WorldWideScience

Sample records for b-rafv600e ligand inhibition

  1. Apoptosis of human melanoma cells induced by inhibition of B-RAFV600E involves preferential splicing of bimS

    OpenAIRE

    Jiang, C C; Lai, F; Tay, K H; Croft, A; Rizos, H; Becker, T M; Yang, F.; Liu, H; Thorne, R F; Hersey, P; Zhang, X. D.

    2010-01-01

    Bim is known to be critical in killing of melanoma cells by inhibition of the RAF/MEK/ERK pathway. However, the potential role of the most potent apoptosis-inducing isoform of Bim, BimS, remains largely unappreciated. Here, we show that inhibition of the mutant B-RAFV600E triggers preferential splicing to produce BimS, which is particularly important in induction of apoptosis in B-RAFV600E melanoma cells. Although the specific B-RAFV600E inhibitor PLX4720 upregulates all three major isoforms ...

  2. Blockade of Death Ligand TRAIL Inhibits Renal Ischemia Reperfusion Injury

    International Nuclear Information System (INIS)

    Renal ischemia-reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI). Many investigators have reported that cell death via apoptosis significantly contributed to the pathophysiology of renal IRI. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor superfamily, and induces apoptosis and inflammation. However, the role of TRAIL in renal IRI is unclear. Here, we investigated whether TRAIL contributes to renal IRI and whether TRAIL blockade could attenuate renal IRI. AKI was induced by unilateral clamping of the renal pedicle for 60 min in male FVB/N mice. We found that the expression of TRAIL and its receptors were highly upregulated in renal tubular cells in renal IRI. Neutralizing anti-TRAIL antibody or its control IgG was given 24 hr before ischemia and a half-dose booster injection was administered into the peritoneal cavity immediately after reperfusion. We found that TRAIL blockade inhibited tubular apoptosis and reduced the accumulation of neutrophils and macrophages. Furthermore, TRAIL blockade attenuated renal fibrosis and atrophy after IRI. In conclusion, our study suggests that TRAIL is a critical pathogenic factor in renal IRI, and that TRAIL could be a new therapeutic target for the prevention of renal IRI

  3. Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand

    Energy Technology Data Exchange (ETDEWEB)

    Parashar, Abhinav [Center for Biomedical Research, VIT University, Vellore, Tamil Nadu, 632014 India (India); Venkatachalam, Avanthika [REDOx Lab, PSG Institute of Advanced Studies, Avinashi Road, Peelamedu, Coimbatore, Tamil Nadu, 641004 (India); Gideon, Daniel Andrew [Center for Biomedical Research, VIT University, Vellore, Tamil Nadu, 632014 India (India); Manoj, Kelath Murali, E-mail: satyamjayatu@yahoo.com [REDOx Lab, PSG Institute of Advanced Studies, Avinashi Road, Peelamedu, Coimbatore, Tamil Nadu, 641004 (India)

    2014-12-12

    Highlights: • Cyanide (CN) is a well-studied toxic principle, known to inhibit heme-enzymes. • Inhibition is supposed to result from CN binding at the active site as a ligand. • Diverse heme enzymes’ CN inhibition profiles challenge prevailing mechanism. • Poor binding efficiency of CN at low enzyme concentrations and ligand pressures. • CN-based diffusible radicals cause ‘non-productive electron transfers’ (inhibition). - Abstract: The toxicity of cyanide is hitherto attributed to its ability to bind to heme proteins’ active site and thereby inhibit their activity. It is shown herein that the long-held interpretation is inadequate to explain several observations in heme-enzyme reaction systems. Generation of cyanide-based diffusible radicals in heme-enzyme reaction milieu could shunt electron transfers (by non-active site processes), and thus be detrimental to the efficiency of oxidative outcomes.

  4. Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand

    International Nuclear Information System (INIS)

    Highlights: • Cyanide (CN) is a well-studied toxic principle, known to inhibit heme-enzymes. • Inhibition is supposed to result from CN binding at the active site as a ligand. • Diverse heme enzymes’ CN inhibition profiles challenge prevailing mechanism. • Poor binding efficiency of CN at low enzyme concentrations and ligand pressures. • CN-based diffusible radicals cause ‘non-productive electron transfers’ (inhibition). - Abstract: The toxicity of cyanide is hitherto attributed to its ability to bind to heme proteins’ active site and thereby inhibit their activity. It is shown herein that the long-held interpretation is inadequate to explain several observations in heme-enzyme reaction systems. Generation of cyanide-based diffusible radicals in heme-enzyme reaction milieu could shunt electron transfers (by non-active site processes), and thus be detrimental to the efficiency of oxidative outcomes

  5. Ligand-dependent inhibition and reversal of tau filament formation.

    Science.gov (United States)

    Chirita, Carmen; Necula, Mihaela; Kuret, Jeff

    2004-03-16

    Alzheimer's disease is defined in part by the intraneuronal accumulation of filaments comprised of the microtubule associated protein tau. Because animal model studies suggest that a toxic gain of function accompanies tau aggregation in neurons, selective pharmacological inhibitors of the process may have utility in slowing neurodegeneration. Here, the properties of a candidate small molecule inhibitor of tau fibrillization, 3-(2-hydroxyethyl)-2-[2-[[3-(2-hydroxyethyl)-5-methoxy-2-benzothiazolylidene]methyl]-1-butenyl]-5-methoxybenzothiazolium (N744), were characterized in vitro using transmission electron microscopy. N744 inhibited arachidonic acid-induced aggregation of full-length, four-repeat tau protein at substoichiometric concentrations relative to total tau and with an IC(50) of approximately 300 nM. Inhibition was accompanied by a dose-dependent decrease in the number concentration of filaments, suggesting that N744 interfered with tau filament nucleation. Stoichiometric concentrations of N744 also promoted tau disaggregation when added to mature synthetic filaments. Disaggregation followed first-order kinetics and was accompanied by a steady decrease in filament number, suggesting that N744 promoted endwise loss of tau molecules with limited filament breakage. N744 at substoichiometric concentrations did not inhibit Abeta and alpha-synuclein aggregation, indicating it was tau selective under these conditions. Because of its activity in vitro, N744 may offer a pharmacological approach to the role of tau fibrillization in neurodegeneration. PMID:15005623

  6. Cinnamamides, Novel Liver X Receptor Antagonists that Inhibit Ligand-Induced Lipogenesis and Fatty Liver.

    Science.gov (United States)

    Sim, Woo-Cheol; Kim, Dong Gwang; Lee, Kyeong Jin; Choi, You-Jin; Choi, Yeon Jae; Shin, Kye Jung; Jun, Dae Won; Park, So-Jung; Park, Hyun-Ju; Kim, Jiwon; Oh, Won Keun; Lee, Byung-Hoon

    2015-12-01

    Liver X receptor (LXR) is a member of the nuclear receptor superfamily, and it regulates various biologic processes, including de novo lipogenesis, cholesterol metabolism, and inflammation. Selective inhibition of LXR may aid the treatment of nonalcoholic fatty liver diseases. In the present study, we evaluated the effects of three cinnamamide derivatives on ligand-induced LXRα activation and explored whether these derivatives could attenuate steatosis in mice. N-(4-trifluoromethylphenyl) 3,4-dimethoxycinnamamide (TFCA) decreased the luciferase activity in LXRE-tk-Luc-transfected cells and also suppressed ligand-induced lipid accumulation and expression of the lipogenic genes in murine hepatocytes. Furthermore, it significantly attenuated hepatic neutral lipid accumulation in a ligand-induced fatty liver mouse system. Modeling study indicated that TFCA inhibited activation of the LXRα ligand-binding domain by hydrogen bonding to Arg305 in the H5 region of that domain. It regulated the transcriptional control exerted by LXRα by influencing coregulator exchange; this process involves dissociation of the thyroid hormone receptor-associated proteins (TRAP)/DRIP coactivator and recruitment of the nuclear receptor corepressor. These results show that TFCA has the potential to attenuate ligand-induced lipogenesis and fatty liver by selectively inhibiting LXRα in the liver. PMID:26384859

  7. Inhibition of mu and delta opioid receptor ligand binding by the peptide aldehyde protease inhibitor, leupeptin.

    Science.gov (United States)

    Christoffers, Keith H; Khokhar, Arshia; Chaturvedi, Kirti; Howells, Richard D

    2002-04-15

    We reported recently that the ubiquitin-proteasome pathway is involved in agonist-induced down regulation of mu and delta opioid receptors [J. Biol. Chem. 276 (2001) 12345]. While evaluating the effects of various protease inhibitors on agonist-induced opioid receptor down regulation, we observed that while the peptide aldehyde, leupeptin (acetyl-L-Leucyl-L-Leucyl-L-Arginal), did not affect agonist-induced down regulation, leupeptin at submillimolar concentrations directly inhibited radioligand binding to opioid receptors. In this study, the inhibitory activity of leupeptin on radioligand binding was characterized utilizing human embryonic kidney (HEK) 293 cell lines expressing transfected mu, delta, or kappa opioid receptors. The rank order of potency for leupeptin inhibition of [3H]bremazocine binding to opioid receptors was mu > delta > kappa. In contrast to the effect of leupeptin, the peptide aldehyde proteasome inhibitor, MG 132 (carbobenzoxy-L-Leucyl-L-Leucyl-L-Leucinal), had significantly less effect on bremazocine binding to mu, delta, or kappa opioid receptors. We propose that leupeptin inhibits ligand binding by reacting reversibly with essential sulfhydryl groups that are necessary for high-affinity ligand/receptor interactions. PMID:11853866

  8. Biological effects of ruthenium, osmium and copper complexes with tumour inhibiting ligands

    International Nuclear Information System (INIS)

    by flow cytometry. Fluorescence microscopy demonstrated the formation of apoptotic bodies induced by complexes with chinoxalinone ligands. A BrdU incorporation assay was employed to test the inhibition of DNA synthesis and showed inhibition by Ru and Os indolobenzazepine complexes. In cell-free experiments all compounds tested as to cyclin-dependent kinase (cdk) inhibition showed moderate effects. DNA intercalation was high with flat indolochinoline and low with indolobenzazepine complexes. (author)

  9. Ligand independent aryl hydrocarbon receptor inhibits lung cancer cell invasion by degradation of Smad4.

    Science.gov (United States)

    Lee, Chen-Chen; Yang, Wen-Hao; Li, Ching-Hao; Cheng, Yu-Wen; Tsai, Chi-Hao; Kang, Jaw-Jou

    2016-07-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent-activated transcriptional factor that regulates the metabolism of xenobiotic and endogenous compounds. Although AhR plays a crucial role in air toxicant-induced carcinogenesis, AhR expression was shown to negatively regulate tumorigenesis. Therefore, in the present study, we investigated the effect of AhR without ligand treatment on cancer invasion in lung cancer cell lines. Lung cancer cells expressing lower levels of AhR showed higher invasion ability (H1299 cells) compared with cells expressing higher levels of AhR (A549 cells). Overexpression of AhR in H1299 cells inhibited the invasion ability. We found that vimentin expression was inhibited in AhR-overexpressing H1299 cells. Additionally, the expression of EMT-related transcriptional factors Snail and ID-1 decreased. Interestingly, we found that Smad4 degradation was induced in AhR-overexpressing H1299 cells. Our data showed that AhR could interact with Jun-activation domain binding protein (Jab1) and Smad4, which may cause degradation of Smad4 by the proteasome. Our data suggest that AhR affects the transforming growth factor-β signaling pathway by inducing Smad4 degradation by the proteasome and suppressing tumor metastasis via epithelial to mesenchymal transition reduction in lung cancer cells. PMID:27060206

  10. Molecular features related to HIV integrase inhibition obtained from structure- and ligand-based approaches.

    Directory of Open Access Journals (Sweden)

    Luciana L de Carvalho

    Full Text Available Among several biological targets to treat AIDS, HIV integrase is a promising enzyme that can be employed to develop new anti-HIV agents. The aim of this work is to propose a mechanistic interpretation of HIV-1 integrase inhibition and to rationalize the molecular features related to the binding affinity of studied ligands. A set of 79 HIV-1 integrase inhibitors and its relationship with biological activity are investigated employing 2D and 3D QSAR models, docking analysis and DFT studies. Analyses of docking poses and frontier molecular orbitals revealed important features on the main ligand-receptor interactions. 2D and 3D models presenting good internal consistency, predictive power and stability were obtained in all cases. Significant correlation coefficients (r(2 = 0.908 and q(2= 0.643 for 2D model; r(2= 0.904 and q(2= 0.719 for 3D model were obtained, indicating the potential of these models for untested compounds. The generated holograms and contribution maps revealed important molecular requirements to HIV-1 IN inhibition and several evidences for molecular modifications. The final models along with information resulting from molecular orbitals, 2D contribution and 3D contour maps should be useful in the design of new inhibitors with increased potency and selectivity within the chemical diversity of the data.

  11. Inhibition of endothelin-1-mediated contraction of hepatic stellate cells by FXR ligand.

    Directory of Open Access Journals (Sweden)

    Jiang Li

    Full Text Available Activation of hepatic stellate cells (HSCs plays an important role in the development of cirrhosis through the increased production of collagen and the enhanced contractile response to vasoactive mediators such as endothelin-1 (ET-1. The farnesoid X receptor (FXR is a member of the nuclear receptor superfamily that is highly expressed in liver, kidneys, adrenals, and intestine. FXR is also expressed in HSCs and activation of FXR in HSCs is associated with significant decreases in collagen production. However, little is known about the roles of FXR in the regulation of contraction of HSCs. We report in this study that treatment of quiescent HSCs with GW4064, a synthetic FXR agonist, significantly inhibited the HSC transdifferentiation, which was associated with an inhibition of the upregulation of ET-1 expression. These GW4064-treated cells also showed reduced contractile response to ET-1 in comparison to HSCs without GW4064 treatment. We have further shown that GW4064 treatment inhibited the ET-1-mediated contraction in fully activated HSCs. To elucidate the potential mechanism we showed that GW4064 inhibited ET-1-mediated activation of Rho/ROCK pathway in activated HSCs. Our studies unveiled a new mechanism that might contribute to the anti-cirrhotic effects of FXR ligands.

  12. Synthesis of cellulose nanocrystals carrying tyrosine sulfate mimetic ligands and inhibition of alphavirus infection.

    Science.gov (United States)

    Zoppe, Justin O; Ruottinen, Ville; Ruotsalainen, Janne; Rönkkö, Seppo; Johansson, Leena-Sisko; Hinkkanen, Ari; Järvinen, Kristiina; Seppälä, Jukka

    2014-04-14

    We present two facile approaches for introducing multivalent displays of tyrosine sulfate mimetic ligands on the surface of cellulose nanocrystals (CNCs) for application as viral inhibitors. We tested the efficacy of cellulose nanocrystals, prepared either from cotton fibers or Whatman filter paper, to inhibit alphavirus infectivity in Vero (B) cells. Cellulose nanocrystals were produced by sulfuric acid hydrolysis leading to nanocrystal surfaces decorated with anionic sulfate groups. When the fluorescent marker expressing Semliki Forest virus vector, VA7-EGFP, was incubated with CNCs, strong inhibition of virus infectivity was achieved, up to 100 and 88% for cotton and Whatman CNCs, respectively. When surface sulfate groups of CNCs were exchanged for tyrosine sulfate mimetic groups (i.e. phenyl sulfonates), improved viral inhibition was attained. Our observations suggest that the conjugation of target-specific functionalities to CNC surfaces provides a means to control their antiviral activity. Multivalent CNCs did not cause observable in vitro cytotoxicity to Vero (B) cells or human corneal epithelial (HCE-T) cells, even within the 100% virus-inhibitory concentrations. Based on the similar chemistry of known polyanionic inhibitors, our results suggest the potential application of CNCs as inhibitors of other viruses, such as human immunodeficiency virus (HIV) and herpes simplex viruses. PMID:24628489

  13. Calreticulin Binds to Fas Ligand and Inhibits Neuronal Cell Apoptosis Induced by Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Beilei Chen

    2015-01-01

    Full Text Available Background. Calreticulin (CRT can bind to Fas ligand (FasL and inhibit Fas/FasL-mediated apoptosis of Jurkat T cells. However, its effect on neuronal cell apoptosis has not been investigated. Purpose. We aimed to evaluate the neuroprotective effect of CRT following ischemia-reperfusion injury (IRI. Methods. Mice underwent middle cerebral artery occlusion (MCAO and SH-SY5Y cells subjected to oxygen glucose deprivation (OGD were used as models for IRI. The CRT protein level was detected by Western blotting, and mRNA expression of CRT, caspase-3, and caspase-8 was measured by real-time PCR. Immunofluorescence was used to assess the localization of CRT and FasL. The interaction of CRT with FasL was verified by coimmunoprecipitation. SH-SY5Y cell viability was determined by MTT assay, and cell apoptosis was assessed by flow cytometry. The measurement of caspase-8 and caspase-3 activity was carried out using caspase activity assay kits. Results. After IRI, CRT was upregulated on the neuron surface and bound to FasL, leading to increased viability of OGD-exposed SH-SY5Y cells and decreased activity of caspase-8 and caspase-3. Conclusions. This study for the first time revealed that increased CRT inhibited Fas/FasL-mediated neuronal cell apoptosis during the early stage of ischemic stroke, suggesting it to be a potential protector activated soon after IRI.

  14. Magnesite growth inhibition by organic ligands: An experimental study at 100, 120 and 146 °C

    Science.gov (United States)

    Gautier, Quentin; Bénézeth, Pascale; Schott, Jacques

    2016-05-01

    It has been proposed that simple organic ligands, which accelerate Mg-silicates dissolution, could be used to accelerate CO2 mineral sequestration through mineral carbonation. The influence of these ligands on magnesite growth has however never been quantified. In this work, we investigated the influence of three organic ligands: oxalate, citrate and EDTA on magnesite growth in alkaline conditions and at hydrothermal temperatures (100, 120 and 146 °C) using mixed flow reactors. We show that the studied carboxylates decrease magnesite growth rates, due to two converging mechanisms: Complexation of Mg2+ in solution, which decreases the saturation state of the solution. This effect was carefully taken into account by using a thermodynamic database relevant for the studied system. EDTA being the stronger chelate of the three investigated ligands, it has the strongest influence on solution saturation state. Adsorption of the ligand on magnesite surface growth sites, which decreases the kinetic rate constant of magnesite growth. We observed the following inhibition effectiveness of investigated organic ligands: citrate > EDTA > oxalate. While citrate exerts the strongest growth inhibition due to adsorption, it does not apparently lead to a complete interruption of magnesite growth. Preliminary adsorption experiments suggest that citrate adsorbs to active growth sites at the mineral surface with a much higher affinity than for the bulk of the surface. Using experimentally retrieved magnesite growth rate laws and published forsterite (Mg2SiO4) dissolution rate law, we performed simple numerical simulations to estimate the overall influence of the investigated ligands on the carbonation rates of forsterite. We observe that all ligands will clearly be detrimental to forsterite carbonation rates in typical conditions foreseen for Mg-silicates mineral carbonation. Their use may be positive for the carbonation of less reactive Mg-silicate minerals, but the delayed formation of

  15. PPAR{gamma} ligands induce growth inhibition and apoptosis through p63 and p73 in human ovarian cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soyeon [Cancer Research Institute, Seoul National University College of Medicine and Hospital, Seoul (Korea, Republic of); Innovative Research Institute for Cell Therapy, Seoul National University College of Medicine and Hospital, Seoul (Korea, Republic of); Lee, Jae-Jung [Cancer Research Institute, Seoul National University College of Medicine and Hospital, Seoul (Korea, Republic of); Heo, Dae Seog, E-mail: heo1013@snu.ac.kr [Cancer Research Institute, Seoul National University College of Medicine and Hospital, Seoul (Korea, Republic of); Department of Internal Medicine, Seoul National University College of Medicine and Hospital, Seoul (Korea, Republic of); Innovative Research Institute for Cell Therapy, Seoul National University College of Medicine and Hospital, Seoul (Korea, Republic of)

    2011-03-18

    Research highlights: {yields} PPAR{gamma} ligands increased the rate of apoptosis and inhibition of proliferation in ovarian cancer cells. {yields} PPAR{gamma} ligands induced p63 and p73 expression, but not p53. {yields} p63 and p73 leads to an increase in p21 expression and apoptosis in ovarian cancer cells with treatment PPAR{gamma} ligands. {yields} These findings suggest that PPAR{gamma} ligands suppressed growth of ovarian cancer cells through upregulation of p63 and p73. -- Abstract: Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) agonists, including thiazolidinediones (TZDs), can induce anti-proliferation, differentiation, and apoptosis in various cancer cell types. This study investigated the mechanism of the anticancer effect of TZDs on human ovarian cancer. Six human ovarian cancer cell lines (NIH:OVCAR3, SKOV3, SNU-251, SNU-8, SNU-840, and 2774) were treated with the TZD, which induced dose-dependent inhibition of cell growth. Additionally, these cell lines exhibited various expression levels of PPAR{gamma} protein as revealed by Western blotting. Flow cytometry showed that the cell cycle was arrested at the G1 phase, as demonstrated by the appearance of a sub-G1 peak. This observation was corroborated by the finding of increased levels of Bax, p21, PARP, and cleaved caspase 3 in TGZ-treated cells. Interestingly, when we determined the effect of p53-induced growth inhibition in these three human ovarian cancer cells, we found that they either lacked p53 or contained a mutant form of p53. Furthermore, TGZ induced the expression of endogenous or exogenous p63 and p73 proteins and p63- or p73-directed short hairpin (si) RNAs inhibited the ability of TGZ to regulate expression of p21 in these cells. Thus, our results suggest that PPAR{gamma} ligands can induce growth suppression of ovarian cancer cells and mediate p63 and p73 expression, leading to enhanced growth inhibition and apoptosis. The tumor suppressive effects of PPAR{gamma} ligands

  16. PPARγ ligands induce growth inhibition and apoptosis through p63 and p73 in human ovarian cancer cells

    International Nuclear Information System (INIS)

    Research highlights: → PPARγ ligands increased the rate of apoptosis and inhibition of proliferation in ovarian cancer cells. → PPARγ ligands induced p63 and p73 expression, but not p53. → p63 and p73 leads to an increase in p21 expression and apoptosis in ovarian cancer cells with treatment PPARγ ligands. → These findings suggest that PPARγ ligands suppressed growth of ovarian cancer cells through upregulation of p63 and p73. -- Abstract: Peroxisome proliferator-activated receptor gamma (PPARγ) agonists, including thiazolidinediones (TZDs), can induce anti-proliferation, differentiation, and apoptosis in various cancer cell types. This study investigated the mechanism of the anticancer effect of TZDs on human ovarian cancer. Six human ovarian cancer cell lines (NIH:OVCAR3, SKOV3, SNU-251, SNU-8, SNU-840, and 2774) were treated with the TZD, which induced dose-dependent inhibition of cell growth. Additionally, these cell lines exhibited various expression levels of PPARγ protein as revealed by Western blotting. Flow cytometry showed that the cell cycle was arrested at the G1 phase, as demonstrated by the appearance of a sub-G1 peak. This observation was corroborated by the finding of increased levels of Bax, p21, PARP, and cleaved caspase 3 in TGZ-treated cells. Interestingly, when we determined the effect of p53-induced growth inhibition in these three human ovarian cancer cells, we found that they either lacked p53 or contained a mutant form of p53. Furthermore, TGZ induced the expression of endogenous or exogenous p63 and p73 proteins and p63- or p73-directed short hairpin (si) RNAs inhibited the ability of TGZ to regulate expression of p21 in these cells. Thus, our results suggest that PPARγ ligands can induce growth suppression of ovarian cancer cells and mediate p63 and p73 expression, leading to enhanced growth inhibition and apoptosis. The tumor suppressive effects of PPARγ ligands may have applications for the treatment of ovarian cancer.

  17. Differentiating a Ligand's Chemical Requirements for Allosteric Interactions from Those for Protein Binding. Phenylalanine Inhibition of Pyruvate Kinase

    International Nuclear Information System (INIS)

    The isoform of pyruvate kinase from brain and muscle of mammals (M1-PYK) is allosterically inhibited by phenylalanine. Initial observations in this model allosteric system indicate that Ala binds competitively with Phe, but elicits a minimal allosteric response. Thus, the allosteric ligand of this system must have requirements for eliciting an allosteric response in addition to the requirements for binding. Phe analogues have been used to dissect what chemical properties of Phe are responsible for eliciting the allosteric response. We first demonstrate that the L-2-aminopropanaldehyde substructure of the amino acid ligand is primarily responsible for binding to M1-PYK. Since the allosteric response to Ala is minimal and linear addition of methyl groups beyond the -carbon increase the magnitude of the allosteric response, we conclude that moieties beyond the -carbon are primarily responsible for allostery. Instead of an all-or-none mechanism of allostery, these findings support the idea that the bulk of the hydrophobic side chain, but not the aromatic nature, is the primary determinant of the magnitude of the observed allosteric inhibition. The use of these results to direct structural studies has resulted in a 1.65 Angstroms structure of M1-PYK with Ala bound. The coordination of Ala in the allosteric amino acid binding site confirms the binding role of the L-2-aminopropanaldehyde substructure of the ligand. Collectively, this study confirms that a ligand can have chemical regions specific for eliciting the allosteric signal in addition to the chemical regions necessary for binding

  18. Atherosclerosis in LDLR-Knockout Mice Is Inhibited, but Not Reversed, by the PPARγ Ligand Pioglitazone

    OpenAIRE

    Nakaya, Hideaki; Summers, Barbara D.; Nicholson, Andrew C.; Gotto, Antonio M; Hajjar, David P.; Han, Jihong

    2009-01-01

    Thiazolidinediones, a class of drugs for the treatment of type-2 diabetes, are synthetic ligands for peroxisome proliferator-activated receptor-γ. They have been demonstrated to possess cardioprotective effects in humans and anti-atherogenic properties in animal models. However, the question remains whether a peroxisome proliferator-activated receptor-γ ligand can reverse the development of atherosclerosis. In this study, we tested the effects of pioglitazone on the development of established...

  19. Use of cluster rhenium substances with alkyl ligands for inhibition of the Guerin carcinoma Growth

    Directory of Open Access Journals (Sweden)

    O. S. Voronkova

    2007-04-01

    Full Text Available Quantity and quality of erythrocytes, blood haemoglobin concentration, glucose levels in the erythrocytes and plasma, content of TBA-active products in blood plasma of rats were studied during development of the Guerin carcinoma, introduction of cis-platinum and cluster rhenium substances with organic ligands. It was shown that rhenium substances had essential antioxidant effects and changed the dynamic of tumour growth. The conclusion on perspectiveness of further investigations of rhenium substances with cluster fragment and organic ligands in experiments in vivo with changed redox-status of an organism was drawn.

  20. Histological Regression of Giant Cell Tumor of Bone Following RANK Ligand Inhibition.

    Science.gov (United States)

    Dietrich, Martin F; Cavuoti, Dominick; Landay, Michael; Arriaga, Yull E

    2014-01-01

    Lung metastases are a rare complication of giant cell tumors of bone. We herein describe an interesting case of histological regression and size reduction of lung metastases originating from a primary giant cell tumor of bone in response to the RANK ligand inhibitor denosumab. PMID:26425630

  1. Kynurenine 3-monooxygenase mediates inhibition of Th17 differentiation via catabolism of endogenous aryl hydrocarbon receptor ligands.

    Science.gov (United States)

    Stephens, Geoffrey L; Wang, Qun; Swerdlow, Bonnie; Bhat, Geetha; Kolbeck, Roland; Fung, Michael

    2013-07-01

    The aryl hydrocarbon receptor (AhR) is a key transcriptional regulator of Th17-cell differentiation. Although endogenous ligands have yet to be identified, evidence suggests that tryptophan metabolites can act as agonists for the AhR. Tryptophan metabolites are abundant in circulation, so we hypothesized that cell intrinsic factors might exist to regulate the exposure of Th17 cells to AhR-dependent activities. Here, we find that Th17 cells preferentially express kynurenine 3-monooxygenase (KMO), which is an enzyme involved in catabolism of the tryptophan metabolite kynurenine. KMO inhibition, either with a specific inhibitor or via siRNA-mediated silencing, markedly increased IL-17 production in vitro, whereas IFN-γ production by Th1 cells was unaffected. Inhibition of KMO significantly exacerbated disease in a Th17-driven model of autoimmune gastritis, suggesting that expression of KMO by Th17 cells serves to limit their continuous exposure to physiological levels of endogenous AhR ligands in vivo. PMID:23568529

  2. Enhancement and inhibition of iron photoreduction by individual ligands in open ocean seawater

    Science.gov (United States)

    Rijkenberg, Micha J. A.; Gerringa, Loes J. A.; Carolus, Vicky E.; Velzeboer, Ilona; de Baar, Hein J. W.

    2006-06-01

    In laboratory experiments, we investigated the effect of five individual Fe-binding ligands: phaeophytin, ferrichrome, desferrioxamine B (DFOB), inositol hexaphosphate (phytic acid), and protoporphyrin IX (PPIX) on the Fe(II) photoproduction using seawater of the open Southern Ocean. Addition of 10-100 nM Fe(III) to open Southern Ocean seawater without the model ligands and containing; 1.1 nM dissolved Fe(III), 1.75 ± 0.28 equivalents of nM Fe of natural ligands with a conditional stability constant (log K') of 21.75 ± 0.34 and a concentration DOC of 86.8 ± 1.13 μM C leads to the formation of amorphous Fe(III) hydroxides. These amorphous Fe(III) hydroxides are the major source for the photoproduction of Fe(II). The addition of the model ligands changed the Fe(II) photoproduction considerably and in various ways. Phaeophytin showed higher Fe(II) photoproduction than ferrichrome and the control, i.e., amorphous Fe(III) hydroxides. Additions of phytic acid between 65 and 105 nM increased the concentration of photoproduced Fe(II) with 0.16 nM Fe(II) per nM phytic acid, presumably due to the co-aggregation of Fe(III) and phytic acid leading via an increasing colloidal surface to an increasing photoreducible Fe(III) fraction. DFOB and PPIX strongly decreased the photoproduced Fe(II) concentration. The low Fe(II) photoproduction with DFOB confirmed reported observations that Fe(III) complexed to DFOB is photo-stable. The PPIX hardly binds Fe(III) in the open Southern Ocean seawater but decreased the photoproduced Fe(II) concentration by complexing the Fe(II) with a binding rate constant of kFe(II)PPIX = 1.04 × 10 -4 ± 1.53 × 10 -5 s -1 nM -1 PPIX. Subsequently, PPIX is suggested to act as a photosensitizing producer of superoxide, thus increasing the dark reduction of Fe(III) to Fe(II). Our research shows that the photochemistry of Fe(III) and the resulting photoproduced Fe(II) concentration is strongly depending on the identity of the Fe-binding organic ligands

  3. Evidence that tumor necrosis factor-related apoptosis inducing ligand (TRAIL) inhibits angiogenesis by inducing vascular endothelial cell apoptosis

    International Nuclear Information System (INIS)

    Tumor necrosis factor (TNF) and its related ligands TNF-related apoptosis inducing ligand (TRAIL) and Fas ligand (FasL) play roles in the regulation of vascular responses, but their effect on the formation of new blood vessels (angiogenesis) is unclear. Therefore, we have examined the effects of these ligands on angiogenesis modeled with primary cultures of human umbilical vein endothelial cells (HUVEC). To examine angiogenesis in the context of the central nervous system, we have also modeled cerebral angiogenesis with the human brain endothelial cell line hCMEC/D3. Parameters studied were bromodeoxyuridine (BrdU) incorporation and cell number (MTT) assay (to assess endothelial proliferation), scratch assay (migration) and networks on Matrigel (tube formation). In our hands, neither TRAIL nor FasL (1, 10, and 100 ng/ml) had an effect on parameters of angiogenesis in the HUVEC model. In hCMEC/D3 cells by contrast, TRAIL inhibited all parameters (10-100 ng/ml, 24 h). This was due to apoptosis, since its action was blocked by the pan-caspase inhibitor zVADfmk (5 x 10-5 mol/l) and TRAIL increased caspase-3 activity 1 h after application. However FasL (100 ng/ml) increased BrdU uptake without other effects. We conclude that TRAIL has different effects on in vitro angiogenesis depending on which model is used, but that FasL is generally ineffective when applied in vitro. The data suggest that TRAIL primarily influences angiogenesis by the induction of vascular endothelial apoptosis, leading to vessel regression.

  4. Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) ligands inhibit growth of UACC903 and MCF7 human cancer cell lines

    International Nuclear Information System (INIS)

    The development of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) ligands for the treatment of diseases including metabolic syndrome, diabetes and obesity has been hampered due to contradictory findings on their potential safety. For example, while some reports show that ligand activation of PPARβ/δ promotes the induction of terminal differentiation and inhibition of cell growth, other reports suggest that PPARβ/δ ligands potentiate tumorigenesis by increasing cell proliferation. Some of the contradictory findings could be due in part to differences in the ligand examined, the presence or absence of serum in cell cultures, differences in cell lines or differences in the method used to quantify cell growth. For these reasons, this study examined the effect of ligand activation of PPARβ/δ on cell growth of two human cancer cell lines, MCF7 (breast cancer) and UACC903 (melanoma) in the presence or absence of serum using two highly specific PPARβ/δ ligands, GW0742 or GW501516. Culturing cells in the presence of either GW0742 or GW501516 caused upregulation of the known PPARβ/δ target gene angiopoietin-like protein 4 (ANGPTL4). Inhibition of cell growth was observed in both cell lines cultured in the presence of either GW0742 or GW501516, and the presence or absence of serum had little influence on this inhibition. Results from the present studies demonstrate that ligand activation of PPARβ/δ inhibits the growth of both MCF7 and UACC903 cell lines and provide further evidence that PPARβ/δ ligands are not mitogenic in human cancer cell lines

  5. Apigenin inhibits the inducible expression of programmed death ligand 1 by human and mouse mammary carcinoma cells.

    Science.gov (United States)

    Coombs, Melanie R Power; Harrison, Megan E; Hoskin, David W

    2016-10-01

    Programmed death ligand 1 (PD-L1) is expressed by many cancer cell types, as well as by activated T cells and antigen-presenting cells. Constitutive and inducible PD-L1 expression contributes to immune evasion by breast cancer (BC) cells. We show here that the dietary phytochemical apigenin inhibited interferon (IFN)-γ-induced PD-L1 upregulation by triple-negative MDA-MB-468 BC cells, HER2(+) SK-BR-3 BC cells, and 4T1 mouse mammary carcinoma cells, as well as human mammary epithelial cells, but did not affect constitutive PD-L1 expression by triple-negative MDA-MB-231 BC cells. IFN-β-induced expression of PD-L1 by MDA-MB-468 cells was also inhibited by apigenin. In addition, luteolin, the major metabolite of apigenin, inhibited IFN-γ-induced PD-L1 expression by MDA-MB-468 cells. Apigenin-mediated inhibition of IFN-γ-induced PD-L1 expression by MDA-MB-468 and 4T1 cells was associated with reduced phosphorylation of STAT1, which was early and transient at Tyr701 and sustained at Ser727. Apigenin-mediated inhibition of IFN-γ-induced PD-L1 expression by MDA-MB-468 cells also increased proliferation and interleukin-2 synthesis by PD-1-expressing Jurkat T cells that were co-cultured with MDA-MB-468 cells. Apigenin therefore has the potential to increase the vulnerability of BC cells to T cell-mediated anti-tumor immune responses. PMID:27378243

  6. Different mechanisms are involved in the antibody mediated inhibition of ligand binding to the urokinase receptor

    DEFF Research Database (Denmark)

    List, K; Høyer-Hansen, G; Rønne, E;

    1999-01-01

    Certain monoclonal antibodies are capable of inhibiting the biological binding reactions of their target proteins. At the molecular level, this type of effect may be brought about by completely different mechanisms, such as competition for common binding determinants, steric hindrance or...

  7. A Macrocyclic Peptide that Serves as a Cocrystallization Ligand and Inhibits the Function of a MATE Family Transporter

    Directory of Open Access Journals (Sweden)

    Hiroaki Suga

    2013-08-01

    Full Text Available The random non-standard peptide integrated discovery (RaPID system has proven to be a powerful approach to discover de novo natural product-like macrocyclic peptides that inhibit protein functions. We have recently reported three macrocyclic peptides that bind to Pyrococcus furiosus multidrug and toxic compound extrusion (PfMATE transporter and inhibit the transport function. Moreover, these macrocyclic peptides were successfully employed as cocrystallization ligands of selenomethionine-labeled PfMATE. In this report, we disclose the details of the RaPID selection strategy that led to the identification of these three macrocyclic peptides as well as a fourth macrocyclic peptide, MaD8, which is exclusively discussed in this article. MaD8 was found to bind within the cleft of PfMATE’s extracellular side and blocked the path of organic small molecules being extruded. The results of an ethidium bromide efflux assay confirmed the efflux inhibitory activity of MaD8, whose behavior was similar to that of previously reported MaD5.

  8. Inhibition of matrix metalloproteinase-9 activity by doxycycline ameliorates RANK ligand-induced osteoclast differentiation in vitro and in vivo

    International Nuclear Information System (INIS)

    Tetracycline antibiotics, including doxycycli/e (DOX), have been used to treat bone resorptive diseases, partially because of their activity to suppress osteoclastogenesis induced by receptor activator of nuclear factor kappa B ligand (RANKL). However, their precise inhibitory mechanism remains unclear. Therefore, the present study examined the effect of Dox on osteoclastogenesis signaling induced by RANKL, both in vitro and in vivo. Although Dox inhibited RANKL-induced osteoclastogenesis and down-modulated the mRNA expression of functional osteoclast markers, including tartrate-resistant acid phosphatase (TRAP) and cathepsin K, Dox neither affected RANKL-induced MAPKs phosphorylation nor NFATc1 gene expression in RAW264.7 murine monocytic cells. Gelatin zymography and Western blot analyses showed that Dox down-regulated the enzyme activity of RANKL-induced MMP-9, but without affecting its protein expression. Furthermore, MMP-9 enzyme inhibitor also attenuated both RANKL-induced osteoclastogenesis and up-regulation of TRAP and cathepsin K mRNA expression, indicating that MMP-9 enzyme action is engaged in the promotion of RANKL-induced osteoclastogenesis. Finally, Dox treatment abrogated RANKL-induced osteoclastogenesis and TRAP activity in mouse calvaria along with the suppression of MMP9 enzyme activity, again without affecting the expression of MMP9 protein. These findings suggested that Dox inhibits RANKL-induced osteoclastogenesis by its inhibitory effect on MMP-9 enzyme activity independent of the MAPK-NFATc1 signaling cascade.

  9. Inhibition of matrix metalloproteinase-9 activity by doxycycline ameliorates RANK ligand-induced osteoclast differentiation in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Gilson C.N. [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Department of Pharmacology, FOP/UNICAMP, Piracicaba, SP (Brazil); Kajiya, Mikihito [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA (United States); Nakanishi, Tadashi [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Ohta, Kouji [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA (United States); Rosalen, Pedro L.; Groppo, Francisco C. [Department of Pharmacology, FOP/UNICAMP, Piracicaba, SP (Brazil); Ernst, Cory W.O.; Boyesen, Janie L. [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Bartlett, John D.; Stashenko, Philip [Department of Cytokine Biology, Forsyth Institute, Cambridge, MA (United States); Taubman, Martin A. [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Kawai, Toshihisa, E-mail: tkawai@forsyth.org [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA (United States)

    2011-06-10

    Tetracycline antibiotics, including doxycycli/e (DOX), have been used to treat bone resorptive diseases, partially because of their activity to suppress osteoclastogenesis induced by receptor activator of nuclear factor kappa B ligand (RANKL). However, their precise inhibitory mechanism remains unclear. Therefore, the present study examined the effect of Dox on osteoclastogenesis signaling induced by RANKL, both in vitro and in vivo. Although Dox inhibited RANKL-induced osteoclastogenesis and down-modulated the mRNA expression of functional osteoclast markers, including tartrate-resistant acid phosphatase (TRAP) and cathepsin K, Dox neither affected RANKL-induced MAPKs phosphorylation nor NFATc1 gene expression in RAW264.7 murine monocytic cells. Gelatin zymography and Western blot analyses showed that Dox down-regulated the enzyme activity of RANKL-induced MMP-9, but without affecting its protein expression. Furthermore, MMP-9 enzyme inhibitor also attenuated both RANKL-induced osteoclastogenesis and up-regulation of TRAP and cathepsin K mRNA expression, indicating that MMP-9 enzyme action is engaged in the promotion of RANKL-induced osteoclastogenesis. Finally, Dox treatment abrogated RANKL-induced osteoclastogenesis and TRAP activity in mouse calvaria along with the suppression of MMP9 enzyme activity, again without affecting the expression of MMP9 protein. These findings suggested that Dox inhibits RANKL-induced osteoclastogenesis by its inhibitory effect on MMP-9 enzyme activity independent of the MAPK-NFATc1 signaling cascade.

  10. Benzimidazole ligands in the corrosion inhibition for carbon steel in acid medium: DFT study of its interaction on Fe30 surface

    Science.gov (United States)

    Garcia-Ochoa, E.; Guzmán-Jiménez, S. J.; Hernández, J. Guadalupe; Pandiyan, Thangarasu; Vásquez-Pérez, José M.; Cruz-Borbolla, Julián

    2016-09-01

    The corrosion inhibition of N,N‧-bis(benzimidazole-2-yl-methyl)amine (L1) and N, N‧-bis(benzimidazole-2-yl-methyl)hydroxyethylamine (L2) was analyzed by electrochemical and theoretical methods. The data show that ligands form an adsorption layer over an iron surface, obeying the Langmuir isotherm (Δ Gads° of -32.96 kJ mol-1); the value are higher than -20 kJ mol-1 but less than -40 kJ mol-1, belonging to a conversion stage of physical adsorption to chemical adsorption or a comprehensive adsorption. This is consistent with fractal dimension of the electrode surface, estimated by an impedance depression angle of a semicircle that the surface is homogeneously covered by the formation of an inhibitor film. Furthermore, the electronic parameters of the ligands were analyzed by DFT, showing that L1 and L2 possesses corrosion inhibition properties that give up its p orbital electron density through its HOMO orbital to the metal LUMO to form an adsorption layer, and this has been proved theoretically by the interaction of ligands with Fe30. In addition, we have collected corrosion inhibition data for around 70 organic compounds reported in the literature, and the inhibition data plotted against different inhibitors, showing that amine ligands are good corrosion inhibitors.

  11. Recombinant norovirus-specific scFv inhibit virus-like particle binding to cellular ligands

    Directory of Open Access Journals (Sweden)

    Hardy Michele E

    2008-01-01

    Full Text Available Abstract Background Noroviruses cause epidemic outbreaks of gastrointestinal illness in all age-groups. The rapid onset and ease of person-to-person transmission suggest that inhibitors of the initial steps of virus binding to susceptible cells have value in limiting spread and outbreak persistence. We previously generated a monoclonal antibody (mAb 54.6 that blocks binding of recombinant norovirus-like particles (VLP to Caco-2 intestinal cells and inhibits VLP-mediated hemagglutination. In this study, we engineered the antigen binding domains of mAb 54.6 into a single chain variable fragment (scFv and tested whether these scFv could function as cell binding inhibitors, similar to the parent mAb. Results The scFv54.6 construct was engineered to encode the light (VL and heavy (VH variable domains of mAb 54.6 separated by a flexible peptide linker, and this recombinant protein was expressed in Pichia pastoris. Purified scFv54.6 recognized native VLPs by immunoblot, inhibited VLP-mediated hemagglutination, and blocked VLP binding to H carbohydrate antigen expressed on the surface of a CHO cell line stably transfected to express α 1,2-fucosyltransferase. Conclusion scFv54.6 retained the functional properties of the parent mAb with respect to inhibiting norovirus particle interactions with cells. With further engineering into a form deliverable to the gut mucosa, norovirus neutralizing antibodies represent a prophylactic strategy that would be valuable in outbreak settings.

  12. Steroid receptor coactivator 1 deficiency increases MMTV-neu mediated tumor latency and differentiation specific gene expression, decreases metastasis, and inhibits response to PPAR ligands

    International Nuclear Information System (INIS)

    The peroxisome proliferator activated receptor (PPAR) subgroup of the nuclear hormone receptor superfamily is activated by a variety of natural and synthetic ligands. PPARs can heterodimerize with retinoid X receptors, which have homology to other members of the nuclear receptor superfamily. Ligand binding to PPAR/RXRs results in recruitment of transcriptional coactivator proteins such as steroid receptor coactivator 1 (SRC-1) and CREB binding protein (CBP). Both SRC-1 and CBP are histone acetyltransferases, which by modifying nucleosomal histones, produce more open chromatin structure and increase transcriptional activity. Nuclear hormone receptors can recruit limiting amounts of coactivators from other transcription factor binding sites such as AP-1, thereby inhibiting the activity of AP-1 target genes. PPAR and RXR ligands have been used in experimental breast cancer therapy. The role of coactivator expression in mammary tumorigenesis and response to drug therapy has been the subject of recent studies. We examined the effects of loss of SRC-1 on MMTV-neu mediated mammary tumorigenesis. SRC-1 null mutation in mammary tumor prone mice increased the tumor latency period, reduced tumor proliferation index and metastasis, inhibited response to PPAR and RXR ligands, and induced genes involved in mammary gland differentiation. We also examined human breast cancer cell lines overexpressing SRC-1 or CBP. Coactivator overexpression increased cellular proliferation with resistance to PPAR and RXR ligands and remodeled chromatin of the proximal epidermal growth factor receptor promoter. These results indicate that histone acetyltransferases play key roles in mammary tumorigenesis and response to anti-proliferative therapies

  13. The role of rank-ligand inhibition in the treatment of postmenopausal osteoporosis

    Directory of Open Access Journals (Sweden)

    M. Varenna

    2011-06-01

    Full Text Available Osteoporosis is a skeletal disease affecting millions of people worldwide in which a decreased bone mass and a microarchitectural deterioration compromise bone strength leading to bone fragility and increased susceptibility to fracture. Bone turnover increases at menopause, with osteoclast-mediated bone resorption exceeding bone formation. Recent discoveries in bone biology have demonstrated that RANKL, a cytokine member of the tumor necrosis factor superfamily, is an essential mediator of osteoclast formation, function and survival. Denosumab is a fully human monoclonal antibody with a high affinity and specificity for human RANKL. By binding to its target, denosumab prevents the interaction of RANKL with its receptor RANK on osteoclasts and their precursors and inhibits osteoclast-mediated bone resorption. Administered as a subcutaneous injection every six months, denosumab has been shown to decrease bone turnover and to increase bone mineral density in postmenopausal women with low bone mass and osteoporosis. In these patients denosumab significantly reduced the risk of vertebral fractures, hip fractures and nonvertebral fractures. In all clinical trials published to date, denosumab was well tolerated with an incidence of adverse events, including infections and malignancy, generally similar to subjects receiving placebo or alendronate. The denosumab therapeutic regimen consisting in a subcutaneous injection every 6 months may increase patient compliance and persistence with a further benefit from treatment. By providing a new molecular target for osteoporosis treatment, denosumab is a promising drug for the treatment of postmenopausal osteoporosis and the prevention of fragility fractures.

  14. Dual-targeting organometallic ruthenium(II) anticancer complexes bearing EGFR-inhibiting 4-anilinoquinazoline ligands.

    Science.gov (United States)

    Zhang, Yang; Zheng, Wei; Luo, Qun; Zhao, Yao; Zhang, Erlong; Liu, Suyan; Wang, Fuyi

    2015-08-01

    We have recently demonstrated that complexation with (η(6)-arene)Ru(II) fragments confers 4-anilinoquinazoline pharmacophores a higher potential for inducing cellular apoptosis while preserving the highly inhibitory activity of 4-anilinoquinazolines against EGFR and the reactivity of the ruthenium centre to 9-ethylguanine (Chem. Commun., 2013, 49, 10224-10226). Reported herein are the synthesis, characterisation and evaluation of the biological activity of a new series of ruthenium(ii) complexes of the type [(η(6)-arene)Ru(N,N-L)Cl]PF6 (arene = p-cymene, benzene, 2-phenylethanol or indane, L = 4-anilinoquinazolines). These organometallic ruthenium complexes undergo fast hydrolysis in aqueous solution. Intriguingly, the ligation of (arene)Ru(II) fragments with 4-anilinoquinazolines not only makes the target complexes excellent EGFR inhibitors, but also confers the complexes high affinity to bind to DNA minor grooves while maintaining their reactivity towards DNA bases, characterising them with dual-targeting properties. Molecular modelling studies reveal that the hydrolysis of these complexes is a favourable process which increases the affinity of the target complexes to bind to EGFR and DNA. In vitro biological activity assays show that most of this group of ruthenium complexes are selectively active inhibiting the EGF-stimulated growth of the HeLa cervical cancer cell line, and the most active complex [(η(6)-arene)Ru(N,N-L13)Cl]PF6 (, IC50 = 1.36 μM, = 4-(3'-chloro-4'-fluoroanilino)-6-(2-(2-aminoethyl)aminoethoxy)-7-methoxyquinazoline) is 29-fold more active than its analogue, [(η(6)-arene)Ru(N,N-ethylenediamine)Cl]PF6, and 21-fold more active than gefitinib, a well-known EGFR inhibitor in use clinically. These results highlight the strong promise to develop highly active ruthenium anticancer complexes by ligation of cytotoxic ruthenium pharmacophores with bioactive organic molecules. PMID:26106875

  15. Titanocene–Gold Complexes Containing N-Heterocyclic Carbene Ligands Inhibit Growth of Prostate, Renal, and Colon Cancers in Vitro

    Science.gov (United States)

    2016-01-01

    We report on the synthesis, characterization, and stability studies of new titanocene complexes containing a methyl group and a carboxylate ligand (mba = −OC(O)-p-C6H4-S−) bound to gold(I)–N-heterocyclic carbene fragments through the thiolate group: [(η5-C5H5)2TiMe(μ-mba)Au(NHC)]. The cytotoxicities of the heterometallic compounds along with those of novel monometallic gold–N-heterocyclic carbene precursors [(NHC)Au(mbaH)] have been evaluated against renal, prostate, colon, and breast cancer cell lines. The highest activity and selectivity and a synergistic effect of the resulting heterometallic species was found for the prostate and colon cancer cell lines. The colocalization of both titanium and gold metals (1:1 ratio) in PC3 prostate cancer cells was demonstrated for the selected compound 5a, indicating the robustness of the heterometallic compound in vitro. We describe here preliminary mechanistic data involving studies on the interaction of selected mono- and bimetallic compounds with plasmid (pBR322) used as a model nucleic acid and the inhibition of thioredoxin reductase in PC3 prostate cancer cells. The heterometallic compounds, which are highly apoptotic, exhibit strong antimigratory effects on the prostate cancer cell line PC3. PMID:27182101

  16. Troglitazone, a peroxisome proliferator-activated receptor γ ligand, induces growth inhibition and apoptosis of HepG2 human liver cancer cells

    Institute of Scientific and Technical Information of China (English)

    Yan-Ming Zhou; Yin-Hao Wen; Xiao-Yan Kang; Hai-Hua Qian; Jia-Mei Yang; Zheng-Feng Yin

    2008-01-01

    AIM: To examine the effect of troglitazone, a peroxisome proliferator-activated receptor γ (PPARγ) ligand, on the proliferation and apoptosis of human liver cancer cells.METHODS: Liver cancer cell line HepG2 was cultured and treated with troglitazone. Cell proliferation was detected by 3-(4-,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay; apoptosis was detected by flow cytometry and terminal deoxynucleotidyl transferasemediated nick end labeling of DNA fragmentation sites (TUNEL) assay; and apoptosis-related protein was detected by immunocytochemistry and Western blotting.RESULTS: Troglitazone inhibited growth and induced apoptosis of HepG2 cells in a dose-dependent manner,and induced activation of caspase-3 expression.Troglitazone not only drove apoptosis-inhibiting factor survivin to translocate incompletely from the nucleus to the cytoplasm, but also inhibited expression of survivin,while it did not affect expression of apoptosis-promoting factor Bax.CONCLUSION: PPARγ ligands inhibit growth and induce apoptosis of liver cancer cells, and may have applications for the prevention and treatment of liver cancer.

  17. Specific oligopeptides in fermented soybean extract inhibit NF-κB-dependent iNOS and cytokine induction by toll-like receptor ligands.

    Science.gov (United States)

    Lee, Woo Hyung; Wu, Hong Min; Lee, Chan Gyu; Sung, Dae Il; Song, Hye Jung; Matsui, Toshiro; Kim, Han Bok; Kim, Sang Geon

    2014-11-01

    The ethanol extract of fermented soybean from Glycine max (chungkookjang, CHU) has been claimed to have chemopreventive and cytoprotective effects. In the present study, we examined the inhibitory effect of CHU on inducible nitric oxide synthase (iNOS) and cytokine induction by toll-like receptor (TLR) ligands treatment and attempted to identify the responsible active components. Nitric oxide (NO) content and iNOS levels in the media or RAW264.7 cells were measured using the Griess reagent and real-time polymerase chain reaction assays. CHU treatment inhibited NO production and iNOS induction elicited by lipopolysaccharide (LPS, TLR4L) in a concentration-dependent manner. Tumor necrosis factor-α and interleukin-6 productions were also diminished. Peptidoglycans (TLR2/6L) and CpG-oligodeoxynucleotides (TLR9L) from CHU inhibited iNOS induction, but not poly I:C (TLR3L) or loxoribine (TLF7L). The anti-inflammatory effect resulted from the inhibition of nuclear factor-kappa B (NF-κB) through the inhibition of inhibitory-κB degradation. Of the representative components in CHU, specific oligopeptides (AFPG and GVAWWMY) had the ability to inhibit iNOS induction by LPS, whereas others failed to do so. Daidzein, an isoflavone used for comparative purposes, was active at a relatively higher concentration. In an animal model, oral administration of CHU to rats significantly diminished carrageenan-induced paw edema and iNOS induction. Our results demonstrate that CHU has anti-inflammatory effects against TLR ligands by inhibiting NF-κB activation, which may result from specific oligopeptide components in CHU. Since CHU is orally effective, dietary applications of CHU and/or the identified oligopeptides may be of use in the prevention of inflammatory diseases. PMID:25184943

  18. Mechanism of selective VEGF-A binding by neuropilin-1 reveals a basis for specific ligand inhibition.

    Directory of Open Access Journals (Sweden)

    Matthew W Parker

    Full Text Available Neuropilin (Nrp receptors function as essential cell surface receptors for the Vascular Endothelial Growth Factor (VEGF family of proangiogenic cytokines and the semaphorin 3 (Sema3 family of axon guidance molecules. There are two Nrp homologues, Nrp1 and Nrp2, which bind to both overlapping and distinct members of the VEGF and Sema3 family of molecules. Nrp1 specifically binds the VEGF-A(164/5 isoform, which is essential for developmental angiogenesis. We demonstrate that VEGF-A specific binding is governed by Nrp1 residues in the b1 coagulation factor domain surrounding the invariant Nrp C-terminal arginine binding pocket. Further, we show that Sema3F does not display the Nrp-specific binding to the b1 domain seen with VEGF-A. Engineered soluble Nrp receptor fragments that selectively sequester ligands from the active signaling complex are an attractive modality for selectively blocking the angiogenic and chemorepulsive functions of Nrp ligands. Utilizing the information on Nrp ligand binding specificity, we demonstrate Nrp constructs that specifically sequester Sema3 in the presence of VEGF-A. This establishes that unique mechanisms are used by Nrp receptors to mediate specific ligand binding and that these differences can be exploited to engineer soluble Nrp receptors with specificity for Sema3.

  19. Fluorescence properties and sequestration of peripheral anionic site specific ligands in bile acid hosts: Effect on acetylcholinesterase inhibition activity.

    Science.gov (United States)

    Islam, Mullah Muhaiminul; Aguan, Kripamoy; Mitra, Sivaprasad

    2016-05-01

    The increase in fluorescence intensity of model acetyl cholinesterase (AChE) inhibitors like propidium iodide (PI) and ethidium bromide (EB) is due to sequestration of the probes in primary micellar aggregates of bile acid (BA) host medium with moderate binding affinity of ca. 10(2)-10(3)M(-1). Multiple regression analysis of solvent dependent fluorescence behavior of PI indicates the decrease in total nonradiative decay rate due to partial shielding of the probe from hydrogen bond donation ability of the aqueous medium in bile acid bound fraction. Both PI and EB affects AChE activity through mixed inhibition and consistent with one site binding model; however, PI (IC50=20±1μM) shows greater inhibition in comparison with EB (IC50=40±3μM) possibly due to stronger interaction with enzyme active site. The potency of AChE inhibition for both the compounds is drastically reduced in the presence of bile acid due to the formation of BA-inhibitor complex and subsequent reduction of active inhibitor fraction in the medium. Although the inhibition mechanism still remains the same, the course of catalytic reaction critically depends on equilibrium binding among several species present in the solution; particularly at low inhibitor concentration. All the kinetic parameters for enzyme inhibition reaction are nicely correlated with the association constant for BA-inhibitor complex formation. PMID:26974580

  20. Delphinidin, a dietary anthocyanidin, inhibits platelet-derived growth factor ligand/receptor (PDGF/PDGFR) signaling.

    Science.gov (United States)

    Lamy, Sylvie; Beaulieu, Edith; Labbé, David; Bédard, Valérie; Moghrabi, Albert; Barrette, Stéphane; Gingras, Denis; Béliveau, Richard

    2008-05-01

    Most cancers are dependent on the growth of tumor blood vessels and inhibition of tumor angiogenesis may thus provide an efficient strategy to retard or block tumor growth. Recently, tumor vascular targeting has expanded to include not only endothelial cells (ECs) but also smooth muscle cells (SMCs), which contribute to a mature and functional vasculature. We have reported previously that delphinidin, a major biologically active constituent of berries, inhibits the vascular endothelial growth factor-induced phosphorylation of vascular endothelial growth factor receptor-2 and blocks angiogenesis in vitro and in vivo. In the present study, we show that delphinidin also inhibits activation of the platelet-derived growth factor (PDGF)-BB receptor-beta [platelet-derived growth factor receptor-beta (PDGFR-beta)] in SMC and that this inhibition may contribute to its antitumor effect. The inhibitory effect of delphinidin on PDGFR-beta was very rapid and led to the inhibition of PDGF-BB-induced activation of extracellular signal-regulated kinase (ERK)-1/2 signaling and of the chemotactic motility of SMC, as well as the differentiation and stabilization of EC and SMC into capillary-like tubular structures in a three-dimensional coculture system. Using an anthocyan-rich extract of berries, we show that berry extracts were able to suppress the synergistic induction of vessel formation by basic fibroblast growth factor-2 and PDGF-BB in the mouse Matrigel plug assay. Oral administration of the berry extract also significantly retarded tumor growth in a lung carcinoma xenograft model. Taken together, these results provide new insight into the molecular mechanisms underlying the antiangiogenic activity of delphinidin that will be helpful for the development of dietary-based chemopreventive strategies. PMID:18339683

  1. Inhibition of leukocyte function and interleukin-2 gene expression by 2-methylarachidonyl-(2'-fluoroethyl)amide, a stable congener of the endogenous cannabinoid receptor ligand anandamide

    International Nuclear Information System (INIS)

    Arachidonylethanolamide (anandamide, AEA) has been identified as an endogenous ligand for cannabinoid receptors CB1 and CB2. Characterization of the direct cannabimimetic actions of anandamide has been hampered by its short duration of action and rapid degradation in in vivo and in vitro systems to arachidonic acid, a precursor in the biosynthesis of a broad range of biologically active molecules. In the present studies, we utilized 2-methylarachidonyl-(2'-fluoroethyl)amide (F-Me-AEA), an analog of anandamide resistant to enzymatic degradation, to determine whether F-Me-AEA modulated T cell function similar to that of plant-derived cannabinoids. Indeed, F-Me-AEA at low micromolar concentrations exhibited a marked inhibition of phorbol ester plus calcium ionophore (PMA/Io)-induced IL-2 protein secretion and steady state mRNA expression. Likewise, a modest suppression of the mixed lymphocyte response was observed in the presence of F-Me-AEA indicating an alteration in T cell responsiveness to allogeneic MHC class II antigens. F-Me-AEA was also found to modestly inhibit forskolin-stimulated adenylate cyclase activity in thymocytes and splenocytes, a hallmark of cannabinoid receptor agonists. Further characterization of the influence of F-Me-AEA on the cAMP signaling cascade revealed an inhibition of CREB-1/ATF-1 phosphorylation and subsequently, an inhibition of CRE DNA binding activity. Characterization of nuclear binding proteins further revealed that NF-AT and, to a lesser extent, NF-κB DNA binding activities were also suppressed. These studies demonstrate that F-Me-AEA modulates T cell function in a similar manner to plant-derived and endogenous cannabinoids and therefore can be utilized as an amidase- and hydrolysis-resistant endogenous cannabinoid

  2. Thrombin inhibits HMGB1-mediated proinflammatory signaling responses when endothelial protein C receptor is occupied by its natural ligand

    Directory of Open Access Journals (Sweden)

    Jong-Sup Bae

    2013-11-01

    Full Text Available High mobility group box 1 (HMGB1 is involved in thepathogenesis of vascular diseases. Unlike activated protein C(APC, the activation of PAR-1 by thrombin is known to elicitproinflammatory responses. To determine whether the occupancyof EPCR by the Gla-domain of APC is responsible for thePAR-1-dependent antiinflammatory activity of the protease, wepretreated HUVECs with the PC zymogen and then activatedPAR-1 with thrombin. It was found that thrombin downregulatesthe HMGB1-mediated induction of both TNF-α andIL-6 and inhibits the activation of both p38 MAPK and NF-κB inHUVECs pretreated with PC. Furthermore, thrombin inhibitedHMGB1-mediated hyperpermeability and leukocyte adhesion/migration by inhibiting the expression of cell adhesion moleculesin HUVECs if EPCR was occupied. Collectively, theseresults suggest the concept that thrombin can initiate proinflammatoryresponses in vascular endothelial cells through theactivation of PAR-1 may not hold true for normal vesselsexpressing EPCR under in vivo conditions. [BMB Reports 2013;46(11: 544-549

  3. G protein-coupled receptor 30 ligand G-1 increases aryl hydrocarbon receptor signalling by inhibition of tubulin assembly and cell cycle arrest in human MCF-7 cells.

    Science.gov (United States)

    Tarnow, Patrick; Tralau, Tewes; Luch, Andreas

    2016-08-01

    Regulatory crosstalk between the aryl hydrocarbon receptor (AHR) and oestrogen receptor α (ERα) is well established. Apart from the nuclear receptors ERα and ERβ, oestrogen signalling further involves an unrelated G protein-coupled receptor termed GPR30. In order to investigate potential regulatory crosstalk, this study investigated the influence of G-1 as one of the few GPR30-specific ligands on the AHR regulon in MCF-7 cells. As a well-characterised model system, these human mammary carcinoma cells co-express all three receptors (AHR, ERα and GPR30) and are thus ideally suited to study corresponding regulatory pathway interactions on transcript level. Indeed, treatment with micromolar concentrations of the GPR30-specific agonist G-1 resulted in up-regulation of AHR as well as the transcripts for cytochromes P450 1A1 and 1B1, two well-known targets of the AHR regulon. While this was partly attributable to G-1-mediated inhibition of tubulin assembly and subsequent cell cycle arrest in the G2/M phase, the effects nevertheless required functional AHR. However, G-1-induced up-regulation of CYP 1A1 was not mediated by GPR30, as G15 antagonist treatment as well as a knockdown of GPR30 and AHR failed to inhibit this effect. PMID:26475489

  4. Estrogen preserves Fas ligand levels by inhibiting microRNA-181a in bone marrow-derived mesenchymal stem cells to maintain bone remodeling balance.

    Science.gov (United States)

    Shao, Bingyi; Liao, Li; Yu, Yang; Shuai, Yi; Su, Xiaoxia; Jing, Huan; Yang, Deqin; Jin, Yan

    2015-09-01

    Estrogen protects bone loss by promoting Fas ligand (FasL) transcription in osteoclasts and osteoblasts to induce apoptosis of osteoclasts. Bone marrow-derived mesenchymal stem cells (BMMSCs) express FasL protein, which is necessary for BMMSCs to induce T-cell apoptosis in cell therapy. However, the physiologic function of FasL in BMMSCs is unknown. In this study, using an in vitro coculture system and an in vivo BMMSC transplantation assay, we found that BMMSCs potently induced apoptosis of osteoclasts through the FasL/Fas pathway. Estrogen was necessary for this process as a promoter of FasL protein accumulation in BMMSCs. Furthermore, estrogen elevated FasL protein accumulation, not by increasing FasL gene transcription, but through microRNA-mediated posttranscriptional regulation. In brief, estrogen down-regulated expression of miR-181a, a negative modulator of FasL targeting the 3'-UTR of FasL mRNA. Estrogen deficiency resulted in excessive miR-181a, which decreased FasL protein levels to suppress BMMSC-induced osteoclast apoptosis. Furthermore, knockdown of miR-181a recovered the BMMSC defect to induce osteoclast apoptosis during estrogen deficiency. Taken together, our results showed that estrogen preserves FasL protein accumulation by inhibiting miR-181a expression in BMMSCs to maintain bone remodeling balance, suggesting a novel mechanism by which estrogen preserves bone mass. PMID:26062603

  5. Targeting of XIAP combined with systemic mesenchymal stem cell-mediated delivery of sTRAIL ligand inhibits metastatic growth of pancreatic carcinoma cells.

    Science.gov (United States)

    Mohr, Andrea; Albarenque, Stella Maris; Deedigan, Laura; Yu, Rui; Reidy, Mairead; Fulda, Simone; Zwacka, Ralf Michael

    2010-11-01

    Disseminating tumors are one of the gravest medical problems. Here, we combine the tumor-specific apoptosis-inducing activity of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) with the ability of mesenchymal stem cells (MSCs) to infiltrate both tumor and lymphatic tissues to target primary tumors as well as disseminated cancer cells in a human pancreatic cancer mouse model. Furthermore, we targeted X-linked inhibitor of apoptosis protein (XIAP) by RNA interference (RNAi) inside the cancer cells to make use of the apoptosis sensitization as well the antimetastatic effect that is afforded by XIAP silencing. We generated MSCs, termed MSC.sTRAIL, that express and secrete a trimeric form of soluble TRAIL (sTRAIL). MSC.sTRAIL triggered limited apoptosis in human pancreatic carcinoma cells that were resistant to soluble recombinant TRAIL, which is most likely due to the enhanced effect of the direct, cell-mediated delivery of trimeric TRAIL. MSC.sTRAIL-mediated cell death was markedly increased by concomitant knockdown of XIAP by RNAi in the cancer cells. These findings were confirmed in xenograft models, in which tumors from the parental pancreatic carcinoma cells showed only growth retardation on treatment with MSC.sTRAIL, whereas tumors with silenced XIAP that were treated with MSC.sTRAIL went into remission. Moreover, animals with XIAP-negative xenografts treated with MSC.sTRAIL were almost free of lung metastasis, whereas animals treated with control MSCs showed substantial metastatic growth in the lungs. In summary, this is the first demonstration that a combined approach using systemic MSC-mediated delivery of sTRAIL together with XIAP inhibition suppresses metastatic growth of pancreatic carcinoma. PMID:20882532

  6. Binding of recombinant T cell receptor ligands (RTL) to antigen presenting cells prevents upregulation of CD11b and inhibits T cell activation and transfer of experimental autoimmune encephalomyelitis

    OpenAIRE

    Sinha, Sushmita; Miller, Lisa; Subramanian, Sandhya; McCarty, Owen; Proctor, Thomas; Meza-Romero, Roberto; Burrows, Gregory G.; Vandenbark, Arthur A.; Offner, Halina

    2010-01-01

    Recombinant T cell ligands (RTLs) ameliorate experimental autoimmune encephalomyelitis (EAE) in antigen specific manner. We evaluated effects of RTL401 (I-As α1β1 + PLP-139-151) on splenocytes from mice with EAE to study RTL- T cell-tolerance-inducing mechanisms. RTLs bound to B, macrophages and DCs, through RTL-MHC-α1β1 moiety. RTL binding reduced CD11b expression on splenic macrophages/DC, and RTL401-conditioned macrophages/DC, not B cells, inhibited T cell activation. Reduced ability of RT...

  7. Inhibition of signaling between human CXCR4 and zebrafish ligands by the small molecule IT1t impairs the formation of triple-negative breast cancer early metastases in a zebrafish xenograft model

    Directory of Open Access Journals (Sweden)

    Claudia Tulotta

    2016-02-01

    Full Text Available Triple-negative breast cancer (TNBC is a highly aggressive and recurrent type of breast carcinoma that is associated with poor patient prognosis. Because of the limited efficacy of current treatments, new therapeutic strategies need to be developed. The CXCR4-CXCL12 chemokine signaling axis guides cell migration in physiological and pathological processes, including breast cancer metastasis. Although targeted therapies to inhibit the CXCR4-CXCL12 axis are under clinical experimentation, still no effective therapeutic approaches have been established to block CXCR4 in TNBC. To unravel the role of the CXCR4-CXCL12 axis in the formation of TNBC early metastases, we used the zebrafish xenograft model. Importantly, we demonstrate that cross-communication between the zebrafish and human ligands and receptors takes place and human tumor cells expressing CXCR4 initiate early metastatic events by sensing zebrafish cognate ligands at the metastatic site. Taking advantage of the conserved intercommunication between human tumor cells and the zebrafish host, we blocked TNBC early metastatic events by chemical and genetic inhibition of CXCR4 signaling. We used IT1t, a potent CXCR4 antagonist, and show for the first time its promising anti-tumor effects. In conclusion, we confirm the validity of the zebrafish as a xenotransplantation model and propose a pharmacological approach to target CXCR4 in TNBC.

  8. Hair growth modulation by topical immunophilin ligands: induction of anagen, inhibition of massive catagen development, and relative protection from chemotherapy-induced alopecia.

    OpenAIRE

    Maurer, M.; Handjiski, B.; R Paus

    1997-01-01

    Selected immunophilin ligands (IPLs) are not only potent immunosuppressants but also modulate hair growth. Their considerable side effects, however, justify at best topical applications of these drugs for the management of clinical hair growth disorders. Therefore, we have explored hair growth manipulation by topical cyclosporin A (CsA) and FK 506 in previously established murine models that mimic premature hair follicle regression (catagen) or chemotherapy-induced alopecia, two major pathome...

  9. Selective inhibition of the MCP-1-CCR2 ligand-receptor axis decreases systemic trafficking of macrophages in the presence of UHMWPE particles

    OpenAIRE

    Gibon, Emmanuel; Ma, Ting; Ren, Pei-Gen; Fritton, Kate; Biswal, Sandip; Yao, Zhenyu; Smith, Lane; Goodman, Stuart B.

    2011-01-01

    The biological mechanisms leading to periprosthetic osteolysis involve both chemokines and the monocyte/macrophage cell lineage. Whether MCP-1 plays a major role in macrophage recruitment in the presence of wear particles is unknown. We tested two hypotheses: (1) that exogenous local delivery of MCP-1 induces systematic macrophage recruitment and (2) that blockade of the MCP-1 ligand-receptor axis decreases macrophage recruitment and osteolysis in the presence of UHMWPE particles. Six groups ...

  10. Specific Oligopeptides in Fermented Soybean Extract Inhibit NF-κB-Dependent iNOS and Cytokine Induction by Toll-Like Receptor Ligands

    OpenAIRE

    Lee, Woo Hyung; Wu, Hong Min; LEE, CHAN GYU; Sung, Dae Il; Song, Hye Jung; Matsui, Toshiro; Kim, Han Bok; Kim, Sang Geon

    2014-01-01

    The ethanol extract of fermented soybean from Glycine max (chungkookjang, CHU) has been claimed to have chemopreventive and cytoprotective effects. In the present study, we examined the inhibitory effect of CHU on inducible nitric oxide synthase (iNOS) and cytokine induction by toll-like receptor (TLR) ligands treatment and attempted to identify the responsible active components. Nitric oxide (NO) content and iNOS levels in the media or RAW264.7 cells were measured using the Griess reagent an...

