WorldWideScience

Sample records for bacillaceae

  1. Genetic Tools and Techniques for Recombinant Expression in Thermophilic Bacillaceae

    Directory of Open Access Journals (Sweden)

    Eivind B. Drejer

    2018-05-01

    Full Text Available Although Escherichia coli and Bacillus subtilis are the most prominent bacterial hosts for recombinant protein production by far, additional species are being explored as alternatives for production of difficult-to-express proteins. In particular, for thermostable proteins, there is a need for hosts able to properly synthesize, fold, and excrete these in high yields, and thermophilic Bacillaceae represent one potentially interesting group of microorganisms for such purposes. A number of thermophilic Bacillaceae including B. methanolicus, B. coagulans, B. smithii, B. licheniformis, Geobacillus thermoglucosidasius, G. kaustophilus, and G. stearothermophilus are investigated concerning physiology, genomics, genetic tools, and technologies, altogether paving the way for their utilization as hosts for recombinant production of thermostable and other difficult-to-express proteins. Moreover, recent successful deployments of CRISPR/Cas9 in several of these species have accelerated the progress in their metabolic engineering, which should increase their attractiveness for future industrial-scale production of proteins. This review describes the biology of thermophilic Bacillaceae and in particular focuses on genetic tools and methods enabling use of these organisms as hosts for recombinant protein production.

  2. Isolation of four hydrocarbon effluent-degrading Bacillaceae species ...

    African Journals Online (AJOL)

    percentage decreases in total hydrocarbon concentration within 18 days: 98% with Bacillus licheniformis STK08, 87% with Geobacillus stearothermophilus STM04, 80% with Lysinibacillus sphaericus STZ75 and 72% with Bacillus firmus STS84.

  3. 21 CFR 173.150 - Milk-clotting enzymes, microbial.

    Science.gov (United States)

    2010-04-01

    ...; family, Bacillaceae; genus, Bacillus; species, cereus (Frankland and Frankland). (3) Mucor pusillus Lindt...; genus, Mucor; species, pusillus; variety, Lindt. (4) Mucor miehei Cooney et Emerson classified as follows: Class, Phycomycetes; subclass, Zygomycetes; order, Mucorales; family, Mucoraceae; genus, Mucor...

  4. A mixed-species microarray for identification of food spoilage bacilli

    NARCIS (Netherlands)

    Caspers, M.P.M.; Schuren, F.H.J.; Zuijlen, van A.C.M.; Brul, S.; Montijn, R.C.; Abee, T.; Kort, R.

    2011-01-01

    Failure of food preservation is frequently caused by thermostable spores of members of the Bacillaceae family, which show a wide spectrum of resistance to cleaning and preservation treatments. We constructed and validated a mixed-species genotyping array for 6 Bacillus species, including Bacillus

  5. A mixed-species microarray for identification of food spoilage bacilli

    NARCIS (Netherlands)

    Caspers, Martien P M; Schuren, Frank H J; van Zuijlen, Andre C M; Brul, Stanley; Montijn, Roy C; Abee, Tjakko; Kort, Remco

    Failure of food preservation is frequently caused by thermostable spores of members of the Bacillaceae family, which show a wide spectrum of resistance to cleaning and preservation treatments. We constructed and validated a mixed-species genotyping array for 6 Bacillus species, including Bacillus

  6. The disease complex of the gypsy moth. II. Aerobic bacterial pathogens

    Science.gov (United States)

    J.D. Podgwaite; R.W. Campbell

    1972-01-01

    Eighty-six pathogenic aerobic bacterial isolates from diseased gypsy moth larvae collected in both sparse and dense populations were characterized and identified as members of the families Bacillaceae, Enterobacteriaceae, Lactobacillaceae, Pseudomonadaceae, and Achromobacteraceae. The commonest pathogens were Streptococcus faecalis, Bacillus cereus, Bacillus...

  7. Aerobic and facultative microorganisms isolated from corroded metallic structures in a hydroeletric power unit in the amazon region of Brazil

    OpenAIRE

    Correia, Amabel Fernandes; Segoviae, Jorge Federico Orellana; Bezerra, Roberto Messias; Gonçalves, Magda Celeste Alvares; Ornelas, Sócrates Souza; Silveira, Dâmaris; Carvalho, José Carlos Tavares; Diniz, Sérgio Paulo Severo de Souza; Kanzaki, Luis Isamu Barros

    2010-01-01

    Aerobic and facultative bacteria belonging to the Enterobacteriaceae, Pseudomonadaceae, Bacillaceae, Corynebacteriaceae and Streptococcaceae families have been isolated from corroded metallic structures of a hydroelectric power unit in the Amazon region of Brazil. In addition to anamorphic dematiaceous and moniliaceous fungi, members of the archeobacteria kingdom were also detected in the same samples. Scanning electron micrographs of metal bars cultivated with consortia of the isolated micro...

  8. The microorganisms as a renewable source of ecological clean fuel

    International Nuclear Information System (INIS)

    Shalygo, N.V.; Mel'nikov, S.S.; Manankina, E.E.; Budakova, E.A.; Kolyago, V.M.

    2006-01-01

    Five families of microorganisms (Bacillaceae, Rhodospirillaceae, Cyanophyceae, Chlorophyceae and Euglenophyceae) as hydrogen producers were tested and the conditions that are necessary for hydrogen photoproduction were investigated. It was shown, that the most effective producers of hydrogen were Rhodobacter spheroides, Clostridium sp.; Euglena gracilis var. bacillaris and Chlamydomonas reinhardtii. Addition of glucose, iron and vanadium salts resulted in the increase of hydrogen production. Polycultures consisted of two or three microorganisms were more effective hydrogen producers compared to separate monocultures. (authors)

  9. Biological activity of Bacillus thuringiensis (Bacillales: Bacillaceae) chitinase against Caenorhabditis elegans (Rhabditida: Rhabditidae)

    Czech Academy of Sciences Publication Activity Database

    Zhang, L.; Yu, J.; Xie, Y.; Lin, H.; Huang, Z.; Xu, L.; Gelbič, Ivan; Guan, X.

    2014-01-01

    Roč. 107, č. 2 (2014), s. 551-558 ISSN 0022-0493 Institutional support: RVO:60077344 Keywords : Bacillus thuringiensis * Caenorhabditis elegans * chitinase Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 1.506, year: 2014 http://www.bioone.org/doi/pdf/10.1603/EC13201

  10. Comparative genome analysis of central nitrogen metabolism and its control by GlnR in the class Bacilli

    Directory of Open Access Journals (Sweden)

    Kormelink Tom

    2012-05-01

    Full Text Available Abstract Background The assimilation of nitrogen in bacteria is achieved through only a few metabolic conversions between alpha-ketoglutarate, glutamate and glutamine. The enzymes that catalyze these conversions are glutamine synthetase, glutaminase, glutamate dehydrogenase and glutamine alpha-ketoglutarate aminotransferase. In low-GC Gram-positive bacteria the transcriptional control over the levels of the related enzymes is mediated by four regulators: GlnR, TnrA, GltC and CodY. We have analyzed the genomes of all species belonging to the taxonomic families Bacillaceae, Listeriaceae, Staphylococcaceae, Lactobacillaceae, Leuconostocaceae and Streptococcaceae to determine the diversity in central nitrogen metabolism and reconstructed the regulation by GlnR. Results Although we observed a substantial difference in the extent of central nitrogen metabolism in the various species, the basic GlnR regulon was remarkably constant and appeared not affected by the presence or absence of the other three main regulators. We found a conserved regulatory association of GlnR with glutamine synthetase (glnRA operon, and the transport of ammonium (amtB-glnK and glutamine/glutamate (i.e. via glnQHMP, glnPHQ, gltT, alsT. In addition less-conserved associations were found with, for instance, glutamate dehydrogenase in Streptococcaceae, purine catabolism and the reduction of nitrite in Bacillaceae, and aspartate/asparagine deamination in Lactobacillaceae. Conclusions Our analyses imply GlnR-mediated regulation in constraining the import of ammonia/amino-containing compounds and the production of intracellular ammonia under conditions of high nitrogen availability. Such a role fits with the intrinsic need for tight control of ammonia levels to limit futile cycling.

  11. Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Li; Tang, Jia; Wang, Yueqiang; Hu, Min; Zhou, Shungui, E-mail: sgzhou@soil.gd.cn

    2015-08-15

    Highlights: • Paddy soil contaminated with benzoate incubated with hematite and magnetite. • Iron oxides addition enhanced methanogenic benzoate degradation by 25–53%. • The facilitated syntrophy might involve direct interspecies electron transfer. • Bacillaceae, Peptococcaceae, and Methanobacterium are potentially involved. - Abstract: Recent studies have suggested that conductive iron oxide minerals can facilitate syntrophic metabolism of the methanogenic degradation of organic matter, such as ethanol, propionate and butyrate, in natural and engineered microbial ecosystems. This enhanced syntrophy involves direct interspecies electron transfer (DIET) powered by microorganisms exchanging metabolic electrons through electrically conductive minerals. Here, we evaluated the possibility that conductive iron oxides (hematite and magnetite) can stimulate the methanogenic degradation of benzoate, which is a common intermediate in the anaerobic metabolism of aromatic compounds. The results showed that 89–94% of the electrons released from benzoate oxidation were recovered in CH{sub 4} production, and acetate was identified as the only carbon-bearing intermediate during benzoate degradation. Compared with the iron-free controls, the rates of methanogenic benzoate degradation were enhanced by 25% and 53% in the presence of hematite and magnetite, respectively. This stimulatory effect probably resulted from DIET-mediated methanogenesis in which electrons transfer between syntrophic partners via conductive iron minerals. Phylogenetic analyses revealed that Bacillaceae, Peptococcaceae, and Methanobacterium are potentially involved in the functioning of syntrophic DIET. Considering the ubiquitous presence of iron minerals within soils and sediments, the findings of this study will increase the current understanding of the natural biological attenuation of aromatic hydrocarbons in anaerobic environments.

