 r/min, liquid volume was 60 ml/250 ml, inocu⁃lation amount was 4.0%, fermentation time was 20 h. The optimization medium component are as fol⁃lowing : rice bran 1.0%,corn flour 1.0%,corn starch 2.0%, soybean meal 4.0%, yeast extract 1.0%, Na2HPO4 0.1%, MgSO4 0.05%,CaCl2 0.05%,MnSO4 0.01%. The bacteria number of FK-3 was 1.41 × 1010 cfu/ml when fermentation in 15 L fermenter and spores number was 1.37 × 1010 cfu/ml, The spores rate was 97%.

  4. Partial purification and characterization of protease enzyme from Bacillus subtilis and Bacillus cereus.

    Science.gov (United States)

    Orhan, Elif; Omay, Didem; Güvenilir, Yüksel

    2005-01-01

    The aim of this experimental study was to isolate and partially purify protease enzyme from Bacillus cereus and Bacillus subtilis. Protease enzyme is obtained by inducing spore genesis of bacteria from Bacillus species in suitable nutrient plates. The partial purification was realized by applying, respectively, ammonium sulfate precipitation, dialysis, and DEAE-cellulose ion-exchange chromatography to the supernatant that was produced later. Optimum pH, optimum temperature, pH stability, and temperature stability were determined, as well as the effects of pH, temperature, substrate concentration, reaction time, and inhibitors and activators on enzyme activity. In addition, the molecular mass of the obtained enzyme was investigated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The specific activity of partially purified enzyme from B. subtilis was determined to be 84 U/mg. The final enzyme preparation was eight-fold more pure than the crude homogenate. The molecular mass of the partially purified enzyme was found to be 45 kDa by using SDS-PAGE. The protease enzyme that was partially purified from B. cereus was purified 1.2-fold after ammonium sulfate precipitation. The molecular mass of the partially purified enzyme was determined to be 37 kDa by using SDS-PAGE.

  5. Isolation of a new Mexican strain of Bacillus subtilis with antifungal and antibacterial activities.

    Science.gov (United States)

    Basurto-Cadena, M G L; Vázquez-Arista, M; García-Jiménez, J; Salcedo-Hernández, R; Bideshi, D K; Barboza-Corona, J E

    2012-01-01

    Although several strains of B. subtilis with antifungal activity have been isolated worldwide, to date there are no published reports regarding the isolation of a native B. subtilis strain from strawberry plants in Mexico. A native bacterium (Bacillus subtilis 21) demonstrated in vitro antagonistic activity against different plant pathogenic fungi. Under greenhouse conditions, it was shown that plants infected with Rhizoctonia solani and Fusarium verticillioides and treated with B. subtilis 21 produced augment in the number of leaves per plant and an increment in the length of healthy leaves in comparison with untreated plants. In addition, B. subtilis 21 showed activity against pathogenic bacteria. Secreted proteins by B. subtilis 21 were studied, detecting the presence of proteases and bacteriocin-like inhibitor substances that could be implicated in its antagonistic activity. Chitinases and zwittermicin production could not be detected. Then, B. subtilis 21 could potentially be used to control phytopathogenic fungi that infect strawberry plants.

  6. Isolation of a New Mexican Strain of Bacillus subtilis with Antifungal and Antibacterial Activities

    Directory of Open Access Journals (Sweden)

    M. G. L. Basurto-Cadena

    2012-01-01

    Full Text Available Although several strains of B. subtilis with antifungal activity have been isolated worldwide, to date there are no published reports regarding the isolation of a native B. subtilis strain from strawberry plants in Mexico. A native bacterium (Bacillus subtilis 21 demonstrated in vitro antagonistic activity against different plant pathogenic fungi. Under greenhouse conditions, it was shown that plants infected with Rhizoctonia solani and Fusarium verticillioides and treated with B. subtilis 21 produced augment in the number of leaves per plant and an increment in the length of healthy leaves in comparison with untreated plants. In addition, B. subtilis 21 showed activity against pathogenic bacteria. Secreted proteins by B. subtilis 21 were studied, detecting the presence of proteases and bacteriocin-like inhibitor substances that could be implicated in its antagonistic activity. Chitinases and zwittermicin production could not be detected. Then, B. subtilis 21 could potentially be used to control phytopathogenic fungi that infect strawberry plants.

  7. Acid and base stress and transcriptomic responses in Bacillus subtilis.

    Science.gov (United States)

    Wilks, Jessica C; Kitko, Ryan D; Cleeton, Sarah H; Lee, Grace E; Ugwu, Chinagozi S; Jones, Brian D; BonDurant, Sandra S; Slonczewski, Joan L

    2009-02-01

    Acid and base environmental stress responses were investigated in Bacillus subtilis. B. subtilis AG174 cultures in buffered potassium-modified Luria broth were switched from pH 8.5 to pH 6.0 and recovered growth rapidly, whereas cultures switched from pH 6.0 to pH 8.5 showed a long lag time. Log-phase cultures at pH 6.0 survived 60 to 100% at pH 4.5, whereas cells grown at pH 7.0 survived acid or base induced adaptation to a more extreme acid or base, respectively. Expression indices from Affymetrix chip hybridization were obtained for 4,095 protein-encoding open reading frames of B. subtilis grown at external pH 6, pH 7, and pH 9. Growth at pH 6 upregulated acetoin production (alsDS), dehydrogenases (adhA, ald, fdhD, and gabD), and decarboxylases (psd and speA). Acid upregulated malate metabolism (maeN), metal export (czcDO and cadA), oxidative stress (catalase katA; OYE family namA), and the SigX extracytoplasmic stress regulon. Growth at pH 9 upregulated arginine catabolism (roc), which generates organic acids, glutamate synthase (gltAB), polyamine acetylation and transport (blt), the K(+)/H(+) antiporter (yhaTU), and cytochrome oxidoreductases (cyd, ctaACE, and qcrC). The SigH, SigL, and SigW regulons were upregulated at high pH. Overall, greater genetic adaptation was seen at pH 9 than at pH 6, which may explain the lag time required for growth shift to high pH. Low external pH favored dehydrogenases and decarboxylases that may consume acids and generate basic amines, whereas high external pH favored catabolism-generating acids.

  8. Expression, purification, and characterization of a thermophilic neutral protease from Bacillus stearothermophilus in Bacillus subtilis

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The gene coding for a thermophilic neutral protease from Bacillus stearothermophilus was expressed in Bacillus subtilis DB104, under the control of the sacB gene promoter. This was followed by either the native signal peptide sequence of this protease or the signal peptide sequence of the sacB gene. The protease was purified 3.8-fold, with a specific activity of 16530 U mg-1. As analyzed by SDS-PAGE, the molecular mass of the expressed protease was about 35 kDa, and the optimal temperature and pH of the protease were 65℃ and 7.5, respectively. Moreover, it still had about 80% activity after 1 h reaction at 65 ℃ .

  9. Expression, purification, and characterization of a thermophilic neutral protease from Bacillus stearothermophilus in Bacillus subtilis

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The gene coding for a thermophilic neutral protease from Bacillus stearothermophilus was expressed in Bacillus subtilis DB104, under the control of the sacB gene promoter. This was followed by either the native signal peptide sequence of this protease or the signal peptide sequence of the sacB gene. The protease was purified 3.8-fold, with a specific activity of 16530 U mg-1. As analyzed by SDS-PAGE, the molecular mass of the expressed protease was about 35 kDa, and the optimal temperature and pH of the protease were 65℃ and 7.5, respectively. Moreover, it still had about 80% activity after 1 h reaction at 65℃.

  10. Evaluation of bottlenecks in the late stages of protein secretion in Bacillus subtilis

    NARCIS (Netherlands)

    Bolhuis, A; Tjalsma, H; Smith, H.E; Meima, R.; Venema, G; Bron, S; van Dijl, J.M

    1999-01-01

    Despite a high capacity for secretion of homologous proteins, the secretion of heterologous proteins by Bacillus subtilis is frequently inefficient. In the present studies, we have investigated and compared bottlenecks in the secretion of four heterologous proteins: Bacillus lichenifomis alpha-amyla

  11. Subunit II of Bacillus subtilis cytochrome c oxidase is a lipoprotein

    NARCIS (Netherlands)

    Bengtsson, J; Tjalsma, H; Rivolta, C; Hederstedt, L

    1999-01-01

    The sequence of the N-terminal end of the deduced ctaC gene product of Bacillus species has the features of a bacterial lipoprotein. CtaC is the subunit II of cytochrome caa(3), which is a cytochrome c oxidase. Using Bacillus subtilis mutants blocked in lipoprotein synthesis, we show that CtaC is a

  12. The structure-function relationship of the lipases from Pseudomonas aeruginosa and Bacillus subtilis

    NARCIS (Netherlands)

    Misset, Onno; Gerritse, Gijs; Jaeger, Karl-Erich; Winkler, Ulrich; Colson, Charles; Schanck, Karin; Lesuisse, Emmanuel; Dartois, Véronique; Blaauw, Mieke; Ransac, Stéphane; Dijkstra, Bauke W.

    1994-01-01

    Within the BRIDGE T-project on lipases we investigate the structure-function relationships of the lipases from Bacillus subtilis and Pseudomonas aeruginosa. Construction of an overproducing Bacillus strain allowed the purification of > 100 mg lipase from 30 I culture supernatant. After testing a lar

  13. 纳豆芽孢杆菌液体发酵条件的优化%Optimization of Liquid Fermentation Conditions of Bacillus Natto

    Institute of Scientific and Technical Information of China (English)

    王丽娜

    2014-01-01

    In this study,the carbon source,nitrogen source and pH of fermentation medium of bacillus natto are optimized.The optimum inoculum size and fermentation conditions through experiments are determined.Test result shows that the optimal medium is 2% glucose,4% peptone,0.5% NaCl and pH 7.The optimal incubation temperature and time for the fermentation broth with inoculation amount of 5% and cultivated for 1 6 h are 3 5 ℃ and 1 8 h.%以纳豆芽孢杆菌为出发菌,以菌液浊度 OD660 nm值为指标,对纳豆芽孢杆菌液体发酵培养基的碳源、氮源、pH 进行优化。并通过试验确定了纳豆芽孢杆菌的最适接种量和最优发酵条件。试验结果:最优培养基为2%葡萄糖、4%蛋白胨、0.5% NaCl,pH7。最佳接种量为5%培养16 h的发酵液,最优培养温度和时间分别为35℃,18 h。

  14. Weak solutions for a bioconvection model related to Bacillus subtilis

    CERN Document Server

    Vorotnikov, Dmitry

    2012-01-01

    We consider the initial-boundary value problem for the coupled Navier-Stokes-Keller-Segel-Fisher-Kolmogorov-Petrovskii-Piskunov system in two- and three-dimensional domains. The problem describes oxytaxis and growth of Bacillus subtilis in moving water. We prove existence of global weak solutions to the problem. We distinguish between two cases determined by the cell diffusion term and the space dimension, which are referred as the supercritical and subcritical ones. At the first case, the choice of the growth function enjoys wide range of possibilities: in particular, it can be zero. Our results are new even at the absence of the growth term. At the second case, the restrictions on the growth function are less relaxed: for instance, it cannot be zero but can be Fisher-like. In the case of linear cell diffusion, the solution is regular and unique provided the domain is the whole plane. In addition, we study the long-time behaviour of the problem, find dissipative estimates, and construct attractors.

  15. Biodegradation of pendimethalin by Bacillus subtilis Y3.

    Science.gov (United States)

    Ni, Haiyan; Yao, Li; Li, Na; Cao, Qin; Dai, Chen; Zhang, Jun; He, Qin; He, Jian

    2016-03-01

    A bacterium strain Y3, capable of efficiently degrading pendimethalin, was isolated from activated sludge and identified as Bacillus subtilis according to its phenotypic features and 16S rRNA phylogenetic analysis. This strain could grow on pendimethalin as a sole carbon source and degrade 99.5% of 100mg/L pendimethalin within 2.5days in batch liquid culture, demonstrating a greater efficiency than any other reported strains. Three metabolic products, 6-aminopendimethalin, 5-amino-2-methyl-3-nitroso-4-(pentan-3-ylamino) benzoic acid, and 8-amino-2-ethyl-5-(hydroxymethyl)-1,2-dihydroquinoxaline-6-carboxylic acid, were identified by HPLC-MS/MS, and a new microbial degradation pathway was proposed. A nitroreductase catalyzing nitroreduction of pendimethalin to 6-aminopendimethalin was detected in the cell lysate of strain Y3. The cofactor was nicotinamide adenine dinucleotide phosphate (NADPH) or more preferably nicotinamide adenine dinucleotide (NADH). The optimal temperature and pH for the nitroreductase were 30°C and 7.5, respectively. Hg(2+), Ni(2+), Pb(2+), Co(2+), Mn(2+) Cu(2+), Ag(+), and EDTA severely inhibited the nitroreductase activity, whereas Fe(2+), Mg(2+), and Ca(2+) enhanced it. This study provides an efficient pendimethalin-degrading microorganism and broadens the knowledge of the microbial degradation pathway of pendimethalin.

  16. Bacillus subtilis chromosome organization oscillates between two distinct patterns.

    Science.gov (United States)

    Wang, Xindan; Montero Llopis, Paula; Rudner, David Z

    2014-09-02

    Bacterial chromosomes have been found to possess one of two distinct patterns of spatial organization. In the first, called "ori-ter" and exemplified by Caulobacter crescentus, the chromosome arms lie side-by-side, with the replication origin and terminus at opposite cell poles. In the second, observed in slow-growing Escherichia coli ("left-ori-right"), the two chromosome arms reside in separate cell halves, on either side of a centrally located origin. These two patterns, rotated 90° relative to each other, appear to result from different segregation mechanisms. Here, we show that the Bacillus subtilis chromosome alternates between them. For most of the cell cycle, newly replicated origins are maintained at opposite poles with chromosome arms adjacent to each other, in an ori-ter configuration. Shortly after replication initiation, the duplicated origins move as a unit to midcell and the two unreplicated arms resolve into opposite cell halves, generating a left-ori-right pattern. The origins are then actively segregated toward opposite poles, resetting the cycle. Our data suggest that the condensin complex and the parABS partitioning system are the principal driving forces underlying this oscillatory cycle. We propose that the distinct organization patterns observed for bacterial chromosomes reflect a common organization-segregation mechanism, and that simple modifications to it underlie the unique patterns observed in different species.

  17. Mutagenesis of Bacillus subtilis spores exposed to simulated space environment

    Science.gov (United States)

    Munakata, N.; Natsume, T.; Takahashi, K.; Hieda, K.; Panitz, C.; Horneck, G.

    Bacterial spores can endure in a variety of extreme earthly environments. However, some conditions encountered during the space flight could be detrimental to DNA in the spore, delimiting the possibility of transpermia. We investigate the genetic consequences of the exposure to space environments in a series of preflight simulation project of EXPOSE. Using Bacillus subtilis spores of repair-proficient HA101 and repair-deficient TKJ6312 strains, the mutations conferring resistance to rifampicin were detected, isolated and sequenced. Most of the mutations were located in a N-terminal region of the rpoB gene encoding RNA polymerase beta-subunit. Among several potentially mutagenic factors, high vacuum, UV radiation, heat, and accelerated heavy ions induced mutations with varying efficiencies. A majority of mutations induced by vacuum exposure carried a tandem double-base change (CA to TT) at a unique sequence context of TCAGC. Results indicate that the vacuum and high temperature may act synergistically for the induction of mutations.

  18. The sodium effect of Bacillus subtilis growth on aspartate.

    Science.gov (United States)

    Whiteman, P; Marks, C; Freese, E

    1980-08-01

    aspH mutants of Bacillus subtilis have a constitutive aspartase activity and grow well on aspartate as sole carbon source. aspH aspT mutants, which are deficient in high affinity aspartate transport as a result of the aspT mutation, grow as well as aspH mutants in medium containing high concentrations of aspartate and Na+. This Na+ effect is not due to an enhancement of aspartate transport but is the result of increased cellular metabolism. The ability to grow rapidly in sodium aspartate is induced by prior growth in the presence of Na+. In potassium aspartate, the addition of arginine, citrulline, ornithine, delta 1-pyrroline-5-carboxylase or proline instead of Na+ also allows rapid growth; but in a mutant deficient in ornithine--oxo-acid aminotransferase, only pyrroline-carboxylate or proline can replace Na+. The amino acid pool of cells growing slowly in potassium aspartate contains proline at a low concentration which increases upon addition of proline (but not Na+) to the medium. Thus, Na+ addition does not increase the synthesis of proline, but proline or pyrroline-carboxylate acts similarly to Na+ either in preventing some inhibitory effect (by aspartate or the accumulating NH4+) or in overcoming some deficiency (e.g. in further proline metabolism.

  19. A novel antifungal protein of Bacillus subtilis B25.

    Science.gov (United States)

    Tan, Zhiqiong; Lin, Baoying; Zhang, Rongyi

    2013-01-01

    Bacillus subtilis B25 was isolated from banana rhizosphere soil. It has been confirmed for B25 to have stronger antagonism against Fusarium oxysporum f.sp.cubense, Additionally B25 has good inhibitory to plant pathogens, including Corynespora cassiicola, Alternaria solani, Botrytis cinerea and Colletotrichum gloeosporioides on potato dextrose agar (PDA) plates. The antagonistic substance can be extracted from cell-free culture broth supernatants by 70% (w/v) (NH4)2 SO4 saturation. Clear blank band was observed between the protein and a pathogen. The examination of antagonistic mechanism under light microscope showed that the antifungal protein of B25 appeared to inhibit pathogens by leading to mycelium and spores tumescence, distortion, abnormality. The isolation procedure comprised ion exchange chromatography on DEAE-Sephadex Fast Flow and gel filtration chromatography on SephadexG-100. The purified antifungal fraction showed a single band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The active fraction was identified by NanoLC-ESI-MS/MS The amino acid sequences of 17 peptides segments were obtained. The analysis of the protein suggested that it was a hypothetical protein (gi154685475), with a relative molecular mass of 38708.67 Da and isoelectric point (pI) of 5.63.

  20. Two purine nucleoside phosphorylases in Bacillus subtilis. Purification and some properties of the adenosine-specific phosphorylase

    DEFF Research Database (Denmark)

    Jensen, Kaj Frank

    1978-01-01

    Two purine nucleoside phosphorylases (purine-nucleoside:orthophosphate ribosyltransferase, EC 2.4.2.1) were purified from vegetative Bacillus subtilis cells. One enzyme, inosine-guanosine phosphorylase, showed great similarity to the homologous enzyme of Bacillus cereus. It appeared...

  1. An exogenous surfactant-producing Bacillus subtilis facilitates indigenous microbial enhanced oil recovery

    Directory of Open Access Journals (Sweden)

    Peike eGao

    2016-02-01

    Full Text Available This study used an exogenous lipopeptide-producing Bacillus subtilis to strengthen the indigenous microbial enhanced oil recovery (IMEOR process in a water-flooded reservoir in the laboratory. The microbial processes and driving mechanisms were investigated in terms of the changes in oil properties and the interplay between the exogenous Bacillus subtilis and indigenous microbial populations. The exogenous Bacillus subtilis is a lipopeptide producer, with a short growth cycle and no oil-degrading ability. The Bacillus subtilis facilitates the IMEOR process through improving oil emulsification and accelerating microbial growth with oil as the carbon source. Microbial community studies using quantitative PCR and high-throughput sequencing revealed that the exogenous Bacillus subtilis could live together with reservoir microbial populations, and did not exert an observable inhibitory effect on the indigenous microbial populations during nutrient stimulation. Core-flooding tests showed that the combined exogenous and indigenous microbial flooding increased oil displacement efficiency by 16.71%, compared with 7.59% in the control where only nutrients were added, demonstrating the application potential in enhanced oil recovery in water-flooded reservoirs, in particular, for reservoirs where IMEOR treatment cannot effectively improve oil recovery.

  2. GLYCOGEN IN BACILLUS-SUBTILIS - MOLECULAR CHARACTERIZATION OF AN OPERON ENCODING ENZYMES INVOLVED IN GLYCOGEN BIOSYNTHESIS AND DEGRADATION

    NARCIS (Netherlands)

    KIEL, JAKW; BOELS, JM; BELDMAN, G; VENEMA, G

    1994-01-01

    Although it has never been reported that Bacillus subtilis is capable of accumulating glycogen, we have isolated a region from the chromosome of B. subtilis containing a glycogen operon. The operon is located directly downstream from trnB, which maps at 275 degrees on the B. subtilis chromosome. It

  3. Effect of Riboflavin Operon Dosage on Riboflavin Productivity in Bacillus Subtilis

    Institute of Scientific and Technical Information of China (English)

    CHEN Tao; CHEN Xun; WANG Jingyu; ZHAO Xueming

    2005-01-01

    After deregulating the purine and riboflavin synthesis in the Gram-positive bacterium Bacillus subtilis,it is critical to amplify riboflavin operon with appropriate dosage in the host strain for remarkable increase of riboflavin production.Bacillus subtilis RH13, a riboflavin-producing strain, was selected as host strain in the construction of engineering strains by protoplast fusion. The integrative plasmid pRB63 and autonomous plasmid pRB49, pRB62 containing riboflavin operon of B.subtilis 24 were constructed and transformed into the host strain respectively. Increasing one operon copy in B.subtilis RH13 results in about 0.4 g/L improvement in riboflavin yield and the appropriate number of operon copies was about 7-8. Amplifying more riboflavin operons is of no use for further improvement of yield of riboflavin. Furthermore, excessive operon dosage results in metabolic unbalance and is fatal to the host cells producing riboflavin.

  4. Vacuum-induced Mutations In Bacillus Subtilis Spores

    Science.gov (United States)

    Munakata, N.; Maeda, M.; Hieda, K.

    During irradiation experiments with vacuum-UV radiation using synchrotron sources, we made unexpected observation that Bacillus subtilis spores of several recombination-deficient strains lost colony-forming ability by the exposure to high vacuum alone. Since this suggested the possible injury in spore DNA, we looked for mutation induction using the spores of strains HA101 (wild-type repair capability) and TKJ6312 (excision and spore repair deficient) that did not lose survivability. It was found that the frequency of nalidixic-acid resistant mutation increased several times in both of these strains by the exposure to high vacuum (10e-4 Pa after 24 hours). The analysis of sequence changes in gyrA gene showed that the majority of mutations carried a unique allele (gyrA12) of tandem double-base substitutions from CA to TT. The observation has been extended to rifampicin resistant mutations, the majority of that carried substitutions from CA to TT or AT in rpoB gene. On the other hand, when the spores of strains PS578 and PS2319 (obtained from P. Setlow) that are defective in a group of small acidic proteins (alpha/beta-type SASP) were similarly treated, none of the mutants analyzed carried such changes. This suggests that the unique mutations might be induced by the interaction of small acidic proteins with spore DNA under forced dehydration. The results indicate that extreme vacuum causes severe damage in spore DNA, and provide additional constraint to the long-term survival of bacterial spores in the space environment.

  5. Effect of antimicrobial peptide APNT-6 produced by Bacillus natto on fresh-keeping of Litopenaeus vannamei at low temperature%纳豆菌抗菌肽APNT-6对凡纳滨对虾的低温保鲜效果

    Institute of Scientific and Technical Information of China (English)

    王东; 孙力军; 王雅玲; 刘唤明; 徐德峰; 邓楚津; 杜焕妍; 励建荣

    2012-01-01

    A new biological preservative—antimicrobial peptide APNT-6 produced by Bacillus natto NT-6 and purified by column chromatography will be applied in the fresh-keeping of Litopenaeus vannamei. Bacillus antimicrobial peptides are a series of lipopeptides substances produced by represented Bacillus strains of B. subtilis, B. amyloliquefaciens and B. natto, which include surfactin, iturin, fengycin, subtilin and so on. Numerous studies show that Bacillus antimicrobial peptides have a startling range of antimicrobial activities that can include action against most Gram-negative and Gram-positive bacteria, fungi, enveloped viruses, and eukaryotic parasites. Recently, our research group isolated a highly antibiotic activity and largely antimicrobial spectrum strain—B. natto NT-6 from the Chinese traditional food—lobster sauce. According to the mass spectrometry (ESI /MS /CID) analysis,we know the mainly antimicrobial substances produced by this strain is Bacillus antimicrobial peptides, mainly including surfactin, fengycin, and iturin(called after APNT-6). Through oral acute toxicity in mice we found that its LDso greater than 5000 mg/kg body weight, indicating that antimicrobial peptide APNT-6 has high food safety. In this paper, the antibacterial activities of antimicrobial peptide on spoilage organisms were determined by Oxford cup assay. Then the quality changes of L vannamei during storage at (4±1) ℃ were investigated, including the pH, total volatile basic nitrogen (TVB-N), aerobic plate count (APC) and sensory assessment. The results showed that antimicrobial peptide APNT-6 can effectively inhibit 8 strains of spoilage organisms isolated from L. vannamei. During storage at (4±1) ℃, with the extension of storage time, the gradually increasing values of pH, TVB-N and APC of L.vannamei were observed during the 7 days storage. However, incubated 0.5 mg/mL antimicrobial peptide can effectively slow down the value increasing, which extends the shelf-life of L

  6. Complete Genomes of Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, Two Phylogenetically Distinct Probiotics.

    Directory of Open Access Journals (Sweden)

    Indu Khatri

    Full Text Available Several spore-forming strains of Bacillus are marketed as probiotics due to their ability to survive harsh gastrointestinal conditions and confer health benefits to the host. We report the complete genomes of two commercially available probiotics, Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, and compare them with the genomes of other Bacillus and Lactobacillus. The taxonomic position of both organisms was established with a maximum-likelihood tree based on twenty six housekeeping proteins. Analysis of all probiotic strains of Bacillus and Lactobacillus reveal that the essential sporulation proteins are conserved in all Bacillus probiotic strains while they are absent in Lactobacillus spp. We identified various antibiotic resistance, stress-related, and adhesion-related domains in these organisms, which likely provide support in exerting probiotic action by enabling adhesion to host epithelial cells and survival during antibiotic treatment and harsh conditions.

  7. Complete Genomes of Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, Two Phylogenetically Distinct Probiotics.

    Science.gov (United States)

    Khatri, Indu; Sharma, Shailza; Ramya, T N C; Subramanian, Srikrishna

    2016-01-01

    Several spore-forming strains of Bacillus are marketed as probiotics due to their ability to survive harsh gastrointestinal conditions and confer health benefits to the host. We report the complete genomes of two commercially available probiotics, Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, and compare them with the genomes of other Bacillus and Lactobacillus. The taxonomic position of both organisms was established with a maximum-likelihood tree based on twenty six housekeeping proteins. Analysis of all probiotic strains of Bacillus and Lactobacillus reveal that the essential sporulation proteins are conserved in all Bacillus probiotic strains while they are absent in Lactobacillus spp. We identified various antibiotic resistance, stress-related, and adhesion-related domains in these organisms, which likely provide support in exerting probiotic action by enabling adhesion to host epithelial cells and survival during antibiotic treatment and harsh conditions.

  8. Effects of Electrolyzed Oxidizing Water on Inactivation of Bacillus subtilis and Bacillus cereus Spores in Suspension and on Carriers.

    Science.gov (United States)

    Zhang, Chunling; Li, Baoming; Jadeja, Ravirajsinh; Hung, Yen-Con

    2016-01-01

    Spores of some Bacillus species are responsible for food spoilage and foodborne disease. These spores are highly resistant to various interventions and cooking processes. In this study, the sporicidal efficacy of acidic electrolyzed oxidizing (EO) water (AEW) and slightly acidic EO water (SAEW) with available chlorine concentration (ACC) of 40, 60, 80, 100, and 120 mg/L and treatment time for 1, 2, 3, 4, 5, and 6 min were tested on Bacillus subtilis and Bacillus cereus spores in suspension and on carrier with or without organics. The reduction of spore significantly increased with increasing ACC and treatment time (P waters containing 120 mg/L ACC, while only SAEW at 120 mg/L and 2 min treatment achieved >6 log reductions of B. subtilis spore. Both types of EO water with ACC of 60 mg/L and 6 min treatment achieved a reduction of B. subtilis and B. cereus spores to nondetectable level. EO water with ACC of 80 mg/L and treatment time of 3 min on carrier test without organics addition resulted in reductions of B. subtilis spore to nondetectable level. But, addition of 0.3% organics on carrier decreased the inactivation effect of EO water. This study indicated that EO water was highly effective in inactivation of B. subtilis and B. cereus spores in suspension or on carrier, and therefore, rendered it as a promising disinfectant to be applied in food industry.

  9. Integrative bacterial artificial chromosomes for DNA integration into the Bacillus subtilis chromosome.

    Science.gov (United States)

    Juhas, Mario; Ajioka, James W

    2016-06-01

    Bacillus subtilis is a well-characterized model bacterium frequently used for a number of biotechnology and synthetic biology applications. Novel strategies combining the advantages of B. subtilis with the DNA assembly and editing tools of Escherichia coli are crucial for B. subtilis engineering efforts. We combined Gibson Assembly and λ red recombineering in E. coli with RecA-mediated homologous recombination in B. subtilis for bacterial artificial chromosome-mediated DNA integration into the well-characterized amyE target locus of the B. subtilis chromosome. The engineered integrative bacterial artificial chromosome iBAC(cav) can accept any DNA fragment for integration into B. subtilis chromosome and allows rapid selection of transformants by B. subtilis-specific antibiotic resistance and the yellow fluorescent protein (mVenus) expression. We used the developed iBAC(cav)-mediated system to integrate 10kb DNA fragment from E. coli K12 MG1655 into B. subtilis chromosome. iBAC(cav)-mediated chromosomal integration approach will facilitate rational design of synthetic biology applications in B. subtilis.

  10. Menaquinone and iron are essential for complex colony development in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Gidi Pelchovich

    Full Text Available Cells of undomesticated species of Bacillus subtilis frequently form complex colonies during spreading on agar surfaces. Given that menaquinone is involved in another form of coordinated behavior, namely, sporulation, we looked for a possible role for menaquinone in complex colony development (CCD in the B. subtilis strain NCIB 3610. Here we show that inhibition of menaquinone biosynthesis in B. subtilis indeed abolished its ability to develop complex colonies. Additionally some mutations of B. subtilis which confer defective CCD could be suppressed by menaquinone derivatives. Several such mutants mapped to the dhb operon encoding the genes responsible for the biosynthesis of the iron siderophore, bacillibactin. Our results demonstrate that both menaquinone and iron are essential for CCD in B. subtilis.

  11. Bacillus subtilis biofilm extends Caenorhabditis elegans longevity through downregulation of the insulin-like signalling pathway

    Science.gov (United States)

    Donato, Verónica; Ayala, Facundo Rodríguez; Cogliati, Sebastián; Bauman, Carlos; Costa, Juan Gabriel; Leñini, Cecilia; Grau, Roberto

    2017-01-01

    Beneficial bacteria have been shown to affect host longevity, but the molecular mechanisms mediating such effects remain largely unclear. Here we show that formation of Bacillus subtilis biofilms increases Caenorhabditis elegans lifespan. Biofilm-proficient B. subtilis colonizes the C. elegans gut and extends worm lifespan more than biofilm-deficient isogenic strains. Two molecules produced by B. subtilis — the quorum-sensing pentapeptide CSF and nitric oxide (NO) — are sufficient to extend C. elegans longevity. When B. subtilis is cultured under biofilm-supporting conditions, the synthesis of NO and CSF is increased in comparison with their production under planktonic growth conditions. We further show that the prolongevity effect of B. subtilis biofilms depends on the DAF-2/DAF-16/HSF-1 signalling axis and the downregulation of the insulin-like signalling (ILS) pathway. PMID:28134244

  12. The Bacillus subtilis Acyl Lipid Desaturase Is a Δ5 Desaturase

    Science.gov (United States)

    Altabe, Silvia G.; Aguilar, Pablo; Caballero, Gerardo M.; de Mendoza, Diego

    2003-01-01

    Bacillus subtilis was recently reported to synthesize unsaturated fatty acids (UFAs) with a double bond at positions Δ5, Δ7, and Δ9 (M. H. Weber, W. Klein, L. Muller, U. M. Niess, and M. A. Marahiel, Mol. Microbiol. 39:1321-1329, 2001). Since this finding would have considerable importance in the double-bond positional specificity displayed by the B. subtilis acyl lipid desaturase, we have attempted to confirm this observation. We report that the double bond of UFAs synthesized by B. subtilis is located exclusively at the Δ5 position, regardless of the growth temperature and the length chain of the fatty acids. PMID:12730185

  13. Expressão de uricase de Bacillus subtilis em Escherichia coli

    OpenAIRE

    Pfrimer, Pollyanna

    2007-01-01

    A uricase, uma enzima que converte ácido úrico em alantoína, é comumente usada em kits comerciais de dosagem de ácido úrico. Com a finalidade de produzir esta enzima em grande escala por técnicas de Engenharia Genética, o gene da uricase de Bacillus subtilis subtilis foi clonado e expresso em Escherichia coli. Para tanto, foi feita uma PCR utilizando-se como template o DNA cromossomal de B. subtilis e primers específicos para amplificação do gene pucLM. O amplicon foi sub-clonado seguindo-se ...

  14. Use of bacillus subtilis strains to inhibit postharvest pathogenic fungi; Attivita` antagonista di alcuni ceppi di bacillus subtilis nei confronti di funghi patogeni

    Energy Technology Data Exchange (ETDEWEB)

    Arras, G.; Gambella, F.; Demontis, S.; Petretto, A.

    1995-09-01

    An isolate (87) of the bacillus subtilis strains isolated from cold stored citrus fruit 13 proved to inhibit the growth in vitro of the penicillium italicum used in the experiment (from 50.6% to 92.2%) and to inhibit botrytis cinerea (from 65.3% to 95.9%). A further test, superimposing on plates containing PDA strains Nos. 13, 173, and 160, totally inhibited the fungi. Tested in vivo on artificially bruised oranges, they significantly inhibited two fungi.

  15. A Safety and Environmental Assessment of the Biological Simulants Bacillus subtilis and Newcastle Disease Virus. Volume 1: Discussion

    Science.gov (United States)

    1993-01-01

    Vander Snoeck, P., Daneau, R.D., and Meunier, F. "Nosocomial Bacteremia Caused by Bacillus species", Clin. Micro bioi. Infect. Dis., 7, pp. 783...between B. cereus and B. subtilis existed in diagnostic laboratories before that time (Gordon 1973). B. subtilis, as well as other Bacillus species...or other interventions, which may have introduced the organism to sensitive tissue. Richard et al. (1988) described 11 cases of Bacillus bacteremias

  16. Bioaccumulation of copper, zinc, cadmium and lead by Bacillus sp., Bacillus cereus, Bacillus sphaericus and Bacillus subtilis Bioacumulação de cobre, zinco, cádmio e chumbo por Bacillus sp., Bacillus cereus, Bacillus sphaericus e Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Augusto da Costa

    2001-03-01

    Full Text Available This work presents some results on the use of microbes from the genus Bacillus for uptake of cadmium, zinc, copper and lead ions. Maximum copper bioaccumulations were 5.6 mol/g biomass for B. sphaericus, 5.9 mol/g biomass for B. cereus and B. subtilis, and 6.4 mol/g biomass for Bacillus sp. Maximum zinc bioaccumulations were 4.3 mol/g biomass for B. sphaericus, 4.6 mol/g biomass for B. cereus, 4.8 mol/g biomass for Bacillus sp. and 5.0 mol/g biomass for B. subtilis. Maximum cadmium bioaccumulations were 8.0 mol/g biomass for B. cereus, 9.5 mol/g biomass for B. subtilis, 10.8 mol/g biomass for Bacillus sp. and 11.8 mol/g biomass for B. sphaericus. Maximum lead biomaccumulations were 0.7 mol/g biomass for B. sphaericus, 1.1 mol/g biomass for B. cereus, 1.4 mol/g biomass for Bacillus sp. and 1.8 mol/g biomass for B. subtilis. The different Bacillus strains tested presented distinct uptake capacities, and the best results were obtained for B. subtilis and B. cereus.Este trabalho apresenta resultados de acumulação dos íons metálicos cádmio, zinco, cobre e chumbo por bactérias do gênero Bacillus. A bioacumulação máxima de cobre foi 5,6 mol/g biomassa para B. sphaericus, 5,9 mol/g biomassa para B. cereus e B. subtilis, e 6,4 mol/g biomassa para Bacillus sp.. A bioacumulação máxima de zinco foi 4,3 mol/g biomassa para B. sphaericus, 4,6 mol/g biomassa para B. cereus, 4,8 mol/g biomassa para Bacillus sp. e 5,0 mol/g biomassa para B. subtilis. A bioacumulação máxima de cádmio foi 8,0 mol/g biomassa para B. cereus, 9,5 mol/g biomassa para B. subtilis, 10,8 mol/g biomassa para Bacillus sp. e 11,8 mol/g biomassa para B. sphaericus. A bioacumulação máxima de chumbo foi 0,7 mol/g biomassa para B. sphaericus, 1,1 mol/g biomassa para B. cereus, 1,4 mol/g biomassa para Bacillus sp. e 1,8 mol/g biomassa para B. subtilis. As distintas linhagens de Bacillus testadas apresentaram variáveis capacidades de carregamento de íons metálicos, sendo os

  17. Optimization of Nattokinase Fermentation via Liquid Fermentation of Bacillus natto-I%纳豆菌株I液体发酵生产纳豆激酶发酵条件的优化

    Institute of Scientific and Technical Information of China (English)

    史旭东; 孙丹; 肖兴龙; 梁成山

    2012-01-01

    Produce nattokinase in Bacillus natto-I via the liquid fermentation of Bacillus natto-I and the culture medium screened. Screen fermentation condition such as the pH, the temperature, the loading volume, the inoculation volume and the temperature. The results showed: the optimum of liquid fermentation conditions were the pH 6.0, the loading volume 50/500mL, the inoculation volume 1.0%, the temperature 37 ℃.%利用纳豆菌株I和筛选出的培养基液体发酵生产纳豆激酶。对影响生产纳豆激酶@pH、装样量、接种量、温度等进行筛选。确定了液体发酵生产纳豆激酶的最佳发酵条件:pH6.0、装样量50/500mL、接种量1.0%、温度37℃。

  18. WprA基因在Bacillus subtilis WB800中的克隆表达%Clonging and Expression of a WprA gene in Bacillus subtilis WB800

    Institute of Scientific and Technical Information of China (English)

    柴海云; 崔堂兵

    2012-01-01

    A fibrinolytic enzyme gene (WprA) was cloned from Bacillus subtilis 168. To efficiently express WprA in Bacillus subtilis WB800, WprA gene was inserted into pBE3 to yield a nove vector pBE-WprA. Then the vector pBE-WprA was transformed and expressed in Bacillus subtilis WB800. Results showed WprA gene was efficiently expressed during the exponential and stationary growth stages, and WprA was secreted into the medium.%对源自Bacillus subtilis 168的具有纤溶活性的基因序列(WprA)进行克隆,然后将WprA基因克隆到大肠杆菌-枯草杆菌穿梭载体pBE3中,构建表达载体pBE-WprA,将重组载体转化到Bacillus subtilis WB800中,实现了WprA基因在Bacillus subtilis WB800中的表达.结果表明,WprA基因在Bacillus subtilis WB800中的对数生长期和平衡期均获得了表达,且产物被分泌到胞外.

  19. Nonribosomal peptide synthase gene clusters for lipopeptide biosynthesis in Bacillus subtilis 916 and their phenotypic functions.

    Science.gov (United States)

    Luo, Chuping; Liu, Xuehui; Zhou, Huafei; Wang, Xiaoyu; Chen, Zhiyi

    2015-01-01

    Bacillus cyclic lipopeptides (LPs) have been well studied for their phytopathogen-antagonistic activities. Recently, research has shown that these LPs also contribute to the phenotypic features of Bacillus strains, such as hemolytic activity, swarming motility, biofilm formation, and colony morphology. Bacillus subtilis 916 not only coproduces the three families of well-known LPs, i.e., surfactins, bacillomycin Ls (iturin family), and fengycins, but also produces a new family of LP called locillomycins. The genome of B. subtilis 916 contains four nonribosomal peptide synthase (NRPS) gene clusters, srf, bmy, fen, and loc, which are responsible for the biosynthesis of surfactins, bacillomycin Ls, fengycins, and locillomycins, respectively. By studying B. subtilis 916 mutants lacking production of one, two, or three LPs, we attempted to unveil the connections between LPs and phenotypic features. We demonstrated that bacillomycin Ls and fengycins contribute mainly to antifungal activity. Although surfactins have weak antifungal activity in vitro, the strain mutated in srfAA had significantly decreased antifungal activity. This may be due to the impaired productions of fengycins and bacillomycin Ls. We also found that the disruption of any LP gene cluster other than fen resulted in a change in colony morphology. While surfactins and bacillomycin Ls play very important roles in hemolytic activity, swarming motility, and biofilm formation, the fengycins and locillomycins had little influence on these phenotypic features. In conclusion, B. subtilis 916 coproduces four families of LPs which contribute to the phenotypic features of B. subtilis 916 in an intricate way.

  20. Natural products from Bacillus subtilis with antimicrobial properties☆

    Institute of Scientific and Technical Information of China (English)

    Tao Wang; Yafei Liang; Mianbin Wu; Zhengjie Chen; Jianping Lin; Lirong Yang

    2015-01-01

    Bacil us subtilis produces many chemical y-diverse secondary metabolites of interest to chemists and biologists. Based on this, this review gives a detalled overview of the natural components produced by B. subtilis including cyclic lipopeptides, polypeptides, proteins (enzymes), and non-peptide products. Their structures, bioactive ac-tivities and the relevant variants as novel lead structures for drug discovery are also described. The challenging effects of fermentation metabolites, isolation and purification, as wel as the overproduction of bioactive com-pounds from B. subtilis by metabolic engineering, were also highlighted. Systematical y exploring biosynthetic routes and the functions of secondary metabolites from B. subtilis may not only be beneficial in improving yields of the products, but also in helping them to be used in food industry and public medical service on a large-scale.

  1. A microbial transformation using Bacillus subtilis B7-S to produce natural vanillin from ferulic acid.

    Science.gov (United States)

    Chen, Peng; Yan, Lei; Wu, Zhengrong; Li, Suyue; Bai, Zhongtian; Yan, Xiaojuan; Wang, Ningbo; Liang, Ning; Li, Hongyu

    2016-02-04

    Bacillus subtilis strain B7-S screened from18 strains is an aerobic, endospore-forming, model organism of Gram-positive bacteria which is capable to form vanillin during ferulic acid bioconversion. The bioconversion of ferulic acid to vanillin by Bacillus subtilis B7-S (B. subtilis B7-S) was investigated. Based on our results, the optimum bioconversion conditions for the production of vanillin by B. subtilis B7-S can be summarized as follows: temperature 35 °C; initial pH 9.0; inoculum volume 5%; ferulic acid concentration 0.6 g/L; volume of culture medium 20%; and shaking speed 200 r/min. Under these conditions, several repeated small-scale batch experiments showed that the maximum conversion efficiency was 63.30% after 3 h of bioconversion. The vanillin products were confirmed by spectral data achieved from UV-vis, inductively coupled plasma atomic emission spectroscope (ICP-AES) and Fourier transform infrared spectrometer (FT-IR) spectra. Scanning electron microscopy (SEM) and transmission electron spectroscopy (TEM) results confirmed that the cell surface of B. subtilis plays a role in the induction of ferulic acid tolerance. These results demonstrate that B. subtilis B7-S has the potential for use in vanillin production through bioconversion of ferulic acid.

  2. The LuxS based quorum sensing governs lactose induced biofilm formation by Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Danielle eDuanis-Assaf

    2016-01-01

    Full Text Available Bacillus species present a major concern in the dairy industry as they can form biofilms in pipelines and on surfaces of equipment and machinery used in the entire line of production. These biofilms represent a continuous hygienic problem and can lead to serious economic losses due to food spoilage and equipment impairment. Biofilm formation by Bacillus subtilis is apparently dependent on LuxS quorum sensing (QS by Autoinducer-2 (AI-2. However, the link between sensing environmental cues and AI-2 induced biofilm formation remains largely unknown. The aim of this study is to investigate the role of lactose, the primary sugar in milk, on biofilm formation by B. subtilis and its possible link to QS processes. Our phenotypic analysis shows that lactose induces formation of biofilm bundles as well as formation of colony type biofilms. Furthermore, using reporter strain assays, we observed an increase in AI-2 production by B. subtilis in response to lactose in a dose dependent manner. Moreover, we found that expression of eps and tapA operons, responsible for extracellular matrix synthesis in B. subtilis, were notably up-regulated in response to lactose. Importantly, we also observed that LuxS is essential for B. subtilis biofilm formation in the presence of lactose. Overall, our results suggest that lactose may induce biofilm formation by B. subtilis through the LuxS pathway.

  3. Regulation and expression of the metal citrate transporter CitM of Bacillus subtilis

    NARCIS (Netherlands)

    de Jonge - Warner, Jessica

    2002-01-01

    The main topic of this thesis is the regulation of transcription of the citM gene of Bacillus subtilis, encoding the major metal citrate transporter. CitM belongs to a small family of secondary transport proteins, the MeCit family, that is comprised of 12 members. CitM mediates the transport of meta

  4. Condition-Dependent Transcriptome Reveals High-Level Regulatory Architecture in Bacillus subtilis

    NARCIS (Netherlands)

    Nicolas, Pierre; Maeder, Ulrike; Dervyn, Etienne; Rochat, Tatiana; Leduc, Aurelie; Pigeonneau, Nathalie; Bidnenko, Elena; Marchadier, Elodie; Hoebeke, Mark; Aymerich, Stephane; Becher, Doerte; Bisicchia, Paola; Botella, Eric; Delumeau, Olivier; Doherty, Geoff; Denham, Emma L.; Fogg, Mark J.; Fromion, Vincent; Goelzer, Anne; Hansen, Annette; Haertig, Elisabeth; Harwood, Colin R.; Homuth, Georg; Jarmer, Hanne; Jules, Matthieu; Klipp, Edda; Le Chat, Ludovic; Lecointe, Francois; Lewis, Peter; Liebermeister, Wolfram; March, Anika; Mars, Ruben A. T.; Nannapaneni, Priyanka; Noone, David; Pohl, Susanne; Rinn, Bernd; Ruegheimer, Frank; Sappa, Praveen K.; Samson, Franck; Schaffer, Marc; Schwikowski, Benno; Steil, Leif; Stuelke, Joerg; Wiegert, Thomas; Devine, Kevin M.; Wilkinson, Anthony J.; van Dijl, Jan Maarten; Hecker, Michael; Voelker, Uwe; Bessieres, Philippe; Noirot, Philippe

    2012-01-01

    Bacteria adapt to environmental stimuli by adjusting their transcriptomes in a complex manner, the full potential of which has yet to be established for any individual bacterial species. Here, we report the transcriptomes of Bacillus subtilis exposed to a wide range of environmental and nutritional

  5. Identification of a Bacillus subtilis secretion mutant using a beta-galactosidase screening procedure

    DEFF Research Database (Denmark)

    Jacobs, M F; Borchert, T V; Kontinen, V P

    1995-01-01

    High-level synthesis of exportable beta-galactosidase (LacZ) fusion proteins in Bacillus subtilis results in a lethal phenotype, and has been suggested as a tool for the selection of secretion mutants. We tested a plasmid-based, inducible lacZ fusion gene system for this purpose, but frequent...

  6. Comparative transcriptional analysis of Bacillus subtilis cells overproducing either secreted proteins, lipoproteins or membrane proteins

    NARCIS (Netherlands)

    Marciniak, Bogumila C.; Trip, Hein; van-der Veek, Patricia J.; Kuipers, Oscar P.; Marciniak, Bogumiła C.

    2012-01-01

    Background: Bacillus subtilis is a favorable host for the production of industrially relevant proteins because of its capacity of secreting proteins into the medium to high levels, its GRAS (Generally Recognized As Safe) status, its genetic accessibility and its capacity to grow in large fermentatio

  7. Regioselective Synthesis of Polymerizable Vinyl Guaifenesin Esters Catalyzed by an Alkaline Protease of Bacillus subtilis

    Institute of Scientific and Technical Information of China (English)

    Na WANG; Qi WU; Jian Ming XU; Xiu Ming JIANG; Xian Fu LIN

    2004-01-01

    Three polymerizable vinyl guaifenesin esters with different acyl donor carbon chain lengths (C4,C6,C10) were regioselectivly synthesized by an alkaline protease from Bacillus subtilis in pyridine at 50°C for 1, 3, 5 days respectively.

  8. Thermal Regulation of Membrane Lipid Fluidity by a Two-Component System in "Bacillus Subtilis"

    Science.gov (United States)

    Bredeston, L. M.; Marciano, D.; Albanesi, D.; De Mendoza, D.; Delfino, J. M.

    2011-01-01

    This article describes a simple and robust laboratory exercise on the regulation of membrane unsaturated fatty acid composition in bacteria by a decrease in growth temperature. We take advantage of the well characterized Des pathway of "Bacillus subtilis", composed of a [delta]5-desaturase (encoded by the "des" gene) and the canonical…

  9. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis

    DEFF Research Database (Denmark)

    Nicolas, Pierre; Mäder, Ulrike; Dervyn, Etienne

    2012-01-01

    Bacteria adapt to environmental stimuli by adjusting their transcriptomes in a complex manner, the full potential of which has yet to be established for any individual bacterial species. Here, we report the transcriptomes of Bacillus subtilis exposed to a wide range of environmental and nutritional...

  10. CLONING, SEQUENCING, AND EXPRESSION OF BACILLUS-SUBTILIS GENES INVOLVED IN ATP-DEPENDENT NUCLEASE SYNTHESIS

    NARCIS (Netherlands)

    KOOISTRA, J; VENEMA, G

    1991-01-01

    The genes encoding the subunits of the Bacillus subtilis ATP-dependent nuclease (add genes) have been cloned. The genes were located on an 8.8-kb SalI-SmaI chromosomal DNA fragment. Transformants of a recBCD deletion mutant of Escherichia coli with plasmid pGV1 carrying this DNA fragment showed ATP-

  11. THE BACILLUS-SUBTILIS ADDAB GENES ARE FULLY FUNCTIONAL IN ESCHERICHIA-COLI

    NARCIS (Netherlands)

    KOOISTRA, J; HAIJEMA, BJ; VENEMA, G

    1993-01-01

    An Escherichia coli recBCD deletion mutant was transformed with plasmids containing the Bacillus subtilis add genes. The transformants had relatively high ATP-dependent exonuclease- and ATP-dependent helicase activities, and their viability, the ability to repair u.v.-damaged DNA and the recombinati

  12. Dynamic localization of penicillin-binding proteins during spore development in Bacillus subtilis

    NARCIS (Netherlands)

    Scheffers, Dirk-Jan

    2005-01-01

    During Bacillus subtilis spore formation, many membrane proteins that function in spore development localize to the prespore septum and, subsequently, to the outer prespore membrane. Recently, it was shown that the cell-division-specific penicillin-binding proteins (PBPs) 1 and 2b localize to the as

  13. Biochemical Characterization of the C-4-Dicarboxylate Transporter DctA from Bacillus subtilis

    NARCIS (Netherlands)

    Groeneveld, Maarten; Detert Oude Weme, Ruud; Duurkens, Ria H.; Slotboom, Dirk Jan

    2010-01-01

    Bacterial secondary transporters of the DctA family mediate ion-coupled uptake of C-4-dicarboxylates. Here, we have expressed the DctA homologue from Bacillus subtilis in the Gram-positive bacterium Lactococcus lactis. Transport of dicarboxylates in vitro in isolated membrane vesicles was assayed. W

  14. Clp-dependent proteolysis down-regulates central metabolic pathways in glucose-starved Bacillus subtilis

    NARCIS (Netherlands)

    Gerth, Ulf; Kock, Holger; Kusters, Ilja; Michalik, Stephan; Switzer, Robert L.; Hecker, Michael

    2008-01-01

    Entry into stationary phase in Bacillus subtilis is linked not only to a redirection of the gene expression program but also to posttranslational events such as protein degradation. Using S-35-labeled methionine pulse-chase labeling and two-dimensional polyacrylamide gel electrophoresis we monitored

  15. Expression of Bacillus subtilis levanase gene in Lactobacillus plantarum and Lactobacillus casei

    NARCIS (Netherlands)

    Wanker, E.; Leer, R.J.; Pouwels, P.H.; Schwab, H.

    1995-01-01

    Two Lactobacillus-Escherichia coli shuttle vectors, harbouring the levanase gene from Bacillus subtilis under the control of its own promoter (pLPEW1) or behind the E. coli tac promoter (pE-SIEW2), were constructed. Lactobacillus plantarum showed the same growth characteristics on selective plates a

  16. Influence of physical, chemical and inducer treatments on menaquinone-7 biosynthesis by Bacillus subtilis MTCC 2756

    Directory of Open Access Journals (Sweden)

    Alka Puri

    2015-06-01

    Full Text Available Effects of physical and chemical treatment on nutrient mobility, their utilization for menaquinone-7 (MK-7 biosynthesis; growth of microbial cells has been investigated in the present research. Bacillus subtilis MTCC 2756 fermented medium was supplied with 1-naphthol and hypoxanthine resulted in a significant increase in MK-7 production. Ultrasonication, electric shock, heat shock, and tween 80 were used for inducer uptake by Bacillus subtilis and menaquinone-7 production. Induction of Bacillus subtilis (at 16 hours of fermentation using 1-naphthol (2 mg/ml, along with tween 80 (0.1% was found to increase the MK-7 production by 3 fold i.e. 14.4 µg/ml as compared to the untreated fermentation medium. The ultrasonicated (ultrasonic power 33 W, treatment time 4 min and frequency 36 KHz microbial cells yielded higher biomass and 2.5 fold increase in the MK-7 production i.e.10.3 µg/ml than control. 1-naphthol along with physical or chemical treatment is required for maximum MK-7 production by Bacillus subtilis.

  17. Primary structure of the tms and prs genes of Bacillus subtilis

    DEFF Research Database (Denmark)

    Nilsson, Dan; Hove-Jensen, Bjarne; Arnvig, Kirsten

    1989-01-01

    The nucleotide sequence was determined of a 3211 nucleotide pair EcoRI-PvuII DNA fragment containing the tms and prs genes as well as a part of the ctc gene of Bacillus subtilis. The prs gene encodes phosphoribosylpyrophosphate (PRPP) synthetase, whereas the functioning of the tms and ctc gene pr...

  18. Bacillus subtilis spore protein SpoVAC functions as a mechanosensitive channel

    NARCIS (Netherlands)

    Velasquez Guzman, Jeanette; Schuurman-Wolters, Geesina; Birkner, Jan Peter; Abee, Tjakko; Poolman, Bert

    2014-01-01

    A critical event during spore germination is the release of Ca-DPA (calcium in complex with dipicolinic acid). The mechanism of release of Ca-DPA through the inner membrane of the spore is not clear, but proteins encoded by the Bacillus subtilis spoVA operon are involved in the process. We cloned an

  19. The complete genome sequence of the Gram-positive bacterium Bacillus subtilis

    NARCIS (Netherlands)

    Kunst, F; Ogasawara, N; Moszer, [No Value; Albertini, AM; Alloni, G; Azevedo, [No Value; Bertero, MG; Bessieres, P; Bolotin, A; Borchert, S; Borriss, R; Boursier, L; Brans, A; Brignell, SC; Bron, S; Brouillet, S; Bruschi, CV; Caldwell, B; Capuano, [No Value; Carter, NM; Choi, SK; Codani, JJ; Connerton, IF; Cummings, NJ; Daniel, RA; Denizot, F; Devine, KM; Dusterhoft, A; Ehrlich, SD; Emmerson, PT; Entian, KD; Errington, J; Fabret, C; Ferrari, E; Foulger, D; Fujita, M; Fujita, Y; Fuma, S; Galizzi, A; Galleron, N; Ghim, SY; Glaser, P; Goffeau, A; Golightly, EJ; Grandi, G; Guiseppi, G; Guy, BJ; Haga, K; Haiech, J; Harwood, CR; Henaut, A; Hilbert, H; Holsappel, S; Hosono, S; Hullo, MF; Itaya, M; Jones, L; Joris, B; Karamata, D; Kasahara, Y; KlaerrBlanchard, M; Klein, C; Kobayashi, Y; Koetter, P; Koningstein, G; Krogh, S; Kumano, M; Kurita, K; Lapidus, A; Lardinois, S; Lauber, J; Lazarevic, [No Value; Lee, SM; Levine, A; Liu, H; Masuda, S; Mauel, C; Medigue, C; Medina, N; Mellado, RP; Mizuno, M; Moestl, D; Nakai, S; Noback, M; Noone, D; OReilly, M; Ogawa, K; Ogiwara, A; Oudega, B; Park, SH; Parro, [No Value; Pohl, TM; Portetelle, D; Porwollik, S; Prescott, AM; Presecan, E; Pujic, P; Purnelle, B; Rapoport, G; Rey, M; Reynolds, S; Rieger, M; Rivolta, C; Rocha, E; Roche, B; Rose, M; Sadaie, Y; Sato, T; Scanlan, E; Schleich, S; Schroeter, R; Scoffone, F; Sekiguchi, J; Sekowska, A; Seror, SJ; Serror, P; Shin, BS; Soldo, B; Sorokin, A; Tacconi, E; Takagi, T; Takahashi, H; Takemaru, K; Takeuchi, M; Tamakoshi, A; Tanaka, T; Terpstra, P; Tognoni, A; Tosato, [No Value; Uchiyama, S; Vandenbol, M; Vannier, F; Vassarotti, A; Viari, A; Wambutt, R; Wedler, E; Wedler, H; Weitzenegger, T; Winters, P; Wipat, A; Yamamoto, H; Yamane, K; Yasumoto, K; Yata, K; Yoshida, K; Yoshikawa, HF; Zumstein, E; Yoshikawa, H; Danchin, A

    1997-01-01

    Bacillus subtilis is the best-characterized member of the Gram-positive bacteria. Its genome of 4,214,810 base pairs comprises 4,100 protein-coding genes. Of these protein-coding genes, 53% are represented once, while a quarter of the genome corresponds to several gene families that have been greatl

  20. Cellular lysis in Bacillus subtilis; the affect of multiple extracellular protease deficiencies

    NARCIS (Netherlands)

    Stephenson, K; Bron, S; Harwood, CR

    1999-01-01

    Cellular lysis properties of strains of Bacillus subtilis deficient in the synthesis of extracellular proteases was investigated. In all cases, extracellular protease deficiency was found to increase the extent of cellular lysis of batch cultured strains following the transition to stationary phase,

  1. In vitro characterization of the Bacillus subtilis protein tyrosine phosphatase YwqE

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Musumeci, Lucia; Tautz, Lutz;

    2005-01-01

    Both gram-negative and gram-positive bacteria possess protein tyrosine phosphatases (PTPs) with a catalytic Cys residue. In addition, many gram-positive bacteria have acquired a new family of PTPs, whose first characterized member was CpsB from Streptococcus pneumoniae. Bacillus subtilis contains...

  2. Bacillus subtilis SpoIIIJ and YqjG function in membrane protein biogenesis.

    NARCIS (Netherlands)

    Saller, Manfred J.; Fusetti, Fabrizia; Driessen, Arnold J. M.

    2009-01-01

    In all domains of life Oxa1p-like proteins are involved in membrane protein biogenesis. Bacillus subtilis, a model organism for gram-positive bacteria, contains two Oxa1p homologs: SpoIIIJ and YqjG. These molecules appear to be mutually exchangeable, although SpoIIIJ is specifically required for spo

  3. Engineering of quorum-sensing systems for improved production of alkaline protease by Bacillus subtilis

    NARCIS (Netherlands)

    Tjalsma, H; Koetje, EJ; Kiewiet, R; Kuipers, OP; Kolkman, M; van der Laan, J; Daskin, R; Ferrari, E; Bron, S

    2004-01-01

    Aim: Engineering of Rap-Phr quorum-sensing systems of Bacillus subtilis and subsequent evaluation of the transcription of the aprE gene, encoding a major extracellular alkaline protease. Methods and Results: Addition of synthetic Phr pentapeptides to the growth medium, or overproduction of pre-Phr p

  4. Transcriptome analysis documents induced competence of Bacillus subtilis during nitrogen limiting conditions

    DEFF Research Database (Denmark)

    Jarmer, Hanne Østergaard; Berka, R.; Knudsen, Steen;

    2002-01-01

    DNA microarrays were used to analyze the changes in gene expression in Bacillus subtilis strain 168 when nitrogen limiting (glutamate) and nitrogen excess (ammonium plus glutamate) growth conditions were compared. Among more than 100 genes that were significantly induced during nitrogen starvation...