  11. 2-deoxy D-glucose prevents cell surface expression of NKG2D ligands through inhibition of N-linked glycosylation

    DEFF Research Database (Denmark)

    Andresen, Lars; Skovbakke, Sarah Line; Persson, Gry; Hagemann-Jensen, Michael Henrik; Hansen, Karen Aagaard; Jensen, Helle; Skov, Søren

    2012-01-01

    -d-glucose (2DG), potently inhibited surface expression of MICA/B after histone deacetylase inhibitor treatment; the inhibition occurred posttranscriptionally without affecting MICA promoter activity. Transient overexpression of MICA surface expression was also inhibited by 2DG. 2DG blocks N......-linked glycosylation of MICA/B by a reversible mechanism that can be alleviated by addition of d-mannose; this does not, however, affect the inhibition of glycolysis. Addition of d-mannose restored MICA/B surface expression after 2DG treatment. In addition, specific pharmacological or small interfering RNA......-mediated targeting of glycolytic enzymes did not affect MICA/B surface expression, strongly suggesting that N-linked glycosylation, and not glycolysis, is essential for MICA/B surface expression. Corroborating this, tunicamycin, a selective inhibitor of N-linked glycosylation, abolished MICA/B surface expression...

  12. Binding of recombinant T cell receptor ligands (RTL) to antigen presenting cells prevents upregulation of CD11b and inhibits T cell activation and transfer of experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Sinha, Sushmita; Miller, Lisa; Subramanian, Sandhya; McCarty, Owen J T; Proctor, Thomas; Meza-Romero, Roberto; Huan, Jianya; Burrows, Gregory G; Vandenbark, Arthur A; Offner, Halina

    2010-08-25

    Recombinant T cell ligands (RTLs) ameliorate experimental autoimmune encephalomyelitis (EAE) in an antigen-specific manner. We evaluated effects of RTL401 (I-A(s) alpha1beta1+PLP-139-151) on splenocytes from SJL/J mice with EAE to study RTL-T cell tolerance-inducing mechanisms. RTLs bound to B, macrophages and DCs, through RTL-MHC-alpha1beta1 moiety. RTL binding reduced CD11b expression on splenic macrophages/DC, and RTL401-conditioned macrophages/DC, not B cells, inhibited T cell activation. Reduced ability of RTL- incubated splenocytes to transfer EAE was likely mediated through macrophages/DC, since B cells were unnecessary for RTL treatment of EAE. These results demonstrate a novel pathway of T cell regulation by RTL-bound APCs. PMID:20546940

  13. Ylide Ligands

    OpenAIRE

    Esteban P. Urriolabeitia

    2010-01-01

    The use of ylides of P, N, As, or S as ligands toward transition metals is still a very active research area in organometallic chemistry. This fact is mainly due to the nucleophilic character of the ylides and to their particular bonding properties and coordination modes. They can behave as monodentate or bidentate chelate or bridging species, they can be used as chiral auxiliary reagents, and they are interesting reaction intermediates or useful starting materials in a wide ...

  14. The natural product Aristolactam Allla as a new ligand targeting the polo-box domain of polo-like kinase 1 potently inhibits cancer cell proliferation

    Institute of Scientific and Technical Information of China (English)

    Li LI; Xu WANG; Jing CHEN; Hong DING; Yu ZHANG; Tian-cen HU; Li-hong HU; Hua-liang JIANG; Xu SHEN

    2009-01-01

    Aim:To search for novel inhibitors of human polo-like kinase 1 (Plkl), which plays important roles in various aspects of mitotic progres-sion and is believed as a promising anti-cancer drug target, and further investigate the potential inhibition mechanism of active com-pounds against Plk1, thus developing potent anti-tumor lead compounds.Methods: Surface plasmon resonance (SPR) technology-based assay and enzymatic inhibition assay were used to screen Plk1 inhibi-tors. Sulphorhodamine B (SRB)-based assay, flow cytometry, confocal microscopy and Western blotting were used to further identify the potent Plk1 inhibitor. To investigate the inhibitory mechanism of the active compound against Plk1, enzymatic inhibition assay, SPR and yeast two-hybrid technology-based assays were used.Results: Aristolactam AIlla was identified as a new type of Plk1 inhibitors, targeting the Polo Box domain (PBD) which is another effi-cient tactic for exploring Plk1 inhibitors. Further studies indicated that it could block the proliferations of HeLa, A549, HGC and the HCT-8/V cells (clinical Navelbine-resistant cancer cell), induce mitotic arrest of HeLa cells at G2/M phase with spindle abnormalities and promote apoptosis in HeLa cells. The results from SPR and yeast two-hybrid technology-based assays suggested that it could tar-get both the catalytic domain of Plk1 (CD) and PBD and enhance the CD/PBD interaction.Conclusion: Our current work is expected to shed light on the potential anti-tumor mechanism of Aristolactam AIlla, and this natural product might be possibly used as a lead compound for further developing anti-tumor drugs.

  15. Imidazoline receptors ligands

    Directory of Open Access Journals (Sweden)

    Agbaba Danica

    2012-01-01

    Full Text Available Extensive biochemical and pharmacological studies have determined three different subtypes of imidazoline receptors: I1-imidazoline receptors (I1-IR involved in central inhibition of sympathicus that produce hypotensive effect; I2-imidazoline receptors (I2-IR modulate monoamine oxidase B activity (MAO-B; I3-imidazoline receptors (I3-IR regulate insulin secretion from pancreatic β-cells. Therefore, the I1/I2/I3 imidazoline receptors are selected as new, interesting targets for drug design and discovery. Novel selective I1/I2/I3 agonists and antagonists have been recently developed. In the present review, we provide a brief update to the field of imidazoline research, highlighting some of the chemical diversity and progress made in the 2D-QSAR, 3D-QSAR and quantitative pharmacophore development studies of I1-IR and I2-IR imidazoline receptor ligands. Theoretical studies of I3-IR ligands are not yet performed because of insufficient number of synthesized I3-IR ligands.

  16. Ligand photo-isomerization triggers conformational changes in iGluR2 ligand binding domain.

    Directory of Open Access Journals (Sweden)

    Tino Wolter

    Full Text Available Neurological glutamate receptors bind a variety of artificial ligands, both agonistic and antagonistic, in addition to glutamate. Studying their small molecule binding properties increases our understanding of the central nervous system and a variety of associated pathologies. The large, oligomeric multidomain membrane protein contains a large and flexible ligand binding domains which undergoes large conformational changes upon binding different ligands. A recent application of glutamate receptors is their activation or inhibition via photo-switchable ligands, making them key systems in the emerging field of optochemical genetics. In this work, we present a theoretical study on the binding mode and complex stability of a novel photo-switchable ligand, ATA-3, which reversibly binds to glutamate receptors ligand binding domains (LBDs. We propose two possible binding modes for this ligand based on flexible ligand docking calculations and show one of them to be analogues to the binding mode of a similar ligand, 2-BnTetAMPA. In long MD simulations, it was observed that transitions between both binding poses involve breaking and reforming the T686-E402 protein hydrogen bond. Simulating the ligand photo-isomerization process shows that the two possible configurations of the ligand azo-group have markedly different complex stabilities and equilibrium binding modes. A strong but slow protein response is observed after ligand configuration changes. This provides a microscopic foundation for the observed difference in ligand activity upon light-switching.

  17. Designing Hydroxamates and Reversed Hydroxamates to Inhibit Zinc-containing Proteases but not Cytochrome P450s: Insights from Quantum Mechanics and Protein-ligand Crystal Structures.

    Science.gov (United States)

    Barker, Charlotte; Lukac, Iva; Leach, Andrew G

    2015-09-01

    The Hydroxamate is a useful functional group that binds to metals in a range of enzymes, notably zinc in matrix metalloproteases and histone deacetylases. The group is also able to form interactions with iron leading to inhibition of the cytochromes P450, particularly the 3A4 isoform. We have studied the available crystal structures of zinc-containing proteins bound to hydroxamates and compared the observed geometries with those found by quantum mechanical calculations. This has revealed the likely binding mode preferences for neutral and anionic protonation states and highlighted the importance of electrostatic complementarity. Calculations were also performed for the interaction of the hydroxamate with iron in a heme environment, as found in the cytochromes P450. These reveal that the preferred binding mode of hydroxamates in this environment involves the s-trans conformation. These calculations provide design guidelines for those interested in designing inhibitors of metalloenzymes that do not block metabolism of other drugs. The ability to predict the geometries and energies of binding modes that cannot be studied experimentally is an advantage offered by this kind of study. PMID:27490712

  18. A promising therapeutic approach for multiple sclerosis: recombinant T-cell receptor ligands modulate experimental autoimmune encephalomyelitis by reducing interleukin-17 production and inhibiting migration of encephalitogenic cells into the CNS.

    Science.gov (United States)

    Sinha, Sushmita; Subramanian, Sandhya; Proctor, Thomas M; Kaler, Laurie J; Grafe, Marjorie; Dahan, Rony; Huan, Jianya; Vandenbark, Arthur A; Burrows, Gregory G; Offner, Halina

    2007-11-14

    Recombinant T-cell receptor ligands (RTLs) can prevent and reverse clinical and histological signs of experimental autoimmune encephalomyelitis (EAE) in an antigen-specific manner and are currently in clinical trials for treatment of subjects with multiple sclerosis (MS). To evaluate regulatory mechanisms, we designed and tested RTL551, containing the alpha1 and beta1 domains of the I-A(b) class II molecule covalently linked to the encephalitogenic MOG-35-55 peptide in C57BL/6 mice. Treatment of active or passive EAE with RTL551 after disease onset significantly reduced clinical signs and spinal cord lesions. Moreover, RTL551 treatment strongly and selectively reduced secretion of interleukin-17 and tumor necrosis factor alpha by transferred green fluorescent protein-positive (GFP+) MOG-35-55-reactive T-cells and almost completely abrogated existent GFP+ cellular infiltrates in affected spinal cord sections. Reduced inflammation in spinal cords of RTL551-treated mice was accompanied by a highly significant downregulation of chemokines and their receptors and inhibition of VCAM-1 (vascular cell adhesion molecule-1) and ICAM-1 (intercellular adhesion molecule-1) expression by endothelial cells. Thus, RTL therapy cannot only inhibit systemic production of encephalitogenic cytokines by the targeted myelin oligodendrocyte glycoprotein-reactive T-cells but also impedes downstream local recruitment and retention of inflammatory cells in the CNS. These findings indicate that targeted immunotherapy of antigen-specific T-cells can result in a reversal of CNS lesion formation and lend strong support to the application of the RTL approach for therapy in MS. PMID:18003831

  19. The Inhibition of Stat5 by a Peptide Aptamer Ligand Specific for the DNA Binding Domain Prevents Target Gene Transactivation and the Growth of Breast and Prostate Tumor Cells

    Directory of Open Access Journals (Sweden)

    Vida Vafaizadeh

    2013-08-01

    Full Text Available The signal transducer and activator of transcription Stat5 is transiently activated by growth factor and cytokine signals in normal cells, but its persistent activation has been observed in a wide range of human tumors. Aberrant Stat5 activity was initially observed in leukemias, but subsequently also found in carcinomas. We investigated the importance of Stat5 in human tumor cell lines. shRNA mediated downregulation of Stat5 revealed the dependence of prostate and breast cancer cells on the expression of this transcription factor. We extended these inhibition studies and derived a peptide aptamer (PA ligand, which directly interacts with the DNA-binding domain of Stat5 in a yeast-two-hybrid screen. The Stat5 specific PA sequence is embedded in a thioredoxin (hTRX scaffold protein. The resulting recombinant protein S5-DBD-PA was expressed in bacteria, purified and introduced into tumor cells by protein transduction. Alternatively, S5-DBD-PA was expressed in the tumor cells after infection with a S5-DBD-PA encoding gene transfer vector. Both strategies impaired the DNA-binding ability of Stat5, suppressed Stat5 dependent transactivation and caused its intracellular degradation. Our experiments describe a peptide based inhibitor of Stat5 protein activity which can serve as a lead for the development of a clinically useful compound for cancer treatment.

  20. Handling ligands with Coot

    OpenAIRE

    Debreczeni, Judit É.; Emsley, Paul

    2012-01-01

    Coot is a molecular-graphics application primarily aimed to assist in model building and validation of biological macromolecules. Recently, tools have been added to work with small molecules. The newly incorporated tools for the manipulation and validation of ligands include interaction with PRODRG, subgraph isomorphism-based tools, representation of ligand chemistry, ligand fitting and analysis, and are described here.

  1. Circulating amounts of osteoprotegerin and RANK ligand

    DEFF Research Database (Denmark)

    Abrahamsen, Bo; Hjelmborg, Jacob Vb; Kostenuik, Paul;

    2005-01-01

    UNLABELLED: Osteoprotegerin (OPG) is a circulating receptor that inhibits osteoclastogenesis by binding to RANK ligand (RANKL). OPG knock-out animals develop severe osteoporosis. Treatment with OPG lowers bone resorption and increases BMD. OPG production is influenced by a wide range of hormones ...

  2. Metal-ligand cooperation.

    Science.gov (United States)

    Khusnutdinova, Julia R; Milstein, David

    2015-10-12

    Metal-ligand cooperation (MLC) has become an important concept in catalysis by transition metal complexes both in synthetic and biological systems. MLC implies that both the metal and the ligand are directly involved in bond activation processes, by contrast to "classical" transition metal catalysis where the ligand (e.g. phosphine) acts as a spectator, while all key transformations occur at the metal center. In this Review, we will discuss examples of MLC in which 1) both the metal and the ligand are chemically modified during bond activation and 2) bond activation results in immediate changes in the 1st coordination sphere involving the cooperating ligand, even if the reactive center at the ligand is not directly bound to the metal (e.g. via tautomerization). The role of MLC in enabling effective catalysis as well as in catalyst deactivation reactions will be discussed. PMID:26436516

  3. Inhibition of selectin binding

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Jon O. (Rodeo, CA); Spevak, Wayne R. (Albany, CA); Dasgupta, Falguni (New Delhi, IN); Bertozzi, Caroline (Albany, CA)

    2001-10-09

    This invention provides compositions for inhibiting the binding between two cells, one expressing P- or L-selectin on the surface and the other expressing the corresponding ligand. A covalently crosslinked lipid composition is prepared having saccharides and acidic group on separate lipids. The composition is then interposed between the cells so as to inhibit binding. Inhibition can be achieved at an effective oligosaccharide concentration as low as 10.sup.6 fold below that of the free saccharide. Since selectins are involved in recruiting cells to sites of injury, these composition scan be used to palliate certain inflammatory and immunological conditions.

  4. Inhibition of selectin binding

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, J.O.; Spevak, W.R.; Dasgupta, F.; Bertozzi, C.

    1999-10-05

    This invention provides a system for inhibiting the binding between two cells, one expressing P- or L-selectin on the surface and the other expressing the corresponding ligand. A covalently crosslinked lipid composition is prepared having saccharides and acidic group on separate lipids. The composition is then interposed between the cells so as to inhibit binding. Inhibition can be achieved at an effective oligosaccharide concentration as low as 10{sup 6} fold below that of the free saccharide. Since selectins are involved in recruiting cells to sites of injury, this system can be used to palliate certain inflammatory and immunological conditions.

  5. Inhibition of selectin binding

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Jon O. (Rodeo, CA); Spevak, Wayne R. (Albany, CA); Dasgupta, Falguni (New Delhi, IN); Bertozzi, Caroline (Albany, CA)

    1999-01-01

    This invention provides compositions for inhibiting the binding between two cells, one expressing P- or L-selectin on the surface and the other expressing the corresponding ligand. A covalently crosslinked lipid composition is prepared having saccharides and acidic group on separate lipids. The composition is then interposed between the cells so as to inhibit binding. Inhibition can be achieved at an effective oligosaccharide concentration as low as 10.sup.6 fold below that of the free saccharide. Since selectins are involved in recruiting cells to sites of injury, these composition scan be used to palliate certain inflammatory and immunological conditions.

  6. Inhibition of selectin binding

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, J.O.; Spevak, W.R.; Dasgupta, F.; Bertozzi, C.

    1999-11-16

    This invention provides compositions for inhibiting the binding between two cells, one expressing P- or L-selectin on the surface and the other expressing the corresponding ligand. A covalently crosslinked lipid composition is prepared having saccharides and acidic group on separate lipids. The composition is then interposed between the cells so as to inhibit binding. Inhibition can be achieved at an effective oligosaccharide concentration as low as 10{sup 6} fold below that of the free saccharide. Since selectins are involved in recruiting cells to sites of injury, these composition scan be used to palliate certain inflammatory and immunological conditions.

  7. Inhibition of selectin binding

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Jon O. (Rodeo, CA); Spevak, Wayne R. (Albany, CA); Dasgupta, Falguni (New Delhi, IN); Bertozzi, Carolyn (Albany, CA)

    1999-10-05

    This invention provides a system for inhibiting the binding between two cells, one expressing P- or L-selectin on the surface and the other expressing the corresponding ligand. A covalently crosslinked lipid composition is prepared having saccharides and acidic group on separate lipids. The composition is then interposed between the cells so as to inhibit binding. Inhibition can be achieved at an effective oligosaccharide concentration as low as 10.sup.6 fold below that of the free saccharide. Since selectins are involved in recruiting cells to sites of injury, this system can be used to palliate certain inflammatory and immunological conditions.

  8. Ligand modeling and design

    Energy Technology Data Exchange (ETDEWEB)

    Hay, B.P. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    The purpose of this work is to develop and implement a molecular design basis for selecting organic ligands that would be used in the cost-effective removal of specific radionuclides from nuclear waste streams. Organic ligands with metal ion specificity are critical components in the development of solvent extraction and ion exchange processes that are highly selective for targeted radionuclides. The traditional approach to the development of such ligands involves lengthy programs of organic synthesis and testing, which in the absence of reliable methods for screening compounds before synthesis, results in wasted research effort. The author`s approach breaks down and simplifies this costly process with the aid of computer-based molecular modeling techniques. Commercial software for organic molecular modeling is being configured to examine the interactions between organic ligands and metal ions, yielding an inexpensive, commercially or readily available computational tool that can be used to predict the structures and energies of ligand-metal complexes. Users will be able to correlate the large body of existing experimental data on structure, solution binding affinity, and metal ion selectivity to develop structural design criteria. These criteria will provide a basis for selecting ligands that can be implemented in separations technologies through collaboration with other DOE national laboratories and private industry. The initial focus will be to select ether-based ligands that can be applied to the recovery and concentration of the alkali and alkaline earth metal ions including cesium, strontium, and radium.

  9. Ligand modeling and design

    Energy Technology Data Exchange (ETDEWEB)

    Hay, B. [Pacific Northwest Lab., Richland, WA (United States)

    1996-10-01

    The purpose of this work is to develop and implement a molecular design basis for selecting organic ligands that would be used tin applications for the cost-effective removal of specific radionuclides from nuclear waste streams.

  10. Superior serum half life of albumin tagged TNF ligands

    International Nuclear Information System (INIS)

    Due to their immune stimulating and apoptosis inducing properties, ligands of the TNF family attract increasing interest as therapeutic proteins. A general limitation of in vivo applications of recombinant soluble TNF ligands is their notoriously rapid clearance from circulation. To improve the serum half life of the TNF family members TNF, TWEAK and TRAIL, we genetically fused soluble variants of these molecules to human serum albumin (HSA). The serum albumin-TNF ligand fusion proteins were found to be of similar bioactivity as the corresponding HSA-less counterparts. Upon intravenous injection (i.v.), serum half life of HSA-TNF ligand fusion proteins, as determined by ELISA, was around 15 h as compared to approximately 1 h for all of the recombinant control TNF ligands without HSA domain. Moreover, serum samples collected 6 or 24 h after i.v. injection still contained high TNF ligand bioactivity, demonstrating that there is only limited degradation/inactivation of circulating HSA-TNF ligand fusion proteins in vivo. In a xenotransplantation model, significantly less of the HSA-TRAIL fusion protein compared to the respective control TRAIL protein was required to achieve inhibition of tumor growth indicating that the increased half life of HSA-TNF ligand fusion proteins translates into better therapeutic action in vivo. In conclusion, our data suggest that genetic fusion to serum albumin is a powerful and generally applicable mean to improve bioavailability and in vivo activity of TNF ligands.

  11. Spongian diterpenoids inhibit androgen receptor activity

    OpenAIRE

    Yang, Yu Chi; Labros G Meimetis; Tien, Amy H; Mawji, Nasrin R.; Carr, Gavin; Wang, Jun; Andersen, Raymond J.; Sadar, Marianne D.

    2013-01-01

    Androgen receptor (AR) is a ligand-activated transcription factor and a validated drug target for all stages of prostate cancer. Antiandrogens compete with physiological ligands for AR ligand-binding domain (LBD). High-throughput screening of a marine natural product library for small molecules that inhibit AR transcriptional activity yielded the furanoditerpenoid spongia-13(16),-14-dien-19-oic acid, designated terpene 1 (T1). Characterization of T1 and the structurally related semi-synthetic...

  12. Identification of VDR Antagonists among Nuclear Receptor Ligands Using Virtual Screening

    Directory of Open Access Journals (Sweden)

    Kelly Teske

    2014-04-01

    Full Text Available Herein, we described the development of two virtual screens to identify new vitamin D receptor (VDR antagonists among nuclear receptor (NR ligands. Therefore, a database of 14330 nuclear receptor ligands and their NR affinities was assembled using the online available “Binding Database.” Two different virtual screens were carried out in conjunction with a reported VDR crystal structure applying a stringent and less stringent pharmacophore model to filter docked NR ligand conformations. The pharmacophore models were based on the spatial orientation of the hydroxyl functionalities of VDR's natural ligands 1,25(OH2D3 and 25(OH2D3. The first virtual screen identified 32 NR ligands with a calculated free energy of VDR binding of more than -6.0 kJ/mol. All but nordihydroguaiaretic acid (NDGA are VDR ligands, which inhibited the interaction between VDR and coactivator peptide SRC2-3 with an IC50 value of 15.8 μM. The second screen identified 162 NR ligands with a calculated free energy of VDR binding of more than -6.0 kJ/mol. More than half of these ligands were developed to bind VDR followed by ERα/β ligands (26%, TRα/β ligands (7%, and LxRα/β ligands (7%. The binding between VDR and ERα ligand H6036 as well as TRα/β ligand triiodothyronine and a homoserine analog thereof was confirmed by fluorescence polarization.

  13. Inhibition of αIIbβ3 Ligand Binding by an αIIb Peptide that Clasps the Hybrid Domain to the βI Domain of β3.

    Directory of Open Access Journals (Sweden)

    Wen Hwa Lee

    Full Text Available Agonist-stimulated platelet activation triggers conformational changes of integrin αIIbβ3, allowing fibrinogen binding and platelet aggregation. We have previously shown that an octapeptide, p1YMESRADR8, corresponding to amino acids 313-320 of the β-ribbon extending from the β-propeller domain of αIIb, acts as a potent inhibitor of platelet aggregation. Here we have performed in silico modelling analysis of the interaction of this peptide with αIIbβ3 in its bent and closed (not swing-out conformation and show that the peptide is able to act as a substitute for the β-ribbon by forming a clasp restraining the β3 hybrid and βI domains in a closed conformation. The involvement of species-specific residues of the β3 hybrid domain (E356 and K384 and the β1 domain (E297 as well as an intrapeptide bond (pE315-pR317 were confirmed as important for this interaction by mutagenesis studies of αIIbβ3 expressed in CHO cells and native or substituted peptide inhibitory studies on platelet functions. Furthermore, NMR data corroborate the above results. Our findings provide insight into the important functional role of the αIIb β-ribbon in preventing integrin αIIbβ3 head piece opening, and highlight a potential new therapeutic approach to prevent integrin ligand binding.

  14. Glutamate receptor ligands

    DEFF Research Database (Denmark)

    Guldbrandt, Mette; Johansen, Tommy N; Frydenvang, Karla Andrea; Bräuner-Osborne, Hans; Stensbøl, Tine B; Nielsen, Birgitte; Karla, Rolf; Santi, Flavio; Krogsgaard-Larsen, Povl; Madsen, Ulf

    2002-01-01

    Homologation and substitution on the carbon backbone of (S)-glutamic acid [(S)-Glu, 1], as well as absolute stereochemistry, are structural parameters of key importance for the pharmacological profile of (S)-Glu receptor ligands. We describe a series of methyl-substituted 2-aminoadipic acid (AA...

  15. AMPA receptor ligands

    DEFF Research Database (Denmark)

    Strømgaard, Kristian; Mellor, Ian

    2004-01-01

    polyamines are known to modulate the function of these receptors in vivo. In this study, recent developments in the medicinal chemistry of polyamine-based ligands are given, particularly focusing on the use of solid-phase synthesis (SPS) as a tool for the facile generation of libraries of polyamine toxin...

  16. Synergistic Effects of PPARγ Ligands and Retinoids in Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Masahito Shimizu

    2008-01-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs are members of the nuclear receptor superfamily. The activation of PPARs by their specific ligands is regarded as one of the promising strategies to inhibit cancer cell growth. However, recent clinical trials targeting several common cancers showed no beneficial effect when PPAR ligands are used as a monotherapy. Retinoid X receptors (RXRs, which play a critical role in normal cell proliferation as a master regulator for nuclear receptors, preferentially form heterodimers with PPARs. A malfunction of RXRα due to phosphorylation by the Ras/MAPK signaling pathway is associated with the development of certain types of human malignancies. The activation of PPARγ/RXR heterodimer by their respective ligands synergistically inhibits cell growth, while inducing apoptosis in human colon cancer cells when the phosphorylation of RXRα was inhibited. We herein review the synergistic antitumor effects produced by the combination of the PPAR, especially PPARγ, ligands plus other agents, especially retinoids, in a variety of human cancers. We also focus on the phosphorylation of RXRα because the inhibition of RXRα phosphorylation and the restoration of its physiological function may activate PPAR/RXR heterodimer and, therefore, be a potentially effective and critical strategy for the inhibition of cancer cell growth.

  17. Analysis of macromolecules, ligands and macromolecule-ligand complexes

    Science.gov (United States)

    Von Dreele, Robert B.

    2008-12-23

    A method for determining atomic level structures of macromolecule-ligand complexes through high-resolution powder diffraction analysis and a method for providing suitable microcrystalline powder for diffraction analysis are provided. In one embodiment, powder diffraction data is collected from samples of polycrystalline macromolecule and macromolecule-ligand complex and the refined structure of the macromolecule is used as an approximate model for a combined Rietveld and stereochemical restraint refinement of the macromolecule-ligand complex. A difference Fourier map is calculated and the ligand position and points of interaction between the atoms of the macromolecule and the atoms of the ligand can be deduced and visualized. A suitable polycrystalline sample of macromolecule-ligand complex can be produced by physically agitating a mixture of lyophilized macromolecule, ligand and a solvent.

  18. Ligand-Receptor Interactions

    CERN Document Server

    Bongrand, Pierre

    2008-01-01

    The formation and dissociation of specific noncovalent interactions between a variety of macromolecules play a crucial role in the function of biological systems. During the last few years, three main lines of research led to a dramatic improvement of our understanding of these important phenomena. First, combination of genetic engineering and X ray cristallography made available a simultaneous knowledg of the precise structure and affinity of series or related ligand-receptor systems differing by a few well-defined atoms. Second, improvement of computer power and simulation techniques allowed extended exploration of the interaction of realistic macromolecules. Third, simultaneous development of a variety of techniques based on atomic force microscopy, hydrodynamic flow, biomembrane probes, optical tweezers, magnetic fields or flexible transducers yielded direct experimental information of the behavior of single ligand receptor bonds. At the same time, investigation of well defined cellular models raised the ...

  19. Radiobiology with DNA ligands

    International Nuclear Information System (INIS)

    The paper deals with the following topics: labelling of DNA ligands and other tumour-affinic compounds with 4.15-d 124I, radiotoxicity of Hoechst 33258 and 33342 and of iodinated Hoechst 33258 in cell cultures, preparation of 76Br-, 123I-, and 221At-labelled 5-halo-2'-deoxyuridine, chemical syntheses of boron derivatives of Hoechst 33258.III., Gadolinium neutron capture therapy

  20. Internalization mechanisms of the epidermal growth factor receptor after activation with different ligands

    DEFF Research Database (Denmark)

    Henriksen, Lasse; Grandal, Michael Vibo; Knudsen, Stine Louise Jeppe; van Deurs, Bo; Grøvdal, Lene Melsæther

    2013-01-01

    after ligand activation focuses on the effect of epidermal growth factor (EGF) and transforming growth factor-α (TGF-α). For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist....... Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF) or betacellulin (BTC) was only partial. In contrast, clathrin knockdown...... fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand...

  1. Effect of size and conformation of the ligand on asialoglycoprotein receptor-mediated ligand internalization and degradation in rat hepatocytes

    International Nuclear Information System (INIS)

    The rates of internalization and degradation of 125-I-labeled desialylated cyanogen bromide fragment I of orosomucoid (AS-CNBr-I) and its reduced and carboxymethylated derivative (AS-RC-CNBr-I) were compared with those of 125I-labeled asialoorosomucoid (ASOR) in rat hepatocytes. At 30 nM the rates of internalization and degradation of 125I-AS-CNBr-I were greater than those of 125I-ASOR. 125I-AS-RC-CNBr-I also had a lower rate of internalization and degradation. In contrast to 125I-ASOR, when degradation was inhibited by 5 μM colchicine there was a significant intracellular accumulation of the smaller ligands. At 40C the hepatocytes were found to bind the fragmented ligands more than 125I-ASOR. Incubation of the cells with bound ligand at 370 indicated that diacytosis of 125I-ASOR was greater than the smaller ligands. Colchincine markedly enhanced diacytosis of 125I-ASOR. On the other hand, there were marked accumulation of the smaller ligands by colchicine. These results suggest that the rates of internalization, degradation and diacytosis of the ligand are affected by the size and conformation of the ligand through different rates of receptor binding and intracellular transport

  2. Molecular path for ligand search

    Institute of Scientific and Technical Information of China (English)

    Tao Lu; Yuan Yuan Qiao; Pan Wen Shen

    2011-01-01

    A ligand is a small molecule bind to several residues of a receptor. We adapt the concept of molecular path for effective ligand search with its contacting residues. Additionally, we allow wild type definitions on atoms and bonds of molecular paths for fuzzy algorithms on structural match. We choose hydrogen bond interactions to characterize the binding mode of a ligand by several proper molecular paths and use them to query the deposited ligands in PDBe that interact with their residues in the same way. Expression of molecular path and format of database entries are described with examples. Our molecular path provides a new approach to explore the ligand-receptor interactions and to provide structural framework reference on new ligand design.

  3. Macrocyclic G-quadruplex ligands

    DEFF Research Database (Denmark)

    Nielsen, M C; Ulven, Trond

    2010-01-01

    G-quadruplex stabilizing compounds have recently received increased interest due to their potential application as anticancer therapeutics. A significant number of structurally diverse G-quadruplex ligands have been developed. Some of the most potent and selective ligands currently known are...... macrocyclic structures which have been modeled after the natural product telomestatin or from porphyrin-based ligands discovered in the late 1990s. These two structural classes of G-quadruplex ligands are reviewed here with special attention to selectivity and structure-activity relationships, and with focus...

  4. Targeting Selectins and Their Ligands in Cancer.

    Science.gov (United States)

    Natoni, Alessandro; Macauley, Matthew S; O'Dwyer, Michael E

    2016-01-01

    Aberrant glycosylation is a hallmark of cancer cells with increased evidence pointing to a role in tumor progression. In particular, aberrant sialylation of glycoproteins and glycolipids has been linked to increased immune cell evasion, drug evasion, drug resistance, tumor invasiveness, and vascular dissemination, leading to metastases. Hypersialylation of cancer cells is largely the result of overexpression of sialyltransferases (STs). Differentially, humans express twenty different STs in a tissue-specific manner, each of which catalyzes the attachment of sialic acids via different glycosidic linkages (α2-3, α2-6, or α2-8) to the underlying glycan chain. One important mechanism whereby overexpression of STs contributes to an enhanced metastatic phenotype is via the generation of selectin ligands. Selectin ligand function requires the expression of sialyl-Lewis X and its structural isomer sialyl-Lewis A, which are synthesized by the combined action of alpha α1-3-fucosyltransferases, α2-3-sialyltransferases, β1-4-galactosyltranferases, and N-acetyl-β-glucosaminyltransferases. The α2-3-sialyltransferases ST3Gal4 and ST3Gal6 are critical to the generation of functional E- and P-selectin ligands and overexpression of these STs have been linked to increased risk of metastatic disease in solid tumors and poor outcome in multiple myeloma. Thus, targeting selectins and their ligands as well as the enzymes involved in their generation, in particular STs, could be beneficial to many cancer patients. Potential strategies include ST inhibition and the use of selectin antagonists, such as glycomimetic drugs and antibodies. Here, we review ongoing efforts to optimize the potency and selectivity of ST inhibitors, including the potential for targeted delivery approaches, as well as evaluate the potential utility of selectin inhibitors, which are now in early clinical development. PMID:27148485

  5. Targeting Protein-Protein Interactions with Trimeric Ligands: High Affinity Inhibitors of the MAGUK Protein Family

    DEFF Research Database (Denmark)

    Nissen, Klaus B; Kedström, Linda Maria Haugaard; Wilbek, Theis S;

    2015-01-01

    related MAGUK proteins contain three consecutive PDZ domains, hence we envisioned that targeting all three PDZ domains simultaneously would lead to more potent and potentially more specific interactions with the MAGUK proteins. Here we describe the design, synthesis and characterization of a series of...... trimeric ligands targeting all three PDZ domains of PSD-95 and the related MAGUK proteins, PSD-93, SAP-97 and SAP-102. Using our dimeric ligands targeting the PDZ1-2 tandem as starting point, we designed novel trimeric ligands by introducing a PDZ3-binding peptide moiety via a cysteine-derivatized NPEG...... linker. The trimeric ligands generally displayed increased affinities compared to the dimeric ligands in fluorescence polarization binding experiments and optimized trimeric ligands showed low nanomolar inhibition towards the four MAGUK proteins, thus being the most potent inhibitors described. Kinetic...

  6. Internalization mechanisms of the epidermal growth factor receptor after activation with different ligands.

    Directory of Open Access Journals (Sweden)

    Lasse Henriksen

    Full Text Available The epidermal growth factor receptor (EGFR regulates normal growth and differentiation, but dysregulation of the receptor or one of the EGFR ligands is involved in the pathogenesis of many cancers. There are eight ligands for EGFR, however most of the research into trafficking of the receptor after ligand activation focuses on the effect of epidermal growth factor (EGF and transforming growth factor-α (TGF-α. For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist. Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF or betacellulin (BTC was only partial. In contrast, clathrin knockdown fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand-induced endocytosis of the EGFR. We suggest that EGF and TGF-α lead to EGFR endocytosis mainly via the clathrin-mediated pathway. Furthermore, we suggest that HB-EGF and BTC also lead to EGFR endocytosis via a clathrin-mediated pathway, but can additionally use an unidentified internalization pathway or better recruit the small amount of clathrin remaining after clathrin knockdown.

  7. Synthesis and enzymatic cleavage of dual-ligand quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Sewell, Sarah L. [Department of Biomedical Engineering, Vanderbilt University, Nashville, TN (United States); Giorgio, Todd D., E-mail: todd.d.giorgio@vanderbilt.edu [Department of Biomedical Engineering, Vanderbilt University, Nashville, TN (United States); Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN (United States)

    2009-05-05

    Site directed therapy promises to minimize treatment-limiting systemic effects associated with cytotoxic agents that have no specificity for pathologic tissues. One general strategy is to target cell surface receptors uniquely presented on particular tissues. Highly specific in vivo targeting of an emerging neoplasm through a single molecular recognition mechanism has not generally been successful. Nonspecific binding and specific binding to non-target cells compromise the therapeutic index of small molecule, ubiquitous cancer targeting ligands. In this work, we have designed and fabricated a nanoparticle (NP) construct that could potentially overcome the current limitations of targeted in vivo delivery. Quantum dots (QDs) were functionalized with a poly(ethylene glycol) (PEG) modified to enable specific cleavage by matrix metalloprotease-7 (MMP-7). The QDs were further functionalized with folic acid, a ligand for a cell surface receptor that is overexpressed in many tumors, but also expressed in some normal tissues. The nanomolecular construct is designed so that the PEG initially conceals the folate ligand and construct binding to cells is inhibited. MMP-7 activated peptide cleavage and subsequent unmasking of the folate ligand occurs only near tumor tissue, resulting in a proximity activated (PA) targeting system. QDs functionalized with both the MMP-7 cleavable substrate and folic acid were successfully synthesized and characterized. The proteolytic capability of the dual ligand QD construct was quantitatively assessed by fluorometric analysis and compared to a QD construct functionalized with only the PA ligand. The dual ligand PA nanoparticles studied here exhibit significant susceptibility to cleavage by MMP-7 at physiologically relevant conditions. The capacity to autonomously convert a biopassivated nanostructure to a tissue-specific targeted delivery agent in vivo represents a paradigm change for site-directed therapies.

  8. Synthesis and enzymatic cleavage of dual-ligand quantum dots

    International Nuclear Information System (INIS)

    Site directed therapy promises to minimize treatment-limiting systemic effects associated with cytotoxic agents that have no specificity for pathologic tissues. One general strategy is to target cell surface receptors uniquely presented on particular tissues. Highly specific in vivo targeting of an emerging neoplasm through a single molecular recognition mechanism has not generally been successful. Nonspecific binding and specific binding to non-target cells compromise the therapeutic index of small molecule, ubiquitous cancer targeting ligands. In this work, we have designed and fabricated a nanoparticle (NP) construct that could potentially overcome the current limitations of targeted in vivo delivery. Quantum dots (QDs) were functionalized with a poly(ethylene glycol) (PEG) modified to enable specific cleavage by matrix metalloprotease-7 (MMP-7). The QDs were further functionalized with folic acid, a ligand for a cell surface receptor that is overexpressed in many tumors, but also expressed in some normal tissues. The nanomolecular construct is designed so that the PEG initially conceals the folate ligand and construct binding to cells is inhibited. MMP-7 activated peptide cleavage and subsequent unmasking of the folate ligand occurs only near tumor tissue, resulting in a proximity activated (PA) targeting system. QDs functionalized with both the MMP-7 cleavable substrate and folic acid were successfully synthesized and characterized. The proteolytic capability of the dual ligand QD construct was quantitatively assessed by fluorometric analysis and compared to a QD construct functionalized with only the PA ligand. The dual ligand PA nanoparticles studied here exhibit significant susceptibility to cleavage by MMP-7 at physiologically relevant conditions. The capacity to autonomously convert a biopassivated nanostructure to a tissue-specific targeted delivery agent in vivo represents a paradigm change for site-directed therapies.

  9. Released ligand fluoroimmunoassay

    International Nuclear Information System (INIS)

    Radioimmunoassay (RIA) is one of the most sensitive and specific methods for analysis of proteins, drugs and other substances commonly found in biological fluids. Because of the limited stability and problems in handling radioisotopes (particularly 125I), there has been a continuous effort in recent years to develop non-isotopic immunoassays. Fluoroimmunoassay is one of the more promising alternatives to RIA, but has relatively low sensitivity due to background fluorescence from other substances in biological fluids. The authors have proposed an alternative type of fluoroimmunoassay, released ligand fluoroimmunoassay (RLFIA), wherein the fluorophore is released from the analyte and analyzed separately, thus reducing the problems of background fluorescence. 1-(4-(3-(2,3-dihydroxy-1-carboxyethyl))-phenyl)-3-(3-(7-diethylamino-4-methylcoumarinyl)) thiourea (IX), a fluorescent coumarin derivative with a periodate cleavable vic-glycol linkage, was synthesized and employed to demonstrate the principle of RLFIA. The principle of the RLFIA was tested by comparison with a commercially available kit Immuno-Fluor IgG Assay. Because of the lower quantum yield of the fluorophore used, the sensitivity of the resulting RLFIA was only one tenth that of the commercial kit. As an outgrowth of this project, a series of analogs of compound IX, having electron donating and withdrawing groups at the phenyl ring, were synthesized in order to study the effect of substituent on fluorescence yield. An interactive computer graphics system, Chemical Structure Drawing 2-Dimensional (CSD2D), developed by the author mainly for the generation of publication quality structure drawings is also described

  10. Nutraceuticals as Ligands of PPARγ

    OpenAIRE

    Meera Penumetcha; Nalini Santanam

    2012-01-01

    Peroxisome proliferator-activated receptors (PPARs) are ligand-activated nuclear receptors that respond to several exogenous and endogenous ligands by modulating genes related to lipid, glucose, and insulin homeostasis. PPARγ, expressed in adipose tissue and liver, regulates lipid storage and glucose metabolism and is the target of type 2 diabetes drugs, thiazolidinediones (TZDs). Due to high levels of toxicity associated with the first generation TZDs, troglitazone (Rezulin), rosiglitazone (...

  11. Validity of Ligand Efficiency Metrics

    OpenAIRE

    Murray, Christopher W; Erlanson, Daniel A.; Hopkins, Andrew L.; Keserü, György M; Leeson, Paul D.; Rees, David C.; Reynolds, Charles H.; Richmond, Nicola J.

    2014-01-01

    A recent viewpoint article (Improving the plausibility of success with inefficient metrics. ACS Med. Chem. Lett.2014, 5, 2–5) argued that the standard definition of ligand efficiency (LE) is mathematically invalid. In this viewpoint, we address this criticism and show categorically that the definition of LE is mathematically valid. LE and other metrics such as lipophilic ligand efficiency (LLE) can be useful during the multiparameter optimization challenge faced by med...

  12. Ligand Identification Scoring Algorithm (LISA)

    Science.gov (United States)

    Zheng, Zheng; Merz, Kenneth M.

    2011-01-01

    A central problem in de novo drug design is determining the binding affinity of a ligand with a receptor. A new scoring algorithm is presented that estimates the binding affinity of a protein-ligand complex given a three-dimensional structure. The method, LISA (Ligand Identification Scoring Algorithm), uses an empirical scoring function to describe the binding free energy. Interaction terms have been designed to account for van der Waals (VDW) contacts, hydrogen bonding, desolvation effects and metal chelation to model the dissociation equilibrium constants using a linear model. Atom types have been introduced to differentiate the parameters for VDW, H-bonding interactions and metal chelation between different atom pairs. A training set of 492 protein-ligand complexes was selected for the fitting process. Different test sets have been examined to evaluate its ability to predict experimentally measured binding affinities. By comparing with other well known scoring functions, the results show that LISA has advantages over many existing scoring functions in simulating protein-ligand binding affinity, especially metalloprotein-ligand binding affinity. Artificial Neural Network (ANN) was also used in order to demonstrate that the energy terms in LISA are well designed and do not require extra cross terms. PMID:21561101

  13. Organic ligands influence leaching kinetics of fixated FGD material

    Energy Technology Data Exchange (ETDEWEB)

    Chin-Min Cheng; Yu Sik Hwang; John J. Lenhart; Harold W. Walker [Ohio State University, Columbus, OH (United States). Department of Civil and Environmental Engineering and Geodetic Science

    2008-10-15

    The presence of organic ligands, including oxalate, citrate, maleate and Pahokee peat humic acid (PPHA), influenced the leaching kinetics of fixated flue gas desulfurization (FGD) material in acidic solution (pH 2.9-5.0). In the presence of oxalate, the leaching was inhibited at all pH values examined. XRD and SEM analyses demonstrated that formation of a calcium oxalate mineral phase on the fixated FGD material surface created a surface layer which reduced the extent of leaching. Maleate and PPHA inhibited leaching at pH 2.9, but either promoted, inhibited, or had no effect on leaching, depending on the particular element, at pH 5.0. ATR-FTIR analysis indicated maleate and PPHA formed both inner- and outer-spherically bound species at pH 2.9, whereas at pH 5.0 only outer-sphere complexes seemed evident. These surface species likely inhibited the leaching process at pH 2.9 through a surface blocking mechanism. At pH 5.0, the ligand surface complexes either promoted or inhibited leaching, depending on the element, through a combination of direct and indirect mechanisms. Citrate significantly promoted the leaching process at all pH values examined. 43 refs., 6 figs., 3 tabs.

  14. Single-Molecule Analysis of Human Telomere Sequence Interactions with G-quadruplex Ligand.

    Science.gov (United States)

    Zhang, Ling; Zhang, Kaixiang; Rauf, Sana; Dong, Duo; Liu, Yang; Li, Jinghong

    2016-04-19

    Ligands that selectively promote the formation of G-quadruplexes in human telomeres have great potential for cancer treatment by inhibiting the telomere extension by telomerase. Thus, understanding the interactions of the G-quadruplex ligands with the telomere sequence at the single-molecule level is of significant importance. Here, human telomere sequence interactions with a small molecule ligand pyridostatin (PDS) were analyzed via α-hemolysin protein nanopore, and a nanopore thermodynamic analytical method was proposed. The prolonged unraveling time of the telomeric DNA G-quadruplex after PDS binding demonstrated the potent stabilization effect of ligand on G-quadruplex structure. The signature two-level electronic blocks generated by K(+)-PDS-G-quadruplex complexes suggested a two-state unraveling process, including the dissociation of the interquartet cation and the unraveling of the cation-free ligand-bound G-quadruplex. The translocation studies and the analysis of free-energy changes demonstrated a ligand-binding mode in which PDS molecule and K(+) were simultaneously bound to one G-quadruplex structure with the coordinated effect on G-quadruplex stabilization. The single-molecular nanopore platform permits the efficient and accurate determination of ligand affinity constants without the requirement for labeling, amplification, or ligand/receptor titration, which provides a general analytical tool for effectively monitoring and quantifying the G-quadruplex/ligand interactions, possessing important implications for the design and screen of anticancer drugs. PMID:27012789

  15. Small potent ligands to the insulin-regulated aminopeptidase (IRAP)/AT(4) receptor.

    Science.gov (United States)

    Axén, Andreas; Andersson, Hanna; Lindeberg, Gunnar; Rönnholm, Harriet; Kortesmaa, Jarkko; Demaegdt, Heidi; Vauquelin, Georges; Karlén, Anders; Hallberg, Mathias

    2007-07-01

    Angiotensin IV analogs encompassing aromatic scaffolds replacing parts of the backbone of angiotensin IV have been synthesized and evaluated in biological assays. Several of the ligands displayed high affinities to the insulin-regulated aminopeptidase (IRAP)/AT(4) receptor. Displacement of the C-terminal of angiotensin IV with an o-substituted aryl acetic acid derivative delivered the ligand 4, which exhibited the highest binding affinity (K(i) = 1.9 nM). The high affinity of this ligand provides support to the hypothesis that angiotensin IV adopts a gamma-turn in the C-terminal of its bioactive conformation. Ligand (4) inhibits both human IRAP and aminopeptidase N-activity and induces proliferation of adult neural stem cells at low concentrations. Furthermore, ligand 4 is degraded considerably more slowly in membrane preparations than angiotensin IV. Hence, it might constitute a suitable research tool for biological studies of the (IRAP)/AT(4) receptor. PMID:17559064

  16. Construction of a bisaquo heme enzyme and binding by exogenous ligands.

    OpenAIRE

    McRee, D E; Jensen, G M; Fitzgerald, M M; Siegel, H A; Goodin, D. B.

    1994-01-01

    The crystal structure of the His-175-->Gly (H175G) mutant of cytochrome-c peroxidase (EC 1.11.1.5), missing its only heme ligand, reveals that the histidine is replaced by solvent to give a bisaquo heme protein. This protein retains some residual activity, which can be stimulated or inhibited by addition of exogenous ligands. Structural analysis confirms the binding of imidazole to the heme at the position of the wild-type histidine ligand. This imidazole complex reacts readily with hydrogen ...

  17. Visualization of Metal-to-Ligand and Ligand-to-Ligand Charge Transfer in Metal-Ligand Complexes

    Institute of Scientific and Technical Information of China (English)

    Yong Ding; Jian-xiu Guo; Xiang-si Wang; Sha-sha Liu; Feng-cai Ma

    2009-01-01

    Three methods including the atomic resolved density of state, charge difference density, and the transition density matrix are used to visualize metal to ligand charge transfer (MLCT) in ruthenium(Ⅱ) ammine complex. The atomic resolved density of state shows that there is density of Ru on the HOMOs. All the density is localized on the ammine, which reveals that the excited electrons in the Ru complex are delocalized over the ammine ligand. The charge difference density shows that all the holes are localized on the Ru and the electrons on the ammine. The localization explains the MLCT on excitation. The transition density matrix shows that there is electron-hole coherence between Ru and ammine. These methods are also used to examine the MLCT in Os(bpy)(p0p)Cl ("Osp0p"; bpy=2,2'-bipyridyl; p0p=4,4'-bipyridyl) and the ligand-to-ligand charge transfer (LLCT) in Alq3. The calculated results show that these methods are powerful to examine MLCT and LLCT in the metal-ligand system.

  18. Why mercury prefers soft ligands

    Energy Technology Data Exchange (ETDEWEB)

    Riccardi, Demian M [ORNL; Guo, Hao-Bo [ORNL; Gu, Baohua [ORNL; Parks, Jerry M [ORNL; Summers, Anne [University of Georgia, Athens, GA; Miller, S [University of California, San Francisco; Liang, Liyuan [ORNL; Smith, Jeremy C [ORNL

    2013-01-01

    Mercury (Hg) is a major global pollutant arising from both natural and anthropogenic sources. Defining the factors that determine the relative affinities of different ligands for the mercuric ion, Hg2+, is critical to understanding its speciation, transformation, and bioaccumulation in the environment. Here, we use quantum chemistry to dissect the relative binding free energies for a series of inorganic anion complexes of Hg2+. Comparison of Hg2+ ligand interactions in the gaseous and aqueous phases shows that differences in interactions with a few, local water molecules led to a clear periodic trend within the chalcogenide and halide groups and resulted in the well-known experimentally observed preference of Hg2+ for soft ligands such as thiols. Our approach establishes a basis for understanding Hg speciation in the biosphere.

  19. Architecture effects on multivalent interactions by polypeptide-based multivalent ligands

    Science.gov (United States)

    Liu, Shuang

    protein materials, including structural as well as functional proteins. Therefore, polypeptide-based multivalent scaffolds are used to display ligands to assess the contribution of different architectural parameters to the multivalent binding events. In this work, a family of alanine-rich alpha-helical glycopolypeptides was designed and synthesized by a combination of protein engineering and chemical coupling, to display two types of saccharide ligands for two different multivalent binding systems. The valencies, chain length and spacing between adjacent ligands of these multivalent ligands were designed in order to study architecture effects on multivalent interactions. The polypeptides and their glycoconjugates were characterized via various methods, including SDS-PAGE, NMR, HPLC, amino acid analysis (AAA), MALDI, circular dichroism (CD) and GPC. In the first multivalent binding system, cholera toxin B pentamer (CT B5) was chosen to be the protein receptor due to its well-characterized structure, lack of significant steric interference of binding to multiple binding sites, and requirement of only simple monosaccharide as ligands. Galactopyranoside was incorporated into polypeptide scaffolds through amine-carboxylic acid coupling to the side chains of glutamic acid residues. The inhibition and binding to CT B5 of these glycopolypeptide ligands were evaluated by direct enzyme-linked assay (DELA). As a complement method, weak affinity chromatography (WAC) was also used to evaluate glycopolypeptides binding to a CT B5 immobilized column. The architecture effects on CT B 5 inhibition are discussed. In the second system, cell surface receptor L-selectin was targeted by polypeptide-based multivalent ligands containing disulfated galactopyranoside ligands, due to its important roles in various immunological activities. The effects of glycopolypeptide architectural variables L-selectin shedding were evaluated via ELISA-based assays. These polypeptide-based multivalent ligands

  20. Polypharmacology of dopamine receptor ligands.

    Science.gov (United States)

    Butini, S; Nikolic, K; Kassel, S; Brückmann, H; Filipic, S; Agbaba, D; Gemma, S; Brogi, S; Brindisi, M; Campiani, G; Stark, H

    2016-07-01

    Most neurological diseases have a multifactorial nature and the number of molecular mechanisms discovered as underpinning these diseases is continuously evolving. The old concept of developing selective agents for a single target does not fit with the medical need of most neurological diseases. The development of designed multiple ligands holds great promises and appears as the next step in drug development for the treatment of these multifactorial diseases. Dopamine and its five receptor subtypes are intimately involved in numerous neurological disorders. Dopamine receptor ligands display a high degree of cross interactions with many other targets including G-protein coupled receptors, transporters, enzymes and ion channels. For brain disorders like Parkinsońs disease, schizophrenia and depression the dopaminergic system, being intertwined with many other signaling systems, plays a key role in pathogenesis and therapy. The concept of designed multiple ligands and polypharmacology, which perfectly meets the therapeutic needs for these brain disorders, is herein discussed as a general ligand-based concept while focusing on dopaminergic agents and receptor subtypes in particular. PMID:27234980

  1. Crystallization of protein–ligand complexes

    International Nuclear Information System (INIS)

    Methods presented for growing protein–ligand complexes fall into the categories of co-expression of the protein with the ligands of interest, use of the ligands during protein purification, cocrystallization and soaking the ligands into existing crystals. Obtaining diffraction-quality crystals has long been a bottleneck in solving the three-dimensional structures of proteins. Often proteins may be stabilized when they are complexed with a substrate, nucleic acid, cofactor or small molecule. These ligands, on the other hand, have the potential to induce significant conformational changes to the protein and ab initio screening may be required to find a new crystal form. This paper presents an overview of strategies in the following areas for obtaining crystals of protein–ligand complexes: (i) co-expression of the protein with the ligands of interest, (ii) use of the ligands during protein purification, (iii) cocrystallization and (iv) soaks

  2. Interleukin-24 inhibits tumor cell metastasis through (C-X-C motif) ligand 12/(C-X-C motif) receptor 4 signal axis%白细胞介素-24通过CXC趋化因子配体12/CXC趋化因子受体4信号轴抑制肿瘤细胞转移

    Institute of Scientific and Technical Information of China (English)

    杨俊波; 黄晓洁

    2015-01-01

    目的 探讨白细胞介素(IL)-24在体外实验中通过抑制CXC趋化因子配体12/CXC趋化因子受体4 (CXCL12/CXCR4)信号轴而抑制肺癌细胞迁移和侵袭.方法 以慢病毒介导IL-24基因转染H1299细胞为研究对象,研究IL-24对CXCL12/CXCR4信号轴的抑制作用.采用Western blot和Transwell细胞迁移及细胞侵袭实验评价其生物学效应.结果 IL-24在H1299-IL24细胞中的表达明显抑制了CXCR4 mRNA及蛋白的表达(P<0.05).IL-24通过下调CXCR4的表达明显抑制了肿瘤细胞的迁移和侵袭,H1299-IL24细胞的迁移数量较对照细胞下降了约30%,侵袭能力比较对照组下降30% ~40%,此外IL-24联合CXCR4抑制剂AMD3100使用时,表现出对肿瘤细胞迁移能力更强的抑制能力(P<0.05).结论 IL-24通过抑制CXCL12/CXCR4信号通路,从而抑制肿瘤细胞的迁移和侵袭.此外,当IL-24联合CXCR4抑制剂使用时,表现出更强的对抗肿瘤转移的能力.%Objective To investigate whetheinterleukin-24 (IL-24) could inhibithe chemokine (C-X-motif) ligand (CXCL)-12/chemokine (C-X-motif) recepto(CXCR)-4 signaling pathway and suppreslung cancecell migration and invasion in vitro.MethodThe lung cancecell line H1299 wastably transfected with recombinanlentiviral vectorharboring open reading frame (ORF) of IL-24 and used in the presenstudy to determine the inhibitory effectof IL-24 on CXCL12/CXCR4 axis.The inhibitory effectof IL-24 on CXCL12/CXCR4 were assessed by Western blotting.Biological function wastudied using cell migration and invasion assays.ResultIL-24 expression in the H1299-IL24 cell line resulted in reduced CXCR4 expression on both mRNand protein level(P < 0.05).Functional studieshowed thaIL-24 inhibited tumocell migration (30% decrease) and invasion (30%-40% decrease, P <0.05).Finally, IL-24, when combined with CXCR4 inhibito(AMD3100), demonstrated enhanced inhibitory activity on tumocell migration (P < 0.05).Conclusion IL-24 interferewith the CXCL12

  3. Ligand chain length conveys thermochromism.

    Science.gov (United States)

    Ganguly, Mainak; Panigrahi, Sudipa; Chandrakumar, K R S; Sasmal, Anup Kumar; Pal, Anjali; Pal, Tarasankar

    2014-08-14

    Thermochromic properties of a series of non-ionic copper compounds have been reported. Herein, we demonstrate that Cu(II) ion with straight-chain primary amine (A) and alpha-linolenic (fatty acid, AL) co-jointly exhibit thermochromic properties. In the current case, we determined that thermochromism becomes ligand chain length-dependent and at least one of the ligands (A or AL) must be long chain. Thermochromism is attributed to a balanced competition between the fatty acids and amines for the copper(II) centre. The structure-property relationship of the non-ionic copper compounds Cu(AL)2(A)2 has been substantiated by various physical measurements along with detailed theoretical studies based on time-dependent density functional theory. It is presumed from our results that the compound would be a useful material for temperature-sensor applications. PMID:24943491

  4. Presentation of Ligands on Hydroxylapatite

    Science.gov (United States)

    Chu, Barbara C. F.; Orgel, Leslie E.

    1997-01-01

    Conjugates of biotin with the decamer of glutamic acid (glu(sub 10)) and the trimer of D,L-2-amino-5-phosphonovaleric acid (I) have been synthesized, and it has been shown that they mediate the binding of avidin to hydroxylapatite. In a similar way a conjugate of methotrexate with glu(sub 10) mediates the binding of dihydrofolate reductase to the mineral. The presentation of ligands on the hydroxylapatite component of bone may find applications in clinical medicine.

  5. Privileged chiral ligands and catalysts

    CERN Document Server

    Zhou, Qi-Lin

    2011-01-01

    This ultimate ""must have"" and long awaited reference for every chemist working in the field of asymmetric catalysis starts with the core structure of the catalysts, explaining why a certain ligand or catalyst is so successful. It describes in detail the history, the basic structural characteristics, and the applications of these ""privileged catalysts"". A novel concept that gives readers a much deeper insight into the topic.

  6. Tumor targeting via integrin ligands

    Directory of Open Access Journals (Sweden)

    HorstKessler

    2013-08-01

    Full Text Available Selective and targeted delivery of drugs to tumors is a major challenge for an effective cancer therapy and also to overcome the side effects associated with current treatments. Overexpression of various receptors on tumor cells is a characteristic structural and biochemical aspect of tumors and distinguishes them from physiologically normal cells. This abnormal feature is therefore suitable for selectively directing anticancer molecules to tumors by using ligands that can preferentially recognize such receptors. Several subtypes of integrin receptors that are crucial for cell adhesion, cell signaling, cell viability and motility have been shown to have an upregulated expression on cancer cells. Thus, ligands that recognize specific integrin subtypes represent excellent candidates to be conjugated to drugs or drug carrier systems and be targeted to tumors. In this regard, integrins recognizing the RGD cell adhesive sequence have been extensively targeted for tumor specific drug delivery. Here we review key recent examples on the presentation of RGD-based integrin ligands by means of distinct drug delivery systems, and discuss the prospects of such therapies to specifically target tumor cells.

  7. Radioiodinated ligands for dopamine receptors

    International Nuclear Information System (INIS)

    The dopamine receptor system is important for normal brain function; it is also the apparent action site for various neuroleptic drugs for the treatment of schizophrenia and other metal disorders. In the past few years radioiodinated ligands for single photon emission tomography (SPECT) have been successfully developed and tested in humans: [123I]TISCH for D1 dopamine receptors; [123I]IBZM, epidepride, IBF and FIDA2, four iodobenzamide derivatives, for D2/D3 dopamine receptors. In addition, [123I]β-CIT (RTI-55) and IPT, cocaine derivatives, for the dopamine reuptake site are potentially useful for diagnosis of loss of dopamine neurons. The first iodinated ligand, (R)trans-7-OH-PIPAT, for D3 dopamine receptors, was synthesized and characterized with cloned cell lines (Spodoptera frugiperda, Sf9) expressing the D2 and D3 dopamine receptors and with rat basal forebrain membrane preparations. Most of the known iodobenzamides displayed similar potency in binding to both D2 and D3 dopamine receptors expressed in the cell lines. Initial studies appear to suggest that by fine tuning the structures it may be possible to develop agents specific for D2 and D3 dopamine receptors. It is important to investigate D2/D3 selectivity for this series of potent ligands

  8. Novel and high affinity fluorescent ligands for the serotonin transporter based on (s)-citalopram

    DEFF Research Database (Denmark)

    Kumar, Vivek; Rahbek-Clemmensen, Troels; Billesbølle, Christian B;

    2014-01-01

    Novel rhodamine-labeled ligands, based on (S)-citalopram, were synthesized and evaluated for uptake inhibition at the human serotonin, dopamine, and norepinephrine transporters (hSERT, hDAT, and hNET, respectively) and for binding at SERT, in transiently transfected COS7 cells. Compound 14 demons...

  9. Ruthenium(II) polypyridyl complexes with hydrophobic ancillary ligand as Aβ aggregation inhibitors.

    Science.gov (United States)

    Vyas, Nilima A; Ramteke, Shefali N; Kumbhar, Avinash S; Kulkarni, Prasad P; Jani, Vinod; Sonawane, Uddhavesh B; Joshi, Rajendra R; Joshi, Bimba; Erxleben, Andrea

    2016-10-01

    The synthesis, spectral and electrochemical characterization of the complexes of the type [Ru(NN)2(txbg)](2+) where NN is 2,2'-bipyridine (bpy) (1), 1,10-phenanthroline (phen) (2), dipyrido [3,2-d:2',3f] quinoxaline (dpq) (3), and dipyrido[3,2-a:2',3'-c]phenazine (dppz) (4) which incorporate the tetra-xylene bipyridine glycoluril (txbg) as the ancillary ligand are described in detail. Crystal structures of ligand txbg and complex 2 were solved by single crystal X-ray diffraction. Thioflavin T (ThT) fluorescence and Transmission Electron Microscopy (TEM) results indicated that at micromolar concentration all complexes exhibit significant potential of Aβ aggregation inhibition, while the ligand txbg displayed weak activity towards Aβ aggregation. Complex 1 showed relatively low inhibition (70%) while complexes 2-4 inhibited nearly 100% Aβ aggregation after 240 h of incubation. The similar potential of complexes 2-4 and absence of any trend in their activity with the planarity of polypyridyl ligands suggests there is no marked effect of planarity of coligands on their inhibitory potential. Further studies on acetylcholinesterase (AChE) inhibition indicated very weak activity of these complexes against AChE. Detailed interactions of Aβ with both ligand and complex 2 have been studied by molecular modeling. Complex 2 showed interactions involving all three polypyridyl ligands with hydrophobic region of Aβ. Furthermore, the toxicity of these complexes towards human neuroblastoma cells was evaluated by MTT assay and except complex 4, the complexes displayed very low toxicity. PMID:27406812

  10. Ligand placement based on prior structures: the guided ligand-replacement method

    Energy Technology Data Exchange (ETDEWEB)

    Klei, Herbert E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Bristol-Myers Squibb, Princeton, NJ 08543-4000 (United States); Moriarty, Nigel W., E-mail: nwmoriarty@lbl.gov; Echols, Nathaniel [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Terwilliger, Thomas C. [Los Alamos National Laboratory, Los Alamos, NM 87545-0001 (United States); Baldwin, Eric T. [Bristol-Myers Squibb, Princeton, NJ 08543-4000 (United States); Natural Discovery LLC, Princeton, NJ 08542-0096 (United States); Pokross, Matt; Posy, Shana [Bristol-Myers Squibb, Princeton, NJ 08543-4000 (United States); Adams, Paul D. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); University of California at Berkeley, Berkeley, CA 94720-1762 (United States)

    2014-01-01

    A new module, Guided Ligand Replacement (GLR), has been developed in Phenix to increase the ease and success rate of ligand placement when prior protein-ligand complexes are available. The process of iterative structure-based drug design involves the X-ray crystal structure determination of upwards of 100 ligands with the same general scaffold (i.e. chemotype) complexed with very similar, if not identical, protein targets. In conjunction with insights from computational models and assays, this collection of crystal structures is analyzed to improve potency, to achieve better selectivity and to reduce liabilities such as absorption, distribution, metabolism, excretion and toxicology. Current methods for modeling ligands into electron-density maps typically do not utilize information on how similar ligands bound in related structures. Even if the electron density is of sufficient quality and resolution to allow de novo placement, the process can take considerable time as the size, complexity and torsional degrees of freedom of the ligands increase. A new module, Guided Ligand Replacement (GLR), was developed in Phenix to increase the ease and success rate of ligand placement when prior protein–ligand complexes are available. At the heart of GLR is an algorithm based on graph theory that associates atoms in the target ligand with analogous atoms in the reference ligand. Based on this correspondence, a set of coordinates is generated for the target ligand. GLR is especially useful in two situations: (i) modeling a series of large, flexible, complicated or macrocyclic ligands in successive structures and (ii) modeling ligands as part of a refinement pipeline that can automatically select a reference structure. Even in those cases for which no reference structure is available, if there are multiple copies of the bound ligand per asymmetric unit GLR offers an efficient way to complete the model after the first ligand has been placed. In all of these applications, GLR

  11. Effect of ligand self-assembly on nanostructure and carrier transport behaviour in CdSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kuiying, E-mail: kuiyingli@ysu.edu.cn; Xue, Zhenjie

    2014-11-14

    Adjustment of the nanostructure and carrier behaviour of CdSe quantum dots (QDs) by varying the ligands used during QD synthesis enables the design of specific quantum devices via a self-assembly process of the QD core–shell structure without additional technologies. Surface photovoltaic (SPV) technology supplemented by X-ray diffractometry and infrared absorption spectroscopy were used to probe the characteristics of these QDs. Our study reveals that while CdSe QDs synthesized in the presence of and capped by thioglycolic acid, 3-mercaptopropionic acid, mercaptoethanol or α-thioglycerol ligands display zinc blende nanocrystalline structures, CdSe QDs modified by L-cysteine possess wurtzite nanocrystalline structures, because different end groups in these ligands induce distinctive nucleation and growth mechanisms. Carboxyl end groups in the ligand served to increase the SPV response of the QDs, when illuminated by hν ≥ E{sub g,nano-CdSe}. Increased length of the alkyl chains and side-chain radicals in the ligands partially inhibit photo-generated free charge carrier (FCC) transfer transitions of CdSe QDs illuminated by photon energy of 4.13 to 2.14 eV. The terminal hydroxyl group might better accommodate energy released in the non-radiative de-excitation process of photo-generated FCCs in the ligand's lowest unoccupied molecular orbital in the 300–580 nm wavelength region, when compared with other ligand end groups. - Highlights: • CdSe QDs modified by L-cysteine possess wurtzite nanocrystalline structures. • Carboxyl end groups in the ligand serve to increase the SPV response of CdSe QDs. • Terminal hydroxyl group in the ligand might accommodate non-radiative de-excitation process in CdSe QDs. • Increased length of the alkyl chains and side-chain radicals in the ligands partially inhibit carriers transport of CdSe QDs.

  12. Effect of ligand self-assembly on nanostructure and carrier transport behaviour in CdSe quantum dots

    International Nuclear Information System (INIS)

    Adjustment of the nanostructure and carrier behaviour of CdSe quantum dots (QDs) by varying the ligands used during QD synthesis enables the design of specific quantum devices via a self-assembly process of the QD core–shell structure without additional technologies. Surface photovoltaic (SPV) technology supplemented by X-ray diffractometry and infrared absorption spectroscopy were used to probe the characteristics of these QDs. Our study reveals that while CdSe QDs synthesized in the presence of and capped by thioglycolic acid, 3-mercaptopropionic acid, mercaptoethanol or α-thioglycerol ligands display zinc blende nanocrystalline structures, CdSe QDs modified by L-cysteine possess wurtzite nanocrystalline structures, because different end groups in these ligands induce distinctive nucleation and growth mechanisms. Carboxyl end groups in the ligand served to increase the SPV response of the QDs, when illuminated by hν ≥ Eg,nano-CdSe. Increased length of the alkyl chains and side-chain radicals in the ligands partially inhibit photo-generated free charge carrier (FCC) transfer transitions of CdSe QDs illuminated by photon energy of 4.13 to 2.14 eV. The terminal hydroxyl group might better accommodate energy released in the non-radiative de-excitation process of photo-generated FCCs in the ligand's lowest unoccupied molecular orbital in the 300–580 nm wavelength region, when compared with other ligand end groups. - Highlights: • CdSe QDs modified by L-cysteine possess wurtzite nanocrystalline structures. • Carboxyl end groups in the ligand serve to increase the SPV response of CdSe QDs. • Terminal hydroxyl group in the ligand might accommodate non-radiative de-excitation process in CdSe QDs. • Increased length of the alkyl chains and side-chain radicals in the ligands partially inhibit carriers transport of CdSe QDs

  13. Flavanone exhibits PPARγ ligand activity and enhances differentiation of 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Flavanones are class of polyphenolic compounds, some of which are found in foods and provide health benefits. In this study, we show that flavanone significantly enhances differentiation of 3T3-L1 preadipocytes. During adipogenesis, flavanone enhanced expression of genes and accumulation of proteins that are involved in adipocyte function. Some reports have indicated that flavanone inhibits proliferation of mammalian cells, and down-regulates expression of growth-related proteins. Such proteins include phosphorylated ERK1/2, cyclins, and Cdks that are important for an early event in adipogenesis, mitotic clonal expansion (MCE). We demonstrated that flavanone did not inhibit MCE or expression of MCE-related proteins, except for a modest inhibition of cyclin D1 expression. Using luciferase reporter assays, we found that flavanone acted as a peroxisome proliferator-activated receptor γ (PPARγ) ligand in a dose-dependent manner. Together, our results suggest that flavanone enhances adipogenesis, at least in part, through its PPARγ ligand activity.

  14. Ruthenium Cumulenylidene Complexes Bearing Heteroscorpionate Ligands

    OpenAIRE

    Strinitz, Frank

    2014-01-01

    In previous work of the BURZLAFF group, the design of suitable N,N,O ligands for a wide variety of applications ranging from catalysis to bioinorganic model compounds has been extensively investigated. Especially the methyl substituted bis(3,5-dimethylpyrazol-1-yl) acetate (bdmpza) ligand has shown manifold chemistry, comparable to the anionic cyclopentadienyl (Cp) and hydridotris(pyrazol-1-yl)borato (Tp) ligand. In the first part of this thesis the new tricarbonylmanganese(I) complexes be...

  15. Phenotypic spandrel: absolute discrimination and ligand antagonism

    OpenAIRE

    François, Paul; Johnson, Kyle A.; Saunders, Laura N.

    2015-01-01

    We consider the general problem of absolute discrimination between categories of ligands irrespective of their concentration. An instance of this problem is immune discrimination between self and not-self. We connect this problem to biochemical adaptation, and establish that ligand antagonism - the ability of sub threshold ligands to negatively impact response - is a necessary consequence of absolute discrimination.Thus antagonism constitutes a "phenotypic spandrel": a phenotype existing as a...

  16. Clinical Use of PPARγ Ligands in Cancer

    Directory of Open Access Journals (Sweden)

    Jennifer L. Hatton

    2008-01-01

    Full Text Available The role of PPARγ in adipocyte differentiation has fueled intense interest in the function of this steroid nuclear receptor for regulation of malignant cell growth and differentiation. Given the antiproliferative and differentiating effects of PPARγ ligands on liposarcoma cells, investigation of PPARγ expression and ligand activation in other solid tumors such as breast, colon, and prostate cancers ensued. The anticancer effects of PPARγ ligands in cell culture and rodent models of a multitude of tumor types suggest broad applicability of these agents to cancer therapy. This review focuses on the clinical use of PPARγ ligands, specifically the thiazolidinediones, for the treatment and prevention of cancer.

