Evolution equation for the higher-twist B-meson distribution amplitude
International Nuclear Information System (INIS)
Braun, V.M.; Offen, N.; Manashov, A.N.; Regensburg Univ.; Sankt-Petersburg State Univ.
2015-07-01
We find that the evolution equation for the three-particle quark-gluon B-meson light-cone distribution amplitude (DA) of subleading twist is completely integrable in the large N c limit and can be solved exactly. The lowest anomalous dimension is separated from the remaining, continuous, spectrum by a finite gap. The corresponding eigenfunction coincides with the contribution of quark-gluon states to the two-particle DA φ - (ω) so that the evolution equation for the latter is the same as for the leading-twist DA φ + (ω) up to a constant shift in the anomalous dimension. Thus, ''genuine'' three-particle states that belong to the continuous spectrum effectively decouple from φ - (ω) to the leading-order accuracy. In turn, the scale dependence of the full three-particle DA turns out to be nontrivial so that the contribution with the lowest anomalous dimension does not become leading at any scale. The results are illustrated on a simple model that can be used in studies of 1/m b corrections to heavy-meson decays in the framework of QCD factorization or light-cone sum rules.
International Nuclear Information System (INIS)
Kawamura, Hiroyuki; Tanaka, Kazuhiro
2010-01-01
The B-meson distribution amplitude (DA) is defined as the matrix element of a quark-antiquark bilocal light-cone operator in the heavy-quark effective theory, corresponding to a long-distance component in the factorization formula for exclusive B-meson decays. The evolution equation for the B-meson DA is governed by the cusp anomalous dimension as well as the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi-type anomalous dimension, and these anomalous dimensions give the ''quasilocal'' kernel in the coordinate-space representation. We show that this evolution equation can be solved analytically in the coordinate space, accomplishing the relevant Sudakov resummation at the next-to-leading logarithmic accuracy. The quasilocal nature leads to a quite simple form of our solution which determines the B-meson DA with a quark-antiquark light-cone separation t in terms of the DA at a lower renormalization scale μ with smaller interquark separations zt (z≤1). This formula allows us to present rigorous calculation of the B-meson DA at the factorization scale ∼√(m b Λ QCD ) for t less than ∼1 GeV -1 , using the recently obtained operator product expansion of the DA as the input at μ∼1 GeV. We also derive the master formula, which reexpresses the integrals of the DA at μ∼√(m b Λ QCD ) for the factorization formula by the compact integrals of the DA at μ∼1 GeV.
B→ππ form factors from light-cone sum rules with B-meson distribution amplitudes
Energy Technology Data Exchange (ETDEWEB)
Cheng, Shan; Khodjamirian, Alexander [Theoretische Physik 1, Naturwissenschaftlich-Technische Fakultät,Department Physik, Universität Siegen,Walter-Flex-Strasse 3, 57068 Siegen (Germany); Virto, Javier [Albert Einstein Center for Fundamental Physics,Institute for Theoretical Physics, University of Bern,Sidlerstrasse 5, CH-3012 Bern (Switzerland)
2017-05-30
We study B→ππ form factors using QCD light-cone sum rules with B-meson distribution amplitudes. These form factors describe the semileptonic decay B→ππℓν̄{sub ℓ}, and constitute an essential input in B→ππℓ{sup +}ℓ{sup −} and B→πππ decays. We employ the correlation functions where a dipion isospin-one state is interpolated by the vector light-quark current. We obtain sum rules where convolutions of the P-wave B̄{sup 0}→π{sup +}π{sup 0} form factors with the timelike pion vector form factor are related to universal B-meson distribution amplitudes. These sum rules are valid in the kinematic regime where the dipion state has a large energy and a low invariant mass, and reproduce analytically the known light-cone sum rules for B→ρ form factors in the limit of ρ-dominance and zero width, thus providing a systematics for so far unaccounted corrections to B→ρ transitions. Using data for the pion vector form factor, we estimate finite-width effects and the contribution of excited ρ-resonances to the B→ππ form factors. We find that these contributions amount up to ∼20% in the small dipion mass region where they can be effectively regarded as a nonresonant (P-wave) background to the B→ρ transition.
Descotes-Genon, S
2003-01-01
We study the radiative decay B -> gamma l nu_l in the framework of QCD factorization. We demonstrate explicitly that, in the heavy-quark limit and at one-loop order in perturbation theory, the amplitude does factorize, i.e. that it can be written as a convolution of a perturbatively calculable hard-scattering amplitude with the (non-perturbative) light-cone distribution amplitude of the B-meson. We evaluate the hard-scattering amplitude at one-loop order and verify that the large logarithms are those expected from a study of the b->u transition in the Soft-Collinear Effective Theory. Assuming that this is also the case at higher orders, we resum the large logarithms and perform an exploratory phenomenological analysis. The questions addressed in this study are also relevant for the applications of the QCD factorization formalism to two-body non-leptonic B-decays, in particular to the component of the amplitude arising from hard spectator interactions.
Diphoton generalized distribution amplitudes
International Nuclear Information System (INIS)
El Beiyad, M.; Pire, B.; Szymanowski, L.; Wallon, S.
2008-01-01
We calculate the leading order diphoton generalized distribution amplitudes by calculating the amplitude of the process γ*γ→γγ in the low energy and high photon virtuality region at the Born order and in the leading logarithmic approximation. As in the case of the anomalous photon structure functions, the γγ generalized distribution amplitudes exhibit a characteristic lnQ 2 behavior and obey inhomogeneous QCD evolution equations.
Two Photon Distribution Amplitudes
International Nuclear Information System (INIS)
El Beiyad, M.; Pire, B.; Szymanowski, L.; Wallon, S.
2008-01-01
The factorization of the amplitude of the process γ*γ→γγ in the low energy and high photon virtuality region is demonstrated at the Born order and in the leading logarithmic approximation. The leading order two photon (generalized) distribution amplitudes exhibit a characteristic ln Q 2 behaviour and obey new inhomogeneous evolution equations
Light Meson Distribution Amplitudes
Arthur, R.; Brommel, D.; Donnellan, M.A.; Flynn, J.M.; Juttner, A.; de Lima, H.Pedroso; Rae, T.D.; Sachrajda, C.T.; Samways, B.
2010-01-01
We calculated the first two moments of the light-cone distribution amplitudes for the pseudoscalar mesons ($\\pi$ and $K$) and the longitudinally polarised vector mesons ($\\rho$, $K^*$ and $\\phi$) as part of the UKQCD and RBC collaborations' $N_f=2+1$ domain-wall fermion phenomenology programme. These quantities were obtained with a good precision and, in particular, the expected effects of $SU(3)$-flavour symmetry breaking were observed. Operators were renormalised non-perturbatively and extrapolations to the physical point were made, guided by leading order chiral perturbation theory. The main results presented are for two volumes, $16^3\\times 32$ and $24^3\\times 64$, with a common lattice spacing. Preliminary results for a lattice with a finer lattice spacing, $32^3\\times64$, are discussed and a first look is taken at the use of twisted boundary conditions to extract distribution amplitudes.
Renormalization group analysis of B →π form factors with B -meson light-cone sum rules
Shen, Yue-Long; Wei, Yan-Bing; Lü, Cai-Dian
2018-03-01
Within the framework of the B -meson light-cone sum rules, we review the calculation of radiative corrections to the three B →π transition form factors at leading power in Λ /mb. To resum large logarithmic terms, we perform the complete renormalization group evolution of the correlation function. We employ the integral transformation which diagonalizes evolution equations of the jet function and the B -meson light-cone distribution amplitude to solve these evolution equations and obtain renormalization group improved sum rules for the B →π form factors. Results of the form factors are extrapolated to the whole physical q2 region and are compared with that of other approaches. The effect of B -meson three-particle light-cone distribution amplitudes, which will contribute to the form factors at next-to-leading power in Λ /mb at tree level, is not considered in this paper.
Observation of CP Violation in the Neutral B Meson System
Energy Technology Data Exchange (ETDEWEB)
Levy, S
2004-06-16
This dissertation presents a measurement of time-dependent CP-violating asymmetries in neutral B meson decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at the Stanford Linear Accelerator Center. The data sample consists of about 88 million {Upsilon}(4S) {yields} B{bar B} decays collected between 1999 and 2002. We study events in which one neutral B meson decay to the CP-eigenstates J/{psi} K{sub S}{sup 0}, {psi}(2S)K{sub S}{sup 0}, {chi}{sub c1}K{sub S}{sup 0}, and {eta}{sub c}K{sub S}{sup 0}, or to flavor-eigenstates involving D{sup (*)}{pi}/{rho}/a{sub 1} and J/{psi}K*{sup 0}(K*{sup 0} {yields} K{sup +} {pi}{sup -}), is fully reconstructed. The flavor of the other neutral B meson is tagged at the time of its decay, mainly using the charge of identified leptons and kaons. The proper time elapsed between the meson decays is determined by measuring the distance between the decay vertices. The amplitude of the CP-violating asymmetry, which in the Standard Model is proportional to sin2{beta}, is determined from a simultaneous maximum-likelihood fit to the time-difference distribution of the flavor- and CP-eigenstate samples. We measure sin2{beta} = 0.755 {+-} 0.074 (stat) {+-} 0.030 (syst).
Energy Technology Data Exchange (ETDEWEB)
Latham, Thomas Edward; /Bristol U.
2006-09-18
Results of an amplitude analysis of the B{sup +} {yields} K{sup +}{pi}{sup -}{pi}{sup +} Dalitz plot are presented. The analysis uses a data sample with an integrated luminosity of 210.6 fb{sup -1}, recorded by the BABAR detector at the PEP-II asymmetric B Factory. This sample corresponds to 231.8 million B{bar B} pairs. Branching fractions and 90% confidence level upper limits are calculated, averaged over charge conjugate states (B). For those modes that have significant branching fraction measurements CP violating charge asymmetry measurements are also presented (A{sub CP}). The results from the nominal fit are summarized.
Distribution amplitudes of vector mesons
Energy Technology Data Exchange (ETDEWEB)
Braun, V.M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Broemmel, D. [Deutsches Elektronen-Synchrotron, Hamburg (Germany); Goeckeler, M. [Regensburg Univ. (DE). Inst. fuer Theoretische Physik] (and others)
2007-11-15
Results are presented for the lowest moment of the distribution amplitude for the K{sup *} vector meson. Both longitudinal and transverse moments are investigated. We use two flavours of O(a) improved Wilson fermions, together with a non-perturbative renormalisation of the matrix element. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Aleksan, Roy; Ali, Ahmed
1993-06-15
Since the discovery of the upsilon resonances in 1977 the physics of the fifth quark - beauty - has played a vital role in establishing and consolidating today's Standard Model of particle physics. In recent years, a wealth of data on B particle (containing the beauty quark) has emerged from the detectors ARGUS (at the DORIS ring, DESY, Hamburg) and CLEO (at the Cornell CESR ring) as well as from CERN's LEP electron-positron collider and the proton-antiproton colliders at CERN and Fermilab. But the most challenging goal of this physics is to explore the mystery of CP violation, so far only seen in neutral kaon decays. This subtle mechanism - a disregard for the combined symmetry of particle antiparticle switching and left-right reflection - possibly moulded the evolution of the Universe after the Big Bang, providing a world dominated by matter, rather than one where matter and antimatter play comparable roles. To fully explore CP violation in the laboratory needs a dedicated machine - a particle 'factory' - to mass produce B mesons. Only when this full picture of CP violation has been revealed will physicists finally be able to solve its mysteries. As well as major proposals in the US and Japan, several ideas have been launched in Europe. Over the years, many working groups have accumulated an impressive amount of data and knowledge on the physics as well as on the machine and detectors. The spearheads of experimental B physics are the ARGUS and CLEO collaborations. Highlights include the determination of the parameters of the (Cabibbo-Kobayashi-Maskawa, CKM) quark mixing matrix, testing the consistency of the Standard Model with six quarks and three leptons, and giving the first indirect hint that the as yet unseen sixth ('top') quark is very heavy, together with initial indications of how it should decay. Valuable complementary information has come from proton-antiproton collider data and particularly from the LEP experiments at the Z resonance. Experiments at
International Nuclear Information System (INIS)
Aleksan, Roy; Ali, Ahmed
1993-01-01
Since the discovery of the upsilon resonances in 1977 the physics of the fifth quark - beauty - has played a vital role in establishing and consolidating today's Standard Model of particle physics. In recent years, a wealth of data on B particle (containing the beauty quark) has emerged from the detectors ARGUS (at the DORIS ring, DESY, Hamburg) and CLEO (at the Cornell CESR ring) as well as from CERN's LEP electron-positron collider and the proton-antiproton colliders at CERN and Fermilab. But the most challenging goal of this physics is to explore the mystery of CP violation, so far only seen in neutral kaon decays. This subtle mechanism - a disregard for the combined symmetry of particle antiparticle switching and left-right reflection - possibly moulded the evolution of the Universe after the Big Bang, providing a world dominated by matter, rather than one where matter and antimatter play comparable roles. To fully explore CP violation in the laboratory needs a dedicated machine - a particle 'factory' - to mass produce B mesons. Only when this full picture of CP violation has been revealed will physicists finally be able to solve its mysteries. As well as major proposals in the US and Japan, several ideas have been launched in Europe. Over the years, many working groups have accumulated an impressive amount of data and knowledge on the physics as well as on the machine and detectors. The spearheads of experimental B physics are the ARGUS and CLEO collaborations. Highlights include the determination of the parameters of the (Cabibbo-Kobayashi-Maskawa, CKM) quark mixing matrix, testing the consistency of the Standard Model with six quarks and three leptons, and giving the first indirect hint that the as yet unseen sixth ('top') quark is very heavy, together with initial indications of how it should decay. Valuable complementary information has come from proton-antiproton collider data and particularly from the LEP experiments at the
Topics on CP violation in B-meson decays
International Nuclear Information System (INIS)
Soares, J.M.
1993-01-01
In this work several independent topics on CP violation in the B-meson decays are addressed. To begin with, the present constraints on the parameters of the Cabibbo-Kobayashi-Maskawa (CKM) matrix are discussed. Then, I calculate the CP-violating asymmetry in the radiative decays of the charged B-mesons: it only appears at the 2-loop level, but it can be large in the b → dγ decays. At this point, the possibility of using these decays to measure the CKM entry |V td | will be studied. I also consider the decays of the neutral B-mesons: the strong correlation between the asymmetries in B 0 → ΨK S and the B 0 → π + π - is suggested as a powerful test of the standard model (a simple extension of the model is given where the correlation disappears). Finally, I address the question of observing direct CP violation in comparing these two asymmetries. An ambiguity that may arise is resolved due to the role that is played by penguin diagram contributions to the decay amplitudes
PQCD analysis of inclusive semileptonic decays of B mesons
International Nuclear Information System (INIS)
Li, H.; Yu, H.
1996-01-01
We develop the perturbative QCD formalism for inclusive semileptonic B meson decays, which includes Sudakov suppression from the resummation of large radiative corrections near the high end of charged lepton energy. Transverse degrees of freedom of partons are introduced to facilitate the factorization of B meson decays. Ambiguities appearing in the quark-level analysis are then avoided. A universal distribution function, arising from the nonperturbative Fermi motion of the b quark, is constructed according to the heavy quark effective field theory based operator product expansion, through which the mean and the width of the distribution function are related to hadronic matrix elements of local operators. Charged lepton spectra of the B→X ul ν decay are presented. We find 50% suppression near the end point of the spectrum. The overall suppression on the total decay rate is 8% for the free quark model, and is less than 7% for the use of smooth distribution functions. With our predictions, it is then possible to extract the Cabibbo-Kobayashi-Maskawa matrix element parallel V ub parallel from experimental data. We also discuss possible implications of our analysis when confronted with the rather small observed semileptonic branching ratio in B meson decays. copyright 1996 The American Physical Society
Observation of Matter-Antimatter Asymmetry in the Neutral B Meson System
Energy Technology Data Exchange (ETDEWEB)
Rahatlou, S
2003-12-19
In this dissertation, a measurement of CP-violating effects in decays of neutral B meson is presented. The data sample for this measurement consists of about 88 million {Upsilon}(4S) {yields} B{bar B} decays collected between 1999 and 2002 with the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} collider, located at the Stanford Linear Accelerator Center. One neutral B meson is fully reconstructed in the CP eigenstates J/{psi} K{sub S}{sup 0}, {psi}(2S)K{sub S}{sup 0}, {chi}{sub c1}K{sub S}{sup 0}, and {eta}{sub c}K{sub S}{sup 0}, or in the flavor eigenstates D(*){sup -} {pi}{sup +}/{rho}{sup +}/a{sub 1}{sup +} and J/{psi} K*{sup 0} (K*{sup 0} {yields} K{sup +}{pi}{sup -}). The other B meson is determined to be either a B{sup 0} or a {bar B}{sup 0}, at the time of its decay, from the properties of its decay products. The proper time {Delta}t elapsed between the decay of the two mesons is determined by reconstructing their decay vertices, and by measuring the distance between them. The CP asymmetry amplitude sin2{beta} is determined by the distributions of {Delta}t in events with a reconstructed B meson in CP eigenstates. The detector resolution and the b-flavor-tagging parameters are constrained by the {Delta}t distributions of events with a fully reconstructed flavor eigenstate. From a simultaneous maximum-likelihood fit to the {Delta}t distributions of all selected events in CP and flavor eigenstates, the value of sin2{beta} is measured to be 0.755 {+-} 0.074(stat) {+-} 0.030(syst). This value is in agreement with the Standard Model prediction, and represents a successful test of the Kobayashi-Maskawa mechanism of CP violation.
Search for radiative B meson decays
International Nuclear Information System (INIS)
Lesiak, T.; Muryn, B.; Nowak, G.; Antreasyan, D.; Irion, J.; McBride, P.; Strauch, K.; Bartels, H.W.; Bienlein, J.K.; Brockmueller, K.; Jakubowski, Z.; Karch, K.; Kloiber, T.; Koch, W.; Maschmann, W.; Meyer, H.; Skwarnicki, T.; Trost, H.J.; Voigt, A.; Wachs, K.; Zschorsch, P.; Besset, D.; Cabenda, R.; Cowan, R.; Bieler, C.; Graaf, K.; Heinsius, F.H.; Kiel, T.; Krueger, S.; Lekebusch, R.; Nernst, R.; Sievers, D.; Stock, V.; Strohbusch, U.; Bloom, E.D.; Clare, R.; Cooper, S.; Fairfield, K.; Fridman, A.; Gaiser, J.; Gelphman, D.; Godfrey, G.; Hofstadter, R.; Kirkbride, I.; Lee, R.; Leffler, S.; Litke, A.M.; Lockman, W.; Lowe, S.; Niczyporuk, B.; Pollock, B.; Schwarz, A.; Tompkins, J.; Van Uitert, B.; Wacker, K.; Brock, I.; Engler, A.; Kraemer, R.W.; Marlow, D.; Messing, F.; Prindle, D.; Renger, B.; Rippich, C.; Vogel, H.; Cavalli-Sforza, M.; Coyne, D.; Folger, G.; Glaser, G.; Kobel, M.; Lurz, B.; Schuette, J.; Volland, U.; Wegener, H.; Janssen, H.; Koenig, A.C.; Metzger, W.J.; Reidenbach, M.; Schotanus, J.; Walle, R.T. van de; Walk, W.; Keh, S.; Kilian, H.; Koenigsmann, K.; Scheer, M.; Schmitt, P.; Marsiske, H.; Peck, C.; Porter, F.C.; Ratoff, P.; Williams, D.A.
1991-07-01
The Crystal Ball detector at the ε + ε - storage ring DORIS-II has been used to search for radiative B meson decays, especially of the type b→sγ. No mono-energetic γ-lines have been found in the inclusive photon spectrum from Υ(4S) decays, and upper limits are obtained for radiative decays of B mesons to various strange mesons and to the D*. Integrating the photon spectrum over the corresponding energy range, we find BR(B→γX) -3 at 90% confidence level for the mass range 892 MeV≤M X ≤2045 MeV. (orig.)
Search for radiative B meson decays
International Nuclear Information System (INIS)
Lesiak, T.; Muryn, B.; Nowak, G.; Antreasyan, D.; Irion, J.; McBride, P.; Strauch, K.; Bartels, H.W.; Bienlein, J.K.; Brockmueller, K.; Jakubowski, Z.; Karch, K.; Kloiber, T.; Koch, W.; Maschmann, W.; Meyer, H.; Skwarnicki, T.; Trost, H.J.; Voigt, A.; Wachs, K.; Zschorsch, P.; Besset, D.; Cabenda, R.; Cowan, R.; Bieler, C.; Graaf, K.; Heinsius, F.H.; Kiel, T.; Krueger, S.; Lekebusch, R.; Nernst, R.; Sievers, D.; Stock, V.; Strohbusch, U.; Bloom, E.D.; Clare, R.; Cooper, S.; Fairfield, K.; Fridman, A.; Gaiser, J.; Gelphman, D.; Godfrey, G.; Hofstadter, R.; Kirkbride, I.; Lee, R.; Leffler, S.; Litke, A.M.; Lockman, W.; Lowe, S.; Niczyporuk, B.; Pollock, B.; Schwarz, A.; Tompkins, J.; Van Uitert, B.; Wacker, K.; Brock, I.; Engler, A.; Kraemer, R.W.; Marlow, D.; Messing, F.; Prindle, D.; Renger, B.; Rippich, C.; Vogel, H.; Cavalli-Sforza, M.; Coyne, D.; Folger, G.; Glaser, G.; Kobel, M.; Lurz, B.; Schuette, J.; Volland, U.; Wegener, H.; Janssen, H.; Koenig, A.C.; Metzger, W.J.; Reidenbach, M.; Schotanus, J.; Walle, R.T. van de; Walk, W.; Keh, S.; Kilian, H.; Koenigsmann, K.; Scheer, M.; Schmitt, P.; Marsiske, H.; Williams, D.A.
1992-01-01
The Crystal Ball detector at the e + e - storage ring DORIS-II has been used to search for radiative B meson decays, especially of the type b→sγ. No mono-energetic γ-lines have been found in the inclusive photon spectrum from Υ(4S) decays, and upper limits are obtained for radiative decays of B mesons to various strange mesons and to the D*. Integrating the photon spectrum over the corresponding energy range, we find BR(B→γX) -3 , at 90% confidence level for the mass range 892 MeV≤M X ≤2045 MeV. (orig.)
SU(6), baryonic decays of B-mesons and CP
International Nuclear Information System (INIS)
Wu, D.
1990-01-01
In this paper the four fermion weak decay Hamiltonian is expressed in terms of quark-antiquark creation operators with specific spin orientations. Then the SU(6) symmetry of the strong interactions among light quarks is imposed to find 8 invariant decay amplitudes for two body charmful baryonic decays of the B-mesons, 3 S-waves, 4 P- waves and 1 D-wave. Λ c branching ratio and some exclusive branching ratios are calculated based on the assumption of two body dominance in baryonic decay modes. Results on two body mesonic decays are also given. Relation between the SU(6) scheme and the quark diagram scheme is discussed
Charged track multiplicity in B meson decay
International Nuclear Information System (INIS)
Brandenburg, G.; Ershov, A.; Gao, Y. S.; Kim, D. Y.-J.; Wilson, R.; Browder, T. E.; Li, Y.; Rodriguez, J. L.; Yamamoto, H.; Bergfeld, T.
2000-01-01
We have used the CLEO II detector to study the multiplicity of charged particles in the decays of B mesons produced at the Υ(4S) resonance. Using a sample of 1.5x10 6 B meson pairs, we find the mean inclusive charged particle multiplicity to be 10.71±0.02 -0.15 +0.21 for the decay of the pair. This corresponds to a mean multiplicity of 5.36±0.01 -0.08 +0.11 for a single B meson. Using the same data sample, we have also extracted the mean multiplicities in semileptonic and nonleptonic decays. We measure a mean of 7.82±0.05 -0.19 +0.21 charged particles per BB(bar sign) decay when both mesons decay semileptonically. When neither B meson decays semileptonically, we measure a mean charged particle multiplicity of 11.62±0.04 -0.18 +0.24 per BB(bar sign) pair. (c) 2000 The American Physical Society
A violation of CP symmetry in B meson decays
International Nuclear Information System (INIS)
Karyotakis, Y.; Monchenault, G.H. de
2002-01-01
This article reviews the issue of CP-violation and reports the most recent results about the observation of large CP asymmetries in the decay of neutral B-mesons. Some of the CP asymmetries in the neutral B-meson decay are expected to be large. CP-violation always involves quantum mechanical interference. This occurs for instance when there are 2 paths for a particle to decay into a given final state. The interference between the mixing-induced amplitude (B 0 → B-bar 0 → f) and the decay amplitude (B 0 → f) to a CP eigenstate f leads to a time dependent CP asymmetry that can be interpreted in terms of the angles of the unitary triangle (sin(2β)). The experimental challenge comes from the fact that B decays to some CP eigenstates have very small branching ratios and low efficiencies for complete reconstruction of the final state. It is therefore necessary to produce a very large number of B-mesons to perform a CP-measurement. To make the measurement possible, a new type of e + e - collider, called asymmetric B-factory has been designed. 2 asymmetric B-factories are operating in the world: PEP2 (Stanford, Usa) fitted with the Babar detector and KEK-B (Japan) which hosts Belle detector. The measurements given by Babar and Belle are in good agreement and can be combined. The average value is sin(2β) = 0.78 ± 0.08 and this value is in excellent agreement with the standard model predictions based on available experimental data. (A.C.)
LHCb: LHCb results on $B$ meson mixing
Eitschberger, U
2013-01-01
On the poster three LHCb results on B meson mixing using a datasample of 1 fb$^{-1}$ of $pp$ collisions at $\\sqrt{s} =$ 7 TeV are presented. The B meson oscillation frequencies are measured as $\\Delta m_d = 0.5156 \\pm 0.0051 (\\text{stat}) \\pm 0.0033 (\\text{syst}) \\text{ps}^{-1}$ and $\\Delta m_s = 17.768 \\pm 0.023 (\\text{stat}) \\pm 0.006 (\\text{syst}) \\text{ps}^{-1}$. The CP violation observables in the decay channel $B^0 \\rightarrow J/\\psi K^0_S$ are determined as $S_{J/\\psi K^0_S} = 0.73 \\pm 0.07 (\\text{stat})\\pm 0.04 (\\text{syst})$ and $C_{J/\\psi K^0_S} = 0.03 \\pm 0.09 (\\text{stat})\\pm 0.01 (\\text{syst})$.
Oscillations of neutral B mesons systems
Boucrot, J.
1999-01-01
The oscillation phenomenon in the neutral B mesons systems is now well established. The motivations and principles of the measurements are given; then the most recent results from the LEP experiments, the CDF collaboration at Fermilab and the SLD collaboration at SLAC are reviewed. The present world average of the $\\bd$ meson oscillation frequency is $\\dmd = 0.471 \\pm 0.016 \\ps$ and the lower limit on the $\\bs$ oscillation frequency is
B meson physics and related new physics
International Nuclear Information System (INIS)
Tanimoto, Morimitsu
1988-01-01
We have surveyed the some models focusing on the mixings, the CP violation and the rare decay in the B meson system. The ARGUS data of the B d 0 -B-bar d 0 mixing gives us some constraints as to parameters of these models. Especially, we have investigated the composite scale in detail using the ARGUS data of the B d 0 -B-bar d 0 mixing and obtained some interesting results. (author)
Study of B Meson Decays to ppbarh Final States
Energy Technology Data Exchange (ETDEWEB)
Hryn' ova, Tetiana B.; /SLAC
2006-03-22
B mesons are unique among well-established non-quarkonium mesons in their ability to decay into baryons. Baryonic B decays offer a wide range of interesting areas of study: they can be used to test our theoretical understanding of rare decay processes involving baryons, search for direct CP violation and study low-energy QCD. This thesis presents measurements of branching fractions and a study of the decay dynamics of the charmless three-body decays of B meson into p{bar p}h final states, where h = {pi}{sup +}, K{sup +}, K{sub S}{sup 0}, K*{sup 0} or K*{sup +}. With a sample of 232 million {Upsilon}(4S) {yields} B{bar B} events collected with the BaBar detector, we report the first observation of the B {yields} p{bar p}K*{sup 0} decay, and provide improved measurements of branching fractions of the other modes. The distribution of the three final-state particles is of particular interest since it provides dynamical information on the possible presence of exotic intermediate states such as the hypothetical pentaquark states {Theta}*{sup ++} and {Theta}{sup +}in the m{sub pK{sup +}} and m{sub pK{sub S}{sup 0}} spectra, respectively, or glueball states (such as the tensor glueball f{sub J}(2220)) in the m{sub p{bar p}} spectrum. No evidence for exotic states is found and upper limits on the branching fractions are set. An enhancement at low p{bar p} mass is observed in all the B {yields} p{bar p}h modes, and its shape is compared between the decay modes and with the shape of the time-like proton form factor. A Dalitz plot asymmetry in B {yields} p{bar p}K{sup +} mode suggests dominance of the penguin amplitude in this decay and disfavors the possibility that the low mass p{bar p} enhancement originates from the presence of a resonance below threshold (such as the recently seen baryonium candidate at 1835 MeV/c{sup 2}). We also identify decays of the type B {yields} X{sub c{bar c}}h {yields} p{bar p}h, where h = K{sup +}, K{sub S}{sup 0}, K*{sup 0} or K*{sup +}, and X
Non-Leptonic Weak Decays of B Mesons
Neubert, Matthias; Neubert, Matthias; Stech, Berthold
1997-01-01
We present a detailed study of non-leptonic two-body decays of B mesons based on a generalized factorization hypothesis. We discuss the structure of non-factorizable corrections and present arguments in favour of a simple phenomenological description of their effects. To evaluate the relevant transition form factors in the factorized decay amplitudes, we use information extracted from semileptonic decays and incorporate constraints imposed by heavy-quark symmetry. We discuss tests of the factorization hypothesis and show how unknown decay constants may be determined from non-leptonic decays. In particular, we find f_{Ds}=(234+-25) MeV and f_{Ds*}=(271+-33) MeV.
Rare decays of the B meson and QCD effects
International Nuclear Information System (INIS)
O'Donnell, P.J.
1987-01-01
The rare decay modes of the B meson might soon be able to test the standard model of weak interactions. In the event that the experimental searches now under way are not able to explore a significantly large enough range (say up to 240 GeV) these rare decays might be used to seek out a value for the top quark mass. The branching ratios for a number of decay processes (exclusive and inclusive) of the B meson are given. These are calculated in the standard model with three generations. A distribution of the μ/sup +/μ/sup -/ pairs is also given. This should distinguish between transverse and longitudinal production of the lepton pairs. The predictions for the inclusive decay branching ratios become precise when an independent determination is made of m/sub t/. However, it is necessary to incorporate the strong interaction effects in discussing exclusive decays. These can be incorporated as wave function overlaps and as corrections to the fundamental interaction vertices. Some recent calculations have included gluon loop corrections to the fundamental vertex with the result of a possible increase of about two orders of magnitude in the case of light top quark masses
Inclusive spectra of hadrons in B-meson decays
International Nuclear Information System (INIS)
Dobrovol'skaya, A.V.; Ter-Martirosyan, K.A.; Zoller, V.R.
1989-01-01
The inclusive spectra of hadrons (mainly pions) produced in the semileptonic and nonleptonic decays of B-mesons are calculated. Parameters of spectra for different types of hard qq-bar-strings, appearing in the B-meson decays, are determined using the data on e+e-annihilation. Numerical results for B-meson decay induced by both b→b and b→u transitions are presented. 10 refs.; 5 figs
Measurement of the B(0) and B(+) meson lifetimes with fully reconstructed hadronic final states.
Aubert, B; Boutigny, D; Gaillard, J M; Hicheur, A; Karyotakis, Y; Lees, J P; Robbe, P; Tisserand, V; Palano, A; Chen, G P; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Reinertsen, P L; Stugu, B; Abbott, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Clark, A R; Gill, M S; Gritsan, A; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kluth, S; Kolomensky, Y G; Kral, J F; LeClerc, C; Levi, M E; Liu, T; Lynch, G; Meyer, A B; Momayezi, M; Oddone, P J; Perazzo, A; Pripstein, M; Roe, N A; Romosan, A; Ronan, M T; Shelkov, V G; Telnov, A V; Wenzel, W A; Bright-Thomas, P G; Harrison, T J; Hawkes, C M; Knowles, D J; O'Neale, S W; Penny, R C; Watson, A T; Watson, N K; Deppermann, T; Goetzen, K; Koch, H; Krug, J; Kunze, M; Lewandowski, B; Peters, K; Schmuecker, H; Steinke, M; Andress, J C; Barlow, N R; Bhimji, W; Chevalier, N; Clark, P J; Cottingham, W N; De Groot, N; Dyce, N; Foster, B; McFall, J D; Wallom, D; Wilson, F F; Abe, K; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Jolly, S; McKemey, A K; Tinslay, J; Blinov, V E; Bukin, A D; Bukin, D A; Buzykaev, A R; Golubev, V B; Ivanchenko, V N; Korol, A A; Kravchenko, E A; Onuchin, A P; Salnikov, A A; Serednyakov, S I; Skovpen, Y I; Telnov, V I; Yushkov, A N; Best, D; Lankford, A J; Mandelkern, M; McMahon, S; Stoker, D P; Ahsan, A; Arisaka, K; Buchanan, C; Chun, S; Branson, J G; MacFarlane, D B; Prell, S; Rahatlou, S; Raven, G; Sharma, V; Campagnari, C; Dahmes, B; Hart, P A; Kuznetsova, N; Levy, S L; Long, O; Lu, A; Richman, J D; Verkerke, W; Witherell, M; Yellin, S; Beringer, J; Dorfan, D E; Eisner, A M; Frey, A; Grillo, A A; Grothe, M; Heusch, C A; Johnson, R P; Kroeger, W; Lockman, W S; Pulliam, T; Sadrozinski, H; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Turri, M; Walkowiak, W; Williams, D C; Wilson, M G; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Metzler, S; Oyang, J; Porter, F C; Ryd, A; Samuel, A; Weaver, M; Yang, S; Zhu, R Y; Devmal, S; Geld, T L; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Barillari, T; Bloom, P; Dima, M O; Fahey, S; Ford, W T; Johnson, D R; Nauenberg, U; Olivas, A; Park, H; Rankin, P; Roy, J; Sen, S; Smith, J G; van Hoek, W C; Wagner, D L; Blouw, J; Harton, J L; Krishnamurthy, M; Soffer, A; Toki, W H; Wilson, R J; Zhang, J; Brandt, T; Brose, J; Colberg, T; Dahlinger, G; Dickopp, M; Dubitzky, R S; Maly, E; Müller-Pfefferkorn, R; Otto, S; Schubert, K R; Schwierz, R; Spaan, B; Wilden, L; Behr, L; Bernard, D; Bonneaud, G R; Brochard, F; Cohen-Tanugi, J; Ferrag, S; Roussot, E; T'Jampens, S; Thiebaux, C; Vasileiadis, G; Verderi, M; Anjomshoaa, A; Bernet, R; Khan, A; Muheim, F; Playfer, S; Swain, J E; Falbo, M; Borean, C; Bozzi, C; Dittongo, S; Folegani, M; Piemontese, L; Treadwell, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Falciai, D; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Xie, Y; Zallo, A; Bagnasco, S; Buzzo, A; Contri, R; Crosetti, G; Fabbricatore, P; Farinon, S; Lo Vetere, M; Macri, M; Monge, M R; Musenich, R; Pallavicini, M; Parodi, R; Passaggio, S; Pastore, F C; Patrignani, C; Pia, M G; Priano, C; Robutti, E; Santroni, A; Morii, M; Bartoldus, R; Dignan, T; Hamilton, R; Mallik, U; Cochran, J; Crawley, H B; Fischer, P A; Lamsa, J; Meyer, W T; Rosenberg, E I; Benkebil, M; Grosdidier, G; Hast, C; Höcker, A; Lacker, H M; LePeltier, V; Lutz, A M; Plaszczynski, S; Schune, M H; Trincaz-Duvoid, S; Valassi, A; Wormser, G; Bionta, R M; Brigljević, V; Lange, D J; Mugge, M; Shi, X; van Bibber, K; Wenaus, T J; Wright, D M; Wuest, C R; Carroll, M; Fry, J R; Gabathuler, E; Gamet, R; George, M; Kay, M; Payne, D J; Sloane, R J; Touramanis, C; Aspinwall, M L; Bowerman, D A; Dauncey, P D; Egede, U; Eschrich, I; Gunawardane, N J; Nash, J A; Sanders, P; Smith, D; Azzopardi, D E; Back, J J; Dixon, P; Harrison, P F; Potter, R J; Shorthouse, H W; Strother, P; Vidal, P B; Williams, M I; Cowan, G; George, S; Green, M G; Kurup, A; Marker, C E; McGrath, P; McMahon, T R; Ricciardi, S; Salvatore, F; Scott, I; Vaitsas, G; Brown, D; Davis, C L; Allison, J; Barlow, R J; Boyd, J T; Forti, A C; Fullwood, J; Jackson, F; Lafferty, G D; Savvas, N; Simopoulos, E T; Weatherall, J H; Farbin, A; Jawahery, A; Lillard, V; Olsen, J; Roberts, D A; Schieck, J R; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Moore, T B; Staengle, H; Willocq, S; Brau, B; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Milek, M; Patel, P M; Trischuk, J; Lanni, F; Palombo, F; Bauer, J M; Booke, M; Cremaldi, L; Eschenburg, V; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Martin, J P; Nief, J Y; Seitz, R; Taras, P; Zacek, V; Nicholson, H; Sutton, C S; Cartaro, C; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Paolucci, P; Piccolo, D; Sciacca, C; LoSecco, J M; Alsmiller, J R; Gabriel, T A; Handler, T; Brau, J; Frey, R; Iwasaki, M; Sinev, N B; Strom, D; Colecchia, F; Dal Corso, F; Dorigo, A; Galeazzi, F; Margoni, M; Michelon, G; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Torassa, E; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; De la Vaissière, C; Del Buono, L; Hamon, O; Le Diberder, F; Leruste, P; Lory, J; Roos, L; Stark, J; Versillé, S; Manfredi, P F; Re, V; Speziali, V; Frank, E D; Gladney, L; Guo, Q H; Panetta, J H; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Carpinelli, M; Forti, F; Giorgi, M A; Lusiani, A; Martinez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Simi, G; Triggiani, G; Walsh, J; Haire, M; Judd, D; Paick, K; Turnbull, L; Wagoner, D E; Albert, J; Bula, C; Elmer, P; Lu, C; McDonald, K T; Miftakov, V; Schaffner, S F; Smith, A J; Tumanov, A; Varnes, E W; Cavoto, G; del Re, D; Faccini, R; Ferrarotto, F; Ferroni, F; Fratini, K; Lamanna, E; Leonardi, E; Mazzoni, M A; Morganti, S; Piredda, G; Safai Tehrani, F; Serra, M; Voena, C; Christ, S; Waldi, R; Adye, T; Franek, B; Geddes, N I; Gopal, G P; Xella, S M; Aleksan, R; De Domenico, G; Emery, S; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, W; Langer, M; London, G W; Mayer, B; Serfass, B; Vasseur, G; Yeche, C; Zito, M; Copty, N; Purohit, M V; Singh, H; Yumiceva, F X; Adam, I; Anthony, P L; Aston, D; Baird, K; Bloom, E; Boyarski, A M; Bulos, F; Calderini, G; Claus, R; Convery, M R; Coupal, D P; Coward, D H; Dorfan, J; Doser, M; Dunwoodie, W; Field, R C; Glanzman, T; Godfrey, G L; Gowdy, S J; Grosso, P; Himel, T; Huffer, M E; Innes, W R; Jessop, C P; Kelsey, M H; Kim, P; Kocian, M L; Langenegger, U; Leith, D W; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Menke, S; Messner, R; Moffeit, K C; Mount, R; Muller, D R; O'Grady, C P; Perl, M; Petrak, S; Quinn, H; Ratcliff, B N; Robertson S H; Rochester, L S; Roodman, A; Schietinger, T; Schindler, R H; Schwiening, J; Serbo, V V; Snyder, A; Soha, A; Spanier, S M; Stelzer, J; Su, D; Sullivan, M K; Tanaka, H A; Va'vra, J; Wagner, S R; Weinstein, A J; Wisniewski, W J; Wright, D W; Young, C C; Burchat, P R; Cheng, C H; Kirkby, D; Meyer, T I; Roat, C; Henderson, R; Bugg, W; Cohn, H; Weideman, A W; Izen, J M; Kitayama, L; Lou, X C; Turcotte, M; Bona, M; Di Girolamo, B; Gamba, D; Smol, A; Zanin, D; Lanceri, L; Pompili, A; Vaugnin, G; Panvini, R S; Brown, C M; De Silva, A; Kowalewski, R; Roney, J M; Band, H R; Charles, E; Dasu, S; Di Lodovico, F; Eichenbaum, A M; Hu, H; Johnson, J R; Liu, R; Nielsen, J; Pan, Y; Prepost, R; Scott, I J; Sekula, S J; von Wimmersperg-Toeller, J H; Wu, S L; Yu, Z; Zobernig, H; Kordich, T M; Neal, H
2001-11-12
The B(0) and B(+) meson lifetimes have been measured in e(+)e(-) annihilation data collected in 1999 and 2000 with the BABAR detector at center-of-mass energies near the Upsilon(4S) resonance. Events are selected in which one B meson is fully reconstructed in a hadronic final state while the second B meson is reconstructed inclusively. A combined fit to the B(0) and the B(+) decay time difference distributions yields tau(B(0)) = 1.546+/-0.032(stat)+/-0.022(syst) ps, tau(B(+)) = 1.673+/-0.032(stat)+/-0.023(syst) ps, and tau(B(+))/tau(B(0)) = 1.082+/-0.026(stat)+/-0.012(syst).
International Nuclear Information System (INIS)
Ali, A.
1991-07-01
This paper is organized as follows. First, we discuss the decay rates for b → (s,d) + γ in the lowest order (1 loop) and including the QCD corrections in the effective Hamiltonian method. The photon energy spectrum in the inclusive decays B → X s + γ is evaluated in this approach and the dominant background from the CC decays B → X c + γ is presented. Next, we discuss the calculations for the inclusive decays b → s + anti l (l = e,μ,ν), including the QCD corrections. Finally, we summarize rate estimates for the exclusive rare decays of the B-meson, B → K*γ, and B → (K,K*) anti l (l = e,μ,ν), as well as B o s,d → γγ and B o s,d → l + l - with (l = e,μ,r). (orig./HSI)
Direct CP Violation in Charmless Hadronic B-Meson Decays at the PEP-II Asymmetric B-Meson Factory
Energy Technology Data Exchange (ETDEWEB)
Telnov, Alexandre Valerievich; /UC, Berkeley
2005-05-06
The study of the quark transition b {yields} s{bar s}s, which is a pure loop-level (''penguin'') process leading to several B-meson-decay final states, most notably {phi}K, is arguably the hottest topic in B-meson physics today. The reason is the sensitivity of the amplitudes and the CP-violating asymmetries in such processes to physics beyond the Standard Model. By performing these measurements, we improve our understanding of the phenomenon of combined-parity (CP) violation, which is believed to be responsible for the dominance of matter over antimatter in our Universe. Here, we present measurements of branching fractions and charge asymmetries in the decays B{sup +} {yields} {phi}K{sup +} and B{sup 0} {yields} {phi}K{sup 0} in a sample of approximately 89 million B{bar B} pairs collected by the BABAR detector at the PEP-II asymmetric-energy B-meson Factory at SLAC. We determine {Beta}(B{sup +} {yields} {phi}K{sup +}) = (10.0{sub -0.8}{sup +0.9} {+-} 0.5) x 10{sup -6} and {Beta}(B{sup 0} {yields} {phi}K{sup 0}) = (8.4{sub -1.3}{sup +1.5} {+-} 0.5) x 10{sup -6}, where the first error is statistical and the second is systematic. Additionally, we measure the CP-violating charge asymmetry {Alpha}{sub CP}(B{sup {+-}} {yields} {phi}K{sup {+-}}) = 0.04 {+-} 0.09 {+-} 0.01, with a 90% confidence-level interval of [-0.10, 0.18], and set an upper limit on the CKM- and color-suppressed decay B{sup +} {yields} {phi}{pi}{sup +}, {Beta}(B{sup +} {yields} {phi}{pi}{sup +}) < 0.41 x 10{sup -6} (at the 90% confidence level). Our results are consistent with the Standard Model, which predicts {Alpha}{sub CP}(B{sup {+-}} {yields} {phi}K{sup {+-}}) {approx}< 1% and {Beta}(B {yields} {phi}{tau}) << 10{sup -7}. Since many models of physics beyond the Standard Model introduce additional loop diagrams with new heavy particles and new CP-violating phases that would contribute to these decays, potentially making {Alpha}{sub CP} (B{sup {+-}} {yields} {phi
Particle Distribution Modification by Low Amplitude Modes
International Nuclear Information System (INIS)
White, R.B.; Gorelenkov, N.; Heidbrink, W.W.; Van Zeeland, M.A.
2009-01-01
Modification of a high energy particle distribution by a spectrum of low amplitude modes is investigated using a guiding center code. Only through resonance are modes effective in modifying the distribution. Diagnostics are used to illustrate the mode-particle interaction and to find which effects are relevant in producing significant resonance, including kinetic Poincare plots and plots showing those orbits with time averaged mode-particle energy transfer. Effects of pitch angle scattering and drag are studied, as well as plasma rotation and time dependence of the equilibrium and mode frequencies. A specific example of changes observed in a DIII-D deuterium beam distribution in the presence of low amplitude experimentally validated Toroidal Alfven (TAE) eigenmodes and Reversed Shear Alfven (RSAE) eigenmodes is examined in detail. Comparison with experimental data shows that multiple low amplitude modes can account for significant modification of high energy beam particle distributions. It is found that there is a stochastic threshold for beam profile modification, and that the experimental amplitudes are only slightly above this threshold.
Limits on rare exclusive decays of B mesons
International Nuclear Information System (INIS)
Avery, P.; Besson, D.; Bowcock, T.; Giles, R.T.; Hassard, J.; Kinoshita, K.; Pipkin, F.M.; Wilson, R.; Wolinski, J.; Xiao, D.; Gentile, T.; Haas, P.; Hempstead, M.; Jensen, T.; Kagan, H.; Kass, R.; Behrends, S.; Guida, J.M.; Guida, J.A.; Morrow, F.; Poling, R.; Thorndike, E.H.; Tipton, P.; Alam, M.S.; Katayama, N.; Kim, I.J.; Sun, C.R.; Tanikella, V.; Bortoletto, D.; Chen, A.; Garren, L.; Goldberg, M.; Holmes, R.; Horwitz, N.; Jawahery, A.; Lubrano, P.; Moneti, G.C.; Sharma, V.; Csorna, S.E.; Mestayer, M.D.; Panvini, R.S.; Word, G.B.; Bean, A.; Bobbink, G.J.; Brock, I.C.; Engler, A.; Ferguson, T.; Kraemer, R.W.; Rippich, C.; Vogel, H.; Bebek, C.; Berkelman, K.; Blucher, E.; Cassel, D.G.; Copie, T.; DeSalvo, R.; DeWire, J.W.; Ehrlich, R.; Galik, R.S.; Gilchriese, M.G.D.; Gittelman, B.; Gray, S.W.; Halling, A.M.; Hartill, D.L.; Heltsley, B.K.; Holzner, S.; Ito, M.; Kandaswamy, J.; Kowalewski, R.; Kreinick, D.L.; Kubota, Y.; Mistry, N.B.; Mueller, J.; Namjoshi, R.; Nordberg, E.; Ogg, M.; Perticone, D.; Peterson, D.; Pisharody, M.; Read, K.; Riley, D.; Silverman, A.; Stone, S.; Yi Xia; Sadoff, A.J.
1987-01-01
We have set upper limits for rare exclusive decays of B mesons arising from higher order processes in the standard model of electroweak interactions. Such decays may occur via ''penguin diagrams'' in B decay. We also set an upper limit on a lepton-number-violating decay mode of the neutral B meson. (orig.)
Semileptonic B-meson decays in SU(3)
International Nuclear Information System (INIS)
Li Zuohong; Hou Yunzhi
1994-01-01
Based on the SU(3) approximate symmetry in the strong interaction three-body and four-body semileptonic B-meson decays are analyzed. Relations between decay rates are derived. Some of these relations may provide information on the nature of various competing dynamical effects that can occur in semileptonic B-meson decays
CORNELL: CLEO discovers B meson penguins
International Nuclear Information System (INIS)
Anon.
1993-01-01
The CLEO collaboration at Cornell's CESR electron-positron storage ring has discovered a rare type of B meson decay in which only a high energy photon and a K* meson are produced. These decays provide the first unambiguous evidence for an alternative route for heavy quark decay that has been given the whimsical name ''penguin diagram''. In the mid-1970s penguin diagrams were proposed to explain the puzzling strangeness quantum number selection rules in the decay of K mesons. At the same time it was realized that penguin diagrams could also be important in the CP violation seen in neutral K meson decay. CP violation, an asymmetry between matter and antimatter, is an essential ingredient in understanding why there is much more matter than antimatter in the universe. CP violation introduces a definite direction to the arrow of time, which could otherwise point equally forwards or backwards. In addition, penguin decays are very sensitive to some extensions of the Standard Model of weak decay. Although penguin diagrams were first proposed to explain an effect in K meson decay, the K system gives no unique signature for them, and verification of penguin processes meant looking elsewhere. In the Standard Model, quarks decay under the influence of the weak force, emitting a W boson. Since the W is charged, the charge of the initial quark differs from that of the final quark, so the charge of the quark changes as well as its flavour
International Nuclear Information System (INIS)
Ali, A.
1992-01-01
This article is dedicated to the memory of Andrei D. Sakharov, a great scientist and human rights activist. Sakharov was blessed with the rare gift of prophetic prediction in matters concerning both science and society. His paper in 1967 on the baryon asymmetry of the universe relating it to the baryon instability, CP-violation, and thermodynamic non-equilibrium, was a very long shot. In view of subsequent theoretical developments in grand unified theories of elementary particle physics and cosmology, where the Sakharov conditions can be accommodated, this paper represents indeed a very fine example of scientific genius and prophecy. His political judgement, exemplified by his visionary essay Progress, Coexistence, and Intellectual Freedom, written in 1968, was equally stunning. Among other topics Sakharov was also very much interested in physics of the heavy quarks. In this paper we review theoretical predictions about an interesting aspect of heavy quark physics, namely rare phenomena in the decays of B-meson involving flavor changing neutral current (FCNC) processes
Rare B Meson Decays With Omega Mesons
Energy Technology Data Exchange (ETDEWEB)
Zhang, Lei; /Colorado U.
2006-04-24
Rare charmless hadronic B decays are particularly interesting because of their importance in understanding the CP violation, which is essential to explain the matter-antimatter asymmetry in our universe, and of their roles in testing the ''effective'' theory of B physics. The study has been done with the BABAR experiment, which is mainly designed for the study of CP violation in the decays of neutral B mesons, and secondarily for rare processes that become accessible with the high luminosity of the PEP-II B Factory. In a sample of 89 million produced B{bar B} pairs on the BABAR experiment, we observed the decays B{sup 0} {yields} {omega}K{sup 0} and B{sup +} {yields} {omega}{rho}{sup +} for the first time, made more precise measurements for B{sup +} {yields} {omega}h{sup +} and reported tighter upper limits for B {yields} {omega}K* and B{sup 0} {yields} {omega}{rho}{sup 0}.
Radiative decays of B mesons at LHCb
Soomro, Fatima; Golutvin, Andrei
2011-01-01
This thesis is dedicated to the study of radiative decays of $B$ mesons at LHC$b$. At quark level, such decays are a $b\\to s\\gamma$ transition and take place via a penguin loop and are sensitive to virtual contribution of New Physics, which can be indicated by an increase in the decay rates. These decays also offer the possibility to test the V-A structure of the Standard Model coupling in the processes mediated by loop penguin diagrams. In the decay $B_s \\to \\phi\\gamma$, New Physics contribution can be probed by measuring the polarization of the photon in this decay. Systematic effects in the proper time reconstruction of the $B_s$ in $B_s \\to \\phi\\gamma$ can bias the photon polarization measurement in this decay, which will reduce the sensitivity on the relevant New Physics parameter. The author studied those effects and developed ideas to calibrate them using $B_d\\to K^{*}\\gamma$ and $B_s\\to J/\\psi\\phi$ decays as control channels. These studies are mostly Monte Carlo based due to a relatively small data ...