  5. Influence of high-pressure-low-temperature treatment on the inactivation of Bacillus subtilis cells.

    NARCIS (Netherlands)

    T. Shen; G. Urrutia Benet; S. Brul; D. Knorr

    2005-01-01

    High pressure inactivation processes, especially at subzero temperatures, were performed on Bacillus subtilis vegetative cells at various pressure, temperature and time combinations. Whilst atmospheric pressure, lowering the temperature for various periods to as low as 45 -C was found to have minor

  6. A novel screening system for secretion of heterologous proteins in Bacillus subtilis

    NARCIS (Netherlands)

    Trip, Hein; van der Veek, Patricia J.; Renniers, Ton C.; Meima, Rob; Sagt, Cees M.; Mohrmann, Lisette; Kuipers, Oscar P.

    2011-01-01

    High-level production of secretory proteins in Bacillus subtilis leads to a stress response involving the two-component system CssRS and its target genes htrA and htrB. Here, we used this sensing system in a reporter strain in which gfp is under control of P(htrA), the secretion stress responsive pr

  7. Homogeneity and heterogeneity in amylase production by Bacillus subtilis under different growth conditions

    NARCIS (Netherlands)

    Ploss, Tina N.; Reilman, Ewoud; Monteferrante, Carmine G.; Denham, Emma L.; Piersma, Sjouke; Lingner, Anja; Vehmaanpera, Jari; Lorenz, Patrick; van Dijl, Jan Maarten

    2016-01-01

    Background: Bacillus subtilis is an important cell factory for the biotechnological industry due to its ability to secrete commercially relevant proteins in large amounts directly into the growth medium. However, hyper-secretion of proteins, such as alpha-amylases, leads to induction of the secretio

  8. Probing the enantioselectivity of Bacillus subtilis esterase BS2 for tert. alcohols

    NARCIS (Netherlands)

    Wiggers, Michiel; Holt, Jarle; Kourist, Robert; Bartsch, Sebastian; Arends, Isabel W. C. E.; Minnaard, Adriaan J.; Bornscheuer, Uwe T.; Hanefeld, Ulf

    2009-01-01

    The activity and enantioselectivity of several mutants of the esterase BS2 from Bacillus subtilis have been investigated. In the enzymatic hydrolysis of alpha,alpha-disubstituted cyanohydrin acetates, a class of tert. alcohol esters, they were active but not selective. In contrast to this result sim

  9. Bacillus subtilis as a tool for screening soil metagenomic libraries for antimicrobial activities.

    Science.gov (United States)

    Biver, Sophie; Steels, Sébastien; Portetelle, Daniel; Vandenbol, Micheline

    2013-06-28

    Finding new antimicrobial activities by functional metagenomics has been shown to depend on the heterologous host used to express the foreign DNA. Therefore, efforts are devoted to developing new tools for constructing metagenomic libraries in shuttle vectors replicatable in phylogenetically distinct hosts. Here we evaluated the use of the Escherichia coli-Bacillus subtilis shuttle vector pHT01 to construct a forest-soil metagenomic library. This library was screened in both hosts for antimicrobial activities against four opportunistic bacteria: Proteus vulgaris, Bacillus cereus, Staphylococcus epidermidis, and Micrococcus luteus. A new antibacterial activity against B. cereus was found upon screening in B. subtilis. The new antimicrobial agent, sensitive to proteinase K, was not active when the corresponding DNA fragment was expressed in E. coli. Our results validate the use of pHT01 as a shuttle vector and B. subtilis as a host to isolate new activities by functional metagenomics.

  10. Effects of salinomycin and Bacillus subtilis on growth performance and immune responses in broiler chickens.

    Science.gov (United States)

    Lee, Kyung-Woo; Lillehoj, Hyun S; Jang, Seung I; Lee, Sung-Hyen

    2014-10-01

    The present study was undertaken to compare the effect of salinomycin and Bacillus subtilis on growth performance, serum antibody levels against Clostridium spp. and Eimeria spp., and cytokine mRNA expression levels in broiler chickens raised in the used litter. Broiler chickens fed a diet containing salinomycin showed lower (P salinomycin-fed or control diet-fed chickens. None of the dietary treatments affected (P > 0.05) serum antibody levels against Clostridium perfringens toxins. Both salinomycin and B.subtilis significantly lowered (P Salinomycin, but not B. subtilis, significantly modulated (P salinomycin and B. subtilis affected serum anticoccidial antibody and intestinal cytokine expression, but failed to improve growth performance in broiler chickens. Further study is warranted to investigate the mode of action of salinomycin on host immune response and growth performance in broiler chickens.

  11. Fed-Batch Biomolecule Production by Bacillus subtilis: A State of the Art Review.

    Science.gov (United States)

    Öztürk, Sibel; Çalık, Pınar; Özdamar, Tunçer H

    2016-04-01

    Bacillus subtilis is a highly promising production system for various biomolecules. This review begins with the algorithm of fed-batch operations (FBOs) and then illustrates the approaches to design the initial production medium and/or feed stream. Additionally, the feeding strategies developed with or without feedback control for fed-batch B. subtilis fermentations were compiled with a special emphasis on recombinant protein (r-protein) production. For biomolecule production by wild-type B. subtilis, due to the different intracellular production patterns, no consensus exists on the FBO strategy that gives the maximum productivity, whereas for r-protein production appropriate feeding strategies vary depending on the promoter used. Thus, we conclude that the B. subtilis community is still seeking an approved strong promoter and generalized FBO strategies.

  12. Growth of and valine production by a Bacillus subtilis mutant in the small intestine of pigs

    DEFF Research Database (Denmark)

    Canibe, Nuria; Poulsen, Henrik Vestergaard; Nørgaard, Jan Værum;

    2016-01-01

    :Lys of 0.63:1 (Neg), 2) the Neg diet with added Bacillus subtilis-valine (1.28 × 108 cfu/g feed) (+Bac), and 3) the Neg diet with added L-Val to a Val:Lys of 0.69:1 (+Val). Eighteen gilts (6 on each treatment) with initial weights of ∼15 kg were fed the diets for 23 d before the animals were euthanized...... and samples from the small intestine were obtained. The number of B. subtilis cfu in digesta was higher in the +Bac group than in the Neg group (P ... concentrations were measured in the +Bac group. Short-term in vitro incubations of digesta showed a decrease (P ≤ 0.03) in the number of B. subtilis cfu over time for the +Bac group and no difference in the rate of Val production compared to that in the Neg group. In conclusion, more B. subtilis cfu were present...

  13. Investigating the efficacy of Bacillus subtilis SM21 on controlling Rhizopus rot in peach fruit.

    Science.gov (United States)

    Wang, Xiaoli; Wang, Jing; Jin, Peng; Zheng, Yonghua

    2013-06-17

    The efficacy of Bacillus subtilis SM21 on controlling Rhizopus rot caused by Rhizopus stolonifer in postharvest peach fruit and the possible mechanisms were investigated. The results indicated B. subtilis SM21 treatment reduced lesion diameter and disease incidence by 37.2% and 26.7% on the 2nd day of inoculation compared with the control. The in vitro test showed significant inhibitory effect of B. subtilis SM21 on mycelial growth of R. stolonifer with an inhibition rate of 48.9%. B. subtilis SM21 treatment significantly enhanced activities of chitinase and β-1,3-glucanase, and promoted accumulation of H2O2. Total phenolic content and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity were also increased by this treatment. Transcription of seven defense related genes was much stronger in fruit treated with B. subtilis SM21 or those both treated with B. subtilis SM21 and inoculated with R. stolonifer compared with fruit inoculated with R. stolonifer alone. These results suggest that B. subtilis SM21 can effectively inhibit Rhizopus rot caused by R. stolonifer in postharvest peach fruit, possibly by directly inhibiting growth of the pathogen, and indirectly inducing disease resistance in the fruit.

  14. Function of the SpoVAEa and SpoVAF Proteins of Bacillus subtilis Spores

    Science.gov (United States)

    2014-06-01

    1ITLE AND SUBTITLE 5a CONTRACTNUMBER Function of the SpoVAEa and SpoVAF proteins of Bacillus W911NF-09-1-0286 subtilis spores 5b. GRANT NUMBER 5c...ABSTRACT The Bacillus subtilis spoVAEa and spoVAF genes are expressed in developng spores as members of the spoVA operon that encodes proteins essential...8217\\ ;~ 1~~~4-~,.1. A\\ C’~~1T 1\\ D~ ~~,.1 C’~~1T 1\\ T’\\ ~-~ ,.1;~~1. •• 4-~,.1 ~:-:1~-1 •• ;~ ~~~~~~~ ~f:’ 15. SUBJECT TERMS Bacillus , spores SpoVA

  15. Production of Enzymes from Agroindustrial Wastes by Biosurfactant-Producing Strains of Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Francisco Fábio Cavalcante Barros

    2013-01-01

    Full Text Available Bacteria in the genus Bacillus are the source of several enzymes of current industrial interest. Hydrolases, such as amylases, proteases, and lipases, are the main enzymes consumed worldwide and have applications in a wide range of products and industrial processes. Fermentation processes by Bacillus subtilis using cassava wastewater as a substrate are reported in the technical literature; however, the same combination of microorganisms and this culture medium is limited or nonexistent. In this paper, the amylase, protease, and lipase production of ten Bacillus subtilis strains previously identified as biosurfactant producers in cassava wastewater was evaluated. The LB1a and LB5a strains were selected for analysis using a synthetic medium and cassava wastewater and were identified as good enzyme producers, especially of amylases and proteases. In addition, the enzymatic activity results indicate that cassava wastewater was better than the synthetic medium for the induction of these enzymes.

  16. Scientific Opinion on the safety and efficacy of Bacillus subtilis PB6 (Bacillus subtilis as a feed additive for turkeys for fattening and turkeys reared for breeding

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP

    2013-04-01

    Full Text Available Bacillus subtilis PB6 is the trade name for a feed additive based on viable spores of a strain of Bacillus subtilis. This species is considered by EFSA to be suitable for the qualified presumption of safety approach to establishing safety for the target species, consumers and the environment. This approach requires the identity of the active agent to be established and the absence of toxigenic potential and resistance to antibiotics of human or veterinary clinical significance to be demonstrated. EFSA considered these issues and reported the results in a previous opinion on the use of the product in chickens for fattening. The applicant is now requesting the authorisation of the additive in diets for turkeys for fattening and turkeys reared for breeding at a dose of 1 × 108 CFU/kg complete feedingstuffs. In the course of the former assessment, safety for users was also examined. In the view of the FEEDAP Panel, the use with these additional avian species will not introduce hazards not already considered. Therefore, in the current assessment, the FEEDAP Panel has considered only the efficacy data for turkeys for fattening and turkeys reared for breeding. Based on results of three trials carried out in turkeys for fattening, the Panel concluded that B. subtilis PB6 has the potential to improve the zootechnical performance parameters at the dose of 1 × 108 CFU/kg feed. This conclusion can be extended to turkeys reared for breeding.

  17. Aktifitas Antimikroba Ekstrak Angsana (Pterocarpus indicus terhadap Bacillus subtilis dan Klebsiella pneumoniae

    Directory of Open Access Journals (Sweden)

    TULUS JUNANTO

    2008-11-01

    Full Text Available Indonesia has much kind of plants, which have medicinal properties and used to cure various diseases. Angsana (Pterocarpus indicus is one of tree plant that has many used, one of them as city ornamental tree. The aim of the research was to know the antimicrobial effect off crude extract angsana against Bacillus subtilis and Klebsiella pneumoniae. Crude extract angsana is made in maceration with methanol, chloroform, and hexane. The part of angsana is leaf, stem bark and root. Diffusion method is used to test antimicrobial activity. Effect of antimicrobial is shown by halo zone. The minimum inhibitory concentrations (MMICs of methanol crude extract of leaf is 250 µg//µl, methanol crude extract of stem bark and root are 100 µg/µl and 100 µg/µll for K. pneumoniae. MICs of methanol crude extract of stem bark and root are 100 µg/µµl and 1000 µµg/µl for Bacillus subtilis. MICs of chloroform crude extract off stem bark and root are 1000 µg/µl and 500 µg/µl for KK. pneumoniae. MICs of chloroform cru de extract of stem bark and root are 550 µg/µl and 550 µg/µl for B. subtilis. MICs of hexane crude extract of stem bark is 500 µg/µl and 1000 µg/µl for K. pneumoniae and B. subtilis, respectively. Crude extract of leaf, stem bark and root of angsana could inhibit growth of B. subtilis and K. pneumoniae bacteria.

  18. Self-cloning significantly enhances the production of catalase in Bacillus subtilis WSHDZ-01.

    Science.gov (United States)

    Xu, Sha; Guo, Yaqiong; Du, Guocheng; Zhou, Jingwen; Chen, Jian

    2014-08-01

    The katA gene that encodes catalase (CAT) in Bacillus subtilis WSHDZ-01 was overexpressed in B. subtilis WB600 and B. subtilis WSHDZ-01. The CAT yield in both transformed strains was significantly improved compared to that in the wild-type WSHDZ-01 in shake flask culture. When cultured in a 3-L stirred tank reactor (STR), the recombinant CAT activity in B. subtilis WSHDZ-01 could be improved by 419 %, reaching up to 39,117 U/mL and was 8,149.4 U/mg dry cell weight, which is the highest activity reported in Bacillus sp. However, the recombinant CAT in B. subtilis WB600 cultured in a 3-L STR was not significantly improved by any of the common means for process optimization, and the highest CAT activity was 3,673.5 U/mg dry cell weight. The results suggest that self-cloning of the complete expression cassette in the original strain is a reasonable strategy to improve the yield of wild-type enzymes.

  19. The structure of the transposable genetic element ISBsu2 from the cryptic plasmid p1516 of a soil Bacillus subtilis strain and the presence of homologues of this element in the chromosomes of various Bacillus subtilis strains

    NARCIS (Netherlands)

    Holsappel, S; Gagarina, EY; Poluektova, EU; Nezametdinova, VZ; Gel'fand, MS; Prozorov, AA; Bron, S

    2003-01-01

    A cryptic plasmid from a soil strain of Bacillus subtilis was found to contain a sequence having features of an IS element. Homologous sequences were also found in the chromosome of this strain and in the chromosomes of some other B. subtilis strains.

  20. From Gene Regulation to Gene Function: Regulatory Networks in Bacillus Subtilis

    Directory of Open Access Journals (Sweden)

    Ivan Moszer

    2006-04-01

    Full Text Available Bacillus subtilis is a sporulating Gram-positive bacterium that lives primarily in the soil and associated water sources. The publication of the B. subtilis genome sequence and subsequent systematic functional analysis and gene regulation programmes, together with an extensive understanding of its biochemistry and physiology, makes this micro-organism a prime candidate in which to model regulatory networks in silico. In this paper we discuss combined molecular biological and bioinformatical approaches that are being developed to model this organism’s responses to changes in its environment.

  1. Identification of a Bacillus subtilis secretion mutant using a ß-galactosidase screening procedure

    DEFF Research Database (Denmark)

    Jacobs, Myra F.; Andersen, Jens Bo; Borchert, Torben V.;

    1995-01-01

    High-level synthesis of exportable beta-galactosidase (LacZ) fusion proteins in Bacillus subtilis results in a lethal phenotype, and has been suggested as a tool for the selection of secretion mutants. We tested a plasmid-based, inducible lacZ fusion gene system for this purpose, but frequent...... mutations in cis, which reduced expression of the fusion gene, forced abandonment of the induction-selection strategy. Instead, after modification of the indicator plasmid, a screening procedure for increased basal LacZ activity levels was adopted. This led to the identification of a conditional B. subtilis...

  2. Safety assessment of Bacillus subtilis CU1 for use as a probiotic in humans.

    Science.gov (United States)

    Lefevre, Marie; Racedo, Silvia M; Denayrolles, Muriel; Ripert, Gabrielle; Desfougères, Thomas; Lobach, Alexandra R; Simon, Ryan; Pélerin, Fanny; Jüsten, Peter; Urdaci, Maria C

    2017-02-01

    Bacillus subtilis CU1 is a recently described probiotic strain with beneficial effects on immune health in elderly subjects. The following work describes a series of studies supporting the safety of the strain for use as an ingredient in food and supplement preparations. Using a combination of 16S rDNA and gyrB nucleotide analyses, the species was identified as a member of the Bacillus subtilis complex (B. subtilis subsp. spizizenii). Further characterization of the organism at the strain level was achieved using random amplified polymorphic DNA polymerase chain reaction (RAPD PCR) and pulsed field gel electrophoresis (PFGE) analyses. B. subtilis CU1 did not demonstrate antibiotic resistance greater than existing regulatory cutoffs against clinically important antibiotics, did not induce hemolysis or produce surfactant factors, and was absent of toxigenic activity in vitro. Use of B. subtilis CU1 as a probiotic has recently been evaluated in a 16-week randomized, double-blind, placebo-controlled, parallel-arm study, in which 2 × 10(9) spores per day of B. subtilis CU1 were administered for a total 40 days to healthy elderly subjects (4 consumption periods of 10 days separated by 18-day washouts). This work describes safety related endpoints not previously reported. B. subtilis CU1 was safe and well-tolerated in the clinical subjects without undesirable physiological effects on markers of liver and kidney function, complete blood counts, hemodynamic parameters, and vital signs.

  3. Antimicrobial copper alloy surfaces are effective against vegetative but not sporulated cells of gram-positive Bacillus subtilis

    OpenAIRE

    San, Kaungmyat; Long, Janet; Michels, Corinne A.; Gadura, Nidhi

    2015-01-01

    This study explores the role of membrane phospholipid peroxidation in the copper alloy mediated contact killing of Bacillus subtilis, a spore-forming gram-positive bacterial species. We found that B. subtilis endospores exhibited significant resistance to copper alloy surface killing but vegetative cells were highly sensitive to copper surface exposure. Cell death and lipid peroxidation occurred in B. subtilis upon copper alloy surface exposure. In a sporulation-defective strain carrying a de...

  4. Adaptation of Bacillus subtilis carbon core metabolism to simultaneous nutrient limitation and osmotic challenge : a multi-omics perspective

    NARCIS (Netherlands)

    Kohlstedt, Michael; Sappa, Praveen K; Meyer, Hanna; Maaß, Sandra; Zaprasis, Adrienne; Hoffmann, Tamara; Becker, Judith; Steil, Leif; Hecker, Michael; van Dijl, Jan Maarten; Lalk, Michael; Mäder, Ulrike; Stülke, Jörg; Bremer, Erhard; Völker, Uwe; Wittmann, Christoph

    2014-01-01

    The Gram-positive bacterium Bacillus subtilis encounters nutrient limitations and osmotic stress in its natural soil ecosystem. To ensure survival and sustain growth, highly integrated adaptive responses are required. Here, we investigated the system-wide response of B.subtilis to different, simulta

  5. Isolation and characterization of Bacillus subtilis genes involved in siderophore biosynthesis: relationship between B. subtilis sfpo and Escherichia coli entD genes.

    OpenAIRE

    Grossman, T H; Tuckman, M; Ellestad, S; Osburne, M S

    1993-01-01

    In response to iron deprivation, Bacillus subtilis secretes a catecholic siderophore, 2,3-dihydroxybenzoyl glycine, which is similar to the precursor of the Escherichia coli siderophore enterobactin. We isolated two sets of B. subtilis DNA sequences that complemented the mutations of several E. coli siderophore-deficient (ent) mutants with defective enterobactin biosynthesis enzymes. One set contained DNA sequences that complemented only an entD mutation. The second set contained DNA sequence...

  6. Improvement of the Quality of the Soybean Milk Fermented with Bacillus natto through the Inoculation of Different Lactobacillus Strains%接种不同乳酸菌改善纳豆芽孢杆菌发酵的全豆豆乳品质研究

    Institute of Scientific and Technical Information of China (English)

    武旭; 钱和

    2016-01-01

    [ Objective] The quality of soybean milk fermented with Bacillus natto was improved through the experiment. [ Method] The Bacil-lus natto and different lactobacillus strains were used to ferment whole soybean milk. The change of microbial counts, activity of nattokinas, pH and sensory scores during its fermentation process was studied. [ Result] The experimental result showed that the Hansen commercial lactoba-cillus and Bacillus natto, which were used in the soybean milk fermentation, could grow well. Both the sensory score of the fermented soymilk and the activity of enzyme and natto were highest. [ Conclusion] The flavor of natto products is improved and the reference for soybean pro-cessing was provided.%[目的]改善纳豆芽孢杆菌发酵的全豆豆乳品质。[方法]利用纳豆芽孢杆菌和不同的乳酸菌共同发酵全豆豆乳,对发酵过程中发酵豆乳的微生物数量、纳豆激酶酶活、pH的变化以及豆乳的感官评分进行研究。[结果]试验表明,利用汉森商业乳酸菌菌种与纳豆芽孢杆菌共同发酵全豆豆乳,豆乳中乳酸菌与纳豆菌均能够良好生长,所得发酵豆乳感官评分最高、纳豆激酶酶活最高。[结论]研究改善了纳豆产品的风味,可为大豆深加工提供参考。

  7. Adsorption of Cu2+, Zn2+ and Cd2+ on Bacillus subtilis

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A process of biosorption of Cu2+, Zn2+ and Cd2+ on Bacillus subtilis was investigated.The experiments show that the process of biosorption is quite fast. The maximum adsorption was reached after 5 min and hardly changed with time. The experimental data was analyzed using four sorption kinetic models: the pseudo-first-order, the Ritchie second-order, the modified second-order and the Elovich equations, which helped to determine the best-fit equation for the sorption of metal ions onto biomass. The results show that both the Ritchie second-order and modified secondorder equations can fit the experimental data. The Langmuir model is able to accurately describe adsorption of Cu2+ and Zn2+ on B. subtilis. The experimental data points of adsorption Cd2+ and Zn2+ on B. subtilis are described by Freundlich isotherms model.

  8. Association of Eu(III) and Cm(III) with Bacillus subtilis and Halobacterium salinarum

    Energy Technology Data Exchange (ETDEWEB)

    Ozaki, Takuo; Kimura, Takaumi; Ohnuki, Toshihiko; Yoshida, Zenko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Gillow, Jeffrey B.; Francis, Arokiasamy J. [Brookhaven National Laboratory, Upton, NY (United States)

    2002-11-01

    Adsorption behavior of Eu(III) and Cm(III) by Bacillus subtilis and Halobacterium salinarum was investigated. Both microorganisms showed almost identical pH dependence on the distribution ratio (K{sub d}) of the metals examined, i.e., K{sub d} of Eu(III) and Cm(III) increased with an increase of pH. The coordination state of Eu(III) adsorbed on the microorganisms was studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS). The coordination states of Eu(III) adsorbed on the B. subtilis and H. salinarum was of different characteristics. H. salinarum exhibited more outer-spherical interaction with Eu(III) than B. subtilis. (author)

  9. Expression, purification and preliminary crystallographic characterization of FlhF from Bacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Bange, Gert; Petzold, Georg; Wild, Klemens; Sinning, Irmgard, E-mail: irmi.sinning@bzh.uni-heidelberg.de [Heidelberg University Biochemistry Centre (BZH), INF 328, 69120 Heidelberg (Germany)

    2007-05-01

    Preliminary crystallographic data are reported for the third SRP GTPase FlhF from Bacillus subtilis. The Gram-positive bacterium Bacillus subtilis contains three proteins belonging to the signal recognition particle (SRP) type GTPase family. The well characterized signal sequence-binding protein SRP54 and the SRP receptor protein FtsY are universally conserved components of the SRP system of protein transport. The third member, FlhF, has been implicated in the placement and assembly of polar flagella. This article describes the overexpression and preliminary X-ray crystallographic analysis of an FlhF fragment that corresponds to the well characterized GTPase domains in SRP54 and FtsY. Three crystal forms are reported with either GDP or GMPPNP and diffract to a resolution of about 3 Å.

  10. Improved production, characterization and flocculation properties of poly (-glutamic acid produced from Bacillus Subtilis

    Directory of Open Access Journals (Sweden)

    Bhunia B

    2012-04-01

    Full Text Available Bacillus subtilis 2063 produced extracellular biopolymer whichshowed excellent flocculation activity. The biopolymer wasconfirmed as poly (γ-glutamic acid (PGA by using productcharacterization. HPLC profile showed that molecular weight ofPGA was found to be 5.8×106 Da. Improved production,Characterization and flocculation properties of PGA produced byBacillus species were studied. PGA produced by B. subtilis wasdevoid of any polysaccharides. The flocculating activity wasmarkedly stimulated by the addition of cations. The pH of reaction mixture also influenced the flocculating activity. Glycerol and ammonium chloride were found to be most useful carbon and nitrogen sources. An overall 4.24-fold increase in protease production was achieved in the design medium composed with Glycerol and ammonium chloride as a carbon and nitrogen sources as compared with basal media. PGA production increased significantly with optimized medium (21.42 gl-1 when compared with basal medium (5.06 gl-1.

  11. Five new amicoumacins isolated from a marine-derived Bacterium bacillus subtilis

    KAUST Repository

    Li, Yongxin

    2012-02-03

    Four novel amicoumacins, namely lipoamicoumacins A-D (1-4), and one new bacilosarcin analog (5) were isolated from culture broth of a marine-derived bacterium Bacillus subtilis, together with six known amicoumacins. Their structures were elucidated on the basis of extensive spectroscopic (2D NNR, IR, CD and MS) analysis and in comparison with data in literature. 2012 by the authors; licensee MDPI.

  12. Regulation of Growth of the Mother Cell and Chromosome Replication during Sporulation of Bacillus subtilis

    OpenAIRE

    Xenopoulos, Panagiotis; Piggot, Patrick J.

    2011-01-01

    During spore formation, Bacillus subtilis divides asymmetrically, resulting in two cells with different fates. Immediately after division, the transcription factor σF becomes active in the smaller prespore, followed by activation of σE in the larger mother cell. We recently showed that a delay in σE activation resulted in the novel phenotype of two spores (twins) forming within the same mother cell. Mother cells bearing twins are substantially longer than mother cells with single spores. Here...

  13. REMOVAL OF PHOSPHATE FROM RHIZOSPHERE SOIL USING Bacillus subtilis AND Enterobacter aerogenes

    Directory of Open Access Journals (Sweden)

    Andrew J.

    2014-03-01

    Full Text Available The addition of phosphorus is one of the major environmental problems because of its leading contribution to the increased eutrophication process of lakes and other natural waters. The eutrophication is the process where excessive nutrients in a lake or other body of water usually caused by runoff of nutrients (animal waste, fertilizers, and sewage from the land which causes a dense growth of plant life, the decomposition of the plants depletes the supply of oxygen which leads to the death of animal life. Microbial process is widely used for the removal of phosphorus from soil and wastewater to avoid eutrophication. The most efficient phosphate reducers chosen were namely Bacillus subtilis and Enterobacter aerogenes. The Mineral Salt Medium and the carbon sources (glucose, sucrose, lactose and starch at 0.5% and 0.7% were prepared. On the removal of phosphate by Bacillus subtilis and Enterobacter aerogenes it was found that the Bacillus subtilis was giving the maximum bacterial growth and was observed to be in lactose 0.107 OD at 0.7% concentration for 72th hour. In the case of Enterobacter aerogenes the maximum bacterial growth was found to be in sucrose 0.133 OD at 0.7% concentration at 72 hr. The pH change in the medium was found to be in both the isolates with different carbon sources but in overall the constant pH was at 7. Among the two organisms, Bacillus subtilis showed the maximum removal of phosphate 83% as starch as carbon source at 0.5% concentration whereas Enterobacter aerogenes showed 77.4% of phosphate removal at 0.5% concentration as glucose as carbon source. Therefore, these bacterial isolates can be used in the remediation of phosphate contaminated environments.

  14. Effect of culture medium on biocalcification by Pseudomonas Putida, Lysinibacillus Sphaericus and Bacillus Subtilis

    OpenAIRE

    Márcia Aiko Shirakawa; Maria Alba Cincotto; Daniel Atencio; Gaylarde,Christine C.; John,Vanderley M.

    2011-01-01

    The objective of this study is to investigate the efficiency of calcium carbonate bioprecipitation by Lysinibacillus sphaericus, Bacillus subtilis and Pseudomonas putida, obtained from the Coleção de Culturas do Instituto Nacional de Controle de Qualidade em Saúde (INCQS), as a first step in determining their potential to protect building materials against water uptake. Two culture media were studied: modified B4 containing calcium acetate and 295 with calcium chloride. Calcium consumption in...

  15. Multiple regulatory systems coordinate DNA replication with cell growth in Bacillus subtilis.

    OpenAIRE

    2014-01-01

    Author Summary DNA replication must be coordinated with cellular physiology to ensure proper genome inheritance. Model bacteria such as the soil-dwelling Bacillus subtilis can achieve a wide range of growth rates in response to nutritional and chemical signals. In order to match the rate of DNA synthesis to the rate of nutrient-mediated cell growth, bacteria regulate the initiation frequency of DNA replication. This control of bacterial DNA replication initiation was first observed over forty...

  16. The Crystal Structure of Bacillus subtilis Lipase : A Minimal α/β Hydrolase Fold Enzyme

    NARCIS (Netherlands)

    Pouderoyen, Gertie van; Eggert, Thorsten; Jaeger, Karl-Erich; Dijkstra, Bauke W.

    2001-01-01

    The X-ray structure of the lipase LipA from Bacillus subtilis has been determined at 1.5 Å resolution. It is the first structure of a member of homology family I.4 of bacterial lipases. The lipase shows a compact minimal α/β hydrolase fold with a six-stranded parallel β-sheet flanked by five α-helic

  17. Mechanisms of Induction of Germination of Bacillus subtilis Spores by High Pressure

    OpenAIRE

    Paidhungat, Madan; Setlow, Barbara; Daniels, William B.; Hoover, Dallas; Papafragkou, Efstathia; Setlow, Peter

    2002-01-01

    Spores of Bacillus subtilis lacking all germinant receptors germinate >500-fold slower than wild-type spores in nutrients and were not induced to germinate by a pressure of 100 MPa. However, a pressure of 550 MPa induced germination of spores lacking all germinant receptors as well as of receptorless spores lacking either of the two lytic enzymes essential for cortex hydrolysis during germination. Complete germination of spores either lacking both cortex-lytic enzymes or with a cortex not att...

  18. Isolation, purification and characterization of Bacillus subtilis Phytase from Holiwood Gresik

    Directory of Open Access Journals (Sweden)

    Leny Yuanita

    2012-01-01

    Full Text Available The aim of the research were isolation, purification and characterization of Bacillus subtilis phytase from Holiwood Gresik. The research was done in two stages; the first include enzyme isolation, precipitation with amonium sulphate, dialysis, gel filtration chromatography, SDS-PAGE analysis, while second determining optimum pH, optimum temperature, the effect of pH and temperature to enzim stability, the values of KM and Vmax Bacillus subtilis phytase from Holiwood Gresik. The first stage research design were One Shot Case Study and Post Test Only Control Group Design, while the second stage were Post Test Only Control Group Design and Factorial Design. The data being analyzed by one-way and two-way Anova. The results of research showed that Bacillus subtilis phytase has the molecular mass of 36.5 kDa, optimum pH at 6.5–7.0, optimum temperature at 41°C and it was found to be stable for 30 minute incubation at pH 7or 30° C with 2% or 3% lost of its activity respectively. KM value was 0.62 mM and VMax 0.393 mmol/ml/minute.

  19. Effect of culture medium on biocalcification by Pseudomonas Putida, Lysinibacillus Sphaericus and Bacillus Subtilis

    Directory of Open Access Journals (Sweden)

    Márcia Aiko Shirakawa

    2011-06-01

    Full Text Available The objective of this study is to investigate the efficiency of calcium carbonate bioprecipitation by Lysinibacillus sphaericus, Bacillus subtilis and Pseudomonas putida, obtained from the Coleção de Culturas do Instituto Nacional de Controle de Qualidade em Saúde (INCQS, as a first step in determining their potential to protect building materials against water uptake. Two culture media were studied: modified B4 containing calcium acetate and 295 with calcium chloride. Calcium consumption in the two media after incubation with and without the bacterial inoculum was determined by atomic absorption analysis. Modified B4 gave the best results and in this medium Pseudomonas putida INQCS 113 produced the highest calcium carbonate precipitation, followed by Lysinibacillus sphaericus INQCS 414; the lowest precipitation was produced by Bacillus subtilis INQCS 328. In this culture medium XRD analysis showed that Pseudomonas putida and Bacillus subtilis precipitated calcite and vaterite polymorphs while Lysinibacillus sphaericus produced only vaterite. The shape and size of the crystals were affected by culture medium, bacterial strain and culture conditions, static or shaken. In conclusion, of the three strains Pseudomonas putida INQCS 113 in modified B4 medium gave the best results precipitating 96% of the calcium, this strain thus has good potential for use on building materials.

  20. Effect of culture medium on biocalcification by Pseudomonas Putida, Lysinibacillus Sphaericus and Bacillus Subtilis.

    Science.gov (United States)

    Shirakawa, Márcia Aiko; Cincotto, Maria Alba; Atencio, Daniel; Gaylarde, Christine C; John, Vanderley M

    2011-04-01

    The objective of this study is to investigate the efficiency of calcium carbonate bioprecipitation by Lysinibacillus sphaericus, Bacillus subtilis and Pseudomonas putida, obtained from the Coleção de Culturas do Instituto Nacional de Controle de Qualidade em Saúde (INCQS), as a first step in determining their potential to protect building materials against water uptake. Two culture media were studied: modified B4 containing calcium acetate and 295 with calcium chloride. Calcium consumption in the two media after incubation with and without the bacterial inoculum was determined by atomic absorption analysis. Modified B4 gave the best results and in this medium Pseudomonas putida INQCS 113 produced the highest calcium carbonate precipitation, followed by Lysinibacillus sphaericus INQCS 414; the lowest precipitation was produced by Bacillus subtilis INQCS 328. In this culture medium XRD analysis showed that Pseudomonas putida and Bacillus subtilis precipitated calcite and vaterite polymorphs while Lysinibacillus sphaericus produced only vaterite. The shape and size of the crystals were affected by culture medium, bacterial strain and culture conditions, static or shaken. In conclusion, of the three strains Pseudomonas putida INQCS 113 in modified B4 medium gave the best results precipitating 96% of the calcium, this strain thus has good potential for use on building materials.

  1. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis

    KAUST Repository

    Li, Yongxin

    2015-03-24

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning plug-and-playa approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus.

  2. Effect of culture medium on biocalcification by Pseudomonas Putida, Lysinibacillus Sphaericus and Bacillus Subtilis

    Science.gov (United States)

    Shirakawa, Márcia Aiko; Cincotto, Maria Alba; Atencio, Daniel; Gaylarde, Christine C.; John, Vanderley M.

    2011-01-01

    The objective of this study is to investigate the efficiency of calcium carbonate bioprecipitation by Lysinibacillus sphaericus, Bacillus subtilis and Pseudomonas putida, obtained from the Coleção de Culturas do Instituto Nacional de Controle de Qualidade em Saúde (INCQS), as a first step in determining their potential to protect building materials against water uptake. Two culture media were studied: modified B4 containing calcium acetate and 295 with calcium chloride. Calcium consumption in the two media after incubation with and without the bacterial inoculum was determined by atomic absorption analysis. Modified B4 gave the best results and in this medium Pseudomonas putida INQCS 113 produced the highest calcium carbonate precipitation, followed by Lysinibacillus sphaericus INQCS 414; the lowest precipitation was produced by Bacillus subtilis INQCS 328. In this culture medium XRD analysis showed that Pseudomonas putida and Bacillus subtilis precipitated calcite and vaterite polymorphs while Lysinibacillus sphaericus produced only vaterite. The shape and size of the crystals were affected by culture medium, bacterial strain and culture conditions, static or shaken. In conclusion, of the three strains Pseudomonas putida INQCS 113 in modified B4 medium gave the best results precipitating 96% of the calcium, this strain thus has good potential for use on building materials. PMID:24031661

  3. Study of the catalytic properties of bacillus subtilis proteases Estudio de las propiedades catalíticas de las proteasas bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Salcedo L.

    1998-06-01

    Full Text Available The catalytic properties of proteases isolated from the filtrate of submerged fermentation of Bacillus subtilis were investigated. Proteases present in the filtrate were determined to be of the serine protease type based on the use of specific protease inhibitors; ethylenediamintetraacetic acid (EDTA was used as a metalloprotease inhibitor, and phenylmethylsulfonylfluoride (PMSF was used as a serine protease inhibitor. Protease activity was highly stable in alkaline solutions and at high temperatures as well as in the presence of detergents. We propose that this protease preparation be used as biocomponent in detergent production.Se investigaron las propiedades catalíticas de las proteasas obtenidas del filtrado de cultivo de la bacteria Bacillus subtilis. Utilizando inhibidores específicos de proteasas se determinó que las proteasas presentes en el filtrado pertenecían al grupo de las serina proteasas. Se utilizó ácido etilendiaminatetraacético (EDTA como inhibidor de metaloproteasas, y fenilmetilsulfonil fluoruro (FMSF como inhibidor de serina proteasas. La actividad proteolítica fue altamente estable en soluciones alcalinas y a altas temperaturas, además tolero la presencia de detergentes. Se propone que estas proteasas sean utilizadas en calidad de biocomponente para la producción de detergentes.

  4. Live-imaging of Bacillus subtilis spore germination and outgrowth

    NARCIS (Netherlands)

    Pandey, R.

    2014-01-01

    Spores of Gram-positive bacteria such as Bacillus and Clostridium cause huge economic losses to the food industry. In food products, spores survive under food preservation conditions and subsequent germination and outgrowth eventually causes food spoilage. Therefore efforts are being made to elimina

  5. Expression of the neutral protease gene from a thermophilic Bacillus sp BT1 strain in Bacillus subtilis and its natural host : Identification of a functional promoter

    NARCIS (Netherlands)

    Vecerek, B; Venema, G

    2000-01-01

    The expression of the neutral protease gene (npr) from the thermophilic Bacillus sp. BT1 strain was studied in its natural host and in mesophilic Bacillus subtilis. In the thermophilic BT1 strain, the transcription of the protease gene is initiated from its own promoter, just 5' to the gene. In cont

  6. A Study on Effect of different culture media on amylase enzyme production by a native strain of Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    ziba Akbari

    2015-12-01

    Full Text Available Introduction: Amylases are among the most important enzymes and have great significance in present-day biotechnology. Amylase with commercial applications is mainly derived from the genus Bacillus. The main purpose of this study is identification and isolatation amylase enzyme producer Bacillus, determining the amylase enzyme activity and affecting a number of culture medium on amylase enzyme production. Materials and methods: Soil, water and wastewater samples were collected from agricultural area, choghakhor lake in chahar mahal e bakhtiari province and from food factory in Esfahan. Bacillus isolates were screened for amylolytic properties by starch hydrolysis test on starch agar plate. Amylase producing Bacillus were identified biochemical tests and molecular experiments. Amylase enzyme activity of isolates was measured using di-nitro salicylic acid (DNS method. Enzyme production was studied in variose medium culture TSB, NB, Yeast extract, molases and milk medium. Results: The enzyme amylase-producing strains, one sample showed was the highest amylase activity. The Bacillus has been detected as a member of Bacillus subtilis according to Bergey's Manual of Systematic Bacteriology and molecular recognition. The enzyme activity of Bacillus subtilis was measured 7/21 (U/ml in production media. Trough medium culture maximum amylase production for Bacillus subtilis was achieved in molases medium. Discussion and conclusion: In this study, Bacillus subtilis strains isolated from wastewater of a significant amount of enzyme producing 7/21 (U/ml as indicated. Among the medium-amylase from Bacillus subtilis highest enzyme activity was observed in beet molasses. According to this study, the use of Bacillus strains is an efficient way to achieve the amylase enzyme.

  7. Differential actions of chlorhexidine on the cell wall of Bacillus subtilis and Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Hon-Yeung Cheung

    Full Text Available Chlorhexidine is a chlorinated phenolic disinfectant used commonly in mouthwash for its action against bacteria. However, a comparative study of the action of chlorhexidine on the cell morphology of gram-positive and gram-negative bacteria is lacking. In this study, the actions of chlorhexidine on the cell morphology were identified with the aids of electron microscopy. After exposure to chlorhexidine, numerous spots of indentation on the cell wall were found in both Bacillus subtilis and Escherichia coli. The number of indentation spots increased with time of incubation and increasing chlorhexidine concentration. Interestingly, the dented spots found in B. subtilis appeared mainly at the hemispherical caps of the cells, while in E. coli the dented spots were found all over the cells. After being exposed to chlorhexidine for a prolonged period, leakage of cellular contents and subsequent ghost cells were observed, especially from B subtilis. By using 2-D gel/MS-MS analysis, five proteins related to purine nucleoside interconversion and metabolism were preferentially induced in the cell wall of E. coli, while three proteins related to stress response and four others in amino acid biosynthesis were up-regulated in the cell wall materials of B. subtilis. The localized morphological damages together with the biochemical and protein analysis of the chlorhexidine-treated cells suggest that chlorhexidine may act on the differentially distributed lipids in the cell membranes/wall of B. subtilis and E. coli.

  8. Decrease in spermidine content during logarithmic phase of cell growth delays spore formation of Bacillus subtilis.

    Science.gov (United States)

    Ishii, I; Takada, H; Terao, K; Kakegawa, T; Igarashi, K; Hirose, S

    1994-11-01

    Bacillus subtilis 168M contained a large amount of spermidine during the logarithmic phase of growth, but the amount decreased drastically during the stationary phase. The extracts, prepared from B. subtilis cells harvested in the logarithmic phase, contained activity of arginine decarboxylase (ADC) rather than the activity of ornithine decarboxylase. In the presence of alpha-difluoromethylarginine (DFMA), a specific and irreversible inhibitor of ADC, the amount of spermidine in B. subtilis during the logarithmic phase decreased to about 25% of the control cells. Under these conditions, spore formation of B. subtilis 168M delayed greatly without significant inhibition of cell growth. The decrease in spermidine content in the logarithmic phase rather than in the stationary phase was involved in the delay of sporulation. Electron microscopy of cells at 24 hrs. of culture confirmed the delay of spore formation by the decrease of spermidine content. Furthermore, the delay of sporulation was negated by the addition of spermidine. These data suggest that a large amount of spermidine existing during the logarithmic phase plays an important role in the sporulation of B. subtilis.

  9. Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum.

    Science.gov (United States)

    Zhao, Yueju; Selvaraj, Jonathan Nimal; Xing, Fuguo; Zhou, Lu; Wang, Yan; Song, Huimin; Tan, Xinxin; Sun, Lichao; Sangare, Lancine; Folly, Yawa Minnie Elodie; Liu, Yang

    2014-01-01

    Fusarium graminearum causes Fusarium head blight (FHB), a devastating disease that leads to extensive yield and quality loss of wheat and barley. Bacteria isolated from wheat kernels and plant anthers were screened for antagonistic activity against F. graminearum. Based on its in vitro effectiveness, strain SG6 was selected for characterization and identified as Bacillus subtilis. B. subtilis SG6 exhibited a high antifungal effect on the mycelium growth, sporulation and DON production of F. graminearum with the inhibition rate of 87.9%, 95.6% and 100%, respectively. In order to gain insight into biological control effect in situ, we applied B. subtilis SG6 at anthesis through the soft dough stage of kernel development in field test. It was revealed that B. subtilis SG6 significantly reduced disease incidence (DI), FHB index and DON (P ≤ 0.05). Further, ultrastructural examination shows that B. subtilis SG6 strain induced stripping of F. graminearum hyphal surface by destroying the cellular structure. When hypha cell wall was damaged, the organelles and cytoplasm inside cell would exude, leading to cell death. The antifungal activity of SG6 could be associated with the coproduction of chitinase, fengycins and surfactins.

  10. Bacillus subtilis FZB24 affects flower quantity and quality of saffron (Crocus sativus).

    Science.gov (United States)

    Sharaf-Eldin, Mahmoud; Elkholy, Shereen; Fernández, José-Antonio; Junge, Helmut; Cheetham, Ronald; Guardiola, José; Weathers, Pamela

    2008-08-01

    The effect of Bacillus subtilis FZB24 on saffron ( Crocus sativus L.) was studied using saffron corms from Spain and the powdered form of B. SUBTILIS FZB24(R). Corms were soaked in water or in B. subtilis FZB24 spore solution for 15 min before sowing. Some corms were further soil drenched with the spore solution 6, 10 or 14 weeks after sowing. Growth and saffron stigma chemical composition were measured. Compared to untreated controls, application of B. subtilis FZB24 significantly increased leaf length, flowers per corm, weight of the first flower stigma, total stigma biomass; microbe addition also significantly decreased the time required for corms to sprout and the number of shoot sprouts. Compared to the controls, picrocrocin, crocetin and safranal compounds were significantly increased when the plants were soil drenched with the spore solution 14 weeks after sowing; in contrast crocin was highest in untreated controls. Results of this study suggest that application of B. subtilis FZB24 may provide some benefit to saffron growers by speeding corm growth (earlier shoot emergence) and increasing stigma biomass yield by 12 %. While some treatment conditions also increased saffron chemical composition, these were generally not the same treatments that simultaneously improved growth yields and thus, more study is required.

  11. Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Yueju Zhao

    Full Text Available Fusarium graminearum causes Fusarium head blight (FHB, a devastating disease that leads to extensive yield and quality loss of wheat and barley. Bacteria isolated from wheat kernels and plant anthers were screened for antagonistic activity against F. graminearum. Based on its in vitro effectiveness, strain SG6 was selected for characterization and identified as Bacillus subtilis. B. subtilis SG6 exhibited a high antifungal effect on the mycelium growth, sporulation and DON production of F. graminearum with the inhibition rate of 87.9%, 95.6% and 100%, respectively. In order to gain insight into biological control effect in situ, we applied B. subtilis SG6 at anthesis through the soft dough stage of kernel development in field test. It was revealed that B. subtilis SG6 significantly reduced disease incidence (DI, FHB index and DON (P ≤ 0.05. Further, ultrastructural examination shows that B. subtilis SG6 strain induced stripping of F. graminearum hyphal surface by destroying the cellular structure. When hypha cell wall was damaged, the organelles and cytoplasm inside cell would exude, leading to cell death. The antifungal activity of SG6 could be associated with the coproduction of chitinase, fengycins and surfactins.

  12. Reconstruction of the Regulatory Network for Bacillus subtilis and Reconciliation with Gene Expression Data

    Science.gov (United States)

    Faria, José P.; Overbeek, Ross; Taylor, Ronald C.; Conrad, Neal; Vonstein, Veronika; Goelzer, Anne; Fromion, Vincent; Rocha, Miguel; Rocha, Isabel; Henry, Christopher S.

    2016-01-01

    We introduce a manually constructed and curated regulatory network model that describes the current state of knowledge of transcriptional regulation of Bacillus subtilis. The model corresponds to an updated and enlarged version of the regulatory model of central metabolism originally proposed in 2008. We extended the original network to the whole genome by integration of information from DBTBS, a compendium of regulatory data that includes promoters, transcription factors (TFs), binding sites, motifs, and regulated operons. Additionally, we consolidated our network with all the information on regulation included in the SporeWeb and Subtiwiki community-curated resources on B. subtilis. Finally, we reconciled our network with data from RegPrecise, which recently released their own less comprehensive reconstruction of the regulatory network for B. subtilis. Our model describes 275 regulators and their target genes, representing 30 different mechanisms of regulation such as TFs, RNA switches, Riboswitches, and small regulatory RNAs. Overall, regulatory information is included in the model for ∼2500 of the ∼4200 genes in B. subtilis 168. In an effort to further expand our knowledge of B. subtilis regulation, we reconciled our model with expression data. For this process, we reconstructed the Atomic Regulons (ARs) for B. subtilis, which are the sets of genes that share the same “ON” and “OFF” gene expression profiles across multiple samples of experimental data. We show how ARs for B. subtilis are able to capture many sets of genes corresponding to regulated operons in our manually curated network. Additionally, we demonstrate how ARs can be used to help expand or validate the knowledge of the regulatory networks by looking at highly correlated genes in the ARs for which regulatory information is lacking. During this process, we were also able to infer novel stimuli for hypothetical genes by exploring the genome expression metadata relating to experimental

  13. Architecture and Assembly of the Bacillus subtilis Spore Coat

    Science.gov (United States)

    2014-09-26

    icandy contaminated with germinated spores and these germinat ed spores were removed by centrifugation in a one step HistodenzTM (Sigma, St. Louis...spore resistance but also because some coat proteins play significant roles in spore germination . However, much recent work on the spore coat has... germinating spores of various Bacillus [14,21 30] and Clostridium [3 1] species. H owever, this analysis has generally been conducted on wild type

  14. 纳豆菌特性的研究%Research on biological characteristics of natto Strain

    Institute of Scientific and Technical Information of China (English)

    鲍艳霞; 陈钧

    2012-01-01

    筛选具有强溶栓活性等多种生物学功能的纳豆菌,并对其形态、生长特性等进行研究。分离出单菌落,进行菌种鉴定,并在不同条件下用测菌悬液吸光度的方法研究其生长特性。经菌落形态、菌体形态以及生理生化特性鉴定确定为枯草杆菌。该菌种在种子培养基中生长的最适pH值为6.0~8.0,生长温度为30~45℃,耐盐性较高,在含7%以下NaCl的盐溶液中均能生长。纳豆菌的生长条件适宜于下一步产纳豆激酶的研究。%Natto strains with multiple biological functions such as strong thrombolytic activity were screened out for research on the forms and growth features. Single colonies were separated for identification of the strains and then the growth features were studied by methods for measuring suspension absorption in different conditions. Identifica- tion of the forms of colonies and thallis and the physiological-biochemical characteristics determined it as hay bacil- lus. The best growth environments for the hay bacillus in culture medium are pH 6.0 - 8.0 and 30 - 45 ℃ with the characteristics of high Salt-tolerance. The hay bacillus can grow in 7% NaCL The growth environments for Natto strains are applicable to the study of the producing of Bacillus subtilis.

  15. Characteristics and antimicrobial activity of Bacillus subtilis strains isolated from soil.

    Science.gov (United States)

    Todorova, Sevdalina; Kozhuharova, Lubka

    2010-07-01

    Antagonistic Bacillus strains were isolated from soil and analyzed for the purpose of determining whether they could be used as natural biological agents. Primary in vitro screening for antagonism of the isolates was performed against five phytopathogenic mould fungi. Strains TS 01 and ZR 02 exhibited the most pronounced inhibitory effects. They were identified as Bacillus subtilis on the basis of their morphological, cultural and physiology-biochemical properties as well as their hierarchical cluster analysis conducted by means of computer program SPSS. The antimicrobial activity of the strains from cultural medium and sterile filtrate were determined in vitro against a great number of predominantly phytopathogenic fungi and bacteria. TS 01 and ZR 02 strains exhibited very broad and at the same time degree varying antibiotic spectra of activities against both Gram-positive and Gram-negative microorganisms. Many of them were tested against sensitivity to the antimicrobial action of B. subtilis for the very first time. B. subtilis TS 01 and ZR 02 showed highest antifungal activity (sterile zone in diameter over 37 mm) against Alternaria solani, Botrytis cinerea, Monilia linhartiana 869, Phytophthora cryptogea 759/1 and Rhizoctonia sp. The most sensitive bacterial species were found to be Pseudomonas syringae pv. tomato Ro and Xanthomonas campestris with sterile zones 48.0 and 50.0 mm in diameter, respectively. The latter draws a conclusion that the isolated and identified Bacillus subtilis strains are promising natural biocontrol agents and should be further studied and tested for control of numerous plant diseases.

  16. Comparative transcriptional analysis of Bacillus subtilis cells overproducing either secreted proteins, lipoproteins or membrane proteins

    Directory of Open Access Journals (Sweden)

    Marciniak Bogumiła C

    2012-05-01

    Full Text Available Abstract Background Bacillus subtilis is a favorable host for the production of industrially relevant proteins because of its capacity of secreting proteins into the medium to high levels, its GRAS (Generally Recognized As Safe status, its genetic accessibility and its capacity to grow in large fermentations. However, production of heterologous proteins still faces limitations. Results This study aimed at the identification of bottlenecks in secretory protein production by analyzing the response of B. subtilis at the transcriptome level to overproduction of eight secretory proteins of endogenous and heterologous origin and with different subcellular or extracellular destination: secreted proteins (NprE and XynA of B. subtilis, Usp45 of Lactococcus lactis, TEM-1 β-lactamase of Escherichia coli, membrane proteins (LmrA of L. lactis and XylP of Lactobacillus pentosus and lipoproteins (MntA and YcdH of B. subtilis. Responses specific for proteins with a common localization as well as more general stress responses were observed. The latter include upregulation of genes encoding intracellular stress proteins (groES/EL, CtsR regulated genes. Specific responses include upregulation of the liaIHGFSR operon under Usp45 and TEM-1 β-lactamase overproduction; cssRS, htrA and htrB under all secreted proteins overproduction; sigW and SigW-regulated genes mainly under membrane proteins overproduction; and ykrL (encoding an HtpX homologue specifically under membrane proteins overproduction. Conclusions The results give better insights into B. subtilis responses to protein overproduction stress and provide potential targets for genetic engineering in order to further improve B. subtilis as a protein production host.

  17. The two authentic methionine aminopeptidase genes are differentially expressed in Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Wang YiPing

    2005-10-01

    Full Text Available Abstract Background Two putative methionine aminopeptidase genes, map (essential and yflG (non-essential, were identified in the genome sequence of Bacillus subtilis. We investigated whether they can function as methionine aminopeptidases and further explored possible reasons for their essentiality or dispensability in B. subtilis. Results In silico analysis of MAP evolution uncovered a coordinated pattern of MAP and deformylase that did not correlate with the pattern of 16S RNA evolution. Biochemical assays showed that both MAP (MAP_Bs and YflG (YflG_Bs from B. subtilis overproduced in Escherichia coli and obtained as pure proteins exhibited a methionine aminopeptidase activity in vitro. Compared with MAP_Bs, YflG_Bs was approximately two orders of magnitude more efficient when assayed on synthetic peptide substrates. Both map and yflG genes expressed in multi-copy plasmids could complement the function of a defective map gene in the chromosomes of both E. coli and B. subtilis. In contrast, lacZ gene transcriptional fusions showed that the promoter activity of map was 50 to 100-fold higher than that of yflG. Primer extension analysis detected the transcription start site of the yflG promoter. Further work identified that YvoA acted as a possible weak repressor of yflG expression in B. subtilis in vivo. Conclusion Both MAP_Bs and YflG_Bs are functional methionine aminopeptidases in vitro and in vivo. The high expression level of map and low expression level of yflG may account for their essentiality and dispensality in B. subtilis, respectively, when cells are grown under laboratory conditions. Their difference in activity on synthetic substrates suggests that they have different protein targets in vivo.

  18. Increasing plasmid transformation efficiency of natural spizizen method in Bacillus Subtilis by a cell permeable peptide

    Directory of Open Access Journals (Sweden)

    Mehrdad Moosazadeh Moghaddam

    2013-01-01

    Full Text Available Introduction: Some of bacterial species are able to uptake DNA molecule from environment, the yield of this process depends on some conditions such as plasmid size and host type. In the case of Bacillus subtilis, DNA uptake has low efficacy. Using Spizizen minimal medium is common method in plasmid transformation into B. subtilis, but rate of this process is not suitable and noteworthy. The aim of this study was investigation of novel method for improvement of DNA transformation into B. subtilis based on CM11 cationic peptide as a membrane permeable agent.Materials and methods: In this study, for optimization of pWB980 plasmid transformation into B. subtilis, the CM11 cationic peptide was used. For this purpose, B. subtilis competent cell preparation in the present of different concentration of peptide was implemented by two methods. In the first method, after treatment of bacteria with different amount of peptide for 14h, plasmid was added. In the second method, several concentration of peptide with plasmid was exposed to bacteria simultaneously. Bacteria that uptake DNA were screened on LB agar medium containing kanamycin. The total transformed bacteria per microgram of DNA was calculated and compared with the control.Results: Plasmid transformation in best conditions was 6.5 folds higher than the control. This result was statistically significant (P value <0.001.Discussion and conclusion: This study showed that CM11 cationic peptide as a membrane permeable agent was able to increase plasmid transformation rate into B. subtilis. This property was useful for resolution of low transformation efficacy.

  19. Partial biochemical characterization of crude extract extracellular chitinase enzyme from Bacillus subtilis B 298

    Science.gov (United States)

    Lestari, P.; Prihatiningsih, N.; Djatmiko, H. A.

    2017-02-01

    Extraction and characterization of extracellular chitinase from Bacillus subtilis B 298 have been done. Growth curve determination of B. subtilis B 298, production curve determination of crude extract chitinase from B. subtilis B 298, and partial biochemical characterization of crude extract chitinase have been achieved in this study. Optimum growth of B. subtilis B 298 was achieved at logarithmic phase within 9 hours incubation time, so it was used as inoculum for enzyme production. According to production curve of the enzyme, it was known that incubation time which gave the highest chitinase activity of 15 hours with activity of 6.937 U/mL respectively. Effect of various temperatures on chitinase activity showed that optimum activity was achieved at 40°C with an activity of 5.764 U/mL respectively. Meanwhile, the optimum pH for chitinase activity was achieved at pH of 5.0 with an activity of 6.813 U/mL respectively. This enzyme was then classified as metalloenzyme due to the decline of the activity by EDTA addition. All divalent cations tested acted as inhibitors.

  20. Identification and characterization of the vanillin dehydrogenase YfmT in Bacillus subtilis 3NA.

    Science.gov (United States)

    Graf, Nadja; Wenzel, Marian; Altenbuchner, Josef

    2016-04-01

    With vanillin as one of the most important flavoring agents, many efforts have been made to optimize its biotechnological production from natural abundant substrates. However, its toxicity against the hosts results in rather low yields and product concentrations. Bacillus subtilis as a soil-dwelling bacterium is a possible lignin-derived compound-degrading microorganism. Therefore, its vanillin and ferulic acid metabolism was investigated. With a rather high tolerance for vanillin up to 20 mM, it is a promising candidate to produce natural vanillin. In this study, the well-studied phenolic acid decarboxylases PadC and BsdBCD could be ascribed to function as the only enzymes in B. subtilis 3NA converting ferulic acid to 4-vinylguaiacol and vanillic acid to guaiacol, respectively. As vanillin also becomes converted to guaiacol, a previous conversion to vanillic acid was assumed. Usage of bioinformatic tools revealed YfmT, which could be shown to function as the only vanillin dehydrogenase in B. subtilis 3NA. Thus, YfmT was further characterized regarding its temperature and pH optima as well as its substrate range. Vanillin and ferulic acid metabolic routes in the tested B. subtilis strain were revealed, a direct conversion of ferulic acid to vanillin, however, could not be found.

  1. Bacteriocin from Bacillus subtilis as a novel drug against diabetic foot ulcer bacterial pathogens

    Institute of Scientific and Technical Information of China (English)

    Baby Joseph; Berlina Dhas; Vimalin Hena; Justin Raj

    2013-01-01

    Objective:To isolate and identify Bacillus subtilis (B. subtilis) from soil and to characterize and partially purify the bacteriocin. To evaluate the antimicrobial activity against four diabetic foot ulcer bacterial pathogens. Methods:Genotypic identification was done based on Bergey’s manual of systemic bacteriology. Antimicrobial susceptibility test was done by Kirby-Bauer disc diffusion method. Colonies were identified by colony morphology and biochemical characterization and also compared with MTCC 121 strain. Further identification was done by 16S rRNA sequencing. Inhibitory activities of partially purified bacteriocin on all the DFU isolates were done by agar well diffusion method. The strain was identified to produce bacteriocin by stab overlay assay. Bacteriocin was extracted by organic solvent extraction using chloroform, further purified by HPLC and physical, and chemical characterization was performed. Results: The four isolates showed high level of resistance to amoxyclav and sensitivity to ciprofloxacin. HPLC purification revealed that the extracts are bacteriocin. The phylogenetic tree analysis results showed that the isolate was 99%related to B. subtilis BSF01. The results reveled activity to all the four isolates and high level of activity was seen in case of Klebsiella sp. Conclusions:Partially purified bacteriocin was found to have antimicrobial activity against the four diabetic foot ulcer bacterial pathogens, which can thus be applied as a better drug molecule on further studies. The strain B. subtilis are found to be safe for use and these antimicrobial peptides can be used as an antimicrobial in humans to treat DFU bacterial pathogens.