  17. Development of immobilized ligands for actinide separations

    International Nuclear Information System (INIS)

    Primary goals during this grant period were to (1) synthesize new bifunctional chelating ligands, (2) characterize the structural features of the Ln and An coordination complexes formed by these ligands, (3) use structural data to iteratively design new classes of multifunctional ligands, and (4) explore additional routes for attachment of key ligands to solid supports that could be useful for chromatographic separations. Some highlights of recently published work as well as a summary of submitted, unpublished and/or still in progress research are outlined

  18. Ligand-specific conformational changes in the alpha1 glycine receptor ligand-binding domain

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Lynch, Joseph W

    2009-01-01

    residue responded differently to glycine and strychnine, thus underlining the importance of loop C in ligand discrimination. These results provide an important step toward mapping the domains crucial for ligand discrimination in the ligand-binding domain of glycine receptors and possibly other Cys loop...

  19. Macrocyclic ligands for uranium complexation

    International Nuclear Information System (INIS)

    A highly preorganized 24-macrocycle containing biuret, thiobiuret and pyridine subunits has been prepared by high dilution ring-closure procedures. Intermediate products to this macrocycle have been utilized to extend this synthetic route to include further representatives where solubility and stability will be influenced by substituent variation. A 1:1 complex has been formed from uranyl acetate and a quinquepyridine derivative, this representing a new type of ligand for the uranyl ion. A very convenient synthetic procedure that will allow the incorporation of these macrocycles into polymeric systems has been developed for the introduction of a vinyl substituent into the 4-position of the pyridine ring. Using triflate, vinyltributyltin and Pd0 chemistry, this procedure should make a variety of substituted 4-vinylpyridines available for the first time. 3 refs

  20. Synthesis and characterization of mixed ligand chiral nanoclusters

    OpenAIRE

    Güven, Zekiye Pelin; Guven, Zekiye Pelin; Üstbaş, Burçin; Ustbas, Burcin; Harkness, Kellen M.; Coşkun, Hikmet; Coskun, Hikmet; Joshi, Chakra P.; Besong, Tabot M. D.; Stellacci, Francesco; Bakr, Osman M.; Akbulut, Özge; Akbulut, Ozge

    2015-01-01

    Chiral mixed ligand silver nanoclusters were synthesized in the presence of a chiral and an achiral ligand. The ratio of the ligands was changed to track the formation of these clusters. While the chiral ligand lead to nanoparticles, Presence of the achiral ligand induced the formation of nanoclusters with chiral properties.

  1. Ligand-receptor Interactions by NMR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Novak. P.

    2008-04-01

    Full Text Available Today NMR spectroscopy is a method of choice for elucidation of interactions between biomolecules and the potential ligands. Knowledge on these interactions is an essential prerequisite for the rational drug design. The most important contribution of NMR to drug design a few years ago was the 3D structure determination of proteins. Besides delivering the 3D structures of the free proteins as a raw material for the modeling studies on ligand binding, NMR can directly yield valuable experimental data on the biologically important protein-ligand complexes. In addition to X-ray diffraction, NMR spectroscopy can provide information on the internal protein dynamics ordynamics of intermolecular interactions. Changes in NMR parameters allow us to detect ("SAR by NMR" and quantitatively determine binding affinities (titration, diffusion NMR experiments, etc. of potential ligands. Also, it is possible to determine the binding site and conformations of ligands, receptors and receptor-ligand complexes with the help of NMR methods such as tr-NOESY. Epitopes or functional groups responsible for binding of ligands to the receptor can be identified by employing STD or WaterLOGSY experiments. In this review are described some of the most frequent NMR methods for the characterization of the interactions between biomolecules and ligands, together with their advantages and disadvantages.

  2. Magnetic nanoparticles linked to a ligand

    OpenAIRE

    Penadés, Soledad; Martín-Lomas, Manuel; Martínez de la Fuente, Jesús; Rademacher, Thomas W.

    2006-01-01

    Materials and methods for making small magnetic particles, e.g. clusters of metal atoms, which can be employed as a substrate for immobilising a plurality of ligands. Also disclosed are uses of these magnetic nanoparticles as therapeutic and diagnostic reagents, and in the study of ligand-mediated interactions.

  3. Electrochemistry of complex combinations with organic ligands

    International Nuclear Information System (INIS)

    The electrochemical behaviour of Cd(2), Ni(2), Fe(2), Fe(3), In(3), Pb(2) complexes with organic bi-and polydentate ligands have been studied by methods of classical and alternating current polarography. Cadmium and indium complexing depending on pH value and the nature of the ligands (bipyridyl isomers, phosphoric acid esters) is discussed

  4. Ligand sphere conversions in terminal carbide complexes

    DEFF Research Database (Denmark)

    Morsing, Thorbjørn Juul; Reinholdt, Anders; Sauer, Stephan P. A.; Bendix, Jesper

    2016-01-01

    Metathesis is introduced as a preparative route to terminal carbide complexes. The chloride ligands of the terminal carbide complex [RuC(Cl)2(PCy3)2] (RuC) can be exchanged, paving the way for a systematic variation of the ligand sphere. A series of substituted complexes, including the first exam...

  5. Protein-ligand-based pharmacophores: generation and utility assessment in computational ligand profiling.

    Science.gov (United States)

    Meslamani, Jamel; Li, Jiabo; Sutter, Jon; Stevens, Adrian; Bertrand, Hugues-Olivier; Rognan, Didier

    2012-04-23

    Ligand profiling is an emerging computational method for predicting the most likely targets of a bioactive compound and therefore anticipating adverse reactions, side effects and drug repurposing. A few encouraging successes have already been reported using ligand 2-D similarity searches and protein-ligand docking. The current study describes the use of receptor-ligand-derived pharmacophore searches as a tool to link ligands to putative targets. A database of 68,056 pharmacophores was first derived from 8,166 high-resolution protein-ligand complexes. In order to limit the number of queries, a maximum of 10 pharmacophores was generated for each complex according to their predicted selectivity. Pharmacophore search was compared to ligand-centric (2-D and 3-D similarity searches) and docking methods in profiling a set of 157 diverse ligands against a panel of 2,556 unique targets of known X-ray structure. As expected, ligand-based methods outperformed, in most of the cases, structure-based approaches in ranking the true targets among the top 1% scoring entries. However, we could identify ligands for which only a single method was successful. Receptor-ligand-based pharmacophore search is notably a fast and reliable alternative to docking when few ligand information is available for some targets. Overall, the present study suggests that a workflow using the best profiling method according to the protein-ligand context is the best strategy to follow. We notably present concrete guidelines for selecting the optimal computational method according to simple ligand and binding site properties. PMID:22480372

  6. Autocrine signal transmission with extracellular ligand degradation

    International Nuclear Information System (INIS)

    Traveling waves of cell signaling in epithelial layers orchestrate a number of important processes in developing and adult tissues. These waves can be mediated by positive feedback autocrine loops, a mode of cell signaling where binding of a diffusible extracellular ligand to a cell surface receptor can lead to further ligand release. We formulate and analyze a biophysical model that accounts for ligand-induced ligand release, extracellular ligand diffusion and ligand–receptor interaction. We focus on the case when the main mode for ligand degradation is extracellular and analyze the problem with the sharp threshold positive feedback nonlinearity. We derive expressions that link the speed of propagation and other characteristics of traveling waves to the parameters of the biophysical processes, such as diffusion rates, receptor expression level, etc. Analyzing the derived expressions we found that traveling waves in such systems can exhibit a number of unusual properties, e.g. non-monotonic dependence of the speed of propagation on ligand diffusivity. Our results for the fully developed traveling fronts can be used to analyze wave initiation from localized perturbations, a scenario that frequently arises in the in vitro models of epithelial wound healing, and guide future modeling studies of cell communication in epithelial layers

  7. Improving protein-ligand docking with flexible interfacial water molecules using SWRosettaLigand.

    Science.gov (United States)

    Li, Linqing; Xu, Weiwei; Lü, Qiang

    2015-11-01

    Computational protein-ligand docking is of great importance in drug discovery and design. Conformational changes greatly affect the results of protein-ligand docking, especially when water molecules take part in mediating protein ligand interactions or when large conformational changes are observed in the receptor backbone interface. We have developed an improved protocol, SWRosettaLigand, based on the RosettaLigand protocol. This approach incorporates the flexibility of interfacial water molecules and modeling of the interface of the receptor into the original RosettaLigand. In a coarse sampling step, SWRosettaLigand pre-optimizes the initial position of the water molecules, docks the ligand to the receptor with explicit water molecules, and minimizes the predicted structure with water molecules. The receptor backbone interface is treated as a loop and perturbed and refined by kinematic closure, or cyclic coordinate descent algorithm, with the presence of the ligand. In two cross-docking test sets, it was identified that for 8 out of 14, and 16 out of 22, test instances, the top-ranked structures by SWRosettaLigand achieved better accuracy than other protocols. PMID:26515196

  8. Evidence of dopaminergic processing of executive inhibition.

    Directory of Open Access Journals (Sweden)

    Rajendra D Badgaiyan

    Full Text Available Inhibition of unwanted response is an important function of the executive system. Since the inhibitory system is impaired in patients with dysregulated dopamine system, we examined dopamine neurotransmission in the human brain during processing of a task of executive inhibition. The experiment used a recently developed dynamic molecular imaging technique to detect and map dopamine released during performance of a modified Eriksen's flanker task. In this study, young healthy volunteers received an intravenous injection of a dopamine receptor ligand ((11C-raclopride after they were positioned in the PET camera. After the injection, volunteers performed the flanker task under Congruent and Incongruent conditions in a single scan session. They were required to inhibit competing options to select an appropriate response in the Incongruent but not in the Congruent condition. The PET data were dynamically acquired during the experiment and analyzed using two variants of the simplified reference region model. The analysis included estimation of a number of receptor kinetic parameters before and after initiation of the Incongruent condition. We found increase in the rate of ligand displacement (from receptor sites and decrease in the ligand binding potential in the Incongruent condition, suggesting dopamine release during task performance. These changes were observed in small areas of the putamen and caudate bilaterally but were most significant on the dorsal aspect of the body of left caudate. The results provide evidence of dopaminergic processing of executive inhibition and demonstrate that neurochemical changes associated with cognitive processing can be detected and mapped in a single scan session using dynamic molecular imaging.

  9. Mutual inactivation of Notch receptors and ligands facilitates developmental patterning.

    Directory of Open Access Journals (Sweden)

    David Sprinzak

    2011-06-01

    Full Text Available Developmental patterning requires juxtacrine signaling in order to tightly coordinate the fates of neighboring cells. Recent work has shown that Notch and Delta, the canonical metazoan juxtacrine signaling receptor and ligand, mutually inactivate each other in the same cell. This cis-interaction generates mutually exclusive sending and receiving states in individual cells. It generally remains unclear, however, how this mutual inactivation and the resulting switching behavior can impact developmental patterning circuits. Here we address this question using mathematical modeling in the context of two canonical pattern formation processes: boundary formation and lateral inhibition. For boundary formation, in a model motivated by Drosophila wing vein patterning, we find that mutual inactivation allows sharp boundary formation across a broader range of parameters than models lacking mutual inactivation. This model with mutual inactivation also exhibits robustness to correlated gene expression perturbations. For lateral inhibition, we find that mutual inactivation speeds up patterning dynamics, relieves the need for cooperative regulatory interactions, and expands the range of parameter values that permit pattern formation, compared to canonical models. Furthermore, mutual inactivation enables a simple lateral inhibition circuit architecture which requires only a single downstream regulatory step. Both model systems show how mutual inactivation can facilitate robust fine-grained patterning processes that would be difficult to implement without it, by encoding a difference-promoting feedback within the signaling system itself. Together, these results provide a framework for analysis of more complex Notch-dependent developmental systems.

  10. Heterocyclic Scaffolds in the Design of Peptidomimetic Integrin Ligands: Synthetic Strategies, Structural Aspects, and Biological Activity.

    Science.gov (United States)

    De Marco, Rossella; Mazzotti, Giacomo; Greco, Arianna; Gentilucci, Luca

    2016-01-01

    The integrin receptors represent valuable targets for therapeutic interventions; being overexpressed in many pathological states, their inhibition can be effective to treat a number of severe diseases. Since integrin functions are mediated by interactions with ECM protein ligands, the inhibition can be achieved by interfering with such interactions using small mimetics of the integrin-ligand recognition motifs (e.g. RGD, LDV, etc.). In this review, we focus on the antagonists with peptideheterocycle hybrid structures. The introduction of well-designed scaffolds has met considerable success in the rational design of highly stable, bioavailable, and conformationally defined antagonists. Two main approaches are discussed herein. The first approach is the use of scaffolds external to the main recognition motifs, aimed at improving conformational definition. In the second approach, heterocyclic cores are introduced within the recognition motifs, giving access to libraries of 3D diverse candidate antagonists. PMID:26265351

  11. Growing role of CD40 ligand gene transfer therapy in the management of systemic malignancies besides hepatocellular carcinomas

    Institute of Scientific and Technical Information of China (English)

    Shailendra KAPOOR

    2009-01-01

    @@ The article "Cationic liposome-mediated trans-fection of CD40 ligand gene inhibits hepatic tumor growth of hepatocellular carcinoma in mice" [doi:10. 1631/jzus.B0820178] by Jiang et a1.(2009) in a recent issue of the Journal of Zhejiang University SCIENCE B was highly thought provoking. The authors have clearly demonstrated the efficacy of CD40 ligand gene therapy in inhibiting the growth of hepatocellu-lar carcinomas. The findings of Jiang et al.(2009) are highly important as they further support and cor-roborate the rapidly expanding role of CD40 ligand gene therapy in the management of systemic malig-nancies besides hepatocellular carcinomas.

  12. Fibronectin- and collagen-mimetic ligands regulate bone marrow stromal cell chondrogenesis in three-dimensional hydrogels

    Directory of Open Access Journals (Sweden)

    JT Connelly

    2011-09-01

    Full Text Available Modification of tissue engineering scaffolds with bioactive molecules is a potential strategy for modulating cell behavior and guiding tissue regeneration. While adhesion to RGD peptides has been shown to inhibit in vitro chondrogenesis, the effects of extracellular matrix (ECM-mimetic ligands with complex secondary and tertiary structures are unknown. This study aimed to determine whether collagen- and fibronectin-mimetic ligands would retain biologic functionality in three-dimensional (3D hydrogels, whether different ECM-mimetic ligands differentially influence in vitro chondrogenesis, and if effects of ligands on differentiation depend on soluble biochemical stimuli. A linear RGD peptide, a recombinant fibronectin fragment containing the seven to ten Type III repeats (FnIII7-10 and a triple helical, collagen mimetic peptide with the GFOGER motif were covalently coupled to agarose gels using the sulfo-SANPAH crosslinker, and bone marrow stromal cells (BMSCs were cultured within the 3D hydrogels. The ligands retained biologic functionality within the agarose gels and promoted density-dependent BMSC spreading. Interactions with all adhesive ligands inhibited stimulation by chondrogenic factors of collagen Type II and aggrecan mRNA levels and deposition of sulfated glycosaminoglycans. In medium containing fetal bovine serum, interactions with the GFOGER peptide enhanced mRNA expression of the osteogenic gene osteocalcin whereas FnIII7-10 inhibited osteocalcin expression. In conclusion, modification of agarose hydrogels with ECM-mimetic ligands can influence the differentiation of BMSCs in a manner that depends strongly on the presence and nature of soluble biochemical stimuli.

  13. Novel Suicide Ligands of Tubulin Arrest Cancer Cells in S-Phase

    Directory of Open Access Journals (Sweden)

    Ashley Davis

    1999-12-01

    Full Text Available It is presently accepted that the mechanism of action for all anti-tumor tubulin ligands involves the perturbation of microtubule dynamics during the G2/M phase of cell division and subsequent entry into apoptosis 1]. In this report, we challenge the established dogma by describing a unique mechanism of action caused by a novel series of tubulin ligands, halogenated derivatives of acetamido benzoyl ethyl ester. We have developed a suicide ligand for tubulin, which covalently attaches to the target and shows potent cancericidal activity in tissue culture assays and in animal tumor models. These compounds target early S-phase at the G1/S transition rather than the G2/M phase and mitotic arrest. Bcl-2 phosphorylation, a marker of mitotic microtubule inhibition by other tubulin ligands was dramatically altered, phosphorylation was rapid and biphasic rather than a slow linear event. The halogenated ethyl ester series of derivatives thus constitute a unique set of tubulin ligands which induce a novel mechanism of apoptosis.

  14. Effects of surface ligands on the uptake and transport of gold nanoparticles in rice and tomato.

    Science.gov (United States)

    Li, Hongying; Ye, Xinxin; Guo, Xisheng; Geng, Zhigang; Wang, Guozhong

    2016-08-15

    Nanotechnology is advancing rapidly and substantial amounts of nanomaterials are released into the environment. Plants are an essential base component of the ecological environment and play a critical role in the fate and transport of nanomaterials in the environment through plant uptake and bioaccumulation. In this study, plant uptake of gold nanoparticles (GNPs) functionalized with three types of short ligands [cysteamine (CA), cysteine (CYS) and thioglycolic acid (TGA)] and of nearly identical hydrodynamic size (8-12nm) was investigated in the major crops rice (Oryza sativa L.) and tomato (Solanum lycopersicum). Uptake and translocation of GNPs not only depended on particle surface charge, but were also related to the species of ligand on the GNPs. The negatively charged GNPs capped with the CYS ligand (GNP-CYS) were more efficiently absorbed in roots and transferred to shoots (including stems and leaves) than that of GNPs capped with CA and TGA. The absorption process of GNPs involved a combination of both clathrin-dependent and -independent mechanisms. The endocytosis of GNPs was strongly inhibited by wortmannin, suggesting that clathrin-independent endocytosis was an important pathway of nanoparticle internalization in plants. Competition experiments with a free ligand (CYS) showed that the CYS ligand probably facilitated the endocytosis process of GNPs and increased the internalization of GNP-CYS in plants. The results will aid understanding of the mechanisms of nanoparticle uptake and translocation in plants. PMID:27131459

  15. Potential applications for sigma receptor ligands in cancer diagnosis and therapy.

    Science.gov (United States)

    van Waarde, Aren; Rybczynska, Anna A; Ramakrishnan, Nisha K; Ishiwata, Kiichi; Elsinga, Philip H; Dierckx, Rudi A J O

    2015-10-01

    Sigma receptors (sigma-1 and sigma-2) represent two independent classes of proteins. Their endogenous ligands may include the hallucinogen N,N-dimethyltryptamine (DMT) and sphingolipid-derived amines which interact with sigma-1 receptors, besides steroid hormones (e.g., progesterone) which bind to both sigma receptor subpopulations. The sigma-1 receptor is a ligand-regulated molecular chaperone with various ion channels and G-protein-coupled membrane receptors as clients. The sigma-2 receptor was identified as the progesterone receptor membrane component 1 (PGRMC1). Although sigma receptors are over-expressed in tumors and up-regulated in rapidly dividing normal tissue, their ligands induce significant cell death only in tumor tissue. Sigma ligands may therefore be used to selectively eradicate tumors. Multiple mechanisms appear to underlie cell killing after administration of sigma ligands, and the signaling pathways are dependent both on the type of ligand and the type of tumor cell. Recent evidence suggests that the sigma-2 receptor is a potential tumor and serum biomarker for human lung cancer and an important target for inhibiting tumor invasion and cancer progression. Current radiochemical efforts are focused on the development of subtype-selective radioligands for positron emission tomography (PET) imaging. Right now, the mostpromising tracers are [18F]fluspidine and [18F]FTC-146 for sigma-1 receptors and [11C]RHM-1 and [18F]ISO-1 for the sigma-2 subtype. Nanoparticles coupled to sigma ligands have shown considerable potential for targeted delivery of antitumor drugs in animal models of cancer, but clinical studies exploring this strategy in cancer patients have not yet been reported. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers. PMID:25173780

  16. Affinity chromatography of serine proteases on the triazine dye ligand Cibacron Blue F3G-A

    DEFF Research Database (Denmark)

    Koch, C; Borg, L; Skjødt, K;

    1998-01-01

    The interaction between complement component factor B and the triazine dye ligand Cibacron Blue F3G-A coupled to a cross-linked agarose matrix (Blue Sepharose) was found to involve the Bb part of the molecule, and to be inhibited by benzamidine. Human, chicken and rainbow trout factor B which had...

  17. Denosumab, a RANK ligand inhibitor, for the management of bone loss in cancer patients

    OpenAIRE

    Yee AJ; Raje NS

    2012-01-01

    Andrew J Yee, Noopur S RajeDivision of Hematology-Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USAAbstract: Bone loss is a common side effect of cancer treatments, especially antihormonal treatments used in the treatment of breast and prostate cancer. Denosumab is a monoclonal antibody given subcutaneously that inhibits osteoclast activity by targeting the RANK ligand. It is effective in settings ranging from preventing skeletal-related complications in cancer patients ...

  18. Characterization of human platelet binding of recombinant T cell receptor ligand

    OpenAIRE

    Meza-Romero Roberto; Patel Ishan A; White-Adams Tara C; Sinha Sushmita; Aslan Joseph E; Itakura Asako; Vandenbark Arthur A; Burrows Gregory G; Offner Halina; McCarty Owen JT

    2010-01-01

    Abstract Background Recombinant T cell receptor ligands (RTLs) are bio-engineered molecules that may serve as novel therapeutic agents for the treatment of neuroinflammatory conditions such as multiple sclerosis (MS). RTLs contain membrane distal α1 plus β1 domains of class II major histocompatibility complex linked covalently to specific peptides that can be used to regulate T cell responses and inhibit experimental autoimmune encephalomyelitis (EAE). The mechanisms by which RTLs impede loca...

  19. Lipid A binding proteins in macrophages detected by ligand blotting

    International Nuclear Information System (INIS)

    Endotoxin (LPS) stimulates a variety of eukaryotic cells. These actions are involved in the pathogenesis of Gram-negative septicemia. The site of action of the LPS toxic moiety, lipid A (LA), is unclear. Their laboratory has previously identified a bioactive LA precursor lipid IV/sub A/, which can be enzymatically labeled with 32P/sub i/ (109 dpm/nmole) and purified (99%). They now show that this ligand binds to specific proteins immobilized on nitrocellulose (NC) from LPS-sensitive RAW 264.7 cultured macrophages. NC blots were incubated with [32P]-IV/sub A/ in a buffer containing BSA, NaCl, polyethylene glycol, and azide. Binding was assessed using autoradiography or scintillation counting. Dot blot binding of the radioligand was inhibited by excess cold IV/sub A/, LA, or ReLPS but not by phosphatidylcholine, cardiolipin, phosphatidylinositol, or phosphatidic acid. Binding was trypsin-sensitive and dependent on protein concentration. Particulate macrophage proteins were subjected to SDS-PAGE and then electroblotted onto NC. Several discrete binding proteins were observed. Identical treatment of fetal bovine serum or molecular weight standards revealed no detectable binding. By avoiding high nonspecific binding of intact membranes, this ligand blotting assay may be useful in elucidating the molecular actions of LPS

  20. The endogenous cannabinoid anandamide inhibits human breast cancer cell proliferation

    OpenAIRE

    De Petrocellis, Luciano; Melck, Dominique; Palmisano, Antonella; Bisogno, Tiziana; Laezza, Chiara; Bifulco, Maurizio; Di Marzo, Vincenzo

    1998-01-01

    Anandamide was the first brain metabolite shown to act as a ligand of “central” CB1 cannabinoid receptors. Here we report that the endogenous cannabinoid potently and selectively inhibits the proliferation of human breast cancer cells in vitro. Anandamide dose-dependently inhibited the proliferation of MCF-7 and EFM-19 cells with IC50 values between 0.5 and 1.5 μM and 83–92% maximal inhibition at 5–10 μM. The proliferation of several other nonmammary tumoral cell lines was not affected by 10 ...

  1. Ligand Exchange Processes on Solvated Lithium Cations

    OpenAIRE

    Pasgreta, Ewa Maria

    2007-01-01

    In this work the solvation process of Li+ ion, as well as solvent and ligand exchange reactions on Li+ ion were studied. Li+ ions possess interesting properties and like other alkali metal ions are known to form complexes with macrocyclic ligands called cryptands. In this summary, an overview over the insights gained in the factors that control the reactivity of Li+ complexes with respect to the solvent and cryptand properties is presented. Three main questions were addressed: • How does the ...

  2. Chemistry of Marine Ligands and Siderophores

    OpenAIRE

    Vraspir, Julia M.; Butler, Alison

    2009-01-01

    Marine microorganisms are presented with unique challenges to obtain essential metal ions required to survive and thrive in the ocean. The production of organic ligands to complex transition metal ions is one strategy to both facilitate uptake of specific metals, such as iron, and to mitigate the potential toxic effects of other metal ions, such as copper. A number of important trace metal ions are complexed by organic ligands in seawater, including iron, cobalt, nickel, copper, zinc, and cad...

  3. Fas ligand deficiency in HIV disease

    OpenAIRE

    Sieg, Scott; Smith, Dawn; Yildirim, Zafer; Kaplan, David

    1997-01-01

    Apoptosis is postulated to be involved as an anti-viral immune mechanism by killing infected cells before viral replication has occurred. The Fas–Fas ligand interaction is a powerful regulator of T cell apoptosis and could potentially act as a potent anti-viral immune mechanism against T cell tropic virus such as human immunodeficiency virus (HIV). We investigated the status of Fas ligand in peripheral blood mononuclear cells (PBMCs) obtained from persons infected with HIV. We found that mono...

  4. [Ligands of cholinesterases of ephedrine and pseudoephedrine structure].

    Science.gov (United States)

    2013-01-01

    The paper is a review of literature data on interaction of the mammalian erythrocyte acetylcholinesterase and blood serum butyrylcholinesterase with a group of isomer complex ester derivatives (acetates, propionates, butyrates, valerates, and isobutyrates) of bases and iodomethylates of ephedrine and its enantiomer pseudoephedrine. For 20 alkaloid monoesters, parameters of enzymatic hydrolysis are determined and their certain specificity toward acetylcholinesterase is revealed, whereas 5 diesters of iodomethylates of pseudoephedrine were hydrolyzed only by butyrylcholinesterase. The studied 20 aklaloid diesters and 10 trimethylammonium derivatives turned out to be non-competitive reversible inhibitors of acetylcholinesterase and competitive inhibitors of butyrylcholinesterase. The performed for the first time isomer and enantiomer analysis "structure-efficiency" has shown that in most cases it is possible to state the greater comlementarity of the catalytical surface of enzymes for ligands of the pseudoephedrine structure, such differentiation being realized more often at the reversible inhibition of enzymes. pseudoephedrine. PMID:25509044

  5. Construction of dinuclear complexes using multidentate ligands

    International Nuclear Information System (INIS)

    This work details the synthesis of novel copper(I), copper(II), nickel(II) and zinc(II) dinuclear complexes. Attempts have been made to control the co-ordination architectures of the metal centres by using bis-bidentate and tridentate chelating N,S- and N-donor ligands to generate dinuclear systems. The ligands were both symmetrically and asymmetrically disubstituted pyridazine-based and pyridine-based ligands consisting of a mixture of N-only and mixed N,S-donors. The study using the pyridazine-based ligands continues previous research in our group using 3,6-bis disubstituted pyridazine-based ligands to form complexes with copper(l) and copper(II). The pyridazine-based ligands have been seen to be bis-bidentate upon co-ordination of copper. The pyridazine-based ligands could be envisaged to generate dinuclear complexes by directly bridging between two metal ions. This study involved the formation of copper(l), nickel(II) and zinc(II) complexes with these ligands. The structural properties of two particular complexes have been explored using X-ray crystallography and spectroscopic techniques. Pyridine-based ligands have also been used previously in our group as tridentate chelating ligands. They have been seen to form dinuclear complexes with copper(I) and copper(II) when reacted with an additional bridging ligand e.g. 4,4'-bipyridine. This provides an alternative method for generating dinuclear complexes. Chapter 1 presents an introduction to the area of supramolecular chemistry from which we can learn the principles of polymer formation and them 'in reverse' to generate discrete dinuclear systems. Chapter 2 details the synthesis of the pyridazine and pyridine-based ligands including a detailed nmr study of the ligands. Since the ligands were synthesised using cyclic thioamides as terminal groups it has been found that thiol-thione tautomerisation occurred during synthesis giving rise to two possible ligand conformations. The nmr study has been used to try and

  6. Visualizing ligand molecules in twilight electron density

    International Nuclear Information System (INIS)

    A software script is presented for facilitating the analysis and visual inspection of ligand molecules in the context of the electron-density maps calculated from experimental data associated with protein structures determined by X-ray crystallography. Three-dimensional models of protein structures determined by X-ray crystallography are based on the interpretation of experimentally derived electron-density maps. The real-space correlation coefficient (RSCC) provides an easily comprehensible, objective measure of the residue-based fit of atom coordinates to electron density. Among protein structure models, protein–ligand complexes are of special interest, given their contribution to understanding the molecular underpinnings of biological activity and to drug design. For consumers of such models, it is not trivial to determine the degree to which ligand-structure modelling is biased by subjective electron-density interpretation. A standalone script, Twilight, is presented for the analysis, visualization and annotation of a pre-filtered set of 2815 protein–ligand complexes deposited with the PDB as of 15 January 2012 with ligand RSCC values that are below a threshold of 0.6. It also provides simplified access to the visualization of any protein–ligand complex available from the PDB and annotated by the Uppsala Electron Density Server. The script runs on various platforms and is available for download at http://www.ruppweb.org/twilight//

  7. Designer TGFβ superfamily ligands with diversified functionality.

    Directory of Open Access Journals (Sweden)

    George P Allendorph

    Full Text Available Transforming Growth Factor--beta (TGFβ superfamily ligands, including Activins, Growth and Differentiation Factors (GDFs, and Bone Morphogenetic Proteins (BMPs, are excellent targets for protein-based therapeutics because of their pervasiveness in numerous developmental and cellular processes. We developed a strategy termed RASCH (Random Assembly of Segmental Chimera and Heteromer, to engineer chemically-refoldable TGFβ superfamily ligands with unique signaling properties. One of these engineered ligands, AB208, created from Activin-βA and BMP-2 sequences, exhibits the refolding characteristics of BMP-2 while possessing Activin-like signaling attributes. Further, we find several additional ligands, AB204, AB211, and AB215, which initiate the intracellular Smad1-mediated signaling pathways more strongly than BMP-2 but show no sensitivity to the natural BMP antagonist Noggin unlike natural BMP-2. In another design, incorporation of a short N-terminal segment from BMP-2 was sufficient to enable chemical refolding of BMP-9, without which was never produced nor refolded. Our studies show that the RASCH strategy enables us to expand the functional repertoire of TGFβ superfamily ligands through development of novel chimeric TGFβ ligands with diverse biological and clinical values.

  8. LigandRFs: random forest ensemble to identify ligand-binding residues from sequence information alone

    KAUST Repository

    Chen, Peng

    2014-12-03

    Background Protein-ligand binding is important for some proteins to perform their functions. Protein-ligand binding sites are the residues of proteins that physically bind to ligands. Despite of the recent advances in computational prediction for protein-ligand binding sites, the state-of-the-art methods search for similar, known structures of the query and predict the binding sites based on the solved structures. However, such structural information is not commonly available. Results In this paper, we propose a sequence-based approach to identify protein-ligand binding residues. We propose a combination technique to reduce the effects of different sliding residue windows in the process of encoding input feature vectors. Moreover, due to the highly imbalanced samples between the ligand-binding sites and non ligand-binding sites, we construct several balanced data sets, for each of which a random forest (RF)-based classifier is trained. The ensemble of these RF classifiers forms a sequence-based protein-ligand binding site predictor. Conclusions Experimental results on CASP9 and CASP8 data sets demonstrate that our method compares favorably with the state-of-the-art protein-ligand binding site prediction methods.

  9. Fully Flexible Docking of Medium Sized Ligand Libraries with RosettaLigand

    Science.gov (United States)

    DeLuca, Samuel; Khar, Karen; Meiler, Jens

    2015-01-01

    RosettaLigand has been successfully used to predict binding poses in protein-small molecule complexes. However, the RosettaLigand docking protocol is comparatively slow in identifying an initial starting pose for the small molecule (ligand) making it unfeasible for use in virtual High Throughput Screening (vHTS). To overcome this limitation, we developed a new sampling approach for placing the ligand in the protein binding site during the initial ‘low-resolution’ docking step. It combines the translational and rotational adjustments to the ligand pose in a single transformation step. The new algorithm is both more accurate and more time-efficient. The docking success rate is improved by 10–15% in a benchmark set of 43 protein/ligand complexes, reducing the number of models that typically need to be generated from 1000 to 150. The average time to generate a model is reduced from 50 seconds to 10 seconds. As a result we observe an effective 30-fold speed increase, making RosettaLigand appropriate for docking medium sized ligand libraries. We demonstrate that this improved initial placement of the ligand is critical for successful prediction of an accurate binding position in the ‘high-resolution’ full atom refinement step. PMID:26207742

  10. 3'-Phosphoadenosine-5'-phosphosulfate: Photoaffinity ligand for sulfotransferase enzymes

    International Nuclear Information System (INIS)

    Sulfation is an important pathway in the biotransformation of many drugs, xenobiotic compounds, neurotransmitters, and hormones. The sulfate donor for these reactions is 3'-phosphoadenosine-5'-phosphosulfate (PAPS). We set out to determine whether PAPS might serve as a photoaffinity ligand for sulfotransferase enzymes. UV irradiation of [35S]PAPS with partially purified human liver thermostable (TS) phenol sulfotransferase (PST) radioactively labeled a protein with a molecular mass of 35 kDa, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Photoaffinity labeling of TS PST with [35S] PAPS did not require the presence of a phenolic substrate but rather was inhibited by p-nitrophenol, a sulfate acceptor substrate for TS PST. Inhibitors of TS PST enzymatic activity, including 3'-phosphoadenosine-5'-phosphate, ATP, ADP, and 2,6-dichloro-4-nitrophenol, also inhibited photoaffinity labeling of the 35-kDa protein with [35S]PAPS, in a concentration-dependent fashion, with IC50 values of 14 microM, 2.1 mM, 7.7 mM, and 91 microM, respectively. The 35-kDa protein that was radioactively labeled by [35S]PAPS in the presence of UV light coeluted with TS PST enzymatic activity during gel filtration high performance liquid chromatography. [35S]PAPS was then used to photoaffinity label another sulfotransferase enzyme, the thermolabile (TL) form of PST partially purified from human liver. Therefore, [35S]PAPS appears to be a photoaffinity ligand that could be used to study a variety of PAPS-dependent sulfotransferases. Photoaffinity labeling of TS and TL PST, as well as other PAPS-dependent sulfotransferases, should enhance our ability to purify this important group of enzymes and to determine amino acid sequences at or near their active sites

  11. Imidazol-1-ylethylindazole Voltage-Gated Sodium Channel Ligands Are Neuroprotective during Optic Neuritis in a Mouse Model of Multiple Sclerosis

    OpenAIRE

    Browne, Lorcan; Lidster, Katie; Al-Izki, Sarah; Clutterbuck, Lisa; Posada, Cristina; Chan, A. W. Edith; Riddall, Dieter; Garthwaite, John; Baker, David; Selwood, David L.

    2014-01-01

    A series of imidazol-1-ylethylindazole sodium channel ligands were developed and optimized for sodium channel inhibition and in vitro neuroprotective activity. The molecules exhibited displacement of a radiolabeled sodium channel ligand and selectivity for blockade of the inactivated state of cloned neuronal Nav channels. Metabolically stable analogue 6 was able to protect retinal ganglion cells during optic neuritis in a mouse model of multiple sclerosis.

  12. Imidazol-1-ylethylindazole voltage gated sodium (Nav) channel ligands are neuroprotective during optic neuritis in a mouse model of multiple sclerosis.

    OpenAIRE

    Browne, L.; Lidster, K.; Al-Izki, S.; Clutterbuck, L.; Posada, C.; Chan, A. E.; Riddall, D.; Garthwaite, J; Baker, D; Selwood, D. L.

    2014-01-01

    A series of imidazol-1-ylethyl)indazole sodium channel ligands were developed and optimized for sodium channel inhibition and in vitro neuroprotective activity. The molecules exhibited displacement of the radiolabelled sodium channel ligand and selectivity for blockade of the inactivated state of cloned neuronal Nav channels. A metabolically stable analogue 6 (CFM6104) was able to protect retinal ganglion cells during optic neuritis in a mouse model of multiple sclerosis.

  13. Immobilisation of ligands by radio-derivatized polymers; Immobilisering av ligander med radioderiverte polymerer

    Energy Technology Data Exchange (ETDEWEB)

    Varga, J.M.; Fritsch, P.

    1995-01-30

    The invention relates to radio-derivatized polymers and a method of producing them by contacting non-polymerizable conjugands with radiolysable polymers in the presence of irradiation. The resulting radio-derivatized polymers can be further linked with ligand of organic or inorganic nature to immobilize such ligands. 2 figs., 5 tabs.

  14. Novel Azido-Iodo Photoaffinity Ligands for the Human Serotonin Transporter Based on the Selective Serotonin Reuptake Inhibitor (S)-Citalopram

    OpenAIRE

    Kumar, Vivek; Yarravarapu, Nageswari; Lapinsky, David J.; Perley, Danielle; Felts, Bruce; Tomlinson, Michael J.; Vaughan, Roxanne A.; Henry, L. Keith; Lever, John R.; Newman, Amy Hauck

    2015-01-01

    Three photoaffinity ligands (PALs) for the human serotonin transporter (hSERT) were synthesized based on the selective serotonin reuptake inhibitor (SSRI), (S)-citalopram (1). The classic 4-azido-3-iodo-phenyl group was appended to either the C-1 or C-5 position of the parent molecule, with variable-length linkers, to generate ligands 15, 22, and 26. These ligands retained high to moderate affinity binding (K i = 24–227 nM) for hSERT, as assessed by [3H]5-HT transport inhibition. When tested ...

  15. Organotellurium ligands - designing and complexation reactions

    Indian Academy of Sciences (India)

    Ajai K Singh

    2002-08-01

    A variety of tellurium ligands has been designed and studied for their complexation reactions in the last decade. Of these hybrid telluroethers, halotellurium ligands and polytellurides are the most notable ones. RTe- and polytelluride ions have also been used to design clusters. Ligation of ditelluroethers and several hybrid telluroethers is extensively studied in our laboratories. The ditelluroether ligand RTeCH2TeR (where R = 4-MeOC6H4) (1), similar to dppm [1,2-bis(diphenylphosphino) methane], has been synthesized in good yield (∼80 %) by reacting CHCl3 with RTe- (generated in situ by borohydride reduction of R2Te2). Iodine reacts with 1 to give tetra-iodo derivative, which has intermolecular Te$\\cdots$I interactions resulting in a macro structure containing rectangular Te-I$\\cdots$Te bridges. 1 readily forms four membered rings with Pd(II) and Ru(II). On the formation of this chelate ring, the signal in 125Te NMR spectra shifts significantly upfield (50-60 ppm). The bridging mode of 1 has been shown in [Ru(-cymene)Cl2](-1)[Ru(-cymene)Cl2]. The hybrid telluroether ligands explored are of the types (Te, S), (Te, N) and (Te, O). The tellurium donor site has strong trans influence, which is manifested more strongly in square planar complexes of palladium(II). The morpholine N-donor site has been found to have weaker donor characteristics in (Te, N) ligands than pyridine and alkylamine donor sites of analogous ligands. The singlet oxygen readily oxidises the coordinated Te. This oxidation follows first order kinetics. The complexation reaction of RuCl3.H2O with N-[2-(4-methoxyphenyltelluro)ethyl]phthalimide (2) results in a novel (Te, N, O)-heterocycle, Te-chloro,Te-anisyl-1a-aza-4-oxa-3-tellura-1H, 2H, 4aH-9 fluorenone. The (Te, O) ligands can be used as hemilabile ligands, the oxygen atom temporarily protects the vacant coordination site before the arrival of the substrate. The chelate shifts observed in 125Te NMR spectra of metal complexes of Te-ligands have

  16. Sliding tethered ligands add topological interactions to the toolbox of ligand-receptor design

    Science.gov (United States)

    Bauer, Martin; Kékicheff, Patrick; Iss, Jean; Fajolles, Christophe; Charitat, Thierry; Daillant, Jean; Marques, Carlos M.

    2015-09-01

    Adhesion in the biological realm is mediated by specific lock-and-key interactions between ligand-receptor pairs. These complementary moieties are ubiquitously anchored to substrates by tethers that control the interaction range and the mobility of the ligands and receptors, thus tuning the kinetics and strength of the binding events. Here we add sliding anchoring to the toolbox of ligand-receptor design by developing a family of tethered ligands for which the spacer can slide at the anchoring point. Our results show that this additional sliding degree of freedom changes the nature of the adhesive contact by extending the spatial range over which binding may sustain a significant force. By introducing sliding tethered ligands with self-regulating length, this work paves the way for the development of versatile and reusable bio-adhesive substrates with potential applications for drug delivery and tissue engineering.

  17. A new class of PN3-pincer ligands for metal–ligand cooperative catalysis

    KAUST Repository

    Li, Huaifeng

    2014-12-01

    Work on a new class of PN3-pincer ligands for metal-ligand cooperative catalysis is reviewed. While the field of the pyridine-based PN3-transition metal pincer complexes is still relatively young, many important applications of these complexes have already emerged. In several cases, the PN3-pincer complexes for metal-ligand cooperative catalysis result in significantly improved or unprecedented activities. The synthesis and coordination chemistry of PN3-pincer ligands are briefly summarized first to cover the synthetic routes for their preparation, followed by a focus review on their applications in catalysis. A specific emphasis is placed on the later section about the role of PN3-pincer ligands\\' dearomatization-rearomatization steps during the catalytic cycles. The mechanistic insights from density functional theory (DFT) calculations are also discussed.

  18. Impact of receptor clustering on ligand binding

    Directory of Open Access Journals (Sweden)

    Caré Bertrand R

    2011-03-01

    Full Text Available Abstract Background Cellular response to changes in the concentration of different chemical species in the extracellular medium is induced by ligand binding to dedicated transmembrane receptors. Receptor density, distribution, and clustering may be key spatial features that influence effective and proper physical and biochemical cellular responses to many regulatory signals. Classical equations describing this kind of binding kinetics assume the distributions of interacting species to be homogeneous, neglecting by doing so the impact of clustering. As there is experimental evidence that receptors tend to group in clusters inside membrane domains, we investigated the effects of receptor clustering on cellular receptor ligand binding. Results We implemented a model of receptor binding using a Monte-Carlo algorithm to simulate ligand diffusion and binding. In some simple cases, analytic solutions for binding equilibrium of ligand on clusters of receptors are provided, and supported by simulation results. Our simulations show that the so-called "apparent" affinity of the ligand for the receptor decreases with clustering although the microscopic affinity remains constant. Conclusions Changing membrane receptors clustering could be a simple mechanism that allows cells to change and adapt its affinity/sensitivity toward a given stimulus.

  19. Galectin Binding to Neo-Glycoproteins: LacDiNAc Conjugated BSA as Ligand for Human Galectin-3

    Directory of Open Access Journals (Sweden)

    Sophia Böcker

    2015-07-01

    Full Text Available Carbohydrate-lectin interactions are relatively weak. As they play an important role in biological recognition processes, multivalent glycan ligands are designed to enhance binding affinity and inhibitory potency. We here report on novel neo-glycoproteins based on bovine serum albumin as scaffold for multivalent presentation of ligands for galectins. We prepared two kinds of tetrasaccharides (N-acetyllactosamine and N,N-diacetyllactosamine terminated by multi-step chemo-enzymatic synthesis utilizing recombinant glycosyltransferases. Subsequent conjugation of these glycans to lysine groups of bovine serum albumin via squaric acid diethyl ester yielded a set of 22 different neo-glycoproteins with tuned ligand density. The neo-glycoproteins were analyzed by biochemical and chromatographic methods proving various modification degrees. The neo-glycoproteins were used for binding and inhibition studies with human galectin-3 showing high affinity. Binding strength and inhibition potency are closely related to modification density and show binding enhancement by multivalent ligand presentation. At galectin-3 concentrations comparable to serum levels of cancer patients, we detect the highest avidities. Selectivity of N,N-diacetyllactosamine terminated structures towards galectin-3 in comparison to galectin-1 is demonstrated. Moreover, we also see strong inhibitory potency of our scaffolds towards galectin-3 binding. These novel neo-glycoproteins may therefore serve as selective and strong galectin-3 ligands in cancer related biomedical research.

  20. Ligand identification using electron-density map correlations

    International Nuclear Information System (INIS)

    An automated ligand-fitting procedure is applied to (Fo − Fc)exp(iϕc) difference density for 200 commonly found ligands from macromolecular structures in the Protein Data Bank to identify ligands from density maps. A procedure for the identification of ligands bound in crystal structures of macromolecules is described. Two characteristics of the density corresponding to a ligand are used in the identification procedure. One is the correlation of the ligand density with each of a set of test ligands after optimization of the fit of that ligand to the density. The other is the correlation of a fingerprint of the density with the fingerprint of model density for each possible ligand. The fingerprints consist of an ordered list of correlations of each the test ligands with the density. The two characteristics are scored using a Z-score approach in which the correlations are normalized to the mean and standard deviation of correlations found for a variety of mismatched ligand-density pairs, so that the Z scores are related to the probability of observing a particular value of the correlation by chance. The procedure was tested with a set of 200 of the most commonly found ligands in the Protein Data Bank, collectively representing 57% of all ligands in the Protein Data Bank. Using a combination of these two characteristics of ligand density, ranked lists of ligand identifications were made for representative (Fo − Fc)exp(iϕc) difference density from entries in the Protein Data Bank. In 48% of the 200 cases, the correct ligand was at the top of the ranked list of ligands. This approach may be useful in identification of unknown ligands in new macromolecular structures as well as in the identification of which ligands in a mixture have bound to a macromolecule

  1. Regulation of encephalitogenic T cells with recombinant TCR ligands.

    Science.gov (United States)

    Burrows, G G; Adlard, K L; Bebo, B F; Chang, J W; Tenditnyy, K; Vandenbark, A A; Offner, H

    2000-06-15

    We have previously described recombinant MHC class II beta1 and alpha1 domains loaded with free antigenic peptides with potent inhibitory activity on encephalitogenic T cells. We have now produced single-chain constructs in which the peptide Ag is genetically encoded within the same exon as the linked beta1 and alpha1 domains, overcoming the problem of displacement of peptide Ag from the peptide binding cleft. We here describe clinical effects of recombinant TCR ligands (RTLs) comprised of the rat RT1.B beta1alpha1 domains covalently linked to the 72-89 peptide of guinea pig myelin basic protein (RTL-201), to the corresponding 72-89 peptide from rat myelin basic protein (RTL-200), or to cardiac myosin peptide CM-2 (RTL-203). Only RTL-201 possessed the ability to prevent and treat active or passive experimental autoimmune encephalomyelitis. Amelioration of experimental autoimmune encephalomyelitis was associated with a selective inhibition of proliferation response and cytokine production by Ag-stimulated lymph node T cells and a drastic reduction in the number of encephalitogenic and recruited inflammatory cells infiltrating the CNS. The exquisitely selective inhibition could be observed between molecules that differ by a single methyl group (the single amino acid residue difference between RTL-200 (threonine) and RTL-201 (serine) at position 80 of the myelin basic protein peptide). These novel RTLs provide a platform for developing potent and selective human diagnostic and therapeutic agents for treatment of autoimmune disease. PMID:10843691

  2. Secreted and transmembrane 1A is a novel co-stimulatory ligand.

    Directory of Open Access Journals (Sweden)

    Duncan Howie

    Full Text Available Most T cell responses to pathogens or self antigens are modulated through the action of regulatory T cells and tissue-specific inhibitory mechanisms. To this end, several receptor-ligand pairs have evolved which either augment or diminish T cell function. Here we describe the tissue ligand SECTM1A (Secreted and transmembrane1A as an alternative murine CD7 ligand. We show that SECTM1A, like SECTM1B, binds strongly to CD7, and that SECTM1B was able to compete with SECTM1A for CD7 binding. SECTM1A is ubiquitously expressed and has two major alternative transcripts which differ in expression between tissues. Both immobilised soluble forms of SECTM1A and SECTM1B and cell surface anchored forms demonstrated opposing effects on CD4+ T cell activation. Whereas SECTM1A acted as a co-stimulator of T cells, enhancing IL-2 production and proliferation, SECTM1B proved inhibitory to TCR mediated T cell activation. Surprisingly, both functional outcomes proved to be CD7-independent, indicating the existence of alternative receptors for both ligands. We used a SECTM1A-Fc fusion protein to immunoprecipitate potential alternative ligands from detergent lysates of CD7(-/- T cells and, using mass spectrometry, identified GITR as a SECTM1A binder. SECTM1A was found to bind to activated CD4+ and CD8+ T cells as well as to CHO cells expressing cell surface GITR. Binding of SECTM1A to activated primary T cells was inhibited by either GITRL-Fc or anti GITR antibodies. Thus SECTM1A and SECTM1B represent novel reciprocal alternative ligands which may function to modulate the activation of effector and regulatory T cells. The ability of SECTM1A to activate T cells may be explained by its ability to bind to GITR.

  3. Somatostatin receptor subtype 2 sensitizes human pancreatic cancer cells to death ligand-induced apoptosis.

    Science.gov (United States)

    Guillermet, Julie; Saint-Laurent, Nathalie; Rochaix, Philippe; Cuvillier, Olivier; Levade, Thierry; Schally, Andrew V; Pradayrol, Lucien; Buscail, Louis; Susini, Christiane; Bousquet, Corinne

    2003-01-01

    Somatostatin receptor subtype 2 (sst2) gene expression is lost in 90% of human pancreatic adenocarcinomas. We previously demonstrated that stable sst2 transfection of human pancreatic BxPC-3 cells, which do not endogenously express sst2, inhibits cell proliferation, tumorigenicity, and metastasis. These sst2 effects occur as a consequence of an autocrine sst2-dependent loop, whereby sst2 induces expression of its own ligand, somatostatin. Here we investigated whether sst2 induces apoptosis in sst2-transfected BxPC-3 cells. Expression of sst2 induced a 4.4- +/- 0.05-fold stimulation of apoptosis in BxPC-3 through the activation of tyrosine phosphatase SHP-1. sst2 also sensitized these cells to apoptosis induced by tumor necrosis factor alpha (TNFalpha), enhancing it 4.1- +/- 1.5-fold. Apoptosis in BxPC-3 cells mediated by TNF-related apoptosis-inducing ligand (TRAIL) and CD95L was likewise increased 2.3- +/- 0.5-fold and 7.4- +/- 2.5-fold, respectively. sst2-dependent activation and cell sensitization to death ligand-induced apoptosis involved activation of the executioner caspases, key factors in both death ligand- or mitochondria-mediated apoptosis. sst2 affected both pathways: first, by up-regulating expression of TRAIL and TNFalpha receptors, DR4 and TNFRI, respectively, and sensitizing the cells to death ligand-induced initiator capase-8 activation, and, second, by down-regulating expression of the antiapoptotic mitochondrial Bcl-2 protein. These results are of interest for the clinical management of chemoresistant pancreatic adenocarcinoma by using a combined gene therapy based on the cotransfer of genes for both the sst2 and a nontoxic death ligand. PMID:12490654

  4. Mechanistic Characterization and Designing Possible Molecular Ligand Interactions with RdRp from CHIKV

    Directory of Open Access Journals (Sweden)

    D. P. Jobidhas

    2013-04-01

    Full Text Available To date, no suitable vaccine or specific antiviral drug is available to treat Chikungunya viral (CHIKV fever. Hence, it is essential to identify drug candidates that could potentially impede CHIKV infection. The present study focused with the development of Designing Possible Docking and Molecular Ligand Interactions with RdRp from CHIK-V protein based on the crystal structure. When, Rifapentine was interact with RdRp viral protein which were clearly showed the significantly excellent glide score of -5.690530 (Kcal/mol as well as poor glide score of 2.874727 (Kcal/mol. The docking results showed that among the four ligand molecules Efavirenz have the lowest binding values among the other ligands because it has residue contact with total of 13 residues. Two of them were Glut-31, Glut-46, which are catalytic site residues. It is expected that this ligand could prevented the catalytic process. Rimantadine peptide has hydrogen bond interaction with five other residues and them binded with GLU-28, ASP-38 and ILE-45. Based on docking result visualization, it is known that Rifapentine and Rifampin peptide ligand was bound with RdRp enzyme inside the cavity also viral RNA entry when it covets to begin initiation and elongation process. From this study clearly revealed, the ligands such as Rifapentine, Rifampin and Rimantadine may inhibit the RNA dependent RNA polymerase protein activity in chikungunya virus. Furthermore, the backbone structural scaffolds of these four lead compounds could serve as building blocks when designing drug-like molecules for the treatment of Chikungunya viral fever.

  5. The clathrin-binding motif and the J-domain of Drosophila Auxilin are essential for facilitating Notch ligand endocytosis

    Directory of Open Access Journals (Sweden)

    Chang Henry C

    2008-05-01

    Full Text Available Abstract Background Ligand endocytosis plays a critical role in regulating the activity of the Notch pathway. The Drosophila homolog of auxilin (dAux, a J-domain-containing protein best known for its role in the disassembly of clathrin coats from clathrin-coated vesicles, has recently been implicated in Notch signaling, although its exact mechanism remains poorly understood. Results To understand the role of auxilin in Notch ligand endocytosis, we have analyzed several point mutations affecting specific domains of dAux. In agreement with previous work, analysis using these stronger dAux alleles shows that dAux is required for several Notch-dependent processes, and its function during Notch signaling is required in the signaling cells. In support of the genetic evidences, the level of Delta appears elevated in dAux deficient cells, suggesting that the endocytosis of Notch ligand is disrupted. Deletion analysis shows that the clathrin-binding motif and the J-domain, when over-expressed, are sufficient for rescuing dAux phenotypes, implying that the recruitment of Hsc70 to clathrin is a critical role for dAux. However, surface labeling experiment shows that, in dAux mutant cells, Delta accumulates at the cell surface. In dAux mutant cells, clathrin appears to form large aggregates, although Delta is not enriched in these aberrant clathrin-positive structures. Conclusion Our data suggest that dAux mutations inhibit Notch ligand internalization at an early step during clathrin-mediated endocytosis, before the disassembly of clathrin-coated vesicles. Further, the inhibition of ligand endocytosis in dAux mutant cells possibly occurs due to depletion of cytosolic pools of clathrin via the formation of clathrin aggregates. Together, our observations argue that ligand endocytosis is critical for Notch signaling and auxilin participates in Notch signaling by facilitating ligand internalization.

  6. Effects of PPARγ Ligands on Leukemia

    Directory of Open Access Journals (Sweden)

    Yoko Tabe

    2012-01-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs and retinoic acid receptors (RARs, members of the nuclear receptor superfamily, are transcription factors that regulate a variety of important cellular functions. PPARs form heterodimers retinoid X receptor (RXR, an obligate heterodimeric partner for other nuclear receptors. Several novel links between retinoid metabolism and PPAR responses have been identified, and activation of PPAR/RXR expression has been shown to increase response to retinoids. PPARγ has emerged as a key regulator of cell growth and survival, whose activity is modulated by a number of synthetic and natural ligands. While clinical trials in cancer patients with thiazolidinediones (TZD have been disappointing, novel structurally different PPARγ ligands, including triterpenoids, have entered clinical arena as therapeutic agents for epithelial and hematopoietic malignancies. Here we shall review the antitumor advances of PPARγ, alone and in combination with RARα ligands in control of cell proliferation, differentiation, and apoptosis and their potential therapeutic applications in hematological malignancies.

  7. Flexible Ligand Docking Using Evolutionary Algorithms

    DEFF Research Database (Denmark)

    Thomsen, Rene

    2003-01-01

    search spaces effectively and is one of the commonly used methods for flexible ligand docking. During the last decade, several EAs using different variation operators have been introduced, such as the ones provided with the AutoDock program. In this paper we evaluate the performance of different EA......The docking of ligands to proteins can be formulated as a computational problem where the task is to find the most favorable energetic conformation among the large space of possible protein–ligand complexes. Stochastic search methods such as evolutionary algorithms (EAs) can be used to sample large...... settings such as choice of variation operators, population size, and usage of local search. The comparison is performed on a suite of six docking problems previously used to evaluate the performance of search algorithms provided with the AutoDock program package. The results from our investigation confirm...

  8. Flexible Ligand Docking Using Differential Evolution

    DEFF Research Database (Denmark)

    Thomsen, René

    2003-01-01

    Molecular docking of biomolecules is becoming an increasingly important part in the process of developing new drugs, as well as searching compound databases for promising drug candidates. The docking of ligands to proteins can be formulated as an optimization problem where the task is to find the...... most favorable energetic conformation among the large space of possible protein-ligand complexes. Stochastic search methods, such as evolutionary algorithms (EAs), can be used to sample large search spaces effectively and is one of the preferred methods for flexible ligand docking. The differential...... evolution algorithm (DE) is applied to the docking problem using the AutoDock program. The introduced DockDE algorithm is compared with the Lamarckian GA (LGA) provided with AutoDock, and the DockEA previously found to outperform the LGA. The comparison is performed on a suite of six commonly used docking...

  9. Supramolecular architectures constructed using angular bipyridyl ligands

    International Nuclear Information System (INIS)

    This work details the synthesis and characterization of a series of coordination frameworks that are formed using bidentate angular N-donor ligands. Pyrimidine was reacted with metal(ll) nitrate salts. Reactions using Cd(NO3)2 receive particular focus and the analogous reactions using the linear ligand, pyrazine, were studied for comparison. In all cases, two-dimensional coordination networks were prepared. Structural diversity is observed for the Cd(ll) centres including metal-nitrate bridging. In contrast, first row transition metal nitrates form isostructural one-dimensional chains with only the bridging N-donor ligands generating polymeric propagation. The angular ligand, 2,4-bis(4-pyridyl)-1,3,5-triazine (dpt), was reacted with Cd(NO3)2 and Zn(NO3)2. Whereas Zn(NO3)2 compounds exhibit solvent mediated polymorphism, a range of structures were obtained for the reactions with Cd(NO3)2, including the first example of a doubly parallel interpenetrated 4.82 net. 4,7-phenanthroline, was reacted with various metal(ll) nitrates as well as cobalt(ll) and copper(ll) halides. The ability of 4,7-phenanthroline to act as both a N-donor ligand and a hydrogen bond acceptor has been discussed. Reactions of CuSCN with pyrimidine yield an unusual three-dimensional structure in which polymeric propagation is not a result of ligand bridging. The reaction of CuSCN with dpt yielded structural supramolecular isomers. (author)

  10. The first scorpionate ligand based on diazaphosphole.

    Science.gov (United States)

    Mlateček, Martin; Dostál, Libor; Růžičková, Zdeňka; Honzíček, Jan; Holubová, Jana; Erben, Milan

    2015-12-14

    The reaction of PhBCl2 with 1H-1,2,4-λ(3)-diazaphosphole in the presence of NEt3 gives a new scorpionate ligand, phenyl-tris(1,2,4-diazaphospholyl)borate (PhTdap). The coordination behaviour of this ligand toward transition and non-transition metals has been comprehensively studied. In the thallium(I) complex, Tl(PhTdap), κ(2)-N,N bonding supported with intramolecular η(3)-phenyl coordination has been observed in the solid state. Tl(PhTdap) also shows unusual intermolecular π-interactions between five-membered diazaphosphole rings and the thallium atom giving infinite molecular chains in the crystal. In the square planar complex [Pd(C,N-C6H4CH2NMe2)(PhTdap)], κ(2)-bonded scorpionate has been detected in both solution and in the solid state. For other studied compounds with the central metal ion Ti(IV), Mo(II), Mn(I), Fe(II), Ru(II), Co(II), Co(III), Ni(II) and Cd(II), the κ(3)-N,N,N coordination pattern was observed. Electronic properties of PhTdap and its ligand-field strength were elucidated from UV-Vis spectra of transition-metal species. The CH/P replacement on going from tris(pyrazolyl)borate to the ligand PhTdap causes a slight increase in electronic density rendered to the central metal atom. The following order of ligand-field strength has been established: HB(3,5-Me2pz)3 PhB(pz)3 PhB(1,2,4-triazolyl) < PhTdap. The crystal structures of ten metal complexes bearing the new ligand are reported. The possibility of PhTdap coordination through the phosphorus atom is also briefly discussed. PMID:26537349

  11. Macrophage Membrane Potential Changes Associated with γ 2b/γ 1 Fc Receptor-Ligand Binding

    Science.gov (United States)

    Young, John Ding-E; Unkeless, Jay C.; Kaback, H. Ronald; Cohn, Zanvil A.

    1983-03-01

    We have studied the effects of specific ligands of the receptor for the IgG Fc fragment (FcR) on the membrane potential (Δ Psi ) of the macrophage cell line J774 by the [3H]tetraphenylphosphonium ion equilibration technique. We observe a membrane depolarization with binding of FcR ligands that is dependent on the degree of receptor crosslinking. Binding of the FcR by monovalent ligands is not sufficient to induce a significant drop in Δ Psi , but a sustained depolarization lasting ≈ 20 min occurs with insoluble multivalent ligands. This FcR-mediated depolarization can be inhibited by substitution of Na+ from the cell incubation medium with monovalent choline cation, indicating that depolarization is due to Na+ influx into the cell. The extracellular Ca2+ does not play a significant role in membrane depolarization. The depolarization response is not triggered by monoclonal antibodies directed against three other major macrophage surface antigens. The cell depolarization mediated by FcR ligands is followed by a prolonged hyperpolarization that can be partially blocked by ouabain and quinine, indicating that the hyperpolarization response is a result of a combination of a Na+, K+-ATPase activity and a Ca2+-activated K+ conductance. These data support our hypothesis that the mouse macrophage IgG FcR is a ligand-dependent ion channel.

  12. Cationic ruthenium alkylidene catalysts bearing phosphine ligands

    OpenAIRE

    Endo, Koji; Grubbs, Robert H.

    2016-01-01

    The discovery of highly active catalysts and the success of ionic liquid immobilized systems have accelerated attention to a new class of cationic metathesis catalysts. We herein report the facile syntheses of cationic ruthenium catalysts bear-ing bulky phosphine ligands. Simple ligand exchange using silver(I) salts of non-coordinating or weakly coordinating anions pro-vided either PPh3 or chelating Ph2P(CH2)nPPh2 (n = 2 or 3) ligated cationic catalysts. The structures of these newly reported...

  13. Ligand Intermediates in Metal-Catalyzed Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Gladysz, John A.

    1999-07-31

    The longest-running goal of this project has been the synthesis, isolation, and physical chemical characterization of homogeneous transition metal complexes containing ligand types believed to be intermediates in the metal-catalyzed conversion of CO/H{sub 2}, CO{sub 2}, CH{sub 4}, and similar raw materials to organic fuels, feedstocks, etc. In the current project period, complexes that contain unusual new types of C{sub x}(carbide) and C{sub x}O{sub y} (carbon oxide) ligands have been emphasized. A new program in homogeneous fluorous phase catalysis has been launched as described in the final report.

  14. Surface thermal stability of iron pyrite nanocrystals: Role of capping ligands

    International Nuclear Information System (INIS)

    Iron pyrite (FeS2) is a promising photovoltaic absorber material with a high natural abundance and low cost, but surface defects and low photoresponse inhibit sunlight energy conversion. The surface stability of pyrite FeS2 nanocrystals synthesized in oleylamine (OLA) with trioctylphosphine oxide (TOPO) as an additional capping ligand was investigated using Fourier transform infrared spectroscopy, Raman spectroscopy and X-ray diffraction. Tunable laser exposure during Raman spectroscopy measurement was developed for convenient and systematic evaluation of the stability of FeS2 nanocrystals. The surface stability of 100–200 nm diameter cubic nanocrystals with long-chain (OLA, TOPO) or small-molecule (pyridine) capping ligands was evaluated after high-intensity laser exposure as well as after thermal annealing in air and N2. While increasing surface coverage with OLA and TOPO capping ligands provided additional protection against oxidation, FeS2 nanocrystals capped with pyridine showed good stability at temperatures up to 200 °C in air and 400 °C in N2. These results provide greater understanding of the processing of nanocrystal-based iron pyrite thin films for photovoltaic applications. - Highlights: • Investigated the key role of capping ligands in protecting the FeS2 nanocrystals • Demonstrated good surface stability in air and in N2 • Provided practical possibility of controllable oxygen doping of FeS2

  15. A new target ligand Ser-Glu for PEPT1-overexpressing cancer imaging.

    Science.gov (United States)

    Dai, Tongcheng; Li, Na; Zhang, Lingzhi; Zhang, Yuanxing; Liu, Qin

    2016-01-01

    Nanoparticles functionalized with active target ligands have been widely used for tumor-specific diagnosis and therapy. The target ligands include antibodies, peptides, proteins, small molecules, and nucleic acid aptamers. Here, we utilize dipeptide Ser-Glu (DIP) as a new ligand to functionalize polymer-based fluorescent nanoparticles (NPs) for pancreatic cancer target imaging. We demonstrate that in the first step, Ser-Glu-conjugated NPs (NPs-DIP) efficiently bind to AsPC-1 and in the following NPs-DIP are internalized into AsPC-1 in vitro. The peptide transporter 1 inhibition experiment reveals that the targeting effects mainly depend on the specific binding of DIP to peptide transporter 1, which is remarkably upregulated in pancreatic cancer cells compared with varied normal cells. Furthermore, NPs-DIP specifically accumulate in the site of pancreatic tumor xenograft and are further internalized into the tumor cells in vivo after intravenous administration, indicating that DIP successfully enhanced nanoparticles internalization efficacy into tumor cells in vivo. This work establishes Ser-Glu to be a new tumor-targeting ligand and provides a promising tool for future tumor diagnostic or therapeutic applications. PMID:26811678

  16. Metal Complexes of Macrocyclic Schiff-Base Ligand: Preparation, Characterisation, and Biological Activity

    Science.gov (United States)

    Ahmed, Riyadh M.; Yousif, Enaam I.; Hasan, Hasan A.; Al-Jeboori, Mohamad J.

    2013-01-01

    A new macrocyclic multidentate Schiff-base ligand Na4L consisting of two submacrocyclic units (10,21-bis-iminomethyl-3,6,14,17-tricyclo[17.3.1.18,12]tetracosa-1(23),2,6,8,10,12(24),13,17,19,21,-decaene-23,24-disodium) and its tetranuclear metal complexes with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) are reported. Na4L was prepared via a template approach, which is based on the condensation reaction of sodium 2,4,6-triformyl phenolate with ethylenediamine in mole ratios of 2 : 3. The tetranuclear macrocyclic-based complexes were prepared from the reaction of the corresponding metal chloride with the ligand. The mode of bonding and overall geometry of the compounds were determined through physicochemical and spectroscopic methods. These studies revealed tetrahedral geometries about Mn, Co, and Zn atoms. However, square planar geometries have been suggested for NiII and CuII complexes. Biological activity of the ligand and its metal complexes against Gram positive bacterial strain Staphylococcus aureus and Gram negative bacteria Escherichia coli revealed that the metal complexes become more potentially resistive to the microbial activities as compared to the free ligand. However, these metal complexes do not exhibit any effects on the activity of Pseudomonas aeruginosa bacteria. There is therefore no inhibition zone. PMID:23935414

  17. Four transition metal complexes with a semicarbazone ligand bearing pyrazine unit

    Science.gov (United States)

    Chen, Hong; Ma, Xiu-qin; Lv, Yan-yun; Jia, Lei; Xu, Jun; Wang, Yuan; Ge, Zhi-jun

    2016-04-01

    Four new complexes based on L (where L = 3-ethyl-2-acetylpyrazine semicarbazone), namely [CoL2]Cl2·0.5H2O (1), [CoL2](NO3)2 (2), [CdL(H2O)2(NO3)](NO3)·H2O (3) and [CuL(CH3OH)Cl2]·[CuLCl2] (4) have been synthesized and characterized by X-ray diffraction analyses. The results show that the semicarbazone acts as a tridentate neutral ligand in all complexes. Each of complex 1 and 2 reveals a distorted octahedral geometry around the metal ion provided by two units of the ligand, while the ratio of the ligand and metal is 1:1 in complexes 3 and 4. The effect of complexes 1-4 on cell proliferation, apoptosis of human pancreatic cancer (Patu8988), human gastric cancer (SGC7901) and human hepatic cancer (SMMC7721) cell lines have been detected by MTT assay, Annexin V/PI double staining flow cytometry and TUNEL assay. The results show that complexes 1-4 can inhibit cell proliferation of Patu8988, SGC7901 and SMMC7721 cells, significantly higher than the effect of the ligand. However, the complex 4 reveals higher apoptosis rate, and displays up-regulated expression level of caspase 3, detected by western blotting, which also indicates the complex 4 can induce caspase-dependent cell apoptosis in SMMC7721.

  18. Effects of Na/K-ATPase and its ligands on bone marrow stromal cell differentiation

    Directory of Open Access Journals (Sweden)

    Moustafa Sayed

    2014-07-01

    Full Text Available Endogenous ligands of Na/K-ATPase have been demonstrated to increase in kidney dysfunction and heart failure. It is also reported that Na/K-ATPase signaling function effects stem cell differentiation. This study evaluated whether Na/K-ATPase activation through its ligands and associated signaling functions affect bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells differentiation capacity. BMSCs were isolated from male Sprague–Dawley rats and cultured in minimal essential medium alpha (MEM-α supplemented with 15% Fetal Bovine serum (FBS. The results showed that marinobufagenin (MBG, a specific Na/K-ATPase ligand, potentiated rosiglitazone-induced adipogenesis in these BMSCs. Meanwhile, it attenuated BMSC osteogenesis. Mechanistically, MBG increased CCAAT/enhancer binding protein alpha (C/EBPα protein expression through activation of an extracellular regulated kinase (ERK signaling pathway, which leads to enhanced rosiglitazone-induced adipogenesis. Inhibition of ERK activation by U0126 blocks the effect of MBG on C/EBPα expression and on rosiglitazone-induced adipogenesis. Reciprocally, MBG reduced runt-related transcription factor 2 (RunX2 expression, which resulted in the inhibition of osteogenesis induced by β-glycerophosphate/ascorbic acid. MBG also potentiated rosiglitazone-induced adipogenesis in 3T3-L1 cells and in mouse BMSCs. These results suggest that Na/K-ATPase and its signaling functions are involved in the regulation of BMSCs differentiation.

  19. The influence of ligand-activated LXR on primary human trophoblasts

    Science.gov (United States)

    Larkin, Jacob C.; Sears, Sarah B.; Sadovsky, Yoel

    2014-01-01

    Introduction The Liver X Receptors (LXRs) are critical transcriptional regulators of cellular metabolism that promote cholesterol efflux and lipogenesis in response to excess intracellular cholesterol. In contrast, the Sterol Response Element Binding Protein-2 (SREBP2) promotes the synthesis and uptake of cholesterol. Oxysterols are products of cholesterol oxidation that accumulate in conditions associated with increased cellular levels of reactive oxygen species, such as hypoxia and oxidative stress, activating LXR and inhibiting SREBP2. While hypoxia and oxidative stress are commonly implicated in placental injury, the impact of the transcriptional regulation of cholesterol homeostasis on placental function is not well characterized. Methods We measured the effects of the synthetic LXR ligand T0901317 and the endogenous oxysterol 25-hydroxycholesterol (25OHC) on differentiation, cytotoxicity, progesterone synthesis, lipid droplet formation, and gene expression in primary human trophoblasts. Results Exposure to T0901317 promoted lipid droplet formation and inhibited differentiation, while 25OHC induced trophoblast toxicity, promoted hCG and progesterone release at lower concentrations with inhibition at higher concentrations, and had no effect on lipid droplet formation. The discrepant effect of these ligands was associated with distinct changes in expression of LXR and SREBP2 target genes, with upregulation of ABCA1 following 25OHC and T090317 exposure, exclusive activation of the lipogenic LXR targets SREBP1c, ACC1 and FAS by T0901317, and exclusive inhibition of the SREBP2 targets LDLR and HMGCR by 25OHC. Conclusion These findings implicate cholesterol oxidation as a determinant of trophoblast function and activity, and suggest that placental gene targets and functional pathways are selectively regulated by specific LXR ligands. PMID:25255963

  20. Conglutinin binds the HIV-1 envelope glycoprotein gp 160 and inhibits its interaction with cell membrane CD4

    DEFF Research Database (Denmark)

    Andersen, Ove; Sørensen, A M; Svehag, S E; Fenouillet, E

    1991-01-01

    calcium-dependent, which is characteristic of the binding of a C-type lectin to its ligand, and the binding was inhibited in a dose-dependent manner with N-acetyl-D-glucosamine. Deglycosylation of rgp160 abrogated the conglutinin binding. In addition, conglutinin exerted a dose-dependent inhibition of the...