Analysis of orbitally excited B-mesons
Albrecht, Zoltan; Quast, Gunter
2003-01-01
This thesis reports on the study of orbitally excited B** mesons in DELPHI b-events taken in the years 1994 to 2000 with the DELPHI detector at the LEP collider. The analyses presented represent the result of applying much improved and extended techniques of spectroscopy since the first DELPHI publication in 1995. A major improvement has occurred in the area of particle identification, where a neural network approach has been implemented in the DELPHI software package. Developments in the area of neural networks have led to much improved enrichment of the excited B states. The Bˆ{**} neural networks identify, on a track-by-track basis, the decay pion/kaon originating from the Bˆ{**} decay, suppressing background and keeping signal events in an efficient way. To improve detector resolution, a further application of neural networks has been applied to reconstruct the underlying Q-value. The corresponding network gives a correction on existing measurements of the Q-value in the form of a probability density fu...
CORNELL: CLEO discovers B meson penguins
Energy Technology Data Exchange (ETDEWEB)
Anon.
1993-06-15
The CLEO collaboration at Cornell's CESR electron-positron storage ring has discovered a rare type of B meson decay in which only a high energy photon and a K* meson are produced. These decays provide the first unambiguous evidence for an alternative route for heavy quark decay that has been given the whimsical name ''penguin diagram''. In the mid-1970s penguin diagrams were proposed to explain the puzzling strangeness quantum number selection rules in the decay of K mesons. At the same time it was realized that penguin diagrams could also be important in the CP violation seen in neutral K meson decay. CP violation, an asymmetry between matter and antimatter, is an essential ingredient in understanding why there is much more matter than antimatter in the universe. CP violation introduces a definite direction to the arrow of time, which could otherwise point equally forwards or backwards. In addition, penguin decays are very sensitive to some extensions of the Standard Model of weak decay. Although penguin diagrams were first proposed to explain an effect in K meson decay, the K system gives no unique signature for them, and verification of penguin processes meant looking elsewhere. In the Standard Model, quarks decay under the influence of the weak force, emitting a W boson. Since the W is charged, the charge of the initial quark differs from that of the final quark, so the charge of the quark changes as well as its flavour.
Semileptonic Branching Fractions of Charged and Neutral B Mesons
International Nuclear Information System (INIS)
Athanas, M.; Brower, W.; Masek, G.; Paar, H.P.; Gronberg, J.; Kutschke, R.; Menary, S.; Morrison, R.J.; Nakanishi, S.; Nelson, H.N.; Nelson, T.K.; Qiao, C.; Richman, J.D.; Ryd, A.; Tajima, H.; Sperka, D.; Witherell, M.S.; Balest, R.; Cho, K.; Ford, W.T.; Johnson, D.R.; Lingel, K.; Lohner, M.; Rankin, P.; Smith, J.G.; Alexander, J.P.; Bebek, C.; Berkelman, K.; Bloom, K.; Browder, T.E.; Cassel, D.G.; Cho, H.A.; Coffman, D.M.; Crowcroft, D.S.; Drell, P.S.; Dumas, D.; Ehrlich, R.; Gaidarev, P.; Garcia-Sciveres, M.; Geiser, B.; Gittelman, B.; Gray, S.W.; Hartill, D.L.; Heltsley, B.K.; Henderson, S.; Jones, C.D.; Jones, S.L.; Kandaswamy, J.; Katayama, N.; Kim, P.C.; Kreinick, D.L.; Ludwig, G.S.; Masui, J.; Mevissen, J.; Mistry, N.B.; Ng, C.R.; Nordberg, E.; Patterson, J.R.; Peterson, D.; Riley, D.; Salman, S.; Sapper, M.; Wuerthwein, F.; Avery, P.; Freyberger, A.; Rodriguez, J.; Yang, S.; Yelton, J.; Cinabro, D.; Liu, T.; Saulnier, M.; Wilson, R.; Yamamoto, H.; Bergfeld, T.; Eisenstein, B.I.; Gollin, G.; Ong, B.; Palmer, M.; Selen, M.; Thaler, J.J.; Edwards, K.W.; Ogg, M.; Bellerive, A.; Britton, D.I.; Hyatt, E.R.F.; MacFarlane, D.B.; Patel, P.M.; Spaan, B.; Sadoff, A.J.; Ammar, R.; Baringer, P.; Bean, A.; Besson, D.; Coppage, D.; Copty, N.; Davis, R.; Hancock, N.; Kelly, M.; Kotov, S.; Kravchenko, I.; Kwak, N.; Lam, H.; Kubota, Y.; Lattery, M.; Momayezi, M.; Nelson, J.K.; Patton, S.; Poling, R.; Savinov, V.; Schrenk, S.; Wang, R.; Alam, M.S.; Kim, I.J.; Ling, Z.; Mahmood, A.H.; O'Neill, J.J.; Severini, H.; Sun, C.R.; Wappler, F.; Crawford, G.; Daubenmier, C.M.; Fulton, R.; Fujino, D.; Gan, K.K.; Honscheid, K.; Kagan, H.; Kass, R.; Lee, J.; Malchow, R.; Skovpen, Y.; Sung, M.; White, C.; Zoeller, M.M.; Butler, F.; Fu, X.; Nemati, B.; Ross, W.R.; Skubic, P.; Wood, M.; Bishai, M.; Fast, J.; Gerndt, E.; McIlwain, R.L.; Miao, T.; Miller, D.H.; Modesitt, M.; Payne, D.; Shibata, E.I.; Shipsey, I.P.J.; Wang, P.N.; Battle, M.; Ernst, J.; Gibbons, L.; Kwon, Y.
1994-01-01
An examination of leptons in Υ(4S) events tagged by reconstructed B meson decays yields semileptonic branching fractions of b - =(10.1±1.8±1.5)% for charged and b 0 =(10.9±0.7±1.1)% for neutral B mesons. This is the first measurement for charged B mesons. Assuming equality of the charged and neutral semileptonic widths, the ratio b - /b 0 =0.93±0.18±0.12 is equivalent to the ratio of lifetimes
Application of heavy-light methods to B meson physics
International Nuclear Information System (INIS)
Eichten, E.; Hockney, G.; Thacker, H.B.
1989-01-01
The heavy-light method is applied to the study of the B meson spectrum, the pseudoscalar decay constant f B , the mixing (B) parameter, and exclusive semileptonic B meson decays. Preliminary results are discussed for f B and the B parameter at β = 5.7 and κ = 0.165 on a 12 3 x 24 lattice and at β = 5.9 and κ = 0.158 on a 16 3 x 32 lattice. 9 refs., 2 figs., 2 tabs
B-meson production in the Parton Reggeization approach at Tevatron and the LHC
International Nuclear Information System (INIS)
Karpishkov, A.V.; Saleev, V.A.; Nefedov, M.A.; Shipilova, A.V.; Samara State Aerospace Univ.; Hamburg Univ.
2014-11-01
We study the inclusive hadroproduction of B 0 , B + , and B 0 s mesons at leading order in the parton Reggeization approach using the universal fragmentation functions extracted from the combined e + e - annihilation data from CERN LEP1 and SLAC SLC colliders. We have described B-meson transverse momentum distributions measured in the central region of rapidity by the CDF Collaboration at Fermilab Tevatron and CMS Collaboration at LHC within uncertainties and without free parameters, applying Kimber-Martin-Ryskin unintegrated gluon distribution function in a proton. The forward B-meson production (2.0< y<4.5) measured by the LHCb Collaboration also has been studied and expected disagreement between our theoretical predictions and data has been obtained.
Radiative Decays of the B Meson
Energy Technology Data Exchange (ETDEWEB)
Tanaka, Hirohisa A
2003-09-23
The radiative decays of the B meson to the final states K *(892){gamma} and {rho}(770){gamma} proceed through virtual effective flavor-changing neutral current processes which are sensitive to contributions from high mass scales from within the Standard Model of particle interactions and from possible new physics. In the context of the Standard Model, these transitions are of interest in probing the weak interaction behavior of the top quark. In particular, the ratio of branching fractions for the two processes can be used to extract the ratio of Cabibbo-Kobayashi-Maskawa matrix elements |V{sub td}/V{sub ts}|. Potential new physics contributions in these virtual transitions may induce new sources of direct CP violation and enhancement or suppression of the rate of these processes. The B {yields} K*{gamma} is a manifestation of the b {yields} s{gamma} radiative transition. This process has been previously observed by the CLEO collaboration and its branching fraction measured. While the theoretical prediction for the inclusive rate of b {yields} s{gamma} transitions is more robust than that of the exclusive B {yields} K*{gamma}, the prospects for precise measurements of {Beta}[B {yields} K*{gamma}] and direct CP violation in this channel has attracted considerable attention. The analysis described here represents an improved measurement of the B {yields} K*{gamma} branching factions and a more sensitive search for direct CP violation. In 22.7 x 10{sup 6} B{bar B} events collected by the BABAR detector in 1999-2000, we measure: {Beta}[B{sup 0} {yields} K*{sup 0}{gamma}] = 4.23 {+-} 0.40(stat.) {+-} 0.22(syst.) x 10{sup -5} and {Beta}[B{sup +} {yields} K*{sup +}{gamma}] = 3.83 {+-} 0.62(stat.) {+-} 0.22(syst.) x 10{sup -5}. We find no evidence for direct CP violation in the decays and constrain -0.170 < A{sub CP} < 0.082 at 90% Confidence Level. The B {yields} {rho}{gamma} proceeds through the analogous b {yields} d{gamma} radiative transition. As such, its rate is
Rapidity resummation for B-meson wave functions
Directory of Open Access Journals (Sweden)
Shen Yue-Long
2014-01-01
Full Text Available Transverse-momentum dependent (TMD hadronic wave functions develop light-cone divergences under QCD corrections, which are commonly regularized by the rapidity ζ of gauge vector defining the non-light-like Wilson lines. The yielding rapidity logarithms from infrared enhancement need to be resummed for both hadronic wave functions and short-distance functions, to achieve scheme-independent calculations of physical quantities. We briefly review the recent progress on the rapidity resummation for B-meson wave functions which are the key ingredients of TMD factorization formulae for radiative-leptonic, semi-leptonic and non-leptonic B-meson decays. The crucial observation is that rapidity resummation induces a strong suppression of B-meson wave functions at small light-quark momentum, strengthening the applicability of TMD factorization in exclusive B-meson decays. The phenomenological consequence of rapidity-resummation improved B-meson wave functions is further discussed in the context of B → π transition form factors at large hadronic recoil.
Improved measurement of the B 0 and B + meson lifetimes
Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J. P.; Lucotte, A.; Minard, M. N.; Odier, P.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Juste, A.; Martinez, M.; Orteu, S.; Pacheco, A.; Padilla, C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Alemany, R.; Bazarko, A. O.; Bonvicini, G.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Palla, F.; Pater, J. R.; Pusztaszeri, J. F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wagner, A.; Wildish, T.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rossignol, J. M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Wäänänen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Rougé, A.; Rumpf, M.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Rensch, B.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Stacey, A. M.; Williams, M. D.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Williams, M. I.; Galla, A.; Greene, A. M.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H. G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Konstantinidis, N.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Trabelsi, K.; Aleppo, M.; Ragusa, F.; Abt, I.; Assmann, R.; Bauer, C.; Blum, W.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H. G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; St. Denis, R.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J. F.; Heusse, Ph.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A. M.; Nikolic, I.; Park, H. J.; Park, I. C.; Schune, M. H.; Simion, S.; Veillet, J. J.; Videau, I.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J. F.; Roussarie, A.; Schuller, J. P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Koksal, A.; Letho, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Büscher, V.; Cowan, G.; Grupen, C.; Lutters, G.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Bellantoni, L.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Harton, J. L.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I. J.; Sharma, V.; Walsh, A. M.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.
1996-03-01
The lifetimes of the B 0 and B + mesons have been measured with the Aleph detector at LEP, using approximately 3 million hadronic Z decays collected in the period 1991 1994. In the first of three methods, semileptonic decays of B 0 and B + mesons were partially reconstructed by identifying events containing a lepton with an associated D*- orbar D^0 meson. The second method used fully reconstructed B 0 and B + mesons. The third method, used to measure the B 0 lifetime, employed a partial reconstruction technique to identify B 0→ D*- π + X decays. The combined results are begin{gathered} tau _0 = 1.55 ± 0.06 ± 0.03 ps, \\ tau _ + = 1.58 ± 0.09 ± 0.03 ps, \\ tfrac{{tau _ + }}{{tau _0 }} = 1.03 ± 0.08 ± 0.02. \\ .
B-meson factories: Physics, machines and detectors
International Nuclear Information System (INIS)
Kolanoski, H.
1990-10-01
This report gives a short survey of the present status of B-meson factory plans and discussions at different laboratories. The physics motivation for an e + e - machine running with the highest possible luminosity in the Γ(4S) energy region is outlined emphasizing the possibility to observe CP violation in the B-meson system. The technical concepts for such machines together with the basic luminosity limitations are discussed. Finally, the requirements on a detector which is able to cover the rich physics program are presented. (orig.)
Charged-particle multiplicities in B-meson decay
International Nuclear Information System (INIS)
Alam, M.S.; Csorna, S.E.; Fridman, A.; Hicks, R.G.; Panvini, R.S.; Andrews, D.; Avery, P.; Berkelman, K.; Cabenda, R.; Cassel, D.G.; DeWire, J.W.; Ehrlich, R.; Ferguson, T.; Gilchriese, M.G.D.; Gittelman, B.; Hartill, D.L.; Herrup, D.; Herzlinger, M.; Holzner, S.; Kandaswamy, J.; Kreinick, D.L.; Mistry, N.B.; Morrow, F.; Nordberg, E.; Perchonok, R.; Plunkett, R.; Silverman, A.; Stein, P.C.; Stone, S.; Weber, D.; Wilcke, R.; Sadoff, A.J.; Bebek, C.; Haggerty, J.; Hempstead, M.; Izen, J.M.; Loomis, W.A.; MacKay, W.W.; Pipkin, F.M.; Rohlf, J.; Tanenbaum, W.; Wilson, R.; Chadwick, K.; Chauveau, J.; Ganci, P.; Gentile, T.; Kagan, H.; Kass, R.; Melissinos, A.C.; Olsen, S.L.; Poling, R.; Rosenfeld, C.; Rucinski, G.; Thorndike, E.H.; Green, J.; Sannes, F.; Skubic, P.; Snyder, A.; Stone, R.; Brody, A.; Chen, A.; Goldberg, M.; Horwitz, N.; Lipari, P.; Kooy, H.; Moneti, G.C.; Pistilli, P.
1982-01-01
The charged multiplicity has been measured at the UPSILON(4S) and a value of 5.75 +- 0.1 +- 0.2 has been obtained for the mean charged multiplicity in B-meson decay. Combining this result with the measurement of prompt letpons from B decay, the values 4.1 +- 0.35 +- 0.2 and 6.3 +- 0.2 +- 0.2 are found for the semileptonic and nonleptonic charged multiplicities, respectively. If b→c dominance is assumed for the weak decay of the B meson, then the semileptonic multiplicity is consistent with the recoil mass determined from the lepton momentum spectrum
Observational Aspects of Symmetries of the Neutral B Meson System
Fidecaro, Maria; Ruf, Thomas
2015-01-01
We revisit various results, which have been obtained by the BABAR and Belle Collaborations over the last twelve years, concerning symmetry properties of the Hamiltonian, which governs the time evolution and the decay of neutral B mesons. We find that those measurements, which established CP violation in B meson decay, 13 years ago, had as well established T (time-reversal) symmetry violation. They also confirmed CPT symmetry in the decay (T$_{CPT}$ = 0) and symmetry with respect to time-reversal ( $\\epsilon$ = 0) and to CPT ($\\delta$ = 0) in the $B^0 \\bar{B}^0$ oscillation.
A search for exclusive penguin decays of B mesons
International Nuclear Information System (INIS)
Avery, P.; Besson, D.; Garren, L.; Yelton, J.; Bowcock, T.; Kinoshita, K.; Pipkin, F.M.; Procario, M.; Wilson, R.; Wolinski, J.; Xiao, D.; Baringer, P.; Haas, P.; Lam, H.; Jawahery, A.; Park, C.H.; Perticone, D.; Poling, R.; Fulton, R.; Hempstead, M.; Jensen, T.; Johnson, D.R.; Kagan, H.; Kass, R.; Morrow, F.; Whitmore, J.; Chen, W.Y.; Dominick, J.; McIlwain, R.L.; Miller, D.H.; Ng, C.R.; Shibata, E.I.; Yao, W.M.; Thorndike, E.H.; Alam, M.S.; Katayama, N.; Kim, I.J.; Li, W.C.; Lou, X.C.; Sun, C.R.; Bortoletto, D.; Goldberg, M.; Horwitz, N.; Mestayer, M.D.; Moneti, G.C.; Sharma, V.; Shipsey, I.P.J.; Skwarnicki, T.; Csorna, S.E.; Letson, T.; Brock, I.C.; Ferguson, T.; Artuso, M.; Bebek, C.; Byrd, J.; Berkelman, K.; Cassel, D.G.; Cheu, E.; Coffman, D.M.; Crawford, G.; DeWire, J.W.; Drell, P.S.; Ehrlich, R.; Galik, R.S.; Gittelman, B.; Gray, S.W.; Halling, A.M.; Hartill, D.L.; Heltsley, B.K.; Kandaswamy, J.; Kowalewski, R.; Kreinick, D.L.; Kubota, Y.; Lewis, J.D.; Mistry, N.B.; Mueller, J.; Namjoshi, R.; Nandi, S.; Nordberg, E.; O'Grady, C.; Peterson, D.; Pisharody, M.; Riley, D.; Sapper, M.; Silverman, A.; Stone, S.; Worden, H.; Worris, M.; Sadoff, A.J.
1989-01-01
We have measured upper limits on branching fractions for rare exclusive decays of B mesons arising from one-loop diagrams in the standard model of electroweak interactions. We also obtain an upper limit for the lepton-number-violating decay B 0 →μ ± e -+ . (orig.)
An updated study of B meson oscillations using dilepton events
Ackerstaff, K.; Allison, John; Altekamp, N.; Anderson, K.J.; Anderson, S.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Bartoldus, R.; Batley, J.R.; Baumann, S.; Bechtluft, J.; Beeston, C.; Behnke, T.; Bell, A.N.; Bell, Kenneth Watson; Bella, G.; Bentvelsen, S.; Berlich, P.; Bethke, S.; Biebel, O.; Biguzzi, A.; Bird, S.D.; Blobel, V.; Bloodworth, I.J.; Bloomer, J.E.; Bobinski, M.; Bock, P.; Bonacorsi, D.; Boutemeur, M.; Bouwens, B.T.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Burgard, C.; Burgin, R.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Chrisman, D.; Clarke, P.E.L.; Cohen, I.; Conboy, J.E.; Cooke, O.C.; Cuffiani, M.; Dado, S.; Dallapiccola, C.; Dallavalle, G.Marco; De Jong, S.; del Pozo, L.A.; Desch, K.; Dixit, M.S.; do Couto e Silva, E.; Doucet, M.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Eatough, D.; Edwards, J.E.G.; Estabrooks, P.G.; Evans, H.G.; Evans, M.; Fabbri, F.; Fanti, M.; Faust, A.A.; Fiedler, F.; Fierro, M.; Fischer, H.M.; Fleck, I.; Folman, R.; Fong, D.G.; Foucher, M.; Fukui, H.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gascon, J.; Gascon-Shotkin, S.M.; Geddes, N.I.; Geich-Gimbel, C.; Geralis, T.; Giacomelli, G.; Giacomelli, P.; Giacomelli, R.; Gibson, V.; Gibson, W.R.; Gingrich, D.M.; Glenzinski, D.; Goldberg, J.; Goodrick, M.J.; Gorn, W.; Grandi, C.; Gross, E.; Grunhaus, J.; Gruwe, M.; Hajdu, C.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Hargrove, C.K.; Hart, P.A.; Hartmann, C.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herndon, M.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hillier, S.J.; Hilse, T.; Hobson, P.R.; Homer, R.J.; Honma, A.K.; Horvath, D.; Howard, R.; Hutchcroft, D.E.; Igo-Kemenes, P.; Imrie, D.C.; Ingram, M.R.; Ishii, K.; Jawahery, A.; Jeffreys, P.W.; Jeremie, H.; Jimack, M.; Joly, A.; Jones, C.R.; Jones, G.; Jones, M.; Jost, U.; Jovanovic, P.; Junk, T.R.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kirk, J.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Koetke, D.S.; Kokott, T.P.; Kolrep, M.; Komamiya, S.; Kress, T.; Krieger, P.; von Krogh, J.; Kyberd, P.; Lafferty, G.D.; Lahmann, R.; Lai, W.P.; Lanske, D.; Lauber, J.; Lautenschlager, S.R.; Layter, J.G.; Lazic, D.; Lee, A.M.; Lefebvre, E.; Lellouch, D.; Letts, J.; Levinson, L.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Ludwig, J.; Macchiolo, A.; Macpherson, A.; Mannelli, M.; Marcellini, S.; Markus, C.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; Mckigney, E.A.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menke, S.; Merritt, F.S.; Mes, H.; Meyer, J.; Michelini, A.; Mikenberg, G.; Miller, D.J.; Mincer, A.; Mir, R.; Mohr, W.; Montanari, A.; Mori, T.; Morii, M.; Muller, U.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nellen, B.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Oldershaw, N.J.; Oreglia, M.J.; Orito, S; Palinkas, J.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Pearce, M.J.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poffenberger, P.; Poli, B.; Posthaus, A.; Przysiezniak, H.; Rees, D.L.; Rigby, D.; Robertson, S.; Robins, S.A.; Rodning, N.; Roney, J.M.; Rooke, A.; Ros, E.; Rossi, A.M.; Rosvick, M.; Routenburg, P.; Rozen, Y.; Runge, K.; Runolfsson, O.; Ruppel, U.; Rust, D.R.; Rylko, R.; Sachs, K.; Saeki, T.; Sarkisian, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharf, F.; Scharff-Hansen, P.; Schenk, P.; Schieck, J.; Schleper, P.; Schmitt, B.; Schmitt, S.; Schoning, A.; Schroder, Matthias; Schultz-Coulon, H.C.; Schulz, M.; Schumacher, M.; Schwick, C.; Scott, W.G.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Sittler, A.; Skillman, A.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Springer, Robert Wayne; Sproston, M.; Stephens, K.; Steuerer, J.; Stockhausen, B.; Stoll, K.; Strom, David M.; Szymanski, P.; Tafirout, R.; Talbot, S.D.; Tanaka, S.; Taras, P.; Tarem, S.; Teuscher, R.; Thiergen, M.; Thomson, M.A.; von Torne, E.; Towers, S.; Trigger, I.; Tsur, E.; Turcot, A.S.; Turner-Watson, M.F.; Utzat, P.; Van Kooten, Rick J.; Verzocchi, M.; Vikas, P.; Vokurka, E.H.; Voss, H.; Wackerle, F.; Wagner, A.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wermes, N.; White, J.S.; Wilkens, B.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Yekutieli, G.; Zacek, V.; Zer-Zion, D.
1997-01-01
This paper reports a study of B meson oscillations using hadronic Z^0 decays with two identified leptons, and updates a previous publication by including data collected in 1994. Decay times are reconstructed for each of the semileptonic B decays by forming vertices which include the lepton and by estimating the B meson momentum. The mass difference, Delta(m_d), between the two mass eigenstates in the B^0_d system is measured to be 0.430 +/- 0.043 + 0.028 - 0.030 ps^-1, where the first error is statistical and the second error is systematic. For the B^0_s system, a lower limit of Delta(m_s) > 2.2 ps^-1 is obtained at 95% C.L.
B meson physics with polarized electron beams at the SLC
International Nuclear Information System (INIS)
Atwood, W.B.
1988-09-01
The expected large cross-section for e + e - → Z 0 and subsequent decay to b/bar b/ quarks makes the Z 0 an attractive place to pursue B meson physics. In addition, the big Electroweak asymmetries, thought to exist in Z 0 decays to b/bar b/ quarks with polarized electron beams, provide an outstanding handle for observation of such effects as B 0 -/bar B/ 0 mixing. In this paper, the feasibility of such measurements is investigated and, with relatively small samples of Z 0 's (a few hundred thousand), both B/sub d/ and B/sub s/ meson mixing are shown to be measurable. The subject of CP violation in neutral B mesons is discussed last, but presently such measurements seem to be out of reach. 7 refs., 6 figs., 3 tabs
Study of charmonium decays of B mesons in the Babar experiment
International Nuclear Information System (INIS)
Grenier, Philippe
2006-04-01
This document is organized into 4 parts. The first part is dedicated to the Babar experiment that is installed on the e + e - collider at Stanford linear accelerator center. The formalism of the standard model and the CP violation in the B meson system are first introduced, then the Babar experiment is described and its main results are recalled: sin(2β) 0.722 ± 0.040 ± 0.023; α = (103 + 11 - 9) degrees; γ = (52 + 23 - 18) degrees. The author highlights 2 issues in which he was involved: the detector background noise induced by the machine and the beam injection system. The second part deals with DIRC (detector of internally reflected Cherenkov light) that is used for particle identification. The phenomenology of hadron decay of B mesons is described in the third part, the hypothesis of the factorization approximation is challenged. The last part is dedicated to experimental results concerning the measurement of branching ratios, the search for suppressed modes and the determination of decay amplitudes
Energy Technology Data Exchange (ETDEWEB)
Hadavand, Haleh K.; /UC, San Diego
2006-03-28
In this dissertation, a measurement of CP-violating effects in decays of neutral B mesons is presented. The data sample for this measurement consists of about 272 million {Upsilon}(4S) {yields} B{bar B} decays collected between 1999 and 2004 with the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} collider, located at the Stanford Linear Accelerator Center. One neutral B meson is fully reconstructed in the CP eigenstate B{sup 0} {yields} K{sub S}{sup 0} K{sub S}{sup 0} K{sub S}{sup 0}. The other B meson is determined to be either a B{sup 0} or a {bar B}{sup 0}, at the time of its decay, from the properties of its decay products. The proper time {Delta}t elapsed between the decay of the two mesons is determined by reconstructing their decay vertices, and by measuring the distance between them. A novel technique for determining the B vertex of the decay to the CP eigenstate B{sup 0} {yields} K{sub S}{sup 0} K{sub S}{sup 0} K{sub S}{sup 0} has been applied since the tracks in the final state do not originate from the B decay vertex. The time-dependent CP asymmetry amplitudes are determined by the distributions of {Delta}t in events with a reconstructed B meson in the CP eigenstate. The detector resolution and the b flavor tagging parameters are constrained by the {Delta}t distributions of events with a fully reconstructed flavor eigenstate. Because of the special topology of this decay, the detector resolution on {Delta}t must be checked for consistency with decays with tracks which originate from the B decay. From a maximum likelihood fit to the {Delta}t distributions of all selected events, the value of the CP violating asymmetries are measured to be S{sub 3K{sub S}{sup 0}} = -0.71{sub -0.32}{sup +0.38} {+-} 0.04 and C{sub 3K{sub S}{sup 0}} = -0.34{sub -0.25}{sup +0.28} {+-} 0.05. Fixing C = 0 we measure the time-dependent CP asymmetry amplitude sin 2{beta} = -S{sub 3K{sub S}{sup 0}} = 0.79{sub -0.36}{sup +0.39} {+-} 0.04. The value of sin 2{beta} is
Tests of the t quark mass from B meson decays
International Nuclear Information System (INIS)
Campbell, B.A.; O'Donnell, P.
1984-01-01
This chapter examines the constraints one may put on the mass of the as yet unobserved top(t) quark from limits on the mixing or neutral current decay of B mesons. Those decays of the b quark which involve the emission of a neutral gage boson are considered. The branching ratios are estimated by dividing the computed width for the decay in question by the total B decay width. The standard six quark model is used. It is determined that b→s+γ is the only rare decay process to proceed at a sufficiently large rate to be experimentally feasible
Search for rare B meson decays into Ds+ mesons
International Nuclear Information System (INIS)
Albrecht, H.; Ehrlichmann, H.; Hamacher, T.; Hofmann, R.P.; Kirchhoff, T.; Nau, A.; Nowak, S.; Schroeder, H.; Schulz, H.D.; Walter, M.; Wurth, R.; Appuhn, R.D.; Hast, C.; Kolanoski, H.; Lange, A.; Lindner, A.; Mankel, R.; Schieber, M.; Siegmund, T.; Spaan, B.; Thurn, H.; Toepfer, D.; Walther, A.; Wegener, D.; Britton, D.I.; Charlesworth, C.E.K.; Edwards, K.W.; Hyatt, E.R.F.; Kapitza, H.; Krieger, P.; MacFarlane, D.B.; Patel, P.M.; Prentice, J.D.; Saull, P.R.B.; Tzamariudaki, K.; Van de Water, R.G.; Yoon, T.S.; Ressing, D.; Schmidtler, M.; Schneider, M.; Schubert, K.R.; Strahl, K.; Waldi, R.; Weseler, S.; Balagura, V.; Belyaev, I.; Chechelnitsky, S.; Danilov, M.; Droutskoy, A.; Gershtein, Yu.; Golutvin, A.; Gorelov, I.; Kostina, G.; Lubimov, V.; Pakhlov, P.; Ratnikov, F.; Semenov, S.; Shibaev, V.; Soloshenko, V.; Tichomirov, I.; Zaitsev, Yu.
1993-01-01
A search has been performed for rare B meson decays into D s + mesons arising from b→u transitions, W exchange modes, B + annihilation processes, and decays where the D s + is not produced via a W→c anti s quark pair coupling, using the ARGUS detector operating on the Y(4S) resonance at the e + e - storage ring DORIS II. Upper limits for individual decay modes are obtained. In addition, from a study of D s + l - correlations an upper limit of BR(B→D s + l - X)<1.2%(90% CL) is determined. (orig.)
Flavour tagging of $b$ mesons in $pp$ collisions at LHCb
Mueller, Vanessa
2016-01-01
Flavour tagging, i.e. the inference of the production flavour of reconstructed $b$ hadrons, is essential for precision measurements of decay time-dependent $CP$ violation and of mixing parameters in the the neutral $B$ meson systems. LHC's $pp$ collisions with their high track multiplicities constitute a challenging environment for flavour tagging and demand for new and improved strategies. We present recent progress and new developments in flavour tagging at the LHCb experiment, which will allow for a further improvement of $CP$ violation measurements in decays of $B^0$ and $B_s^0$ mesons.
CP violation in K- and B-meson decays
2000-01-01
These lectures will describe CP violation in K- and B-meson decays and will include the following topics:i) Grand view of the field including CKM matrix and the unitarily triangle ii) General aspects of the theoretical framework iii) Fundamentals of particle-antiparticle mixing iv) Fundamentals of CP violation v) Standard analysis of the unitarily triangle vi) The ratio e'/e including most recent developments vii) CP Violation in rare K- decays viii) Violation in B-Decays (asymmetries and other strategies) ix) A brief look beyond the Standard Model
Future prospects for studying CP violation in B-meson decays
International Nuclear Information System (INIS)
Nakada, T.
1997-01-01
Experimental prospects for observing CP violation in B-meson decays are reviewed. Comparisons are made for various options: experiments a e + e - B-Meson Factories, HERA and the TEVATRON will produce results n near future. They will have a good chance to discover CP violation in B-meson decays. On a longer time scale, experiments at the LHC will aim at accurate measurements to make a precision test of the standard model in CP violation. (author)
Light-cone distribution amplitudes of the baryon octet
Energy Technology Data Exchange (ETDEWEB)
Bali, Gunnar S. [Institut für Theoretische Physik, Universität Regensburg,Universitätsstraße 31, D-93040 Regensburg (Germany); Department of Theoretical Physics, Tata Institute of Fundamental Research,Homi Bhabha Road, Mumbai 400005 (India); Braun, Vladimir M.; Göckeler, Meinulf; Gruber, Michael; Hutzler, Fabian; Schäfer, Andreas; Schiel, Rainer W.; Simeth, Jakob; Söldner, Wolfgang [Institut für Theoretische Physik, Universität Regensburg,Universitätsstraße 31, D-93040 Regensburg (Germany); Sternbeck, Andre [Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena,Max-Wien-Platz 1, D-07743 Jena (Germany); Wein, Philipp [Institut für Theoretische Physik, Universität Regensburg,Universitätsstraße 31, D-93040 Regensburg (Germany)
2016-02-10
We present results of the first ab initio lattice QCD calculation of the normalization constants and first moments of the leading twist distribution amplitudes of the full baryon octet, corresponding to the small transverse distance limit of the associated S-wave light-cone wave functions. The P-wave (higher twist) normalization constants are evaluated as well. The calculation is done using N{sub f}=2+1 flavors of dynamical (clover) fermions on lattices of different volumes and pion masses down to 222 MeV. Significant SU(3) flavor symmetry violation effects in the shape of the distribution amplitudes are observed.
Light-cone distribution amplitudes of the baryon octet
International Nuclear Information System (INIS)
Bali, Gunnar S.; Braun, Vladimir M.; Göckeler, Meinulf; Gruber, Michael; Hutzler, Fabian; Schäfer, Andreas; Schiel, Rainer W.; Simeth, Jakob; Söldner, Wolfgang; Sternbeck, Andre; Wein, Philipp
2016-01-01
We present results of the first ab initio lattice QCD calculation of the normalization constants and first moments of the leading twist distribution amplitudes of the full baryon octet, corresponding to the small transverse distance limit of the associated S-wave light-cone wave functions. The P-wave (higher twist) normalization constants are evaluated as well. The calculation is done using N_f=2+1 flavors of dynamical (clover) fermions on lattices of different volumes and pion masses down to 222 MeV. Significant SU(3) flavor symmetry violation effects in the shape of the distribution amplitudes are observed.
Rare B-meson decays in SU(2)LxSU(2)RxU(1) model
International Nuclear Information System (INIS)
Asatryan, H.M.; Ioannissian, A.N.
1989-01-01
Rare B-meson decays are investigated in the left-right synmmetric models. The scalar particle contribution to the amplitude of the b → s γ decay is calculated. It is shown that this contribution can be essential even for the scalar particles masses of about several TeV. The effects due to the left-right symmetry and scalar particles can be detected by measuring the photon polarization in the decay B → K * γ. 9 refs.; 1 fig.; 1 tab
Charmless decays of the B-meson in perturbative QCD
International Nuclear Information System (INIS)
Libo Guo; Dongsheng Du; Lianshou Liu
1999-01-01
Using the perturbative QCD method and Chau's six-quark-graph scheme, we report a theoretical calculation of exclusive nonleptonic decays of the B meson into two light pseudoscalar mesons in the context of the low-energy effective Hamiltonian. The contributions from both tree-level and one-loop diagrams are taken into account. Under the approximation of neglecting light quark and light meson masses, we find that (i) within perturbative QCD there is no singularity which exists in the computation of spacelike penguin diagrams when the BSW model is used; (ii) the contributions from spacelike-type (W-annihilation, W-exchange, spacelike penguin and penguin-annihilation) graphs are strongly suppressed relative to those from timelike-type (external W-emission, internal W-emission and timelike penguin) ones; (iii) our results are well below the experimental upper limits but lower than the BSW ones. (author)
Measurement of Charge Asymmetries in Charmless Hadronic B Meson Decays
Energy Technology Data Exchange (ETDEWEB)
Chen, S. [Purdue University, West Lafayette, Indiana 47907 (United States); Fast, J. [Purdue University, West Lafayette, Indiana 47907 (United States); Hinson, J. W. [Purdue University, West Lafayette, Indiana 47907 (United States); Lee, J. [Purdue University, West Lafayette, Indiana 47907 (United States); Menon, N. [Purdue University, West Lafayette, Indiana 47907 (United States); Miller, D. H. [Purdue University, West Lafayette, Indiana 47907 (United States); Shibata, E. I. [Purdue University, West Lafayette, Indiana 47907 (United States); Shipsey, I. P. J. [Purdue University, West Lafayette, Indiana 47907 (United States); Pavlunin, V. [Purdue University, West Lafayette, Indiana 47907 (United States); Cronin-Hennessy, D. [University of Rochester, Rochester, New York 14627 (United States)] (and others)
2000-07-17
We search for CP -violating charge asymmetries (A{sub CP} ) in the B meson decays to K{sup {+-}}{pi}{sup {+-}} , K{sup {+-}}{pi}{sup 0} , K{sup 0}{sub S}{pi}{sup {+-}} , K{sup {+-}}{eta}{sup '} , and {omega}{pi}{sup {+-}} . Using 9.66 million {upsilon}(4S) decays collected with the CLEO detector, the statistical precision on A{sub CP} is in the range of {+-}0.12 to {+-}0.25 depending on decay mode. While CP -violating asymmetries of up to {+-}0.5 are possible within the standard model, the measured asymmetries are consistent with zero in all five decay modes studied. (c) 2000 The American Physical Society.
Measurement of inclusive B meson decays into baryons
International Nuclear Information System (INIS)
Albrecht, H.; Boeckmann, P.; Glaeser, R.; Harder, G.; Krueger, A.; Nippe, A.; Reidenbach, M.; Schaefer, M.; Schmidt-Parzefall, W.; Schroeder, H.; Schulz, H.D.; Sefkow, F.; Spengler, J.; Wurth, R.; Yagil, A.; Appuhn, R.D.; Drescher, A.; Hast, C.; Kamp, D.; Kolanoski, H.; Lindner, A.; Mankel, R.; Matthiesen, U.; Scheck, H.; Schweda, G.; Spaan, B.; Walther, A.; Wegener, D.; Frisken, W.R.; Kutschke, R.; Orr, R.S.; Parsons, J.A.; Prentice, J.D.; Seidel, S.C.; Swain, J.D.; Yoon, T.S.; MacFarlane, D.B.; McLean, K.W.; Nilsson, A.W.; Patel, P.M.; Tsipolitis, G.; Ammar, R.; Ball, S.; Coppage, D.; Davis, R.; Kanekal, S.; Kwak, N.; Ruf, T.; Schael, S.; Schubert, K.R.; Strahl, K.; Waldi, R.
1989-01-01
The decay of B mesons into the baryons p, Λ and Ξ - has been studied. The measured inclusive branching ratios for these decays are Br(B → pX) = (8.2±0.5 +1.3 -1.0 )%, Br(B → ΛX) = (4.2±0.5±0.6)% and Br(B → Ξ - X) < 0.51% at the 90% confidence level. In addition investigations on panti p, Λanti p and Λanti Λ correlations were performed, yielding an approximately equal rate of protons and neutrons. From this one can derive a total baryonic branching ratio Br(B → baryons) of (7.6±1.4)%. (orig.)
QCD-based pion distribution amplitudes confronting experimental data
International Nuclear Information System (INIS)
Bakulev, A.P.; Mikhajlov, S.V.; Stefanis, N.G.
2001-01-01
We use QCD sum rules with nonlocal condensates to recalculate more accurately the moments and their confidence intervals of the twist-2 pion distribution amplitude including radiative corrections. We are thus able to construct an admissible set of pion distribution amplitudes which define a reliability region in the a 2 , a 4 plane of the Gegenbauer polynomial expansion coefficients. We emphasize that models like that of Chernyak and Zhitnitsky, as well as the asymptotic solution, are excluded from this set. We show that the determined a 2 , a 4 region strongly overlaps with that extracted from the CLEO data by Schmedding and Yakovlev and that this region is also not far from the results of the first direct measurement of the pion valence quark momentum distribution by the Fermilab E791 collaboration. Comparisons with recent lattice calculations and instanton-based models are briefly discussed
Analytic Evolution of Singular Distribution Amplitudes in QCD
Energy Technology Data Exchange (ETDEWEB)
Radyushkin, Anatoly V. [Old Dominion University, Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Tandogan Kunkel, Asli [Old Dominion University, Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)
2014-03-01
We describe a method of analytic evolution of distribution amplitudes (DA) that have singularities, such as non-zero values at the end-points of the support region, jumps at some points inside the support region and cusps. We illustrate the method by applying it to the evolution of a flat (constant) DA, anti-symmetric at DA and then use it for evolution of the two-photon generalized distribution amplitude. Our approach has advantages over the standard method of expansion in Gegenbauer polynomials, which requires infinite number of terms in order to accurately reproduce functions in the vicinity of singular points, and over a straightforward iteration of an initial distribution with evolution kernel. The latter produces logarithmically divergent terms at each iteration, while in our method the logarithmic singularities are summed from the start, which immediately produces a continuous curve, with only one or two iterations needed afterwards in order to get rather precise results.
Optimisation of amplitude distribution of magnetic Barkhausen noise
Pal'a, Jozef; Jančárik, Vladimír
2017-09-01
The magnetic Barkhausen noise (MBN) measurement method is a widely used non-destructive evaluation technique used for inspection of ferromagnetic materials. Besides other influences, the excitation yoke lift-off is a significant issue of this method deteriorating the measurement accuracy. In this paper, the lift-off effect is analysed mainly on grain oriented Fe-3%Si steel subjected to various heat treatment conditions. Based on investigation of relationship between the amplitude distribution of MBN and lift-off, an approach to suppress the lift-off effect is proposed. Proposed approach utilizes the digital feedback optimising the measurement based on the amplitude distribution of MBN. The results demonstrated that the approach can highly suppress the lift-off effect up to 2 mm.
Studies of radiative B meson decays with Bells
International Nuclear Information System (INIS)
Nakao, Mikihiko
2001-01-01
We have studied radiative B meson decays using a 5.1 fb -1 data sample collected at the Γ(4S) resonance with the Belle detector at the KEKB e + e - collider. The inclusive branching fraction Β(b→sγ)=(3.34±0.50 -0.37-0.28 +0.34+0.26 )x10 -4 is measured using a technique to subtract the background contribution that requires a relatively small amount of off-resonance data. We measure the exclusive branching fractions to the K * γ final states to be Β(B 0 →K * (892) 0 γ)=(4.94±0.93 -0.52 +0.55 )x10 -5 and Β(B + →K * (892) + γ)=(2.87±1.20 -0.40 +0.55 )x10 -5 . We searched for B→ργ decays and obtained an upper limit of Β(B→ργ)/Β(B→K * γ) * γ to a negligible level. (author)
Studies of Excited $D$ mesons in $B$ meson decays
AUTHOR|(CDS)2082679
This thesis documents the studies of several three-body B + meson decays, each with a charged charmed meson in the final state. All analyses presented use a data sample recorded by the LHCb detector in 2011 and 2012, corresponding to an integrated luminosity of 3.0 $fb^{-1}$ of $pp$ collision data. The $B^{+} \\to D^{-}K^{+}\\pi^{+}$ and $B^{+} \\to D^{+}K^{+}\\pi^{-}$ decay modes are observed for the first time. The branching fraction of the favoured $B^{+} \\to D^{-}K^{+}\\pi^{+}$ decay mode is measured relative to the topologically similar $B^{+} \\to D^{-}\\pi^{+}\\pi^{+}$ decay and the $B^{+} \\to D^{-}K^{+}\\pi^{+}$ final state is used as a normalisation channel for the suppressed $B^{+} \\to D^{+}K^{+}\\pi^{-}$ decay branching fraction measurement. Searches are performed for the quasi-two-body decays $B^{+} \\to D^{+}K^{*}(892)^{0}$ and $B^{+} \\to D_{2}^{*}(2460)^{0}K^{+}$, using the sample of $B^{+} \\to D^{+}K^{+}\\pi^{-}$ candidate decays. No significant signals are observed for either decay mode and upper limits a...
B meson decays to baryons in the diquark model
International Nuclear Information System (INIS)
Chang, C.H.V.; Hou, W.S.
2002-01-01
We study B meson decays to two charmless baryons in the diquark model, including strong and electroweak penguins as well as the tree operators. It is shown that penguin operators can enhance anti B→B s anti B considerably, but affect anti B→B 1 anti B 2 only slightly, where B (1,2) and B s are non-strange and strange baryons, respectively. The γ dependence of the decay rates due to tree-penguin interference is illustrated. In principle, some of the B s anti B modes could dominate over B 1 anti B 2 for γ>90 , but in general the effect is milder than their mesonic counterparts. This is because the O 6 operator can only produce vector but not scalar diquarks, while the opposite is true for O 1 and O 4 . Predictions from the diquark model are compared to those from the sum rule calculation. The decays anti B→B s anti B s and inclusive baryonic decays are also discussed. (orig.)
Measurement of baryon production in B-meson decay
International Nuclear Information System (INIS)
Crawford, G.; Fulton, R.; Jensen, T.; Johnson, D.R.; Kagan, H.; Kass, R.; Malchow, R.; Morrow, F.; Whitmore, J.; Wilson, P.; Bortoletto, D.; Brown, D.; Dominick, J.; McIlwain, R.L.; Miller, D.H.; Modesitt, M.; Ng, C.R.; Schaffner, S.F.; Shibata, E.I.; Shipsey, I.P.J.; Battle, M.; Kroha, H.; Sparks, K.; Thorndike, E.H.; Wang, C.; Alam, M.S.; Kim, I.J.; Li, W.C.; Lou, X.C.; Nemati, B.; Romero, V.; Sun, C.R.; Wang, P.; Zoeller, M.M.; Goldberg, M.; Haupt, T.; Horwitz, N.; Jain, V.; Kennett, R.; Mestayer, M.D.; Moneti, G.C.; Rozen, Y.; Rubin, P.; Skwarnicki, T.; Stone, S.; Thusalidas, M.; Yao, W.; Zhu, G.; Barnes, A.V.; Bartelt, J.; Csorna, S.E.; Letson, T.; Alexander, J.; Artuso, M.; Bebek, C.; Berkelman, K.; Besson, D.; Browder, T.; Cassel, D.G.; Cheu, E.; Coffman, D.M.; Drell, P.S.; Ehrlich, R.; Galik, R.S.; Garcia-Sciveres, M.; Geiser, B.; Gittelman, B.; Gray, S.W.; Hartill, D.L.; Heltsley, B.K.; Honscheid, K.; Kandaswamy, J.; Katayama, N.; Kreinick, D.L.; Lewis, J.D.; Ludwig, G.S.; Masui, J.; Mevissen, J.; Mistry, N.B.; Nandi, S.; Nordberg, E.; O'Grady, C.; Patterson, J.R.; Peterson, D.; Pisharody, M.; Riley, D.; Sapper, M.; Selen, M.; Silverman, A.; Worden, H.; Worris, M.; Sadoff, A.J.; Avery, P.; Freyberger, A.; Rodriguez, J.; Yelton, J.; Henderson, S.; Kinoshita, K.; Pipkin, F.; Procario, M.; Saulnier, M.; Wilson, R.; Wolinski, J.; Xiao, D.; Yamamoto, H.; Ammar, R.; Baringer, P.; Coppage, D.; Davis, R.; Haas, P.; Kelly, M.; Kwak, N.; Lam, H.; Ro, S.; Kubota, Y.; Nelson, J.K.; Perticone, D.; Poling, R.; Schrenk, S.
1992-01-01
Using the CLEO detector at the Cornell Electron Storage Ring, we observe B-meson decays to Λ c + and report on improved measurements of inclusive branching fractions and momentum spectra of other baryons. For the inclusive decay bar B→Λ c + X with Λ c + →pK - π + , we find that the product branching fraction B(bar B→Λ c + X)B(Λ c + →pK - π + )=(0.273±0.051± 0.039)%. Our measured inclusive branching fractions to noncharmed baryons are B(B→pX)=(8.0±0.5±0.3)%, B(B→ΛX)=(3.8±0.4±0.6)%, and B(B→Ξ - X)=(0.27±0.05±0.04)%. From these rates and studies of baryon-lepton and baryon-antibaryon correlations in B decays, we have estimated the branching fraction B(bar B→Λ c + X) to be (6.4±0.8±0.8)%. Combining these results, we calculate B(Λ c + →pK - π + ) to be (4.3±1.0±0.8)%
Role of "intrinsic charm" in semileptonic B-meson decays
Breidenbach, C; Mannel, T; Turczyk, S
2008-01-01
We discuss the role of so-called "intrinsic-charm" operators in semi-leptonic B-meson decays, which appear first at order 1/m_b^3 in the heavy quark expansion. We show by explicit calculation that -- at scales mu <= m_c -- the contributions from "intrinsic-charm" effects can be absorbed into short-distance coefficient functions multiplying, for instance, the Darwin term. Then, the only remnant of "intrinsic charm" are logarithms of the form ln(m_c^2/m_b^2), which can be resummed by using renormalization-group techniques. As long as the dynamics at the charm-quark scale is perturbative, alpha_s(m_c) << 1, this implies that no additional non-perturbative matrix elements aside from the Darwin and the spin-orbit term have to be introduced at order 1/m_b^3. Hence, no sources for additional hadronic uncertainties have to be taken into account. Similar arguments may be made for higher orders in the 1/m_b expansion.
Analytic Evolution of Singular Distribution Amplitudes in QCD
Energy Technology Data Exchange (ETDEWEB)
Tandogan Kunkel, Asli [Old Dominion Univ., Norfolk, VA (United States)
2014-08-01
Distribution amplitudes (DAs) are the basic functions that contain information about the quark momentum. DAs are necessary to describe hard exclusive processes in quantum chromodynamics. We describe a method of analytic evolution of DAs that have singularities such as nonzero values at the end points of the support region, jumps at some points inside the support region and cusps. We illustrate the method by applying it to the evolution of a at (constant) DA, antisymmetric at DA, and then use the method for evolution of the two-photon generalized distribution amplitude. Our approach to DA evolution has advantages over the standard method of expansion in Gegenbauer polynomials [1, 2] and over a straightforward iteration of an initial distribution with evolution kernel. Expansion in Gegenbauer polynomials requires an infinite number of terms in order to accurately reproduce functions in the vicinity of singular points. Straightforward iteration of an initial distribution produces logarithmically divergent terms at each iteration. In our method the logarithmic singularities are summed from the start, which immediately produces a continuous curve. Afterwards, in order to get precise results, only one or two iterations are needed.
Renormalization of three-quark operators for baryon distribution amplitudes
International Nuclear Information System (INIS)
Gruber, Michael
2017-01-01
In this thesis we design and study three-quark operators that are essential for the calculation of baryon distribution amplitudes. These nonperturbative objects grant insight into the internal structure of hadrons, but their renormalization patterns are nontrivial and need to be treated with care. With the application to lattice simulations in mind we discuss two renormalization schemes, MS and RI ' /SMOM, and connect them by calculating conversion factors. Armed with this knowledge we are able to extract phenomenologically relevant results from an accompanying lattice analysis.
Renormalization and applications of baryon distribution amplitudes QCD
Energy Technology Data Exchange (ETDEWEB)
Rohrwild, Juergen Holger
2009-07-17
Higher-twist effects are relevant for precision calculations of hard exclusive reactions. Furthermore, they reveal fine details of the hadron structure. In this work we construct an operator basis for arbitrary twist respecting the conformal symmetry of QCD (which is realized on 1-loop level). Using this basis the 1-loop renormalization kernels of twist 4 are constructed for baryon operators. The full spectrum of anomalous dimensions and the multiplicatively renormalizable operators is obtained. As an application of these results the radiative N{sup *}(1535) decay is discussed. Employing light-cone sum rule, the transition form factors can be directly related to the N{sup *} distribution amplitudes. (orig.)
Renormalization and applications of baryon distribution amplitudes in QCD
Energy Technology Data Exchange (ETDEWEB)
Rohrwild, Juergen Holger
2009-07-17
Higher-twist effects are relevant for precision calculations of hard exclusive reactions. Furthermore, they reveal fine details of the hadron structure. In this work we construct an operator basis for arbitrary twist respecting the conformal symmetry of QCD (which is realized on 1-loop level). Using this basis the 1-loop renormalization kernels of twist 4 are constructed for baryon operators. The full spectrum of anomalous dimensions and the multiplicatively renormalizable operators is obtained. As an application of these results the radiative N{sup *}(1535) decay is discussed. Employing light-cone sum rule, the transition form factors can be directly related to the N* distribution amplitudes. (orig.)