  2. Soluble Expression of (+)-γ-Lactamase in Bacillus subtilis for the Enantioselective Preparation of Abacavir Precursor.

    Science.gov (United States)

    Xue, Tian-Yun; Xu, Guo-Chao; Han, Rui-Zhi; Ni, Ye

    2015-07-01

    Chiral Vince lactam (γ-lactam) is an important precursor of many carbocyclic nucleoside analogues and pharmaceuticals. Here, a (+)-γ-lactamase encoding gene delm from Delftia sp. CGMCC 5755 was identified through genome hunting. To achieve its soluble and functional expression, Escherichia coli and Bacillus subtilis expression systems were introduced. Compared with E. coli system, recombinant (+)-γ-lactamase showed improved protein solubility and catalytic activity in B. subtilis 168. Reaction conditions for enantioselective resolution of γ-lactam were optimized to be at 30 °C, pH 9.0, and 300 rpm when employing the recombinant B. subtilis 168/pMA5-delm whole cells. Kinetic analysis showed that the apparent V max and K m were 0.595 mmol/(min · gDCW) and 378 mmol/L, respectively. No obvious substrate inhibition was observed. In a 500-mL reaction system, enantioselective resolution of 100 g/L γ-lactam was achieved with 10 g/L dry cells, resulting in 55.2 % conversion and 99 % ee of (-)-γ-lactam. All above suggested that recombinant B. subtilis 168/pMA5-delm could potentially be applied in the preparation of optically pure (-)-γ-lactam.

  3. Growth of and valine production by a Bacillus subtilis mutant in the small intestine of pigs

    DEFF Research Database (Denmark)

    Canibe, Nuria; Poulsen, Henrik Vestergaard; Nørgaard, Jan Værum;

    2016-01-01

    :Lys of 0.63:1 (Neg), 2) the Neg diet with added Bacillus subtilis-valine (1.28 × 108 cfu/g feed) (+Bac), and 3) the Neg diet with added L-Val to a Val:Lys of 0.69:1 (+Val). Eighteen gilts (6 on each treatment) with initial weights of ∼15 kg were fed the diets for 23 d before the animals were euthanized...... and samples from the small intestine were obtained. The number of B. subtilis cfu in digesta was higher in the +Bac group than in the Neg group (P cfu were detected in the Neg group, whereas numbers between 3.4 and 4.4 log cfu/g and numerically higher Val and Lys...... concentrations were measured in the +Bac group. Short-term in vitro incubations of digesta showed a decrease (P ≤ 0.03) in the number of B. subtilis cfu over time for the +Bac group and no difference in the rate of Val production compared to that in the Neg group. In conclusion, more B. subtilis cfu were present...

  4. Degradation of polyester polyurethane by a newly isolated soil bacterium, Bacillus subtilis strain MZA-75.

    Science.gov (United States)

    Shah, Ziaullah; Krumholz, Lee; Aktas, Deniz Fulya; Hasan, Fariha; Khattak, Mutiullah; Shah, Aamer Ali

    2013-11-01

    A polyurethane (PU) degrading bacterial strain MZA-75 was isolated from soil through enrichment technique. The bacterium was identified through 16S rRNA gene sequencing, the phylogenetic analysis indicated the strain MZA-75 belonged to genus Bacillus having maximum similarity with Bacillus subtilis strain JBE0016. The degradation of PU films by strain MZA-75 in mineral salt medium (MSM) was analyzed by scanning electron microscopy (SEM), fourier transform infra-red spectroscopy (FT-IR) and gel permeation chromatography (GPC). SEM revealed the appearance of widespread cracks on the surface. FTIR spectrum showed decrease in ester functional group. Increase in polydispersity index was observed in GPC, which indicates chain scission as a result of microbial treatment. CO2 evolution and cell growth increased when PU was used as carbon source in MSM in Sturm test. Increase in both cell associated and extracellular esterases was observed in the presence of PU indicated by p-Nitrophenyl acetate (pNPA) hydrolysis assay. Analysis of cell free supernatant by gas chromatography-mass spectrometry (GC-MS) revealed that 1,4-butanediol and adipic acid monomers were produced. Bacillus subtilis strain MZA-75 can degrade the soft segment of polyester polyurethane, unfortunately no information about the fate of hard segment could be obtained. Growth of strain MZA-75 in the presence of these metabolites indicated mineralization of ester hydrolysis products into CO2 and H2O.

  5. Duodenal histology and carcass quality of feedlot cattle supplemented with calcium butyrate and Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Thiago Simas de Oliveira Moreira

    2016-01-01

    Full Text Available The experiment was carried out at the Comigo Technology Center, in Rio Verde, State of Goiás, Brazil, with the objective of evaluating the effects of supplementation with calcium butyrate, as a growth promoting agent for the duodenal mucosa and Bacillus subtilis as a probiotic performance enhancer in feedlot cattle. Calcium butyrate (5 and 10 g per animal per day and Bacillus (10 g per animal per day were added to a basal diet. There were used 85 Nelore bulls, with average weight of 315 ± 7 kg. The experiment lasted 118 days, including the adaptation period, until slaughter at 30 months of age. Diets were distributed in a completely randomized design with four treatments, where: T1 = control (basal diet; T2 = basal diet + 5 g calcium butyrate; T3 = basal diet + 10 g calcium butyrate and T4 = basal diet + 10 g calcium butyrate + 10 g probiotic with four replications and five to six animals per replication. It was used a forage: concentrate ratio of 30:70, the roughage used was the corn silage. Height and width measurements of intestinal villi were taken, and carcass and meat quality were evaluated. The supplementation of calcium butyrate and Bacillus subtilis positively influenced (p < 0.05 the carcass marbling level and calcium butyrate increased the villus height in the small intestine.

  6. Kinetics of p-aminoazobenzene degradation by Bacillus subtilis under denitrifying conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zissi, U.S.; Kornaros, M.E.; Lyberatos, G.C.

    1999-05-01

    Bacillus subtilis is an organism capable of degrading an azo dye, such as p-aminoazobenzene (pAAB), under both aerobic and anoxic conditions. In both cases, pAAB is co-metabolized with a main carbon source and under anoxic conditions denitrification is observed. Kinetic experiments were carried out with a pure culture of B. subtilis and a mathematical model that accurately describes both biodegradation of pAAB under anoxic conditions and the denitrification process under both carbon- and nitrate- or nitrite-limited conditions is developed. Presence of pAAB in culture medium causes an inhibition of bacterial growth and of nitrite accumulation. Bacterial growth and pAAB degradation rates are found to be slower under anoxic conditions compared to the corresponding rates under aerobic conditions.

  7. Engineering of Bacillus subtilis for the Production of 2,3-Butanediol from Sugarcane Molasses.

    Science.gov (United States)

    Deshmukh, Apoorva Nandkumar; Nipanikar-Gokhale, Padmaja; Jain, Rishi

    2016-05-01

    2,3-butanediol is known to be a platform chemical with several potential industrial applications. Sustainable industrial scale production can be attained by using a sugarcane molasses based fermentation process using Bacillus subtilis. However, the accumulation of acetoin needs to be reduced to improve process efficiency. In this work, B. subtilis was genetically modified in order to increase the yield of 2,3-butanediol. Metabolic engineering strategies such as cofactor engineering and overexpression of the key enzyme butanediol dehydrogenase were attempted. Both the strategies individually led to a statistically significant increase in the 2,3-butanediol yields for sugarcane molasses based fermentation. Cofactor engineering led to a 26 % increase in 2,3-butanediol yield and overexpression of bdhA led to a 11 % increase. However, the combination of the two strategies did not lead to a synergistic increase in 2,3-butanediol yield.

  8. Rice Seed Priming with Picomolar Rutin Enhances Rhizospheric Bacillus subtilis CIM Colonization and Plant Growth.

    Directory of Open Access Journals (Sweden)

    Akanksha Singh

    Full Text Available The effect of rutin, a bioflavonoid on the growth and biofilm formation of Bacillus subtilis strain CIM was investigated. In addition to swimming, swarming, and twitching potentials of B. subtilis CIM (BS, one picomolar (1 pM of rutin was also observed to boost the biofilm forming ability of the bacterium. Bio-priming of rice seeds with BS and rutin not only augmented root and shoot lengths but also the photosynthetic pigments like chlorophyll and carotenoid. Similarly, high accumulation of phenolic and flavonoid contents was observed in the leaves. Fluorescent microscopic images revealed that BS plus rutin enhanced callose deposition in the leaves. It was also established that the least formation of reactive oxygen species in BS plus rutin treated rice plants was due to higher free radicals scavenging activity and total antioxidant potential. The results highlight chemo attractant nature of BS towards rutin, which by enhancing biofilm formation and root colonization indirectly strengthened the plants' defensive state.

  9. Rice Seed Priming with Picomolar Rutin Enhances Rhizospheric Bacillus subtilis CIM Colonization and Plant Growth.

    Science.gov (United States)

    Singh, Akanksha; Gupta, Rupali; Pandey, Rakesh

    2016-01-01

    The effect of rutin, a bioflavonoid on the growth and biofilm formation of Bacillus subtilis strain CIM was investigated. In addition to swimming, swarming, and twitching potentials of B. subtilis CIM (BS), one picomolar (1 pM) of rutin was also observed to boost the biofilm forming ability of the bacterium. Bio-priming of rice seeds with BS and rutin not only augmented root and shoot lengths but also the photosynthetic pigments like chlorophyll and carotenoid. Similarly, high accumulation of phenolic and flavonoid contents was observed in the leaves. Fluorescent microscopic images revealed that BS plus rutin enhanced callose deposition in the leaves. It was also established that the least formation of reactive oxygen species in BS plus rutin treated rice plants was due to higher free radicals scavenging activity and total antioxidant potential. The results highlight chemo attractant nature of BS towards rutin, which by enhancing biofilm formation and root colonization indirectly strengthened the plants' defensive state.

  10. Efficacy of Bacillus subtilis V26 as a biological control agent against Rhizoctonia solani on potato.

    Science.gov (United States)

    Ben Khedher, Saoussen; Kilani-Feki, Olfa; Dammak, Mouna; Jabnoun-Khiareddine, Hayfa; Daami-Remadi, Mejda; Tounsi, Slim

    2015-12-01

    The aim of this study is to evaluate the efficacy of the strain Bacillus subtilis V26, a local isolate from the Tunisian soil, to control potato black scurf caused by Rhizoctonia solani. The in vitro antifungal activity of V26 significantly inhibited R. solani growth compared to the untreated control. Microscopic observations revealed that V26 caused considerable morphological deformations of the fungal hyphae such as vacuolation, protoplast leakage and mycelia crack. The most effective control was achieved when strain V26 was applied 24h prior to inoculation (protective activity) in potato slices. The antagonistic bacterium V26 induced significant suppression of root canker and black scurf tuber colonization compared to untreated controls with a decrease in incidence disease of 63% and 81%, respectively, and promoted plant growth under greenhouse conditions on potato plants. Therefore, B. subtilis V26 has a great potential to be commercialized as a biocontrol agent against R. solani on potato crops.

  11. Influence of Silica Nanoparticles on Antioxidant Potential of Bacillus subtilis IMV B-7023

    Science.gov (United States)

    Skorochod, Iryna O.; Roy, Alla O.; Kurdish, Ivan K.

    2016-03-01

    It was found that if introduced into a nutrient medium of 0.05-1 g/L nano-SiO2, the oxidant activity (OA) of the culture medium (CM) of bacilli increased by 43.2-60.1 % and the antioxidant activity (AA) decreased by 4.5-11.8 %. SiO2 nanoparticles had different effects on antiradical activity (ARA) of the CM of Bacillus subtilis IMV B-7023. In particular, nano-SiO2 had no significant effect on the ability of the CM of bacilli to inactivate the 2.2-diphenyl-1-picrylhydrazyl (DPPH·) free radical. However, for the content of the nanomaterial of 0.01-1 g/L decreased hydroxyl radical scavenging in the CM of B. subtilis IMV B-7023 on 7.2-17.6 % compared with a control. Low doses of silica nanoparticles stimulated the reducing power of the CM of bacteria and then highly suppressed it.

  12. Antagonismo de Trichoderma SPP. E Bacillus subtilis (UFV3918 a Fusarium sambucinum em Pinus elliottii engelm

    Directory of Open Access Journals (Sweden)

    Caciara Gonzatto Maciel

    2014-06-01

    Full Text Available Pinus elliottii é uma espécie de importância no setor florestal e apresenta vulnerabilidade na qualidade sanitária de suas sementes, especialmente pela associação de Fusarium spp., responsável por perdas de plântulas no viveiro. Este trabalho teve como objetivo avaliar a ação antagonista in vitro e in vivo dos agentes Trichoderma spp. e Bacillus subtilis (UFV3918 no controle de Fusarium sambucinum, responsável por danos em plântulas de Pinus elliottii. O controle in vitro foi avaliado através da inibição do crescimento micelial (confronto pareado de culturas, após a incubação a 25±2 ºC e fotoperíodo de 12 h. Para os testes in vivo (desenvolvidos em condições de viveiro, as sementes inicialmente foram inoculadas com o patógeno e, na sequência, microbiolizadas com os agentes antagônicos, para posterior semeadura. Utilizaram-se as técnicas de contato com o biocontrolador em meio BDA por 48 h e peliculização, como formas de microbiolização. Tanto Trichoderma spp. quanto Bacillus subtilis (UFV3918 foram eficientes no controle in vitro de F. sambucinum, e no teste de biocontrole in vivo o produto Bacillus subtilis (UFV3918 destacou-se, reduzindo as perdas de plântulas causadas pelo patógeno, assim como potencializando as variáveis de comprimento de plântula, massa verde e massa seca.

  13. Disinfection and regrowth potential of bacillus subtilis spores by ozone, ultraviolet rays and gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hae Yeon; Lee, O Mi; Kim, Tae Hun; Lee, Myun Joo; Yu, Seung Ho [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2009-06-15

    Chlorination has been the most commonly adopted disinfection process for the treatment of drinking water. However, Cryptosporidium parvum oocysts and Giardia lamblia cysts were not treated effectively by the common chlorine-based disinfectants. Additionally the regrowth of pathogenic microorganisms is associated with hygienic and aesthetic problems for the consumers of drinking water. Study on alternative disinfection processes such as ozone, UV-C, VUV and gamma irradiation were conducted. Bacillus subtilis spores have been used as a surrogate microorganism for Cryptosporidium parvum oocysts and Giardia lamblia cyst. Inactivation efficiency by ozone was from 30% to 96% within the range of 5 min to 120 min exposures. Inactivation efficiencies by UV-C and VUV were 95.18%, 95.07% at 30 sec, respectively. Inactivation efficiency at gamma irradiation dose of 2 kGy was 99.4%. Microbial regrowths after ozone, UV-C, VUV and gamma irradiation disinfections were also evaluated for 4 days. Bacillus subtilis spores after ozone treatment for 120 min exposure at the rate of 1.68 mg {center_dot} min{sup -1} showed 96.02% disinfection efficiency and significant microbial regrowth. Bacillus subtilis spores after UV-C (99.25% disinfection efficiency) and VUV (99.67% disinfection efficiency) treatments for 5 min showed gradual regrowth. However, inactivation efficiency of gamma irradiation at dose of 1 kGy was 98.8% and the disinfected sample showed no microbial regrowth for 4 days. Therefore, gamma irradiation is the most effective process for the disinfection of pathogenic microorganisms such as oocysts of protozoan parasites among four disinfection process.

  14. Ability of Bacillus subtilis protoplasts to repair irradiated bacteriophage deoxyribonucleic acid via acquired and natural enzymatic systems.

    OpenAIRE

    Yasbin, R E; Andersen, B J; Sutherland, B M

    1981-01-01

    A novel form of "enzyme therapy" was achieved by utilizing protoplasts of Bacillus subtilis. Photoreactivating enzyme of Escherichia coli was successfully inserted into the protoplasts of B. subtilis treated with polyethylene glycol. This enzyme was used to photoreactivate ultraviolet-damaged bacteriophage deoxyribonucleic acid (DNA). Furthermore, in polyethylene glycol-treated protoplasts, ultraviolet-irradiated transfecting bacteriophage DNA was shown to be a functional substrate for the ho...

  15. Enhancement of Bacillus subtilis Lipopeptide Biosurfactants Production through Optimization of Medium Composition and Adequate Control of Aeration

    OpenAIRE

    Dhouha Ghribi; Semia Ellouze-Chaabouni

    2011-01-01

    Interest in biosurfactants has increased considerably in recent years, as they are potentially used in many commercial applications in petroleum, pharmaceuticals, biomedical, and food processing industries. Since improvement of their production was of great importance to reduce the final coast, cultural conditions were analyzed to optimize biosurfactants production from Bacillus subtilis SPB1 strain. A high yield of biosurfactants was obtained from a culture of B. subtilis using carbohydrate ...

  16. Biodegradation of crude oil by a defined co-culture of indigenous bacterial consortium and exogenous Bacillus subtilis.

    Science.gov (United States)

    Tao, Kaiyun; Liu, Xiaoyan; Chen, Xueping; Hu, Xiaoxin; Cao, Liya; Yuan, Xiaoyu

    2017-01-01

    The aim of this work was to study biodegradation of crude oil by defined co-cultures of indigenous bacterial consortium and exogenous Bacillus subtilis. Through residual oil analysis, it is apparent that the defined co-culture displayed a degradation ratio (85.01%) superior to indigenous bacterial consortium (71.32%) after 7days of incubation when ratio of inoculation size of indigenous bacterial consortium and Bacillus subtilis was 2:1. Long-chain n-alkanes could be degraded markedly by Bacillus subtilis. Result analysis of the bacterial community showed that a decrease in bacterial diversity in the defined co-culture and the enrichment of Burkholderiales order (98.1%) degrading hydrocarbons. The research results revealed that the promising potential of the defined co-culture for application to degradation of crude oil.

  17. Production and purification of a maltose-producing amylase from Bacillus subtilis IMD 198

    Energy Technology Data Exchange (ETDEWEB)

    Fogarty, W.M.; Bourke, E.J.

    1983-09-01

    A strain of Bacillus subtilis (IMD 198) isolated from peat degraded starch to maltose with little production of glucose and other products. Highest levels of enzyme were achieved in a salts medium containing soya bean meal and starch. The enzyme was purified by precipitation with isopropanol, adsorption on calcium phosphate gel and fractionation on DEAE- and CM-cellulose ion-exchange resins. The latter chromatographic procedure removed a contaminating activity that produced dextrins as end-products from starch or amylose. The action pattern of the purified, major enzyme activity indicates that it may be beta-amylase. 52 references.

  18. [Expression of N domain of chromogranin A in Bacillus subtilis and its antifungal activity].

    Science.gov (United States)

    Li, Rui-Fang; Lou, Jin-Xian; Zhang, Tian-Yuan

    2004-03-01

    Chromogranin A (CGA) is a soluble protein existed in most secreted cells and neurons. It was recently found that the bovine CGA N terminal region has vasoinhibitory, antibacterial and antifungal activities. Since the need for effective antifungal agents increases in parallel with the expanding number of immunocompromised patients at risk for fungal infections, it becomes imperative to find antifungal compounds with low toxicity toward mammalian cells. To study the antifungal activity of CGA N terminal region, the DNA fragment encoding for the N terminal 1-76 amino acid sequence (CGA1-76) of human CGA was amplified by PCR technique. After DNA sequence analysis, the amplified DNA fragment was cloned into the Bacillus subtilis inducible and expression vector pSBPTQ constructed in this study and the resultant plasmid pSVTQ was then transformed into triple-protease deficient Bacillus subtilis strain DB403 competent cells. The transformants was screened on LB plates containing 10 microg/mL kanamycin. The positive transformant DB403 (pSVTQ) was grown on kanmycin containing 2 x MSR medium and sucrose was added to 2% final concentration for induction after 2h cultivation. The culture supernatant was used to run SDS-PAGE. The result of SDS-PAGE showed that the CGA1-76 was expressed by sucrose induction and the expressed product secreted into the medium with a yield of 5 mg/L. The expressed product reacts specifically with mouse anti CGA47-68 monoclonal antibody. The antifungal activity of the expressed product was examined by adding the culture supernatant to the fungal spore or Candida albican suspensions at appropriate proportion and found that the recombinant human CGA1-76 produced in Bacillus subtilis inhibits the growth of Fusarium sp. Alternaria sp. and Candida albican at the concerntration of 4 micromol/L. These results demonstrate that human CGA1-76 has expressed in Bacillus subtilis and the expressed product is immunogenic and has the antifungal activity.

  19. PRODUCTION OPTIMIZATION OF EXTRACELLULAR L-ASPARAGINASE THROUGH SOLID- STATE FERMENTATION BY ISOLATED BACILLUS SUBTILIS.

    Directory of Open Access Journals (Sweden)

    Susmita Shukla

    2013-02-01

    Full Text Available L-asparaginase has been used as anti-tumor agent for the treatment of acute lymphoblastic leukemia and food processing aid to reduce the formation of cancer causing acrylamide. Extracellular Lasparaginase production was optimized through solid state fermentation using ground nut cake by isolated Bacillus subtilis. which was not reported in literature.Optimum production of L-asparaginase enzyme (18.4U/ml was obtained after 48h of incubation at 370C moisture content of 70% and at pH 7.

  20. Protease obtention using Bacillus subtilis 3411 and amaranth seed meal medium at different aeration rates

    Directory of Open Access Journals (Sweden)

    Pastor Maria Delia

    2001-01-01

    Full Text Available The influence of the addition of Amaranthus cruenthus seed meal to the medium, as nutrient and growth factor, on protease production by Bacillus subtilis 3411 was studied. Tests were carried out in a rotary shaker and in mechanically stirred fermenters. The influence of aeration was also evaluated. The addition of amaranth in a concentration of 20 g/L resulted in 400% increase in protease production. Aeration up to 750 r.p.m. and 1 L/L.min had a favorable effect.

  1. Enhancing Production of Alkaline Polygalacturonate Lyase from Bacillus subtilis by Fed-Batch Fermentation

    OpenAIRE

    Mouyong Zou; Fenfen Guo; Xuezhi Li; Jian Zhao; Yinbo Qu

    2014-01-01

    Alkaline polygalacturonate lyase (PGL, EC 4.2.2.2) is an enzyme used in many industries. We developed a fed-batch fermentation process that combines the enzymatic pretreatment of the carbon source with controlling the pH of the fermentative broth to enhance the PGL production from Bacillus subtilis 7-3-3 to decrease the production cost. Maintaining the fermentation broth at pH 6.5 prior to feeding with ammonia and at pH 6.0 after feeding significantly improved PGL activity (743.5 U mL-1) comp...

  2. [Anaerobic solid-phase fermentation of plant substrates by Bacillus subtilis].

    Science.gov (United States)

    Ushakova, N A; Brodskiĭ, E S; Kozlova, A A; Nifatov, A V

    2009-01-01

    Solid-phase growth of Bacillus subtilis 8130 on cellulose-rich plant substrates (presscakes or pulp) under hypoxic conditions was accompanied by cellulose depolymerization, protein hydrolysis, and degradation of other plant components, including some processes of mixed-type carbohydrate fermentation. The bacterial fermentation yielded propionic, butyric, and hexanoic acids and butyric acid derivatives. The bacterial metabolism and fermentation degree can be characterized by the proportions of fatty acids in the reaction mixture. The product of sea buckthorn cake fermentation has a good sorption quality.

  3. Pathway engineering of Bacillus subtilis for microbial production of N-acetylglucosamine.

    Science.gov (United States)

    Liu, Yanfeng; Liu, Long; Shin, Hyun-dong; Chen, Rachel R; Li, Jianghua; Du, Guocheng; Chen, Jian

    2013-09-01

    Glucosamine (GlcN) and its acetylated derivative, N-acetylglucosamine (GlcNAc), are widely used in nutraceutical and pharmaceutical industries. Currently, GlcN and GlcNAc are mainly produced by hydrolysis from crab and shrimp shells, which can cause severe environmental pollution and carries the potential risk of allergic reactions. In this study, we attempted to achieve microbial production of GlcNAc by pathway engineering of Bacillus subtilis 168. Specifically, glmS (encoding GlcN-6-phosphate synthase) from B. subtilis 168 and GNA1 (encoding GlcNAc-6-phosphate N-acetyltransferase) from Saccharomyces cerevisiae S288C were firstly co-overexpressed in B. subtilis; the level of GlcNAc reached 240mg/L in shake flask culture. Next, nagP, encoding the GlcNAc-specific enzyme of phosphotransferase system, was deleted to block the importation of extracellular GlcNAC, thus improving GlcNAc production to 615mg/L in shake flask culture. Then, nagA (encoding GlcNAc-6-phosphate deacetylase), gamA (encoding GlcN-6-phosphate deaminase), and nagB (encoding GlcN-6-phosphate deaminase) were deleted to block the catabolism of intracellular GlcNAc, thereby further increasing the GlcNAc titer to 1.85g/L in shake flask culture. Finally, microbial production of GlcNAc by the engineered B. subtilis 168 was conducted in a 3-L fed-batch bioreactor, and the GlcNAc titer reached 5.19g/L, which was 2.8-fold of that in shake flask culture. This is the first report regarding the pathway engineering of B. subtilis for microbial production of GlcNAc, and provides a good starting point for further metabolic engineering to achieve the industrial production of GlcNAc by a generally regarded as safe strain.

  4. Draft Genome Sequence of Commercial Textile Dye-Decolorizing and -Degrading Bacillus subtilis Strain C3 Isolated in India

    Science.gov (United States)

    Kunadia, Khushbu; Nathani, Neelam M.; Kothari, Vishal; Kotadia, Rohit J.; Kothari, Charmy R.; Joshi, Anjali; Rank, Jalpa K.; Faldu, Priti R.; Shekar, M. Chandra; Viroja, Mitkumar J.; Patel, Priyank A.; Jadeja, Divyarajsinh; Reddy, Bhaskar; Pal Singh, Ravindra; Koringa, Prakash G.; Joshi, Chaitanya G.

    2016-01-01

    Bacillus subtilis C3, a commercial textile dye-decolorizing and -degrading bacterium, was isolated from the common effluent treatment plant (CEPT) of the Jetpur textile dyeing and printing industrial sector situated in the district of Rajkot, Gujarat, India. Here, we present the annotated 4.18-Mb draft genome sequence of B. subtilis C3, providing information about the metabolic pathways involved in decolorization and degradation of several commercial textile azo dyes. Thus, we confirm B. subtilis C3 as a potential candidate for bioremediation of textile effluents. PMID:26966205

  5. Draft Genome Sequence of Commercial Textile Dye-Decolorizing and -Degrading Bacillus subtilis Strain C3 Isolated in India.

    Science.gov (United States)

    Kunadia, Khushbu; Nathani, Neelam M; Kothari, Vishal; Kotadia, Rohit J; Kothari, Charmy R; Joshi, Anjali; Rank, Jalpa K; Faldu, Priti R; Shekar, M Chandra; Viroja, Mitkumar J; Patel, Priyank A; Jadeja, Divyarajsinh; Reddy, Bhaskar; Pal Singh, Ravindra; Koringa, Prakash G; Joshi, Chaitanya G; Kothari, Ramesh K

    2016-03-10

    Bacillus subtilis C3, a commercial textile dye-decolorizing and -degrading bacterium, was isolated from the common effluent treatment plant (CEPT) of the Jetpur textile dyeing and printing industrial sector situated in the district of Rajkot, Gujarat, India. Here, we present the annotated 4.18-Mb draft genome sequence of B. subtilis C3, providing information about the metabolic pathways involved in decolorization and degradation of several commercial textile azo dyes. Thus, we confirm B. subtilis C3 as a potential candidate for bioremediation of textile effluents.

  6. Characterization of dacC, which encodes a new low-molecular-weight penicillin-binding protein in Bacillus subtilis

    DEFF Research Database (Denmark)

    Pedersen, Lotte Bang; Murray, T; Popham, D L;

    1998-01-01

    The pbp gene (renamed dacC), identified by the Bacillus subtilis genome sequencing project, encodes a putative 491-residue protein with sequence homology to low-molecular-weight penicillin-binding proteins. Use of a transcriptional dacC-lacZ fusion revealed that dacC expression (i) is initiated...... at the end of stationary phase; (ii) depends strongly on transcription factor sigmaH; and (iii) appears to be initiated from a promoter located immediately upstream of yoxA, a gene of unknown function located upstream of dacC on the B. subtilis chromosome. A B. subtilis dacC insertional mutant grew...

  7. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Applied to Quantitative Proteomics of Bacillus subtilis

    DEFF Research Database (Denmark)

    Soufi, Boumediene; Kumar, C.; Gnad, F.

    2010-01-01

    We applied stable isotope labeling by amino acids in cell culture (SILAC) to large-scale quantitative proteomics analyses of the model bacterium Bacillus subtilis in two physiological conditions: growth on succinate and growth under phosphate starvation. Using a B. subtilis strain auxotrophic...... of the most comprehensive quantitative proteomics studies in bacteria, covering more than 75% of the B. subtilis genes expressed in the log phase of growth. Furthermore, we detect and quantify dynamics of 35 Ser/Thr/Tyr phosphorylation sites under growth on succinate, and 10 phosphorylation sites under...

  8. Caracterización de cristales de calcita bioprecipitada por un aislamiento nativo de Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Carolina Montoya

    2007-02-01

    Full Text Available Bacillus subtilis es una bacteria útil en algunas aplicaciones biotecnológicas por poseer enzimas como las amilasas, las cuales desempeñan un papel importante en diferentes procesos industriales. Una de sus propiedades, poco estudiada, ha sido su capacidad de inducir bioprecipitación química de carbonato de calcio (Ca2+ + HCO3 3> CaCO3 + H+ mediante un mecanismo similar al observado en la formación de rocas, suelos y estructuras biológicas como huesos, conchas y dientes. En esta investigación se estudiaron los cristales producidos por un aislamiento nativo de B. subtilis, tomado de una mina de oro situada en Segovia (Antioquia. Se determinó su capacidad calcificante utilizando el medio de cultivo B4. La caracterización del cristal producido se realizó con lupa binocular, microscopio petrográfico de luz plana polarizada (MOLP en su modo de luz transmitida, microscopio electrónico de barrido con analizador de estado sólido (ESEM/EDX y espectroscopía infrarroja con transformada de Fourier (FTIR. A partir de los resultados obtenidos por medio de la caracterización utilizando la combinación de las técnicas analíticas que se mencionaron, fue posible determinar que el aislado nativo de B. subtilis generó y por ende es productor de cristales de carbonato de calcio (CaCO3 en su forma polimórfica de baja temperatura (calcite.Palabras clave: Bacillus subtilis, calcita, bioprecipitación, mineralogía aplicada, biomineralogía.ABSTRACTBacillus subtilis, a bacterium useful in some biotechnology applications, contains enzymes such as amylases, which play an important role in several industrial processes. One of its properties, not very well studied, is its capacity to induce the chemical bioprecipitation of CaCO3 (Ca2+ + HCO3 —> CaCO3 + H+, a similar mechanism commonly observed in the formation of rocks, soils and biological structures like bones, shells and teeth. In this work we have studied carbonate crystals produced by a B

  9. Crude glycerol from biodiesel industry as substrate for biosurfactant production by Bacillus subtilis ATCC 6633

    Directory of Open Access Journals (Sweden)

    Marylane de Sousa

    2014-04-01

    Full Text Available Glycerol, a co-product of the biodiesel industry, may be a suitable raw material for the production of high added-value compounds by the microorganisms. This study aimed to use the glycerol obtained from the biodiesel production process as the main carbon source for biosurfactant production by Bacillus subtilis ATCC 6633. Results indicated that the strain lowered the surface tension of the cell-free fermented broth to 31.5 ± 1.6 mN/m, indicating the production of biosurfactant. The critical micelle concentration (CMC = 33.6 mN/m obtained was similar to the previously reported for biossurfactants isolated from other Bacillus. The produced biosurfactant was able to emulsify n-hexadecane and soybean oil.

  10. Isothermal titration calorimetry and surface plasmon resonance allow quantifying substrate binding to different binding sites of Bacillus subtilis xylanase

    DEFF Research Database (Denmark)

    Cuyvers, Sven; Dornez, Emmie; Abou Hachem, Maher;

    2012-01-01

    Isothermal titration calorimetry and surface plasmon resonance were tested for their ability to study substrate binding to the active site (AS) and to the secondary binding site (SBS) of Bacillus subtilis xylanase A separately. To this end, three enzyme variants were compared. The first was a cat......Isothermal titration calorimetry and surface plasmon resonance were tested for their ability to study substrate binding to the active site (AS) and to the secondary binding site (SBS) of Bacillus subtilis xylanase A separately. To this end, three enzyme variants were compared. The first...

  11. Application of Bacillus subtilis 168 as a multifunctional agent for improvement of the durability of cement mortar.

    Science.gov (United States)

    Park, Sung-Jin; Park, Jong-Myong; Kim, Wha-Jung; Ghim, Sa-Youl

    2012-11-01

    Microbiological calcium carbonate precipitation (MCCP) has been investigated for its ability to improve the durability of cement mortar. However, very few strains have been applied to crack remediation and strengthening of cementitious materials. In this study, we report the biodeposition of Bacillus subtilis 168 and its ability to enhance the durability of cement material. B. subtilis 168 was applied to the surface of cement specimens. The results showed a new layer of deposited organic-inorganic composites on the surface of the cement paste. In addition, the water permeability of the cement paste treated with B. subtilis 168 was lower than that of non-treated specimens. Furthermore, artificial cracks in the cement paste were completely remediated by the biodeposition of B. subtilis 168. The compressive strength of cement mortar treated with B. subtilis 168 increased by about 19.5% when compared with samples completed with only B4 medium. Taken together, these findings suggest that the biodeposition of B. subtilis 168 could be used as a sealing and coating agent to improve the strength and water resistance of concrete. This is the first paper to report the application of Bacillus subtilis 168 for its ability to improve the durability of cement mortar through calcium carbonate precipitation.

  12. Evaluation of germination, distribution, and persistence of Bacillus subtilis spores through the gastrointestinal tract of chickens.

    Science.gov (United States)

    Latorre, J D; Hernandez-Velasco, X; Kallapura, G; Menconi, A; Pumford, N R; Morgan, M J; Layton, S L; Bielke, L R; Hargis, B M; Téllez, G

    2014-07-01

    Spores are popular as direct-fed microbials, though little is known about their mode of action. Hence, the first objective of the present study was to evaluate the in vitro germination and growth rate of Bacillus subtilis spores. Approximately 90% of B. subtilis spores germinate within 60 min in the presence of feed in vitro. The second objective was to determine the distribution of these spores throughout different anatomical segments of the gastrointestinal tract (GIT) in a chicken model. For in vivo evaluation of persistence and dissemination, spores were administered to day-of-hatch broiler chicks either as a single gavage dose or constantly in the feed. During 2 independent experiments, chicks were housed in isolation chambers and fed sterile corn-soy-based diets. In these experiments one group of chickens was supplemented with 10(6) spores/g of feed, whereas a second group was gavaged with a single dose of 10(6) spores per chick on day of hatch. In both experiments, crop, ileum, and cecae were sampled from 5 chicks at 24, 48, 72, 96, and 120 h. Viable B. subtilis spores were determined by plate count method after heat treatment (75°C for 10 min). The number of recovered spores was constant through 120 h in each of the enteric regions from chickens receiving spores supplemented in the feed. However, the number of recovered B. subtilis spores was consistently about 10(5) spores per gram of digesta, which is about a 1-log10 reduction of the feed inclusion rate, suggesting approximately a 90% germination rate in the GIT when fed. On the other hand, recovered B. subtilis spores from chicks that received a single gavage dose decreased with time, with only approximately 10(2) spores per gram of sample by 120 h. This confirms that B. subtilis spores are transiently present in the GIT of chickens, but the persistence of vegetative cells is presently unknown. For persistent benefit, continuous administration of effective B. subtilis direct-fed microbials as vegetative

  13. Heterologous expression, biochemical characterization, and overproduction of alkaline α-amylase from Bacillus alcalophilus in Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Li Jianghua

    2011-10-01

    Full Text Available Abstract Background Alkaline α-amylases have potential applications for hydrolyzing starch under high pH conditions in the starch and textile industries and as ingredients in detergents for automatic dishwashers and laundries. While the alkaline α-amylase gains increased industrial interest, the yield of alkaline α-amylases from wild-type microbes is low, and the combination of genetic engineering and process optimization is necessary to achieve the overproduction of alkaline α-amylase. Results The alkaline α-amylase gene from Bacillus alcalophilus JN21 (CCTCC NO. M 2011229 was cloned and expressed in Bacillus subtilis strain WB600 with vector pMA5. The recombinant alkaline α-amylase was stable at pH from 7.0 to 11.0 and temperature below 40°C. The optimum pH and temperature of alkaline α-amylase was 9.0 and 50°C, respectively. Using soluble starch as the substrate, the Km and Vmax of alkaline α-amylase were 9.64 g/L and 0.80 g/(L·min, respectively. The effects of medium compositions (starch, peptone, and soybean meal and temperature on the recombinant production of alkaline α-amylase in B. subtilis were investigated. Under the optimal conditions (starch concentration 0.6% (w/v, peptone concentration 1.45% (w/v, soybean meal concentration 1.3% (w/v, and temperature 37°C, the highest yield of alkaline α-amylase reached 415 U/mL. The yield of alkaline α-amylase in a 3-L fermentor reached 441 U/mL, which was 79 times that of native alkaline α-amylase from B. alcalophilus JN21. Conclusions This is the first report concerning the heterologous expression of alkaline α-amylase in B. subtilis, and the obtained results make it feasible to achieve the industrial production of alkaline α-amylase with the recombinant B. subtilis.

  14. Enhanced and Secretory Expression of Human Granulocyte Colony Stimulating Factor by Bacillus subtilis SCK6

    Directory of Open Access Journals (Sweden)

    Shaista Bashir

    2015-01-01

    Full Text Available This study describes a simplified approach for enhanced expression and secretion of a pharmaceutically important human cytokine, that is, granulocyte colony stimulating factor (GCSF, in the culture supernatant of Bacillus subtilis SCK6 cells. Codon optimized GCSF and pNWPH vector containing SpymwC signal sequence were amplified by prolonged overlap extension PCR to generate multimeric plasmid DNA, which was used directly to transform B. subtilis SCK6 supercompetent cells. Expression of GCSF was monitored in the culture supernatant for 120 hours. The highest expression, which corresponded to 17% of the total secretory protein, was observed at 72 hours of growth. Following ammonium sulphate precipitation, GCSF was purified to near homogeneity by fast protein liquid chromatography on a QFF anion exchange column. Circular dichroism spectroscopic analysis showed that the secondary structure contents of the purified GCSF are similar to the commercially available GCSF. Biological activity, as revealed by the regeneration of neutrophils in mice treated with ifosfamine, was also similar to the commercial preparation of GCSF. This, to our knowledge, is the first study that reports secretory expression of human GCSF in B. subtilis SCK6 with final recovery of up to 96 mg/L of the culture supernatant, without involvement of any chemical inducer.

  15. Control of Initiation of DNA Replication in Bacillus subtilis and Escherichia coli.

    Science.gov (United States)

    Jameson, Katie H; Wilkinson, Anthony J

    2017-01-10

    Initiation of DNA Replication is tightly regulated in all cells since imbalances in chromosomal copy number are deleterious and often lethal. In bacteria such as Bacillus subtilis and Escherichia coli, at the point of cytokinesis, there must be two complete copies of the chromosome to partition into the daughter cells following division at mid-cell during vegetative growth. Under conditions of rapid growth, when the time taken to replicate the chromosome exceeds the doubling time of the cells, there will be multiple initiations per cell cycle and daughter cells will inherit chromosomes that are already undergoing replication. In contrast, cells entering the sporulation pathway in B. subtilis can do so only during a short interval in the cell cycle when there are two, and only two, chromosomes per cell, one destined for the spore and one for the mother cell. Here, we briefly describe the overall process of DNA replication in bacteria before reviewing initiation of DNA replication in detail. The review covers DnaA-directed assembly of the replisome at oriC and the multitude of mechanisms of regulation of initiation, with a focus on the similarities and differences between E. coli and B. subtilis.

  16. Plant growth promotion by spermidine-producing Bacillus subtilis OKB105.

    Science.gov (United States)

    Xie, Shan-Shan; Wu, Hui-Jun; Zang, Hao-Yu; Wu, Li-Ming; Zhu, Qing-Qing; Gao, Xue-Wen

    2014-07-01

    The interaction between plants and plant-growth-promoting rhizobacteria (PGPR) is a complex, reciprocal process. On the one hand, plant compounds such as carbohydrates and amino acids serve as energy sources for PGPR. On the other hand, PGPR promote plant growth by synthesizing plant hormones and increasing mineral availability in the soil. Here, we evaluated the growth-promoting activity of Bacillus subtilis OKB105 and identified genes associated with this activity. The genes yecA (encoding a putative amino acid/polyamine permease) and speB (encoding agmatinase) are involved in the secretion or synthesis of polyamine in B. subtilis OKB105. Disruption of either gene abolished the growth-promoting activity of the bacterium, which was restored when polyamine synthesis was complemented. Moreover, high-performance liquid chromatography analysis of culture filtrates of OKB105 and its derivatives demonstrated that spermidine, a common polyamine, is the pivotal plant-growth-promoting compound. In addition, real-time polymerase chain reaction analysis revealed that treatment with B. subtilis OKB105 induced expansin gene (Nt-EXPA1 and Nt-EXPA2) expression and inhibited the expression of the ethylene biosynthesis gene ACO1. Furthermore, enzyme-linked immunosorbent assay analysis showed that the ethylene content in plant root cells decreased in response to spermidine produced by OKB105. Therefore, during plant interactions, OKB105 may produce and secrete spermidine, which induces expansin production and lowers ethylene levels.

  17. Stationary-Phase Mutagenesis in Stressed Bacillus subtilis Cells Operates by Mfd-Dependent Mutagenic Pathways.

    Science.gov (United States)

    Gómez-Marroquín, Martha; Martin, Holly A; Pepper, Amber; Girard, Mary E; Kidman, Amanda A; Vallin, Carmen; Yasbin, Ronald E; Pedraza-Reyes, Mario; Robleto, Eduardo A

    2016-07-05

    In replication-limited cells of Bacillus subtilis, Mfd is mutagenic at highly transcribed regions, even in the absence of bulky DNA lesions. However, the mechanism leading to increased mutagenesis through Mfd remains currently unknown. Here, we report that Mfd may promote mutagenesis in nutritionally stressed B. subtilis cells by coordinating error-prone repair events mediated by UvrA, MutY and PolI. Using a point-mutated gene conferring leucine auxotrophy as a genetic marker, it was found that the absence of UvrA reduced the Leu⁺ revertants and that a second mutation in mfd reduced mutagenesis further. Moreover, the mfd and polA mutants presented low but similar reversion frequencies compared to the parental strain. These results suggest that Mfd promotes mutagenic events that required the participation of NER pathway and PolI. Remarkably, this Mfd-dependent mutagenic pathway was found to be epistatic onto MutY; however, whereas the MutY-dependent Leu⁺ reversions required Mfd, a direct interaction between these proteins was not apparent. In summary, our results support the concept that Mfd promotes mutagenesis in starved B. subtilis cells by coordinating both known and previously unknown Mfd-associated repair pathways. These mutagenic processes bias the production of genetic diversity towards highly transcribed regions in the genome.

  18. Bacillus subtilis: from soil bacterium to super-secreting cell factory

    Directory of Open Access Journals (Sweden)

    van Dijl Jan Maarten

    2013-01-01

    Full Text Available Abstract The biotechnology industry has become a key element in modern societies. Within this industry, the production of recombinant enzymes and biopharmaceutical proteins is of major importance. The global markets for such recombinant proteins are growing rapidly and, accordingly, there is a continuous need for new production platforms that can deliver protein products in greater yields, with higher quality and at lower costs. This calls for the development of next-generation super-secreting cell factories. One of the microbial cell factories that can meet these challenges is the Gram-positive bacterium Bacillus subtilis, an inhabitant of the upper layers of the soil that has the capacity to secrete proteins in the gram per litre range. The engineering of B. subtilis into a next-generation super-secreting cell factory requires combined Systems and Synthetic Biology approaches. In this way, the bacterial protein secretion machinery can be optimized from the single molecule to the network level while, at the same time, taking into account the balanced use of cellular resources. Although highly ambitious, this is an achievable objective due to recent advances in functional genomics and Systems- and Synthetic Biological analyses of B. subtilis cells.

  19. Enhanced dipicolinic acid production during the stationary phase in Bacillus subtilis by blocking acetoin synthesis.

    Science.gov (United States)

    Toya, Yoshihiro; Hirasawa, Takashi; Ishikawa, Shu; Chumsakul, Onuma; Morimoto, Takuya; Liu, Shenghao; Masuda, Kenta; Kageyama, Yasushi; Ozaki, Katsuya; Ogasawara, Naotake; Shimizu, Hiroshi

    2015-01-01

    Bacterial bio-production during the stationary phase is expected to lead to a high target yield because the cells do not consume the substrate for growth. Bacillus subtilis is widely used for bio-production, but little is known about the metabolism during the stationary phase. In this study, we focused on the dipicolinic acid (DPA) production by B. subtilis and investigated the metabolism. We found that DPA production competes with acetoin synthesis and that acetoin synthesis genes (alsSD) deletion increases DPA productivity by 1.4-fold. The mutant showed interesting features where the glucose uptake was inhibited, whereas the cell density increased by approximately 50%, resulting in similar volumetric glucose consumption to that of the parental strain. The metabolic profiles revealed accumulation of pyruvate, acetyl-CoA, and the TCA cycle intermediates in the alsSD mutant. Our results indicate that alsSD-deleted B. subtilis has potential as an effective host for stationary-phase production of compounds synthesized from these intermediates.

  20. Molecular insights into frataxin-mediated iron supply for heme biosynthesis in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Andreas Mielcarek

    Full Text Available Iron is required as an element to sustain life in all eukaryotes and most bacteria. Although several bacterial iron acquisition strategies have been well explored, little is known about the intracellular trafficking pathways of iron and its entry into the systems for co-factor biogenesis. In this study, we investigated the iron-dependent process of heme maturation in Bacillus subtilis and present, for the first time, structural evidence for the physical interaction of a frataxin homologue (Fra, which is suggested to act as a regulatory component as well as an iron chaperone in different cellular pathways, and a ferrochelatase (HemH, which catalyses the final step of heme b biogenesis. Specific interaction between Fra and HemH was observed upon co-purification from crude cell lysates and, further, by using the recombinant proteins for analytical size-exclusion chromatography. Hydrogen-deuterium exchange experiments identified the landscape of the Fra/HemH interaction interface and revealed Fra as a specific ferrous iron donor for the ferrochelatase HemH. The functional utilisation of the in vitro-generated heme b co-factor upon Fra-mediated iron transfer was confirmed by using the B. subtilis nitric oxide synthase bsNos as a metabolic target enzyme. Complementary mutational analyses confirmed that Fra acts as an essential component for maturation and subsequent targeting of the heme b co-factor, hence representing a key player in the iron-dependent physiology of B. subtilis.

  1. Localization of Components of the RNA-Degrading Machine in Bacillus subtilis

    Science.gov (United States)

    Cascante-Estepa, Nora; Gunka, Katrin; Stülke, Jörg

    2016-01-01

    In bacteria, the control of mRNA stability is crucial to allow rapid adaptation to changing conditions. In most bacteria, RNA degradation is catalyzed by the RNA degradosome, a protein complex composed of endo- and exoribonucleases, RNA helicases, and accessory proteins. In the Gram-positive model organism Bacillus subtilis, the existence of a RNA degradosome assembled around the membrane-bound endoribonuclease RNase Y has been proposed. Here, we have studied the intracellular localization of the protein that have been implicated in the potential B. subtilis RNA degradosome, i.e., polynucleotide phosphorylase, the exoribonucleases J1 and J2, the DEAD-box RNA helicase CshA, and the glycolytic enzymes enolase and phosphofructokinase. Our data suggests that the bulk of these enzymes is located in the cytoplasm. The RNases J1 and J2 as well as the RNA helicase CshA were mainly localized in the peripheral regions of the cell where also the bulk of messenger RNA is localized. We were able to demonstrate active exclusion of these proteins from the transcribing nucleoid. Taken together, our findings suggest that the interactions of the enzymes involved in RNA degradation in B. subtilis are rather transient. PMID:27708634

  2. Control of Initiation of DNA Replication in Bacillus subtilis and Escherichia coli

    Directory of Open Access Journals (Sweden)

    Katie H. Jameson

    2017-01-01

    Full Text Available Initiation of DNA Replication is tightly regulated in all cells since imbalances in chromosomal copy number are deleterious and often lethal. In bacteria such as Bacillus subtilis and Escherichia coli, at the point of cytokinesis, there must be two complete copies of the chromosome to partition into the daughter cells following division at mid-cell during vegetative growth. Under conditions of rapid growth, when the time taken to replicate the chromosome exceeds the doubling time of the cells, there will be multiple initiations per cell cycle and daughter cells will inherit chromosomes that are already undergoing replication. In contrast, cells entering the sporulation pathway in B. subtilis can do so only during a short interval in the cell cycle when there are two, and only two, chromosomes per cell, one destined for the spore and one for the mother cell. Here, we briefly describe the overall process of DNA replication in bacteria before reviewing initiation of DNA replication in detail. The review covers DnaA-directed assembly of the replisome at oriC and the multitude of mechanisms of regulation of initiation, with a focus on the similarities and differences between E. coli and B. subtilis.

  3. Malate metabolism in Bacillus subtilis: distinct roles for three classes of malate-oxidizing enzymes.

    Science.gov (United States)

    Meyer, Frederik M; Stülke, Jörg

    2013-02-01

    The Gram-positive soil bacterium Bacillus subtilis uses glucose and malate as the preferred carbon sources. In the presence of either glucose or malate, the expression of genes and operons for the utilization of secondary carbon sources is subject to carbon catabolite repression. While glucose is a preferred substrate in many organisms from bacteria to man, the factors that contribute to the preference for malate have so far remained elusive. In this work, we have studied the contribution of the different malate-metabolizing enzymes in B. subtilis, and we have elucidated their distinct functions. The malate dehydrogenase and the phosphoenolpyruvate carboxykinase are both essential for malate utilization; they introduce malate into gluconeogenesis. The NADPH-generating malic enzyme YtsJ is important to establish the cellular pools of NADPH for anabolic reactions. Finally, the NADH-generating malic enzymes MaeA, MalS, and MleA are involved in keeping the ATP levels high. Together, this unique array of distinct activities makes malate a preferred carbon source for B. subtilis.

  4. Characterization of ftsZ mutations that render Bacillus subtilis resistant to MinC.

    Directory of Open Access Journals (Sweden)

    Inês Filipa Fernandes de Oliveira

    Full Text Available BACKGROUND: Cell division in Bacillus subtilis occurs precisely at midcell. Positional control of cell division is exerted by two mechanisms: nucleoid occlusion, through Noc, which prevents division through nucleoids, and the Min system, where the combined action of the MinC, D and J proteins prevents formation of the FtsZ ring at cell poles or recently completed division sites. METHODOLOGY/PRINCIPAL FINDINGS: We used a genetic screen to identify mutations in ftsZ that confer resistance to the lethal overexpression of the MinC/MinD division inhibitor. The FtsZ mutants were purified and found to polymerize to a similar or lesser extent as wild type FtsZ, and all mutants displayed reduced GTP hydrolysis activity indicative of a reduced polymerization turnover. We found that even though the mutations conferred in vivo resistance to MinC/D, the purified FtsZ mutants did not display strong resistance to MinC in vitro. CONCLUSIONS/SIGNIFICANCE: Our results show that in B. subtilis, overproduction of MinC can be countered by mutations that alter FtsZ polymerization dynamics. Even though it would be very likely that the FtsZ mutants found depend on other Z-ring stabilizing proteins such as ZapA, FtsA or SepF, we found this not to be the case. This indicates that the cell division process in B. subtilis is extremely robust.

  5. Small regulatory RNA-induced growth rate heterogeneity of Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Ruben A T Mars

    2015-03-01

    Full Text Available Isogenic bacterial populations can consist of cells displaying heterogeneous physiological traits. Small regulatory RNAs (sRNAs could affect this heterogeneity since they act by fine-tuning mRNA or protein levels to coordinate the appropriate cellular behavior. Here we show that the sRNA RnaC/S1022 from the Gram-positive bacterium Bacillus subtilis can suppress exponential growth by modulation of the transcriptional regulator AbrB. Specifically, the post-transcriptional abrB-RnaC/S1022 interaction allows B. subtilis to increase the cell-to-cell variation in AbrB protein levels, despite strong negative autoregulation of the abrB promoter. This behavior is consistent with existing mathematical models of sRNA action, thus suggesting that induction of protein expression noise could be a new general aspect of sRNA regulation. Importantly, we show that the sRNA-induced diversity in AbrB levels generates heterogeneity in growth rates during the exponential growth phase. Based on these findings, we hypothesize that the resulting subpopulations of fast- and slow-growing B. subtilis cells reflect a bet-hedging strategy for enhanced survival of unfavorable conditions.

  6. Enantioselective transesterification of glycidol catalysed by a novel lipase expressed from Bacillus subtilis.

    Science.gov (United States)

    Wang, Lei; Tai, Jian-Dong; Wang, Ren; Xun, Er-Na; Wei, Xiao-Fei; Wang, Lei; Wang, Zhi

    2010-05-10

    A novel plasmid (pBSR2) was constructed by incorporating a strong lipase promoter and a terminator into the original pBD64. The lipase gene from Bacillus subtilis strain IFFI10210 was cloned into the plasmid pBSR2 and transformed into B. subtilis A.S.1.1655 to obtain an overexpression strain. The recombinant lipase [BSL2 (B. subtilis lipase 2)] has been expressed from the novel constructed strain and used in kinetic resolution of glycidol through enantioselective transesterification. The effects of reaction conditions on the activity as well as enantioselectivity were investigated. BSL2 showed a satisfying enantioselectivity (E>30) under the optimum conditions [acyl donor: vinyl butyrate; the mole ratio of vinyl butyrate to glycidol was 3:1; organic medium: 1,2-dichloroethane with water activity (a(w))=0.33; temperature 40 degrees C]. The remaining (R)-glycidol with a high enantiomeric purity [ee (enantiomeric excess) >99%] could be obtained when the conversion was approx. 60%. The results clearly show a good potential for industrial application of BSL2 in the resolution of glycidol through enantioselective transesterification.

  7. MstX and a putative potassium channel facilitate biofilm formation in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Matthew E Lundberg

    Full Text Available Biofilms constitute the predominant form of microbial life and a potent reservoir for innate antibiotic resistance in systemic infections. In the spore-forming bacterium Bacillus subtilis, the transition from a planktonic to sessile state is mediated by mutually exclusive regulatory pathways controlling the expression of genes required for flagellum or biofilm formation. Here, we identify mstX and yugO as novel regulators of biofilm formation in B. subtilis. We show that expression of mstX and the downstream putative K+ efflux channel, yugO, is necessary for biofilm development in B. subtilis, and that overexpression of mstX induces biofilm assembly. Transcription of the mstX-yugO operon is under the negative regulation of SinR, a transcription factor that governs the switch between planktonic and sessile states. Furthermore, mstX regulates the activity of Spo0A through a positive autoregulatory loop involving KinC, a histidine kinase that is activated by potassium leakage. The addition of potassium abrogated mstX-mediated biofilm formation. Our findings expand the role of Spo0A and potassium homeostasis in the regulation of bacterial development.

  8. Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production.

    Science.gov (United States)

    Stahmann, K P; Revuelta, J L; Seulberger, H

    2000-05-01

    Chemical riboflavin production, successfully used for decades, is in the course of being replaced by microbial processes. These promise to save half the costs, reduce waste and energy requirements, and use renewable resources like sugar or plant oil. Three microorganisms are currently in use for industrial riboflavin production. The hemiascomycetes Ashbya gossypii, a filamentous fungus, and Candida famata, a yeast, are naturally occurring overproducers of this vitamin. To obtain riboflavin production with the gram-positive bacterium Bacillus subtilis requires at least the deregulation of purine synthesis and a mutation in a flavokinase/FAD-synthetase. It is common to all three organisms that riboflavin production is recognizable by the yellow color of the colonies. This is an important tool for the screening of improved mutants. Antimetabolites like itaconate, which inhibits the isocitrate lyase in A. gossypii, tubercidin, which inhibits purine biosynthesis in C. famata, or roseoflavin, a structural analog of riboflavin used for B. subtilis, have been applied successfully for mutant selections. The production of riboflavin by the two fungi seems to be limited by precursor supply, as was concluded from feeding and gene-overexpression experiments. Although flux studies in B. subtilis revealed an increase both in maintenance metabolism and in the oxidative part of the pentose phosphate pathway, the major limitation there seems to be the riboflavin pathway. Multiple copies of the rib genes and promoter replacements are necessary to achieve competitive productivity.

  9. Effect of the derivatives of andrographolide on the morphology of Bacillus subtilis.

    Science.gov (United States)

    Aromdee, Chantana; Sriubolmas, Nongluksna; Wiyakrutta, Suthep; Suebsasna, Supawadee; Khunkitti, Watcharee

    2011-01-01

    Andrographis paniculata has been reported to have antiviral, antipyretic and anticancer activities. Andrographolide, an ent-labdane diterpene, is an active constituent in this plant. In this study, andrographolide (1) and its natural derivative 14-deoxy-11,12-didehydroandrographolide (2) and 5 other semisynthetic derivatives were tested for their activity against Gram-positive and Gram-negative bacteria and Candida albicans. Only derivatives bearing a 14-acetyl group showed activity, and this activity was only against Gram-positive bacteria. 14-Acetylandrographolide showed the highest potency against Bacillus subtilis; the other 14-acetylandrographolides with additional substitution at the 3- and 19-hydroxyl groups showed lower activity against Gram-positive bacteria. The morphology of B. subtilis after being treated with 14-acetylandrographolide was investigated with TEM. This is the first report on 14-acetylandrographolide's quantified antibacterial activity, and the crucial functional group of this ent-labdane that plays an important role in perturbing the morphogenesis of B. subtilis leading to cell death.

  10. Bacillus subtilis attachment to Aspergillus niger hyphae results in mutually altered metabolism.

    Science.gov (United States)

    Benoit, Isabelle; van den Esker, Marielle H; Patyshakuliyeva, Aleksandrina; Mattern, Derek J; Blei, Felix; Zhou, Miaomiao; Dijksterhuis, Jan; Brakhage, Axel A; Kuipers, Oscar P; de Vries, Ronald P; Kovács, Ákos T

    2015-06-01

    Interaction between microbes affects the growth, metabolism and differentiation of members of the microbial community. While direct and indirect competition, like antagonism and nutrient consumption have a negative effect on the interacting members of the population, microbes have also evolved in nature not only to fight, but in some cases to adapt to or support each other, while increasing the fitness of the community. The presence of bacteria and fungi in soil results in various interactions including mutualism. Bacilli attach to the plant root and form complex communities in the rhizosphere. Bacillus subtilis, when grown in the presence of Aspergillus niger, interacts similarly with the fungus, by attaching and growing on the hyphae. Based on data obtained in a dual transcriptome experiment, we suggest that both fungi and bacteria alter their metabolism during this interaction. Interestingly, the transcription of genes related to the antifungal and putative antibacterial defence mechanism of B. subtilis and A. niger, respectively, are decreased upon attachment of bacteria to the mycelia. Analysis of the culture supernatant suggests that surfactin production by B. subtilis was reduced when the bacterium was co-cultivated with the fungus. Our experiments provide new insights into the interaction between a bacterium and a fungus.