  12. Effect of chemical additives on Bacillus thuringiensis (Bacillales: Bacillaceae) against Plutella xylostella (Lepidoptera: Pyralidae)

    Czech Academy of Sciences Publication Activity Database

    Zhang, L.; Qiu, S.; Huang, T.; Huang, Z.; Xu, L.; Wu, C.; Gelbič, Ivan; Guan, X.

    2013-01-01

    Roč. 106, č. 3 (2013), s. 1075-1080 ISSN 0022-0493 Institutional research plan: CEZ:AV0Z50070508 Keywords : additives * Bacillus thuringiensis * biocontrol Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 1.605, year: 2013 http://www.bioone.org/doi/pdf/10.1603/EC12288

  13. Bacillus niameyensis sp. nov., a new bacterial species isolated from human gut

    Directory of Open Access Journals (Sweden)

    M. Tidjani Alou

    2015-11-01

    Full Text Available Bacillus niameyensis sp. nov. strain SIT3T (= CSUR P1266 = DSM 29725 is the type strain of B. niameyensis sp. nov. This Gram-positive strain was isolated from the digestive flora of a child with kwashiorkor and is a facultative anaerobic rod and a member of the Bacillaceae family. This organism is hereby described alongside its complete genome sequence and annotation. The 4  286  116 bp long genome (one chromosome but no plasmid contains 4130 protein-coding and 66 RNA genes including five rRNA genes.

  14. Pesquisa de proteínas citotóxicas e nematicidas em isolados Bacillus thuringiensis dos Açores

    OpenAIRE

    Raimundo, Natacha Sofia Rodrigues

    2016-01-01

    Dissertação de Mestrado, Ciências Biomédicas, 25 de Maio de 2016, Universidade dos Açores. Bacillus thuringiensis (Bt), pertencente à família Bacillaceae, é classificado como gram-positiva e tem despertado elevado interesse em várias áreas, destacando-se a aplicações na agricultura e na saúde. Os isolados de Bt são caracterizados pela sua capacidade de produzir inclusões cristalinas de origem proteica durante a fase de esporulação, as quais são conhecidas como proteínas δ-endotoxinas ou pr...

  15. Taxonomic hierarchy of the phylum Firmicutes and novel Firmicutes species originated from various environments in Korea.

    Science.gov (United States)

    Seong, Chi Nam; Kang, Joo Won; Lee, Ji Hee; Seo, So Yeon; Woo, Jung Jae; Park, Chul; Bae, Kyung Sook; Kim, Mi Sun

    2018-01-01

    This study assessed the taxonomic hierarchy of the phylum Firmicutes as well as elucidated the isolation and classification states of novel Firmicutes species isolated from Korean territory. The hierarchical classification system of the phylum Firmicutes has been developed since 1872 when the genus Bacillus was first reported and has been generally adopted since 2001. However, this taxonomic hierarchy is still being modified. Until Feb. 2017, the phylum Firmicutes consisted of seven classes (Bacilli, Clostridia, Erysipelotrichia, Limnochordia, Negativicutes, Thermolithobacteria, and Tissierellia), 13 orders, 45 families, and 421 genera. Firmicutes species isolated from various environments in Korea have been reported from 2000, and 187 species have been approved as of Feb. 2017. All Firmicutes species were affiliated with three classes (Bacilli, Clostridia, and Erysipelotrichia), four orders (Bacillales, Lactobacillales, Clostridiales, and Erysipelotrichales), 17 families, and 54 genera. A total of 173 species belong to the class Bacilli, of which 151 species were affiliated with the order Bacillales and the remaining 22 species with the order Lactobacillales. Twelve species belonging to the class Clostridia were affiliated within only one order, Clostridiales. The most abundant family was Bacillaceae (67 species), followed by the family Paenibacillaceae (56 species). Thirteen novel genera were created using isolates from the Korean environment. A number of Firmicutes species were isolated from natural environments in Korean territory. In addition, a considerable number of species were isolated from artificial resources such as fermented foods. Most Firmicutes species, belonging to the families Bacillaceae, Planococcaceae, and Staphylococcaceae, isolated from Korean fermented foods and solar salterns were halophilic or halotolerant. Firmicutes species were isolated from the whole territory of Korea, especially large numbers from Provinces Gyeonggi, Chungnam, and

  16. Toxins secreted by Bacillus isolated from lung adenocarcinomas favor the penetration of toxic substances

    Directory of Open Access Journals (Sweden)

    Alexandra eMerlos

    2015-11-01

    Full Text Available The aim was to explore the eventual role of bacteria in the induction of lung cancer by smoking habits. Viable bacteria closely related to the genus Bacillus were detected at high frequencies in lung-cancer biopsies. Similar, if not identical, microbes were isolated from cigarettes and in smog. Bacteria present in cigarettes could be transferred to a physiological solution via a smoker device that mimicked their potential transfer during smoking those bacteria produce exotoxins able to open transmembrane pores. These channels can be used as a way to penetrate cells of benzopyrenes and other toxic substances present in tobacco products. We hypothesize that Bacillaceae present in tobacco play a key role in the development of lung cancer.

  17. Biological mechanisms associated with triazophos (TAP) removal by horizontal subsurface flow constructed wetlands (HSFCW)

    International Nuclear Information System (INIS)

    Wu, Juan; Feng, Yuqin; Dai, Yanran; Cui, Naxin; Anderson, Bruce; Cheng, Shuiping

    2016-01-01

    Triazophos (TAP) is a widely used pesticide that is easily accumulated in the environment due to its relatively high stability: this accumulation from agricultural runoff results in potential hazards to aquatic ecosystems. Constructed wetlands are generally considered to be an effective technology for treating TAP polluted surface water. However, knowledge about the biological mechanisms of TAP removal is still lacking. This study investigates the responses of a wetland plant (Canna indica), substrate enzymes and microbial communities in bench-scale horizontal subsurface-flow constructed wetlands (HSCWs) loaded with different TAP concentrations (0, 0.1, 0.5 and 5 mg·L"−"1). The results indicate that TAP stimulated the activities of superoxide dismutase (SOD) and peroxidase (POD) in the roots of C. indica. The highest TAP concentrations significantly inhibited photosynthetic activities, as shown by a reduced effective quantum yield of PS II (Φ_P_S_I_I) and lower electron transport rates (ETR). However, interestingly, the lower TAP loadings exhibited some favorable effects on these two variables, suggesting that C. indica is a suitable species for use in wetlands designed for treatment of low TAP concentrations. Urease and alkaline phosphatase (ALP) in the wetland substrate were activated by TAP. Two-way ANOVA demonstrated that urease activity was influenced by both the TAP concentrations and season, while acidphosphatase (ACP) only responded to seasonal variations. Analysis of high throughput sequencing of 16S rRNA revealed seasonal variations in the microbial community structure of the wetland substrate at the phylum and family levels. In addition, urease activity had a greater correlation with the relative abundance of some functional microbial groups, such as the Bacillaceae family, and the ALP and ACP may be influenced by the plant more than substrate microbial communities. - Highlights: • Physiological responses of the wetland plant to triazophos loads

  18. Biological mechanisms associated with triazophos (TAP) removal by horizontal subsurface flow constructed wetlands (HSFCW)

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Juan; Feng, Yuqin; Dai, Yanran; Cui, Naxin [State Key Laboratory of Pollution Control and ResourceReuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Anderson, Bruce [Department of Civil Engineering, Queen' s University, Kingston K7L3N6 (Canada); Cheng, Shuiping, E-mail: shpcheng@tongji.edu.cn [State Key Laboratory of Pollution Control and ResourceReuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2016-05-15

    Triazophos (TAP) is a widely used pesticide that is easily accumulated in the environment due to its relatively high stability: this accumulation from agricultural runoff results in potential hazards to aquatic ecosystems. Constructed wetlands are generally considered to be an effective technology for treating TAP polluted surface water. However, knowledge about the biological mechanisms of TAP removal is still lacking. This study investigates the responses of a wetland plant (Canna indica), substrate enzymes and microbial communities in bench-scale horizontal subsurface-flow constructed wetlands (HSCWs) loaded with different TAP concentrations (0, 0.1, 0.5 and 5 mg·L{sup −1}). The results indicate that TAP stimulated the activities of superoxide dismutase (SOD) and peroxidase (POD) in the roots of C. indica. The highest TAP concentrations significantly inhibited photosynthetic activities, as shown by a reduced effective quantum yield of PS II (Φ{sub PSII}) and lower electron transport rates (ETR). However, interestingly, the lower TAP loadings exhibited some favorable effects on these two variables, suggesting that C. indica is a suitable species for use in wetlands designed for treatment of low TAP concentrations. Urease and alkaline phosphatase (ALP) in the wetland substrate were activated by TAP. Two-way ANOVA demonstrated that urease activity was influenced by both the TAP concentrations and season, while acidphosphatase (ACP) only responded to seasonal variations. Analysis of high throughput sequencing of 16S rRNA revealed seasonal variations in the microbial community structure of the wetland substrate at the phylum and family levels. In addition, urease activity had a greater correlation with the relative abundance of some functional microbial groups, such as the Bacillaceae family, and the ALP and ACP may be influenced by the plant more than substrate microbial communities. - Highlights: • Physiological responses of the wetland plant to triazophos

  19. Bacterial succession and metabolite changes during flax (Linum usitatissimum L.) retting with Bacillus cereus HDYM-02.