Lattice results for low moments of light meson distribution amplitudes
Energy Technology Data Exchange (ETDEWEB)
Arthur, R.; Boyle, P.A. [Edinburgh Univ. (United Kingdom). SUPA, School of Physics; Broemmel, D.; Flynn, J.M.; Rae, T.D.; Sachrajda, C.T.C. [Southampton Univ. (United Kingdom). School of Physics and Astronomy; Donnellan, M.A. [NIC/DESY Zeuthen (Germany); Juettner, A. [CERN, Geneva (Switzerland). Physics Dept.
2010-12-15
As part of the UKQCD and RBC collaborations' N{sub f} = 2+1 domain-wall fermion phenomenology programme, we calculate the first two moments of the light-cone distribution amplitudes of the pseudoscalar mesons {pi} and K and the (longitudinally-polarised) vector mesons {rho}, K{sup *} and {phi}. We obtain the desired quantities with good precision and are able to discern the expected quark-mass dependence of SU(3)-flavour breaking effects. An important ingredient of the calculation is the nonperturbative renormalisation of lattice operators using the RI{sup '}/MOM technique. (orig.)
Renormalization and applications of baryon distribution amplitudes in QCD
International Nuclear Information System (INIS)
Rohrwild, Juergen Holger
2009-01-01
Higher-twist effects are relevant for precision calculations of hard exclusive reactions. Furthermore, they reveal fine details of the hadron structure. In this work we construct an operator basis for arbitrary twist respecting the conformal symmetry of QCD (which is realized on 1-loop level). Using this basis the 1-loop renormalization kernels of twist 4 are constructed for baryon operators. The full spectrum of anomalous dimensions and the multiplicatively renormalizable operators is obtained. As an application of these results the radiative N * (1535) decay is discussed. Employing light-cone sum rule, the transition form factors can be directly related to the N* distribution amplitudes. (orig.)
Renormalization and applications of baryon distribution amplitudes QCD
International Nuclear Information System (INIS)
Rohrwild, Juergen Holger
2009-01-01
Higher-twist effects are relevant for precision calculations of hard exclusive reactions. Furthermore, they reveal fine details of the hadron structure. In this work we construct an operator basis for arbitrary twist respecting the conformal symmetry of QCD (which is realized on 1-loop level). Using this basis the 1-loop renormalization kernels of twist 4 are constructed for baryon operators. The full spectrum of anomalous dimensions and the multiplicatively renormalizable operators is obtained. As an application of these results the radiative N * (1535) decay is discussed. Employing light-cone sum rule, the transition form factors can be directly related to the N * distribution amplitudes. (orig.)
Renormalization of three-quark operators for baryon distribution amplitudes
Energy Technology Data Exchange (ETDEWEB)
Gruber, Michael
2017-07-01
In this thesis we design and study three-quark operators that are essential for the calculation of baryon distribution amplitudes. These nonperturbative objects grant insight into the internal structure of hadrons, but their renormalization patterns are nontrivial and need to be treated with care. With the application to lattice simulations in mind we discuss two renormalization schemes, MS and RI{sup '}/SMOM, and connect them by calculating conversion factors. Armed with this knowledge we are able to extract phenomenologically relevant results from an accompanying lattice analysis.
Lattice Results for Low Moments of Light Meson Distribution Amplitudes
Arthur, R; Brommel, D; Donnellan, M A; Flynn, J M; Juttner, A; Rae, T D; Sachrajda, C T.C
2011-01-01
As part of the UKQCD and RBC collaborations' N_f=2+1 domain-wall fermion phenomenology programme, we calculate the first two moments of the light-cone distribution amplitudes of the pseudoscalar mesons pion and kaon and the (longitudinally-polarised) vector mesons rho, K-star and phi. We obtain the desired quantities with good precision and are able to discern the expected quark-mass dependence of SU(3)-flavour breaking effects. An important ingredient of the calculation is the nonperturbative renormalisation of lattice operators using the RI'/MOM technique.
Lattice results for low moments of light meson distribution amplitudes
International Nuclear Information System (INIS)
Arthur, R.; Boyle, P.A.; Juettner, A.
2010-12-01
As part of the UKQCD and RBC collaborations' N f = 2+1 domain-wall fermion phenomenology programme, we calculate the first two moments of the light-cone distribution amplitudes of the pseudoscalar mesons π and K and the (longitudinally-polarised) vector mesons ρ, K * and φ. We obtain the desired quantities with good precision and are able to discern the expected quark-mass dependence of SU(3)-flavour breaking effects. An important ingredient of the calculation is the nonperturbative renormalisation of lattice operators using the RI ' /MOM technique. (orig.)
Time-integrated CP violation measurements in the B mesons system at the LHCb experiment
Cardinale, R
2016-01-01
Time-integrated CP violation measurements in the B meson system provide information for testing the CKM picture of CP violation in the Standard Model. A review of recent results from the LHCb experiment is presented.
Charge amplitude distribution of the Gossip gaseous pixel detector
Energy Technology Data Exchange (ETDEWEB)
Blanco Carballo, V.M. [Twente University, Enschede (Netherlands); Chefdeville, M. [NIKHEF, P.B. 41882, 1009DB Amsterdam (Netherlands); Colas, P.; Giomataris, Y. [Saclay, Gif-sur-Yvette (France); Graaf, H. van der; Gromov, V. [NIKHEF, P.B. 41882, 1009DB Amsterdam (Netherlands); Hartjes, F. [NIKHEF, P.B. 41882, 1009DB Amsterdam (Netherlands)], E-mail: F.Hartjes@nikhef.nl; Kluit, R.; Koffeman, E. [NIKHEF, P.B. 41882, 1009DB Amsterdam (Netherlands); Salm, C.; Schmitz, J.; Smits, S.M. [Twente University, Enschede (Netherlands); Timmermans, J.; Visschers, J.L. [NIKHEF, P.B. 41882, 1009DB Amsterdam (Netherlands)
2007-12-11
The Gossip gaseous pixel detector is being developed for the detection of charged particles in extreme high radiation environments as foreseen close to the interaction point of the proposed super LHC. The detecting medium is a thin layer of gas. Because of the low density of this medium, only a few primary electron/ion pairs are created by the traversing particle. To get a detectable signal, the electrons drift towards a perforated metal foil (Micromegas) whereafter they are multiplied in a gas avalanche to provide a detectable signal. The gas avalanche occurs in the high field between the Micromegas and the pixel readout chip (ROC). Compared to a silicon pixel detector, Gossip features a low material budget and a low cooling power. An experiment using X-rays has indicated a possible high radiation tolerance exceeding 10{sup 16} hadrons/cm{sup 2}. The amplified charge signal has a broad amplitude distribution due to the limited statistics of the primary ionization and the statistical variation of the gas amplification. Therefore, some degree of inefficiency is inevitable. This study presents experimental results on the charge amplitude distribution for CO{sub 2}/DME (dimethyl-ether) and Ar/iC{sub 4}H{sub 10} mixtures. The measured curves were fitted with the outcome of a theoretical model. In the model, the physical Landau distribution is approximated by a Poisson distribution that is convoluted with the variation of the gas gain and the electronic noise. The value for the fraction of pedestal events is used for a direct calculation of the cluster density. For some gases, the measured cluster density is considerably lower than given in literature.
Charge amplitude distribution of the Gossip gaseous pixel detector
Blanco Carballo, V. M.; Chefdeville, M.; Colas, P.; Giomataris, Y.; van der Graaf, H.; Gromov, V.; Hartjes, F.; Kluit, R.; Koffeman, E.; Salm, C.; Schmitz, J.; Smits, S. M.; Timmermans, J.; Visschers, J. L.
2007-12-01
The Gossip gaseous pixel detector is being developed for the detection of charged particles in extreme high radiation environments as foreseen close to the interaction point of the proposed super LHC. The detecting medium is a thin layer of gas. Because of the low density of this medium, only a few primary electron/ion pairs are created by the traversing particle. To get a detectable signal, the electrons drift towards a perforated metal foil (Micromegas) whereafter they are multiplied in a gas avalanche to provide a detectable signal. The gas avalanche occurs in the high field between the Micromegas and the pixel readout chip (ROC). Compared to a silicon pixel detector, Gossip features a low material budget and a low cooling power. An experiment using X-rays has indicated a possible high radiation tolerance exceeding 10 16 hadrons/cm 2. The amplified charge signal has a broad amplitude distribution due to the limited statistics of the primary ionization and the statistical variation of the gas amplification. Therefore, some degree of inefficiency is inevitable. This study presents experimental results on the charge amplitude distribution for CO 2/DME (dimethyl-ether) and Ar/iC 4H 10 mixtures. The measured curves were fitted with the outcome of a theoretical model. In the model, the physical Landau distribution is approximated by a Poisson distribution that is convoluted with the variation of the gas gain and the electronic noise. The value for the fraction of pedestal events is used for a direct calculation of the cluster density. For some gases, the measured cluster density is considerably lower than given in literature.
Charge amplitude distribution of the Gossip gaseous pixel detector
International Nuclear Information System (INIS)
Blanco Carballo, V.M.; Chefdeville, M.; Colas, P.; Giomataris, Y.; Graaf, H. van der; Gromov, V.; Hartjes, F.; Kluit, R.; Koffeman, E.; Salm, C.; Schmitz, J.; Smits, S.M.; Timmermans, J.; Visschers, J.L.
2007-01-01
The Gossip gaseous pixel detector is being developed for the detection of charged particles in extreme high radiation environments as foreseen close to the interaction point of the proposed super LHC. The detecting medium is a thin layer of gas. Because of the low density of this medium, only a few primary electron/ion pairs are created by the traversing particle. To get a detectable signal, the electrons drift towards a perforated metal foil (Micromegas) whereafter they are multiplied in a gas avalanche to provide a detectable signal. The gas avalanche occurs in the high field between the Micromegas and the pixel readout chip (ROC). Compared to a silicon pixel detector, Gossip features a low material budget and a low cooling power. An experiment using X-rays has indicated a possible high radiation tolerance exceeding 10 16 hadrons/cm 2 . The amplified charge signal has a broad amplitude distribution due to the limited statistics of the primary ionization and the statistical variation of the gas amplification. Therefore, some degree of inefficiency is inevitable. This study presents experimental results on the charge amplitude distribution for CO 2 /DME (dimethyl-ether) and Ar/iC 4 H 10 mixtures. The measured curves were fitted with the outcome of a theoretical model. In the model, the physical Landau distribution is approximated by a Poisson distribution that is convoluted with the variation of the gas gain and the electronic noise. The value for the fraction of pedestal events is used for a direct calculation of the cluster density. For some gases, the measured cluster density is considerably lower than given in literature
Theoretical interest in B-Meson physics at the B factories, Tevatron and the LHC
International Nuclear Information System (INIS)
Ali, A.
2007-12-01
We review the salient features of B-meson physics, with particular emphasis on the measurements carried out at the B-factories and Tevatron, theoretical progress in understanding these measurements in the context of the standard model, and anticipation at the LHC. Topics discussed specifically are the current status of the Cabibbo-Kobayashi-Maskawa matrix, the CP-violating phases, rare radiative and semileptonic decays, and some selected non-leptonic two-body decays of the B mesons. (orig.)
K-M matrix elements and decays of the B meson to J/Psi
International Nuclear Information System (INIS)
Wilson, Richard
2002-01-01
This talk discusses some of the last work on B meson decays of the CLEO collaboration, which work is, in fact, improvements in precision of much earlier work of the same collaboration. New theoretical developments have enabled us to present much improved numbers on the matrix elements Vcb, and Vub. Also some recent work on the decay of B mesons to J/Psi plus other particles will be briefly presented
Theoretical interest in B-Meson physics at the B factories, Tevatron and the LHC
Energy Technology Data Exchange (ETDEWEB)
Ali, A.
2007-12-15
We review the salient features of B-meson physics, with particular emphasis on the measurements carried out at the B-factories and Tevatron, theoretical progress in understanding these measurements in the context of the standard model, and anticipation at the LHC. Topics discussed specifically are the current status of the Cabibbo-Kobayashi-Maskawa matrix, the CP-violating phases, rare radiative and semileptonic decays, and some selected non-leptonic two-body decays of the B mesons. (orig.)
Reconstruction of far-field tsunami amplitude distributions from earthquake sources
Geist, Eric L.; Parsons, Thomas E.
2016-01-01
The probability distribution of far-field tsunami amplitudes is explained in relation to the distribution of seismic moment at subduction zones. Tsunami amplitude distributions at tide gauge stations follow a similar functional form, well described by a tapered Pareto distribution that is parameterized by a power-law exponent and a corner amplitude. Distribution parameters are first established for eight tide gauge stations in the Pacific, using maximum likelihood estimation. A procedure is then developed to reconstruct the tsunami amplitude distribution that consists of four steps: (1) define the distribution of seismic moment at subduction zones; (2) establish a source-station scaling relation from regression analysis; (3) transform the seismic moment distribution to a tsunami amplitude distribution for each subduction zone; and (4) mix the transformed distribution for all subduction zones to an aggregate tsunami amplitude distribution specific to the tide gauge station. The tsunami amplitude distribution is adequately reconstructed for four tide gauge stations using globally constant seismic moment distribution parameters established in previous studies. In comparisons to empirical tsunami amplitude distributions from maximum likelihood estimation, the reconstructed distributions consistently exhibit higher corner amplitude values, implying that in most cases, the empirical catalogs are too short to include the largest amplitudes. Because the reconstructed distribution is based on a catalog of earthquakes that is much larger than the tsunami catalog, it is less susceptible to the effects of record-breaking events and more indicative of the actual distribution of tsunami amplitudes.
Gardi, Einan
2004-04-01
The inclusive spectra of radiative and semi-leptonic B-meson decays near the endpoint is computed taking into account renormalons in the Sudakov exponent (Dressed Gluon Exponentiation). In this framework we demonstrate the factorization of decay spectra into hard, jet and soft functions and discuss the universality of the latter two. Going beyond perturbation theory the soft function, which we identify as the longitudinal momentum distribution in an on-shell b quark, is replaced by the b-quark distribution in the B meson. The two differ by power corrections. We show how the resummation of running-coupling effects can be used to perform consistent separation to power accuracy between perturbative and non-perturbative contributions. In particular, we prove that the leading infrared renormalon ambiguity in the Sudakov exponent cancels against the one associated with the definition of the pole mass. This cancellation allows us to identify the non-perturbative parameter that controls the shift of the perturbative spectrum in the heavy-quark limit as the mass difference between the meson and the quark.
The ρ-meson longitudinal leading-twist distribution amplitude
Directory of Open Access Journals (Sweden)
Hai-Bing Fu
2014-11-01
Full Text Available In the present paper, we suggest a convenient model for the vector ρ-meson longitudinal leading-twist distribution amplitude ϕ2;ρ‖, whose distribution is controlled by a single parameter B2;ρ‖. By choosing proper chiral current in the correlator, we obtain new light-cone sum rules (LCSR for the B→ρ TFFs A1, A2 and V, in which the δ1-order ϕ2;ρ‖ provides dominant contributions. Then we make a detailed discussion on the ϕ2;ρ‖ properties via those B→ρ TFFs. A proper choice of B2;ρ‖ can make all the TFFs agree with the lattice QCD predictions. A prediction of |Vub| has also been presented by using the extrapolated TFFs, which indicates that a larger B2;ρ‖ leads to a larger |Vub|. To compare with the BABAR data on |Vub|, the longitudinal leading-twist DA ϕ2;ρ‖ prefers a doubly-humped behavior.
A Study of Neutral B Meson Time Evolution Using Exclusively Reconstructed Semileptonic Decays
Energy Technology Data Exchange (ETDEWEB)
Meyer, T
2003-11-05
The Standard Model of particle physics describes the fundamental building blocks of the Universe and their basic interactions. The model naturally describes the time evolution of the basic particles, of which lifetime and mixing are two examples. The neutral B meson, consisting of a bottom quark and an oppositely charged down quark, enjoys a lifetime of about 1.5 ps and the special property of mixing with its antiparticle partner, the {bar B}{sup 0}. That is, due to second order weak interactions, the B{sup 0} meson can change into a {bar B}{sup 0} meson and back again as it evolves through time. The details of this behavior offer an opportunity to closely examine the Standard Model. In this dissertation, I report on a measurement of the lifetime and mixing frequency of the neutral B meson. Using the semileptonic decay channel B{sup 0} {yields} D*{sup -}{ell}{sup +}{bar {nu}}{sub {ell}}, we select more than 68,000 signal and background candidates from about 23 million B{bar B} pairs collected in 1999-2000 with the BABAR detector located at the Stanford Linear Accelerator Center. The other B in the event is reconstructed inclusively. By constructing a master probability density function that describes the distribution of decay time differences in the sample, we use a maximum likelihood technique to simultaneously extract the B{sup 0} lifetime and mixing parameters with precision comparable to the year 2000 world average. The results are {tau}{sub B{sup 0}} = (1.523{sub -0.023}{sup +0.024} {+-} 0.022) ps and {Delta}m{sub d} = (0.492 {+-} 0.018 {+-} 0.013) ps{sup -1}. The statistical correlation coefficient between {tau}{sub B{sup 0}} and {Delta}m{sub d} is -0.22. I describe in detail several cutting-edge strategies this analysis uses to study these phenomena, laying important groundwork for the future. I also discuss several extensions of this work to include possible measurements of higher order parameters such as {Delta}{Lambda}{sub d}.
Study of orbitally excited $B$ mesons and evidence for a new $B\\pi$ resonance
Aaltonen, Timo Antero; Amidei, Dante E; Anastassov, Anton Iankov; Annovi, Alberto; Antos, Jaroslav; Apollinari, Giorgio; Appel, Jeffrey A; Arisawa, Tetsuo; Artikov, Akram Muzafarovich; Asaadi, Jonathan A; Ashmanskas, William Joseph; Auerbach, Benjamin; Aurisano, Adam J; Azfar, Farrukh A; Badgett, William Farris; Bae, Taegil; Barbaro-Galtieri, Angela; Barnes, Virgil E; Barnett, Bruce Arnold; Barria, Patrizia; Bartos, Pavol; Bauce, Matteo; Bedeschi, Franco; Behari, Satyajit; Bellettini, Giorgio; Bellinger, James Nugent; Benjamin, Douglas P; Beretvas, Andrew F; Bhatti, Anwar Ahmad; Bland, Karen Renee; Blumenfeld, Barry J; Bocci, Andrea; Bodek, Arie; Bortoletto, Daniela; Boudreau, Joseph Francis; Boveia, Antonio; Brigliadori, Luca; Bromberg, Carl Michael; Brucken, Erik; Budagov, Ioulian A; Budd, Howard Scott; Burkett, Kevin Alan; Busetto, Giovanni; Bussey, Peter John; Butti, Pierfrancesco; Buzatu, Adrian; Calamba, Aristotle; Camarda, Stefano; Campanelli, Mario; Canelli, Florencia; Carls, Benjamin; Carlsmith, Duncan L; Carosi, Roberto; Carrillo Moreno, Salvador; Casal Larana, Bruno; Casarsa, Massimo; Castro, Andrea; Catastini, Pierluigi; Cauz, Diego; Cavaliere, Viviana; Cavalli-Sforza, Matteo; Cerri, Alessandro; Cerrito, Lucio; Chen, Yen-Chu; Chertok, Maxwell Benjamin; Chiarelli, Giorgio; Chlachidze, Gouram; Cho, Kihyeon; Chokheli, Davit; Clark, Allan Geoffrey; Clarke, Christopher Joseph; Convery, Mary Elizabeth; Conway, John Stephen; Corbo, Matteo; Cordelli, Marco; Cox, Charles Alexander; Cox, David Jeremy; Cremonesi, Matteo; Cruz Alonso, Daniel; Cuevas Maestro, Javier; Culbertson, Raymond Lloyd; D'Ascenzo, Nicola; Datta, Mousumi; de Barbaro, Pawel; Demortier, Luc M; Marchese, Luigi; Deninno, Maria Maddalena; Devoto, Francesco; D'Errico, Maria; Di Canto, Angelo; Di Ruzza, Benedetto; Dittmann, Jay Richard; D'Onofrio, Monica; Donati, Simone; Dorigo, Mirco; Driutti, Anna; Ebina, Koji; Edgar, Ryan Christopher; Elagin, Andrey L; Erbacher, Robin D; Errede, Steven Michael; Esham, Benjamin; Farrington, Sinead Marie; Feindt, Michael; Fernández Ramos, Juan Pablo; Field, Richard D; Flanagan, Gene U; Forrest, Robert David; Franklin, Melissa EB; Freeman, John Christian; Frisch, Henry J; Funakoshi, Yujiro; Galloni, Camilla; Garfinkel, Arthur F; Garosi, Paola; Gerberich, Heather Kay; Gerchtein, Elena A; Giagu, Stefano; Giakoumopoulou, Viktoria Athina; Gibson, Karen Ruth; Ginsburg, Camille Marie; Giokaris, Nikos D; Giromini, Paolo; Giurgiu, Gavril A; Glagolev, Vladimir; Glenzinski, Douglas Andrew; Gold, Michael S; Goldin, Daniel; Golossanov, Alexander; Gomez, Gervasio; Gomez-Ceballos, Guillelmo; Goncharov, Maxim T; González López, Oscar; Gorelov, Igor V; Goshaw, Alfred T; Goulianos, Konstantin A; Gramellini, Elena; Grinstein, Sebastian; Grosso-Pilcher, Carla; Group, Robert Craig; Barreiro Guimaraes da Costa, Joao; Hahn, Stephen R; Han, Ji-Yeon; Happacher, Fabio; Hara, Kazuhiko; Hare, Matthew Frederick; Harr, Robert Francis; Harrington-Taber, Timothy; Hatakeyama, Kenichi; Hays, Christopher Paul; Heinrich, Joel G; Herndon, Matthew Fairbanks; Hocker, James Andrew; Hong, Ziqing; Hopkins, Walter Howard; Hou, Suen Ray; Hughes, Richard Edward; Husemann, Ulrich; Hussein, Mohammad; Huston, Joey Walter; Introzzi, Gianluca; Iori, Maurizio; Ivanov, Andrew Gennadievich; James, Eric B; Jang, Dongwook; Jayatilaka, Bodhitha Anjalike; Jeon, Eun-Ju; Jindariani, Sergo Robert; Jones, Matthew T; Joo, Kyung Kwang; Jun, Soon Yung; Junk, Thomas R; Kambeitz, Manuel; Kamon, Teruki; Karchin, Paul Edmund; Kasmi, Azeddine; Kato, Yukihiro; Ketchum, Wesley Robert; Keung, Justin Kien; Kilminster, Benjamin John; Kim, DongHee; Kim, Hyunsoo; Kim, Jieun; Kim, Min Jeong; Kim, Soo Bong; Kim, Shin-Hong; Kim, Young-Kee; Kim, Young-Jin; Kimura, Naoki; Kirby, Michael H; Knoepfel, Kyle James; Kondo, Kunitaka; Kong, Dae Jung; Konigsberg, Jacobo; Kotwal, Ashutosh Vijay; Kreps, Michal; Kroll, IJoseph; Kruse, Mark Charles; Kuhr, Thomas; Kurata, Masakazu; Laasanen, Alvin Toivo; Lammel, Stephan; Lancaster, Mark; Lannon, Kevin Patrick; Latino, Giuseppe; Heck, Martin; Lee, Hyun Su; Lee, Jaison; Leo, Sabato; Leone, Sandra; Lewis, Jonathan D; Limosani, Antonio; Lipeles, Elliot David; Lister, Alison; Liu, Hao; Liu, Qiuguang; Liu, Tiehui Ted; Lockwitz, Sarah E; Loginov, Andrey Borisovich; Lucà, Alessandra; Lucchesi, Donatella; Lueck, Jan; Lujan, Paul Joseph; Lukens, Patrick Thomas; Lungu, Gheorghe; Lys, Jeremy E; Lysak, Roman; Madrak, Robyn Leigh; Maestro, Paolo; Malik, Sarah Alam; Manca, Giulia; Manousakis-Katsikakis, Arkadios; Margaroli, Fabrizio; Marino, Christopher Phillip; Martínez-Perez, Mario; Matera, Keith; Mattson, Mark Edward; Mazzacane, Anna; Mazzanti, Paolo; McNulty, Ronan; Mehta, Andrew; Mehtala, Petteri; Mesropian, Christina; Miao, Ting; Mietlicki, David John; Mitra, Ankush; Miyake, Hideki; Moed, Shulamit; Moggi, Niccolo; Moon, Chang-Seong; Moore, Ronald Scott; Morello, Michael Joseph; Mukherjee, Aseet; Muller, Thomas; Murat, Pavel A; Mussini, Manuel; Nachtman, Jane Marie; Nagai, Yoshikazu; Naganoma, Junji; Nakano, Itsuo; Napier, Austin; Nett, Jason Michael; Neu, Christopher Carl; Nigmanov, Turgun S; Nodulman, Lawrence J; Noh, Seoyoung; Norniella Francisco, Olga; Oakes, Louise Beth; Oh, Seog Hwan; Oh, Young-do; Oksuzian, Iuri Artur; Okusawa, Toru; Orava, Risto Olavi; Ortolan, Lorenzo; Pagliarone, Carmine Elvezio; Palencia, Jose Enrique; Palni, Prabhakar; Papadimitriou, Vaia; Parker, William Chesluk; Pauletta, Giovanni; Paulini, Manfred; Paus, Christoph Maria Ernst; Phillips, Thomas J; Piacentino, Giovanni M; Pianori, Elisabetta; Pilot, Justin Robert; Pitts, Kevin T; Plager, Charles; Pondrom, Lee G; Poprocki, Stephen; Potamianos, Karolos Jozef; Prokoshin, Fedor; Pranko, Aliaksandr Pavlovich; Ptohos, Fotios K; Punzi, Giovanni; Ranjan, Niharika; Redondo Fernández, Ignacio; Renton, Peter B; Rescigno, Marco; Rimondi, Franco; Ristori, Luciano; Robson, Aidan; Rodriguez, Tatiana Isabel; Rolli, Simona; Ronzani, Manfredi; Roser, Robert Martin; Rosner, Jonathan L; Ruffini, Fabrizio; Ruiz Jimeno, Alberto; Russ, James S; Rusu, Vadim Liviu; Sakumoto, Willis Kazuo; Sakurai, Yuki; Santi, Lorenzo; Sato, Koji; Saveliev, Valeri; Savoy-Navarro, Aurore; Schlabach, Philip; Schmidt, Eugene E; Schwarz, Thomas A; Scodellaro, Luca; Scuri, Fabrizio; Seidel, Sally C; Seiya, Yoshihiro; Semenov, Alexei; Sforza, Federico; Shalhout, Shalhout Zaki; Shears, Tara G; Shepard, Paul F; Shimojima, Makoto; Shochet, Melvyn J; Tecker-Shreyber, Irina; Simonenko, Alexander V; Sliwa, Krzysztof Jan; Smith, John Rodgers; Snider, Frederick Douglas; Sorin, Maria Veronica; Song, Hao; Stancari, Michelle Dawn; St Denis, Richard Dante; Stentz, Dale James; Strologas, John; Sudo, Yuji; Sukhanov, Alexander I; Suslov, Igor M; Takemasa, Ken-ichi; Takeuchi, Yuji; Tang, Jian; Tecchio, Monica; Teng, Ping-Kun; Thom, Julia; Thomson, Evelyn Jean; Thukral, Vaikunth; Toback, David A; Tokar, Stanislav; Tollefson, Kirsten Anne; Tomura, Tomonobu; Tonelli, Diego; Torre, Stefano; Torretta, Donatella; Totaro, Pierluigi; Trovato, Marco; Ukegawa, Fumihiko; Uozumi, Satoru; Vázquez-Valencia, Elsa Fabiola; Velev, Gueorgui; Vellidis, Konstantinos; Vernieri, Caterina; Vidal Marono, Miguel; Vilar Cortabitarte, Rocio; Vizán Garcia, Jesus Manuel; Vogel, Marcelo; Volpi, Guido; Wagner, Peter; Wallny, Rainer S; Wang, Song-Ming; Waters, David S; Wester, William Carl; Whiteson, Daniel O; Wicklund, Arthur Barry; Wilbur, Scott; Williams, Hugh H; Wilson, Jonathan Samuel; Wilson, Peter James; Winer, Brian L; Wittich, Peter; Wolbers, Stephen A; Wolfe, Homer; Wright, Thomas Roland; Wu, Xin; Wu, Zhenbin; Yamamoto, Kazuhiro; Yamato, Daisuke; Yang, Tingjun; Yang, Un-Ki; Yang, Yu Chul; Yao, Wei-Ming; Yeh, Gong Ping; Yi, Kai; Yoh, John; Yorita, Kohei; Yoshida, Takuo; Yu, Geum Bong; Yu, Intae; Zanetti, Anna Maria; Zeng, Yu; Zhou, Chen; Zucchelli, Stefano
2014-07-28
Using the full CDF Run II data sample, we report evidence for a new resonance, which we refer to as B(5970), found simultaneously in the $B^0\\pi^+$ and $B^+\\pi^-$ mass distributions with a significance of 4.4 standard deviations. We further report the first study of resonances consistent with orbitally excited $B^{+}$ mesons and an updated measurement of the properties of orbitally excited $B^0$ and $B_s^0$ mesons. Using samples of approximately 8400 $B^{**0}$, 3300 $B^{**+}$, 1350 $B^{**0}_s$, 2600 $B(5970)^0$, and 1400 $B(5970)^+$ decays, we measure the masses and widths of all states, as well as the product of the relative production rate of $B_1$ and $B_2^*$ states times the branching fraction into a $B^{0,+}$ meson and a charged particle. Furthermore, we measure the branching fraction of the $B_{s2}^{*0} \\rightarrow B^{*+} K^-$ decay relative to the $B_{s2}^{*0} \\rightarrow B^{+} K^-$ decay, the production rate times the branching fraction of the B(5970) state relative to the $B_{2}^{*0,+}$ state, and th...
Energy Technology Data Exchange (ETDEWEB)
Giraud, P.F
2003-04-01
The goal of the BABAR experiment is to search and measure CP violation in the sector of the B mesons et constrain the parameters of the standard model. One of the original features of its experimental design in the DIRC, the Cherenkov detector used to separate charged pions and kaons. A look-up table is implemented to correct for its alignment, and allows the DIRC to reach its design performance, a pion versus kaon separation power of 4{sigma} at a momentum of 3 GeV/c. The search for CP violation in the decay channel B{sup 0} to {rho}{pi} should result in constraints on the angle {alpha} of the unitary triangle, one of the parameters of the standard model. The goal of this analysis is to measure CP violating parameters along with the other parameters entering the description of the decay time probability distribution function. A maximum likelihood method combines the time information with e{sup +}e{sup -} {yields} qq-bar b continuum background discriminating variables, some of which are summarized in a neural network. The other background, constituted of the other decay modes of the B, is taken into account with corrective terms in the fit. This analysis yields the best measurements for this channel up to date, and results in an indication of direct CP violation. In order to use these measurements to constrain the parameters of the standard model, the long distance contribution of the decay amplitudes has to be extracted from a model. For one such model. 'QCD factorization', a validation test confronts the model predictions with the experimental data on the charmless decays of the B mesons. The present status seems to be a disagreement, which could be reduced in the future with better experimental and theoretical knowledge of B decays. (author)
Study of the fragmentation of $b$ quarks into $B$ mesons at the $Z$ peak
Heister, A.; Barate, R.; De Bonis, I.; Decamp, D.; Goy, C.; Lees, J.P.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Grauges, E.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L.M.; Pacheco, A.; Ruiz, H.; Colaleo, A.; Creanza, D.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Azzurri, P.; Boix, G.; Buchmuller, O.; Cattaneo, M.; Cerutti, F.; Clerbaux, B.; Dissertori, G.; Drevermann, H.; Forty, R.W.; Frank, M.; Greening, T.C.; Hansen, J.B.; Harvey, John; Janot, P.; Jost, B.; Kado, M.; Mato, P.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Schlatter, D.; Schneider, O.; Spagnolo, P.; Tejessy, W.; Teubert, F.; Tournefier, E.; Ward, J.; Ajaltouni, Z.; Badaud, F.; Falvard, A.; Gay, P.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.C.; Pallin, D.; Perret, P.; Podlyski, F.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Waananen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J.C.; Rouge, A.; Rumpf, M.; Swynghedauw, M.; Verderi, M.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G.P.; Passalacqua, L.; Pepe-Altarelli, M.; Halley, A.W.; Lynch, J.G.; Negus, P.; O'Shea, V.; Raine, C.; Thompson, A.S.; Wasserbaech, S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E.E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D.M.; Cameron, W.; Dornan, P.J.; Girone, M.; Marinelli, N.; Sedgbeer, J.K.; Thompson, J.C.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C.K.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Pearson, M.R.; Robertson, N.A.; Giehl, I.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.G.; Wachsmuth, H.; Zeitnitz, C.; Bonissent, A.; Carr, J.; Coyle, P.; Leroy, O.; Payre, P.; Rousseau, D.; Talby, M.; Aleppo, M.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Mannert, C.; Manner, W.; Moser, H.G.; Settles, R.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Jacholkowska, A.; Lefrancois, J.; Veillet, J.J.; Videau, I.; Yuan, C.; Bagliesi, Giuseppe; Boccali, T.; Calderini, G.; Foa, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciaba, A.; Sguazzoni, G.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Blair, G.A.; Cowan, G.; Green, M.G.; Medcalf, T.; Misiejuk, A.; Strong, J.A.; Teixeira-Dias, P.; von Wimmersperg-Toeller, J.H.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Bloch-Devaux, Brigitte; Colas, P.; Emery, S.; Kozanecki, W.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.F.; Roussarie, A.; Schuller, J.P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Konstantinidis, N.; Litke, A.M.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Grupen, C.; Ngac, A.; Prange, G.; Sieler, U.; Giannini, G.; Rothberg, J.; Armstrong, S.R.; Cranmer, K.; Elmer, P.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P.A., III; Nielsen, J.; Orejudos, W.; Pan, Y.B.; Saadi, Y.; Scott, I.J.; Walsh, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.
2001-01-01
The fragmentation of b quarks into B mesons is studied with four million hadronic Z decays collected by the ALEPH experiment during the years 1991-1995. A semi-exclusive reconstruction of B->l nu D(*) decays is performed, by combining lepton candidates with fully reconstructed D(*) mesons while the neutrino energy is estimated from the missing energy of the event. The mean value of xewd, the energy of the weakly-decaying B meson normalised to the beam energy, is found to be mxewd = 0.716 +- 0.006 (stat) +- 0.006 \\, (syst) using a model-independent method; the corresponding value for the energy of the leading B meson is mxel = 0.736 +- 0.006 (stat) +- 0.006 (syst). The reconstructed spectra are compared with different fragmentation models.
D* and B* mesons in strange hadronic medium at finite temperature
International Nuclear Information System (INIS)
Chhabra, R.; Kumar, A.
2016-01-01
We calculate the effect of density and temperature of isospin symmetric strange medium on the shift in masses and decay constants of vector D and B mesons using chiral SU(3) model and QCD sum rule approach. In the present investigation the values of quark and gluon condensates are calculated from the chiral SU(3) model and these condensates are further used as input in the QCD Sum rule framework to calculate the in-medium masses and decay constants of vector D and B mesons. These in medium properties of vector D and B mesons may be helpful to understand the experimental observables of the experiments like CBM and PANDA under FAIR project at GSI, Germany. The results which are observed in the present work are also compared with previous predictions. (authors)
Measurement of the $\\bar{B}^{0}$ and $B^{-}$ Meson Lifetimes
Barate, R.; Ghez, Philippe; Goy, C.; Lees, J.P.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Grauges, E.; Martinez, M.; Merino, G.; Miquel, R.; Mir, Ll.M.; Pacheco, A.; Ruiz, H.; Colaleo, A.; Creanza, D.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Boix, G.; Buchmuller, O.; Cattaneo, M.; Cerutti, F.; Dissertori, G.; Drevermann, H.; Forty, R.W.; Frank, M.; Greening, T.C.; Hansen, J.B.; Harvey, John; Janot, P.; Jost, B.; Lehraus, I.; Mato, P.; Minten, A.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Schlatter, D.; Schmitt, M.; Schneider, O.; Spagnolo, P.; Tejessy, W.; Teubert, F.; Tournefier, E.; Wright, A.E.; Ajaltouni, Z.; Badaud, F.; Chazelle, G.; Deschamps, O.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.C.; Pallin, D.; Perret, P.; Podlyski, F.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Waananen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Blondel, A.; Bonneaud, G.; Brient, J.C.; Rouge, A.; Rumpf, M.; Swynghedauw, M.; Verderi, M.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G.P.; Passalacqua, L.; Pepe-Altarelli, M.; Halley, A.W.; Lynch, J.G.; Negus, P.; O'Shea, V.; Raine, C.; Teixeira-Dias, P.; Thompson, A.S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E.E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D.M.; Cameron, W.; Dornan, P.J.; Girone, M.; Marinelli, N.; Sedgbeer, J.K.; Thompson, J.C.; Thomson, Evelyn J.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C.K.; Buck, P.G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Robertson, N.A.; Giehl, I.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.G.; Wachsmuth, H.; Zeitnitz, C.; Bonissent, A.; Carr, J.; Coyle, P.; Leroy, O.; Payre, P.; Rousseau, D.; Talby, M.; Aleppo, M.; Ragusa, F.; Dietl, H.; Ganis, G.; Heister, A.; Huttmann, K.; Lutjens, G.; Mannert, C.; Manner, W.; Moser, H.G.; Schael, S.; Settles, R.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Azzurri, P.; Boucrot, J.; Callot, O.; Chen, S.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, Ph.; Jacholkowska, A.; Le Diberder, F.; Lefrancois, J.; Lutz, A.M.; Schune, M.H.; Veillet, J.J.; Videau, I.; Yuan, C.; Zerwas, D.; Bagliesi, Giuseppe; Boccali, T.; Calderini, G.; Ciulli, V.; Foa, L.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciaba, A.; Sguazzoni, G.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Blair, G.A.; Cowan, G.; Green, M.G.; Medcalf, T.; Strong, J.A.; von Wimmersperg-Toeller, J.H.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Bloch-Devaux, Brigitte; Colas, P.; Emery, S.; Kozanecki, W.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.F.; Roussarie, A.; Schuller, J.P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S.N.; Dann, J.H.; Johnson, R.P.; Kim, H.Y.; Konstantinidis, N.; Litke, A.M.; McNeil, M.A.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Grupen, C.; Misiejuk, A.; Prange, G.; Sieler, U.; Giannini, G.; Gobbo, B.; Rothberg, J.; Wasserbaech, S.; Armstrong, S.R.; Cranmer, K.; Elmer, P.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P.A., III; Nielsen, J.; Orejudos, W.; Pan, Y.B.; Saadi, Y.; Scott, I.J.; Walsh, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.
2000-01-01
The lifetimes of the B0 and B- mesons are measured using a sample of about four million hadronic Z decays collected from 1991 to 19 95 with the ALEPH detector at LEP. The data sample has been recently reprocessed, achieving a substantial improvement in the tracking performance. Semileptonic decays of B0 and B- mesons are partially reconstructed by identifying events containing a lepton with an associated D* or D0 meson. The proper time of the B meson is estimated from the measured decay length and the momentum of the D-lepton system. A fit to the proper time of 1880 D* l- and 2856 D0 l- candidates yields the following results: tau B0 = 1.518 +- 0.053 +- 0.034 ps, tau B- = 1.648 +- 0.049 +- 0.035 ps, tau B- / tau B0 = 1.085 +- 0.059 +- 0.018.
Energy Technology Data Exchange (ETDEWEB)
Klose, V.
2007-11-29
This thesis presents first measurements of moments of the hadronic n{sub X}{sup 2} distribution measured in inclusive semileptonic decays of B mesons to final states containing a charm quark, B{yields}X{sub c}l{sub {nu}}. The variable n{sub X}{sup 2} is a combination of the invariant mass of the charmed meson m{sub X}, its energy in the B-meson rest-frame E{sub X,BRF}, and a constant {lambda}=0.65 GeV, n{sub X}{sup 2}=m{sub X}{sup 2}c{sup 4}-2{lambda}E{sub X,BRF}+{lambda}{sup 2}. The moments left angle n{sub X}{sup k} right angle with k=2,4,6 are measured as proposed by theory to constrain assumptions made in the theoretical description of inclusive observables in semileptonic B-meson decays. This description uses Heavy Quark Expansion (HQE), an effective QCD combined with an Operator Product Expansion. The measurement is based on a sample of 231.6 million e{sup +}e{sup -} {yields} {upsilon}(4S) {yields} B anti B events recorded with the BABAR experiment at the PEP-II e{sup +}e{sup -}-storage rings at SLAC. We reconstruct the semileptonic decay by identifying a charged lepton in events tagged by a fully reconstructed hadronic decay of the second B meson. Correction procedures are derived from Monte Carlo simulations to ensure an unbiased measurement of the moments of the n{sub X}{sup 2} distribution. All moments are measured requiring minimum lepton momenta between 0.8 GeV/c and 1.9 GeV/c in the rest frame of the B meson. Performing a simultaneous fit to the measured moments left angle n{sub X}{sup k} right angle up to order k = 6 combined with other measurements of moments of the lepton-energy spectrum in decays B{yields}X{sub c}l{sub {nu}} and moments of the photon-energy spectrum in decays B{yields} X{sub s}{gamma}, we determine the quark-mixing parameter vertical stroke V{sub cb} vertical stroke, the bottom and charm quark masses, the semileptonic branching fraction B(B{yields}X{sub c}l{sub {nu}}), and four non-perturbative heavy quark parameters. Using HQE
Energy Technology Data Exchange (ETDEWEB)
Klose, Verena [Dresden Univ. of Technology (Germany)
2011-08-12
This thesis presents first measurements of moments of the hadronic n_{X}^{2} distribution measured in inclusive semileptonic decays of B mesons to final states containing a charm quark, B → X_{c}ℓν. The variable n_{X}^{2} is a combination of the invariant mass of the charmed meson m_{X}, its energy in the B-meson rest-frame E_{X;BRF}, and a constant ~Λ = 0.65 GeV, n_{X}^{2} = m_{X}^{2}c^{4}-2~ΛE_{X,BRF} + ~Λ^{2}. The moments
Flavour tagging of $b$-mesons in $pp$ collisions at LHCb
Müller, Vanessa
2016-01-01
Flavour tagging, i.e. the inference of the production flavour of reconstructed B hadrons, is essen- tial for precision measurements of decay-time-dependent CP violation and of mixing parameters in the neutral B meson systems. At the LHC hadronic events create a challenging environment for flavour tagging and demand for new and improved strategies. We present recent progress and new developments in terms of the flavour tagging at the LHCb experiment, which will allow for a further improvement of CP violation measurements in neutral B meson decays.
Proper-time resolution function for measurement of time evolution of B mesons at the KEK B-Factory
International Nuclear Information System (INIS)
Tajima, H.; Aihara, H.; Higuchi, T.; Kawai, H.; Nakadaira, T.; Tanaka, J.; Tomura, T.; Yokoyama, M.; Hazumi, M.; Sakai, Y.; Sumisawa, K.; Kawasaki, T.
2004-01-01
The proper-time resolution function for the measurement of the time evolution of B mesons with the Belle detector at KEKB is studied in detail. The obtained resolution function is applied to the measurement of B meson lifetimes, the B0B-bar 0 oscillation frequency and time-dependent CP asymmetries
Measurements of B Meson Decays to omega K* and omega rho
Energy Technology Data Exchange (ETDEWEB)
Aubert, B.
2005-02-14
We describe searches for B meson decays to the charmless vector-vector final states {omega}K* and {omega}{rho} in 89 million B{bar B} pairs produced in e{sup +}e{sup -} annihilation at {radical}s = 10.58 GeV.
Argus-Fest. 20 years of B meson mixing 1987-2007. Proceedings
Energy Technology Data Exchange (ETDEWEB)
Lehner, F; Faverot-Spengler, S [eds.
2007-11-15
The following topics were dealt with: ARGUS data, launching DORIS and ARGUS, B physics, discovery of B mixing, sociology of the ARGUS collaboration, CLEO B physics, from ARGUS to B-meson factories, the B factory era, B physics at the Tevatron, future of B physics programs, future of flavour physics. (HSI)
Argus-Fest. 20 years of B meson mixing 1987-2007. Proceedings
International Nuclear Information System (INIS)
Lehner, F.; Faverot-Spengler, S.
2007-11-01
The following topics were dealt with: ARGUS data, launching DORIS and ARGUS, B physics, discovery of B mixing, sociology of the ARGUS collaboration, CLEO B physics, from ARGUS to B-meson factories, the B factory era, B physics at the Tevatron, future of B physics programs, future of flavour physics. (HSI)
Observation of the weak time’s arrow in B mesons
CERN. Geneva
2012-01-01
The mechanism of CP violation in weak interactions, as arising from the single physical phase in the CKM matrix, has been validated by more than a decade of intense experimental work probing CP violation, particularly with studies with B mesons. Since the Standard Model theory is CPT invariant, it predicts a “weak arrow of time” matching the large observed matter-antimatter asymmetry in B mesons. However, until recently there has been no direct observation of the expected, large time reversal (T) asymmetry. In this seminar we shall discuss how the BABAR experiment at SLAC has conducted a new data analysis where the decays of entangled neutral B mesons allow comparisons between the rates of four different transitions and their inverse, as a function of the time evolution of the B meson. The results lead to the first high significance, direct observation of T non-invariance through the exchange of initial and final states in transitions that can only be connected by a T symmetry transformation.
Observation of the B meson in K-p interactions at 42 GeV/c
Flatte, S M; Gay, J B; Grossmann, P; Hemingway, R J; Holmgren, S O; Kluyver, J C; Lamb, P R; Losty, Michael J; Massaro, G G G; Metzger, W J; Timmermans, J; Van de Walle, R T
1976-01-01
A pi omega enhancement at 1245 MeV is observed in the reaction K/sup - /p to Sigma /sup +/ pi /sup -/ omega . Its properties agree with those of a B meson produced by natural-parity exchange thus establishing a coupling of the B to a KK/sup */ system. (5 refs).
The CDF silicon vertex trigger for B-mesons physics study
International Nuclear Information System (INIS)
Belforte, S.; Donati, S.; Ristori, L.; Spinella, F.; Budagov, Yu.; Chlachidze, G.; Glagolev, V.; Semenov, A.; Sisakyan, A.; Punzi, G.
2001-01-01
The CDF scientific program includes particularly the study of some key topics of the Standard Model: 1) constraint of the CKM matrix: CP violation in B sector (B 0 → π + π - ) and B s mixing (B s 0 → D s - π + , B s 0 → D s - π + π - π + ); 2) t-quark physics (t → Wb); and processes beyond the Standard Model - e.g., Higgs searching (MSSM) in the H → b bar b mode. All the above processes have the common feature - the presence of b-quarks (B-mesons). B hadrons of sufficiently high transverse momentum are characterized by a large mean value of distribution of the impact parameter with respect to the beam axis. That means events containing this kind of particles can be recognized and separated from non-long-lived background simply by cutting on the track's impact parameter. The upgraded CDF is equipped by the so-called Silicon Vertex Tracker (SVT), a unique electronic device for real time track reconstruction using the data from two CDF track detectors: the silicon strip vertex detector and drift chamber. The SVT is a level-2 trigger which within 10 μs reconstructs the tracks and obtains the transverse momentum (p t ), azimuthal angle (φ) and impact parameter (d) with 30 μm precision. The simulation studies show the background reduction by factor 1000 for B 0 π + π - by demand d > 100 μm for at least two tracks. This trigger is the first one of this sort ever used for hadron collider experiments: it enables to trigger on the secondary vertex, which opens the unique new opportunities in the heavy quark physics study. The basic logic, architecture and perspectives of SVT application are briefly described
Endpoint behavior of the pion distribution amplitude in QCD sum rules with nonlocal condensates
International Nuclear Information System (INIS)
Mikhailov, S. V.; Pimikov, A. V.; Stefanis, N. G.
2010-01-01
Starting from the QCD sum rules with nonlocal condensates for the pion distribution amplitude, we derive another sum rule for its derivative and its ''integral derivatives''--defined in this work. We use this new sum rule to analyze the fine details of the pion distribution amplitude in the endpoint region x∼0. The results for endpoint-suppressed and flattop (or flatlike) pion distribution amplitudes are compared with those we obtained with differential sum rules by employing two different models for the distribution of vacuum-quark virtualities. We determine the range of values of the derivatives of the pion distribution amplitude and show that endpoint-suppressed distribution amplitudes lie within this range, while those with endpoint enhancement--flat-type or Chernyak-Zhitnitsky like--yield values outside this range.
Chimera distribution amplitudes for the pion and the longitudinally polarized ρ-meson
Energy Technology Data Exchange (ETDEWEB)
Stefanis, N.G., E-mail: stefanis@tp2.ruhr-uni-bochum.de [Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Pimikov, A.V., E-mail: pimikov@theor.jinr.ru [Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna (Russian Federation); Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China)
2016-01-15
Using QCD sum rules with nonlocal condensates, we show that the distribution amplitude of the longitudinally polarized ρ-meson may have a shorttailed platykurtic profile in close analogy to our recently proposed platykurtic distribution amplitude for the pion. Such a chimera distribution de facto amalgamates the broad unimodal profile of the distribution amplitude, obtained with a Dyson–Schwinger equations-based computational scheme, with the suppressed tails characterizing the bimodal distribution amplitudes derived from QCD sum rules with nonlocal condensates. We argue that pattern formation, emerging from the collective synchronization of coupled oscillators, can provide a single theoretical scaffolding to study unimodal and bimodal distribution amplitudes of light mesons without recourse to particular computational schemes and the reasons for them.
Isospin analysis of charmless B-meson decays
Energy Technology Data Exchange (ETDEWEB)
Charles, J. [CNRS, Aix Marseille Univ., Universite de Toulon, CPT, Marseille (France); Deschamps, O.; Niess, V. [CNRS/Universite Clermont Auvergne, UMR 6533, Laboratoire de Physique de Clermont, Aubiere (France); Descotes-Genon, S. [CNRS, Univ. Paris-Sud, Universite Paris-Saclay, Laboratoire de Physique Theorique (UMR 8627), Orsay (France)
2017-08-15
We discuss the determination of the CKM angle α using the non-leptonic two-body decays B → ππ, B → ρρ and B → ρπ using the latest data available. We illustrate the methods used in each case and extract the corresponding value of α. Combining all these elements, we obtain the determination α{sub dir} = (86.2{sub -4.0}{sup +4.4} union 178.4{sub -5.1}{sup +3.9}) {sup circle}. We assess the uncertainties associated to the breakdown of the isospin hypothesis and the choice of the statistical framework in detail. We also determine the hadronic amplitudes (tree and penguin) describing the QCD dynamics involved in these decays, briefly comparing our results with theoretical expectations. For each observable of interest in the B → ππ, B → ρρ and B → ρπ systems, we perform an indirect determination based on the constraints from all the other observables available and we discuss the compatibility between indirect and direct determinations. Finally, we review the impact of future improved measurements on the determination of α. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Blossier, B
2006-06-15
We have studied some phenomenological aspects of the B meson physics by using lattice QCD, which is a non perturbative method (based on the first principles of Quantum Field Theory) of computing Green functions of the theory. Pionic couplings g{sub 1} and g{sub 2}, parameterizing the effective chiral Lagrangian which describes interactions between heavy-light mesons and soft pions, have been computed beyond the quenched approximation (at N{sub f} = 2). We have renormalized the operator q-bar{gamma}{sub {mu}}{gamma}{sup 5}q non perturbatively by using chiral Ward identities. We obtain g{sub 1} = 0.4/0.6 and g{sub 2} = -0.1/-0.3. We have estimated from an un-quenched simulation (at N{sub f} = 2) the strange quark mass: the non perturbative renormalisation scheme RI-MOM has been applied. After the matching in the MS scheme the result is m{sub s}(2 GeV) = 101 {+-} 8(-0,+25) MeV. We have proposed a method to calculate on the lattice the Heavy Quark Effective Theory form factors of the semileptonic transitions B {yields} D{sup **} at zero recoil. The renormalisation constant of the operator h-bar{gamma}{sub i}{gamma}{sup 5}D{sub j}h has been computed at one-loop order of the perturbation theory. We obtain {tau}{sub 1/2}(1) = 0.3/0.5 and {tau}{sub 3/2}(1) 0.5/0.7. Eventually the bag parameter B{sub B{sub s}} associated the B{sub s} - B{sub s}-bar mixing amplitude in the Standard Model has been estimated in the quenched approximation by using for the strange quark an action which verifies the chiral symmetry at finite lattice spacing a. Thus systematic errors are significantly reduced in the renormalisation procedure because the spurious mixing of the four-fermion operator h-bar{gamma}{sub {mu}}{sub L}qh-bar{gamma}{sub {mu}}{sub L}q with four-fermion operators of different chirality is absent. The result is B{sub B{sub s}} = 0.92(3). (author)
Observation of B-meson decay into J/psi
International Nuclear Information System (INIS)
Albrecht, H.; Binder, U.; Harder, G.; Lembke-Koppitz, I.; Philipp, A.; Schmidt-Parzefall, W.; Schroeder, H.; Schulz, H.D.; Wurth, R.; Drescher, H.; Graewe, B.; Matthiesen, U.; Scheck, H.; Spengler, J.; Wegener, D.; Edwards, K.W.; Kapitza, H.; Yun, J.C.; Frisken, W.R.; Fukunaga, C.; Goddard, M.; Gilkinson, D.J.; Gingrich, D.M.; Kim, P.C.H.; Kutschke, R.; MacFarlane, D.B.; McKenna, J.A.; Orr, R.S.; Padley, P.; Prentice, J.D.; Seywerd, H.C.J.; Stacey, B.J.; Yoon, T.S.; Ammar, R.; Coppage, D.; Davis, R.; Kanekal, S.; Kwak, N.; Kernel, G.; Plesko, M.; Childers, R.; Darden, C.W.; Gennow, H.