  11. Isolation and characterization of atrazine mineralizing Bacillus subtilis strain HB-6.

    Directory of Open Access Journals (Sweden)

    Jinhua Wang

    Full Text Available Atrazine is a widely used herbicide with great environmental concern due to its high potential to contaminate soil and waters. An atrazine-degrading bacterial strain HB-6 was isolated from industrial wastewater and the 16S rRNA gene sequencing identified HB-6 as a Bacillus subtilis. PCR assays indicated that HB-6 contained atrazine-degrading genes trzN, atzB and atzC. The strain HB-6 was capable of utilizing atrazine and cyanuric acid as a sole nitrogen source for growth and even cleaved the s-triazine ring and mineralized atrazine. The strain demonstrated a very high efficiency of atrazine biodegradation with a broad optimum pH and temperature ranges and could be enhanced by cooperating with other bacteria, suggesting its huge potential for remediation of atrazine-contaminated sites. To our knowledge, there are few Bacillus subtilis strains reported that can mineralize atrazine, therefore, the present work might provide some new insights on atrazine remediation.

  12. Isolation and characterization of atrazine mineralizing Bacillus subtilis strain HB-6.

    Science.gov (United States)

    Wang, Jinhua; Zhu, Lusheng; Wang, Qi; Wang, Jun; Xie, Hui

    2014-01-01

    Atrazine is a widely used herbicide with great environmental concern due to its high potential to contaminate soil and waters. An atrazine-degrading bacterial strain HB-6 was isolated from industrial wastewater and the 16S rRNA gene sequencing identified HB-6 as a Bacillus subtilis. PCR assays indicated that HB-6 contained atrazine-degrading genes trzN, atzB and atzC. The strain HB-6 was capable of utilizing atrazine and cyanuric acid as a sole nitrogen source for growth and even cleaved the s-triazine ring and mineralized atrazine. The strain demonstrated a very high efficiency of atrazine biodegradation with a broad optimum pH and temperature ranges and could be enhanced by cooperating with other bacteria, suggesting its huge potential for remediation of atrazine-contaminated sites. To our knowledge, there are few Bacillus subtilis strains reported that can mineralize atrazine, therefore, the present work might provide some new insights on atrazine remediation.

  13. Simulation of Bacillus subtilis biofilm growth on agar plate by diffusion-reaction based continuum model

    Science.gov (United States)

    Zhang, Xianlong; Wang, Xiaoling; Nie, Kai; Li, Mingpeng; Sun, Qingping

    2016-08-01

    Various species of bacteria form highly organized spatially-structured aggregates known as biofilms. To understand how microenvironments impact biofilm growth dynamics, we propose a diffusion-reaction continuum model to simulate the formation of Bacillus subtilis biofilm on an agar plate. The extended finite element method combined with level set method are employed to perform the simulation, numerical results show the quantitative relationship between colony morphologies and nutrient depletion over time. Considering that the production of polysaccharide in wild-type cells may enhance biofilm spreading on the agar plate, we inoculate mutant colony incapable of producing polysaccharide to verify our results. Predictions of the glutamate source biofilm’s shape parameters agree with the experimental mutant colony better than that of glycerol source biofilm, suggesting that glutamate is rate limiting nutrient for Bacillus subtilis biofilm growth on agar plate, and the diffusion-limited is a better description to the experiment. In addition, we find that the diffusion time scale is of the same magnitude as growth process, and the common-employed quasi-steady approximation is not applicable here.

  14. Induced sensitivity of Bacillus subtilis colony morphology to mechanical media compression

    Directory of Open Access Journals (Sweden)

    Jessica K. Polka

    2014-09-01

    Full Text Available Bacteria from several taxa, including Kurthia zopfii, Myxococcus xanthus, and Bacillus mycoides, have been reported to align growth of their colonies to small features on the surface of solid media, including anisotropies created by compression. While the function of this phenomenon is unclear, it may help organisms navigate on solid phases, such as soil. The origin of this behavior is also unknown: it may be biological (that is, dependent on components that sense the environment and regulate growth accordingly or merely physical.Here we show that B. subtilis, an organism that typically does not respond to media compression, can be induced to do so with two simple and synergistic perturbations: a mutation that maintains cells in the swarming (chained state, and the addition of EDTA to the growth media, which further increases chain length. EDTA apparently increases chain length by inducing defects in cell separation, as the treatment has only marginal effects on the length of individual cells.These results lead us to three conclusions. First, the wealth of genetic tools available to B. subtilis will provide a new, tractable chassis for engineering compression sensitive organisms. Second, the sensitivity of colony morphology to media compression in Bacillus can be modulated by altering a simple physical property of rod-shaped cells. And third, colony morphology under compression holds promise as a rapid, simple, and low-cost way to screen for changes in the length of rod-shaped cells or chains thereof.

  15. Dietary mannan oligosaccharide and Bacillus subtilis in diets for Nile tilapia (Oreochromis niloticus

    Directory of Open Access Journals (Sweden)

    Rafael Vieira de Azevedo

    2016-11-01

    Full Text Available A six week study was conducted to investigate the supplementation of prebiotic (Mannan oligosaccharide – MOS, from yeast Saccharomyces cerevisiae, probiotic (Bacillus subtilis – BS, C-3102 strain and their combination in diets for Nile tilapia. 192 fishes (4.03 ± 0.28 g were distributed into 16 tanks (40-L, in a completely randomized design (n=4. The following treatments were evaluated: control; prebiotic - 2 g MOS kg-1; probiotic - 2 g BS kg-1 and synbiotic - 1 g MOS kg-1 plus 1 g BS kg-1. Fishes fed diets pre-, pro- and synbiotic supplemented performed better in average daily gain, feed conversion rate, specific growth rate, protein efficiency ratio, carcass yield, total and standard length and body height than those maintained on control diets. The probiotic supplementation resulted in higher villus height and intestinal perimeter ratio than the control diet while the pre- and synbiotic supplementation in diets resulted in higher intestinal perimeter ratio. Carcass protein and ether extract were, respectively, higher and lower in fish fed synbiotic diets than other fish. The results of this study indicated that the mannan oligosaccharide and Bacillus subtilis supplementation, isolated or combined (synbiotic, could improve growth, body index, intestine morphometry and carcass composition in Nile tilapia.

  16. Point-cycle bistability and stochasticity in a regulatory circuit for Bacillus subtilis competence.

    Science.gov (United States)

    Xi, Hongguang; Duan, Lixia; Turcotte, Marc

    2013-08-01

    Bacillus subtilis is a very well-studied organism in biology. Recent results show that an evolutionary plausible alternative competence regulation circuit for this bacterium, despite presenting equivalent functionality, exhibits physiologically important differences. Thus, it is not a priori clear why Nature only selects a specific gene regulation circuit other than a plethora of equivalent others. Here, we use simulations to study this question further. Based on the wild-type Bacillus subtilis circuit, we add a positive autoregulation feedback loop to the intermediate gene comS. We use bifurcation theory to study the dynamical features of the hypothetical gene circuit versus the feedback strength of the added loop, and we rely on stochastic simulations to perform in silico experiments. We discover the existence of a bistable system: a stable limit cycle and a stable fixed point separated by an unstable limit cycle with a varying height of underlying stochastic potential. This structure is absent from the wild type. The coexistence of the unstable limit cycle with stochastic noise endows the circuit with an ability to confine, prevent or switch between its two stable attractors.

  17. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis.

    Science.gov (United States)

    Ongena, Marc; Jacques, Philippe; Touré, Yacine; Destain, Jacqueline; Jabrane, Abdelhamid; Thonart, Philippe

    2005-11-01

    In this work, the potential of Bacillus subtilis strain M4 at protecting plants against fungal diseases was demonstrated in different pathosystems. We provide evidence for the role of secreted lipopeptides, and more particularly of fengycins, in the protective effect afforded by the strain against damping-off of bean seedlings caused by Pythium ultimum and against gray mold of apple in post-harvest disease. This role was demonstrated by the strong biocontrol activity of lipopeptide-enriched extracts and through the detection of inhibitory quantities of fengycins in infected tissues. Beside such a direct antagonism of the pathogen, we show that root pre-inoculation with M4 enabled the host plant to react more efficiently to subsequent pathogen infection on leaves. Fengycins could also be involved in this systemic resistance-eliciting effect of strain M4, as these molecules may induce the synthesis of plant phenolics involved in or derived from the defense-related phenylpropanoid metabolism. Much remains to be discovered about the mechanisms by which Bacillus spp suppress disease. Through this study on strain M4, we reinforce the interest in B. subtilis as a pathogen antagonist and plant defense-inducing agent. The secretion of cyclic fengycin-type lipopeptides may be tightly related to the expression of these two biocontrol traits.

  18. Growth Inhibition of Colletotrichum gloeosporioides by Trichoderma harzianum, Trichoderma koningii, Bacillus subtilis and Pseudomonas fluorescens

    Directory of Open Access Journals (Sweden)

    Febrilia Nur ‘Aini

    2015-11-01

    Full Text Available Colletotrichum  gloeosporioides is  a  disease  which  can  cause  significant yield  loss  of  cocoa.  The  objective  of  this  research  is  to  investigate  the  abilityof  antagonist  microbes,  Trichoderma  harzianum,  Trichoderma  koningii,  Bacillus subtilis  and Pseudomonas  fluorescens  in  controlling  gloeosporioides  biologically  in  laboratorium  condition.  The  experiment  was  carried  out  in  Crop  Protection  Laboratory,  Indonesian  Coffee  and  Cocoa  Research  Institute.  Results of  this  research  showed  that  antagonist  fungi,  T.  harzianum,  T.  koningii,  had  a stronger  ability  in  inhibiting  growth  of  C.  gloeosporioides about  83%  compared  to  the  ability  of  antagonist  bacteria,  B.  subtilis  and P.  fluorescens,  only about  49%. Key words: Growth  inhibition,  Colletotrichum  gloeosporioides,  Trichoderma  harzianum, Trichoderma koningii,  Bacillus subtilis, Pseudomonas fluorescens.

  19. Poly-γ-Glutamic Acids Contribute to Biofilm Formation and Plant Root Colonization in Selected Environmental Isolates of Bacillus subtilis.

    Science.gov (United States)

    Yu, Yiyang; Yan, Fang; Chen, Yun; Jin, Christopher; Guo, Jian-Hua; Chai, Yunrong

    2016-01-01

    Bacillus subtilis is long known to produce poly-γ-glutamic acids (γ-PGA) as one of the major secreted polymeric substances. In B. subtilis, the regulation of γ-PGA production and its physiological role are still unclear. B. subtilis is also capable of forming structurally complex multicellular communities, or biofilms, in which an extracellular matrix consisting of secreted proteins and polysaccharides holds individual cells together. Biofilms were shown to facilitate B. subtilis-plant interactions. In this study, we show that different environmental isolates of B. subtilis, all capable of forming biofilms, vary significantly in γ-PGA production. This is possibly due to differential regulation of γ-PGA biosynthesis genes. In many of those environmental isolates, γ-PGA seems to contribute to robustness and complex morphology of the colony biofilms, suggesting a role of γ-PGA in biofilm formation. Our evidence further shows that in selected B. subtilis strains, γ-PGA also plays a role in root colonization by the bacteria, pinpointing a possible function of γ-PGA in B. subtilis-plant interactions. Finally, we found that several pathways co-regulate both γ-PGA biosynthesis genes and genes for the biofilm matrix in B. subtilis, but in an opposing fashion. We discussed potential biological significance of that.

  20. Isolation and Identification of Lipopeptides Produced by Bacillus subtilis fmbJ%Bacillus subtilis fmbJ脂肽类抗菌物质的分离和鉴定

    Institute of Scientific and Technical Information of China (English)

    别小妹; 吕凤霞; 陆兆新; 黄现青; 沈娟

    2006-01-01

    Bacillus subtilis fmbJ脂肽类抗菌物质的分离和鉴定进行了系统研究.通过HPLC层析确定Bacillus subtilis fmbJ抗菌物质由多种组分构成,其中含有保留时间与surfactin相似的成分.通过TLC层析和原位酸解确定Bacillus subtilis fmbJ抗菌物质含有两个具有闭合肽键类的物质,其中之一为迁移率Rf与标样surfactin非常相近的组分.通过ESI-MS分析检测到Bacillus subtilis fmbJ抗菌物质含有分子量与fengicin相同的m/z1449.9、m/z1463.8、m/z1477.8、m/z1491.9和m/z1505.9五种同系物,和分子量与surfactin相同的m/z1008.8、m/z1022.8和m/z1036.8三种同系物.

  1. Isolation of Bacillus subtilis as indicator in the disinfection of residual water by means of gamma radiation; Aislamiento de Bacillus subtilis como indicador en la desinfeccion de aguas residuales mediante radiacion gamma

    Energy Technology Data Exchange (ETDEWEB)

    Mata J, M.; Colin C, A. [Facultad de Quimica, UAEM, Paseo Colon esq. Tollocan s/n, Toluca, 50000 Estado de Mexico (Mexico); Lopez V, H.; Brena V, M.; Carrasco A, H.; Pavon R, S. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    In the attempt to get more alternatives of disinfection of residual water, the Bacillus subtilis was isolated by means of gamma radiation as a bio indicator of disinfection since it turned out to be resistant to the 5 KGy dose, comparing this one with other usual microorganisms as biondicators like E. coli and S typhimurium which turn out more sensitive to such dose. (Author)

  2. Bacillus subtilis is a Potential Degrader of Pyrene and Benzo[a]pyrene

    Directory of Open Access Journals (Sweden)

    Lynette Ekunwe

    2005-08-01

    Full Text Available Polycyclic Aromatic Hydrocarbons (PAHs are a group of compounds that pose many health threats to human and animal life. They occur in nature as a result of incomplete combustion of organic matter, as well as from many anthropogenic sources including cigarette smoke and automobile exhaust. PAHs have been reported to cause liver damage, red blood cell damage and a variety of cancers. Because of this, methods to reduce the amount of PAHs in the environment are continuously being sought. The purpose of this study was to find soil bacteria capable of degrading high molecular weight PAHs, such as pyrene (Pyr and benzo[a]pyrene (BaP, which contain more than three benzene rings and so persist in the environment. Bacillus subtilis, identified by fatty acid methyl ester (FAME analysis, was isolated from PAH contaminated soil. Because it grew in the presence of 33μg/ml each of pyrene, 1-AP and 1-HP, its biodegradation capabilities were assessed. It was found that after a four-day incubation period at 30oC in 20μg/ml pyrene or benzo[a]pyrene, B. subtilis was able to transform approximately 40% and 50% pyrene and benzo[a]pyrene, respectively. This is the first report implicating B. subtilis in PAH degradation. Whether or not the intermediates resulting from the transformation are more toxic than their parent compounds, and whether B. subtilis is capable of mineralizing pyrene or benzo[a]pyrene to carbon dioxide and water, remains to be evaluated.

  3. Effect of nanocomposite packaging containing ZnO on growth of Bacillus subtilis and Enterobacter aerogenes

    Energy Technology Data Exchange (ETDEWEB)

    Esmailzadeh, Hakimeh [National Nutrition and Food Technology Research Institute, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Sangpour, Parvaneh, E-mail: Sangpour@merc.ac.ir [Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj (Iran, Islamic Republic of); Shahraz, Farzaneh [National Nutrition and Food Technology Research Institute, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Hejazi, Jalal [Department of Biochemistry and Nutrition, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan (Iran, Islamic Republic of); Khaksar, Ramin [National Nutrition and Food Technology Research Institute, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-01-01

    Recent advances in nanotechnology have opened new windows in active food packaging. Nano-sized ZnO is an inexpensive material with potential antimicrobial properties. The aim of the present study is to evaluate the antibacterial effect of low density Polyethylene (LDPE) containing ZnO nanoparticles on Bacillus subtilis and Enterobacter aerogenes. ZnO nanoparticles have been synthesized by facil molten salt method and have been characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM). Nanocomposite films containing 2 and 4 wt.% ZnO nanoparticles were prepared by melt mixing in a twin-screw extruder. The growth of both microorganisms has decreased in the presence of ZnO containing nanocomposites compared with controls. Nanocomposites with 4 wt.% ZnO nanoparticles had stronger antibacterial effect against both bacteria in comparison with the 2 wt.% ZnO containing nanocomposites. B. subtilis as Gram-positive bacteria were more sensitive to ZnO containing nanocomposite films compared with E. aerogenes as Gram-negative bacteria. There were no significant differences between the migration of Zn ions from 2 and 4 wt.% ZnO containing nanocomposites and the released Zn ions were not significantly increased in both groups after 14 days compared with the first. Regarding the considerable antibacterial effects of ZnO nanoparticles, their application in active food packaging can be a suitable solution for extending the shelf life of food. - Highlights: • ZnO containing nanocomposites decreased growth of both B. subtilis and E. aerogenes. • B. subtilis was more sensitive to ZnO containing nanocomposites. • The migration of Zn ions from nanocomposites was negligible.

  4. Promoter Screening from Bacillus subtilis in Various Conditions Hunting for Synthetic Biology and Industrial Applications.

    Directory of Open Access Journals (Sweden)

    Yafeng Song

    Full Text Available The use of Bacillus subtilis in synthetic biology and metabolic engineering is highly desirable to take advantage of the unique metabolic pathways present in this organism. To do this, an evaluation of B. subtilis' intrinsic biological parts is required to determine the best strategies to accurately regulate metabolic circuits and expression of target proteins. The strengths of promoter candidates were evaluated by measuring relative fluorescence units of a green fluorescent protein reporter, integrated into B. subtilis' chromosome. A total of 84 predicted promoter sequences located upstream of different classes of proteins including heat shock proteins, cell-envelope proteins, and proteins resistant against toxic metals (based on similarity and other kinds of genes were tested. The expression levels measured ranged from 0.0023 to 4.53-fold of the activity of the well-characterized strong promoter P43. No significant shifts were observed when strains, carrying different promoter candidates, were cultured at high temperature or in media with ethanol, but some strains showed increased activity when cultured under high osmotic pressure. Randomly selected promoter candidates were tested and found to activate transcription of thermostable β-galactosidase (bgaB at a similar level, implying the ability of these sequences to function as promoter elements in multiple genetic contexts. In addition, selected promoters elevated the final production of both cytoplasmic bgaB and secreted protein α-amylase to about fourfold and twofold, respectively. The generated data allows a deeper understanding of B. subtilis' metabolism and will facilitate future work to develop this organism for synthetic biology.

  5. Rational improvement of the engineered isobutanol-producing Bacillus subtilis by elementary mode analysis

    Directory of Open Access Journals (Sweden)

    Li Shanshan

    2012-08-01

    Full Text Available Abstract Background Isobutanol is considered as a leading candidate for the replacement of current fossil fuels, and expected to be produced biotechnologically. Owing to the valuable features, Bacillus subtilis has been engineered as an isobutanol producer, whereas it needs to be further optimized for more efficient production. Since elementary mode analysis (EMA is a powerful tool for systematical analysis of metabolic network structures and cell metabolism, it might be of great importance in the rational strain improvement. Results Metabolic network of the isobutanol-producing B. subtilis BSUL03 was first constructed for EMA. Considering the actual cellular physiological state, 239 elementary modes (EMs were screened from total 11,342 EMs for potential target prediction. On this basis, lactate dehydrogenase (LDH and pyruvate dehydrogenase complex (PDHC were predicted as the most promising inactivation candidates according to flux flexibility analysis and intracellular flux distribution simulation. Then, the in silico designed mutants were experimentally constructed. The maximal isobutanol yield of the LDH- and PDHC-deficient strain BSUL05 reached 61% of the theoretical value to 0.36 ± 0.02 C-mol isobutanol/C-mol glucose, which was 2.3-fold of BSUL03. Moreover, this mutant produced approximately 70 % more isobutanol to the maximal titer of 5.5 ± 0.3 g/L in fed-batch fermentations. Conclusions EMA was employed as a guiding tool to direct rational improvement of the engineered isobutanol-producing B. subtilis. The consistency between model prediction and experimental results demonstrates the rationality and accuracy of this EMA-based approach for target identification. This network-based rational strain improvement strategy could serve as a promising concept to engineer efficient B. subtilis hosts for isobutanol, as well as other valuable products.

  6. Functional Expression of Enterobacterial O-Polysaccharide Biosynthesis Enzymes in Bacillus subtilis

    Science.gov (United States)

    Schäffer, Christina; Wugeditsch, Thomas; Messner, Paul; Whitfield, Chris

    2002-01-01

    The expression of heterologous bacterial glycosyltransferases is of interest for potential application in the emerging field of carbohydrate engineering in gram-positive organisms. To assess the feasibility of using enzymes from gram-negative bacteria, the functional expression of the genes wbaP (formerly rfbP), wecA (formerly rfe), and wbbO (formerly rfbF) from enterobacterial lipopolysaccharide O-polysaccharide biosynthesis pathways was examined in Bacillus subtilis. WbaP and WecA are initiation enzymes for O-polysaccharide formation, catalyzing the transfer of galactosyl 1-phosphate from UDP-galactose and N-acetylglucosaminyl 1-phosphate from UDP-N-acetylglucosamine, respectively, to undecaprenylphosphate. The WecA product (undecaprenylpyrophosphoryl GlcNAc) is used as an acceptor to which the bifunctional wbbO gene product sequentially adds a galactopyranose and a galactofuranose residue from the corresponding UDP sugars to form a lipid-linked trisaccharide. Genes were cloned into the shuttle vectors pRB374 and pAW10. In B. subtilis hosts, the genes were effectively transcribed under the vegII promoter control of pRB374, but the plasmids were susceptible to rearrangements and deletion. In contrast, pAW10-based constructs, in which genes were cloned downstream of the tet resistance cassette, were stable but yielded lower levels of enzyme activity. In vitro glycosyltransferase assays were performed in Escherichia coli and B. subtilis, using membrane preparations as sources of enzymes and endogenous undecaprenylphosphate as an acceptor. Incorporation of radioactivity from UDP-α-d-14C-sugar into reaction products verified the functionality of WbaP, WecA, and WbbO in either host. Enzyme activities in B. subtilis varied between 20 and 75% of those measured in E. coli. PMID:12324313

  7. Changes in the Acetylome and Succinylome of Bacillus subtilis in Response to Carbon Source.

    Directory of Open Access Journals (Sweden)

    Saori Kosono

    Full Text Available Lysine residues can be post-translationally modified by various acyl modifications in bacteria and eukarya. Here, we showed that two major acyl modifications, acetylation and succinylation, were changed in response to the carbon source in the Gram-positive model bacterium Bacillus subtilis. Acetylation was more common when the cells were grown on glucose, glycerol, or pyruvate, whereas succinylation was upregulated when the cells were grown on citrate, reflecting the metabolic states that preferentially produce acetyl-CoA and succinyl-CoA, respectively. To identify and quantify changes in acetylation and succinylation in response to the carbon source, we performed a stable isotope labeling by amino acids in cell culture (SILAC-based quantitative proteomic analysis of cells grown on glucose or citrate. We identified 629 acetylated proteins with 1355 unique acetylation sites and 204 succinylated proteins with 327 unique succinylation sites. Acetylation targeted different metabolic pathways under the two growth conditions: branched-chain amino acid biosynthesis and purine metabolism in glucose and the citrate cycle in citrate. Succinylation preferentially targeted the citrate cycle in citrate. Acetylation and succinylation mostly targeted different lysine residues and showed a preference for different residues surrounding the modification sites, suggesting that the two modifications may depend on different factors such as characteristics of acyl-group donors, molecular environment of the lysine substrate, and/or the modifying enzymes. Changes in acetylation and succinylation were observed in proteins involved in central carbon metabolism and in components of the transcription and translation machineries, such as RNA polymerase and the ribosome. Mutations that modulate protein acylation affected B. subtilis growth. A mutation in acetate kinase (ackA increased the global acetylation level, suggesting that acetyl phosphate-dependent acetylation is

  8. Direct Comparison of Physical Properties of Bacillus subtilis NCIB 3610 and B-1 Biofilms.

    Science.gov (United States)

    Kesel, Sara; Grumbein, Stefan; Gümperlein, Ina; Tallawi, Marwa; Marel, Anna-Kristina; Lieleg, Oliver; Opitz, Madeleine

    2016-04-01

    Many bacteria form surface-attached communities known as biofilms. Due to the extreme resistance of these bacterial biofilms to antibiotics and mechanical stresses, biofilms are of growing interest not only in microbiology but also in medicine and industry. Previous studies have determined the extracellular polymeric substances present in the matrix of biofilms formed by Bacillus subtilis NCIB 3610. However, studies on the physical properties of biofilms formed by this strain are just emerging. In particular, quantitative data on the contributions of biofilm matrix biopolymers to these physical properties are lacking. Here, we quantitatively investigated three physical properties of B. subtilis NCIB 3610 biofilms: the surface roughness and stiffness and the bulk viscoelasticity of these biofilms. We show how specific biomolecules constituting the biofilm matrix formed by this strain contribute to those biofilm properties. In particular, we demonstrate that the surface roughness and surface elasticity of 1-day-old NCIB 3610 biofilms are strongly affected by the surface layer protein BslA. For a second strain,B. subtilis B-1, which forms biofilms containing mainly γ-polyglutamate, we found significantly different physical biofilm properties that are also differently affected by the commonly used antibacterial agent ethanol. We show that B-1 biofilms are protected from ethanol-induced changes in the biofilm's stiffness and that this protective effect can be transferred to NCIB 3610 biofilms by the sole addition of γ-polyglutamate to growing NCIB 3610 biofilms. Together, our results demonstrate the importance of specific biofilm matrix components for the distinct physical properties of B. subtilis biofilms.

  9. Effects of the electrolytic treatment on Bacillus subtilis Efeito do tratamento eletrolítico em Bacillus subtis

    Directory of Open Access Journals (Sweden)

    Rodolfo Tolentino-Bisneto

    2003-11-01

    Full Text Available Conventional processes of water disinfection can generate toxic composites. It is the case of the trihalomethanes (carcinogenic formed in the contact of chlorine with organic substances present in the water. The electrolytic treatment can be a substitute for the chlorination process without the need for addition of chemical substances to the process. The effect of the electrolytic treatment using carbon cathode on the viability of the microorganism Bacillus subtilis was tested to determine the death process. By means of electronic microscopy, it was observed that the main cause of the microorganism's death was the cellular lysis due to the electroporation in the cell membrane.Processos convencionais de desinfecção de águas podem gerar compostos tóxicos. Esse é o caso dos trialometanos formados na reação do cloro com compostos orgânicos presentes na água. O tratamento eletrolítico pode ser um substituto à cloração com vantagem de não requer a adição de nenhum composto na água. O efeito do tratamento eletrolítico, utilizando eletrodos de carbono, na viabilidade de Bacillus subtilis foi testado para se determinar o mecanismo de morte. Através de microscopia eletrônica, foi possível evidenciar que a morte do microrganismo se deu pela lise celular, provavelmente provocada pela eletroporação irreversível da membrana celular.

  10. Effect of Bacillus licheniformis and Bacillus subtilis supplementation of ewe's feed on sheep milk production and young lamb mortality.

    Science.gov (United States)

    Kritas, S K; Govaris, A; Christodoulopoulos, G; Burriel, A R

    2006-05-01

    The purpose of this pilot study was to evaluate under field conditions the effect of a probiotic containing Bacillus licheniformis and Bacillus subtilis on young lamb mortality and sheep milk production when administered in the late pregnancy and lactation feed of ewes. In a sheep farm, two groups of milking ewes with identical genetic material, management, nutrition, health status and similar production characteristics were formed. One group (46 ewes) served as control, while the other one (48 ewes) served as a probiotic-treated group. Both groups of ewes received a similar feeding regiment, but the ewes of the second group were additionally offered a probiotic product containing B. licheniformis and B. subtilis (BioPlus 2B, Chr. Hansen, Denmark) at the approximate dose of 2.56 x 10(9) viable spores per ewe per day. Lamb mortality during the 1.5 months suckling period, and milk yield during the 2 months of milk collection for commercial purposes have been recorded. In the non-treated control group, 13.1% mortality was observed versus 7.8% in the probiotic-treated group (P = 0.33), with mortality being mainly due to diarrhoea. Microbiological examination of diarrhoeic faeces from some of the dead lambs in both groups revealed the presence of Escherichia coli. The average daily milk yield per ewe was significantly lower in the control group (0.80 l) than that in the probiotic-treated group (0.93 l) (P milk in ewes that received probiotics was significantly (P milk yields, fat and protein content.

  11. Isolation, evaluation and characterization of Bacillus subtilis from cotton rhizospheric soil with biocontrol activity against Fusarium oxysporum.

    Science.gov (United States)

    Gajbhiye, Archana; Rai, Alok R; Meshram, Sudhir U; Dongre, A B

    2010-07-01

    Present investigation is based on the isolation of Bacillus subtilis from cotton rhizosphere and their evaluation as biocontrol agent against Fusarium oxysporum. The production of extracellular hydrolytic enzyme was studied for determining the antagonism. 43% of 21 isolates were identified under the B. subtilis group on the basis of biochemical characterization. 38% isolates showed competitive activity against Fusarium oxysporum and exhibit more than 50% mycelial inhibition in dual culture bioassay. The pot assay of cotton by seed treatment and soil amendment technique under green house condition showed the competent activity of the isolates in preventing the wilting of cotton seedlings due to F. oxysporum infection. SVI values of 30 day old seedlings indicated that the soil inoculation with B. subtilis BP-2 and seed treatment with B. subtilis BP-9 significantly promoted the growth of cotton seedlings. RAPD profiling revealed the diversity in the Bacillus subtilis group, ranging from 10 to 32%. The discriminative pattern among the isolates belonging to the same species was validated by 16S rDNA partial sequencing which identified them into four different strains of B. subtilis.

  12. Bacillus subtilis Two-Component System Sensory Kinase DegS Is Regulated by Serine Phosphorylation in Its Input Domain

    DEFF Research Database (Denmark)

    Jers, Carsten; Kobir, Ahasanul; Søndergaard, Elsebeth Oline;

    2011-01-01

    Bacillus subtilis two-component system DegS/U is well known for the complexity of its regulation. The cytosolic sensory kinase DegS does not receive a single predominant input signal like most two-component kinases, instead it integrates a wide array of metabolic inputs that modulate its activity...

  13. The ability of the biological control agent Bacillus subtilis, strain BB, to colonise vegetable brassicas endophytically following seed inoculation

    NARCIS (Netherlands)

    Wulff, E.G.; Vuurde, van J.W.L.; Hockenhull, J.

    2003-01-01

    The ability of Bacillus subtilis, strain BB, to colonise cabbage seedlings endophytically was examined following seed inoculation. Strain BB was recovered from different plant parts including leaves (cotyledons), stem (hypocotyl) and roots. While high bacterial populations persisted in the roots and

  14. The extraordinary specificity of xanthine phosphoribosyltransferase from Bacillus subtilis elucidated by reaction kinetics, ligand binding, and crystallography

    DEFF Research Database (Denmark)

    Arent, Susan; Kadziola, Anders; Larsen, Sine;

    2006-01-01

    Xanthine phosphoribosyltransferase (XPRTase) from Bacillus subtilis is a representative of the highly xanthine specific XPRTases found in Gram-positive bacteria. These XPRTases constitute a distinct subclass of 6-oxopurine PRTases, which deviate strongly from the major class of H(X)GPRTases with ...

  15. The Bacillus subtilis transition state regulator AbrB binds to the-35 promoter region of comK

    NARCIS (Netherlands)

    Hamoen, LW; Kausche, D; Marahiel, MA; van Sinderen, D; Venema, G; Serror, P

    2003-01-01

    Genetic competence is a differentiation process initiated by Bacillus subtilis as a result of nutritional deprivation, and is controlled by a complex signal transduction cascade. The promoter of comK, encoding the competence transcription factor, is regulated by at least four different transcription

  16. Heterologous Gene Expression in Lactococcus lactis subsp. lactis : Synthesis, Secretion, and Processing of the Bacillus subtilis Neutral Protease

    NARCIS (Netherlands)

    Guchte, Maarten van de; Kodde, Jan; Vossen, Jos M.B.M. van der; Kok, Jan; Venema, Gerard

    1990-01-01

    The Bacillus subtilis nprE gene lacking its own promoter sequence was inserted in the lactococcal expression vector pMG36e. Upon introduction of the recombinant plasmid into Lactococcus lactis subsp. lactis strain MG1363, neutral protease activity could be visualized by the appearance of large clear

  17. Influence of ad Libitum Feeding of Piglets With Bacillus Subtilis Fermented Liquid Feed on Gut Flora, Luminal Contents and Health

    Science.gov (United States)

    He, Yuyong; Mao, Chunxia; Wen, Hong; Chen, Zhiyu; Lai, Tao; Li, Lingyu; Lu, Wei; Wu, Huadong

    2017-01-01

    Some scholars caution that long-term ad libitum feeding with probiotic fermented food poses potential health risks to baby animals. We conducted a feeding experiment to investigate the influence of ad libitum feeding of pre-and post-weaned piglets with a Bacillus subtilis fermented diet on the gut microbiome, gut metabolomic profiles, bile acid metabolism, proinflammatory cytokines and faecal consistency. Compared with piglets fed a Bacillus subtilis-supplemented pellet diet, piglets fed the Bacillus subtilis fermented liquid diet had lower intestinal bacterial diversity (P > 0.05), higher intestinal fungal diversity (P > 0.05), more Firmicutes (P > 0.05), fewer Bacteroidetes, Actinobacteria and Proteobacteria (P > 0.05), higher concentrations of 3-hydroxypropionic acid (P acid (P lactic acid (P acid (P > 0.05) and lithocholic acid (P  0.05). The data show that ad libitum feeding of piglets with a Bacillus subtilis fermented liquid diet during the suckling and early post-weaning periods promotes the growth of lactic acid bacteria, bile salt hydrolase-active bacteria and 7a-dehydroxylase-active bacteria in the intestinal lumen; disturbs the normal production of lactic acid, orotic acid and unconjugated bile acids; and increases circulating interleukin-6 levels and diarrhoea incidence. PMID:28291252

  18. Autoregulation of subtilin biosynthesis in Bacillus subtilis: the role of the spa-box in subtilin-responsive promoters

    NARCIS (Netherlands)

    Kleerebezem, M.; Bongers, R.; Rutten, G.; Vos, de W.M.; Kuipers, O.P.

    2004-01-01

    The production of the type 1 antimicrobial peptide (AMP) subtilin by Bacillus subtilis is regulated in a cell-density-dependent manner [Kleerebezem M, de Vos WM, Kuipers OP. The lantibiotics nisin and subtilin act as extracellular regulators of their own biosynthesis. In: Dunny GM, Winans SC, editor

  19. Characterization of the replication region of the Bacillus subtilis plasmid pLS20 : a novel type of replicon

    NARCIS (Netherlands)

    Meijer, WJJ; De Boer, AJ; van Tongeren, S; Venema, G; Bron, S

    1995-01-01

    A 3.1 kb fragment of the large (~55 kb) Bacillus subtilis plasmid pLS20 containing all the information for autonomous replication was cloned and sequenced. In contrast to the parental plasmid, derived minireplicons were unstably maintained. Using deletion analysis the fragment essential and sufficie

  20. Transcriptome analysis of sorbic acid-stressed Bacillus subtilis reveals a nutrient limitation response and indicates plasma membrane remodeling

    NARCIS (Netherlands)

    A. ter Beek; B.J.F. Keijser; A. Boorsma; A. Zakrzewska; R. Orij; G.J. Smits; S. Brul

    2008-01-01

    The weak organic acid sorbic acid is a commonly used food preservative, as it inhibits the growth of bacteria, yeasts, and molds. We have used genome-wide transcriptional profiling of Bacillus subtilis cells during mild sorbic acid stress to reveal the growth-inhibitory activity of this preservative

  1. Towards the entire proteome of the model bacterium Bacillus subtilis by gel-based and gel-free approaches

    NARCIS (Netherlands)

    Wolff, Susanne; Antelmann, Haike; Albrecht, Dirk; Becher, Doerte; Bernhardt, Joerg; Bron, Sierd; Buettner, Knut; van Dijl, Jan Maarten; Eymann, Christine; Otto, Andreas; Tam, Le Thi; Hecker, Michael

    2007-01-01

    With the emergence of mass spectrometry in protein science and the availability of complete genome sequences, proteomics has gone through a rapid development. The soil bacterium Bacillus subtilis, as one of the first DNA sequenced species, represents a model for Gram-positive bacteria and its proteo

  2. Defining the structure of the general stress regulon of Bacillus subtilis using targeted microarray analysis and random forest classification.

    NARCIS (Netherlands)

    Nannapaneni, P.; Hertwig, F.; Depke, M.; Hecker, M.; Mader, U.; Volker, U.; Steil, L.; Hijum, S.A.F.T. van

    2012-01-01

    The structure of the SigB-dependent general stress regulon of Bacillus subtilis has previously been characterized by proteomics approaches as well as DNA array-based expression studies. However, comparing the SigB targets published in three previous major transcriptional profiling studies it is obvi

  3. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca

    NARCIS (Netherlands)

    Romero, Diego; de Vicente, Antonio; Rakotoaly, Rivo H.; Dufour, Samuel E.; Veening, Jan-Willem; Arrebola, Eva; Cazorla, Francisco M.; Kuipers, Oscar P.; Paquot, Michel; Perez-Garcia, Alejandro; Stacey, Gary

    2007-01-01

    Podosphaera fusca is the main causal agent of cucurbit powdery mildew in Spain. Four Bacillus subtilis strains, UMAF6614, UMAF6619, UMAF6639, and UMAF8561, with proven ability to suppress the disease on melon in detached leaf and seedling assays, were subjected to further analyses to elucidate the m

  4. Isolation and molecular characterization of thermostable phytase from Bacillus subtilis (BSPhyARRMK33).

    Science.gov (United States)

    Reddy, Chinreddy Subramanyam; Achary, V Mohan Murali; Manna, Mrinalini; Singh, Jitender; Kaul, Tanushri; Reddy, Malireddy K

    2015-03-01

    The thermostable phytase gene was isolated from Bacillus subtilis ARRMK33 (BsPhyARRMK33). The gene has an ORF of 1152 bp and that encodes a protein of 383 amino acids. Sequence analysis showed high homology with Bacillus sp. phytase proteins, but no similarity was found with other phytases. SDS-PAGE analysis exhibited a predicted molecular mass of 42 kDa. Homology modeling of BsPhyARRMK33 protein based on Bacillus amyloliquefaciens crystal structure disclosed its β-propeller structure. BsPhyARRMK33 recombinant plasmid in pET-28a(+) was expressed in Rosetta gami B DE3 cells and the maximum phytase activity 15.3 U mg(-1) obtained. The enzyme exhibits high thermostability at various temperatures and broad pH ranges. The recombinant protein retained 74% of its original activity after incubation at 95 °C for 10 min. In the presence of Ca(2+), the recombinant phytase activity was maximal where as it was inhibited by EDTA. The optimal pH and temperature for the recombinant phytase activity is achieved at 7.0 and 55 °C, respectively. Thermostable nature and wide range of pH are promising features of recombinant BsPhyARRMK33 protein that may be employed as an efficient alternative to commercially known phytases and thereby alleviate environmental eutrophication.

  5. Isolation and characterization of radioresistant mutants in Bacillus subtilis and Bacillus thuringiensis

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, V.L.; Petrov, V.N.; Petrova, T.M. (AN SSSR, Leningrad. Inst. Yadernoj Fiziki)

    Vegetative cells of Bac. thuringiensis var. galleriae (the wild-type strain 351) are much more sensitive to lethal effects of UV light and /sup 60/Co-..gamma..-rays than those of Bac. subtilis (the wild-type strain 168). This difference is less pronounced for spores of these strains. By means of repeated ..gamma..-irradiation-regrowth cycles radioresistant mutants of Bac. thuringiensis Gamsup(r) 14 and Bac. subtilis Gamsup(r) 9 were selected. The vegetative cells of these mutants are correspondingly 19 times and 3.9 times more resistant to lethal effects of ..gamma..-radiation than the cells of the parental strains. The resistance of the Gamsup(r) mutant cells to lethal effects of UV light and H/sub 2/O/sub 2/ is also increased. The spores of the Gamsup(r) 14 mutant are 1.5-1.7 times more resistant to ..gamma..-radiation and UV light than the wild-type spores. The radioresistant mutants and the parental strains do not vary in their capacity for host-cell reactivation of UV- or ..gamma..-irradiated phages Tg13 and 105.

  6. Acción adyuvante de esporas de Bacillus subtilis por vía mucosa

    Directory of Open Access Journals (Sweden)

    Fabiana Tub-Chafer

    2016-04-01

    Full Text Available Las esporas de Bacillus subtilis, generalmente reconocidas como seguras, han recibido una creciente atención en aplicaciones biotecnológicas en formulaciones vacunales, sobre todo como adyuvantes. Este trabajo presenta una revisión actualizada de la acción adyuvante de las esporas de B. subtilis y conjuntamente se expone nuestra experiencia por vía oral (o.r e intranasal (i.n como adyuvante frente antígenos modelos ovoalbúmina (Ova y toxoide tetánico (TT. Se realizó una revisión documental sobre B. subtilis, adyuvante, vacuna y vía mucosal en MEDLINE a través de PubMed; también se revisaron las bases de datos SciELO y LILACS. Para la exploración de la capacidad adyuvante se trabajó con esporas de B. subtilis (cepa RG 4365. Se inmunizaron ratones Balb/c por vía mucosal con esporas coadministradas con los antígenos modelos, y se midió las respuesta de anticuerpos específicos en suero, saliva y heces por método de ELISA. La revisión realizada evidenció la existencia de varios trabajos que utilizan las esporas de B. subtilis por diferentes metodologías y vías de administración como adyuvante, siendo la expresión de antígenos recombinantes la más utilizada, así como la vía o.r entre la aplicación mucosa. En nuestro trabajo se obtuvo un aumento de la respuesta sérica de IgG, subclases IgG1 e IgG2a y de IgA específicos en saliva y heces en los grupos inmunizados con esporas coadministradas con Ova y con TT por ambas vías, significativamente superior a los grupos controles (p<0,05. Estos datos sugieren que las esporas son eficientes adyuvantes pues aumentan la respuesta inmune humoral sistémica y mucosal y resalta su potencial clínico en futuras vacunas mucosales.

  7. Modular pathway engineering of Bacillus subtilis for improved N-acetylglucosamine production.

    Science.gov (United States)

    Liu, Yanfeng; Zhu, Yanqiu; Li, Jianghua; Shin, Hyun-dong; Chen, Rachel R; Du, Guocheng; Liu, Long; Chen, Jian

    2014-05-01

    In previous work, we constructed a recombinant Bacillus subtilis strain for microbial production of N-acetylglucosamine (GlcNAc), which has applications in nutraceuticals and pharmaceuticals. In this work, we improve GlcNAc production through modular engineering of B. subtilis. Specifically, the GlcNAc synthesis-related metabolic network in B. subtilis was divided into three modules-GlcNAc synthesis, glycolysis, and peptidoglycan synthesis. First, two-promoter systems with different promoter types and strengths were used for combinatorial assembly of expression cassettes of glmS (encoding GlcN-6-phosphate synthase) and GNA1 (encoding GlcNAc-6-phosphate N-acetyltransferase) at transcriptional levels in the GlcNAc synthesis module, resulting in a 32.4% increase in GlcNAc titer (from 1.85g/L to 2.45g/L) in shake flasks. In addition, lactate and acetate synthesis were blocked by knockout of ldh (encoding lactate dehydrogenase) and pta (encoding phosphotransacetylase), leading to a 44.9% increase in GlcNAc production (from 2.45g/L to 3.55g/L) in shake flasks. Then, various strengths of the glycolysis and peptidoglycan synthesis modules were constructed by repressing the expression of pfk (encoding 6-phosphofructokinase) and glmM (encoding phosphoglucosamine mutase) via the expression of various combinations of synthetic small regulatory RNAs and Hfq protein. Next, GlcNAc, glycolysis, and peptidoglycan synthesis modules with various strengths were assembled and optimized via a module engineering approach, and the GlcNAc titer was improved to 8.30g/L from 3.55g/L in shake flasks. Finally, the GlcNAc titer was further increased to 31.65g/L, which was 3.8-fold that in the shake flask, in a 3-L fed-batch bioreactor. This work significantly enhanced GlcNAc production through modular pathway engineering of B. subtilis, and the engineering strategies used herein may be useful for the construction of versatile B. subtilis cell factories for the production of other industrially

  8. HtrC is involved in proteolysis of YpeB during germination of Bacillus anthracis and Bacillus subtilis spores.

    Science.gov (United States)

    Bernhards, Casey B; Chen, Yan; Toutkoushian, Hannah; Popham, David L

    2015-01-01

    Bacterial endospores can remain dormant for decades yet can respond to nutrients, germinate, and resume growth within minutes. An essential step in the germination process is degradation of the spore cortex peptidoglycan wall, and the SleB protein in Bacillus species plays a key role in this process. Stable incorporation of SleB into the spore requires the YpeB protein, and some evidence suggests that the two proteins interact within the dormant spore. Early during germination, YpeB is proteolytically processed to a stable fragment. In this work, the primary sites of YpeB cleavage were identified in Bacillus anthracis, and it was shown that the stable products are comprised of the C-terminal domain of YpeB. Modification of the predominant YpeB cleavage sites reduced proteolysis, but cleavage at other sites still resulted in loss of full-length YpeB. A B. anthracis strain lacking the HtrC protease did not generate the same stable YpeB products. In B. anthracis and Bacillus subtilis htrC mutants, YpeB was partially stabilized during germination but was still degraded at a reduced rate by other, unidentified proteases. Purified HtrC cleaved YpeB to a fragment similar to that observed in vivo, and this cleavage was stimulated by Mn(2+) or Ca(2+) ions. A lack of HtrC did not stabilize YpeB or SleB during spore formation in the absence of the partner protein, indicating other proteases are involved in their degradation during sporulation.

  9. Transcription factor TnrA inhibits the biosynthetic activity of glutamine synthetase in Bacillus subtilis.

    Science.gov (United States)

    Fedorova, Ksenia; Kayumov, Airat; Woyda, Kathrin; Ilinskaja, Olga; Forchhammer, Karl

    2013-05-02

    The Bacillus subtilis glutamine synthetase (GS) plays a dual role in cell metabolism by functioning as catalyst and regulator. GS catalyses the ATP-dependent synthesis of glutamine from glutamate and ammonium. Under nitrogen-rich conditions, GS becomes feedback-inhibited by high intracellular glutamine levels and then binds transcription factors GlnR and TnrA, which control the genes of nitrogen assimilation. While GS-bound TnrA is no longer able to interact with DNA, GlnR-DNA binding is shown to be stimulated by GS complex formation. In this paper we show a new physiological feature of the interaction between glutamine synthetase and TnrA. The transcription factor TnrA inhibits the biosynthetic activity of glutamine synthetase in vivo and in vitro, while the GlnR protein does not affect the activity of the enzyme.

  10. Responses of Bacillus subtilis spores to space environment: results from experiments in space.

    Science.gov (United States)

    Horneck, G

    1993-02-01

    Onboard of several spacecrafts (Apollo 16, Spacelab 1, LDEF), spores of Bacillus subtilis were exposed to selected parameters of space, such as space vacuum, different spectral ranges of solar UV-radiation and cosmic rays, applied separately or in combination, and we have studied their survival and genetic changes after retrieval. The spores survive extended periods of time in space--up to several years--, if protected against the high influx of solar UV-radiation. Water desorption caused by the space vacuum leads to structural changes of the DNA; the consequences are an increased mutation frequency and altered photobiological properties of the spores. UV-effects, such as killing and mutagenesis, are augmented, if the spores are in space vacuum during irradiation. Vacuum-specific photoproducts which are different from the 'spore photoproduct' may cause the synergistic response of spores to the simultaneous action of UV and vacuum. The experiments provide an experimental test of certain steps of the panspermia hypothesis.

  11. Noise Expands the Response Range of the Bacillus subtilis Competence Circuit.

    Directory of Open Access Journals (Sweden)

    Andrew Mugler

    2016-03-01

    Full Text Available Gene regulatory circuits must contend with intrinsic noise that arises due to finite numbers of proteins. While some circuits act to reduce this noise, others appear to exploit it. A striking example is the competence circuit in Bacillus subtilis, which exhibits much larger noise in the duration of its competence events than a synthetically constructed analog that performs the same function. Here, using stochastic modeling and fluorescence microscopy, we show that this larger noise allows cells to exit terminal phenotypic states, which expands the range of stress levels to which cells are responsive and leads to phenotypic heterogeneity at the population level. This is an important example of how noise confers a functional benefit in a genetic decision-making circuit.

  12. Modification of the rib operon derived from Bacillus subtilis and its expression in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    Zhang Huitu; Meng Kun; Wang Yaru; Luo Huiying; Yuan Tiezheng; Yang Peilong; Bai Yingguo; Yao Bin; Fan Yunliu

    2007-01-01

    A riboflavin operon(rib operon)derived from Bacillus subtilis 368 was modified on structure and the resulting operons were expressed in various strains of Escherichia coli. The results showed that the optimization of the rib operon and the host strain used for expression are two main factors affecting the riboflavin production. Replacing the promoter l and rfn box of the rib operon with a strong constructive promoter spo l drastically increased the expression of the rib genes. When E. Coli JMl09 was used as the host strain, the highest riboflavin production reached 95.3μg/mL(about eight times higher than that 0f the unmodified rib operon). In addition, when tetracycline(20 μg/mL)was used as the selective pressure, compared with the ampicillin resistant transformants, a higher riboflavin yield Was obtained in tetracycline resistant host strain.

  13. Bacillus subtilis Swarmer Cells Lead the Swarm, Multiply, and Generate a Trail of Quiescent Descendants

    Directory of Open Access Journals (Sweden)

    Lina Hamouche

    2017-02-01

    Full Text Available Bacteria adopt social behavior to expand into new territory, led by specialized swarmers, before forming a biofilm. Such mass migration of Bacillus subtilis on a synthetic medium produces hyperbranching dendrites that transiently (equivalent to 4 to 5 generations of growth maintain a cellular monolayer over long distances, greatly facilitating single-cell gene expression analysis. Paradoxically, while cells in the dendrites (nonswarmers might be expected to grow exponentially, the rate of swarm expansion is constant, suggesting that some cells are not multiplying. Little attention has been paid to which cells in a swarm are actually multiplying and contributing to the overall biomass. Here, we show in situ that DNA replication, protein translation and peptidoglycan synthesis are primarily restricted to the swarmer cells at dendrite tips. Thus, these specialized cells not only lead the population forward but are apparently the source of all cells in the stems of early dendrites. We developed a simple mathematical model that supports this conclusion.

  14. Production of peptide antifungal antibiotic and biocontrol activity of Bacillus subtilis.

    Science.gov (United States)

    Kumar, Ajay; Saini, Pragati; Shrivastava, J N

    2009-01-01

    Among different bacterial cultures, a potent Bacillus subtilis MTCC-8114 was isolated from garden soil samples which showed 16 and 14 mm inhibition zones by spot inoculation method and 24 and 22 mm inhibition zones by well agar diffusion method against test fungi i.e. Microsporum fulvum and Trichophyton species. Among four media tested, the maximum growth and antibiotic production was found in trypticase soya broth (TSB) medium at 37 degrees C, pH-7 and 48 h of incubation. The Rf value (0.64) by Thin Layer Chromatography (TLC) technique and UV and FTIR spectral data of the active antifungal compound, indicated that the isolated compound belongs to peptide antifungal antibiotic group. MIC value of antifungal antibiotic was 135 and 145 microg/ml.

  15. Site-specific uv crosslinking of minihelix DNA and TrpRS from Bacillus subtilis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to investigate the recognition mechanism and the relationship between structure and function of minihelix DNA with Tryptophanyl-tRNA Synthetase (TrpRS), TrpRS from Bacillus Subtilis was purified. Four minihelix DNAs were chemically synthesized and the photoreactive reagent s4T was incorporated into three of them at the positions of G73, T72 and T55 corresponding to tRNATrp.The apparatus for uv crossiinking was devised and the parameters for uv crosslinking were optimized. The results indicated that the G73 and T72 base of minihelix DNA interacted with TrpRS directly. The uv crosslinking reaction was improved by the dose of uv irradiation and the concentration of both TrpRS and minihelix DNA.``

  16. Removal of Cr(VI from aqueous solution using Bacillus subtilis, Pseudomonas aeruginosa and Enterobacter cloacae

    Directory of Open Access Journals (Sweden)

    P. Sethuraman,

    2010-06-01

    Full Text Available The objective of this study is to investigate the removal efficiency of Cr(VI by Bacillus subtilis, Pseudomonas aeruginosa and Enterobacter cloacae from aqueous solution under different process conditions. Batch mode experiments were carried out as a function of solution pH, biosorbent dosage, Cr(VI concentration and contact time.The FT-IR spectra and SEM analysis of the biosorbent were recorded to analyse the number and position of the functional groups available for the binding of Cr(VI ions and to study the morphology of biosorbent. The batch isothermal equilibrium data were analyzed with Freundlich and Langmuir isotherm models. The kinetic models were examined with pseudo first order and pseudo second order kinetics. The results revealed that the Cr(VI is considerably adsorbed on bacterial biomass and it could be an economical method for the removal of Cr(VI from aqueous solution.

  17. Enantioselective bioconversion using Escherichia coli cells expressing Saccharomyces cerevisiae reductase and Bacillus subtilis glucose dehydrogenase.

    Science.gov (United States)

    Park, Hyun Joo; Jung, Jihye; Choi, Hyejeong; Uhm, Ki-Nam; Kim, Hyung Kwoun

    2010-09-01

    Ethyl (R, S)-4-chloro-3-hydroxybutanoate (ECHB) is a useful chiral building block for the synthesis of L-carnitine and hypercholesterolemia drugs. The yeast reductase, YOL151W (GenBank locus tag), exhibits an enantioselective reduction activity, converting ethyl-4-chlorooxobutanoate (ECOB) exclusively into (R)-ECHB. YOL151W was generated in Escherichia coli cells and purified via Ni- NTA and desalting column chromatography. It evidenced an optimum temperature of 45 degrees C and an optimum pH of 6.5-7.5. Bacillus subtilis glucose dehydrogenase (GDH) was also expressed in Escherichia coli, and was used for the recycling of NADPH, required for the reduction reaction. Thereafter, Escherichia coli cells co-expressing YOL151W and GDH were constructed. After permeablization treatment, the Escherichia coli whole cells were utilized for ECHB synthesis. Through the use of this system, the 30 mM ECOB substrate could be converted to (R)-ECHB.

  18. Bacillus subtilis extracytoplasmic function (ECF) sigma factors and defense of the cell envelope.

    Science.gov (United States)

    Helmann, John D

    2016-04-01

    Bacillus subtilis provides a model for investigation of the bacterial cell envelope, the first line of defense against environmental threats. Extracytoplasmic function (ECF) sigma factors activate genes that confer resistance to agents that threaten the integrity of the envelope. Although their individual regulons overlap, σ(W) is most closely associated with membrane-active agents, σ(X) with cationic antimicrobial peptide resistance, and σ(V) with resistance to lysozyme. Here, I highlight the role of the σ(M) regulon, which is strongly induced by conditions that impair peptidoglycan synthesis and includes the core pathways of envelope synthesis and cell division, as well as stress-inducible alternative enzymes. Studies of these cell envelope stress responses provide insights into how bacteria acclimate to the presence of antibiotics.

  19. Messenger RNA Turnover Processes in Escherichia coli, Bacillus subtilis, and Emerging Studies in Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Kelsi L. Anderson

    2009-01-01

    Full Text Available The regulation of mRNA turnover is a recently appreciated phenomenon by which bacteria modulate gene expression. This review outlines the mechanisms by which three major classes of bacterial trans-acting factors, ribonucleases (RNases, RNA binding proteins, and small noncoding RNAs (sRNA, regulate the transcript stability and protein production of target genes. Because the mechanisms of RNA decay and maturation are best characterized in Escherichia coli, the majority of this review will focus on how these factors modulate mRNA stability in this organism. However, we also address the effects of RNases, RNA binding proteins, sRNAs on mRNA turnover, and gene expression in Bacillus subtilis, which has served as a model for studying RNA processing in gram-positive organisms. We conclude by discussing emerging studies on the role modulating mRNA stability has on gene expression in the important human pathogen Staphylococcus aureus.

  20. Biocontrol Activity of Bacillus subtilis Isolated from Agaricus bisporus Mushroom Compost Against Pathogenic Fungi.

    Science.gov (United States)

    Liu, Can; Sheng, Jiping; Chen, Lin; Zheng, Yanyan; Lee, David Yue Wei; Yang, Yang; Xu, Mingshuang; Shen, Lin

    2015-07-08

    Bacillus subtilis strain B154, isolated from Agaricus bisporus mushroom compost infected by red bread mold, exhibited antagonistic activities against Neurospora sitophila. Antifungal activity against phytopathogenic fungi was also observed. The maximum antifungal activity was reached during the stationary phase. This antifungal activity was stable over a wide pH and temperature range and was not affected by proteases. Assay of antifungal activity in vitro indicated that a purified antifungal substance could strongly inhibit mycelia growth and spore germination of N. sitophila. In addition, treatment with strain B154 in A. bisporus mushroom compost infected with N. sitophila significantly increased the yield of bisporus mushrooms. Ultraviolet scan spectroscopy, tricine sodium dodecyl sulfate-polyacrylamide gel electrophoresis, matrix-associated laser desorption ionization time-of-flight mass spectrometry, and electrospray ionization tandem mass spectrometry analyses revealed a molecular weight consistent with 1498.7633 Da. The antifungal compound might belong to a new type of lipopeptide fengycin.

  1. Lipid spirals in Bacillus subtilis and their role in cell division.

    Science.gov (United States)

    Barák, Imrich; Muchová, Katarína; Wilkinson, Anthony J; O'Toole, Peter J; Pavlendová, Nada

    2008-06-01

    The fluid mosaic model of membrane structure has been revised in recent years as it has become evident that domains of different lipid composition are present in eukaryotic and prokaryotic cells. Using membrane binding fluorescent dyes, we demonstrate the presence of lipid spirals extending along the long axis of cells of the rod-shaped bacterium Bacillus subtilis. These spiral structures are absent from cells in which the synthesis of phosphatidylglycerol is disrupted, suggesting an enrichment in anionic phospholipids. Green fluorescent protein fusions of the cell division protein MinD also form spiral structures and these were shown by fluorescence resonance energy transfer to be coincident with the lipid spirals. These data indicate a higher level of membrane lipid organization than previously observed and a primary role for lipid spirals in determining the site of cell division in bacterial cells.

  2. Use of organic acids for prevention and removal of Bacillus subtilis biofilms on food contact surfaces.

    Science.gov (United States)

    Akbas, Meltem Yesilcimen; Cag, Seyda

    2016-10-01

    The efficacies of organic acid (citric, malic, and gallic acids) treatments at 1% and 2% concentrations on prevention and removal of Bacillus subtilis biofilms were investigated in this study. The analyses were conducted on microtitration plates and stainless steel coupons. The biofilm removal activities of these organic acids were compared with chlorine on both surfaces. The results showed that citric acid treatments were as powerful as chlorine treatments for prevention and removal of biofilms. The antibiofilm effects of malic acid treatments were higher than gallic acid and less than citric acid treatment. When the antibiofilm effects of these acids and chlorine on the two surfaces were compared, the prevention and removal of biofilms were measured higher on microtitration plates than those on stainless steel coupons. Higher reductions were obtained by increasing concentrations of sanitizers on 24-hour biofilm with 20-minute sanitizer treatments for removal of biofilms.