    Science.gov (United States)

    Zhao, Dan; Liu, Pengfei; Pan, Chao; Du, Renpeng; Ping, Wenxiang; Ge, Jingping

    2016-09-02

    High-throughput sequencing and GC-MS (gas chromatography-mass spectrometry) were jointly used to reveal the bacterial succession and metabolite changes during flax (Linum usitatissimum L.) retting. The inoculation of Bacillus cereus HDYM-02 decreased bacterial richness and diversity. This inoculum led to the replacement of Enterobacteriaceae by Bacillaceae. The level of aerobic Pseudomonadaceae (mainly Azotobacter) and anaerobic Clostridiaceae_1 gradually increased and decreased, respectively. Following the addition of B. cereus HDYM-02, the dominant groups were all degumming enzyme producers or have been proven to be involved in microbial retting throughout the entire retting period. These results could be verified by the metabolite changes, either degumming enzymes or their catalytic products galacturonic acid and reducing sugars. The GC-MS data showed a clear separation between flax retting with and without B. cereus HDYM-02, particularly within the first 72 h. These findings reveal the important bacterial groups that are involved in fiber retting and will facilitate improvements in the retting process.

  20. Phylogenetic position of the North American isolate of Pasteuria that parasitizes the soybean cyst nematode, Heterodera glycines, as inferred from 16S rDNA sequence analysis.

    Science.gov (United States)

    Atibalentja, N; Noel, G R; Domier, L L

    2000-03-01

    A 1341 bp sequence of the 16S rDNA of an undescribed species of Pasteuria that parasitizes the soybean cyst nematode, Heterodera glycines, was determined and then compared with a homologous sequence of Pasteuria ramosa, a parasite of cladoceran water fleas of the family Daphnidae. The two Pasteuria sequences, which diverged from each other by a dissimilarity index of 7%, also were compared with the 16S rDNA sequences of 30 other bacterial species to determine the phylogenetic position of the genus Pasteuria among the Gram-positive eubacteria. Phylogenetic analyses using maximum-likelihood, maximum-parsimony and neighbour-joining methods showed that the Heterodera glycines-infecting Pasteuria and its sister species, P. ramosa, form a distinct line of descent within the Alicyclobacillus group of the Bacillaceae. These results are consistent with the view that the genus Pasteuria is a deeply rooted member of the Clostridium-Bacillus-Streptococcus branch of the Gram-positive eubacteria, neither related to the actinomycetes nor closely related to true endospore-forming bacteria.

  1. Antagonistic Activity Of Endophytic Bacteria Isolated From Mentha Rotundifolia L.

    Directory of Open Access Journals (Sweden)

    Elhartiti Abla

    2015-08-01

    Full Text Available Abstract This study is implemented for the isolation purification and identification of endophytic bacteria which produces antifungal substances from the roots of Mentha rotundifolia L. The 59 obtained bacterial isolates were tested for their antagonistic activity by the dual confrontation against the phytopathogenic fungi Fusarium oxysporum Aspergillus Niger and Botrytis cinerea. Eight bacterial strains were selected for their strong antifungal activity. These are strains M21 M23 M3a M4 M14d and M3c which belong to the family Bacillaceae M12 and M3b which belongs to the family of Pseudomonadaceae. Among these three bacterial strains namely M21 M23 and M12 induce 70 of inhibition of mycelial growth of phytopathogenic fungi Fusarium oxysporum and Aspergillus Niger while the five bacterial strains M3a M3c M3b M4 and M14d have proved to be effective in inhibiting more than 60 of mycelial growth of Botrytis cinerea.

  2. Airborne bacteria associated with corrosion of mild steel 1010 and aluminum alloy 1100.

    Science.gov (United States)

    Rajasekar, Aruliah; Xiao, Wang; Sethuraman, Manivannan; Parthipan, Punniyakotti; Elumalai, Punniyakotti

    2017-03-01

    A novel approach to measure the contribution of airborne bacteria on corrosion effects of mild steel (MS) and aluminum alloy (AA) as a function of their exposure period, and the atmospheric chemical composition was investigated at an urban industrial coastal site, Singapore. The 16S rRNA and phylogenetic analyses showed that Firmicutes are the predominant bacteria detected in AA and MS samples. The dominant bacterial groups identified were Bacillaceae, Staphylococcaceae, and Paenibacillaceae. The growth and proliferation of these bacteria could be due to the presence of humidity and chemical pollutants in the atmosphere, leading to corrosion. Weight loss showed stronger corrosion resistance of AA (1.37 mg/cm 2 ) than MS (26.13 mg/cm 2 ) over the exposure period of 150 days. The higher corrosion rate could be a result of simultaneous action of pollutants and bacterial exopolysaccharides on the metal surfaces. This study demonstrates the significant involvement of airborne bacteria on atmospheric corrosion of engineering materials.

  3. Microbial secondary metabolites are an alternative approaches against insect vector to prevent zoonotic diseases

    Directory of Open Access Journals (Sweden)

    Dharumadurai Dhanasekaran

    2014-08-01

    Full Text Available Approximately 1500 naturally occurring microorganisms have been identified as potentially insecticidal agents. Metabolites from 942 microbial isolates were screened for insecticidal and properties. The isolates included 302 streptomycetes, 502 novel actinobacteria including representatives of 18 genera, 28 unidentified aerobic actinobacteria, 70 fungi and 40 bacteria other than actinobacteria showed the insecticidal activity. Most spore-forming bacteria pathogenic to insects belong to the family Bacillaceae. Only four Bacillus species namely Bacillus thuringiensis, Bacillus popilliae, Bacillus lentimorbus, Bacillus sphaericus have been closely examined as insect control agents. Fungi are applied directly in the form of spores, mycelia or blastospores or by their metabolites. Many viruses that belong to the family Baculoviridae are pathogenic in insects. The microbial insecticides are generally pest-specific, readily biodegradable and usually lack toxicity to higher animals. This review paper communicates the insect problem in the transmission of diseases in human, animals, plants and problem of chemical insecticides control of insects using microbial metabolites from actinobacteria, bacteria, fungi and viruses.

  4. Different toxicity of the novel Bacillus thuringiensis (Bacillales: Bacillaceae) strain LLP29 against Aedes albopictus and Culex quinquefasciatus (Diptera: Culicidae)

    Czech Academy of Sciences Publication Activity Database

    Zhang, L.; Tang, B.; Huang, E.; Huang, Z.; Liu, Z.; Huang, T.; Gelbič, Ivan; Guan, X.; Xu, L.

    2013-01-01

    Roč. 106, č. 3 (2013), s. 1098-1102 ISSN 0022-0493 Grant - others:National Natural Science Foundation of China(CN) 31071745; National Natural Science Foundation of China(CN) 31201574; Ministry of Education of China(CN) 20093515110010; Ministry of Education of China(CN) 20093515120010; Agricultural Science and Technology Achievements(CN) 2010GB2C400212; National High Technology Research and Development Program 863(CN) 2011AA10A203; Universities of Fujian Province(CN) JA12092; Fujian Agriculture and Forestry University(CN) xjq201203; Universities for the Development of the West Strait(CN) 0b08b005 Institutional research plan: CEZ:AV0Z50070508 Keywords : Bacillus thuringiensis * receptor binding * ELISA Subject RIV: ED - Physiology Impact factor: 1.605, year: 2013 http://www.bioone.org/doi/pdf/10.1603/EC12308

  5. Field evaluation of the synergistic effects of neem oil with Beauveria bassiana (Hypocreales: Clavicipitaceae) and Bacillus thuringiensis var. kurstaki (Bacillales: Bacillaceae)

    NARCIS (Netherlands)

    Togbe, C.E.; Zannou, E.; Gbehounou, G.; Kossou, D.; Huis, van A.

    2014-01-01

    In the present study, the synergistic effects of Beauveria bassiana (Bals.-Criv. Vuill.) (isolate Bb11) and Bacillus thuringiensis var. kurstaki (Berliner) with neem oil were evaluated in three agroecological zones in Be´nin. Four bioinsecticide treatments (neem oil, neem oil and B. bassiana used

  6. Effect of pig manure on the chemical composition and microbial diversity during co-composting with spent mushroom substrate and rice husks.

    Science.gov (United States)

    Meng, Xingyao; Liu, Bin; Xi, Chen; Luo, Xiaosha; Yuan, Xufeng; Wang, Xiaofen; Zhu, Wanbin; Wang, Hongliang; Cui, Zongjun

    2018-03-01

    In this study, the impact of pig manure on the maturity of compost consisting of spent mushroom substrate and rice husks was accessed. The results showed that the addition of pig manure (SMS-PM) reached 50°C 5days earlier and lasted 15days longer than without pig manure (SMS). Furthermore, the addition of pig manure improved nutrition and germination index. High-throughput 16S rRNA pyrosequencing was used to evaluate the bacterial and fungal composition during the composting process of SMS-PM compared to SMS alone. The SMS treatment showed a relatively higher abundance of carbon-degrading microbes (Bacillaceae and Thermomyces) and plant pathogenic fungi (Sordariomycetes_unclassified) at the end of the compost. In contrast, the SMS-PM showed an increased bacterial diversity with anti-pathogen (Pseudomonas). The results indicated that the addition of pig manure improved the decomposition of refractory carbon from the spent mushroom substrate and promoted the maturity and nutritional content of the compost product. Copyright © 2017. Published by Elsevier Ltd.