1985-07-01
Using the ARGUS detector at the e + e - storage ring DORIS II, we have observed the colour suppressed decay B->J/psiX, with a branching ratio of (1.37(+0.6-0.5))% for the mixture of charged and neutral B's produced on the Y(4S). From the momentum distribution of the J/psi we conclude that Br(B->J/psiX) 2 . (orig.)
Chiral perturbation theory for generalized parton distributions and baryon distribution amplitudes
Energy Technology Data Exchange (ETDEWEB)
Wein, Philipp
2016-05-06
In this thesis we apply low-energy effective field theory to the first moments of generalized parton distributions and to baryon distribution amplitudes, which are both highly relevant for the parametrization of the nonperturbative part in hard processes. These quantities yield complementary information on hadron structure, since the former treat hadrons as a whole and, thus, give information about the (angular) momentum carried by an entire parton species on average, while the latter parametrize the momentum distribution within an individual Fock state. By performing one-loop calculations within covariant baryon chiral perturbation theory, we obtain sensible parametrizations of the quark mass dependence that are ideally suited for the subsequent analysis of lattice QCD data.
Ratios of Vector and Pseudoscalar B Meson Decay Constants in the Light-Cone Quark Model
Dhiman, Nisha; Dahiya, Harleen
2018-05-01
We study the decay constants of pseudoscalar and vector B meson in the framework of light-cone quark model. We apply the variational method to the relativistic Hamiltonian with the Gaussian-type trial wave function to obtain the values of β (scale parameter). Then with the help of known values of constituent quark masses, we obtain the numerical results for the decay constants f_P and f_V, respectively. We compare our numerical results with the existing experimental data.
Fully reconstructed B-meson decays using J/ψ and ψ(2S)
International Nuclear Information System (INIS)
Miao, Ting.
1996-09-01
In this paper we present CDF B-meson branching ratio results involving color-suppressed B → ΨΚ decays, where Ψ = J/ψ, ψ(2S) and Κ = Κ, Κ * . Fully reconstructed decays of B → J/ψΚ, B → ψ(2S)Κ, B + → J/ψπ + and B s → J/ψφ are used to extract branching ratios, vector-pseudoscalar ratios and polarization parameters
Measurements of the $B$ meson production cross-sections at LHCb
LIU, Bo; ROBBE, Patrick; HE, Jibo
Quantum Chromodynamics (QCD), one of the most fundamental components of the Standard Model theory of Particle Physics, is dedicated to describe the strong interactions among quarks and gluons. For the $B$ meson production cross-sections in hadron-hadron collisions, perturbative QCD (pQCD) calculations are available at next-to-leading order (NLO) and with the fixed-order plus next-to-leading logarithms (FONLL) approximations. Measuring $B$ meson production cross-sections at the Large Hadron Collider (LHC) is of great importance to test the pQCD calculations. The LHCb detector is a single-arm forward spectrometer. It collects the physical information of the products in proton-proton collisions at the LHC. The differential and total production cross-sections of $B$ mesons (including $B^+$, $B^0$ and $B_s^0$) in proton-proton collisions at $\\sqrt{s}=7\\,{\\rm TeV}$ are studied using 35${\\rm pb}^{-1}$ of data in 2010 and 370${\\rm pb}^{-1}$ of data in 2011 collected by the LHCb detector, and reported in this dissert...
In-medium pseudoscalar D/B mesons and charmonium decay width
Energy Technology Data Exchange (ETDEWEB)
Chhabra, Rahul; Kumar, Arvind [Dr. B.R. Ambedkar National Institute of Technology Jalandhar, Department of Physics, Jalandhar, Punjab (India)
2017-05-15
Using QCD sum rules and the chiral SU(3) model, we investigate the effect of temperature, density, strangeness fraction and isospin asymmetric parameter on the shift in masses and decay constants of the pseudoscalar D and B meson in the hadronic medium, which consist of nucleons and hyperons. The in-medium properties of D and B mesons within the QCD sum rule approach depend upon the quark and gluon condensates. In the chiral SU(3) model, quark and gluon condensates are introduced through the explicit symmetry breaking term and the trace anomaly property of the QCD, respectively and are written in terms of the scalar fields σ, ζ, δ and χ. Hence, through medium modification of σ, ζ, δ and χ fields, we obtain the medium-modified masses and decay constants of D and B mesons. As an application, using {sup 3}P{sub 0} model, we calculate the in-medium decay width of the higher charmonium states ψ(3686), ψ(3770) and χ(3556) to the D anti D pairs, considering the in-medium mass of D mesons. These results may be important to understand the possible outcomes of the high-energy physics experiments, e.g., CBM and PANDA at GSI, Germany. (orig.)
Measurement of the overlineB0 and B- meson lifetimes
Buskulic, D.; Decamp, D.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Mours, B.; Pietrzyk, B.; Alemany, R.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Mattison, T.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Maggi, M.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhang, L.; Zhao, W.; Bauerdick, L. A. T.; Blucher, E.; Bonvicini, G.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Hagelberg, R.; Harvey, J.; Haywood, S.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Lohse, T.; Lusiani, A.; Martinez, M.; Mato, P.; Meinhard, H.; Minten, A.; Miotto, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Prulhière, F.; Saadi, F.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Efthymiopoulos, I.; Kyriakis, A.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Orteu, S.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Lannutti, J.; Levinthal, D.; Mermikides, M.; Sawyer, L.; Wasserbaech, S.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Belk, A. T.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Dugeay, S.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Nash, J.; Payne, D. G.; Phillips, M. J.; Sedgbeer, J. K.; Tomalin, I. R.; Wright, A. G.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wanke, R.; Wolf, B.; Aubert, J.-J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Nicod, D.; Papalexiou, S.; Payre, P.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Rotscheidt, H.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; Denis, R. St.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jaffe, D. E.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bosisio, L.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Focardi, E.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Carter, J. M.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Edwards, M.; Fisher, S. M.; Jones, T. J.; Norton, P. R.; Salmon, D. P.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Perrier, F.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Carney, R. E.; Cartwright, S.; Combley, F.; Hatfield, F.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Lutters, G.; Rivera, F.; Schäfer, U.; Smolik, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Cinabro, D.; Conway, J. S.; Cowen, D. F.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Jared, R. C.; Leclaire, B. W.; Lishka, C.; Pan, Y. B.; Pater, J. R.; Saadi, Y.; Sharma, V.; Schmitt, M.; Shi, Z. H.; Walsh, A. M.; Weber, F. V.; Sau Lan Wu; Wu, X.; Zheng, M.; Zobernig, G.; Aleph Collaboration
1993-06-01
The lifetimes of the overlineB0 and B- mesons have been measured with the ALEPH detector at LEP. Semileptonic decays of overlineB0 and B- mesons were partially reconstructed by identifying events containing a lepton with an associated D ∗+or D 0 meson. The proper time of the B meson was estimated from the measured decay length and the momentum and mass of the D-lepton system. A fit to the proper time of 77 D ∗+ℓ - and 77 D0ℓ - candidates, combined with a constraint on the lifetime ratio ( {τ -}/{τ 0}) arising from the relative rates of observed D ∗+ℓ - and D0ℓ - events, yielded the following lifetimes: τ 0=1.52 -0.18+0.20( stat.) -0.13+0.07( syst.) ps, τ - = 1.47 -0.19+0.22( stat.) -0.14+0.15( syst.) ps, {τ -}/{τ 0} = 0.96 -0.15+0.19( stat.) -0.12+0.18( syst.) .
Study of the doubly-charmed decays of B mesons with the experiment BABAR in SLAC
International Nuclear Information System (INIS)
Robbe, P.
2002-04-01
The BABAR experiment at SLAC (Stanford linear acceleration center) has been studying since 1999 B meson decays from e + e - collisions at the γ(4S) resonance. The first goal of the collaboration was to measure the sin (2β) CP-violation parameter within the standard model. This measurement requires to know with precision the absolute length scale of the detector. A method to test this scale was developed using nuclear interactions in the beam-pipe material. The longitudinal length scale was then determined at the 1 % level precision. The systematic error associated with length measurement in the detector concerning B meson lifetime and B meson oscillation frequency is then negligible with respect to the other errors. The K meson content of B decays is a key ingredient of the sin (2β) measurement and is used to tag the flavour of the other B in events containing a B decaying to a CP eigenstate. The K charge is correlated to the B flavour. Wrong sign kaons, which can dilute B tagging, can come from wrong sign D decays (B→ DX). Doubly charmed decays (B→ D (*) D-bar (*) K are one possibility to produce wrong sign D decays. The twenty-two decay modes are reconstructed exclusively. The total branching fraction is measured with enough precision to establish that B→ D (*) D-bar (*) K decays are not the only source of wrong sign D mesons in B decays. (author)
In-medium pseudoscalar D/B mesons and charmonium decay width
Chhabra, Rahul; Kumar, Arvind
2017-05-01
Using QCD sum rules and the chiral SU(3) model, we investigate the effect of temperature, density, strangeness fraction and isospin asymmetric parameter on the shift in masses and decay constants of the pseudoscalar D and B meson in the hadronic medium, which consist of nucleons and hyperons. The in-medium properties of D and B mesons within the QCD sum rule approach depend upon the quark and gluon condensates. In the chiral SU(3) model, quark and gluon condensates are introduced through the explicit symmetry breaking term and the trace anomaly property of the QCD, respectively and are written in terms of the scalar fields σ, ζ, δ and χ. Hence, through medium modification of σ, ζ, δ and χ fields, we obtain the medium-modified masses and decay constants of D and B mesons. As an application, using {}3P0 model, we calculate the in-medium decay width of the higher charmonium states ψ(3686), ψ(3770) and χ(3556) to the D\\bar{D} pairs, considering the in-medium mass of D mesons. These results may be important to understand the possible outcomes of the high-energy physics experiments, e.g., CBM and PANDA at GSI, Germany.
Light-cone distribution amplitudes of the ground state bottom baryons in HQET
Energy Technology Data Exchange (ETDEWEB)
Ali, A.; Wang, W. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hambrock, C. [Technische Univ. Dortmund (Germany); Parkhomenko, A.Ya. [P.G. Demidov Yaroslavl State Univ., Yaroslavl (Russian Federation)
2012-12-15
We provide the definition of the complete set of light-cone distribution amplitudes (LCDAs) for the ground state heavy bottom baryons with the spin-parities J{sup P}=1/2{sup +} and J{sup P}=3/2{sup +} in the heavy quark limit. We present the renormalization effects on the twist-2 light-cone distribution amplitudes and use the QCD sum rules to compute the moments of twist-2, twist-3, and twist-4 LCDAs. Simple models for the heavy baryon distribution amplitudes are analyzed with account of their scale dependence.
Energy Technology Data Exchange (ETDEWEB)
Grenier, Philippe
2006-04-15
This document is organized into 4 parts. The first part is dedicated to the Babar experiment that is installed on the e{sup +}e{sup -} collider at Stanford linear accelerator center. The formalism of the standard model and the CP violation in the B meson system are first introduced, then the Babar experiment is described and its main results are recalled: sin(2{beta}) 0.722 {+-} 0.040 {+-} 0.023; {alpha} = (103 + 11 - 9) degrees; {gamma} = (52 + 23 - 18) degrees. The author highlights 2 issues in which he was involved: the detector background noise induced by the machine and the beam injection system. The second part deals with DIRC (detector of internally reflected Cherenkov light) that is used for particle identification. The phenomenology of hadron decay of B mesons is described in the third part, the hypothesis of the factorization approximation is challenged. The last part is dedicated to experimental results concerning the measurement of branching ratios, the search for suppressed modes and the determination of decay amplitudes.
Lansberg, Jean-Philippe
2016-12-27
We propose a simple and model-independent procedure to account for the impact of the nuclear modification of the gluon density as encoded in nuclear collinear PDF sets on two-to-two partonic hard processes in proton-nucleus collisions. This applies to a good approximation to quarkonium, D and B meson production, generically referred to H. Our procedure consists in parametrising the square of the parton scattering amplitude, A_{gg -> H X} and constraining it from the proton-proton data. Doing so, we have been able to compute the corresponding nuclear modification factors for J/psi, Upsilon and D^0 as a function of y and P_T at sqrt(s_NN)=5 and 8 TeV in the kinematics of the various LHC experiments in a model independent way. It is of course justified since the most important ingredient in such evaluations is the probability of each kinematical configuration. Our computations for D mesons can also be extended to B meson production. To further illustrate the potentiality of the tool, we provide --for the first t...
Effect of attenuation correction on surface amplitude distribution of wind waves
Digital Repository Service at National Institute of Oceanography (India)
Varkey, M.J.
Some selected wave profiles recorded using a ship borne wave recorder are analysed to study the effect of attenuation correction on the distribution of the surface amplitudes. A new spectral width parameter is defined to account for wide band...
Higher-Twist Distribution Amplitudes of the K Meson in QCD
Ball, P; Lenz, A; Ball, Patricia
2006-01-01
We present a systematic study of twist-3 and twist-4 light-cone distribution amplitudes of the K meson in QCD. The structure of SU(3)-breaking corrections is studied in detail. Non-perturbative input parameters are estimated from QCD sum rules and renormalons. As a by-product, we give a complete reanalysis of the twist-3 and -4 parameters of the pi-meson distribution amplitudes; some of the results differ from those usually quoted in the literature.
Lees, J. P.; Poireau, V.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Milanes, D. A.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Tackmann, K.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Khan, A.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.; Bondioli, M.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Stoker, D. P.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.; Eisner, A. M.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.; Andreassen, R.; Dubrovin, M. S.; Huard, Z.; Meadows, B. T.; Sokoloff, M. D.; Sun, L.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Spaan, B.; Kobel, M. J.; Schubert, K. R.; Schwierz, R.; Bernard, D.; Verderi, M.; Clark, P. J.; Playfer, S.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Bhuyan, B.; Prasad, V.; Lee, C. L.; Morii, M.; Edwards, A. J.; Adametz, A.; Marks, J.; Uwer, U.; Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Dauncey, P. D.; Tibbetts, M.; Behera, P. K.; Mallik, U.; Chen, C.; Cochran, J.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Davier, M.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Stocchi, A.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.; Prencipe, E.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.; Simi, G.; Dallapiccola, C.; Cowan, R.; Dujmic, D.; Sciolla, G.; Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.; Biassoni, P.; Lazzaro, A.; Lombardo, V.; Neri, N.; Palombo, F.; Stracka, S.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Nguyen, X.; Taras, P.; De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.; Honscheid, K.; Kass, R.; Brau, J.; Frey, R.; Sinev, N. B.; Strom, D.; Torrence, E.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Sitt, S.; Biasini, M.; Manoni, E.; Pacetti, S.; Rossi, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Perez, A.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Li Gioi, L.; Mazzoni, M. A.; Piredda, G.; Bünger, C.; Grünberg, O.; Hartmann, T.; Leddig, T.; Schröder, H.; Waldi, R.; Adye, T.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Hamel de Monchenault, G.; Vasseur, G.; Yèche, Ch.; Aston, D.; Bard, D. J.; Bartoldus, R.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Lewis, P.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Nelson, S.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Snyder, A.; Su, D.; Sullivan, M. K.; Va'vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Benitez, J. F.; Burchat, P. R.; Miyashita, T. S.; Alam, M. S.; Ernst, J. A.; Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.; Lund, P.; Spanier, S. M.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Izen, J. M.; Lou, X. C.; Bianchi, F.; Gamba, D.; Lanceri, L.; Vitale, L.; Azzolini, V.; Martinez-Vidal, F.; Oyanguren, A.; Ahmed, H.; Albert, J.; Banerjee, Sw.; Choi, H. H. F.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lindsay, C.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Tasneem, N.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Puccio, E. M. T.; Band, H. R.; Dasu, S.; Pan, Y.; Prepost, R.; Wu, S. L.
2012-08-01
We report measurements of partial branching fractions for inclusive charmless semileptonic B decays B¯→Xuℓν¯ and the determination of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element |Vub|. The analysis is based on a sample of 467×106 Υ(4S)→BB¯ decays recorded with the BABAR detector at the PEP-II e+e- storage rings. We select events in which the decay of one of the B mesons is fully reconstructed and an electron or a muon signals the semileptonic decay of the other B meson. We measure partial branching fractions ΔB in several restricted regions of phase space and determine the CKM element |Vub| based on different QCD predictions. For decays with a charged lepton momentum pℓ*>1.0GeV in the B meson rest frame, we obtain ΔB=(1.80±0.13stat±0.15sys±0.02theo)×10-3 from a fit to the two-dimensional MX-q2 distribution. Here, MX refers to the invariant mass of the final state hadron X and q2 is the invariant mass squared of the charged lepton and neutrino. From this measurement we extract |Vub|=(4.33±0.24exp±0.15theo)×10-3 as the arithmetic average of four results obtained from four different QCD predictions of the partial rate. We separately determine partial branching fractions for B¯0 and B- decays and derive a limit on the isospin breaking in B¯→Xuℓν¯ decays.
Production of high energy η' in B meson decays from BaBar experiment
International Nuclear Information System (INIS)
Hicheur, A.
2003-04-01
The work presented in this thesis relies on the analysis of data collected between october 1999 and July 2002 by the BaBar experiment at the PEP-II collider located at SLAC (Stanford, California). Electron-positron collisions at a center of mass energy equal to the Υ(4S) resonance mass are used for the production of B meson pairs. In July 2001, the BaBar collaboration published the first measurement of CP violation in the neutral B mesons system. Since then, the precision of the measurement has been continually being improved with the increasing data sample. Two devices are dedicated to the reconstruction of charged particles: the Silicon Vertex Tracker and the Drift Chamber. The Silicon Vertex Tracker is crucial for the reconstruction of the B meson decay vertex. Its motion with regard to the Drift Chamber needs a rolling calibration of the corresponding alignment parameters roughly every two hours. The relation between the Drift Chamber geometry and the alignment has been studied. Beside CP violation, Heavy Flavour Physics is an other important issue of BaBar research program. Rare decays are of particular interest as they are sensible to a new physics beyond the Standard Model. The production of high energy η' in B decays has been studied through the two main contributions, B→ η' X s coming from the rare decay b → sg*, and B-bar 0 → η'D 0 coming from the internal tree color suppressed decay b → cud. The improvement of the measurement of the process B → η'X-s and the first. observation of the decay B-bar 0 → η'D 0 have led to the conclusion that the η' production is dominated by the decay b → sg* and enables to constrain its quark content. (author)
The search for rare decays of B mesons at the anti-pp colliders
International Nuclear Information System (INIS)
Quareni Vignudelli, A.; Bocciolini, M.; Conti, A.; Di Caporiacco, G.; Meschini, M.; Parrini, G.; Cline, D.; Rhoades, J.
1988-01-01
The UA1 group has reported a large B-barB production cross-section at Santi-ppS energies (∼ 1 μb). Following this observation it is indicated how the large rate of B mesons produced in anti-pp collisions could be used to search for and detect various rate decays. Several specific decays and the theoretical expectations and implications of the detections of these decays have been considered. Tests of the GIM model, horizontal symmetry and CP violation can be carried out in this manner. A spectrometer consisting of a CCD telescope, a magnetized muon detection spectrometer and an e.m. shower detector is described
Search for B Meson Decays to eta' eta' K
Energy Technology Data Exchange (ETDEWEB)
Aubert, B.
2006-05-05
The authors describe searches for decays of B mesons to the charmless final states {eta}'{eta}'K. The data consist of 228 million B{bar B} pairs produced in e{sup +}e{sup -} annihilation, collected with the BABAR detector at the Stanford Linear Accelerator Center. The 90% confidence level upper limits for the branching fractions are {Beta}(B{sup 0} {yields} {eta}'{eta}'K{sup 0}) < 31 x 10{sup -6} and {Beta}(B{sup +} {yields} {eta}'{eta}'K{sup +}) < 25 x 10{sup -6}.
Search for rare B meson decays into D+s mesons
International Nuclear Information System (INIS)
Albrecht, H.; Ehrlichmann, H.; Hamacher, T.
1993-04-01
A search has been performed for rare B meson decays into D s + mesons arising from b → u transitions, W exchange modes, B + annihilation processes, and decays where the D s + is not produced via a W → c anti s quark pair coupling, using the ARGUS detector operating on the Y(4S) resonance at the e + e - storage ring DORIS II. Upper limits for individual decay modes are obtained. In addition, from a study of D s + l - correlations an upper limit of BR(B → D s + l - X) < 1.2% (90% CL) is determined. (orig.)
Anomalous triple gauge couplings from $B$-meson and kaon observables
Bobeth, Christoph
2015-01-01
We consider the three CP-conserving dimension-6 operators that encode the leading new-physics effects in the triple gauge couplings. The contributions to the standard-model electromagnetic dipole and semi-leptonic vector and axial-vector interactions that arise from the insertions of these operators are calculated. We show that radiative and rare $B$-meson decays provide, under certain assumptions, constraints on two out of the three anomalous couplings that are competitive with the restrictions obtained from LEP II, Tevatron and LHC data. The constraints arising from the $Z \\to b \\bar b$ electroweak pseudo observables, $K \\to \\pi \
Penguin effects induced by the two-Higgs-doublet model and charmless B-meson decays
International Nuclear Information System (INIS)
Davies, A.J.; Joshi, G.C.; Matsuda, M.
1991-01-01
Nonstandard physical effects through the penguin diagram induced by the charged Higgs scalar contribution in the two-Higgs-doublet model are analysed. Since non-leptonic B-decay processes to final states consisting of s+s+anti s are induced only through the penguin diagram they are important tests of such contributions. We compare these decays including the non-standard two-Higgs-doublet contribution with the standard model results, which arise from the magnetic gluon transistion term. The charged Higgs contribution can give a sizable enhancement to the branching fraction of B-meson charmless decay. (orig.)
Neutral B Meson Mixing and Heavy-light Decay Constants from Quenched Lattice QCD
Lellouch, Laurent; Lellouch, Laurent
1999-01-01
We present high-statistics results for neutral B-meson mixing and heavy-light-meson leptonic decays in the quenched approximation from tadpole-improved clover actions at beta =6.0 and beta =6.2. We consider quantities such as B(B/sub d/(s)), f(D/sub d/(s)), f(B/sub d /(s)) and the full Delta B=2 matrix elements as well as the corresponding SU(3)-breaking ratios. These quantities are important for determining the CKM matrix element ¦V/sub td/¦. (5 refs).
Inclusive B-meson hadroproduction in the general-mass variable-flavor-number scheme
Energy Technology Data Exchange (ETDEWEB)
Kniehl, B.A.; Kramer, G. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Schienbein, I. [Universite Joseph Fourier, Grenoble (France). Lab. de Physique Subatomique et de Cosmologie]|[CNRS/IN2P3, Inst. National Polytechnique de Grenoble (France); Spiesberger, H. [Johannes Gutenberg Univ., Mainz (Germany). Inst. fuer Physik
2007-05-15
We calculate the cross section for the inclusive hadroproduction of B mesons as a function of transverse momentum p{sub T} at next-to-leading order (NLO) in the general- mass variable-flavor-number scheme using realistic non-perturbative fragmentation functions that are obtained through a global fit to e{sup +}e{sup -} data from CERN LEP1 and SLAC SLC exploiting their universality and scaling violations. We find good agreement with recent p anti p data taken by the CDF Collaboration in run II at the Fermilab Tevatron. We also present comparisons with NLO results obtained in two other schemes. (orig.)
Semileptonic decays of B mesons into excited charm mesons: leading order and 1/mc contributions
International Nuclear Information System (INIS)
Mannel, T.
1994-01-01
We use the heavy quark effective theory to investigate the form factors that describe the semileptonic decays of a B meson into excited daughter mesons. For an excited daughter meson with charm, a single form factor is needed at leading order, while five form factors and two dimensionful constants are needed to order 1/m c in the heavy quark expansion. For non-charmed final states, a total of four form factors are needed at leading order. For the process B→D(*)Xlν, four form factors are also needed at leading order. (orig.)
On the joint distribution of excursion duration and amplitude of a narrow-band Gaussian process
DEFF Research Database (Denmark)
Ghane, Mahdi; Gao, Zhen; Blanke, Mogens
2018-01-01
of amplitude and period are limited to excursion through a mean-level or to describe the asymptotic behavior of high level excursions. This paper extends the knowledge by presenting a theoretical derivation of probability of wave exceedance amplitude and duration, for a narrow-band Gaussian process......The probability density of crest amplitude and of duration of exceeding a given level are used in many theoretical and practical problems in engineering. The joint density is essential for design of constructions that are subjected to waves and wind. The presently available joint distributions...... distribution, as expected, and that the marginal distribution of excursion duration works both for asymptotic and non-asymptotic cases. The suggested model is found to be a good replacement for the empirical distributions that are widely used. Results from simulations of narrow-band Gaussian processes, real...
External meeting - Geneva University: Semileptonic and Radiative B-meson decays
2007-01-01
GENEVA UNIVERSITY ECOLE DE PHYSIQUE Département de physique nucléaire et corspusculaire 24, Quai Ernest-Ansermet 1211 GENEVE 4 - Tél : 022 379 62 73 - Fax: 022 379 69 92 Wednesday 4 April 2007 PARTICLE PHYSICS SEMINAR at 17:00 - Stückelberg Auditorium Semileptonic and Radiative B-meson decays by Dr Antonio Limosani / K2K, Japon The success of the B Factories at KEK and SLAC has furthered our knowledge of CP violation, a necessary ingredient for the creation of a matter-dominanted universe. Ever increasing data samples has ushered in a new era of precision CP measurements, in which the unitarity of the Cabibbo-Kobayashi-Maskawa matrix is examined for signs of New Physics. One of the crucial pieces of information, surprisingly, comes not from CP violation but from studies of semileptonic decays of the B mesons. I will discuss how various measurements of semileptonic and radiative B decays combine together to provide a precision measurement of the CKM matrix element |Vcb| and to determine the value of s...
Letter of intent for a study of CP violation in B meson decays
International Nuclear Information System (INIS)
1994-04-01
A major unresolved issue in the understanding of the Universe is how the current Universe evolved from the matter-antimatter symmetric Big Bang. CP-violating effects have played a key role in the development of the Universe. Since the Kobayashi-Maskawa hypothesis of six quarks has been substantiated, the K-M model for CP violation is now considered to be an essential part of the Standard Model. Observations indicated that it would be feasible to carry out the decisive tests of the K-M model by studying B meson decay. The observation of CP-violating asymmetry in B meson decay would be the first successful demonstration of a CP-violating effect outside K 0 meson system, and would be the dramatic confirmation of the K-M model. In light of the strong competition in this research, the upgrade of the TRISTAN facility and the construction of a detector must be ready as early as possible. In this letter of intent for the experiment at National Laboratory for High Energy Physics B Factory, the goals of this experiment, detector requirements and optimization, accelerator-detector interface, the reference design, physics simulation, and cost, schedule and organization are described. (K.I.) 140 refs
Moments in inclusive semileptonic B meson decays at the Belle experiment
Schwanda, Christoph
2015-04-01
Since my return to Austria in the year 2003, I have measured observables in inclusive B meson decays at the Belle experiment and worked together with theorists on the interpretation of these measurements in terms of the Cabibbo-Kobayashi-Maskawa matrix element |Vcb|. And in fact, only this memorial book project made me fully aware of Kolya Uraltsev's ground breaking theoretical contributions to this field. He was not a theorist who talked a lot to an experimentalist like me, and maybe this is not a bad thing for good science. I certainly remember his enthusiasm from conferences, e.g., when I was powerless to keep his presentation to the scheduled time as a session chair at the CKM2005 workshop in San Diego. Still I feel there is some amount of irony in the fact, that I know so little about a person whose work has been so decisive for my career in high energy physics. To commemorate Kolya Uraltsev's pioneering work on inclusive semileptonic B meson decays B → Xcℓν and on the Heavy Quark Expansion (HQE), which has already been paid tribute to in other articles in this volume, I will review the measurement of the electron energy and the hadronic mass moments in B → Xcℓν decays performed at the Belle experiment. These measurements allow to both test his theoretical calculations and to extract |Vcb| and non-perturbative quantities, such as the b-quark mass, from his formulae.
Photon-tagged and B-meson-tagged b-jet production at the LHC
Directory of Open Access Journals (Sweden)
Jinrui Huang
2015-11-01
Full Text Available Tagged jet measurements in high energy hadronic and nuclear reactions provide constraints on the energy and parton flavor origin of the parton shower that recoils against the tagging particle. Such additional insight can be especially beneficial in illuminating the mechanisms of heavy flavor production in proton–proton collisions at the LHC and their modification in the heavy ion environment, which are not fully understood. With this motivation, we present theoretical results for isolated-photon-tagged and B-meson-tagged b-jet production at sNN=5.1 TeV for comparison to the upcoming lead–lead data. We find that photon-tagged b-jets exhibit smaller momentum imbalance shift in nuclear matter, and correspondingly smaller energy loss, than photon-tagged light flavor jets. Our results show that B-meson tagging is most effective in ensuring that the dominant fraction of recoiling jets originate from prompt b-quarks. Interestingly, in this channel the large suppression of the cross section is not accompanied by a significant momentum imbalance shift.
B meson physics with polarized electron beams at linear colliders running at the Z0
International Nuclear Information System (INIS)
Atwood, W.B.
1988-12-01
The expected large cross section for e + e - → Z 0 and subsequent decay to b/bar b/ quarks makes the Z 0 an attractive placeto pursue B meson physics. The cross section for b-quark production at the Z 0 is compared to resonance production at the Υ/sub 4s/ and Υ/sub 5s/. In addition the big electroweak asymmetries, thought to exist in Z 0 decays to b/bar b/ quarks with polarized electron beams, provide an outstanding handle for observation of such effects as B 0 - /bar B/ 0 mixing. In this paper, the feasibility of such measurements is investigated and, with relatively small samples of Z 0 's (a few hundred thousand), both B/sub d/ and B/sub s/ meson mixing are shown to be measurable. The subject of CP violation in neutral B mesons is discussed last, but presently such measurements seem to be out of reach. 7 refs., 7 figs., 3 tabs
B-meson anomalies and Higgs physics in flavored U(1)' model
Bian, Ligong; Lee, Hyun Min; Park, Chan Beom
2018-04-01
We consider a simple extension of the Standard Model with flavor-dependent U(1)', that has been proposed to explain some of B-meson anomalies recently reported at LHCb. The U(1)' charge is chosen as a linear combination of anomaly-free B_3-L_3 and L_μ -L_τ . In this model, the flavor structure in the SM is restricted due to flavor-dependent U(1)' charges, in particular, quark mixings are induced by a small vacuum expectation value of the extra Higgs doublet. As a result, it is natural to get sizable flavor-violating Yukawa couplings of heavy Higgs bosons involving the bottom quark. In this article, we focus on the phenomenology of the Higgs sector of the model including extra Higgs doublet and singlet scalars. We impose various bounds on the extended Higgs sector from Higgs and electroweak precision data, B-meson mixings and decays as well as unitarity and stability bounds, then discuss the productions and decays of heavy Higgs bosons at the LHC.
First lattice calculation of the B-meson binding and kinetic energies
Crisafulli, M; Martinelli, G; Sachrajda, Christopher T C
1995-01-01
We present the first lattice calculation of the B-meson binding energy \\labar and of the kinetic energy -\\lambda_1/2 m_Q of the heavy-quark inside the pseudoscalar B-meson. This calculation has required the non-perturbative subtraction of the power divergences present in matrix elements of the Lagrangian operator \\bar h D_4 h and of the kinetic energy operator \\bar h \\vec D^2 h. The non-perturbative renormalisation of the relevant operators has been implemented by imposing suitable renormalisation conditions on quark matrix elements, in the Landau gauge. Our numerical results have been obtained from several independent numerical simulations at \\beta=6.0 and 6.2, and using, for the meson correlators, the results obtained by the APE group at the same values of \\beta. Our best estimate, obtained by combining results at different values of \\beta, is \\labar =190 \\err{50}{30} MeV. For the \\overline{MS} running mass, we obtain \\overline {m}_b(\\overline {m}_b) =4.17 \\pm 0.06 GeV, in reasonable agreement with previous...
Flavor non-universal gauge interactions and anomalies in B-meson decays
Tang, Yong; Wu, Yue-Liang
2018-02-01
Motivated by flavor non-universality and anomalies in semi-leptonic B-meson decays, we present a general and systematic discussion about how to construct anomaly-free U(1)‧ gauge theories based on an extended standard model with only three right-handed neutrinos. If all standard model fermions are vector-like under this new gauge symmetry, the most general family non-universal charge assignments, (a,b,c) for three-generation quarks and (d,e,f) for leptons, need satisfy just one condition to be anomaly-free, 3(a+b+c) = - (d+e+f). Any assignment can be linear combinations of five independent anomaly-free solutions. We also illustrate how such models can generally lead to flavor-changing interactions and easily resolve the anomalies in B-meson decays. Probes with {{B}}{s} - {{\\bar B}}{s} mixing, decay into τ ±, dilepton and dijet searches at colliders are also discussed. Supported by the Grant-in-Aid for Innovative Areas (16H06490)
Analysis of stationary power/amplitude distributions for multiple channels of sampled FBGs.
Xing, Ya; Zou, Xihua; Pan, Wei; Yan, Lianshan; Luo, Bin; Shao, Liyang
2015-08-10
Stationary power/amplitude distributions for multiple channels of the sampled fiber Bragg grating (SFBG) along the grating length are analyzed. Unlike a uniform FBG, the SFBG has multiple channels in the reflection spectrum, not a single channel. Thus, the stationary power/amplitude distributions for these multiple channels are analyzed by using two different theoretical models. In the first model, the SFBG is regarded as a set of grating sections and non-grating sections, which are alternately stacked. A step-like distribution is obtained for the corresponding power/amplitude of each channel along the grating length. While, in the second model, the SFBG is decomposed into multiple uniform "ghost" gratings, and a continuous distribution is obtained for each ghost grating (i.e., each channel). After a comparison, the distributions obtained in the two models are identical, and the equivalence between the two models is demonstrated. In addition, the impacts of the duty cycle on the power/amplitude distributions of multiple channels of SFBG are presented.
Bayesian extraction of the parton distribution amplitude from the Bethe-Salpeter wave function
Gao, Fei; Chang, Lei; Liu, Yu-xin
2017-07-01
We propose a new numerical method to compute the parton distribution amplitude (PDA) from the Euclidean Bethe-Salpeter wave function. The essential step is to extract the weight function in the Nakanishi representation of the Bethe-Salpeter wave function in Euclidean space, which is an ill-posed inversion problem, via the maximum entropy method (MEM). The Nakanishi weight function as well as the corresponding light-front parton distribution amplitude (PDA) can be well determined. We confirm prior work on PDA computations, which was based on different methods.
Bayesian extraction of the parton distribution amplitude from the Bethe–Salpeter wave function
Directory of Open Access Journals (Sweden)
Fei Gao
2017-07-01
Full Text Available We propose a new numerical method to compute the parton distribution amplitude (PDA from the Euclidean Bethe–Salpeter wave function. The essential step is to extract the weight function in the Nakanishi representation of the Bethe–Salpeter wave function in Euclidean space, which is an ill-posed inversion problem, via the maximum entropy method (MEM. The Nakanishi weight function as well as the corresponding light-front parton distribution amplitude (PDA can be well determined. We confirm prior work on PDA computations, which was based on different methods.
Present and future K and B meson mixing constraints on TeV scale left-right symmetry
Bertolini, Stefano; Maiezza, Alessio; Nesti, Fabrizio
2014-05-01
We revisit the ΔF=2 transitions in the K and Bd ,s neutral meson systems in the context of the minimal left-right symmetric model. We take into account, in addition to up-to-date phenomenological data, the contributions related to the renormalization of the flavor-changing neutral Higgs tree-level amplitude. These contributions were neglected in recent discussions, albeit formally needed in order to obtain a gauge-independent result. Their impact on the minimal LR model is crucial and twofold. First, the effects are relevant in B meson oscillations, for both CP conserving and CP violating observables, so that for the first time these imply constraints on the LR scenario which compete with those of the K sector (plagued by long-distance uncertainties). Second, they sizably contribute to the indirect kaon CP violation parameter ɛ. We discuss the bounds from B and K mesons in both cases of LR symmetry: generalized parity (P) and charge conjugation (C). In the case of P, the interplay between the CP-violation parameters ɛ and ɛ' leads us to rule out the regime of very hierarchical bidoublet vacuum expectation values v2/v1handed currents, we find that a right-handed gauge boson WR as light as 3 TeV is allowed at the 95% C. L. This is well within the reach of direct detection at the next LHC run. If not discovered, within a decade the upgraded LHCb and Super B factories may reach an indirect sensitivity to a left-right scale of 8 TeV.
Inclusive decays of the B meson and possible life-time difference between Bd0 and B± mesons
International Nuclear Information System (INIS)
Tanimoto, Morimitsu
1992-01-01
We study branching ratios of the inclusive semileptonic decay and the inclusive anti ccanti s decay of the B meson in the spectator model, focusing on the life-time difference between B d 0 and B + mesons. In the case of τsub(B ± )/τsub(B d 0 )=1, it is impossible to get the branching ratio below 12% for B→eνX without going over 20% for B→anti ccanti s, which is unfavored by the inclusive K - decay of the B meson. It is found that the sizable life-time difference leads to the reasonable inclusive semileptonic decay rate and the inclusive anti ccanti s decay rate. (orig.)
Backward production of the B meson in K-p interactions at 4.2 GeV/c
International Nuclear Information System (INIS)
Gavillet, Ph.; Dionisi, C.; Gurtu, A.; Hemingway, R.J.; Losty, M.J.; Marin, J.C.; Mazzucato, M.; Montanet, L.; Pagiola, E.; Blokzijl, R.; Jongejans, B.; Kluyver, J.C.; Massaro, G.G.G.; Engelen, J.J.; Vergeest, J.S.M.; Zralek, M.; Foster, B.; Grossmann, P.; Wells, J.
1978-01-01
The backward production of the B(1235) meson is studied in the reaction K - p → Σ - π + ω. This reaction is observed in the final state Σ - π + π + π - π 0 . A π + ω mass enhancement is visible in the region of the B meson for events with small mod(u)(K - → Σ - ) squared four-momentum transfer. The properties of the enhancement agree with those of the B meson. The cross section for K - p → Σ - B + at 4.15 GeV/c incident K - momentum is (3.2 +- 0.5) μb. The backward production of the B meson is compared with similar baryon exchange productions of the A 1 and C(Q 1 ) axial vector mesons observed in the same experiment. (Auth.)
Hyperfine splitting of B mesons and Bs production at the Υ(5S)
International Nuclear Information System (INIS)
Lee-Franzini, J.; Heintz, U.; Lovelock, D.M.J.; Narain, M.; Schamberger, R.D.; Willins, J.; Yanagisawa, C.; Franzini, P.; Tuts, P.M.
1990-01-01
Using the Columbia University--Stony Brook (CUSB-II) detector we have studied the inclusive photon spectrum from 2.9x10 4 Υ(5S) decays. We observe a strong signal due to B * →Bγ decays. From this we obtain (i) the average B * -B mass difference, 46.7±0.4 MeV, (ii) the photon yield per Υ(5S) decay, left-angle γ/Υ(5S)right-angle=1.09±0.06, and (iii) the average velocity of the B * 's, left-angle β right-angle=0.156±0.010, for a mix of nonstrange (B) and strange (B s ) B * mesons from Υ(5S) decays. From the shape of the photon line, we find that both B and B s mesons are produced with nearly equal values for the hyperfine splitting of the B and B s meson systems
Feasibility study for a B-meson factory in the CERN ISR tunnel
International Nuclear Information System (INIS)
Nakada, T.
1990-01-01
A feasibility study has been made for a B-meson factory, using the ISR tunnel and the LEP injector at CERN. An electron-positron collider operated with asymmetric beam energies of 8 and 3.5 GeV at a luminosity of 10 34 cm -2 s -1 will permit decisive answers on the question of CP violation within the framework of the Standard Model. This report outlines the physics motivation and detector requirements and gives a description of the machine design. It is proposed that the design goal is reached in two stages, with a collider with two rings of equal size. In the first stage a luminosity of 10 33 cm -2 s -1 may be achieved, allowing a rich programme of charm, beauty and τ-lepton physics. A further tenfold increase of the luminosity would require additional R and D on various machine aspects. (orig.)
B meson spectrum and decay constant from N{sub f}=2 simulations
Energy Technology Data Exchange (ETDEWEB)
Blossier, Benoit [Lab. de Physique Theorique, CNRS et Univ. Paris-Sud XI, 91 - Orsay (France); Bulava, John [DESY, Zeuthen (Germany). NIC; Della Morte, Michele [Mainz Univ. (DE), Inst. fuer Kernphysik] (and others)
2010-12-15
We report on the status of an ALPHA Collaboration project to extract quantities for B physics phenomenology from N{sub f}=2 lattice simulations. The framework is Heavy Quark Effective Theory (HQET) expanded up to the first order of the inverse b-quark mass. The couplings of the effective theory are determined by imposing matching conditions of observables computed in HQET with their counterpart computed in QCD. That program, based on N{sub f}=2 simulations in a small physical volume with Schroedinger functional boundary conditions, is now almost finished. On the other side the analysis of configurations selected from the CLS ensembles, in order to measure HQET hadronic matrix elements, has just started recently so that only results obtained at a single lattice spacing, a=0:07 fm, is discussed. We give our first results for the b-quark mass and for the B meson decay constant. (orig.)
Precise measurement of the charged B meson mass at the LHCb experiment
AUTHOR|(CDS)2076439
In the SM framework hadrons are colourless particles composed of quarks and gluons that interact by means the strong interactions described by Quantum chromodynamics (QCD). In this framework the theoretical predictions have to be compared with experimental data in order to verify if QCD is the correct theory of strong interactions. $b$ physics is considered a stringent Standard Model (SM) test and recent developments in $b$ hadron physics gave significant improvement in experimental determination of SM parameters. $b$ mass is a fundamental parameter of SM but, since quarks are confined inside hadrons and are not observed as physical particles, it has to be extrapolated by theoretical calculations: a non-perturbative tool formulated on a discrete Euclidean space time grid for calculating the hadronic spectrum and the matrix elements of any operator called lattice QCD (LQCD) has been developed. One of the purposes of LQCD is to provide predictions on $B$ meson mass starting from $b$ quark value: a fundamental r...
Two-Body B Meson Decays to η and η' : Observation of B→η'K
International Nuclear Information System (INIS)
Behrens, B.H.; Ford, W.T.; Gritsan, A.; Krieg, H.; Roy, J.; Smith, J.G.; Zhao, M.; Alexander, J.P.; Baker, R.; Bebek, C.; Berger, B.E.; Berkelman, K.; Bloom, K.; Boisvert, V.; Cassel, D.G.; Crowcroft, D.S.; Dickson, M.; Dombrowski, S. von; Drell, P.S.; Ecklund, K.M.; Ehrlich, R.; Foland, A.D.; Gaidarev, P.; Gibbons, L.; Gittelman, B.; Gray, S.W.; Hartill, D.L.; Heltsley, B.K.; Hopman, P.I.; Kandaswamy, J.; Kim, P.C.; Kreinick, D.L.; Lee, T.; Liu, Y.; Mistry, N.B.; Ng, C.R.; Nordberg, E.; Ogg, M.; Patterson, J.R.; Peterson, D.; Riley, D.; Soffer, A.; Valant-Spaight, B.; Ward, C.; Athanas, M.; Avery, P.; Jones, C.D.; Lohner, M.; Patton, S.; Prescott, C.; Yelton, J.; Zheng, J.; Brandenburg, G.; Briere, R.A.; Ershov, A.; Gao, Y.S.; Kim, D.Y.; Wilson, R.; Yamamoto, H.; Browder, T.E.; Li, Y.; Rodriguez, J.L.; Bergfeld, T.; Eisenstein, B.I.; Ernst, J.; Gladding, G.E.; Gollin, G.D.; Hans, R.M.; Johnson, E.; Karliner, I.; Marsh, M.A.; Palmer, M.; Selen, M.; Thaler, J.J.; Edwards, K.W.; Edwards, K.W.; Bellerive, A.; Bellerive, A.; Janicek, R.; Janicek, R.; MacFarlane, D.B.; MacFarlane, D.B.; Patel, P.M.; Patel, P.M.; Sadoff, A.J.; Ammar, R.; Baringer, P.; Bean, A.; Besson, D.; Coppage, D.; Darling, C.; Davis, R.; Kotov, S.; Kravchenko, I.; Kwak, N.; Zhou, L.; Anderson, S.; Kubota, Y.; Lee, S.J.; ONeill, J.J.; Poling, R.; Riehle, T.
1998-01-01
In a sample of 6.6x10 6 produced B mesons we have observed decays B→η ' K , with branching fractions B(B + →η ' K + )=(6.5 +1.5 -1.4 ±0.9)x10 -5 and B(B 0 →η ' K 0 )=(4.7 +2.7 -2.0 ±0.9)x10 -5 . We have searched with comparable sensitivity for 17 related decays to final states containing an η or η ' meson accompanied by a single particle or low-lying resonance. Our upper limits for these constrain theoretical interpretations of the B→η ' K signal. copyright 1998 The American Physical Society
The calculation of the quark distribution amplitudes of decuplet baryons by means of QCD sum rules
International Nuclear Information System (INIS)
Bonekamp, J.
1994-11-01
Using the QCD sum rule technique, we derive the quark distribution amplitudes of the decuplet memebers Δ(1232), Σ * (1385), Ξ * (1530) and Ω(1672). Generalizing the treatment of the Bethe-Salpeter amplitude, we can distinguish spin- and orbital- angular momentum parts of the quark distributions and establish separate sum rules for the contributions. Projecting out the angular momentum 1/2 contributions, we obtain sum rules which are saturated by the lowest resonance in the given iso spin channel, thus resolving deficiencies of the standard approach. We find that for helicity 1/2 the spin part of the quark distributions is asymmetric. Also the orbital angular momentum contributions are extremely asymmetric and tend to decrease the asymmetry of the spin part. As a result of SU(3) symmetry breaking, configuration mixing occurs and the decuplet baryons Σ * and Ξ * receive octet contributions. The antisymmetric part of these octet contributions is calculated. (orig.)
Observation of the B meson in K-p interactions at 4.2 GeV/c
International Nuclear Information System (INIS)
Flatte, S.M.; Gay, J.B.; Hemingway, R.J.; Holmgren, S.O.; Losty, M.J.; Blokzijl, R.; Kluyver, J.C.; Massaro, G.G.G.; Metzger, W.J.; Timmermans, J.J.M.; Walle, R.T. van de; Lamb, P.R.; Grossmann, P.
1976-01-01
A πω enhancement at 1245 MeV is observed in the reaction K - p→Σ + π - ω. Its properties agree with those of a B meson produced by natural-parity exchange thus establishing a coupling of the B to a anti KK* system. (Auth.)
Measurement of Inclusive Radiative B -Meson Decay B -> X_s gamma
Energy Technology Data Exchange (ETDEWEB)
Ozcan, V.E.; /SLAC /Stanford U., Appl. Phys. Dept.
2006-01-06
Radiative decays of the B meson, B {yields} X{sub s}{gamma}, proceed via virtual flavor changing neutral current processes that are sensitive to contributions from high mass scales, either within the Standard Model of electroweak interactions or beyond. In the Standard Model, these transitions are sensitive to the weak interactions of the top quark, and relatively robust predictions of the inclusive decay rate exist. Significant deviation from these predictions could be interpreted as indications for processes not included in the minimal Standard Model, like interactions of charged Higgs or SUSY particles. The analysis of the inclusive photon spectrum from B {yields} X{sub s}{gamma} decays is rather challenging due to high backgrounds from photons emitted in the decay of mesons in B decays as well as e{sup +}e{sup -} annihilation to low mass quark and lepton pairs. Based on 88.5 million B{bar B} events collected by the BABAR detector, the photon spectrum above 1.9 GeV is presented. By comparison of the first and second moments of the photon spectrum with QCD predictions (calculated in the kinetic scheme), QCD parameters describing the bound state of the b quark in the B meson are extracted: m{sub b} = (4.45 {+-} 0.16) GeV/c{sup 2}; {mu}{sub {pi}}{sup 2} = (0.65 {+-} 0.29) GeV{sup 2}. These parameters are useful input to non-perturbative QCD corrections to the semileptonic B decay rate and the determination of the CKM parameter |V{sub ub}|. Based on these parameters and heavy quark expansion, the full branching fraction is obtained as: {Beta}(B {yields} X{sub s}{gamma}){sup E{sub {gamma}}>1.6 GeV} = (4.05 {+-} 0.32(stat) {+-} 0.38(syst) {+-} 0.29(model)) x 10{sup -4}. This result is in good agreement with previous measurements, the statistical and systematic errors are comparable. It is also in good agreement with the theoretical Standard Model predictions, and thus within the present errors there is no indication of any interactions not accounted for in the
Energy Technology Data Exchange (ETDEWEB)
Szymanowski, Lech [Soltan Institute for Nuclear Studies, Hoza 69, 00691, Warsaw (Poland); Pire, Bernard [Centre de Physique Theorique - CPHT, UMR 7644, Ecole Polytechnique, Bat. 6, RDC, F91128 Palaiseau Cedex (France)
2010-07-01
We describe a new way to access the chiral odd transversity parton distribution in the proton through the photoproduction of lepton pairs. The basic ingredient is the interference of the usual Bethe Heitler or Drell-Yan amplitudes with the amplitude of a process, where the photon couples to quarks through its chiral-odd distribution amplitude, which is normalized to the magnetic susceptibility of the QCD vacuum. A phenomenology of single and double spin observables emerges from the unusual features of this amplitude (Phys.Rev.Lett.103:072002,2009). (authors)
A study of CP violation in B meson decays. Technical design report
International Nuclear Information System (INIS)
1995-03-01
The progress in BELLE collaboration is mentioned. The primary goal of the BELLE experiment is to perform the definitive tests of the Kobayashi Masukawa model prediction for CP violations in the decay of B mesons. The requirements for and the design of the BELLE detector are explained. The BELLE group is an international collaboration consisting of about 150 researchers of 40 institutions in 7 countries. As for the interaction region, beam crossing angle, beamline magnets near the interaction region, beam crossing angle, beamline magnets near the interaction points, beam pipe and beam background such as synchrotron radiation and particle background are described. As for the vertex detector, the configuration of a silicon vertex detector, the design of the silicon sensors, the detector unit design, support structures, environmental control and monitoring system, the SVD data acquisition system, readout electronics, the DAQ software, trigger signal generation and research and development works and prospect are described. As for charged particle tracking, the baseline design of central tracker, beam test results, track reconstruction and simulation and CDC trigger are described. Particle identification, electromagnetic calorimetry, K sub (L) and muon detection, detector solenoid and iron structure, trigger, data acquisition, offline computation, and schedule, installation and cost are described. (K.I.)
Relative rates of B meson decays into psi(2S) and J/psi mesons
Abazov, V. M.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adams, M.; Adams, T.; Aguilo, E.; Ahn, S. H.; Ahsan, M.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G. A.; Anastasoaie, M.