  3. Bacillus subtilis Swarmer Cells Lead the Swarm, Multiply, and Generate a Trail of Quiescent Descendants.

    Science.gov (United States)

    Hamouche, Lina; Laalami, Soumaya; Daerr, Adrian; Song, Solène; Holland, I Barry; Séror, Simone J; Hamze, Kassem; Putzer, Harald

    2017-02-07

    Bacteria adopt social behavior to expand into new territory, led by specialized swarmers, before forming a biofilm. Such mass migration of Bacillus subtilis on a synthetic medium produces hyperbranching dendrites that transiently (equivalent to 4 to 5 generations of growth) maintain a cellular monolayer over long distances, greatly facilitating single-cell gene expression analysis. Paradoxically, while cells in the dendrites (nonswarmers) might be expected to grow exponentially, the rate of swarm expansion is constant, suggesting that some cells are not multiplying. Little attention has been paid to which cells in a swarm are actually multiplying and contributing to the overall biomass. Here, we show in situ that DNA replication, protein translation and peptidoglycan synthesis are primarily restricted to the swarmer cells at dendrite tips. Thus, these specialized cells not only lead the population forward but are apparently the source of all cells in the stems of early dendrites. We developed a simple mathematical model that supports this conclusion.

  4. Characterization of HelD, an interacting partner of RNA polymerase from Bacillus subtilis.

    Science.gov (United States)

    Wiedermannová, Jana; Sudzinová, Petra; Kovaľ, Tomaš; Rabatinová, Alžbeta; Šanderova, Hana; Ramaniuk, Olga; Rittich, Šimon; Dohnálek, Jan; Fu, Zhihui; Halada, Petr; Lewis, Peter; Krásny, Libor

    2014-04-01

    Bacterial RNA polymerase (RNAP) is an essential multisubunit protein complex required for gene expression. Here, we characterize YvgS (HelD) from Bacillus subtilis, a novel binding partner of RNAP. We show that HelD interacts with RNAP-core between the secondary channel of RNAP and the alpha subunits. Importantly, we demonstrate that HelD stimulates transcription in an ATP-dependent manner by enhancing transcriptional cycling and elongation. We demonstrate that the stimulatory effect of HelD can be amplified by a small subunit of RNAP, delta. In vivo, HelD is not essential but it is required for timely adaptations of the cell to changing environment. In summary, this study establishes HelD as a valid component of the bacterial transcription machinery.

  5. Biodegradation of insecticide monocrotophos by Bacillus subtilis KPA-1, isolated from agriculture soils.

    Science.gov (United States)

    Acharya, K P; Shilpkar, P; Shah, M C; Chellapandi, P

    2015-02-01

    Twenty bacterial strains, which are capable of degrading monocrotophos, were isolated from five soil samples collected from agriculture soils in India. The ability of the strains to mineralize monocrotophos was investigated under different culture conditions. A potential strain degrading monocrotophos was selected and named KPA-1. The strain was identified as a Bacillus subtilis on the basis of the results of its cellular morphology, physiological and chemotaxonomic characteristics, and phylogenetic conclusion of 16S ribosomal DNA (rDNA) gene sequences. Organophosphate hydrolase (opdA gene) involved in the initial biodegradation of monocrotophos in KPA-1 was quantitatively expressed, which was a constitutively expressed cytosolic enzyme. RT-qPCR data revealed that KPA-1 harboring opdA gene in an early stage was significantly downregulated from opdA gene in a degradation stage (1.5 fold more) with a p value of 0.0375 (p pesticides, particularly monocrotophos.

  6. Rheology, oxygen transfer, and molecular weight characteristics of poly(glutamic acid) fermentation by Bacillus subtilis.

    Science.gov (United States)

    Richard, Andrew; Margaritis, Argyrios

    2003-05-01

    Poly(glutamic acid) (PGA) is a water-soluble, biodegradable biopolymer that is produced by microbial fermentation. Recent research has shown that PGA can be used in drug delivery applications for the controlled release of paclitaxel (Taxol) in cancer treatment. A fundamental understanding of the key fermentation parameters is necessary to optimize the production and molecular weight characteristics of poly(glutamic acid) by Bacillus subtilis for paclitaxel and other applications of pharmaceuticals for controlled release. Because of its high molecular weight, PGA fermentation broths exhibit non-Newtonian rheology. In this article we present experimental results on the batch fermentation kinetics of PGA production, mass transfer of oxygen, specific oxygen uptake rate, broth rheology, and molecular weight characterization of the PGA biopolymer.

  7. Bacillus subtilis Swarmer Cells Lead the Swarm, Multiply, and Generate a Trail of Quiescent Descendants

    Science.gov (United States)

    Hamouche, Lina; Laalami, Soumaya; Daerr, Adrian; Song, Solène; Holland, I. Barry; Séror, Simone J.; Hamze, Kassem

    2017-01-01

    ABSTRACT Bacteria adopt social behavior to expand into new territory, led by specialized swarmers, before forming a biofilm. Such mass migration of Bacillus subtilis on a synthetic medium produces hyperbranching dendrites that transiently (equivalent to 4 to 5 generations of growth) maintain a cellular monolayer over long distances, greatly facilitating single-cell gene expression analysis. Paradoxically, while cells in the dendrites (nonswarmers) might be expected to grow exponentially, the rate of swarm expansion is constant, suggesting that some cells are not multiplying. Little attention has been paid to which cells in a swarm are actually multiplying and contributing to the overall biomass. Here, we show in situ that DNA replication, protein translation and peptidoglycan synthesis are primarily restricted to the swarmer cells at dendrite tips. Thus, these specialized cells not only lead the population forward but are apparently the source of all cells in the stems of early dendrites. We developed a simple mathematical model that supports this conclusion. PMID:28174308

  8. Intrinsic Levanase Activity of Bacillus subtilis 168 Levansucrase (SacB.

    Directory of Open Access Journals (Sweden)

    Luz Méndez-Lorenzo

    Full Text Available Levansucrase catalyzes the synthesis of fructose polymers through the transfer of fructosyl units from sucrose to a growing fructan chain. Levanase activity of Bacillus subtilis levansucrase has been described since the very first publications dealing with the mechanism of levan synthesis. However, there is a lack of qualitative and quantitative evidence regarding the importance of the intrinsic levan hydrolysis of B. subtilis levansucrase and its role in the levan synthesis process. Particularly, little attention has been paid to the long-term hydrolysis products, including its participation in the final levan molecules distribution. Here, we explored the hydrolytic and transferase activity of the B. subtilis levansucrase (SacB when levans produced by the same enzyme are used as substrate. We found that levan is hydrolyzed through a first order exo-type mechanism, which is limited to a conversion extent of around 30% when all polymer molecules reach a structure no longer suitable to SacB hydrolysis. To characterize the reaction, Isothermal Titration Calorimetry (ITC was employed and the evolution of the hydrolysis products profile followed by HPLC, GPC and HPAEC-PAD. The ITC measurements revealed a second step, taking place at the end of the reaction, most probably resulting from disproportionation of accumulated fructo-oligosaccharides. As levanase, levansucrase may use levan as substrate and, through a fructosyl-enzyme complex, behave as a hydrolytic enzyme or as a transferase, as demonstrated when glucose and fructose are added as acceptors. These reactions result in a wide variety of oligosaccharides that are also suitable acceptors for fructo-oligosaccharide synthesis. Moreover, we demonstrate that SacB in the presence of levan and glucose, through blastose and sucrose synthesis, results in the same fructooligosaccharides profile as that observed in sucrose reactions. We conclude that SacB has an intrinsic levanase activity that

  9. Characterization of a Bacillus subtilis transporter for petrobactin, an anthrax stealth siderophore.

    Science.gov (United States)

    Zawadzka, Anna M; Kim, Youngchang; Maltseva, Natalia; Nichiporuk, Rita; Fan, Yao; Joachimiak, Andrzej; Raymond, Kenneth N

    2009-12-22

    Iron deprivation activates the expression of components of the siderophore-mediated iron acquisition systems in Bacillus subtilis, including not only the synthesis and uptake of its siderophore bacillibactin but also expression of multiple ABC transporters for iron scavenging using xenosiderophores. The yclNOPQ operon is shown to encode the complete transporter for petrobactin (PB), a photoreactive 3,4-catecholate siderophore produced by many members of the B. cereus group, including B. anthracis. Isogenic disruption mutants in the yclNOPQ transporter, including permease YclN, ATPase YclP, and a substrate-binding protein YclQ, are unable to use either PB or the photoproduct of FePB (FePB(nu)) for iron delivery and growth, in contrast to the wild-type B. subtilis. Complementation of the mutations with the copies of the respective genes restores this capability. The YclQ receptor binds selectively iron-free and ferric PB, the PB precursor, 3,4-dihydroxybenzoic acid (3,4-DHB), and FePB(nu) with high affinity; the ferric complexes are seen in ESI-MS, implying strong electrostatic interaction between the protein-binding pocket and siderophore. The first structure of a gram-positive siderophore receptor is presented. The 1.75-A crystal structure of YclQ reveals a bilobal periplasmic binding protein (PBP) fold consisting of two alpha/beta/alpha sandwich domains connected by a long alpha-helix with the binding pocket containing conserved positively charged and aromatic residues and large enough to accommodate FePB. Orthologs of the B. subtilis PB-transporter YclNOPQ in PB-producing Bacilli are likely contributors to the pathogenicity of these species and provide a potential target for antibacterial strategies.

  10. Characterization of a Bacillus subtilis transporter for petrobactin, an anthrax stealth siderophore

    Energy Technology Data Exchange (ETDEWEB)

    Zawadzka, A. M.; Kim, Y.; Maltseva, N; Nichiporuk, R; Fan, Y; Joachimiak, A; Raymond, KN (Biosciences Division); (Univ. of California)

    2009-12-22

    Iron deprivation activates the expression of components of the siderophore-mediated iron acquisition systems in Bacillus subtilis, including not only the synthesis and uptake of its siderophore bacillibactin but also expression of multiple ABC transporters for iron scavenging using xenosiderophores. The yclNOPQ operon is shown to encode the complete transporter for petrobactin (PB), a photoreactive 3,4-catecholate siderophore produced by many members of the B. cereus group, including B. anthracis. Isogenic disruption mutants in the yclNOPQ transporter, including permease YclN, ATPase YclP, and a substrate-binding protein YclQ, are unable to use either PB or the photoproduct of FePB (FePB{sup {nu}}) for iron delivery and growth, in contrast to the wild-type B. subtilis. Complementation of the mutations with the copies of the respective genes restores this capability. The YclQ receptor binds selectively iron-free and ferric PB, the PB precursor, 3,4-dihydroxybenzoic acid (3,4-DHB), and FePB{sup {nu}} with high affinity; the ferric complexes are seen in ESI-MS, implying strong electrostatic interaction between the protein-binding pocket and siderophore. The first structure of a Gram-positive siderophore receptor is presented. The 1.75-{angstrom} crystal structure of YclQ reveals a bilobal periplasmic binding protein (PBP) fold consisting of two {alpha}/{beta}/{alpha} sandwich domains connected by a long {alpha}-helix with the binding pocket containing conserved positively charged and aromatic residues and large enough to accommodate FePB. Orthologs of the B. subtilis PB-transporter YclNOPQ in PB-producing Bacilli are likely contributors to the pathogenicity of these species and provide a potential target for antibacterial strategies.

  11. Engineering Bacillus subtilis for the conversion of the antimetabolite 4-hydroxy-l-threonine to pyridoxine.

    Science.gov (United States)

    Commichau, Fabian M; Alzinger, Ariane; Sande, Rafael; Bretzel, Werner; Reuß, Daniel R; Dormeyer, Miriam; Chevreux, Bastien; Schuldes, Jörg; Daniel, Rolf; Akeroyd, Michiel; Wyss, Markus; Hohmann, Hans-Peter; Prágai, Zoltán

    2015-05-01

    Until now, pyridoxine (PN), the most commonly supplemented B6 vitamer for animals and humans, is chemically synthesized for commercial purposes. Thus, the development of a microbial fermentation process is of great interest for the biotech industry. Recently, we constructed a Bacillus subtilis strain that formed significant amounts of PN via a non-native deoxyxylulose 5'-phosphate-(DXP)-dependent vitamin B6 pathway. Here we report the optimization of the condensing reaction of this pathway that consists of the 4-hydroxy-l-threonine-phosphate dehydrogenase PdxA, the pyridoxine 5'-phosphate synthase PdxJ and the native DXP synthase, Dxs. To allow feeding of high amounts of 4-hydroxy-threonine (4-HO-Thr) that can be converted to PN by B. subtilis overexpressing PdxA and PdxJ, we first adapted the bacteria to tolerate the antimetabolite 4-HO-Thr. The adapted bacteria produced 28-34mg/l PN from 4-HO-Thr while the wild-type parent produced only 12mg/l PN. Moreover, by expressing different pdxA and pdxJ alleles in the adapted strain we identified a better combination of PdxA and PdxJ enzymes than reported previously, and the resulting strain produced 65mg/l PN. To further enhance productivity mutants were isolated that efficiently take up and convert deoxyxylulose (DX) to DXP, which is incorporated into PN. Although these mutants were very efficient to convert low amount of exogenous DX, at higher DX levels they performed only slightly better. The present study uncovered several enzymes with promiscuous activity and it revealed that host metabolic pathways compete with the heterologous pathway for 4-HO-Thr. Moreover, the study revealed that the B. subtilis genome is quite flexible with respect to adaptive mutations, a property, which is very important for strain engineering.

  12. Protein-protein interaction domains of Bacillus subtilis DivIVA.

    Science.gov (United States)

    van Baarle, Suey; Celik, Ilkay Nazli; Kaval, Karan Gautam; Bramkamp, Marc; Hamoen, Leendert W; Halbedel, Sven

    2013-03-01

    DivIVA proteins are curvature-sensitive membrane binding proteins that recruit other proteins to the poles and the division septum. They consist of a conserved N-terminal lipid binding domain fused to a less conserved C-terminal domain. DivIVA homologues interact with different proteins involved in cell division, chromosome segregation, genetic competence, or cell wall synthesis. It is unknown how DivIVA interacts with these proteins, and we used the interaction of Bacillus subtilis DivIVA with MinJ and RacA to investigate this. MinJ is a transmembrane protein controlling division site selection, and the DNA-binding protein RacA is crucial for chromosome segregation during sporulation. Initial bacterial two-hybrid experiments revealed that the C terminus of DivIVA appears to be important for recruiting both proteins. However, the interpretation of these results is limited since it appeared that C-terminal truncations also interfere with DivIVA oligomerization. Therefore, a chimera approach was followed, making use of the fact that Listeria monocytogenes DivIVA shows normal polar localization but is not biologically active when expressed in B. subtilis. Complementation experiments with different chimeras of B. subtilis and L. monocytogenes DivIVA suggest that MinJ and RacA bind to separate DivIVA domains. Fluorescence microscopy of green fluorescent protein-tagged RacA and MinJ corroborated this conclusion and suggests that MinJ recruitment operates via the N-terminal lipid binding domain, whereas RacA interacts with the C-terminal domain. We speculate that this difference is related to the cellular compartments in which MinJ and RacA are active: the cell membrane and the cytoplasm, respectively.

  13. Comprehensive analysis of temporal alterations in cellular proteome of Bacillus subtilis under curcumin treatment.

    Directory of Open Access Journals (Sweden)

    Panga Jaipal Reddy

    Full Text Available Curcumin is a natural dietary compound with antimicrobial activity against various gram positive and negative bacteria. This study aims to investigate the proteome level alterations in Bacillus subtilis due to curcumin treatment and identification of its molecular/cellular targets to understand the mechanism of action. We have performed a comprehensive proteomic analysis of B. subtilis AH75 strain at different time intervals of curcumin treatment (20, 60 and 120 min after the drug exposure, three replicates to compare the protein expression profiles using two complementary quantitative proteomic techniques, 2D-DIGE and iTRAQ. To the best of our knowledge, this is the first comprehensive longitudinal investigation describing the effect of curcumin treatment on B. subtilis proteome. The proteomics analysis revealed several interesting targets such UDP-N-acetylglucosamine 1-carboxyvinyltransferase 1, putative septation protein SpoVG and ATP-dependent Clp protease proteolytic subunit. Further, in silico pathway analysis using DAVID and KOBAS has revealed modulation of pathways related to the fatty acid metabolism and cell wall synthesis, which are crucial for cell viability. Our findings revealed that curcumin treatment lead to inhibition of the cell wall and fatty acid synthesis in addition to differential expression of many crucial proteins involved in modulation of bacterial metabolism. Findings obtained from proteomics analysis were further validated using 5-cyano-2,3-ditolyl tetrazolium chloride (CTC assay for respiratory activity, resazurin assay for metabolic activity and membrane integrity assay by potassium and inorganic phosphate leakage measurement. The gene expression analysis of selected cell wall biosynthesis enzymes has strengthened the proteomics findings and indicated the major effect of curcumin on cell division.

  14. One-step chromatographic purification of Helicobacter pylori neutrophil-activating protein expressed in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Kuo-Shun Shih

    Full Text Available Helicobacter pylori neutrophil-activating protein (HP-NAP, a major virulence factor of Helicobacter pylori (H. pylori, is capable of activating human neutrophils to produce reactive oxygen species (ROS and secrete inammatory mediators. HP-NAP is a vaccine candidate, a possible drug target, and a potential in vitro diagnostic marker for H. pylori infection. HP-NAP has also been shown to be a novel therapeutic agent for the treatment of allergic asthma and bladder cancer. Hence, an efficient way to obtain pure HP-NAP needs to be developed. In this study, one-step anion-exchange chromatography in negative mode was applied to purify the recombinant HP-NAP expressed in Bacillus subtilis (B. subtilis. This purification technique was based on the binding of host cell proteins and/or impurities other than HP-NAP to DEAE Sephadex resins. At pH 8.0, almost no other proteins except HP-NAP passed through the DEAE Sephadex column. More than 60% of the total HP-NAP with purity higher than 91% was recovered in the flow-through fraction from this single-step DEAE Sephadex chromatography. The purified recombinant HP-NAP was further demonstrated to be a multimeric protein with a secondary structure of α-helix and capable of activating human neutrophils to stimulate ROS production. Thus, this one-step negative chromatography using DEAE Sephadex resin can efficiently yield functional HP-NAP from B. subtilis in its native form with high purity. HP-NAP purified by this method could be further utilized for the development of new drugs, vaccines, and diagnostics for H. pylori infection.

  15. Bacillus subtilis 6S-2 RNA serves as a template for short transcripts in vivo.

    Science.gov (United States)

    Hoch, Philipp G; Schlereth, Julia; Lechner, Marcus; Hartmann, Roland K

    2016-04-01

    The global transcriptional regulator 6S RNA is abundant in a broad range of bacteria. The RNA competes with DNA promoters for binding to the housekeeping RNA polymerase (RNAP) holoenzyme. When bound to RNAP, 6S RNA serves as a transcription template for RNAP in an RNA-dependent RNA polymerization reaction. The resulting short RNA transcripts (so-called product RNAs = pRNAs) can induce a stable structural rearrangement of 6S RNA when reaching a certain length. This rearrangement leads to the release of RNAP and thus the recovery of transcription at DNA promoters. While most bacteria express a single 6S RNA, some harbor a second 6S RNA homolog (termed 6S-2 RNA in Bacillus subtilis). Bacillus subtilis 6S-2 RNA was recently shown to exhibit essentially all hallmark features of a bona fide 6S RNA in vitro, but evidence for the synthesis of 6S-2 RNA-derived pRNAs in vivo has been lacking so far. This raised the question of whether the block of RNAP by 6S-2 RNA might be lifted by a mechanism other than pRNA synthesis. However, here we demonstrate that 6S-2 RNA is able to serve as a template for pRNA synthesis in vivo. We verify this finding by using three independent approaches including a novel primer extension assay. Thus, we demonstrate the first example of an organism that expresses two distinct 6S RNAs that both exhibit all mechanistic features defined for this type of regulatory RNA.

  16. Thermostable levansucrase from Bacillus subtilis BB04, an isolate of Banana peel

    Directory of Open Access Journals (Sweden)

    Viniti D Vaidya

    2012-04-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Extensive screening resulted in the isolation of Bacillus sp. from Banana peel that produces considerable amount of thermostable levansucrase of molecular size 52kDa. 16S rRNA sequence analysis suggests that it belongs to Bacillus subtilis and was designated as strain BB04. Levansucrase was sucrose inducible, showed optimum activity at 50°C and pH 6.0. It was stable at pH range 6.0 - 7.0. Ca2+ at 1.0 mmol-1 concentration enhanced levansucrase activity by 24%. However levan production was highest at 40°C and pH 6.0. Cane molasses and juice proved to be good sources of sucrose for levan production. B. subtilis BB04 produced relatively more levan using cane molasses (11.32 gl-1 as sucrose source than in cane juice (4.81 gl-1.

  17. Biofilms of a Bacillus subtilis hospital isolate protect Staphylococcus aureus from biocide action.

    Directory of Open Access Journals (Sweden)

    Arnaud Bridier

    Full Text Available The development of a biofilm constitutes a survival strategy by providing bacteria a protective environment safe from stresses such as microbicide action and can thus lead to important health-care problems. In this study, biofilm resistance of a Bacillus subtilis strain (called hereafter ND(medical recently isolated from endoscope washer-disinfectors to peracetic acid was investigated and its ability to protect the pathogen Staphylococcus aureus in mixed biofilms was evaluated. Biocide action within Bacillus subtilis biofilms was visualised in real time using a non-invasive 4D confocal imaging method. The resistance of single species and mixed biofilms to peracetic acid was quantified using standard plate counting methods and their architecture was explored using confocal imaging and electronic microscopy. The results showed that the ND(medical strain demonstrates the ability to make very large amount of biofilm together with hyper-resistance to the concentration of PAA used in many formulations (3500 ppm. Evidences strongly suggest that the enhanced resistance of the ND(medical strain was related to the specific three-dimensional structure of the biofilm and the large amount of the extracellular matrix produced which can hinder the penetration of peracetic acid. When grown in mixed biofilm with Staphylococcus aureus, the ND(medical strain demonstrated the ability to protect the pathogen from PAA action, thus enabling its persistence in the environment. This work points out the ability of bacteria to adapt to an extremely hostile environment, and the necessity of considering multi-organism ecosystems instead of single species model to decipher the mechanisms of biofilm resistance to antimicrobials agents.

  18. Biological activities of a mixture of biosurfactant from Bacillus subtilis and alkaline lipase from Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Cedenir Pereira de Quadros

    2011-03-01

    Full Text Available In this study, we investigate the antimicrobial effects of a mixture of a biosurfactant from Bacillus subtilis and an alkaline lipase from Fusarium oxysporum (AL/BS mix on several types of microorganisms, as well as their abilities to remove Listeria innocua ATCC 33093 biofilm from stainless steel coupons. The AL/BS mix had a surface tension of around 30 mN.m-1, indicating that the presence of alkaline lipase did not interfere in the surface activity properties of the tensoactive component. The antimicrobial activity of the AL/BS mix was determined by minimum inhibitory concentration (MIC micro-assays. Among all the tested organisms, the presence of the mixture only affected the growth of B. subtilis CCT 2576, B. cereus ATCC 10876 and L. innocua. The most sensitive microorganism was B. cereus (MIC 0.013 mg.mL-1. In addition, the effect of the sanitizer against L. innocua attached to stainless steel coupons was determined by plate count after vortexing. The results showed that the presence of the AL/BS mix improved the removal of adhered cells relative to treatment done without the sanitizer, reducing the count of viable cells by 1.72 log CFU.cm-2. However, there was no significant difference between the sanitizers tested and an SDS detergent standard (p<0.05.

  19. Surfactin from Bacillus subtilis displays an unexpected anti-Legionella activity.

    Science.gov (United States)

    Loiseau, Clémence; Schlusselhuber, Margot; Bigot, Renaud; Bertaux, Joanne; Berjeaud, Jean-Marc; Verdon, Julien

    2015-06-01

    A contaminant bacterial strain was found to exhibit an antagonistic activity against Legionella pneumophila, the causative agent of Legionnaires' disease. The bacterial strain was identified as a Bacillus subtilis and named B. subtilis AM1. PCR analysis revealed the presence of the sfp gene, involved in the biosynthesis of surfactin, a lipopeptide with versatile bioactive properties. The bioactive substances were extracted from AM1 cell-free supernatant with ethyl acetate and purified using reversed phase HPLC (RP-HPLC). Subsequent ESI-MS analyses indicated the presence of two active substances with protonated molecular ions at m/z 1008 and 1036 Da, corresponding to surfactin isoforms. Structures of lipopeptides were further determined by tandem mass spectrometry and compared to the spectra of a commercially available surfactin mixture. Surfactin displays an antibacterial spectrum almost restricted to the Legionella genus (MICs range 1-4 μg/mL) and also exhibits a weak activity toward the amoeba Acanthamoeba castellanii, known to be the natural reservoir of L. pneumophila. Anti-biofilm assays demonstrated that 66 μg/mL of surfactin successfully eliminated 90 % of a 6-day-old biofilm. In conclusion, this study reveals for the first time the potent activity of surfactin against Legionella sp. and preformed biofilms thus providing new directions toward the use and the development of lipopeptides for the control of Legionella spread in the environment.

  20. Enhanced production of poly-γ-glutamic acid by a newly-isolated Bacillus subtilis.

    Science.gov (United States)

    Ju, Wan-Taek; Song, Yong-Su; Jung, Woo-Jin; Park, Ro-Dong

    2014-11-01

    Application of poly-gamma-glutamic acid (γ-PGA), an unusual macromolecular anionic polypeptide, is limited due to the high cost associated with its low productivity. Screening bacterial strains to find a more efficient producer is one approach to overcome this limitation. Strain MJ80 was isolated as a γ-PGA producer among 1,500 bacterial colonies obtained from soil samples. It was identified as Bacillus subtilis, based on the biochemical and morphological properties and 16S rDNA gene sequencing. It produced γ-PGA from both glutamic acid and soybean powder, identifying it as a facultative glutamic acid-metabolizing bacterium. After optimization of its culture conditions, B. subtilis MJ80 showed γ-PGA productivity of 75.5 and 68.7 g/l in 3 and 300 l jar fermenters for 3 days cultivation, respectively, the highest productivity reported to date, suggesting MJ80 to be a promising strain for γ-PGA production.

  1. Production of surfactin and fengycin by Bacillus subtilis in a bubbleless membrane bioreactor.

    Science.gov (United States)

    Coutte, François; Lecouturier, Didier; Yahia, Saliha Ait; Leclère, Valérie; Béchet, Max; Jacques, Philippe; Dhulster, Pascal

    2010-06-01

    Surfactin and fengycin are lipopeptide biosurfactants produced by Bacillus subtilis. This work describes for the first time the use of bubbleless bioreactors for the production of these lipopeptides by B. subtilis ATCC 21332 with aeration by a hollow fiber membrane air-liquid contactor to prevent foam formation. Three different configurations were tested: external aeration module made from either polyethersulfone (reactor BB1) or polypropylene (reactor BB2) and a submerged module in polypropylene (reactor BB3). Bacterial growth, glucose consumption, lipopeptide production, and oxygen uptake rate were monitored during the culture in the bioreactors. For all the tested membranes, the bioreactors were of satisfactory bacterial growth and lipopeptide production. In the three configurations, surfactin production related to the culture volume was in the same range: 242, 230, and 188 mg l(-1) for BB1, BB2, and BB3, respectively. Interestingly, high differences were observed for fengycin production: 47 mg l(-1) for BB1, 207 mg l(-1) for BB2, and 393 mg l(-1) for BB3. A significant proportion of surfactin was adsorbed on the membranes and reduced the volumetric oxygen mass transfer coefficient. The degree of adsorption depended on both the material and the structure of the membrane and was higher with the submerged polypropylene membrane.

  2. Effect of nanocomposite packaging containing ZnO on growth of Bacillus subtilis and Enterobacter aerogenes.

    Science.gov (United States)

    Esmailzadeh, Hakimeh; Sangpour, Parvaneh; Shahraz, Farzaneh; Hejazi, Jalal; Khaksar, Ramin

    2016-01-01

    Recent advances in nanotechnology have opened new windows in active food packaging. Nano-sized ZnO is an inexpensive material with potential antimicrobial properties. The aim of the present study is to evaluate the antibacterial effect of low density Polyethylene (LDPE) containing ZnO nanoparticles on Bacillus subtilis and Enterobacter aerogenes. ZnO nanoparticles have been synthesized by facil molten salt method and have been characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM). Nanocomposite films containing 2 and 4 wt.% ZnO nanoparticles were prepared by melt mixing in a twin-screw extruder. The growth of both microorganisms has decreased in the presence of ZnO containing nanocomposites compared with controls. Nanocomposites with 4 wt.% ZnO nanoparticles had stronger antibacterial effect against both bacteria in comparison with the 2 wt.% ZnO containing nanocomposites. B. subtilis as Gram-positive bacteria were more sensitive to ZnO containing nanocomposite films compared with E. aerogenes as Gram-negative bacteria. There were no significant differences between the migration of Zn ions from 2 and 4 wt.% ZnO containing nanocomposites and the released Zn ions were not significantly increased in both groups after 14 days compared with the first. Regarding the considerable antibacterial effects of ZnO nanoparticles, their application in active food packaging can be a suitable solution for extending the shelf life of food.

  3. The entire organization of transcription units on the Bacillus subtilis genome

    Directory of Open Access Journals (Sweden)

    Ogasawara Naotake

    2007-06-01

    Full Text Available Abstract Background In the post-genomic era, comprehension of cellular processes and systems requires global and non-targeted approaches to handle vast amounts of biological information. Results The present study predicts transcription units (TUs in Bacillus subtilis, based on an integrated approach involving DNA sequence and transcriptome analyses. First, co-expressed gene clusters are predicted by calculating the Pearson correlation coefficients of adjacent genes for all the genes in a series that are transcribed in the same direction with no intervening gene transcribed in the opposite direction. Transcription factor (TF binding sites are then predicted by detecting statistically significant TF binding sequences on the genome using a position weight matrix. This matrix is a convenient way to identify sites that are more highly conserved than others in the entire genome because any sequence that differs from a consensus sequence has a lower score. We identify genes regulated by each of the TFs by comparing gene expression between wild-type and TF mutants using a one-sided test. By applying the integrated approach to 11 σ factors and 17 TFs of B. subtilis, we are able to identify fewer candidates for genes regulated by the TFs than were identified using any single approach, and also detect the known TUs efficiently. Conclusion This integrated approach is, therefore, an efficient tool for narrowing searches for candidate genes regulated by TFs, identifying TUs, and estimating roles of the σ factors and TFs in cellular processes and functions of genes composing the TUs.

  4. Dynamic expression of the translational machinery during Bacillus subtilis life cycle at a single cell level.

    Directory of Open Access Journals (Sweden)

    Alex Rosenberg

    Full Text Available The ability of bacteria to responsively regulate the expression of translation components is crucial for rapid adaptation to fluctuating environments. Utilizing Bacillus subtilis (B. subtilis as a model organism, we followed the dynamics of the translational machinery at a single cell resolution during growth and differentiation. By comprehensive monitoring the activity of the major rrn promoters and ribosomal protein production, we revealed diverse dynamics between cells grown in rich and poor medium, with the most prominent dissimilarities exhibited during deep stationary phase. Further, the variability pattern of translational activity varied among the cells, being affected by nutrient availability. We have monitored for the first time translational dynamics during the developmental process of sporulation within the two distinct cellular compartments of forespore and mother-cell. Our study uncovers a transient forespore specific increase in expression of translational components. Finally, the contribution of each rrn promoter throughout the bacterium life cycle was found to be relatively constant, implying that differential expression is not the main purpose for the existence of multiple rrn genes. Instead, we propose that coordination of the rrn operons serves as a strategy to rapidly fine tune translational activities in a synchronized fashion to achieve an optimal translation level for a given condition.

  5. Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis.

    Science.gov (United States)

    Choi, Kwon-Young; Wernick, David G; Tat, Christine A; Liao, James C

    2014-05-01

    The non-recyclable use of nitrogen fertilizers in microbial production of fuels and chemicals remains environmentally detrimental. Conversion of protein wastes into biofuels and ammonia by engineering nitrogen flux in Escherichia coli has been demonstrated as a method to reclaim reduced-nitrogen and curb its environmental deposition. However, protein biomass requires a proteolysis process before it can be taken up and converted by any microbe. Here, we metabolically engineered Bacillus subtilis to hydrolyze polypeptides through its secreted proteases and to convert amino acids into advanced biofuels and ammonia fertilizer. Redirection of B. subtilis metabolism for amino-acid conversion required inactivation of the branched-chain amino-acid (BCAA) global regulator CodY. Additionally, the lipoamide acyltransferase (bkdB) was deleted to prevent conversion of branched-chain 2-keto acids into their acyl-CoA derivatives. With these deletions and heterologous expression of a keto-acid decarboxylase and an alcohol dehydrogenase, the final strain produced biofuels and ammonia from an amino-acid media with 18.9% and 46.6% of the maximum theoretical yield. The process was also demonstrated on several waste proteins. The results demonstrate the feasibility of direct microbial conversion of polypeptides into sustainable products.

  6. Construction and Analysis of Two Genome-Scale Deletion Libraries for Bacillus subtilis.

    Science.gov (United States)

    Koo, Byoung-Mo; Kritikos, George; Farelli, Jeremiah D; Todor, Horia; Tong, Kenneth; Kimsey, Harvey; Wapinski, Ilan; Galardini, Marco; Cabal, Angelo; Peters, Jason M; Hachmann, Anna-Barbara; Rudner, David Z; Allen, Karen N; Typas, Athanasios; Gross, Carol A

    2017-03-22

    A systems-level understanding of Gram-positive bacteria is important from both an environmental and health perspective and is most easily obtained when high-quality, validated genomic resources are available. To this end, we constructed two ordered, barcoded, erythromycin-resistance- and kanamycin-resistance-marked single-gene deletion libraries of the Gram-positive model organism, Bacillus subtilis. The libraries comprise 3,968 and 3,970 genes, respectively, and overlap in all but four genes. Using these libraries, we update the set of essential genes known for this organism, provide a comprehensive compendium of B. subtilis auxotrophic genes, and identify genes required for utilizing specific carbon and nitrogen sources, as well as those required for growth at low temperature. We report the identification of enzymes catalyzing several missing steps in amino acid biosynthesis. Finally, we describe a suite of high-throughput phenotyping methodologies and apply them to provide a genome-wide analysis of competence and sporulation. Altogether, we provide versatile resources for studying gene function and pathway and network architecture in Gram-positive bacteria.

  7. Reconstitution and Minimization of a Micrococcin Biosynthetic Pathway in Bacillus subtilis

    Science.gov (United States)

    Bennallack, Philip R.; Bewley, Kathryn D.; Burlingame, Mark A.; Robison, Richard A.; Miller, Susan M.

    2016-01-01

    ABSTRACT Thiopeptides represent one of several families of highly modified peptide antibiotics that hold great promise for natural product engineering. These macrocyclic peptides are produced by a combination of ribosomal synthesis and extensive posttranslational modification by dedicated processing enzymes. We previously identified a compact, plasmid-borne gene cluster for the biosynthesis of micrococcin P1 (MP1), an archetypal thiopeptide antibiotic. In an effort to genetically dissect this pathway, we have reconstituted it in Bacillus subtilis. Successful MP1 production required promoter engineering and the reassembly of essential biosynthetic genes in a modular plasmid. The resulting system allows for rapid pathway manipulation, including protein tagging and gene deletion. We find that 8 processing proteins are sufficient for the production of MP1 and that the tailoring enzyme TclS catalyzes a C-terminal reduction step that distinguishes MP1 from its sister compound micrococcin P2. IMPORTANCE The emergence of antibiotic resistance is one of the most urgent human health concerns of our day. A crucial component in an integrated strategy for countering antibiotic resistance is the ability to engineer pathways for the biosynthesis of natural and derivatized antimicrobial compounds. In this study, the model organism B. subtilis was employed to reconstitute and genetically modularize a 9-gene system for the biosynthesis of micrococcin, the founding member of a growing family of thiopeptide antibiotics. PMID:27381911

  8. A complex thiolate switch regulates the Bacillus subtilis organic peroxide sensor OhrR.

    Science.gov (United States)

    Lee, Jin-Won; Soonsanga, Sumarin; Helmann, John D

    2007-05-22

    Oxidation of protein thiolates is central to numerous redox-regulated processes. Bacillus subtilis OhrR is an organic peroxide sensor that represses expression of an inducible peroxiredoxin, OhrA. Here, we present evidence that oxidation of the sole cysteine residue in OhrR leads to a sulfenic acid-containing intermediate that retains DNA-binding activity: further reaction to generate either a mixed disulfide (S-thiolation) or a protein sulfenamide (sulfenyl-amide) derivative is essential for derepression. Protein S-thiolation protects OhrR from overoxidation and provides for a facile regeneration of active OhrR by thiol-disulfide exchange reactions. The sulfenamide can also be reduced by thiol-disulfide exchange reactions, although this process is much slower than for mixed disulfides. Recovery of oxidized OhrR from B. subtilis identifies three distinct S-thiolated species, including mixed disulfides with a novel 398-Da thiol, cysteine, and CoASH. Evidence for in vivo formation of the sulfenamide derivative is also presented.

  9. Purification and characterization of an acidothermophilic cellulase enzyme produced by Bacillus subtilis strain LFS3.

    Science.gov (United States)

    Rawat, Rekha; Tewari, Lakshmi

    2012-07-01

    In the present investigation, a microorganism hydrolyzing carboxymethylcellulose (CMC) was isolated and identified as Bacillus subtilis strain LFS3 by 16S rDNA sequence analysis. The carboxymethylcellulase (CMCase) enzyme produced by the B. subtilis strain LFS3 was purified by (NH₄)₂SO₄ precipitation, ion exchange and gel filtration chromatography, with an overall recovery of 15 %. Native-PAGE analysis of purified CMCase revealed the molecular weight of enzyme to be about 185 kDa. The activity profile of CMCase enzyme showed the optimum activity at temperature 60 °C and pH 4.0, respectively. The enzyme activity was induced by Na⁺, Mg²⁺, NH₄⁺, and EDTA, whereas strongly inhibited by Hg²⁺ and Fe³⁺. The purified enzyme hydrolyzed CMC, filter paper, and xylan, but not p-nitrophenyl β-D-glucopyranoside and cellulose. Kinetic analysis of purified enzyme showed the K(m) value of 2.2 mg/ml. Thus, acidophilic as well as thermophilic nature makes this cellulase a suitable candidate for current mainstream biomass conversion into fuel and other industrial processes.

  10. Plant Growth Promotion by Volatile Organic Compounds Produced by Bacillus subtilis SYST2

    Science.gov (United States)

    Tahir, Hafiz A. S.; Gu, Qin; Wu, Huijun; Raza, Waseem; Hanif, Alwina; Wu, Liming; Colman, Massawe V.; Gao, Xuewen

    2017-01-01

    Bacterial volatiles play a significant role in promoting plant growth by regulating the synthesis or metabolism of phytohormones. In vitro and growth chamber experiments were conducted to investigate the effect of volatile organic compounds (VOCs) produced by the plant growth promoting rhizobacterium Bacillus subtilis strain SYST2 on hormone regulation and growth promotion in tomato plants. We observed a significant increase in plant biomass under both experimental conditions; we observed an increase in photosynthesis and in the endogenous contents of gibberellin, auxin, and cytokinin, while a decrease in ethylene levels was noted. VOCs emitted by SYST2 were identified through gas chromatography-mass spectrometry analysis. Of 11 VOCs tested in glass jars containing plants in test tubes, only two, albuterol and 1,3-propanediole, were found to promote plant growth. Furthermore, tomato plants showed differential expression of genes involved in auxin (SlIAA1. SlIAA3), gibberellin (GA20ox-1), cytokinin (SlCKX1), expansin (Exp2, Exp9. Exp 18), and ethylene (ACO1) biosynthesis or metabolism in roots and leaves in response to B. subtilis SYST2 VOCs. Our findings suggest that SYST2-derived VOCs promote plant growth by triggering growth hormone activity, and provide new insights into the mechanism of plant growth promotion by bacterial VOCs. PMID:28223976

  11. Cyclic lipopeptide profile of three Bacillus subtilis strains; antagonists of Fusarium head blight.

    Science.gov (United States)

    Dunlap, Christopher A; Schisler, David A; Price, Neil P; Vaughn, Steven F

    2011-08-01

    The objective of the study was to identify the lipopetides associated with three Bacillus subtilis strains. The strains are antagonists of Gibberella zeae, and have been shown to be effective in reducing Fusarium head blight in wheat. The lipopeptide profile of three B. subtilis strains (AS43.3, AS43.4, and OH131.1) was determined using mass spectroscopy. Strains AS43.3 and AS43.4 produced the anti-fungal lipopeptides from the iturin and fengycin family during the stationary growth phase. All three strains produced the lipopeptide surfactin at different growth times. Strain OH131.1 only produced surfactin under these conditions. The antifungal activity of the culture supernatant and individual lipopeptides was determined by the inhibition of G. zeae. Cell-free supernatant from strains AS43.3 and AS43.4 demonstrated strong antibiosis of G. zeae, while strain OH131.1 had no antibiosis activity. These results suggest a different mechanism of antagonism for strain OH131.1, relative to AS43.3 and AS43.4.

  12. Volatile compounds profile and sensory evaluation of Beninese condiments produced by inocula of Bacillus subtilis

    DEFF Research Database (Denmark)

    Azokpota, Paulin; Hounhouigan, Joseph D.; Annan, Nana T.

    2010-01-01

    BACKGROUND: Three Beninese food condiments (ABS124h, IBS248h and SBS348h) were produced by controlled fermentation of African locust beans using inocula of pure cultures of Bacillus subtilis, BS1, BS2 and BS3, respectively. Quantitative and qualitative assessments of the volatile compounds...... was similar.   CONCLUSION: The investigated B. subtilis, BS1, BS2 and BS3 can be considered as potential starter cultures for the fermentation of African locust beans to produce good quality of Beninese food condiments. Copyright © 2009 Society of Chemical Industry...

  13. Population of Pratylenchus coffeae (Z. and growth of Arabica coffee seedling inoculated by Pseudomonas diminuta L. and Bacillus subtilis (C..

    Directory of Open Access Journals (Sweden)

    Irfan Fauzi

    2015-03-01

    Full Text Available AbstractPratylenchus coffeae is a parasitic nematoda that infected the roots of some plants, one of them is coffee. The Infection of Pratylenchus coffeae cause root tissue damage that led to root lession and make root become rotten, it will interfere the ability of roots to absorb water and nutrients in the soil which resulted in the growth of plants. At the moment, control of Pratylenchus coffeae are following integrated pests management (IPM program, which integrated between the use of coffee resistant clone and application of biological agents. Research on biological control was conducted more intensive, at the moment; due to it is friendlier save against environment and cheaper then using chemical nematicides. The research was conducted to know the effects of Micorrhiza Helper Bacteria (MHB,Pseudomonas diminuta and Bacillus subtilis in suppressing the population of P. coffeaeas well as their effect on growth of coffee seedling.  Coffee arabica (Coffea arabica L. seedling one moth old were used in the experiment. The experiment prepared with eight treatments and five  replications, as follows: A (Pseudomonas diminuta with density of 108 cfu / ml, B (Pseudomonas diminuta with density of 2x108 cfu / ml, C (Bacillus subtilis with density of 108 cfu / ml , D (Bacillus subtilis with density 2x108 cfu / ml, E (Carbofuran nematicide 5 g formulation / pot, F (Pseudomonas diminuta and Bacillus subtilis with each density of 108 cfu / ml, K- (Nematoda inoculation but without bacteria and nematicide, K+ (coffee seedling  without any additional treatment. The experiment was conducted for sixteen weeks or about four months. The results of the experiment showed that application of MHB could suppress population of P. coffeae and increase coffee seedling growth significantly. Inoculation of B. subtilis at 108 cfu per seedling suppressed significantly nematoda population of 71.3% compared with untreated seedling but inoculated with nematoda. It was not

  14. Phosphoribosylpyrophosphate synthetase of Bacillus subtilis. Cloning, characterization and chromosomal mapping of the prs gene

    DEFF Research Database (Denmark)

    Nilsson, Dan; Hove-Jensen, Bjarne

    1987-01-01

    The gene (prs) encoding phosphoribosylpyrophosphate (PRPP) synthetase has been cloned from a library of Bacillus subtilis DNA by complementation of an Escherichia coli prs mutation. Flanking DNA sequences were pruned away by restriction endonuclease and exonuclease BAL 31 digestions, resulting...

  15. Synthetic operon for (R,R)-2,3-butanediol production in Bacillus subtilis and Escherichia coli.

    Science.gov (United States)

    de Oliveira, Rafael R; Nicholson, Wayne L

    2016-01-01

    To reduce dependence on petroleum, an alternative route to production of the chemical feedstock 2,3-butanediol (2,3-BD) from renewable lignocellulosic sources is desirable. In this communication, the genes encoding the pathway from pyruvate to 2,3-BD (alsS, alsD, and bdhA encoding acetolactate synthase, acetolactate decarboxylase, and butanediol dehydrogenase, respectively) from Bacillus subtilis were engineered into a single tricistronic operon under control of the isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible Pspac promoter in a shuttle plasmid capable of replication and expression in either B. subtilis or Escherichia coli. We describe the construction and performance of a shuttle plasmid carrying the IPTG-inducible synthetic operon alsSDbdhA coding for 2,3-BD pathway capable of (i) expression in two important representative model microorganisms, the gram-positive B. subtilis and the gram-negative E. coli; (ii) increasing 2,3-BD production in B. subtilis; and (iii) successfully introducing the B. subtilis 2,3-BD pathway into E. coli. The synthetic alsSDbdhA operon constructed using B. subtilis native genes not only increased the 2,3-BD production in its native host but also efficiently expressed the pathway in the heterologous organism E. coli. Construction of an efficient shuttle plasmid will allow investigation of 2,3-BD production performance in related organisms with industrial potential for production of bio-based chemicals.

  16. Dietary Administration of Bacillus subtilis Enhances Growth Performance, Immune Response and Disease Resistance in Cherry Valley Ducks

    Science.gov (United States)

    Guo, Mengjiao; Hao, Guangen; Wang, Baohua; Li, Ning; Li, Rong; Wei, Liangmeng; Chai, Tongjie

    2016-01-01

    Given the promising results of applying Bacillus subtilis (B.subtilis) as a probiotic in both humans and animals, the aim of this study was to systematically investigate the effects of B. subtilis on growth performance, immune response and disease resistance in Cherry Valley ducks. At 28 d post-hatch (dph), ducks fed a diet with B. subtilis weighed significantly more, had higher relative immune organ weights (e.g., bursa of Fabricius, thymus, and spleen), and exhibited greater villus heights, villus height to crypt depth ratios (duodenum and jejunum), and shallower crypt depths in the duodenum than controls fed a normal diet (p < 0.05). Moreover, the major pro-inflammatory factors and antiviral proteins, as measured in the thymus and the spleen, were higher at 28 dph in ducks fed probiotics than those of 14 dph. After 28 d of feeding, the ducks were challenged with Escherichia coli (E. coli) and novel duck reovirus (NDRV), and ducks fed B. subtilis achieved survival rates of 43.3 and 100%, respectively, which were significantly greater than the control group's 20 and 83.3%. Altogether, diets with B. subtilis can improve Cherry Valley ducks' growth performance, innate immune response, and resistance against E. coli and NDRV. PMID:28008328

  17. Construction of a modular plasmid family for chromosomal integration in Bacillus subtilis.

    Science.gov (United States)

    Gimpel, Matthias; Brantl, Sabine

    2012-11-01

    The investigation of molecular processes involves the generation of knockout strains, the determination of promoter strength and protein overexpression. Here, we report the construction of the multifunctional pMG expression vector family for integration into the Bacillus subtilis chromosome that allows gene expression under single copy conditions. The pMG family enables a rapid exchange of all features for integration, selection and gene expression with or without N-terminal strep-tags. This modular architecture increases the applicabilities for these plasmids tremendously, permitting the construction of pMG derivatives for chromosomal integration at versatile loci and in different Bacillus species under control of natural or heterologous constitutive or inducible promoters. Additionally, the possible replacement of the antibiotic resistance cassettes helps circumvent problems that arise when the use of more than three antibiotics is required. Furthermore, the high copy number and structural stability of the pUC19-based pMG vectors in Escherichia coli facilitates template production for target host transformation.

  18. Critical Minireview: The Fate of tRNACys during Oxidative Stress in Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Juan Campos Guillen

    2017-01-01

    Full Text Available Oxidative stress occurs when cells are exposed to elevated levels of reactive oxygen species that can damage biological molecules. One bacterial response to oxidative stress involves disulfide bond formation either between protein thiols or between protein thiols and low-molecular-weight (LMW thiols. Bacillithiol was recently identified as a major low-molecular-weight thiol in Bacillus subtilis and related Firmicutes. Four genes (bshA, bshB1, bshB2, and bshC are involved in bacillithiol biosynthesis. The bshA and bshB1 genes are part of a seven-gene operon (ypjD, which includes the essential gene cca, encoding CCA-tRNA nucleotidyltransferase. The inclusion of cca in the operon containing bacillithiol biosynthetic genes suggests that the integrity of the 3′ terminus of tRNAs may also be important in oxidative stress. The addition of the 3′ terminal CCA sequence by CCA-tRNA nucleotidyltransferase to give rise to a mature tRNA and functional molecules ready for aminoacylation plays an essential role during translation and expression of the genetic code. Any defects in these processes, such as the accumulation of shorter and defective tRNAs under oxidative stress, might exert a deleterious effect on cells. This review summarizes the physiological link between tRNACys regulation and oxidative stress in Bacillus.

  19. PURIFICATION AND CHARACTERIZATION OF AN EXTRACELLULAR ALKALINE PROTEASE PRODUCED FROM AN ISOLATED BACILLUS SUBTILIS

    Directory of Open Access Journals (Sweden)

    Vijaya Bundela

    2013-03-01

    Full Text Available This paper describes the studies on the purification and partial characterization of serine alkaline protease produced through submerged fermentation process from a locally isolated Bacillus subtilis. This strain, grown in a highly alkaline medium (pH 10, produces an extracellular proteolytic enzyme. The alkaline protease was purified in a simple two-step procedure involving ammonium sulphate precipitation and gel filtration. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE analysis of the purified alkaline protease indicated an estimated molecular mass of 30KDa. It was more active in the range of 20-60ºC and had an optimum activity at 55ºC with optimum pH of 10.5. Characterization of the protease showed that it required certain cations such as Mg++, Mn++ and Ca++ for maximal activity. The serine nature of the alkaline protease was confirmed by PMSF inhibition. The temperature and pH stability of this Alkaline Protease from Bacillus Subtilismakes it potentially useful forindustrial applications.

  20. Bacillus subtilis EdmS (formerly PgsE) participates in the maintenance of episomes.

    Science.gov (United States)

    Ashiuchi, Makoto; Yamashiro, Daisuke; Yamamoto, Kento

    2013-09-01

    Extrachromosomal DNA maintenance (EDM) is an important process in molecular breeding and for various applications in the construction of genetically engineered microbes. Here we describe a novel Bacillus subtilis gene involved in EDM function called edmS (formerly pgsE). Functional gene regions were identified using molecular genetics techniques. We found that EdmS is a membrane-associated protein that is crucial for EDM. We also determined that EdmS can change a plasmid vector with an unstable replicon and worse-than-random segregation into one with better-than-random segregation, suggesting that the protein functions in the declustering and/or partitioning of episomes. EdmS has two distinct domains: an N-terminal membrane-anchoring domain and a C-terminal assembly accelerator-like structure, and mutational analysis of edmS revealed that both domains are essential for EDM. Further studies using cells of Bacillus megaterium and itsedmS (formerly capE) gene implied that EdmS has potential as a molecular probe for exploring novel EDM systems.

  1. Complete sequence of the first chimera genome constructed by cloning the whole genome of Synechocystis strain PCC6803 into the Bacillus subtilis 168 genome.

    Science.gov (United States)

    Watanabe, Satoru; Shiwa, Yuh; Itaya, Mitsuhiro; Yoshikawa, Hirofumi

    2012-12-01

    Genome synthesis of existing or designed genomes is made feasible by the first successful cloning of a cyanobacterium, Synechocystis PCC6803, in Gram-positive, endospore-forming Bacillus subtilis. Whole-genome sequence analysis of the isolate and parental B. subtilis strains provides clues for identifying single nucleotide polymorphisms (SNPs) in the 2 complete bacterial genomes in one cell.

  2. In Bacillus subtilis LutR is part of the global complex regulatory network governing the adaptation to the transition from exponential growth to stationary phase

    NARCIS (Netherlands)

    İrigül-Sönmez, Öykü; Köroğlu, Türkan E.; Öztürk, Büşra; Kovács, Ákos T.; Kuipers, Oscar P.; Yazgan-Karataş, Ayten; Zuber, P.

    2014-01-01

    The lutR gene, encoding a product resembling a GntR-family transcriptional regulator, has previously been identified as a gene required for the production of the dipeptide antibiotic bacilysin in Bacillus subtilis. To understand the broader regulatory roles of LutR in B. subtilis, we studied the gen

  3. Identification and characterization of a novel type of replication terminator with bidirectional activity on the Bacillus subtilis theta plasmid pLS20

    NARCIS (Netherlands)

    Meijer, WJJ; Smith, M; Wake, RG; deBoer, AL; Venema, G; Bron, S

    1996-01-01

    We have sequenced and analysed a 3.1 kb fragment of the 55 kb endogenous Bacillus subtilis plasmid pLS20 containing its replication functions, Just outside the region required for autonomous replication, a segment of 18 bp was identified as being almost identical to part of the major B. subtilis chr

  4. Penicillin-binding protein folding is dependent on the PrsA peptidyl-prolyl cis-trans isomerase in Bacillus subtilis

    NARCIS (Netherlands)

    Hyyrylainen, Hanne-Leena; Marciniak, Bogumila C.; Dahncke, Kathleen; Pietiainen, Milla; Courtin, Pascal; Vitikainen, Marika; Seppala, Raili; Otto, Andreas; Becher, Doerte; Chapot-Chartier, Marie-Pierre; Kuipers, Oscar P.; Kontinen, Vesa P.; Hyyryläinen, Hanne-Leena; Pietiäinen, Milla

    2010-01-01

    P>The PrsA protein is a membrane-anchored peptidyl-prolyl cis-trans isomerase in Bacillus subtilis and most other Gram-positive bacteria. It catalyses the post-translocational folding of exported proteins and is essential for normal growth of B. subtilis. We studied the mechanism behind this indispe

  5. Evaluation of efficacy of preservatives associated with Achillea millefolium L. extract against Bacillus subtilis Avaliação da eficácia de conservantes associados a extrato de Achillea millefolium L. contra Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Luiz E. Salvagnini

    2006-03-01

    Full Text Available The antimicrobial efficacy of three preservatives used in cosmetic formulations was evaluated. Phenova® and imidazolidinyl urea inhibited the growth of Bacillus subtilis when added to leaf extract of Achillea millefolium L., whereas 0.2% Nipagin®/ Nipasol® in propylene glycol did not.A eficácia antimicrobiana de conservantes empregados em formulações cosméticas foi avaliada usando Phenova® e Imidazolinidil uréia que inibiram o crescimento de Bacillus subtilis no extrato de Achillea millefolium L. e Nipagin®/ Nipasol® 0,2% em propilenoglicol não apresentaram efeito microbicida.

  6. Nodulação e rendimento de soja co-infectada com Bacillus Subtilis e Bradyrhizobium Japonicum / Bradyrhizobium Elkanii Soybean nodulation and yield when co-inoculated with Bacillus Subtilis and Bradyrhizobium Japonicum / Bradyrhizobium Elkanii

    Directory of Open Access Journals (Sweden)

    Fábio Fernando de Araújo

    1999-09-01

    Full Text Available O Bacillus subtilis pode favorecer o desempenho simbiótico do rizóbio, pelos efeitos na inibição de fitopatógenos ou pela exsudação de fitormônios. Com o objetivo de verificar a viabilidade da co-infecção de sementes de soja com Bradyrhizobium e Bacillus foram conduzidos três experimentos, no Paraná, em solos com população estabelecida de Bradyrhizobium, em que as estirpes de Bradyrhizobium SEMIA 5019 e SEMIA 5080 e suas variantes tolerantes aos metabólitos de Bacillus foram co-infectadas com duas estirpes de Bacillus (AP-3 e PRBS-1, ou seus metabólitos. Na safra 1993/94, em Londrina, o tratamento de co-inoculação de Bradyrhizobium com os metabólitos formulados de Bacillus incrementou, significativamente, em relação ao não-inoculado, o número de nódulos (59%, estádio V3, a ocupação dos nódulos pelas estirpes de Bradyrhizobium (76%, R2 e o rendimento de grãos (24%; em Ponta Grossa, esses incrementos foram de 60%, 145% e 22%, respectivamente. Nessa safra, em Londrina, a co-inoculação das variantes tolerantes com os metabólitos de Bacillus também aumentou o rendimento (26% e N total (17% dos grãos de soja e incrementos significativos foram constatados, na ocupação dos nódulos, pela co-inoculação das variantes tolerantes com as células de Bacillus (78%. Os resultados obtidos indicam a viabilidade da co-inoculação, em sementes de soja, de metabólitos brutos ou formulados ou, ainda, de células de Bacillus subtilis, para incrementar a contribuição do processo de fixação biológica do nitrogênio.Bacillus subtilis can improve rhizobial symbiotic performance by inhibiting plant pathogens or by the exudation of hormones. To verify the viability of co-inoculation of soybean seeds with Bradyrhizobium and Bacillus, three experiments were performed, in the State of Paraná, Brazil, in soils with established population of Bradyrhizobium. The Bradyrhizobium strains SEMIA 5019 and SEMIA 5080, and their natural

  7. Structural and catalytic properties of CMP kinase from Bacillus subtilis: a comparative analysis with the homologous enzyme from Escherichia coli.

    Science.gov (United States)

    Schultz, C P; Ylisastigui-Pons, L; Serina, L; Sakamoto, H; Mantsch, H H; Neuhard, J; Bârzu, O; Gilles, A M

    1997-04-01

    CMP kinases from Bacillus subtilis and from Escherichia coli are encoded by the cmk gene (formerly known as jofC in B. subtilis and as mssA in E. coli). Similar in their primary structure (43% identity and 67% similarity in amino acid sequence), the two proteins exhibit significant differences in nucleotide binding and catalysis. ATP, dATP, and GTP are equally effective as phosphate donors with E. coli CMP kinase whereas GTP is a poor substrate with B. subtilis CMP kinase. While CMP and dCMP are the best phosphate acceptors of both CMP kinases, the specific activity with these substrates and ATP as donor are 7- to 10-fold higher in the E. coli enzyme; the relative Vm values with UMP and CMP are 0.1 for the B. subtilis CMP kinase and 0.01 for the E. coli enzyme. CMP increased the affinity of E. coli CMP kinase for ATP or for the fluorescent analog 3'-anthraniloyl dATP by one order of magnitude but had no effect on the B. subtilis enzyme. The differences in the catalytic properties of B. subtilis and E. coli CMP kinases might be reflected in the structure of the two proteins as inferred from infrared spectroscopy. Whereas the spectrum of B. subtilis CMP kinase is dominated by a band at 1633 cm-1 (representing beta type structures), the spectrum of the E. coli enzyme is dominated by two bands at 1653 and 1642 cm-1 associated with alpha-helical and unordered structures, respectively. CMP induced similar spectral changes in both proteins with a rearrangement of some of the beta-structures. ATP increases the denaturation temperature of B. subtilis CMP kinase by 9.3 degrees C, whereas in the case of the E. coli enzyme, binding of ATP has only a minor effect.