  1. A versatile dinucleating ligand containing sulfonamide groups

    DEFF Research Database (Denmark)

    Sundberg, Jonas; Witt, Hannes; Cameron, Lisa;

    2014-01-01

    Copper, iron, and gallium coordination chemistries of the new pentadentate bis-sulfonamide ligand 2,6-bis(N-2-pyridylmethylsulfonamido)-4-methylphenol (psmpH3) were investigated. PsmpH3 is capable of varying degrees of deprotonation, and notably, complexes containing the fully trideprotonated...

  2. Supramolecular architectures constructed using angular bipyridyl ligands

    CERN Document Server

    Barnett, S A

    2003-01-01

    This work details the synthesis and characterization of a series of coordination frameworks that are formed using bidentate angular N-donor ligands. Pyrimidine was reacted with metal(ll) nitrate salts. Reactions using Cd(NO sub 3) sub 2 receive particular focus and the analogous reactions using the linear ligand, pyrazine, were studied for comparison. In all cases, two-dimensional coordination networks were prepared. Structural diversity is observed for the Cd(ll) centres including metal-nitrate bridging. In contrast, first row transition metal nitrates form isostructural one-dimensional chains with only the bridging N-donor ligands generating polymeric propagation. The angular ligand, 2,4-bis(4-pyridyl)-1,3,5-triazine (dpt), was reacted with Cd(NO sub 3) sub 2 and Zn(NO sub 3) sub 2. Whereas Zn(NO sub 3) sub 2 compounds exhibit solvent mediated polymorphism, a range of structures were obtained for the reactions with Cd(NO sub 3) sub 2 , including the first example of a doubly parallel interpenetrated 4.8 sup...

  3. Constitutive and ligand-induced TCR degradation

    DEFF Research Database (Denmark)

    von Essen, Marina; Bonefeld, Charlotte Menné; Siersma, Volkert;

    2004-01-01

    divergent models for TCR down-regulation and degradation have been suggested. The aims of this study were to determine the rate constants for constitutive and ligand-induced TCR degradation and to determine whether the TCR subunits segregate or are processed as an intact unit during TCR down-regulation and...

  4. Ligand iron catalysts for selective hydrogenation

    Science.gov (United States)

    Casey, Charles P.; Guan, Hairong

    2010-11-16

    Disclosed are iron ligand catalysts for selective hydrogenation of aldehydes, ketones and imines. A catalyst such as dicarbonyl iron hydride hydroxycyclopentadiene) complex uses the OH on the five member ring and hydrogen linked to the iron to facilitate hydrogenation reactions, particularly in the presence of hydrogen gas.

  5. Identification of ligands for bacterial sensor proteins.

    Science.gov (United States)

    Fernández, Matilde; Morel, Bertrand; Corral-Lugo, Andrés; Rico-Jiménez, Miriam; Martín-Mora, David; López-Farfán, Diana; Reyes-Darias, José Antonio; Matilla, Miguel A; Ortega, Álvaro; Krell, Tino

    2016-02-01

    Bacteria have evolved a variety of different signal transduction mechanisms. However, the cognate signal molecule for the very large amount of corresponding sensor proteins is unknown and their functional annotation represents a major bottleneck in the field of signal transduction. The knowledge of the signal molecule is an essential prerequisite to understand the signalling mechanisms. Recently, the identification of signal molecules by the high-throughput protein screening of commercially available ligand collections using differential scanning fluorimetry has shown promise to resolve this bottleneck. Based on the analysis of a significant number of different ligand binding domains (LBDs) in our laboratory, we identified two issues that need to be taken into account in the experimental design. Since a number of LBDs require the dimeric state for ligand recognition, it has to be assured that the protein analysed is indeed in the dimeric form. A number of other examples demonstrate that purified LBDs can contain bound ligand which prevents further binding. In such cases, the apo-form can be generated by denaturation and subsequent refolding. We are convinced that this approach will accelerate the functional annotation of sensor proteins which will help to understand regulatory circuits in bacteria. PMID:26511375

  6. Imaging of a glioma using peripheral benzodiazepine receptor ligands

    Energy Technology Data Exchange (ETDEWEB)

    Starosta-Rubinstein, S.; Ciliax, B.J.; Penney, J.B.; McKeever, P.; Young, A.B.

    1987-02-01

    Two types of benzodiazepine receptors have been demonstrated in mammalian tissues, one which is localized on neuronal elements in brain and the other, on glial cells and in peripheral tissues such as kidney. In vivo administration of /sup 3/H-labeled PK 11195 (1-(2-chlorophenyl-N-methyl-N-(1-methylpropyl)-3-isoquinoline carboxamide) or (/sup 3/H)flunitrazepam with 5 mg of clonazepam per kg to rats with intracranial C6 gliomas resulted in high levels of tritiated-drug binding to the tumor as shown by quantitative autoradiography. Pharmacological studies indicated that the bound drugs labeled the peripheral benzodiazepine binding site. Binding to the peripheral benzodiazepine site was confirmed primarily to malignant cells with little binding to adjacent normal brain tissue or to necrotic tissue. Tumor cell binding was completely inhibited by preadministration of the peripheral benzodiazepine blocking agent PK 11195 at 5 mg/kg. The centrally selective benzodiazepine ligand clonazepam had no effect on PK 11195 binding to the tumor cells. When binding to other tumor cell lines grown in nude mice and nude athymic rats was evaluated, little or no peripheral benzodiazepine binding was detected on human pheochromocytoma (RN1) and neuroblastoma (SK-N-MC, SK-N-SH) tumor cells, respectively. However, high densities of peripheral benzodiazepine binding sites were observed on tumors derived from a human glioma cell line (ATCC HTB 14, U-87 MG). The presence of high concentrations of specific peripheral benzodiazepine receptors on glial tumors suggests that human primary central nervous system tumors could be imaged and diagnosed using peripheral benzodiazepine ligands labeled with positron- or gamma-emitting isotopes.

  7. Imaging of a glioma using peripheral benzodiazepine receptor ligands

    International Nuclear Information System (INIS)

    Two types of benzodiazepine receptors have been demonstrated in mammalian tissues, one which is localized on neuronal elements in brain and the other, on glial cells and in peripheral tissues such as kidney. In vivo administration of 3H-labeled PK 11195 [1-(2-chlorophenyl-N-methyl-N-(1-methylpropyl)-3-isoquinoline carboxamide] or [3H]flunitrazepam with 5 mg of clonazepam per kg to rats with intracranial C6 gliomas resulted in high levels of tritiated-drug binding to the tumor as shown by quantitative autoradiography. Pharmacological studies indicated that the bound drugs labeled the peripheral benzodiazepine binding site. Binding to the peripheral benzodiazepine site was confirmed primarily to malignant cells with little binding to adjacent normal brain tissue or to necrotic tissue. Tumor cell binding was completely inhibited by preadministration of the peripheral benzodiazepine blocking agent PK 11195 at 5 mg/kg. The centrally selective benzodiazepine ligand clonazepam had no effect on PK 11195 binding to the tumor cells. When binding to other tumor cell lines grown in nude mice and nude athymic rats was evaluated, little or no peripheral benzodiazepine binding was detected on human pheochromocytoma (RN1) and neuroblastoma (SK-N-MC, SK-N-SH) tumor cells, respectively. However, high densities of peripheral benzodiazepine binding sites were observed on tumors derived from a human glioma cell line (ATCC HTB 14, U-87 MG). The presence of high concentrations of specific peripheral benzodiazepine receptors on glial tumors suggests that human primary central nervous system tumors could be imaged and diagnosed using peripheral benzodiazepine ligands labeled with positron- or gamma-emitting isotopes

  8. Ammonia formation by metal-ligand cooperative hydrogenolysis of a nitrido ligand

    Science.gov (United States)

    Askevold, Bjorn; Nieto, Jorge Torres; Tussupbayev, Samat; Diefenbach, Martin; Herdtweck, Eberhardt; Holthausen, Max C.; Schneider, Sven

    2011-07-01

    Bioinspired hydrogenation of N2 to ammonia at ambient conditions by stepwise nitrogen protonation/reduction with metal complexes in solution has experienced remarkable progress. In contrast, the highly desirable direct hydrogenation with H2 remains difficult. In analogy to the heterogeneously catalysed Haber-Bosch process, such a reaction is conceivable via metal-centred N2 splitting and unprecedented hydrogenolysis of the nitrido ligands to ammonia. We report the synthesis of a ruthenium(IV) nitrido complex. The high nucleophilicity of the nitrido ligand is demonstrated by unusual N-C coupling with π-acidic CO. Furthermore, the terminal nitrido ligand undergoes facile hydrogenolysis with H2 at ambient conditions to produce ammonia in high yield. Kinetic and quantum chemical examinations of this reaction suggest cooperative behaviour of a phosphorus-nitrogen-phosphorus pincer ligand in rate-determining heterolytic hydrogen splitting.

  9. Corrosion inhibiting organic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Sasson, E.

    1984-10-16

    A corrosion inhibiting coating comprises a mixture of waxes, petroleum jelly, a hardener and a solvent. In particular, a corrosion inhibiting coating comprises candelilla wax, carnauba wax, microcrystalline waxes, white petrolatum, an oleoresin, lanolin and a solvent.

  10. Improved Inhibition of Telomerase by Short Twisted Intercalating Nucleic Acids under Molecular Crowding Conditions

    DEFF Research Database (Denmark)

    Agarwal, Tani; Pradhan, Devranjan; Géci, Imrich;

    2012-01-01

    Human telomeric DNA has the ability to fold into a 4-stranded G-quadruplex structure. Several G-quadruplex ligands are known to stabilize the structure and thereby inhibit telomerase activity. Such ligands have demonstrated efficient telomerase inhibition in dilute conditions, but under molecular......-based telomerase repeat amplification assay (TRAP) assay as well as nondenaturing polyacrylamide gel electrophoresis-based TRAP, we demonstrate remarkable enhancement in their anti-telomerase activity even under molecular crowding conditions. This is the first time in which a G-quadruplex stabilizing agent has...

  11. Abundance of Flt3 and its ligand in astrocytic tumors

    Directory of Open Access Journals (Sweden)

    Eßbach C

    2013-05-01

    Full Text Available C Eßbach,1 N Andrae,1 D Pachow,1 J-P Warnke,2 A Wilisch-Neumann,1 E Kirches,1 C Mawrin11Department of Neuropathology, Otto-von-Guericke University, Magdeburg, 2Department of Neurosurgery, Paracelsus Hospital, Zwickau, GermanyBackground: Molecular targeted therapies for astrocytic tumors are the subject of growing research interest, due to the limited response of these tumors, especially glioblastoma multiforme, to conventional chemotherapeutic regimens. Several of these approaches exploit the inhibition of receptor tyrosine kinases. To date, it has not been elucidated if fms-like tyrosine kinase-3 (Flt3 and its natural ligand (Flt3L are expressed in astrocytic tumors, although some of the clinically intended small-molecule receptor tyrosine kinase inhibitors affect Flt3, while others do not. More importantly, the recent proof of principle for successful stimulation of the immune system against gliomas in preclinical models via local Flt3L application requires elucidation of this receptor tyrosine kinase pathway in these tumors in more detail. This therapy is based on recruitment of Flt3-positive dendritic cells, but may be corroborated by activity of this signaling pathway in glioma cells.Methods: Receptor and ligand expression was analyzed by real-time polymerase chain reaction in 31 astrocytic tumors (six diffuse and 11 anaplastic astrocytomas, 14 glioblastomas derived from patients of both genders and in glioblastoma cell lines. The two most common activating mutations of the Flt3 gene, ie, internal tandem duplication and D835 point mutation, were assessed by specific polymerase chain reaction.Results: A relatively high abundance of Flt3L mRNA (4%–6% of the reference, β2 microglobulin could be demonstrated in all tumor samples. Flt3 expression could generally be demonstrated by 40 specific polymerase chain reaction cycles and gel electrophoresis in 87% of the tumors, including all grades, although the small quantities of the receptor did

  12. Substrate coated with receptor and labelled ligand for assays

    International Nuclear Information System (INIS)

    Improvements in the procedures for assaying ligands are described. The assay consists of a polystyrene tube on which receptors are present for both the ligand to be assayed and a radioactively labelled form of the ligand. The receptors on the bottom portion of the tube are also coated with labelled ligands, thus eliminating the necessity for separate addition of the labelled ligand and sample during an assay. Examples of ligands to which this method is applicable include polypeptides, nucleotides, nucleosides and proteins. Specific examples are given in which the ligand to be assayed is digoxin, the labelled form of the ligand is 3-0-succinyl digoxyigenin tyrosine (125I) and the receptor is digoxin antibody. (U.K.)

  13. MDM2 binds and inhibits vitamin D receptor

    OpenAIRE

    Heyne, Kristina; Heil, Tessa-Carina; Bette, Birgit; Reichrath, Jörg; Roemer, Klaus

    2015-01-01

    The E3 ubiquitin ligase and transcriptional repressor MDM2 is a potent inhibitor of the p53 family of transcription factors and tumor suppressors. Herein, we report that vitamin D receptor (VDR), another transcriptional regulator and probably, tumor suppressor, is also bound and inhibited by MDM2. This interaction was not affected by vitamin D ligand. VDR was ubiquitylated in the cell and its steady-state level was controlled by the proteasome. Strikingly, overproduced MDM2 reduced the level ...

  14. Role of ligand-ligand vs. core-core interactions in gold nanoclusters.

    Science.gov (United States)

    Milowska, Karolina Z; Stolarczyk, Jacek K

    2016-05-14

    The controlled assembly of ligand-coated gold nanoclusters (NCs) into larger structures paves the way for new applications ranging from electronics to nanomedicine. Here, we demonstrate through rigorous density functional theory (DFT) calculations employing novel functionals accounting for van der Waals forces that the ligand-ligand interactions determine whether stable assemblies can be formed. The study of NCs with different core sizes, symmetry forms, ligand lengths, mutual crystal orientations, and in the presence of a solvent suggests that core-to-core van der Waals interactions play a lesser role in the assembly. The dominant interactions originate from combination of steric effects, augmented by ligand bundling on NC facets, and related to them changes in electronic properties induced by neighbouring NCs. We also show that, in contrast to standard colloidal theory approach, DFT correctly reproduces the surprising experimental trends in the strength of the inter-particle interaction observed when varying the length of the ligands. The results underpin the importance of understanding NC interactions in designing gold NCs for a specific function. PMID:27097887

  15. A ligand-independent integrin β1 mechanosensory complex guides spindle orientation.

    Science.gov (United States)

    Petridou, Nicoletta I; Skourides, Paris A

    2016-01-01

    Control of spindle orientation is a fundamental process for embryonic development, morphogenesis and tissue homeostasis, while defects are associated with tumorigenesis and other diseases. Force sensing is one of the mechanisms through which division orientation is determined. Here we show that integrin β1 plays a critical role in this process, becoming activated at the lateral regions of the cell cortex in a ligand-independent manner. This activation is force dependent and polar, correlating with the spindle capture sites. Inhibition of integrin β1 activation on the cortex and disruption of its asymmetric distribution leads to spindle misorientation, even when cell adhesion is β1 independent. Examining downstream targets reveals that a cortical mechanosensory complex forms on active β1, and regulates spindle orientation irrespective of cell context. We propose that ligand-independent integrin β1 activation is a conserved mechanism that allows cell responses to external stimuli. PMID:26952307

  16. Ligand binding was acquired during evolution of nuclear receptors

    OpenAIRE

    Escriva, Hector; Safi, Rachid; Hänni, Catherine; Langlois, Marie-Claire; Saumitou-Laprade, Pierre; Stehelin, Dominique; Capron, André; Pierce, Raymond; Laudet, Vincent

    1997-01-01

    The nuclear receptor (NR) superfamily comprises, in addition to ligand-activated transcription factors, members for which no ligand has been identified to date. We demonstrate that orphan receptors are randomly distributed in the evolutionary tree and that there is no relationship between the position of a given liganded receptor in the tree and the chemical nature of its ligand. NRs are specific to metazoans, as revealed by a screen of NR-related sequences in early- and non-metazoan organism...

  17. Transparent CoAl2O4 hybrid nano pigment by organic ligand-assisted supercritical water.

    Science.gov (United States)

    Rangappa, Dinesh; Naka, Takashi; Kondo, Akitsugu; Ishii, Masahiko; Kobayashi, Toshikatsu; Adschiri, Tadafumi

    2007-09-12

    Transparent types of inorganic pigments are important as they can be used in a variety of applications, such as metallic finishing, contrast enhancing luminescent pigments, high-end optical filters, and so on. Currently, the difficulty in producing monodisperse and stable binary metal oxide nano pigments at low temperature hampers the applicability and realization of transparent blue nano pigments. Here, for the first time, we report organic ligand capped CoAl2O4 hybrid transparent nano pigment, which has a particle size less than 8 nm with well-stabilized single nanocrystals, using organic ligand-assisted supercritical water as the reaction medium. The organic ligand capping could effectively inhibit the particle growth and also control the size of nanocrystals. This helps to diminish the scattering effect of the nano blue pigment, realizing a transparent cobalt blue nano pigment without any postheat treatment. PMID:17705377

  18. Suppression of colitis-related mouse colon carcinogenesis by a COX-2 inhibitor and PPAR ligands

    International Nuclear Information System (INIS)

    It is generally assumed that inflammatory bowel disease (IBD)-related carcinogenesis occurs as a result of chronic inflammation. We previously developed a novel colitis-related mouse colon carcinogenesis model initiated with azoxymethane (AOM) and followed by dextran sodium sulfate (DSS). In the present study we investigated whether a cyclooxygenase (COX)-2 inhibitor nimesulide and ligands for peroxisome proliferator-activated receptors (PPARs), troglitazone (a PPARγ ligand) and bezafibrate (a PPARα ligand) inhibit colitis-related colon carcinogenesis using our model to evaluate the efficacy of these drugs in prevention of IBD-related colon carcinogenesis. Female CD-1 (ICR) mice were given a single intraperitoneal administration of AOM (10 mg/kg body weight) and followed by one-week oral exposure of 2% (w/v) DSS in drinking water, and then maintained on the basal diets mixed with or without nimesulide (0.04%, w/w), troglitazone (0.05%, w/w), and bezafibrate (0.05%, w/w) for 14 weeks. The inhibitory effects of dietary administration of these compounds were determined by histopathological and immunohistochemical analyses. Feeding with nimesulide and troglitazone significantly inhibited both the incidence and multiplicity of colonic adenocarcinoma induced by AOM/DSS in mice. Bezafibrate feeding significantly reduced the incidence of colonic adenocarcinoma, but did not significantly lower the multiplicity. Feeding with nimesulide and troglitazone decreased the proliferating cell nuclear antigen (PCNA)-labeling index and expression of β-catenin, COX-2, inducible nitric oxide synthase (iNOS) and nitrotyrosine. The treatments increased the apoptosis index in the colonic adenocarcinoma. Feeding with bezafibrate also affected these parameters except for β-catenin expression in the colonic malignancy. Dietary administration of nimesulide, troglitazone and bezafibrate effectively suppressed the development of colonic epithelial malignancy induced by AOM/DSS in female ICR

  19. Leaching behavior of butanedionedioxime as gold ligand

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Butanedionedioxime, a small organic compound with low-toxicity and good chemical stability, has been proposed as an effective gold ligand in gold extraction. The result of experiment shows that: 1) highly effective gold lixiviantcan be composed of butanedionedioxime (BDM) with many oxidants, especially potassium permanganate; 2)in the leaching system of BD M- K M nO4 the suitable Ox/Lig(ratio of oxidants to gold ligands) tange is 0.20 ~ 0. 50, optimally 0.25 ~0.45 at the pH range of 7 ~ 11; 3) BDM-KMnO4 extraction of gold from an oxide ore is similar to cyanide(cyanide-O2)extraction, but the leaching rate of gold by BDM-KMnO4 is faster than that by cyanide-O2; 4) gold may readily be recov-ered by carbon adsorption and zinc precipitation

  20. Inhibitory effect on hepatitis B virus in vitro by a peroxisome proliferator-activated receptor-{gamma} ligand, rosiglitazone

    Energy Technology Data Exchange (ETDEWEB)

    Wakui, Yuta; Inoue, Jun [Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo, Aobaku, Sendai 980-8574 (Japan); Ueno, Yoshiyuki, E-mail: yueno@mail.tains.tohoku.ac.jp [Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo, Aobaku, Sendai 980-8574 (Japan); Fukushima, Koji; Kondo, Yasuteru; Kakazu, Eiji; Obara, Noriyuki; Kimura, Osamu; Shimosegawa, Tooru [Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo, Aobaku, Sendai 980-8574 (Japan)

    2010-05-28

    Although chronic infection of hepatitis B virus (HBV) is currently managed with nucleot(s)ide analogues or interferon-{alpha}, the control of HBV infection still remains a clinical challenge. Peroxisome proliferator-activated receptor (PPAR) is a ligand-activated transcription factor, that plays a role in glucose and lipid metabolism, immune reactions, and inflammation. In this study, the suppressive effect of PPAR ligands on HBV replication was examined in vitro using a PPAR{alpha} ligand, bezafibrate, and a PPAR{gamma} ligand, rosiglitazone. The effects were examined in HepG2 cells transfected with a plasmid containing 1.3-fold HBV genome. Whereas bezafibrate showed no effect against HBV replication, rosiglitazone reduced the amount of HBV DNA, hepatitis B surface antigen, and hepatitis B e antigen in the culture supernatant. Southern blot analysis showed that the replicative intermediates of HBV in the cells were also inhibited. It was confirmed that GW9662, an antagonist of PPAR{gamma}, reduced the suppressive effect of rosiglitazone on HBV. Moreover, rosiglitazone showed a synergistic effect on HBV replication with lamivudine or interferon-{alpha}-2b. In conclusion, this study showed that rosiglitazone inhibited the replication of HBV in vitro, and suggested that the combination therapy of rosiglitazone and nucleot(s)ide analogues or interferon could be a therapeutic option for chronic HBV infection.

  1. Selective oxoanion separation using a tripodal ligand

    Energy Technology Data Exchange (ETDEWEB)

    Custelcean, Radu; Moyer, Bruce A.; Rajbanshi, Arbin

    2016-02-16

    The present invention relates to urea-functionalized crystalline capsules self-assembled by sodium or potassium cation coordination and by hydrogen-bonding water bridges to selectively encapsulate tetrahedral divalent oxoanions from highly competitive aqueous alkaline solutions and methods using this system for selective anion separations from industrial solutions. The method involves competitive crystallizations using a tripodal tris(urea) functionalized ligand and, in particular, provides a viable approach to sulfate separation from nuclear wastes.

  2. Polyfluoroalkylated tripyrazolylmethane ligands: Synthesis and complexes

    Czech Academy of Sciences Publication Activity Database

    Skalická, V.; Rybáčková, M.; Skalický, M.; Kvíčalová, Magdalena; Cvačka, Josef; Březinová, Anna; Čejka, J.; Kvíčala, J.

    2011-01-01

    Roč. 132, č. 7 (2011), s. 434-440. ISSN 0022-1139 R&D Projects: GA MŠk ME 857; GA MŠk ME09114 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40550506 Keywords : tripyrazolylmethane * Tpm * tripyrazolylethanol * fluorinated * perfluoroalkylation * ligand Subject RIV: CC - Organic Chemistry Impact factor: 2.033, year: 2011

  3. Synthesis and Evaluation of Quinazolone Derivatives as a New Class of c-KIT G-Quadruplex Binding Ligands.

    Science.gov (United States)

    Wang, Xiaoxiao; Zhou, Chen-Xi; Yan, Jin-Wu; Hou, Jin-Qiang; Chen, Shuo-Bin; Ou, Tian-Miao; Gu, Lian-Quan; Huang, Zhi-Shu; Tan, Jia-Heng

    2013-10-10

    The c-KIT G-quadruplex structures are a novel class of attractive targets for the treatment of gastrointestinal stromal tumor (GIST). Herein, a series of new quinazolone derivatives with the expansion of unfused aromatic ring system were designed and synthesized. Subsequent biophysical studies demonstrated that the derivatives with adaptive scaffold could effectively bind to and stabilize c-KIT G-quadruplexes with good selectivity against duplex DNA. More importantly, these ligands further inhibited the transcription and expression of c-KIT gene and exhibited significant cytotoxicity on the GIST cell line HGC-27. Overall, these quinazolone derivatives represent a new class of promising c-KIT G-quadruplex ligands. The experimental results have also reinforced the idea of inhibition of c-KIT expression through targeting c-KIT G-quadruplex DNA. PMID:24900584

  4. ERβ in CD4+ T Cells Is Crucial for Ligand-Mediated Suppression of Central Nervous System Autoimmunity.

    Science.gov (United States)

    Aggelakopoulou, Maria; Kourepini, Evangelia; Paschalidis, Nikolaos; Panoutsakopoulou, Vily

    2016-06-15

    The development of therapies for multiple sclerosis targeting pathogenic T cell responses remains imperative. Previous studies have shown that estrogen receptor (ER) β ligands could inhibit experimental autoimmune encephalomyelitis. However, the effects of ERβ-specific ligands on human or murine pathogenic immune cells, such as Th17, were not investigated. In this article, we show that the synthetic ERβ-specific ligand 4-(2-phenyl-5,7-bis[trifluoromethyl]pyrazolo[1,5-a]pyrimidin-3-yl)phenol (PHTPP) reversed established paralysis and CNS inflammation, characterized by a dramatic suppression of pathogenic Th responses as well as induction of IL-10-producing regulatory CD4(+) T cell subsets in vivo. Moreover, administration of PHTPP in symptomatic mice induced regulatory CD4(+) T cells that were suppressive in vivo. PHTPP-mediated experimental autoimmune encephalomyelitis amelioration was canceled in mice with ERβ-deficient CD4(+) T cells only, indicating that expression of ERβ by these cells is crucial for the observed therapeutic effect. Importantly, synthetic ERβ-specific ligands acting directly on CD4(+) T cells suppressed human and mouse Th17 cells, downregulating Th17 cell signature gene expression and expanding IL-10-producing T cells among them. TGF-β1 and aryl hydrocarbon receptor activation enhanced the ERβ ligand-mediated expansion of IL-10-producing T cells among Th17 cells. In addition, these ERβ-specific ligands promoted the induction and maintenance of Foxp3(+) T regulatory cells, as well as their in vitro suppressive function. Thus, ERβ-specific ligands targeting pathogenic Th17 cells and inducing functional regulatory cells represent a promising subset of therapeutic agents for multiple sclerosis. PMID:27183630

  5. Human B Cell-Derived Lymphoblastoid Cell Lines Constitutively Produce Fas Ligand and Secrete MHCII+FasL+ Killer Exosomes

    OpenAIRE

    Klinker, Matthew W.; Lizzio, Vincent; Reed, Tamra J.; Fox, David A.; Lundy, Steven K.

    2014-01-01

    Immune suppression mediated by exosomes is an emerging concept with potentially immense utility for immunotherapy in a variety of inflammatory contexts, including allogeneic transplantation. Exosomes containing the apoptosis-inducing molecule Fas ligand (FasL) have demonstrated efficacy in inhibiting antigen-specific immune responses upon adoptive transfer in animal models. We report here that a very high frequency of human B cell-derived lymphoblastoid cell lines (LCL) constitutively produce...

  6. Ligand binding to the inhibitory and stimulatory GTP cyclohydrolase I/GTP cyclohydrolase I feedback regulatory protein complexes

    OpenAIRE

    Yoneyama, Toshie; Hatakeyama, Kazuyuki

    2001-01-01

    GTP cyclohydrolase I feedback regulatory protein (GFRP) mediates feedback inhibition of GTP cyclohydrolase I activity by 6R-l-erythro-5,6,7,8-tetrahydrobiopterin (BH4), which is an essential cofactor for key enzymes producing catecholamines, serotonin, and nitric oxide as well as phenylalanine hydroxylase. GFRP also mediates feed-forward stimulation of GTP cyclohydrolase I activity by phenylalanine at subsaturating GTP levels. These ligands, BH4 and phenylalanine, induce complex formation bet...

  7. Inhibition in multiclass classification

    OpenAIRE

    Huerta, Ramón; Vembu, Shankar; Amigó, José M.; Nowotny, Thomas; Elkan, Charles

    2012-01-01

    The role of inhibition is investigated in a multiclass support vector machine formalism inspired by the brain structure of insects. The so-called mushroom bodies have a set of output neurons, or classification functions, that compete with each other to encode a particular input. Strongly active output neurons depress or inhibit the remaining outputs without knowing which is correct or incorrect. Accordingly, we propose to use a classification function that embodies unselective inhibition and ...

  8. Sterol 14α-demethylase as a potential target for antitrypanosomal therapy: enzyme inhibition and parasite cell growth

    OpenAIRE

    Lepesheva, Galina I.; Ott, Robert D.; Hargrove, Tatiana Y.; Kleshchenko, Yuliya Y.; Schuster, Inge; Nes, W. David; Hill, George C.; Villalta, Fernando; Waterman, Michael R.

    2007-01-01

    Sterol 14α-demethylases (CYP51) serve as primary targets for antifungal drugs and specific inhibition of CYP51s in protozoan parasites Trypanosoma brucei (TB) and Trypanosoma cruzi (TC) might provide an effective treatment strategy for human trypanosomiases. Primary inhibitor selection is based initially on the cytochrome P450 spectral response to ligand binding. Ligands which demonstrate strongest binding parameters were examined as inhibitors of reconstituted TB and TC CYP51 activity in vit...

  9. Quantification of ligand bias for clinically relevant β2-adrenergic receptor ligands: implications for drug taxonomy.

    Science.gov (United States)

    van der Westhuizen, Emma T; Breton, Billy; Christopoulos, Arthur; Bouvier, Michel

    2014-03-01

    The concepts of functional selectivity and ligand bias are becoming increasingly appreciated in modern drug discovery programs, necessitating more informed approaches to compound classification and, ultimately, therapeutic candidate selection. Using the β2-adrenergic receptor as a model, we present a proof of concept study that assessed the bias of 19 β-adrenergic ligands, including many clinically used compounds, across four pathways [cAMP production, extracellular signal-regulated kinase 1/2 (ERK1/2) activation, calcium mobilization, and receptor endocytosis] in the same cell background (human embryonic kidney 293S cells). Efficacy-based clustering placed the ligands into five distinct groups with respect to signaling signatures. In some cases, apparent functional selectivity originated from off-target effects on other endogenously expressed adrenergic receptors, highlighting the importance of thoroughly assessing selectivity of the responses before concluding receptor-specific ligand-biased signaling. Eliminating the nonselective compounds did not change the clustering of the 10 remaining compounds. Some ligands exhibited large differences in potency for the different pathways, suggesting that the nature of the receptor-effector complexes influences the relative affinity of the compounds for specific receptor conformations. Calculation of relative effectiveness (within pathway) and bias factors (between pathways) for each of the compounds, using an operational model of agonism, revealed a global signaling signature for all of the compounds relative to isoproterenol. Most compounds were biased toward ERK1/2 activation over the other pathways, consistent with the notion that many proximal effectors converge on this pathway. Overall, we demonstrate a higher level of ligand texture than previously anticipated, opening perspectives for the establishment of pluridimensional correlations between signaling profiles, drug classification, therapeutic efficacy, and

  10. Landscape of protein-small ligand binding modes.

    Science.gov (United States)

    Kasahara, Kota; Kinoshita, Kengo

    2016-09-01

    Elucidating the mechanisms of specific small-molecule (ligand) recognition by proteins is a long-standing conundrum. While the structures of these molecules, proteins and ligands, have been extensively studied, protein-ligand interactions, or binding modes, have not been comprehensively analyzed. Although methods for assessing similarities of binding site structures have been extensively developed, the methods for the computational treatment of binding modes have not been well established. Here, we developed a computational method for encoding the information about binding modes as graphs, and assessing their similarities. An all-against-all comparison of 20,040 protein-ligand complexes provided the landscape of the protein-ligand binding modes and its relationships with protein- and chemical spaces. While similar proteins in the same SCOP Family tend to bind relatively similar ligands with similar binding modes, the correlation between ligand and binding similarities was not very high (R(2)  = 0.443). We found many pairs with novel relationships, in which two evolutionally distant proteins recognize dissimilar ligands by similar binding modes (757,474 pairs out of 200,790,780 pairs were categorized into this relationship, in our dataset). In addition, there were an abundance of pairs of homologous proteins binding to similar ligands with different binding modes (68,217 pairs). Our results showed that many interesting relationships between protein-ligand complexes are still hidden in the structure database, and our new method for assessing binding mode similarities is effective to find them. PMID:27327045

  11. Inhibition of BRAF and BRAF+MEK drives a metastatic switch in melanoma.

    Science.gov (United States)

    Smalley, Keiran Sm; Fedorenko, Inna V

    2015-01-01

    Recent analyses by our group and others showed that the majority of melanoma patients who fail BRAF inhibitor therapy do so at new disease sites. Using phosphoproteomics we showed that BRAF inhibition mediates a switch to an aggressive/metastatic melanoma phenotype that is driven by ligand-independent erythropoietin-producing hepatocellular receptor A2 (EphA2) signaling. PMID:27308505

  12. Ligand-Occupied Integrin Internalization Links Nutrient Signaling to Invasive Migration

    Directory of Open Access Journals (Sweden)

    Elena Rainero

    2015-01-01

    Full Text Available Integrin trafficking is key to cell migration, but little is known about the spatiotemporal organization of integrin endocytosis. Here, we show that α5β1 integrin undergoes tensin-dependent centripetal movement from the cell periphery to populate adhesions located under the nucleus. From here, ligand-engaged α5β1 integrins are internalized under control of the Arf subfamily GTPase, Arf4, and are trafficked to nearby late endosomes/lysosomes. Suppression of centripetal movement or Arf4-dependent endocytosis disrupts flow of ligand-bound integrins to late endosomes/lysosomes and their degradation within this compartment. Arf4-dependent integrin internalization is required for proper lysosome positioning and for recruitment and activation of mTOR at this cellular subcompartment. Furthermore, nutrient depletion promotes subnuclear accumulation and endocytosis of ligand-engaged α5β1 integrins via inhibition of mTORC1. This two-way regulatory interaction between mTORC1 and integrin trafficking in combination with data describing a role for tensin in invasive cell migration indicate interesting links between nutrient signaling and metastasis.

  13. Peroxisome Proliferator-Activated Receptor γ (PPARγ) and Ligand Choreography: Newcomers Take the Stage.

    Science.gov (United States)

    Garcia-Vallvé, Santiago; Guasch, Laura; Tomas-Hernández, Sarah; del Bas, Josep Maria; Ollendorff, Vincent; Arola, Lluís; Pujadas, Gerard; Mulero, Miquel

    2015-07-23

    Thiazolidinediones (TZDs), such as rosiglitazone and pioglitazone, are peroxisome proliferator-activated receptor γ (PPARγ) full agonists that have been widely used in the treatment of type 2 diabetes mellitus. Despite the demonstrated beneficial effect of reducing glucose levels in the plasma, TZDs also induce several adverse effects. Consequently, the search for new compounds with potent antidiabetic effects but fewer undesired effects is an active field of research. Interestingly, the novel proposed mechanisms for the antidiabetic activity of PPARγ agonists, consisting of PPARγ Ser273 phosphorylation inhibition, ligand and receptor mutual dynamics, and the presence of an alternate binding site, have recently changed the view regarding the optimal characteristics for the screening of novel PPARγ ligands. Furthermore, transcriptional genomics could bring essential information about the genome-wide effects of PPARγ ligands. Consequently, facing the new mechanistic scenario proposed for these compounds is essential for resolving the paradoxes among their agonistic function, antidiabetic activities, and side effects and should allow the rational development of better and safer PPARγ-mediated antidiabetic drugs. PMID:25734377

  14. Tungsten acetonitrile complexes, containing nitrosyl ligand

    International Nuclear Information System (INIS)

    Synthesized are tungsten acetonitrile derivatives, containing nitrosyl ligand. In a course of boiling W(CO)4(NO)I-(1) at the excess of acetonitrile there is formed bis-(acetonitrile)-dicarbonilenitrosyltungsteniod-(2): W(CO)4(NO)I+2CH3CN → 2CO+(CH3CN)2W(CO)2(NO)I-(2). Investigation in reactionary ability of compound (2) is carried out. It is shown that at the reaction of acetonitrile complex (2) with two equivalents of triphenylphosphine depending on reaction conditions formed is a number of products

  15. Transmutable nanoparticles with reconfigurable surface ligands

    Science.gov (United States)

    Kim, Youngeun; Macfarlane, Robert J.; Jones, Matthew R.; Mirkin, Chad A.

    2016-02-01

    Unlike conventional inorganic materials, biological systems are exquisitely adapted to respond to their surroundings. Proteins and other biological molecules can process a complex set of chemical binding events as informational inputs and respond accordingly via a change in structure and function. We applied this principle to the design and synthesis of inorganic materials by preparing nanoparticles with reconfigurable surface ligands, where interparticle bonding can be programmed in response to specific chemical cues in a dynamic manner. As a result, a nascent set of “transmutable nanoparticles” can be driven to crystallize along multiple thermodynamic trajectories, resulting in rational control over the phase and time evolution of nanoparticle-based matter.

  16. Scorpionates the coordination chemistry of polypyrazolylborate ligands

    CERN Document Server

    Trofimenko, Swiatoslaw

    1999-01-01

    This book deals with polypyrazolylborates (scorpionates), a class of ligands known since 1966, but becoming rapidly popular with inorganic, organometallic and coordination chemists since 1986, because of their versatility and user-friendliness. They can be readily modified sterically and electronically through appropriate substitution on the pyrazole ring and on boron, and have led to a number of firsts in coordination chemistry (first stable CuCO complex, first monomeric MgR complex, and many other such firsts). Their denticity can range from two to four, their "Bite" can be adjusted, and add

  17. Metal mediated template synthesis of ligands

    CERN Document Server

    Costisor, Otilia

    2004-01-01

    This book surveys the relatively new area of the synthesis of organic ligands when metal ions act as a template. In the last fifty years this field has undergone an explosive development, marked by a great amount of literature. The material in the book has been arranged according to the type of chemical reaction involved. In this frame, the basic principles of metal template reactions and the shape of the molecules are considered. Designed to satisfy the demands of students, young researchers doing their PhDs, and those working in the field of coordination chemistry, the book details the role

  18. Inhibition of Endothelin-1-Mediated Contraction of Hepatic Stellate Cells by FXR Ligand

    OpenAIRE

    Jiang Li; Ramalinga Kuruba; Annette Wilson; Xiang Gao; Yifei Zhang; Song Li

    2010-01-01

    Activation of hepatic stellate cells (HSCs) plays an important role in the development of cirrhosis through the increased production of collagen and the enhanced contractile response to vasoactive mediators such as endothelin-1 (ET-1). The farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily that is highly expressed in liver, kidneys, adrenals, and intestine. FXR is also expressed in HSCs and activation of FXR in HSCs is associated with significant decreases in collagen ...

  19. G-protein ligands inhibit in vitro reactions of vacuole inheritance

    OpenAIRE

    1994-01-01

    During budding in Saccharomyces cerevisiae, maternal vacuole material is delivered into the growing daughter cell via tubular or vesicular structures. One of the late steps in vacuole inheritance is the fusion in the bud of vesicles derived from the maternal vacuole. This process has been reconstituted in vitro and requires isolated vacuoles, a physiological temperature, cytosolic factors, and ATP (Conradt, B., J. Shaw, T. Vida, S. Emr, and W. Wickner. 1992. J. Cell Biol. 119:1469- 1479). We ...

  20. From ligand to complexes: inhibition of HIV-1 Integrase by beta-diketo acid metal complexes

    OpenAIRE

    Sechi, Mario; BACCHI, Alessia; Carcelli, Mauro; Fisicaro, Emilia; Rogolino, Dominga; Gates, Paul; Derudas, Marco; Al-Mawsawi, Laith Q.; Neamati, Nouri

    2006-01-01

    Recently, a class of compounds bearing a β-diketo acid moiety have emerged as the most promising lead in anti-HIV-1 IN drug discovery. It is believed that the β-diketo acid pharmacophoric motif could be involved in a functional sequestration of one or both divalent metal ions, which are critical cofactors at the enzyme catalytic site. This would subsequently block the transition state of the IN-DNA complex. In this scenario, it is of paramount importance to acquire information ...

  1. Advanced protein-ligand scoring: successful prediction of cyclin-dependent kinase inhibition

    Czech Academy of Sciences Publication Activity Database

    Brahmkshatriya, Pathik; Fanfrlík, Jindřich; Řezáč, Jan; Dobeš, P.; Přenosil, Ondřej; Paruch, K.; Lepšík, Martin; Hobza, Pavel

    2012-01-01

    Roč. 156, Suppl. 1 (2012), S76-S76. ISSN 1213-8118. [International Congress Natural Anticancer Drugs. 30.06.2012-04.07.2012, Olomouc] R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : semiempirical quantum mechanics * cyclin-dependent kinase 2 Subject RIV: CF - Physical ; Theoretical Chemistry

  2. Sesquiterpene Lactones from Cynara cornigera: Acetyl Cholinesterase Inhibition and In Silico Ligand Docking.

    Science.gov (United States)

    Hegazy, Mohamed-Elamir F; Ibrahim, Abeer Y; Mohamed, Tarik A; Shahat, Abdelaaty A; El Halawany, Ali M; Abdel-Azim, Nahla S; Alsaid, Mansour S; Paré, Paul W

    2016-01-01

    Wild artichoke (Cynara cornigera), a thistle-like perennial belonging to the Asteraceae family, is native to the Mediterranean region, northwestern Africa, and the Canary Islands. While the pleasant, albeit bitter, taste of the leaves and flowers is attributed to the sesquiterpene lactones cynaropicrin and cynarin, a comprehensive phytochemical investigation still needs to be reported. In this study seven sesquiterpene lactones were isolated from an aqueous methanol plant extract, including a new halogenated metabolite (1), the naturally isolated compound sibthorpine (2), and five metabolites isolated for the first time from C. cornigera. Structures were established by spectroscopic methods, including HREIMS, (1 )H, (13 )C, DEPT, (1 )H-(1 )H COSY, HMQC, and HMBC-NMR experiments as well as by X-ray analysis. The isolated bioactive nutrients were analyzed for their antioxidant and metal chelating activity. Compound 1 exhibited a potent metal chelating activity as well as a high antioxidant capacity. Moreover, select compounds were effective as acetyl cholinesterase inhibitors presenting the possibility for such compounds to be examined for anti-neurodegenerative activity. A computational pharmacophore elucidation and docking study was performed to estimate the pharmacophoric features and binding conformation of isolated compounds in the acetyl cholinesterase active site. PMID:26441064

  3. Predicting Nanocrystal Shape through Consideration of Surface-Ligand Interactions

    KAUST Repository

    Bealing, Clive R.

    2012-03-27

    Density functional calculations for the binding energy of oleic acid-based ligands on Pb-rich {100} and {111} facets of PbSe nanocrystals determine the surface energies as a function of ligand coverage. Oleic acid is expected to bind to the nanocrystal surface in the form of lead oleate. The Wulff construction predicts the thermodynamic equilibrium shape of the PbSe nanocrystals. The equilibrium shape is a function of the ligand surface coverage, which can be controlled by changing the concentration of oleic acid during synthesis. The different binding energy of the ligand on the {100} and {111} facets results in different equilibrium ligand coverages on the facets, and a transition in the equilibrium shape from octahedral to cubic is predicted when increasing the ligand concentration during synthesis. © 2012 American Chemical Society.

  4. Mixed ligand oxovanadium(IV) complexes with salicylic acid and N,N-bidentate ligands

    International Nuclear Information System (INIS)

    Two mixed-ligand oxovanadium(IV) complexes VO(A)(B) [where H2A=salicylic acid and B=2,2'-bipyridine or 1,10-phenanthroline (hereafter, bipy and phen respectively)] have been synthesized and characterized by magnetic moment and spectral (IR, UV/VIS and EPR) data. The A2- ion acts as a bidentate dinegative ligand while B ligands acts as a neutral bidentate. The magnetic susceptibility values indicate the existence of a small amount of antiferromagnetic interaction. The vanadium atoms in the complexes are hexacoordinated and the coordination sphere is of the type [VO(OO)(NN)], where O atoms are of oxo, carboxylic and phenolic type and N atoms are of pyridine type. The sixth coordination site is occupied by phenolic oxygen of the neighbouring molecule forming a bridge. The vv=o confirms the hexacoordination. All the complexes have dxy1 type axial EPR spectra and they exhibit two ligand field transitions at 740 and 440 nm. (author)

  5. Aptamers Binding to c-Met Inhibiting Tumor Cell Migration.

    Directory of Open Access Journals (Sweden)

    Birgit Piater

    Full Text Available The human receptor tyrosine kinase c-Met plays an important role in the control of critical cellular processes. Since c-Met is frequently over expressed or deregulated in human malignancies, blocking its activation is of special interest for therapy. In normal conditions, the c-Met receptor is activated by its bivalent ligand hepatocyte growth factor (HGF. Also bivalent antibodies can activate the receptor by cross linking, limiting therapeutic applications. We report the generation of the RNA aptamer CLN64 containing 2'-fluoro pyrimidine modifications by systematic evolution of ligands by exponential enrichment (SELEX. CLN64 and a previously described single-stranded DNA (ssDNA aptamer CLN3 exhibited high specificities and affinities to recombinant and cellular expressed c-Met. Both aptamers effectively inhibited HGF-dependent c-Met activation, signaling and cell migration. We showed that these aptamers did not induce c-Met activation, revealing an advantage over bivalent therapeutic molecules. Both aptamers were shown to bind overlapping epitopes but only CLN3 competed with HGF binding to cMet. In addition to their therapeutic and diagnostic potential, CLN3 and CLN64 aptamers exhibit valuable tools to further understand the structural and functional basis for c-Met activation or inhibition by synthetic ligands and their interplay with HGF binding.

  6. Modeling of laccase inhibition by formetanate pesticide using theoretical approaches.

    Science.gov (United States)

    Martins, Ana C V; Ribeiro, Francisco W P; Zanatta, Geancarlo; Freire, Valder N; Morais, Simone; de Lima-Neto, Pedro; Correia, Adriana N

    2016-04-01

    The inhibition of laccase enzymatic catalytic activity by formetanate hydrochloride (FMT) was investigated by cyclic voltammetry and by quantum chemical calculations based on density functional theory with a protein fragmentation approach. The cyclic voltammograms were obtained using a biosensor prepared by enzyme immobilization on gold electrodes modified with gold nanoparticles and 4-aminophenol as the target molecule. The decrease in the peak current in the presence of FMT was used to characterize the inhibition process. The calculations identified Asp206 as the most relevant moiety in the interaction of FMT with the laccase enzymatic ligand binding domain. The amino acid residue Cys453 was important, because the Cys453-FMT interaction energy was not affected by the dielectric constant, although it was not a very close residue. This study provides an overview of how FMT inhibits laccase catalytic activity. PMID:26720841

  7. Teratogenic effects of triphenyltin on embryos of amphibian (Xenopus tropicalis): a phenotypic comparison with the retinoid X and retinoic acid receptor ligands.

    Science.gov (United States)

    Yu, Lin; Zhang, Xiaoli; Yuan, Jing; Cao, Qinzhen; Liu, Junqi; Zhu, Pan; Shi, Huahong

    2011-09-15

    Triphenyltin (TPT) has high binding affinity with the retinoid X receptor (RXR) in animals. The natural ligand of RXR, 9-cis-retinoic acid (RA), is known to induce featured malformations in vertebrate embryos by disrupting RA signal. Limited information is available on the TPT effects on amphibians. We exposed embryos of amphibian (Xenopus tropicalis) to TPT, 9-cis-RA, all-trans-RA (ligand of retinoic acid receptor, RAR), and LGD1069 (a selective ligand of RXR). The 72h LC50 of TPT was 5.25 μg Sn/L, and 72h EC50 was 0.96 μg Sn/L. TPT induced multiple malformations including enlarged proctodaeum and narrow fins. TPT at 5 μg Sn/L inhibited the differentiation of skins and muscles. The reduced brain, loss of external eyes and bent axis were observed in RXR and RAR ligands treatments. TPT and tributyltin (TBT) inhibited the mRNA expression of RXRα and increased that of TRβ. The phenotypes of malformations induced by TPT were similar to those by TBT and were much different from those by the RXR and RAR ligands. These results indicated that TPT was acute toxic and had high teratogenicity to amphibian embryos, and that TPT induced phenotypes of malformations. TPT and TBT might have a similar teratogenic mechanism, which seems not to be mainly mediated through RA signal. PMID:21820800

  8. The Dynamics of Ligand Barrier Crossing inside the Acetylcholinesterase Gorge

    OpenAIRE

    Bui, Jennifer M.; Henchman, Richard H.; McCammon, J. Andrew

    2003-01-01

    The dynamics of ligand movement through the constricted region of the acetylcholinesterase gorge is important in understanding how the ligand gains access to and is released from the active site of the enzyme. Molecular dynamics simulations of the simple ligand, tetramethylammonium, crossing this bottleneck region are conducted using umbrella potential sampling and activated flux techniques. The low potential of mean force obtained is consistent with the fast reaction rate of acetylcholineste...

  9. Quasielastic neutron scattering study of POSS ligand dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Jalarvo, Niina H [ORNL; Tyagi, Madhusudan [NIST Center for Neutron Research (NCRN), Gaithersburg, MD; Crawford, Michael [DuPont Experimental Station

    2015-01-01

    Polyoligosilsesquioxanes are molecules having cage-like structures composed of silicon and oxygen. These molecules can have a wide variety of functional ligands attached to them. Depending on the nature of the ligand, interesting properties and applications are found. In this work we present results from quasielastic neutron scattering measurements of four different POSS molecules that illustrate the presence of strong coupling between the ligand dynamics and the POSS crystal structures.

  10. Rapid flexible docking using a stochastic rotamer library of ligands

    OpenAIRE

    Ding, Feng; Yin, Shuangye; Dokholyan, Nikolay V.

    2010-01-01

    Existing flexible docking approaches model the ligand and receptor flexibility either separately or in a loosely-coupled manner, which captures the conformational changes inefficiently. Here, we propose a flexible docking approach, MedusaDock, which models both ligand and receptor flexibility simultaneously with sets of discrete rotamers. We develop an algorithm to build the ligand rotamer library “on-the-fly” during docking simulations. MedusaDock benchmarks demonstrate a rapid sampling effi...

  11. Ligand Binding Analysis and Screening by Chemical Denaturation Shift

    OpenAIRE

    Sch n, Arne; Brown, Richard K; Hutchins, Burleigh M.; Freire, Ernesto

    2013-01-01

    The identification of small molecule ligands is an important first step in drug development, especially drugs that target proteins with no intrinsic activity. Towards this goal, it is important to have access to technologies that are able to measure binding affinities for a large number of potential ligands in a fast and accurate way. Since ligand binding stabilizes the protein structure in a manner dependent on concentration and binding affinity, the magnitude of the protein stabilization ef...

  12. Dynamic Presentation of Immobilized Ligands Regulated through Biomolecular Recognition

    OpenAIRE

    Liu, Bo; Liu, Yang; Riesberg, Jeremiah J.; Shen, Wei

    2010-01-01

    To mimic the dynamic regulation of signaling ligands immobilized on extracellular matrices or on the surfaces of neighboring cells for guidance of cell behavior and fate selection, we have harnessed biomolecular recognition in combination with polymer engineering to create dynamic surfaces on which the accessibility of immobilized ligands to cell surface receptors can be reversibly interconverted under physiological conditions. The cell-adhesive RGD peptide is chosen as a model ligand. RGD is...

  13. Do organic ligands affect calcite dissolution rates?

    Science.gov (United States)

    Oelkers, Eric H.; Golubev, Sergey V.; Pokrovsky, Oleg S.; Bénézeth, Pascale

    2011-04-01

    Steady state Iceland-spar calcite dissolution rates were measured at 25 °C in aqueous solutions containing 0.1 M NaCl and up to 0.05 M dissolved bicarbonate at pH from 7.9 to 9.1 in the presence of 13 distinct dissolved organic ligands in mixed-flow reactors. The organic ligands considered in this study include those most likely to be present in either (1) aquifers at the conditions pertinent to CO 2 sequestration or (2) soil/early diagenetic environments: acetate, phthalate, citrate, EDTA 4-, succinate, D-glucosaminate, L-glutamate, D-gluconate, 2,4-dihydroxybenzoate, 3,4-dihydroxybenzoate, fumarate, malonate, and gallate. Results show that the presence of extract, humic acid, pectin, and gum xanthan. In no case did the presence of <100 ppm of these organics change calcite dissolution rates by more than a factor of 2.5. Results obtained in this study suggest that the presence of aqueous organic anions negligibly affects calcite forward dissolution rates in most natural environments. Some effect on calcite reactivity may be observed, however, by the presence of organic anions if they change substantially the chemical affinity of the fluid with respect to calcite.

  14. The first nitro-substituted heteroscorpionate ligand.

    Science.gov (United States)

    Pellei, Maura; Benetollo, Franco; Lobbia, Giancarlo Gioia; Alidori, Simone; Santini, Carlo

    2005-02-21

    The new dihydridobis(3-nitro-1,2,4-triazolyl)borate ligand, [H2B(tzNO2)2]-, has been synthesized in dimethylacetamide solution, using 3-nitro-1,2,4-triazole and KBH4 through careful temperature control, and characterized as its potassium salt. The zinc(II) and cadmium(II) complexes, {M[H2B(tzNO2)2]Cl(H2O)2}, have been prepared by metathesis of [H2B(tzNO2)2]K with ZnCl2 and CdCl2, respectively. The complexes likely contain a metal core in which the ligand is coordinated to the metal ions in the K2-N,N' or K4-N,N',O,O' fashion. A single-crystal structural characterization is reported for the potassium dihydrobis(3-nitro-1,2,4-triazolyl)borate. The potassium salt is polymeric and shows several K...N and K...O interactions. PMID:15859260

  15. Effect of adrenergic receptor ligands on metaiodobenzylguanidine uptake and storage in neuroblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Babich, J.W. [Division of Nuclear Medicine, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts (United States)]|[Department of Radiology, Harvard Medical School, Boston, Massachusetts (United States); Graham, W. [Division of Nuclear Medicine, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts (United States); Fischman, A.J. [Division of Nuclear Medicine, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts (United States)]|[Department of Radiology, Harvard Medical School, Boston, Massachusetts (United States)

    1997-05-01

    The effects of adrenergic receptor ligands on uptake and storage of the radiopharmaceutical [{sup 125}I]metaiodobenzylguanidine (MIBG) were studied in the human neuroblastoma cell line SK-N-SH. For uptake studies, cells were with varying concentrations of {alpha}-agonist (clonidine, methoxamine, and xylazine), {alpha}-antagonist (phentolamine, tolazoline, phenoxybenzamine, yohimbine, and prazosin), {beta}-antagonist (propranolol, atenolol), {beta}-agonist (isoprenaline and salbutamol), mixed {alpha}/{beta} antagonist (labetalol), or the neuronal blocking agent guanethidine, prior to the addition of [{sup 125}I]MIBG (0.1 {mu}M). The incubation was continued for 2 h and specific cell-associated radioactivity was measured. For the storage studies, cells were incubated with [{sup 125}I]MIBG for 2 h, followed by replacement with fresh medium with or without drug (MIBG, clonidine, or yohimbine). Cell-associated radioactivity was measured at various times over the next 20 h. Propanolol reduced [{sup 125}I]MIBG uptake by approximately 30% (P<0.01) at all concentrations tested, most likely due to nonspecific membrane changes. In conclusion, the results of this study establish that selected adrenergic ligands can significantly influence the pattern of uptake and storage of MIBG in cultured neuroblastoma cells, most likely through inhibition of uptake or through noncompetitive inhibition. The potential inplications of these findings justify further study. (orig./VHE). With 4 figs., 1 tab.

  16. Riboswitch Structure: an Internal Residue Mimicking the Purine Ligand

    Energy Technology Data Exchange (ETDEWEB)

    Delfosse, V.; Bouchard, P; Bonneau, E; Dagenais, P; Lemay, J; Lafontaine, D; Legault, P

    2009-01-01

    The adenine and guanine riboswitches regulate gene expression in response to their purine ligand. X-ray structures of the aptamer moiety of these riboswitches are characterized by a compact fold in which the ligand forms a Watson-Crick base pair with residue 65. Phylogenetic analyses revealed a strict restriction at position 39 of the aptamer that prevents the G39-C65 and A39-U65 combinations, and mutational studies indicate that aptamers with these sequence combinations are impaired for ligand binding. In order to investigate the rationale for sequence conservation at residue 39, structural characterization of the U65C mutant from Bacillus subtilis pbuE adenine riboswitch aptamer was undertaken. NMR spectroscopy and X-ray crystallography studies demonstrate that the U65C mutant adopts a compact ligand-free structure, in which G39 occupies the ligand-binding site of purine riboswitch aptamers. These studies present a remarkable example of a mutant RNA aptamer that adopts a native-like fold by means of ligand mimicking and explain why this mutant is impaired for ligand binding. Furthermore, this work provides a specific insight into how the natural sequence has evolved through selection of nucleotide identities that contribute to formation of the ligand-bound state, but ensures that the ligand-free state remains in an active conformation.

  17. Single-incubation immunoassay for a multivalent ligand

    International Nuclear Information System (INIS)

    In a two-site immunoassay method for a multivalent ligand using a single incubation, the ligand, labelled receptor for the ligand and unlabelled receptor for the ligand covalently bound to a solid-phase support are incubated as a stable suspension to produce a solid and liquid phase. The solid and liquid phases are separated from each other and the labelled receptor in either phase is quantified. The method has particular application as an assay for human thyroid stimulating hormone using purified, radioactively labelled antibodies and unlabelled antibodies covalently bound to hydrolyzed polyacrylamide particles. (author)

  18. The Dynamics of Ligand Barrier Crossing Inside the Acetylcholinesterase Gorge

    Energy Technology Data Exchange (ETDEWEB)

    Bui, Jennifer M.(University of California, San Diego); Henchman, Richard H.(University of California, San Diego); Mccammon, Andy (University of California, San Diego)

    2003-10-01

    The dynamics of ligand movement through the constricted region of the acetylcholinesterase gorge is important in understanding how the ligand gains access to and is released from the active site of the enzyme. Molecular dynamics simulations of the simple ligand, tetramethylammonium, crossing this bottleneck region are conducted using umbrella potential sampling and activated .ux techniques. The low potential of mean force obtained is consistent with the fast reaction rate of acetylcholinesterase observed experimentally. From the results of the activated dynamics simulations, local conformational .uctuations of the gorge residues and larger scale collective motions of the protein are found to correlate highly with the ligand crossing.

  19. Ligand Release Pathways Obtained with WExplore: Residence Times and Mechanisms.

    Science.gov (United States)

    Dickson, Alex; Lotz, Samuel D

    2016-06-23

    The binding of ligands with their molecular receptors is of tremendous importance in biology. Although much emphasis has been placed on characterizing binding sites and bound poses that determine the binding thermodynamics, the pathway by which a ligand binds importantly determines the binding kinetics. The computational study of entire unbiased ligand binding and release pathways is still an emerging field, made possible only recently by advances in computational hardware and sampling methodologies. We have developed one such method (WExplore) that is based on a weighted ensemble of trajectories, which we apply to ligand release for the first time, using a set of three previously characterized interactions between low-affinity ligands and the protein FKBP-12 (FK-506 binding protein). WExplore is found to be more efficient that conventional sampling, even for the nanosecond-scale unbinding events observed here. From a nonequilibrium ensemble of unbinding trajectories, we obtain ligand residence times and release pathways without using biasing forces or a Markovian assumption of transitions between regions. We introduce a set of analysis tools for unbinding transition pathways, including using von Mises-Fisher distributions to model clouds of ligand exit points, which provide a quantitative proxy for ligand surface diffusion. Differences between the transition pathway ensembles of the three ligands are identified and discussed. PMID:27231969

  20. Spectra of fluorinated rare earth. beta. -diketonates with added ligands

    Energy Technology Data Exchange (ETDEWEB)

    Khomenko, V.S.; Lozinskij, M.O.; Fialkov, Yu.A.; Rasshinina, T.A.; Krasovskaya, L.I. (AN Belorusskoj SSR, Minsk. Inst. Fiziki; AN Ukrainskoj SSR, Kiev. Inst. Organicheskoj Khimii)

    1984-01-01

    Different-ligand rare earth complexes are synthesized. Fluorated ..beta..-diketones, triethylphosphine oxide and trifluoracetic acid are used as active ligands. Mass-spectra of low and high resolution are taken at the energy of ionizing electrons of 70 eV, as well as luminescence spectra of complexes. Fragmentation ways of complexes decomposition under electron shock are studied. A series of changing the bound strength of additional ligands with europium in mixed complexes is determined. It is shown that the introduction of additional ligands can purposefully change physical and chemical properties of complexes.

  1. Peroxisome proliferator-activated receptor γ ligands induce cell cycle arrest and apoptosis in human renal carcinoma cell lines

    Institute of Scientific and Technical Information of China (English)

    Feng-guang YANG; Zhi-wen ZHANG; Dian-qi XIN; Chang-jin SHI; Jie-ping WU; Ying-lu GUO; You-fei GUAN

    2005-01-01

    Aim: To study the effect of peroxisome proliferator-actived receptor γ (PPARγ)ligands on cell proliferation and apoptosis in human renal carcinoma cell lines.Methods: The expression of PPARγ was investigated by reverse transcriptase polymerase chain reaction (RT-PCR), Western blot and immunohistochemistry.The effect of thiazolidinedione (TZD) PPARγ ligands on growth of renal cell carcinoma (RCC) cells was measured by MTT assay and flow cytometric analysis. Cell death ELISA, Hoechst 33342 fluorescent staining and DNA ladder assay were used to observe the effects of PPARγ ligands on apoptosis. Regulatory proteins of cell cycle and apoptosis were detected by Western blot analysis. Results:PPARγ was expressed at much higher levels in renal tumors than in the normal kidney (2.16±0.85 vs 0.90±0.73; P<0.01 ). TZD PPARγ ligands inhibited RCC cell growth in a dose-dependent manner with IC50 values of 7.08 μmol/L and 11.32 μmol/L for pioglitazone, and 5.71 μmol/L and 8.38 μmol/L for troglitazone in 786-O and A498 cells, respectively. Cell cycle analysis showed a G0/G1 arrest in human RCC cells following 24-h exposure to TZD. Analysis of cell cycle regulatory proteins revealed that TZD decreased the protein levels of proliferating cell nuclear antigen, pRb, cyclin D1, and Cdk4 but increased the levels of p21 and p27 in a timedependent manner. Furthermore, high doses of TZD induced massive apoptosis in renal cancer cells, with increased Bax expression and decreased Bcl-2 expression.Conclusion: TZD PPARγ ligands showed potent inhibitory effect on proliferation,and could induce apoptosis in RCC cells. These results suggest that ligands for PPARγ have potential antitumor effects on renal carcinoma cells.

  2. Analysis of Killer Cell Immunoglobulin-like Receptor Genes and Their HLA Ligands in Iranian Patients with Ankylosing Spondylitis.

    Science.gov (United States)

    Mahmoudi, Mehdi; Jamshidi, Ahmad Reza; Karami, Jafar; Mohseni, Alireza; Amirzargar, Ali Akbar; Farhadi, Elham; Ahmadzadeh, Nooshin; Nicknam, Mohammad Hossein

    2016-02-01

    Ankylosing Spondylitis (AS) is a chronic rheumatic disease which mainly involves the axial skeleton. It seems that non-HLA genes, as well as HLA-B27 gene, are linked to the etiology of the disease. Recently, it has been documented that KIRs and their HLA ligands are contributed to the Ankylosing Spondylitis. The aim of this study was to evaluate the KIR genes and their HLA ligands in Iranian AS patients and healthy individuals. The present study includes 200 AS patient samples and 200 healthy control samples. KIR genotyping was performed using the polymerase chain reaction sequence-specific primer (PCR-SSP) method to type the presence or absence of the 16 KIR genes, 6 known specific HLA class I ligands and also, two pseudogenes. Two KIR genes (KIR-2DL3 and KIR2DL5), and among the HLA ligands, two HLA ligands (HLA-C2Lys80 and HLA-B27) genes were significantly different between case and control groups. In addition, we found some interesting KIR/HLA compound genotypes, which were associated with AS susceptibility. Our results suggest that the AS patients present more activating and less inhibitory KIR genes with combination of their HLA ligands than healthy controls. Once the balance of signal transduction between activating and inhibitory receptors is disturbed, the ability of NK cells to identify and lyse the targets in immune responses will be compromised. Accordingly, imbalance of activating and inhibitory KIR genes by up-regulating the activation and losing the inhibition of KIRs signaling or combination of both might be one of the important factors which underlying the pathogenesis of AS. PMID:26996109

  3. Synthesis, molecular docking and evaluation of antifungal activity of Ni(II),Co(II) and Cu(II) complexes of porphyrin core macromolecular ligand.

    Science.gov (United States)

    Singh, Urvashi; Malla, Ali Mohammad; Bhat, Imtiyaz Ahmad; Ahmad, Ajaz; Bukhari, Mohd Nadeem; Bhat, Sneha; Anayutullah, Syed; Hashmi, Athar Adil

    2016-04-01

    Porphyrin core dendrimeric ligand (L) was synthesized by Rothemund synthetic route in which p-hydroxy benzaldehyde and pyrrole were fused together. The prepared ligand was complexed with Ni(II), Cu(II) and Co(II) ions, separately. Both the ligand and its complexes were characterized by elemental analysis and spectroscopic studies (FT-IR, UV-Vis, (1)HNMR). Square planar geometries were proposed for Cu(II), Ni(II) and Co(II) ions in cobalt, Nickel and copper complexes, respectively on the basis of UV-Vis spectroscopic data. The ligand and its complex were screened on Candida albicans (ATCC 10231), Aspergillus fumigatus (ATCC 1022), Trichophyton mentagrophytes (ATCC 9533) and Pencillium marneffei by determining MICs and inhibition zones. The activity of the ligand and its complexes was found to be in the order: CuL ˃ CoL ≈ NiL ˃ L. Detection of DNA damage at the level of the individual eukaryotic cell was observed by commet assay. Molecular docking technique was used to understand the ligand-DNA interactions. From docking experiment, we conclude that copper complex interacts more strongly than rest two. PMID:26911647

  4. The serotonin transporter: Examination of the changes in transporter affinity induced by ligand binding

    International Nuclear Information System (INIS)

    The plasmalemmal serotonin transporter uses transmembrane gradients of Na+, Cl- and K+ to accumulate serotonin within blood platelets. Transport is competitively inhibited by the antidepressant imipramine. Like serotonin transport, imipramine binding requires Na+. Unlike serotonin, however, imipramine does not appear to be transported. To gain insight into the mechanism of serotonin transport the author have analyzed the influences of Na+ and Cl-, the two ions cotransported with serotonin, on both serotonin transport and the interaction of imipramine and other antidepressant drugs with the plasmalemmal serotonin transporter of human platelets. Additionally, the author have synthesized, purified and characterized the binding of 2-iodoimipramine to the serotonin transporter. Finally, the author have conducted a preliminary study of the inhibition of serotonin transport and imipramine binding produced by dicyclohexylcarbodiimide. My results reveal many instances of positive heterotropic cooperativity in ligand binding to the serotonin transporter. Na+ binding enhances the transporters affinity for imipramine and several other antidepressant drugs, and also increases the affinity for Cl-. Cl- enhances the transporters affinity for imipramine, as well as for Na+. At concentrations in the range of its KM for transport serotonin is a competitive inhibitor of imipramine binding. At much higher concentrations, however, serotonin also inhibits imipramines dissociation rate constant. This latter effect which is Na+-independent and species specific, is apparently produced by serotonin binding at a second, low affinity site on, or near, the transporter complex. Iodoimipramine competitively inhibit both [3H]imipramine binding and [3H]serotonin transport

  5. Cpt-cAMP activates human epithelial sodium channels via relieving self-inhibition

    OpenAIRE

    Molina, Raul; Han, Dong-Yun; Su, Xue-Feng; Zhao, Run-Zhen; Zhao, Meimi; Sharp, Gretta M.; Chang, Yongchang; Ji, Hong-Long

    2011-01-01

    External Na+ self-inhibition is an intrinsic feature of epithelial sodium channels (ENaC). Cpt-cAMP regulates heterologous guinea pig but not rat αβγ ENaC in a ligand-gated manner. We hypothesized that cpt-cAMP may eliminate the self-inhibition of human ENaC thereby open channels. Regulation of self-inhibition by this compound in oocytes was analyzed using the two-electrode voltage clamp and Ussing chamber setups. External cpt-cAMP stimulated human but not rat and murine αβγ ENaC in a dose- a...

  6. Modification of diphenylamine-linked bis(oxazoline) ligands: Tuning of electronic effect and rigidity of ligand skeleton

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The electronic effect of diphenylamine-linked bis(oxazoline) ligands was tuned through introduction of electron-withdrawing bromo and nitro substituents onto the 4 and 4′ position. The variation of the NH bond acidity was determined by the different chemical shifts of NH. The catalytic activity and enantioselectivity of the modified ligands were tested in the asymmetric Friedel-Crafts alkylation of indole with β-nitrostyrene. The effect of ligand skeleton rigidity was also investigated through the synthesis of iminodibenzyl-linked bis(oxazoline) ligands and evaluation of their catalytic activity in Friedel-Crafts alkylation.

  7. Characterizing mixed phosphonic acid ligand capping on CdSe/ZnS quantum dots using ligand exchange and NMR spectroscopy.

    Science.gov (United States)

    Davidowski, Stephen K; Lisowski, Carmen E; Yarger, Jeffery L

    2016-03-01

    The ligand capping of phosphonic acid functionalized CdSe/ZnS core-shell quantum dots (QDs) was investigated with a combination of solution and solid-state (31) P nuclear magnetic resonance (NMR) spectroscopy. Two phosphonic acid ligands were used in the synthesis of the QDs, tetradecylphosphonic acid and ethylphosphonic acid. Both alkyl phosphonic acids showed broad liquid and solid-state (31) P NMR resonances for the bound ligands, indicative of heterogeneous binding to the QD surface. In order to quantify the two ligand populations on the surface, ligand exchange facilitated by phenylphosphonic acid resulted in the displacement of the ethylphosphonic acid and tetradecylphosphonic acid and allowed for quantification of the free ligands using (31) P liquid-state NMR. After washing away the free ligand, two broad resonances were observed in the liquids' (31) P NMR corresponding to the alkyl and aromatic phosphonic acids. The washed samples were analyzed via solid-state (31) P NMR, which confirmed the ligand populations on the surface following the ligand exchange process. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26639792

  8. Calculating the mean time to capture for tethered ligands and its effect on the chemical equilibrium of bound ligand pairs.