  7. Common Virulence Factors and Tissue Targets of Entomopathogenic Bacteria for Biological Control of Lepidopteran Pests

    Directory of Open Access Journals (Sweden)

    Anaïs Castagnola

    2014-01-01

    Full Text Available This review focuses on common insecticidal virulence factors from entomopathogenic bacteria with special emphasis on two insect pathogenic bacteria Photorhabdus (Proteobacteria: Enterobacteriaceae and Bacillus (Firmicutes: Bacillaceae. Insect pathogenic bacteria of diverse taxonomic groups and phylogenetic origin have been shown to have striking similarities in the virulence factors they produce. It has been suggested that the detection of phage elements surrounding toxin genes, horizontal and lateral gene transfer events, and plasmid shuffling occurrences may be some of the reasons that virulence factor genes have so many analogs throughout the bacterial kingdom. Comparison of virulence factors of Photorhabdus, and Bacillus, two bacteria with dissimilar life styles opens the possibility of re-examining newly discovered toxins for novel tissue targets. For example, nematodes residing in the hemolymph may release bacteria with virulence factors targeting neurons or neuromuscular junctions. The first section of this review focuses on toxins and their context in agriculture. The second describes the mode of action of toxins from common entomopathogens and the third draws comparisons between Gram positive and Gram negative bacteria. The fourth section reviews the implications of the nervous system in biocontrol.

  8. [Community structure and diversity of culturable moderate halophilic bacteria isolated from Qrhan salt lake on Qinghai-Tibet Plateau].

    Science.gov (United States)

    Shen, Shuo

    2017-04-04

    I studied the community structure and diversity of culturable moderate halophilic bacteria isolated from Qrhan Salt Lake. I isolated and cultured the moderate halophilic bacteria on different selective media. After the 16S rRNA gene sequences was amplified and measured, I constructed the phylogenic tree, analyzed the community structure and calculated the diversity indexes according to the 16S rRNA gene information. A total of 421 moderate halophilic bacteria were isolated from water and mud samples in Qrhan Salt Lake. The 16S rRNA gene information showed that 4 potential novel species belonged to the family Bacillaceae. Eighty-three model strains belonged to 3 phylurms 6 families 16 genus. Among them, Bacillus sp., Oceanobacillus sp. and Halomonas sp. were dominant species. Diversity analysis showed that the diversity of strains isolated from water sample was higher than that from mud sample, but the dominance degree of strains isolated from mud sample was higher than that from water sample. The genetic diversity of moderate halophilic bacteria isolated from Qrhan Salt Lake was abundant. Also, there were dominant and novel species of culturable moderate halophilic bacteria in this lake.

  9. Microbial composition of the Korean traditional food "kochujang" analyzed by a massive sequencing technique.

    Science.gov (United States)

    Nam, Young-Do; Park, So-lim; Lim, Seong-Il

    2012-04-01

    Kochujang is a traditional Korean fermented food that is made with red pepper, glutinous rice, salt, and soybean. Kochujang is fermented by naturally occurring microorganisms through which it obtains various health-promoting properties. In this study, the bacterial diversities of 9 local and 2 commercial brands of kochujang were analyzed with a barcoded pyrosequencing technique targeting the hyper-variable regions V1/V2 of the 16S rRNA gene. Through the analysis of 13524 bacterial pyrosequences, 223 bacterial species were identified, most of which converged on the phylum Firmicutes (average 93.1%). All of the kochujang samples were largely populated (>90.9% of abundance) by 12 bacterial families, and Bacillaceae showed the highest abundance in all but one sample. Bacillus subtilis and B. licheniformis were the most dominant bacterial species and were broadly distributed among the kochujang samples. Each sample contained a high abundance of region-specific bacterial species, such as B. sonorensis, B. pumilus, Weissella salipiscis, and diverse unidentified Bacillus species. Phylotype- and phylogeny-based community comparison analysis showed that the microbial communities of the two commercial brands were different from those of the local brands. Moreover, each local brand kochujang sample had region-specific microbial community reflecting the manufacturing environment. © 2012 Institute of Food Technologists®

  10. Microbial control of phytophagous invertebrate pests in South Africa: Current status and future prospects.

    Science.gov (United States)

    Hatting, Justin L; Moore, Sean D; Malan, Antoinette P

    2018-02-07

    Invertebrate pests pose a significant threat to food security on the African continent. In response, South Africa has become one of the largest importers of chemical pesticides in sub-Saharan Africa, with several hundred active ingredients registered. To address the over-reliance on such chemicals, the South African Department of Agriculture, Forestry and Fisheries (DAFF) has eliminated or restricted several pesticides since the late 1970s. The recent launch of the South African National Bio-Economy Strategy and establishment of the South African Bioproducts Organisation (SABO), together with new guidelines for registration of biopesticides in 2015, also support this endeavour. Concurrently, entomopathogen-related research and bioproduct development has increased over the past decade. Currently, 31 products (seven manufactured locally) are registered under the Fertilizers, Farm Feeds, Agricultural Remedies and Stock Remedies Act 36 of 1947. Commercially important microbes include Beauveria bassiana (Cordycipitaceae), Metarhizium anisopliae (Clavicipitaceae), Cydia pomonella granulovirus, Cryptophlebia leucotreta granulovirus, Helicoverpa armigera nucleopolyhedrovirus (Baculoviridae) and Bacillus thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai (Bacillaceae). Both parasitic and entomopathogenic nematodes (EPNs) show potential for development as bioinsecticides with one commercial EPN product, based on Heterorhabditis bacteriophora (Heterorhabditidae), registered under the Act. Rapid scientific progression, supported by a favourable legislative environment, should facilitate further advances in microbial control of phytophagous invertebrate pests in South Africa. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Gracilibacillus aidingensis sp. nov., a novel moderately halophilic bacterium isolated from Aiding salt lake.

    Science.gov (United States)

    Guan, Tong-Wei; Tian, Lei; Li, En-Yuan; Tang, Shu-Kun; Zhang, Xiao-Ping

    2017-11-01

    A novel Gram-positive, aerobe, moderately halophilic bacterium was isolated from saline soil of Aiding lake in Xinjiang, north-west of China, designated strain YIM 98001 T . Cells were rod-shaped, motile and grew at 5-20% (w/v) NaCl (optimum 10%), pH 6-10 (optimum pH 7.0) and 4-45 °C (optimum 37 °C). The major cellular fatty acids were anteiso C 15:0 , anteiso C 17:0 , iso C 15:0 . The predominant respiratory quinone was MK-7. Diphosphatidylglycerol, phosphatidylglycerol, phosphoglycolipid were the major polar lipids. Meso-diaminopimelic acid was the diagnostic diamino acid of the cell-wall peptidoglycan. The G+C content was 36.46 mol%. 16S rRNA gene sequence analysis showed that the strain belongs to the family Bacillaceae, with the highest sequence similarity to the type strain Gracilibacillus thailandensis TP2-8 T (96.84%), followed by Gracilibacillus saliphilus YIM 91119 T (96.78%) and Gracilibacillus ureilyticus MF38 T (96.57%), thus confirming the affiliation of strain YIM 98001 T to the genus Gracilibacillus. The polyphasic approach indicates that strain YIM 98001 T represents a novel species of the genus Gracilibacillus, for which the name Gracilibacillus aidingensis is proposed. The type strain is YIM 98001 T (=KCTC 42683 T  = DSMZ 104330 T ).

  12. Acute, sublethal, and combination effects of azadirachtin and Bacillus thuringiensis on the cotton bollworm, Helicoverpa armigera.

    Science.gov (United States)

    Abedi, Zahra; Saber, Moosa; Vojoudi, Samad; Mahdavi, Vahid; Parsaeyan, Ehsan

    2014-02-26

    The cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is a polyphagous and cosmopolitan insect pest that causes damage to various plants. In this study, the lethal and sublethal effects of azadirachtin and Bacillus thuringiensis Berliner sub sp . kurstaki (Bacillales: Bacillaceae) were evaluated on third instar H. armigera under laboratory conditions. The LC50 values of azadirachtin and Bt were 12.95 and 96.8 µg a.i./mL, respectively. A total mortality of 56.7% was caused on third instar larvae when LC20 values of the insecticides were applied in combination with each other. The LT50 values of azadirachtin and Bt were 4.8 and 3.6 days, respectively. The results of the sublethal study showed that the application of LC30 value of azadirachtin and Bt reduced the larval and pupal weight and increased larval and pupal duration of H. armigera. The longevity and fecundity of female adults were affected significantly by the insecticides. Female fecundity was reduced by the treatments, respectively. The lowest adult emergence ratio and pupation ratio were observed in the azadirachtin treatment. The results indicated that both insecticides have high potential for controlling of the pest. This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed.

  13. Isolation, selection and characterization of root-associated growth promoting bacteria in Brazil Pine (Araucaria angustifolia).

    Science.gov (United States)

    Ribeiro, Carlos Marcelo; Cardoso, Elke Jurandy Bran Nogueira

    2012-01-20

    Araucaria angustifolia, a unique species of this genus that occurs naturally in Brazil, has a high socio-economic and environmental value and is critically endangered of extinction, since it has been submitted to intense predatory exploitation during the last century. Root-associated bacteria from A. angustifolia were isolated, selected and characterized for their biotechnological potential of growth promotion and biocontrol of plant pathogenic fungi. Ninety-seven strains were isolated and subjected to chemical tests. All isolates presented at least one positive feature, characterizing them as potential PGPR. Eighteen isolates produced indole-3-acetic acid (IAA), 27 were able to solubilize inorganic phosphate, 21 isolates were presumable diazotrophs, with pellicle formation in nitrogen-free culture medium, 83 were phosphatases producers, 37 were positive for siderophores and 45 endospore-forming isolates were antagonistic to Fusarium oxysporum, a pathogen of conifers. We also observed the presence of bacterial strains with multiple beneficial mechanisms of action. Analyzing the fatty acid methyl ester (FAME) and partial sequencing of the 16S rRNA gene of these isolates, it was possible to characterize the most effective isolates as belonging to Bacillaceae (9 isolates), Enterobacteriaceae (11) and Pseudomonadaceae (1). As far as we know, this is the first study to include the species Ewingella americana as a PGPR. Copyright © 2011 Elsevier GmbH. All rights reserved.