  8. Adsorption of U(VI) on sericite in the presence of Bacillus subtilis: A combined batch, EXAFS and modeling techniques

    Science.gov (United States)

    Sun, Yubing; Zhang, Rui; Ding, Congcong; Wang, Xiangxue; Cheng, Wencai; Chen, Changlun; Wang, Xiangke

    2016-05-01

    The effect of Bacillus subtilis (B. subtilis) on the adsorption of U(VI) onto sericite was investigated using batch, EXAFS and modeling techniques. The batch adsorption indicated that the increased adsorption of U(VI) on sericite + B. subtilis systems at pH 6.0 due to the combination of deprotonated carboxyl groups of B. subtilis with the hydroxyl of sericite. The slightly enhanced adsorption of U(VI) on sericite + B. subtilis with increasing CO2 contents at pH 7.0 owing to electrostatic repulsion between negatively charged sericite + B. subtilis and negatively charged U(VI) species such as UO2(OH)3- or UO2(CO3)22- species. According to EXAFS analysis, the increased adsorption mechanism of U(VI) on sericite + B. subtilis at pH 4.0 was attributed to the formation of U-P shell, whereas the bidentate inner-sphere surface complexes was also observed at pH 7.0 due to the formation of U-C shell (2.92 Å) and/or U-Si/Al (3.18 Å) shell. Under the range of allowable error, the pH-dependent and isothermal adsorption of U(VI) on sericite + B. subtilis can be fitted by surface complexation modeling using ion exchange and surface complexation reaction by using equilibrium parameters obtained from each binary systems. These findings are important to understand the fate and transport of U(VI) on the mineral-bacteria ternary systems in the near-surface environment.

  9. The degree of proteolysis from fish protein fermentation by Bacillus natto%纳豆菌发酵鱼肉蛋白制备低分子肽的工艺研究

    Institute of Scientific and Technical Information of China (English)

    丛俊英; 张淑莲; 王阳; 张春枝

    2011-01-01

    The process for low molecular peptides produced from fish protein by Bacillus natto fermentation was optimized. The proteolytic degree was calculated by the biuret and Kjeldahl method to educe the appropriate fermentation conditions. The appropriate conditions were Ph 7. 5 , fish concentration 250 g/L, refilling sucrose concentration 20 g/L, inoculation quantity 3%, fermentation temperature 37 ℃, fermentation time 36 h. Under the above-mentioned conditions 15.4 g low molecular peptides could be gained from 100 g fish. The purity of low molecular peptides was 48. 4%.%以纳豆菌为发酵菌种,以鱼肉为原料,利用菌种发酵产酶降解鱼肉蛋白制备低分子肽,并对发酵工艺进行优化,从而获得较高的低分子肽产量.即在不同的发酵条件下,通过双缩脲和凯氏定氮法计算发酵液中蛋白水解度,比较得出适宜的发酵条件.实验结果显示,纳豆菌发酵鱼肉蛋白适宜的发酵条件为:初始pH 7.5,鱼肉质量浓度250 g/L,补加蔗糖质量浓度20 g/L,接种量体积分数3%,发酵温度37℃,发酵时间36 h.在上述条件下发酵100 g鱼肉,得低分子肽产品15.4g,产品极易溶于水,其中低分子肽纯度为48.40.

  10. Study on hydrolysis of soybean protein by protease from Bacillus natto%纳豆芽孢杆菌蛋自酶水解大豆蛋白的研究

    Institute of Scientific and Technical Information of China (English)

    潘进权; 刘燕梅; 梁玉嫦; 花伟诚

    2011-01-01

    Hydrolysis process of soybean protein by protease from Bacillus natto was investigated.The effect of the main parameters including enzyme/subst rate ratio,soybean protein concentration,initial pH,hydrolysis time,and hydrolysis temperature were analyzed and the hydrolysis process was optimized with single factor experiment, fractional factorial design (FFD), central composite design (CCD) and response surface methodology. After optimization, the optimum hydrolysis process conditions were obtained: soybean protein concentration 4%, enzyme/subst rate ratio 3460u/g,initial pH 10.0,hydrolysis temperature 58℃ and hydrolysis time 8h.Under these optimized conditions, hydrolysis degree value of soybean protein could reach 38.08mg/g, and the yield of polypeptides was 66.5%.%探讨了纳豆芽孢杆菌蛋白酶对大豆蛋白的水解作用,采用单因素实验、部分析因、中心组合及响应面分析的方法考察了底物浓度、起始pH、温度、酶浓度、酶解时间对大豆蛋白水解的影响,并由此确定了最佳的酶解工艺条件:大豆蛋白浓度4%、酶与底物蛋白比为3460u/g蛋白、温度58℃、起始pH10.0、水解时间为8h.在优化的条件下大豆蛋白的水解度可达到42.385mg/100g,多肽得率为66.5%.

  11. Genotyping of starter cultures of Bacillus subtilis and Bacillus pumilus for fermentation of African locust bean (Parkia biglobosa) to produce Soumbala.

    Science.gov (United States)

    Ouoba, Labia Irène Ivette; Diawara, Bréhima; Amoa-Awua, Wisdom kofi; Traoré, Alfred Sababénedyo; Møller, Peter Lange

    2004-01-15

    Bacillus spp. are the predominant microorganisms in fermented African locust bean called Soumbala in Burkina Faso. Ten strains selected as potential starter cultures were characterised by PCR amplification of the16S-23S rDNA intergenic transcribed spacer (ITS-PCR), restriction fragment length polymorphism of the ITS-PCR (ITS-PCR RFLP), pulsed field gel electrophoresis (PFGE) and sequencing of the 968-1401 region of the 16S rDNA. In previous studies, the isolates were identified by phenotyping as Bacillus subtilis and Bacillus pumilus. The phenotyping was repeated as a reference in the present study. The ITS-PCR and ITS-PCR RLFP allowed a typing at species level. The PFGE was more discriminative and allowed a typing at strain level. Full agreement with the phenotyping was observed in all cases. The sequencing of the 16S rDNA allowed the identification at species level with an identity from 97% to 100% comparing the sequences to those from the GenBank databases. The desired cultures of B. subtilis and B. pumilus from African locust bean fermentation were distinguished by ITS-PCR and ITS-PCR RLFP from Bacillus cereus and Bacillus sphaericus which sometimes occur in the beginning of the fermentation.

  12. Optimization of fermentation conditions for biosurfactant production by Bacillus subtilis-1101%生物表面活性剂生产Bacillus subtilis-1101发酵过程优化

    Institute of Scientific and Technical Information of China (English)

    吴志军; 王艳红; 阮洪生; 黄玉兰

    2012-01-01

    应用中心组合试验设计和响应面分析方法对影响枯草芽孢杆菌Bacillus subtilis-1101产生表面活性剂的发酵过程进行优化.结果表明,枯草芽孢杆菌Bacillus subtilis-1101产生表面活性剂的最佳发酵条件为发酵温度29.1℃,初始pH值为4.9,装液量为56mL.在此条件下进行实验,结果最大排油圈为7.08cm,与模型预测值接近.说明响应面分析方法是优化表面活性剂生产的有力工具.%The variables which affect the biosurfactant production of Bacillus subtilis-1101 were investigated through the central composite design combined with response surface methodology. Results indicated that the optimal conditions should be temperature 29.1%, initial pH 4.9, and the liquid volume 56mL respectively, and the maximum diameter of oil expulsion were 7.03 cm. The results showed that the experimental values agreed with the predicted values well. Results of these experiments indicated that response surface methodology was a powerful method for optimization of biosurfactant production.

  13. Nanostructure ZnFe2O4 with Bacillus subtilis for Detection of LPG at Low Temperature

    Science.gov (United States)

    Goutham, Solleti; Kumar, Devarai Santhosh; Sadasivuni, Kishor Kumar; Cabibihan, John-John; Rao, Kalagadda Venkateswara

    2017-04-01

    The present study deals with the development of a chemical sensor for the detection of liquefied petroleum gas (LPG) at a low operating temperature using Zinc ferrite (ZnFe2O4)/ Bacillus subtilis ( B. subtilis) hybrid nanostructures. The nanostructure ZnFe2O4 and B. subtilis powder, taken in equal proportion was made into films using the spin coating technique. X-ray diffraction, thermal analysis, scanning electron microscopy, and transmission electron microscopy were used to study morphology, structure and crystallite size. The sensing properties of the hybrid structure were studied and excellent response was observed in the temperature range of 50-55°C for 400 ppm LPG, when compared to the individual components of the hybrid. The signal output of the proposed sensor were extremely stable for more than 30 days. This method proposes the usage of the biomolecule/metal oxide composites in electronics and helps to reduce the metal oxide usage.

  14. Mapping by interspecies transformation experiments of several ribosomal protein genes near the replication origin of Bacillus subtilis chromosome.

    Science.gov (United States)

    Osawa, S; Tokui, A; Saito, H

    1978-08-17

    Bacillus subtilis 168 was transformed with DNAs from B. amyloliquefaciens K or B. licheniformis IAM 11054. These two species show a considerable difference in ribosomal proteins from B. subtilis. Analyses of the transformants indicated that the genes for 16 proteins, S3, S5, S8, S12, S17, S19, BL1, BL5, BL6, BL8, BL14, BL16, BL17, BL22, BL23 and BL25 are located in the cysA-str-spc region on B. subtilis chromosome. The genes for 10 proteins, S4, S6, S13, S16, S20, BL15, BL18, BL20, BL24 and BL28 could not be found in this region in the present experiments.

  15. UV resistance of Bacillus anthracis spores revisited: validation of Bacillus subtilis spores as UV surrogates for spores of B. anthracis Sterne.

    Science.gov (United States)

    Nicholson, Wayne L; Galeano, Belinda

    2003-02-01

    Recent bioterrorism concerns have prompted renewed efforts towards understanding the biology of bacterial spore resistance to radiation with a special emphasis on the spores of Bacillus anthracis. A review of the literature revealed that B. anthracis Sterne spores may be three to four times more resistant to 254-nm-wavelength UV than are spores of commonly used indicator strains of Bacillus subtilis. To test this notion, B. anthracis Sterne spores were purified and their UV inactivation kinetics were determined in parallel with those of the spores of two indicator strains of B. subtilis, strains WN624 and ATCC 6633. When prepared and assayed under identical conditions, the spores of all three strains exhibited essentially identical UV inactivation kinetics. The data indicate that standard UV treatments that are effective against B. subtilis spores are likely also sufficient to inactivate B. anthracis spores and that the spores of standard B. subtilis strains could reliably be used as a biodosimetry model for the UV inactivation of B. anthracis spores.

  16. Bacillus tequilensis sp. nov., isolated from a 2000-year-old Mexican shaft-tomb, is closely related to Bacillus subtilis.

    Science.gov (United States)

    Gatson, Joshua W; Benz, Bruce F; Chandrasekaran, Chitra; Satomi, Masataka; Venkateswaran, Kasthuri; Hart, Mark E

    2006-07-01

    A Gram-positive, spore-forming bacillus was isolated from a sample taken from an approximately 2000-year-old shaft-tomb located in the Mexican state of Jalisco, near the city of Tequila. Tentative identification using conventional biochemical analysis consistently identified the isolate as Bacillus subtilis. DNA isolated from the tomb isolate, strain 10b(T), and closely related species was used to amplify a Bacillus-specific portion of the highly conserved 16S rRNA gene and an internal region of the superoxide dismutase gene (sodA(int)). Trees derived from maximum-likelihood methods applied to the sodA(int) sequences yielded non-zero branch lengths between strain 10b(T) and its closest relative, whereas a comparison of a Bacillus-specific 546 bp amplicon of the 16S rRNA gene demonstrated 99 % similarity with B. subtilis. Although the 16S rRNA gene sequences of strain 10b(T) and B. subtilis were 99 % similar, PFGE of NotI-digested DNA of strain 10b(T) revealed a restriction profile that was considerably different from those of B. subtilis and other closely related species. Whereas qualitative differences in whole-cell fatty acids were not observed, significant quantitative differences were found to exist between strain 10b(T) and each of the other closely related Bacillus species examined. In addition, DNA-DNA hybridization studies demonstrated that strain 10b(T) had a relatedness value of less than 70 % with B. subtilis and other closely related species. Evidence from the sodA(int) sequences, whole-cell fatty acid profiles and PFGE analysis, together with results from DNA-DNA hybridization studies, justify the classification of strain 10b(T) as representing a distinct species, for which the name Bacillus tequilensis sp. nov. is proposed. The type strain is 10b(T) (=ATCC BAA-819(T)=NCTC 13306(T)).

  17. Optimization of physico-chemical condition for improved production of hyperthermostable β amylase from Bacillus subtilis DJ5

    OpenAIRE

    Abhijit Poddar; Ratan Gachhui; Subhas Chandra Jana

    2012-01-01

    Bacillus subtilis DJ5 was found to produce hyperthermostable beta amylase in a complex medium during submerged fermentation. The media was optimized for improved production of hyperthermostable β amylase following one variable at a time (OVAT) method. Initial medium pH of 7 and cultivation temperature of 37 °C were optimal for enzyme production. Among different nitrogen and carbon sources tested, 0.05% tryptone and 5% starch were most effective for enzyme yield. Little supplementatio...

  18. Insights into the Function of a Second, Nonclassical Ahp Peroxidase, AhpA, in Oxidative Stress Resistance in Bacillus subtilis

    OpenAIRE

    Broden, Nicole J.; Flury, Sarah; King, Alyssa N.; Schroeder, Braden W.; Coe, Gabrielle Dierker; Faulkner, Melinda J.

    2016-01-01

    Organisms growing aerobically generate reactive oxygen-containing molecules, such as hydrogen peroxide (H2O2). These reactive oxygen molecules damage enzymes and DNA and may even cause cell death. In response, Bacillus subtilis produces at least nine potential peroxide-scavenging enzymes, two of which appear to be the primary enzymes responsible for detoxifying peroxides during vegetative growth: a catalase (encoded by katA) and an alkylhydroperoxide reductase (Ahp, encoded by ahpC). AhpC use...

  19. CARACTERISATION BIOCHIMIQUE DE YPHC, UNE PROTEINE DE BACILLUS SUBTILIS A DEUX DOMAINES GTPASE IMPLIQUEE DANS LA BIOGENESE DU RIBOSOME

    OpenAIRE

    Foucher, Anne-Emmanuelle

    2010-01-01

    Genome sequencing programs have revealed many genes of unknown function. The systematic disruption of these genes revealed the essentiality for some of them. Studying orphan proteins became of first importance as they are ideal targets for new antibacterial compounds. YphC is a GTPase from Bacillus subtilis that meets these criteria. It is well conserved throughout bacterial kingdom but is not found in eukaryota or archeas, strengthening the choice of this protein as a future target for antib...

  20. Krebs cycle function is required for activation of the Spo0A transcription factor in Bacillus subtilis.

    OpenAIRE

    Ireton, K.; Jin, S.; Grossman, A D; Sonenshein, A L

    1995-01-01

    Expression of genes early during sporulation in Bacillus subtilis requires the activity of the transcription factor encoded by spo0A. The active, phosphorylated form of Spo0A is produced through the action of a multicomponent pathway, the phosphorelay. A mutant defective in the first three enzymes of the Krebs citric acid cycle was unable to express early sporulation genes, apparently because of a failure to activate the phosphorelay. Cells that produce an altered Spo0A protein that can be ph...

  1. Production of alkaline protease with immobilized cells of bacillus subtilis PE-11 in various matrices by entrapment technique

    OpenAIRE

    Adinarayana, Kunamneni; Jyothi, Bezawada; Ellaiah, Poluri

    2005-01-01

    The purpose of this investigation was to study the effect ofBacillus subtilis PE-11 cells immobilized in various matrices, such as calcium alginate, k-Carrageenan, ployacrylamide, agar-agar, and gelatin, for the production of alkaline protease. Calcium alginate was found to be an effective and suitable matrix for higher alkaline protease productivity compared to the other matrices studied. All the matrices were selected for repeated batch fermentation. The average specific volumetric producti...

  2. Investigation of UV-TiO2 photocatalysis and its mechanism in Bacillus subtilis spore inactivation.

    Science.gov (United States)

    Zhang, Yiqing; Zhou, Lingling; Zhang, Yongji

    2014-09-01

    The inactivation levels of Bacillus subtilis spores for various disinfection processes (ultraviolet (UV), TiO2 and UV-TiO2) were compared. The results showed that the inactivation effect of B. subtilis spores by UV treatment alone was far below that for bacteria without endospores. TiO2 alone in the dark, as a control experiment, exhibited almost no inactivation effect. Compared with UV treatment alone, the inactivation effect increased significantly with the addition of TiO2. Increases of the UV irradiance and TiO2 concentration both contributed to the increase of the inactivation effect. Lipid peroxidation was found to be the underlying mechanism of inactivation. Malondialdehyde (MDA), the degradation product of lipid peroxidation, was used as an index to determine the extent of the reaction. The MDA concentration surged surprisingly to 3.24nmol/mg dry cell with the combination disinfection for 600sec (0.10mW/cm(2) irradiance and 10mg/L TiO2). In contrast, for UV alone or TiO2 in the dark, the MDA concentration was 0.38 and 0.25nmol/mg dry cell, respectively, under the same conditions. This indicated that both UV and TiO2 were essential for lipid peroxidation. Changes in cell ultrastructure were observed by transmission electron microscopy. The cell membrane was heavily damaged and cellular contents were completely lysed with the UV-TiO2 process, suggesting that lipid peroxidation was the root of the enhancement in inactivation efficiency.

  3. Inactivation of Bacillus subtilis spores using various combinations of ultraviolet treatment with addition of hydrogen peroxide.

    Science.gov (United States)

    Zhang, Yiqing; Zhou, Lingling; Zhang, Yongji; Tan, Chaoqun

    2014-01-01

    This study aims at comparing the inactivation of Bacillus subtilis spores by various combinations of UV treatment and hydrogen peroxide (H2O2) addition. The combinations included sequential (UV-H2O2, H2O2-UV) and simultaneous (UV/H2O2) processes. Results showed that B. subtilis spores achieved a certain inactivation effect through UV treatment. However, hardly any inactivation effect by H2O2 alone was observed. H2O2 had a significant synergetic effect when combined with UV treatment, while high irradiance and H2O2 concentration both favored the reaction. When treated with 0.60 mm H2O2 and 113.0 μW/cm(2) UV irradiance for 6 min, the simultaneous UV/H2O2 treatment showed significantly improved disinfection effect (4.13 log) compared to that of UV-H2O2 (3.03 log) and H2O2-UV (2.88 log). The relationship between the inactivation effect and the exposure time followed a typical pseudo-first-order kinetics model. The pseudo-first-order rate constants were 0.478, 0.447 and 0.634 min(-1), for the UV-H2O2, H2O2-UV and UV/H2O2 processes, respectively, further confirming the optimal disinfection effect of the UV/H2O2 process. The disinfection could be ascribed to the OH radicals, as verified by the level of para-chlorobenzoic acid (pCBA).

  4. [Kinetic Characteristics of Degradation of Geosmin and 2-Methylisoborneol by Bacillus subtilis].

    Science.gov (United States)

    Ma, Nian-nian; Luo, Guo-zhi; Tan, Hong-xin; Yao, Miao-lan; Wang, Xiao-yong

    2015-04-01

    The earthy and musty odor problem in aquaculture systems has been a worldwide problem, especially in freshwater aquaculture systems. Geosmin (GSM) and 2-methylisoborneol (2-MIB), the most common causative agents of the off-flavor in fish, are lipophilic secondary metabolites of cyanobacteria, actinomycetes, and other microorganisms. The odor threshold concentrations for 2-MIB and GSM are approximately 9-42 ng x L(-1) and 4-10 ng x L(-1), and 600 ng x kg(-1) and 900 ng x kg(-1) in the aquaculture water and fish, respectively. With such a low odor threshold concentration, the off-flavor compounds greatly reduce the quality and economic value of aquatic products. This renders the fish, especially some valuable fish produced in recirculating aquaculture systems (RAS), unmarketable. The study reported the kinetic characteristics of degradation of GSM and 2-MIB by Bacillus subtilis and discussed the impacts of the initial concentration of GSM and 2-MIB (T1, T2) and inoculation amount (T1, T3 ) on the biodegradation rate. The result demonstrated that these two compounds could be degraded by B. subtilis effectively and the biodegradation rate reached more than 90% in T1, T2 and T3 treatments. The biodegradation of these two compounds behaved as a pseudo-first-order kinetics with rate constants (K) in the range of 0.14-0.41. K values indicated that the degradation rate was dependent on the inoculation amount but the start concentration of GSM and MIB. The degradation kinetics showed the maximum specific rate value (u(max)) and the Monod constant (K(s)) were 0.311 and 1.73, however, 2-MIB degradation process did not meet the Monod microbial growth equation (R2 = 0.781).

  5. Exopolymer diversity and the role of levan in Bacillus subtilis biofilms.

    Directory of Open Access Journals (Sweden)

    Iztok Dogsa

    Full Text Available Exopolymeric substances (EPS are important for biofilm formation and their chemical composition may influence biofilm properties. To explore these relationships the chemical composition of EPS from Bacillus subtilis NCIB 3610 biofilms grown in sucrose-rich (SYM and sucrose-poor (MSgg and Czapek media was studied. We observed marked differences in composition of EPS polymers isolated from all three biofilms or from spent media below the biofilms. The polysaccharide levan dominated the EPS of SYM grown biofilms, while EPS from biofilms grown in sucrose-poor media contained significant amounts of proteins and DNA in addition to polysaccharides. The EPS polymers differed also in size with very large polymers (Mw>2000 kDa found only in biofilms, while small polymers (Mw<200 kD dominated in the EPS isolated from spent media. Biofilms of the eps knockout were significantly thinner than those of the tasA knockout in all media. The biofilm defective phenotypes of tasA and eps mutants were, however, partially compensated in the sucrose-rich SYM medium. Sucrose supplementation of Czapek and MSgg media increased the thickness and stability of biofilms compared to non-supplemented controls. Since sucrose is essential for synthesis of levan and the presence of levan was confirmed in all biofilms grown in media containing sucrose, this study for the first time shows that levan, although not essential for biofilm formation, can be a structural and possibly stabilizing component of B. subtilis floating biofilms. In addition, we propose that this polysaccharide, when incorporated into the biofilm EPS, may also serve as a nutritional reserve.

  6. AhpA is a peroxidase expressed during biofilm formation in Bacillus subtilis.

    Science.gov (United States)

    Zwick, Joelie V; Noble, Sarah; Ellaicy, Yasser K; Coe, Gabrielle Dierker; Hakey, Dylan J; King, Alyssa N; Sadauskas, Alex J; Faulkner, Melinda J

    2017-02-01

    Organisms growing aerobically generate reactive oxygen species such as hydrogen peroxide. These reactive oxygen molecules damage enzymes and DNA, potentially causing cell death. In response, Bacillus subtilis produces at least nine potential peroxide-scavenging enzymes; two belong to the alkylhydroperoxide reductase (Ahp) class of peroxidases. Here, we explore the role of one of these Ahp homologs, AhpA. While previous studies demonstrated that AhpA can scavenge peroxides and thus defend cells against peroxides, they did not clarify when during growth the cell produces AhpA. The results presented here show that the expression of ahpA is regulated in a manner distinct from that of the other peroxide-scavenging enzymes in B. subtilis. While the primary Ahp, AhpC, is expressed during exponential growth and stationary phase, these studies demonstrate that the expression of ahpA is dependent on the transition-state regulator AbrB and the sporulation and biofilm formation transcription factor Spo0A. Furthermore, these results show that ahpA is specifically expressed during biofilm formation, and not during sporulation or stationary phase, suggesting that derepression of ahpA by AbrB requires a signal other than those present upon entry into stationary phase. Despite this expression pattern, ahpA mutant strains still form and maintain robust biofilms, even in the presence of peroxides. Thus, the role of AhpA with regard to protecting cells within biofilms from environmental stresses is still uncertain. These studies highlight the need to further study the Ahp homologs to better understand how they differ from one another and the unique roles they may play in oxidative stress resistance.

  7. BACILLUS SUBTILIS FOR THE CONTROL OF POWDERY MILDEW ON CUCUMBER AND ZUCCHINI SQUASH

    Directory of Open Access Journals (Sweden)

    BETTIOL WAGNER

    1997-01-01

    Full Text Available Application of concentrated metabolites of Bacillus subtilis - CMBS - (5,000 µg/mL one and 24 h before or after inoculation of Sphaerotheca fuliginea (3 x 104 conidia/mL reduced the number of lesions on cucumber leaves by 90-99%. The average number of lesions on control plants was 16.7 per leaf. A wettable powder product formulated with cells (10% and metabolites (10% of B. subtilis (WPBS, and CMBS sprayed on cucumber plants (1,000 µg/mL and 10,000 µg/mL twice a week totally controlled powdery mildew. In the control treatment, 18 days after the first spray, the percent leaf surface covered by lesions was 99.0 and 46.7%, on the cotyledonary and expanded leaves, respectively. In the control treatment, 30 days after the first spray, the percent leaf surface with lesions was 26.1%, while leaves sprayed with CMBS presented no lesions. The fresh weight per plant was 4.3 g in the control treatment; 12.2 g, and 10.2 g for plants sprayed with CMBS at the concentration of 1,000 and 10,000 µg/mL, respectively; and 9.7 g and 10.1 g for plants sprayed with WPBS 1,000 and 10,000 µg/mL, respectively. For zucchini squash, CMBS (5,000 µg/mL sprayed every 2, 4, and 6 days showed reductions in lesioned leaf surface of 100.0, 98.3, and 94.7%, respectively.

  8. Activity of Kaempferia pandurata (Roxb.) rhizome ethanol extract against MRSA, MRCNS, MSSA, Bacillus subtilis and Salmonella typhi.

    Science.gov (United States)

    Sukandar, Elin Yulinah; Sunderam, Nethiyakalyani; Fidrianny, Irda

    2014-01-01

    Temu kunci (Kaempferia pandurata (Roxb.)) has a number of benefits and one of these is antibacterial. The rhizome is said to have antibacterial activity against Streptococcus mutans, Lactocillus sp. and Candida albicans. The aim of the study is to test the antibacterial activity of Kaempferia pandurata (Roxb.) rhizome ethanol extract on methicillin-resistant Staphylococcus aureus (MRSA), methicillin-resistant coagulase negative Staphylococci (MRCNS), methicillin-sensitive Staphylococcus aureus (MSSA), Bacillus subtilis and Salmonella typhi. Antimicrobial activity of the extract was assayed by the microdilution method using Mueller Hinton Broth with sterilized 96 round-bottomed microwells to determine the Minimum Inhibitory Concentration (MIC) as well as to determine the time-kill activity. The MIC of the extract was 16 ppm for both Bacillus subtilis and MRSA; 8 ppm for both MSSA and Salmonella typhi and 4 ppm for MRCNS. Ethanol extract of Kaempferia pandurata (Roxb.) showed antibacterial activity against all the tested bacteria and was the most potent against MRCNS, with MIC 4 ppm. The killing profile test of the extract displayed bactericidal activity at 8-16 ppm against MRSA, MSSA, Bacillus subtilis and Salmonella typhi and bacteriostatic activity at 4 ppm towards MRCNS.

  9. Differential antimicrobial activity of silver nanoparticles to bacteria Bacillus subtilis and Escherichia coli, and toxicity to crop plant Zea mays and beneficial B. subtilis-inoculated Z. mays

    Science.gov (United States)

    Doody, Michael A.; Wang, Dengjun; Bais, Harsh P.; Jin, Yan

    2016-10-01

    As silver nanoparticles (AgNPs) have become increasingly used in commercial antimicrobial agents and industrial and military products, concerns are increasing over their broad environmental and health impacts and risks because they are finding their way to the environment. This study was designed to quantify the antimicrobial activity of citrate-coated AgNPs (c-AgNPs; transmission electron microscope size of 44.9 ± 7.2 nm) to two species of bacteria, i.e., Gram-positive Bacillus subtilis and Gram-negative Escherichia coli, and toxicity to a major crop plant Zea mays and beneficial bacteria-inoculated plant (i.e., B. subtilis-inoculated Z. mays symbiont). Our results reveal that the exposure of c-AgNPs significantly inhibited bacteria growth and altered their growth kinetics. Z. mays experienced significant sublethal effects including reduced root length and biomass, and hyper-accumulation of Ag in roots. The beneficial interactions between B. subtilis and Z. mays were weakened as well because both species suffered sublethal effects. Potential mechanisms leading to the antimicrobial activity and toxicity of c-AgNPs to the bacteria, plant, and plant-bacteria symbiont examined in this study were discussed. Taken together, our findings advance the current knowledge of AgNPs antimicrobial property or toxicity to bacteria, crop plant, and beneficial plant-bacteria symbiotic interaction, which is a critical component for NPs environmental impact and risk assessment.

  10. Uso de Bacillus subtilis no controle da meloidoginose e na promoção do crescimento do tomateiro Use of Bacillus subtilis in the control of root-knot nematode and the growth promotion in tomato

    Directory of Open Access Journals (Sweden)

    Fabio Fernando de Araújo

    2009-08-01

    Full Text Available O objetivo deste trabalho foi o de avaliar o efeito de Bacillus subtilis (PRBS-1 como promotor de crescimento e agente de supressão de nematóides formadores de galhas (Meloidogyne spp. no cultivo do tomateiro. Os tratamentos consistiram na aplicação de formulação contendo B. subtilis e o nematicida carbofuran. As plantas foram mantidas em casa de vegetação durante 85 dias, quando foram coletadas, sendo separada as raízes da parte aérea para avaliação do efeito dos tratamentos. A produção de massa fresca da parte aérea do tomate foi incrementada pelos tratamentos químico e biológico. A massa fresca de raízes foi reduzida com a aplicação de B. subtilis. O efeito do tratamento biológico sobre a reprodução do nematóide foi mais evidente pela redução de massas de ovos na raiz. O presente estudo indica que a estirpe PRBS-1 de B. subtilis promove o crescimento do tomateiro e reduz a reprodução de nematóide formador de galhas em raízes dessa planta, sob condições de casa de vegetação.The objective of this research was to evaluate the Bacillus subtilis (PRBS-1 effect as growth promoter and suppressor agent of root-knot nematode (Meloidogyne spp. in tomato cultivation. The treatments consisted in the application of B. subtilis formulation and of the nematicide carbofuran. The plants were maintained in greenhouse during 85 days, when the plants were colleted. Roots were separated from aerial part of the plants to evaluate the treatments effect. The fresh matter production by the aerial part increased either by the chemical or by the biological treatments. The fresh matter of the roots was reduced with application B. subtilis. The effect of the biological treatment on the nematode reproduction was more evident by the reduction of egg masses in the root. The present study indicates that the strain PRBS-1 of B. subtilis promotes tomato plant growth and reduces knoot-root nematode reproduction in tomato roots under greenhouse

  11. The differential stress response of adapted chromite mine isolates Bacillus subtilis and Escherichia coli and its impact on bioremediation potential.

    Science.gov (United States)

    Samuel, Jastin; Paul, Madona Lien; Ravishankar, Harish; Mathur, Ankita; Saha, Dipti Priya; Natarajan, Chandrasekaran; Mukherjee, Amitava

    2013-11-01

    In the current study, indigenous bacterial isolates Bacillus subtilis VITSUKMW1 and Escherichia coli VITSUKMW3 from a chromite mine were adapted to 100 mg L(-1) of Cr(VI). The phase contrast and scanning electron microscopic images showed increase in the length of adapted E. coli cells and chain formation in case of adapted B. subtilis. The presence of chromium on the surface of the bacteria was confirmed by energy dispersive X-ray spectroscopy (EDX), which was also supported by the conspicuous Cr-O peaks in FTIR spectra. The transmission electron microscopic (TEM) images of adapted E. coli and B. subtilis showed the presence of intact cells with Cr accumulated inside the bacteria. The TEM-EDX confirmed the internalization of Cr(VI) in the adapted cells. The specific growth rate and Cr(VI) reduction capacity was significantly higher in adapted B. subtilis compared to that of adapted E. coli. To study the possible role of Cr(VI) toxicity affecting the Cr(VI) reduction capacity, the definite assays for the released reactive oxygen species (ROS) and ROS scavenging enzymes (SOD and GSH) were carried out. The decreased ROS production as well as SOD and GSH release observed in adapted B. subtilis compared to the adapted E. coli corroborated well with its higher specific growth rate and increased Cr(VI) reduction capacity.

  12. Engineered Bacillus subtilis 168 produces L-malate by heterologous biosynthesis pathway construction and lactate dehydrogenase deletion.

    Science.gov (United States)

    Mu, Li; Wen, Jianping

    2013-01-01

    In the present work, Bacillus subtilis was engineered to produce L-malate. Initially, the study revealed that the slight fumarase activity under anaerobic conditions is extremely favourable for L-malate one-step fermentation accumulation. Subsequently, an efficient heterologous biosynthesis pathway formed by Escherichia coli phosphoenolpyruvate carboxylase and Saccharomyces cerevisiae malate dehydrogenase was introduced into B. subtilis, which led to 6.04 ± 0.19 mM L-malate production. Finally, the L-malate production was increased 1.5-fold to 9.18 ± 0.22 mM by the deletion of lactate dehydrogenase. Under two-stage fermentation conditions, the engineered B. subtilis produced up to 15.65 ± 0.13 mM L-malate, which was 86.3 % higher than that under anaerobic fermentation conditions. Though the L-malate production by the recombinant was low, this is the first attempt to produce L-malate in engineered B. subtilis and paves the way for further improving L-malate production in B. subtilis.

  13. Subtilomycin: A New Lantibiotic from Bacillus subtilis Strain MMA7 Isolated from the Marine Sponge Haliclona simulans

    Directory of Open Access Journals (Sweden)

    Teresa M. Barbosa

    2013-06-01

    Full Text Available Bacteriocins are attracting increased attention as an alternative to classic antibiotics in the fight against infectious disease and multidrug resistant pathogens. Bacillus subtilis strain MMA7 isolated from the marine sponge Haliclona simulans displays a broad spectrum antimicrobial activity, which includes Gram-positive and Gram-negative pathogens, as well as several pathogenic Candida species. This activity is in part associated with a newly identified lantibiotic, herein named as subtilomycin. The proposed biosynthetic cluster is composed of six genes, including protein-coding genes for LanB-like dehydratase and LanC-like cyclase modification enzymes, characteristic of the class I lantibiotics. The subtilomycin biosynthetic cluster in B. subtilis strain MMA7 is found in place of the sporulation killing factor (skf operon, reported in many B. subtilis isolates and involved in a bacterial cannibalistic behaviour intended to delay sporulation. The presence of the subtilomycin biosynthetic cluster appears to be widespread amongst B. subtilis strains isolated from different shallow and deep water marine sponges. Subtilomycin possesses several desirable industrial and pharmaceutical physicochemical properties, including activity over a wide pH range, thermal resistance and water solubility. Additionally, the production of the lantibiotic subtilomycin could be a desirable property should B. subtilis strain MMA7 be employed as a probiotic in aquaculture applications.

  14. Investigation of the toxic effect of cadmium on Candida humicola and Bacillus subtilis using a microcalorimetric method.

    Science.gov (United States)

    Chen, Hai-Yan; Yao, Jun; Zhou, Yong; Chen, Hui-Lun; Wang, Fei; Gai, Nan; Zhuang, Ren-Sheng; Ceccanti, Brunello; Maskow, Thomas; Zaray, Gyula

    2008-11-30

    In this study, the technique of microcalorimetry based on heat-output by aerobic bacterial respiration was explored to evaluate the toxic effect of cadmium on Candida humicola, Bacillus subtilis, singularly or in a mixture of both. Power-time curves of the growth metabolism of C. humicola and B. subtilis and the effect of Cd(2+) were studied using the TAM III (the third generation thermal activity monitor) multi-channel microcalorimetric system, isothermal mode, at 28 degrees C. The differences in shape of the power-time curves and the thermodynamic and kinetic characteristics of microorganisms growth were compared. The effect of cadmium added into microorganism would significantly reduce the life cycle and change the thermal effect of microbial metabolic process with different concentrations of Cd(2+). The experimental results revealed that at the same concentration, the sequence of inhibitory ratio (I) and maximum thermal power (P(max)) of the Cd(2+) was: mixed microorganisms>C. humicola>B. subtilis. The sequence of total thermal effect (Q(total)) and growth rate constant (k) is mixed microorganisms>B. subtilis>C. humicola. These results are important to further studies of the physiology and pharmacology of C. humicola and B. subtilis and may support the theory of restoring contaminated soil.

  15. Subtilomycin: a new lantibiotic from Bacillus subtilis strain MMA7 isolated from the marine sponge Haliclona simulans.

    Science.gov (United States)

    Phelan, Robert W; Barret, Matthieu; Cotter, Paul D; O'Connor, Paula M; Chen, Rui; Morrissey, John P; Dobson, Alan D W; O'Gara, Fergal; Barbosa, Teresa M

    2013-06-03

    Bacteriocins are attracting increased attention as an alternative to classic antibiotics in the fight against infectious disease and multidrug resistant pathogens. Bacillus subtilis strain MMA7 isolated from the marine sponge Haliclona simulans displays a broad spectrum antimicrobial activity, which includes Gram-positive and Gram-negative pathogens, as well as several pathogenic Candida species. This activity is in part associated with a newly identified lantibiotic, herein named as subtilomycin. The proposed biosynthetic cluster is composed of six genes, including protein-coding genes for LanB-like dehydratase and LanC-like cyclase modification enzymes, characteristic of the class I lantibiotics. The subtilomycin biosynthetic cluster in B. subtilis strain MMA7 is found in place of the sporulation killing factor (skf) operon, reported in many B. subtilis isolates and involved in a bacterial cannibalistic behaviour intended to delay sporulation. The presence of the subtilomycin biosynthetic cluster appears to be widespread amongst B. subtilis strains isolated from different shallow and deep water marine sponges. Subtilomycin possesses several desirable industrial and pharmaceutical physicochemical properties, including activity over a wide pH range, thermal resistance and water solubility. Additionally, the production of the lantibiotic subtilomycin could be a desirable property should B. subtilis strain MMA7 be employed as a probiotic in aquaculture applications.

  16. Investigation of the toxic effect of cadmium on Candida humicola and Bacillus subtilis using a microcalorimetric method

    Energy Technology Data Exchange (ETDEWEB)

    Chen Haiyan [School of Environmental Studies and Key Laboratory of Biogeology and Environmental Geology of Chinese Ministry of Education and Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences, 430074 Wuhan (China); Yao Jun [School of Environmental Studies and Key Laboratory of Biogeology and Environmental Geology of Chinese Ministry of Education and Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences, 430074 Wuhan (China)], E-mail: yaojun@cug.edu.cn; Zhou Yong; Chen Huilun; Wang Fei; Gai Nan; Zhuang Rensheng [School of Environmental Studies and Key Laboratory of Biogeology and Environmental Geology of Chinese Ministry of Education and Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences, 430074 Wuhan (China); Ceccanti, Brunello [Institute of Ecosystem Studies(ISE) - Italian National Research Council (ICT-CNR) (Italy); Maskow, Thomas [UFZ Centre for Environmental Research Leipzig, 04318 Leipzig (Germany); Zaray, Gyula [Department of Chemical Technology and Environmental Chemistry, Eoetvoes University, H-1518 Budapest, P.O. Box 32 (Hungary)

    2008-11-30

    In this study, the technique of microcalorimetry based on heat-output by aerobic bacterial respiration was explored to evaluate the toxic effect of cadmium on Candida humicola, Bacillus subtilis, singularly or in a mixture of both. Power-time curves of the growth metabolism of C. humicola and B. subtilis and the effect of Cd{sup 2+} were studied using the TAM III (the third generation thermal activity monitor) multi-channel microcalorimetric system, isothermal mode, at 28 deg. C. The differences in shape of the power-time curves and the thermodynamic and kinetic characteristics of microorganisms growth were compared. The effect of cadmium added into microorganism would significantly reduce the life cycle and change the thermal effect of microbial metabolic process with different concentrations of Cd{sup 2+}. The experimental results revealed that at the same concentration, the sequence of inhibitory ratio (I) and maximum thermal power (P{sub max}) of the Cd{sup 2+} was: mixed microorganisms > C. humicola > B. subtilis. The sequence of total thermal effect (Q{sub total}) and growth rate constant (k) is mixed microorganisms > B. subtilis > C. humicola. These results are important to further studies of the physiology and pharmacology of C. humicola and B. subtilis and may support the theory of restoring contaminated soil.

  17. The Dimanganese(II) Site of Bacillus subtilis Class Ib Ribonucleotide Reductase

    Energy Technology Data Exchange (ETDEWEB)

    Boal, Amie K.; Cotruvo, Jr., Joseph A.; Stubbe, JoAnne; Rosenzweig, Amy C. (MIT); (NWU)

    2014-10-02

    Class Ib ribonucleotide reductases (RNRs) use a dimanganese-tyrosyl radical cofactor, Mn{sub 2}{sup III}-Y{sm_bullet}, in their homodimeric NrdF ({beta}2) subunit to initiate reduction of ribonucleotides to deoxyribonucleotides. The structure of the Mn{sub 2}{sup II} form of NrdF is an important component in understanding O{sub 2}-mediated formation of the active metallocofactor, a subject of much interest because a unique flavodoxin, NrdI, is required for cofactor assembly. Biochemical studies and sequence alignments suggest that NrdF and NrdI proteins diverge into three phylogenetically distinct groups. The only crystal structure to date of a NrdF with a fully ordered and occupied dimanganese site is that of Escherichia coli Mn{sub 2}{sup II}-NrdF, prototypical of the enzymes from actinobacteria and proteobacteria. Here we report the 1.9 {angstrom} resolution crystal structure of Bacillus subtilis Mn{sub 2}{sup II}-NrdF, representative of the enzymes from a second group, from Bacillus and Staphylococcus. The structures of the metal clusters in the {beta}2 dimer are distinct from those observed in E. coli Mn{sub 2}{sup II}-NrdF. These differences illustrate the key role that solvent molecules and protein residues in the second coordination sphere of the Mn{sub 2}{sup II} cluster play in determining conformations of carboxylate residues at the metal sites and demonstrate that diverse coordination geometries are capable of serving as starting points for Mn{sub 2}{sup III}-Y{sm_bullet} cofactor assembly in class Ib RNRs.

  18. Cloning of the Bacillus subtilis recE/sup +/ gene and functional expression of recE/sup +/ in B. subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Marrero, R.; Yasbin, R.E.

    1988-01-01

    By use of the Bacillus subtilis bacteriophage cloning vehicle Phi 105J23, B. subtilis chromosomal MboI fragments have been cloned that alleviate the pleiotropic effects of the recE4 mutation. The recombinant bacteriophages Phi 105Rec Phi1 (3.85-kilobase insert) and Phi 105Rec Phi4 (3.3-kilobase insert) both conferred on the recE4 strain YB1015 resistance to ethylmethane sulfonate, methylmethane sulfonate, mitomycin C, and UV irradiation comparable with the resistance observed in recE/sup +/ strains. While strain YB1015 (recE4) and its derivatives lysogenized with bacteriophage Phi105J23 were not transformed to prototrophy by B. subtilis chromosomal DNA, strain YB1015 lysogenized with either Phi 105Rec Phi 1 or Phi 105RecPhi 4 was susceptible to transformation with homologous B. subtilis chromosomal DNA. The heteroimmune prophages Phi 105 and SPO2 were essentially uninducible in strain YB1015. Significantly, both recombinant prophages Phi 105RecPhi 1 and Phi 105Rec Phi 4 were fully inducible and allowed the spontaneous and mitomycin C-dependent induction of a coresident SPO2 prophage in a recE4 host. The presence of the recombinant prophages also restored the ability of din genes to be induced in strains carrying the recE4 mutation. Finally, both recombinant bacteriophages elaborated a mitomycin C-inducible, 45-kilodalton protein that was immunoreactive with Escherichia coli recA/sup +/ gene product antibodies. Collectively, these data demonstrate that the recE/sup +/ gene has been cloned and that this gene elaborates the 45-kilodalton protein that is involved in SOB induction and homologous recombination.

  19. Degradation of proteins during the fermentation of African locust bean (Parkia biglobosa) by strains of Bacillus subtilis and Bacillus pumilus for production of Soumbala

    DEFF Research Database (Denmark)

    Ouoba, L.I.I.; Rechinger, K.B.; Barkholt, Vibeke

    2003-01-01

    Aims: To examine isolates of Bacillus subtilis and B. pumilus predominant in Soumbala for their ability to degrade African locust bean proteins (ALBP).Methods and Results: Agar diffusion test in casein and ALBP agar was used for screening of isolates. The profiles of water-soluble proteins and free...... amino acids (FAA) during the fermentation of ALBP by the Bacillus isolates were studied by SDS-PAGE and cation exchange chromatography. The profile of soluble proteins changed with the fermentation time and varied depending on the isolate. The quantity of total FAA and essential FAA such as lysine...... was increased sharply between 24 and 48 h of fermentation and differed among the isolates. Simultaneously, a pH increase was observed. Cysteine, methionine, leucine, isoleucine, tyrosine and phenylalaline appeared during fermentation.Conclusion: The Bacillus isolates studied degraded ALBP leading to a profile...

  20. Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity.

    Science.gov (United States)

    Zeriouh, Houda; de Vicente, Antonio; Pérez-García, Alejandro; Romero, Diego

    2014-07-01

    The biocontrol activity of many Bacillus species has been traditionally related to the direct antagonism of pathogens. In previous works, we reported that B. subtilis strain UMAF6614 was an efficient biocontrol agent that produced bacillomycin, fengycin and surfactin lipopeptides. Bacillomycins and fengycins were shown to have antagonistic activity towards fungal and bacterial pathogens of cucurbits; however, the functionality of surfactin remained unclear. In this study, the role of surfactin in the biocontrol activity of this strain was investigated. We observed that a deficiency in surfactin production led to a partial reduction of disease suppression by this biocontrol agent, which coincided with a defect in biofilm formation and the colonization of the melon phylloplane. These effects were due to a dramatic reduction in the production of exopolysaccharide and the TasA protein, which are the two major components of the extracellular matrix. We propose that the biocontrol activity of this strain is the result of the coordinated action of the three families of lipopeptides. B. subtilis UMAF6614 produces surfactin to trigger biofilm formation on melon phylloplane, which ensures the long-term persistence and the adequate secretion of suppressive lipopeptides, bacillomycins and fengycins, which efficiently target pathogens.

  1. Alanylated lipoteichoic acid primer in Bacillus subtilis [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Yu Luo

    2016-04-01

    Full Text Available Lipoteichoic acid is a major lipid-anchored polymer in Gram-positive bacteria such as Bacillus subtilis. This polymer typically consists of repeating phosphate-containing units and therefore has a predominant negative charge. The repeating units are attached to a glycolipid anchor which has a diacylglycerol (DAG moiety attached to a dihexopyranose head group. D-alanylation is known as the major modification of type I and type IV lipoteichoic acids, which partially neutralizes the polymer and plays important roles in bacterial survival and resistance to the host immune system. The biosynthesis pathways of the glycolipid anchor and lipoteichoic acid have been fully characterized. However, the exact mechanism of D-alanyl transfer from the cytosol to cell surface lipoteichoic acid remains unclear. Here I report the use of mass spectrometry in the identification of possible intermediate species in the biosynthesis and D-alanylation of lipoteichoic acid: the glycolipid anchor, nascent lipoteichoic acid primer with one phosphoglycerol unit, as well as mono- and di-alanylated forms of the lipoteichoic acid primer. Monitoring these species as well as the recently reported D-alanyl-phosphatidyl glycerol should aid in shedding light on the mechanism of the D-alanylation pathway of lipoteichoic acid.

  2. Amylase,. beta. -glucanase and protease activities from a mutant of Bacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Yin, X.S.; Li, Y.X. (Wuxi Inst. of Light Industry, JS (China). Dept. of Fermentation Technology); Stark, J.R. (International Centre for Brewing and Distilling, Edinburgh (UK))

    1991-10-01

    Enzymes in the shake culture of a mutant of Bacillus subtilis developed mainly during the stationary phase of growth. Extracellular {alpha}-amylase and protease activities increased and then declined to relatively low levels after 48 h of incubation while the {beta}-glucanase activity remained high. The production of extracellular proteolytic activity commenced only when the low molecular weight nitrogen source in the medium was completely consumed. Enzymes were fractionated by ion-exchange chromatography and the molecular weights of {beta}-glucanase, {alpha}-amylase, protease I and protease II were estimated by gel filtration to be 1.3x10{sup 4}, 3.2x10{sup 4}, 6.3x10{sup 3} and 2.0x10{sup 4}, respectively. The {beta}-glucanase and {alpha}-amylase showed maximum activities at around pH 7, but the two proteases had different pH optima (pH 6-7 and 8.5, respectivelty). The presence of proteolytic activity in the enzyme preparation had a significant effect on the stability of the {beta}-glucanase and the {alpha}-amylase at 65deg C. (orig.).

  3. Electron transfer reactions, cyanide and O2 binding of truncated hemoglobin from Bacillus subtilis

    DEFF Research Database (Denmark)

    Fernandez, Esther; Larsson, Jonas T.; McLean, Kirsty J.

    2013-01-01

    The truncated hemoglobin from Bacillus subtilis (trHb-Bs) possesses a surprisingly high affinity for oxygen and resistance to (auto)oxidation; its physiological role in the bacterium is not understood and may be connected with its very special redox and ligand binding reactions. Electron transfer...... reactions of trHb-Bs were electrochemically studied in solution and at graphite electrodes. Spectrophotometrical potentiometric titration and direct electrochemical measurements gave a heme iron redox potential of −103 ± 4 mV and −108 ± 2 mV vs. NHE, at pH 7, respectively. The redox potential of the heme...... in trHb-Bs shifted −59 mV per pH unit at pH higher than 7, consistently with a 1e−/1 H+ – transfer reaction. The heterogeneous rate constant ks for a quasi-reversible 1e− – 1H+ – transfer reaction between graphite and trHb-Bs was 10.1 ± 2.3 s−1. Upon reversible cyanide binding the ks doubled, while...

  4. Structural investigations of the Bacillus subtilis SPP1 phage G39P helicase inhibitor loading protein

    CERN Document Server

    Bailey, S

    2002-01-01

    The Bacillus subtilis SPPI phage encoded protein G39P is a loader and inhibitor of the phage G40P replicative helicase involved in the initiation of phage DNA replication. The 2.4A crystal structure of a C-terminal truncated variant of G39P was solved using multiple wavelength anomalous dispersion exploiting the anomalous signal of seleno- methionine substituted protein. Inspection of the electron density maps revealed the asymmetric unit contained three independent G39P monomers, composed of 3 alpha-helices and their connecting loops. However, the model only accounted for the first 67 residues of the protein, as there was no interpretable electron density for residues 68 to 112. A preliminary NMR investigation revealed the C-terminal region of the protein had rapid internal motion and formed no well-defined stable fold that involved immobilized side chains. This is consistent with the X-ray analysis that displayed no electron density for these residues. A detailed comparison of NMR spectra from the C-termina...

  5. Fibrinolysis and anticoagulant potential of a metallo protease produced by Bacillus subtilis K42

    Indian Academy of Sciences (India)

    Wesam A Hassanein; Essam Kotb; Nadia M Awny; Yehia A El-Zawahry

    2011-12-01

    In this study, a potent fibrinolytic enzyme-producing bacterium was isolated from soybean flour and identified as Bacillus subtilis K42 and assayed in vitro for its thrombolytic potential. The molecular weight of the purified enzyme was 20.5 kDa and purification increased its specific activity 390-fold with a recovery of 14%. Maximal activity was attained at a temperature of 40°C (stable up to 65°C) and pH of 9.4 (range: 6.5–10.5). The enzyme retained up to 80% of its original activity after pre-incubation for a month at 4°C with organic solvents such as diethyl ether (DE), toluene (TO), acetonitrile (AN), butanol (BU), ethyl acetate (EA), ethanol (ET), acetone (AC), methanol (ME), isopropanol (IP), diisopropyl fluorophosphate (DFP), tosyl-lysyl-chloromethylketose (TLCK), tosyl-phenylalanyl chloromethylketose (TPCK), phenylmethylsulfonylfluoride (PMSF) and soybean trypsin inhibitor (SBTI). Aprotinin had little effect on this activity. The presence of ethylene diaminetetraacetic acid (EDTA), a metal-chelating agent and two metallo protease inhibitors, 2,2′-bipyridine and -phenanthroline, repressed the enzymatic activity significantly. This, however, could be restored by adding Co2+ to the medium. The clotting time of human blood serum in the presence of this enzyme reached a relative PTT of 241.7% with a 3.4-fold increase, suggesting that this enzyme could be an effective antithrombotic agent.

  6. Active depinning of bacterial droplets: the collective surfing of Bacillus subtilis

    Science.gov (United States)

    Hennes, Marc; Tailleur, Julien; Daerr, Adrian

    2016-11-01

    How systems are endowed with migration capacity is a fascinating question with implications ranging from the design of novel active systems to the control of microbial populations. Bacteria, which can be found in a variety of environments, have developed among the richest set of locomotion mechanisms both at the microscopic and collective levels. Here, we uncover experimentally a new mode of collective bacterial motility in humid environment through the depinning of bacterial droplets. While capillary forces are notoriously enormous at the bacterial scale, even capable of pinning water droplets of millimetric size on inclined surfaces, we show that bacteria are able to harness a variety of mechanisms to unpin contact lines, hence inducing a collective sliding of the colony. Contrary to flagella-dependent migration modes like swarming we show that this much faster colony surfing still occurs in mutant strains of Bacillus subtilis lacking flagella. The diversity of mechanisms involved in the active unpinning seen in our experiments suggests that collective surfing should be a generic mode of migration of microorganisms in humid environments. Bacttern Grant.

  7. Multiple regulatory systems coordinate DNA replication with cell growth in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Heath Murray

    2014-10-01

    Full Text Available In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes.

  8. Investigating the thermodynamic stability of Bacillus subtilis spore-uranium(VI) adsorption though surface complexation modeling

    Science.gov (United States)

    Harrold, Z.; Hertel, M.; Gorman-Lewis, D.

    2012-12-01

    Dissolved uranium speciation, mobility, and remediation are increasingly important topics given continued and potential uranium (U) release from mining operations and nuclear waste. Vegetative bacterial cell surfaces are known to adsorb uranium and may influence uranium speciation in the environment. Previous investigations regarding U(VI) adsorption to bacterial spores, a differentiated and dormant cell type with a tough proteinaceous coat, include U adsorption affinity and XAFS data. We investigated the thermodynamic stability of aerobic, pH dependent uranium adsorption to bacterial spore surfaces using purified Bacillus subtilis spores in solution with 5ppm uranium. Adsorption reversibility and kinetic experiments indicate that uranium does not precipitate over the duration of the experiments and equilibrium is reached within 20 minutes. Uranium-spore adsorption edges exhibited adsorption at all pH measured between 2 and 10. Maximum adsorption was achieved around pH 7 and decreased as pH increased above 7. We used surface complexation modeling (SCM) to quantify uranium adsorption based on balanced chemical equations and derive thermodynamic stability constants for discrete uranium-spore adsorption reactions. Site specific thermodynamic stability constants provide insight on interactions occurring between aqueous uranium species and spore surface ligands. The uranium adsorption data and SCM parameters described herein, also provide a basis for predicting the influence of bacterial spores on uranium speciation in natural systems and investigating their potential as biosorption agents in engineered systems.

  9. Influence of nano-MgO particle size on bactericidal action against Bacillus subtilis var. niger

    Institute of Scientific and Technical Information of China (English)

    HUANG Lei; LI Dianqing; LIN Yanjun; David G.Evans; DUAN Xue

    2005-01-01

    Nano-MgO with various particle sizes, synthesized by different methods using Mg(NO3)2·6H2O, Na2CO3, Na2SO4, urea and ammonia solution as reactants, was used to carry out bactericidal experiments on Bacillus subtilis var. niger. The results were compared with the effect of TiO2, a common kind of photocatalytic material. The materials were characterized by X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), low temperature N2 adsorption-desorption measurements and FT-IR, and the results showed that the bactericidal ability of MgO increases with decreasing particle size. Nano-MgO and an interior wall-paint containing the material have better bactericidal effects than nono-TiO2 in both presence and absence of light. The bactericidal mechanism is discussed. The surface of MgO can generate high concentrations of which is highly active and can react with the peptide linkages in the coating walls of the spores. The spores are destroyed by the resulting damage to their structure.

  10. Production and Partial Purification of Alpha Amylase from Bacillus subtilis (MTCC 121) Using Solid State Fermentation.

    Science.gov (United States)

    Raul, Dibyangana; Biswas, Tania; Mukhopadhyay, Suchita; Kumar Das, Shrayan; Gupta, Suvroma

    2014-01-01

    Amylase is an enzyme that catalyzes the breakdown of starch into sugars and plays a pivotal role in a variety of areas like use as digestives, for the production of ethanol and high fructose corn syrup, detergents, desiring of textiles, modified starches, hydrolysis of oil-field drilling fluids, and paper recycling. In the present work, solid state fermentation (SSF) for α -amylase production has been used in lieu of submerged fermentation (SmF) due to its simple technique, low capital investment, lower levels of catabolite repression, and better product recovery. Bacillus subtilis has been well known as producer of alpha amylase and was tested using solid state fermentation for 48 hours at 37°C with wheat bran as substrate. Comparison between different fermentation hours demonstrated high yield of alpha amylase after 48 hours. This alpha amylase has optimum pH and temperature at 7.1 and 40°C, respectively. With the goal to purify alpha amylase, 30-70% (NH4)2SO4 cut concentrated the amylase activity threefold with respect to crude fermented extract. This was verified in quantitative DNS assay method as well as in zymogram gel profile. The exact molecular weight of the amylase is yet to be determined with the aid of other protein purification techniques.

  11. Multiple regulatory systems coordinate DNA replication with cell growth in Bacillus subtilis.

    Science.gov (United States)

    Murray, Heath; Koh, Alan

    2014-10-01

    In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes.

  12. Structural analysis of a putative SAM-dependent methyltransferase, YtqB, from Bacillus subtilis.

    Science.gov (United States)

    Park, Sun Cheol; Song, Wan Seok; Yoon, Sung-il

    2014-04-18

    S-adenosyl-L-methionine (SAM)-dependent methyltransferases (MTases) methylate diverse biological molecules using a SAM cofactor. The ytqB gene of Bacillus subtilis encodes a putative MTase and its biological function has never been characterized. To reveal the structural features and the cofactor binding mode of YtqB, we have determined the crystal structures of YtqB alone and in complex with its cofactor, SAM, at 1.9 Å and 2.2 Å resolutions, respectively. YtqB folds into a β-sheet sandwiched by two α-helical layers, and assembles into a dimeric form. Each YtqB monomer contains one SAM binding site, which shapes SAM into a slightly curved conformation and exposes the reactive methyl group of SAM potentially to a substrate. Our comparative structural analysis of YtqB and its homologues indicates that YtqB is a SAM-dependent class I MTase, and provides insights into the substrate binding site of YtqB.

  13. Bacillus subtilis RNase Y activity in vivo analysed by tiling microarrays.

    Directory of Open Access Journals (Sweden)

    Soumaya Laalami

    Full Text Available RNase Y is a key endoribonuclease affecting global mRNA stability in Bacillus subtilis. Its characterization provided the first evidence that endonucleolytic cleavage plays a major role in the mRNA metabolism of this organism. RNase Y shares important functional features with the RNA decay initiating RNase E from Escherichia coli, notably a similar cleavage specificity and a preference for 5' monophosphorylated substrates. We used high-resolution tiling arrays to analyze the effect of RNase Y depletion on RNA abundance covering the entire genome. The data confirm that this endoribonuclease plays a key role in initiating the decay of a large number of mRNAs as well as non coding RNAs. The downstream cleavage products are likely to be degraded by the 5' exonucleolytic activity of RNases J1/J2 as we show for a specific case. Comparison of the data with that of two other recent studies revealed very significant differences. About two thirds of the mRNAs upregulated following RNase Y depletion were different when compared to either one of these studies and only about 10% were in common in all three studies. This highlights that experimental conditions and data analysis play an important role in identifying RNase Y substrates by global transcriptional profiling. Our data confirmed already known RNase Y substrates and due to the precision and reproducibility of the profiles allow an exceptionally detailed view of the turnover of hundreds of new RNA substrates.