    Science.gov (United States)

    Shen, Lu; Decker, Caitlin G; Maynard, Heather D; Levine, Alex J

    2016-09-01

    We present here the calculation of the mean time to capture of a tethered ligand to the receptor. This calculation is then used to determine the shift in the partitioning between (1) free, (2) singly bound, and (3) doubly bound ligands in chemical equilibrium as a function of the length of the tether. These calculations are used in the research article Fibroblast Growth Factor 2 Dimer with Superagonist in vitro Activity Improves Granulation Tissue Formation During Wound Healing (Decker et al., in press [1]) to explain quantitatively how changes in polymeric linker length in the ligand dimers modifies the efficacy of these molecules relative to that of free ligands. PMID:27408925

  9. A retinoid X receptor (RXR)-selective retinoid reveals that RXR-α is potentially a therapeutic target in breast cancer cell lines, and that it potentiates antiproliferative and apoptotic responses to peroxisome proliferator-activated receptor ligands

    International Nuclear Information System (INIS)

    Certain lipids have been shown to be ligands for a subgroup of the nuclear hormone receptor superfamily known as the peroxisome proliferator-activated receptors (PPARs). Ligands for these transcription factors have been used in experimental cancer therapies. PPARs heterodimerize and bind DNA with retinoid X receptors (RXRs), which have homology to other members of the nuclear receptor superfamily. Retinoids have been found to be effective in treating many types of cancer. However, many breast cancers become resistant to the chemotherapeutic effects of these drugs. Recently, RXR-selective ligands were discovered that inhibited proliferation of all-trans retinoic acid resistant breast cancer cells in vitro and caused regression of the disease in animal models. There are few published studies on the efficacy of combined therapy using PPAR and RXR ligands for breast cancer prevention or treatment. We determined the effects of selective PPAR and RXR ligands on established human breast cancer cell lines in vitro. PPAR-α and PPAR-γ ligands induced apoptotic and antiproliferative responses in human breast cancer cell lines, respectively, which were associated with specific changes in gene expression. These responses were potentiated by the RXR-selective ligand AGN194204. Interestingly, RXR-α-overexpressing retinoic acid resistant breast cancer cell lines were more sensitive to the effects of the RXR-selective compound. RXR-selective retinoids can potentiate the antiproliferative and apoptotic responses of breast cancer cell lines to PPAR ligands

  10. Methods of Telomerase Inhibition

    OpenAIRE

    Andrews, Lucy G.; Tollefsbol, Trygve O.

    2008-01-01

    Telomerase is central to cellular immortality and is a key component of most cancer cells although this enzyme is rarely expressed to significant levels in normal cells. Therefore, the inhibition of telomerase has garnered considerable attention as a possible anticancer approach. Many of the methods applied to telomerase inhibition focus on either of the two major components of the ribonucleoprotein holoenzyme, that is, the telomerase reverse transcriptase (TERT) catalytic subunit or the telo...

  11. Rational design of class I MHC ligands

    Science.gov (United States)

    Rognan, D.; Scapozza, L.; Folkers, G.; Daser, Angelika

    1995-04-01

    From the knowledge of the three-dimensional structure of a class I MHC protein, several non natural peptides were designed in order to either optimize the interactions of one secondary anchor amino acid with its HLA binding pocket or to substitute the non interacting part with spacer residues. All peptides were synthesized and tested for binding to the class I MHC protein in an in vitro reconstitution assay. As predicted, the non natural peptides present an enhanced binding to the HLA-B27 molecule with respect to their natural parent peptides. This study constitutes the first step towards the rational design of non peptidic MHC ligands that should be very promising tools for the selective immunotherapy of autoimmune diseases.

  12. Ligand-directed trafficking of receptor stimulus.

    Science.gov (United States)

    Chilmonczyk, Zdzisław; Bojarski, Andrzej J; Sylte, Ingebrigt

    2014-12-01

    GPCRs are seven transmembrane-spanning receptors that convey specific extracellular stimuli to intracellular signalling. They represent the largest family of cell surface proteins that are therapeutically targeted. According to the traditional two-state model of receptor theory, GPCRs were considered as operating in equilibrium between two functional conformations, an active (R*) and inactive (R) state. Thus, it was assumed that a GPCR can exist either in an "off" or "on" conformation causing either no activation or equal activation of all its signalling pathways. Over the past several years it has become evident that this model is too simple and that GPCR signalling is far more complex. Different studies have presented a multistate model of receptor activation in which ligand-specific receptor conformations are able to differentiate between distinct signalling partners. Recent data show that beside G proteins numerous other proteins, such as β-arrestins and kinases, may interact with GPCRs and activate intracellular signalling pathways. GPCR activation may therefore involve receptor desensitization, coupling to multiple G proteins, Gα or Gβγ signalling, and pathway activation that is independent of G proteins. This latter effect leads to agonist "functional selectivity" (also called ligand-directed receptor trafficking, stimulus trafficking, biased agonism, biased signalling), and agonist intervention with functional selectivity may improve the therapy. Many commercially available drugs with beneficial efficacy also show various undesirable side effects. Further studies of biased signalling might facilitate our understanding of the side effects of current drugs and take us to new avenues to efficiently design pathway-specific medications. PMID:25443729

  13. Revealing the sequence and resulting cellular morphology of receptor-ligand interactions during Plasmodium falciparum invasion of erythrocytes.

    Directory of Open Access Journals (Sweden)

    Greta E Weiss

    2015-02-01

    Full Text Available During blood stage Plasmodium falciparum infection, merozoites invade uninfected erythrocytes via a complex, multistep process involving a series of distinct receptor-ligand binding events. Understanding each element in this process increases the potential to block the parasite's life cycle via drugs or vaccines. To investigate specific receptor-ligand interactions, they were systematically blocked using a combination of genetic deletion, enzymatic receptor cleavage and inhibition of binding via antibodies, peptides and small molecules, and the resulting temporal changes in invasion and morphological effects on erythrocytes were filmed using live cell imaging. Analysis of the videos have shown receptor-ligand interactions occur in the following sequence with the following cellular morphologies; 1 an early heparin-blockable interaction which weakly deforms the erythrocyte, 2 EBA and PfRh ligands which strongly deform the erythrocyte, a process dependant on the merozoite's actin-myosin motor, 3 a PfRh5-basigin binding step which results in a pore or opening between parasite and host through which it appears small molecules and possibly invasion components can flow and 4 an AMA1-RON2 interaction that mediates tight junction formation, which acts as an anchor point for internalization. In addition to enhancing general knowledge of apicomplexan biology, this work provides a rational basis to combine sequentially acting merozoite vaccine candidates in a single multi-receptor-blocking vaccine.

  14. Functionalized pyrazines as ligands for minor actinide extraction and catalysis

    NARCIS (Netherlands)

    Nikishkin, N.

    2013-01-01

    The research presented in this thesis concerns the design of ligands for a wide range of applications, from nuclear waste treatment to catalysis. The strategies employed to design actinide-selective extractants, for instance, comprise the fine tuning of the ligand electronic properties as well as us

  15. Organopalladium complexes with bidentate phosphorus and nitrogen containing ligands

    NARCIS (Netherlands)

    Koten, G. van; Graaf, W. de; Harder, Sjoerd; Boersma, J.; Kanters, J.A.

    1988-01-01

    Organopalladium complexes containing the potentially P, N-bidentate ligands o-diphenylphosphino-N,N-dimethylbenzylamine (PN) and o-diphenylphosphino-@a-methyl-N,N-dimethylbenzylamine (PN}*{) have been studied. The palladium(0) complexes Pd(P@?N){3} (P@?N = PN or PN}*{) have been prepared: the ligand

  16. Polymerization catalysts containing electron-withdrawing amide ligands

    Science.gov (United States)

    Watkin, John G.; Click, Damon R.

    2002-01-01

    The present invention describes methods of making a series of amine-containing organic compounds which are used as ligands for group 3-10 and lanthanide metal compounds. The ligands have electron-withdrawing groups bonded to them. The metal compounds, when combined with a cocatalyst, are catalysts for the polymerization of olefins.

  17. Influence of the platform in multicoordinate ligands for actinide partitioning

    NARCIS (Netherlands)

    Dam, Henk H.; Reinhoudt, David N.; Verboom, Willem

    2007-01-01

    Multicoordinate ligands based on the trityl, C-pivot, and CTV platforms and the ligating groups CMPO, DGA, PICO, and MPMA were synthesized and studied for their extraction properties. The extraction efficiencies of these multicoordinate ligands are largely influenced by the properties of the platfor

  18. Immobilisation of ligands by radio-derivatized polymers

    International Nuclear Information System (INIS)

    The invention relates to radio-derivatized polymers and a method of producing them by contacting non-polymerizable conjugands with radiolysable polymers in the presence of irradiation. The resulting radio-derivatized polymers can be further linked with ligand of organic or inorganic nature to immobilize such ligands. 2 figs., 5 tabs

  19. Competitive antagonism of AMPA receptors by ligands of different classes

    DEFF Research Database (Denmark)

    Hogner, Anders; Greenwood, Jeremy R; Liljefors, Tommy;

    2003-01-01

    -(phosphonomethoxy)-4-isoxazolyl]propionic acid (ATPO) in complex with the ligand-binding core of the receptor. Comparison with the only previous structure of the ligand-binding core in complex with an antagonist, 6,7-dinitro-2,3-quinoxalinedione (DNQX) (Armstrong, N.; Gouaux, E. Neuron 2000, 28, 165-181), reveals...

  20. Improved ligand geometries in crystallographic refinement using AFITT in PHENIX.

    Science.gov (United States)

    Janowski, Pawel A; Moriarty, Nigel W; Kelley, Brian P; Case, David A; York, Darrin M; Adams, Paul D; Warren, Gregory L

    2016-09-01

    Modern crystal structure refinement programs rely on geometry restraints to overcome the challenge of a low data-to-parameter ratio. While the classical Engh and Huber restraints work well for standard amino-acid residues, the chemical complexity of small-molecule ligands presents a particular challenge. Most current approaches either limit ligand restraints to those that can be readily described in the Crystallographic Information File (CIF) format, thus sacrificing chemical flexibility and energetic accuracy, or they employ protocols that substantially lengthen the refinement time, potentially hindering rapid automated refinement workflows. PHENIX-AFITT refinement uses a full molecular-mechanics force field for user-selected small-molecule ligands during refinement, eliminating the potentially difficult problem of finding or generating high-quality geometry restraints. It is fully integrated with a standard refinement protocol and requires practically no additional steps from the user, making it ideal for high-throughput workflows. PHENIX-AFITT refinements also handle multiple ligands in a single model, alternate conformations and covalently bound ligands. Here, the results of combining AFITT and the PHENIX software suite on a data set of 189 protein-ligand PDB structures are presented. Refinements using PHENIX-AFITT significantly reduce ligand conformational energy and lead to improved geometries without detriment to the fit to the experimental data. For the data presented, PHENIX-AFITT refinements result in more chemically accurate models for small-molecule ligands. PMID:27599738

  1. Mechanochemical synthesis of mixed-ligand europium β-diketonates with nitrogen-containing neutral ligands

    International Nuclear Information System (INIS)

    The solid-phase reaction between europium salts of β-diketones and nitrogen-containing neutral ligands in a planetary mill produces luminescent mixed-ligand compounds Eu(β-dic)3 · D, where β-dic stands for dibenzoylmethane, benzoylacetone, thenoyltrifluoroacetone, or benzoyltrifluoroacetone; and D stands for 1,10-phenanthroline, 2,2-dipyridyl, or diphenylguanidine. The mechanosynthesis and yield of lanthanide β-diketonates are studied as affected by the treatment parameters and the nature of the reagents. Powder X-ray diffraction demonstrates a staged course of the mechanochemical synthesis. Examination of formation-rate curves shows that grinding/stirring is the rate-controlling stage of the process. Thermogravimetric analysis shows that the mechanosynthesis can proceed in the self-propagation mode. The relative luminescence intensity is determined as a function of treatment time. Particles of the mechanically activated mixture have sizes of 10-100 μm

  2. Functional Selectivity of CB2 Cannabinoid Receptor Ligands at a Canonical and Noncanonical Pathway.

    Science.gov (United States)

    Dhopeshwarkar, Amey; Mackie, Ken

    2016-08-01

    The CB2 cannabinoid receptor (CB2) remains a tantalizing, but unrealized therapeutic target. CB2 receptor ligands belong to varied structural classes and display extreme functional selectivity. Here, we have screened diverse CB2 receptor ligands at canonical (inhibition of adenylyl cyclase) and noncanonical (arrestin recruitment) pathways. The nonclassic cannabinoid (-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol (CP55940) was the most potent agonist for both pathways, while the classic cannabinoid ligand (6aR,10aR)-3-(1,1-Dimethylbutyl)-6a,7,10,10a-tetrahydro-6,6,9-trimethyl-6H-dibenzo[b,d]pyran JWH133) was the most efficacious agonist among all the ligands profiled in cyclase assays. In the cyclase assay, other classic cannabinoids showed little [(-)-trans-Δ(9)-tetrahydrocannabinol and (-)-(6aR,7,10,10aR)-tetrahydro-6,6,9-trimethyl-3-(1-methyl-1-phenylethyl)-6H-dibenzo[b,d]pyran-1-ol] (KM233) to no efficacy [(6aR,10aR)-1-methoxy-6,6,9-trimethyl-3-(2-methyloctan-2-yl)-6a,7,10,10a-tetrahydrobenzo[c]chromene(L759633) and (6aR,10aR)-3-(1,1-dimethylheptyl)-6a,7,8,9,10,10a-hexahydro-1-methoxy-6,6-dimethyl-9-methylene-6H-dibenzo[b,d]pyran]L759656. Most aminoalkylindoles, including [(3R)-​2,​3-​dihydro-​5-​methyl-​3-​(4-​morpholinylmethyl)pyrrolo[1,​2,​3-​de]-​1,​4-​benzoxazin-​6-​yl]-​1-​naphthalenyl-​methanone,​ monomethanesulfonate (WIN55212-2), were moderate efficacy agonists. The cannabilactone 3-(1,1-dimethyl-heptyl)-1-hydroxy-9-methoxy-benzo(c)chromen-6-one (AM1710) was equiefficacious to CP55940 to inhibit adenylyl cyclase, albeit with lower potency. In the arrestin recruitment assays, all classic cannabinoid ligands failed to recruit arrestins, indicating a bias toward G-protein coupling for this class of compound. All aminoalkylindoles tested, except for WIN55212-2 and (1-​pentyl-​1H-​indol-​3-​yl)(2,​2,​3,​3-​tetramethylcyclopropyl)-​methanone (UR144), failed

  3. A response calculus for immobilized T cell receptor ligands

    DEFF Research Database (Denmark)

    Andersen, P S; Menné, C; Mariuzza, R A;

    2001-01-01

    To address the molecular mechanism of T cell receptor (TCR) signaling, we have formulated a model for T cell activation, termed the 2D-affinity model, in which the density of TCR on the T cell surface, the density of ligand on the presenting surface, and their corresponding two-dimensional affini...... affinity in solution, are of optimal two-dimensional affinity thereby allowing effective TCR binding under physiological conditions, i.e. at low ligand densities in cellular interfaces....... determine the level of T cell activation. When fitted to T cell responses against purified ligands immobilized on plastic surfaces, the 2D-affinity model adequately simulated changes in cellular activation as a result of varying ligand affinity and ligand density. These observations further demonstrated the...

  4. Labeling of amine ligands with sup(99m)Tc in aqueous solutions by ligand exchange

    Energy Technology Data Exchange (ETDEWEB)

    Volkert, W.A.; Troutner, D.E.; Holmes, R.A. (Missouri Univ., Columbia (USA). Dept. of Radiology; Missouri Univ., Columbia (USA). Dept. of Chemistry; Harry S. Truman Memorial Veterans Hospital, Columbia, MO (USA). Nuclear Medicine Service)

    1982-10-01

    Cyclam, ethylenediamine (EN) and a linear tetraamine (TA) form structurally similar complexes in high yields when pertechnetate is reduced with Sn(II) in aqueous solutions. Efficient labeling of these amine ligands is also accomplished by transfer of sup(99m)Tc from its complexes with diethylenetriaminepentaacetate (DTPA) and citrate. The labeling yields of cyclam, TA and EN using (sup(99m)Tc)DTPA are greater than 95% after standing for 30 min at room temperature in 0.03 M solutions of the amine ligands at pH above 11, but less than 10% at pH below 9. Yields of greater than 90% are obtained using (sup(99m)Tc)citrate under similar conditions at pH 7 or greater. Ethylenediamine-N,N'-diacetic acid (ENDA) also forms a complex with sup(99m)Tc that exhibits pH dependent stability characteristics that are the same as those of (sup(99m)Tc)EN. The labeling efficiency of ENDA with sup(99m)Tc as a function of pH is nearly identical to that of the other amine ligands.

  5. Regulation mechanisms of the FLT3-ligand after irradiation

    International Nuclear Information System (INIS)

    The hematopoietic compartment is one of the most severely damaged after chemotherapy, radiotherapy or accidental irradiations. Whatever its origin, the resulting damage to the bone marrow remains difficult to evaluate. Thus, it would be of great interest to get a biological indicator of residual hematopoiesis in order to adapt the treatment to each clinical situation. Recent results indicated that the plasma Flt3 ligand concentration was increased in patients suffering from either acquired or induced aplasia, suggesting that Flt3 ligand might be useful as a biological indicator of bone marrow status. We thus followed in a mouse model as well as in several clinical situations the variations in plasma Flt3 ligand concentration, after either homogeneous or heterogeneous irradiations. These variations were correlated to the number of hematopoietic progenitors and to other parameters such as duration and depth of pancytopenia. The results indicated that the concentration of Flt3 ligand in the blood reflects the bone marrow status, and that the follow-up of plasma Flt3 ligand concentration could give predictive information about the bone marrow function and the duration and severity of pancytopenia and thrombocytopenia. Nevertheless, the clinical use of Flt3 ligand as a biological indicator of bone marrow damage require the knowledge of the mechanisms regulating the variations in plasma Flt3 ligand concentration. We thus developed a study in the mouse model. The results indicated that the variations in plasma Flt3 ligand variations were not solely due to a balance between its production by lymphoid cells and its consumption by hematopoietic cells. Moreover, we showed that T lymphocytes are not the main regulator of plasma Flt3 ligand concentration as previously suggested, and that other cell types, possibly including bone marrow stromal cells, might be strongly implicated. These results also suggest that the Flt3 ligand is a main systemic regulator of hematopoiesis

  6. Metrical oxidation states of 2-amidophenoxide and catecholate ligands: structural signatures of metal-ligand π bonding in potentially noninnocent ligands.

    Science.gov (United States)

    Brown, Seth N

    2012-02-01

    Catecholates and 2-amidophenoxides are prototypical "noninnocent" ligands which can form metal complexes where the ligands are best described as being in the monoanionic (imino)semiquinone or neutral (imino)quinone oxidation state instead of their closed-shell dianionic form. Through a comprehensive analysis of structural data available for compounds with these ligands in unambiguous oxidation states (109 amidophenolates, 259 catecholates), the well-known structural changes in the ligands with oxidation state can be quantified. Using these correlations, an empirical "metrical oxidation state" (MOS) which gives a continuous measure of the apparent oxidation state of the ligand can be determined based on least-squares fitting of its C-C, C-O, and C-N bond lengths to this single parameter (a simple procedure for doing so is provided via a spreadsheet in the Supporting Information). High-valent d(0) metal complexes, particularly those of vanadium(V) and molybdenum(VI), have ligands with unexpectedly positive, and generally nonintegral, MOS values. The structural effects in these complexes are attributed not to electron transfer, but rather to amidophenoxide- or catecholate-to-metal π bonding, an interpretation supported by the systematic variation of the MOS values as a function of the degree of competition with the other π-donating groups in the structures. PMID:22260321

  7. Suppression of colitis-related mouse colon carcinogenesis by a COX-2 inhibitor and PPAR ligands

    Directory of Open Access Journals (Sweden)

    Sugie Shigeyuki

    2005-05-01

    Full Text Available Abstract Background It is generally assumed that inflammatory bowel disease (IBD-related carcinogenesis occurs as a result of chronic inflammation. We previously developed a novel colitis-related mouse colon carcinogenesis model initiated with azoxymethane (AOM and followed by dextran sodium sulfate (DSS. In the present study we investigated whether a cyclooxygenase (COX-2 inhibitor nimesulide and ligands for peroxisome proliferator-activated receptors (PPARs, troglitazone (a PPARγ ligand and bezafibrate (a PPARα ligand inhibit colitis-related colon carcinogenesis using our model to evaluate the efficacy of these drugs in prevention of IBD-related colon carcinogenesis. Methods Female CD-1 (ICR mice were given a single intraperitoneal administration of AOM (10 mg/kg body weight and followed by one-week oral exposure of 2% (w/v DSS in drinking water, and then maintained on the basal diets mixed with or without nimesulide (0.04%, w/w, troglitazone (0.05%, w/w, and bezafibrate (0.05%, w/w for 14 weeks. The inhibitory effects of dietary administration of these compounds were determined by histopathological and immunohistochemical analyses. Results Feeding with nimesulide and troglitazone significantly inhibited both the incidence and multiplicity of colonic adenocarcinoma induced by AOM/DSS in mice. Bezafibrate feeding significantly reduced the incidence of colonic adenocarcinoma, but did not significantly lower the multiplicity. Feeding with nimesulide and troglitazone decreased the proliferating cell nuclear antigen (PCNA-labeling index and expression of β-catenin, COX-2, inducible nitric oxide synthase (iNOS and nitrotyrosine. The treatments increased the apoptosis index in the colonic adenocarcinoma. Feeding with bezafibrate also affected these parameters except for β-catenin expression in the colonic malignancy. Conclusion Dietary administration of nimesulide, troglitazone and bezafibrate effectively suppressed the development of colonic

  8. Salicylates and sulfasalazine, but not glucocorticoids, inhibit leukocyte accumulation by an adenosine-dependent mechanism that is independent of inhibition of prostaglandin synthesis and p105 of NFκB

    OpenAIRE

    Cronstein, Bruce N.; Montesinos, M. Carmen; Weissmann, Gerald

    1999-01-01

    The antiinflammatory action of aspirin generally has been attributed to direct inhibition of cyclooxygenases (COX-1 and COX-2), but additional mechanisms are likely at work. These include aspirin’s inhibition of NFκB translocation to the nucleus as well as the capacity of salicylates to uncouple oxidative phosphorylation (i.e., deplete ATP). At clinically relevant doses, salicylates cause cells to release micromolar concentrations of adenosine, which serves as an endogenous ligand for at leas...

  9. Gas adsorption and gas mixture separations using mixed-ligand MOF material

    Science.gov (United States)

    Hupp, Joseph T.; Mulfort, Karen L.; Snurr, Randall Q.; Bae, Youn-Sang

    2011-01-04

    A method of separating a mixture of carbon dioxiode and hydrocarbon gas using a mixed-ligand, metal-organic framework (MOF) material having metal ions coordinated to carboxylate ligands and pyridyl ligands.

  10. Metal-ligand cooperation in H2 activation with iron complexes bearing hemilabile bis(diphenylphosphino)amine ligands.

    Science.gov (United States)

    Frank, Nicolas; Hanau, Katharina; Langer, Robert

    2014-10-20

    The octahedral transition-metal complex [(dppa)Fe(Ph2P-N-PPh2)2] (1) [dppa = bis(diphenylphosphino)amine] with homofunctional bidentate ligands is described. The ligand exhibits hemilability due to its small bite angle and the steric repulsion of the coordinated donor groups. As the {Ph2P-N-PPh2}(-) ligand can act as an internal base, heterolytic cleavage of dihydrogen by complex 1 leads to the formation of the hydride complex [(dppa)(Ph2P-N-PPh2)Fe(H)(κ(1)-Ph2P-NH-PPh2)2] (2), representing an example of cooperative bond activation with a homofunctional hemilabile ligand. This study demonstrates that hemilability of homofunctionalized ligands can be affected by careful adjustment of geometric parameters. PMID:25290535

  11. PPARgamma inhibits osteogenesis via the down-regulation of the expression of COX-2 and iNOS in rats.

    Science.gov (United States)

    Lin, Tzu-Hung; Yang, Rong-Sen; Tang, Chih-Hsin; Lin, Chih-Peng; Fu, Wen-Mei

    2007-10-01

    Peroxisome proliferator-activated receptor gamma (PPARgamma), a ligand-activated transcription factor, is considered as an anti-osteoblastic factor associated with adiposity and the elderly osteoporosis due to a defect in osteoblastogenesis. We have found that oral administration of PPARgamma activator rosiglitazone decreased tibia BMD and serum ALP but left serum calcium and osteoclast marker C-terminal telopeptide unaffected. In addition, we examined the inhibitory mechanisms of PPARgamma on the bone formation by using PPARgamma activators ciglitazone and 15-deoxy-Delta(12,14)-prostaglandin-J2 (15d-PGJ2). Our data indicated that PPARgamma ligands decreased both mineralized bone nodules and alkaline phosphatase (ALP) activities in cultured primary osteoblasts. Reverse transcription polymerase chain reaction (RT-PCR) showed that the expression of bone morphogenetic protein-2 (BMP-2) and osteocalcin (OCN) was inhibited by ciglitizone and 15d-PGJ2. Furthermore, PPARgamma ligands inhibited NF-kappaB associated downstream COX-2 and iNOS osteogenic signaling. The ultrasound (US)-induced elevation of COX-2 and iNOS expression and nitric oxide (NO) production were attenuated in the presence of PPARgamma ligands. Furthermore, local administration of PPARgamma ligands into the metaphysis of rat tibia decreased the bone volume in secondary spongiosa. These results suggest that the activation of PPARgamma inhibits osteoblastic differentiation and the expression of several anabolic mediators involved in bone formation. These data may reflect osteoporosis and less bone formation in the aging people and patients treated with thiazolidinediones. PMID:17669705

  12. Reactions of Cp2MCl2 (M=Ti or Zr with Imine-Oxime Ligands. Formation of Metallacycles

    Directory of Open Access Journals (Sweden)

    C. Tripathi

    2005-07-01

    Full Text Available The reactions of bis(cyclopentadienyltitanium(IV/zirconium(IV dichloridewith a series of imine-oxime ligands (LH2, derived by condensing benzil-α-monoxime and2-phenylenediamine, 4-phenylenediamine, 4-methyl-2-phenylenediamine, 2,6-diamino-pyridine, have been studied in anhydrous tetrahydrofuran in the presence of base andmetallocycles of the [Cp2M(L] (M=Ti or Zr type have been isolated. Tentative structureshave been proposed for the products based on elemental analysis, electrical conductance andspectral (electronic, IR and 1H-NMR data. Proton NMR spectra indicate that on the NMRtime scale there is rapid rotation of the cyclopentadienyl ring around the metal-ring axis at25oC. Studies were conducted to assess the growth inhibiting potential of the complexessynthesized and the ligands against various bacterial strains.

  13. The tripeptide feG inhibits leukocyte adhesion

    OpenAIRE

    Davison Joseph S; Christie Emily; Mathison Ronald D

    2008-01-01

    Abstract Background The tripeptide feG (D-Phe-D-Glu-Gly) is a potent anti-inflammatory peptide that reduces the severity of type I immediate hypersensitivity reactions, and inhibits neutrophil chemotaxis and adhesion to tissues. feG also reduces the expression of β1-integrin on circulating neutrophils, but the counter ligands involved in the anti-adhesive actions of the peptide are not known. In this study the effects of feG on the adhesion of rat peritoneal leukocytes and extravasated neutro...

  14. The broad-spectrum metalloproteinase inhibitor BB-94 inhibits growth, HER3 and Erk activation in fulvestrant-resistant breast cancer cell lines

    DEFF Research Database (Denmark)

    Kirkegaard, Tove; Yde, Christina Westmose; Kveiborg, Marie; Lykkesfeldt, Anne E

    2014-01-01

    consequently increased cell growth. In this study, we investigated the importance of HER receptors, in particular HER3, and HER ligand shedding for growth and signaling in human MCF-7 breast cancer cells and MCF-7-derived sublines resistant to the antiestrogen fulvestrant. The HER3/HER4 ligand heregulin 1β...... induced phosphorylation of HER3, Akt and Erk, and partly rescued fulvestrant-inhibited growth of MCF-7 cells. HER3 ligands were found to be produced and shed from the fulvestrant-resistant cells as conditioned medium from fulvestrant-resistant MCF-7 cells induced phosphorylation of HER3 and Akt in MCF-7...... cells. This was prevented by treatment of resistant cells with the metalloproteinase inhibitor TAPI-2. Only the broad-spectrum metalloproteinase inhibitor BB-94, and not the more selective inhibitors GM6001 or TAPI-2, which inhibited shedding of the HER ligands produced by the fulvestrant...

  15. Electronic spectra and photophysics of platinum(II) complexes with alpha-diimine ligands - Solid-state effects. I - Monomers and ligand pi dimers

    Science.gov (United States)

    Miskowski, Vincent M.; Houlding, Virginia H.

    1989-01-01

    Two types of emission behavior for Pt(II) complexes containing alpha-diimine ligands have been observed in dilute solution. If the complex also has weak field ligands such as chloride, ligand field (d-d) excited states become the lowest energy excited states. If only strong field ligands are present, a diimine 3(pi-pi/asterisk/) state becomes the lowest. In none of the cases studied did metal-to-ligand charge transfer excited state lie lowest.

  16. Regulation mechanisms of the FLT3-ligand after irradiation; Mecanismes de regulation du FLT3-ligand apres irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Prat-Lepesant, M

    2005-06-15

    The hematopoietic compartment is one of the most severely damaged after chemotherapy, radiotherapy or accidental irradiations. Whatever its origin, the resulting damage to the bone marrow remains difficult to evaluate. Thus, it would be of great interest to get a biological indicator of residual hematopoiesis in order to adapt the treatment to each clinical situation. Recent results indicated that the plasma Flt3 ligand concentration was increased in patients suffering from either acquired or induced aplasia, suggesting that Flt3 ligand might be useful as a biological indicator of bone marrow status. We thus followed in a mouse model as well as in several clinical situations the variations in plasma Flt3 ligand concentration, after either homogeneous or heterogeneous irradiations. These variations were correlated to the number of hematopoietic progenitors and to other parameters such as duration and depth of pancytopenia. The results indicated that the concentration of Flt3 ligand in the blood reflects the bone marrow status, and that the follow-up of plasma Flt3 ligand concentration could give predictive information about the bone marrow function and the duration and severity of pancytopenia and thrombocytopenia. Nevertheless, the clinical use of Flt3 ligand as a biological indicator of bone marrow damage require the knowledge of the mechanisms regulating the variations in plasma Flt3 ligand concentration. We thus developed a study in the mouse model. The results indicated that the variations in plasma Flt3 ligand variations were not solely due to a balance between its production by lymphoid cells and its consumption by hematopoietic cells. Moreover, we showed that T lymphocytes are not the main regulator of plasma Flt3 ligand concentration as previously suggested, and that other cell types, possibly including bone marrow stromal cells, might be strongly implicated. These results also suggest that the Flt3 ligand is a main systemic regulator of hematopoiesis

  17. Platinum(II) phenanthroimidazole G-quadruplex ligand induces selective telomere shortening in A549 cancer cells.

    Science.gov (United States)

    Mancini, Johanna; Rousseau, Philippe; Castor, Katherine J; Sleiman, Hanadi F; Autexier, Chantal

    2016-02-01

    Telomere maintenance, achieved by the binding of protective shelterin capping proteins to telomeres and by either telomerase or a recombination-based alternative lengthening of telomere (ALT) mechanism, is critical for cell proliferation and survival. Extensive telomere shortening or loss of telomere integrity activates DNA damage checkpoints, leading to cell senescence or death. Although telomerase upregulation is an attractive target for anti-cancer therapy, the lag associated with telomere shortening and the potential activation of ALT pose a challenge. An alternative approach is to modify telomere interactions with binding proteins (telomere uncapping). G-quadruplex ligands stabilize structures generated from single-stranded G-rich 3'-telomere end (G-quadruplex) folding, which in principle, cannot be elongated by telomerase, thus leading to telomere shortening. Ligands can also mediate rapid anti-proliferative effects by telomere uncapping. We previously reported that the G-quadruplex ligand, phenylphenanthroimidazole ethylenediamine platinum(II) (PIP), inhibits telomerase activity in vitro[47]. In the current study, a long-term seeding assay showed that PIP significantly inhibited the seeding capacity of A549 lung cancer cells and to a lesser extent primary MRC5 fibroblast cells. Importantly, treatment with PIP caused a significant dose- and time-dependent decrease in average telomere length of A549 but not MRC5 cells. Moreover, cell cycle analysis revealed a significant increase in G1 arrest upon treatment of A549 cells, but not MRC5 cells. Both apoptosis and cellular senescence may contribute to the anti-proliferative effects of PIP. Our studies validate the development of novel and specific therapeutic ligands targeting telomeric G-quadruplex structures in cancer cells. PMID:26724375

  18. IGFBP-3, hypoxia and TNF-α inhibit adiponectin transcription

    International Nuclear Information System (INIS)

    The thiazolidinedione rosiglitazone, an agonist ligand for the nuclear receptor PPAR-γ, improves insulin sensitivity in part by stimulating transcription of the insulin-sensitizing adipokine adiponectin. It activates PPAR-γ-RXR-α heterodimers bound to PPAR-γ response elements in the adiponectin promoter. Rosiglitazone-stimulated adiponectin protein synthesis in 3T3-L1 mouse adipocytes has been shown to be inhibited by IGFBP-3, which can be induced by hypoxia and the proinflammatory cytokine, TNF-α, two inhibitors of adiponectin transcription. The present study demonstrates that IGFBP-3, the hypoxia-mimetic agent cobalt chloride, and TNF-α inhibit rosiglitazone-induced adiponectin transcription in mouse embryo fibroblasts that stably express PPAR-γ2. Native IGFBP-3 can bind RXR-α and inhibited rosiglitazone stimulated promoter activity, whereas an IGFBP-3 mutant that does not bind RXR-α did not. These results suggest that IGFBP-3 may mediate the inhibition of adiponectin transcription by hypoxia and TNF-α, and that IGFBP-3 binding to RXR-α may be required for the observed inhibition.

  19. IGFBP-3, hypoxia and TNF-{alpha} inhibit adiponectin transcription

    Energy Technology Data Exchange (ETDEWEB)

    Zappala, Giovanna, E-mail: zappalag@mail.nih.gov [Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD (United States); Rechler, Matthew M. [Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD (United States); Clinical Endocrinology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD (United States)

    2009-05-15

    The thiazolidinedione rosiglitazone, an agonist ligand for the nuclear receptor PPAR-{gamma}, improves insulin sensitivity in part by stimulating transcription of the insulin-sensitizing adipokine adiponectin. It activates PPAR-{gamma}-RXR-{alpha} heterodimers bound to PPAR-{gamma} response elements in the adiponectin promoter. Rosiglitazone-stimulated adiponectin protein synthesis in 3T3-L1 mouse adipocytes has been shown to be inhibited by IGFBP-3, which can be induced by hypoxia and the proinflammatory cytokine, TNF-{alpha}, two inhibitors of adiponectin transcription. The present study demonstrates that IGFBP-3, the hypoxia-mimetic agent cobalt chloride, and TNF-{alpha} inhibit rosiglitazone-induced adiponectin transcription in mouse embryo fibroblasts that stably express PPAR-{gamma}2. Native IGFBP-3 can bind RXR-{alpha} and inhibited rosiglitazone stimulated promoter activity, whereas an IGFBP-3 mutant that does not bind RXR-{alpha} did not. These results suggest that IGFBP-3 may mediate the inhibition of adiponectin transcription by hypoxia and TNF-{alpha}, and that IGFBP-3 binding to RXR-{alpha} may be required for the observed inhibition.

  20. Triazacyclononane Phosphinic Acids (TRAP) as ligands for 68Ga radiopharmaceuticals

    International Nuclear Information System (INIS)

    Gallium-68 radiopharmaceuticals are the most interesting alternatives to those based on 18-F. 68-Ga is produced in commercial 68-Ge/68-Ga generator for fraction of the 18-F price. As metal isotope, 68-Ga must be tightly complexed by a suitable ligand. Macrocyclic ligands are the most suitable ones as their Ga3+ complexes are thermodynamically stable and kinetically inert. Till now, 68-Ga radiopharmaceuticals have been based on DOTA and NOTA skeletons but these ligands exhibit non-optimal labelling properties (high excess of the ligand, long heating, narrow pH range etc.). 1,4,9-TRiAzacyclononane Phosphinic acids (TRAP ligands) have been suggested as ligands for the fast and efficient 68-Ga incorporation. Due to low basicity of the phosphinic acid moieties as well as the ring nitrogen atoms, full complexation is possible even in highly acidic solutions (down to pH 1, i.e. pH of the neat generator eluate). Presence of weakly complexing atoms outside the ligand cage (oxygen atoms e.g. in TRAP-Pr or TRAP-OH) facilitates metal isotope incorporation in highly diluted solutions (non-carrier-added conditions) due to increasing effective metal ion concentration close to the macrocyclic cage. As very low excess of the ligands/conjugates is necessary for complexation, very high specific activity can be obtained. Unusual out-of-cage complexes were observed in the Ga-TRAP-OH system where deprotonated P-CH2O- groups participate in the Ga3+ coordination. The efficiency of 68-Ga labelling is also govern by selectivity of the TRAP ligands for Ga3+ over the most common impurities, e.g. Zn2+ and Fe3+ ions. The article is illustrated by the molecular schemes of NOTA, DOTA, TRAP-Pr and TRAP-OH

  1. Serum concentrations of Flt-3 ligand in rheumatic diseases.

    Science.gov (United States)

    Nakamura, Kayo; Nakatsuka, Noriko; Jinnin, Masatoshi; Makino, Takamitsu; Kajihara, Ikko; Makino, Katsunari; Honda, Noritoshi; Inoue, Kuniko; Fukushima, Satoshi; Ihn, Hironobu

    2015-10-01

    Fms-like tyrosine kinase 3 (Flt-3) is a cytokine receptor expressed on the surface of bone-marrow progenitor of hematopoietic cells. Flt-3 ligands are produced by peripheral blood mononuclear cells, and found in various human body fluids. Flt-3 signal is involved in the regulation of vessel formation as well as B cell differentiation, suggesting that Flt-3 signal contributes to the pathogenesis of vascular abnormalities and immune dysregulation in rheumatic diseases. The aim of the present study is to examine serum Flt-3 ligand levels in patients with various rheumatic diseases, and to evaluate the possibility that serum Flt-3 ligand levels can be a useful disease marker. Sera were obtained from 20 dermatomyositis (DM) patients, 36 systemic sclerosis (SSc) patients, 10 systemic lupus erythematosus (SLE) patients, 10 scleroderma spectrum disorder (SSD) patients, 4 mixed connective tissue disease (MCTD) patients, and 12 normal subjects. Flt-3 ligand levels were determined with ELISA. Serum Flt-3 ligand levels were significantly elevated in patients with DM, SSc, SSD and MCTD compared to those in normal subjects. DM patients with elevated Flt-3 ligand levels were accompanied with significantly increased CRP levels and increased frequency of heliotrope rash than those with normal levels. In addition, SSc patients with elevated Flt-3 ligand levels showed significantly reduced frequency of nailfold bleeding. Serum Flt-3 ligand levels can be a marker of cutaneous manifestation in DM and a marker of microangiopathy in SSc. Clarifying the role of Flt-3 ligand in rheumatic diseases may lead to further understanding of these diseases and new therapeutic approaches. PMID:26559027

  2. Database of ligand-induced domain movements in enzymes

    Directory of Open Access Journals (Sweden)

    Hayward Steven

    2009-03-01

    Full Text Available Abstract Background Conformational change induced by the binding of a substrate or coenzyme is a poorly understood stage in the process of enzyme catalysed reactions. For enzymes that exhibit a domain movement, the conformational change can be clearly characterized and therefore the opportunity exists to gain an understanding of the mechanisms involved. The development of the non-redundant database of protein domain movements contains examples of ligand-induced domain movements in enzymes, but this valuable data has remained unexploited. Description The domain movements in the non-redundant database of protein domain movements are those found by applying the DynDom program to pairs of crystallographic structures contained in Protein Data Bank files. For each pair of structures cross-checking ligands in their Protein Data Bank files with the KEGG-LIGAND database and using methods that search for ligands that contact the enzyme in one conformation but not the other, the non-redundant database of protein domain movements was refined down to a set of 203 enzymes where a domain movement is apparently triggered by the binding of a functional ligand. For these cases, ligand binding information, including hydrogen bonds and salt-bridges between the ligand and specific residues on the enzyme is presented in the context of dynamical information such as the regions that form the dynamic domains, the hinge bending residues, and the hinge axes. Conclusion The presentation at a single website of data on interactions between a ligand and specific residues on the enzyme alongside data on the movement that these interactions induce, should lead to new insights into the mechanisms of these enzymes in particular, and help in trying to understand the general process of ligand-induced domain closure in enzymes. The website can be found at: http://www.cmp.uea.ac.uk/dyndom/enzymeList.do

  3. Niobium tetrahalide complexes with neutral diphosphine ligands.

    Science.gov (United States)

    Benjamin, Sophie L; Chang, Yao-Pang; Hector, Andrew L; Jura, Marek; Levason, William; Reid, Gillian; Stenning, Gavin

    2016-05-10

    The reactions of NbCl4 with diphosphine ligands o-C6H4(PMe2)2, Me2PCH2CH2PMe2 or Et2PCH2CH2PEt2 in a 1 : 2 molar ratio in MeCN solution produced eight-coordinate [NbCl4(diphosphine)2]. [NbBr4(diphosphine)2] (diphosphine = o-C6H4(PMe2)2 or Me2PCH2CH2PMe2) were made similarly from NbBr4. X-ray crystal structures show that [NbCl4{o-C6H4(PMe2)2}2] has a dodecahedral geometry, but the complexes with dimethylene-backboned diphosphines are distorted square antiprisms. The Nb-P distances and niobium tetrabromide, conveniently made from NbCl4 and BBr3, is a chain polymer with edge-linked NbBr6 octahedra and alternating long and short Nb-Nb distances, the latter ascribed to Nb-Nb bonds. PMID:27094082

  4. Ligand-independent canonical Wnt activity in canine mammary tumor cell lines associated with aberrant LEF1 expression.

    Directory of Open Access Journals (Sweden)

    Ana Gracanin

    Full Text Available Pet dogs very frequently develop spontaneous mammary tumors and have been suggested as a good model organism for breast cancer research. In order to obtain an insight into underlying signaling mechanisms during canine mammary tumorigenesis, in this study we assessed the incidence and the mechanism of canonical Wnt activation in a panel of 12 canine mammary tumor cell lines. We show that a subset of canine mammary cell lines exhibit a moderate canonical Wnt activity that is dependent on Wnt ligands, similar to what has been described in human breast cancer cell lines. In addition, three of the tested canine mammary cell lines have a high canonical Wnt activity that is not responsive to inhibitors of Wnt ligand secretion. Tumor cell lines with highly active canonical Wnt signaling often carry mutations in key members of the Wnt signaling cascade. These cell lines, however, carry no mutations in the coding regions of intracellular Wnt pathway components (APC, β-catenin, GSK3β, CK1α and Axin1 and have a functional β-catenin destruction complex. Interestingly, however, the cell lines with high canonical Wnt activity specifically overexpress LEF1 mRNA and the knock-down of LEF1 significantly inhibits TCF-reporter activity. In addition, LEF1 is overexpressed in a subset of canine mammary carcinomas, implicating LEF1 in ligand-independent activation of canonical Wnt signaling in canine mammary tumors. We conclude that canonical Wnt activation may be a frequent event in canine mammary tumors both through Wnt ligand-dependent and novel ligand-independent mechanisms.

  5. Synthesis and study of new oxazoline-based ligands

    OpenAIRE

    Tilliet, Mélanie

    2008-01-01

    This thesis deals with the study of oxazoline-based ligands in metal-catalyzed asymmetric reactions. The first part describes the synthesis of six new bifunctinal pyridine-bis(oxazoline) ligands and their applications in asymmetric metal-catalysis. These ligands, in addition to a Lewis acid coordination site, are equipped with a Lewis basic part in the 4-position of the oxazoline rings. Dual activation by means of this system was probed in cyanide addition to aldehydes. The second part is con...

  6. Quasielastic neutron scattering study of POSS ligand dynamics

    International Nuclear Information System (INIS)

    Poly-oligo-silsesquioxanes (POSS) are relatively large (1-2 nm diameter) molecules, that are composed of Si8O12 cages to which a wide variety of possible ligands can be attached. Depending on the nature of the ligand, interesting properties and applications are found. In this work we present results from quasielastic neutron scattering measurements of four different POSS (M-POSS, IBU-POSS, TMS-POSS and DMS-POSS) molecules that illustrate the presence of strong coupling between the ligand dynamics and the POSS crystal structures. (authors)

  7. Quorum sensing inhibition

    DEFF Research Database (Denmark)

    Persson, T.; Givskov, Michael Christian; Nielsen, J.

    2005-01-01

    /receptor transcriptional regulator in some clinically relevant Gram-negative bacteria. The present review contains all reported compound types that are currently known to inhibit the QS transcriptional regulator in Gram-negative bacteria. These compounds are sub-divided into two main groups, one comprising structural...

  8. Enzyme inhibition by iminosugars

    DEFF Research Database (Denmark)

    López, Óscar; Qing, Feng-Ling; Pedersen, Christian Marcus;

    2013-01-01

    Imino- and azasugar glycosidase inhibitors display pH dependant inhibition reflecting that both the inhibitor and the enzyme active site have groups that change protonation state with pH. With the enzyme having two acidic groups and the inhibitor one basic group, enzyme-inhibitor complexes with...

  9. Identification of a novel antagonist of the ErbB1 receptor capable of inhibiting migration of human glioblastoma cells

    DEFF Research Database (Denmark)

    Staberg, Mikkel; Riemer, Christian; Xu, Ruodan;

    2013-01-01

    BACKGROUND: Receptors of the ErbB family are involved in the development of various cancers, and the inhibition of these receptors represents an attractive therapeutic concept. Upon ligand binding, ErbB receptors become activated as homo- or heterodimers, leading to the activation of downstream s...

  10. HybridDock: A Hybrid Protein-Ligand Docking Protocol Integrating Protein- and Ligand-Based Approaches.

    Science.gov (United States)

    Huang, Sheng-You; Li, Min; Wang, Jianxin; Pan, Yi

    2016-06-27

    Structure-based molecular docking and ligand-based similarity search are two commonly used computational methods in computer-aided drug design. Structure-based docking tries to utilize the structural information on a drug target like protein, and ligand-based screening takes advantage of the information on known ligands for a target. Given their different advantages, it would be desirable to use both protein- and ligand-based approaches in drug discovery when information for both the protein and known ligands is available. Here, we have presented a general hybrid docking protocol, referred to as HybridDock, to utilize both the protein structures and known ligands by combining the molecular docking program MDock and the ligand-based similarity search method SHAFTS, and evaluated our hybrid docking protocol on the CSAR 2013 and 2014 exercises. The results showed that overall our hybrid docking protocol significantly improved the performance in both binding affinity and binding mode predictions, compared to the sole MDock program. The efficacy of the hybrid docking protocol was further confirmed using the combination of DOCK and SHAFTS, suggesting an alternative docking approach for modern drug design/discovery. PMID:26317502

  11. Biomimetic macroporous hydrogels: protein ligand distribution and cell response to the ligand architecture in the scaffold.

    Science.gov (United States)

    Savina, Irina N; Dainiak, Maria; Jungvid, Hans; Mikhalovsky, Sergey V; Galaev, Igor Yu

    2009-01-01

    Macroporous hydrogels (MHs), cryogels, are a new type of biomaterials for tissue engineering that can be produced from any natural or synthetic polymer that forms a gel. Synthetic MHs are rendered bioactive by surface or bulk modifications with extracellular matrix components. In this study, cell response to the architecture of protein ligands, bovine type-I collagen (CG) and human fibrinogen (Fg), immobilised using different methods on poly(2-hydroxyethyl methacrylate) (pHEMA) macroporous hydrogels (MHs) was analysed. Bulk modification was performed by cross-linking cryo-co-polymerisation of HEMA and poly(ethylene glycol)diacrylate (PEGA) in the presence of proteins (CG/pHEMA and Fg/pHEMA MHs). The polymer surface was modified by covalent immobilisation of the proteins to the active epoxy (ep) groups present on pHEMA after hydrogel fabrication (CG-epHEMA and Fg-epHEMA MHs). The concentration of proteins in protein/pHEMA and protein-epHEMA MHs was 80-85 and 130-140 mug/ml hydrogel, respectively. It was demonstrated by immunostaining and confocal laser scanning microscopy that bulk modification resulted in spreading of CG in the polymer matrix and spot-like distribution of Fg. On the contrary, surface modification resulted in spot-like distribution of CG and uniform spreading of Fg, which evenly coated the surface. Proliferation rate of fibroblasts was higher on MHs with even distribution of the ligands, i.e., on Fg-epHEMA and CG/pHEMA. After 30 days of growth, fibroblasts formed several monolayers and deposited extracellular matrix filling the pores of these MHs. The best result in terms of cell proliferation was obtained on Fg-epHEMA. The ligands displayed on surface of these scaffolds were in native conformation, while in bulk-modified CG/pHEMA MHs most of the proteins were buried inside the polymer matrix and were less accessible for interactions with specific antibodies and cells. The method used for MH modification with bioligands strongly affects spatial

  12. Fine-Tuning Covalent Inhibition of Bacterial Quorum Sensing.

    Science.gov (United States)

    Amara, Neri; Gregor, Rachel; Rayo, Josep; Dandela, Rambabu; Daniel, Erik; Liubin, Nina; Willems, H Marjo E; Ben-Zvi, Anat; Krom, Bastiaan P; Meijler, Michael M

    2016-05-01

    Emerging antibiotic resistance among human pathogens has galvanized efforts to find alternative routes to combat bacterial virulence. One new approach entails interfering with the ability of bacteria to coordinate population-wide gene expression, or quorum sensing (QS), thus inhibiting the production of virulence factors and biofilm formation. We have recently developed such a strategy by targeting LasR, the master regulator of QS in the opportunistic human pathogen Pseudomonas aeruginosa, through the rational design of covalent inhibitors closely based on the core structure of the native ligand. We now report several groups of new inhibitors, one of which, fluoro-substituted ITC-12, displayed complete covalent modification of LasR, as well as effective QS inhibition in vitro and promising in vivo results. In addition to their potential clinical relevance, this series of synthetic QS modulators can be used as a tool to further unravel the complicated QS regulation in P. aeruginosa. PMID:26840534

  13. Dendrimers and polyamino-phenolic ligands: activity of new molecules against Legionella pneumophila biofilms.

    Directory of Open Access Journals (Sweden)

    Elisa Andreozzi

    2016-03-01

    Full Text Available Legionnaires’ disease is a potentially fatal pneumonia caused by Legionella pneumophila, an aquatic bacterium often found within the biofilm niche. In man-made water systems microbial biofilms increase the resistance of legionella to disinfection, posing a significant threat to public health. Disinfection methods currently used in water systems have been shown to be ineffective against legionella over the long-term, allowing recolonization by the biofilm-protected microorganisms. In this study, the anti-biofilm activity of previously fabricated polyamino-phenolic ligands and polyamidoamine dendrimers was investigated against legionella mono-species and multi-species biofilms formed by L. pneumophila in association with other bacteria that can be found in tap water (Aeromonas hydrophila, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae. Bacterial ability to form biofilms was verified using a crystal violet colorimetric assay and testing cell viability by real-time quantitative PCR and Plate Count assay. The concentration of the chemicals tested as anti-biofilm agents was chosen based on cytotoxicity assays: the highest non-cytotoxic chemical concentration was used for biofilm inhibition assays, with dendrimer concentration ten-fold higher than polyamino-phenolic ligands. While Macrophen and Double Macrophen were the most active substances among polyamino-phenolic ligands, dendrimers were overall two-fold more effective than all other compounds with a reduction up to 85% and 73% of legionella and multi-species biofilms, respectively. Chemical interaction with matrix molecules is hypothesized, based on SEM images and considering the low or absent anti-microbial activity on planktonic bacteria showed by flow cytometry. These data suggest that the studied compounds, especially dendrimers, could be considered as novel molecules in the design of research projects aimed at the development of efficacious anti-biofilm disinfection

  14. Dendrimers and Polyamino-Phenolic Ligands: Activity of New Molecules Against Legionella pneumophila Biofilms.

    Science.gov (United States)

    Andreozzi, Elisa; Barbieri, Federica; Ottaviani, Maria F; Giorgi, Luca; Bruscolini, Francesca; Manti, Anita; Battistelli, Michela; Sabatini, Luigia; Pianetti, Anna

    2016-01-01

    Legionnaires' disease is a potentially fatal pneumonia caused by Legionella pneumophila, an aquatic bacterium often found within the biofilm niche. In man-made water systems microbial biofilms increase the resistance of legionella to disinfection, posing a significant threat to public health. Disinfection methods currently used in water systems have been shown to be ineffective against legionella over the long-term, allowing recolonization by the biofilm-protected microorganisms. In this study, the anti-biofilm activity of previously fabricated polyamino-phenolic ligands and polyamidoamine dendrimers was investigated against legionella mono-species and multi-species biofilms formed by L. pneumophila in association with other bacteria that can be found in tap water (Aeromonas hydrophila, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae). Bacterial ability to form biofilms was verified using a crystal violet colorimetric assay and testing cell viability by real-time quantitative PCR and Plate Count assay. The concentration of the chemicals tested as anti-biofilm agents was chosen based on cytotoxicity assays: the highest non-cytotoxic chemical concentration was used for biofilm inhibition assays, with dendrimer concentration 10-fold higher than polyamino-phenolic ligands. While Macrophen and Double Macrophen were the most active substances among polyamino-phenolic ligands, dendrimers were overall twofold more effective than all other compounds with a reduction up to 85 and 73% of legionella and multi-species biofilms, respectively. Chemical interaction with matrix molecules is hypothesized, based on SEM images and considering the low or absent anti-microbial activity on planktonic bacteria showed by flow cytometry. These data suggest that the studied compounds, especially dendrimers, could be considered as novel molecules in the design of research projects aimed at the development of efficacious anti-biofilm disinfection treatments of water systems in

  15. Dendrimers and Polyamino-Phenolic Ligands: Activity of New Molecules Against Legionella pneumophila Biofilms

    Science.gov (United States)

    Andreozzi, Elisa; Barbieri, Federica; Ottaviani, Maria F.; Giorgi, Luca; Bruscolini, Francesca; Manti, Anita; Battistelli, Michela; Sabatini, Luigia; Pianetti, Anna

    2016-01-01

    Legionnaires’ disease is a potentially fatal pneumonia caused by Legionella pneumophila, an aquatic bacterium often found within the biofilm niche. In man-made water systems microbial biofilms increase the resistance of legionella to disinfection, posing a significant threat to public health. Disinfection methods currently used in water systems have been shown to be ineffective against legionella over the long-term, allowing recolonization by the biofilm-protected microorganisms. In this study, the anti-biofilm activity of previously fabricated polyamino-phenolic ligands and polyamidoamine dendrimers was investigated against legionella mono-species and multi-species biofilms formed by L. pneumophila in association with other bacteria that can be found in tap water (Aeromonas hydrophila, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae). Bacterial ability to form biofilms was verified using a crystal violet colorimetric assay and testing cell viability by real-time quantitative PCR and Plate Count assay. The concentration of the chemicals tested as anti-biofilm agents was chosen based on cytotoxicity assays: the highest non-cytotoxic chemical concentration was used for biofilm inhibition assays, with dendrimer concentration 10-fold higher than polyamino-phenolic ligands. While Macrophen and Double Macrophen were the most active substances among polyamino-phenolic ligands, dendrimers were overall twofold more effective than all other compounds with a reduction up to 85 and 73% of legionella and multi-species biofilms, respectively. Chemical interaction with matrix molecules is hypothesized, based on SEM images and considering the low or absent anti-microbial activity on planktonic bacteria showed by flow cytometry. These data suggest that the studied compounds, especially dendrimers, could be considered as novel molecules in the design of research projects aimed at the development of efficacious anti-biofilm disinfection treatments of water systems

  16. Modification of diphenylamine-linked bis(oxazoline)ligands:Tuning of electronic effect and rigidity of ligand skeleton

    Institute of Scientific and Technical Information of China (English)

    LIU Han; LI Wei; DU DaMing

    2009-01-01

    The electronic effect of diphenylamine-linked bis(oxazoline) ligands was tuned through introduction of electron-withdrawing bromo and nitro substituents onto the 4 and 4' position.The variation of the NH bond acidity was determined by the different chemical shifts of NH.The catalytic activity and enantioselectivity of the modified ligands were tested in the asymmetric FriedeI-Crafts alkylation of indole with β-nitrostyrene.The effect of iigand skeleton rigidity was also investigated through the synthesis of iminodibenzyl-linked bis(oxazoline) ligands and evaluation of their catalytic activity in Friedel-Crafts alkylation.

  17. Ligand-based reactivity of a platinum bisdithiolene: double diene addition yields a new C2-chiral chelate ligand.

    Science.gov (United States)

    Kerr, Mitchell J; Harrison, Daniel J; Lough, Alan J; Fekl, Ulrich

    2009-10-01

    The reaction of Pt(tfd)(2) [tfd = S(2)C(2)(CF(3))(2)] with excess 2,3-dimethyl-1,3-butadiene initially yields the expected 1:1 adduct, in which the diene has added across two sulfur atoms on separate tfd ligands. However, within 1 day at 50 degrees C, this kinetic product quantitatively converts into a thermodynamic product where two dienes have added to one tfd ligand via unprecedented addition across the dithiolene CS bonds. The new reaction is highly selective for the C(2)-symmetric diastereomer. A new chiral bisthioether chelate ligand has formed in the product, which has been characterized crystallographically. PMID:19634863

  18. Characterization of Complexes Synthesized Using Schiff Base Ligands and Their Screening for Toxicity Two Fungal and One Bacterial Species on Rice Pathogens

    Directory of Open Access Journals (Sweden)

    T. Mangamamba

    2014-01-01

    Full Text Available Coordination complexes with metal ions Cu(II, Ni(II, Co(II, Fe(III, Mn(II, Cr(III, and VO(II with six ligands formed by condensation products using azides and aldehydes or ketones are characterized. Both the ligands and the complexes synthesized are characterized by C, H, N, Cl and metal analyses, IR, UV-Vis, TGA, and magnetic susceptibility for tentative structure proposal. Several of them are screened for their toxicity (i.e., physiological activity against fungal species Rhizoctonia solani and Acrocylindrium oryzae and a bacterium, Xanthomonas oryzae on rice pathogens. The study shows that the observed physiological activity is enhanced for the metal complexes as compared to the simple metal salts or ligands, except in the case of L3 or HAEP ligand, where the free –OH and –NH2 groups on the ligand seemed to have inhibited the activity. It is also observed that the order of activity has a dependence on the increased atomic weight of the metal ion in use. In some cases, especially the VO(II complexes, they are found to be better than the standards in use, both for the fungicides and for the bactericide.

  19. Unique advantages of organometallic supporting ligands for uranium complexes

    Energy Technology Data Exchange (ETDEWEB)

    Diaconescu, Paula L. [Univ. of California, Los Angeles, CA (United States); Garcia, Evan [Univ. of California, Los Angeles, CA (United States)

    2014-05-31

    The objective of our research project was to study the reactivity of uranium complexes supported by ferrocene-based ligands. In addition, this research provides training of graduate students as the next generation of actinide scientists.

  20. Linkable thiocarbamoylbenzamidines as ligands for bioconjugation of Rhenium and Technetium

    International Nuclear Information System (INIS)

    Bioconjugation reactions with Rhenium and Technetium are of high importance for the development of novel radiopharmaceuticals for nuclear medicine. In this thesis the possibilities for bioconjugation using linkable Thiocarmbamoylbenzamidines as ligands for the complexation of Rhenium and Technetium were examined.

  1. Steered molecular dynamics simulations of protein-ligand interactions

    Institute of Scientific and Technical Information of China (English)

    XU Yechun; SHEN Jianhua; LUO Xiaomin; SHEN Xu; CHEN Kaixian; JIANG Hualiang

    2004-01-01

    Studies of protein-ligand interactions are helpful to elucidating the mechanisms of ligands, providing clues for rational drug design. The currently developed steered molecular dynamics (SMD) is a complementary approach to experimental techniques in investigating the biochemical processes occurring at microsecond or second time scale, thus SMD may provide dynamical and kinetic processes of ligand-receptor binding and unbinding, which cannot be accessed by the experimental methods. In this article, the methodology of SMD is described, and the applications of SMD simulations for obtaining dynamic insights into protein-ligand interactions are illustrated through two of our own examples. One is associated with the simulations of binding and unbinding processes between huperzine A and acetylcholinesterase, and the other is concerned with the unbinding process of α-APA from HIV-1 reverse transcriptase.

  2. Capacity of Diffusion-based Molecular Communication with Ligand Receptors

    CERN Document Server

    Einolghozati, Arash; Fekri, Faramarz

    2012-01-01

    A diffusion-based molecular communication system has two major components: the diffusion in the medium, and the ligand-reception. Information bits, encoded in the time variations of the concentration of molecules, are conveyed to the receiver front through the molecular diffusion in the medium. The receiver, in turn, measures the concentration of the molecules in its vicinity in order to retrieve the information. This is done via ligand-reception process. In this paper, we develop models to study the constraints imposed by the concentration sensing at the receiver side and derive the maximum rate by which a ligand-receiver can receive information. Therefore, the overall capacity of the diffusion channel with the ligand receptors can be obtained by combining the results presented in this paper with our previous work on the achievable information rate of molecular communication over the diffusion channel.

  3. A new fullerene complexation ligand: N-pyridylfulleropyrrolidine.

    Science.gov (United States)

    Tat, Fatma T; Zhou, Zhiguo; MacMahon, Shaun; Song, Fayi; Rheingold, Arnold L; Echegoyen, Luis; Schuster, David I; Wilson, Stephen R

    2004-07-01

    The subject of this paper is a new fullerene building block design with the potential for defined geometry and good electronic communication. The synthesis and characterization of a new pyridinofullerene ligand capable of forming axially symmetric complexes with metalloporphyrins is reported. X-ray structural and molecular modeling studies, (1)H NMR, UV-vis spectroscopy, electrochemistry studies, and fluorescence quenching data support the formation of a strong complex between the new ligand and the metal center of ZnTPP. On the basis of computational studies, the highest occupied molecular orbital (HOMO) of this ligand is significantly different from a model compound with insulating carbons between the pyridine and the fullerene. The N-pyridinium fulleropyrrolidine salts of the new ligand and model compound were also prepared and their spectral and electrochemical properties are reported. PMID:15230581

  4. Characterization of Inhibitory Anti-insulin-like Growth Factor Receptor Antibodies with Different Epitope Specificity and Ligand-blocking Properties: IMPLICATIONS FOR MECHANISM OF ACTION IN VIVOS⃞

    OpenAIRE

    Doern, Adam; Cao, Xianjun; Sereno, Arlene; Reyes, Christopher L.; Altshuler, Angelina; Huang, Flora; Hession, Cathy; Flavier, Albert; Favis, Michael; Tran, Hon; Ailor, Eric; Levesque, Melissa; MURPHY, TRACEY; Berquist, Lisa; Tamraz, Susan

    2009-01-01

    Therapeutic antibodies directed against the type 1 insulin-like growth factor receptor (IGF-1R) have recently gained significant momentum in the clinic because of preliminary data generated in human patients with cancer. These antibodies inhibit ligand-mediated activation of IGF-1R and the resulting down-stream signaling cascade. Here we generated a panel of antibodies against IGF-1R and screened them for their ability to block the binding of both IGF-1 and IGF-2 at es...

  5. Characterization of the discriminable stimulus produced by 2-BFI: effects of imidazoline I2-site ligands, MAOIs, β-carbolines, agmatine and ibogaine

    OpenAIRE

    MacInnes, Nicholas; Handley, Sheila L

    2002-01-01

    The molecular nature and functions of the I2 subtype of imidazoline binding sites are unknown but evidence suggests an association with monoamine oxidase (MAO). Rats can distinguish the selective imidazoline I2-site ligand 2-BFI from vehicle in drug discrimination, indicating functional consequences of occupation of these sites. We have used drug discrimination to investigate the nature of the discriminable stimulus, especially in relation to MAO inhibition.Following training to distinguish 2...

  6. Dysprosium complexes with the tetraphenylporphyrin macrocyclic ligand

    International Nuclear Information System (INIS)

    In this report, the results obtained on the synthesis, characterization and study of the chemical behavior of dysprosium complex with the acetylacetone chelating agent (Hacac) and the tetraphenylporphyrin macrocyclic ligand (H2TFP) are given. Based on the literature but according to our necessities and interest, the appropriate methodology settled down from the synthesis of prime matters until the obtaining and characterization of the products. The acetyl acetonate complex was obtained of mono hydrated dysprosium [Dy(acac)3. H20] and trihydrated [Dy(acac)3 .3 H20], the mono tetra phenyl porphyrinate [Dy(TFP)(acac). 2 ac] the double sandwich of the dysprosium porphyrinate [Dy(TFP)2] and the triple sandwich of the dysprosium porphyrinate [Dy(TFP)3. 2 TCB] (TCB = trichlorobenzene). Its were characterized by their melting points, solubility, IR, UV, TGA and DTA both first and besides the techniques already mentioned for NMR'H, RPE and Magnetic susceptibility the three last complexes. From the spectroscopic point of view, IR and RPE its suggested the existence of a complex of inverse mixed valence [Dy(TFP)2- (TFP) 1-] for the Dy(TFP)2 as a result of the existence of the free radical (TFP' 1- and that it was not in none of the other porphyrin compounds. In the NMR'H spectra of the compounds were not observed signals in the region from 0 to 10 ppm that which shows that the dysprosium complexes in special those of the porphyrin type are highly paramagnetic and its could be used as displacement reagents, creators of images and contrast agents of great utility in these days in studies of NMR, technique today by today used in medical diagnoses. (Author)

  7. Rapid RNA-ligand interaction analysis through high-information content conformational and stability landscapes

    Energy Technology Data Exchange (ETDEWEB)

    Baird, Nathan J. [National Inst. of Health (NIH), Bethesda, MD (United States); Inglese, James [National Inst. of Health (NIH), Bethesda, MD (United States); Ferré-D’Amaré, Adrian R. [National Inst. of Health (NIH), Bethesda, MD (United States)

    2015-12-07

    The structure and biological properties of RNAs are a function of changing cellular conditions, but comprehensive, simultaneous investigation of the effect of multiple interacting environmental variables is not easily achieved. We have developed an efficient, high-throughput method to characterize RNA structure and thermodynamic stability as a function of multiplexed solution conditions using Förster resonance energy transfer (FRET). In a single FRET experiment using conventional quantitative PCR instrumentation, 19,400 conditions of MgCl2, ligand and temperature are analysed to generate detailed empirical conformational and stability landscapes of the cyclic diguanylate (c-di-GMP) riboswitch. This method allows rapid comparison of RNA structure modulation by cognate and non-cognate ligands. Landscape analysis reveals that kanamycin B stabilizes a non-native, idiosyncratic conformation of the riboswitch that inhibits c-di-GMP binding. Our research demonstrates that allosteric control of folding, rather than direct competition with cognate effectors, is a viable approach for pharmacologically targeting riboswitches and other structured RNA molecules.

  8. Rapid RNA-ligand interaction analysis through high-information content conformational and stability landscapes

    Science.gov (United States)

    Baird, Nathan J.; Inglese, James; Ferré-D'Amaré, Adrian R.

    2015-12-01

    The structure and biological properties of RNAs are a function of changing cellular conditions, but comprehensive, simultaneous investigation of the effect of multiple interacting environmental variables is not easily achieved. We have developed an efficient, high-throughput method to characterize RNA structure and thermodynamic stability as a function of multiplexed solution conditions using Förster resonance energy transfer (FRET). In a single FRET experiment using conventional quantitative PCR instrumentation, 19,400 conditions of MgCl2, ligand and temperature are analysed to generate detailed empirical conformational and stability landscapes of the cyclic diguanylate (c-di-GMP) riboswitch. The method allows rapid comparison of RNA structure modulation by cognate and non-cognate ligands. Landscape analysis reveals that kanamycin B stabilizes a non-native, idiosyncratic conformation of the riboswitch that inhibits c-di-GMP binding. This demonstrates that allosteric control of folding, rather than direct competition with cognate effectors, is a viable approach for pharmacologically targeting riboswitches and other structured RNA molecules.

  9. Role of the Sulfonium Center in Determining the Ligand Specificity of Human S-Adenosylmethionine Decarboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Bale, Shridhar; Brooks, Wesley; Hanes, Jeremiah W.; Mahesan, Arnold M.; Guida, Wayne C.; Ealick, Steven E.; (Moffitt); (Cornell)

    2009-08-13

    S-Adenosylmethionine decarboxylase (AdoMetDC) is a key enzyme in the polyamine biosynthetic pathway. Inhibition of this pathway and subsequent depletion of polyamine levels is a viable strategy for cancer chemotherapy and for the treatment of parasitic diseases. Substrate analogue inhibitors display an absolute requirement for a positive charge at the position equivalent to the sulfonium of S-adenosylmethionine. We investigated the ligand specificity of AdoMetDC through crystallography, quantum chemical calculations, and stopped-flow experiments. We determined crystal structures of the enzyme cocrystallized with 5{prime}-deoxy-5{prime}-dimethylthioadenosine and 5{prime}-deoxy-5{prime}-(N-dimethyl)amino-8-methyladenosine. The crystal structures revealed a favorable cation-{pi} interaction between the ligand and the aromatic side chains of Phe7 and Phe223. The estimated stabilization from this interaction is 4.5 kcal/mol as determined by quantum chemical calculations. Stopped-flow kinetic experiments showed that the rate of the substrate binding to the enzyme greatly depends on Phe7 and Phe223, thus supporting the importance of the cation-{pi} interaction.

  10. Identification and characterization of a novel peptide ligand of Tie2 for targeting gene therapy

    Institute of Scientific and Technical Information of China (English)

    Xianghua Wu; Jianren Gu; Zonghai Li; Ming Yao; Huamao Wang; Sumin Qu; Xianlian Chen; Jinjun Li; Ye Sun; Yuhong Xu

    2008-01-01

    Tyrosine kinase with immunoglobulin and epidermal growth factor homology domain-2 (Tie2) has been considered as a rational target for gene therapy in solid tumors. In order to identify a novel peptide ligand of Tie2 for targeted gene therapy, we screened a phage display peptide library and identified a candidate peptide ligand NSLSNASEFRAPY(designated GA5).Binding assays and Scatchard analysis revealed that GA5 could specifically bind to Tie2 with a dissociation constant of 2.1×10-8M.In addition,we showed that GA5 was internalized into tumor cells highly expressing Tie2.In the biodistribution assay.125I-GA5 was mainly accumniated in SPC-A1 xenograft tumors that express Tie2.Ingene delivery studies,GA5-conjugated polyethylenimine vector could achieve greater transgene transduction than non-targeted vectors both in vitro and in vivo.Tumor growth inhibition was observed in SPC-A1 xenograft-bearing mice that received eight intratumoral injections of GA5 polyethylenimine/p53 complexes in 3 weeks.The difference in tumor volume between the experiment and control groups was significant(P<0.05).Our results showed that GA5 is a potentially efficient targeting element for cancer gene or molecular therapy.

  11. Wingless ligand 5a is a critical regulator of placental growth and survival.

    Science.gov (United States)

    Meinhardt, Gudrun; Saleh, Leila; Otti, Gerlinde R; Haider, Sandra; Velicky, Philipp; Fiala, Christian; Pollheimer, Jürgen; Knöfler, Martin

    2016-01-01

    The maternal uterine environment is likely critical for human placental morphogenesis and development of its different trophoblast subtypes. However, factors controlling growth and differentiation of these cells during early gestation remain poorly elucidated. Herein, we provide evidence that the ligand Wnt5a could be a critical regulator of trophoblast proliferation and survival. Immunofluorescence of tissues and western blot analyses of primary cultures revealed abundant Wnt5a expression and secretion from first trimester decidual and villous stromal cells. The ligand was also detectable in decidual glands, macrophages and NK cells. Wnt5a increased proliferation of villous cytotrophoblasts and cell column trophoblasts, outgrowth on collagen I as well as cyclin A and D1 expression in floating explant cultures, but suppressed camptothecin-induced apoptosis. Similarly, Wnt5a stimulated BrdU incorporation and decreased caspase-cleaved cytokeratin 18 neo-epitope expression in primary cytotrophoblasts. Moreover, Wnt5a promoted activation of the MAPK pathway in the different trophoblast models. Chemical inhibition of p42/44 MAPK abolished cyclin D1 expression and Wnt5a-stimulated proliferation. Compared to controls, MAPK phosphorylation and proliferation of cytotrophoblasts declined upon supplementation of supernatants from Wnt5a gene-silenced decidual or villous stromal cells. In summary, non-canonical Wnt5a signalling could play a role in early human trophoblast development by promoting cell proliferation and survival. PMID:27311852

  12. Increased CD40 ligand in patients with acute anterior uveitis

    DEFF Research Database (Denmark)

    Øgard, Carsten; Sørensen, Torben Lykke; Krogh, Erik

    2005-01-01

    The inflammatory response in acute anterior uveitis (AU) is believed to be primarily mediated by autoreactive T-cells. We wanted to evaluate whether the T-cell activation marker CD40 ligand is involved in the AU immunopathogenesis.......The inflammatory response in acute anterior uveitis (AU) is believed to be primarily mediated by autoreactive T-cells. We wanted to evaluate whether the T-cell activation marker CD40 ligand is involved in the AU immunopathogenesis....