  14. Sediminibacillus massiliensis sp. nov., a moderately halophilic, Gram-positive bacterium isolated from a stool sample of a young Senegalese man.

    Science.gov (United States)

    Senghor, Bruno; Bassène, Hubert; Khelaifia, Saber; Robert, Catherine; Fournier, Pierre-Edouard; Ruimy, Raymond; Sokhna, Cheikh; Raoult, Didier; Lagier, Jean-Christophe

    2018-07-01

    A Gram-positive, moderately halophilic bacterium, referred to as strain Marseille-P3518 T , was isolated from a stool sample with 2% NaCl concentration from a healthy 15-year-old male living in Dielmo, a village in Senegal. Cells are aerobic, rod-shaped and motile and display endospore formation. Strain Marseille-P3518 T can grow in a medium with 0-20% (w/v) sodium chloride (optimally at 5-7.5% w/v). The major fatty acids were 12-methyl-tetradecanoic acid (45.8%), 13-methyl-tetradecanoic acid (26.9%) and 12-methyl-tridecanoic acid (12.8%). The genome is 4,347,479 bp long with 42.1% G+C content. It contains 4282 protein-coding and 107 RNA genes. Phylogenetic analysis based on 16S rRNA gene sequence comparisons showed that strain Marseille-P3518 T is a member of the Bacillaceae family and is closely related to Sediminibacillus albus (97.4% gene sequence similarity). Strain Marseille-P3518 T was clearly differentiated from its phylogenetic neighbors on the basis of phenotypic and genotypic features. Strain Marseille-P3518 T is, therefore, considered to be a novel representative of the genus Sediminibacillus, for which the name Sediminibacillus massiliensis sp. nov. is proposed, and the type strain is Marseille-P3518 T (CSUR P3518T, DSM69894).

  15. Microbiota Dynamics and Diversity at Different Stages of Industrial Processing of Cocoa Beans into Cocoa Powder

    Science.gov (United States)

    Lima, Lídia J. R.; van der Velpen, Vera; Wolkers-Rooijackers, Judith; Kamphuis, Henri J.; Nout, M. J. Rob

    2012-01-01

    We sampled a cocoa powder production line to investigate the impact of processing on the microbial community size and diversity at different stages. Classical microbiological methods were combined with 16S rRNA gene PCR-denaturing gradient gel electrophoresis, coupled with clone library construction, to analyze the samples. Aerobic thermoresistant spores (ThrS) (100°C; 10 min) were also isolated and characterized (identity, genetic diversity, and spore heat resistance), in view of their relevance to the quality of downstream heat-treated cocoa-flavored drinks. In the nibs (broken, shelled cocoa beans), average levels of total aerobic microorganisms (TAM) (4.4 to 5.6 log CFU/g) and aerobic total spores (TS) (80°C; 10 min; 4.3 to 5.5 log CFU/g) were significantly reduced (P cocoa samples revealed a predominance of members of the Bacillaceae, Pseudomonadaceae, and Enterococcaceae. Eleven species of ThrS were found, but Bacillus licheniformis and the Bacillus subtilis complex were prominent and revealed great genetic heterogeneity. We concluded that the microbiota of cocoa powder resulted from microorganisms that could have been initially present in the nibs, as well as microorganisms that originated during processing. B. subtilis complex members, particularly B. subtilis subsp. subtilis, formed the most heat-resistant spores. Their occurrence in cocoa powder needs to be considered to ensure the stability of derived products, such as ultrahigh-temperature-treated chocolate drinks. PMID:22327588

  16. Isolation of imidacloprid degrading bacteria from industrial sites

    International Nuclear Information System (INIS)

    Shahid, M.N.; Jabeen, F.

    2009-01-01

    Immidacloprid is a cyclodiene organochlorine used as an insecticide all over the world and possessing a serous environmental threat. It is mostly used for cotton insects (bollworm, aphid and white fly). For isolation of imidacloprid degrading bacteria, two soil samples were collected from industrial contaminated sites of Kala Shah Kahu district sheikupura, having ten year history of use. Soil samples were analyzed by measuring pH and electric conductivity. The isolation of imidacroprid degrading bacteria was performed by enrichment technique. Eight bacterial strains, S/sub 1-a/ S/2-2-b/ S/2-c/ S/2-d/ S/2-e/ S/sub 2-f/ and S/sub 2-g/ and S/sub e-a/ were isolated on the basis of their colony morphologies. The purified colonies were characterized morphologically, physiologically and biochemically. Gram staining was done and Gram negative strain were confirmed on MacConkey agar and Eosin Methylene Blue. Bacterial strains were also checked for different minimal media in which only carbon source was the imidcloprid. For this purpose. FTW, FTW without N/sub 2/ NSM, M/sub 9/ and MM/sub 2/ media were used and their optical densities were taken on spectrophotometer isolates were checked for resistance to antibiotics and heavy metals. On these characteristics, S/sub 2-d/ and S/sub c-a/ were assigned to Enterobacteriaceae, S/sub 2-b/ to Pseudomonad and rest of the bacterial isolates were affiliated to bacillaceae. (author)

  17. Utilisation of Rep-PCR to track microbes in aerosols collected adjacent to their source, a saline lake in Victoria, Australia.

    Science.gov (United States)

    Munday, Chris I; O'Loingsigh, Tadhg; Tapper, Nigel J; De Deckker, Patrick; Allison, Gwen E

    2013-04-15

    Dust storms are a major source of aerosolized bacteria, especially in the drought conditions experienced in Australia in the decade to 2009. The major aims of this project were to identify the culturable bacteria in environmental samples and to genetically fingerprint all isolates using repetitive element PCR (Rep-PCR) to investigate the possibility of tracking isolates from their source into the atmosphere. Four field trips were conducted to a dry lake in western Victoria, Australia to sample aerosols and sediments. Aerosols were collected at heights up to 150 m using vacuum pumps with filters attached to a tethered helium balloon, while corresponding sediments were collected in sterile polypropylene tubes. Isolates were cultivated on Tryptic Soy Agar, R2 Agar and Marine Agar, and grown in dark conditions at ambient temperature. By sequencing the 16S rRNA gene of 270 isolates, fifteen different bacterial families were identified, with both the aerosols and sediments dominated by the Bacillaceae family. Four sets of Rep-PCR primers were tested, with the ERIC and (GTG)5 primers proving to be the most suitable for fingerprinting the cultured taxa. Rep-PCR revealed very high strain diversity in the samples collected, however some strains were still able to be tracked from sediments up to 150 m in height. This shows the potential of Rep-PCR, however very large reference databases would be required for the technique to be more useful. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Effects of solar ultraviolet radiation (UVR) on molecular diversity of plankton from the Chubut rivers estuary

    International Nuclear Information System (INIS)

    Manrique, J.M.; Halac, S.; Calvo, A.Y.; Villafane, V.; Jones, L.R.; Helbling, W.E.

    2010-01-01

    Within the framework of a project designed to evaluate the impact of UVR upon estuarine plankton, we present here a molecular analysis of plankton diversity. Water samples were exposed to three radiation treatments (PAR, PAR + UV-A and PAR + UV-A + UV-B) in microcosms for ca 10 days during the Austral summer. At the beginning (t 0 ) and at the end of the experiment samples were filtered 0 through 20, 10, 5 and 0.22 μm pore sizes. The DNA amount retained in each filter indicated that most of the plankton biomass was in the 0.22-5 μm fraction at t0. In contrast, at the end of the experiment this proportion changed according to the radiation treatment and big cells (> 20 μm) dominated. An rDNA library was obtained from the DNA corresponding to the 0.22-5 μm fraction. There was no relationship between treatments and the number and frequency of restriction genotypes. Analyses of 27 clones fraction from t 0 indicated the presence of three genera of Rhodobacteraceae, one genus of Rhodospirillaceae, one SAR11 genus, one genus of Bacillaceae, an unclassified sequences of Alphaproteobacteria, Actinobacteria and Rhodospirillaceae. Also, there were six sequences similar to Ostreococcus tauri (Mamiellales). Even though the sequence analyses are still ongoing, our initial data suggest a big impact of UV-B radiation in the amount and composition of the plankton community towards big cells. (authors)

  19. Impact of Corn Earworm (Lepidoptera: Noctuidae) on Field Corn (Poales: Poaceae) Yield and Grain Quality.

    Science.gov (United States)

    Bibb, Jenny L; Cook, Donald; Catchot, Angus; Musser, Fred; Stewart, Scott D; Leonard, Billy Rogers; Buntin, G David; Kerns, David; Allen, Tom W; Gore, Jeffrey

    2018-05-28

    Corn earworm, Helicoverpa zea (Boddie), commonly infests field corn, Zea mays (L.). The combination of corn plant biology, corn earworm behavior in corn ecosystems, and field corn value renders corn earworm management with foliar insecticides noneconomical. Corn technologies containing Bacillus thuringiensis (Bt) Berliner (Bacillales: Bacillaceae) were introduced that exhibit substantial efficacy against corn earworm and may reduce mycotoxin contamination in grain. The first generation Bt traits in field corn demonstrated limited activity on corn earworm feeding on grain. The pyramided corn technologies have greater cumulative protein concentrations and higher expression throughout the plant, so these corn traits should provide effective management of this pest. Additionally, reduced kernel injury may affect physical grain quality. Experiments were conducted during 2011-2012 to investigate corn earworm impact on field corn yield and grain quality. Treatments included field corn hybrids expressing the Herculex, YieldGard, and Genuity VT Triple Pro technologies. Supplemental insecticide treatments were applied every 1-2 d from silk emergence until silk senescence to create a range of injured kernels for each technology. No significant relationship between the number of corn earworm damaged kernels and yield was observed for any technology/hybrid. In these studies, corn earworm larvae did not cause enough damage to impact yield. Additionally, no consistent relationship between corn earworm damage and aflatoxin contamination was observed. Based on these data, the economic value of pyramided Bt corn traits to corn producers, in the southern United States, appears to be from management of other lepidopteran insect pests including European and southwestern corn borer.