2009-01-01
We report on a study of the relative rates of B meson decays into ψ(2S) and J/ψ mesons using 1.3 fb-1 of pp̅ collisions at √s=1.96 TeV recorded by the D0 detector operating at the Fermilab Tevatron Collider. We observe the channels Bs0→ψ(2S)ϕ, Bs0→J/ψϕ, B±→ψ(2S)K±, and B±→J/ψK± and we measure the relative branching fractions for these channels to be B(Bs0→ψ(2S)ϕ)/B(Bs0→J/ψϕ)=0.53±0.10(stat)±0.07(syst)±0.06(B), B(B±→ψ(2S)K±)/B(B±→J/ψK±)=0.63±0.05(stat)±0.03(syst)±0.07(B),where the final erro...
Updated NNLO QCD predictions for the weak radiative B-meson decays
Misiak, M; Boughezal, R; Czakon, M; Ewerth, T; Ferroglia, A; Fiedler, P; Gambino, P; Greub, C; Haisch, U; Huber, T; Kaminski, M; Ossola, G; Poradzinski, M; Rehman, A; Schutzmeier, T; Steinhauser, M; Virto, J
2015-01-01
We perform an updated analysis of the inclusive weak radiative B-meson decays in the standard model, incorporating all our results for the O(alpha_s^2) and lower-order perturbative corrections that have been calculated after 2006. New estimates of non-perturbative effects are taken into account, too. For the CP- and isospin-averaged branching ratios, we find B_{s gamma} = (3.36 +_ 0.23) * 10^-4 and B_{d gamma} = 1.73^{+0.12}_{-0.22} * 10^-5, for E_gamma > 1.6 GeV. These results remain in agreement with the current experimental averages. Normalizing their sum to the inclusive semileptonic branching ratio, we obtain R_gamma = ( B_{s gamma} + B_{d gamma})/B_{c l nu} = (3.31 +_ 0.22) * 10^-3. A new bound from B_{s gamma} on the charged Higgs boson mass in the two-Higgs-doublet-model II reads M_{H^+} > 480 GeV at 95%C.L.
A Measurement of the Charged and Neutral B Meson Lifetimes Using Fully Reconstructed Decays
Energy Technology Data Exchange (ETDEWEB)
Barrera, Barbara
2000-08-30
Data collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC are used to study the lifetimes of the B{sup 0} and B{sup +} mesons. The data sample consists of 7.4 fb{sup -1} collected near the {Upsilon}(4S) resonance. B{sup 0} and B{sup +} mesons are fully reconstructed in several exclusive hadronic decay modes to charm and charmonium final states. The B lifetimes are determined from the flight length difference between the two B mesons which are pair-produced in the {Upsilon}(4S) decay. The preliminary measurements of the lifetimes are {tau}B{sup 0} = 1.506 {+-} 0.052 (stat) {+-} 0.029 (syst) ps, {tau}B{sup +} = 1.602 {+-} 0.049 (stat) {+-} 0.035 (syst) ps, and of their ratio is {tau}B{sup +}/{tau}B{sup 0} = 1.065 {+-} 0.044 (stat) {+-} 0.021 (syst).
A Measurement of the Charged and Neutral B Meson Lifetimes Using Fully Reconstructed Decays
Energy Technology Data Exchange (ETDEWEB)
Barrera, Barbara
2000-08-30
Data collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC are used to study the lifetimes of the B{sup 0} and B{sup +} mesons. The data sample consists of 7.4 fb{sup {minus}1} collected near the Upsilon(4S) resonance. B{sup 0} and B{sup +} mesons are fully reconstructed in several exclusive hadronic decay modes to charm and charmonium final states. The B lifetimes are determined from the flight length difference between the two B mesons which are pair-produced in the Upsilon(4S) decay. The preliminary measurements of the lifetimes are tau{sub B0} = 1.506 {+-} 0.052 (stat) {+-} 0.029 (syst) ps, tau{sub B+} = 1.602 {+-} 0.049 (stat) {+-} 0.035 (syst) ps, and of their ratio is tau{sub B+}/tau{sub B0} = 1.065 {+-} 0.044 (stat) {+-} 0.021 (syst).
Remarks on broken chiral SU(5) x SU(5) symmetry and B mesons
International Nuclear Information System (INIS)
Kim, D.Y.; Sinha, S.N.
1985-01-01
In a recent paper, Hatzis has estimated the masses and weak decay constants of b-flavored pseudoscalar mesons in a broken chiral SU(5) x SU(5) symmetry method. The estimated weak decay constant of B meson, f sub(B) f sub(K)(f sub(B)/f sub(K) approximately equal to 1.4) evaluated by Mathur et al. with the quantum chromodynamics (QCD) sum-rule model. We re-examined the problem applying the broken chiral SU(5) x SU(5) symmetry approach using a set of mass formulae. With this method we estimate the symmetry-breaking parameters and decay constants of pseudoscalar mesons. We found a consistent result for the decay constant: f sub(K) < or approximately equal to f sub(D) < or approximately equal to f sub(B). The explicit numerical value of these constants, however, are lower than that of the QCD sum rule. This may be due to the limited validity of the broken chiral symmetry approach for heavy mesons
A study of B meson oscillations using hadronic $Z^0$ decays containing leptons
Ackerstaff, K; Allison, J; Altekamp, N; Anderson, K J; Anderson, S; Arcelli, S; Asai, S; Axen, D A; Azuelos, Georges; Ball, A H; Barberio, E; Barlow, R J; Bartoldus, R; Batley, J Richard; Baumann, S; Bechtluft, J; Beeston, C; Behnke, T; Bell, A N; Bell, K W; Bella, G; Bentvelsen, Stanislaus Cornelius Maria; Berlich, P; Bethke, Siegfried; Biebel, O; Biguzzi, A; Bird, S D; Blobel, Volker; Bloodworth, Ian J; Bloomer, J E; Bobinski, M; Bock, P; Bonacorsi, D; Boutemeur, M; Bouwens, B T; Braibant, S; Brigliadori, L; Brown, R M; Burckhart, Helfried J; Burgard, C; Bürgin, R; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Chrisman, D; Clarke, P E L; Cohen, I; Conboy, J E; Cooke, O C; Cuffiani, M; Dado, S; Dallapiccola, C; Dallavalle, G M; De Jong, S; del Pozo, L A; Desch, Klaus; Dixit, M S; do Couto e Silva, E; Doucet, M; Duchovni, E; Duckeck, G; Duerdoth, I P; Eatough, D; Edwards, J E G; Estabrooks, P G; Evans, H G; Evans, M; Fabbri, Franco Luigi; Fanti, M; Faust, A A; Fiedler, F; Fierro, M; Fischer, H M; Fleck, I; Folman, R; Fong, D G; Foucher, M; Fürtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gascon, J; Gascon-Shotkin, S M; Geddes, N I; Geich-Gimbel, C; Geralis, T; Giacomelli, G; Giacomelli, P; Giacomelli, R; Gibson, V; Gibson, W R; Gingrich, D M; Glenzinski, D A; Goldberg, J; Goodrick, M J; Gorn, W; Grandi, C; Gross, E; Grunhaus, Jacob; Gruwé, M; Hajdu, C; Hanson, G G; Hansroul, M; Hapke, M; Hargrove, C K; Hart, P A; Hartmann, C; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herndon, M; Herten, G; Heuer, R D; Hildreth, M D; Hill, J C; Hillier, S J; Hilse, T; Hobson, P R; Homer, R James; Honma, A K; Horváth, D; Howard, R; Hutchcroft, D E; Igo-Kemenes, P; Imrie, D C; Ingram, M R; Ishii, K; Jawahery, A; Jeffreys, P W; Jeremie, H; Jimack, Martin Paul; Joly, A; Jones, C R; Jones, G; Jones, M; Jost, U; Jovanovic, P; Junk, T R; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Kirk, J; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Koetke, D S; Kokott, T P; Kolrep, M; Komamiya, S; Kress, T; Krieger, P; Von Krogh, J; Kyberd, P; Lafferty, G D; Lahmann, R; Lai, W P; Lanske, D; Lauber, J; Lautenschlager, S R; Layter, J G; Lazic, D; Lee, A M; Lefebvre, E; Lellouch, Daniel; Letts, J; Levinson, L; Lloyd, S L; Loebinger, F K; Long, G D; Losty, Michael J; Ludwig, J; Macchiolo, A; MacPherson, A L; Mannelli, M; Marcellini, S; Markus, C; Martin, A J; Martin, J P; Martínez, G; Mashimo, T; Mättig, P; McDonald, W J; McKenna, J A; McKigney, E A; McMahon, T J; McPherson, R A; Meijers, F; Menke, S; Merritt, F S; Mes, H; Meyer, J; Michelini, Aldo; Mikenberg, G; Miller, D J; Mincer, A; Mir, R; Mohr, W; Montanari, A; Mori, T; Morii, M; Müller, U; Nagai, K; Nakamura, I; Neal, H A; Nellen, B; Nisius, R; O'Neale, S W; Oakham, F G; Odorici, F; Ögren, H O; Oldershaw, N J; Oreglia, M J; Orito, S; Pálinkás, J; Pásztor, G; Pater, J R; Patrick, G N; Patt, J; Pearce, M J; Petzold, S; Pfeifenschneider, P; Pilcher, J E; Pinfold, James L; Plane, D E; Poffenberger, P R; Poli, B; Posthaus, A; Przysiezniak, H; Rees, D L; Rigby, D; Robertson, S; Robins, S A; Rodning, N L; Roney, J M; Rooke, A M; Ros, E; Rossi, A M; Rosvick, M; Routenburg, P; Rozen, Y; Runge, K; Runólfsson, O; Ruppel, U; Rust, D R; Rylko, R; Sachs, K; Saeki, T; Sarkisyan-Grinbaum, E; Sbarra, C; Schaile, A D; Schaile, O; Scharf, F; Scharff-Hansen, P; Schenk, P; Schieck, J; Schleper, P; Schmitt, B; Schmitt, S; Schöning, A; Schröder, M; Schultz-Coulon, H C; Schulz, M; Schumacher, M; Schwick, C; Scott, W G; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Siroli, G P; Sittler, A; Skillman, A; Skuja, A; Smith, A M; Snow, G A; Sobie, Randall J; Söldner-Rembold, S; Springer, R W; Sproston, M; Stephens, K; Steuerer, J; Stockhausen, B; Stoll, K; Strom, D; Szymanski, P; Tafirout, R; Talbot, S D; Tanaka, S; Taras, P; Tarem, S; Teuscher, R; Thiergen, M; Thomson, M A; Von Törne, E; Towers, S; Trigger, I; Tsur, E; Turcot, A S; Turner-Watson, M F; Utzat, P; Van Kooten, R; Verzocchi, M; Vikas, P; Vokurka, E H; Voss, H; Wäckerle, F; Wagner, A; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wermes, N; White, J S; Wilkens, B; Wilson, G W; Wilson, J A; Wolf, G; Wyatt, T R; Yamashita, S; Yekutieli, G; Zacek, V; Zer-Zion, D
1997-01-01
An event sample enriched in semileptonic decays of b hadrons is selected using an inclusive lepton selection from approximately 3.0 million hadronic Z^0 decays collected with the OPAL detector. This sample is used to investigate B meson oscillations by reconstructing a proper decay time for the parent of each lepton, using a jet charge method to estimate the production flavour of this parent, and using the lepton charge to tag the decay flavour. We measure the mass difference between the two B^0_d mass eigenstates Delta(m_d) = 0.444 +/- 0.029 + 0.020 - 0.017 ps^-1. For the B^0_s system, we find Delta(m_s) > 3.1 ps ^-1 at the 95% confidence level. This limit varies only a little if alternative limit setting approaches are adopted. Regions at higher Delta(m_s) are also excluded with some methods for setting the limit. By studying the charge symmetry of the B^0_d mixing structure, we are able to constrain possible CP and CPT violating effects. We measure the CP violation parameter Re(epsilon_B) = -0.006 +/- 0.01...
Study of charmless three-body decays of neutral B mesons with the LHCb spectrometer
Sobczak, Krzysztof Grzegorz
This thesis describes an exploratory work on three-body charmless neutral $B$ mesons decays containing either a $K_S$ or $\\pi^0$. The events are reconstructed with the LHCb spectrometer installed at Cern (Geneva, CH) recording the proton-proton collisions delivered by the Large Hadron Collider (LHC). The phenomenology of such modes is rich and covers the possibility to measure all angles of the unitarity triangle linked to the Cabibbo-Kobayashi-Maskawa (CKM) matrix. The single example of the $\\gamma$ measurement is explored in this document. The LHC accelerator and the most relevant sub-detector elements of the LHCb spectrometer are described in details. In particular, emphasis is given to the calorimetry system for which the calibration and alignment of the PreShower (PRS) of the electromagnetic calorimeter has been performed. We used particles at minimum ionisation deposit for such a task. The calibration results until year 2011 are reported as well as the method of the PS alignment with respect to the tra...
Observation of B Meson Decays to omegapi+, omegaK+, and omegaK0
International Nuclear Information System (INIS)
Smith, James G
2003-01-01
The authors present preliminary measurements of B meson decays to B + → ωπ + , B + → ωK + , and B 0 → ωK 0 . The data were recorded with the BABAR detector and correspond to 88.9 x 10 6 B(bar B) pairs produced in e + e - annihilation at the Υ(4S) resonance. They find statistically significant signals for all three channels: Β(B + → ωπ + ) = (5.4 ± 1.0 ± 0.5) x 10 -6 , Β(B + → ωK + ) = (5.0 ± 1.0 ± 0.4) x 10 -6 , and Β(B 0 → ωK 0 ) = (5.3 -1.2 +1.4 ± 0.5) x 10 -6 . They also measure time-integrated charge asymmetries Α ch (B + → ωπ + ) = 0.04 ± 0.17 ± 0.01 and Α ch (B + → ωK + ) = -0.05 ± 0.16 ± 0.01
CKM Phenomenology and B-mesons physics-present status and current issues
International Nuclear Information System (INIS)
Ali, A.
2004-01-01
We review the status of the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements and the CP-violating phases in the CKM-unitarity triangle. The emphasis in these lecture notes is on B-meson physics, through we also review the current status and issues in the light quark sector of this matrix. Selected applications of theoretical methods in QCD used in the interpretation of data are given and some of the issues restricting the theoretical precision on the CKM matrix elements discussed. The overall consistency of the CKM theory with the available data in flavour physics is impressive and we quantify this consistency. Current data also show some anomalies which, however, are not yet statistically significant. They are discussed briefly. some benchmark measurements that remain to be done in experiments at the B-factories and hadron colliders are listed. Together with the already achieved results, they will provide unprecedented test of the CKM theory and by the same token may lead to the discovery of new physics. (Author) 284 refs
Investigation of Semileptonic {ital B} Meson Decays to {ital p} -Wave Charm Mesons
Energy Technology Data Exchange (ETDEWEB)
Anastassov, A.; Duboscq, J.E.; Fujino, D.; Gan, K.K.; Hart, T.; Honscheid, K.; Kagan, H.; Kass, R.; Lee, J.; Spencer, M.B.; Sung, M.; Undrus, A.; Wanke, R.; Wolf, A.; Zoeller, M.M. [Ohio State University, Columbus, Ohio 43210 (United States); Nemati, B.; Richichi, S.J.; Ross, W.R.; Skubic, P. [University of Oklahoma, Norman, Oklahoma 73019 (United States); Bishai, M.; Fast, J.; Hinson, J.W.; Menon, N.; Miller, D.H.; Shibata, E.I.; Shipsey, I.P.; Yurko, M. [Purdue University, West Lafayette, Indiana 47907 (United States); Glenn, S.; Johnson, S.D.; Kwon, Y.; Roberts, S.; Thorndike, E.H. [University of Rochester, Rochester, New York 14627 (United States); Jessop, C.P.; Lingel, K.; Marsiske, H.; Perl, M.L.; Savinov, V.; Ugolini, D.; Wang, R.; Zhou, X. [Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309 (United States); Coan, T.E.; Fadeyev, V.; Korolkov, I.; Maravin, Y.; Narsky, I.; Shelkov, V.; Staeck, J.; Stroynowski, R.; Volobouev, I.; Ye, J. [Southern Methodist University, Dallas, Texas 75275 (United States); Artuso, M.; Efimov, A.; Goldberg, M.; He, D.; Kopp, S.; Moneti, G.C.; Mountain, R.; Schuh, S.; Skwarnicki, T.; Stone, S.; Viehhauser, G.; Xing, X. [Syracuse University, Syracuse, New York 13244 (United States); Bartelt, J.; Csorna, S.E.; Jain, V.; McLean, K.W.; Marka, S. [Vanderbilt University, Nashville, Tennessee 37235 (United States); Godang, R.; Kinoshita, K.; Lai, I.C.; Pomianowski, P.; Schrenk, S. [Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (United States); Bonvicini, G.; Cinabro, D.; Greene, R.; Perera, L.P.; Zhou, G.J. [Wayne State University, Detroit, Michigan 48202 (United States); Barish, B.; Chadha, M.; Chan, S.; Eigen, G.; Miller, J.S.; OGrady, C.; Schmidtler, M.; Urheim, J.; Weinstein, A.J.; Wuerthwein, F. [California Institute of Technology, Pasadena, California 91125 (United States); Bliss, D.W.; Masek, G.; Paar, H.P.; Prell, S.; Sharma, V. and others
1998-05-01
We have studied semileptonic B meson decays with a p -wave charm meson in the final state using 3.29{times}10{sup 6} B{ovr B} events collected with the CLEOII detector at the Cornell Electron-Positron Storage Ring. We find a value for the exclusive semileptonic product branching fraction B(B{sup {minus}}{r_arrow}D{sup 0}{sub 1} {ell}{sup {minus}}{ovr {nu}}{sub {ell}}) B(D{sup 0}{sub 1}{r_arrow}D{sup {asterisk}+} {pi}{sup {minus}})=(0.373{plus_minus}0.085{plus_minus} 0.052{plus_minus}0.024){percent} and an upper limit for B(B{sup {minus}}{r_arrow}D{sup {asterisk}0}{sub 2} {ell}{sup {minus}}{ovr {nu}}{sub {ell}}) B(D{sup {asterisk}0}{sub 2}{r_arrow}D{sup {asterisk}+ }{pi}{sup {minus}}){lt}0.16{percent} (90{percent} C.L.). Furthermore, we present the first measurement of the q{sup 2} spectrum for B{sup {minus}}{r_arrow}D{sup 0}{sub 1}{ell}{sup {minus}} {ovr {nu}}{sub {ell}} . {copyright} {ital 1998} {ital The American Physical Society}
International Nuclear Information System (INIS)
Manoukian, E.B.
1986-01-01
Generalized conditions (rules) are set up for the existence of the distributional zero-mass limit of renormalized Feynman amplitudes in Minkowski space. These rules are generalizations of rules that have been set up earlier by us and hence are applicable to a larger class of graphs. The study is very general as the vanishing masses are led to vanish at different rates. All subtractions of renormalization are carried out directly in momentum space, about the origin, with the degree of divergence of a subtraction coinciding with the dimensionality of the corresponding subdiagram
Higher order light-cone distribution amplitudes of the Lambda baryon
International Nuclear Information System (INIS)
Liu, Yong-Lu; Huang, Ming-Qiu; Cui, Chun-Yu
2014-01-01
The improved light-cone distribution amplitudes (LCDAs) of the Λ baryon are examined on the basis of the QCD conformal partial wave expansion approach. The calculations are carried out to the next-to-leading order of conformal spin accuracy with consideration of twist 6. The next leading order conformal expansion coefficients are related to the nonperturbative parameters defined by the local three-quark operator matrix elements with different Lorentz structures with a covariant derivative. The nonperturbative parameters are determined with the QCD sum rule method. The explicit expressions of the LCDAs are provided as the main results. (orig.)
Higher order light-cone distribution amplitudes of the Lambda baryon
Energy Technology Data Exchange (ETDEWEB)
Liu, Yong-Lu; Huang, Ming-Qiu [National University of Defense Technology, College of Science, Hunan (China); Cui, Chun-Yu [Third Military Medical University, Department of Physics, School of Biomedical Engineering, Chongqing (China)
2014-09-15
The improved light-cone distribution amplitudes (LCDAs) of the Λ baryon are examined on the basis of the QCD conformal partial wave expansion approach. The calculations are carried out to the next-to-leading order of conformal spin accuracy with consideration of twist 6. The next leading order conformal expansion coefficients are related to the nonperturbative parameters defined by the local three-quark operator matrix elements with different Lorentz structures with a covariant derivative. The nonperturbative parameters are determined with the QCD sum rule method. The explicit expressions of the LCDAs are provided as the main results. (orig.)
International Nuclear Information System (INIS)
Kul'chin, Yurii N; Kolchinskiy, V A; Kamenev, O T; Petrov, Yu S
2013-01-01
A new design of a sensitive element for a fibre optical sensor of deformation loads is proposed. A distributed fibre optical measuring network, aimed at determining both the load application point and the load mass, has been developed based on these elements. It is shown that neural network methods of data processing make it possible to combine quasi-distributed amplitude sensors of different types into a unified network. The results of the experimental study of a breadboard of a fibre optical measuring network are reported, which demonstrate successful reconstruction of the trajectory of a moving object (load) with a spatial resolution of 8 cm, as well as the load mass in the range of 1 – 10 kg with a sensitivity of 0.043 kg -1 . (laser optics 2012)
Precise discussion of time-reversal asymmetries in B-meson decays
International Nuclear Information System (INIS)
Morozumi, Takuya; Okane, Hideaki; Umeeda, Hiroyuki
2015-01-01
BaBar collaboration announced that they observed time reversal (T) asymmetry through B meson system. In the experiment, time dependencies of two distinctive processes, B_−→ (B"0)-bar and (B"0)-bar →B_− (− expresses CP value) are compared with each other. In our study, we examine event number difference of these two processes. In contrast to the BaBar asymmetry, the asymmetry of events number includes the overall normalization difference for rates. Time dependence of the asymmetry is more general and it includes terms absent in one used by BaBar collaboration. Both of the BaBar asymmetry and ours are naively thought to be T-odd since two processes compared are related with flipping time direction. We investigate the time reversal transformation property of our asymmetry. Using our notation, one can see that the asymmetry is not precisely a T-odd quantity, taking into account indirect CP and CPT violation of K meson systems. The effect of ϵ_K is extracted and gives rise to O(10"−"3) contribution. The introduced parameters are invariant under rephasing of quarks so that the coefficients of our asymmetry are expressed as phase convention independent quantities. Some combinations of the asymmetry enable us to extract parameters for wrong sign decays of B_d meson, CPT violation, etc. We also study the reason why the T-even terms are allowed to contribute to the asymmetry, and find that several conditions are needed for the asymmetry to be a T-odd quantity.
Asymptotics of QCD factorization in exclusive hadronic decays of B mesons
International Nuclear Information System (INIS)
Becher, Thomas; Neubert, Matthias; Pecjak, Ben D.
2001-01-01
Using the renormalon calculus, we study the asymptotic behavior of the perturbative expansion of the hard-scattering kernels entering the QCD factorization formula for the nonleptonic weak decays B-bar 0 →D (*)+ M - , where M is a light meson. In the 'large-β 0 limit', the kernels are infrared finite and free of endpoint singularities to all orders of perturbation theory. The leading infrared renormalon singularity corresponding to a power correction of order Λ QCD /m b vanishes if the light meson has a symmetric light-cone distribution amplitude. We calculate the Borel transforms and the corresponding momentum distribution functions of the hard-scattering kernels, and resum the series of O(β 0 n-1 α s n ) corrections to explore the numerical significance of higher-order perturbative and power corrections. We also derive explicit expressions for the O(β 0 α s 2 ) contributions to the kernels, and for the renormalon singularities corresponding to power corrections of order (Λ QCD /m b ) 2 . Finally, we study the limit m c →0 relevant to charmless hadronic decays such as B→ππ
Experimental access to Transition Distribution Amplitudes with the P¯ANDA experiment at FAIR
Singh, B. P.; Erni, W.; Keshelashvili, I.; Krusche, B.; Steinacher, M.; Liu, B.; Liu, H.; Liu, Z.; Shen, X.; Wang, C.; Zhao, J.; Albrecht, M.; Fink, M.; Heinsius, F. H.; Held, T.; Holtmann, T.; Koch, H.; Kopf, B.; Kümmel, M.; Kuhl, G.; Kuhlmann, M.; Leyhe, M.; Mikirtychyants, M.; Musiol, P.; Mustafa, A.; Pelizäus, M.; Pychy, J.; Richter, M.; Schnier, C.; Schröder, T.; Sowa, C.; Steinke, M.; Triffterer, T.; Wiedner, U.; Beck, R.; Hammann, C.; Kaiser, D.; Ketzer, B.; Kube, M.; Mahlberg, P.; Rossbach, M.; Schmidt, C.; Schmitz, R.; Thoma, U.; Walther, D.; Wendel, C.; Wilson, A.; Bianconi, A.; Bragadireanu, M.; Caprini, M.; Pantea, D.; Pietreanu, D.; Vasile, M. E.; Patel, B.; Kaplan, D.; Brandys, P.; Czyzewski, T.; Czyzycki, W.; Domagala, M.; Hawryluk, M.; Filo, G.; Krawczyk, M.; Kwiatkowski, D.; Lisowski, E.; Lisowski, F.; Fiutowski, T.; Idzik, M.; Mindur, B.; Przyborowski, D.; Swientek, K.; Czech, B.; Kliczewski, S.; Korcyl, K.; Kozela, A.; Kulessa, P.; Lebiedowicz, P.; Malgorzata, K.; Pysz, K.; Schäfer, W.; Siudak, R.; Szczurek, A.; Biernat, J.; Jowzaee, S.; Kamys, B.; Kistryn, S.; Korcyl, G.; Krzemien, W.; Magiera, A.; Moskal, P.; Palka, M.; Psyzniak, A.; Rudy, Z.; Salabura, P.; Smyrski, J.; Strzempek, P.; Wrońska, A.; Augustin, I.; Lehmann, I.; Nicmorus, D.; Schepers, G.; Schmitt, L.; Al-Turany, M.; Cahit, U.; Capozza, L.; Dbeyssi, A.; Deppe, H.; Dzhygadlo, R.; Ehret, A.; Flemming, H.; Gerhardt, A.; Götzen, K.; Karabowicz, R.; Kliemt, R.; Kunkel, J.; Kurilla, U.; Lehmann, D.; Lühning, J.; Maas, F.; Morales Morales, C.; Mora Espí, M. C.; Nerling, F.; Orth, H.; Peters, K.; Rodríguez Piñeiro, D.; Saito, N.; Saito, T.; Sánchez Lorente, A.; Schmidt, C. J.; Schwarz, C.; Schwiening, J.; Traxler, M.; Valente, R.; Voss, B.; Wieczorek, P.; Wilms, A.; Zühlsdorf, M.; Abazov, V. M.; Alexeev, G.; Arefiev, A.; Astakhov, V. I.; Barabanov, M. Yu.; Batyunya, B. V.; Davydov, Yu. I.; Dodokhov, V. Kh.; Efremov, A. A.; Fedunov, A. G.; Festchenko, A. A.; Galoyan, A. S.; Grigoryan, S.; Karmokov, A.; Koshurnikov, E. K.; Lobanov, V. I.; Lobanov, Yu. Yu.; Makarov, A. F.; Malinina, L. V.; Malyshev, V. L.; Mustafaev, G. A.; Olshevskiy, A.; Pasyuk, M. A.; Perevalova, E. A.; Piskun, A. A.; Pocheptsov, T. A.; Pontecorvo, G.; Rodionov, V. K.; Rogov, Yu. N.; Salmin, R. A.; Samartsev, A. G.; Sapozhnikov, M. G.; Shabratova, G. S.; Skachkov, N. B.; Skachkova, A. N.; Strokovsky, E. A.; Suleimanov, M. K.; Teshev, R. Sh.; Tokmenin, V. V.; Uzhinsky, V. V.; Vodopyanov, A. S.; Zaporozhets, S. A.; Zhuravlev, N. I.; Zorin, A. G.; Branford, D.; Glazier, D.; Watts, D.; Woods, P.; Britting, A.; Eyrich, W.; Lehmann, A.; Uhlig, F.; Dobbs, S.; Seth, K.; Tomaradze, A.; Xiao, T.; Bettoni, D.; Carassiti, V.; Cotta Ramusino, A.; Dalpiaz, P.; Drago, A.; Fioravanti, E.; Garzia, I.; Savriè, M.; Stancari, G.; Akishina, V.; Kisel, I.; Kulakov, I.; Zyzak, M.; Arora, R.; Bel, T.; Gromliuk, A.; Kalicy, G.; Krebs, M.; Patsyuk, M.; Zuehlsdorf, M.; Bianchi, N.; Gianotti, P.; Guaraldo, C.; Lucherini, V.; Pace, E.; Bersani, A.; Bracco, G.; Macri, M.; Parodi, R. F.; Bianco, S.; Bremer, D.; Brinkmann, K. T.; Diehl, S.; Dormenev, V.; Drexler, P.; Düren, M.; Eissner, T.; Etzelmüller, E.; Föhl, K.; Galuska, M.; Gessler, T.; Gutz, E.; Hayrapetyan, A.; Hu, J.; Kröck, B.; Kühn, W.; Kuske, T.; Lange, S.; Liang, Y.; Merle, O.; Metag, V.; Mülhheim, D.; Münchow, D.; Nanova, M.; Novotny, R.; Pitka, A.; Quagli, T.; Rieke, J.; Rosenbaum, C.; Schnell, R.; Spruck, B.; Stenzel, H.; Thöring, U.; Ullrich, M.; Wasem, T.; Werner, M.; Zaunick, H. G.; Ireland, D.; Rosner, G.; Seitz, B.; Deepak, P. N.; Kulkarni, A. V.; Apostolou, A.; Babai, M.; Kavatsyuk, M.; Lemmens, P.; Lindemulder, M.; Löhner, H.; Messchendorp, J.; Schakel, P.; Smit, H.; van der Weele, J. C.; Tiemens, M.; Veenstra, R.; Vejdani, S.; Kalita, K.; Mohanta, D. P.; Kumar, A.; Roy, A.; Sahoo, R.; Sohlbach, H.; Büscher, M.; Cao, L.; Cebulla, A.; Deermann, D.; Dosdall, R.; Esch, S.; Georgadze, I.; Gillitzer, A.; Goerres, A.; Goldenbaum, F.; Grunwald, D.; Herten, A.; Hu, Q.; Kemmerling, G.; Kleines, H.; Kozlov, V.; Lehrach, A.; Leiber, S.; Maier, R.; Nellen, R.; Ohm, H.; Orfanitski, S.; Prasuhn, D.; Prencipe, E.; Ritman, J.; Schadmand, S.; Schumann, J.; Sefzick, T.; Serdyuk, V.; Sterzenbach, G.; Stockmanns, T.; Wintz, P.; Wüstner, P.; Xu, H.; Li, S.; Li, Z.; Sun, Z.; Xu, H.; Rigato, V.; Fissum, S.; Hansen, K.; Isaksson, L.; Lundin, M.; Schröder, B.; Achenbach, P.; Bleser, S.; Cardinali, M.; Corell, O.; Deiseroth, M.; Denig, A.; Distler, M.; Feldbauer, F.; Fritsch, M.; Jasinski, P.; Hoek, M.; Kangh, D.; Karavdina, A.; Lauth, W.; Leithoff, H.; Merkel, H.; Michel, M.; Motzko, C.; Müller, U.; Noll, O.; Plueger, S.; Pochodzalla, J.; Sanchez, S.; Schlimme, S.; Sfienti, C.; Steinen, M.; Thiel, M.; Weber, T.; Zambrana, M.; Dormenev, V. I.; Fedorov, A. A.; Korzihik, M. V.; Missevitch, O. V.; Balanutsa, P.; Balanutsa, V.; Chernetsky, V.; Demekhin, A.; Dolgolenko, A.; Fedorets, P.; Gerasimov, A.; Goryachev, V.; Varentsov, V.; Boukharov, A.; Malyshev, O.; Marishev, I.; Semenov, A.; Konorov, I.; Paul, S.; Grieser, S.; Hergemöller, A. K.; Khoukaz, A.; Köhler, E.; Täschner, A.; Wessels, J.; Dash, S.; Jadhav, M.; Kumar, S.; Sarin, P.; Varma, R.; Chandratre, V. B.; Datar, V.; Dutta, D.; Jha, V.; Kumawat, H.; Mohanty, A. K.; Roy, B.; Yan, Y.; Chinorat, K.; Khanchai, K.; Ayut, L.; Pornrad, S.; Barnyakov, A. Y.; Blinov, A. E.; Blinov, V. E.; Bobrovnikov, V. S.; Kononov, S. A.; Kravchenko, E. A.; Kuyanov, I. A.; Onuchin, A. P.; Sokolov, A. A.; Tikhonov, Y. A.; Atomssa, E.; Hennino, T.; Imre, M.; Kunne, R.; Le Galliard, C.; Ma, B.; Marchand, D.; Ong, S.; Ramstein, B.; Rosier, P.; Tomasi-Gustafsson, E.; Van de Wiele, J.; Boca, G.; Costanza, S.; Genova, P.; Lavezzi, L.; Montagna, P.; Rotondi, A.; Abramov, V.; Belikov, N.; Bukreeva, S.; Davidenko, A.; Derevschikov, A.; Goncharenko, Y.; Grishin, V.; Kachanov, V.; Kormilitsin, V.; Melnik, Y.; Levin, A.; Minaev, N.; Mochalov, V.; Morozov, D.; Nogach, L.; Poslavskiy, S.; Ryazantsev, A.; Ryzhikov, S.; Semenov, P.; Shein, I.; Uzunian, A.; Vasiliev, A.; Yakutin, A.; Yabsley, B.; Bäck, T.; Cederwall, B.; Makónyi, K.; Tegnér, P. E.; von Würtemberg, K. M.; Belostotski, S.; Gavrilov, G.; Izotov, A.; Kashchuk, A.; Levitskaya, O.; Manaenkov, S.; Miklukho, O.; Naryshkin, Y.; Suvorov, K.; Veretennikov, D.; Zhadanov, A.; Rai, A. K.; Godre, S. S.; Duchat, R.; Amoroso, A.; Bussa, M. P.; Busso, L.; De Mori, F.; Destefanis, M.; Fava, L.; Ferrero, L.; Greco, M.; Maggiora, M.; Maniscalco, G.; Marcello, S.; Sosio, S.; Spataro, S.; Zotti, L.; Calvo, D.; Coli, S.; De Remigis, P.; Filippi, A.; Giraudo, G.; Lusso, S.; Mazza, G.; Mingnore, M.; Rivetti, A.; Wheadon, R.; Balestra, F.; Iazzi, F.; Introzzi, R.; Lavagno, A.; Younis, H.; Birsa, R.; Bradamante, F.; Bressan, A.; Martin, A.; Clement, H.; Gålnander, B.; Caldeira Balkeståhl, L.; Calén, H.; Fransson, K.; Johansson, T.; Kupsc, A.; Marciniewski, P.; Pettersson, J.; Schönning, K.; Wolke, M.; Zlomanczuk, J.; Díaz, J.; Ortiz, A.; Vinodkumar, P. C.; Parmar, A.; Chlopik, A.; Melnychuk, D.; Slowinski, B.; Trzcinski, A.; Wojciechowski, M.; Wronka, S.; Zwieglinski, B.; Bühler, P.; Marton, J.; Suzuki, K.; Widmann, E.; Zmeskal, J.; Fröhlich, B.; Khaneft, D.; Lin, D.; Zimmermann, I.; Semenov-Tian-Shansky, K.
2015-08-01
Baryon-to-meson Transition Distribution Amplitudes (TDAs) encoding valuable new information on hadron structure appear as building blocks in the collinear factorized description for several types of hard exclusive reactions. In this paper, we address the possibility of accessing nucleon-to-pion ( πN) TDAs from reaction with the future P¯ANDA detector at the FAIR facility. At high center-of-mass energy and high invariant mass squared of the lepton pair q 2, the amplitude of the signal channel admits a QCD factorized description in terms of πN TDAs and nucleon Distribution Amplitudes (DAs) in the forward and backward kinematic regimes. Assuming the validity of this factorized description, we perform feasibility studies for measuring with the P¯ANDA detector. Detailed simulations on signal reconstruction efficiency as well as on rejection of the most severe background channel, i.e. were performed for the center-of-mass energy squared s = 5 GeV2 and s = 10 GeV2, in the kinematic regions 3.0 < q 2 < 4.3 GeV2 and 5 < q 2 GeV2, respectively, with a neutral pion scattered in the forward or backward cone in the proton-antiproton center-of-mass frame. Results of the simulation show that the particle identification capabilities of the P¯ANDA detector will allow to achieve a background rejection factor of 5 · 107 (1 · 107) at low (high) q 2 for s = 5 GeV2, and of 1 · 108 (6 · 106) at low (high) q 2 for s = 10 GeV2, while keeping the signal reconstruction efficiency at around 40%. At both energies, a clean lepton signal can be reconstructed with the expected statistics corresponding to 2 fb-1 of integrated luminosity. The cross sections obtained from the simulations are used to show that a test of QCD collinear factorization can be done at the lowest order by measuring scaling laws and angular distributions. The future measurement of the signal channel cross section with P¯ANDA will provide a new test of the perturbative QCD description of a novel class of hard
The WS transform for the Kuramoto model with distributed amplitudes, phase lag and time delay
Lohe, M. A.
2017-12-01
We apply the Watanabe-Strogatz (WS) transform to a generalized Kuramoto model with distributed parameters describing the amplitude of oscillation, phase lag, and time delay at each node of the system. The model has global coupling and identical frequencies, but allows for repulsive interactions at arbitrary nodes leading to conformist-contrarian phenomena together with variable amplitude and time-delay effects. We show how to determine the initial values of the WS system for any initial conditions for the Kuramoto system, and investigate the asymptotic behaviour of the WS variables. For the case of zero time delay the possible asymptotic configurations are determined by the sign of a single parameter μ which measures whether or not the attractive nodes dominate the repulsive nodes. If μ>0 the system completely synchronizes from general initial conditions, whereas if μ<0 one of two types of phase-locked synchronization occurs, depending on the initial values, while for μ=0 periodic solutions can occur. For the case of arbitrary non-uniform time delays we derive a stability condition for completely synchronized solutions.
Study of Rare B Meson Decays Related to the CKM Angle Beta at BaBar
Energy Technology Data Exchange (ETDEWEB)
Ulmer, Keith; /Amherst Coll.
2007-06-06
This study reports measurements of the branching fractions of B meson decays to {eta}{prime}K{sup +}, {eta}{prime}K{sup 0}, {omega}{pi}{sup +}, {omega}K{sup +}, and {omega}K{sup 0}. Charge asymmetries are measured for the charged modes and the time-dependent CP-violation parameters S and C are measured for the neutral modes. The results are based on a data sample of 347 fb{sup -1} containing 383 million B{bar B} pairs recorded by the BABAR detector at the PEP-II asymmetric-energy e+e- storage ring located at the Stanford Linear Accelerator Center. Statistically significant signals are observed for all channels with the following results: B(B{sup +} {yields} {eta}{prime}K{sup +}) = (70.0{+-}1.5{+-}2.8)x10{sup -6}, B(B{sup 0} {yields} {eta}{prime}K{sup 0}) = (66.6{+-}2.6{+-}2.8)x10{sup -6}, B(B{sup +} {yields} {omega}{pi}{sup +}) = (6.7{+-}0.5{+-}0.4)x10{sup -6}, B(B{sup +} {yields} {omega}K{sup +}) = (6.3{+-}0.5{+-}0.3)x10-6, and B(B{sup 0} {yields} ?K0) = (5.6{+-}0.8{+-}0.3)x10-6, where the first uncertainty is statistical and the second is systematic. We measure A{sub ch}({eta}{prime}K{sup +}) = +0.010{+-}0.022{+-}0.006, A{sub ch}({omega}{pi}{sup +}) = -0.02{+-}0.08{+-}0.01, A{sub ch}({omega}K{sup +}) = -0.01{+-}0.07{+-}0.01, S{sub {eta}{prime}K{sup 0}{sub S}} = 0.56{+-}0.12{+-}0.02, C{sub {eta}{prime}K{sup 0}{sub S}} = -0.24 {+-} 0.08 {+-} 0.03, S{sub {omega}{prime}K{sup 0}{sub S}} = 0.62+0.25 -0.29 {+-} 0.02, and C{sub {omega}{prime}K{sup 0}{sub S}} = -0.39+0.25 -0.24 {+-} 0.03. The result in S{sub {eta}{prime}K{sup 0}{sub S}} contributes to the published measurement from BABAR, which differs from zero by 5.5 standard deviations and is the first observation of mixing-induced CP-violation in a charmless B decay.
Experimental access to Transition Distribution Amplitudes with the PANDA experiment at FAIR
Energy Technology Data Exchange (ETDEWEB)
Zambrana, Manuel; Ahmed, Samer; Deiseroth, Malte; Froehlich, Bertold; Khaneft, Dmitry; Lin, Dexu; Noll, Oliver; Valente, Roserio; Zimmermann, Iris [Institut fuer Kernphysik, Johannes Gutenberg Universitaet, Mainz (Germany); Helmholtz-Institut Mainz (Germany); Mora Espi, Maria Carmen; Ahmadi, Heybat; Capozza, Luigi; Dbeyssi, Alaa; Morales, Cristina; Rodriguez Pineiro, David [Helmholtz-Institut Mainz (Germany); Maas, Frank [Institut fuer Kernphysik, Johannes Gutenberg Universitaet, Mainz (Germany); Helmholtz-Institut Mainz (Germany); Prisma Cluster of Excellence, Mainz (Germany); Collaboration: PANDA-Collaboration
2016-07-01
We address the feasibility of accessing proton to pion Transition Distribution Amplitudes with the future PANDA detector at the FAIR facility. Assuming a factorized cross section, feasibility studies of measuring anti pp → e{sup +}e{sup -}π{sup 0} with PANDA have been performed at the center of mass energy squared s = 5 GeV{sup 2} and s = 10 GeV{sup 2}, in the kinematic region of four-momentum transfer 3.0 < q{sup 2} < 4.3 GeV{sup 2} and 5 < q{sup 2} < 9 GeV{sup 2}, respectively,with a neutral pion scattered in the forward or backward cone vertical stroke cosθ{sub π{sup 0}} vertical stroke > 0.5 in the anti pp center of mass frame. These include detailed simulations on signal reconstruction efficiency, rejection of the most severe background channel, i.e. anti pp → π{sup +}π{sup -}π{sup 0}, and the feasibility of the measurement using a sample of 2 fb{sup -1} of integrated luminosity. The cross sections obtained with the simulations are used to test QCD factorization at the leading order by measuring scaling laws and fitting angular distributions.
Fast EEG spike detection via eigenvalue analysis and clustering of spatial amplitude distribution
Fukami, Tadanori; Shimada, Takamasa; Ishikawa, Bunnoshin
2018-06-01
Objective. In the current study, we tested a proposed method for fast spike detection in electroencephalography (EEG). Approach. We performed eigenvalue analysis in two-dimensional space spanned by gradients calculated from two neighboring samples to detect high-amplitude negative peaks. We extracted the spike candidates by imposing restrictions on parameters regarding spike shape and eigenvalues reflecting detection characteristics of individual medical doctors. We subsequently performed clustering, classifying detected peaks by considering the amplitude distribution at 19 scalp electrodes. Clusters with a small number of candidates were excluded. We then defined a score for eliminating spike candidates for which the pattern of detected electrodes differed from the overall pattern in a cluster. Spikes were detected by setting the score threshold. Main results. Based on visual inspection by a psychiatrist experienced in EEG, we evaluated the proposed method using two statistical measures of precision and recall with respect to detection performance. We found that precision and recall exhibited a trade-off relationship. The average recall value was 0.708 in eight subjects with the score threshold that maximized the F-measure, with 58.6 ± 36.2 spikes per subject. Under this condition, the average precision was 0.390, corresponding to a false positive rate 2.09 times higher than the true positive rate. Analysis of the required processing time revealed that, using a general-purpose computer, our method could be used to perform spike detection in 12.1% of the recording time. The process of narrowing down spike candidates based on shape occupied most of the processing time. Significance. Although the average recall value was comparable with that of other studies, the proposed method significantly shortened the processing time.
Bottom-quark fusion processes at the LHC for probing Z' models and B -meson decay anomalies
Abdullah, Mohammad; Dalchenko, Mykhailo; Dutta, Bhaskar; Eusebi, Ricardo; Huang, Peisi; Kamon, Teruki; Rathjens, Denis; Thompson, Adrian
2018-04-01
We investigate models of a heavy neutral gauge boson Z' coupling mostly to third generation quarks and second generation leptons. In this scenario, bottom quarks arising from gluon splitting can fuse into Z' allowing the LHC to probe it. In the generic framework presented, anomalies in B -meson decays reported by the LHCb experiment imply a flavor-violating b s coupling of the featured Z' constraining the lowest possible production cross section. A novel approach searching for a Z'(→μ μ ) in association with at least one bottom-tagged jet can probe regions of model parameter space existing analyses are not sensitive to.
Rare decays of B mesons and baryons at the Tevatron and the LHC
Energy Technology Data Exchange (ETDEWEB)
Volpi, Guido [Univ. of Siena (Italy)
2008-07-01
^{-}π^{+}, the latter being particularly interesting for its relationship with the puzzling difference in CP asymmetry between neutral and charged modes. In this thesis we go beyond B mesons, and present the first measurements of Branching fractions and CP asymmetries in charmless b-baryon modes. We study two-body Λ_{b}^{0} decays into final states with a proton and a charged pion or kaon. Their branching fractions can be significantly affected by New Physics contributions; under supersymmetric models with R-parity violation, they can be increased by two orders of magnitude. Their CP-violating asymmetries are also interesting to measure in search for possible further anomalies: then may reach significant size O(30%) in the Standard Model, and are also sensitive to possible new physics sources.
International Nuclear Information System (INIS)
Aquines, O.; Li, Z.; Lopez, A.; Mendez, H.; Ramirez, J.; Huang, G.S.; Miller, D.H.; Pavlunin, V.; Sanghi, B.; Shipsey, I.P.J.; Xin, B.; Adams, G.S.; Anderson, M.; Cummings, J.P.; Danko, I.; Napolitano, J.; He, Q.; Insler, J.; Muramatsu, H.; Park, C.S.
2006-01-01
Using 420 pb -1 of data collected on the Υ(5S) resonance with the CLEO III detector, we reconstruct B mesons in 25 exclusive decay channels to measure or set upper limits on the decay rate of Υ(5S) into B meson final states. We measure the inclusive B cross section to be σ(Υ(5S)→BB(X))=(0.177±0.030±0.016) nb and make the first measurements of the production rates of σ(Υ(5S)→B*B*)=(0.131±0.025±0.014) nb and σ(Υ(5S)→BB*)=(0.043±0.016±0.006) nb, respectively. We set 90% confidence level limits of σ(Υ(5S)→BB) ( * ) B ( * ) π) s * mass to date, M(B s *)=(5411.7±1.6±0.6) MeV/c 2
Cheng, C H
2003-01-01
The neutral B meson, consisting of a b quark and an anti-d quark, can mix (oscillate) to its own anti-particle through second-order weak interactions. The measurement of the mixing frequency can constrain the quark mixing matrix in the Standard Model of particle physics. The PEP-II B-factory at the Stanford Linear Accelerator Center provides a very large data sample that enables us to make measurements with much higher precisions than previous measurements, and to probe physics beyond the Standard Model. The lifetime of the neutral B meson tau sub B sub 0 and the B sup 0 -(bar B) sup 0 mixing frequency DELTA m sub d are measured with a sample of approximately 14,000 exclusively reconstructed B sup 0 -> D* sup - (ell) sup +nu sub e sub l sub l signal events, selected from 23 million B(bar B) pairs recorded at the UPSILON(4S)resonance with the BABAR detector at the asymmetric-energy e sup + e sup - collider, PEP-II. The decay position of the exclusively reconstructed B is determined by the charged tracks in the...
International Nuclear Information System (INIS)
1996-09-01
We present evidence for charge correlations of B mesons with charged particles produced in p anti p Collisions at 1.8 TeV. Such correlations are expected to arise from pious produced in the fragmentation chain and from B ** decays. We measure the efficiency and purity of this flavor tagging method for both charged and neutral B mesons. We apply these correlations to B mesons reconstructed in 110 pb -1 of data collected with the CDF detector at the Fermilab Tevatron Collider. B mesons are either partially reconstructed, using the semileptonic decays B 0 → l + D (*)- X and B + → l + anti DX, or fully reconstructed, using the decay modes B 0 → J/ΨK *0 and B + → J/ΨK + . Application of this new flavor tagging method to neutral B mesons yields a measurement of the frequency of the oscillation B 0 → anti B 0 . We obtain Δm d = 0.446 ± 0.057 +0.034 -0.031
The ρ-meson light-cone distribution amplitudes from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Braun, Vladimir M.; Bruns, Peter C.; Collins, Sara [Institut für Theoretische Physik, Universität Regensburg,Universitätsstraße 31, 93040 Regensburg (Germany); Gracey, John A. [Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool, P.O. Box 147, Liverpool, L69 3BX (United Kingdom); Gruber, Michael; Göckeler, Meinulf; Hutzler, Fabian; Pérez-Rubio, Paula; Schäfer, Andreas; Söldner, Wolfgang [Institut für Theoretische Physik, Universität Regensburg,Universitätsstraße 31, 93040 Regensburg (Germany); Sternbeck, André [Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena,Max-Wien-Platz 1, 07743 Jena (Germany); Wein, Philipp [Institut für Theoretische Physik, Universität Regensburg,Universitätsstraße 31, 93040 Regensburg (Germany)
2017-04-13
We present the results of a lattice study of the normalization constants and second moments of the light-cone distribution amplitudes of longitudinally and transversely polarized ρ mesons. The calculation is performed using two flavors of dynamical clover fermions at lattice spacings between 0.060 fm and 0.081 fm, different lattice volumes up to m{sub π}L=6.7 and pion masses down to m{sub π}=150 MeV. Bare lattice results are renormalized non-perturbatively using a variant of the RI{sup ′}-MOM scheme and converted to the (MS)-bar scheme. The necessary conversion coefficients, which are not available in the literature, are calculated. The chiral extrapolation for the relevant decay constants is worked out in detail. We obtain for the ratio of the tensor and vector coupling constants f{sub ρ}{sup T}/f{sub ρ}=0.629(8) and the values of the second Gegenbauer moments a{sub 2}{sup ∥}=0.132(27) and a{sub 2}{sup ⊥}=0.101(22) at the scale μ=2 GeV for the longitudinally and transversely polarized ρ mesons, respectively. The errors include the statistical uncertainty and estimates of the systematics arising from renormalization. Discretization errors cannot be estimated reliably and are not included. In this calculation the possibility of ρ→ππ decay at the smaller pion masses is not taken into account.
CLEO and E791 data: a smoking gun for the pion distribution amplitude?
Energy Technology Data Exchange (ETDEWEB)
Bakulev, A.P.; Mikhailov, S.V.; Stefanis, N.G
2004-01-01
The CLEO experimental data on the {pi}{gamma} transition are analyzed to next-to-leading order accuracy in QCD perturbation theory using light-cone QCD sum rules. By processing these data along the lines proposed by Schmedding and Yakovlev, and recently revised by us, we obtain new constraints for the Gegenbauer coefficients a{sub 2} and a{sub 4}, as well as for the inverse moment
CLEO and E791 Data A Smoking Gun for the Pion Distribution Amplitude?
Bakulev, A P; Stefanis, N G
2003-01-01
The CLEO experimental data on the \\pi\\gamma transition are analyzed to NLO in QCD perturbation theory using light-cone QCD sum rules. By processing the data along the lines proposed by Khodjamiryan, Schmedding and Yakovlev, and recently revised by us, we obtain new constraints for the Gegenbauer coefficients a_2 and a_4, as well as for the inverse moment \\langle{x^{-1}\\rangle of the pion distribution amplitude (DA). The former determine the pion DA at low momentum scale, the latter is crucial in calculating pion form factors. From the results of our analysis we conclude that the data confirm the shape of the pion DA we previously obtained with QCD sum rules and nonlocal condensates, while the exclusion of the asymptotic and the Chernyak-Zhitnitsky DA is reinforced. We also investigate the sensitivity of the calculated coefficients in this analysis to the twist-4 contribution and check out pion DA against the di-jets data of the E791 experiment, providing credible evidence for our results far more broadly. Thu...