  13. Force History Dependence of Receptor-Ligand Dissociation

    OpenAIRE

    Marshall, Bryan T.; Sarangapani, Krishna K.; Lou, Jizhong; McEver, Rodger P.; Zhu, Cheng

    2004-01-01

    Receptor-ligand bonds that mediate cell adhesion are often subjected to forces that regulate their dissociation via modulating off-rates. Off-rates control how long receptor-ligand bonds last and how much force they withstand. One should therefore be able to determine off-rates from either bond lifetime or unbinding force measurements. However, substantial discrepancies exist between the force dependence of off-rates derived from the two types of measurements even for the same interactions, e...

  14. Reversible Size Control of Silver Nanoclusters via Ligand-exchange

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa

    2015-05-21

    The properties of atomically monodisperse noble metal nanoclusters (NCs) are intricately intertwined with their precise molecular formula. The vast majority of size-specific NC syntheses start from the reduction of the metal salt and thiol ligand mixture. Only in gold was it recently shown that ligand-exchange could induce the growth of NCs from one atomically precise species to another; a process of yet unknown reversibility. Here, we present a process for the ligand-exchange-induced growth of atomically precise silver NCs, in a biphasic liquid-liquid system, which is particularly of interest because of its complete reversibility and ability to occur at room temperature. We explore this phenomenon in-depth using Ag35(SG)18 [SG= glutathionate] and Ag44(4-FTP)30 [4-FTP= 4-fluorothiophenol] as model systems. We show that the ligand-exchange conversion of Ag35(SG)18 into Ag44(4-FTP)30 is rapid (< 5 min) and direct, while the reverse process proceeds slowly through intermediate cluster sizes. We adapt a recently developed theory of reverse Ostwald ripening to model the NCs’ interconvertibility. The model’s predictions are in good agreement with the experimental observations, and they highlight the importance of small changes in the ligand-metal binding energy in determining the final equilibrium NC size. Based on the insight provided by this model, we demonstrated experimentally that by varying the choice of ligands, ligand-exchange can be used to obtain different sized NCs. The findings in this work establish ligand-exchange as a versatile tool for tuning cluster sizes.

  15. Coordination chemistry of poly(thioether)borate ligands

    OpenAIRE

    Riordan, Charles G.

    2010-01-01

    This review traces the development and application of the tris(thioether)borate ligands, tripodal ligands with highly polarizable thioether donors. Areas of emphasis include the basic coordination chemistry of the mid-to-late first row transition metals (Fe, Ni, Co, Cu), and the role of the thioether substituent in directing complex formation, the modeling of zinc thiolate protein active sites, high-spin organo-iron and organo-cobalt chemistry, the preparation of monovalent complexes of Fe, C...

  16. Designer ligands: The search for metal ion selectivity

    OpenAIRE

    Perry T. Kaye

    2011-01-01

    The paper reviews research conducted at Rhodes University towards the development of metal-selective ligands. The research has focused on the rational design, synthesis and evaluation of novel ligands for use in the formation of copper complexes as biomimetic models of the metalloenzyme, tyrosinase, and for the selective extraction of silver, nickel and platinum group metal ions in the presence of contaminating metal ions. Attention has also been given to the development of efficient, metal-s...

  17. Synthesis and evaluation of potential ligands for nuclear waste processing

    OpenAIRE

    Iqbal, M.

    2012-01-01

    The research presented in this thesis deals with the synthesis and evaluation of new potential ligands for the complexation of actinide and lanthanide ions either for their extraction from bulk radioactive waste or their stripping from an extracted organic phase for final processing of the waste. In particular, the aim of the work described here is the development of new ligands with improved separation and extraction efficiency. Separation of actinides (An) and lanthanides (Ln) is a challeng...

  18. Ligand assisted cleavage of uranium oxo-clusters

    Energy Technology Data Exchange (ETDEWEB)

    Nocton, Gregory; Pecaut, Jacques; Mazzanti, Marinella [Laboratoire de Reconnaissance Ionique et Chimie de Coordination, Service de Chimie Inorganique et Biologique, UMR-E 3 CEA-UJF, CEA/DSM/INAC, CEA-Grenoble, 38054 Grenoble, Cedex 09 (France); Filinchuk, Yaroslav [Swiss Norwegian Beam Lines (SNBL) at the European Synchrotron Radiation Facility (ESRF), rue Jules Horowitz, 38043 Grenoble (France)

    2010-07-01

    Dibenzoylmethanate replaces the bridging triflate ligands in uranium triflate poly-oxo-clusters and cleaves the U{sub 12}O{sub 20} core yielding the new [U{sub 6}O{sub 4}(OH){sub 4}({eta}-dbm){sub 12}] dibenzoylmethanate (dbm{sup -}) cluster which slowly dissociates into a monomeric complex. This reactivity demonstrates the importance of bridging ligands in stabilizing uranium poly-oxo-clusters. (authors)

  19. Tetrapyrroles as Endogenous TSPO Ligands in Eukaryotes and Prokaryotes: Comparisons with Synthetic Ligands

    Science.gov (United States)

    Veenman, Leo; Vainshtein, Alex; Yasin, Nasra; Azrad, Maya; Gavish, Moshe

    2016-01-01

    The 18 kDa translocator protein (TSPO) is highly 0conserved in eukaryotes and prokaryotes. Since its discovery in 1977, numerous studies established the TSPO’s importance for life essential functions. For these studies, synthetic TSPO ligands typically are applied. Tetrapyrroles present endogenous ligands for the TSPO. Tetrapyrroles are also evolutionarily conserved and regulate multiple functions. TSPO and tetrapyrroles regulate each other. In animals TSPO-tetrapyrrole interactions range from effects on embryonic development to metabolism, programmed cell death, response to stress, injury and disease, and even to life span extension. In animals TSPOs are primarily located in mitochondria. In plants TSPOs are also present in plastids, the nuclear fraction, the endoplasmic reticulum, and Golgi stacks. This may contribute to translocation of tetrapyrrole intermediates across organelles’ membranes. As in animals, plant TSPO binds heme and protoporphyrin IX. TSPO-tetrapyrrole interactions in plants appear to relate to development as well as stress conditions, including salt tolerance, abscisic acid-induced stress, reactive oxygen species homeostasis, and finally cell death regulation. In bacteria, TSPO is important for switching from aerobic to anaerobic metabolism, including the regulation of photosynthesis. As in mitochondria, in bacteria TSPO is located in the outer membrane. TSPO-tetrapyrrole interactions may be part of the establishment of the bacterial-eukaryote relationships, i.e., mitochondrial-eukaryote and plastid-plant endosymbiotic relationships. PMID:27271616

  20. IL-1β regulates the mouse Fas ligand expression in corneal endothelial cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jie; Yang Ke; TAN DeYong; ZENG JunYing; Alan FINE

    2007-01-01

    Constitutively expressed Fas ligand (FasL) in several distinct epithelial cell types appears to protect tissues by inducing apoptosis of Fas+ immune cells during inflammatory reactions.To study the relationship of FasL and inflammation process in cornea, we examined the effects of inflammatory cytokine IL-1βon the FasL production, expression and cytotoxic function in corneal endothelial cells.In this paper, we demonstrate that IL-1βinhibits the FasL production and expression in corneal endothelial cells.The promoter activities of FasL in these cells are reduced by IL-1βin a dose-dependent manner.Finally, we also find that IL-1βblock the cytotoxic effects of FasL derived from corneal endothelial cells to the Fas+ target cells.These data support the view that FasL derived from corneal endothelial cells modulate inflammation within cornea.

  1. Ligand and interfacial dynamics in a homodimeric hemoglobin

    Science.gov (United States)

    Gupta, Prashant Kumar; Meuwly, Markus

    2016-01-01

    The structural dynamics of dimeric hemoglobin (HbI) from Scapharca inaequivalvis in different ligand-binding states is studied from atomistic simulations on the μs time scale. The intermediates are between the fully ligand-bound (R) and ligand-free (T) states. Tertiary structural changes, such as rotation of the side chain of Phe97, breaking of the Lys96–heme salt bridge, and the Fe–Fe separation, are characterized and the water dynamics along the R-T transition is analyzed. All these properties for the intermediates are bracketed by those determined experimentally for the fully ligand-bound and ligand-free proteins, respectively. The dynamics of the two monomers is asymmetric on the 100 ns timescale. Several spontaneous rotations of the Phe97 side chain are observed which suggest a typical time scale of 50–100 ns for this process. Ligand migration pathways include regions between the B/G and C/G helices and, if observed, take place in the 100 ns time scale. PMID:26958581

  2. Predicting Efficient Antenna Ligands for Tb(III) Emission

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Amanda P.S.; Xu, Jide; Raymond, Kenneth

    2008-10-06

    A series of highly luminescent Tb(III) complexes of para-substituted 2-hydroxyisophthalamide ligands (5LI-IAM-X) has been prepared (X = H, CH{sub 3}, (C=O)NHCH{sub 3}, SO{sub 3}{sup -}, NO{sub 2}, OCH{sub 3}, F, Cl, Br) to probe the effect of substituting the isophthalamide ring on ligand and Tb(III) emission in order to establish a method for predicting the effects of chromophore modification on Tb(III) luminescence. The energies of the ligand singlet and triplet excited states are found to increase linearly with the {pi}-withdrawing ability of the substituent. The experimental results are supported by time-dependent density functional theory (TD-DFT) calculations performed on model systems, which predict ligand singlet and triplet energies within {approx}5% of the experimental values. The quantum yield ({Phi}) values of the Tb(III) complex increases with the triplet energy of the ligand, which is in part due to the decreased non-radiative deactivation caused by thermal repopulation of the triplet. Together, the experimental and theoretical results serve as a predictive tool that can be used to guide the synthesis of ligands used to sensitize lanthanide luminescence.

  3. Extracellular interactions and ligand degradation shape the nodal morphogen gradient

    Science.gov (United States)

    Wang, Yin; Wang, Xi; Wohland, Thorsten; Sampath, Karuna

    2016-01-01

    The correct distribution and activity of secreted signaling proteins called morphogens is required for many developmental processes. Nodal morphogens play critical roles in embryonic axis formation in many organisms. Models proposed to generate the Nodal gradient include diffusivity, ligand processing, and a temporal activation window. But how the Nodal morphogen gradient forms in vivo remains unclear. Here, we have measured in vivo for the first time, the binding affinity of Nodal ligands to their major cell surface receptor, Acvr2b, and to the Nodal inhibitor, Lefty, by fluorescence cross-correlation spectroscopy. We examined the diffusion coefficient of Nodal ligands and Lefty inhibitors in live zebrafish embryos by fluorescence correlation spectroscopy. We also investigated the contribution of ligand degradation to the Nodal gradient. We show that ligand clearance via degradation shapes the Nodal gradient and correlates with its signaling range. By computational simulations of gradient formation, we demonstrate that diffusivity, extra-cellular interactions, and selective ligand destruction collectively shape the Nodal morphogen gradient. DOI: http://dx.doi.org/10.7554/eLife.13879.001 PMID:27101364

  4. Porphyrin-based design of bioinspired multitarget quadruplex ligands.

    Science.gov (United States)

    Laguerre, Aurélien; Desbois, Nicolas; Stefan, Loic; Richard, Philippe; Gros, Claude P; Monchaud, David

    2014-09-01

    Secondary nucleic acid structures, such as DNA and RNA quadruplexes, are potential targets for cancer therapies. Ligands that interact with these targets could thus find application as anticancer agents. Synthetic G-quartets have recently found numerous applications, including use as bioinspired G-quadruplex ligands. Herein, the design, synthesis and preliminary biophysical evaluation of a new prototype multitarget G-quadruplex ligand, (PNA)PorphySQ, are reported, where peptidic nucleic acid guanine ((PNA)G) was incorporated in the porphyrin-templated synthetic G-quartet (PorphySQ). Using fluorescence resonance energy transfer (FRET)-melting experiments, PorphySQ was shown to possess enhanced quadruplex-interacting properties thanks to the presence of four positively charged (PNA)G residues that improve its electrostatic interactions with the binding site of both DNA and RNA quadruplexes (i.e., their negatively charged and accessible G-quartets), thereby making (PNA)PorphySQ an interesting prototype of a multitarget ligand. Both the chemical stability and water solubility of (PNA)PorphySQ are improved over the non-PNA derivative (PorphySQ), which are desirable properties for drug development, and while improvements remain to be made, this ligand is a promising lead for the further development of multitarget G-quadruplex ligands. PMID:24678052

  5. Serum albumin ligand binding volumes using high pressure denaturation

    International Nuclear Information System (INIS)

    Highlights: ► We use pressure shift assay to study the thermodynamics of decanoate and dodecanoate ligand binding to human serum albumin. ► Pressure shift assay provides information on ligand binding volumes. ► The ligands stabilized human serum albumin against both pressure and temperature denaturation. ► ANS is a strong human serum albumin stabilizer and competes with lipids for the same binding sites. - Abstract: The pressure shift assay (PSA, also termed either PressureFluor or differential pressure fluorimetry) was used to study the thermodynamics of decanoate and dodecanoate lipid binding to human serum albumin (HSA) in the temperature range from 25 °C to 80 °C and the pressure range from 0.1 MPa to 400 MPa. The ligands stabilized HSA against both pressure and temperature denaturation. The P–T phase diagram for HSA bound to saturated fatty acids is shown. Pressure induced HSA denaturation reversibility is demonstrated via either intrinsic tryptophan or extrinsic probe 1,8-anilinonaphthalene sulfonate (ANS) fluorescence. The effect of guanidinium in a PSA was studied. PSA provides information on ligand binding volumes. The volume changes from protein–ligand binding are thermodynamically important and could be used in designing compounds with specific volumetric binding properties.

  6. Acetate binding induces fluorescence enhancement in tryptophan ligands

    Energy Technology Data Exchange (ETDEWEB)

    Deka, Arup K.; Sarma, Rupam J., E-mail: rjs@gauhati.ac.in

    2014-03-15

    The anion coordination properties of bis-tryptophan dicarboxamide ligands 1–3 were investigated using fluorescence and {sup 1}H NMR spectroscopy. It was observed that the coordination of acetate anions to these ligands produced emissions at 381 nm with gradual enhancement of fluorescence. In comparison, fluoride produced minor enhancement, the addition of chloride, bromide and nitrate anions caused quenching of ligand fluorescence. {sup 1}H NMR studies revealed that the ligands coordinated to the acetate anions through the indole and amide NH groups. -- Highlights: • We have synthesized and characterized three tryptophan-based diamide ligands 1–3. • We have reported new polymorph of ligand 1 (Crystal structure) in this article. • The role of intramolecular hydrogen bonding (1 vs. 2) in anion binding was investigated. • We were able to identify the role amide/indole NH in anion binding using {sup 1}H NMR. • On the basis of {sup 1}H NMR, we have established role of aromatic CH–anion interactions during anion complexation.

  7. Narrow escape for a stochastically gated Brownian ligand.

    Science.gov (United States)

    Reingruber, Jürgen; Holcman, David

    2010-02-17

    Molecular activation in cellular microdomains is usually characterized by a forward binding rate, which is the reciprocal of the arrival time of a ligand to a key target. Upon chemical interactions or conformational changes, a Brownian ligand may randomly switch between different states, and when target activation is possible in a specific state only, switching can significantly alter the activation process. The main goal of this paper is to study the mean time for a switching ligand to activate a small substrate, modelled as the time to exit a microdomain through a small absorbing window on the surface. We present the equations for the mean sojourn times the ligand spends in each state, and study the escape process with switching between two states in dimension one and three. When the ligand can exit in only one of the two states, we find that switching always decreases its sojourn time in the state where it can exit. Moreover, the fastest exit is obtained when the ligand diffuses most of the time in the state with the maximal diffusion coefficient, although this may imply that it spends most of the time 'hidden' in the state where it cannot exit. We discuss the physical mechanisms responsible for this apparent paradox. In dimension three we confirm our results with Brownian simulations. Finally, we suggest possible applications in cellular biology. PMID:21389363

  8. Plastics for corrosion inhibition

    CERN Document Server

    Goldade, Victor A; Makarevich, Anna V; Kestelman, Vladimir N

    2005-01-01

    The development of polymer composites containing inhibitors of metal corrosion is an important endeavour in modern materials science and technology. Corrosion inhibitors can be located in a polymer matrix in the solid, liquid or gaseous phase. This book details the thermodynamic principles for selecting these components, their compatibility and their effectiveness. The various mechanisms of metal protection – barrier, inhibiting and electromechanical – are considered, as are the conflicting requirements placed on the structure of the combined material. Two main classes of inhibited materials (structural and films/coatings) are described in detail. Examples are given of structural plastics used in friction units subjected to mechano-chemical wear and of polymer films/coatings for protecting metal objects against corrosion.

  9. Ligands turning around in the midst of protein conformers: the origin of ligand-protein mating. A NMR view.

    Science.gov (United States)

    Pertinhez, T A; Spisni, A

    2011-01-01

    Protein-ligand binding is a puzzling process. Many theories have been devised since the pioneering key-and-lock hypothesis based on the idea that both the protein and the ligand have a rigid single conformation. Indeed, molecular motion is the essence of the universe. Consequently, not only proteins are characterized by an extraordinary conformational freedom, but ligands too can fluctuate in a rather vast conformational space. In this scenario, the quest to understand how do they match is fascinating. Recognizing that the inherent dynamics of molecules is the key factor controlling the success of the binding and, subsequently, their chemical/biological function, here we present a view of this process from the NMR stand point. A description of the most relevant NMR parameters that can provide insights, at atomic level, on the mechanisms of protein-ligand binding is provided in the final section. PMID:20939791

  10. Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions.

    Science.gov (United States)

    Lipinski, Christopher A

    2016-06-01

    The rule of five (Ro5), based on physicochemical profiles of phase II drugs, is consistent with structural limitations in protein targets and the drug target ligands. Three of four parameters in Ro5 are fundamental to the structure of both target and drug binding sites. The chemical structure of the drug ligand depends on the ligand chemistry and design philosophy. Two extremes of chemical structure and design philosophy exist; ligands constructed in the medicinal chemistry synthesis laboratory without input from natural selection and natural product (NP) metabolites biosynthesized based on evolutionary selection. Exceptions to Ro5 are found mostly among NPs. Chemistry chameleon-like behavior of some NPs due to intra-molecular hydrogen bonding as exemplified by cyclosporine A is a strong contributor to NP Ro5 outliers. The fragment derived, drug Navitoclax is an example of the extensive expertise, resources, time and key decisions required for the rare discovery of a non-NP Ro5 outlier. PMID:27154268

  11. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters.

    Science.gov (United States)

    Wolber, Gerhard; Langer, Thierry

    2005-01-01

    From the historically grown archive of protein-ligand complexes in the Protein Data Bank small organic ligands are extracted and interpreted in terms of their chemical characteristics and features. Subsequently, pharmacophores representing ligand-receptor interaction are derived from each of these small molecules and its surrounding amino acids. Based on a defined set of only six types of chemical features and volume constraints, three-dimensional pharmacophore models are constructed, which are sufficiently selective to identify the described binding mode and are thus a useful tool for in-silico screening of large compound databases. The algorithms for ligand extraction and interpretation as well as the pharmacophore creation technique from the automatically interpreted data are presented and applied to a rhinovirus capsid complex as application example. PMID:15667141

  12. A Ferrocene-Based Catecholamide Ligand: the Consequences of Ligand Swivel for Directed Supramolecular Self-Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Mugridge, Jeffrey; Fiedler, Dorothea; Raymond, Kenneth

    2010-02-04

    A ferrocene-based biscatecholamide ligand was prepared and investigated for the formation of metal-ligand supramolecular assemblies with different metals. Reaction with Ge(IV) resulted in the formation of a variety of Ge{sub n}L{sub m} coordination complexes, including [Ge{sub 2}L{sub 3}]{sup 4-} and [Ge{sub 2}L{sub 2}({mu}-OMe){sub 2}]{sup 2-}. The ligand's ability to swivel about the ferrocenyl linker and adopt different conformations accounts for formation of many different Ge{sub n}L{sub m} species. This study demonstrates why conformational ligand rigidity is essential in the rational design and directed self-assembly of supramolecular complexes.

  13. Inhibition of acid, alkaline, and tyrosine (PTP1B) phosphatases by novel vanadium complexes.

    Science.gov (United States)

    McLauchlan, Craig C; Hooker, Jaqueline D; Jones, Marjorie A; Dymon, Zaneta; Backhus, Emily A; Greiner, Bradley A; Dorner, Nicole A; Youkhana, Mary A; Manus, Lisa M

    2010-03-01

    In the course of our investigations of vanadium-containing complexes for use as insulin-enhancing agents, we have generated a series of novel vanadium coordination complexes with bidentate ligands. Specifically we have focused on two ligands: anthranilate (anc(-)), a natural metabolite of tryptophan, and imidizole-4-carboxylate (imc(-)), meant to mimic naturally occurring N-donor ligands. For each ligand, we have generated a series of complexes containing the V(III), V(IV), and V(V) oxidation states. Each complex was investigated using phosphatase inhibition studies of three different phosphatases (acid, alkaline, and tyrosine (PTP1B) phosphatase) as prima facia evidence for potential use as an insulin-enhancing agent. Using p-nitrophenyl phosphate as an artificial phosphatase substrate, the levels of inhibition were determined by measuring the absorbance of the product at 405nm using UV/vis spectroscopy. Under our experimental conditions, for instance, V(imc)(3) appears to be as potent an inhibitor of alkaline phosphatase as sodium orthovanadate when comparing the K(cat)/K(m) term. VO(anc)(2) is as potent an inhibitor of acid phosphatase and tyrosine phosphatase as the Na(3)VO(4). Thus, use of these complexes can increase our mechanistic understanding of the effects of vanadium in vivo. PMID:20071031

  14. Secondary ligand-directed assembly of Co(II) coordination polymers based on a pyridine carboxylate ligand

    International Nuclear Information System (INIS)

    To investigate the influence of hydrogen bonds and secondary ligands on the structures and properties of the resulting frameworks, five new Co(II) compounds have been synthesized by the reactions of Co(II) salts and 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL) with four rationally selected dicarboxylic acid ligands. Without secondary ligand, we got one compound [CoL2(H2O)2]n·2nH2O (1), which possesses a 1D chain structure. In the presence of ancillary ligands, namely, 1,3-adamantanedicarboxylic acid (H2adbc), terephthalic acid (H2tpa), thiophene-2,5-dicarboxylic acid (H2tdc) and 1,4-benzenedithioacetic acid (H2bdtc), four 3D structures [Co2L2(adbc)]n·nH2O (2), [Co2L2(tpa)]n (3), [Co2L2(tdc)]n (4), [Co2L2(bdtc)(H2O)]n (5) were obtained, respectively. It can be observed from the architectures of 1–5 that hydrogen bonds and secondary ligands both have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. The XRPD, TGA data of title polymers and the magnetic properties for 2 and 5 have also been investigated. - Graphical abstract: The structural differences show that the ancillary ligands have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. - Highlights: • Five new Co(II) coordination polymers have been synthesized by solvothermal reactions based on 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL). • The long-flexible ligand (HL) is a good candidate to produce interpenetrating architectures. • The secondary dicarboxylic acid ligands play important roles in the spatial connective fashions and the formation of various dimensional compounds. • The magnetism studies show that both 2 and 5 exhibit antiferromagnetic interactions

  15. Integration of screening and identifying ligand(s) from medicinal plant extracts based on target recognition by using NMR spectroscopy

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Yalin Tang, Qian Shang, Junfeng Xiang, Qianfan Yang, Qiuju Zhou, Lin Li, Hong Zhang, Qian Li, Hongxia Sun, Aijiao Guan, Wei Jiang & Wei Gai ### Abstract This protocol presents the screening of ligand(s) from medicinal plant extracts based on target recognition by using NMR spectroscopy. A detailed description of sample preparation and analysis process is provided. NMR spectroscopies described here are 1H NMR, diffusion-ordered spectroscopy (DOSY), relaxation-edited NMR, ...

  16. electronic Ligand Builder and Optimisation Workbench (eLBOW): A tool for ligand coordinate and restraint generation

    Energy Technology Data Exchange (ETDEWEB)

    Moriarty, Nigel; Grosse-Kunstleve, Ralf; Adams, Paul

    2009-07-01

    The electronic Ligand Builder and Optimisation Workbench (eLBOW) is a program module of the PHENIX suite of computational crystallographic software. It's designed to be a flexible procedure using simple and fast quantum chemical techniques to provide chemically accurate information for novel and known ligands alike. A variety of input formats and options allow for the attainment of a number of diverse goals including geometry optimisation and generation of restraints.

  17. A thermal responsive affinity ligand for precipitation of sialylated proteins

    Directory of Open Access Journals (Sweden)

    Lindsay Arnold

    2016-01-01

    Full Text Available We report here the development of a thermal responsive affinity ligand specific to sialic acid, sialic acid containing oligosaccharides, glycoproteins, and other sialylated glycoconjugates. The ligand is a fusion protein of 40 repeats of pentapeptide of an elastin like polymer (ELP and the 21 kD sialic acid binding domain of a Vibrio cholera neuraminidase (VCNA. For cost-effective synthesis, the fusion protein was targeted to the periplasmic space of an E. coli lpp deletion mutant, resulting in its secretion to the growth medium. A pre-induction heat-shock step at 42 ˚C for 20 minutes was necessary to achieve high level expression of the ligand. Under optimized induction condition (18 ˚C, 0.1 mM IPTG and 48 hours of post-induction cultivation, the ligand was produced to about 100 mg/L. The ligand exhibited a transition temperature of 52 ˚C, which could be depressed to 37 ˚C with the addition of 0.5 M NaCl. Using fetuin as a model sialylated protein, the ligand was applied in an affinity precipitation process to illustrate its potential application in glycoprotein isolation. The ligand captured 100% fetuin from an aqueous solution when the molar ratio of ligand to fetuin was 10 to 1, which was lower than the expected for full titration of sialic acid on the glycoprotein by the lectin. Elution of fetuin from ligand was achieved with PBS buffer containing 2 mM sialic acid. To evaluate how protein and other contaminants influence the recovery of sialylated proteins, CHO medium was spiked into the fetuin solution. The predominant protein species in CHO medium was found to be albumin. Although its removal of over 94% was evident, purified fetuin contained some albumin due to its over-abundance. Additional experiments with albumin contaminant of varying concentrations showed that below 1 mg/L, albumin had no impact on the affinity precipitation, whereas above 10 mg/L, some albumin was co-purified with fetuin. However, even at 50 mg/ml, fetuin

  18. A novel method of screening thrombin-inhibiting DNA aptamers using an evolution-mimicking algorithm

    OpenAIRE

    Ikebukuro, Kazunori; Okumura, Yuji; SUMIKURA, Koichi; Karube, Isao

    2005-01-01

    Thrombin-inhibiting DNA aptamers have already been obtained through the systematic evolution of ligands by exponential enrichment (SELEX). However, SELEX is a method that screens DNA aptamers that bind to their target molecules, and it sometimes fails to screen good inhibitors. Therefore, it is necessary to develop a method of screening DNA aptamers based on their inhibitory effects on the target molecules. We developed a novel method of detecting aptamers using an evolution-mimicking algorit...

  19. Capsosiphon fulvescens glycoprotein inhibits AGS gastric cancer cell proliferation by downregulating Wnt-1 signaling

    OpenAIRE

    Kim, Young-Min; KIM, IN-HYE; NAM, TAEK-JEONG

    2013-01-01

    Previously, we examined various apoptosis pathways in the AGS gastric cancer cell line using Capsosiphon fulvescens glycoprotein (Cf-GP). In this study, we focused on the downregulation of the Wnt-1 signaling pathway and cell cycle arrest. Upregulation of the Wnt signaling pathway has been observed in various cancer cells. The Wnt signal ligand acts in both canonical and non-canonical pathways. Among them, Wnt-1 was dependent on the canonical pathway. Here, we show inhibition of Wnt-1 signali...

  20. Inhibition Mechanism of Pitting Corrosion of Nickel in Aqueous Medium by Some Macrocyclic Compounds

    OpenAIRE

    Fatma Mohamed Mahgoub; Ahmed Mohamed Hefnawy

    2012-01-01

    Anodic polarization of nickel was studied by potentiostatic technique in neutral media in presence of two macrocyclic ligands. Pit initiation was detected by measuring pitting potential, Ep and the charge transfer, Q during the anodic polarization. Initiation of pitting and Q were found to be dependent on the structure and concentrations of inhibitors. Under steady state conditions, the inhibition efficiency was in the order 1, 4, 8, 11 tetraazacyclotetradecane (

  1. Killed Candida albicans Yeasts and Hyphae Inhibit Gamma Interferon Release by Murine Natural Killer Cells

    OpenAIRE

    Murciano, Celia; Villamón, Eva; O'Connor, José-Enrique; Gozalbo, Daniel; Gil, M. Luisa

    2006-01-01

    Killed yeasts and hyphae of Candida albicans inhibit gamma interferon secretion by highly purified murine NK cells in response to the Toll-like receptor ligands lipopolysaccharide and zymosan. This effect, which is also observed in the presence of NK-activating cytokines (interleukin-2 [IL-2], IL-12, and IL-15), may represent a novel mechanism of immune evasion that contributes to the virulence of C. albicans.

  2. Killed Candida albicans yeasts and hyphae inhibit gamma interferon release by murine natural killer cells.

    Science.gov (United States)

    Murciano, Celia; Villamón, Eva; O'Connor, José-Enrique; Gozalbo, Daniel; Gil, M Luisa

    2006-02-01

    Killed yeasts and hyphae of Candida albicans inhibit gamma interferon secretion by highly purified murine NK cells in response to the Toll-like receptor ligands lipopolysaccharide and zymosan. This effect, which is also observed in the presence of NK-activating cytokines (interleukin-2 [IL-2], IL-12, and IL-15), may represent a novel mechanism of immune evasion that contributes to the virulence of C. albicans. PMID:16428793

  3. Lentivirus-mediated LIGHT overexpression inhibits human colorectal carcinoma cell growth in vitro and in vivo

    OpenAIRE

    Wang, Haibo; Yu, Zhuang; LIU, SHIHAI; Liu, Xiangping; Sui, Aihua; YAO, RUYONG; Luo, Zheng; LI, CHUANZHI

    2013-01-01

    Human LIGHT (lymphotoxin-related inducible ligand that competes for glycoprotein D binding to herpesvirus entry mediator on T cells) is the 14th member of the tumor necrosis factor (TNF) superfamily and is therefore also known as TNFSF14. LIGHT has been proven to be a multifunctional molecule affecting cell proliferation, differentiation and a number of other biological processes, in particular, cell growth inhibition. However, the expression and molecular mechanisms of the LIGHT gene in huma...

  4. Virtual screening of plant derived compounds for aldose reductase inhibition using molecular docking

    OpenAIRE

    Muppalaneni, Naresh Babu; Rao, Allam Appa

    2012-01-01

    The role of the aldose reductase in type 2 diabetes is widely described. Therefore, it is of interest to identify plant derived compounds to inhibit its activity. We studied the protein-ligand interaction of 267 compounds from different parts of seven plants (Allium sativum, Coriandrum sativum, Dacus carota, Murrayyakoneigii, Eucalyptus, Calendula officinalis and Lycopersicon esculentum) with aldose reductase as the target protein. Molecular docking and re-scoring of top ten compounds (using ...

  5. Specific inhibition of Escherichia coli ferrienterochelin uptake by a normal human serum immunoglobulin.

    OpenAIRE

    Moore, D G; Earhart, C F

    1981-01-01

    Normal human serum contains an enterochelin-specific antibody which presumably acts with transferrin to hinder iron assimilation by enterochelin-producing pathogens. This antibody can be isolated from serum by sodium sulfate fractionation or affinity chromatography by employing an enterochelin-derived ligand (2,3-dihydroxy-N-benzoyl-L-serine) attached to aminohexyl Sepharose 4B. In assays of iron uptake by whole cells, the antibody inhibited enterochelin-directed uptake but not that mediated ...

  6. Opposing effects of the anesthetic propofol at pentameric ligand-gated ion channels mediated by a common site

    DEFF Research Database (Denmark)

    Lynagh, Timothy Peter; Laube, Bodo

    2014-01-01

    Propofol is an intravenous general anesthetic that alters neuronal excitability by modulating agonist responses of pentameric ligand-gated ion channels (pLGICs). Evidence suggests that propofol enhancement of anion-selective pLGICs is mediated by a binding site between adjacent subunits, whereas...... propofol inhibition of cation-selective pLGICs occurs via a binding site contained within helices M1-M4 of individual subunits. We considered this idea by testing propofol modulation of homomeric human glycine receptors (GlyRs) and nematode glutamate-gated chloride channels (GluCls) recombinantly expressed...... substitution in the channel-forming M2 helix (EC50 = 979 ± 88 μM). When a previously identified site between adjacent subunits was disrupted by the M3 G329I substitution, both propofol inhibition and enhancement of GluCls were severely impaired (IC50 and EC50 values could not be calculated). Similarly, when...

  7. Chemokine (C-C motif ligand 2 mediates direct and indirect fibrotic responses in human and murine cultured fibrocytes

    Directory of Open Access Journals (Sweden)

    Ekert Jason E

    2011-10-01

    Full Text Available Abstract Background Fibrocytes are a population of circulating bone-marrow-derived cells that express surface markers for leukocytes and mesenchymal cells, and are capable of differentiating into myofibroblasts. They have been observed at sites of active fibrosis and increased circulating numbers correlate with mortality in idiopathic pulmonary fibrosis (IPF. Inhibition of chemokine (C-C motif receptor 2 (CCR2 during experimental models of lung fibrosis reduces lung collagen deposition, as well as reducing lung fibrocyte accumulation. The aim of the present study was to determine whether human and mouse fibrocytes express functional CCR2. Results Following optimized and identical human and murine fibrocyte isolation, both cell sources were shown to be positive for CCR2 by flow cytometry and this expression colocalized with collagen I and CD45. Human blood fibrocytes stimulated with the CCR2 ligand chemokine (C-C motif ligand 2 (CCL2, demonstrated increased proliferation (P P P Conclusions This study directly compares the functional responses of human and murine fibrocytes to CCR2 ligands, and following comparable isolation techniques. We have shown comparable biological effects, strengthening the translatability of the murine models to human disease with respect to targeting the CCR2 axis to ameliorate disease in IPF patients.

  8. Orthogonal Optical Control of a G Protein-Coupled Receptor with a SNAP-Tethered Photochromic Ligand.

    Science.gov (United States)

    Broichhagen, Johannes; Damijonaitis, Arunas; Levitz, Joshua; Sokol, Kevin R; Leippe, Philipp; Konrad, David; Isacoff, Ehud Y; Trauner, Dirk

    2015-10-28

    The covalent attachment of synthetic photoswitches is a general approach to impart light sensitivity onto native receptors. It mimics the logic of natural photoreceptors and significantly expands the reach of optogenetics. Here we describe a novel photoswitch design-the photoswitchable orthogonal remotely tethered ligand (PORTL)-that combines the genetically encoded SNAP-tag with photochromic ligands connected to a benzylguanine via a long flexible linker. We use the method to convert the G protein-coupled receptor mGluR2, a metabotropic glutamate receptor, into a photoreceptor (SNAG-mGluR2) that provides efficient optical control over the neuronal functions of mGluR2: presynaptic inhibition and control of excitability. The PORTL approach enables multiplexed optical control of different native receptors using distinct bioconjugation methods. It should be broadly applicable since SNAP-tags have proven to be reliable, many SNAP-tagged receptors are already available, and photochromic ligands on a long leash are readily designed and synthesized. PMID:27162996

  9. Structure and Ligand-Binding Mechanism of a Cysteinyl Leukotriene-Binding Protein from a Blood-Feeding Disease Vector.

    Science.gov (United States)

    Jablonka, Willy; Pham, Van; Nardone, Glenn; Gittis, Apostolos; Silva-Cardoso, Lívia; Atella, Georgia C; Ribeiro, José M C; Andersen, John F

    2016-07-15

    Blood-feeding disease vectors mitigate the negative effects of hemostasis and inflammation through the binding of small-molecule agonists of these processes by salivary proteins. In this study, a lipocalin protein family member (LTBP1) from the saliva of Rhodnius prolixus, a vector of the pathogen Trypanosoma cruzi, is shown to sequester cysteinyl leukotrienes during feeding to inhibit immediate inflammatory responses. Calorimetric binding experiments showed that LTBP1 binds leukotrienes C4 (LTC4), D4 (LTD4), and E4 (LTE4) but not biogenic amines, adenosine diphosphate, or other eicosanoid compounds. Crystal structures of ligand-free LTBP1 and its complexes with LTC4 and LTD4 reveal a conformational change during binding that brings Tyr114 into close contact with the ligand. LTC4 is cleaved in the complex, leaving free glutathione and a C20 fatty acid. Chromatographic analysis of bound ligands showed only intact LTC4, suggesting that cleavage could be radiation-mediated. PMID:27124118

  10. Regulation of NKG2D-ligand cell surface expression by intracellular calcium after HDAC-inhibitor treatment

    DEFF Research Database (Denmark)

    Jensen, Helle; Hagemann-Jensen, Michael Henrik; Lauridsen, Felicia Kathrine Bratt;

    2013-01-01

    In this study we demonstrate that histone deacetylase (HDAC)-inhibitor mediated cell surface expression of the structural different NKG2D-ligands MICA/B and ULBP2 is calcium-dependent. Treatment with the calcium chelator EGTA inhibited constitutive as well as HDAC-inhibitor induced MICA/B and ULBP2...... cell surface expression on melanoma cells and Jurkat T-cells. A NKG2D-dependent cytolytic assay and staining with a recombinant NKG2D-Fc fusion protein showed that calcium chelation impaired the functional ability of NKG2D-ligands induced by HDAC-inhibitor treatment. The HDAC-inhibitor induced cell...... surface expression of ULBP2, but not MICA/B, was sensitive to treatment calmidazolium and trifluoperazine, two agents known to block calcium signaling. siRNA-mediated knock-down of the calcium-regulated proteins calmodulin or calpain did however not affect NKG2D-ligand cell surface expression on Jurkat T...

  11. The effect of heterocyclic S,S’-ligands on the electrochemical properties of some cobalt(III complexes in acid

    Directory of Open Access Journals (Sweden)

    V. M. JOVANOVIC

    2005-02-01

    Full Text Available Eight mixed-ligand cobalt(III complexes with the macrocyclic amine 1,4,8,11-tetraazacyclotetradecane (cyclam and a heterocyclic dithiocarbamate (Rdtc- i.e., morpholine- (Morphdtc, thiomorpholine- (Timdtc, piperazine- (Pzdtc, N-methylpiperazine-(Mepzdtc, piperidine- (Pipdtc, 2-, 3- or 4-methylpiperidine- (2-, 3- and 4-Mepipdtc carbodithionato-S,S ions, of the general formula [Co(cyclamRdtc](ClO42, were investigated in deoxygenated 0.1MHClO4 solutions. Cyclic voltammetry data at a glassy carbon (GC electrode demonstrate a redox reaction of cobalt(III from the complexes at potentials strongly influenced by the presence of different heterocyclic Rdtc- ligands. In this respect, the complexes were separated into two groups: the first, with a heteroatom O, S or N in the heterocyclic ring, and the second, with a methyl group on the piperidine ring of the Rdtc- ligand. Anodic polarization of an Fe electrode in the presence of the complexes shows their influence not only on the dissolution of iron but also on the hydrogen evolution reactions and on this basis complexes the complexes could be divided into the same two groups. It was found that the weaker the inhibiting effect of the free heterocyclic amines is, the significantly higher is the efficiency of the corresponding complexes.

  12. Evidence for clustered mannose as a new ligand for hyaluronan-binding protein (HABP1) from human fibroblasts

    Indian Academy of Sciences (India)

    Rajeev Kumar; Nirupam Roy Choudhury; Dinakar M Salunke; K Datta

    2001-09-01

    We have earlier reported that overexpression of the gene encoding human hyaluronan-binding protein (HABP1) is functionally active, as it binds specifically with hyaluronan (HA). In this communication, we confirm the collapse of the filamentous and branched structure of HA by interaction with increasing concentrations of recombinant-HABP1 (rHABP1). HA is the reported ligand of rHABP1. Here, we show the affinity of rHABP1 towards D-mannosylated albumin (DMA) by overlay assay and purification using a DMA affinity column. Our data suggests that DMA is another ligand for HABP1. Furthermore, we have observed that DMA inhibits the binding of HA in a concentration-dependent manner, suggesting its multiligand affinity amongst carbohydrates. rHABP1 shows differential affinity towards HA and DMA which depends on pH and ionic strength. These data suggest that affinity of rHABP1 towards different ligands is regulated by the microenvironment.

  13. Microassay for measurement of binding of radiolabelled ligands to cell surface molecules

    International Nuclear Information System (INIS)

    An improved technique for measuring the binding of radiolabelled ligands to cell surface molecules has been developed by modification of a procedure using centrifugation through a water-immiscible oil to separate free and cell-bound ligand. It maximises the percentage of ligand bound since cell-bound and free ligand can be separated easily and reproducibly even when very small reaction volumes are used. This permits low levels of ligand radiolabelling and relatively low numbers of cells to be used

  14. Role of the T cell receptor ligand affinity in T cell activation by bacterial superantigens

    DEFF Research Database (Denmark)

    Andersen, P S; Geisler, C; Buus, S; Mariuzza, R A; Karjalainen, K

    2001-01-01

    the SEC3 variants correlated with enhanced binding without any optimum in the binding range covered by native TCR ligands. Comparable studies using anti-TCR antibodies of known affinity confirmed these observations. By comparing the biological potency of the two sets of ligands, we found a significant...... correlation between ligand affinity and ligand potency indicating that it is the density of receptor-ligand complexes in the T cell contact area that determines TCR signaling strength....

  15. An IP-10 (CXCL10-derived peptide inhibits angiogenesis.

    Directory of Open Access Journals (Sweden)

    Cecelia C Yates-Binder

    Full Text Available Angiogenesis plays a critical role in processes such as organ development, wound healing, and tumor growth. It requires well-orchestrated integration of soluble and matrix factors and timely recognition of such signals to regulate this process. Previous work has shown that newly forming vessels express the chemokine receptor CXC receptor 3 (CXCR3 and, activation by its ligand IP-10 (CXCL10, both inhibits development of new vasculature and causes regression of newly formed vessels. To identify and develop new therapeutic agents to limit or reverse pathological angiogenesis, we identified a 21 amino acid fragment of IP-10, spanning the α-helical domain residues 77-98, that mimic the actions of the whole IP-10 molecule on endothelial cells. Treatment of the endothelial cells with the 22 amino acid fragment referred to as IP-10p significantly inhibited VEGF-induced endothelial motility and tube formation in vitro, properties critical for angiogenesis. Using a Matrigel plug assay in vivo, we demonstrate that IP-10p both prevented vessel formation and induced involution of nascent vessels. CXCR3 neutralizing antibody was able to block the inhibitory effects of the IP-10p, demonstrating specificity of the peptide. Inhibition of endothelial function by IP-10p was similar to that described for IP-10, secondary to CXCR3-mediated increase in cAMP production, activation of PKA inhibiting cell migration, and inhibition of VEGF-mediated m-calpain activation. IP-10p provides a novel therapeutic agent that inhibits endothelial cell function thus, allowing for the modulation of angiogenesis.

  16. Precipitation kinetics of Mg-carbonates, influence of organic ligands and consequences for CO2 mineral sequestration

    International Nuclear Information System (INIS)

    Forming magnesium carbonate minerals through carbonation of magnesium silicates has been proposed as a safe and durable way to store carbon dioxide, with a possibly high potential to offset anthropogenic CO2 emissions. To date however, chemical reactions involved in this process are facing strong kinetic limitations, which originate in the low reactivity of both Mg-silicates and Mg-carbonates. Numerous studies have focused on the dissolution of Mg-silicates, under the questionable hypothesis that this step limits the whole process. This thesis work focuses instead on the mechanisms and rates of formation of magnesium carbonates, which are the final products of carbonation reactions. The first part of the work is dedicated to studying the influence on magnesite precipitation kinetics of three organic ligands known to accelerate Mg-silicates dissolution rates: oxalate, citrate and EDTA. With help of mixed-flow reactor experiments performed between 100 and 150 C, we show that these ligands significantly reduce magnesite growth rates, through two combined mechanisms: (1) complexation of Mg2+ cations in aqueous solution, which was rigorously estimated from a thermodynamic database established through a critical review of the literature, and (2) adsorption of ligands to a limited number of surface sites, leading to a decrease of the precipitation rate constant. The observed growth inhibition is maximal with citrate. We then used hydrothermal atomic force microscopy to probe the origin of the documented growth inhibition. Our observations show that citrate and oxalate interact with the crystal growth process on magnesite surface, modifying the shape of growth hillocks as well as the step generation frequency through spiral growth. We also show that the ligands adsorb preferentially on different kink-sites, which is probably related to their different structures and chemical properties. We propose that the stronger magnesite growth inhibition caused by citrate is related

  17. Ligand Migration and Binding in Myoglobin Mutant L29W

    Science.gov (United States)

    Nienhaus, G. Ulrich; Waschipky, Robert; Nienhaus, Karin; Minkow, Oleksandr; Ostermann, Andreas; Parak, Fritz G.

    2001-09-01

    Myoglobin, a small globular heme protein that binds gaseous ligands such as O2, CO, and NO reversibly at the heme iron, has for many years been a paradigm for studying the effects of structure and dynamics on protein reactions. Time-resolved spectroscopic measurements after photodissociation of the ligand reveal a complex ligand binding reaction with multiple kinetic intermediates, resulting from protein relaxation and movements of the ligand within the protein. To observe structural changes induced by ligand dissociation, we have investigated carbonmonoxy myoglobin (MbCO) mutant L29W using time-resolved infrared spectroscopy in combination with x-ray crystallography. The presence of two distinct infrared stretch bands of the bound CO, AI at 1945 cm-1 and AII at 1955 cm-1, implies that L29W MbCO assumes two different conformations at neutral pH. Low-temperature flash photolysis experiments with monitoring of the absorption changes in the individual CO lines reveal markedly different rebinding properties. While recombination in AII is conceptually simple and well described by a two-state transition involving a distribution of enthalpy barriers, recombination in AI is more complicated: Besides a fast kinetic component, a second, slower kinetic component appears; its population grows with increasing temperature. X-ray crystallography of crystals illuminated below 180 K to photodissociate the CO reveals that the slow component arises from ligands that have migrated from their initial docking site to a remote site within the distal heme pocket. This process occurs in an essentially immobilized, frozen protein. Subsequently, ligands rebind by thermal activation over a barrier that is much higher than the barrier for recombination from the initial docking site. Upon photodissociation above 180 K, ligands escape from the distal pocket, aided by protein fluctuations that transiently open exit channels. The x-ray structure shows a large proportion of ligands in a cavity on

  18. Bromodomains: Structure, function and pharmacology of inhibition.

    Science.gov (United States)

    Ferri, Elena; Petosa, Carlo; McKenna, Charles E

    2016-04-15

    Bromodomains are epigenetic readers of histone acetylation involved in chromatin remodeling and transcriptional regulation. The human proteome comprises 46 bromodomain-containing proteins with a total of 61 bromodomains, which, despite highly conserved structural features, recognize a wide array of natural peptide ligands. Over the past five years, bromodomains have attracted great interest as promising new epigenetic targets for diverse human diseases, including inflammation, cancer, and cardiovascular disease. The demonstration in 2010 that two small molecule compounds, JQ1 and I-BET762, potently inhibit proteins of the bromodomain and extra-terminal (BET) family with translational potential for cancer and inflammatory disease sparked intense efforts in academia and pharmaceutical industry to develop novel bromodomain antagonists for therapeutic applications. Several BET inhibitors are already in clinical trials for hematological malignancies, solid tumors and cardiovascular disease. Currently, the field faces the challenge of single-target selectivity, especially within the BET family, and of overcoming problems related to the development of drug resistance. At the same time, new trends in bromodomain inhibitor research are emerging, including an increased interest in non-BET bromodomains and a focus on drug synergy with established antitumor agents to improve chemotherapeutic efficacy. This review presents an updated view of the structure and function of bromodomains, traces the development of bromodomain inhibitors and their potential therapeutic applications, and surveys the current challenges and future directions of this vibrant new field in drug discovery. PMID:26707800

  19. Cloud computing for protein-ligand binding site comparison.

    Science.gov (United States)

    Hung, Che-Lun; Hua, Guan-Jie

    2013-01-01

    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery. PMID:23762824

  20. Predicting protein ligand binding motions with the conformation explorer

    Directory of Open Access Journals (Sweden)

    Flores Samuel C

    2011-10-01

    Full Text Available Abstract Background Knowledge of the structure of proteins bound to known or potential ligands is crucial for biological understanding and drug design. Often the 3D structure of the protein is available in some conformation, but binding the ligand of interest may involve a large scale conformational change which is difficult to predict with existing methods. Results We describe how to generate ligand binding conformations of proteins that move by hinge bending, the largest class of motions. First, we predict the location of the hinge between domains. Second, we apply an Euler rotation to one of the domains about the hinge point. Third, we compute a short-time dynamical trajectory using Molecular Dynamics to equilibrate the protein and ligand and correct unnatural atomic positions. Fourth, we score the generated structures using a novel fitness function which favors closed or holo structures. By iterating the second through fourth steps we systematically minimize the fitness function, thus predicting the conformational change required for small ligand binding for five well studied proteins. Conclusions We demonstrate that the method in most cases successfully predicts the holo conformation given only an apo structure.

  1. Kinetics of Receptor-Ligand Interactions in Immune Responses

    Institute of Scientific and Technical Information of China (English)

    Mian Long; Shouqin Lü; Ganyun Sun

    2006-01-01

    Receptor-ligand interactions in blood flow are crucial to initiate the biological processes as inflammatory cascade,platelet thrombosis, as well as tumor metastasis. To mediate cell adhesions, the interacting receptors and ligands must be anchored onto two apposing surfaces of two cells or a cell and a substratum, i.e., the two-dimensional (2D) binding, which is different from the binding of a soluble ligand in fluid phase to a receptor, i.e., three-dimensional (3D) binding. While numerous works have been focused on 3D kinetics of receptor-ligand interactions in immune systems, 2D kinetics and its regulations have less been understood, since no theoretical framework and experimental assays have been established until 1993. Not only does the molecular structure dominate 2D binding kinetics, but the shear force in blood flow also regulates cell adhesions mediated by interacting receptors and ligands. Here we provided the overview of current progresses in 2D bindings and regulations. Relevant issues of theoretical frameworks, experimental measurements, kinetic rates and binding affinities, and force regulations,were discussed.

  2. NKG2D ligands mediate immunosurveillance of senescent cells.

    Science.gov (United States)

    Sagiv, Adi; Burton, Dominick G A; Moshayev, Zhana; Vadai, Ezra; Wensveen, Felix; Ben-Dor, Shifra; Golani, Ofra; Polic, Bojan; Krizhanovsky, Valery

    2016-02-01

    Cellular senescence is a stress response mechanism that limits tumorigenesis and tissue damage. Induction of cellular senescence commonly coincides with an immunogenic phenotype that promotes self-elimination by components of the immune system, thereby facilitating tumor suppression and limiting excess fibrosis during wound repair. The mechanisms by which senescent cells regulate their immune surveillance are not completely understood. Here we show that ligands of an activating Natural Killer (NK) cell receptor (NKG2D), MICA and ULBP2 are consistently up-regulated following induction of replicative senescence, oncogene-induced senescence and DNA damage - induced senescence. MICA and ULBP2 proteins are necessary for efficient NK-mediated cytotoxicity towards senescent fibroblasts. The mechanisms regulating the initial expression of NKG2D ligands in senescent cells are dependent on a DNA damage response, whilst continuous expression of these ligands is regulated by the ERK signaling pathway. In liver fibrosis, the accumulation of senescent activated stellate cells is increased in mice lacking NKG2D receptor leading to increased fibrosis. Overall, our results provide new insights into the mechanisms regulating the expression of immune ligands in senescent cells and reveal the importance of NKG2D receptor-ligand interaction in protecting against liver fibrosis. PMID:26878797

  3. Beneficial bacteria inhibit cachexia.

    Science.gov (United States)

    Varian, Bernard J; Goureshetti, Sravya; Poutahidis, Theofilos; Lakritz, Jessica R; Levkovich, Tatiana; Kwok, Caitlin; Teliousis, Konstantinos; Ibrahim, Yassin M; Mirabal, Sheyla; Erdman, Susan E

    2016-03-15

    Muscle wasting, known as cachexia, is a debilitating condition associated with chronic inflammation such as during cancer. Beneficial microbes have been shown to optimize systemic inflammatory tone during good health; however, interactions between microbes and host immunity in the context of cachexia are incompletely understood. Here we use mouse models to test roles for bacteria in muscle wasting syndromes. We find that feeding of a human commensal microbe, Lactobacillus reuteri, to mice is sufficient to lower systemic indices of inflammation and inhibit cachexia. Further, the microbial muscle-building phenomenon extends to normal aging as wild type animals exhibited increased growth hormone levels and up-regulation of transcription factor Forkhead Box N1 [FoxN1] associated with thymus gland retention and longevity. Interestingly, mice with a defective FoxN1 gene (athymic nude) fail to inhibit sarcopenia after L. reuteri therapy, indicating a FoxN1-mediated mechanism. In conclusion, symbiotic bacteria may serve to stimulate FoxN1 and thymic functions that regulate inflammation, offering possible alternatives for cachexia prevention and novel insights into roles for microbiota in mammalian ontogeny and phylogeny. PMID:26933816

  4. Chemogenomic analysis of G-protein coupled receptors and their ligands deciphers locks and keys governing diverse aspects of signalling.

    Directory of Open Access Journals (Sweden)

    Jörg D Wichard

    Full Text Available Understanding the molecular mechanism of signalling in the important super-family of G-protein-coupled receptors (GPCRs is causally related to questions of how and where these receptors can be activated or inhibited. In this context, it is of great interest to unravel the common molecular features of GPCRs as well as those related to an active or inactive state or to subtype specific G-protein coupling. In our underlying chemogenomics study, we analyse for the first time the statistical link between the properties of G-protein-coupled receptors and GPCR ligands. The technique of mutual information (MI is able to reveal statistical inter-dependence between variations in amino acid residues on the one hand and variations in ligand molecular descriptors on the other. Although this MI analysis uses novel information that differs from the results of known site-directed mutagenesis studies or published GPCR crystal structures, the method is capable of identifying the well-known common ligand binding region of GPCRs between the upper part of the seven transmembrane helices and the second extracellular loop. The analysis shows amino acid positions that are sensitive to either stimulating (agonistic or inhibitory (antagonistic ligand effects or both. It appears that amino acid positions for antagonistic and agonistic effects are both concentrated around the extracellular region, but selective agonistic effects are cumulated between transmembrane helices (TMHs 2, 3, and ECL2, while selective residues for antagonistic effects are located at the top of helices 5 and 6. Above all, the MI analysis provides detailed indications about amino acids located in the transmembrane region of these receptors that determine G-protein signalling pathway preferences.

  5. Ligand-Independent Canonical Wnt Activity in Canine Mammary Tumor Cell Lines Associated with Aberrant LEF1 Expression

    Science.gov (United States)

    van Wolferen, Monique E.; Rao, Nagesha A. S.; Grizelj, Juraj; Vince, Silvijo; Hellmen, Eva; Mol, Jan A.

    2014-01-01

    Pet dogs very frequently develop spontaneous mammary tumors and have been suggested as a good model organism for breast cancer research. In order to obtain an insight into underlying signaling mechanisms during canine mammary tumorigenesis, in this study we assessed the incidence and the mechanism of canonical Wnt activation in a panel of 12 canine mammary tumor cell lines. We show that a subset of canine mammary cell lines exhibit a moderate canonical Wnt activity that is dependent on Wnt ligands, similar to what has been described in human breast cancer cell lines. In addition, three of the tested canine mammary cell lines have a high canonical Wnt activity that is not responsive to inhibitors of Wnt ligand secretion. Tumor cell lines with highly active canonical Wnt signaling often carry mutations in key members of the Wnt signaling cascade. These cell lines, however, carry no mutations in the coding regions of intracellular Wnt pathway components (APC, β-catenin, GSK3β, CK1α and Axin1) and have a functional β-catenin destruction complex. Interestingly, however, the cell lines with high canonical Wnt activity specifically overexpress LEF1 mRNA and the knock-down of LEF1 significantly inhibits TCF-reporter activity. In addition, LEF1 is overexpressed in a subset of canine mammary carcinomas, implicating LEF1 in ligand-independent activation of canonical Wnt signaling in canine mammary tumors. We conclude that canonical Wnt activation may be a frequent event in canine mammary tumors both through Wnt ligand-dependent and novel ligand–independent mechanisms. PMID:24887235

  6. Activation of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) inhibits human breast cancer cell line tumorigenicity

    OpenAIRE

    Yao, Pei-Li; Morales, Jose L.; Zhu, Bokai; Kang, Boo-Hyon; Gonzalez, Frank J; Peters, Jeffrey M.

    2014-01-01

    The effect of activation and over-expression of the nuclear receptor PPARβ/δ in human MDA-MB-231 (ER−) and MCF7 (ER+) breast cancer cell lines was examined. Target gene induction by ligand activation of PPARβ/δ was increased by over-expression of PPARβ/δ compared to controls. Over-expression of PPARβ/δ caused a decrease in cell proliferation in MCF7 and MDA-MB-231 cells compared to controls while ligand activation of PPARβ/δ further inhibited proliferation of MCF7 but not MDA-MB-231 cells. Ov...

  7. Ligand binding to anti-cancer target CD44 investigated by molecular simulations.

    Science.gov (United States)

    Nguyen, Tin Trung; Tran, Duy Phuoc; Pham Dinh Quoc Huy; Hoang, Zung; Carloni, Paolo; Van Pham, Phuc; Nguyen, Chuong; Li, Mai Suan

    2016-07-01

    CD44 is a cell-surface glycoprotein and receptor for hyaluronan, one of the major components of the tumor extracellular matrix. There is evidence that the interaction between CD44 and hyaluronan promotes breast cancer metastasis. Recently, the molecule F-19848A was shown to inhibit hyaluronan binding to receptor CD44 in a cell-based assay. In this study, we investigated the mechanism and energetics of F-19848A binding to CD44 using molecular simulation. Using the molecular mechanics/Poisson Boltzmann surface area (MM-PBSA) method, we obtained the binding free energy and inhibition constant of the complex. The van der Waals (vdW) interaction and the extended portion of F-19848A play key roles in the binding affinity. We screened natural products from a traditional Chinese medicine database to search for CD44 inhibitors. From combining pharmaceutical requirements with docking and molecular dynamics simulations, we found ten compounds that are potentially better or equal to the F-19848A ligand at binding to CD44 receptor. Therefore, we have identified new candidates of CD44 inhibitors, based on molecular simulation, which may be effective small molecules for the therapy of breast cancer. PMID:27342250

  8. Molecular investigations of protriptyline as a multi-target directed ligand in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Sneha B Bansode

    Full Text Available Alzheimer's disease (AD is a complex neurodegenerative disorder involving multiple cellular and molecular processes. The discovery of drug molecules capable of targeting multiple factors involved in AD pathogenesis would greatly facilitate in improving therapeutic strategies. The repositioning of existing non-toxic drugs could dramatically reduce the time and costs involved in developmental and clinical trial stages. In this study, preliminary screening of 140 FDA approved nervous system drugs by docking suggested the viability of the tricyclic group of antidepressants against three major AD targets, viz. Acetylcholinesterase (AChE, β-secretase (BACE-1, and amyloid β (Aβ aggregation, with one member, protriptyline, showing highest inhibitory activity. Detailed biophysical assays, together with isothermal calorimetry, fluorescence quenching experiments, kinetic studies and atomic force microscopy established the strong inhibitory activity of protriptyline against all three major targets. The molecular basis of inhibition was supported with comprehensive molecular dynamics simulations. Further, the drug inhibited glycation induced amyloid aggregation, another important causal factor in AD progression. This study has led to the discovery of protriptyline as a potent multi target directed ligand and established its viability as a promising candidate for AD treatment.

  9. Exploring Structural and Physicochemical Profiles of Potential GSK-3β Inhibitors Using Structure- and Ligand-Based Modeling Studies.

    Science.gov (United States)

    Hossain, Tabassum; Saha, Achintya; Mukherjee, Arup

    2016-01-01

    Glycogen synthase kinase-3β (GSK-3β) is a promising target for therapeutic invasion of Alzheimer's disease (AD). The kinase enzyme plays major role in pathological process for the formation of β-amyloid plaques and neurofibrillary tangles in AD. In the present study, structure-based pharmacophore and ligand-based 3D QSAR, HQSAR and pharmacophore mapping studies have been emphasized to explore the possible structural requirement of this potential kinase inhibitors using a structurally diverse set of compounds. The developed models were validated with the interaction study at the catalytic cleft. The 3D QSAR studies yield robust models of CoMFA R(2) = 0.965, se = 0.212, Q(2) = 0.525, R(2)pred = 0.709, r(2)m = 0.579 and CoMSIA: R(2) = 0.935, se = 0.289, Q(2) = 0.581, R(2)pred = 0.723, r(2)m = 0.935, that explain the importance of steric, electrostatic, hydrogen bond (HB) acceptor of the molecule for inhibition of GSK-3β. The HQSAR study (R(2) = 0.871, se = 0.400, Q(2) = 0.639, R(2)pred = 0.721, r(2)m = 0.664) indicated the fragments of the molecular fingerprints that might be important for inhibition. Both structure- and ligand-based pharmacophore mapping proposed that acceptor and donor features of the molecule are essential for receptor-ligand interactions. Molecular diversity provides an opportunity on wide range of applicability for the GSK-3β inhibitors, and depicts information on the structural and properties requirement for effective binding at the active site selectivity that minimize the side effects with therapeutic benefits. PMID:27064095

  10. Ligand selectivity of 105 kDa and 130 kDa lipoprotein-binding proteins in vascular-smooth-muscle-cell membranes is unique.

    Science.gov (United States)

    Bochkov, V N; Tkachuk, V A; Philippova, M P; Stambolsky, D V; Bühler, F R; Resink, T J

    1996-07-01

    Using ligand blotting techniques, with low-density lipoprotein (LDL) as ligand, we have previously described the existence of atypical lipoprotein-binding proteins (105 kDa and 130 kDa) in membranes from human aortic medical tissue. The present study demonstrates that these proteins are also present in membranes from cultured human (aortic and mesenteric) and rat (aortic) vascular smooth-muscle cells (VSMCs). To assess the relationship of 105 and 130 kDa lipoprotein-binding proteins to known lipoprotein receptors, ligand binding specificity was studied. We tested effects of substances known to antagonize ligand binding to either the LDL [apolipoprotein B,E (apo B,E)] receptor (dextran sulphate, heparin, pentosan polysulphate, protamine, spermine, histone), the scavenger receptor (dextran sulphate, fucoidin), the very-low-density-lipoprotein (VLDL) receptor [receptor-associated protein (RAP)], or LDL receptor-related protein (RAP, alpha 2-macroglobulin, lipoprotein lipase, exotoxin-A). None of these substances, with the exception of dextran sulphate, influenced binding of LDL to either 105 or 130 kDa proteins. Sodium oleate or oleic acid, known stimuli for the lipoprotein binding activity of the lipolysis-stimulated receptor, were also without effect. LDL binding to 105 and 130 kDa proteins was inhibited by anti-LDL (apo B) antibodies. LDL and VLDL bound to 105 and 130 kDa proteins with similar affinities (approximately 50 micrograms/ml). The unique ligand selectivity of 105 and 130 kDa proteins supports the existence of a novel lipoprotein-binding protein that is distinct from all other currently identified LDL receptor family members. The similar ligand selectivity of 105 and 130 kDa proteins suggests that they may represent variant forms of an atypical lipoprotein-binding protein. PMID:8694779

  11. Guinea-pig ileum as ex vivo model useful to characterize ligands displaying Imidazoline I2 and Adrenergic alpha2 mixed activity: a preliminary study

    Directory of Open Access Journals (Sweden)

    Marialessandra Contino

    2013-01-01

    Full Text Available The lack of an effective analgesic treatment makes pain a clinical challenge and the need of a novel approach to identify new agents is urgent. In this scenario I2-ligands can be considered an alternative strategy in pain therapy. The development of an ex vivo model useful for the evaluation of functional activities at both a2 and I2-IBs (imidazoline binding sites is an important task in pharmacological sciences since several I2 ligands display activity also towards a receptors. The present study aims to develop an ex vivo model for estimating the activity of I2-IBs ligands in a biological sample where a1 and a2 adrenergic receptors are present. For this purpose the imidalzoline endogenous ligand, harmane, reference compounds, 2BFI and BU224, and imidazoline derivatives 1-3 have been selected taking into account their in vitro activity towards IBs and adrenergic receptors. All compounds have been tested ex vivo in guinea pig-ileum where a2A-ARs are prejunctionally and I2-IBS postjunctionally localized. Adrenergic component has been identified by the studying the interference of compounds on the electrically-evoked contraction while I2-IBs activity by testing the ability of compounds to inhibit the carbachol-evoked contractions in the presence of prazosin to mask the a1 adrenoceptors. Compounds 1 and 2 were found I2-IBs antago nists (pIC50=4.2 and 4.0, respectively whereas compound 3 was I2-IBs agonist (EC50=0.38 mM; All ligands were a2 adrenergic agonists. This paper suggests guinea-pig ileum as the first ex vivo approach for establishing both the intrinsic activity of I2-IBs ligands and the physiological correlation between IBs and adrenergic system.

  12. Effects on normal tissues during radiosensitization of Dalton's Lymphoma by the DNA ligand Hoechst 33342 in Balb/c mice

    International Nuclear Information System (INIS)

    Hoechst 33342 is a bisbenzimidazole derivative with AT specific minor groove DNA binding ability. Scavenging of free radicals and stabilization of macromolecular structure resulting in reduced induction of DNA damage contributes to radioprotection afforded by the ligand. Their ability to inhibit topoisomerases I and II, which play important roles in damage response pathways including DNA repair has been shown to sensitize tumor cells in vitro and in vivo. Due to its mutagenic and clastogenic potentials, damage to vital normal tissues are a matter of concern in deploying the ligand as adjuvant in radiotherapy. Therefore, we investigated the effects of the ligand in Dalton's Lymphoma (DL) bearing Balb/c mice by studying the local tumor control and animal survival, besides damage to normal tissues like bone marrow, kidney and testis. Hoechst 33342 (10 mg/kg b wt) was administered (i.v.) 1 h before focal irradiation (10 Gy) of the tumor (∼ 500 mm3) grown on the hind leg of the mice. Partial response with a growth delay of 16 days (3 x initial volume) was seen following irradiation, while a complete response (cure; tumor-free survival) was observed in 88% mice following the combined treatment (Hoechst 33342+radiation); ligand alone had no significant effect. Although the ligand induced marginal degree of chromosomal aberrations in the bone marrow, it did not enhance aberrations induced by radiation further. In testes, the proportions of diploid, haploid and hypo-haploid cells as well as resting primary spermatocytes (RPS) were not significantly altered by either. In kidney, Hoechst 33342 alone or in combination with radiation did not cause significant damage to the proximal tubules and glomeruli. These observations suggest that radiosensitization of tumor by the DNA ligand Hoechst 33342 may not be associated with enhanced toxicity to bone marrow as well as proximal normal tissues. (author)

  13. Analytical developments for screening of lanthanides/ligands interactions

    International Nuclear Information System (INIS)

    This work investigates the potential of hyphenated capillary electrophoresis and inductively coupled mass spectrometry to classify different ligands according to their europium binding affinity in a hydro-organic medium. On the one hand, this method enables to evaluate the affinity of phosphorus-containing ligands in less than two hours and using less than 15 ng of ligand. On the other hand, complexation constants could be determined. The results are in excellent agreement with the values obtained by spectrophotometric titrations.Moreover, a library of copolymers for solid/liquid extraction of europium is investigated. The extraction protocol enables to classify copolymers according to their europium affinity in a hydro-organic medium. This screening requires 60 mg of copolymers. For the most promising recognition properties and selectivity La3+/Eu3+/Lu3+ are evaluated. (author)

  14. Memetic algorithms for ligand expulsion from protein cavities

    Science.gov (United States)

    Rydzewski, J.; Nowak, W.

    2015-09-01

    Ligand diffusion through a protein interior is a fundamental process governing biological signaling and enzymatic catalysis. A complex topology of channels in proteins leads often to difficulties in modeling ligand escape pathways by classical molecular dynamics simulations. In this paper, two novel memetic methods for searching the exit paths and cavity space exploration are proposed: Memory Enhanced Random Acceleration (MERA) Molecular Dynamics (MD) and Immune Algorithm (IA). In MERA, a pheromone concept is introduced to optimize an expulsion force. In IA, hybrid learning protocols are exploited to predict ligand exit paths. They are tested on three protein channels with increasing complexity: M2 muscarinic G-protein-coupled receptor, enzyme nitrile hydratase, and heme-protein cytochrome P450cam. In these cases, the memetic methods outperform simulated annealing and random acceleration molecular dynamics. The proposed algorithms are general and appropriate in all problems where an accelerated transport of an object through a network of channels is studied.

  15. The thermodynamic principles of ligand binding in chromatography and biology

    DEFF Research Database (Denmark)

    Mollerup, Jørgen

    2007-01-01

    In chromatography, macromolecules do not adsorb in the traditional sense of the word but bind to ligands that are covalently bonded to the surface of the porous bead. Therefore, the adsorption must be modelled as a process where protein molecules bind to the immobilised ligands. The paper discusses...... it is also observed in chromatography due to protein-protein interactions. Retention measurements on P-lactoglobulin A demonstrate this. A discussion of salt effects on hydrophobic interactions in precipitation and chromatography of proteins concludes the paper. (c) 2007 Elsevier B.V. All rights...... the general thermodynamic principles of ligand binding. Models of the multi-component adsorption in ion-exchange and hydrophobic chromatography, HIC and RPLC, are developed. The parameters in the models have a well-defined physical significance. The models are compared to the Langmuir model. In the...

  16. Protecting Ligands Enhance Selective Targeting of Multivalent Nanoparticles

    CERN Document Server

    Angioletti-Uberti, Stefano

    2016-01-01

    Nanoparticles functionalized with multiple ligands can be programmed to bind biological targets, e.g. cells, depending on the receptors they express, providing a general platform for the development of different technologies, from selective drug-delivery to biosensing. In order to be highly selective ligands should exclusively bind to specific targeted receptors, since formation of bonds with other, untargeted ones would lead to non-specific binding and potentially harmful behaviour. This poses a particular problem for multivalent nanoparticles, because even very weak bonds can collectively lead to strong binding. A statistical mechanical model is presented here to describe the extent to which bond strength and nanoparticle valency can induce non-selective adsorption. The same model is used to describe a possible solution: functionalization of the nanoparticles with "protective" receptors. The latter compete with cell receptors for the targeting ligands, and can be optimized to strongly reduce the effect of u...