  20. Variability, stability, and resilience of fecal microbiota in dairy cows fed whole crop corn silage.

    Science.gov (United States)

    Tang, Minh Thuy; Han, Hongyan; Yu, Zhu; Tsuruta, Takeshi; Nishino, Naoki

    2017-08-01

    The microbiota of whole crop corn silage and feces of silage-fed dairy cows were examined. A total of 18 dairy cow feces were collected from six farms in Japan and China, and high-throughput Illumina sequencing of the V4 hypervariable region of 16S rRNA genes was performed. Lactobacillaceae were dominant in all silages, followed by Acetobacteraceae, Bacillaceae, and Enterobacteriaceae. In feces, the predominant families were Ruminococcaceae, Bacteroidaceae, Clostridiaceae, Lachnospiraceae, Rikenellaceae, and Paraprevotellaceae. Therefore, Lactobacillaceae of corn silage appeared to be eliminated in the gastrointestinal tract. Although fecal microbiota composition was similar in most samples, relative abundances of several families, such as Ruminococcaceae, Christensenellaceae, Turicibacteraceae, and Succinivibrionaceae, varied between farms and countries. In addition to the geographical location, differences in feeding management between total mixed ration feeding and separate feeding appeared to be involved in the variations. Moreover, a cow-to-cow variation for concentrate-associated families was demonstrated at the same farm; two cows showed high abundance of Succinivibrionaceae and Prevotellaceae, whereas another had a high abundance of Porphyromonadaceae. There was a negative correlation between forage-associated Ruminococcaceae and concentrate-associated Succinivibrionaceae and Prevotellaceae in 18 feces samples. Succinivibrionaceae, Prevotellaceae, p-2534-18B5, and Spirochaetaceae were regarded as highly variable taxa in this study. These findings help to improve our understanding of variation and similarity of the fecal microbiota of dairy cows with regard to individuals, farms, and countries. Microbiota of naturally fermented corn silage had no influence on the fecal microbiota of dairy cows.

  1. Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species

    Science.gov (United States)

    Rey, Michael W; Ramaiya, Preethi; Nelson, Beth A; Brody-Karpin, Shari D; Zaretsky, Elizabeth J; Tang, Maria; de Leon, Alfredo Lopez; Xiang, Henry; Gusti, Veronica; Clausen, Ib Groth; Olsen, Peter B; Rasmussen, Michael D; Andersen, Jens T; Jørgensen, Per L; Larsen, Thomas S; Sorokin, Alexei; Bolotin, Alexander; Lapidus, Alla; Galleron, Nathalie; Ehrlich, S Dusko; Berka, Randy M

    2004-01-01

    Background Bacillus licheniformis is a Gram-positive, spore-forming soil bacterium that is used in the biotechnology industry to manufacture enzymes, antibiotics, biochemicals and consumer products. This species is closely related to the well studied model organism Bacillus subtilis, and produces an assortment of extracellular enzymes that may contribute to nutrient cycling in nature. Results We determined the complete nucleotide sequence of the B. licheniformis ATCC 14580 genome which comprises a circular chromosome of 4,222,336 base-pairs (bp) containing 4,208 predicted protein-coding genes with an average size of 873 bp, seven rRNA operons, and 72 tRNA genes. The B. licheniformis chromosome contains large regions that are colinear with the genomes of B. subtilis and Bacillus halodurans, and approximately 80% of the predicted B. licheniformis coding sequences have B. subtilis orthologs. Conclusions Despite the unmistakable organizational similarities between the B. licheniformis and B. subtilis genomes, there are notable differences in the numbers and locations of prophages, transposable elements and a number of extracellular enzymes and secondary metabolic pathway operons that distinguish these species. Differences include a region of more than 80 kilobases (kb) that comprises a cluster of polyketide synthase genes and a second operon of 38 kb encoding plipastatin synthase enzymes that are absent in the B. licheniformis genome. The availability of a completed genome sequence for B. licheniformis should facilitate the design and construction of improved industrial strains and allow for comparative genomics and evolutionary studies within this group of Bacillaceae. PMID:15461803

  2. pH and Organic Carbon Dose Rates Control Microbially Driven Bioremediation Efficacy in Alkaline Bauxite Residue.

    Science.gov (United States)

    Santini, Talitha C; Malcolm, Laura I; Tyson, Gene W; Warren, Lesley A

    2016-10-18

    Bioremediation of alkaline tailings, based on fermentative microbial metabolisms, is a novel strategy for achieving rapid pH neutralization and thus improving environmental outcomes associated with mining and refining activities. Laboratory-scale bioreactors containing bauxite residue (an alkaline, saline tailings material generated as a byproduct of alumina refining), to which a diverse microbial inoculum was added, were used in this study to identify key factors (pH, salinity, organic carbon supply) controlling the rates and extent of microbially driven pH neutralization (bioremediation) in alkaline tailings. Initial tailings pH and organic carbon dose rates both significantly affected bioremediation extent and efficiency with lower minimum pHs and higher extents of pH neutralization occurring under low initial pH or high organic carbon conditions. Rates of pH neutralization (up to 0.13 mM H + produced per day with pH decreasing from 9.5 to ≤6.5 in three days) were significantly higher in low initial pH treatments. Representatives of the Bacillaceae and Enterobacteriaceae, which contain many known facultative anaerobes and fermenters, were identified as key contributors to 2,3-butanediol and/or mixed acid fermentation as the major mechanism(s) of pH neutralization. Initial pH and salinity significantly influenced microbial community successional trajectories, and microbial community structure was significantly related to markers of fermentation activity. This study provides the first experimental demonstration of bioremediation in bauxite residue, identifying pH and organic carbon dose rates as key controls on bioremediation efficacy, and will enable future development of bioreactor technologies at full field scale.

  3. Isolation and characterization of microorganisms and volatiles associated with Moroccan saffron during different processing treatments.

    Science.gov (United States)

    Fancello, Francesco; Petretto, Giacomo; Sanna, Maria Lina; Pintore, Giorgio; Lage, Mounira; Zara, Severino

    2018-05-20

    Saffron may be spoiled by a variety of microorganisms during cultivation, harvesting, and post harvesting. As saffron can be dried and stored in different ways, this preliminary study explored the natural microbiota present in Moroccan saffron when subjected to different drying techniques. An analysis of the carotenoid-derived volatiles present in the saffron was also carried out. The culturable microbiota of the saffron samples dried using different methods, namely in the shade (also called natural), in the sun, or in the oven, were studied using classical and molecular approaches. The effect of the drying methods on head-space chemical volatiles was also determined. Eighty-two isolates grown in the different culture media were chosen from the colonies, and genotype analysis grouped the microorganisms into 58 clusters, revealing a wide diversity. Out of the 82 isolates, 75 belonged to the Bacillaceae family. The other isolates were distributed within the Dietziaceae, Paenibacillaceae and Carnobacteriaceae families. The dominant species was Bacillus simplex, which was detected in all samples, regardless of the drying method used. Lysinibacillus macroides was dominant in the sun-dried saffron. No pathogens were isolated, but an isolate belonging to Dietzia maris, a potential human pathogenic species, was detected. The biodiversity indexes were linked to the drying method and generally decreased as the intensity of the treatment increased. The results of this preliminary work show that the different drying methods strongly influenced the microbiota and affect the saffron volatile profile. Further analysis will be needed to determine possible effects of selected microbiota on saffron volatiles. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Solidago canadensis invasion affects soil N-fixing bacterial communities in heterogeneous landscapes in urban ecosystems in East China.

    Science.gov (United States)

    Wang, Congyan; Jiang, Kun; Zhou, Jiawei; Wu, Bingde

    2018-03-12

    Soil nitrogen-fixing bacterial communities (SNB) can increase the level of available soil N via biological N-fixation to facilitate successful invasion of several invasive plant species (IPS). Meanwhile, landscape heterogeneity can greatly enhance regional invasibility and increase the chances of successful invasion of IPS. Thus, it is important to understand the soil micro-ecological mechanisms driving the successful invasion of IPS in heterogeneous landscapes. This study performed cross-site comparisons, via metagenomics, to comprehensively analyze the effects of Solidago canadensis invasion on SNB in heterogeneous landscapes in urban ecosystems. Rhizospheric soil samples of S. canadensis were obtained from nine urban ecosystems [Three replicate quadrats (including uninvaded sites and invaded sites) for each type of urban ecosystem]. S. canadensis invasion did not significantly affect soil physicochemical properties, the taxonomic diversity of plant communities, or the diversity and richness of SNB. However, some SNB taxa (i.e., f_Micromonosporaceae, f_Oscillatoriaceae, and f_Bacillaceae) changed significantly with S. canadensis invasion. Thus, S. canadensis invasion may alter the community structure, rather than the diversity and richness of SNB, to facilitate its invasion process. Of the nine urban ecosystems, the diversity and richness of SNB was highest in farmland wasteland. Accordingly, the community invasibility of farmland wasteland may be higher than that of the other types of urban ecosystem. In brief, landscape heterogeneity, rather than S. canadensis invasion, was the strongest controlling factor for the diversity and richness of SNB. One possible reason may be the differences in soil electrical conductivity and the taxonomic diversity of plant communities in the nine urban ecosystems, which can cause notable shifts in the diversity and richness of SNB. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Bacterial Symbionts in Lepidoptera: Their Diversity, Transmission, and Impact on the Host