Maciuła, Rafał; Szczurek, Antoni
2018-05-01
We extend our previous studies of double-parton scattering (DPS) to simultaneous production of c c ¯ and b b ¯ and production of two pairs of b b ¯. The calculation is performed within a factorized ansatz. Each parton scattering is calculated within the kT-factorization approach. The hadronization is done with the help of fragmentation functions. Production of D mesons in our framework was tested in our previous works. Here, we present our predictions for B mesons. A good agreement is achieved with the LHCb data. We present our results for c c ¯b b ¯ and b b ¯b b ¯ final states. For completeness, we compare results for double- and single-parton scattering (SPS). As for the c c ¯c c ¯ final state, the DPS dominates over the SPS, especially for small transverse momenta. We present several distributions and integrated cross sections with realistic cuts for simultaneous production of D0B+ and B+B+, suggesting future experimental studies at the LHC.
Energy Technology Data Exchange (ETDEWEB)
Cheng, Chih-Hsiang
2003-08-29
The neutral B meson, consisting of a b quark and an anti-d quark, can mix (oscillate) to its own anti-particle through second-order weak interactions. The measurement of the mixing frequency can constrain the quark mixing matrix in the Standard Model of particle physics. The PEP-II B-factory at the Stanford Linear Accelerator Center provides a very large data sample that enables us to make measurements with much higher precisions than previous measurements, and to probe physics beyond the Standard Model. The lifetime of the neutral B meson {tau}{sub B0} and the B{sup 0}-{bar B}{sup 0} mixing frequency {Delta}m{sub d} are measured with a sample of approximately 14,000 exclusively reconstructed B{sup 0} {yields} D*{sup -} {ell}{sup +}{nu}{sub {ell}} signal events, selected from 23 million B{bar B} pairs recorded at the {Upsilon}(4S)resonance with the BABAR detector at the asymmetric-energy e{sup +}e{sup -} collider, PEP-II. The decay position of the exclusively reconstructed B is determined by the charged tracks in the final state, and its b-quark flavor at the time of decay is known unambiguously from the charge of the lepton. The decay position of the other B is determined inclusively, and its b-quark flavor at the time of decay is determined (tagged) with the charge of tracks in the final state, where identified leptons or kaons give the most information. The decay time difference of two B mesons in the event is calculated from the distance between their decay vertices and the Lorentz boost of the center of mass. Additional samples of approximately 50,000 events are selected for studies of background events. The lifetime and mixing frequency, along with wrong-tag probabilities and the time-difference resolution function, are measured simultaneously with an unbinned maximum-likelihood fit that uses, for each event, the measured difference in B decay times ({Delta}t), the calculated uncertainty on {Delta}t, the signal and background probabilities, and b
International Nuclear Information System (INIS)
Sadler, M.E.; Isenhower, L.D.
1992-01-01
This report discusses research on the following topics: pion-nucleon interactions; detector tomography facility; nuclear dependence of charm and beauty quark production and a study of two-prong decays of neutral D and B mesons; N* collaboration at CEBAF; and pilac experiments
From Kaons to B mesons: Constraints on the Standard Model from Flavour Physics
International Nuclear Information System (INIS)
Ocariz, J.
2007-12-01
The first chapter is a short summary of flavour physics in the Standard Model, and ends with a succinct description of the statistical approach used in CKM fitter. The second chapter discusses CP violation in the Kaon sector: constraints on the CKM matrix from measurements of ε K , ε'/ε, and the rare modes K + → π + νν-bar and K L → π 0 νν-bar are dealt with; the chapter ends with a prospective study on the potential of Kaon physics for the CKM matrix. The next two chapters describe physics analyses performed in the BaBar experiment; the amplitude analysis of B 0 → K + π - π 0 is first presented, followed by a succinct discussion of a preliminary time-dependent amplitude analysis of B 0 → K 0 π + π - . The discussion is finally completed with a qualitative description of a proposal for a combined study of B → Kππ modes to constrain the CKM matrix. The slides made for the presentation of this work have been added at the end of the document
International Nuclear Information System (INIS)
Jagusztyn, W.
1976-01-01
A method is described of establishing the influence of the asymmetry of the electric field distribution in gaseous proportional counters on the amplitude of their voltage signal. A numerical evaluation of this effect demands performing calculations of the electric field in the vicinity of the anode. Using the described method of numerical solution of the Laplace equation in polar coordinates with logarythmically scaled radial dimension, it is possible to achieve the required accuracy. In the calculations of differences in amplitudes of voltage signals, for chosen trajektories of electrons liberated in the process of primary ionization, changes in the gaseous amplification factors and drift velocities of positive ions are taken into account. Experimental results prove the validity of presented theory. The results obtained are accurate enough to be applied to the design of proportional counters of non-cylindrical geometries. (author)
Directory of Open Access Journals (Sweden)
Sharapov Rashid
2017-01-01
Full Text Available In the production of concrete structures widespread shaking tables of various designs. The effectiveness of vibroforming concrete items largely depends on the choice of rational modes of vibroeffect to the compacting mixture. The article discusses the propagation of a wave packet in the concrete mixture under shock and vibration molding. Studies have shown that the spectrum of a wave packet contains a large number of harmonics. The main parameter influencing the amplitude-frequency spectrum is the stiffness of elastic gaskets between mold and forming machine vibrating table. By varying the stiffness of the elastic gaskets can widely change the spectrum of the oscillations propagating in the concrete mix. Thus, it is possible to adjust the intensity of the process of vibroforming.
AUTHOR|(CDS)2074762
In this thesis, the performance of the full kinematic reconstruction of $\\mathrm{{B}}^{+}$ mesons in the decay channel $\\mathrm{{B}}^{+}\\rightarrow\\mathrm{\\overline{D}^{0}}\\pi^{+}$ ($\\mbox{$\\mathrm{\\overline{D}^{0}}\\rightarrow \\mathrm{K}^{+}\\pi^{-}$}$) and charge conjugates for the 0-10 % most central Pb-Pb collisions at $\\sqrt{s_{_{\\mathrm{NN}}}}$ = 5.5 TeV is demonstrated for the upgraded ALICE Experiment, which is planned before Run 3 of the Large Hadron Collider (LHC), beginning in 2020. Within the scope of the foreseen detector and readout upgrades to inspect all Pb-Pb collisions at their interaction rate of 50 kHz, in particular through the installation of a new high-granularity pixel inner tracker, for the first time these rare signals will become accessible using full kinematic reconstruction in central Pb-Pb collisions in ALICE at mid-rapidity at the LHC. Topological and kinematic criteria are used to select the beauty signal against the large combinatorial and correlated background. In addition to a...
On Decays of B Mesons to a Strange Meson and an Eta or Eta' Meson at Babar
Energy Technology Data Exchange (ETDEWEB)
Hirschauer, James Francis [Univ. of Colorado, Boulder, CO (United States)
2009-01-01
We describe studies of the decays of B mesons to final states ηK*(892), ηK*_{0}(S-wave), ηK*_{2}(1430), and η'K based on data collected with the BABAR detector at the PEP-II asymmetric-energy e^{+}e^{-} collier at the Stanford Linear Accelerator Center. We measure branching fractions and charge asymmetries for the decays B → ηK*, where K* indicates a spin 0, 1, or 2 Kπ system, making first observations of decays to final states ηK^{0*}_{0}(S-wave), ηK^{+*}_{0} (S-wave), and ηK^{0*}_{2}(1430). We measure the time-dependent CP-violation parameters S and C for the decays B^{0} → η'K^{0}, observing CP violation in a charmless B decay with 5σ significance considering both statistical and systematic uncertainties.
Aaij, R; Adametz, A; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, Th; Bay, A; Beddow, J; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Corti, G; Couturier, B; Cowan, G A; Craik, D; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dickens, J; Dijkstra, H; Diniz Batista, P; Dogaru, M; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jans, E; Jansen, F; Jaton, P; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Luo, H; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Mazurov, A; McCarthy, J; McNulty, R; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nisar, S; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sobczak, K; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A
2013-01-01
The relative production rate of $B^{0}_{s}$ and $B^{0}$ mesons is determined with the hadronic decays $B^{0}_{s} \\rightarrow D^{-}_{s}\\pi^{+}$ and $B^0 \\rightarrow D^{-}K^{+}$. The measurement uses data corresponding to 1.0 fb$^{-1}$ of $pp$ collisions at a centre-of-mass energy of $\\sqrt{s}=7$ TeV recorded in the forward region with the LHCb experiment. The ratio of production rates, $f_{s}/f_{d}$, is measured to be $0.238 \\pm 0.004 \\pm 0.015 \\pm 0.021 $, where the first uncertainty is statistical, the second systematic, and the third theoretical. This is combined with a previous LHCb measurement to obtain $f_{s}/f_{d} = 0.256 \\pm 0.020$. The dependence of $f_{s}/f_{d}$ on the transverse momentum and pseudorapidity of the $B$ meson is determined using the decays $B^{0}_{s} \\rightarrow D^{-}_{s}\\pi^{+}$ and $B^{0} \\rightarrow D^{-}\\pi^{+}$. There is evidence for a decrease with increasing transverse momentum, whereas the ratio remains constant as a function of pseudorapidity. In addition, the ratio of branchi...
Study of rare and suppressed processes in B meson decays with ATLAS
Nikolaenko, V I; The ATLAS collaboration
2014-01-01
The large amount of Heavy Flavor data collected by the ATLAS experiment is potentially sensitive to New Physics, which could be evident in processes that are naturally suppressed in the Standard Model. The most recent results on the search for the rare decay Bs (B0) -> mu+mu- are presented. Recent results are also presented on the angular distribution parameters AFB and FL describing the decay Bd -> K*mu+mu- -> K+pi-mu+mu-. The accuracy obtained from data collected in 2011 is comparable to the best previous measurement in the region q^2(mu+mu-)>16 GeV^2.
Study of rare and suppressed processes in B meson decays with ATLAS
Nikolaenko, V; The ATLAS collaboration
2014-01-01
The large amount of Heavy Flavor data collected by the ATLAS experiment is potentially sensitive to New Physics, which could be evident in processes that are naturally suppressed in the Standard Model. The most recent result on the search for the rare decay Bs (B0) -> mu+mu- is presented. Recent results are also presented on the angular distribution parameters AFB and FL describing the decay Bd -> K*mu+mu- -> K+pi-mu+mu-. The accuracy obtained from data collected in 2011 is comparable to the best previous measurement in the region q^2(mu+mu-)>16 GeV^2.
Study of rare and suppressed processes in B meson decays with the ATLAS experiment
Iengo, P; The ATLAS collaboration
2014-01-01
The large amount of Heavy Flavor data collected by the ATLAS experiment is potentially sensitive to New Physics, which could be evident in processes that are naturally suppressed in the Standard Model. The most recent results on the search for the rare decay Bs (B0) -> mu+mu- are presented, as well as results of the angular analysis of the semileptonic rare decay Bd → K*0 mu+mu- -> K+pi-mu+mu-, extracting the distribution parameter AFB and FL (the accuracy obtained from data collected in 2011 is comparable to the best previous measurement in the region q^2(mu+mu-) -> 16 GeV^2)
Factorization and shape-function effects in inclusive B-meson decays
International Nuclear Information System (INIS)
Bosch, S.W.; Lange, B.O.; Neubert, M.; Paz, G.
2004-01-01
Using methods of effective field theory, factorized expressions for arbitrary B-bar ->Xul-ν-bar decay distributions in the shape-function region of large hadronic energy and moderate hadronic invariant mass are derived. Large logarithms are resummed at next-to-leading order in renormalization-group improved perturbation theory. The operator product expansion is employed to relate moments of the renormalized shape function with HQET parameters such as mb, Λ-bar and λ1 defined in a new physical subtraction scheme. An analytic expression for the asymptotic behavior of the shape function is obtained, which reveals that it is not positive definite. Explicit expressions are presented for the charged-lepton energy spectrum, the hadronic invariant mass distribution, and the spectrum in the hadronic light-cone momentum P+=EH-|P->H|. A new method for a precision measurement of |Vub| is proposed, which combines good theoretical control with high efficiency and a powerful discrimination against charm background
Search for New Physics in Rare and Semi-Rare Decays of B- Mesons in ATLAS
Ibragimov, Iskander; The ATLAS collaboration
2016-01-01
Processes involving the FCNC transitions in b-hadron decays are suppressed in the SM and are sensitive to new physics. New results in the search for the rare decays of Bs and Bd into mu+mu- are presented. They are based on the full sample of data collected by ATLAS at 7 and 8 TeV collision energy. The consistency with the SM and with other available measurements is discussed. The properties of the decay of the Bd meson into K*mu+ mu- are also sensitive to the presence of New Physics in loops and has received renewed interest because of possible deviations from the standard model in this decay observed by LHCb. We present recent results obtained by ATLAS, concerning the angular distribution parameters FL, S_i and P’_i in the region Q^2(mu+mu-)<6 GeV^2.
Study of rare and suppressed processes in B meson decays with ATLAS.
Guenther, J; The ATLAS collaboration
2013-01-01
Evidence for New Physics signatures is searched in weak decays that are naturally suppressed in the Standard Model, such us processes with flavor-changing neutral-currents. The presentation will include results on the following topics: a) The angular distribution parameters A_FB and F_L describing the decay of Bd into K*mu+mu- (K+pi-mu+mu-) . The accuracy obtained from data collected in 2011 is comparable to the best previous measurement in the region of large q^2(mu+mu-). b) The study of the rare decay Bs (B0) -> mu+mu- is discussed, including the presentation of the new limit for Bs from data collected in 2011, and the prospect for results based on the large sample collected in 2012.
Khan, Shahab Ullah; Adnan, Muhammad; Qamar, Anisa; Mahmood, Shahzad
2016-07-01
The propagation of linear and nonlinear electrostatic waves is investigated in magnetized dusty plasma with stationary negatively or positively charged dust, cold mobile ions and non-extensive electrons. Two normal modes are predicted in the linear regime, whose characteristics are investigated parametrically, focusing on the effect of electrons non-extensivity, dust charge polarity, concentration of dust and magnetic field strength. Using the reductive perturbation technique, a Zakharov-Kuznetsov (ZK) type equation is derived which governs the dynamics of small-amplitude solitary waves in magnetized dusty plasma. The properties of the solitary wave structures are analyzed numerically with the system parameters i.e. electrons non-extensivity, concentration of dust, polarity of dust and magnetic field strength. Following Allen and Rowlands (J. Plasma Phys. 53:63, 1995), we have shown that the pulse soliton solution of the ZK equation is unstable, and have analytically traced the dependence of the instability growth rate on the nonextensive parameter q for electrons, dust charge polarity and magnetic field strength. The results should be useful for understanding the nonlinear propagation of DIA solitary waves in laboratory and space plasmas.
Measurement of the B Meson Differential Cross Section dσ/dpT in p bar p Collisions at √s=1.8 TeV
International Nuclear Information System (INIS)
Abe, F.; Albrow, M.G.; Amendolia, S.R.; Amidei, D.; Antos, J.; Anway-Wiese, C.; Apollinari, G.; Areti, H.; Atac, M.; Auchincloss, P.; Azfar, F.; Azzi, P.; Bacchetta, N.; Badgett, W.; Bailey, M.W.; Bao, J.; de Barbaro, P.; Barbaro-Galtieri, A.; Barnes, V.E.; Barnett, B.A.; Bartalini, P.; Bauer, G.; Baumann, T.; Bedeschi, F.; Behrends, S.; Belforte, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Benlloch, J.; Bensinger, J.; Benton, D.; Beretvas, A.; Berge, J.P.; Bertolucci, S.; Bhatti, A.; Biery, K.; Binkley, M.; Bird, F.; Bisello, D.; Blair, R.E.; Blocker, C.; Bodek, A.; Bokhari, W.; Bolognesi, V.; Bortoletto, D.; Boswell, C.; Boulos, T.; Brandenburg, G.; Bromberg, C.; Buckley-Geer, E.; Budd, H.S.; Burkett, K.; Busetto, G.; Byon-Wagner, A.; Byrum, K.L.; Cammerata, J.; Campagnari, C.; Campbell, M.; Caner, A.; Carithers, W.; Carlsmith, D.; Castro, A.; Cen, Y.; Cervelli, F.; Chao, H.Y.; Chapman, J.; Cheng, M.; Chiarelli, G.; Chikamatsu, T.; Chiou, C.N.; Christofek, L.; Cihangir, S.; Clark, A.G.; Cobal, M.; Contreras, M.; Conway, J.; Cooper, J.; Cordelli, M.; Couyoumtzelis, C.; Crane, D.; Cunningham, J.D.; Daniels, T.; DeJongh, F.; Delchamps, S.; Dell'Agnello, S.; Dell'Orso, M.; Demortier, L.; Denby, B.; Deninno, M.; Derwent, P.F.; Devlin, T.; Dickson, M.; Dittmann, J.R.; Donati, S.; Drucker, R.B.; Dunn, A.; Einsweiler, K.; Elias, J.E.; Ely, R.; Engels, E. Jr.; Eno, S.; Errede, D.; Errede, S.; Fan, Q.; Farhat, B.; Fiori, I.; Flaugher, B.; Foster, G.W.; Franklin, M.; Frautschi, M.; Freeman, J.; Friedman, J.; Fry, A.; Fuess, T.A.; Fukui, Y.; Funaki, S.; Gagliardi, G.; Galeotti, S.; Gallinaro, M.; Garfinkel, A.F.; Geer, S.; Gerdes, D.W.; Giannetti, P.; Giokaris, N.; Giromini, P.; Gladney, L.; Glenzinski, D.; Gold, M.; Gonzalez, J.; Gordon, A.; Goshaw, A.T.; Goulianos, K.; Grassmann, H.; Grewal, A.; Groer, L.; Grosso-Pilcher, C.; Haber, C.; Hahn, S.R.; Hamilton, R.; Handler, R.; Hans, R.M.; Hara, K.; Harral, B.; Harris, R.M.; Hauger, S.A.; Hauser, J.; Hawk, C.
1995-01-01
This paper presents the first direct measurement of the B meson differential cross section dσ/dp T in p bar p collisions at √s=1.8 TeV using a sample of 19.3±0.7 pb --1 accumulated by the Collider Detector at Fermilab. The cross section is measured in the central rapidity region |y| T (B)>6.0 GeV/c by fully reconstructing the B meson decays B + →J/ψK + and B 0 →J/ψK *0 (892), where J/ψ→μ + μ - and K *0 →K + π - . A comparison is made to the theoretical QCD prediction calculated at next-to-leading order
Observations and Measurements of Orbitally Excited L=1 B Mesons at the D0 Experiment
Energy Technology Data Exchange (ETDEWEB)
Williams, Mark Richard James [Lancaster Univ. (United Kingdom)
2008-09-01
This thesis describes investigations of the first set of orbitally excited (L = 1) states for both the B_{d}^{0} and B_{s}^{0} meson systems (B**_{d} and B**_{s}). The data sample corresponds to 1.35 fb^{-1} of integrated luminosity, collected in 2002-2006 by the D0 detector, during the Run IIa operation of the Tevatron p$\\bar{p}$ colliding beam accelerator. The B**_{d} states are fully reconstructed in decays to B^{(*)+} π^{-}, with B^{(*)+} → γ J/ΨK^{+}, J/Ψ → μ^{+}μ^{-}, yielding 662 ± 91 events, and providing the first strong evidence for the resolution of two narrow resonances, B_{1} and B*_{2}. The masses are extracted from a binned Χ^{2} fit to the invariant mass distribution, giving M(B_{1}) = 5720.7 ± 2.4(stat.) ± 1.3(syst.) ± 0.5 (PDG) MeV/c^{2} and M(B*_{2}) = 5746.9 ± 2.4(stat.) ± 1.0(syst.) ± 0.5(PDG) MeV/c^{2}. The production rate of narrow B**_{d} → Bπ resonances relative to the B^{+} meson is determined to be [13.9 ± 1.9(stat.) ± 3.2(syst.)]%. The same B^{+} sample is also used to reconstruct the analogous states in the B_{s}^{0} system, in decays B**_{s} → B^{(*)+} K^{-}. A single resonance in the invariant mass distribution is found with a statistical significance of 5σ, interpreted as the B*_{s2} state. The mass is determined to be M(B*_{s2}) = 5839.6 ± 1.1(stat.) ± 0.4(syst.) ± 0.5(PDG) MeV/c ^{2}, and the production rate of B*_{s2} → BK resonances is measured to be a fraction (2.14 ± 0.43 ± 0.24)% of the corresponding rate for B^{+} mesons. Alternative fitting hypotheses give inconclusive evidence for the presence of the lighter B_{s1} meson.
International Nuclear Information System (INIS)
Lipkin, H. J.
1989-11-01
The Einstein-Podolsky-Rosen effect arises in particle physics when pairs of neutral K, D or B mesons are created in a definite quantum state, and the decays of the two mesons are correlated. Choosing the decay mode to be detected for one of the two mesons creates a 'polarized beam' on the other side which has interesting and usfull properties. Application to nvestigations of CP violation are discussed. (author)
Abbiendi, G.; Ainsley, C.; Akesson, P.F.; Alexander, G.; Allison, John; Anderson, K.J.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Bailey, I.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Baumann, S.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bellerive, A.; Benelli, G.; Bentvelsen, S.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Boeriu, O.; Bock, P.; Bohme, J.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Cammin, J.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Cooke, O.C.; Couchman, J.; Couyoumtzelis, C.; Coxe, R.L.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Dallison, S.; de Roeck, A.; de Wolf, E.; Dervan, P.; Desch, K.; Dienes, B.; Dixit, M.S.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Estabrooks, P.G.; Etzion, E.; Fabbri, F.; Fanti, M.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Glenzinski, D.; Goldberg, J.; Grandi, C.; Graham, K.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Hajdu, C.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauke, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hocker, James Andrew; Hoffman, Kara Dion; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeremie, H.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Kokott, T.P.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kupper, M.; Kyberd, P.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lawson, I.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; Lillich, J.; List, B.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Lu, J.; Ludwig, J.; Macchiolo, A.; Macpherson, A.; Mader, W.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rembser, C.; Renkel, P.; Rick, H.; Rodning, N.; Roney, J.M.; Rosati, S.; Roscoe, K.; Rossi, A.M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sarkisyan, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Sproston, M.; Stahl, A.; Stephens, K.; Stoll, K.; Strom, David M.; Strohmer, R.; Stumpf, L.; Surrow, B.; Talbot, S.D.; Tarem, S.; Taylor, R.J.; Teuscher, R.; Thiergen, M.; Thomas, J.; Thomson, M.A.; Torrence, E.; Towers, S.; Toya, D.; Trefzger, T.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Vachon, B.; Vannerem, P.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Zacek, V.; Zer-Zion, D.
2002-01-01
From about 4 million hadronic Z decays recorded by the OPAL detector on and near to the Z resonance, we select a sample of more than 570000 inclusively reconstructed B mesons. Orbitally-excited mesons B*J are reconstructed using Bpi+- combinations. Independently, B* mesons are reconstructed using the decay B* -> Bgamma. The selected B* candidates are used to obtain samples enriched or depleted in the decay B*J -> B*pi+-(X), where (X) refers to decay modes with or without additional accompanying decay particles. From the number of signal candidates in the Bpi+- mass spectra of these two samples, we perform the first measurement of the branching ratio of orbitally-excited B mesons decaying into B*pi(X): BR(B*J ->B*pi(X)) = 0.85 +0.36-0.37 +- 0.12, where the first error is statistical and the second systematic. If B*J decay modes other than single pion transitions can be neglected the measured ratio corresponds to the branching ratio BR(B*J->B*pi). In the framework of Heavy Quark Symmetry, a simultaneous fit to ...
Energy Technology Data Exchange (ETDEWEB)
Maksimovic, Peter [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
1998-02-01
We present a study of time dependent B^{0}-$\\bar{B}$^{0} mixing in p$\\bar{p}$ collisions at 1.8 TeV using 110 pb^{-1} collected with the CDF detector at the Fermilab Tevatron Collider. B mesons are partially reconstructed using the semileptonic decays B^{0}→l^{+}D^{*-}X and B^{+}→l^{+}$\\bar{D}$^{0}X (and their charge conjugates). B meson-charged pion correlations are used in order to determine the flavor of the B meson at t=0. Such correlations are expected to arise from pions produced in the fragmentation chain and also from B** decays. We measure the efficiency and purity of this flavor tagging method for both charged and neutral B mesons.
International Nuclear Information System (INIS)
Piccolo, M.
1989-01-01
The lifetime of hadrons containing b-quark has been the subject of extensive experimental work and theoretical speculation; its importance is due to implications on some of the fundamental parameters of the Standard Model, such as the top quark mass and the mixing angles. Since the pioneer measurements of the MAC and MARK II collaborations at PEP in 1983 the progress has been impressive; but many issues still remain open and await further study. In this paper the field's present status is discussed. An overview of the theoretical motivations for this measurements in the Standard Model framework is done. Then the experimental techniques used are reviewed, emphasizing the most recent measurements. A comparison of the results obtained is done and systematic errors are discussed. In conclusion there are some remarks on the further developments foreseen in the near future
Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asbah, Nedaa; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Astbury, Alan; Atkinson, Markus; Auerbach, Benjamin; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Sarah; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Bertella, Claudia; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Bittner, Bernhard; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blocki, Jacek; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boek, Thorsten Tobias; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Bremer, Johan; Brendlinger, Kurt; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brost, Elizabeth; Brown, Gareth; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Bugge, Lars; Bulekov, Oleg; Bundock, Aaron Colin; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christidi, Ilektra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirilli, Manuela; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coelli, Simone; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Colas, Jacques; Cole, Stephen; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Courneyea, Lorraine; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Damiani, Daniel; Daniells, Andrew Christopher; Danielsson, Hans Olof; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Darmora, Smita; Dassoulas, James; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Demirkoz, Bilge; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dinut, Florin; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Doi, Yoshikuni; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dotti, Andrea; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Dufour, Marc-Andre; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Dwuznik, Michal; Ebke, Johannes; Eckweiler, Sebastian; Edson, William; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Engelmann, Roderich; Engl, Albert; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Ferencei, Jozef; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Julia; Fisher, Matthew; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Fonseca Martin, Teresa; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gandrajula, Reddy Pratap; Gao, Yongsheng; Gaponenko, Andrei; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giunta, Michele; Gjelsten, Børge Kile; Gkialas, Ioannis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glonti, George; Goblirsch-kolb, Maximilian; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramstad, Eirik; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gunther, Jaroslav; Guo, Jun; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Haefner, Petra; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Herbert, Geoffrey Henry; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hofmann, Julia Isabell; Hohlfeld, Marc; Holmgren, Sven-Olof; Holzbauer, Jenny; Hong, Tae Min; Hooft van Huysduynen, Loek; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Jantsch, Andreas; Janus, Michel; Jared, Richard; Jarlskog, Göran; Jeanty, Laura; Jeng, Geng-yuan; Jen-La Plante, Imai; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalinin, Sergey; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karnevskiy, Mikhail; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Keener, Paul; Kehoe, Robert; Keil, Markus; Keller, John; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kitamura, Takumi; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koenig, Sebastian; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Köneke, Karsten; König, Adriaan; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Laisne, Emmanuel; Lambourne, Luke; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larner, Aimee; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legendre, Marie; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Lepold, Florian; Leroy, Claude; Lessard, Jean-Raphael; Lester, Christopher; Lester, Christopher Michael; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Losty, Michael; Lou, XinChou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lund, Esben; Lundberg, Johan; Lundberg, Olof; Lund-Jensen, Bengt; Lundquist, Johan; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Mackeprang, Rasmus; Madar, Romain; Madaras, Ronald; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Magnoni, Luca; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marques, Carlos; Marroquim, Fernando; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Jean-Pierre; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matsunaga, Hiroyuki; Matsushita, Takashi; Mättig, Peter; Mättig, Stefan; Mattravers, Carly; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazur, Michael; Mazzaferro, Luca; Mazzanti, Marcello; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meehan, Samuel; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mendoza Navas, Luis; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Michal, Sebastien; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Moeller, Victoria; Mohapatra, Soumya; Mohr, Wolfgang; Moles-Valls, Regina; Molfetas, Angelos; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Möser, Nicolas; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newcomer, Mitchel; Newman, Paul; Nguyen, Duong Hai; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Papadelis, Aras; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Park, Woochun; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pashapour, Shabnaz; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penson, Alexander; Penwell, John; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pizio, Caterina; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Polychronakos, Venetios; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Quadt, Arnulf; Quarrie, David; Quayle, William; Quilty, Donnchadha; Raas, Marcel; Radeka, Veljko; Radescu, Voica; Radloff, Peter; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reinsch, Andreas; Reisinger, Ingo; Relich, Matthew; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rieck, Patrick; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Ritsch, Elmar; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Roe, Adam; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rumyantsev, Leonid; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ruzicka, Pavel; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarrazin, Bjorn; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaelicke, Andreas; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Christopher; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scott, Bill; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherwood, Peter; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snow, Joel; Snyder, Scott; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Solovyev, Victor; Soni, Nitesh; Sood, Alexander; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Staude, Arnold; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Su, Dong; Subramania, Halasya Siva; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tamsett, Matthew; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Tuna, Alexander Naip; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Berg, Richard; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Wolfgang; Wagner, Peter; Wahrmund, Sebastian; Wakabayashi, Jun; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watanabe, Ippei; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Michele; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Williams, Sarah; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xu, Chao; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Liwen; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, Dantong; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zaytsev, Alexander; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zibell, Andre; Zieminska, Daria; Zimin, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz
The production cross-section of $B^+$ mesons is measured as a function of transverse momentum $p_T$ and rapidity y in proton–proton collisions at center-of-mass energy $\\sqrt{s}$ = 7 TeV, using 2.4 fb$^{-1}$ of data recorded with the ATLAS detector at the Large Hadron Collider. The differential production cross-sections, determined in the range 9 GeV < $p_T$ < 120 GeV and |y| < 2.25, are compared to next-to-leading-order theoretical predictions.
Energy Technology Data Exchange (ETDEWEB)
Roehrken, Markus
2012-07-13
The Belle and BaBar Collaborations experimentally established the existence of CP violating phenomena in the B meson system. In this PhD thesis, the measurements of the branching fraction and the time-dependent CP violation in B{sup 0}→D{sup +}D{sup -} decays based on the final data set of the Belle experiment are presented. Furthermore, the thesis comprises the corresponding measurements in B{sup 0}→D{sup *±}D{sup -+} decays to provide a direct comparison to a related decay. The final Belle data set contains 772 x 10{sup 6} B anti B pairs recorded on the Υ(4S)-resonance at the asymmetric-energy KEKB e{sup +}e{sup -}-collider. The measurement of the time evolution allows the experimental determination of time-dependent CP violating asymmetries. The results of the measurements of branching fractions are B(B{sup 0}→D{sup +}D{sup -})=(2.12±0.16(stat.)±0.18(syst.)) x 10{sup -4}; B(B{sup 0}→D{sup *±}D{sup -+})=(6.14±0.29(stat.)±0.50(syst.)) x 10{sup -4}. The results of the measurement of time-dependent CP violation in B{sup 0}→D{sup +}D{sup -} decays are S{sub D{sup +}D{sup -}}=-1.06{sup +0.21}{sub -0.14}(stat.)±0.08(syst.); C{sub D{sup +}D{sup -}}=-0.43±0.16(stat.)±0.05(syst.). This measurement excludes the conservation of CP symmetry in B{sup 0}→D{sup +}D{sup -} decays, equivalent to S{sub D{sup +}D{sup -}}=C{sub D{sup +}D{sup -}}=0, at a confidence level of 1-2.7 x 10{sup -5} corresponding to a significance of 4.2σ. The results of the measurement of time-dependent CP violation in B{sup 0}→D{sup *±}D{sup -+} decays are A{sub D{sup *}D}=+0.06±0.05(stat.)±0.02(syst.); S{sub D{sup *}D}=-0.78±0.15(stat.)±0.05(syst.); C{sub D{sup *}D}=-0.01±0.11(stat.)±0.04(syst.); ΔS{sub D{sup *}D}=-0.13±0.15(stat.)±0.04(syst.); ΔC{sub D{sup *}D}=+0.12±0.11(stat.)±0.03(syst.). This measurement excludes the conservation of CP symmetry in B{sup 0}→D{sup *±}D{sup -+} decays, equivalent to A{sub D{sup *}D}=S{sub D{sup *}D}=C{sub D{sup *}D}=0, at a
Allton, C R; Lubicz, V; Martinelli, G; Rapuano, F; Stella, N; Vladikas, A; Bartoloni, A; Battista, C; Cabasino, S; Cabibbo, Nicola; Panizzi, E; Paolucci, P S; Sarno, R; Todesco, G M; Torelli, M; Vicini, P
1995-01-01
We present the results of a high statistics lattice calculation of hadronic form factors relevant for $D-$ and $B-$meson semi-leptonic decays into light pseudoscalar and vector mesons. The results have been obtained by averaging over 170 gauge field configurations, generated in the quenched approximation, at $\\beta=6.0$, on a $18^3 \\times 64$ lattice, using the $O(a)$-improved SW-Clover action.From the study of the matrix element $$, we obtain $f_+ (0)=0.78\\pm 0.08$ and from the matrix element $$ we obtain $V(0)=1.08\\pm 0.22$, $A_1(0)=0.67\\pm 0.11$ and $A_2(0)=0.49\\pm 0.34$. We also obtain the ratios $V(0)/A_1(0)=1.6\\pm 0.3$ and $A_2(0)/A_1(0)= 0.7\\pm 0.4$. Our predictions for the different form factors are in good agreement with the experimental data, although, in the case of $A_2(0)$, the errors are still too large to draw any firm conclusion. With the help of the Heavy Quark Effective Theory (HQET) we have also extrapolated the lattice results to $B$-meson decays. The form factors follow a behaviour compat...
Measurement of $B$ meson production cross-sections in proton-proton collisions at $\\sqrt{s}=$ 7 TeV
Aaij, R; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D C; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicheur, A; Hicks, E; Hill, D; Hoballah, M; Holtrop, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A
2013-01-01
The production cross-sections of $B$ mesons are measured using data, corresponding to a integrated luminosity of $0.36{\\rm fb^{-1}}$, collected with the LHCb detector at a centre-of-mass energy of 7 TeV. The $B^+$, $B^0$ and $B_s^0$ mesons are reconstructed in the exclusive decays $B^+\\to J/\\psi K$, $B^0\\to J/\\psi K^{*0}$ and $B^0_s\\to J/\\psi\\phi$, with $J/\\psi\\to\\mu^+\\mu^-$, $K^{*0}\\to K^+\\pi^-$ and $\\phi\\to K^+K^-$. The differential cross-sections as functions of $B$ meson transverse momentum $p_{\\rm T}$ and rapidity $y$, in the range 0 < $p_{\\rm T}<40\\;{\\rm GeV}/c^2$ and 2.0<$y$<4.5, are measured. The integrated cross-sections in the same $p_{\\rm T}$ and $y$ range, including charge-conjugate states, are measured to be \\begin{equation} \\begin{array}{lcl} \\sigma(pp\\to B^++X) &=& 38.9\\pm0.3\\,({\\rm stat.})\\pm2.5\\,({\\rm syst.})\\,\\pm1.3({\\rm norm.})\\,{\\rm \\mu b}, \\\\ \\sigma(pp\\to B^0+X) &=& 38.1\\pm0.6\\,({\\rm stat.})\\pm3.7\\,({\\rm syst.})\\,\\pm4.7({\\rm norm.})\\,{\\rm \\mu b}, \\\\ \\sigma(pp...
International Nuclear Information System (INIS)
Han Xiaofang; Wang Lei; Yang Jinmin
2008-01-01
In the littlest Higgs model with T-parity new flavor-changing interactions between mirror fermions and the standard model (SM) fermions can induce various flavor-changing neutral-current decays for B-mesons, the Z-boson, and the Higgs boson. Since all these decays induced in the littlest Higgs with T-parity model are correlated, in this work we perform a collective study for these decays, namely, the Z-boson decay Z→bs, the Higgs-boson decay h→bs, and the B-meson decays B→X s γ, B s →μ + μ - , and B→X s μ + μ - . We find that under the current experimental constraints from the B-decays, the branching ratios of both Z→bs and h→bs can still deviate from the SM predictions significantly. In the parameter space allowed by the B-decays, the branching ratio of Z→bs can be enhanced up to 10 -7 (about one order above the SM prediction) while h→bs can be much suppressed relative to the SM prediction (about one order below the SM prediction).
Search for Orbitally Excited B Mesons in Semileptonic B Decays in pbar p Collisions at √s = 1.8 TeV.
Vučinić, Dejan
1997-04-01
We present a measurement of the production rate of orbitally excited (L=1) states of B mesons (B^**) in a 110 pb-1 sample of pbar p collisions collected by the CDF detector during the 1992-95 data-taking period. Observed pions from the decay B^**arrowπ^± B can be used to determine the flavor of B mesons at the time of production. The B decay modes used are B^-arrowbarνl^- D^0X, D^0arrow K^-π^+ bar B^0arrowbarνl^- D^+X, D^+arrow K^-π^+π^+ and bar B^0arrowbarνl^- D^*+X, D^*+arrow π^+D^0, D^0arrow K^-π^+ or K^-π^+π^-π^+. \\$^*We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Science and Culture of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; and the A. P. Sloan Foundation.
Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Andrieux, V.; Aoki, K.; Apadula, N.; Asano, H.; Atomssa, E. T.; Awes, T. C.; Ayuso, C.; Azmoun, B.; Babintsev, V.; Bagoly, A.; Bai, M.; Bai, X.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bathe, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Black, D.; Blau, D. S.; Boer, M.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Butler, C.; Butsyk, S.; Campbell, S.; Canoa Roman, V.; Cervantes, R.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Christiansen, P.; Chujo, T.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Connors, M.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Danley, T. W.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Ding, L.; Dion, A.; Dixit, D.; Do, J. H.; D'Orazio, L.; Drapier, O.; Drees, A.; Drees, K. A.; Dumancic, M.; Durham, J. M.; Durum, A.; Elder, T.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Fan, W.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Fukuda, Y.; Fusayasu, T.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamilton, H. F.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Hayano, R.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hill, K.; Hollis, R. S.; Homma, K.; Hong, B.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ichihara, T.; Ikeda, Y.; Imai, K.; Imazu, Y.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Isinhue, A.; Ito, Y.; Ivanishchev, D.; Jacak, B. V.; Jeon, S. J.; Jezghani, M.; Ji, Z.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, K. S.; Jorjadze, V.; Jouan, D.; Jumper, D. S.; Kamin, J.; Kanda, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapukchyan, D.; Kapustinsky, J.; Karthas, S.; Kawall, D.; Kazantsev, A. V.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kijima, K. M.; Kim, C.; Kim, D. J.; Kim, E.-J.; Kim, M.; Kim, M. H.; Kim, Y.-J.; Kim, Y. K.; Kincses, D.; Kistenev, E.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kofarago, M.; Komkov, B.; Koster, J.; Kotchetkov, D.; Kotov, D.; Krizek, F.; Kudo, S.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lallow, E. O.; Lebedev, A.; Lee, D. M.; Lee, G. H.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S.; Lee, S. H.; Leitch, M. J.; Leitgab, M.; Leung, Y. H.; Lewis, B.; Lewis, N. A.; Li, X.; Li, X.; Lim, S. H.; Liu, L. D.; Liu, M. X.; Loggins, V.-R.; Loggins, V.-R.; Lökös, S.; Lovasz, K.; Lynch, D.; Maguire, C. F.; Majoros, T.; Makdisi, Y. I.; Makek, M.; Malaev, M.; Manion, A.; Manko, V. I.; Mannel, E.; Masuda, H.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendoza, M.; Meredith, B.; Metzger, W. J.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Mihalik, D. E.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Mitsuka, G.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Mohapatra, S.; Montuenga, P.; Moon, T.; Morrison, D. P.; Morrow, S. I. M.; Moskowitz, M.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagai, K.; Nagamiya, S.; Nagashima, K.; Nagashima, T.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Nihashi, M.; Niida, T.; Nouicer, R.; Novák, T.; Novitzky, N.; Novotny, R.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Oide, H.; Okada, K.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ottino, G. J.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, J. S.; Park, S.; Park, S. K.; Pate, S. F.; Patel, L.; Patel, M.; Peng, J.-C.; Peng, W.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perezlara, C. E.; Perry, J.; Petti, R.; Phipps, M.; Pinkenburg, C.; Pisani, R. P.; Pun, A.; Purschke, M. L.; Qu, H.; Radzevich, P. V.; Rak, J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Richford, D.; Rinn, T.; Riveli, N.; Roach, D.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Runchey, J.; Ryu, M. S.; Safonov, A. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, K.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sekiguchi, Y.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shaver, A.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shioya, T.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Singh, B. K.; Singh, C. P.; Singh, V.; Skoby, M. J.; Skolnik, M.; Slunečka, M.; Smith, K. L.; Snowball, M.; Solano, S.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Stone, M. R.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Syed, S.; Sziklai, J.; Takahara, A.; Takeda, A.; Taketani, A.; Tanaka, Y.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarnai, G.; Tennant, E.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, R. S.; Tserruya, I.; Ueda, Y.; Ujvari, B.; van Hecke, H. W.; Vargyas, M.; Vazquez-Carson, S.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Vrba, V.; Vukman, N.; Vznuzdaev, E.; Wang, X. R.; Wang, Z.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Whitaker, S.; Wolin, S.; Wong, C. P.; Woody, C. L.; Wysocki, M.; Xia, B.; Xu, C.; Xu, Q.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamamoto, H.; Yanovich, A.; Yin, P.; Yokkaichi, S.; Yoo, J. H.; Yoon, I.; You, Z.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zharko, S.; Zhou, S.; Zou, L.; Phenix Collaboration
2017-12-01
The fraction of J /ψ mesons which come from B -meson decay, FB →J /ψ, is measured for J /ψ rapidity 1.2 0 in p +p and Cu+Au collisions at √{sNN} = 200 GeV with the PHENIX detector. The extracted fraction is FB →J /ψ=0.025 ±0.006 (stat) ± 0.010(syst) for p +p collisions. For Cu+Au collisions, FB →J /ψ is 0.094 ± 0.028(stat) ± 0.037(syst) in the Au-going direction (-2.2
Erdmann, Wolfram; Speer, Thomas
1997-04-01
We present a search for rare B-meson decays B^+arrow μ^+ μ^- K^+ and B^0arrow μ^+ μ^-K^*0 using data from pbarp collisions at √s = 1.8 TeV recorded with CDF during the 1994 to 95 running period. We set upper limits on BR(B^+arrow μ^+ μ^- K^+) and BR(B^0arrow μ^+ μ^-K^*0). ^ Supported by U.S. DOE DE-AC02-76CH03000. ^*We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Instituto Nazionale di Fisica Nucleare; the Ministry of Education, Science and Culture of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; and the A. P. Sloan Foundation.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yi; Zhong, Tao; Li, Ke [Henan Normal University, College of Physics and Materials Science, Xinxiang (China); Wu, Xing-Gang [Chongqing University, Department of Physics, Chongqing (China); Fu, Hai-Bing [Guizhou Minzu University, School of Science, Guiyang (China); Huang, Tao [Chinese Academy of Sciences, Institute of High Energy Physics and Theoretical Physics Center for Science Facilities, Beijing (China)
2018-01-15
The B → D transition form factor (TFF) f{sub +}{sup B→D}(q{sup 2}) is determined mainly by the D-meson leading-twist distribution amplitude (DA), φ{sub 2;D}, if the proper chiral current correlation function is adopted within the light-cone QCD sum rules. It is therefore significant to make a comprehensive study of DA φ{sub 2;D} and its impact on f{sub +}{sup B→D}(q{sup 2}). In this paper, we calculate the moments of φ{sub 2;D} with the QCD sum rules under the framework of the background field theory. New sum rules for the leading-twist DA moments left angle ξ{sup n} right angle {sub D} up to fourth order and up to dimension-six condensates are presented. At the scale μ = 2 GeV, the values of the first four moments are: left angle ξ{sup 1} right angle {sub D} = -0.418{sup +0.021}{sub -0.022}, left angle ξ{sup 2} right angle {sub D} = 0.289{sup +0.023}{sub -0.022}, left angle ξ{sup 3} right angle {sub D} = -0.178 ± 0.010 and left angle ξ{sup 4} right angle {sub D} = 0.142{sup +0.013}{sub -0.012}. Basing on the values of left angle ξ{sup n} right angle {sub D} (n = 1, 2, 3, 4), a better model of φ{sub 2;D} is constructed. Applying this model for the TFF f{sub +}{sup B→D}(q{sup 2}) under the light cone sum rules, we obtain f{sub +}{sup B→D}(0) = 0.673{sup +0.038}{sub -0.041} and f{sub +}{sup B→D}(q{sup 2}{sub max}) = 1.117{sup +0.051}{sub -0.054}. The uncertainty of f{sub +}{sup B→D}(q{sup 2}) from φ{sub 2;D} is estimated and we find its impact should be taken into account, especially in low and central energy region. The branching ratio B(B → Dl anti ν{sub l}) is calculated, which is consistent with experimental data. (orig.)
International Nuclear Information System (INIS)
Hambrock, Christian
2011-04-01
In my thesis I present our work on the bottom-baryon light-cone distribution amplitudes (LCDAs) and on the [bq][ anti b anti q]-tetraquarks. For the former we extended the known LCDAs for the ground state baryon Λ b to the entire b-baryon ground state multiplets and included s-quark mass-breaking effects. The LCDAs form crucial input for the calculations of characteristic properties of b-baryon decays. In this context they can for example be used in the calculation of form factors for semileptonic flavor-changing neutral-current (FCNC) decays. For the [bq][ anti b anti q]-tetraquarks, we calculated the tetraquark mass spectrum for all quarks q=u,d,s,c in a constituent Hamiltonian quark model. We estimated the electronic width by introducing a generalized Van Royen-Weisskopf formula for the tetraquarks, and evaluated the partial hadronic two-body and total decay widths for the tetraquarks with quantum numbers J PC =1 -- . With this input, we performed a Breit-Wigner fit, including the tetraquark contributions, to the inclusive R b -spectrum measured by BaBar. The obtained χ 2 /d.o.f. of the BaBar R b -scan data is fairly good. The resulting fits are suggestive of tetraquark states but not conclusive. We developed a model to describe the transitions e + e - →Y b →Υ(nS)(π + π - ,K + K - ,ηπ 0 ), in which Y b is a 1 -- tetraquark state. The model includes the exchange of light tetraquark and meson states. We used this model to fit the invariant-mass and helicity spectra for the dipionic final state measured by Belle and used the results to estimate the spectra of the channels e + e - →Y b →Υ(nS)(K + K - ,ηπ 0 ). The spectra are enigmatic in shape and magnitude and defy an interpretation in the framework of the standard bottomonia, requesting either an interpretation in terms of exotic states, such as tetraquarks, or a radical alteration of the, otherwise successful, QCD-based bottomonium-model. The tetraquark hypothesis describes the current data well
Energy Technology Data Exchange (ETDEWEB)
Hambrock, Christian
2011-04-15
In my thesis I present our work on the bottom-baryon light-cone distribution amplitudes (LCDAs) and on the [bq][ anti b anti q]-tetraquarks. For the former we extended the known LCDAs for the ground state baryon {lambda}{sub b} to the entire b-baryon ground state multiplets and included s-quark mass-breaking effects. The LCDAs form crucial input for the calculations of characteristic properties of b-baryon decays. In this context they can for example be used in the calculation of form factors for semileptonic flavor-changing neutral-current (FCNC) decays. For the [bq][ anti b anti q]-tetraquarks, we calculated the tetraquark mass spectrum for all quarks q=u,d,s,c in a constituent Hamiltonian quark model. We estimated the electronic width by introducing a generalized Van Royen-Weisskopf formula for the tetraquarks, and evaluated the partial hadronic two-body and total decay widths for the tetraquarks with quantum numbers J{sup PC}=1{sup --}. With this input, we performed a Breit-Wigner fit, including the tetraquark contributions, to the inclusive R{sub b}-spectrum measured by BaBar. The obtained {chi}{sup 2}/d.o.f. of the BaBar R{sub b}-scan data is fairly good. The resulting fits are suggestive of tetraquark states but not conclusive. We developed a model to describe the transitions e{sup +}e{sup -}{yields}Y{sub b}{yields}{upsilon}(nS)({pi}{sup +}{pi}{sup -},K{sup +}K{sup -},{eta}{pi}{sup 0}), in which Y{sub b} is a 1{sup --} tetraquark state. The model includes the exchange of light tetraquark and meson states. We used this model to fit the invariant-mass and helicity spectra for the dipionic final state measured by Belle and used the results to estimate the spectra of the channels e{sup +}e{sup -}{yields}Y{sub b}{yields}{upsilon}(nS)(K{sup +}K{sup -},{eta}{pi}{sup 0}). The spectra are enigmatic in shape and magnitude and defy an interpretation in the framework of the standard bottomonia, requesting either an interpretation in terms of exotic states, such as
Amplitude analysis and the branching fraction measurement of $\\bar{B}^0_s \\to J/\\psi K^+K^-$
Aaij, R; Adametz, A; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, Th; Bay, A; Beddow, J; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Corti, G; Couturier, B; Cowan, G A; Craik, D; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dickens, J; Dijkstra, H; Diniz Batista, P; Dogaru, M; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jans, E; Jansen, F; Jaton, P; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Luo, H; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Mazurov, A; McCarthy, J; McNulty, R; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nisar, S; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sobczak, K; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A
2013-01-01
An amplitude analysis of the final state structure in the $\\overline{B}_s^0 \\to J/\\psi K^+K^-$ decay mode is performed using $1.0~\\rm fb^{-1}$ of data collected by the LHCb experiment in 7 TeV center-of-mass energy $pp$ collisions produced by the LHC. A modified Dalitz plot analysis of the final state is performed using both the invariant mass spectra and the decay angular distributions. Resonant structures are observed in the $K^+K^-$ mass spectrum as well as a significant non-resonant S-wave contribution. The largest resonant component is the $\\phi(1020)$, accompanied by $f_0(980)$, $f_2'(1525)$, and four additional resonances. The overall branching fraction is measured to be $\\mathcal{B}(\\overline{B}_s^0 \\to J/\\psi K^+K^-)=(7.70\\pm0.08\\pm 0.39\\pm 0.60)\\times 10^{-4}$, where the first uncertainty is statistical, the second systematic, and the third due to the ratio of the number of $\\overline{B}_s^0$ to $B^-$ mesons produced. The mass and width of the $ f_2'(1525)$ are measured to be $1522.2\\pm 2.8^{+5....
Study of the Rare Decay B Mesons Decaying to X Mesons Positive And Negative Leptons at BABAR
Energy Technology Data Exchange (ETDEWEB)
Koptchev, Ventzislav B.; /Massachusetts U., Amherst
2005-08-30
Flavor-changing neutral current transitions are forbidden at tree level in the Standard Model and can only occur via higher order diagrams. Since the amplitudes for such loops are dominated by the heaviest known particles, and non-SM effects are expected to contribute at the same order as the SM, such processes are an ideal place to look for new physics. We present a measurement of the inclusive branching fraction for the flavor-changing neutral current process B {yields} X{sub s}{ell}{sup +}{ell}{sup -} with a sample of 81.9 fb{sup -1}, collected with the BABAR detector at the Stanford Linear Accelerator Center. The final state is reconstructed from e{sup +}e{sup -} or {mu}{sup +}{mu}{sup -} pairs and a hadronic system consisting of one K{sup {+-}} or K{sub s} and up to two pions, with at most one {pi}{sup 0}. They observe a signal of 40 {+-} 10(stat) {+-} 2(syst) events and extract a branching fraction {Beta}(B {yields} X{sub s}{ell}{sup +}{ell}{sup -}) = (5.6 {+-} 1.5(stat) {+-} 0.6(exp. syst) {+-} 1.1(model syst)) x 10{sup -6} for m{sub ll} > 0.2 GeV.