  17. Chiroptical activity in colloidal quantum dots coated with achiral ligands.

    Science.gov (United States)

    Melnikau, Dzmitry; Savateeva, Diana; Gaponik, Nikolai; Govorov, Alexander O; Rakovich, Yury P

    2016-01-25

    We studied the chiroptical properties of colloidal solution of CdSe and CdSe/ZnS quantum dots (QDs) with a cubic lattice structure which were initially prepared without use of any chiral molecules and coated with achiral ligands. We demonstrate circular dichroism (CD) activity around first and second excitonic transition of these CdSe based nanocrystals. We consider that this chiroptical activity is caused by imbalance in racemic mixtures of QDs between the left and right handed nanoparticles, which appears as a result of the formation of various defects or incorporation of impurities into crystallographic structure during their synthesis. We demonstrate that optical activity of colloidal solution of CdSe QDs with achiral ligands weakly depends on the QDs size and number of ZnS monolayers, but does not depend on the nature of achiral ligands or polarity of the solution. PMID:26832599

  18. Ligand screening by saturation-transfer difference (STD) NMR spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, V V

    2005-04-26

    NMR based methods to screen for high-affinity ligands have become an indispensable tool for designing rationalized drugs, as these offer a combination of good experimental design of the screening process and data interpretation methods, which together provide unprecedented information on the complex nature of protein-ligand interactions. These methods rely on measuring direct changes in the spectral parameters, that are often simpler than the complex experimental procedures used to study structure and dynamics of proteins. The goal of this review article is to provide the basic details of NMR based ligand-screening methods, with particular focus on the saturation transfer difference (STD) experiment. In addition, we provide an overview of other NMR experimental methods and a practical guide on how to go about designing and implementing them.

  19. Aryl hydrocarbon receptor ligands in cancer: friend and foe.

    Science.gov (United States)

    Murray, Iain A; Patterson, Andrew D; Perdew, Gary H

    2014-12-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that is best known for mediating the toxicity and tumour-promoting properties of the carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin, commonly referred to as ‘dioxin’. AHR influences the major stages of tumorigenesis — initiation, promotion, progression and metastasis — and physiologically relevant AHR ligands are often formed during disease states or during heightened innate and adaptive immune responses. Interestingly, ligand specificity and affinity vary between rodents and humans. Studies of aggressive tumours and tumour cell lines show increased levels of AHR and constitutive localization of this receptor in the nucleus. This suggests that the AHR is chronically activated in tumours, thus facilitating tumour progression. This Review discusses the role of AHR in tumorigenesis and the potential for therapeutic modulation of its activity in tumours. PMID:25568920

  20. Docking Screens for Novel Ligands Conferring New Biology.

    Science.gov (United States)

    Irwin, John J; Shoichet, Brian K

    2016-05-12

    It is now plausible to dock libraries of 10 million molecules against targets over several days or weeks. When the molecules screened are commercially available, they may be rapidly tested to find new leads. Although docking retains important liabilities (it cannot calculate affinities accurately nor even reliably rank order high-scoring molecules), it can often can distinguish likely from unlikely ligands, often with hit rates above 10%. Here we summarize the improvements in libraries, target quality, and methods that have supported these advances, and the open access resources that make docking accessible. Recent docking screens for new ligands are sketched, as are the binding, crystallographic, and in vivo assays that support them. Like any technique, controls are crucial, and key experimental ones are reviewed. With such controls, docking campaigns can find ligands with new chemotypes, often revealing the new biology that may be docking's greatest impact over the next few years. PMID:26913380

  1. Memetic algorithms for ligand expulsion from protein cavities

    CERN Document Server

    Rydzewski, Jakub

    2015-01-01

    Ligand diffusion through a protein interior is a fundamental process governing biological signaling and enzymatic catalysis. A complex topology of channels in proteins leads often to difficulties in modeling ligand escape pathways by classical molecular dynamics simulations. In this paper two novel memetic methods for searching the exit paths and cavity space exploration are proposed: Memory Enhanced Random Acceleration (MERA) Molecular Dynamics and Immune Algorithm (IA). In MERA, a pheromone concept is introduced to optimize an expulsion force. In IA, hybrid learning protocols are exploited to predict ligand exit paths. They are tested on three protein channels with increasing complexity: M2 muscarinic GPCR receptor, enzyme nitrile hydratase and heme-protein cytochrome P450cam. In these cases, the memetic methods outperform Simulated Annealing and Random Acceleration Molecular Dynamics. The proposed algorithms are general and appropriate in all problems where an accelerated transport of an object through a n...

  2. Lanthanide and actinide complexation studies with tetradentate 'N' donor ligands

    International Nuclear Information System (INIS)

    Because of their similar charge and chemical behaviour separation of trivalent actinides and lanthanides is an important and challenging task in nuclear fuel cycle. Soft (S,N) donor ligands show selectivity towards the trivalent actinides over the lanthanides. Out of various 'N' donor ligands studied, bis(1,2,4)triazinyl bipyridine (BTBP) and bis(1,2,4)triazinyl phenanthroline (BTPhen) were found to be most promising. In order to understand the separation behaviour of these ligands, their complexation studies with these 'f' block elements are essential. In the present work, complexation studies of various lanthanide ions (La3+, Eu3+ and Er3+) was studied with ethyl derivatives of BTBP (C2BTBP) and BTBPhen (C2BTPhen) and pentyl derivative of BTBP (C5BTBP) in acetonitrile medium using UV-Vis spectrophotometry, fluorescence spectroscopy and solution calorimetry. Computational studies were also carried out to understand the experimental results

  3. Secondary ligand-directed assembly of Co(II) coordination polymers based on a pyridine carboxylate ligand

    Science.gov (United States)

    Cao, Ke-Li; Zhang, Yi-Ping; Cai, Yi-Ni; Xu, Xiao-Wei; Feng, Yun-Long

    2014-07-01

    To investigate the influence of hydrogen bonds and secondary ligands on the structures and properties of the resulting frameworks, five new Co(II) compounds have been synthesized by the reactions of Co(II) salts and 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL) with four rationally selected dicarboxylic acid ligands. Without secondary ligand, we got one compound [CoL2(H2O)2]n·2nH2O (1), which possesses a 1D chain structure. In the presence of ancillary ligands, namely, 1,3-adamantanedicarboxylic acid (H2adbc), terephthalic acid (H2tpa), thiophene-2,5-dicarboxylic acid (H2tdc) and 1,4-benzenedithioacetic acid (H2bdtc), four 3D structures [Co2L2(adbc)]n·nH2O (2), [Co2L2(tpa)]n (3), [Co2L2(tdc)]n (4), [Co2L2(bdtc)(H2O)]n (5) were obtained, respectively. It can be observed from the architectures of 1-5 that hydrogen bonds and secondary ligands both have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. The XRPD, TGA data of title polymers and the magnetic properties for 2 and 5 have also been investigated.

  4. Conformational diversity of flexible ligand in metal-organic frameworks controlled by size-matching mixed ligands

    Science.gov (United States)

    Hua, Xiu-Ni; Qin, Lan; Yan, Xiao-Zhi; Yu, Lei; Xie, Yi-Xin; Han, Lei

    2015-12-01

    Hydrothermal reactions of N-auxiliary flexible exo-bidentate ligand 1,3-bis(4-pyridyl)propane (bpp) and carboxylates ligands naphthalene-2,6-dicarboxylic acid (2,6-H2ndc) or 4,4‧-(hydroxymethylene)dibenzoic acid (H2hmdb), in the presence of cadmium(II) salts have given rise to two novel metal-organic frameworks based on flexible ligands (FL-MOFs), namely, [Cd2(2,6-ndc)2(bpp)(DMF)]·2DMF (1) and [Cd3(hmdb)3(bpp)]·2DMF·2EtOH (2) (DMF=N,N-Dimethylformamide). Single-crystal X-ray diffraction analyses revealed that compound 1 exhibits a three-dimensional self-penetrating 6-connected framework based on dinuclear cluster second building unit. Compound 2 displays an infinite three-dimensional 'Lucky Clover' shape (2,10)-connected network based on the trinuclear cluster and V-shaped organic linkers. The flexible bpp ligand displays different conformations in 1 and 2, which are successfully controlled by size-matching mixed ligands during the self-assembly process.

  5. New formamidine ligands and their mixed ligand palladium(II) oxalate complexes: Synthesis, characterization, DFT calculations and in vitro cytotoxicity

    Science.gov (United States)

    Soliman, Ahmed A.; Alajrawy, Othman I.; Attabi, Fawzy A.; Shaaban, Mohamed R.; Linert, W.

    2016-01-01

    A series of new ternary palladium(II) complexes of the type [Pd(L1-4)ox]·xH2O where L = formamidine ligands and ox = oxalate, were synthesized and characterized by elemental analyses, magnetic susceptibility, UV-Vis, infrared (IR) and mass spectroscopy and thermal analysis. The spectroscopic data indicated that the formamidine ligands act as bidentate N2 donors and the oxalate as O2 ligand. The complexes (1-4) are diamagnetic and the optimization of their structures indicated that the geometry is distorted square planer with O-Pd-O and N-Pd-N bond angles ranged 82.70-83.87° and 88.21-95.02°; respectively which is acceptable for the heteroleptic complexes. The dipole moment of the complexes (13.97-18.77 Debye) indicating that the complexes are more polarized than the ligands (1.93-4.96 Debye). The complexes are thermally stable as shown from their relatively higher overall activation energies (441-688 kJ mol-1). The ligands and the complexes are proved to have good cytotoxicity with IC50 (μM) in the range of (0.011-0.168) against MCF-7, (0.012-0.150) against HCT-116, (0.042-0.094) against PC-3 and (0.006-0.222) against HepG-2 cell lines, which open the field for further application as antitumor compounds.

  6. Lovastatin inhibits VEGFR and AKT activation: synergistic cytotoxicity in combination with VEGFR inhibitors.

    Directory of Open Access Journals (Sweden)

    Tong T Zhao

    Full Text Available BACKGROUND: In a recent study, we demonstrated the ability of lovastatin, a potent inhibitor of mevalonate synthesis, to inhibit the function of the epidermal growth factor receptor (EGFR. Lovastatin attenuated ligand-induced receptor activation and downstream signaling through the PI3K/AKT pathway. Combining lovastatin with gefitinib, a potent EGFR inhibitor, induced synergistic cytotoxicity in a variety of tumor derived cell lines. The vascular endothelial growth factor receptor (VEGFR and EGFR share similar activation, internalization and downstream signaling characteristics. METHODOLOGY/PRINCIPAL FINDINGS: The VEGFRs, particularly VEGFR-2 (KDR, Flt-1, play important roles in regulating tumor angiogenesis by promoting endothelial cell proliferation, survival and migration. Certain tumors, such as malignant mesothelioma (MM, also express both the VEGF ligand and VEGFRs that act in an autocrine loop to directly stimulate tumor cell growth and survival. In this study, we have shown that lovastatin inhibits ligand-induced VEGFR-2 activation through inhibition of receptor internalization and also inhibits VEGF activation of AKT in human umbilical vein endothelial cells (HUVEC and H28 MM cells employing immunofluorescence and Western blotting. Combinations of lovastatin and a VEGFR-2 inhibitor showed more robust AKT inhibition than either agent alone in the H28 MM cell line. Furthermore, combining 5 µM lovastatin treatment, a therapeutically relevant dose, with two different VEGFR-2 inhibitors in HUVEC and the H28 and H2052 mesothelioma derived cell lines demonstrated synergistic cytotoxicity as demonstrated by MTT cell viability and flow cytometric analyses. CONCLUSIONS/SIGNIFICANCE: These results highlight a novel mechanism by which lovastatin can regulate VEGFR-2 function and a potential therapeutic approach for MM through combining statins with VEGFR-2 inhibitors.

  7. Systematic study of ligand structures of metal oxide EUV nanoparticle photoresists

    KAUST Repository

    Jiang, Jing

    2015-03-19

    Ligand stabilized metal oxide nanoparticle resists are promising candidates for EUV lithography due to their high sensitivity for high-resolution patterning and high etching resistance. As ligand exchange is responsible for the patterning mechanism, we systematically studied the influence of ligand structures of metal oxide EUV nanoparticles on their sensitivity and dissolution behavior. ZrO2 nanoparticles were protected with various aromatic ligands with electron withdrawing and electron donating groups. These nanoparticles have lower sensitivity compared to those with aliphatic ligands suggesting the structures of these ligands is more important than their pka on resist sensitivity. The influence of ligand structure was further studied by comparing the nanoparticles’ solubility for a single type ligand to mixtures of ligands. The mixture of nanoparticles showed improved pattern quality. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  8. Sequestering agent for uranyl chelation: new bi-naphtyl ligands

    International Nuclear Information System (INIS)

    The synthesis of phosphonate, sulfocatecholamide (CAMS) and hydroxy-pyridinone (HOPO) bi-naphtyl ligands is presented. Their binding abilities for uranyl cation were determined by UV spectrophotometry in aqueous media versus pH. These titrations showed that the efficiency of these chelating agents depends on the nature of the chelating group. Each ligand shows a more or less pronounced affinity towards uranium. While the bis-phosphonate compound did not show any affinity towards the uranyl ion, the BINHOPO derivative exhibits significant affinity at acidic and neutral pH while the BINCAMS is more efficient at basic pH. (authors)

  9. Structural Basis of Cooperative Ligand Binding by the Glycine Riboswitch

    Energy Technology Data Exchange (ETDEWEB)

    E Butler; J Wang; Y Xiong; S Strobel

    2011-12-31

    The glycine riboswitch regulates gene expression through the cooperative recognition of its amino acid ligand by a tandem pair of aptamers. A 3.6 {angstrom} crystal structure of the tandem riboswitch from the glycine permease operon of Fusobacterium nucleatum reveals the glycine binding sites and an extensive network of interactions, largely mediated by asymmetric A-minor contacts, that serve to communicate ligand binding status between the aptamers. These interactions provide a structural basis for how the glycine riboswitch cooperatively regulates gene expression.

  10. Complexation of neptunium(V) by polyaminocarboxylate ligands

    International Nuclear Information System (INIS)

    The stability constants of complexes of NpO2+ ion with a series of polyaminocarboxylate, oxydiacetate (ODA) and thiodiacetate (TDA) ligands were determined using spectrophotometric and potentiometric techniques. The measurements were conducted at an ionic strength of 0.50 M (NaClO4). By contrast to lanthanide complexation, the interaction of the ether oxygen of ODA with NpO2+ cation is very small whereas TDA acts only as a monodentate ligand via one of the carboxylate groups. (orig.)

  11. Spectroscopic study of cadmium (II) complexes with heterocyclic dithiocarbamate ligands

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Fontan, S. (Departamento de Quimica Pura y Aplicada, Universidad de Vigo (Spain)); Rodriguez-Seoane, P. (Departamento de Quimica Pura y Aplicada, Universidad de Vigo (Spain)); Casas, J.S. (Departamento de Quimica Inorganica, Universidad de Santiago de Compostela (Spain)); Sordo, J. (Departamento de Quimica Inorganica, Universidad de Santiago de Compostela (Spain)); Jones, M.M. (Department of Chemistry and Center in Molecular Toxicology, Vanderbilt University, Nashville, TN (United States))

    1993-09-15

    Cadmium(II) dithiocarbamates Cd(dtc)[sub 2] (dtc=4-carboxamidopiperidine-1-carbodithioate, morpholine-1-carbodithioate or 4-(2-hydroxyethyl)piperazine-1-carbodithioate) and Cd(dtc)[sub 2].H[sub 2]O (dtc=4-hydroxypiperidine-1-carbodithioate)[r brace] have been prepared and characterized by thermal analysis and IR and NMR ([sup 13]C, [sup 113]Cd) spectrometry. Two of these ligands have previously been shown capable of removing cadmium from its aged in vivo storage sites. The use of solid state [sup 13]C NMR measurements to establish the coordination mode of the dithiocarbomate ligands is also examined and the difficulties which arise are discussed. (orig.)

  12. Two ligands for a GPCR, proton vs lysolipid

    Institute of Scientific and Technical Information of China (English)

    Dong-soon IM

    2005-01-01

    Recently, two different chemicals have been matched as ligands with the same Gprotein-coupled receptor (GPCR). Double-pairing of OGR1 family GPCRs with proton and lysolipid raises several questions. First, whether both are the real ligands for the GPCRs. Second, whether modulation of a GPCR by two chemicals could be possible. Third, one of the chemicals is proton. Proton-sensing not only is a new action mode of GPCR activation, but also it could be generalized in other GPCRs.In this review, I'd like to summarize the issue and discuss questions with pharmacological criteria.

  13. Contrasting roles for TLR ligands in HIV-1 pathogenesis.

    Directory of Open Access Journals (Sweden)

    Beda Brichacek

    Full Text Available The first line of a host's response to various pathogens is triggered by their engagement of cellular pattern recognition receptors (PRRs. Binding of microbial ligands to these receptors leads to the induction of a variety of cellular factors that alter intracellular and extracellular environment and interfere directly or indirectly with the life cycle of the triggering pathogen. Such changes may also affect any coinfecting microbe. Using ligands to Toll-like receptors (TLRs 5 and 9, we examined their effect on human immunodeficiency virus (HIV-1 replication in lymphoid tissue ex vivo. We found marked differences in the outcomes of such treatment. While flagellin (TLR5 agonist treatment enhanced replication of CC chemokine receptor 5 (CCR 5-tropic and CXC chemokine receptor 4 (CXCR4-tropic HIV-1, treatment with oligodeoxynucleotide (ODN M362 (TLR9 agonist suppressed both viral variants. The differential effects of these TLR ligands on HIV-1 replication correlated with changes in production of CC chemokines CCL3, CCL4, CCL5, and of CXC chemokines CXCL10, and CXCL12 in the ligand-treated HIV-1-infected tissues. The nature and/or magnitude of these changes were dependent on the ligand as well as on the HIV-1 viral strain. Moreover, the tested ligands differed in their ability to induce cellular activation as evaluated by the expression of the cluster of differentiation markers (CD 25, CD38, CD39, CD69, CD154, and human leukocyte antigen D related (HLA-DR as well as of a cell proliferation marker, Ki67, and of CCR5. No significant effect of the ligand treatment was observed on apoptosis and cell death/loss in the treated lymphoid tissue ex vivo. Our results suggest that binding of microbial ligands to TLRs is one of the mechanisms that mediate interactions between coinfected microbes and HIV-1 in human tissues. Thus, the engagement of appropriate TLRs by microbial molecules or their mimetic might become a new strategy for HIV therapy or prevention.

  14. Ligand-assisted capillary electrophoresis separations of the lanthanides

    International Nuclear Information System (INIS)

    Capillary electrophoresis is used with simple organic ligands added to the electrolyte matrix to achieve separation of the individual lanthanide cations. Results for acetate (AC-) and malonate (MA-) yield good resolution for the lighter lanthanides, but not the heavier lanthanides. In contrast, α-hydroxyisobutyrate (HIB-) gives complete resolution for all of the lanthanide cations. These results are related to the complexation chemistry between the lanthanides and the ligands across the lanthanide series. In addition, preliminary results for lanthanide separations using AC- in mixed methanol:water solvent systems are provided. The presence of methanol improves resolution but slows the separation. (author)

  15. Identification of Physiologically Active Substances as Novel Ligands for MRGPRD

    OpenAIRE

    Makiko Uno; Satoko Nishimura; Keisuke Fukuchi; Yasuyuki Kaneta; Yoko Oda; Hironobu Komori; Shigeki Takeda; Tatsuya Haga; Toshinori Agatsuma; Futoshi Nara

    2012-01-01

    Mas-related G-protein coupled receptor member D (MRGPRD) is a G protein-coupled receptor (GPCR) which belongs to the Mas-related GPCRs expressed in the dorsal root ganglia (DRG). In this study, we investigated two novel ligands in addition to beta-alanine: (1) beta-aminoisobutyric acid, a physiologically active substance, with which possible relation to tumors has been seen together with beta-alanine; (2) diethylstilbestrol, a synthetic estrogen hormone. In addition to the novel ligands, we f...

  16. Designer ligands: The search for metal ion selectivity

    Directory of Open Access Journals (Sweden)

    Perry T. Kaye

    2011-03-01

    Full Text Available The paper reviews research conducted at Rhodes University towards the development of metal-selective ligands. The research has focused on the rational design, synthesis and evaluation of novel ligands for use in the formation of copper complexes as biomimetic models of the metalloenzyme, tyrosinase, and for the selective extraction of silver, nickel and platinum group metal ions in the presence of contaminating metal ions. Attention has also been given to the development of efficient, metal-selective molecular imprinted polymers.

  17. Coordination chemistry of poly(thioether)borate ligands.

    Science.gov (United States)

    Riordan, Charles G

    2010-08-01

    This review traces the development and application of the tris(thioether)borate ligands, tripodal ligands with highly polarizable thioether donors. Areas of emphasis include the basic coordination chemistry of the mid-to-late first row transition metals (Fe, Ni, Co, Cu), and the role of the thioether substituent in directing complex formation, the modeling of zinc thiolate protein active sites, high-spin organo-iron and organo-cobalt chemistry, the preparation of monovalent complexes of Fe, Co and Ni, and dioxygen and sulfur activation by monovalent nickel complexes. PMID:20607091

  18. Checkpoint inhibition in meningiomas.

    Science.gov (United States)

    Bi, Wenya Linda; Wu, Winona W; Santagata, Sandro; Reardon, David A; Dunn, Ian F

    2016-06-01

    Meningiomas are increasingly appreciated to share similar features with other intra-axial central nervous system neoplasms as well as systemic cancers. Immune checkpoint inhibition has emerged as a promising therapy in a number of cancers, with durable responses of years in a subset of patients. Several lines of evidence support a role for immune-based therapeutic strategies in the management of meningiomas, especially high-grade subtypes. Meningiomas frequently originate juxtaposed to venous sinuses, where an anatomic conduit for lymphatic drainage resides. Multiple populations of immune cells have been observed in meningiomas. PD-1/PD-L1 mediated immunosuppression has been implicated in high-grade meningiomas, with association between PD-L1 expression with negative prognostic outcome. These data point to the promise of future combinatorial therapeutic strategies in meningioma. PMID:27197540

  19. The Nature of Allosteric Inhibition in Glutamate Racemase: discovery and characterization of a cryptic inhibitory pocket using atomistic MD simulations and pKa calculations

    OpenAIRE

    Whalen, Katie L.; Tussey, Kenneth B.; Blanke, Steven R.; Spies, M. Ashley

    2011-01-01

    Enzyme inhibition via allostery, in which the ligand binds remotely from the active site, is a poorly understood phenomenon, and represents a significant challenge to structure-based drug design. Dipicolinic acid (DPA), a major component of Bacillus spores, is shown to inhibit glutamate racemase from Bacillus anthracis, a monosubstrate/monoproduct enzyme, in a novel allosteric fashion. Glutamate racemase has long been considered an important drug target for its integral role in bacterial cell...

  20. Combined Treatment With Peroxisome Proliferator-Activated Receptor (PPAR) Gamma Ligands and Gamma Radiation Induces Apoptosis by PPARγ-Independent Up-Regulation of Reactive Oxygen Species-Induced Deoxyribonucleic Acid Damage Signals in Non-Small Cell Lung Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Han, Eun Jong; Im, Chang-Nim; Park, Seon Hwa [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Moon, Eun-Yi [Department of Bioscience and Biotechnology, Sejong University, Seoul (Korea, Republic of); Hong, Sung Hee, E-mail: gobrian@kcch.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2013-04-01

    Purpose: To investigate possible radiosensitizing activities of the well-known peroxisome proliferator-activated receptor (PPAR)γ ligand ciglitazone and novel PPARγ ligands CAY10415 and CAY10506 in non-small cell lung cancer (NSCLC) cells. Methods and Materials: Radiosensitivity was assessed using a clonogenic cell survival assay. To investigate the mechanism underlying PPARγ ligand-induced radiosensitization, the subdiploid cellular DNA fraction was analyzed by flow cytometry. Activation of the caspase pathway by combined PPARγ ligands and γ-radiation treatment was detected by immunoblot analysis. Reactive oxygen species (ROS) were measured using 2,7-dichlorodihydrofluorescein diacetate and flow cytometry. Results: The 3 PPARγ ligands induced cell death and ROS generation in a PPARγ-independent manner, enhanced γ-radiation–induced apoptosis and caspase-3–mediated poly (ADP-ribose) polymerase (PARP) cleavage in vitro. The combined PPARγ ligand/γ-radiation treatment triggered caspase-8 activation, and this initiator caspase played an important role in the combination-induced apoptosis. Peroxisome proliferator-activated receptor-γ ligands may enhance the γ-radiation-induced DNA damage response, possibly by increasing γ-H2AX expression. Moreover, the combination treatment significantly increased ROS generation, and the ROS scavenger N-acetylcysteine inhibited the combined treatment-induced ROS generation and apoptotic cell death. Conclusions: Taken together, these results indicated that the combined treatment of PPARγ ligands and γ-radiation synergistically induced DNA damage and apoptosis, which was regulated by ROS.

  1. Backward semantic inhibition in toddlers

    OpenAIRE

    Chow, J.; Aimola Davies, AM; Fuentes, LJ; Plunkett, KR

    2016-01-01

    Attention-switching is a crucial ability required in our everyday life, from toddlerhood to adulthood. In adults, shifting attention from one word (e.g., dog) to another (e.g., sea) results in backward semantic inhibition, i.e., the inhibition of the initial word (dog). This study examines whether attention-switching is accompanied by backward semantic inhibition in toddlers using the preferential looking paradigm. The findings demonstrate that a backward inhibitory mechanism operates during ...

  2. Predicting Electrophoretic Mobility of Protein-Ligand Complexes for Ligands from DNA-Encoded Libraries of Small Molecules.

    Science.gov (United States)

    Bao, Jiayin; Krylova, Svetlana M; Cherney, Leonid T; Hale, Robert L; Belyanskaya, Svetlana L; Chiu, Cynthia H; Shaginian, Alex; Arico-Muendel, Christopher C; Krylov, Sergey N

    2016-05-17

    Selection of target-binding ligands from DNA-encoded libraries of small molecules (DELSMs) is a rapidly developing approach in drug-lead discovery. Methods of kinetic capillary electrophoresis (KCE) may facilitate highly efficient homogeneous selection of ligands from DELSMs. However, KCE methods require accurate prediction of electrophoretic mobilities of protein-ligand complexes. Such prediction, in turn, requires a theory that would be applicable to DNA tags of different structures used in different DELSMs. Here we present such a theory. It utilizes a model of a globular protein connected, through a single point (small molecule), to a linear DNA tag containing a combination of alternating double-stranded and single-stranded DNA (dsDNA and ssDNA) regions of varying lengths. The theory links the unknown electrophoretic mobility of protein-DNA complex with experimentally determined electrophoretic mobilities of the protein and DNA. Mobility prediction was initially tested by using a protein interacting with 18 ligands of various combinations of dsDNA and ssDNA regions, which mimicked different DELSMs. For all studied ligands, deviation of the predicted mobility from the experimentally determined value was within 11%. Finally, the prediction was tested for two proteins and two ligands with a DNA tag identical to those of DELSM manufactured by GlaxoSmithKline. Deviation between the predicted and experimentally determined mobilities did not exceed 5%. These results confirm the accuracy and robustness of our model, which makes KCE methods one step closer to their practical use in selection of drug leads, and diagnostic probes from DELSMs. PMID:27119259

  3. Glucagon-like peptide-1 receptor ligand interactions: structural cross talk between ligands and the extracellular domain.

    Directory of Open Access Journals (Sweden)

    Graham M West

    Full Text Available Activation of the glucagon-like peptide-1 receptor (GLP-1R in pancreatic β-cells potentiates insulin production and is a current therapeutic target for the treatment of type 2 diabetes mellitus (T2DM. Like other class B G protein-coupled receptors (GPCRs, the GLP-1R contains an N-terminal extracellular ligand binding domain. N-terminal truncations on the peptide agonist generate antagonists capable of binding to the extracellular domain, but not capable of activating full length receptor. The main objective of this study was to use Hydrogen/deuterium exchange (HDX to identify how the amide hydrogen bonding network of peptide ligands and the extracellular domain of GLP-1R (nGLP-1R were altered by binding interactions and to then use this platform to validate direct binding events for putative GLP-1R small molecule ligands. The HDX studies presented here for two glucagon-like peptide-1 receptor (GLP-1R peptide ligands indicates that the antagonist exendin-4[9-39] is significantly destabilized in the presence of nonionic detergents as compared to the agonist exendin-4. Furthermore, HDX can detect stabilization of exendin-4 and exendin-4[9-39] hydrogen bonding networks at the N-terminal helix [Val19 to Lys27] upon binding to the N-terminal extracellular domain of GLP-1R (nGLP-1R. In addition we show hydrogen bonding network stabilization on nGLP-1R in response to ligand binding, and validate direct binding events with the extracellular domain of the receptor for putative GLP-1R small molecule ligands.

  4. II. Dissociation free energies in drug-receptor systems via nonequilibrium alchemical simulations: application to the FK506-related immunophilin ligands.

    Science.gov (United States)

    Nerattini, Francesca; Chelli, Riccardo; Procacci, Piero

    2016-06-01

    The recently proposed fast switching double annihilation (FS-DAM) [Cardelli et al., J. Chem. Theory Comput., 2015, 11, 423] is aimed at computing the absolute standard dissociation free energies for the chemical equilibrium RL ⇌ R + L occurring in solution through molecular dynamics (MD) simulations at the atomistic level. The technique is based on the production of fast nonequilibrium annihilation trajectories of one of the species (the ligand) in the solvated RL complex and in the bulk solvent. As detailed in the companion theoretical paper, the free energies of these two nonequilibrium annihilation processes are recovered by using an unbiased unidirectional estimate derived from the Crooks theorem exploiting the inherent Gaussian nature of the annihilation work. The FS-DAM technique was successfully applied to the evaluation of the dissociation free energy of the complexes of Zn(ii) cations with an inhibitor of the Tumor Necrosis Factor α converting enzyme. Here we apply the technique to a real drug-receptor system, by satisfactorily reproducing the experimental dissociation free energies of FK506-related bulky ligands towards the native FKBP12 enzyme and by predicting the dissociation constants for the same ligands towards the mutant I56D. The effect of such mutations on the binding affinity of FK506-related ligands is relevant for assessing the thermodynamic forces regulating molecular recognition in FKBP12 inhibition. PMID:27193181

  5. Ligand induced stabilization of the melting temperature of the HSV-1 single-strand DNA binding protein using the thermal shift assay

    Science.gov (United States)

    Rupesh, Kanchi Ravi; Smith, Aaron; Boehmer, Paul E.

    2014-01-01

    We have adapted the thermal shift assay to measure the ligand binding properties of the herpes simplex virus-1 single-strand DNA binding protein, ICP8. By measuring SYPRO Orange fluorescence in microtiter plates using a fluorescence-enabled thermal cycler, we have quantified the effects of oligonucleotide ligands on the melting temperature of ICP8. We found that single-stranded oligomers raise the melting temperature of ICP8 in a length- and concentration-dependent manner, ranging from 1 °C for (dT)5 to a maximum of 9 °C with oligomers ≥10 nucleotides, with an apparent Kd of <1 µM for (dT)20. Specifically, the results indicate that ICP8 is capable of interacting with oligomers as short as 5 nucleotides. Moreover, the observed increases in melting temperature of up to 9 °C, indicates that single-strand DNA binding significantly stabilizes the structure of ICP8. This assay may be applied to investigate the ligand binding proteins of other single-strand DNA binding proteins and used as a high-throughput screen to identify compounds with therapeutic potential that inhibit single-strand DNA binding. As proof of concept, the single-strand DNA binding agent ciprofloxacin reduces the ligand induced stabilization of the melting temperature of ICP8 in a dose-dependent manner. PMID:25449284

  6. Secondary ligand-directed assembly of Co(II) coordination polymers based on a pyridine carboxylate ligand

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Ke-Li; Zhang, Yi-Ping; Cai, Yi-Ni; Xu, Xiao-Wei; Feng, Yun-Long, E-mail: sky37@zjnu.cn

    2014-07-01

    To investigate the influence of hydrogen bonds and secondary ligands on the structures and properties of the resulting frameworks, five new Co(II) compounds have been synthesized by the reactions of Co(II) salts and 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL) with four rationally selected dicarboxylic acid ligands. Without secondary ligand, we got one compound [CoL{sub 2}(H{sub 2}O){sub 2}]{sub n}·2nH{sub 2}O (1), which possesses a 1D chain structure. In the presence of ancillary ligands, namely, 1,3-adamantanedicarboxylic acid (H{sub 2}adbc), terephthalic acid (H{sub 2}tpa), thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) and 1,4-benzenedithioacetic acid (H{sub 2}bdtc), four 3D structures [Co{sub 2}L{sub 2}(adbc)]{sub n}·nH{sub 2}O (2), [Co{sub 2}L{sub 2}(tpa)]{sub n} (3), [Co{sub 2}L{sub 2}(tdc)]{sub n} (4), [Co{sub 2}L{sub 2}(bdtc)(H{sub 2}O)]{sub n} (5) were obtained, respectively. It can be observed from the architectures of 1–5 that hydrogen bonds and secondary ligands both have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. The XRPD, TGA data of title polymers and the magnetic properties for 2 and 5 have also been investigated. - Graphical abstract: The structural differences show that the ancillary ligands have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. - Highlights: • Five new Co(II) coordination polymers have been synthesized by solvothermal reactions based on 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL). • The long-flexible ligand (HL) is a good candidate to produce interpenetrating architectures. • The secondary dicarboxylic acid ligands play important roles in the spatial connective fashions and the formation of various dimensional compounds. • The magnetism studies show that both 2 and 5 exhibit antiferromagnetic interactions.

  7. Effects of PPARγ ligands on TGF-β1-induced epithelial-mesenchymal transition in alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Dagher Hayat

    2010-02-01

    Full Text Available Abstract Background Transforming growth factor β1 (TGF-β1-mediated epithelial mesenchymal transition (EMT of alveolar epithelial cells (AEC may contribute to lung fibrosis. Since PPARγ ligands have been shown to inhibit fibroblast activation by TGF-β1, we assessed the ability of the thiazolidinediones rosiglitazone (RGZ and ciglitazone (CGZ to regulate TGF-β1-mediated EMT of A549 cells, assessing changes in cell morphology, and expression of cell adhesion molecules E-cadherin (epithelial cell marker and N-cadherin (mesenchymal cell marker, and collagen 1α1 (COL1A1, CTGF and MMP-2 mRNA. Methods Serum-deprived A549 cells (human AEC cell line were pre-incubated with RGZ and CGZ (1 - 30 μM in the absence or presence of the PPARγ antagonist GW9662 (10 μM before TGFβ-1 (0.075-7.5 ng/ml treatment for up to 72 hrs. Changes in E-cadherin, N-cadherin and phosphorylated Smad2 and Smad3 levels were analysed by Western blot, and changes in mRNA levels including COL1A1 assessed by RT-PCR. Results TGFβ-1 (2.5 ng/ml-induced reductions in E-cadherin expression were associated with a loss of epithelial morphology and cell-cell contact. Concomitant increases in N-cadherin, MMP-2, CTGF and COL1A1 were evident in predominantly elongated fibroblast-like cells. Neither RGZ nor CGZ prevented TGFβ1-induced changes in cell morphology, and PPARγ-dependent inhibitory effects of both ligands on changes in E-cadherin were only evident at submaximal TGF-β1 (0.25 ng/ml. However, both RGZ and CGZ inhibited the marked elevation of N-cadherin and COL1A1 induced by TGF-β1 (2.5 ng/ml, with effects on COL1A1 prevented by GW9662. Phosphorylation of Smad2 and Smad3 by TGF-β1 was not inhibited by RGZ or CGZ. Conclusions RGZ and CGZ inhibited profibrotic changes in TGF-β1-stimulated A549 cells independently of inhibition of Smad phosphorylation. Their inhibitory effects on changes in collagen I and E-cadherin, but not N-cadherin or CTGF, appeared to be PPAR

  8. The PPARγ ligand ciglitazone regulates androgen receptor activation differently in androgen-dependent versus androgen-independent human prostate cancer cells

    International Nuclear Information System (INIS)

    The androgen receptor (AR) regulates growth and progression of androgen-dependent as well as androgen-independent prostate cancer cells. Peroxisome proliferator-activated receptor gamma (PPARγ) agonists have been reported to reduce AR activation in androgen-dependent LNCaP prostate cancer cells. To determine whether PPARγ ligands are equally effective at inhibiting AR activity in androgen-independent prostate cancer, we examined the effect of the PPARγ ligands ciglitazone and rosiglitazone on C4-2 cells, an androgen- independent derivative of the LNCaP cell line. Luciferase-based reporter assays and Western blot analysis demonstrated that PPARγ ligand reduced dihydrotestosterone (DHT)-induced increases in AR activity in LNCaP cells. However, in C4-2 cells, these compounds increased DHT-induced AR driven luciferase activity. In addition, ciglitazone did not significantly alter DHT-mediated increases in prostate specific antigen (PSA) protein or mRNA levels within C4-2 cells. siRNA-based experiments demonstrated that the ciglitazone-induced regulation of AR activity observed in C4-2 cells was dependent on the presence of PPARγ. Furthermore, overexpression of the AR corepressor cyclin D1 inhibited the ability of ciglitazone to induce AR luciferase activity in C4-2 cells. Thus, our data suggest that both PPARγ and cyclin D1 levels influence the ability of ciglitazone to differentially regulate AR signaling in androgen-independent C4-2 prostate cancer cells.

  9. Combined effects of ankylosing spondylitis-associated ERAP1 polymorphisms outside the catalytic and peptide-binding sites on the processing of natural HLA-B27 ligands.

    Science.gov (United States)

    Martín-Esteban, Adrian; Gómez-Molina, Patricia; Sanz-Bravo, Alejandro; López de Castro, José A

    2014-02-14

    ERAP1 polymorphism involving residues 528 and 575/725 is associated with ankylosing spondylitis among HLA-B27-positive individuals. We used four recombinant variants to address the combined effects of the K528R and D575N polymorphism on the processing of HLA-B27 ligands. The hydrolysis of a fluorogenic substrate, Arg-528/Asp-575 ERAP1 was a major determinant of the abundance of these peptides in vivo. The hydrolysis of fluorogenic and peptide substrates by an HLA-B27 ligand or a shorter peptide, respectively, was increasingly inhibited as a function of ERAP1 activity, indicating that residues 528 and 575 affect substrate inhibition of ERAP1 trimming. The significant and complex effects of co-occurring ERAP1 polymorphisms on multiple HLA-B27 ligands, and their potential to alter the immunological and pathogenetic features of HLA-B27 as a function of the ERAP1 context, explain the epistatic association of both molecules in ankylosing spondylitis. PMID:24352655

  10. Sulforaphane inhibits multiple inflammasomes through an Nrf2-independent mechanism.

    Science.gov (United States)

    Greaney, Allison J; Maier, Nolan K; Leppla, Stephen H; Moayeri, Mahtab

    2016-01-01

    The inflammasomes are intracellular complexes that have an important role in cytosolic innate immune sensing and pathogen defense. Inflammasome sensors detect a diversity of intracellular microbial ligands and endogenous danger signals and activate caspase-1, thus initiating maturation and release of the proinflammatory cytokines interleukin-1β and interleukin-18. These events, although crucial to the innate immune response, have also been linked to the pathology of several inflammatory and autoimmune disorders. The natural isothiocyanate sulforaphane, present in broccoli sprouts and available as a dietary supplement, has gained attention for its antioxidant, anti-inflammatory, and chemopreventive properties. We discovered that sulforaphane inhibits caspase-1 autoproteolytic activation and interleukin-1β maturation and secretion downstream of the nucleotide-binding oligomerization domain-like receptor leucine-rich repeat proteins NLRP1 and NLRP3, NLR family apoptosis inhibitory protein 5/NLR family caspase-1 recruitment domain-containing protein 4 (NAIP5/NLRC4), and absent in melanoma 2 (AIM2) inflammasome receptors. Sulforaphane does not inhibit the inflammasome by direct modification of active caspase-1 and its mechanism is not dependent on protein degradation by the proteasome or de novo protein synthesis. Furthermore, sulforaphane-mediated inhibition of the inflammasomes is independent of the transcription factor nuclear factor erythroid-derived 2-like factor 2 (Nrf2) and the antioxidant response-element pathway, to which many of the antioxidant and anti-inflammatory effects of sulforaphane have been attributed. Sulforaphane was also found to inhibit cell recruitment to the peritoneum and interleukin-1β secretion in an in vivo peritonitis model of acute gout and to reverse NLRP1-mediated murine resistance to Bacillus anthracis spore infection. These findings demonstrate that sulforaphane inhibits the inflammasomes through a novel mechanism and contributes to

  11. Naloxone inhibits superoxide but not enzyme release by human neutrophils

    International Nuclear Information System (INIS)

    The release of toxic oxygen metabolites and enzymes by phagocytic cells is thought to play a role in the multisystemic tissue injury of sepsis. Naloxone protects septic animals. We have found that at concentrations administered to animals (10-7 to 10-4M), naloxone inhibited (p 2-) by human neutrophils (HN), stimulated with N-formyl methionyl leucyl phenylalanine (FMLP). Naloxone had no effect on cell viability. Maximum inhibition was 65% of the total O2- released (13.1 nMoles/8 min/320,000 cells). FMLP-stimulated release of beta-glucoronidase or lysozyme was not altered by naloxone. Naloxone had no effect on the binding of 3H FMLP to HN. Using 3H naloxone and various concentrations of unlabeled naloxone higher affinity (K/sub D/ = 12nM) and lower affinity (K/sub D/ = 4.7 x 10-5) binding sites were detected. The K/sub D/ of the low affinity site corresponded to the ED50 for naloxone inhibition of O2- (1 x 10-5M). Binding to this low affinity site was decreased by (+) naloxone, beta-endorphin and N acetyl beta-endorphin, but not by leu-enkephalin, thyrotropin releasing factor, prostaglandin D2 or E2. Conclusions: (1) naloxone inhibits FMLP-stimulated O2 but not enzyme release, (2) this inhibition is not due to alteration of FMLP receptor binding, (3) naloxone may act via a low affinity binding site which is ligand specific, and (4) a higher affinity receptor is present on HN

  12. Lithocholic acid is an Eph-ephrin ligand interfering with Eph-kinase activation.

    Directory of Open Access Journals (Sweden)

    Carmine Giorgio

    Full Text Available Eph-ephrin system plays a central role in a large variety of human cancers. In fact, alterated expression and/or de-regulated function of Eph-ephrin system promotes tumorigenesis and development of a more aggressive and metastatic tumour phenotype. In particular EphA2 upregulation is correlated with tumour stage and progression and the expression of EphA2 in non-transformed cells induces malignant transformation and confers tumorigenic potential. Based on these evidences our aim was to identify small molecules able to modulate EphA2-ephrinA1 activity through an ELISA-based binding screening. We identified lithocholic acid (LCA as a competitive and reversible ligand inhibiting EphA2-ephrinA1 interaction (Ki =  49 µM. Since each ephrin binds many Eph receptors, also LCA does not discriminate between different Eph-ephrin binding suggesting an interaction with a highly conserved region of Eph receptor family. Structurally related bile acids neither inhibited Eph-ephrin binding nor affected Eph phosphorylation. Conversely, LCA inhibited EphA2 phosphorylation induced by ephrinA1-Fc in PC3 and HT29 human prostate and colon adenocarcinoma cell lines (IC(50  = 48 and 66 µM, respectively without affecting cell viability or other receptor tyrosine-kinase (EGFR, VEGFR, IGFR1β, IRKβ activity. LCA did not inhibit the enzymatic kinase activity of EphA2 at 100 µM (LANCE method confirming to target the Eph-ephrin protein-protein interaction. Finally, LCA inhibited cell rounding and retraction induced by EphA2 activation in PC3 cells. In conclusion, our findings identified a hit compound useful for the development of molecules targeting ephrin system. Moreover, as ephrin signalling is a key player in the intestinal cell renewal, our work could provide an interesting starting point for further investigations about the role of LCA in the intestinal homeostasis.

  13. Water-soluble diphosphadiazacyclooctanes as ligands for aqueous organometallic catalysis

    KAUST Repository

    Boulanger, Jérôme

    2012-12-01

    Two new water-soluble diphosphacyclooctanes been synthesized and characterized by NMR and surface tension measurements. Both phosphanes proved to coordinate rhodium in a very selective way as well-defined bidentates were obtained. When used in Rh-catalyzed hydroformylation of terminal alkenes, both ligands positively impacted the reaction chemoselectivity. © 2012 Elsevier B.V.

  14. Optimal Overlay of Ligands with Flexible Bonds Using Differential Evolution

    DEFF Research Database (Denmark)

    Pedersen, Christian Storm; Kristensen, Thomas Greve

    When designing novel drugs, the need arise to screen databases for structures resembling active ligands, e.g. by generating a query meta-structure which summarizes these. We propose a flexible bond method for making a meta-structure and present Monte Carlo, Nelder-Mead and Differential Evolution...

  15. The imidazoline receptors and ligands in pain modulation

    Directory of Open Access Journals (Sweden)

    Nurcan Bektas

    2015-01-01

    Full Text Available Pain is an unpleasant experience and effects daily routine negatively. Although there are various drugs, many of them are not entirely successful in relieving pain, since pain modulation is a complex process involving numerous mediators and receptors. Therefore, it is a rational approach to identify the factors involved in the complex process and develop new agents that act on these pain producing mechanisms. In this respect, the involvement of the imidazoline receptors in pain modulation has drawn attention in recent years. In this review, it is aimed to focus on the imidazoline receptors and their ligands which contribute to the pain modulation. It is demonstrated that imidazoline-2 (I2 receptors are steady new drug targets for analgesics. Even if the mechanism of I2receptor is not well known in the modulation of pain, it is known that it plays a role in tonic and chronic pain but not in acute phasic pain. Moreover, the I2receptor ligands increase the analgesic effects of opioids in both acute and chronic pain and prevent the development of opioid tolerance. So, they are valuable for the chronic pain treatment and also therapeutic coadjuvants in the management of chronic pain with opiate drugs due to the attenuation of opioid tolerance and addiction. Thus, the use of the ligands which bind to the imidazoline receptors is an effective strategy for relieving pain. This educational forum exhibits the role of imidazoline receptors and ligands in pain process by utilizing experimental studies.

  16. Fluorescent ligands for studying neuropeptide receptors by confocal microscopy

    Directory of Open Access Journals (Sweden)

    A. Beaudet

    1998-11-01

    Full Text Available This paper reviews the use of confocal microscopy as it pertains to the identification of G-protein coupled receptors and the study of their dynamic properties in cell cultures and in mammalian brain following their tagging with specific fluorescent ligands. Principles that should guide the choice of suitable ligands and fluorophores are discussed. Examples are provided from the work carried out in the authors' laboratory using custom synthetized fluoresceinylated or BODIPY-tagged bioactive peptides. The results show that confocal microscopic detection of specifically bound fluorescent ligands permits high resolution appraisal of neuropeptide receptor distribution both in cell culture and in brain sections. Within the framework of time course experiments, it also allows for a dynamic assessment of the internalization and subsequent intracellular trafficking of bound fluorescent molecules. Thus, it was found that neurotensin, somatostatin and mu- and delta-selective opioid peptides are internalized in a receptor-dependent fashion and according to receptor-specific patterns into their target cells. In the case of neurotensin, this internalization process was found to be clathrin-mediated, to proceed through classical endosomal pathways and, in neurons, to result in a mobilization of newly formed endosomes from neural processes to nerve cell bodies and from the periphery of cell bodies towards the perinuclear zone. These mechanisms are likely to play an important role for ligand inactivation, receptor regulation and perhaps also transmembrane signaling.

  17. The imidazoline receptors and ligands in pain modulation.

    Science.gov (United States)

    Bektas, Nurcan; Nemutlu, Dilara; Arslan, Rana

    2015-01-01

    Pain is an unpleasant experience and effects daily routine negatively. Although there are various drugs, many of them are not entirely successful in relieving pain, since pain modulation is a complex process involving numerous mediators and receptors. Therefore, it is a rational approach to identify the factors involved in the complex process and develop new agents that act on these pain producing mechanisms. In this respect, the involvement of the imidazoline receptors in pain modulation has drawn attention in recent years. In this review, it is aimed to focus on the imidazoline receptors and their ligands which contribute to the pain modulation. It is demonstrated that imidazoline-2 (I2) receptors are steady new drug targets for analgesics. Even if the mechanism of I2 receptor is not well known in the modulation of pain, it is known that it plays a role in tonic and chronic pain but not in acute phasic pain. Moreover, the I2 receptor ligands increase the analgesic effects of opioids in both acute and chronic pain and prevent the development of opioid tolerance. So, they are valuable for the chronic pain treatment and also therapeutic coadjuvants in the management of chronic pain with opiate drugs due to the attenuation of opioid tolerance and addiction. Thus, the use of the ligands which bind to the imidazoline receptors is an effective strategy for relieving pain. This educational forum exhibits the role of imidazoline receptors and ligands in pain process by utilizing experimental studies. PMID:26600633

  18. A Guided Inquiry Activity for Teaching Ligand Field Theory

    Science.gov (United States)

    Johnson, Brian J.; Graham, Kate J.

    2015-01-01

    This paper will describe a guided inquiry activity for teaching ligand field theory. Previous research suggests the guided inquiry approach is highly effective for student learning. This activity familiarizes students with the key concepts of molecular orbital theory applied to coordination complexes. Students will learn to identify factors that…

  19. Ligand Induced Spin Crossover in Penta-Coordinated Ferric Dithiocarbamates

    Science.gov (United States)

    Ganguli, P.; Iyer, R. M.

    1981-09-01

    On addition of lewis bases to Fe(dtc)2X, ligand exchange takes place through a SN2 mechanism, with a parallel spin crossover in the ferric ion. The two species (S = 3/2 and S = 5/2) formed are in dynamic chemical equilibrium, and a slow decomposition is then initiated.

  20. Ligand for neurotransmission SPECT in extra-pyramidal diseases

    International Nuclear Information System (INIS)

    It is now possible to study by scintigraphy some parameters of dopaminergic neurotransmission with iodinated ligands. Some clinical studies have shown the interest of this kind of exploration for the early diagnosis, the differential diagnosis and the follow-up of evolution and treatment of the different extra pyramidal pathologies. However, advances are still expected in several fields (tracers, cameras resolutions). (N.C.)

  1. Helquats as a new class of G-quadruplex ligands

    Czech Academy of Sciences Publication Activity Database

    Devadig, Pradeep; Kozák, Jaroslav; Kužmová, Erika; Hubálková, Pavla; Novotná, J.; Komárková, Veronika; Císařová, I.; Šaman, David; Pohl, Radek; Bednárová, Lucie; Urbanová, M.; Hájek, Miroslav; Teplý, Filip

    Praha: Czech Chemical Society, 2015. s. 66. [Liblice 2015. Advances in Organic , Bioorganic and Pharmaceutical Chemistry /50./. 06.11.2015-08.11.2015, Olomouc] R&D Projects: GA ČR GA13-19213S Institutional support: RVO:61388963 Keywords : helquats * G-quadruplex ligands Subject RIV: CC - Organic Chemistry

  2. Dependence of acridine adsorption on ligand hydration enthalpy

    Energy Technology Data Exchange (ETDEWEB)

    Matzner, R.; Bales, R.C. (Univ. of Arizona, Tucson, AZ (United States). Dept. of Hydrology and Water Resources)

    1994-11-01

    The environmental fate of acridine is of concern because of its toxic and teratogenic properties. It is found in tobacco smoke, air pollution source effluents, recent lake sediments, wood preservative wastewater, wastewater treatment plant biosludge, and contaminated groundwater. The effect of the aqueous solution pH and ligand type (H[sub 2]PO[sup [minus

  3. Selective Electrocatalytic Activity of Ligand Stabilized Copper Oxide Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kauffman, Douglas R; Ohodnicki, Paul R; Kail, Brian W; Matranga, Christopher

    2011-01-01

    Ligand stabilization can influence the surface chemistry of Cu oxide nanoparticles (NPs) and provide unique product distributions for electrocatalytic methanol (MeOH) oxidation and CO{sub 2} reduction reactions. Oleic acid (OA) stabilized Cu{sub 2}O and CuO NPs promote the MeOH oxidation reaction with 88% and 99.97% selective HCOH formation, respectively. Alternatively, CO{sub 2} is the only reaction product detected for bulk Cu oxides and Cu oxide NPs with no ligands or weakly interacting ligands. We also demonstrate that OA stabilized Cu oxide NPs can reduce CO{sub 2} into CO with a {approx}1.7-fold increase in CO/H{sub 2} production ratios compared to bulk Cu oxides. The OA stabilized Cu oxide NPs also show 7.6 and 9.1-fold increases in CO/H{sub 2} production ratios compared to weakly stabilized and non-stabilized Cu oxide NPs, respectively. Our data illustrates that the presence and type of surface ligand can substantially influence the catalytic product selectivity of Cu oxide NPs.

  4. Ligand and ensemble effects in adsorption on alloy surfaces

    DEFF Research Database (Denmark)

    Liu, Ping; Nørskov, Jens Kehlet

    2001-01-01

    Density functional theory is used to study the adsorption of carbon monoxide, oxygen and nitrogen on various Au/Pd(111) bimetallic alloy surfaces. By varying the Au content in the surface we are able to make a clear separation into geometrical (or ensemble) effects and electronic (or ligand......) effects determining the adsorption properties....

  5. Optimal Overlay of Ligands with Flexible Bonds Using Differential Evolution

    DEFF Research Database (Denmark)

    Kristensen, Thomas Greve; Pedersen, Christian Storm

    2009-01-01

    spatial alignment of a set of active ligands taking the flexibility of chemical bonds into account. We present two implementations of our method. One using Differential Evolution (DE) for numerical optimization, and one using the Nelder-Mead method for numerical optimization. We investigate the quality of...

  6. Group 4 Metal Complexes of Chelating Cyclopentadienyl-ketimide Ligands

    Czech Academy of Sciences Publication Activity Database

    Večeřa, M.; Varga, Vojtěch; Císařová, I.; Pinkas, Jiří; Kucharczyk, P.; Sedlařík, V.; Lamač, Martin

    2016-01-01

    Roč. 35, č. 5 (2016), s. 785-798. ISSN 0276-7333 R&D Projects: GA ČR(CZ) GA14-08531S; GA MŠk(CZ) LO1504 Institutional support: RVO:61388955 Keywords : group 4 metal complexes * cyclopentadienyl-ketimide ligands * metallocenes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.126, year: 2014

  7. Ultrafast Electron Trapping in Ligand-Exchanged Quantum Dot Assemblies

    Science.gov (United States)

    Kikkawa, J. M.; Turk, M. E.; Vora, P. M.; Fafarman, A. T.; Diroll, B. T.; Murray, C. B.; Kagan, C. R.

    2015-03-01

    We use time-integrated and time-resolved photoluminescence and absorption to characterize the low-temperature (10 K) optical properties of CdSe quantum dot (QD) solids with different ligand and annealing preparation. Close-packed CdSe quantum dot solids are prepared with native aliphatic ligands and with thiocyanate with and without thermal annealing. Using sub-picosecond, broadband time-resolved photoluminescence and absorption, we find that ligand exchange increases the rate of carrier surface trapping. We further determine that holes within the QD core, rather than electrons, can bleach the band-edge transition in these samples at low temperature, a finding that comes as a surprise given what is known about the surface treatment in these QDs. We find that our ligand treatments lead to faster electron trapping to the quantum dot surface, a greater proportion of surface photoluminescence, and an increased rate of nonradiative decay due to enhanced interparticle coupling upon exchange and annealing. All aspects of this work supported by the U.S. Department of Energy Office of Basic Energy Sciences, Division of Materials Science and Engineering, under Award No. DE-SC0002158.

  8. GluR2 ligand-binding core complexes

    DEFF Research Database (Denmark)

    Kasper, C; Lunn, M-L; Liljefors, T; Gouaux, E; Egebjerg, J; Kastrup, Jette Sandholm Jensen

    2002-01-01

    X-ray structures of the GluR2 ligand-binding core in complex with (S)-Des-Me-AMPA and in the presence and absence of zinc ions have been determined. (S)-Des-Me-AMPA, which is devoid of a substituent in the 5-position of the isoxazolol ring, only has limited interactions with the partly hydrophobic...

  9. Modeling of metal interaction geometries for protein-ligand docking.

    Science.gov (United States)

    Seebeck, Birte; Reulecke, Ingo; Kämper, Andreas; Rarey, Matthias

    2008-05-15

    The accurate modeling of metal coordination geometries plays an important role for structure-based drug design applied to metalloenzymes. For the development of a new metal interaction model, we perform a statistical analysis of metal interaction geometries that are relevant to protein-ligand complexes. A total of 43,061 metal sites of the Protein Data Bank (PDB), containing amongst others magnesium, calcium, zinc, iron, manganese, copper, cadmium, cobalt, and nickel, were evaluated according to their metal coordination geometry. Based on statistical analysis, we derived a model for the automatic calculation and definition of metal interaction geometries for the purpose of molecular docking analyses. It includes the identification of the metal-coordinating ligands, the calculation of the coordination geometry and the superposition of ideal polyhedra to identify the optimal positions for free coordination sites. The new interaction model was integrated in the docking software FlexX and evaluated on a data set of 103 metalloprotein-ligand complexes, which were extracted from the PDB. In a first step, the quality of the automatic calculation of the metal coordination geometry was analyzed. In 74% of the cases, the correct prediction of the coordination geometry could be determined on the basis of the protein structure alone. Secondly, the new metal interaction model was tested in terms of predicting protein-ligand complexes. In the majority of test cases, the new interaction model resulted in an improved docking accuracy of the top ranking placements. PMID:18041759

  10. NMR-based screening of membrane protein ligands.

    Science.gov (United States)

    Yanamala, Naveena; Dutta, Arpana; Beck, Barbara; van Vliet, Bart; van Fleet, Bart; Hay, Kelly; Yazbak, Ahmad; Ishima, Rieko; Doemling, Alexander; Klein-Seetharaman, Judith

    2010-03-01

    Membrane proteins pose problems for the application of NMR-based ligand-screening methods because of the need to maintain the proteins in a membrane mimetic environment such as detergent micelles: they add to the molecular weight of the protein, increase the viscosity of the solution, interact with ligands non-specifically, overlap with protein signals, modulate protein dynamics and conformational exchange and compromise sensitivity by adding highly intense background signals. In this article, we discuss the special considerations arising from these problems when conducting NMR-based ligand-binding studies with membrane proteins. While the use of (13)C and (15)N isotopes is becoming increasingly feasible, (19)F and (1)H NMR-based approaches are currently the most widely explored. By using suitable NMR parameter selection schemes independent of or exploiting the presence of detergent, (1)H-based approaches require least effort in sample preparation because of the high sensitivity and natural abundance of (1)H in both, ligand and protein. On the other hand, the (19)F nucleus provides an ideal NMR probe because of its similarly high sensitivity to that of (1)H and the lack of natural (19)F background in biologic systems. Despite its potential, the use of NMR spectroscopy is highly underdeveloped in the area of drug discovery for membrane proteins. PMID:20331645

  11. Synthesis and evaluation of potential ligands for nuclear waste processing

    NARCIS (Netherlands)

    Iqbal, M.

    2012-01-01

    The research presented in this thesis deals with the synthesis and evaluation of new potential ligands for the complexation of actinide and lanthanide ions either for their extraction from bulk radioactive waste or their stripping from an extracted organic phase for final processing of the waste. In

  12. Synthesis and Characterization of Metal Complexes with Schiff Base Ligands

    Science.gov (United States)

    Wilkinson, Shane M.; Sheedy, Timothy M.; New, Elizabeth J.

    2016-01-01

    In order for undergraduate laboratory experiments to reflect modern research practice, it is essential that they include a range of elements, and that synthetic tasks are accompanied by characterization and analysis. This intermediate general chemistry laboratory exercise runs over 2 weeks, and involves the preparation of a Schiff base ligand and…

  13. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation

    KAUST Repository

    Tang, Jiang

    2011-09-18

    Colloidal-quantum-dot (CQD) optoelectronics offer a compelling combination of solution processing and spectral tunability through quantum size effects. So far, CQD solar cells have relied on the use of organic ligands to passivate the surface of the semiconductor nanoparticles. Although inorganic metal chalcogenide ligands have led to record electronic transport parameters in CQD films, no photovoltaic device has been reported based on such compounds. Here we establish an atomic ligand strategy that makes use of monovalent halide anions to enhance electronic transport and successfully passivate surface defects in PbS CQD films. Both time-resolved infrared spectroscopy and transient device characterization indicate that the scheme leads to a shallower trap state distribution than the best organic ligands. Solar cells fabricated following this strategy show up to 6% solar AM1.5G power-conversion efficiency. The CQD films are deposited at room temperature and under ambient atmosphere, rendering the process amenable to low-cost, roll-by-roll fabrication. © 2011 Macmillan Publishers Limited. All rights reserved.

  14. Organoosmium complexes of imidazole-containing chelate acceptor ligands

    Czech Academy of Sciences Publication Activity Database

    Sarper, O.; Sarkar, B.; Fiedler, Jan; Lissner, F.; Kaim, W.

    2010-01-01

    Roč. 363, č. 12 (2010), s. 3070-3077. ISSN 0020-1693 R&D Projects: GA MŠk OC09043 Institutional research plan: CEZ:AV0Z40400503 Keywords : arene ligand * electrochemistry * electronic structure Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.899, year: 2010

  15. NMR-based screening of membrane protein ligands

    NARCIS (Netherlands)

    Yanamala, Naveena; Dutta, Arpana; Beck, Barbara; Van Fleet, Bart; Hay, Kelly; Yazbak, Ahmad; Ishima, Rieko; Doemling, Alexander; Klein-Seetharaman, Judith

    2010-01-01

    Membrane proteins pose problems for the application of NMR-based ligand-screening methods because of the need to maintain the proteins in a membrane mimetic environment such as detergent micelles: they add to the molecular weight of the protein, increase the viscosity of the solution, interact with

  16. Solvent-induced desorption of alkanethiol ligands from Au nanoparticles.

    Science.gov (United States)

    Huang, Yuanyuan; Liu, Wei; Cheng, Hao; Yao, Tao; Yang, Lina; Bao, Jie; Huang, Ting; Sun, Zhihu; Jiang, Yong; Wei, Shiqiang

    2016-06-21

    Removing surfactants from a colloidal metal nanoparticle surface is necessary for their realistic applications, and how they could be stripped is a subject of active investigation. Here, we report a solvent-induced desorption of dodecanethiol ligands from the gold nanoparticle surface, and traced this desorption process using a combination of in situ X-ray absorption fine structure (XAFS) and Raman spectroscopic techniques. In situ analysis results reveal that the solvent exchange of ethanol with tetrahydrofuran (THF) can effectively remove dodecanethiol ligands while keeping the particle morphology unchanged. Upon increasing the THF/ethanol ratio from 0 : 1 to 5 : 1, the surface coverage of thiol on the Au surface is reduced from 0.47 to 0.07, suggesting the depletion of ligands first from the nanoparticle facet sites, then from the edge sites, while the ligands at the corner sites are intact. This work enriches our knowledge on surfactant removal and may pave the way towards preparing surface-clean nanoparticles for practical applications. PMID:27241025

  17. Luteolin, a flavonoid, inhibits AP-1 activation by basophils

    International Nuclear Information System (INIS)

    Flavonoids including luteolin, apigenin, and fisetin are inhibitors of IL-4 synthesis and CD40 ligand expression by basophils. This study was done to search for compounds with greater inhibitory activity of IL-4 expression and to clarify the molecular mechanisms through which flavonoids inhibit their expression. Of the 37 flavonoids and related compounds examined, ayanin, luteolin, and apigenin were the strongest inhibitors of IL-4 production by purified basophils in response to anti-IgE antibody plus IL-3. Luteolin did not suppress Syk or Lyn phosphorylation in basophils, nor did suppress p54/46 SAPK/JNK, p38 MAPK, and p44/42 MAPK activation by a basophilic cell line, KU812 cells, stimulated with A23187 and PMA. However, luteolin did inhibit phosphorylation of c-Jun and DNA binding activity of AP-1 in nuclear lysates from stimulated KU812 cells. These results provide a fundamental structure of flavonoids for IL-4 inhibition and demonstrate a novel action of flavonoids that suppresses the activation of AP-1

  18. Radiosensitization by histone deacetylase inhibition in an osteosarcoma mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Blattmann, C. [Olgahospital, Stuttgart (Germany). Paediatrie 5; University Children' s Hospital of Heidelberg (Germany). Dept. of Pediatric Oncology, Hematology and Immunology; Thiemann, M. [German Cancer Research Center (DKFZ), Heidelberg (Germany). Dept. of Radiotherapy, Molecular- and Translational Radiation Oncology; Stenzinger, A. [Heidelberg Univ. (Germany). Inst. of Pathology; and others

    2013-11-15

    Background: Osteosarcomas (OS) are highly malignant and radioresistant tumors. Histone deacetylase inhibitors (HDACi) constitute a novel class of anticancer agents. We sought to investigate the effect of combined treatment with suberoylanilide hydroxamic acid (SAHA) and radiotherapy in OS in vivo. Methods: Clonogenic survival of human OS cell lines as well as tumor growth delay of OS xenografts were tested after treatment with either vehicle, radiotherapy (XRT), SAHA, or XRT and SAHA. Tumor proliferation, necrosis, microvascular density, apoptosis, and p53/p21 were monitored by immunohistochemistry. The CD95 pathway was performed by flow cytometry, caspase (3/7/8) activity measurements, and functional inhibition of CD95 death signaling. Results: Combined treatment with SAHA and XRT markedly reduced the surviving fraction of OS cells as compared to XRT alone. Likewise, dual therapy significantly inhibited OS tumor growth in vivo as compared to XRT alone, reflected by reduced tumor proliferation, impaired angiogenesis, and increased apoptosis. Addition of HDACi to XRT led to elevated p53, p21, CD95, and CD95L expression. Inhibition of CD95 signaling reduced HDACi- and XRT-induced apoptosis. Conclusion: Our data show that HDACi increases the radiosensitivity of osteosarcoma cells at least in part via ligand-induced apoptosis. HDACi thus emerge as potentially useful treatment components of OS. (orig.)

  19. Purified polysaccharide from Ginkgo biloba leaves inhibits P-selectin-mediated leucocyte adhesion and inflammation

    Institute of Scientific and Technical Information of China (English)

    Rui FEI; Yu FEI; Sheng ZHENG; Yan-guang GAO; Hong-xia SUN; Xian-lu ZENG

    2008-01-01

    Aim:To investigate the anti-inflammatory mechanism of the polysaccharides of Ginkgo biloba leaves (PGBL) by inhibiting leucocyte adhesion. Methods:The rough PGBL were isolated and purified. The anti-inflammatory effects of purified PGBL (p-PGBL) were assayed by ear edema induced by xylol and the acute perito-nitis model in mice. The effect of p-PGBL on inhibiting the interaction between P-selectin and its ligands was investigated by flow cytometry and flow chamber. Results:p-PGBL could effectively inhibit the acute inflammation in mice and in-terfere with the adhesion of HL-60 cells, a human leukaemia cell line, or neutro-phils to P-selectin in static conditions, as well as the adhesion of neutrophils to Chinese hamster ovary cells expressing human P-selectin and human umbilical vein endothelial cells in flow conditions in a dose-dependant manner. Conclusions:p-PGBL can inhibit the inflammatory process through interfering with the interac-tion between P-selectin and its ligands.

  20. Consensus statement on blocking the effects of interleukin-6 and in particular by interleukin-6 receptor inhibition in rheumatoid arthritis and other inflammatory conditions

    DEFF Research Database (Denmark)

    Smolen, Josef S; Schoels, Monika M; Nishimoto, Norihiro;

    2013-01-01

    BACKGROUND: Since approval of tocilizumab (TCZ) for treatment of rheumatoid arthritis (RA) and juvenile idiopathic arthritis (JIA), interleukin 6 (IL-6) pathway inhibition was evaluated in trials of TCZ and other agents targeting the IL-6 receptor and ligand in various RA populations and other in...

  1. Magnesium incorporation in calcite in the presence of organic ligands

    Science.gov (United States)

    Mavromatis, Vasileios; Baldermann, Andre; Purgstaller, Bettina; Dietzel, Martin

    2015-04-01

    The formation of authigenic Mg-calcites in marine early diagenetic environments is commonly driven by a bio-induced process, the anaerobic oxidation of methane (AOM), which provides inorganic carbon required for the precipitation of such authigenic carbonates. In such settings the availability of major and/or trace divalent metal cations (Me2+) incorporated in calcite and their aqueous speciation are controlled by the presence of aqueous organic molecules that are produced either as (by-)products of biological activity (i.e. exopolymeric substances) or during degradation of allochthonous organic matter in the sediments. Despite the fact that the presence of aqueous organic ligands strongly affects the growth rates and the mineralogy of precipitating CaCO3 polymorphs, till now no study addresses the role of Me2+-ligand aqueous complexes on the extent of Mg and/or other trace element content of Mg-calcites. In order to shed light on this process, relevant to authigenic calcite formation in organic-rich marine sediments and continental soils, we precipitated calcite in the presence of aqueous Mg and a variety of low molecular weight carboxylic- and aminoacids. Our experimental data indicate that the presence of organic ligands augments significantly the saturation state of calcite in the parent fluid during its precipitation. Moreover, they suggest that the higher the ligand concentration, the higher the obtained distribution coefficient of Mg in calcite. The latter is directly proportional to the ratio of Mg2+/Ca2+ aqueous ions for all ligands used. Hydrogeochemical modelling of the aqueous fluids indicate that the observed correlation can be explained by the stronger complexation of Ca2+ with organic ligands compared to Mg2+, which results in higher availability of Mg2+ vs. Ca2+ aqueous ions. Overall the obtained results suggest that the higher the organic ligand aqueous concentration the higher the Mg content of calcite forming from this fluid. These findings are

  2. The Notch ligand JAG1 is required for sensory progenitor development in the mammalian inner ear.

    Directory of Open Access Journals (Sweden)

    Amy E Kiernan

    2006-01-01

    Full Text Available In mammals, six separate sensory regions in the inner ear are essential for hearing and balance function. Each sensory region is made up of hair cells, which are the sensory cells, and their associated supporting cells, both arising from a common progenitor. Little is known about the molecular mechanisms that govern the development of these sensory organs. Notch signaling plays a pivotal role in the differentiation of hair cells and supporting cells by mediating lateral inhibition via the ligands Delta-like 1 and Jagged (JAG 2. However, another Notch ligand, JAG1, is expressed early in the sensory patches prior to cell differentiation, indicating that there may be an earlier role for Notch signaling in sensory development in the ear. Here, using conditional gene targeting, we show that the Jag1 gene is required for the normal development of all six sensory organs within the inner ear. Cristae are completely lacking in Jag1-conditional knockout (cko mutant inner ears, whereas the cochlea and utricle show partial sensory development. The saccular macula is present but malformed. Using SOX2 and p27kip1 as molecular markers of the prosensory domain, we show that JAG1 is initially expressed in all the prosensory regions of the ear, but becomes down-regulated in the nascent organ of Corti by embryonic day 14.5, when the cells exit the cell cycle and differentiate. We also show that both SOX2 and p27kip1 are down-regulated in Jag1-cko inner ears. Taken together, these data demonstrate that JAG1 is expressed early in the prosensory domains of both the cochlear and vestibular regions, and is required to maintain the normal expression levels of both SOX2 and p27kip1. These data demonstrate that JAG1-mediated Notch signaling is essential during early development for establishing the prosensory regions of the inner ear.