    Directory of Open Access Journals (Sweden)

    Luis R. Paniagua Voirol

    2018-03-01

    Full Text Available The insect’s microbiota is well acknowledged as a “hidden” player influencing essential insect traits. The gut microbiome of butterflies and moths (Lepidoptera has been shown to be highly variable between and within species, resulting in a controversy on the functional relevance of gut microbes in this insect order. Here, we aim to (i review current knowledge on the composition of gut microbial communities across Lepidoptera and (ii elucidate the drivers of the variability in the lepidopteran gut microbiome and provide an overview on (iii routes of transfer and (iv the putative functions of microbes in Lepidoptera. To find out whether Lepidopterans possess a core gut microbiome, we compared studies of the microbiome from 30 lepidopteran species. Gut bacteria of the Enterobacteriaceae, Bacillaceae, and Pseudomonadaceae families were the most widespread across species, with Pseudomonas, Bacillus, Staphylococcus, Enterobacter, and Enterococcus being the most common genera. Several studies indicate that habitat, food plant, and age of the host insect can greatly impact the gut microbiome, which contributes to digestion, detoxification, or defense against natural enemies. We mainly focus on the gut microbiome, but we also include some examples of intracellular endosymbionts. These symbionts are present across a broad range of insect taxa and are known to exert different effects on their host, mostly including nutrition and reproductive manipulation. Only two intracellular bacteria genera (Wolbachia and Spiroplasma have been reported to colonize reproductive tissues of Lepidoptera, affecting their host’s reproduction. We explore routes of transmission of both gut microbiota and intracellular symbionts and have found that these microbes may be horizontally transmitted through the host plant, but also vertically via the egg stage. More detailed knowledge about the functions and plasticity of the microbiome in Lepidoptera may provide novel leads

  6. Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes.

    Science.gov (United States)

    Galperin, Michael Y; Mekhedov, Sergei L; Puigbo, Pere; Smirnov, Sergey; Wolf, Yuri I; Rigden, Daniel J

    2012-11-01

    Three classes of low-G+C Gram-positive bacteria (Firmicutes), Bacilli, Clostridia and Negativicutes, include numerous members that are capable of producing heat-resistant endospores. Spore-forming firmicutes include many environmentally important organisms, such as insect pathogens and cellulose-degrading industrial strains, as well as human pathogens responsible for such diseases as anthrax, botulism, gas gangrene and tetanus. In the best-studied model organism Bacillus subtilis, sporulation involves over 500 genes, many of which are conserved among other bacilli and clostridia. This work aimed to define the genomic requirements for sporulation through an analysis of the presence of sporulation genes in various firmicutes, including those with smaller genomes than B. subtilis. Cultivable spore-formers were found to have genomes larger than 2300 kb and encompass over 2150 protein-coding genes of which 60 are orthologues of genes that are apparently essential for sporulation in B. subtilis. Clostridial spore-formers lack, among others, spoIIB, sda, spoVID and safA genes and have non-orthologous displacements of spoIIQ and spoIVFA, suggesting substantial differences between bacilli and clostridia in the engulfment and spore coat formation steps. Many B. subtilis sporulation genes, particularly those encoding small acid-soluble spore proteins and spore coat proteins, were found only in the family Bacillaceae, or even in a subset of Bacillus spp. Phylogenetic profiles of sporulation genes, compiled in this work, confirm the presence of a common sporulation gene core, but also illuminate the diversity of the sporulation processes within various lineages. These profiles should help further experimental studies of uncharacterized widespread sporulation genes, which would ultimately allow delineation of the minimal set(s) of sporulation-specific genes in Bacilli and Clostridia. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  7. Distribution of bacterial contamination in non-sterile pharmaceutical materials and assessment of its risk to the health of the final consumers quantitatively

    Directory of Open Access Journals (Sweden)

    Mostafa Essam Eissa

    2016-09-01

    Full Text Available Bacterial contamination control in pharmaceutical products is a critical aspect in the field of drug manufacturing industry due to the encountered risk to the patients' health and possibly their life. The application of commercial bacterial identification system is crucial to identify the type of contamination and its source to anticipate the impact of bioburden on the products and setting corrective and preventive actions. During the period of one year, random samples from raw materials and final products were tested according to United States Pharmacopeia, and those that showed suspect results for specified microorganisms and/or out-of-specification limits or showed out-of-trend results were subjected to further identification by using miniaturized biochemical identification system after performing Gram stain. From the total bacterial isolates of the investigated products, more than 60% were primarily belonging to Micrococcaceae 16.98% (empty hard gelatin capsules, Enterobacteriaceae 18.86% (vaginal cream applicator, plastic caps for bottles, Sorbitol solution, finished hard gelatin capsule product, topical cream and oral suspension and Bacillaceae 24.53% (Talc powder, liquid oral preparation and finished hard gelatin capsule product. Gram Positive and Negative samples were 56.60% and 41.51% respectively from the total investigated sample products and materials. Finished pharmaceutical products constituted 53.33% and 68.18% from Gram-positive and Gram-negative microorganisms respectively. An approach to quantitative risk assessment for pharmaceutical products was conducted on selected medicinal items and showed that Enterobacteriaceae followed by Burkholderiaceae contributed by more than 80% to the major hazard that could be delivered to patients through drugs. The applied risk can be used as a milestone for setting goals by pharmaceutical companies to improve the safety of medicinal products microbiologically and to identify the major sources

  8. Individual and Combined Effects of Bacillus Thuringiensis and Azadirachtin on Plodia Interpunctella Hübner (Lepidoptera: Pyralidae).

    Science.gov (United States)

    Nouri-Ganbalani, Gadir; Borzoui, Ehsan; Abdolmaleki, Arman; Abedi, Zahra; George Kamita, Shizuo

    2016-01-01

    The Indianmeal moth, Plodia interpunctella Hübner (Lepidoptera: Pyralidae), is a major stored product pest that is found throughout the world. In this study, the effect of oral exposure to Bacillus thuringiensis (Berliner) subsp. kurstaki (Bacillales: Bacillaceae) and azadirachtin was evaluated in third instar P. interpunctella under laboratory conditions. The median lethal concentration (LC50) of Bt and azadirachtin on third instars was 490 and 241 μg a.i./ml, respectively. The median lethal time (LT50) of these insecticides was the same (4.5 d following exposure to 750 or 400 μg a.i./ml of Bt or azadirachtin, respectively). When the larvae fed on diet containing LC30 concentrations of both Bt and azadirachtin an additive interaction in terms of mortality was found. A synergistic interaction was found when the larvae fed on diet containing LC50 concentrations of both insecticides. Larvae that fed on insecticide-containing diet (either Bt or azadirachtin at an LC30 concentration, or both insecticides at LC30 or LC50 concentrations) showed lower glycogen and lipid levels, and generally lower protein content in comparison to control larvae. Larvae that fed on diet containing both Bt and azadirachtin showed reduced weight gain and nutritional indices in comparison to control larvae or larvae fed on the diet containing only one of the insecticides. Finally, exposure to both insecticides, either individually or in combination, reduced the level of digestive enzymes found in the midgut. Our findings indicate that both Bt and azadirachtin, either individually or in combination have significant potential for use in controlling of P. interpunctella. © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.

  9. Effects of zinc-methionine on growth performance, intestinal flora and immune function in pigeon squabs.

    Science.gov (United States)

    Wang, Y; Yi, L; Zhao, M L; Wu, J Q; Wang, M Y; Cheng, X C

    2014-01-01

    1. Different concentrations of zinc-methionine (Zn-Met) were given to pigeon squabs, and the resulting effects on growth, immune functions and intestinal microflora were investigated from hatching to 28 d of age. A total of 180 artificially hatched pigeon squabs were randomly allotted to each of three treatments with three replicates of 20 squabs. The three treatments given were either one ml (2 mg/ml) Zn-Met, one ml (10 mg/ml) Zn-Met or one ml 0.9% NaCl solution. 2. The results showed that Zn-Met improved the growth performance of squabs. The average daily and average weekly weight gain was significantly greater in squabs treated with Zn-Met than in the control group. 3. The group given 2 and 10 mg supplemental Zn-Met had heavier thymus, spleen and bursa of Fabricius than the control group at d 28. 4. Maternal antibody titres against Newcastle disease haemagglutination inhibition and alpha-naphthyl acetate esterase were significantly higher in squabs treated with supplemental 2 and 10 mg Zn-Met compared to the control group at d 14 and d 28. 5. Additionally, the squabs given supplemental 2 mg Zn-Met exhibited significantly higher Bacillaceae, Lactobacillus, Enterococcus and Bifidobacterium populations at d 14 and d 28, but lower Escherichia coli populations at d 28 compared to the control group. On the contrary, Lactobacillus, Enterococcus and Bifidobacterium populations were significantly decreased with 10 mg Zn-Met at d 28. 6. This study indicates that supplementation with Zn-Met has a positive effect on growth performance, immune function and regulation of intestinal flora in pigeons. An inclusion level of 2 mg seems to be better than 10 mg Zn-Met per day per bird.