  14. Biophysical features of bacillithiol, the glutathione surrogate of Bacillus subtilis and other firmicutes.

    Science.gov (United States)

    Sharma, Sunil V; Arbach, Miriam; Roberts, Alexandra A; Macdonald, Colin J; Groom, Murree; Hamilton, Chris J

    2013-11-04

    Bacillithiol (BSH) is the major low-molecular-weight (LMW) thiol in many low-G+C Gram-positive bacteria (Firmicutes). Evidence now emerging suggests that BSH functions as an important LMW thiol in redox regulation and xenobiotic detoxification, analogous to what is already known for glutathione and mycothiol in other microorganisms. The biophysical properties and cellular concentrations of such LMW thiols are important determinants of their biochemical efficiency both as biochemical nucleophiles and as redox buffers. Here, BSH has been characterised and compared with other LMW thiols in terms of its thiol pKa , redox potential and thiol-disulfide exchange reactivity. Both the thiol pKa and the standard thiol redox potential of BSH are shown to be significantly lower than those of glutathione whereas the reactivities of the two compounds in thiol-disulfide reactions are comparable. The cellular concentration of BSH in Bacillus subtilis varied over different growth phases and reached up to 5 mM, which is significantly greater than previously observed from single measurements taken during mid-exponential growth. These results demonstrate that the biophysical characteristics of BSH are distinctively different from those of GSH and that its cellular concentrations can reach levels much higher than previously reported.

  15. BACILLUS SUBTILIS SJ01 PRODUCES HEMICELLULOSE DEGRADING MULTI-ENZYME COMPLEXES

    Directory of Open Access Journals (Sweden)

    Brett Ivan Pletschke

    2012-01-01

    Full Text Available Cellulose and hemicellulose account for a large portion of the world’s plant biomass. In nature, these polysaccharides are intertwined, forming complex materials that require multiple enzymes to degrade them. Multi-enzyme complexes (MECs consist of a number of enzymes working in close proximity and synergistically to degrade complex substrates with higher efficiency than individual enzymes. The aim of this study was to isolate and characterise a (hemi- cellulolytic MEC from the aerobic bacterium, Bacillus subtilis SJ01, using ultrafiltration followed by size-exclusion chromatography on a Sephacryl S-400 column. Two MECs, C1 and C2 of 371 and 267 kDa, respectively, were purified, consisting of 16 and 18 subunits, respectively, five of which degraded birchwood and oat spelt xylan. The MECs degraded xylan substrates (C1: 0.24 U/mg, C2: 0.14 U/mg birchwood xylan with higher efficiency than amorphous cellulose substrates (C1: 0.002 U/mg, C2: 0.01 U/mg carboxymethyl cellulose - CMC. Low or no binding to insoluble substrates indicated that the MECs lacked some of the features characteristic of cellulosomes. The significance of this study lies in the discovery of MECs that differ structurally from cellulosomes that can hydrolyse substrates with high hemicellulose content.

  16. Sequestration of Reactive Blue 4 by free and immobilized Bacillus subtilis cells and its extracellular polysaccharides.

    Science.gov (United States)

    Binupriya, Arthur Raj; Sathishkumar, Muthuswamy; Ku, Chang Sub; Yun, Soon-Il

    2010-03-01

    Bacillus subtilis a gram positive bacteria and its extracellular polysaccharide were used in free form as well as immobilized form as biosorbent for sequestration of an anionic dye, Reactive Blue 4 (RB) in aqueous phase. The dye uptake enhanced with decrease in pH. Extracellular polymeric substances (EPS) and free cells were found to be better adsorbents when compared to alginate immobilized cells (IC) and EPS (IEPS). The presence of functional groups in free cells and EPS was confirmed by FT-IR analysis. Immobilization resulted in poor adsorption performance due to increase in mass transfer resistance by the polymeric matrix. High Q(max) and b values were noted in the case of free cells and free EPS in contrast to IC and IEPS. From the kinetic experiments, the adsorption system was found to be a pseudo-first-order reaction at low dye concentration. Desorption of RB was found to be 100% in 1N NaOH. However, the alginate beads were found to be unstable under high alkaline conditions of NaOH.

  17. Overexpression and biochemical characterization of a thermostable phytase from Bacillus subtilis US417 in Pichia pastoris.

    Science.gov (United States)

    Hmida-Sayari, Aïda; Elgharbi, Fatma; Farhat, Ameny; Rekik, Hatem; Blondeau, Karine; Bejar, Samir

    2014-09-01

    The overexpression of the native gene encoding the thermostable Bacillus subtilis US417 phytase using Pichia pastoris system is described. The phytase gene, in which the sequence encoding the signal peptide was replaced by that of the α-factor of Saccharomyces cerevisiae, was placed under the control of the methanol-inducible promoter of the alcohol oxidase 1 gene and expressed in Pichia pastoris. Small-scale expression experiments and activity assays were used to screen positive colonies. A recombinant strain was selected and produces 43 and 227 U/mL of phytase activity in shake flasks and in high-cell-density fermentation, respectively. The purified phytase was glycosylated protein and varied in size (50-65 kDa). It has a molecular mass of 43 kDa when it was deglycosylated. The purified r-PHY maintains 100% of its activity after 10 min incubation at 75 °C and pH 7.5. This thermostable phytase, which is also active over broad pH ranges, may be useful as feed additives, since it can resist the temperature used in the feed-pelleting process.

  18. Constitutive Stringent Response Restores Viability of Bacillus subtilis Lacking Structural Maintenance of Chromosome Protein.

    Directory of Open Access Journals (Sweden)

    Camille Benoist

    Full Text Available Bacillus subtilis mutants lacking the SMC-ScpAB complex are severely impaired for chromosome condensation and partitioning, DNA repair, and cells are not viable under standard laboratory conditions. We isolated suppressor mutations that restored the capacity of a smc deletion mutant (Δsmc to grow under standard conditions. These suppressor mutations reduced chromosome segregation defects and abrogated hypersensitivity to gyrase inhibitors of Δsmc. Three suppressor mutations were mapped in genes involved in tRNA aminoacylation and maturation pathways. A transcriptomic survey of isolated suppressor mutations pointed to a potential link between suppression of Δsmc and induction of the stringent response. This link was confirmed by (pppGpp quantification which indicated a constitutive induction of the stringent response in multiple suppressor strains. Furthermore, sublethal concentrations of arginine hydroxamate (RHX, a potent inducer of stringent response, restored growth of Δsmc under non permissive conditions. We showed that production of (pppGpp alone was sufficient to suppress the thermosensitivity exhibited by the Δsmc mutant. Our findings shed new light on the coordination between chromosome dynamics mediated by SMC-ScpAB and other cellular processes during rapid bacterial growth.

  19. Quantitative Analysis of the Migration and Accumulation of Bacillus subtilis in Asparagus officinalis.

    Science.gov (United States)

    Hao, Bian-Qing; Ma, Li-Ping; Qiao, Xiong-Wu

    2015-09-01

    Bacillus subtilis B96-II is a broad-spectrum biological control strain. It effectively suppresses soil-borne fungal diseases in vegetables. A green fluorescence protein (GFP) was expressed in B96-II to detect migration of B96-II into the root and stem of asparagus. The GFP-tagged B96-II (B96-II-GFP) strain exhibited bright green fluorescence under a fluorescence microscope. GFP was stable and had no apparent effects on the growth of the strain. Asparagus plants were planted in the soil inoculated with B96-II-GFP. Our results showed that B96-II-GFP was detected in both the root and stem 15, 30, and 45 days after the asparagus seedlings were planted. B96-II-GFP was also detected in leaves but at a lower concentration. The highest concentration was detected in 15 days, and the number of bacteria decreased subsequently irrespective of duration of growth or sampling period. The highest concentration of B96-II-GFP was present in the root base suggesting that the root base served as the hub of bacterial migration from the soil to the stem.

  20. Response of Bacillus subtilis spores to dehydration and UV irradiation at extremely low temperatures.

    Science.gov (United States)

    Dose, K; Klein, A

    1996-02-01

    Spores of Bacillus subtilis have been exposed to the conditions of extreme dehydration (argon/silica gel; simulated space vacuum) for up to 12 weeks at 298 K and 80 K in the dark. The inactivation has been correlated with the production of DNA-double strand-breaks. The temperature-dependence of the rate constants for inactivation or production of DNA-double strand-breaks is surprisingly low. Controls kept in the frozen state at 250 K for the same period of time showed no sign of deterioration. In another series of experiments the spores have been UV irradiated (253.7 nm) at 298 K, 200 K and 80 K after exposure to dehydrating conditions for 3 days. Fluence-effect relationships for inactivation, production of DNA-double strand-breaks and DNA-protein cross-links are presented. The corresponding F37-values for inactivation and production of DNA lesions are significantly increased only at 80 K (factor of 4 to 5). The data indicate that the low temperatures that prevail in the outer parts of the Solar System or at the nightside of Mars or the Moon are not sufficiently low to crucially inhibit inactivation by dehydration. Our data place further constraints on the panspermia hypothesis.

  1. Enhancement of hydrocarbon waste biodegradation by addition of a biosurfactant from Bacillus subtilis O9.

    Science.gov (United States)

    Morán, A C; Olivera, N; Commendatore, M; Esteves, J L; Siñeriz, F

    2000-01-01

    A non-sterile biosurfactant preparation (surfactin) was obtained from a 24-h culture of Bacillus subtilis O9 grown on sucrose and used to study its effect on the biodegradation of hydrocarbon wastes by an indigenous microbial community at the Erlenmeyer-flask scale. Crude biosurfactant was added to the cultures to obtain concentrations above and below the critical micelle concentration (CMC). Lower concentration affected neither biodegradation nor microbial growth. Higher concentration gave higher cell concentrations. Biodegradation of aliphatic hydrocarbons increased from 20.9 to 35.5% and in the case of aromatic hydrocarbons from nil to 41%, compared to the culture without biosurfactant. The enhancement effect of biosurfactant addition was more noticeable in the case of long chain alkanes. Pristane and phytane isoprenoids were degraded to the same extent as n-C17 and n-C18 alkanes and, consequently, no decrease in the ratios n-C17/pri and n-C18/phy was observed. Rapid production of surfactin crude preparation could make it practical for bioremediation of ship bilge wastes.

  2. Anti-candida effect of bacillomycin D-like lipopeptides from Bacillus subtilis B38.

    Science.gov (United States)

    Tabbene, Olfa; Kalai, Leila; Ben Slimene, Imen; Karkouch, Ines; Elkahoui, Salem; Gharbi, Abdelhamid; Cosette, Pascal; Mangoni, Maria-Luisa; Jouenne, Thierry; Limam, Ferid

    2011-03-01

    Bacillus subtilis B38, isolated from soil, showed antimicrobial activity against human pathogenic Candida albicans species. Specific PCR primers revealed the presence of the bamC gene, which is involved in the biosynthesis of bacillomycin D. Three anti-Candida compounds designated a(1) , a(2) and a(3) were purified from culture supernatant and identified using matrix-assisted laser desorption/ionization time-of-flight MS as analogues of bacillomycin D-like lipopeptides of 14, 15 and 16 carbon fatty acid long chains, respectively. The compound a(3) displayed the strongest fungicidal activity against pathogenic C. albicans strains. It was even more active than amphotericin B with a lethal concentration of 59.07 vs. 135.26 μM of the antimycotic drug against the pathogenic strain C. albicans sp. 311 isolated from finger nail. Only moderate or weak anti-Candida activity was recorded for a(1) and a(2) compounds. Furthermore, a(3) showed the highest hemolytic activity, reaching 50% hemolysis at 22.14 μM, whereas a(1) and a(2) displayed a limited hemolysis at 68.26 and 37.41 μM, respectively. These findings suggest that the acyl chain length of bacillomycin D-like lipopeptides plays a major role in hemolytic and antifungal activities.

  3. Purification and characterization of a novel antifungal protein from Bacillus subtilis strain B29"

    Institute of Scientific and Technical Information of China (English)

    Jing LI; Qian YANG; Li-hua ZHAO; Shu-mei ZHANG; Yu-xia WANG; Xiao-yu ZHAO

    2009-01-01

    An antifungal protein was isolated from a culture of Bacillus subtilis strain B29. The isolation procedure comprised ion exchange chromatography on diethylaminoethyl (DEAE)-52 cellulose and gel filtration chromatography on Bio-Gel P-100.The protein was absorbed on DEAE-cellulose and Bio-Gel P-100. The purified antifungal fraction was designated as B29I, with a molecular mass of 42.3 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), pl value 5.69 by isoelectric focusing (IEF)-PAGE, and 97.81% purity by high performance liquid chromatography (HPLC). B29I exhibited in-hibitory activity on mycelial growth in Fusarium oxysporum, Rhizoctonia solani, Fusarium moniliforme, and Sclerotinia scle-rotiorum. The 50% inhibitory concentrations (IC50) of its antifungal activity toward Fusarium oxysporum and Rhizoctonia solani were 45 and 112 μmol/L, respectively. B291 also demonstrated an inhibitory effect on conidial spore germination of Fusarium oxysporum and suppression of germ-tube elongation, and induced distortion, tumescence, and rupture of a portion of the germi-nated spores.

  4. Improving green roofs and rail road greening systems using Bacillus subtilis and Lactobacillus ssp.

    Science.gov (United States)

    Grüneberg, H; Oschmann, C; Dunya, S; Ulrichs, C

    2006-01-01

    Aim of the present study was the improvement of existing methods for green roof and rail road greening systems using soil borne bacteria. Bacillus subtilis and Lactobacillus ssp. alone and in combination with vinasse applied to different growing substrates were tested. The substrates were brick chips, textile mats, mineral wool mats, and a commercial available substrate for the Swedish company VegTech. All four substrates were tested along an artificial rail track on the experimental station at Humboldt University Berlin, and partly on an existing rail track in Munich, Germany. Plants selected for the experiments belong to the genus Sedum, which is relatively tolerant to dry conditions. Inoculation of plants with bacteria had no effect on plant growth parameters and on coverage of different mobile bedding systems with Sedum plants. There was no significant difference between the various treatments in Munich. In both experiments, the addition of vinasse alone improved plant growth. Plant growth was significantly different on all substrates, whereas brick chips and the commercial roof soil was the best substrate. Brick chips are a cheap substrate which can be used for rail track greening. The results indicate that the quality of the substrate is the most important factor for remediation and greening of rail tracks and roof tops. The rapid growth of plants can be influenced by the application of vinasse as additional nutrient solution (potash (K) source) or nutrient enriched substrate.

  5. Production of extracellular alkaline protease from Bacillus subtilis RSKK96 with solid state fermentation

    Directory of Open Access Journals (Sweden)

    Nurullah Akcan

    2011-09-01

    Full Text Available The production of extracellular alkaline protease by producing Bacillus subtilis RSKK96 was studied with solid state fermentation (SSF. Different agro residues as substrate were studied for enzyme production. The highest enzyme production was expressed with lentil husk as units per mass of dry substrate (3937.0 U/mg. Production parameters were optimized as incubation time 120 h, extraction medium Triton-X100 1%, initial moisture content 30%, initial pH 9.0. The high level of alkaline protease was obtained in the medium containing arabinose followed by lactose, galactose, and fructose. Among various nitrogen sources, beef extract was found to be the best inducer of alkaline protease, while other nitrogen sources repressed enzyme production. Among metal salts FeSO4.7H2O and MgSO4.7H2O was found to increase protease production. The maximum enzyme production (5759.2 U/mg was observed with lentil husk in 1000 mL of fermentation medium volume.

  6. Bacillus subtilis spores on artificial meteorites survive hypervelocity atmospheric entry: implications for Lithopanspermia.

    Science.gov (United States)

    Fajardo-Cavazos, Patricia; Link, Lindsey; Melosh, H Jay; Nicholson, Wayne L

    2005-12-01

    An important but untested aspect of the lithopanspermia hypothesis is that microbes situated on or within meteorites could survive hypervelocity entry from space through Earth's atmosphere. The use of high-altitude sounding rockets to test this notion was explored. Granite samples permeated with spores of Bacillus subtilis strain WN511 were attached to the exterior telemetry module of a sounding rocket and launched from White Sands Missile Range, New Mexico into space, reaching maximum atmospheric entry velocity of 1.2 km/s. Maximum recorded temperature during the flight was measured at 145 degrees C. The surfaces of the post-flight granite samples were swabbed and tested for recovery and survival of WN511 spores, using genetic markers and the unique DNA fingerprint of WN511 as recovery criteria. Spore survivors were isolated at high frequency, ranging from 1.2% to 4.4% compared with ground controls, from all surfaces except the forward-facing surface. Sporulation-defective mutants were noted among the spaceflight survivors at high frequency (4%). These experiments constitute the first report of spore survival to hypervelocity atmospheric transit, and indicate that sounding rocket flights can be used to model the high-speed atmospheric entry of bacteria-laden artificial meteorites.

  7. Novel Secretion Apparatus Maintains Spore Integrity and Developmental Gene Expression in Bacillus subtilis

    Science.gov (United States)

    Meisner, Jeffrey; Serrano, Monica; Henriques, Adriano O.; Moran, Charles P.; Rudner, David Z.

    2009-01-01

    Sporulation in Bacillus subtilis involves two cells that follow separate but coordinately regulated developmental programs. Late in sporulation, the developing spore (the forespore) resides within a mother cell. The regulation of the forespore transcription factor σG that acts at this stage has remained enigmatic. σG activity requires eight mother-cell proteins encoded in the spoIIIA operon and the forespore protein SpoIIQ. Several of the SpoIIIA proteins share similarity with components of specialized secretion systems. One of them resembles a secretion ATPase and we demonstrate that the ATPase motifs are required for σG activity. We further show that the SpoIIIA proteins and SpoIIQ reside in a multimeric complex that spans the two membranes surrounding the forespore. Finally, we have discovered that these proteins are all required to maintain forespore integrity. In their absence, the forespore develops large invaginations and collapses. Importantly, maintenance of forespore integrity does not require σG. These results support a model in which the SpoIIIA-SpoIIQ proteins form a novel secretion apparatus that allows the mother cell to nurture the forespore, thereby maintaining forespore physiology and σG activity during spore maturation. PMID:19609349

  8. Structural Rigidity and Protein Thermostability in Variants of Lipase A from Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Prakash Chandra Rathi

    Full Text Available Understanding the origin of thermostability is of fundamental importance in protein biochemistry. Opposing views on increased or decreased structural rigidity of the folded state have been put forward in this context. They have been related to differences in the temporal resolution of experiments and computations that probe atomic mobility. Here, we find a significant (p = 0.004 and fair (R2 = 0.46 correlation between the structural rigidity of a well-characterized set of 16 mutants of lipase A from Bacillus subtilis (BsLipA and their thermodynamic thermostability. We apply the rigidity theory-based Constraint Network Analysis (CNA approach, analyzing directly and in a time-independent manner the statics of the BsLipA mutants. We carefully validate the CNA results on macroscopic and microscopic experimental observables and probe for their sensitivity with respect to input structures. Furthermore, we introduce a robust, local stability measure for predicting thermodynamic thermostability. Our results complement work that showed for pairs of homologous proteins that raising the structural stability is the most common way to obtain a higher thermostability. Furthermore, they demonstrate that related series of mutants with only a small number of mutations can be successfully analyzed by CNA, which suggests that CNA can be applied prospectively in rational protein design aimed at higher thermodynamic thermostability.

  9. Dna stability and survival of bacillus subtilis spores in extreme dryness

    Science.gov (United States)

    Dose, Klaus; Gill, Markus

    1995-06-01

    The inactivation of Bacillus subtilis spores during long-term exposure (up to several months) to extreme dryness (especially vacuum) is strain-dependent, through only to a small degree. During a first phase (lasting about four days) monolayers of spores lose about 20% of their viability, regardless of the strain studied. During this phase loss in viability can be equally attributed both to damages of hydrophobic structures (membranes and proteins) and DNA. During a second phase lasting for the remaining time of experimental observation (weeks, months and years) the loss in viability is slowed. A viability of 55% to 75% (depending on the strain) is attained after a total exposure of 36 days. The loss in viability during the second phase can be correlated with the occurrence of DNA double strand breaks. Also covalent DNA-protein cross-links are formed by vacuum exposure. If the protein moiety of these cross-links is degraded by proteinase K-treatment in vitro additional DNA double strand breaks result. The data are also discussed with respect to survival on Mars and in near Earth orbits.

  10. Detection and analysis of Bacillus subtilis growth with piezoelectric quartz crystal impedance based on starch hydrolysis.

    Science.gov (United States)

    Wu, Y; Xie, Q; Zhou, A; Zhang, Y; Nie, L; Yao, S; Mo, X

    2000-10-01

    A piezoelectric quartz crystal (PQC) impedance method based on the alpha-amylase-catalyzed hydrolysis of starch present in a culture medium has been developed for in situ monitoring of the whole growth process of Bacillus subtilis and the variation in the activity of alpha-amylase during bacterial growth. An S-shaped response behavior was observed for Deltaf(0), and simultaneously inverse S-shaped responses were found for DeltaR(1) and DeltaL(1). The ratio of DeltaR(1) to Deltaf(0) or DeltaL(1) coincided well with that calculated from Martin's equations reflecting the solution density-viscosity effect, suggesting that the continuing change in liquid loading onto the PQC surface causes significant variation in Deltaf(0), DeltaR(1), and DeltaL(1). Bacterial growth equations were derived from the kinetics of the enzyme-catalyzed hydrolysis of starch, which fit well with the experimental responses of Deltaf(0), DeltaR(1), and DeltaL(1). Kinetic parameters of bacterial growth, including the asymptote (A), the maximum specific growth rate (microm), and the lag time (lambda), were obtained and were in good agreement with those obtained from the pour plate count method. The variation in the activity of alpha-amylase exhibited peak-type behavior with its maximum value at the later stage of the log phase. In addition, the influence of initial bacterial concentration was also investigated.

  11. From cell differentiation to cell collectives: Bacillus subtilis uses division of labor to migrate.

    Directory of Open Access Journals (Sweden)

    Jordi van Gestel

    2015-04-01

    Full Text Available The organization of cells, emerging from cell-cell interactions, can give rise to collective properties. These properties are adaptive when together cells can face environmental challenges that they separately cannot. One particular challenge that is important for microorganisms is migration. In this study, we show how flagellum-independent migration is driven by the division of labor of two cell types that appear during Bacillus subtilis sliding motility. Cell collectives organize themselves into bundles (called "van Gogh bundles" of tightly aligned cell chains that form filamentous loops at the colony edge. We show, by time-course microscopy, that these loops migrate by pushing themselves away from the colony. The formation of van Gogh bundles depends critically on the synergistic interaction of surfactin-producing and matrix-producing cells. We propose that surfactin-producing cells reduce the friction between cells and their substrate, thereby facilitating matrix-producing cells to form bundles. The folding properties of these bundles determine the rate of colony expansion. Our study illustrates how the simple organization of cells within a community can yield a strong ecological advantage. This is a key factor underlying the diverse origins of multicellularity.

  12. Augmenting Iron Accumulation in Cassava by the Beneficial Soil Bacterium Bacillus subtilis (GBO3

    Directory of Open Access Journals (Sweden)

    Monica A Freitas

    2015-08-01

    Full Text Available Cassava (Manihot esculenta, a major staple food in the developing world, provides a basic carbohydrate diet for over half a billion people living in the tropics. Despite the iron abundance in most soils, cassava provides insufficient iron for humans as the edible roots contain 3-12 times less iron than other traditional food crops such as wheat, maize, and rice. With the recent identification that the beneficial soil bacterium Bacillus subtilis (strain GB03 activates iron acquisition machinery to increase metal ion assimilation in Arabidopsis, the question arises as to whether this plant-growth promoting rhizobacterium (PGPR also augments iron assimilation to increase endogenous iron levels in cassava. Biochemical analyses reveal that shoot-propagated cassava with GB03-inoculation exhibit elevated iron accumulation after 140 days of plant growth as determined by X-ray microanalysis and total foliar iron analysis. Growth promotion and increased photosynthetic efficiency were also observed for greenhouse-grown plants with GB03-exposure. These results demonstrate the potential of microbes to increase iron accumulation in an important agricultural crop and is consistent with idea that microbial signaling can regulate plant photosynthesis.

  13. A Fibrinolytic Enzyme Produced by Bacillus subtilis Using Chickpea (Cicer arietinum L. as Substrate

    Directory of Open Access Journals (Sweden)

    Ping Xiao

    2014-12-01

    Full Text Available A Fibrinolytic Enzyme (BSFE was isolated from fermented chickpeas using Bacillus subtilis. BSFE was purified with ammonium sulfate precipitation, ion exchange and gel filtration chromatography. The fibrin (ogen olytic activity of BSFE was investigated by means of fibrinolysis plate and hydrolysis of fibrinogen. Through these steps, the purity of the enzyme increased with 74.60-fold with 6.88% recovery activity. The molecular weight of the BSFE was estimated to be 30 kDa by SDS-PAGE. The optimum pH, optimum temperature, pH stability and thermal stability of BSFE were measured, respectively as 8.0, 55°C, 6.0-8.0 and less than 45°C. The activity was inhibited by serine protease inhibitor PMSF as well as metalloprotease inhibitor EDTA, indicating that the BSFE is a serine metalloprotease. In fibrin plate assay, BSFE showed more stronger fibrinolytic activity than that of nattokinase and it specifically hydrolyzed Aα and Bβ chains followed by γ chain of fibrinogen. Therefore, this study provided a method and it for the preparation of multifunctional food of chickpeas which has strong fibrinolytic activity.

  14. A fail-safe system for the ribosome under zinc-limiting conditions in Bacillus subtilis.

    Science.gov (United States)

    Natori, Yousuke; Nanamiya, Hideaki; Akanuma, Genki; Kosono, Saori; Kudo, Toshiaki; Ochi, Kozo; Kawamura, Fujio

    2007-01-01

    As zinc is an essential trace metal ion for all living cells, cells elaborate a variety of strategies to cope with zinc starvation. In Bacillus subtilis, genes encoding ribosomal proteins L31 and S14 are duplicated into two types: one type contains a zinc-binding motif (RpmE or RpsN), whereas the other does not (YtiA or YhzA). We have previously shown that displacement of RpmE (L31) by YtiA from already assembled ribosomes is controlled by zinc, and this replacement could contribute to zinc mobilization under zinc-limiting conditions. We propose here that the switch between the two types of S14 has a different significance. rpsN is indispensable for growth and depletion of RpsN results in defective 30S subunits. YhzA can functionally replace RpsN to allow continued ribosome assembly under zinc-limiting conditions. Unlike YtiA, YhzA appeared in the ribosome at a slower rate consistent with incorporation into newly synthesized, rather than pre-existing ribosomes. These results raise the possibility that YhzA is involved in a fail-safe system for the de novo synthesis of ribosomes under zinc-limiting conditions.

  15. Glyphosate biodegradation and potential soil bioremediation by Bacillus subtilis strain Bs-15.

    Science.gov (United States)

    Yu, X M; Yu, T; Yin, G H; Dong, Q L; An, M; Wang, H R; Ai, C X

    2015-11-23

    Glyphosate and glyphosate-containing herbicides have an adverse effect on mammals, humans, and soil microbial ecosystems. Therefore, it is important to develop methods for enhancing glyphosate degradation in soil through bioremediation. We investigated the potential of glyphosate degradation and bioremediation in soil by Bacillus subtilis Bs-15. Bs-15 grew well at high concentrations of glyphosate; the maximum concentration tolerated by Bs-15 reached 40,000 mg/L. The optimal conditions for bacterial growth and glyphosate degradation were less than 10,000 mg/L glyphosate, with a temperature of 35°C and a pH of 8.0. Optimal fermentation occurred at 180 rpm for 60 h with an inoculum ratio of 4%. Bs-15 degraded 17.65% (12 h) to 66.97% (96 h) of glyphosate in sterile soil and 19.01% (12 h) to 71.57% (96 h) in unsterilized soil. Using a BIOLOG ECO plate test, we observed no significant difference in average well color development values between the soil inoculated with Bs-15 and the control soil before 72 h, although there was a significant difference (P glyphosate-containing herbicides, increasing the microbial functional diversity in glyphosate-contaminated soils and thus enhancing the bioremediation of glyphosate-contaminated soils.

  16. Investigating synergism during sequential inactivation of Bacillus subtilis spores with several disinfectants.

    Science.gov (United States)

    Cho, Min; Kim, Jae-Hong; Yoon, Jeyong

    2006-08-01

    The sequential application of ozone, chlorine dioxide, or UV followed by free chlorine was performed to investigate the synergistic inactivation of Bacillus subtilis spores. The greatest synergism was observed when chlorine dioxide was used as a primary disinfectant followed by secondary disinfection with free chlorine. A lesser synergistic effect was observed when ozone was used as the primary disinfectant, but no synergism was observed when UV was used as the primary disinfectant. When free chlorine was used as the primary disinfectant (i.e., sequential application in the reverse order), the synergistic effect was shown only when chlorine dioxide was applied as the secondary disinfectant. The synergistic effect observed could be related to damage to the spore coat during primary disinfection, suggested by the loss of proteins from spores during disinfectant treatment. The greatest synergism observed by the chlorine dioxide/free chlorine pair suggested that common reaction sites might exist for these disinfectants. The concept of percent synergistic effect was introduced to quantitatively compare the extent of synergistic effects in the sequential disinfection processes.

  17. Studies on the Thermodenaturation Behavior of Bacillus subtilis α-Amylase on Chromatographic Media

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The thermodenaturation behavior of Bacillus subtilis α-amylase on some chromatographic media was studied by determining their adsorption parameters with frontal analysis. The experimental results show that on a RP-C18 reversed-phase medium, a Chelating Sepharose Fast-Flow chelated by Zn2+ affinity medium and a WCX-1 cation-exchange medium, a stable conformation of a-amylase molecule separately exists below or over 30℃; while on a PEG-400 hydrophobic medium and a modified PEG-400 medium, a stable conformation of α-amylase mole-cule separately exists below 40 and 30℃, and when the experimental temperatures are separately over 40 and 30℃,a drastically conformational change of α-amylase molecules can continuously take place. And by combining the in-trinsic fluorescence emission spectrum and thermal inactivation profile of α-amylase in free solution and on the PEG-400 and modified PEG-400 hydrophobic media, it can be concluded that in liquid chromatographic procedure,chromatographic media can induce the conformational change of a-amylase molecules and promote their ther-modenaturation; and in hydrophobic interaction chromatography, the higher the hydrophobicity of chromatographicmedium, the lower the conformational change temperature of a-amylase molecules on the chromatographic me-dium.

  18. Production of surfactin by bacillus subtilis mtcc 2423 from waste frying oils

    Directory of Open Access Journals (Sweden)

    N. Vedaraman

    2011-06-01

    Full Text Available One of the obstacles in the way of wide scale industrial application of biosurfactants is the high production cost coupled with a low production rate. In order to lower the production cost surfactin production by Bacillus subtilis MTCC 2423 was studied in submerged batch cultivation using waste frying oils. It was observed that the decrease in surface tension was 56.32%, 48.5% and 46.1% with glucose, waste frying sunflower oil and waste frying rice bran oil, respectively. Biomass formation was 4.36 g/L, 3.67 g/L and 4.67 g/L for glucose, waste frying sunflower oil and waste frying rice bran oil, respectively. Product yield (g product/g substrate was 2.1%, 1.49% and 1.1% with glucose, waste frying sunflower oil and waste frying rice bran oil as substrates. This process facilitates safe disposal of waste frying oil, as well reducing the production cost of surfactin.

  19. Poly β-hydroxybutyrate production by Bacillus subtilis NG220 using sugar industry waste water.

    Science.gov (United States)

    Singh, Gulab; Kumari, Anish; Mittal, Arpana; Yadav, Anita; Aggarwal, Neeraj K

    2013-01-01

    The production of poly β-hydroxybutyrate (PHB) by Bacillus subtilis NG220 was observed utilizing the sugar industry waste water supplemented with various carbon and nitrogen sources. At a growth rate of 0.14 g h(-1) L(-1), using sugar industry waste water was supplemented with maltose (1% w/v) and ammonium sulphate (1% w/v); the isolate produced 5.297 g/L of poly β-hydroxybutyrate accumulating 51.8% (w/w) of biomass. The chemical nature of the polymer was confirmed with nuclear magnetic resonance, Fourier transform infrared, and GC-MS spectroscopy whereas thermal properties were monitored with differential scanning calorimetry. In biodegradability study, when PHB film of the polymer (made by traditional solvent casting technique) was subjected to degradation in various natural habitats like soil, compost, and industrial sludge, it was completely degraded after 30 days in the compost having 25% (w/w) moisture. So, the present study gives insight into dual benefits of conversion of a waste material into value added product, PHB, and waste management.

  20. Auxotrophy-based High Throughput Screening assay for the identification of Bacillus subtilis stringent response inhibitors

    Science.gov (United States)

    Andresen, Liis; Varik, Vallo; Tozawa, Yuzuru; Jimmy, Steffi; Lindberg, Stina; Tenson, Tanel; Hauryliuk, Vasili

    2016-01-01

    The stringent response is a central adaptation mechanism that allows bacteria to adjust their growth and metabolism according to environmental conditions. The functionality of the stringent response is crucial for bacterial virulence, survival during host invasion as well as antibiotic resistance and tolerance. Therefore, specific inhibitors of the stringent response hold great promise as molecular tools for disarming and pacifying bacterial pathogens. By taking advantage of the valine amino acid auxotrophy of the Bacillus subtilis stringent response-deficient strain, we have set up a High Throughput Screening assay for the identification of stringent response inhibitors. By screening 17,500 compounds, we have identified a novel class of antibacterials based on the 4-(6-(phenoxy)alkyl)-3,5-dimethyl-1H-pyrazole core. Detailed characterization of the hit compounds as well as two previously identified promising stringent response inhibitors – a ppGpp-mimic nucleotide Relacin and cationic peptide 1018 – showed that neither of the compounds is sufficiently specific, thus motivating future application of our screening assay to larger and more diverse molecular libraries. PMID:27775002

  1. Time-resolved transcriptome analysis of Bacillus subtilis responding to valine, glutamate, and glutamine.

    Directory of Open Access Journals (Sweden)

    Bang-Ce Ye

    Full Text Available Microorganisms can restructure their transcriptional output to adapt to environmental conditions by sensing endogenous metabolite pools. In this paper, an Agilent customized microarray representing 4,106 genes was used to study temporal transcript profiles of Bacillus subtilis in response to valine, glutamate and glutamine pulses over 24 h. A total of 673, 835, and 1135 amino-acid-regulated genes were identified having significantly changed expression at one or more time points in response to valine, glutamate, and glutamine, respectively, including genes involved in cell wall, cellular import, metabolism of amino-acids and nucleotides, transcriptional regulation, flagellar motility, chemotaxis, phage proteins, sporulation, and many genes of unknown function. Different amino acid treatments were compared in terms of both the global temporal profiles and the 5-minute quick regulations, and between-experiment differential genes were identified. The highlighted genes were analyzed based on diverse sources of gene functions using a variety of computational tools, including T-profiler analysis, and hierarchical clustering. The results revealed the common and distinct modes of action of these three amino acids, and should help to elucidate the specific signaling mechanism of each amino acid as an effector.

  2. Keratinase production and keratin degradation by a mutant strain of Bacillus subtilis

    Institute of Scientific and Technical Information of China (English)

    Cheng-gang CAI; Bing-gan LOU; Xiao-dong ZHENG

    2008-01-01

    A new feather-degrading bacterium was isolated from a local feather waste site and identified as Bacillus subtilis based on morphological, physiochemical, and phylogenetic characteristics. Screening for mutants with elevated keratinolytic activity using N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis resulted in a mutant strain KD-N2 producing keratinolytic activity about 2.5 times that of the wild-type strain. The mutant strain produced inducible keratinase in different substrates of feathers, hair, wool and silk under submerged cultivation. Scanning electron microscopy studies showed the degradation of feathers, hair and silk by the keratinase. The optimal conditions for keratinase production include initial pH of 7.5, inoculum size of 2% (v/v), age of inoculum of 16 h, and cultivation at 23 ℃. The maximum keratinolytic activity of KD-N2 was achieved after 30 h. Essential amino acids like threonine, valine, methionine as well as ammonia were produced when feathers were used as substrates. Strain KD-N2,therefore, shows great promise of finding potential applications in keratin hydrolysis and keratinase production.

  3. Purification and characterization of an alkaline cellulase produced by Bacillus subtilis (AS3).

    Science.gov (United States)

    Deka, Deepmoni; Jawed, Mohammad; Goyal, Arun

    2013-01-01

    An extracellular alkaline carboxymethycellulase (CMCase) from Bacillus subtilis was purified by salt precipitation followed by anion-exchange chromatography using DEAE-Sepharose. The cell-free supernatant containing crude enzyme had a CMCase activity of 0.34 U/mg. The purified enzyme gave a specific activity of 3.33 U/mg, with 10-fold purification and an overall activity yield of 5.6%. The purified enzyme displayed a protein band on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) with an apparent molecular size of 30 kDa, which was also confirmed by zymogram analysis. The enzyme displayed multisubstrate specificity, showing significantly higher activity with lichenan and β-glucan as compared to carboxymethylcellulose (CMC), laminarin, hydroxyethylcellulose, and steam-exploded bagasse, and negligible activity with crystalline substrate such as Avicel and filter paper. It was optimally active at pH 9.2 and temperature 45°C. The enzyme was stable in the pH range 6-10 and retained 70% activity at pH 12. Thermal stability analysis revealed that the enzyme was stable in temperature range of 20°C to 45°C and retained more than 50% activity at 60°C for 30 min. The enzyme had a Km of 0.13 mg/ml and Vmax of 3.38 U/mg using CMC as substrate.

  4. Production and Partial Purification of Alpha Amylase from Bacillus subtilis (MTCC 121 Using Solid State Fermentation

    Directory of Open Access Journals (Sweden)

    Dibyangana Raul

    2014-01-01

    Full Text Available Amylase is an enzyme that catalyzes the breakdown of starch into sugars and plays a pivotal role in a variety of areas like use as digestives, for the production of ethanol and high fructose corn syrup, detergents, desiring of textiles, modified starches, hydrolysis of oil-field drilling fluids, and paper recycling. In the present work, solid state fermentation (SSF for α-amylase production has been used in lieu of submerged fermentation (SmF due to its simple technique, low capital investment, lower levels of catabolite repression, and better product recovery. Bacillus subtilis has been well known as producer of alpha amylase and was tested using solid state fermentation for 48 hours at 37°C with wheat bran as substrate. Comparison between different fermentation hours demonstrated high yield of alpha amylase after 48 hours. This alpha amylase has optimum pH and temperature at 7.1 and 40°C, respectively. With the goal to purify alpha amylase, 30–70% (NH42SO4 cut concentrated the amylase activity threefold with respect to crude fermented extract. This was verified in quantitative DNS assay method as well as in zymogram gel profile. The exact molecular weight of the amylase is yet to be determined with the aid of other protein purification techniques.

  5. Purification and characterization of keratinase from a new Bacillus subtilis strain

    Institute of Scientific and Technical Information of China (English)

    Cheng-gang CAI; Ji-shuang CHEN; Jiong-jiong QI; Yun YIN; Xiao-dong ZHENG

    2008-01-01

    The aim of this study was to purify and characterize a keratinase produced by a new isolated Bacillus subtilis KD-N2strain. The keratinase produced by the isolate was purified using ammonium sulphate precipitation, Sephadex G-75 and DEAE (diethylaminoethyl)-Sepharose chromatographic techniques. The purified enzyme was shown to have a molecular mass of 30.5kDa, as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis. The optimum pH at 50℃ was 8.5 and the optimum temperature at pH 8.5 was 55℃. The keratinase was partially inactivated by some metal ions, organic solvents and serine protease inhibitor phenylmethanesulfonyl fluoride (PMSF). Sodium dodecyl sulfate (SDS) and ethylene diamine tetraacetic acid (EDTA) had positive effect on the keratinase activity. Reducing agents including dithiothreitol (DTT),mercaptoethanol, L-cysteine, sodium sulphite, as well as chemicals of SDS, ammonium sulfamate and dimethylsulfoxide (DMSO)stimulated the enzyme activity upon a feather meal substrate. Besides feather keratin, the enzyme is active upon the soluble proteins ovalbumin, bovine serum albumin (BSA), casein and insoluble ones as sheep wool and human hair. Calf hair, silk and collagen could not be hydrolyzed by the keratinase.

  6. Assessing Bacillus subtilis biosurfactant effects on the biodegradation of petroleum products.

    Science.gov (United States)

    Montagnolli, Renato Nallin; Lopes, Paulo Renato Matos; Bidoia, Ederio Dino

    2015-01-01

    Microbial pollutant removal capabilities can be determined and exploited to accomplish bioremediation of hydrocarbon-polluted environments. Thus, increasing knowledge on environmental behavior of different petroleum products can lead to better bioremediation strategies. Biodegradation can be enhanced by adding biosurfactants to hydrocarbon-degrading microorganism consortia. This work aimed to improve petroleum products biodegradation by using a biosurfactant produced by Bacillus subtilis. The produced biosurfactant was added to biodegradation assays containing crude oil, diesel, and kerosene. Biodegradation was monitored by a respirometric technique capable of evaluating CO₂ production in an aerobic simulated wastewater environment. The biosurfactant yielded optimal surface tension reduction (30.9 mN m(-1)) and emulsification results (46.90% with kerosene). Biodegradation successfully occurred and different profiles were observed for each substance. Precise mathematical modeling of biosurfactant effects on petroleum degradation profile was designed, hence allowing long-term kinetics prediction. Assays containing biosurfactant yielded a higher overall CO₂ output. Higher emulsification and an enhanced CO2 production dataset on assays containing biosurfactants was observed, especially in crude oil and kerosene.

  7. Effects of fengycin from Bacillus subtilis fmbJ on apoptosis and necrosis in Rhizopus stolonifer.

    Science.gov (United States)

    Tang, Qunyong; Bie, Xiaomei; Lu, Zhaoxin; Lv, Fengxia; Tao, Yang; Qu, Xiaoxu

    2014-08-01

    The lipopeptide antibiotic fengycin, produced by Bacillus subtilis, strongly inhibits growth of filamentous fungi. In this study, we evaluated the effects of fengycin treatment on apoptosis and necrosis in Rhizopus stolonifer by means of cell staining and epifluorescence microscopy. At fengycin concentrations less than 50 μg/ml, treated fungal cells demonstrated a dose-dependent increase in apoptosis-associated markers compared with the untreated control. These markers included chromatin condensation, reactive oxygen species accumulation, mitochondrial membrane potential depolarization, phosphatidylserine externalization, and the occurrence of DNA strand breaks. These results showed that fungal cells were impaired in a number of important functions and entered apoptosis upon treatment with low concentrations of fengycin. In contrast, high concentrations (>50 μg/ml) induced necrosis, indicating that the fungicidal action of fengycin operates via two modes: apoptosis at low concentrations and necrosis at high concentrations. Additionally, the apoptotic effect that we have shown suggests that lower concentrations of fengycin than previously thought may be effective for food preservation.

  8. Biosurfactant and Degradative Enzymes Mediated Crude Oil Degradation by Bacterium Bacillus subtilis A1

    Science.gov (United States)

    Parthipan, Punniyakotti; Preetham, Elumalai; Machuca, Laura L.; Rahman, Pattanathu K. S. M.; Murugan, Kadarkarai; Rajasekar, Aruliah

    2017-01-01

    In this work, the biodegradation of the crude oil by the potential biosurfactant producing Bacillus subtilis A1 was investigated. The isolate had the ability to synthesize degradative enzymes such as alkane hydroxylase and alcohol dehydrogenase at the time of biodegradation of hydrocarbon. The biosurfactant producing conditions were optimized as pH 7.0, temperature 40°C, 2% sucrose and 3% of yeast extract as best carbon and nitrogen sources for maximum production of biosurfactant (4.85 g l-1). Specifically, the low molecular weight compounds, i.e., C10–C14 were completely degraded, while C15–C19 were degraded up to 97% from the total hydrocarbon pools. Overall crude oil degradation efficiency of the strain A1 was about 87% within a short period of time (7 days). The accumulated biosurfactant from the biodegradation medium was characterized to be lipopeptide in nature. The strain A1 was found to be more robust than other reported biosurfactant producing bacteria in degradation efficiency of crude oil due to their enzyme production capability and therefore can be used to remove the hydrocarbon pollutants from contaminated environment. PMID:28232826

  9. High-yield Bacillus subtilis protease production by solid-state fermentation.

    Science.gov (United States)

    Soares, Valeria F; Castilho, Leda R; Bon, Elba P S; Freire, Denise M G

    2005-01-01

    A Bacillus subtilis isolate was shown to be able to produce extracellular protease in solid-state fermentations (SSF) using soy cake as culture medium. A significant effect of inoculum concentration and physiological age on pro tease production was observed. Maximum activities were obtained for inocula consisting of exponentially growing cells at inoculum concentrations in the range of 0.7-2.0 mg g(-1). A comparative study on the influence of cultivation temperature and initial medium pH on protease production in SSF and in submerged fermentation (SF) revealed that in SSF a broader pH range (5-10), but the same optimum temperature (37 degrees C), is obtained when compared to SF. A kinetic study showed that enzyme production is associated with bacterial growth and that enzyme inactivation begins before biomass reaches a maximum level for both SF and SSF. Maximum protease activity and productivity were 960 U g(-1) and 15.4 U g-1 h-1 for SSF, and 12 U mL-1 and 1.3 U mL-1 h-1 for SF. When SSF protease activity was expressed by volume of enzyme extract, the enzyme level was 10-fold higher and the enzyme productivity 45% higher than in SF. These results indicate that this bacterial strain shows a high biotechnological potential for protease production in solid-state fermentation.

  10. The Bacillus subtilis flagellar regulatory protein sigma D: overproduction, domain analysis and DNA-binding properties.

    Science.gov (United States)

    Chen, Y F; Helmann, J D

    1995-06-16

    Flagellar biosynthesis requires an alternative sigma (sigma) subunit of RNA polymerase to allow recognition of the promoters for flagellin and other late genes of the flagellar regulon. We have now overproduced and characterized Bacillus subtilis sigma D: the prototype of the sigma 28 family of flagellar sigma factors. Limited protease digestion studies indicate that sigma D contains an amino-terminal domain, comprising conserved regions 1.2 and 2, and a carboxyl-terminal domain containing conserved regions 3.2 and 4. The protease-sensitive region between these two domains correlates with a region of very low sequence conservation among bacterial sigma factors. Unlike the primary sigma factor, sigma D binds to DNA. In non-denaturing polyacrylamide gel electrophoresis the sigma D-DNA complex has an apparent equilibrium dissociation constant of 1 microM. Binding of sigma D to the promoter for flagellin, PD-6, appears to lead to an altered DNA structure near the -35 and -10 recognition elements as detected by DNase I footprinting and by the enhanced reactivity of several bases to dimethylsulfate.

  11. A two-subunit bacterial sigma-factor activates transcription in Bacillus subtilis.

    Science.gov (United States)

    MacLellan, Shawn R; Guariglia-Oropeza, Veronica; Gaballa, Ahmed; Helmann, John D

    2009-12-15

    The sigma-like factor YvrI and coregulator YvrHa activate transcription from a small set of conserved promoters in Bacillus subtilis. We report here that these two proteins independently contribute sigma-region 2 and sigma-region 4 functions to a holoenzyme-promoter DNA complex. YvrI binds RNA polymerase (RNAP) through a region 4 interaction with the beta-subunit flap domain and mediates specific promoter recognition but cannot initiate DNA melting at the -10 promoter element. Conversely, YvrHa possesses sequence similarity to a conserved core-binding motif in sigma-region 2 and binds to the N-terminal coiled-coil element in the RNAP beta'-subunit previously implicated in interaction with region 2 of sigma-factors. YvrHa plays an essential role in stabilizing the open complex and interacts specifically with the N-terminus of YvrI. Based on these results, we propose that YvrHa is situated in the transcription complex proximal to the -10 element of the promoter, whereas YvrI is responsible for -35 region recognition. This system presents an unusual example of a two-subunit bacterial sigma-factor.

  12. Modeling of rare earth element sorption to the Gram positive Bacillus subtilis bacteria surface.

    Science.gov (United States)

    Martinez, Raul E; Pourret, Olivier; Takahashi, Yoshio

    2014-01-01

    In this study, rare earth element (REE) binding constants and site concentration on the Gram+ bacteria surfaces were quantified using a multi-site Langmuir isotherm model, along with a linear programming regression method (LPM), applied to fit experimental REE sorption data. This approach found one discrete REE binding site on the Gram+ Bacillus subtilis surface for the pH range of 2.5-4.5. Average log10 REE binding constants for a site j on these bacteria ranged from 1.08±0.04 to 1.40±0.04 for the light REE (LREE: La to Eu), and from 1.36±0.03 to 2.18±0.14 for the heavy REE (HREE: Gd to Lu) at the highest biomass concentration of 1.3 g/L of B. subtilis bacteria. Similar values were obtained for bacteria concentrations of 0.39 and 0.67 g/L indicating the independence of REE sorption constants on biomass concentration. Within the experimental pH range in this study, B. subtilis was shown to have a lower affinity for LREE (e.g. La, Ce, Pr, Nd) and a higher affinity for HREE (e.g. Tm, Yb, Lu) suggesting an enrichment of HREE on the surface of Gram+ bacteria. Total surface binding site concentrations of 6.73±0.06 to 5.67±0.06 and 5.53±0.07 to 4.54±0.03 mol/g of bacteria were observed for LREE and HREE respectively, with the exception of Y, which showed a total site concentration of 9.53±0.03, and a log K(REE,j) of 1.46±0.02 for a biomass content of 1.3 g/L. The difference in these values (e.g. a lower affinity and increased binding site concentration for LREE, and the contrary for the HREE) suggests a distinction between the LREE and HREE binding modes to the Gram+ bacteria reactive surface at low pH. This further implies that HREE may bind more than one monoprotic reactive group on the cell surface. A multisite Langmuir isotherm approach along with the LPM regression method, not requiring prior knowledge of the number or concentration of cell surface REE complexation sites, were able to distinguish between the sorption constant and binding site concentration

  13. Production, characterization, and immunogenicity of a secreted form of Plasmodium falciparum merozoite surface protein 4 produced in Bacillus subtilis.

    Science.gov (United States)

    Chittibabu, G; Ma, Charles; Netter, Hans J; Noronha, Santosh B; Coppel, Ross L

    2014-04-01

    Plasmodium falciparum is the causative agent of the most serious form of malaria. Although a combination of control measures has significantly limited malaria morbidity and mortality in the last few years, it is generally agreed that sustained control or even eradication will require additional tools including an effective malaria vaccine. Merozoite surface protein 4, MSP4, which is present during the asexual stage of P. falciparum, is a recognized target that would be useful in a subunit vaccine against blood stages of malaria. Falciparum malaria is most prevalent in developing countries, and this in turn leads to a requirement for safe, low-cost vaccines. We have attempted to utilize the nonpathogenic, gram-positive organism Bacillus subtilis to produce PfMSP4. PfMSP4 was secreted into the culture medium at a yield of 4.5 mg/L. Characterization studies including SDS-PAGE, mass spectrometry, and N-terminal sequencing indicated that the B. subtilis expression system secreted a full length PfMSP4 protein compared to a truncated version in Escherichia coli. Equivalent amounts of purified B. subtilis and E. coli-derived PfMSP4 were used for immunization studies, resulting in statistically significant higher mean titer values for the B. subtilis-derived immunogen. The mouse antibodies raised against B. subtilis produced PfMSP4 that were reactive to parasite proteins as evidenced by immunoblotting on parasite lysate and indirect immunofluorescence assays of fixed parasites. The B. subtilis expression system, in contrast to E. coli, expresses higher amounts of full length PfMSP4 products, decreased levels of aggregates, and allows the development of simplified downstream processing procedures.

  14. Bacillus subtilis as a platform for molecular characterisation of regulatory mechanisms of Enterococcus faecalis resistance against cell wall antibiotics.

    Science.gov (United States)

    Fang, Chong; Stiegeler, Emanuel; Cook, Gregory M; Mascher, Thorsten; Gebhard, Susanne

    2014-01-01

    To combat antibiotic resistance of Enterococcus faecalis, a better understanding of the molecular mechanisms, particularly of antibiotic detection, signal transduction and gene regulation is needed. Because molecular studies in this bacterium can be challenging, we aimed at exploiting the genetically highly tractable Gram-positive model organism Bacillus subtilis as a heterologous host. Two fundamentally different regulators of E. faecalis resistance against cell wall antibiotics, the bacitracin sensor BcrR and the vancomycin-sensing two-component system VanSB-VanRB, were produced in B. subtilis and their functions were monitored using target promoters fused to reporter genes (lacZ and luxABCDE). The bacitracin resistance system BcrR-BcrAB of E. faecalis was fully functional in B. subtilis, both regarding regulation of bcrAB expression and resistance mediated by the transporter BcrAB. Removal of intrinsic bacitracin resistance of B. subtilis increased the sensitivity of the system. The lacZ and luxABCDE reporters were found to both offer sensitive detection of promoter induction on solid media, which is useful for screening of large mutant libraries. The VanSB-VanRB system displayed a gradual dose-response behaviour to vancomycin, but only when produced at low levels in the cell. Taken together, our data show that B. subtilis is a well-suited host for the molecular characterization of regulatory systems controlling resistance against cell wall active compounds in E. faecalis. Importantly, B. subtilis facilitates the careful adjustment of expression levels and genetic background required for full functionality of the introduced regulators.

  15. Bacillus subtilis as a platform for molecular characterisation of regulatory mechanisms of Enterococcus faecalis resistance against cell wall antibiotics.

    Directory of Open Access Journals (Sweden)

    Chong Fang

    Full Text Available To combat antibiotic resistance of Enterococcus faecalis, a better understanding of the molecular mechanisms, particularly of antibiotic detection, signal transduction and gene regulation is needed. Because molecular studies in this bacterium can be challenging, we aimed at exploiting the genetically highly tractable Gram-positive model organism Bacillus subtilis as a heterologous host. Two fundamentally different regulators of E. faecalis resistance against cell wall antibiotics, the bacitracin sensor BcrR and the vancomycin-sensing two-component system VanSB-VanRB, were produced in B. subtilis and their functions were monitored using target promoters fused to reporter genes (lacZ and luxABCDE. The bacitracin resistance system BcrR-BcrAB of E. faecalis was fully functional in B. subtilis, both regarding regulation of bcrAB expression and resistance mediated by the transporter BcrAB. Removal of intrinsic bacitracin resistance of B. subtilis increased the sensitivity of the system. The lacZ and luxABCDE reporters were found to both offer sensitive detection of promoter induction on solid media, which is useful for screening of large mutant libraries. The VanSB-VanRB system displayed a gradual dose-response behaviour to vancomycin, but only when produced at low levels in the cell. Taken together, our data show that B. subtilis is a well-suited host for the molecular characterization of regulatory systems controlling resistance against cell wall active compounds in E. faecalis. Importantly, B. subtilis facilitates the careful adjustment of expression levels and genetic background required for full functionality of the introduced regulators.

  16. Effects of metabolic pathway precursors and polydimethylsiloxane (PDMS) on poly-(gamma)-glutamic acid production by Bacillus subtilis BL53.

    Science.gov (United States)

    de Cesaro, Alessandra; da Silva, Suse Botelho; Ayub, Marco Antônio Záchia

    2014-09-01

    The aims of this study were to evaluate the effects of the addition of metabolic precursors and polydimethylsiloxane (PDMS) as an oxygen carrier to cultures of Bacillus subtilis BL53 during the production of γ-PGA. Kinetics analyses of cultivations of different media showed that B. subtilis BL53 is an exogenous glutamic acid-dependent strain. When the metabolic pathway precursors of γ-PGA synthesis, L-glutamine and a-ketoglutaric acid, were added to the culture medium, production of the biopolymer was increased by 20 % considering the medium without these precursors. The addition of 10 % of the oxygen carrier PDMS to cultures caused a two-fold increase in the volumetric oxygen mass transfer coefficient (kLa), improving γ-PGA production and productivity. Finally, bioreactor cultures of B. subtilis BL53 adopting the combination of optimized medium E, added of glutamine, α-ketoglutaric acid, and PDMS, showed a productivity of 1 g L(-1) h(-1) of g-PGA after only 24 h of cultivation. Results of this study suggest that the use of metabolic pathway precursors glutamine and a-ketolgutaric acid, combined with the addition of PDMS as an oxygen carrier in bioreactors, can improve γ-PGA production and productivity by Bacillus strains .

  17. Cloning and Expression of the γ-Polyglutamic Acid Synthetase Gene pgsBCA in Bacillus subtilis WB600

    Directory of Open Access Journals (Sweden)

    Biaosheng Lin

    2016-01-01

    Full Text Available To clone and express the γ-polyglutamic acid (γ-PGA synthetase gene pgsBCA in Bacillus subtilis, a pWB980 plasmid was used to construct and transfect the recombinant expression vector pWB980-pgsBCA into Bacillus subtilis WB600. PgsBCA was expressed under the action of a P43 promoter in the pWB980 plasmid. Our results showed that the recombinant bacteria had the capacity to synthesize γ-PGA. The expression product was secreted extracellularly into the fermentation broth, with a product yield of 1.74 g/L or higher. γ-PGA samples from the fermentation broth were purified and characterized. Hydrolysates of γ-PGA presented in single form, constituting simple glutamic acid only, which matched the characteristics of the infrared spectra of the γ-PGA standard, and presented as multimolecular aggregates with a molecular weight within the range of 500–600 kDa. Expressing the γ-PGA synthetase gene pgsBCA in B. subtilis system has potential industrial applications.

  18. Bacillus subtilis PB6 improves intestinal health of broiler chickens challenged with Clostridium perfringens-induced necrotic enteritis.