  3. Modelling uptake and toxicity of nickel in solution to Enchytraeus crypticus with biotic ligand model theory

    International Nuclear Information System (INIS)

    Protons and other cations may inhibit metal uptake and alleviate metal toxicity in aquatic organisms, but less is known about these interactions in soil organisms. The present study investigated the influence of solution chemistry on uptake and toxicity of Ni in Enchytraeus crypticus after 14 days exposure. Ca2+, Mg2+ and Na+ were found to exert significant effects on both uptake and toxicity of Ni. An extended Langmuir model, which incorporated cation competition effects, well predicted Ni uptake. The LC50{Ni2+} predicted by a developed Biotic Ligand Model matched well with observed values. These suggest that cation competition needs to be taken into account when modelling uptake and effects. The binding constants of Ni2+, Mg2+ and Na+ on the uptake and toxic action sites were similar, but for Ca2+ they differed. This indicates that the effect of Ca2+ on Ni2+ toxicity cannot simply be explained by the competition for entry into organism. - Highlights: • Enchytraeus crypticus was exposed to Ni in solutions with different cations. • Ni body concentration was not a good predictor of toxicity. • Ca2+, Mg2+ and Na+ exert significant effects on both uptake and toxicity of Ni. • The extended Langmuir model and BLM well predicted Ni uptake and toxicity. • But the mechanism of Ca interaction with Ni is different from that of Mg and Na. - Biotic Ligand Models predict Ni toxicity to Enchytraeus crypticus but do not take into account the different roles of Ca in affecting Ni uptake and effects

  4. The Notch Ligand JAG1 Is Required for Sensory Progenitor Development in the Mammalian Inner Ear.

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available In mammals, six separate sensory regions in the inner ear are essential for hearing and balance function. Each sensory region is made up of hair cells, which are the sensory cells, and their associated supporting cells, both arising from a common progenitor. Little is known about the molecular mechanisms that govern the development of these sensory organs. Notch signaling plays a pivotal role in the differentiation of hair cells and supporting cells by mediating lateral inhibition via the ligands Delta-like 1 and Jagged (JAG 2. However, another Notch ligand, JAG1, is expressed early in the sensory patches prior to cell differentiation, indicating that there may be an earlier role for Notch signaling in sensory development in the ear. Here, using conditional gene targeting, we show that the Jag1 gene is required for the normal development of all six sensory organs within the inner ear. Cristae are completely lacking in Jag1-conditional knockout (cko mutant inner ears, whereas the cochlea and utricle show partial sensory development. The saccular macula is present but malformed. Using SOX2 and p27 as molecular markers of the prosensory domain, we show that JAG1 is initially expressed in all the prosensory regions of the ear, but becomes down-regulated in the nascent organ of Corti by embryonic day 14.5, when the cells exit the cell cycle and differentiate. We also show that both SOX2 and p27 are down-regulated in Jag1-cko inner ears. Taken together, these data demonstrate that JAG1 is expressed early in the prosensory domains of both the cochlear and vestibular regions, and is required to maintain the normal expression levels of both SOX2 and p27. These data demonstrate that JAG1-mediated Notch signaling is essential during early development for establishing the prosensory regions of the inner ear.

  5. Surface expressed nucleolin is constantly induced in tumor cells to mediate calcium-dependent ligand internalization.

    Directory of Open Access Journals (Sweden)

    Ara G Hovanessian

    Full Text Available BACKGROUND: Nucleolin is one of the major proteins of the nucleolus, but it is also expressed on the cell surface where is serves as a binding protein for variety of ligands implicated in tumorigenesis and angiogenesis. Emerging evidence suggests that the cell-surface expressed nucleolin is a strategic target for an effective and nontoxic cancer therapy. METHODOLOGY/PRINCIPAL FINDINGS: By monitoring the expression of nucleolin mRNA, and by measuring the level of nucleolin protein recovered from the surface and nucleus of cells, here we show that the presence of nucleolin at the cell surface is dependent on the constant induction of nucleolin mRNA. Indeed, inhibitors of RNA transcription or translation block expression of surface nucleolin while no apparent effect is observed on the level of nucleolin in the nucleus. The estimated half-life of surface nucleolin is less than one hour, whereas that of nuclear nucleolin is more than 8 hours. Nucleolin mRNA induction is reduced markedly in normal fibroblasts that reach confluence, while it occurs continuously even in post-confluent epithelial tumor cells consistent with their capacity to proliferate without contact inhibition. Interestingly, cold and heat shock induce nucleolin mRNA concomitantly to enhanced mRNA expression of the heat shock protein 70, thus suggesting that surface nucleolin induction also occurs in response to an environmental insult. At the cell surface, one of the main functions of nucleolin is to shuttle specific extracellular ligands by an active transport mechanism, which we show here to be calcium dependent. CONCLUSION/SIGNIFICANCE: Our results demonstrate that the expression of surface nucleolin is an early metabolic event coupled with tumor cell proliferation and stress response. The fact that surface nucleolin is constantly and abundantly expressed on the surface of tumor cells, makes them a preferential target for the inhibitory action of anticancer agents that target

  6. A new peptide ligand for targeting human carbonic anhydrase IX, identified through the phage display technology.

    Directory of Open Access Journals (Sweden)

    Vasileios Askoxylakis

    Full Text Available UNLABELLED: Carbonic anhydrase IX (CAIX is a transmembrane enzyme found to be overexpressed in various tumors and associated with tumor hypoxia. Ligands binding this target may be used to visualize hypoxia, tumor manifestation or treat tumors by endoradiotherapy. METHODS: Phage display was performed with a 12 amino acid phage display library by panning against a recombinant extracellular domain of human carbonic anhydrase IX. The identified peptide CaIX-P1 was chemically synthesized and tested in vitro on various cell lines and in vivo in Balb/c nu/nu mice carrying subcutaneously transplanted tumors. Binding, kinetic and competition studies were performed on the CAIX positive human renal cell carcinoma cell line SKRC 52, the CAIX negative human renal cell carcinoma cell line CaKi 2, the human colorectal carcinoma cell line HCT 116 and on human umbilical vein endothelial cells (HUVEC. Organ distribution studies were carried out in mice, carrying SKRC 52 tumors. RNA expression of CAIX in HCT 116 and HUVEC cells was investigated by quantitative real time PCR. RESULTS: In vitro binding experiments of (125I-labeled-CaIX-P1 revealed an increased uptake of the radioligand in the CAIX positive renal cell carcinoma cell line SKRC 52. Binding of the radioligand in the colorectal carcinoma cell line HCT 116 increased with increasing cell density and correlated with the mRNA expression of CAIX. Radioligand uptake was inhibited up to 90% by the unlabeled CaIX-P1 peptide, but not by the negative control peptide octreotide at the same concentration. No binding was demonstrated in CAIX negative CaKi 2 and HUVEC cells. Organ distribution studies revealed a higher accumulation in SKRC 52 tumors than in heart, spleen, liver, muscle, intestinum and brain, but a lower uptake compared to blood and kidney. CONCLUSIONS: These data indicate that CaIX-P1 is a promising candidate for the development of new ligands targeting human carbonic anhydrase IX.

  7. Recombinant TCR ligand induces early TCR signaling and a unique pattern of downstream activation.

    Science.gov (United States)

    Wang, Chunhe; Mooney, Jeffery L; Meza-Romero, Roberto; Chou, Yuan K; Huan, Jianya; Vandenbark, Arthur A; Offner, Halina; Burrows, Gregory G

    2003-08-15

    Recombinant TCR ligands (RTLs) consisting of covalently linked alpha(1) and beta(1) domains of MHC class II molecules tethered to specific antigenic peptides represent minimal TCR ligands. In a previous study we reported that the rat RTL201 construct, containing RT1.B MHC class II domains covalently coupled to the encephalitogenic guinea pig myelin basic protein (Gp-MBP(72-89)) peptide, could prevent and treat actively and passively induced experimental autoimmune encephalomyelitis in vivo by selectively inhibiting Gp-MBP(72-89) peptide-specific CD4(+) T cells. To evaluate the inhibitory signaling pathway, we tested the effects of immobilized RTL201 on T cell activation of the Gp-MBP(72-89)-specific A1 T cell hybridoma. Activation was exquisitely Ag-specific and could not be induced by RTL200 containing the rat MBP(72-89) peptide that differed by a threonine for serine substitution at position 80. Partial activation by RTL201 included a CD3zeta p23/p21 ratio shift, ZAP-70 phosphorylation, calcium mobilization, NFAT activation, and transient IL-2 production. In comparison, anti-CD3epsilon treatment produced stronger activation of these cellular events with additional activation of NF-kappaB and extracellular signal-regulated kinases as well as long term increased IL-2 production. These results demonstrate that RTLs can bind directly to the TCR and modify T cell behavior through a partial activation mechanism, triggering specific downstream signaling events that deplete intracellular calcium stores without fully activating T cells. The resulting Ag-specific activation of the transcription factor NFAT uncoupled from the activation of NF-kappaB or extracellular signal-regulated kinases constitutes a unique downstream activation pattern that accounts for the inhibitory effects of RTL on encephalitogenic CD4(+) T cells. PMID:12902496

  8. Dynamic ligand-based pharmacophore modeling and virtual screening to identify mycobacterial cyclopropane synthase inhibitors

    Indian Academy of Sciences (India)

    CHINMAYEE CHOUDHURY; U DEVA PRIYAKUMAR; G NARAHARI SASTRY

    2016-05-01

    Multidrug resistance in Mycobacterium tuberculosis (M. Tb) and its coexistence with HIV arethe biggest therapeutic challenges in anti-M. Tb drug discovery. The current study reports a Virtual Screening(VS) strategy to identify potential inhibitors of Mycobacterial cyclopropane synthase (CmaA1), an importantM. Tb target considering the above challenges. Five ligand-based pharmacophore models were generatedfrom 40 different conformations of the cofactors of CmaA1 taken from molecular dynamics (MD) simulationstrajectories of CmaA1. The screening abilities of these models were validated by screening 23 inhibitors and1398 non-inhibitors of CmaA1. A VS protocol was designed with four levels of screening i.e., ligand-basedpharmacophore screening, structure-based pharmacophore screening, docking and absorption, distribution,metabolism, excretion and the toxicity (ADMET) filters. In an attempt towards repurposing the existing drugsto inhibit CmaA1, 6,429 drugs reported in DrugBank were considered for screening. To find compounds thatinhibit multiple targets of M. Tb as well as HIV, we also chose 701 and 11,109 compounds showing activitybelow 1 μM range on M. Tb and HIV cell lines, respectively, collected from ChEMBL database. Thus, a totalof 18,239 compounds were screened against CmaA1, and 12 compounds were identified as potential hits forCmaA1 at the end of the fourth step. Detailed analysis of the structures revealed these compounds to interactwith key active site residues of CmaA1.

  9. Specific uranyl binding by macrocyclic ligands attached to resins

    International Nuclear Information System (INIS)

    Macrocyclic polydentates have attracted enormous attention from chemists because of their unique and significant characteristics of the strong and selective binding of a variety of metal ions. The metal binding is governed mostly by the size of the macroring and the nature of heteroatoms involved. The most important role of the macrocyclic structure is, in general, the so-called macrocyclic effect - to increase (making less negative) a large negative entropy change involved in the polydentate chelation. Basic strategy of uranium binding, is to design a ligand of very strong metal binding to take advantage of this macrocyclic effect, where number of chelating heteroatoms and their spatial arrangement is designed to be most appropriate for uranyl (UO22+) binding, since in natural sea water uranium is dissolved mostly in a form of uranyl carbonate. The following macrocylic ligands, hexamine, hexaketone, hexacarboxylic acid, were prepared and tested. The macrocyclic hexacarboxylic ligand was the most promising. The addition of hexacarboxylic acid to a uranyl tricarbonate solution gave a change of visible absorption due to the competitive formation of the uranyl complex. From this competitive binding, a relative formation constant was estimated to be 10-5, giving a log K/sub f/ value of 16.4 at 250C for the uranyl complex. This value is the largest among the hosts ever reported to bind uranyl ion.The selectivity of the macrocyclic hexacarboxylic ligand was also ascertained by testing with other metal cations. Results indicate that uranyl ions can be extracted efficiently from sea water using the hexacarboxylic acid ligands which are attached to a polymer insoluble in water

  10. Can Arousal Modulate Response Inhibition?

    Science.gov (United States)

    Weinbach, Noam; Kalanthroff, Eyal; Avnit, Amir; Henik, Avishai

    2015-01-01

    The goal of the present study was to examine if and how arousal can modulate response inhibition. Two competing hypotheses can be drawn from previous literature. One holds that alerting cues that elevate arousal should result in an impulsive response and therefore impair response inhibition. The other suggests that alerting enhances processing of…

  11. Forcing contact inhibition of locomotion

    OpenAIRE

    Roycroft, A.; Mayor, R.

    2015-01-01

    Contact inhibition of locomotion drives a variety of biological phenomenon, from cell dispersion to collective cell migration and cancer invasion. New imaging techniques have allowed contact inhibition of locomotion to be visualised in vivo for the first time, helping to elucidate some of the molecules and forces involved in this phenomenon.

  12. Molecular simulation of ligand binding with DNA: implications for new radiopharmaceutical design

    International Nuclear Information System (INIS)

    We have been using computer-assisted molecular modeling software to assess the effects of structural modification on the interaction of DNA-binding iodine-125 (125I)-labeled Hoechst ligands with DNA and to predict DNA double-strand break (DSB) formation post 125I decay. To ascertain the robustness of the approach, the Lamarckian genetic algorithm (AutoDock 3.0) was first used to model the interaction/binding between DNA and m-iodo-p-methoxyHoechst (IMH), a ligand whose binding to the minor groove of DNA had been demonstrated (crystal structure) and which is available in the Protein Data Bank. m-Iodo-p- ethoxyHoechst (IEH), a radioligand that we had previously synthesized and characterized, was then docked onto DNA, the IEH-DNA complex minimized, and the free binding energy and inhibition constant (K i ) were estimated and compared with those obtained for IMH-DNA. Finally, Insight II was used to measure the distances between any atom (e.g. 125I) and the central axis of the targeted DNA and these were correlated with the DSB yield when these agents are bound to DNA. The data demonstrate that the docking of IMH onto DNA leads to a ligand-DNA complex that is only about 1Angstroms RMSD (root mean square deviation) from the crystal-structure position reported. The docking of IEH (a close analog of IMH) onto DNA also results in a very small RMSD (1.27Angstroms). These software programs allow the estimation of radionuclide-to-DNA molecular distances and thus can guide us in the selection of radiolabeled molecules to be synthesized and used to deposit DNA-breaking radiation doses in mammalian cell DNA. Compared with traditional/current radiopharmaceutical development approaches, the method greatly saves time and money, especially since the reactivity of newly designed radiolabeled compounds with their targeted DNA molecules can be predicted by means of molecular modeling prior to chemical synthesis

  13. Controlling the Growth and Catalytic Activity of Platinum Nanoparticles Using Peptide and Polymer Ligands

    Science.gov (United States)

    Forbes, Lauren Marie

    improved over bare metal through judicious choice and design of ligands that inhibit Pt oxidation and control chain packing at the Pt surface. Therefore, it may be possible to have ligands on a nanoparticle surface that allow the particles to be well-dispersed on an electrode surface, while simultaneously enhancing catalysis.

  14. KLIFS: a knowledge-based structural database to navigate kinase-ligand interaction space.

    Science.gov (United States)

    van Linden, Oscar P J; Kooistra, Albert J; Leurs, Rob; de Esch, Iwan J P; de Graaf, Chris

    2014-01-23

    Protein kinases regulate the majority of signal transduction pathways in cells and have become important targets for the development of designer drugs. We present a systematic analysis of kinase-ligand interactions in all regions of the catalytic cleft of all 1252 human kinase-ligand cocrystal structures present in the Protein Data Bank (PDB). The kinase-ligand interaction fingerprints and structure database (KLIFS) contains a consistent alignment of 85 kinase ligand binding site residues that enables the identification of family specific interaction features and classification of ligands according to their binding modes. We illustrate how systematic mining of kinase-ligand interaction space gives new insights into how conserved and selective kinase interaction hot spots can accommodate the large diversity of chemical scaffolds in kinase ligands. These analyses lead to an improved understanding of the structural requirements of kinase binding that will be useful in ligand discovery and design studies. PMID:23941661

  15. Ligand flexibility and framework rearrangement in a new family of porous metal-organic frameworks

    DEFF Research Database (Denmark)

    Hawxwell, Samuel M; Espallargas, Guillermo Mínguez; Bradshaw, Darren; Rosseinsky, Matthew J; Prior, Timothy J; Florence, Alastair J; van de Streek, Jacco; Brammer, Lee

    Ligand flexibility permits framework rearrangement upon evacuation and gas uptake in a new family of porous MOFs.......Ligand flexibility permits framework rearrangement upon evacuation and gas uptake in a new family of porous MOFs....

  16. Balanced feedforward inhibition and dominant recurrent inhibition in olfactory cortex.

    Science.gov (United States)

    Large, Adam M; Vogler, Nathan W; Mielo, Samantha; Oswald, Anne-Marie M

    2016-02-23

    Throughout the brain, the recruitment of feedforward and recurrent inhibition shapes neural responses. However, disentangling the relative contributions of these often-overlapping cortical circuits is challenging. The piriform cortex provides an ideal system to address this issue because the interneurons responsible for feedforward and recurrent inhibition are anatomically segregated in layer (L) 1 and L2/3 respectively. Here we use a combination of optical and electrical activation of interneurons to profile the inhibitory input received by three classes of principal excitatory neuron in the anterior piriform cortex. In all classes, we find that L1 interneurons provide weaker inhibition than L2/3 interneurons. Nonetheless, feedforward inhibitory strength covaries with the amount of afferent excitation received by each class of principal neuron. In contrast, intracortical stimulation of L2/3 evokes strong inhibition that dominates recurrent excitation in all classes. Finally, we find that the relative contributions of feedforward and recurrent pathways differ between principal neuron classes. Specifically, L2 neurons receive more reliable afferent drive and less overall inhibition than L3 neurons. Alternatively, L3 neurons receive substantially more intracortical inhibition. These three features--balanced afferent drive, dominant recurrent inhibition, and differential recruitment by afferent vs. intracortical circuits, dependent on cell class--suggest mechanisms for olfactory processing that may extend to other sensory cortices. PMID:26858458

  17. Covalent Coupling of Nanoparticles with Low-Density Functional Ligands to Surfaces via Click Chemistry

    OpenAIRE

    Ina Rianasari; de Jong, Michel P.; Jurriaan Huskens; van der Wiel, Wilfred G.

    2013-01-01

    We demonstrate the application of the 1,3-dipolar cycloaddition (“click” reaction) to couple gold nanoparticles (Au NPs) functionalized with low densities of functional ligands. The ligand coverage on the citrate-stabilized Au NPs was adjusted by the ligand:Au surface atom ratio, while maintaining the colloidal stability of the Au NPs in aqueous solution. A procedure was developed to determine the driving forces governing the selectivity and reactivity of citrate-stabilized and ligand-functio...

  18. Measurement of solubilities for rhodium complexes and phosphine ligands in supercritical carbon dioxide

    OpenAIRE

    Shimoyama, Yusuke; Sonoda, Masanori; Miyazaki, Kaoru; Higashi, Hidenori; Iwai, Yoshio; ARAI, Yasuhiko

    2008-01-01

    The solubilities of phosphine ligands and rhodium (Rh) complexes in supercritical carbon dioxide were measured with Fourier transform infrared (FT-IR) spectroscopy at 320 and 333 K and several pressures. Triphenylphosphine (TPP) and tris(p-trifluoromethylphenyl)-phosphine (TTFMPP) were selected as ligands for the Rh complex. The solubilities of the fluorinated ligands and complexes were compared with those of the non-fluorinated compounds. The solubilities of ligand increased up to 10 times b...

  19. Development of high performance structure and ligand based virtual screening techniques

    OpenAIRE

    Shave, Steven R.

    2010-01-01

    Virtual Sreening (VS) is an in silico technique for drug discovery. An overview of VS methods is given and is seen to be approachable from two sides: structure based and ligand based. Structure based virtual screening uses explicit knowledge of the target receptor to suggest candidate receptor-ligand complexes. Ligand based virtual screening can infer required characteristics of binders from known ligands. A consideration for all virtual screening techniques is the amount of co...

  20. Computational approaches to modeling receptor flexibility upon ligand binding: Application to interfacially activated enzymes

    DEFF Research Database (Denmark)

    Wade, R.C.; Sobolev, V.; Ortiz, A.R. .;

    1998-01-01

    Receptors generally undergo conformational change upon ligand binding. We describe how fairly simple techniques may be used in docking and design studies to account for some of the changes in the conformations of proteins on ligand binding. Simulations of protein-ligand interactions that give a m...... a more complete description of the dynamics important for ligand binding are then discussed. These methods are illustrated for phospholipase A(2) and lipase, enzymes that both undergo interfacial activation....

  1. Heteroskorpionate Ligands In Coordination Chemistry – Complexes Relevant To Hydrogenation Catalysis, Olefine Epoxidation, And Inhibitor Studies

    OpenAIRE

    Tampier, Stefan

    2012-01-01

    This work focuses on (i) the syntheses and characterisations of various ruthenium(II) complexes bearing the bdmpza ligand, (ii) complexes based on the new bis(3,5-di-tert-butylpyrazol-1-yl)dithioacetato ligand, (iii) complexes based on bispyrazolylacetate esters, and (iv) the syntheses and characteristics of ferrocenyl-substituted ligands derived from bispyrazolylacetic acid and related chelating ligands. Chapter 3.1.2 outlines principle substitution reactions of [Ru(bdmpza)Cl(PPh3)2] (1) [bd...

  2. A New Method for Ligand Docking to Flexible Receptors by Dual Alanine Scanning and Refinement (SCARE)

    OpenAIRE

    Bottegoni, Giovanni; Kufareva, Irina; Totrov, Maxim; Abagyan, Ruben

    2008-01-01

    Protein binding sites undergo ligand specific conformational changes upon ligand binding. However, most docking protocols rely on a fixed conformation of the receptor, or on the prior knowledge of multiple conformations representing the variation of the pocket, or on a known bounding box for the ligand. Here we described a general induced fit docking protocol that requires only one initial pocket conformation and identifies most of the correct ligand positions as the lowest score. We expanded...

  3. Synthesis of Yttrium and Aluminum Complexes Supported by a Mono-Substituted Ferrocene Ligand

    OpenAIRE

    Gao, Jun

    2015-01-01

    Ferrocene chelating ligands provide good stability of the resulting metal complexes and redox-switchable control in chemical processes catalyzed by those complexes. In comparison to traditional di-substituted ferrocene tetradentate ligands, mono-substituted tridentate ferrocene ligands may form metal complexes with a more open coordination sphere around the metal center that may allow an increased preference for substrate coordination. In addition, a mono-substituted ferrocene ligand allows t...

  4. Pharmacological diversity among drugs that inhibit bone resorption.

    Science.gov (United States)

    Russell, R Graham G

    2015-06-01

    Drugs that inhibit bone resorption ('anti-resorptives') continue to dominate the therapy of bone diseases characterized by enhanced bone destruction, including Paget's disease, osteoporosis and cancers. The historic use of oestrogens for osteoporosis led on to SERMs (Selective Estrogen Receptor Modulators, e.g. raloxifene and bazedoxifene). Currently the mainstay of treatment worldwide is still with bisphosphonates, as used clinically for over 40 years. The more recently introduced anti-RANK-ligand antibody, denosumab, is also very effective in reducing vertebral, non-vertebral and hip fractures. Odanacatib is the only cathepsin K inhibitor likely to be registered for clinical use. The pharmacological basis for the action of each of these drug classes is different, enabling choices to be made to ensure their optimal use in clinical practice. PMID:26048735

  5. Glucagon-like peptide 2 inhibits ghrelin secretion in humans

    DEFF Research Database (Denmark)

    Banasch, Matthias; Bulut, Kerem; Hagemann, Dirk;

    2006-01-01

    INTRODUCTION: The growth hormone secretagogue receptor ligand ghrelin is known to play a pivotal role in the central nervous control of energy homeostasis. Circulating ghrelin levels are high under fasting conditions and decline after meal ingestion, but the mechanisms underlying the postprandial...... fasting ghrelin levels and the ambient concentrations of glucagon or intact GLP-2. CONCLUSIONS: GLP-2 inhibits ghrelin secretion in humans at plasma levels of approximately 200 pmol/l. However, the physiological...... drop in ghrelin levels are poorly understood. In the present study we addressed, whether (1) exogenous GLP-2 administration decreases ghrelin levels and (2) what other endogenous factors are related to ghrelin secretion under fasting conditions. PATIENTS AND METHODS: Fifteen healthy male volunteers...

  6. Fully human antagonistic antibodies against CCR4 potently inhibit cell signaling and chemotaxis.

    Directory of Open Access Journals (Sweden)

    Urs B Hagemann

    Full Text Available CC chemokine receptor 4 (CCR4 represents a potentially important target for cancer immunotherapy due to its expression on tumor infiltrating immune cells including regulatory T cells (Tregs and on tumor cells in several cancer types and its role in metastasis.Using phage display, human antibody library, affinity maturation and a cell-based antibody selection strategy, the antibody variants against human CCR4 were generated. These antibodies effectively competed with ligand binding, were able to block ligand-induced signaling and cell migration, and demonstrated efficient killing of CCR4-positive tumor cells via ADCC and phagocytosis. In a mouse model of human T-cell lymphoma, significant survival benefit was demonstrated for animals treated with the newly selected anti-CCR4 antibodies.For the first time, successful generation of anti- G-protein coupled chemokine receptor (GPCR antibodies using human non-immune library and phage display on GPCR-expressing cells was demonstrated. The generated anti-CCR4 antibodies possess a dual mode of action (inhibition of ligand-induced signaling and antibody-directed tumor cell killing. The data demonstrate that the anti-tumor activity in vivo is mediated, at least in part, through Fc-receptor dependent effector mechanisms, such as ADCC and phagocytosis. Anti-CC chemokine receptor 4 antibodies inhibiting receptor signaling have potential as immunomodulatory antibodies for cancer.

  7. O-fucosylation of the notch ligand mDLL1 by POFUT1 is dispensable for ligand function.

    Directory of Open Access Journals (Sweden)

    Julia Müller

    Full Text Available Fucosylation of Epidermal Growth Factor-like (EGF repeats by protein O-fucosyltransferase 1 (POFUT1 in vertebrates, OFUT1 in Drosophila is pivotal for NOTCH function. In Drosophila OFUT1 also acts as chaperone for Notch independent from its enzymatic activity. NOTCH ligands are also substrates for POFUT1, but in Drosophila OFUT1 is not essential for ligand function. In vertebrates the significance of POFUT1 for ligand function and subcellular localization is unclear. Here, we analyze the importance of O-fucosylation and POFUT1 for the mouse NOTCH ligand Delta-like 1 (DLL1. We show by mass spectral glycoproteomic analyses that DLL1 is O-fucosylated at the consensus motif C²XXXX(S/TC³ (where C² and C³ are the second and third conserved cysteines within the EGF repeats found in EGF repeats 3, 4, 7 and 8. A putative site with only three amino acids between the second cysteine and the hydroxy amino acid within EGF repeat 2 is not modified. DLL1 proteins with mutated O-fucosylation sites reach the cell surface and accumulate intracellularly. Likewise, in presomitic mesoderm cells of POFUT1 deficient embryos DLL1 is present on the cell surface, and in mouse embryonic fibroblasts lacking POFUT1 the same relative amount of overexpressed wild type DLL1 reaches the cell surface as in wild type embryonic fibroblasts. DLL1 expressed in POFUT1 mutant cells can activate NOTCH, indicating that POFUT1 is not required for DLL1 function as a Notch ligand.

  8. Novel bispidine ligands with a possible application in nuclear medicine

    International Nuclear Information System (INIS)

    Due to our current way of life and the environmental influences we are exposed in the industrial nations, cancer diseases turn out to be a more and more serious threat to our civilization. The ongoing research during the last decades leads to a better insight in cancer diseases and enables an earlier recognition of developing carcinoma. The detection of pathological tissue changes at an early stage increases the patients' chances of cure. Magnetic resonance tomography (MRT) and computed tomography (CT) as well as radiopharmaceutically assisted imaging techniques, like positron emission tomography (PET) and scintigraphy are an indispensable clinical tool in the oncological early diagnosis. By the development of multimodality imaging agents that combine the benefits of several imaging techniques, the early recognition of tumors can be more efficient and in consequence a matching therapy can be applied. This thesis deals with the synthesis of novel bispidine based ligands and their transition metal complexes as potential mono- and bimodal imaging agents for a 64Cu-assisted radiopharmaceutical application in positron emission tomography (PET) and optical imaging (OI). The synthesized ligands L and LOH are offering the opportunity to build up a ruthenium(II) polypyridine complex by one of the ligand's donor sets, to act as a fluorescence dye for optical imaging (OI), and to coordinate 64CuII by the ligand's vacant cavity for positron emission tomography (PET). The RuII complex exhibits two different fluorescence activities with two different lifetimes and only one of the two fluorescences is quenched by subsequent complexation of CuII. The calculated CuII stability constant of L and LOH is similar to that of the isomeric ligand N2py2 which has been already evaluated as a 64Cu-radiotracer. Further transition metal complexes of FeII, FeIII and MnII are dealing with interesting structural properties like pentagonal bipyramidal geometries. For the development of stable and

  9. A novel serotonin transporter ligand: (5-Iodo-2-(2-dimethylaminomethylphenoxy)-benzyl alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Z.-P.; Choi, S.-R.; Hou, Catherine; Mu Mu; Kung, M.-P. E-mail: kunghf@sunmac.spect.upenn.edu; Acton, Paul D.; Kung, Hank F

    2000-02-01

    The serotonin transporters (SERT) are the primary binding sites for selective serotonin reuptake inhibitors, commonly used antidepressants such as fluoxetine, sertraline, and paroxetine. Imaging of SERT with positron emission tomography and single photon emission computed tomography in humans would provide a useful tool for understanding how alterations of this system are related to depressive illnesses and other psychiatric disorders. In this article the synthesis and characterization of [{sup 125}I]ODAM [(5-iodo-2-(2-dimethylaminomethylphenoxy)-benzyl alcohol, 9)] as an imaging agent in the evaluation of central nervous system SERT are reported. A new reaction scheme was developed for the preparation of compound 9, ODAM, and the corresponding tri-n-butyltin derivative 10. Upon reacting 10 with hydrogen peroxide and sodium[{sup 125}I]iodide, the radiolabeled [{sup 125}I]9 was obtained in good yield (94% yield, radiochemical purity >95%). In an initial binding study using cortical membrane homogenates of rat brain, ODAM displayed a good binding affinity with a value of K{sub i}=2.8{+-}0.88 nM. Using LLC-PK{sub 1} cells specifically expressing the individual transporter (i.e. dopamine [DAT], norepinephrine [NET], and SERT, respectively), ODAM showed a strong inhibition on SERT (K{sub i}=0.12{+-}0.02 nM). Inhibition constants for the other two transporters were lower (K{sub i}=3.9{+-}0.7 {mu}M and 20.0 {+-} 1.9 nM for DAT and NET, respectively). Initial biodistribution study in rats after an intravenous (IV) injection of [{sup 125}I]ODAM showed a rapid brain uptake and washout (2.03, 1.49, 0.79, 0.27, and 0.07% dose/organ at 2, 30, 60, 120, and 240 min, respectively). The hypothalamus region where the serotonin neurons are located exhibited a high specific uptake. Ratios of hypothalamus-cerebellum/cerebellum based on percent dose per gram of these two regions showed values of 0.35, 0.86, 0.86, 0.63, and 0.34 at 2, 30, 60, 120, and 240 min, post-IV injection

  10. DMPD: Endogenous ligands of Toll-like receptors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15178705 Endogenous ligands of Toll-like receptors. Tsan MF, Gao B. J Leukoc Biol. ...2004 Sep;76(3):514-9. Epub 2004 Jun 3. (.png) (.svg) (.html) (.csml) Show Endogenous ligands of Toll-like re...ceptors. PubmedID 15178705 Title Endogenous ligands of Toll-like receptors. Authors Tsan MF, Gao B. Publicat

  11. Micro-flow synthesis and structural analysis of sterically crowded diimine ligands with five aryl rings

    Directory of Open Access Journals (Sweden)

    Shinichiro Fuse

    2013-11-01

    Full Text Available Sterically crowded diimine ligands with five aryl rings were prepared in one step in good yields using a micro-flow technique. X-ray crystallographic analysis revealed the detailed structure of the bulky ligands. The nickel complexes prepared from the ligands exerted high polymerization activity in the ethylene homopolymerization and copolymerization of ethylene with polar monomers.

  12. Carborane phosphorus-derivatives as ligands for Pd-catalyzed cross-coupling reactions

    International Nuclear Information System (INIS)

    Synthesis of carborane-containing phosphine ligands possessing different steric and electronic properties has been considered. Testing of the given ligands in Pd-catalyzed Suzuki-Miyaura reaction demonstrated that sterically volume phosphine ligands with acceptor carborane substitutes possessed the most catalytic activity

  13. Characterization of inhibitory anti-insulin-like growth factor receptor antibodies with different epitope specificity and ligand-blocking properties: implications for mechanism of action in vivo.

    Science.gov (United States)

    Doern, Adam; Cao, Xianjun; Sereno, Arlene; Reyes, Christopher L; Altshuler, Angelina; Huang, Flora; Hession, Cathy; Flavier, Albert; Favis, Michael; Tran, Hon; Ailor, Eric; Levesque, Melissa; Murphy, Tracey; Berquist, Lisa; Tamraz, Susan; Snipas, Tracey; Garber, Ellen; Shestowsky, William S; Rennard, Rachel; Graff, Christilyn P; Wu, Xiufeng; Snyder, William; Cole, Lindsay; Gregson, David; Shields, Michael; Ho, Steffan N; Reff, Mitchell E; Glaser, Scott M; Dong, Jianying; Demarest, Stephen J; Hariharan, Kandasamy

    2009-04-10

    Therapeutic antibodies directed against the type 1 insulin-like growth factor receptor (IGF-1R) have recently gained significant momentum in the clinic because of preliminary data generated in human patients with cancer. These antibodies inhibit ligand-mediated activation of IGF-1R and the resulting down-stream signaling cascade. Here we generated a panel of antibodies against IGF-1R and screened them for their ability to block the binding of both IGF-1 and IGF-2 at escalating ligand concentrations (>1 microm) to investigate allosteric versus competitive blocking mechanisms. Four distinct inhibitory classes were found as follows: 1) allosteric IGF-1 blockers, 2) allosteric IGF-2 blockers, 3) allosteric IGF-1 and IGF-2 blockers, and 4) competitive IGF-1 and IGF-2 blockers. The epitopes of representative antibodies from each of these classes were mapped using a purified IGF-1R library containing 64 mutations. Most of these antibodies bound overlapping surfaces on the cysteine-rich repeat and L2 domains. One class of allosteric IGF-1 and IGF-2 blocker was identified that bound a separate epitope on the outer surface of the FnIII-1 domain. Using various biophysical techniques, we show that the dual IGF blockers inhibit ligand binding using a spectrum of mechanisms ranging from highly allosteric to purely competitive. Binding of IGF-1 or the inhibitory antibodies was associated with conformational changes in IGF-1R, linked to the ordering of dynamic or unstructured regions of the receptor. These results suggest IGF-1R uses disorder/order within its polypeptide sequence to regulate its activity. Interestingly, the activity of representative allosteric and competitive inhibitors on H322M tumor cell growth in vitro was reflective of their individual ligand-blocking properties. Many of the antibodies in the clinic likely adopt one of the inhibitory mechanisms described here, and the outcome of future clinical studies may reveal whether a particular inhibitory mechanism

  14. Dll4 Inhibition plus Aflibercept Markedly Reduces Ovarian Tumor Growth.

    Science.gov (United States)

    Huang, Jie; Hu, Wei; Hu, Limin; Previs, Rebecca A; Dalton, Heather J; Yang, Xiao-Yun; Sun, Yunjie; McGuire, Michael; Rupaimoole, Rajesha; Nagaraja, Archana S; Kang, Yu; Liu, Tao; Nick, Alpa M; Jennings, Nicholas B; Coleman, Robert L; Jaffe, Robert B; Sood, Anil K

    2016-06-01

    Delta-like ligand 4 (Dll4), one of the Notch ligands, is overexpressed in ovarian cancer, especially in tumors resistant to anti-VEGF therapy. Here, we examined the biologic effects of dual anti-Dll4 and anti-VEGF therapy in ovarian cancer models. Using Dll4-Fc blockade and anti-Dll4 antibodies (murine REGN1035 and human REGN421), we evaluated the biologic effects of Dll4 inhibition combined with aflibercept or chemotherapy in orthotopic mouse models of ovarian cancer. We also examined potential mechanisms by which dual Dll4 and VEGF targeting inhibit tumor growth using immunohistochemical staining for apoptosis and proliferation markers. Reverse-phase protein arrays were used to identify potential downstream targets of Dll4 blockade. Dual targeting of VEGF and Dll4 with murine REGN1035 showed superior antitumor effects in ovarian cancer models compared with either monotherapy. In the A2780 model, REGN1035 (targets murine Dll4) or REGN421 (targets human Dll4) reduced tumor weights by 62% and 82%, respectively; aflibercept alone reduced tumor weights by 90%. Greater therapeutic effects were observed for Dll4 blockade (REGN1035) combined with either aflibercept or docetaxel (P GATA3 expression was significantly increased in tumor stroma from the mice treated with REGN1035 combined with docetaxel or aflibercept, suggesting an indirect effect of these combination treatments on the tumor stroma. These findings identify that dual targeting of Dll4 and VEGF is an attractive therapeutic approach. Mol Cancer Ther; 15(6); 1344-52. ©2016 AACR. PMID:27009216

  15. Understanding ligand effects in gold clusters using mass spectrometry.

    Science.gov (United States)

    Johnson, Grant E; Laskin, Julia

    2016-06-21

    This review summarizes recent research on the influence of phosphine ligands on the size, stability, and reactivity of gold clusters synthesized in solution. Sub-nanometer clusters exhibit size- and composition-dependent properties that are unique from those of larger nanoparticles. The highly tunable properties of clusters and their high surface-to-volume ratio make them promising candidates for a variety of technological applications. However, because "each-atom-counts" toward defining cluster properties it is critically important to develop robust synthesis methods to efficiently prepare clusters of predetermined size. For decades phosphines have been known to direct the size-selected synthesis of gold clusters. Despite the preparation of numerous species it is still not understood how different functional groups at phosphine centers affect the size and properties of gold clusters. Using electrospray ionization mass spectrometry (ESI-MS) it is possible to characterize the effect of ligand substitution on the distribution of clusters formed in solution at defined reaction conditions. In addition, ligand exchange reactions on preformed clusters may be monitored using ESI-MS. Collision induced dissociation (CID) may also be employed to obtain qualitative insight into the fragmentation of mixed ligand clusters and the relative binding energies of differently substituted phosphines. Quantitative ligand binding energies and cluster stability may be determined employing surface induced dissociation (SID) in a custom-built Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS). Rice-Ramsperger-Kassel-Marcus (RRKM) based modeling of the SID data allows dissociation energies and entropy values to be extracted. The charge reduction and reactivity of atomically precise gold clusters, including partially ligated species generated in the gas-phase by in source CID, on well-defined surfaces may be explored using ion soft landing (SL) in a custom

  16. Eriodictyol Inhibits RANKL-Induced Osteoclast Formation and Function Via Inhibition of NFATc1 Activity.

    Science.gov (United States)

    Song, Fangming; Zhou, Lin; Zhao, Jinmin; Liu, Qian; Yang, Mingli; Tan, Renxiang; Xu, Jun; Zhang, Ge; Quinn, Julian M W; Tickner, Jennifer; Huang, Yuanjiao; Xu, Jiake

    2016-09-01

    Receptor activator of nuclear factor kappa-B ligand (RANKL) induces differentiation and function of osteoclasts through triggering multiple signaling cascades, including NF-κB, MAPK, and Ca(2+) -dependent signals, which induce and activate critical transcription factor NFATc1. Targeting these signaling cascades may serve as an effective therapy against osteoclast-related diseases. Here, by screening a panel of natural plant extracts with known anti-inflammatory, anti-tumor, or anti-oxidant properties for possible anti-osteoclastogenic activities we identified Eriodictyol. This flavanone potently suppressed RANKL-induced osteoclastogenesis and bone resorption in a dose-dependent manner without detectable cytotoxicity, suppressing RANKL-induced NF-κB, MAPK, and Ca(2+) signaling pathways. Eriodictyol also strongly inhibited RANKL-induction of c-Fos levels (a critical component of AP-1 transcription factor required by osteoclasts) and subsequent activation of NFATc1, concomitant with reduced expression of osteoclast specific genes including cathepsin K (Ctsk), V-ATPase-d2 subunit, and tartrate resistant acid phosphatase (TRAcP/Acp5). Taken together, these data provide evidence that Eriodictyol could be useful for the prevention and treatment of osteolytic disorders associated with abnormally increased osteoclast formation and function. J. Cell. Physiol. 231: 1983-1993, 2016. © 2016 Wiley Periodicals, Inc. PMID:26754483

  17. Glaucocalyxin A inhibits platelet activation and thrombus formation preferentially via GPVI signaling pathway.

    Directory of Open Access Journals (Sweden)

    Wei Li

    Full Text Available Platelets play a pivotal role in atherothrombosis and the antiplatelet agents have been proved to be useful in preventing onset of acute clinical events including myocardial infarction and stroke. Increasing number of natural compounds has been identified to be potential antiplatelet agents. Here we report the antiplatelet effect of glaucocalyxin A (GLA, an ent-diterpenoid that we isolated and purified from the aerial parts of Rabdosia japonica (Burm. f. var. glaucocalyx (Maxim. Hara, and investigate the molecular mechanisms by which GLA inhibits platelet activation and thrombus formation. The effect of GLA on platelet activation was measured using platelets freshly isolated from peripheral blood of healthy donors. Results showed that pretreatment of human platelets with lower concentrations of GLA (0.01 μg/ml, 0.1 μg/ml significantly inhibited platelet aggregation induced by collagen (P<0.001 and CRP (P<0.01, a synthetic GPVI ligand, but not by ADP and U46619. Accordingly, GLA inhibited collagen-stimulated tyrosine phosphorylation of Syk, LAT, and phospholipase Cγ2, the signaling events in collagen receptor GPⅥ pathway. GLA also inhibited platelet p-selectin secretion and integrin activation by convulxin, a GPVI selective ligand. Additionally, GLA was found to inhibit low-dose thrombin-induced platelet activation. Using a flow chamber device, GLA was found to attenuate platelet adhesion on collagen surfaces in high shear condition. In vivo studies showed that GLA administration increased the time for complete occlusion upon vascular injury in mice, but did not extend tail-bleeding time when mice were administered with relatively lower doses of GLA. Therefore, the present results provide the molecular basis for the inhibition effect of GLA on platelet activation and its in vivo effect on thrombus formation, suggesting that GLA could potentially be developed as an antiplatelet and antithrombotic agent.

  18. Ligand stimulation induces clathrin- and Rab5-dependent downregulation of the kinase-dead EphB6 receptor preceded by the disruption of EphB6-Hsp90 interaction.

    Science.gov (United States)

    Allonby, Odette; El Zawily, Amr M; Freywald, Tanya; Mousseau, Darrell D; Chlan, Jennifer; Anderson, Deborah; Benmerah, Alexandre; Sidhu, Vishaldeep; Babu, Mohan; DeCoteau, John; Freywald, Andrew

    2014-12-01

    Ligand-induced internalisation and subsequent downregulation of receptor tyrosine kinases (RTKs) serve to determine biological outputs of their signalling. Intrinsically kinase-deficient RTKs control a variety of biological responses, however, the mechanism of their downregulation is not well understood and its analysis is focused exclusively on the ErbB3 receptor. The Eph group of RTKs is represented by the EphA and EphB subclasses. Each bears one kinase-inactive member, EphA10 and EphB6, respectively, suggesting an important role for these molecules in the Eph signalling network. While EphB6 effects on cell behaviour have been assessed, the mechanism of its downregulation remains elusive. Our work reveals that EphB6 and its kinase-active relative, and signalling partner, EphB4, are downregulated in a similar manner in response to their common ligand, ephrin-B2. Following stimulation, both receptors are internalised through clathrin-coated pits and are degraded in lysosomes. Their targeting for lysosomal degradation relies on the activity of an early endosome regulator, the Rab5 GTPase, as this process is inhibited in the presence of a Rab5 dominant-negative mutant. EphB6 also interacts with the Hsp90 chaperone and EphB6 downregulation is preceded by their rapid dissociation. Moreover, the inhibition of Hsp90 results in EphB6 degradation, mimicking its ligand-induced downregulation. These processes appear to rely on overlapping mechanisms, since Hsp90 inhibition does not significantly enhance ligand-induced EphB6 elimination. Taken together, our observations define a novel mechanism for intrinsically kinase-deficient RTK downregulation and support an intriguing model, where Hsp90 dissociation acts as a trigger for ligand-induced receptor removal. PMID:25152371

  19. Disturbances of ligand potency and enhanced degradation of the human glycine receptor at affected positions G160 and T162 originally identified in patients suffering from hyperekplexia

    Directory of Open Access Journals (Sweden)

    Heike Meiselbach

    2015-12-01

    Full Text Available Ligand-binding of Cys-loop receptors is determined by N-terminal extracellular loop structures from the plus as well as from the minus side of two adjacent subunits in the pentameric receptor complex. An aromatic residue in loop B of the glycine receptor (GlyR undergoes direct interaction with the incoming ligand via cation-π interactions. Recently we showed that mutated residues in loop B identified from human patients suffering from hyperekplexia disturb ligand-binding. Here, we exchanged the affected human residues by amino acids found in related members of the Cys-loop receptor family to determine the effects of side chain volume for ion channel properties. GlyR variants were characterized in vitro following transfection into cell lines in order to analyze protein expression, trafficking, degradation and ion channel function. GlyR α1 G160 mutations significantly decrease glycine potency arguing for a positional effect on neighboring aromatic residues and consequently glycine-binding within the ligand-binding pocket. Disturbed glycinergic inhibition due to T162 α1 mutations is an additive effect of affected biogenesis and structural changes within the ligand-binding site. Protein trafficking from the ER towards ER-Golgi intermediate compartment, the secretory Golgi pathways and finally the cell surface is largely diminished, but still sufficient to deliver ion channels that are functional at least at high glycine concentrations. The majority of T162 mutant protein accumulates in the ER and is conducted to ER-associated proteasomal degradation. Hence, G160 is an important determinant during glycine binding. In contrast, T162 assigns primarily receptor biogenesis whereas exchanges in functionality are secondary effects thereof.

  20. A Potent HER3 Monoclonal Antibody That Blocks Both Ligand-Dependent and -Independent Activities: Differential Impacts of PTEN Status on Tumor Response.

    Science.gov (United States)

    Xiao, Zhan; Carrasco, Rosa A; Schifferli, Kevin; Kinneer, Krista; Tammali, Ravinder; Chen, Hong; Rothstein, Ray; Wetzel, Leslie; Yang, Chunning; Chowdhury, Partha; Tsui, Ping; Steiner, Philipp; Jallal, Bahija; Herbst, Ronald; Hollingsworth, Robert E; Tice, David A

    2016-04-01

    HER3/ERBB3 is a kinase-deficient member of the EGFR family receptor tyrosine kinases (RTK) that is broadly expressed and activated in human cancers. HER3 is a compelling cancer target due to its important role in activation of the oncogenic PI3K/AKT pathway. It has also been demonstrated to confer tumor resistance to a variety of cancer therapies, especially targeted drugs against EGFR and HER2. HER3 can be activated by its ligand (heregulin/HRG), which induces HER3 heterodimerization with EGFR, HER2, or other RTKs. Alternatively, HER3 can be activated in a ligand-independent manner through heterodimerization with HER2 in HER2-amplified cells. We developed a fully human mAb against HER3 (KTN3379) that efficiently suppressed HER3 activity in both ligand-dependent and independent settings. Correspondingly, KTN3379 inhibited tumor growth in divergent tumor models driven by either ligand-dependent or independent mechanisms in vitro and in vivo Most intriguingly, while investigating the mechanistic underpinnings of tumor response to KTN3379, we discovered an interesting dichotomy in that PTEN loss, a frequently occurring oncogenic lesion in a broad range of cancer types, substantially blunted the tumor response in HER2-amplified cancer, but not in the ligand-driven cancer. To our knowledge, this represents the first study ascertaining the impact of PTEN loss on the antitumor efficacy of a HER3 mAb. KTN3379 is currently undergoing a phase Ib clinical trial in patients with advanced solid tumors. Our current study may help us optimize patient selection schemes for KTN3379 to maximize its clinical benefits. Mol Cancer Ther; 15(4); 689-701. ©2016 AACR. PMID:26880266

  1. PPAR-γ Activation Inhibits Angiogenesis by Blocking ELR+CXC Chemokine Production in Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Venkateshwar G. Keshamouni

    2005-03-01

    Full Text Available Activation of peroxisome proliferator-activated receptor-γ (PPAR-γ results in inhibition of tumor growth in various types of cancers, but the mechanism(s by which PPAR-γ induces growth arrest has not been completely defined. In a recent study, we demonstrated that treatment of A549 (human non small cell lung cancer cell line tumor-bearing SCID mice with PPAR-γ ligands troglitazone (Tro and pioglitazone significantly inhibits primary tumor growth. In this study, immunohistochemical analysis of Tro-treated and Pio-treated tumors with factor VIII antibody revealed a significant reduction in blood vessel density compared to tumors in control animals, suggesting inhibition of angiogenesis. Further analysis showed that treatment of A549 cells in vitro with Tro or transient transfection of A549 cells with constitutively active PPAR-γ (VP16-PPAR-γ construct blocked the production of the angiogenic ELR +CXC chemokines IL-8 (CXCL8, ENA-78 (CXCL5, Gro-α (CXCL1. Similarly, an inhibitor of NF-ΚB activation (PDTC also blocked CXCL8, CXCL5, CXCL1 production, consistent with their NF-ΚB-dependent regulation. Conditioned media from A549 cells induce human microvascular endothelial cell (HMVEC chemotaxis. However, conditioned media from Tro-treated A549 cells induced significantly less HMVEC chemotaxis compared to untreated A549 cells. Furthermore, PPAR-γ activation inhibited NF-ΚB transcriptional activity, as assessed by TransAM reporter gene assay. Collectively, our data suggest that PPAR-γ ligands can inhibit tumor-associated angiogenesis by blocking the production of ELR+CXC chemokines, which is mediated through antagonizing NF-ΚB activation. These antiangiogenic effects likely contribute to the inhibition of primary tumor growth by PPAR-γ ligands.

  2. Metformin inhibits 7,12-dimethylbenz[a]anthracene-induced breast carcinogenesis and adduct formation in human breast cells by inhibiting the cytochrome P4501A1/aryl hydrocarbon receptor signaling pathway

    International Nuclear Information System (INIS)

    Recent studies have established that metformin (MET), an oral anti-diabetic drug, possesses antioxidant activity and is effective against different types of cancer in several carcinogen-induced animal models and cell lines. However, whether MET can protect against breast cancer has not been reported before. Therefore, the overall objectives of the present study are to elucidate the potential chemopreventive effect of MET in non-cancerous human breast MCF10A cells and explore the underlying mechanism involved, specifically the role of cytochrome P4501A1 (CYP1A1)/aryl hydrocarbon receptor (AhR) pathway. Transformation of the MCF10A cells into initiated breast cancer cells with DNA adduct formation was conducted using 7,12-dimethylbenz[a]anthracene (DMBA), an AhR ligand. The chemopreventive effect of MET against DMBA-induced breast carcinogenesis was evidenced by the capability of MET to restore the induction of the mRNA levels of basic excision repair genes, 8-oxoguanine DNA glycosylase (OGG1) and apurinic/apyrimidinic endonuclease1 (APE1), and the level of 8-hydroxy-2-deoxyguanosine (8-OHdG). Interestingly, the inhibition of DMBA-induced DNA adduct formation was associated with proportional decrease in CYP1A1 and in NAD(P)H:quinone oxidoreductase 1 (NQO1) gene expression. Mechanistically, the involvements of AhR and nuclear factor erythroid 2-related factor-2 (Nrf2) in the MET-mediated inhibition of DMBA-induced CYP1A1 and NQO1 gene expression were evidenced by the ability of MET to inhibit DMBA-induced xenobiotic responsive element and antioxidant responsive element luciferase reporter gene expression which suggests an AhR- and Nrf2-dependent transcriptional control. However, the inability of MET to bind to AhR suggests that MET is not an AhR ligand. In conclusion, the present work shows a strong evidence that MET inhibits the DMBA-mediated carcinogenicity and adduct formation by inhibiting the expression of CYP1A1 through an AhR ligand-independent mechanism

  3. Metformin inhibits 7,12-dimethylbenz[a]anthracene-induced breast carcinogenesis and adduct formation in human breast cells by inhibiting the cytochrome P4501A1/aryl hydrocarbon receptor signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Maayah, Zaid H. [Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451 (Saudi Arabia); Ghebeh, Hazem [Stem Cell & Tissue Re-Engineering, King Faisal Specialist Hospital and Research Center, Riyadh 11211 (Saudi Arabia); Alhaider, Abdulqader A. [Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451 (Saudi Arabia); Camel Biomedical Research Unit, College of Pharmacy and Medicine, King Saud University, Riyadh 11451 (Saudi Arabia); El-Kadi, Ayman O.S. [Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton (Canada); Soshilov, Anatoly A.; Denison, Michael S. [Department of Environmental Toxicology, University of California at Davis, Davis, CA 95616 (United States); Ansari, Mushtaq Ahmad [Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451 (Saudi Arabia); Korashy, Hesham M., E-mail: hkorashy@ksu.edu.sa [Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451 (Saudi Arabia)

    2015-04-15

    Recent studies have established that metformin (MET), an oral anti-diabetic drug, possesses antioxidant activity and is effective against different types of cancer in several carcinogen-induced animal models and cell lines. However, whether MET can protect against breast cancer has not been reported before. Therefore, the overall objectives of the present study are to elucidate the potential chemopreventive effect of MET in non-cancerous human breast MCF10A cells and explore the underlying mechanism involved, specifically the role of cytochrome P4501A1 (CYP1A1)/aryl hydrocarbon receptor (AhR) pathway. Transformation of the MCF10A cells into initiated breast cancer cells with DNA adduct formation was conducted using 7,12-dimethylbenz[a]anthracene (DMBA), an AhR ligand. The chemopreventive effect of MET against DMBA-induced breast carcinogenesis was evidenced by the capability of MET to restore the induction of the mRNA levels of basic excision repair genes, 8-oxoguanine DNA glycosylase (OGG1) and apurinic/apyrimidinic endonuclease1 (APE1), and the level of 8-hydroxy-2-deoxyguanosine (8-OHdG). Interestingly, the inhibition of DMBA-induced DNA adduct formation was associated with proportional decrease in CYP1A1 and in NAD(P)H:quinone oxidoreductase 1 (NQO1) gene expression. Mechanistically, the involvements of AhR and nuclear factor erythroid 2-related factor-2 (Nrf2) in the MET-mediated inhibition of DMBA-induced CYP1A1 and NQO1 gene expression were evidenced by the ability of MET to inhibit DMBA-induced xenobiotic responsive element and antioxidant responsive element luciferase reporter gene expression which suggests an AhR- and Nrf2-dependent transcriptional control. However, the inability of MET to bind to AhR suggests that MET is not an AhR ligand. In conclusion, the present work shows a strong evidence that MET inhibits the DMBA-mediated carcinogenicity and adduct formation by inhibiting the expression of CYP1A1 through an AhR ligand-independent mechanism

  4. Inhibiting wear particles-induced osteolysis with doxycycline

    Institute of Scientific and Technical Information of China (English)

    Chao ZHANG; Ting-ting TANG; Wei-ping REN; Xiao-ling ZHANG; Ke-rong DAI

    2007-01-01

    Aim: To study the effect of doxycycline (DOX) on osteoclastogenesis, mature osteoclast fate and function, wear particles-induced osteoeolysis, and to provide some foundation for treating aseptic loosening and osteolysis after joint arthroplasty. Methods: Osteoclasts were generated from mouse bone marrow monocytes with the receptor activator of NF-κB ligand and the macrophage colony stimulating factor. DOX at a concentration of 5, 10, 15, and 20 μg/mL was respectively added to the medium. Seven days later, the osteoclasts were determined through tartrate-resistant acid phosphatase (TRAP) staining. Mature osteoclasts were isolated from newborn rabbits and cultured for 3 d in 24-well plates or on bone slices. DOX at a concentration of 5, 10, 15, and 20 μg/mL was respectively added to the medium. After TRAP staining, the osteoclasts were counted, resorption on bone slices was quantified, and the area was calculated after to luidine blue and Mayer-hematoxylin staining. Polymethyl methacrylate (PMMA) or ultra-high molecular weight polyethylene (UHMWPE) particles were implanted on the calvariae of C57BL/J6 mice. DOX, at a dose of 2 and 10 mg-kg-1.d-1, was respectively given in traperitoneally for 7 d. Seven days later, the calvariae were removed and processed for pathological analysis. Results: DOX treatment effectively inhibited in vitro osteoclastogenesis, affected the fate of mature osteoclasts, and inhibited mature osteoclasts, causing bone resorption. In vivo data indicated that DOX strongly inhibited PMMA or UHMWPE-induced osteolysis and osteoclastogenesis. Conclusion: DOX can effectively inhibit osteoclastogenesis and affect mature osteoclast fate and suppress wear particles induced by osteoly-sis and osteoclastogenesis. DOX might be useful in the treatment or prevention of wear particles-induced osteolysis and aseptic loosening for its effect on osteoclast generation and mature osteoclast fate and function.

  5. Programmed death-1 & its ligands: promising targets for cancer immunotherapy.

    Science.gov (United States)

    Shrimali, Rajeev K; Janik, John E; Abu-Eid, Rasha; Mkrtichyan, Mikayel; Khleif, Samir N

    2015-01-01

    Novel strategies for cancer treatment involving blockade of immune inhibitors have shown significant progress toward understanding the molecular mechanism of tumor immune evasion. The preclinical findings and clinical responses associated with programmed death-1 (PD-1) and PD-ligand pathway blockade seem promising, making these targets highly sought for cancer immunotherapy. In fact, the anti-PD-1 antibodies, pembrolizumab and nivolumab, were recently approved by the US FDA for the treatment of unresectable and metastatic melanoma resistant to anticytotoxic T-lymphocyte antigen-4 antibody (ipilimumab) and BRAF inhibitor. Here, we discuss strategies of combining PD-1/PD-ligand interaction inhibitors with other immune checkpoint modulators and standard-of-care therapy to break immune tolerance and induce a potent antitumor activity, which is currently a research area of key scientific pursuit. PMID:26250412

  6. Immunotoxins, ligand-toxin conjugates and molecular targeting.

    Science.gov (United States)

    Soria, M

    1989-01-01

    Biotechnology provides tools for therapeutic exploitation following advances in the elucidation of protein-to-cell and cell-to-cell interactions. Molecular targeting of bacterial and plant toxins to the desired district of action can be achieved through effector molecules like monoclonal antibodies or protein ligands. Biochemical conjugation of these effectors to SO-6, a single-chain Ribosome Inactivating Protein from Saponaria officinalis, yielded powerful cytotoxic agents that are attractive candidates for therapeutic evaluation. Cloning of the gene for this plant toxin has been achieved. Technologies for expression of protein ligands, such as apolipoproteins or several growth factors, are available in recombinant microorganisms, providing adequate partners for the assembly of targeted chimaeras. Domain engineering of structural and functional regions in effector proteins is now possible and will be carried out with the available technologies to improve existing therapy. PMID:2698471

  7. Biophysics of selectin-ligand interactions in inflammation and cancer

    Science.gov (United States)

    Siu-Lun Cheung, Luthur; Raman, Phrabha S.; Balzer, Eric M.; Wirtz, Denis; Konstantopoulos, Konstantinos

    2011-02-01

    Selectins (l-, e- and p-selectin) are calcium-dependent transmembrane glycoproteins that are expressed on the surface of circulating leukocytes, activated platelets, and inflamed endothelial cells. Selectins bind predominantly to sialofucosylated glycoproteins and glycolipids (e-selectin only) present on the surface of apposing cells, and mediate transient adhesive interactions pertinent to inflammation and cancer metastasis. The rapid turnover of selectin-ligand bonds, due to their fast on- and off-rates along with their remarkably high tensile strengths, enables them to mediate cell tethering and rolling in shear flow. This paper presents the current body of knowledge regarding the role of selectins in inflammation and cancer metastasis, and discusses experimental methodologies and mathematical models used to resolve the biophysics of selectin-mediated cell adhesion. Understanding the biochemistry and biomechanics of selectin-ligand interactions pertinent to inflammatory disorders and cancer metastasis may provide insights for developing promising therapies and/or diagnostic tools to combat these disorders.

  8. MULTIDENTATE TEREPHTHALAMIDATE AND HYDROXYPYRIDONATE LIGANDS: TOWARDS NEW ORALLY ACTIVE CHELATORS

    Energy Technology Data Exchange (ETDEWEB)

    Abergel, Rebecca J.; Raymond, Kenneth N.

    2011-07-13

    The limitations of current therapies for the treatment of iron overload or radioisotope contamination have stimulated efforts to develop new orally bioavailable iron and actinide chelators. Siderophore-inspired tetradentate, hexadentate and octadentate terephthalamidate and hydroxypyridonate ligands were evaluated in vivo as selective and efficacious iron or actinide chelating agents, with several metal loading and ligand assessment procedures, using {sup 59}Fe, {sup 238}Pu, and {sup 241}Am as radioactive tracers. The compounds presented in this study were compared to commercially available therapeutic sequestering agents [deferoxamine (DFO) for iron and diethylenetriaminepentaacetic acid (DPTA) for actinides] and are unrivaled in terms of affinity, selectivity and decorporation efficacy, which attests to the fact that high metal affinity may overcome the low bioavailability properties commonly associated to multidenticity.

  9. Surface deformation and shear flow in ligand mediated cell adhesion

    Science.gov (United States)

    Sircar, Sarthok; Roberts, Anthony; Sarthok Sircar / Anthony Roberts Collaboration

    We present a unified, multiscale model to study the attachment/detachment dynamics of two deforming, near spherical cells, coated with binding ligands and subject to a slow, homogeneous shear flow in a viscous fluid medium. The binding ligands on the surface of the cells experience attractive and repulsive forces in an ionic medium and exhibit finite resistance to rotation via bond tilting. The microscale drag forces and couples describing the fluid flow inside the small separation gap between the cells, are calculated using a combination of methods in lubrication theory and previously published numerical results. For a select range of material and fluid parameters, a hysteretic transition of the sticking probability curves (i.e., the function g*) between the adhesion phase (when g*>0.5) and the fragmentation phase (when g*University startup funds and AR is supported by the Australian Research Council Discovery Grant DP150102385.

  10. The cholinergic ligand binding material of axonal membranes

    International Nuclear Information System (INIS)

    Choline acetyltransferase and acetylcholinesterase, the enzymes responsible for the synthesis and hydrolysis of ACh, are present in nerve fibers. In crustacean peripheral nerves, release of ACh from cut nerve fibers has been demonstrated. Previously closed membrane vesicles have been prepared from lobster walking leg nerve plasma membrane and saturable binding of cholinergic agonsist and antagonists to such membranes have been demonstrated. This paper studies this axonal cholinergic binding material, and elucidates its functions. The binding of tritium-nicotine to lobster nerve plasma membranes was antagonized by a series of cholinergic ligands as well as by a series of local anesthetics. This preparation was capable of binding I 125-alpha-bungarotoxin, a ligand widely believed to be a specific label for nicotinic ACh receptor. The labelling of 50 K petide band with tritium-MBTA following disulfide reduction is illustrated

  11. Scintillation proximity radioimmunoassay utilizing 125I-labeled ligands

    International Nuclear Information System (INIS)

    A unique type of radioimmunoassay is described that does not require centrifugation or separation. Microbeads containing a fluorophor are covalently linked to antibody. When an 125I-labeled antigen is added it binds to the beads and, by its proximity, the emitted short-range electrons of the 125I excite the fluorophor in the beads. The light emitted can be measured in a standard scintillation counter. Addition of unlabeled antigen from tissue extracts displaces the labeled ligand and diminishes the fluorescent signal. Application of scintillation proximity immunoassay to tissue enkephalins, serum thyroxin, and urinary morphine is described. Applications of the principle to study the kinetics of interaction between receptors and ligands are discussed

  12. Inside job: ligand-receptor pharmacology beneath the plasma membrane

    Science.gov (United States)

    Babcock, Joseph J; Li, Min

    2013-01-01

    Most drugs acting on the cell surface receptors are membrane permeable and thus able to engage their target proteins in different subcellular compartments. However, these drugs' effects on cell surface receptors have historically been studied on the plasma membrane alone. Increasing evidence suggests that small molecules may also modulate their targeted receptors through membrane trafficking or organelle-localized signaling inside the cell. These additional modes of interaction have been reported for functionally diverse ligands of GPCRs, ion channels, and transporters. Such intracellular drug-target engagements affect cell surface expression. Concurrent intracellular and cell surface signaling may also increase the complexity and therapeutic opportunities of small molecule modulation. Here we discuss examples of ligand-receptor interactions that are present in both intra- and extracellular sites, and the potential therapeutic opportunities presented by this phenomenon. PMID:23685953

  13. Inside job: ligand-receptor pharmacology beneath the plasma membrane

    Institute of Scientific and Technical Information of China (English)

    Joseph J BABCOCK; Min LI

    2013-01-01

    Most drugs acting on the cell surface receptors are membrane permeable and thus able to engage their target proteins in different subcellular compartments.However,these drugs' effects on cell surface receptors have historically been studied on the plasma membrane alone.Increasing evidence suggests that small molecules may also modulate their targeted receptors through membrane trafficking or organelle-localized signaling inside the cell.These additional modes of interaction have been reported for functionally diverse ligands of GPCRs,ion channels,and transporters.Such intracellular drug-target engagements affect cell surface expression.Concurrent intracellular and cell surface signaling may also increase the complexity and therapeutic opportunities of small molecule modulation.Here we discuss examples of ligand-receptor interactions that are present in both intra- and extracellular sites,and the potential therapeutic opportunities presented by this phenomenon.

  14. Multidentate Terephthalamidate And Hydroxypyridonate Ligands: Towards New Orally Active Chelators

    International Nuclear Information System (INIS)

    The limitations of current therapies for the treatment of iron overload or radioisotope contamination have stimulated efforts to develop new orally bioavailable iron and actinide chelators. Siderophore-inspired tetradentate, hexadentate and octadentate terephthalamidate and hydroxypyridonate ligands were evaluated in vivo as selective and efficacious iron or actinide chelating agents, with several metal loading and ligand assessment procedures, using 59Fe, 238Pu, and 241Am as radioactive tracers. The compounds presented in this study were compared to commercially available therapeutic sequestering agents (deferoxamine (DFO) for iron and diethylenetriaminepentaacetic acid (DPTA) for actinides) and are unrivaled in terms of affinity, selectivity and decorporation efficacy, which attests to the fact that high metal affinity may overcome the low bioavailability properties commonly associated to multidenticity.

  15. Stereochemical investigation of mixed-ligand complexes of neodymium

    Energy Technology Data Exchange (ETDEWEB)

    Khomenko, V.S.; Lozinskii, M.O.; Fialkov, Yu.A.; Krasovskaya, L.I.; Rasshinina, T.A.

    1987-04-01

    A number of new adducts of the neodymium complexes with 1,1,1,5,5,5-hexafluoro-pentane-2,4-dione and 2-heptafluoropropoxy-1,1,1,2-tetrafluoro-5-phenylpentane-3,5-dione have been synthesized. Their fragmentation paths under electron impact have been established. The strength of the bonding of the additional ligands to the central atom in the complexes investigated has been evaluated. Data on the fragmentation paths of doubly charged ions have been obtained for the first time. The addition of the bis heterocycles to three-ligand complexes of neodymium alters the properties of the complexes, i.e., their thermal stability and photochemical stability increase, and in some cases, their volatility increases.

  16. Silver, Gold, Palladium Nanoparticles: Ligand Design, Synthesis and Polymer Composites

    Science.gov (United States)

    Iqbal, Muhammad

    Metal nanoparticles, especially gold nanoparticles (AuNPs), have been extensively studied due to their interesting optical properties and potential applications in emerging technologies like drug delivery, cancer therapy, catalysis, chemical and bio-sensing and microelectronics devices. Alkyl thiol ligands in the form of self assembled monolayers are often used to stabilize and functionalize the gold nanoparticles while other types of ligands have been rarely employed and the properties of AuNPs protected by different types of ligands have not been studied comprehensively and comparatively. This dissertation reports the first comparative studies on the thermal and chemical stability of AuNPs protected by alkyl thiolates, alkyl selenolates, dialkyl dithiophosphinates, and dialkyl dithiophosphates (Chapters 2 and 3). AuNPs protected by dialkyl dithiophosphinates and dialkyl dithiophosphates are unprecedented. All AuNPs were prepared from amine protected precursor AuNPs by ligand exchange to ensure similar size, size distribution, and chemical composition. They were extensively characterized by solution 1H-NMR and UV-VIS spectroscopy, transmission electron microscopy (TEM), thermal analysis, X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) analysis. For the first time, thermal stability was investigated by differential scanning calorimetry (DSC) that provided more accurate decomposition temperatures and enthalpies, whereas chemical stability was tested as the availability of the gold surface towards etching with cyanide in different solvents. Surprisingly, alkyl selenolate protected AuNPs are thermally less stable than alkyl thiolate protected AuNPs despite their proposed stronger binding to the gold surface and a much more crystalline monolayer, which suggests that different decomposition mechanisms apply to alkyl thiolate and alkyl selenolate protected AuNPs. Dialkyl dithiophosphinates and dialkyl dithiophosphates protected AuNPs are thermally

  17. Advances in Computational Techniques to Study GPCR-Ligand Recognition.

    Science.gov (United States)

    Ciancetta, Antonella; Sabbadin, Davide; Federico, Stephanie; Spalluto, Giampiero; Moro, Stefano

    2015-12-01

    G-protein-coupled receptors (GPCRs) are among the most intensely investigated drug targets. The recent revolutions in protein engineering and molecular modeling algorithms have overturned the research paradigm in the GPCR field. While the numerous ligand-bound X-ray structures determined have provided invaluable insights into GPCR structure and function, the development of algorithms exploiting graphics processing units (GPUs) has made the simulation of GPCRs in explicit lipid-water environments feasible within reasonable computation times. In this review we present a survey of the recent advances in structure-based drug design approaches with a particular emphasis on the elucidation of the ligand recognition process in class A GPCRs by means of membrane molecular dynamics (MD) simulations. PMID:26538318

  18. Ribonucleotide reductase inhibition by metal complexes of Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone): A combined experimental and theoretical study

    OpenAIRE

    Popović-Bijelić, Ana; Kowol, Christian R.; Lind, Maria E S; Luo, Jinghui; Himo, Fahmi; Enyedy, Éva A.; Arion, Vladimir B.; Gräslund, Astrid

    2011-01-01

    Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone, 3-AP) is currently the most promising chemotherapeutic compound among the class of α-N-heterocyclic thiosemicarbazones. Here we report further insights into the mechanism(s) of anticancer drug activity and inhibition of mouse ribonucleotide reductase (RNR) by Triapine. In addition to the metal-free ligand, its iron(III), gallium(III), zinc(II) and copper (II) complexes were studied, aiming to correlate their cytotoxic activities wi...

  19. Inverse PPARβ/δ agonists suppress oncogenic signaling to the ANGPTL4 gene and inhibit cancer cell invasion

    OpenAIRE

    Adhikary, T; Brandt, D T; Kaddatz, K; Stockert, J; Naruhn, S; Meissner, W.; Finkernagel, F; Obert, J.; Lieber, S; Scharfe, M.; Jarek, M; Toth, P M; Scheer, F; Diederich, W E; Reinartz, S

    2012-01-01

    Besides its established functions in intermediary metabolism and developmental processes, the nuclear receptor peroxisome proliferator-activated receptor β/δ (PPARβ/δ) has a less defined role in tumorigenesis. In the present study, we have identified a function for PPARβ/δ in cancer cell invasion. We show that two structurally divergent inhibitory ligands for PPARβ/δ, the inverse agonists ST247 and DG172, strongly inhibit the serum- and transforming growth factor β (TGFβ)-induced invasion of ...

  20. Histamine-induced inhibition of leukotriene biosynthesis in human neutrophils: involvement of the H2 receptor and cAMP

    OpenAIRE

    Flamand, Nicolas; Plante, Hendrick; Picard, Serge; Laviolette, Michel; Borgeat, Pierre

    2004-01-01

    Histamine is generally regarded as a pro-inflammatory mediator in diseases such as allergy and asthma. A growing number of studies, however, suggest that this autacoid is also involved in the downregulation of human polymorphonuclear leukocyte (PMN) functions and inflammatory responses through activation of the Gs-coupled histamine H2 receptor.We report here that histamine inhibits thapsigargin- and ligand (PAF and fMLP)-induced leukotriene (LT) biosynthesis in human PMN in a dose-dependent m...