Energy Technology Data Exchange (ETDEWEB)
Christ, Norman H. [Columbia Univ., New York, NY (United States); Flynn, Jonathan M. [Univ. of Southampton, Southampton (United Kingdom); Izubuchi, Taku [Brookhaven National Lab. (BNL), Upton, NY (United States); Kawanai, Taichi [RIKEN, Wako (Japan); Brookhaven National Lab. (BNL), Upton, NY (United States); Lehner, Christoph [Brookhaven National Lab. (BNL), Upton, NY (United States); Soni, Amarjit [Brookhaven National Lab. (BNL), Upton, NY (United States); Van de Water, Ruth S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Witzel, Oliver [Boston Univ., Boston, MA (United States)
2015-03-10
We calculate the B-meson decay constants f_{B}, f_{B}s, and their ratio in unquenched lattice QCD using domain-wall light quarks and relativistic b-quarks. We use gauge-field ensembles generated by the RBC and UKQCD collaborations using the domain-wall fermion action and Iwasaki gauge action with three flavors of light dynamical quarks. We analyze data at two lattice spacings of a ≈ 0.11, 0.086 fm with unitary pion masses as light as M_{π} ≈ 290 MeV; this enables us to control the extrapolation to the physical light-quark masses and continuum. For the b-quarks we use the anisotropic clover action with the relativistic heavy-quark interpretation, such that discretization errors from the heavy-quark action are of the same size as from the light-quark sector. We renormalize the lattice heavy-light axial-vector current using a mostly nonperturbative method in which we compute the bulk of the matching factor nonperturbatively, with a small correction, that is close to unity, in lattice perturbation theory. We also improve the lattice heavy-light current through O(α_{s}a). We extrapolate our results to the physical light-quark masses and continuum using SU(2) heavy-meson chiral perturbation theory, and provide a complete systematic error budget. We obtain f_{B0} = 196.2(15.7) MeV, f_{B+} = 195.4(15.8) MeV, f_{Bs} = 235.4(12.2) MeV, f_{Bs}/f_{B0} = 1.193(59), and f_{Bs}/f_{B+} = 1.220(82), where the errors are statistical and total systematic added in quadrature. In addition, these results are in good agreement with other published results and provide an important independent cross check of other three-flavor determinations of B-meson decay constants using staggered light quarks.
Measurement of the CKM Angle Alpha at the BABAR Detector Using B Meson Decays to Rho Final States
Energy Technology Data Exchange (ETDEWEB)
Mihalyi, Attila; /Wisconsin U., Madison
2006-10-16
This thesis contains the results of an analysis of B{sup 0} {yields} {rho}{sup +}{rho}{sup -} using 232 million {Upsilon}(4S) {yields} B{bar B} decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. From a fitted signal yield of 617 {+-} 52 events, the longitudinal polarizations fraction, f{sub L}, of the decay is measured to be 0.978 {+-} 0.014(stat){sub -0.029}{sup +0.021}(syst). The nearly fully longitudinal dominance of the B{sup 0} {yields} {rho}{sup +}{rho}{sup -} decay allows for a measurement of the time dependent CP parameters S{sub L} and C{sub L}, where the first parameter is sensitive to mixing induced CP violation and the second one to direct CP violation. From the same signal yield, these values are found to be S{sub L} = -0.33 {+-} 0.24(stat){sub -0.14}{sup +0.08}(syst) and C{sub L} = - 0.03 {+-} 0.18(stat) {+-} 0.09(syst). The CKM angle {alpha} is then determined, using these results and the branching fractions and polarizations of the decays B{sup 0} {yields} {rho}{sup 0}{rho}{sup 0} and B{sup +} {yields} {rho}{sup +}{rho}{sup 0}. This measurement is done with an isospin analysis, in which a triangle is constructed from the isospin amplitudes of these three decay modes. A {chi}{sup 2} expression that includes the measured quantities expressed as the lengths of the sides of the isospin triangles is constructed and minimized to determine a confidence level on {alpha}. Selecting the solution compatible with the Standard Model, one obtains {alpha} = 100{sup o} {+-} 13{sup o}.
International Nuclear Information System (INIS)
Illingworth, Robert Arthur; Imperial Coll., London
2002-01-01
The D0 detector has recently undergone a major upgrade to maximize its potential to fully exploit Run II at the Tevatron 2 TeV proton-antiproton collider. The upgrade includes a completely new central tracking system with an outer scintillating fibre tracker and an inner silicon vertex detector. This thesis describes the development of the software to ''unpack'' the raw data from the central tracking detectors into a useful form, and the development of the Level 3 trigger algorithms to cluster the hit information from these detectors. One of the many areas of physics that is being studied by the D0 experiment is the physics of B mesons, particularly that involving CP violation. The second part of the thesis details a constrained mass fitting tool written to aid the reconstruction of B particles, and a Monte Carlo study into measuring the lifetime of B + and B 0 mesons. This thesis lays the foundations for the means by which physics is extracted from the vast amount of Tevatron data--the trigger--and illustrates how analyses will proceed through the key reconstruction of heavy quarks
International Nuclear Information System (INIS)
Fleischer, R.
1994-01-01
Using the low energy effective Hamiltonian for vertical stroke ΔBvertical stroke = 1, ΔC=ΔU=0 transitions, which has been calculated recently by Buras et al. beyond the leading logarithmic approximation, we analyze the penguin-induced B-meson decays B - → K - Φ and B - → π - anti K 0 within the framework of the Bauer-Stech-Wirbel model and find, in contradiction to naive expectations, that the decay mode B - → K - Φ is affected strongly by electroweak penguin operators. These contributions depend on the value of the top-quark mass and reduce the branching ratio BR(B - → K - Φ) by factors of 0.8..0.6 for m t =(130..250) GeV, respectively, relative to the results obtained by taking into account only QCD penguin operator contributions. On the other hand, we find that the effects of the electroweak penguins are very small for the transition B - → π - anti K 0 . (orig.)
Weak radiative decays of the B meson and bounds on M{sub H}± in the Two-Higgs-Doublet Model
Energy Technology Data Exchange (ETDEWEB)
Misiak, Mikolaj [University of Warsaw, Faculty of Physics, Institute of Theoretical Physics, Warsaw (Poland); CERN, Theoretical Physics Department, Geneva 23 (Switzerland); Steinhauser, Matthias [Karlsruhe Institute of Technology (KIT), Institut fuer Theoretische Teilchenphysik, Karlsruhe (Germany)
2017-03-15
In a recent publication (Abdesselam et al. arXiv:1608.02344), the Belle collaboration updated their analysis of the inclusive weak radiative B-meson decay, including the full dataset of (772 ± 11) x 10{sup 6} B anti B pairs. Their result for the branching ratio is now below the Standard Model prediction (Misiak et al. Phys Rev Lett 114:221801, 2015, Czakon et al. JHEP 1504:168, 2015), though it remains consistent with it. However, bounds on the charged Higgs boson mass in the Two-Higgs-Doublet Model get affected in a significant manner. In the so-called Model II, the 95% C.L. lower bound on M{sub H}± is now in the 570-800 GeV range, depending quite sensitively on the method applied for its determination. Our present note is devoted to presenting and discussing the updated bounds, as well as to clarifying several ambiguities that one might encounter in evaluating them. One of such ambiguities stems from the photon energy cutoff choice, which deserves re-consideration in view of the improved experimental accuracy. (orig.)
Ford, W
2003-01-01
The present preliminary measurements of branching fractions and charge asymmetries for the B meson decays B -> eta(prime) K*, B -> eta(prime)rho, and B sup + -> eta(prime)pi sup +. The data were recorded with the BABAR detector at PEP-II and correspond to 89 x 10 sup 6 B(bar B) pairs produced in e sup + e sup - annihilation through the UPSILON(4S) resonance. They find the branching fractions BETA(B sup 0 -> eta K* sup 0) = (19.0 sub - sub 2 sub . sub 1 sup + sup 2 sup . sup 2 +- 1.3) x 10 sup - sup 6 , BETA(B sup + -> eta K* sup +) = (25.7 sub - sub 3 sub . sub 6 sup + sup 3 sup . sup 8 +- 1.8) x 10 sup - sup 6 with 90% confidence, and BETA(B sup + -> eta(prime)pi sup +) = (2.8 sub - sub 1 sub . sub 0 sup + sup 1 sup . sup 3 +- 0.3) x 10 sup - sup 6 ( eta(prime)K* sup 0) eta(prime)K* sup +) < 12 x 10 sup - sup 6. The time-integrated charge asymmetries are A sub c sub h (eta K* sup 0) = +0.03 +- 0.11 +- 0.02, A sub c sub h (eta K* sup +) = +0.15 +- 0.14 +- 0.02, and A sub c sub h (eta rho sup +) = +0.06 +-...
Two-Body B Meson Decays to {eta} and {eta}{sup '} : Observation of B {yields} {eta}K{sup *}
Energy Technology Data Exchange (ETDEWEB)
Richichi, S. J. [University of Oklahoma, Norman, Oklahoma 73019 (United States); Severini, H. [University of Oklahoma, Norman, Oklahoma 73019 (United States); Skubic, P. [University of Oklahoma, Norman, Oklahoma 73019 (United States); Undrus, A. [University of Oklahoma, Norman, Oklahoma 73019 (United States); Chen, S. [Purdue University, West Lafayette, Indiana 47907 (United States); Fast, J. [Purdue University, West Lafayette, Indiana 47907 (United States); Hinson, J. W. [Purdue University, West Lafayette, Indiana 47907 (United States); Lee, J. [Purdue University, West Lafayette, Indiana 47907 (United States); Menon, N. [Purdue University, West Lafayette, Indiana 47907 (United States); Miller, D. H. [Purdue University, West Lafayette, Indiana 47907 (United States)] (and others)
2000-07-17
In a sample of 19x10{sup 6} produced B mesons, we have observed the decays B{yields}{eta}K{sup *} and improved our previous measurements of B{yields}{eta}{sup '}K . The branching fractions we measure for these decay modes are B(B{sup +}{yields}{eta}K{sup *+}) =(26.4{sup +9.6}{sub -8.2}{+-}3.3)x 10{sup -6} , B(B{sup 0}{yields}{eta}K{sup *0}) =(13.8{sup +5.5}{sub -4.6}{+-}1.6)x 10{sup -6} , B(B{sup +}{yields}{eta}{sup '} K{sup +})=(80{sup +10}{sub -9}{+-} 7)x10{sup -6} , and B(B{sup 0}{yields}{eta}{sup '} K{sup 0})=(89{sup +18}{sub -16}{+-} 9)x10{sup -6} . We have searched with comparable sensitivity for related decays and report upper limits for these branching fractions. (c) 2000 The American Physical Society.
Sanford, W. E.; Reitz, M.; Zell, W.
2017-12-01
The GRACE satellite project by NASA has been mapping the terrestrial water storage anomaly (TWSA) across the globe since 2002. To date most of the studies using this data have focused on estimating long-term storage declines in groundwater aquifers or the cryosphere. In this study we are focusing on using the amplitude of the seasonal storage signal to estimate the sources and values of the different water components that are contributing to the TWSA signal across the contiguous United States (CONUS). Across the CONUS the TWSA seasonal amplitude observed by GRACE varies by a factor of ten or more (from 1 to 10+ cm of liquid water equivalent). For a seasonal sinusoidal recharge rate, the change in storage in either the soil (unsaturated zone beneath the root zone) or groundwater (by water-table fluctuation) is limited to the amplitude of the recharge rate divided by π or 2π, respectively. We compiled the GRACE signal for the 18 major HUC watersheds across the CONUS and compared them to estimates of seasonal recharge-rate amplitudes based on a recent map of recharge rates generated by the USGS. The ratios of the recharge to GRACE amplitudes suggest that all but two of the HUCs must have other substantial sources of storage change in addition to soil or groundwater. The most likely additional sources are (1) winter snowpack, (2) seasonal irrigation withdrawals, and/or (3) surface water (rivers or reservoirs). Estimates of the seasonal amplitudes of these three signals across the CONUS suggest they can explain the remaining GRACE seasonal signal that cannot be explained by soil or groundwater fluctuations. Each of these signals has its own unique spatial distribution, with snowpack limited to the northern states, surface water limited to large rivers or reservoirs, and irrigation as a dominant signal limited to arid to semi-arid agricultural regions. Use of the GRACE seasonal signal shows promise in constraining the hydraulic diffusivities of surficial aquifer
Study of CP Violation in Dalitz-Plot Analyses of B-Meson Decays to Three Kaons
Energy Technology Data Exchange (ETDEWEB)
Lindquist, Brian [Stanford Univ., CA (United States)
2012-02-01
The Standard Model (SM) explains CP violation in terms of the CKM matrix. The BABAR experiment was designed mainly to test the CKM model in B decays. B decays that proceed through b → s loop diagrams, of which B {yields} KKK decays are an example, are sensitive to new physics effects that could lead to deviations from the CKM predictions for CP violation. We present studies of CP violation in the decays B^{+} → K^{+}K^{-}K^{+}, B^{+} → K_{S}^{0}K_{S}^{0}K^{+}, and B^{0} → K^{+}K^{-}K_{S}^{0}, using a Dalitz plot amplitude analysis. These studies are based on approximately 470 million B$\\bar{B}$ decays collected by BABAR at the PEP-II collider at SLAC. We perform measurements of time-dependent CP violation in B^{0} → K^{+}K^{-}K_{S}^{0}, including B^{0} → ΦK_{S}^{0}. We measure a CP-violating phase β_{eff }(ΦK_{S}^{0}) = 0.36 ± 0.11 ± 0.04 rad., in agreement with the SM. This is the world's most precise measurement of this quantity. We also measure direct CP asymmetries in all three decay modes, including the direct CP asymmetry A_{CP} (ΦK^{+}) = (12.8 ± 4.4 ± 1.3)%, which is 2.8 sigma away from zero. This measurement is in tension with the SM, which predicts an asymmetry of a few percent. We also study the resonant and nonresonant features in the B → KKK Dalitz plots. We find that the hypothetical scalar f_{X}(1500) resonance, introduced by prior analyses to explain an unknown peak in the m_{KK} spectrum, cannot adequately describe the data. We conclude instead that the f_{X}(1500) can be explained as the sum of the f_{0}(1500), f'_{2}(1525), and f_{0}(1710) resonances, removing the need for the hypothetical f_{X}(1500). We also find that an exponential
QCD sum rules for the decay amplitudes of pseudoscalar mesons
International Nuclear Information System (INIS)
Narison, S.
1981-07-01
Bounds on the π and K meson decay amplitudes are obtained to a good accuracy from QCD sum rules of the Laplace transform type. A relation between fsub(π) and the rho meson coupling to the photon is given. Using the heavy quarks q 2 =0 sum rule to two loops we find our best bounds: fsub(D) approximately < (101+-25) MeV and fsub(F) approximately < (147+-41.6) MeV to be compared to fsub(π) approximately 93.3 MeV. We also derive a relation between the D and F meson masses and the charm quark mass. Our results are extended to the beautiful B mesons. (author)
Reinforcing Saccadic Amplitude Variability
Paeye, Celine; Madelain, Laurent
2011-01-01
Saccadic endpoint variability is often viewed as the outcome of neural noise occurring during sensorimotor processing. However, part of this variability might result from operant learning. We tested this hypothesis by reinforcing dispersions of saccadic amplitude distributions, while maintaining constant their medians. In a first experiment we…
Energy Technology Data Exchange (ETDEWEB)
Farbin, A.
2005-02-10
This dissertation presents a measurement of CP asymmetries and branching fractions for neutral B meson decays to two-body final states of charged pions and kaons. The results are obtained from a data sample of about 88 million {Upsilon}(4S) {yields} B{bar B} decays collected between 1999 and 2002 with the BABAR detector at the PEP-II asymmetric-energy B factory located at the Stanford Linear Accelerator Center. A fit to kinematic, topological, and particle identification information measures the charge-averaged branching fractions {Beta}(B{sup 0} {yields} {pi}{sup +}{pi}{sup -}) = (4.7 {+-} 0.6 {+-} 0.2) x 10{sup -6} and {Beta}(B{sup 0} {yields} K{sup +}{pi}{sup -}) = (17.9 {+-} 0.9 {+-} 0.7) x 10{sup -6}; the 90% confidence level upper limit {Beta}(B{sup 0} {yields} K{sup +}K{sup -}) < 0.6 x 10{sup -6}; and the direct CP-violating charge asymmetry {Alpha}{sub K{pi}} = -0.102 {+-} 0.050 {+-} 0.016 [-0.188, -0.016], where the first uncertainties are statistical and the second are systematic and the ranges in square brackets indicate the 90% confidence interval. A fit which adds decay time and b-flavor tagging information measures the CP-violating parameters for B{sup 0} {yields} {pi}{sup +}{pi}{sup -} decays S{sub {pi}{pi}} = 0.02 {+-} 0.34 {+-} 0.05 [-0.54, +0.58] and C{sub {pi}{pi}} = -0.30 {+-} 0.25 {+-} 0.04 [-0.72, +0.12].
B mesons: Beauty without charm
Energy Technology Data Exchange (ETDEWEB)
Anon.
1990-03-15
'Charmless' B decays were observed last year by the CLEO and ARGUS experiments at the CESR and DORIS electron-positron rings at Cornell and DESY, Hamburg, which provides important new input for the six-quark picture.
B mesons: Beauty without charm
International Nuclear Information System (INIS)
Anon.
1990-01-01
'Charmless' B decays were observed last year by the CLEO and ARGUS experiments at the CESR and DORIS electron-positron rings at Cornell and DESY, Hamburg, which provides important new input for the six-quark picture
Energy Technology Data Exchange (ETDEWEB)
Kitaygorsky, J. [Kavli Institute of Nanoscience Delft, Delft University of Technology, 2600 GA Delft (Netherlands); Department of Electrical and Computer Engineering and Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14627-0231 (United States); Słysz, W., E-mail: wslysz@ite.waw.pl [Institute of Electron Technology, PL-02 668 Warsaw (Poland); Shouten, R.; Dorenbos, S.; Reiger, E.; Zwiller, V. [Kavli Institute of Nanoscience Delft, Delft University of Technology, 2600 GA Delft (Netherlands); Sobolewski, Roman [Department of Electrical and Computer Engineering and Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14627-0231 (United States)
2017-01-15
Highlights: • A new operation regime of NbN superconducting single-photon detectors (SSPDs). • A better understanding of the origin of dark counts generated by the detector. • A promise of PNR functionality in SSPD measurements. - Abstract: We present a new operation regime of NbN superconducting single-photon detectors (SSPDs) by integrating them with a low-noise cryogenic high-electron-mobility transistor and a high-load resistor. The integrated sensors are designed to get a better understanding of the origin of dark counts triggered by the detector, as our scheme allows us to distinguish the origin of dark pulses from the actual photon pulses in SSPDs. The presented approach is based on a statistical analysis of amplitude distributions of recorded trains of the SSPD photoresponse transients. It also enables to obtain information on energy of the incident photons, as well as demonstrates some photon-number-resolving capability of meander-type SSPDs.
International Nuclear Information System (INIS)
Biassoni, P.
2009-01-01
In this thesis work we have measured the following upper limits at 90% of confidence level, for B meson decays (in units of 10 -6 ), using a statistics of 465.0 x 10 6 B(bar B) pairs: Β(B 0 → ηK 0 ) 0 → ηη) 0 → η(prime)η(prime)) 0 → ηφ) 0 → ηω) 0 → η(prime)φ) 0 → η(prime)ω) 0 → ηK 0 open an issue related to the large difference compared to the charged mode B + → ηK + branching fraction, which is measured to be 3.7 ± 0.4 ± 0.1 (118). Our results represent substantial improvements of the previous ones (109, 110, 111) and are consistent with theoretical predictions. All these results were presented at Flavor Physics and CP Violation (FPCP) 2008 Conference, that took place in Taipei, Taiwan. They will be soon included into a paper to be submitted to Physical Review D. For time-dependent analysis, we have reconstructed 1820 ± 48 flavor-tagged B 0 → η(prime)K 0 events, using the final BABAR statistic of 467.4 x 10 6 B(bar B) pairs. We use these events to measure the time-dependent asymmetry parameters S and C. We find S = 0.59 ± 0.08 ± 0.02, and C = -0.06 ± 0.06 ± 0.02. A non-zero value of C would represent a directly CP non-conserving component in B 0 → η(prime)K 0 , while S would be equal to sin2β measured in B 0 → J/ψK s 0 (108), a mixing-decay interference effect, provided the decay is dominated by amplitudes of a single weak phase. The new measured value of S can be considered in agreement with the expectations of the 'Standard Model', inside the experimental and theoretical uncertainties. Inconsistency of our result for S with CP conservation (S = 0) has a significance of 7.1 standard deviations (statistical and systematics included). Our result for the direct-CP violation parameter C is 0.9 standard deviations from zero (statistical and systematics included). Our results are in agreement with the previous ones (18). Despite the statistics is only 20% larger than the one used in previous measurement, we improved of
Energy Technology Data Exchange (ETDEWEB)
Biassoni, Pietro [Univ. of Milan (Italy)
2009-01-01
In this thesis work we have measured the following upper limits at 90% of confidence level, for B meson decays (in units of 10^{-6}), using a statistics of 465.0 x 10^{6} B$\\bar{B}$ pairs: β(B^{0} → ηK^{0}) < 1.6 β(B^{0} → ηη) < 1.4 β(B^{0} → η'η') < 2.1 β(B^{0} → ηΦ) < 0.52 β(B^{0} → ηω) < 1.6 β(B^{0} → η'Φ) < 1.2 β(B^{0} → η'ω) < 1.7 We have no observation of any decay mode, statistical significance for our measurements is in the range 1.3-3.5 standard deviation. We have a 3.5σ evidence for B → ηω and a 3.1 σ evidence for B → η'ω. The absence of observation of the B^{0} → ηK^{0} open an issue related to the large difference compared to the charged mode B^{+} → ηK^{+} branching fraction, which is measured to be 3.7 ± 0.4 ± 0.1 [118]. Our results represent substantial improvements of the previous ones [109, 110, 111] and are consistent with theoretical predictions. All these results were presented at Flavor Physics and CP Violation (FPCP) 2008 Conference, that took place in Taipei, Taiwan. They will be soon included into a paper to be submitted to Physical Review D. For time-dependent analysis, we have reconstructed 1820 ± 48 flavor-tagged B^{0} → η'K^{0} events, using the final BABAR statistic of 467.4 x 10^{6} B$\\bar{B}$ pairs. We use these events to measure the time-dependent asymmetry parameters S and C. We find S = 0.59 ± 0.08 ± 0.02, and C = -0.06 ± 0.06 ± 0.02. A non-zero value of C would represent a directly CP non-conserving component in B^{0} → η'K^{0}, while S would be equal to sin2β measured in B^{0} → J/ΨK_{s}^{0} [108], a mixing-decay interference effect, provided the decay is dominated by amplitudes of a single weak phase. The new measured value of S can be considered in
Energy Technology Data Exchange (ETDEWEB)
Robbe, P
2002-04-01
The BABAR experiment at SLAC (Stanford linear acceleration center) has been studying since 1999 B meson decays from e{sup +}e{sup -} collisions at the {gamma}(4S) resonance. The first goal of the collaboration was to measure the sin (2{beta}) CP-violation parameter within the standard model. This measurement requires to know with precision the absolute length scale of the detector. A method to test this scale was developed using nuclear interactions in the beam-pipe material. The longitudinal length scale was then determined at the 1 % level precision. The systematic error associated with length measurement in the detector concerning B meson lifetime and B meson oscillation frequency is then negligible with respect to the other errors. The K meson content of B decays is a key ingredient of the sin (2{beta}) measurement and is used to tag the flavour of the other B in events containing a B decaying to a CP eigenstate. The K charge is correlated to the B flavour. Wrong sign kaons, which can dilute B tagging, can come from wrong sign D decays (B{yields} DX). Doubly charmed decays (B{yields} D{sup (*)}D-bar{sup (*)}) K are one possibility to produce wrong sign D decays. The twenty-two decay modes are reconstructed exclusively. The total branching fraction is measured with enough precision to establish that B{yields} D{sup (*)}D-bar{sup (*)} K decays are not the only source of wrong sign D mesons in B decays. (author)
Energy Technology Data Exchange (ETDEWEB)
Wu, Jinwei; /Wisconsin U., Madison
2006-03-22
We present measurements of branching fractions and CP-violating asymmetries in B-meson decays to {rho}{sup +}{pi}{sup 0}, {rho}{sup 0}{pi}{sup +} and {rho}{sup 0}{pi}{sup 0}. The data sample comprises 89 x 10{sup 6} {Upsilon}(4S) {yields} B{bar B} decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. We find the charge-averaged branching fractions {Beta}(B{sup +} {yields} {rho}{sup +}{pi}{sup 0}) = (10.9 {+-} 1.9(stat) {+-} 1.9(syst)) x 10{sup -6} and {Beta}(B{sup 0} {yields} {rho}{sup 0}{pi}{sup +}) = (9.5 {+-} 1.1 {+-} 0.9) x 10{sup -6}, and we set a 90% confidence-level upper limit {Beta}(B{sup 0} {yields} {rho}{sup 0}{pi}{sup 0}) < 2.9 x 10{sup -6}. We measure the charge asymmetries A{sub CP}{rho}{sup +}{pi}{sup 0} = 0.24 {+-} 0.16 {+-} 0.06 and {Alpha}{sub CP}{sup {rho}{sup 0}{pi}{sup +}} = -0.19 {+-} 0.11 {+-} 0.02. We also present the preliminary measurement of CP-violating asymmetries in B{sup 0} {yields} ({rho}{pi}){sup 0} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup 0} decays using a time-dependent Dalitz plot analysis. The results are obtained from a data sample of 213 million {Upsilon}(4S) {yields} B{bar B} decays, collected by the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. This analysis extends the narrow-{rho} quasi-two-body approximation used in the previous analysis, by taking into account the interference between the {rho} resonances of the three charges. We measure 16 coefficients of the bilinear form factor terms occurring in the time-dependent decay rate of the B{sup 0} meson with the use of a maximum-likelihood fit. We derive the physically relevant quantities from these coefficients. We measure the direct CP-violation parameters {Alpha}{sub {rho}{pi}} = -0.088 {+-} 0.049 {+-} 0.013 and C = 0.34 {+-} 0.11 {+-} 0.05, where the first errors are statistical and the second systematic. For the mixing-induced CP-violation parameter we find S = -0.10 {+-} 0.14 {+-} 0.04, and for the dilution and
International Nuclear Information System (INIS)
Abe, F.; Albrow, M.; Amidei, D.; Anway-Wiese, C.; Apollinari, G.; Atac, M.; Auchincloss, P.; Azzi, P.; Bacchetta, N.; Baden, A.R.; Badgett, W.; Bailey, M.W.; Bamberger, A.; de Barbaro, P.; Barbaro-Galtieri, A.; Barnes, V.E.; Barnett, B.A.; Bauer, G.; Baumann, T.; Bedeschi, F.; Behrends, S.; Belforte, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Benlloch, J.; Bensinger, J.; Beretvas, A.; Berge, J.P.; Bertolucci, S.; Biery, K.; Bhadra, S.; Binkley, M.; Bisello, D.; Blair, R.; Blocker, C.; Bodek, A.; Bolognesi, V.; Booth, A.W.; Boswell, C.; Brandenburg, G.; Brown, D.; Buckley-Geer, E.; Budd, H.S.; Busetto, G.; Byon-Wagner, A.; Byrum, K.L.; Campagnari, C.; Campbell, M.; Caner, A.; Carey, R.; Carithers, W.; Carlsmith, D.; Carroll, J.T.; Cashmore, R.; Castro, A.; Cen, Y.; Cervelli, F.; Chadwick, K.; Chapman, J.; Chiarelli, G.; Chinowsky, W.; Cihangir, S.; Clark, A.G.; Cobal, M.; Connor, D.; Contreras, M.; Cooper, J.; Cordelli, M.; Crane, D.; Cunningham, J.D.; Day, C.; DeJongh, F.; Dell'Agnello, S.; Dell'Orso, M.; Demortier, L.; Denby, B.; Derwent, P.F.; Devlin, T.; DiBitonto, D.; Dickson, M.; Drucker, R.B.; Dunn, A.; Einsweiler, K.; Elias, J.E.; Ely, R.; Eno, S.; Errede, S.; Etchegoyen, A.; Farhat, B.; Frautschi, M.; Feldman, G.J.; Flaugher, B.; Foster, G.W.; Franklin, M.; Freeman, J.; Frisch, H.; Fuess, T.; Fukui, Y.; Garfinkel, A.F.; Gauthier, A.; Geer, S.; Gerdes, D.W.; Giannetti, P.; Giokaris, N.; Giromini, P.; Gladney, L.; Gold, M.; Gonzalez, J.; Goulianos, K.; Grassmann, H.; Grieco, G.M.; Grindley, R.; Grosso-Pilcher, C.; Haber, C.; Hahn, S.R.; Handler, R.; Hara, K.; Harral, B.; Harris, R.M.; Hauger, S.A.; Hauser, J.; Hawk, C.; Hessing, T.; Hollebeek, R.; Holloway, L.; Hong, S.; Houk, G.; Hu, P.; Hubbard, B.; Huffman, B.T.; Hughes, R.; Hurst, P.; Huth, J.; Hylen, J.; Incagli, M.; Ino, T.; Iso, H.; Jensen, H.; Jessop, C.P.; Johnson, R.P.; Joshi, U.; Kadel, R.W.; Kamon, T.; Kanda, S.; Kardelis, D.A.; Karliner, I.; Kearns, E.; Keeble, L.; Kephart, R.
1994-01-01
This paper reports the measurement of the B meson and b quark cross sections through the decay chain B 0 →J/ψ K * (892) 0 , J/ψ→μ + μ - , K * (892) 0 →K + π - , using 4.3 pb -1 of data collected at the Collider Detector at Fermilab in bar pp collisions at qrts=1.8 TeV. We obtain σ B =1.5±0.7(stat)±0.6(syst) μb for B 0 mesons with transverse momentum P T >9.0 GeV/c and rapidity |y| b =3.7±1.6(stat)±1.5(syst) μb for b quarks with P T >11.5 GeV/c and rapidity |y|<1.0. The b quark cross section is compared to next-to-leading order QCD calculations and previous measurements
International Nuclear Information System (INIS)
Janulyte, A.; Andre, J.; Carette, M.; Mercury, M.; Reynard, C; Zerega, Y.
2009-01-01
A specific Fourier transform operating mode is applied to a 3-dimensional quadrupolar ion trap for mass analysis (Fourier Transform Quadrupolar Ion Trap (FTQIT) Operating Mode or Mass Spectrometer). With this operating mode, an image signal, which is representative of the collective motion of simultaneously confined ions, is made up from a set of recorded time-of-flight histograms. In an ion trap, the secular frequency of ion motion depends on m/Z ratio of the ion. By Fourier transformation of the image signal, one observes the frequency peak of each confined ionic species. When only one ionic species is confined, the peak amplitude is proportional to the maximal amplitude of the image signal. The maximal amplitude of the image signal is expressed according to the operating parameters, the initial conditions of the ions and the number of ions. Simulation tools lead to fluctuation calculation of the maximal amplitude of the image signal. Two origins are explored: (1) the fluctuation of the numbers of ions according to the steady ion flow injection mode (SIFIM) used with this operating mode and (2) the distribution fluctuation of the initial positions and velocities. Initial confinement conditions, obtained with SIFIM injection mode, lead to optimal detection with small fluctuations of the peak amplitude for Fourier transform operating mode applied to an ion trap. (authors)
DEFF Research Database (Denmark)
Newport, Richard; Hollis, Cathy; Bodin, Stéphane
2017-01-01
During the Cretaceous, a humid global climate, calcitic seas, high relative sea-level and low amplitude changes in relative sea-level largely prevented large-scale dolomitization in many carbonate successions. However, the well-exposed shallow-water carbonate sediments of the Upper Albian–Lower T...
International Nuclear Information System (INIS)
Miclaus, Simona; Bechet, Paul; Stratakis, Dimitrios
2014-01-01
With the development of radiofrequency technology, radiating quasi-stochastic signals like the wireless local area networks (WLAN), a proper procedure of exposure level assessment is needed. No standardised procedure exists at the moment. While channel power measurement proved to overestimate the field strength, weighting techniques were proposed. The paper compares the exposure levels determined by three different procedures, two of them correcting the field level by weighting. Twenty-three experimental cases of WLAN traffic load are analysed in an indoor environment in controlled conditions. The results show the differences obtained when the duty cycle (DC) method is applied comparatively with the application of weighting based on an amplitude-time correction. Significant exposure level reductions of 52.6-79.2 % from the field determined by frequency domain method and of 36.5-72.8 % from the field determined by the DC weighting method were obtained by time-amplitude method. Specificities of weighting factors probability density functions were investigated and regression analysis was applied for a detailed characterisation of this procedure. (authors)
Correlations for reduced-width amplitudes in 49V
International Nuclear Information System (INIS)
Chou, B.H.; Mitchell, G.E.; Bilpuch, E.G.; Westerfeldt, C.R.
1980-01-01
Measurement of the relative sign of inelastic proton-channel amplitudes permits the determination of amplitude correlations. Data were obtained for 45 5/2 + resonances in 49 V. Although the reduced widths in each channel followed a Porter-Thomas distribution, large amplitude correlations were observed. The results are compared with the reduced-width--amplitude distribution of Krieger and Porter. This is the first direct test of the Krieger-Porter distribution
Energy Technology Data Exchange (ETDEWEB)
Couderc, F
2005-04-15
The BABAR experiment, located at SLAC (Stanford, California), has been dedicated, since 1999, to the study of B meson decays produced in electron positron collisions with an energy in the center of mass frame equal to the mass of {epsilon}(4S) resonance. In this experiment, the charged particles identification is provided, in particular by the measurement of the energy loss per length unit in the drift chamber. In order to improve the calibration of this quantity, a selection of electrons/positrons from radiative Bhabha events was performed; with the new sample the charge asymmetry in the charged particles reconstruction was reduced. In B meson decays, the inclusive production of charmed particles (D{sup 0}, D{sup 0}-bar, D{sup {+-}}, D{sub s}{sup {+-}}, {lambda}{sub c}{sup {+-}}) is measured with a new analysis method, made possible by the large statistics accumulated by the BABAR experiment. B and B-bar mesons are produced simultaneously from the {epsilon}(4S) resonance. The events are selected by reconstructing completely one B in a hadronic channel. Charmed particles from the other B are then reconstructed with the remaining tracks. This enables the measurement of the total number of charm produced in B{sup +} and in B{sup 0} decays separating the correlated charm production (quark transitions: b {yields} cX) from the anti-correlated production (quark transitions: b {yields} c-bar X). The results obtained on an integrated luminosity of 210 fb{sup -1} are the following: N{sub c}{sup B{sup +}} = 0.970 {+-} 0.042; N{sub c-}bar{sup B{sup +}} 0.262 {+-} 0.034; N{sub c}{sup B{sup 0}} = 0.950 {+-} 0.057; N{sub c-}bar{sup B{sup 0}} 0.285 {+-} 0.048. This new method also allows the measurement of the momentum of the charmed particles in the B rest frame. Access to the different production mechanisms of these particles is thereby provided. (author)
DVCS amplitude with kinematical twist-3 terms
International Nuclear Information System (INIS)
Radyushkin, A.V.; Weiss, C.
2000-01-01
The authors compute the amplitude of deeply virtual Compton scattering (DVCS) using the calculus of QCD string operators in coordinate representation. To restore the electromagnetic gauge invariance (transversality) of the twist-2 amplitude they include the operators of twist-3 which appear as total derivatives of twist-2 operators. The results are equivalent to a Wandzura-Wilczek approximation for twist-3 skewed parton distributions. They find that this approximation gives a finite result for the amplitude of a longitudinally polarized virtual photon, while the amplitude for transverse polarization is divergent, i.e., factorization breaks down in this term
Amplitudes, acquisition and imaging
Energy Technology Data Exchange (ETDEWEB)
Bloor, Robert
1998-12-31
Accurate seismic amplitude information is important for the successful evaluation of many prospects and the importance of such amplitude information is increasing with the advent of time lapse seismic techniques. It is now widely accepted that the proper treatment of amplitudes requires seismic imaging in the form of either time or depth migration. A key factor in seismic imaging is the spatial sampling of the data and its relationship to the imaging algorithms. This presentation demonstrates that acquisition caused spatial sampling irregularity can affect the seismic imaging and perturb amplitudes. Equalization helps to balance the amplitudes, and the dealing strategy improves the imaging further when there are azimuth variations. Equalization and dealiasing can also help with the acquisition irregularities caused by shot and receiver dislocation or missing traces. 2 refs., 2 figs.
Energy Technology Data Exchange (ETDEWEB)
Broedel, Johannes [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA (United States); Dixon, Lance J. [SLAC National Accelerator Laboratory, Stanford University, Stanford, CA (United States)
2012-07-01
Amplitudes in gauge thoeries obtain contributions from color and kinematics. While these two parts of the amplitude seem to exhibit different symmetry structures, it turns out that they can be reorganized in a way to behave equally, which leads to the so-called color-kinematic dual representations of amplitudes. Astonishingly, the existence of those representations allows squaring to related gravitational theories right away. Contrary to the Kawaii-Levellen-Tye relations, which have been used to relate gauge theories and gravity previously, this method is applicable not only to tree amplitudes but also at loop level. In this talk, the basic technique is introduced followed by a discussion of the existence of color-kinematic dual representations for amplitudes derived from gauge theory actions which are deformed by higher-operator insertions. In addition, it is commented on the implications for deformed gravitational theories.
Energy Technology Data Exchange (ETDEWEB)
Ganzhur, Sergey
2001-07-30
New precise measurements of D{sub s}{sup +} and D*{sub s}{sup +} meson production from B mesons and q{bar q} continuum events near the {Upsilon}(4S) resonance are presented in this paper. Using the BABAR data recorded in 1999 and 2000 of 20.8 fb{sup -1} on-resonance and 2.6 fb{sup -1} off-resonance, we measure the inclusive branching fractions (B {yields} D{sub s}{sup +}) = (10.93 {+-} 0.19 {+-} 0.58 {+-} 2.73)% and (B {yields} D*{sub s}{sup +}) = (7.94 {+-} 0.82 {+-} 0.72 {+-} 1.99)%, where the first error is statistical, the second is the systematic error, and the third is the error due to the D{sub s}{sup +} {yields} {pi}{sup +} branching fraction uncertainty. The branching fractions (B {yields} D{sup (*)}{sub s}{sup +} {bar D}(*)) = (5.07 {+-} 0.09 {+-} 0.34 {+-} 1.27)% and (B {yields} D*{sub s}{sup +} {bar D}(*)) = (4.07 {+-} 0.42 {+-} 0.53 {+-} 1.02)% have been determined from the measured D{sup (*)}{sub s}{sup +} momentum spectra.
Fedorov, M V; Belousov, L V; Voeĭkov, V L; Zenchenko, K I; Zenchenko, T A; Konradov, A A; Shnol', S E
2001-01-01
The fine structures of distributions of photomultiplier dark current fluctuations measured in two laboratories 2000 km distant from other: in the international Institute of Biophysics (Neuss, Germany) and in the Moscow State University (Moscow, Russia) were compared. It is shown that similar forms of appropriate histograms are apparently more often realized at both locations at the same local time. This confirms the previous conclusion that the fine structure of distributions correlates with rotation of the Earth about its axis.
Schieck, J; The ATLAS collaboration
2013-01-01
Evidence for New Physics signatures is searched in processes that are naturally suppressed in the Standard Model. Recent results on the angular distribution parameters AFB and FL describing the decay Bd -> K*mu+mu- -> K+pi-mu+mu- are presented. The accuracy obtained from data collected in 2011 is comparable to the best previous measurement in the region q^2(mu+mu-)>16 GeV^2. New results on the search for the rare decay Bs (B0) -> mu+mu- are presented.
Indian Academy of Sciences (India)
IAS Admin
wavelength, they are called shallow water waves. In the ... Deep and intermediate water waves are dispersive as the velocity of these depends on wavelength. This is not the ..... generation processes, the finite amplitude wave theories are very ...
Real topological string amplitudes
Energy Technology Data Exchange (ETDEWEB)
Narain, K.S. [The Abdus Salam International Centre for Theoretical Physics (ICTP),Strada Costiera 11, Trieste, 34151 (Italy); Piazzalunga, N. [Simons Center for Geometry and Physics, State University of New York,Stony Brook, NY, 11794-3636 (United States); International School for Advanced Studies (SISSA) and INFN, Sez. di Trieste,via Bonomea 265, Trieste, 34136 (Italy); Tanzini, A. [International School for Advanced Studies (SISSA) and INFN, Sez. di Trieste,via Bonomea 265, Trieste, 34136 (Italy)
2017-03-15
We discuss the physical superstring correlation functions in type I theory (or equivalently type II with orientifold) that compute real topological string amplitudes. We consider the correlator corresponding to holomorphic derivative of the real topological amplitude G{sub χ}, at fixed worldsheet Euler characteristic χ. This corresponds in the low-energy effective action to N=2 Weyl multiplet, appropriately reduced to the orientifold invariant part, and raised to the power g{sup ′}=−χ+1. We show that the physical string correlator gives precisely the holomorphic derivative of topological amplitude. Finally, we apply this method to the standard closed oriented case as well, and prove a similar statement for the topological amplitude F{sub g}.
Maris, Eric; van Vugt, Marieke; Kahana, Michael
2011-01-01
Spatially distributed coherent oscillations provide temporal windows of excitability that allow for interactions between distinct neuronal groups. It has been hypothesized that this mechanism for neuronal communication is realized by bursts of high-frequency oscillations that are phase-coupled to a
Amplitude correlations for inelastic proton scattering from 48Ti
International Nuclear Information System (INIS)
Chou, B.H.; Mitchell, G.E.; Bilpuch, E.G.; Westerfeldt, C.R.
1981-01-01
The magnitudes and relative signs of inelastic proton channel amplitudes were determined for three decay channels for 45 5/2 + resonances in 49 V. The reduced widths in each channel follow a Porter-Thomas distribution, but extremely large amplitude correlations are observed - for one pair of channel amplitudes the relative sign is positive for 43 of 45 resonances. These results provide the first direct test of the Krieger-Porter reduced width amplitude distribution. (orig.)
International Nuclear Information System (INIS)
Hansen, J.D.
1976-01-01
This article discusses the partial wave analysis of two, three and four meson systems. The difference between the two approaches, referred to as amplitude and Ascoli analysis is discussed. Some of the results obtained with these methods are shown. (B.R.H.)
Spectroscopic properties of the B meson
Directory of Open Access Journals (Sweden)
Devlani Nayneshkumar
2015-01-01
Full Text Available Investigation of the B(bq̄; q = u, d meson properties is carried out using variational method within phenomenological quark antiquark potential(coulomb plus power model using the Gaussian wave function. O(1/m correction to the potential energy term and relativistic corrections to the kinetic energy term of the hamiltonian are incorporated. Spin-orbit, spin-spin and tensor interactions are employed to obtain the mass spectra. Various other properties such as the decay constants, e1 and m1 transitions are also obtained
Exclusive rare radiative decays of B mesons
International Nuclear Information System (INIS)
Barik, N.; Kar, S.; Dash, P.C.
1998-01-01
The exclusive rare radiative B decays are studied in the relativistic independent quark model based on the confining potential in the scalar-vector harmonic form. The relevant form factors as well as the branching ratios for the processes B 0 →K *0 γ and B ± →K *± γ have been estimated in reasonable agreement with the available experimental data. The result compares well with several other model predictions. The calculation has been extended to the CKM-favored process B s →φγ and CKM-suppressed processes B u,d →ργ and B s →K * γ. copyright 1997 The American Physical Society
Exclusive semileptonic B-meson decays
International Nuclear Information System (INIS)
Hagiwara, K.; Martin, A.D.; Wade, M.F.
1989-01-01
We study the semileptonic processes anti B → D * lanti ν and anti B → Dlanti ν and show that the invariant hadronic form factors describing the decays can be measured directly by observing the angular correlations of the decay products. We emphasize that this allows an almost model-independent determination of the V cb quark mixing-matrix element. We examine the theoretical models for the form factors in terms of the spectator quark approach. We present a general formalism for semileptonic decays which includes lepton mass effects, since the decay into τ-leptons may be important as background events in the search for rare decay modes involving missing particles. (orig.)
Leptonic Decays of the Charged B Meson
Energy Technology Data Exchange (ETDEWEB)
Corwin, Luke A. [The Ohio State Univ., Columbus, OH (United States)
2008-01-01
We present a search for the decay B^{+} → ℓ^{+}ν ( = τ, μ, or e) in (458.9±5.1)×10^{6} Υ(4S) decays recorded with the BABAR detector at the SLAC PEP-II B-Factory. A sample of events with one reconstructed exclusive semi-leptonic B decay (B^{-} → D^{0}ℓ ^{-}$\\bar{v}$X) is selected, and in the recoil a search for B^{+} →ℓ +ν_{ℓ} signal is performed. The τ is identified in the following channels: τ^{+} → e^{+}ν_{e}$\\bar{v}$_{τ} , τ^{+} → μ^{+}ν_{μ}$\\bar{v}$_{τ} , τ^{+} → π^{+}$\\bar{v}$_{τ} , and τ^{+} → π^{+}π^{0}$\\bar{v}$_{τ} . The analysis strategy and the statistical procedure is set up for branching fraction extraction or upper limit determination. We determine from the dataset a preliminary measurement of B(B^{+} → τ^{+}ν_{τ}) = (1.8 ± 0.8 ± 0.1) × 10^{-4}, which excludes zero at 2.4σ, and f_{B} = 255 ± 58 MeV. Combination with the hadronically tagged measurement yields B(B^{+} → τ^{+}ν_{τ}) = (1.8 ± 0.6) × 10^{-4}. We also set preliminary limits on the branching fractions at B(B^{+} → e^{+}ν_{e}) < 7.7 × 10^{-6} (90% C.L.), B(B^{+} → μ^{+}ν_{μ}) < 11 × 10^{-6} (90% C.L.), and B(B^{+} → τ^{+}ν_{τ} ) < 3.2 × 10^{-4}(90% C.L.).
Weak radiative baryonic decays of B mesons
International Nuclear Information System (INIS)
Kohara, Yoji
2004-01-01
Weak radiative baryonic B decays B→B 1 B 2 -barγ are studied under the assumption of the short-distance b→sγ electromagnetic penguin transition dominance. The relations among the decay rates of various decay modes are derived
Precision for B-meson matrix elements
International Nuclear Information System (INIS)
Guazzini, D.; Sommer, R.; Tantalo, N.
2007-10-01
We demonstrate how HQET and the Step Scaling Method for B-physics, pioneered by the Tor Vergata group, can be combined to reach a further improved precision. The observables considered are the mass of the b-quark and the B s -meson decay constant. The demonstration is carried out in quenched lattice QCD. We start from a small volume, where one can use a standard O(a)-improved relativistic action for the b-quark, and compute two step scaling functions which relate the observables to the large volume ones. In all steps we extrapolate to the continuum limit, separately in HQET and in QCD for masses below m b . The physical point m b is then reached by an interpolation of the continuum results in 1/m. The essential, expected and verified, feature is that the step scaling functions have a weak mass-dependence resulting in an easy interpolation to the physical point. With r 0 =0.5 fm and the experimental B s and K masses as input, we find F B s =191(6) MeV and the renormalization group invariant mass M b =6.88(10) GeV, translating into anti m b (anti m b )=4.42(6) GeV in the MS scheme. This approach seems very promising for full QCD. (orig.)
Measurement of the Moments of the Hadronic Invariant Mass Distribution in Semileptonic B Decays
International Nuclear Information System (INIS)
Acosta, D.
2005-01-01
Using 180 pb -1 of data collected with the CDF II detector at the Tevatron, we measure the first two moments of the hadronic invariant mass-squared distribution in charmed semileptonic B decays. From these we determine the non-perturbative Heavy Quark Effective Theory parameters Λ and λ 1 used to relate the B meson semileptonic branching ratio to the CKM matrix element |V cb |
Energy Technology Data Exchange (ETDEWEB)
Hicheur, A
2003-04-01
The work presented in this thesis relies on the analysis of data collected between october 1999 and July 2002 by the BaBar experiment at the PEP-II collider located at SLAC (Stanford, California). Electron-positron collisions at a center of mass energy equal to the {upsilon}(4S) resonance mass are used for the production of B meson pairs. In July 2001, the BaBar collaboration published the first measurement of CP violation in the neutral B mesons system. Since then, the precision of the measurement has been continually being improved with the increasing data sample. Two devices are dedicated to the reconstruction of charged particles: the Silicon Vertex Tracker and the Drift Chamber. The Silicon Vertex Tracker is crucial for the reconstruction of the B meson decay vertex. Its motion with regard to the Drift Chamber needs a rolling calibration of the corresponding alignment parameters roughly every two hours. The relation between the Drift Chamber geometry and the alignment has been studied. Beside CP violation, Heavy Flavour Physics is an other important issue of BaBar research program. Rare decays are of particular interest as they are sensible to a new physics beyond the Standard Model. The production of high energy {eta}' in B decays has been studied through the two main contributions, B{yields} {eta}' X{sub s} coming from the rare decay b {yields} sg*, and B-bar{sup 0} {yields} {eta}'D{sup 0} coming from the internal tree color suppressed decay b {yields} cud. The improvement of the measurement of the process B {yields} {eta}'X-s and the first. observation of the decay B-bar{sup 0} {yields} {eta}'D{sup 0} have led to the conclusion that the {eta}' production is dominated by the decay b {yields} sg* and enables to constrain its quark content. (author)
Flächer, H U
2003-01-01
We report a preliminary measurement of the first and second moments of the hadronic mass distributions in B -> X sub c (ell)nu decays. The measurements are based on UPSILON(4S) -> B(bar B) events where the hadronic decay of one of the B mesons is fully reconstructed and a charged lepton from the decay of the other B meson is identified. The moments are presented for threshold lepton momenta ranging from 0.9 to 1.6 GeV. From the moments we determine the non-perturbative Heavy Quark Expansion (HQE) parameters, (bar LAMBDA) and lambda sub 1. We combine the measured moments with earlier BABAR measurements of the semileptonic branching ratios and B lifetimes and perform a simultaneous fit to the HQE for the moments obtained for different threshold lepton momenta and the semileptonic decay width. This fit results in an improved value for the CKM matrix element |V sub c sub b |.
Fatigue Reliability under Multiple-Amplitude Loads
DEFF Research Database (Denmark)
Talreja, R.
1979-01-01
for the initial tensile strength and the fatigue life, the probability distributions for the residual tensile strength in both the crack initiation and the crack propagation stages of fatigue are determined. The method is illustrated for two-amplitude loads by means of experimental results obtained by testing...
International Nuclear Information System (INIS)
Trincaz-Duvoid, S.
2001-01-01
The work presented in this thesis is divided into two parts. The first one deals with the machine background induced by the PEP-II collider. This study has been performed with a mini-TPC before the start of the BaBar experiment. The second part concerns the measurements of the branching ratio of the decay modes B 0 → D *- D(*) 0 K + and of the inclusive branching ratio Br(B 0 → K ± X). These measurements have been obtained with the first BaBar data. During the commissioning of the PEP-II collider, the charged tracks rate close to the interaction point has been measured with the mini-TPC. This study has pointed to the fact that the machine background was much higher than predicted by the simulation. These bad background conditions were due to the poor quality of the vacuum in the rings. This relatively high pressure in the rings produces electro-magnetic showers at the interaction point due to beam gas interactions. The potential risks for the BaBar detector due to the machine backgrounds have been clearly pointed out by the studies performed for this thesis. The addition of some collimators and a deep understanding of the machine have greatly reduced the background. Nevertheless, the radiation level in BaBar is continuously monitored in order to protect the detector. The study of the b → cc-bar channel is an important point for the understanding of the overall picture of the B meson decay. With an integrated luminosity of 17.3 fb -1 recorded by the BaBar detector the following branching ratio using exclusive reconstruction technique have been measured: Br(B 0 → D *- D 0 K + ) = (0.29 ± 0.06 (stat) ± (syst)) % Br(B 0 → D *- D *0 K + ) = (1.16 ± 0.15 (stat) ± 0.16 (syst)) % A partial reconstruction has also been developed. With an integrated luminosity of 8.9 fb -1 , the branching ratio of B 0 into D *- D 0 K + has been measured: Br(B 0 → D *- D 0 K + ) = (0.45 ± 0.12 (stat) ± 0.25 (syst)) % This result is in good agreement with the value obtained
Unifying relations for scattering amplitudes
Cheung, Clifford; Shen, Chia-Hsien; Wen, Congkao
2018-02-01
We derive new amplitudes relations revealing a hidden unity among a wideranging variety of theories in arbitrary spacetime dimensions. Our results rely on a set of Lorentz invariant differential operators which transmute physical tree-level scattering amplitudes into new ones. By transmuting the amplitudes of gravity coupled to a dilaton and two-form, we generate all the amplitudes of Einstein-Yang-Mills theory, Dirac-Born-Infield theory, special Galileon, nonlinear sigma model, and biadjoint scalar theory. Transmutation also relates amplitudes in string theory and its variants. As a corollary, celebrated aspects of gluon and graviton scattering like color-kinematics duality, the KLT relations, and the CHY construction are inherited traits of the transmuted amplitudes. Transmutation recasts the Adler zero as a trivial consequence of the Weinberg soft theorem and implies new subleading soft theorems for certain scalar theories.