    Science.gov (United States)

    Jayaraman, Sathishkumar; Thangavel, Gokila; Kurian, Hannah; Mani, Ravichandran; Mukkalil, Rajalekshmi; Chirakkal, Haridasan

    2013-02-01

    Necrotic enteritis (NE) is an enterotoxemic disease caused by Clostridium perfringens that results in significant economic losses, averaging damage of $0.05 per bird. The present study investigated the influence of a dietary supplement, Bacillus subtilis PB6, on performance, intestinal health, and gut integrity against C. perfringens-induced NE in broiler birds. Bacillus subtilis PB6 (ATCC-PTA 6737) is a natural strain isolated from healthy chicken gut that has been shown in in vitro to produce antimicrobial substances with broad activity against various strains of Campylobacter and Clostridium species. The animal study was conducted on broiler chickens (Cobb 400) for the period of 35 d using a completely randomized design. The experimental design included 3 treatments groups. Each treatment group contained 6 replicates, 3 male and 3 female, with 12 birds in each replicate. The 3 treatment groups were an uninfected control, an infected control, and an infected group supplemented with B. subtilis PB6 at 500 g/t of feed, containing 5 × 10(11) cfu/kg. Necrotic enteritis was induced in the broiler birds via oral inoculation of 30,000 oocysts of mixed strains of Eimeria species on d 14 followed by C. perfringens (10(8) cfu/mL) on d 19 through 21 of trial. The birds were analyzed for BW gain, mortality, feed conversion ratio (FCR), intestinal lesion score, intestinal C. perfringens counts, and villus histomorphometry. The infected control group showed markedly thickened mucosa, hemorrhages, intestinal lesions, and ballooning of intestine. The supplementation of B. subtilis PB6 reduced the FCR (P < 0.05) and intestinal C. perfringens counts significantly (P < 0.05) compared with the infected control group. It was also observed that B. subtilis PB6 improved villi length by 10.88 and 30.46% (P < 0.05) compared with uninfected and infected control groups, respectively. The group supplemented with B. subtilis PB6 significantly (P < 0.05) increased the villi length to crypt

  19. Evaluation of cross-linked aggregates from purified Bacillus subtilis levansucrase mutants for transfructosylation reactions

    Directory of Open Access Journals (Sweden)

    Munguia Agustin

    2009-07-01

    Full Text Available Abstract Background Increasing attention has been focused on inulin and levan-type oligosaccharides, including fructosyl-xylosides and other fructosides due to their nutraceutical properties. Bacillus subtilis levansucrase (LS catalyzes the synthesis of levan from sucrose, but it may also transfer the fructosyl moiety from sucrose to acceptor molecules included in the reaction medium. To study transfructosylation reactions with highly active and robust derivatives, cross-linked enzyme aggregates (CLEAs were prepared from wild LS and two mutants. CLEAs combine the catalytic features of pure protein preparations in terms of specific activity with the mechanical behavior of industrial biocatalysts. Results Two types of procedures were used for the preparation of biocatalysts from purified wild type LS (WT LS B. subtilis and the R360K and Y429N LS mutants: purified enzymes aggregated with glutaraldehyde (cross-linked enzyme aggregates: CLEAs, and covalently immobilized enzymes in Eupergit C®. The biocatalysts were characterized and used for fructoside synthesis using xylose as an acceptor model. CLEAs were able to catalyze the synthesis of fructosides as efficiently as soluble enzymes. The specific activity of CLEAs prepared from wild type LS (44.9 U/mg of CLEA, R360K (56.5 U/mg of CLEA and Y429N (1.2 U/mg of CLEA mutants were approximately 70, 40 and 200-fold higher, respectively, than equivalent Eupergit C® immobilized enzyme preparations (U/mg of Eupergit, where units refer to global LS activity. In contrast, the specific activity of the free enzymes was 160, 171.2 and 1.5 U/mg of protein, respectively. Moreover, all CLEAs had higher thermal stability than corresponding soluble enzymes. In the long term, the operational stability was affected by levan synthesis. Conclusion This is the first report of cross-linked transglycosidases aggregates. CLEAs prepared from purified LS and mutants have the highest specific activity for immobilized

  20. Digestibility and fecal characteristics of dogs fed with Bacillus subtilis in diet Digestibilidade e características das fezes de cães suplementados com Bacillus subtilis na dieta

    Directory of Open Access Journals (Sweden)

    Ananda Portella Félix

    2010-10-01

    Full Text Available Considering the benefice demonstrated by the modulating action of probiotics on the host intestinal microbiota, this study aimed to evaluate diet digestibility and fecal characteristics of dogs fed with diets supplemented with Bacillus subtilis (C-3102. Twelve young Beagle dogs were distributed in a completely randomized experimental design consisting of two treatments: diet with no addition or with the addition of 0.01% Bacillus subtilis (C-3102. Dogs passed through 25 days of adaptation to the diets, and five days of total feces collection. The following fecal characteristics were evaluated: pH, fecal score (1 - watery feces; 5: dry and hard feces, and ammonia content. Diet mean digestibility was compared by the Tukey test, and fecal characteristics by the Tukey-Kramer test. Diet digestibility was not different between treatments, but dogs supplemented with the tested probiotic presented dryer feces (39.1% vs. 36.5% dry matter, higher fecal score (3.4 vs. 3.0 and lower fecal ammonia content (0.45% vs. 0.56%, than dogs fed with the control diet. The dietary supplementation with Bacillus subtilis (C-3102 improves fecal texture and odor in dogs.Em virtude da capacidade moduladora dos probióticos sobre a microbiota intestinal a favor da saúde do hospedeiro, objetivou-se, com este estudo, avaliar a digestibilidade e as características das fezes de cães suplementados com Bacillus subtilis (C-3102 na dieta. Foram utilizados 12 cães adultos da raça Beagle, os quais foram distribuídos inteiramente ao acaso, em dois tratamentos: dieta controle e dieta com adição de 0,01% de Bacillus subtilis (C-3102. Os animais passaram por 25 dias de adaptação às dietas e por cinco dias para colheita total de fezes. As características das fezes foram avaliadas por meio da matéria seca, do escore (1: fezes moles, malformadas a 5: fezes secas e duras, do pH, da amônia e da produção de fezes. Não houve diferença na digestibilidade; entretanto, os c

  1. Establishment of a markerless mutation delivery system in Bacillus subtilis stimulated by a double-strand break in the chromosome.

    Directory of Open Access Journals (Sweden)

    Ting Shi

    Full Text Available Bacillus subtilis has been a model for gram-positive bacteria and it has long been exploited for industrial and biotechnological applications. However, the availability of facile genetic tools for physiological analysis has generally lagged substantially behind traditional genetic models such as Escherichia coli and Saccharomyces cerevisiae. In this work, we have developed an efficient, precise and scarless method for rapid multiple genetic modifications without altering the chromosome of B. subtilis. This method employs upp gene as a counter-selectable marker, double-strand break (DSB repair caused by exogenous endonuclease I-SceI and comK overexpression for fast preparation of competent cell. Foreign dsDNA can be simply and efficiently integrated into the chromosome by double-crossover homologous recombination. The DSB repair is a potent inducement for stimulating the second intramolecular homologous recombination, which not only enhances the frequency of resolution by one to two orders of magnitude, but also selects for the resolved product. This method has been successfully and reiteratively used in B. subtilis to deliver point mutations, to generate in-frame deletions, and to construct large-scale deletions. Experimental results proved that it allowed repeated use of the selectable marker gene for multiple modifications and could be a useful technique for B. subtilis.

  2. The Role of α-CTD in the Genome-Wide Transcriptional Regulation of the Bacillus subtilis Cells.

    Directory of Open Access Journals (Sweden)

    Satohiko Murayama

    Full Text Available The amino acid sequence of the RNA polymerase (RNAP α-subunit is well conserved throughout the Eubacteria. Its C-terminal domain (α-CTD is important for the transcriptional regulation of specific promoters in both Escherichia coli and Bacillus subtilis, through interactions with transcription factors and/or a DNA element called the "UP element". However, there is only limited information regarding the α-CTD regulated genes in B. subtilis and the importance of this subunit in the transcriptional regulation of B. subtilis. Here, we established strains and the growth conditions in which the α-subunit of RNAP was replaced with a C-terminally truncated version. Transcriptomic and ChAP-chip analyses revealed that α-CTD deficiency reduced the transcription and RNAP binding of genes related to the utilization of secondary carbon sources, transition state responses, and ribosome synthesis. In E. coli, it is known that α-CTD also contributes to the expression of genes related to the utilization of secondary carbon sources and ribosome synthesis. Our results suggest that the biological importance of α-CTD is conserved in B. subtilis and E. coli, but that its specific roles have diversified between these two bacteria.

  3. Atomic force microscopy imaging and single molecule recognition force spectroscopy of coat proteins on the surface of Bacillus subtilis spore.

    Science.gov (United States)

    Tang, Jilin; Krajcikova, Daniela; Zhu, Rong; Ebner, Andreas; Cutting, Simon; Gruber, Hermann J; Barak, Imrich; Hinterdorfer, Peter

    2007-01-01

    Coat assembly in Bacillus subtilis serves as a tractable model for the study of the self-assembly process of biological structures and has a significant potential for use in nano-biotechnological applications. In the present study, the morphology of B. subtilis spores was investigated by magnetically driven dynamic force microscopy (MAC mode atomic force microscopy) under physiological conditions. B. subtilis spores appeared as prolate structures, with a length of 0.6-3 microm and a width of about 0.5-2 microm. The spore surface was mainly covered with bump-like structures with diameters ranging from 8 to 70 nm. Besides topographical explorations, single molecule recognition force spectroscopy (SMRFS) was used to characterize the spore coat protein CotA. This protein was specifically recognized by a polyclonal antibody directed against CotA (anti-CotA), the antibody being covalently tethered to the AFM tip via a polyethylene glycol linker. The unbinding force between CotA and anti-CotA was determined as 55 +/- 2 pN. From the high-binding probability of more than 20% in force-distance cycles it is concluded that CotA locates in the outer surface of B. subtilis spores.

  4. Characterization of Extracellular Penicilin G Acylase Produced by A New Local Strain of Bacillus subtilis BAC4

    Directory of Open Access Journals (Sweden)

    SUPARTONO

    2008-06-01

    Full Text Available Penicillin G acylase (PGA which catalyses penicillin G hydrolysis reaction is a key enzyme for the industrial production of penicilin G derivatives used in therapeutics. A new local strain of Bacillus subtilis BAC4 was found capable of producing extracellular PGA. However, characteristics of this extracellular PGA are not known. The goal of this research was to characterize the extracellular PGA produced by B. subtilis BAC4. Enzyme production was carried out by batch fermentation, followed by enzyme purification and characterization of the PGA. The PGA activity was determined by the Kornfeld method, with optimal activity for hydrolysing penicillin G observed at 43 oC and pH 8.5. The activation energy of penicillin G hydrolysis by the PGA of B. subtilis BAC4 was determined as 4.9 kcal.mol-1 and Vmax and Km values were found to be 0.7 µmole.min-1.mg-1 and 3.5 mM respectively. PGA catalytic activity was competitively inhibited by phenylacetic acid with an inhibition constant, Ki(PAA, of 347.2 mM. It was concluded that the extracellular PGA of B. subtilis BAC4 can hydrolyse penicillin G efficiently.

  5. Bacillus subtilis and Escherichia coli essential genes and minimal cell factories after one decade of genome engineering.

    Science.gov (United States)

    Juhas, Mario; Reuß, Daniel R; Zhu, Bingyao; Commichau, Fabian M

    2014-11-01

    Investigation of essential genes, besides contributing to understanding the fundamental principles of life, has numerous practical applications. Essential genes can be exploited as building blocks of a tightly controlled cell 'chassis'. Bacillus subtilis and Escherichia coli K-12 are both well-characterized model bacteria used as hosts for a plethora of biotechnological applications. Determination of the essential genes that constitute the B. subtilis and E. coli minimal genomes is therefore of the highest importance. Recent advances have led to the modification of the original B. subtilis and E. coli essential gene sets identified 10 years ago. Furthermore, significant progress has been made in the area of genome minimization of both model bacteria. This review provides an update, with particular emphasis on the current essential gene sets and their comparison with the original gene sets identified 10 years ago. Special attention is focused on the genome reduction analyses in B. subtilis and E. coli and the construction of minimal cell factories for industrial applications.

  6. High levels of DegU-P activate an Esat-6-like secretion system in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Catarina Baptista

    Full Text Available The recently discovered Type VII/Esat-6 secretion systems seem to be widespread among bacteria of the phyla Actinobacteria and Firmicutes. In some species they play an important role in pathogenic interactions with eukaryotic hosts. Several studies have predicted that the locus yukEDCByueBC of the non-pathogenic, Gram-positive bacterium Bacillus subtilis would encode an Esat-6-like secretion system (Ess. We provide here for the first time evidences for the functioning of this secretion pathway in an undomesticated B. subtilis strain. We show that YukE, a small protein with the typical features of the secretion substrates from the WXG100 superfamily is actively secreted to culture media. YukE secretion depends on intact yukDCByueBC genes, whose products share sequence or structural homology with known components of the S. aureus Ess. Biochemical characterization of YukE indicates that it exists as a dimer both in vitro and in vivo. We also show that the B. subtilis Ess essentially operates in late stationary growth phase in absolute dependence of phosphorylated DegU, the response regulator of the two-component system DegS-DegU. We present possible reasons that eventually have precluded the study of this secretion system in the B. subtilis laboratory strain 168.

  7. Co-production of alpha-amylase and beta-galactosidase by Bacillus subtilis in complex organic substrates.

    Science.gov (United States)

    Konsoula, Zoe; Liakopoulou-Kyriakides, Maria

    2007-01-01

    Various nutrients belonging to three categories, carbon, organic nitrogen and complex organic sources, were investigated for the first time in terms of their effect on the co-production of extracellular thermostable alpha-amylase and beta-galactosidase by Bacillus subtilis, a bacterium isolated from fresh sheep's milk. Among the organic nitrogen sources tested, tryptone and corn steep liquor favored their production. Substitution of soluble starch by various starchy substrates, such as corn flour, had a positive effect on both enzyme yields. Furthermore, a two-fold higher production of both enzymes was achieved when corn steep liquor or tryptone was used in combination with the different flours. Among the divalent cations examined, calcium ions appeared to be vital for alpha-amylase production. The crude alpha-amylase and beta-galactosidase produced by this B. subtilis strain exhibited maximal activities at 135 degrees C and 65 degrees C, respectively, and were also found to be significantly stable at elevated temperatures.

  8. Bacillus subtilis BY-kinase PtkA controls enzyme activity and localization of its protein substrates

    DEFF Research Database (Denmark)

    Jers, Carsten; Pedersen, Malene Mejer; Paspaliari, Dafni Katerina;

    2010-01-01

    P>Bacillus subtilis BY-kinase PtkA was previously shown to phosphorylate, and thereby regulate the activity of two classes of protein substrates: UDP-glucose dehydrogenases and single-stranded DNA-binding proteins. Our recent phosphoproteome study identified nine new tyrosine-phosphorylated prote......A was dramatically altered in Delta ptkA background. Our results confirm that PtkA can control enzyme activity of its substrates in some cases, but also reveal a new mode of action for PtkA, namely ensuring correct cellular localization of its targets.......-phosphorylated proteins in B. subtilis. We found that the majority of these proteins could be phosphorylated by PtkA in vitro. Among these new substrates, single-stranded DNA exonuclease YorK, and aspartate semialdehyde dehydrogenase Asd were activated by PtkA-dependent phosphorylation. Because enzyme activity...

  9. SirA enforces diploidy by inhibiting the replication initiator DnaA during spore formation in Bacillus subtilis.

    Science.gov (United States)

    Wagner, Jennifer K; Marquis, Kathleen A; Rudner, David Z

    2009-09-01

    How cells maintain their ploidy is relevant to cellular development and disease. Here, we investigate the mechanism by which the bacterium Bacillus subtilis enforces diploidy as it differentiates into a dormant spore. We demonstrate that a sporulation-induced protein SirA (originally annotated YneE) blocks new rounds of replication by targeting the highly conserved replication initiation factor DnaA. We show that SirA interacts with DnaA and displaces it from the replication origin. As a result, expression of SirA during growth rapidly blocks replication and causes cell death in a DnaA-dependent manner. Finally, cells lacking SirA over-replicate during sporulation. These results support a model in which induction of SirA enforces diploidy by inhibiting replication initiation as B. subtilis cells develop into spores.

  10. Growth Inhibition of Cocoa Pod Rot Fungus Phytophthora palmivora byPseudomonas fluorescence and Bacillus subtilis bacteria

    Directory of Open Access Journals (Sweden)

    Sakti Widyanta Pratama

    2013-08-01

    Full Text Available Black pod disease caused by Phytophthora palmivorafungus is one of the important diseases on cocoa crop. Pod rot is the most important disease because it may cause loss of cocoa pod. Until now, the fungal pathogen of cocoa black pod disease is still a crucial problem and there is no fungicide that is really effective against the disease. One alternative to control the cocoa black pod disease is by using biological agents as biofungicide, including utilizing Pseudomonas fluorescenceand Bacillus subtilis bacteria. The research was done by isolation of P. palmivora from infected pods of Kaliwining Experimental Station to obtain pure cultures of fungus and by multiplication of P. fluorescence and B. subtilis. Antagonist test was performed by inoculating P. palmivora into a petri dish in a distance of 3 cm from the edge. P. fluorescenceand B. Subtilis were inoculated into petridishes in three days after the fungal treatment. Control was inoculated with isolate of P. palmivora only. Fungal growth was measured everyday by measuring radius of fungal colonies first time 24 hours after inoculation. Growth of Phytophthora palmivora in the two treatmens were used to calculate the percentage of inhibition. The results of this study indicated that P. fluorescence and B. subtiliswere able to inhibit fungal growth of P. palmivora. Both bacterial antagonists had the same effectiveness in inhibiting the growth of P. palmivora fungus based on the percentage of inhibition and effectiveness criteria. Based on the results of translucent zones indicated that B. subtiliswas more powerfull in inhibiting growth of P. Palmivora compared to P. fluorescence. Key words: Black pod disease of cocoa, biological control, Phytophthora palmivora, Pseudomonas fluorescence, Bacillus subtilis

  11. Antibacterial activity and genotypic-phenotypic characteristics of bacteriocin-producing Bacillus subtilis KKU213: potential as a probiotic strain.

    Science.gov (United States)

    Khochamit, Nalisa; Siripornadulsil, Surasak; Sukon, Peerapol; Siripornadulsil, Wilailak

    2015-01-01

    The antimicrobial activity and probiotic properties of Bacillus subtilis strain KKU213, isolated from local soil, were investigated. The cell-free supernatant (CFS) of a KKU213 culture containing crude bacteriocins exhibited inhibitory effects on Gram-positive bacteria, including Bacillus cereus, Listeria monocytogenes, Micrococcus luteus, and Staphylococcus aureus. The antibacterial activity of the CFS precipitated with 40% ammonium sulfate (AS) remained even after treatment at 60 and 100 °C, at pH 4 and 10 and with proteolytic enzymes, detergents and heavy metals. When analyzed by SDS-PAGE and overlaid with the indicator strains B. cereus and S. aureus, the 40% AS precipitate exhibited inhibitory activity on proteins smaller than 10 kDa. However, proteins larger than 25 kDa and smaller than 10 kDa were still observed on a native protein gel. Purified subtilosin A was prepared by Amberlite XAD-16 bead extraction and HPLC and analyzed by Nano-LC-QTOF-MS. Its molecular mass was found to be 3.4 kDa, and it retained its antibacterial activity. These results are consistent with the detection of the anti-listerial subtilosin A gene of the sbo/alb cluster in the KKU213 strain, which is 100% identical to that of B. subtilis subsp. subtilis 168. In addition to stable and cyclic subtilosin A, a mixture of many extracellular antibacterial peptides was also detected in the KKU213 culture. The KKU213 strain produced extracellular amylase, cellulase, lipase and protease, is highly acid-resistant (pH 2) when cultured in inulin and promotes health and reduces infection of intestinally colonized broiler chickens. Therefore, we propose that bacteriocin-producing B. subtilis KKU213 could be used as a potential probiotic strain or protective culture.

  12. Degradation of Benzo [a] Pyrene by a novel strain Bacillus subtilis BMT4i (MTCC 9447

    Directory of Open Access Journals (Sweden)

    Madhuri Kaushish Lily

    2009-12-01

    Full Text Available Benzo [a] Pyrene (BaP is a highly recalcitrant, polycyclic aromatic hydrocarbon (PAH with high genotoxicity and carcinogenicity. It is formed and released into the environment due to incomplete combustion of fossil fuel and various anthropogenic activities including cigarette smoke and automobile exhausts. The aim of present study is to isolate bacteria which can degrade BaP as a sole source of carbon and energy. We have isolated a novel strain BMT4i (MTCC 9447 of Bacillus subtilis from automobile contaminated soil using BaP (50 μg /ml as the sole source of carbon and energy in basal salt mineral (BSM medium. The growth kinetics of BMT4i was studied using CFU method which revealed that BMT4i is able to survive in BaP-BSM medium up to 40 days attaining its peak growth (10(29 fold increase in cell number on 7 days of incubation. The BaP degradation kinetics of BMT4i was studied using High Performance Liquid Chromatography (HPLC analysis of BaP biodegradation products. BMT4i started degrading BaP after 24 hours and continued up to 28 days achieving maximum degradation of approximately 84.66 %. The above findings inferred that BMT4i is a very efficient degrader of BaP. To our best of knowledge, this is the first report showing utilization of BaP as a sole source of carbon and energy by bacteria. In addition, BMT4i can degrade a wide range of PAHs including naphthalene, anthracene, and dibenzothiophene therefore, it could serve as a better candidate for bioremediation of PAHs contaminated sites.

  13. The Molecular Basis of TnrA Control by Glutamine Synthetase in Bacillus subtilis.

    Science.gov (United States)

    Hauf, Ksenia; Kayumov, Airat; Gloge, Felix; Forchhammer, Karl

    2016-02-12

    TnrA is a master regulator of nitrogen assimilation in Bacillus subtilis. This study focuses on the mechanism of how glutamine synthetase (GS) inhibits TnrA function in response to key metabolites ATP, AMP, glutamine, and glutamate. We suggest a model of two mutually exclusive GS conformations governing the interaction with TnrA. In the ATP-bound state (A-state), GS is catalytically active but unable to interact with TnrA. This conformation was stabilized by phosphorylated L-methionine sulfoximine (MSX), fixing the enzyme in the transition state. When occupied by glutamine (or its analogue MSX), GS resides in a conformation that has high affinity for TnrA (Q-state). The A- and Q-state are mutually exclusive, and in agreement, ATP and glutamine bind to GS in a competitive manner. At elevated concentrations of glutamine, ATP is no longer able to bind GS and to bring it into the A-state. AMP efficiently competes with ATP and prevents formation of the A-state, thereby favoring GS-TnrA interaction. Surface plasmon resonance analysis shows that TnrA bound to a positively regulated promoter fragment binds GS in the Q-state, whereas it rapidly dissociates from a negatively regulated promoter fragment. These data imply that GS controls TnrA activity at positively controlled promoters by shielding the transcription factor in the DNA-bound state. According to size exclusion and multiangle light scattering analysis, the dodecameric GS can bind three TnrA dimers. The highly interdependent ligand binding properties of GS reveal this enzyme as a sophisticated sensor of the nitrogen and energy state of the cell to control the activity of DNA-bound TnrA.

  14. Production and characterization of a thermostable bioflocculant from Bacillus subtilis F9, isolated from wastewater sludge.

    Science.gov (United States)

    Giri, Sib Sankar; Harshiny, M; Sen, Shib Sankar; Sukumaran, V; Park, Se Chang

    2015-11-01

    A bacterium isolated from wastewater sludge, identified as Bacillus subtilis F9, was confirmed to produce bioflocculant with excellent flocculation activity. The effects of culture conditions such as initial pH, temperature, carbon source, nitrogen source, and inoculum size on bioflocculant production were studied here. The results indicated that 2.32g/L of purified bioflocculant could be extracted with the following optimized conditions: 20gL(-1) sucrose as the carbon source, 3.5gL(-1) peptone as the nitrogen source, an initial pH of 7.0, and a temperature of 40°C. The purified bioflocculant consisted of 10.1% protein and 88.3% sugar, including 38.4% neutral sugar, 2.86% uronic acid, and 2.1% amino sugar. The neutral sugar consisted of sucrose, glucose, lactose, galactose, and mannose at a molar ratio of 2.7:4.7:3.2:9.1:0.8. Elemental analysis of the purified bioflocculant revealed that the weight fractions of carbon, hydrogen, oxygen, nitrogen, and sulfur were 30.8%, 5.3%, 54.7%, 6.4%, and 2.9%, respectively. Furthermore, the purified bioflocculant was pH tolerant within the range of 2-8 and thermotolerant from 10°C to 100°C, with optimal activity at pH 7.0 and at a temperature of 40°C. The purified bioflocculant showed industrial potential for the treatment of drinking water. Considering these properties, especially its low molecular weight (5.3×10(4)Da), this bioflocculant with excellent solubility and favorable flocculation activity is particularly suited for flocculating small particles.

  15. Thermostability of in vitro evolved Bacillus subtilis lipase A: a network and dynamics perspective.

    Directory of Open Access Journals (Sweden)

    Ashutosh Srivastava

    Full Text Available Proteins in thermophilic organisms remain stable and function optimally at high temperatures. Owing to their important applicability in many industrial processes, such thermostable proteins have been studied extensively, and several structural factors attributed to their enhanced stability. How these factors render the emergent property of thermostability to proteins, even in situations where no significant changes occur in their three-dimensional structures in comparison to their mesophilic counter-parts, has remained an intriguing question. In this study we treat Lipase A from Bacillus subtilis and its six thermostable mutants in a unified manner and address the problem with a combined complex network-based analysis and molecular dynamic studies to find commonality in their properties. The Protein Contact Networks (PCN of the wild-type and six mutant Lipase A structures developed at a mesoscopic scale were analyzed at global network and local node (residue level using network parameters and community structure analysis. The comparative PCN analysis of all proteins pointed towards important role of specific residues in the enhanced thermostability. Network analysis results were corroborated with finer-scale molecular dynamics simulations at both room and high temperatures. Our results show that this combined approach at two scales can uncover small but important changes in the local conformations that add up to stabilize the protein structure in thermostable mutants, even when overall conformation differences among them are negligible. Our analysis not only supports the experimentally determined stabilizing factors, but also unveils the important role of contacts, distributed throughout the protein, that lead to thermostability. We propose that this combined mesoscopic-network and fine-grained molecular dynamics approach is a convenient and useful scheme not only to study allosteric changes leading to protein stability in the face of negligible

  16. Engineering of alanine dehydrogenase from Bacillus subtilis for novel cofactor specificity.

    Science.gov (United States)

    Lerchner, Alexandra; Jarasch, Alexander; Skerra, Arne

    2016-09-01

    The l-alanine dehydrogenase of Bacillus subtilis (BasAlaDH), which is strictly dependent on NADH as redox cofactor, efficiently catalyzes the reductive amination of pyruvate to l-alanine using ammonia as amino group donor. To enable application of BasAlaDH as regenerating enzyme in coupled reactions with NADPH-dependent alcohol dehydrogenases, we alterated its cofactor specificity from NADH to NADPH via protein engineering. By introducing two amino acid exchanges, D196A and L197R, high catalytic efficiency for NADPH was achieved, with kcat /KM  = 54.1 µM(-1)  Min(-1) (KM  = 32 ± 3 µM; kcat  = 1,730 ± 39 Min(-1) ), almost the same as the wild-type enzyme for NADH (kcat /KM  = 59.9 µM(-1)  Min(-1) ; KM  = 14 ± 2 µM; kcat  = 838 ± 21 Min(-1) ). Conversely, recognition of NADH was much diminished in the mutated enzyme (kcat /KM  = 3 µM(-1)  Min(-1) ). BasAlaDH(D196A/L197R) was applied in a coupled oxidation/transamination reaction of the chiral dicyclic dialcohol isosorbide to its diamines, catalyzed by Ralstonia sp. alcohol dehydrogenase and Paracoccus denitrificans ω-aminotransferase, thus allowing recycling of the two cosubstrates NADP(+) and l-Ala. An excellent cofactor regeneration with recycling factors of 33 for NADP(+) and 13 for l-Ala was observed with the engineered BasAlaDH in a small-scale biocatalysis experiment. This opens a biocatalytic route to novel building blocks for industrial high-performance polymers.

  17. Decontamination of Bacillus subtilis var. niger spores on selected surfaces by chlorine dioxide gas*

    Science.gov (United States)

    Li, Yan-ju; Zhu, Neng; Jia, Hai-quan; Wu, Jin-hui; Yi, Ying; Qi, Jian-cheng

    2012-01-01

    Objective: Chlorine dioxide (CD) gas has been used as a fumigant in the disinfection of biosafety laboratories. In this study, some experiments were conducted to assess the inactivation of spores inoculated on six materials [stainless steel (SS), painted steel (PS), polyvinyl chlorid (PVC), polyurethane (PU), glass (GS), and cotton cloth (CC)] by CD gas. The main aims of the study were to determine the sporicidal efficacy of CD gas and the effect of prehumidification before decontamination on sporicidal efficacy. Methods: Material coupons (1.2 cm diameter of SS, PS, and PU; 1.0 cm×1.0 cm for PVC, GS, and CC) were contaminated with 10 μl of Bacillus subtilis var. niger (ATCC 9372) spore suspension in mixed organic burden and then dried in a biosafety cabinet for 12 h. The spores were recovered by soaking the coupons in 5 ml of extraction liquid for 1 h and then vortexing the liquid for 1 min. Results: The log reductions in spore numbers on inoculated test materials exposed to CD gas [0.080% (volume ratio, v/v) for 3 h] were in the range of from 1.80 to 6.64. Statistically significant differences were found in decontamination efficacies on test material coupons of SS, PS, PU, and CC between with and without a 1-h prehumidification treatment. With the extraction method, there were no statistically significant differences in the recovery ratios between the porous and non-porous materials. Conclusions: The results reported from this study could provide information for developing decontamination technology based on CD gas for targeting surface microbial contamination. PMID:22467366

  18. Involvement of Coat Proteins in Bacillus subtilis Spore Germination in High-Salinity Environments.

    Science.gov (United States)

    Nagler, Katja; Setlow, Peter; Reineke, Kai; Driks, Adam; Moeller, Ralf

    2015-10-01

    The germination of spore-forming bacteria in high-salinity environments is of applied interest for food microbiology and soil ecology. It has previously been shown that high salt concentrations detrimentally affect Bacillus subtilis spore germination, rendering this process slower and less efficient. The mechanistic details of these salt effects, however, remained obscure. Since initiation of nutrient germination first requires germinant passage through the spores' protective integuments, the aim of this study was to elucidate the role of the proteinaceous spore coat in germination in high-salinity environments. Spores lacking major layers of the coat due to chemical decoating or mutation germinated much worse in the presence of NaCl than untreated wild-type spores at comparable salinities. However, the absence of the crust, the absence of some individual nonmorphogenetic proteins, and the absence of either CwlJ or SleB had no or little effect on germination in high-salinity environments. Although the germination of spores lacking GerP (which is assumed to facilitate germinant flow through the coat) was generally less efficient than the germination of wild-type spores, the presence of up to 2.4 M NaCl enhanced the germination of these mutant spores. Interestingly, nutrient-independent germination by high pressure was also inhibited by NaCl. Taken together, these results suggest that (i) the coat has a protective function during germination in high-salinity environments; (ii) germination inhibition by NaCl is probably not exerted at the level of cortex hydrolysis, germinant accessibility, or germinant-receptor binding; and (iii) the most likely germination processes to be inhibited by NaCl are ion, Ca(2+)-dipicolinic acid, and water fluxes.

  19. Decontamination of Bacillus subtilis var.niger spores on selected surfaces by chlorine dioxide gas

    Institute of Scientific and Technical Information of China (English)

    Yan-ju LI; Neng ZHU; Hai-quan JIA; Jin-hui WU; Ying YI; Jian-cheng QI

    2012-01-01

    Objective:Chlorine dioxide (CD) gas has been used as a fumigant in the disinfection of biosafety laboratories.In this study,some experiments were conducted to assess the inactivation of spores inoculated on six materials [stainless steel (SS),painted steel (PS),polyvinyl chlorid (PVC),polyurethane (PU),glass (GS),and cotton cloth (CC)] by CD gas.The main aims of the study were to determine the sporicidal efficacy of CD gas and the effect of prehumidification before decontamination on sporicidal efficacy.Methods:Material coupons (1.2 cm diameter of SS,PS,and PU; 1.0 cm×1.0 cm for PVC,GS,and CC) were contaminated with 10 μl of Bacillus subtilis var.niger(ATCC 9372) spore suspension in mixed organic burden and then dried in a biosafety cabinet for 12 h.The spores were recovered by soaking the coupons in 5 ml of extraction liquid for 1 h and then vortexing the liquid for 1 min.Results:The log reductions in spore numbers on inoculated test materials exposed to CD gas [0.080% (volume ratio,v/v) for 3 h]were in the range of from 1.80 to 6.64.Statistically significant differences were found in decontamination efficacies on test material coupons of SS,PS,PU,and CC between with and without a 1-h prehumidification treatment.With the extraction method,there were no statistically significant differences in the recovery ratios between the porous and non-porous materials.Conclusions:The results reported from this study could provide information for developing decontamination technology based on CD gas for targeting surface microbial contamination.

  20. Decoding the nucleoid organisation of Bacillus subtilis and Escherichia coli through gene expression data

    Directory of Open Access Journals (Sweden)

    Grossmann Alex

    2005-06-01

    Full Text Available Abstract Background Although the organisation of the bacterial chromosome is an area of active research, little is known yet on that subject. The difficulty lies in the fact that the system is dynamic and difficult to observe directly. The advent of massive hybridisation techniques opens the way to further studies of the chromosomal structure because the genes that are co-expressed, as identified by microarray experiments, probably share some spatial relationship. The use of several independent sets of gene expression data should make it possible to obtain an exhaustive view of the genes co-expression and thus a more accurate image of the structure of the chromosome. Results For both Bacillus subtilis and Escherichia coli the co-expression of genes varies as a function of the distance between the genes along the chromosome. The long-range correlations are surprising: the changes in the level of expression of any gene are correlated (positively or negatively to the changes in the expression level of other genes located at well-defined long-range distances. This property is true for all the genes, regardless of their localisation on the chromosome. We also found short-range correlations, which suggest that the location of these co-expressed genes corresponds to DNA turns on the nucleoid surface (14–16 genes. Conclusion The long-range correlations do not correspond to the domains so far identified in the nucleoid. We explain our results by a model of the nucleoid solenoid structure based on two types of spirals (short and long. The long spirals are uncoiled expressed DNA while the short ones correspond to coiled unexpressed DNA.

  1. Spectroscopic study on the interaction of Bacillus subtilis {alpha}-amylase with cetyltrimethylammonium bromide

    Energy Technology Data Exchange (ETDEWEB)

    Omidyan, R., E-mail: r.omidyan@sci.ui.ac.i [Department of Chemistry, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731 (Iran, Islamic Republic of); Kazemi, S.H. [Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731 (Iran, Islamic Republic of); Bordbar, A.K. [Department of Chemistry, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Zaynalpour, S. [Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731 (Iran, Islamic Republic of)

    2011-06-15

    The interaction between {alpha}-amylase from Bacillus subtilis and cetyltrimethylammonium bromide (CTAB) has been investigated at various temperature conditions using fluorescence and circular dichroism (CD) spectroscopic methods. Fluorescence data revealed that the fluorescence quenching of {alpha}-amylase by CTAB is the result of complex formation between CTAB and {alpha}-amylase. The thermodynamic analysis on the binding interaction data shows that the interactions are strongly exothermic ({Delta}H{sup o}=-17.92 kJ mol{sup -1}) accompanied with increase in entropy ({Delta}S{sup o} between 109 to 135 J mol{sup -1} K{sup -1}). Thus the binding of CTAB to {alpha}-amylase is both enthalpic and entropic driven, which represent the predominate role of both electrostatic and hydrophobic interactions in complex formation process. The values of 2.17x10{sup -3} M{sup -1} and 1.30 have been obtained from associative binding constant (K{sub a}) and stoichiometry of binding number (n), from analysis of fluorescence data, respectively. Circular dichroism spectra showed the substantial conformational changes in secondary structure of {alpha}-amylase due to binding of CTAB, which represents the complete destruction of both secondary and tertiary structure of {alpha}-amylase by CTAB. - Research highlights: {yields} The Fluorescence quenching effect of {alpha}-amylase by CTAB is a consequence of formation {alpha}-amylase-CTAB complex. {yields} The {alpha}-helical analyzing from the CD spectra in the various concentration of CTAB shows strongly deformation of {alpha}-amylase. {yields} Thermodynamic analysis of quenching verify that the interactions are both enthalpy and entropic driven.

  2. Fibrinolytic enzyme from newly isolated marine bacterium Bacillus subtilis ICTF-1: media optimization, purification and characterization.

    Science.gov (United States)

    Mahajan, Prafulla M; Nayak, Shubhada; Lele, Smita S

    2012-03-01

    Fibrinolytic enzymes are important in treatment of cardiovascular diseases. The present work reports isolation, screening and identification of marine cultures for production of fibrinolytic enzymes. A potent fibrinolytic enzyme-producing bacterium was isolated from marine niches and identified as Bacillus subtilis ICTF-1 on the basis of the 16S rRNA gene sequencing and biochemical properties. Further, media optimization using L(18)-orthogonal array method resulted in enhanced production of fibrinolytic enzyme (8814 U/mL) which was 2.6 fold higher than in unoptimized medium (3420 U/mL). In vitro assays revealed that the enzyme could catalyze blood clot lysis effectively, indicating that this enzyme could be a useful thrombolytic agent. A fibrinolytic enzyme was purified from the culture supernatant to homogeneity by three step procedures with a 34.42-fold increase in specific activity and 7.5% recovery. This purified fibrinolytic enzyme had molecular mass of 28 kDa, optimal temperature and pH at 50 °C and 9, respectively. It was stable at pH 5.0-11.0 and temperature of 25-37 °C. The enzyme activity was activated by Ca(2+) and obviously inhibited by Zn(2+), Fe(3)(+), Hg(2+) and PMSF. The purified fibrinolytic enzyme showed high stability towards various surfactants and was relatively stable towards oxidizing agent. Considering these properties purified fibrinolytic enzyme also finds potential application in laundry detergents in addition to thrombolytic agent. The gene encoding fibrinolytic enzyme was isolated and its DNA sequence was determined. Compared the full DNA sequence with those in NCBI, it was considered to be a subtilisin like serine-protease.

  3. Role of dipicolinic acid in the germination, stability, and viability of spores of Bacillus subtilis.

    Science.gov (United States)

    Magge, Anil; Granger, Amanda C; Wahome, Paul G; Setlow, Barbara; Vepachedu, Venkata R; Loshon, Charles A; Peng, Lixin; Chen, De; Li, Yong-Qing; Setlow, Peter

    2008-07-01

    Spores of Bacillus subtilis spoVF strains that cannot synthesize dipicolinic acid (DPA) but take it up during sporulation were prepared in medium with various DPA concentrations, and the germination and viability of these spores as well as the DPA content in individual spores were measured. Levels of some other small molecules in DPA-less spores were also measured. These studies have allowed the following conclusions. (i) Spores with no DPA or low DPA levels that lack either the cortex-lytic enzyme (CLE) SleB or the receptors that respond to nutrient germinants could be isolated but were unstable and spontaneously initiated early steps in spore germination. (ii) Spores that lacked SleB and nutrient germinant receptors and also had low DPA levels were more stable. (iii) Spontaneous germination of spores with no DPA or low DPA levels was at least in part via activation of SleB. (iv) The other redundant CLE, CwlJ, was activated only by the release of high levels of DPA from spores. (v) Low levels of DPA were sufficient for the viability of spores that lacked most alpha/beta-type small, acid-soluble spore proteins. (vi) DPA levels accumulated in spores prepared in low-DPA-containing media varied greatly between individual spores, in contrast to the presence of more homogeneous DPA levels in individual spores made in media with high DPA concentrations. (vii) At least the great majority of spores of several spoVF strains that contained no DPA also lacked other major spore small molecules and had gone through some of the early reactions in spore germination.

  4. Mechanistic and stereochemical studies of glycine oxidase from Bacillus subtilis strain R5.

    Science.gov (United States)

    Jamil, Farrukh; Gardner, Qurra-Tul-Ann Afza; Bashir, Qamar; Rashid, Naeem; Akhtar, Muhammad

    2010-08-31

    Glycine oxidase gene from a strain of Bacillus subtilis was cloned and expressed in Escherichia coli. The purified enzyme was found, by mass spectrometry, to have a protein M(r) of 40763 (value of 40761.6 predicted from DNA sequence) and a FAD prosthetic group M(r) of 785.1 (theoretical value of 785.5). Glycine oxidase optimally catalyzes the conversion of glycine and oxygen into glyoxylate, hydrogen peroxide, and ammonia. Using samples of [2-RS-(3)H(2),2-(14)C]-, [2-R-(3)H,2-(14)C]-, and [2-S-(3)H,2-(14)C]glycine, we found that in the overall process H(Si) is removed. Incubation of the enzyme with [2-RS-(3)H(2),2-(14)C]glycine under anaerobic conditions, when only the reducing half of the reaction can occur, led to the recovery of 98.5% of the original glycine, which had the same (3)H:(14)C ratio as the starting substrate. The primary isotope effect was studied using [2-(2)H(2)]glycine, and we found that the specificity constants, k(cat)/K(M), for the protio and deuterio substrates were 1.46 x 10(3) and 1.05 x 10(2) M(-1) s(-1), respectively. Two alternative mechanisms for FAD-containing oxidases that involve either the intermediacy of a FADH(2)-imino acid complex or an amino acid covalently linked to FAD, formed via a carbanion, have been considered. The current knowledge of the mechanisms is reviewed, and we argue that a mechanism involving the FADH(2)-imino acid complex can be dissected to satisfactorily explain some of puzzling observations for which the carbanion mechanism was originally conceived. Furthermore, our results, together with observations in the literature, suggest that the interaction of glycine with the enzyme occurs within a tight ternary complex, which is protected from the protons of the medium.

  5. Characterization of relationships between transcriptional units and operon structures in Bacillus subtilis and Escherichia coli

    Directory of Open Access Journals (Sweden)

    Kanehisa Minoru

    2007-02-01

    Full Text Available Abstract Background Operon structures play an important role in transcriptional regulation in prokaryotes. However, there have been fewer studies on complicated operon structures in which the transcriptional units vary with changing environmental conditions. Information about such complicated operons is helpful for predicting and analyzing operon structures, as well as understanding gene functions and transcriptional regulation. Results We systematically analyzed the experimentally verified transcriptional units (TUs in Bacillus subtilis and Escherichia coli obtained from ODB and RegulonDB. To understand the relationships between TUs and operons, we defined a new classification system for adjacent gene pairs, divided into three groups according to the level of gene co-regulation: operon pairs (OP belong to the same TU, sub-operon pairs (SOP that are at the transcriptional boundaries within an operon, and non-operon pairs (NOP belonging to different operons. Consequently, we found that the levels of gene co-regulation was correlated to intergenic distances and gene expression levels. Additional analysis revealed that they were also correlated to the levels of conservation across about 200 prokaryotic genomes. Most interestingly, we found that functional associations in SOPs were more observed in the environmental and genetic information processes. Conclusion Complicated operon strucutures were correlated with genome organization and gene expression profiles. Such intricately regulated operons allow functional differences depending on environmental conditions. These regulatory mechanisms are helpful in accommodating the variety of changes that happen around the cell. In addition, such differences may play an important role in the evolution of gene order across genomes.

  6. Application of Rigidity Theory to the Thermostabilization of Lipase A from Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Prakash Chandra Rathi

    2016-03-01

    Full Text Available Protein thermostability is a crucial factor for biotechnological enzyme applications. Protein engineering studies aimed at improving thermostability have successfully applied both directed evolution and rational design. However, for rational approaches, the major challenge remains the prediction of mutation sites and optimal amino acid substitutions. Recently, we showed that such mutation sites can be identified as structural weak spots by rigidity theory-based thermal unfolding simulations of proteins. Here, we describe and validate a unique, ensemble-based, yet highly efficient strategy to predict optimal amino acid substitutions at structural weak spots for improving a protein's thermostability. For this, we exploit the fact that in the majority of cases an increased structural rigidity of the folded state has been found as the cause for thermostability. When applied prospectively to lipase A from Bacillus subtilis, we achieved both a high success rate (25% over all experimentally tested mutations, which raises to 60% if small-to-large residue mutations and mutations in the active site are excluded in predicting significantly thermostabilized lipase variants and a remarkably large increase in those variants' thermostability (up to 6.6°C based on single amino acid mutations. When considering negative controls in addition and evaluating the performance of our approach as a binary classifier, the accuracy is 63% and increases to 83% if small-to-large residue mutations and mutations in the active site are excluded. The gain in precision (predictive value for increased thermostability over random classification is 1.6-fold (2.4-fold. Furthermore, an increase in thermostability predicted by our approach significantly points to increased experimental thermostability (p < 0.05. These results suggest that our strategy is a valuable complement to existing methods for rational protein design aimed at improving thermostability.

  7. Lipopeptides from Bacillus subtilis AC7 inhibit adhesion and biofilm formation of Candida albicans on silicone.

    Science.gov (United States)

    Ceresa, Chiara; Rinaldi, Maurizio; Chiono, Valeria; Carmagnola, Irene; Allegrone, Gianna; Fracchia, Letizia

    2016-10-01

    Candida albicans is the major fungus that colonises medical implants, causing device-associated infections with high mortality. Antagonistic bacterial products with interesting biological properties, such as biosurfactants, have recently been considered for biofilm prevention. This study investigated the activity of lipopeptide biosurfactant produced by Bacillus subtilis AC7 (AC7 BS) against adhesion and biofilm formation of C. albicans on medical-grade silicone elastomeric disks (SEDs). Chemical analysis, stability, surface activities of AC7 BS crude extract and physicochemical characterisation of the coated silicone disk surfaces were also carried out. AC7 BS showed a good reduction of water surface tension, low critical micelle concentration, good emulsification activity, thermal resistance and pH stability. Co-incubation with 2 mg ml(-1) AC7 BS significantly reduced adhesion and biofilm formation of three C. albicans strains on SEDs in a range of 67-69 % and of 56-57 %, respectively. On pre-coated SEDs, fungal adhesion and biofilm formation were reduced by 57-62 % and 46-47 %, respectively. Additionally, AC7 BS did not inhibit viability of C. albicans strains in both planktonic and sessile form. Chemical analysis of the crude extract revealed the presence of two families of lipopeptides, principally surfactin and a lower percentage of fengycin. The evaluation of surface wettability indicated that AC7 BS coating of SEDs surface was successful although uneven. AC7 BS significantly prohibits the initial deposition of C. albicans and slows biofilm growth, suggesting a potential role of biosurfactant coatings for preventing fungal infection associated with silicone medical devices.

  8. Fluctuations in spo0A transcription control rare developmental transitions in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Nicolas Mirouze

    2011-04-01

    Full Text Available Phosphorylated Spo0A is a master regulator of stationary phase development in the model bacterium Bacillus subtilis, controlling the formation of spores, biofilms, and cells competent for transformation. We have monitored the rate of transcription of the spo0A gene during growth in sporulation medium using promoter fusions to firefly luciferase. This rate increases sharply during transient diauxie-like pauses in growth rate and then declines as growth resumes. In contrast, the rate of transcription of an rRNA gene decreases and increases in parallel with the growth rate, as expected for stable RNA synthesis. The growth pause-dependent bursts of spo0A transcription, which reflect the activity of the spo0A vegetative promoter, are largely independent of all known regulators of spo0A transcription. Evidence is offered in support of a "passive regulation" model in which RNA polymerase stops transcribing rRNA genes during growth pauses, thus becoming available for the transcription of spo0A. We show that the bursts are followed by the production of phosphorylated Spo0A, and we propose that they represent initial responses to stress that bring the average cell closer to the thresholds for transition to bimodally expressed developmental responses. Measurement of the numbers of cells expressing a competence marker before and after the bursts supports this hypothesis. In the absence of ppGpp, the increase in spo0A transcription that accompanies the entrance to stationary phase is delayed and sporulation is markedly diminished. In spite of this, our data contradicts the hypothesis that sporulation is initiated when a ppGpp-induced depression of the GTP pool relieves repression by CodY. We suggest that, while the programmed induction of sporulation that occurs in stationary phase is apparently provoked by increased flux through the phosphorelay, bet-hedging stochastic transitions to at least competence are induced by bursts in transcription.

  9. REGULACIÓN DEL INICIO DE LA ESPORULACIÓN E HISTIDINA CINASAS: UN ANÁLISIS COMPARATIVO ENTRE Bacillus subtilis Y EL GRUPO Bacillus cereus

    OpenAIRE

    Laura M. Castañeda - Sandoval; Mayra de la Torre; Sergio Casas -Flores; María A. Islas -Osuna

    2009-01-01

    La esporulación, que es una respuesta de quorum sensing, es un proceso de diferenciación celular mediado por moléculas de señalización, señales fisiológicas y ambientales. Se sabe que Bacillus subtilis detecta las señales metabólicas y ambientales y éstas son integradas a un sistema de transferencia secuencial de fosfatos. Las señales son detectadas por histidina cinasas que se autofosforilan y fosforilan, a su vez, a proteínas que actúan como reguladores de respuesta y activan la expresión ...

  10. Removal of ammonium-N from ammonium-rich sewage using an immobilized Bacillus subtilis AYC bioreactor system

    Institute of Scientific and Technical Information of China (English)

    Jingjing Xiao; Changxiong Zhu; Dongyuan Sun; Ping Guo; Yunlong Tian

    2011-01-01

    A self-design bioreactor system employing a fixed bed operation process with immobilized Bacillus subtilis AYC beads for NH4+-N removal from slightly polluted water was proposed.Polyvinyl alcohol and Na-alginate were used as a gel matrix to entrap Bacillus subtilis AYC to form the immobilized beads.The NH4+-N removal process was studied in a intermittent operation mode to examine the start-up and steady state behaviors of the immobilized AYC in the reactor.The results indicated that the reactor was in the start-up state during the first week.NH4+-N began to be steadily removal since the second week,and the nitrogen removal rate was between 84.61% and 96.19% when the hydraulic retention time (HRT) was 30 min.To apply Bacillus subtilis AYC to develop a practical nitrogen removal system and further understand its nitrogen removal ability,the bioreactor was continuously operated under different experimental perameters.The results showed that under the optimum conditions of an HRT of 20 min and DO of 3.77-5.80 mg/L,the NH4+-N removal rate reached 99.55%.The NH4+-N removal rate increased as the C/N ratio increased.However,a high C/N may cause a high residual carbon level in the effluent,therefore,the most suitable C/N ratio was 10.In addition,the results showed that the bioreactor system could remove many types of nitrogen such as NH4+-N,NO3--N and organic-N,and had a good performance for inorganic nitrogen removal from sewage.

  11. Cerulenin inhibits unsaturated fatty acids synthesis in Bacillus subtilis by modifying the input signal of DesK thermosensor

    OpenAIRE

    Porrini, Lucía; Cybulski, Larisa Estefania; Altabe, Silvia Graciela; Mansilla, Maria Cecilia; de Mendoza, Diego

    2016-01-01

    Bacillus subtilis responds to a sudden decrease in temperature by transiently inducing the expression of the des gene encoding for a lipid desaturase, D5-Des, which introduces a double bond into the acyl chain of preexisting membrane phospholipids. This D5-Des-mediated membrane remodeling is controlled by the cold-sensor DesK. After cooling, DesK activates the response regulator DesR, which induces transcription of des. We show that inhibition of fatty acid synthesis by the addition of cerule...

  12. Genomic organization of the related Bacillus subtilis bacteriophages SPP1, 41c, rho 15, and SF6.

    Science.gov (United States)

    Santos, M A; Almeida, J; de Lencastre, H; Morelli, G; Kamke, M; Trautner, T A

    1986-01-01

    The genomes of the related virulent Bacillus subtilis bacteriophages SPP1, 41c, rho 15, and SF6 are partially circularly permuted and terminally redundant. Heteroduplex molecules were produced with various combinations of these DNAs. Their electron-microscopic analyses showed a consistent pattern of homologous and heterologous regions of DNA. Restriction maps of the phage DNAs were established. A comparison of these maps showed a pattern of conserved and variable DNAs compatible with the electron-microscopic analyses. In all phage genomes, regions specifying early and late functions were conserved. In each phage genome, such regions were separated by short segments of heterologous DNA characteristic for each phage. PMID:3022002

  13. Genomic organization of the related Bacillus subtilis bacteriophages SPP1, 41c, rho 15, and SF6.

    Science.gov (United States)

    Santos, M A; Almeida, J; de Lencastre, H; Morelli, G; Kamke, M; Trautner, T A

    1986-11-01

    The genomes of the related virulent Bacillus subtilis bacteriophages SPP1, 41c, rho 15, and SF6 are partially circularly permuted and terminally redundant. Heteroduplex molecules were produced with various combinations of these DNAs. Their electron-microscopic analyses showed a consistent pattern of homologous and heterologous regions of DNA. Restriction maps of the phage DNAs were established. A comparison of these maps showed a pattern of conserved and variable DNAs compatible with the electron-microscopic analyses. In all phage genomes, regions specifying early and late functions were conserved. In each phage genome, such regions were separated by short segments of heterologous DNA characteristic for each phage.

  14. SirA enforces diploidy by inhibiting the replication initiator DnaA during spore formation in Bacillus subtilis

    OpenAIRE

    Jennifer K. Wagner; Marquis, Kathleen A.; Rudner, David Z.

    2009-01-01

    How cells maintain their ploidy is relevant to cellular development and disease. Here, we investigate the mechanism by which the bacterium Bacillus subtilis enforces diploidy as it differentiates into a dormant spore. We demonstrate that a sporulation-induced protein SirA (originally annotated YneE) blocks new rounds of replication by targeting the highly conserved replication initiation factor DnaA. We show that SirA interacts with DnaA and displaces it from the replication origin. As a resu...

  15. Effect of dietary Bacillus subtilis on proportion of Bacteroidetes and Firmicutes in swine intestine and lipid metabolism.

    Science.gov (United States)

    Cui, C; Shen, C J; Jia, G; Wang, K N

    2013-05-23

    The ratio of Bacteroidetes and Firmicutes bacterial groups in the gut can affect the ability to absorb nutrients. We investigated the effect of probiotic Bacillus subtilis supplementation of diets on growth performance, fat deposition, blood lipids, copy numbers, and percentage of Bacteroidetes and Firmicutes in cecal contents, as well as mRNA expression of key lipid metabolism enzymes in the liver and adipose tissue of finishing pigs. Twenty-four Duroc x Meishan crossbreed 8-week-old pigs (10.28 ± 0.59 kg) were randomly allocated to two dietary treatments: maize-soybean meal-based diets with B. subtilis (probiotic group) and without B. subtilis (control group). The probiotic diet led to a significant increase in the average daily gain and feed conversion ratio of pigs weighing 10 to 110 kg. The mean backfat depth was increased while leaf lard weights were decreased by probiotic supplementation. Ingestion of probiotics decreased the serum triglyceride and glucose concentrations, but did not change the levels of total cholesterol and free fatty acids in the serum. The mRNA expressions of fatty acid synthase (FAS) and acetyl-CoA carboxylase α (ACCα) in the liver were down-regulated by the dietary probiotic supplement. Conversely, the gene expressions of FAS and ACCα in the adipose tissue increased. The probiotic diet decreased the copy numbers and percentage of Bacteroidetes, while it increased the percentage of Firmicutes in the cecal contents. We conclude that the addition of B. subtilis improves growth performance and up-regulates lipid metabolism in subcutaneous fat of finishing pigs. We conclude that B. subtilis affects lipid metabolism through regulation of the proportion of Bacteroidetes and Firmicutes in the gut.

  16. The spatial architecture of Bacillus subtilis biofilms deciphered using a surface-associated model and in situ imaging.

    Directory of Open Access Journals (Sweden)

    Arnaud Bridier

    Full Text Available The formation of multicellular communities known as biofilms is the part of bacterial life cycle in which bacteria display cooperative behaviour and differentiated phenotypes leading to specific functions. Bacillus subtilis is a Gram-positive bacterium that has served for a decade as a model to study the molecular pathways that control biofilm formation. Most of the data on B. subtilis biofilms have come from studies on the formation of pellicles at the air-liquid interface, or on the complex macrocolonies that develop on semi-solid nutritive agar. Here, using confocal laser scanning microcopy, we show that B. subtilis strains of different origins are capable of forming biofilms on immersed surfaces with dramatically protruding "beanstalk-like" structures with certain strains. Indeed, these structures can reach a height of more than 300 µm with one undomesticated strain from a medical environment. Using 14 GFP-labeled mutants previously described as affecting pellicle or complex colony formation, we have identified four genes whose inactivation significantly impeded immersed biofilm development, and one mutation triggering hyperbiofilm formation. We also identified mutations causing the three-dimensional architecture of the biofilm to be altered. Taken together, our results reveal that B. subtilis is able to form specific biofilm features on immersed surfaces, and that the development of these multicellular surface-associated communities involves regulation pathways that are common to those governing the formation of pellicle and/or complex colonies, and also some specific mechanisms. Finally, we propose the submerged surface-associated biofilm as another relevant model for the study of B. subtilis multicellular communities.

  17. The Comparative Investigation of Gene Mutation Induction in {\\it Bacillus subtilis} and {\\it Escherichia coli} Cells after Irradiation by Different LET Radiation

    CERN Document Server

    Boreyko, A V

    2005-01-01

    The data of mutagenic action of ionizing radiation with different physical characteristics on bacterial cells with various genotypes are presented. It was shown that regularities of inducible mutagenesis in {\\it Bacillus subtilis} and {\\it E.coli} are consimilar. The dose-response dependence for both types of cells is described by the linear-quadratic function. The RBE on LET relationship has a local maximum at 20 keV/$\\mu $m. The crucial role in inducible mutagenesis in {\\it E.coli} and {\\it Bacillus subtilis} cells is played by the error-prone $SOS$-repair.

  18. NAD(PH-hydrate dehydratase- a metabolic repair enzyme and its role in Bacillus subtilis stress adaptation.

    Directory of Open Access Journals (Sweden)

    Miroslava Petrovova

    Full Text Available BACKGROUND: One of the strategies for survival stress conditions in bacteria is a regulatory adaptive system called general stress response (GSR, which is dependent on the SigB transcription factor in Bacillus sp. The GSR is one of the largest regulon in Bacillus sp., including about 100 genes; however, most of the genes that show changes in expression during various stresses have not yet been characterized or assigned a biochemical function for the encoded proteins. Previously, we characterized the Bacillus subtilis168 osmosensitive mutant, defective in the yxkO gene (encoding a putative ribokinase, which was recently assigned in vitro as an ADP/ATP-dependent NAD(PH-hydrate dehydratase and was demonstrated to belong to the SigB operon. METHODS AND RESULTS: We show the impact of YxkO on the activity of SigB-dependent Pctc promoter and adaptation to osmotic and ethanol stress and potassium limitation respectively. Using a 2DE approach, we compare the proteomes of WT and mutant strains grown under conditions of osmotic and ethanol stress. Both stresses led to changes in the protein level of enzymes that are involved in motility (flagellin, citrate cycle (isocitrate dehydrogenase, malate dehydrogenase, glycolysis (phosphoglycerate kinase, and decomposition of Amadori products (fructosamine-6-phosphate deglycase. Glutamine synthetase revealed a different pattern after osmotic stress. The patterns of enzymes for branched amino acid metabolism and cell wall synthesis (L-alanine dehydrogenase, aspartate-semialdehyde dehydrogenase, ketol-acid reductoisomerase were altered after ethanol stress. CONCLUSION: We performed the first characterization of a Bacillus subtilis168 knock-out mutant in the yxkO gene that encodes a metabolite repair enzyme. We show that such enzymes could play a significant role in the survival of stressed cells.

  19. Effects of Mentha longifolia L. essential oil and nisin alone and in combination on Bacillus cereus and Bacillus subtilis in a food model and bacterial ultrastructural changes.

    Science.gov (United States)

    Pajohi, Mohamad Reza; Tajik, Hossein; Farshid, Amir Abbas; Basti, Afshin Akhondzadeh; Hadian, Mojtaba

    2011-02-01

    In the face of emerging new pathogens and ever-growing health-conscious customers, food preservation technology remains on the top agenda of food industry. This study was aimed at determining the effects of the essential oil of Mentha longifolia L., alone and in combination with nisin, on Bacillus cereus and Bacillus subtilis at 8°C and 25°C in a food model (commercial barley soup) during 15 days. The essential oil alone at 8°C inhibited bacterial growth significantly compared with the control (p < 0.05). However, at 25°C, none of the concentrations of the essential oil alone showed inhibitory effect on bacterial growth. At 8°C, the combination effect of the essential oil and nisin on bacteria was noted at 0.25 μg mL(-1) for nisin and 0.05 μL mL(-1) for the essential oil (p < 0.05). The combination of nisin and the essential oil demonstrated significant inhibitory effects on the vegetative forms of bacteria at 25°C, although it was comparable to that of nisin alone at the same concentrations. Electron microscopy studies revealed a great deal of damage to B. cereus treated with a combination of nisin and the essential oil. However, the combination of nisin with the essential oil led to a complete destruction of cell wall and cytoplasm of vegetative cells of B. subtilis.

  20. The Biocide Chlorine Dioxide Stimulates Biofilm Formation in Bacillus subtilis by Activation of the Histidine Kinase KinC▿ †

    Science.gov (United States)

    Shemesh, Moshe; Kolter, Roberto; Losick, Richard

    2010-01-01

    Bacillus subtilis forms biofilms in response to signals that remain poorly defined. We report that biofilm formation is stimulated by sublethal doses of chlorine dioxide (ClO2), an extremely effective and fast-acting biocide. ClO2 accelerated biofilm formation in B. subtilis as well as in other bacteria, suggesting that biofilm formation is a widely conserved response to sublethal doses of the agent. Biofilm formation depends on the synthesis of an extracellular matrix that holds the constituent cells together. We show that the transcription of the major operons responsible for the matrix production in B. subtilis, epsA-epsO and yqxM-sipW-tasA, was enhanced by ClO2, in a manner that depended on the membrane-bound kinase KinC. Activation of KinC appeared to be due to the ability of ClO2 to collapse the membrane potential. Importantly, strains unable to make a matrix were hypersensitive to ClO2, indicating that biofilm formation is a defensive response that helps protect cells from the toxic effects of the biocide. PMID:20971918