  10. Density Dependence and Growth Rate: Evolutionary Effects on Resistance Development to Bt (Bacillus thuringiensis).

    Science.gov (United States)

    Martinez, Jeannette C; Caprio, Michael A; Friedenberg, Nicholas A

    2018-02-09

    It has long been recognized that pest population dynamics can affect the durability of a pesticide, but dose remains the primary component of insect resistance management (IRM). For transgenic pesticidal traits such as Bt (Bacillus thuringiensis Berliner (Bacillales: Bacillaceae)), dose (measured as the mortality of susceptibles caused by a toxin) is a relatively fixed characteristic and often falls below the standard definition of high dose. Hence, it is important to understand how pest population dynamics modify durability and what targets they present for IRM. We used a deterministic model of a generic arthropod pest to examine how timing and strength of density dependence interacted with population growth rate and Bt mortality to affect time to resistance. As in previous studies, durability typically reached a minimum at intermediate doses. However, high population growth rates could eliminate benefits of high dose. The timing of density dependence had a more subtle effect. If density dependence operated simultaneously with Bt mortality, durability was insensitive to its strengths. However, if density dependence was driven by postselection densities, decreasing its strength could increase durability. The strength of density dependence could affect durability of both single traits and pyramids, but its influence depended on the timing of density dependence and size of the refuge. Our findings suggest the utility of a broader definition of high dose, one that incorporates population-dynamic context. That maximum growth rates and timing and strength of interactions causing density dependent mortality can all affect durability, also highlights the need for ecologically integrated approaches to IRM research. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. A Green Microbial Fuel Cell-Based Biosensor for In Situ Chromium (VI) Measurement in Electroplating Wastewater.

    Science.gov (United States)

    Wu, Li-Chun; Tsai, Teh-Hua; Liu, Man-Hai; Kuo, Jui-Ling; Chang, Yung-Chu; Chung, Ying-Chien

    2017-10-27

    The extensive use of Cr(VI) in many industries and the disposal of Cr(VI)-containing wastes have resulted in Cr(VI)-induced environmental contamination. Cr(VI) compounds are associated with increased cancer risks; hence, the detection of toxic Cr(VI) compounds is crucial. Various methods have been developed for Cr(VI) measurement, but they are often conducted offsite and cannot provide real-time toxicity monitoring. A microbial fuel cell (MFC) is an eco-friendly and self-sustaining device that has great potential as a biosensor for in situ Cr(VI) measurement, especially for wastewater generated from different electroplating units. In this study, Exiguobacterium aestuarii YC211, a facultatively anaerobic, Cr(VI)-reducing, salt-tolerant, and exoelectrogenic bacterium, was isolated and inoculated into an MFC to evaluate its feasibility as a Cr(VI) biosensor. The Cr(VI) removal efficiency of E. aestuarii YC211 was not affected by the surrounding environment (pH 5-9, 20-35 °C, coexisting ions, and salinity of 0-15 g/L). The maximum power density of the MFC biosensor was 98.3 ± 1.5 mW/m² at 1500 Ω. A good linear relationship ( r ² = 0.997) was observed between the Cr(VI) concentration (2.5-60 mg/L) and the voltage output. The developed MFC biosensor is a simple device that can accurately measure Cr(VI) concentrations in the actual electroplating wastewater that is generated from different electroplating units within 30 min with low deviations (-6.1% to 2.2%). After treating the actual electroplating wastewater with the MFC, the predominant family in the biofilm was found to be Bacillaceae (95.3%) and was further identified as the originally inoculated E. aestuarii YC211 by next generation sequencing (NGS). Thus, the MFC biosensor can measure Cr(VI) concentrations in situ in the effluents from different electroplating units, and it can potentially help in preventing the violation of effluent regulations.

  12. Análise fenotípica e genotípica de bactérias heterotróficas e fixadoras de nitrogênio em sedimento na bacia do Rio Cuiabá-MT

    Directory of Open Access Journals (Sweden)

    Fernanda Viana da Cunha

    2015-04-01

    Full Text Available Os sedimentos apresentam-se como um sistema complexo, que são afetados por parâmetros geológicos, hidrodinâmicos, químicos e biológicos, caracterizado por uma interação entre o ambiente sedimentar de cada região. O presente estudo consistiu em caracterizar a diversidade de bactérias heterotróficas totais e fixadores de nitrogênio em sedimentos do rio Cuiabá utilizando técnicas convencionais de microbiologia e de biologia molecular. As amostras de sedimento foram coletadas com periodicidade bimestral, em quatro pontos sendo estes: Cuiabazinho, Passagem da Conceição, Ribeirão dos Cocais e Barão de Melgaço. As amostras foram processadas através de diluições seriadas (10-2 a 10-7 em solução salina 0,85%. Em seguida cultivadas em placa de Petri através da técnica de Spreed Plate, em meio de cultivo Trypic Soy Agar (TSA para bactérias heterotróficas totais e para bactérias nitrificantes foram utilizados meios seletivos (NFB, JMV e Meio 79 incubadas a 35°C. Posteriormente as estirpes bacterianas foram reisoladas em Agar Nutriente (AN a fim de obter cultura pura para análise morfotintorial de Gram. Este teste permitiu verificar que dos 202 isolados bacterianos, 59% eram bastonetes positivos, sendo que, a maior quantificação bacteriana obtida foi no meio de cultivo TSA, comparado aos outros meios de cultura. O perfil da comunidade bacteriana apresentou na sua maioria bactérias da família Bacillaceae com 28%, sendo que as mesmas foram utilizadas para a análise molecular por Box-PCR, que apresentou uma riqueza de espécies. Esses resultados indicam a importância de pesquisas sobre diversidade microbiana de sedimentos no Estado de Mato Grosso que utilizam técnicas moleculares.

  13. Medicago truncatula Gaertn. as a model for understanding the mechanism of growth promotion by bacteria from rhizosphere and nodules of alfalfa.

    Science.gov (United States)

    Kisiel, Anna; Kępczyńska, Ewa

    2016-05-01

    The present study showed all the 16 strains isolated and identified from the alfalfa rhizosphere and nodules, and registered in GenBank, to be good candidates for targeted use in studies addressing the rather weak known mechanism of plant growth promotion, including that of Medicago truncatula, a molecular crop model. Based on physiological, biochemical and molecular analysis, the 16 isolates obtained were ascribed to the following five families: Bacillaceae, Rhizobiaceae, Xantomonadaceae, Enterobacteriaceae and Pseudomonadaceae, within which 9 genera and 16 species were identified. All these bacteria were found to significantly enhance fresh and dry weight of root, shoots and whole 5-week-old seedlings. The bacteria were capable of the in vitro use of tryptophan to produce indolic compounds at various concentrations. The ability of almost all the strains to enhance growth of seedlings and individual roots was positively correlated with the production of the indolic compounds (r = 0.69; P = 0.0001), but not with the 1-aminocyclopropane-1-carboxylate deaminase (ACCD) activity (no correlation). For some strains, it was difficult to conclude whether the growth promotion was related to the production of indolic compounds or to the ACCD activity. It is likely that promotion of M. truncatula root development involves also root interaction with pseudomonads, known to produce 2,4-diacetylphloroglucinol (DAPG), a secondary metabolite reported to alter the root architecture by interacting with an auxin-dependent signaling pathway. Inoculation of seedlings with Pseudomonas brassicacearum KK 5, a bacterium known for its lowest ability to produce indolic compounds, the highest ACCD activity and the presence of the phlD gene responsible for DAPG precursor synthesis, resulted in a substantial promotion of root development. Inoculation with the strain increased the endogenous IAA level in M. truncatula leaves after inoculation of 5-week-old seedlings. Three other strains examined

  14. Continuous production of biohythane from hydrothermal liquefied cornstalk biomass via two-stage high-rate anaerobic reactors.

    Science.gov (United States)

    Si, Bu-Chun; Li, Jia-Ming; Zhu, Zhang-Bing; Zhang, Yuan-Hui; Lu, Jian-Wen; Shen, Rui-Xia; Zhang, Chong; Xing, Xin-Hui; Liu, Zhidan

    2016-01-01

    via Illumina MiSeq sequencing clarified that the biohydrogen process in the two-stage systems functioned not only for biohydrogen production, but also for the degradation of potential inhibitors. The higher distribution of the detoxification family Clostridiaceae , Bacillaceae , and Pseudomonadaceae was found in the biohydrogen process. In addition, a higher distribution of acetate-oxidizing bacteria ( Spirochaetaceae ) was observed in the biomethane process of the two-stage systems, revealing improved acetogenesis accompanied with an efficient conversion of acetate. Biohythane production could be a promising process for the recovery of energy and degradation of organic compounds from hydrothermal liquefied biomass. The two-stage process not only contributed to the improved quality of the gas fuels but also strengthened the biotransformation process, which resulted from the function of detoxification during biohydrogen production and enhanced acetogenesis during biomethane production.

  15. The response of soil biota to phosphate fertilization in grassland columns

    Science.gov (United States)

    Ikoyi, Israel; Winstanley, Henry; Fowler, Andrew; Schmalenberger, Achim

    2017-04-01

    -feeding nematodes, enrichment index were significantly higher in the control compared to the P treatments. In addition, denaturing gradient gel electrophoresis analysis showed that high and medium P significantly shifted the bacterial, fungal and Glomeromycota community structures compared to the control. The Next Generation Sequencing data revealed that the control had a significantly higher abundance of certain bacterial families when compared to the high P treatment (e.g. Bacillaceae, Paenibacillaceae, Nocardioidaceea, Micrococcaceae, Bradyrhizobiaceae) that have been associated with P mineralization in the past. Our results show that some of the parameters are more sensitive to P application though the effect on others may have been masked by the low P status of the soil. Results from this study suggest that a positive effect of a single inorganic P fertilizer application on plant growth in a soil is largely cancelled out by its negative effect on the soil microbiota. These findings support the hypothesis that soil microbiota play an important role in plant P supply in low P index soils. The findings from this study will be included in a mathematical model on biotic P cycling to better predict the effects of fertilizer application in grassland agriculture.