CP violation in the B meson system and prospects at an asymmetric B meson factory
International Nuclear Information System (INIS)
Aleksan, R.; Gaidot, A.; Dunietz, I.; Steger, H.; Pich, A.
1993-03-01
An overview of the expected phenomenology of CP violation in the B system is presented. The prospects for observing CP-violating signals at an asymmetric B-Factory are analyzed. It is shown how these phenomena can be used to test the unitarity of the Cabibbo-Kobayashi-Maskawa matrix, and to either verify the Standard Model mechanism of CP violation or provide clear evidence for new physics. (authors) 72 refs., 12 figs., 8 tabs
Hidden beauty in multiloop amplitudes
International Nuclear Information System (INIS)
Cachazo, Freddy; Spradlin, Marcus; Volovich, Anastasia
2006-01-01
Planar L-loop maximally helicity violating amplitudes in N = 4 supersymmetric Yang-Mills theory are believed to possess the remarkable property of satisfying iteration relations in L. We propose a simple new method for studying iteration relations for four-particle amplitudes which involves the use of certain linear differential operators and eliminates the need to fully evaluate any loop integrals. We carry out this procedure in explicit detail for the two-loop amplitude and prove that this method can be applied to any multiloop integral, allowing a conjectured iteration relation for any given amplitude to be tested up to polynomials in logarithms
International Nuclear Information System (INIS)
Bern, Z.
2004-01-01
Splitting amplitudes govern the behavior of scattering amplitudes at the momenta of external legs become collinear. In this talk we outline the calculation of two-loop splitting amplitudes via the unitarity sewing method. This method retains the simple factorization properties of light-cone gauge, but avoids the need for prescriptions such as the principal value or Mandelstam-Leibbrandt ones. The encountered loop momentum integrals are then evaluated using integration-by-parts and Lorentz invariance identities. We outline a variety of applications for these splitting amplitudes
International Nuclear Information System (INIS)
Bern, Z.; Dixon, L.J.; Kosower, D.A.
2004-01-01
Splitting amplitudes govern the behavior of scattering amplitudes at the momenta of external legs become collinear. In this talk we outline the calculation of two-loop splitting amplitudes via the unitarity sewing method. This method retains the simple factorization properties of light-cone gauge, but avoids the need for prescriptions such as the principal value or Mandelstam-Leibbrandt ones. The encountered loop momentum integrals are then evaluated using integration-by-parts and Lorentz invariance identities. We outline a variety of applications for these splitting amplitudes
Understanding the amplitudes of noise correlation measurements
Tsai, Victor C.
2011-01-01
Cross correlation of ambient seismic noise is known to result in time series from which station-station travel-time measurements can be made. Part of the reason that these cross-correlation travel-time measurements are reliable is that there exists a theoretical framework that quantifies how these travel times depend on the features of the ambient noise. However, corresponding theoretical results do not currently exist to describe how the amplitudes of the cross correlation depend on such features. For example, currently it is not possible to take a given distribution of noise sources and calculate the cross correlation amplitudes one would expect from such a distribution. Here, we provide a ray-theoretical framework for calculating cross correlations. This framework differs from previous work in that it explicitly accounts for attenuation as well as the spatial distribution of sources and therefore can address the issue of quantifying amplitudes in noise correlation measurements. After introducing the general framework, we apply it to two specific problems. First, we show that we can quantify the amplitudes of coherency measurements, and find that the decay of coherency with station-station spacing depends crucially on the distribution of noise sources. We suggest that researchers interested in performing attenuation measurements from noise coherency should first determine how the dominant sources of noise are distributed. Second, we show that we can quantify the signal-to-noise ratio of noise correlations more precisely than previous work, and that these signal-to-noise ratios can be estimated for given situations prior to the deployment of seismometers. It is expected that there are applications of the theoretical framework beyond the two specific cases considered, but these applications await future work.
Analytical structure of the 3. -->. 3 forward scattering amplitude
Energy Technology Data Exchange (ETDEWEB)
Logunov, A A; Medvedev, B V; Muzafarov, L M; Pavlov, V P; Polivanov, M K; Sukhanov, A D [AN SSSR, Moscow. Matematicheskij Inst.
1979-08-01
Analytical properties of the amplitude of 3..-->..3 forward scattering established in the framework of the Bogolyubov axiomatic approach are described. The amplitudes of the different channels of the process are boundary values of a unique analytical function of invariant variables. Crossing-symmetry property of the amplitude is proved. Analysis of the absorptive part of the amplitude is performed and the generalized optical theorem is proved which connects one of the contributions into the absorptive part with the distribution function of the inclusive process.
Energy Technology Data Exchange (ETDEWEB)
Saeki, T [Japan National Oil Corp., Tokyo (Japan). Technology Research Center
1997-10-22
Discussions were given on seismic exploration from the ground surface using the reflection method, for surface consistent amplitude correction from among effects imposed from the ground surface and a surface layer. Amplitude distribution on the reflection wave zone is complex. Therefore, items to be considered in making an analysis are multiple, such as estimation of spherical surface divergence effect and exponential attenuation effect, not only amplitude change through the surface layer. If all of these items are taken into consideration, burden of the work becomes excessive. As a method to solve this problem, utilization of amplitude in initial movement of a diffraction wave may be conceived. Distribution of the amplitude in initial movement of the diffraction wave shows a value relatively close to distribution of the vibration transmitting and receiving points. The reason for this is thought because characteristics of the vibration transmitting and receiving points related with waveline paths in the vicinity of the ground surface have no great difference both on the diffraction waves and on the reflection waves. The lecture described in this paper introduces an attempt of improving the efficiency of the surface consistent amplitude correction by utilizing the analysis of amplitude in initial movement of the diffraction wave. 4 refs., 2 figs.
Energy Technology Data Exchange (ETDEWEB)
Lam, C.S., E-mail: Lam@physics.mcgill.ca [Department of Physics, McGill University, Montreal, Q.C., H3A 2T8 (Canada); Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Yao, York-Peng, E-mail: yyao@umich.edu [Department of Physics, The University of Michigan Ann Arbor, MI 48109 (United States)
2016-06-15
The Cachazo–He–Yuan (CHY) formula for on-shell scattering amplitudes is extended off-shell. The off-shell amplitudes (amputated Green's functions) are Möbius invariant, and have the same momentum poles as the on-shell amplitudes. The working principles which drive the modifications to the scattering equations are mainly Möbius covariance and energy momentum conservation in off-shell kinematics. The same technique is also used to obtain off-shell massive scalars. A simple off-shell extension of the CHY gauge formula which is Möbius invariant is proposed, but its true nature awaits further study.
Multiscalar production amplitudes beyond threshold
Argyres, E N; Kleiss, R H
1993-01-01
We present exact tree-order amplitudes for $H^* \\to n~H$, for final states containing one or two particles with non-zero three-momentum, for various interaction potentials. We show that there are potentials leading to tree amplitudes that satisfy unitarity, not only at threshold but also in the above kinematical configurations and probably beyond. As a by-product, we also calculate $2\\to n$ tree amplitudes at threshold and show that for the unbroken $\\phi^4$ theory they vanish for $n>4~$, for the Standard Model Higgs they vanish for $n\\ge 3~$ and for a model potential, respecting tree-order unitarity, for $n$ even and $n>4~$. Finally, we calculate the imaginary part of the one-loop $1\\to n$ amplitude in both symmetric and spontaneously broken $\\phi^4$ theory.
Scattering amplitudes in gauge theories
Henn, Johannes M
2014-01-01
At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum ...
Amplitude damping of vortex modes
CSIR Research Space (South Africa)
Dudley, Angela L
2010-09-01
Full Text Available An interferometer, mimicking an amplitude damping channel for vortex modes, is presented. Experimentally the action of the channel is in good agreement with that predicted theoretically. Since we can characterize the action of the channel on orbital...
Motivic amplitudes and cluster coordinates
International Nuclear Information System (INIS)
Golden, J.K.; Goncharov, A.B.; Spradlin, M.; Vergu, C.; Volovich, A.
2014-01-01
In this paper we study motivic amplitudes — objects which contain all of the essential mathematical content of scattering amplitudes in planar SYM theory in a completely canonical way, free from the ambiguities inherent in any attempt to choose particular functional representatives. We find that the cluster structure on the kinematic configuration space Conf n (ℙ 3 ) underlies the structure of motivic amplitudes. Specifically, we compute explicitly the coproduct of the two-loop seven-particle MHV motivic amplitude A 7,2 M and find that like the previously known six-particle amplitude, it depends only on certain preferred coordinates known in the mathematics literature as cluster X-coordinates on Conf n (ℙ 3 ). We also find intriguing relations between motivic amplitudes and the geometry of generalized associahedrons, to which cluster coordinates have a natural combinatoric connection. For example, the obstruction to A 7,2 M being expressible in terms of classical polylogarithms is most naturally represented by certain quadrilateral faces of the appropriate associahedron. We also find and prove the first known functional equation for the trilogarithm in which all 40 arguments are cluster X-coordinates of a single algebra. In this respect it is similar to Abel’s 5-term dilogarithm identity
Nonsinglet pentagons and NMHV amplitudes
Directory of Open Access Journals (Sweden)
A.V. Belitsky
2015-07-01
Full Text Available Scattering amplitudes in maximally supersymmetric gauge theory receive a dual description in terms of the expectation value of the super Wilson loop stretched on a null polygonal contour. This makes the analysis amenable to nonperturbative techniques. Presently, we elaborate on a refined form of the operator product expansion in terms of pentagon transitions to compute twist-two contributions to NMHV amplitudes. To start with, we provide a novel derivation of scattering matrices starting from Baxter equations for flux-tube excitations propagating on magnon background. We propose bootstrap equations obeyed by pentagon form factors with nonsinglet quantum numbers with respect to the R-symmetry group and provide solutions to them to all orders in 't Hooft coupling. These are then successfully confronted against available perturbative calculations for NMHV amplitudes to four-loop order.
Nonsinglet pentagons and NMHV amplitudes
Energy Technology Data Exchange (ETDEWEB)
Belitsky, A.V., E-mail: andrei.belitsky@asu.edu
2015-07-15
Scattering amplitudes in maximally supersymmetric gauge theory receive a dual description in terms of the expectation value of the super Wilson loop stretched on a null polygonal contour. This makes the analysis amenable to nonperturbative techniques. Presently, we elaborate on a refined form of the operator product expansion in terms of pentagon transitions to compute twist-two contributions to NMHV amplitudes. To start with, we provide a novel derivation of scattering matrices starting from Baxter equations for flux-tube excitations propagating on magnon background. We propose bootstrap equations obeyed by pentagon form factors with nonsinglet quantum numbers with respect to the R-symmetry group and provide solutions to them to all orders in 't Hooft coupling. These are then successfully confronted against available perturbative calculations for NMHV amplitudes to four-loop order.
Cluster polylogarithms for scattering amplitudes
International Nuclear Information System (INIS)
Golden, John; Paulos, Miguel F; Spradlin, Marcus; Volovich, Anastasia
2014-01-01
Motivated by the cluster structure of two-loop scattering amplitudes in N=4 Yang-Mills theory we define cluster polylogarithm functions. We find that all such functions of weight four are made up of a single simple building block associated with the A 2 cluster algebra. Adding the requirement of locality on generalized Stasheff polytopes, we find that these A 2 building blocks arrange themselves to form a unique function associated with the A 3 cluster algebra. This A 3 function manifests all of the cluster algebraic structure of the two-loop n-particle MHV amplitudes for all n, and we use it to provide an explicit representation for the most complicated part of the n = 7 amplitude as an example. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Cluster algebras in mathematical physics’. (paper)
Topological amplitudes in string theory
International Nuclear Information System (INIS)
Antoniadis, I.; Taylor, T.R.
1993-07-01
We show that certain type II string amplitudes at genus g are given by the topological partition F g discussed recently by Bershadsky, Cecotti, Ooguri and Vafa. These amplitudes give rise to a term in the four-dimensional effective action of the form Σ g F g W 2g , where W is the chiral superfield of N = 2 supergravitational multiplet. The holomorphic anomaly of F g is related to non-localities of the effective action due to the propagation of massless states. This result generalizes the holomorphic anomaly of the one loop case which is known to lead to non-harmonic gravitational couplings. (author). 22 refs, 2 figs
Tomography for amplitudes of hard exclusive processes
International Nuclear Information System (INIS)
Polyakov, M.V.
2008-01-01
We discuss which part of information about hadron structure encoded in the Generalized Parton Distributions (GPDs) [part of total GPD image] can be restored from the known amplitude of a hard exclusive process. The physics content of this partial image is analyzed. Among other things, we show that this partial image contains direct information about how the target hadron responses to the (string) quark-antiquark operator of arbitrary spin J. Explicit equations relating physics content of the partial image of GPDs directly to the data are derived. Also some new results concerning the dual parametrization of GPDs are presented
International Nuclear Information System (INIS)
Mandelstam, S.
1986-06-01
Work on the derivation of an explicit perturbation series for string and superstring amplitudes is reviewed. The light-cone approach is emphasized, but some work on the Polyakov approach is also mentioned, and the two methods are compared. The calculation of the measure factor is outlined in the interacting-string picture
Scattering Amplitudes from Intersection Theory.
Mizera, Sebastian
2018-04-06
We use Picard-Lefschetz theory to prove a new formula for intersection numbers of twisted cocycles associated with a given arrangement of hyperplanes. In a special case when this arrangement produces the moduli space of punctured Riemann spheres, intersection numbers become tree-level scattering amplitudes of quantum field theories in the Cachazo-He-Yuan formulation.
Positivity of spin foam amplitudes
International Nuclear Information System (INIS)
Baez, John C; Christensen, J Daniel
2002-01-01
The amplitude for a spin foam in the Barrett-Crane model of Riemannian quantum gravity is given as a product over its vertices, edges and faces, with one factor of the Riemannian 10j symbols appearing for each vertex, and simpler factors for the edges and faces. We prove that these amplitudes are always nonnegative for closed spin foams. As a corollary, all open spin foams going between a fixed pair of spin networks have real amplitudes of the same sign. This means one can use the Metropolis algorithm to compute expectation values of observables in the Riemannian Barrett-Crane model, as in statistical mechanics, even though this theory is based on a real-time (e iS ) rather than imaginary-time e -S path integral. Our proof uses the fact that when the Riemannian 10j symbols are nonzero, their sign is positive or negative depending on whether the sum of the ten spins is an integer or half-integer. For the product of 10j symbols appearing in the amplitude for a closed spin foam, these signs cancel. We conclude with some numerical evidence suggesting that the Lorentzian 10j symbols are always nonnegative, which would imply similar results for the Lorentzian Barrett-Crane model
Employing Helicity Amplitudes for Resummation
Moult, I.; Stewart, I.W.; Tackmann, F.J.; Waalewijn, W.J.
2015-01-01
Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are
Scattering amplitudes in gauge theories
Energy Technology Data Exchange (ETDEWEB)
Henn, Johannes M. [Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Plefka, Jan C. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik
2014-03-01
First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.
Scattering amplitudes in gauge theories
International Nuclear Information System (INIS)
Henn, Johannes M.; Plefka, Jan C.
2014-01-01
First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.
Employing helicity amplitudes for resummation
International Nuclear Information System (INIS)
Moult, Ian; Stewart, Iain W.; Tackmann, Frank J.; Waalewijn, Wouter J.; Amsterdam Univ.
2015-08-01
Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are directly given in terms of color-ordered helicity amplitudes. Using this basis allows one to seamlessly combine fixed-order helicity amplitudes at any order they are known with a resummation of higher-order logarithmic corrections. In particular, the virtual loop amplitudes can be employed in factorization theorems to make predictions for exclusive jet cross sections without the use of numerical subtraction schemes to handle real-virtual infrared cancellations. We also discuss matching onto SCET in renormalization schemes with helicities in 4- and d-dimensions. To demonstrate that our helicity operator basis is easy to use, we provide an explicit construction of the operator basis, as well as results for the hard matching coefficients, for pp → H+0,1,2 jets, pp → W/Z/γ+0,1,2 jets, and pp → 2,3 jets. These operator bases are completely crossing symmetric, so the results can easily be applied to processes with e + e - and e - p collisions.
Discontinuity formulas for multiparticle amplitudes
International Nuclear Information System (INIS)
Stapp, H.P.
1976-03-01
It is shown how discontinuity formulas for multiparticle scattering amplitudes are derived from unitarity and analyticity. The assumed analyticity property is the normal analytic structure, which was shown to be equivalent to the space-time macrocausality condition. The discontinuity formulas to be derived are the basis of multi-particle fixed-t dispersion relations
Renormalization Scale-Fixing for Complex Scattering Amplitudes
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; /SLAC; Llanes-Estrada, Felipe J.; /Madrid U.
2005-12-21
We show how to fix the renormalization scale for hard-scattering exclusive processes such as deeply virtual meson electroproduction by applying the BLM prescription to the imaginary part of the scattering amplitude and employing a fixed-t dispersion relation to obtain the scale-fixed real part. In this way we resolve the ambiguity in BLM renormalization scale-setting for complex scattering amplitudes. We illustrate this by computing the H generalized parton distribution at leading twist in an analytic quark-diquark model for the parton-proton scattering amplitude which can incorporate Regge exchange contributions characteristic of the deep inelastic structure functions.
Energy Technology Data Exchange (ETDEWEB)
Volk, Alexei
2009-07-01
This thesis presents an analysis of inclusive semileptonic B{yields} X{sub u}e anti {nu}{sub e} decays using approximately 454 million {upsilon}(4S){yields}B anti B decays collected during the years 1999 to 2008 with the BABAR detector. The electron energy, E{sub e}, and the invariant mass squared of the electron-neutrino pair, q{sup 2}, are reconstructed, where the neutrino kinematics is deduced from the decay products of both B mesons. The final hadronic state, X{sub u}, consists of a sum of many hadronic channels, each of which contains at least one u quark. The variables q{sup 2} and E{sub e} are then combined to compute the maximum kinematically allowed invariant mass squared of the hadronic system, s{sub h}{sup max}. Using these kinematic quantities, the partial branching fraction, {delta}B(B {yields} X{sub u}lv), unfolded for detector effects, is measured to be {delta}B(E{sub e}>2.0 GeV, s{sub h}{sup max}<3.52 GeV{sup 2}) (3.33{+-}0.18{+-}0.21) x 10{sup -4} in the {upsilon}(4S) and {delta}B(E{sub e}>1.9 GeV, s{sub h}{sup max}<3.5 GeV{sup 2})= (4.57{+-}0.24{+-}0.32) x 10{sup -4} in the B meson rest frames. The quoted errors are statistical and systematic, respectively. The CKM matrix element vertical stroke V{sub ub} vertical stroke is determined from the measured {delta}B using theoretical calculation based on Heavy Quark Expansion. The result is vertical stroke V{sub ub} vertical stroke =(4.19{+-}0.18{sub -0.20-0.25}{sup +0.26+0.26}) x 10{sup -3}, where the errors represent experimental uncertainties, uncertainties from HQE parameters and theoretical uncertainties, respectively. (orig.)
Scruncher phase and amplitude control
International Nuclear Information System (INIS)
DeHaven, R.A.; Morris, C.L.; Johnson, R.; Davis, J.; O'Donnell, J.M.
1992-01-01
The analog controller for phase and amplitude control of a 402.5 MHz super conducting cavity is described in this paper. The cavity is a single cell with niobium explosively bonded to a copper cavity. It is used as an energy compressor for pions at the Clinton P. Anderson Meson Physics Facility (LAMPF). The controller maintains cavity frequency to within 4 degrees in phase of the LAMPF beam frequency. Field amplitude is maintained to within 2 percent. This control is accomplished at critical coupling (Q load of 1 x 10 9 ) with the use of only a 30 watt rf amplifier for accelerating fields of 6 MV/m. The design includes the use of piezoelectric crystals for fast resonance control. Three types of control, self excited, VCO, and a reference frequency driven, were tried on this cavity and we present a comparison of their performance. (Author) 4 figs., ref
SCRUNCHER phase and amplitude control
International Nuclear Information System (INIS)
DeHaven, R.A.; Morris, C.L.; Johnson, R.; Davis, J.; O'Donnell, J.M.
1992-01-01
The analog controller for phase and amplitude control of a 402.5 MHz super conducting cavity is described in this paper. The cavity is a single cell with niobium explosively bonded to a copper cavity. It is used as an energy compressor for pions at the Clinton P. Anderson Meson Physics Facility (LAMPF). The controller maintains cavity frequency to within 4 degrees in phase of the LAMPF beam frequency. Field amplitude is maintained to within 2 percent. This control is accomplished at critical coupling (Q loaded of 1 x 10 9 ) with the use of only a 30 watt rf amplifier for accelerating fields of 6 MV/m. The design includes the use of piezoelectric crystals for fast resonance control. Three types of control, self excited VCO, and a reference frequency driven, were tried on this cavity and we present a comparison of their performance
Periodic instantons and scattering amplitudes
International Nuclear Information System (INIS)
Khlebnikov, S.Yu.; Rubakov, V.A.; Tinyakov, P.G.
1991-04-01
We discuss the role of periodic euclidean solutions with two turning points and zero winding number (periodic instantons) in instanton induced processes below the sphaleron energy E sph . We find that the periodic instantons describe certain multiparticle scattering events leading to the transitions between topologically distinct vacua. Both the semiclassical amplitudes and inital and final states of these transitions are determined by the periodic instantons. Furthermore, the corresponding probabilities are maximal among all states of given energy. We show that at E ≤ E sph , the periodic instantons can be approximated by infinite chains of ordinary instantons and anti-instantons, and they naturally emerge as deformations of the zero energy instanton. In the framework of 2d abelian Higgs model and 4d electroweak theory we show, however, that there is not obvious relation between periodic instantons and two-particle scattering amplitudes. (orig.)
Determination of the scattering amplitude
International Nuclear Information System (INIS)
Gangal, A.D.; Kupsch, J.
1984-01-01
The problem to determine the elastic scattering amplitude from the differential cross-section by the unitarity equation is reexamined. We prove that the solution is unique and can be determined by a convergent iteration if the parameter lambda=sin μ of Newton and Martin is bounded by lambda 2 approx.=0.86. The method is based on a fixed point theorem for holomorphic mappings in a complex Banach space. (orig.)
Pulse amplitude modulated chlorophyll fluorometer
Greenbaum, Elias; Wu, Jie
2015-12-29
Chlorophyll fluorometry may be used for detecting toxins in a sample because of changes in micro algae. A portable lab on a chip ("LOAC") based chlorophyll fluorometer may be used for toxin detection and environmental monitoring. In particular, the system may include a microfluidic pulse amplitude modulated ("PAM") chlorophyll fluorometer. The LOAC PAM chlorophyll fluorometer may analyze microalgae and cyanobacteria that grow naturally in source drinking water.
Semiclassical approach to fidelity amplitude
International Nuclear Information System (INIS)
García-Mata, Ignacio; Vallejos, Raúl O; Wisniacki, Diego A
2011-01-01
The fidelity amplitude (FA) is a quantity of paramount importance in echo-type experiments. We use semiclassical theory to study the average FA for quantum chaotic systems under external perturbation. We explain analytically two extreme cases: the random dynamics limit - attained approximately by strongly chaotic systems - and the random perturbation limit, which shows a Lyapunov decay. Numerical simulations help us to bridge the gap between both the extreme cases. (paper)
Time-amplitude converter; Convertisseur temps-amplitude
Energy Technology Data Exchange (ETDEWEB)
Banner, M [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires
1961-07-01
It is normal in high energy physics to measure the time of flight of a particle in order to determine its mass. This can be done by the method which consists in transforming the time measurement into an analysis of amplitude, which is easier; a time-amplitude converter has therefore been built for this purpose. The apparatus here described uses a double grid control tube 6 BN 6 whose resolution time, as measured with a pulse generator, is 5 x 10{sup -11} s. The analysis of the response of a particle counter, made up of a scintillator and a photomultiplier, indicates that a time of resolution of 5 x 10{sup -10} s. can be obtained. A time of this order of magnitude is obtained experimentally with the converter. This converter has been used in the study of the time of flight of particles in a secondary beam of the accelerator Saturne. It has thus been possible to measure the energy spectrum of {pi}-mesons, of protons, and of deutons emitted from a polyethylene target bombarded by 1,4 and 2 GeV protons. (author) [French] Pour determiner la masse d'une particule, il est courant, en physique des hautes energies, de mesurer le temps de vol de cette particule. Cela peut etre fait par la methode qui consiste a transformer la mesure d'un temps en une analyse d'amplitude, plus aisee; aussi a-t-on, a cet effet, cree un convertisseur temps-amplitude. L'appareillage decrit dans cet article utilise un tube a double grille de commande 6 BN 6 dont le temps de resolution mesure avec un generateur d'impulsion est de 5.10{sup -11} s. L'analyse de la reponse d'un compteur de particules, constitue par un scintillateur et un photomultiplicateur, indique qu'un temps de resolution de 5.10{sup -10} s peut etre obtenu. Un temps de cet ordre est atteint experimentalement avec le convertisseur. Ce convertisseur a servi a l'etude du temps de vol des particules dans un faisceau secondaire de l'accelerateur Saturne. On a mesure ainsi le spectre d'energie des mesons {pi}, des protons, des deutons
Broadband metasurface holograms: toward complete phase and amplitude engineering.
Wang, Qiu; Zhang, Xueqian; Xu, Yuehong; Gu, Jianqiang; Li, Yanfeng; Tian, Zhen; Singh, Ranjan; Zhang, Shuang; Han, Jiaguang; Zhang, Weili
2016-09-12
As a revolutionary three-dimensional imaging technique, holography has attracted wide attention for its ability to photographically record a light field. However, traditional phase-only or amplitude-only modulation holograms have limited image quality and resolution to reappear both amplitude and phase information required of the objects. Recent advances in metasurfaces have shown tremendous opportunities for using a planar design of artificial meta-atoms to shape the wave front of light by optimal control of both its phase and amplitude. Inspired by the concept of designer metasurfaces, we demonstrate a novel amplitude-phase modulation hologram with simultaneous five-level amplitude modulation and eight-level phase modulation. Such a design approach seeks to turn the perceived disadvantages of the traditional phase or amplitude holograms, and thus enable enhanced performance in resolution, homogeneity of amplitude distribution, precision, and signal-to-noise ratio. In particular, the unique holographic approach exhibits broadband characteristics. The method introduced here delivers more degrees of freedom, and allows for encoding highly complex information into designer metasurfaces, thus having the potential to drive next-generation technological breakthroughs in holography.
Amplitude modulation reflectometer for FTU
International Nuclear Information System (INIS)
Zerbini, M.; Buratti, P.; Centioli, C.; Amadeo, P.
1995-06-01
Amplitude modulation (AM) reflectometry is a modification of the classical frequency sweep technique which allows to perform unambiguous phase delay measurements. An eight-channel AM reflectometer has been realized for the measurement of density profiles on the FTU tokamak in the range. The characteristics of the instrument have been determined in extensive laboratory tests; particular attention has been devoted to the effect of interference with parasitic reflections. The reflectometer is now operating on FTU. Some examples of the first experimental data are discussed
Superstring amplitudes and contact interactions
International Nuclear Information System (INIS)
Greensite, J.
1987-08-01
We show that scattering amplitudes computed from light-cone superstring field theory are divergent at tree level. The divergences can be eliminated, and supersymmetry restored, by the addition of certain counter terms to the light-cone Hamiltonian. These counter terms have the form of local contact interactions, whose existence we had previously deduced on grounds of vacuum stability, and closure of the super-Poincare algebra. The quartic contact interactions required in Type I and Type IIB superstring theories are constructed in detail. (orig.)
Forward amplitude in pion deuteron
International Nuclear Information System (INIS)
Ferreira, E.M.; Munguia, G.A.P.; Rosa, L.P.; Thome, Z.D.
1979-06-01
The data on total cross section for πd scattering is analysed in terms of a single scattering calculation with Fermi motion dependence, in order to obtain a criterion to fix the value of the energy entering the two body meson nucleon amplitude. It is found that the prescription derived from the non-relativistic three body kinematics gives reasonable results. The introduction of a shift in the energy value, possibly representing nuclear binding effects, leads to a very good fitting of the data. The results are compared with those obtained in direct calculations of Faddeev equations and with the Brueckner model of fixed scatterers. (Author) [pt
Directory of Open Access Journals (Sweden)
Raimundo Souza Lopes
2001-05-01
Full Text Available The purpose of this study was to establish reference values for red blood cell distribution width (RDW in health horses. We obtained blood samples through jugular punctured from 90 clinicaly health thorougbred horses between 12 and 24 months of age. Blood was obtained in a Cell-Dyn 3500 (Abbott Diagnostic cell counter. Mean ± standart deviation values for RDW in male horses were 26,90 ± 1,41, whereas in females values were 26,89 ± 1,75. There were no differences in the RDW values between sexes, therefore, our reference values can be used in both males and females.O objetivo do presente estudo foi estabelecer valores da amplitude de distribuição do tamanho dos eritrócitos (RDW em eqüinos clinicamente sadios. Foram utilizadas 90 amostras de sangue de eqüinos da raça Puro Sangue Inglês (PSI, clinicamente sadios de 12 a 24 meses de idade, obtidas por venipunção jugular em tubos à vácuo contendo EDTA 10%. Posteriormente as amostras foram processadas no contador automático de células Cell-Dyn 3500 (Abbott Diagnostic. Os valores médios e o desvios-padrão para o RDW (% de machos foi de 26,90 ± 1,41 e para as fêmeas de 26,89 ± 1,75. Os resultados demonstram não haver diferenças nos valores de RDW para machos e fêmeas, podendo ser utilizados como referência para ambos os sexos.
AUTHOR|(INSPIRE)INSPIRE-00390866
This dissertation presents several studies of the decays of both $B_d$ and $B_s$ mesons to charmless three-body final states including a $K_{\\rm S}^0$ meson. They use the data recorded by the LHCb experiment during Run I of LHC, corresponding to an integrated luminosity of $\\int\\mathcal{L}=3\\rm fb^{-1}$. A first analysis consists of the measurement of the branching fractions of $B_{d,s}\\rightarrow K_{\\rm S}^0h^{+}h^{'-}$ decays, where $h^{(')}$ designates a kaon or a pion. Preceding LHCb measurements of branching fractions for all decay channels, relative to that of $B_d\\rightarrow K_{\\rm S}^0\\pi^{+}\\pi^{-}$, are updated. Furthermore, the primary goal of this analysis is to search for the, as yet, unobserved decay $B_s\\rightarrow K_{\\rm S}^0K^+K^-$. The relative branching fractions are measured to be: \\begin{align} \\frac{\\mathcal{B}\\left(B_s\\rightarrow K_{\\rm S}^0\\pi^{+}\\pi^{-}\\right)}{\\mathcal{B}\\left(B_d\\rightarrow K_{\\rm S}^0\\pi^{+}\\pi^{-}\\right)} &= 0.26 \\pm 0.04\\mathrm{(stat.)} \\pm 0.02\\mathrm{(sy...
Covariant amplitudes in Polyakov string theory
International Nuclear Information System (INIS)
Aoyama, H.; Dhar, A.; Namazie, M.A.
1986-01-01
A manifestly Lorentz-covariant and reparametrization-invariant procedure for computing string amplitudes using Polyakov's formulation is described. Both bosonic and superstring theories are dealt with. The computation of string amplitudes is greatly facilitated by this formalism. (orig.)
Grassmannian geometry of scattering amplitudes
Arkani-Hamed, Nima; Cachazo, Freddy; Goncharov, Alexander; Postnikov, Alexander; Trnka, Jaroslav
2016-01-01
Outlining a revolutionary reformulation of the foundations of perturbative quantum field theory, this book is a self-contained and authoritative analysis of the application of this new formulation to the case of planar, maximally supersymmetric Yang–Mills theory. The book begins by deriving connections between scattering amplitudes and Grassmannian geometry from first principles before introducing novel physical and mathematical ideas in a systematic manner accessible to both physicists and mathematicians. The principle players in this process are on-shell functions which are closely related to certain sub-strata of Grassmannian manifolds called positroids - in terms of which the classification of on-shell functions and their relations becomes combinatorially manifest. This is an essential introduction to the geometry and combinatorics of the positroid stratification of the Grassmannian and an ideal text for advanced students and researchers working in the areas of field theory, high energy physics, and the...
Determination of backward pion nucleon scattering amplitudes
International Nuclear Information System (INIS)
Pietarinen, E.
1978-04-01
Backward C(sup(+-))πN amplitudes are determined from πN→Nπ and NantiN→2π differential cross sections in such a way that they are consistent with the analyticity properties and information of the unphysical ππ→NantiN amplitudes. Combining the result with forward C(sup(+-)) amplitudes positive and negative parity resonances are extracted. An error analysis of the amplitudes is performed. (author)
John R. Jones
1985-01-01
Quaking aspen is the most widely distributed native North American tree species (Little 1971, Sargent 1890). It grows in a great diversity of regions, environments, and communities (Harshberger 1911). Only one deciduous tree species in the world, the closely related Eurasian aspen (Populus tremula), has a wider range (Weigle and Frothingham 1911)....
Study of inelastic decay of amplitudes in 49V
International Nuclear Information System (INIS)
Chou, B.H.
1980-01-01
Inelastic decay amplitudes from d-wave resonances in 49 V were obtained for 80 resonances in the proton energy range 2.2 to 3.1 MeV. With the 3 MV Van de Graaff accelerator and high resolution system at the Triangle Universities Nuclear Laboratory, an overall resolution of 350 eV was obtained. The experiment consisted of measurements of the angular distributions of the inelastically scattered protons and the subsequent deexcitation gamma rays. Forty five resonances were assigned J/sup π/ = 5/2 + , while thirty five resonances were assigned 3/2 + . The magnitudes of three inelastic decay amplitudes and the relative signs between these three amplitudes were determined. Large amplitude correlations were observed; the data are in the striking disagreement with the extreme statistical model. The present results provide the first explicit test of the multivariate reduced width amplitude distribution of Krieger and Porter; the agreement is excellent. The physical origin of these channel correlations has not yet been explained
Multivariable controller for discrete stochastic amplitude-constrained systems
Directory of Open Access Journals (Sweden)
Hannu T. Toivonen
1983-04-01
Full Text Available A sub-optimal multivariable controller for discrete stochastic amplitude-constrained systems is presented. In the approach the regulator structure is restricted to the class of linear saturated feedback laws. The stationary covariances of the controlled system are evaluated by approximating the stationary probability distribution of the state by a gaussian distribution. An algorithm for minimizing a quadratic loss function is given, and examples are presented to illustrate the performance of the sub-optimal controller.
STUDY OF SEMILEPTONIC DECAYS OF B MESONS TO CHARMED BARYONS
International Nuclear Information System (INIS)
Jessop, Colin P.
2003-01-01
Using data collected by the CLEO II detector at a center-of-mass energy on or near the Υ(4S) resonance, we have determined the 90% confidence level upper limit Β((bar B) → Λ c + e - X)/Β((bar B) → (Λ c + or (bar Λ) c - )X) - → Λ c + (bar p)e - (bar ν) e )/Β((bar B) → Λ c + (bar p)X) c + (bar p)X)/Β((bar B) → (Λ c + or (bar Λ) c - )X) = 0.57 ± 0.05 ± 0.05
Composite leptoquarks and anomalies in B-meson decays
Energy Technology Data Exchange (ETDEWEB)
Gripaios, Ben [Cavendish Laboratory, University of Cambridge,J.J. Thomson Avenue, Cambridge, CB3 0HE (United Kingdom); Nardecchia, M. [Cavendish Laboratory, University of Cambridge,J.J. Thomson Avenue, Cambridge, CB3 0HE (United Kingdom); DAMTP, University of Cambridge,Wilberforce Road, Cambridge, CB3 0WA (United Kingdom); Renner, S.A. [DAMTP, University of Cambridge,Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)
2015-05-04
We attempt to explain recent anomalies in semileptonic B decays at LHCb via a composite Higgs model, in which both the Higgs and an SU(2){sub L}-triplet leptoquark arise as pseudo-Goldstone bosons of the strong dynamics. Fermion masses are assumed to be generated via the mechanism of partial compositeness, which largely determines the leptoquark couplings and implies non-universal lepton interactions. The latter are needed to accommodate tensions in the b→sμμ dataset and to be consistent with a discrepancy measured at LHCb in the ratio of B{sup +}→K{sup +}μ{sup +}μ{sup −} to B{sup +}→K{sup +}e{sup +}e{sup −} branching ratios. The data imply that the leptoquark should have a mass of around a TeV. We find that the model is not in conflict with current flavour or direct production bounds, but we identify a few observables for which the new physics contributions are close to current limits and where the leptoquark is likely to show up in future measurements. The leptoquark will be pair-produced at the LHC and decay predominantly to third-generation quarks and leptons, and LHC13 searches will provide further strong bounds.
Observation of Bell Inequality violation in B mesons
Go, A
2004-01-01
A pair of $B^0\\bar B^0$ mesons from $\\Upsilon(4S)$ decay exhibit EPR type non-local particle-antiparticle (flavor) correlation. It is possible to write down Bell Inequality (in the CHSH form: $S\\le2$) to test the non-locality assumption of EPR. Using semileptonic $B^0$ decays of $\\Upsilon(4S)$ at Belle experiment, a clear violation of Bell Inequality in particle-antiparticle correlation is observed: S=2.725+-0.167(stat)+-0.092(syst)
Study of semileptonic decays of B mesons to charmed baryons
International Nuclear Information System (INIS)
Bonvicini, G.; Cinabro, D.; Greene, R.; Perera, L.P.; Zhou, G.J.; Chadha, M.; Chan, S.; Eigen, G.; Miller, J.S.; OGrady, C.; Schmidtler, M.; Urheim, J.; Weinstein, A.J.; Wuerthwein, F.; Bliss, D.W.; Masek, G.; Paar, H.P.; Prell, S.; Sharma, V.; Asner, D.M.; Gronberg, J.; Hill, T.S.; Lange, D.J.; Morrison, R.J.; Nelson, H.N.; Nelson, T.K.; Roberts, D.; Ryd, A.; Balest, R.; Behrens, B.H.; Ford, W.T.; Park, H.; Roy, J.; Smith, J.G.; Alexander, J.P.; Baker, R.; Bebek, C.; Berger, B.E.; Berkelman, K.; Bloom, K.; Boisvert, V.; Cassel, D.G.; Crowcroft, D.S.; Dickson, M.; Dombrowski, S. von; Drell, P.S.; Ecklund, K.M.; Ehrlich, R.; Foland, A.D.; Gaidarev, P.; Gibbons, L.; Gittelman, B.; Gray, S.W.; Hartill, D.L.; Heltsley, B.K.; Hopman, P.I.; Kandaswamy, J.; Kim, P.C.; Kreinick, D.L.; Lee, T.; Liu, Y.; Mistry, N.B.; Ng, C.R.; Nordberg, E.; Ogg, M.; Patterson, J.R.; Peterson, D.; Riley, D.; Soffer, A.; Valant-Spaight, B.; Ward, C.; Athanas, M.; Avery, P.; Jones, C.D.; Lohner, M.; Patton, S.; Prescott, C.; Yelton, J.; Zheng, J.; Brandenburg, G.; Briere, R.A.; Ershov, A.; Gao, Y.S.; Kim, D.Y.; Wilson, R.; Yamamoto, H.; Browder, T.E.; Li, Y.; Rodriguez, J.L.; Bergfeld, T.; Eisenstein, B.I.; Ernst, J.; Gladding, G.E.; Gollin, G.D.; Hans, R.M.; Johnson, E.; Karliner, I.; Marsh, M.A.; Palmer, M.; Selen, M.; Thaler, J.J.
1998-01-01
Using data collected by the CLEO II detector at a center-of-mass energy on or near the Υ(4S) resonance, we have determined the 90% confidence level upper limit B(bar B→Λ c + e - X)/B(bar B→(Λ c + or bar Λ c - )X) - →Λ c + bar pe - bar ν e )/B(bar B→Λ c + bar pX) c + bar pX)/B(bar B→(Λ c + or bar Λ c - )X)=0.57±0.05±0.05. copyright 1998 The American Physical Society
Decay of B mesons into charged and neutral kaons
International Nuclear Information System (INIS)
Brody, A.; Chen, A.; Goldberg, M.; Horwitz, N.; Kandaswamy, J.; Kooy, H.; Moneti, G.C.; Pistilli, P.; Alam, M.S.; Csorna, S.E.; Fridman, A.; Hicks, R.G.; Panvini, R.S.; Andrews, D.; Avery, P.; Berkelman, K.; Cabenda, R.; Cassel, D.G.; DeWire, J.W.; Ehrlich, R.; Ferguson, T.; Gilchriese, M.G.D.; Gittelman, B.; Hartill, D.L.; Herrup, D.; Herzlinger, M.; Kreinick, D.L.; Mistry, N.B.; Morrow, F.; Nordberg, E.; Perchonok, R.; Plunkett, R.; Shinsky, K.A.; Siemann, R.H.; Silverman, A.; Stein, P.C.; Stone, S.; Talman, R.; Weber, D.; Wilcke, R.; Sadoff, A.J.; Bebek, C.; Haggerty, J.; Hempstead, M.; Izen, J.M.; Longuemare, C.; Loomis, W.A.; MacKay, W.W.; Pipkin, F.M.; Rohlf, J.; Tanenbaum, W.; Wilson, R.; Chadwick, K.; Chauveau, J.; Ganci, P.; Gentile, T.; Kagan, H.; Kass, R.; Melissinos, A.C.; Olsen, S.L.; Poling, R.; Rosenfeld, C.; Rucinski, G.; Thorndike, E.H.; Green, J.; Mueller, J.J.; Sannes, F.; Skubic, P.; Snyder, A.; Stone, R.
1982-01-01
Data on inclusive kaon production in e + e - annihilations at energies in the vicinity of the UPSILON(4S) resonance are presented. A clear excess of kaons is observed on the UPSILON(4S) compared to the continuum. Under the assumption that the UPSILON(4S) decays into BB-bar, a total of 3.38 +- 0.34 +- 0.68 kaons per UPSILON(4S) decay is found. In the context of the standard B-decay model this leads to a value for (b→c)/(b→all) of 1.09 +- 0.33 +- 0.13
Masses of scalar and axial-vector B mesons revisited
Energy Technology Data Exchange (ETDEWEB)
Cheng, Hai-Yang [Academia Sinica, Institute of Physics, Taipei (China); Yu, Fu-Sheng [Lanzhou University, School of Nuclear Science and Technology, Lanzhou (China)
2017-10-15
The SU(3) quark model encounters a great challenge in describing even-parity mesons. Specifically, the q anti q quark model has difficulties in understanding the light scalar mesons below 1 GeV, scalar and axial-vector charmed mesons and 1{sup +} charmonium-like state X(3872). A common wisdom for the resolution of these difficulties lies on the coupled channel effects which will distort the quark model calculations. In this work, we focus on the near mass degeneracy of scalar charmed mesons, D{sub s0}{sup *} and D{sub 0}{sup *0}, and its implications. Within the framework of heavy meson chiral perturbation theory, we show that near degeneracy can be qualitatively understood as a consequence of self-energy effects due to strong coupled channels. Quantitatively, the closeness of D{sub s0}{sup *} and D{sub 0}{sup *0} masses can be implemented by adjusting two relevant strong couplings and the renormalization scale appearing in the loop diagram. Then this in turn implies the mass similarity of B{sub s0}{sup *} and B{sub 0}{sup *0} mesons. The P{sub 0}{sup *}P{sub 1}{sup '} interaction with the Goldstone boson is crucial for understanding the phenomenon of near degeneracy. Based on heavy quark symmetry in conjunction with corrections from QCD and 1/m{sub Q} effects, we obtain the masses of B{sup *}{sub (s)0} and B{sup '}{sub (s)1} mesons, for example, M{sub B{sub s{sub 0{sup *}}}} = (5715 ± 1) MeV + δΔ{sub S}, M{sub B}{sup {sub '{sub s{sub 1}}}} = (5763 ± 1) MeV + δΔ{sub S} with δΔ{sub S} being 1/m{sub Q} corrections. We find that the predicted mass difference of 48 MeV between B{sup '}{sub s1} and B{sub s0}{sup *} is larger than that of 20-30 MeV inferred from the relativistic quark models, whereas the difference of 15 MeV between the central values of M{sub B}{sup {sub '{sub s{sub 1}}}} and M{sub B}{sup {sub '{sub 1}}} is much smaller than the quark model expectation of 60-100 MeV. Experimentally, it is important to have a precise mass measurement of D{sub 0}{sup *} mesons, especially the neutral one, to see if the non-strange scalar charmed meson is heavier than the strange partner as suggested by the recent LHCb measurement of the D{sub 0}{sup *±}. (orig.)
Studies of rare B meson decays with the CMS detector
Shi, Xin
2013-01-01
Rare beauty decays are usually an excellent probe to the physics beyond the standard model. Especially those decays, that are proceed through flavor-changing neutral currents, can have the interference from new physics with the loop diagrams. Some of these decays are well predicted by the theory, such as $B_{s,d} \\to \\mu^+\\mu^-$ branching fractions and the $A_\\mathrm{FB}$ of the $B\\to K^{*}\\mu^+\\mu^-$, are the gold plate searches at the colliders. In this talk these searches in pp collisions at LHC using the data collected bythe CMS detector are presented.
B meson mixing and low-energy dynamical flavour
International Nuclear Information System (INIS)
Chkareuli, J.L.
1990-01-01
The low-energy quantum flavour dynamics offered by the local horizontal symmetry SU(3) H for quark-lepton families is presented in some detail. It is shown that spontaneous breaking of this symmetry naturally leads to the simple Fritzsch ansatz for the quark mass matrices and simultaneously provides the observed magnitude of B d 0 -anti B d 0 mixing without any appreciable perturbation of the K 0 -anti K 0 system. This mixing determines a real scale for the masses of the SU(3) H gauge bosons. In marked contrast to the standard model this new approach is certain to give rise to small B s 0 -anti B s 0 mixing and large D 0 -anti D 0 mixing that can be of real interest in the near future. (orig.)
Rare B-meson decays at the crossroads
Energy Technology Data Exchange (ETDEWEB)
Ali, Ahmed
2016-07-15
Experimental era of rare B-decays started with the measurement of B→K{sup *}γ by CLEO in 1993, followed two years later by the measurement of the inclusive decay B→X{sub s}γ, which serves as the standard candle in this field. The frontier has moved in the meanwhile to the experiments at the LHC, in particular, LHCb, with the decay B{sup 0}→μ{sup +}μ{sup -} at about 1 part in 10{sup 10} being the smallest branching fraction measured so far. Experimental precision achieved in this area has put the standard model to unprecedented stringent tests and more are in the offing in the near future. I review some key measurements in radiative, semileptonic and leptonic rare B-decays, contrast them with their estimates in the SM, and focus on several mismatches reported recently. They are too numerous to be ignored, yet, standing alone, none of them is significant enough to warrant the breakdown of the SM. Rare B-decays find themselves at the crossroads, possibly pointing to new horizons, but quite likely requiring an improved theoretical description in the context of the SM. An independent precision experiment such as Belle II may help greatly in clearing some of the current experimental issues.
Search for neutral B meson decays to two charged leptons
Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alpat, B; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alverson, G; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Antreasyan, D; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Ball, R C; Banerjee, S; Banicz, K; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Borgia, B; Boucham, A; Bourilkov, D; Bourquin, Maurice; Boutigny, D; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Buytenhuijs, A O; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Caria, M; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chan, A; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chen, M; Chiefari, G; Chien, C Y; Choi, M T; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Cohn, H O; Coignet, G; Colijn, A P; Colino, N; Commichau, V; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; De Boeck, H; Degré, A; Deiters, K; Denes, P; De Notaristefani, F; DiBitonto, Daryl; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dorne, I; Dova, M T; Drago, E; Duchesneau, D; Duinker, P; Durán, I; Dutta, S; Easo, S; Efremenko, Yu V; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ernenwein, J P; Extermann, Pierre; Fabre, M; Faccini, R; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Fenyi, B; Ferguson, T; Fernández, D; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gau, S S; Gentile, S; Gerald, J; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; Gupta, V K; Gurtu, A; Gutay, L J; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Van Hoek, W C; Hofer, H; Hoorani, H; Hou, S R; Hu, G; Innocente, Vincenzo; Janssen, H; Jenkes, K; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamrad, D; Kamyshkov, Yu A; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, J K; Kim, S C; Kim, Y G; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kuijten, H; Kunin, A; Ladrón de Guevara, P; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee Jae Sik; Lee, K Y; Leggett, C; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lieb, E H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangla, S; Marchesini, P A; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; McNally, D; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Mihul, A; Van Mil, A J W; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Morganti, S; Moulik, T; Mount, R; Müller, S; Muheim, F; Nagy, E; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nippe, A; Nisati, A; Nowak, H; Opitz, H; Organtini, G; Ostonen, R; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Pinto, J C; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Produit, N; Prokofev, D; Prokofiev, D O; Rahal-Callot, G; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Read, K; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riemers, B C; Riles, K; Rind, O; Ro, S; Robohm, A; Rodin, J; Rodríguez-Calonge, F J; Roe, B P; Romero, L; Rosier-Lees, S; Rosselet, P; Van Rossum, W; Roth, S; Rubio, Juan Antonio; Rykaczewski, H; Salicio, J; Sánchez, E; Santocchia, A; Sarakinos, M E; Sarkar, S; Sassowsky, M; Sauvage, G; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schmitz, P; Schneegans, M; Schöneich, B; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Sens, Johannes C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Sopczak, André; Soulimov, V; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, H; Stoyanov, B; Strässner, A; Strauch, K; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Ting, Samuel C C; Ting, S M; Tonutti, M; Tonwar, S C; Tóth, J; Tully, C; Tuchscherer, H; Tung, K L; Uchida, Y; Ulbricht, J; Uwer, U; Valente, E; Van de Walle, R T; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Vivargent, M; Völkert, R; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wittgenstein, F; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yao, X Y; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z; Zhang, Z P; Zhou, B; Zhou, Y; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F
1997-01-01
The decays $\\mathrm{B_d^0,\\,B_s^0 \\rightarrow e^+e^-,\\,\\mu^+\\mu^-,\\, e^\\pm\\mu^\\mp}$ are searched for in 3.5 million hadronic ${\\mathrm{Z}}$ events, which constitute the full LEP I data sample collected by the L3 detector. No signals are observed, therefore upper limits at the 90\\%(95\\%) confidence levels are set on the following branching fractions: % \\begin{center}% {\\setlength{\\tabcolsep}{2pt} \\begin{tabular}{lccccclcccc}% % Br$({\\mathrm{B_d^0 \\rightarrow {\\mathrm{e^+e^-}}}})$ & $<$ & $1.4(1.8)$ & $\\times$ & $ 10^{-5}$; & \\hspace*{5mm} & Br$({\\mathrm{B_s^0 \\rightarrow {\\mathrm{e^+e^-}}}})$ & $<$ & $5.4(7.0)$ & $\\times$ & $ 10^{-5}$; \\\\% Br$({\\mathrm{B_d^0 \\rightarrow \\mu^+\\mu^-}})$ & $<$ & $1.0(1.4)$ & $\\times$ & $ 10^{-5}$; & \\hspace*{5mm} & Br$({\\mathrm{B_s^0 \\rightarrow \\mu^+\\mu^-}})$ & $<$ & $3.8(5.1)$ & $\\times$ & $ 10^{-5}$; \\\\% Br$({\\mathrm{B_d^0 \\rightarrow {\\mathrm{e^\\pm\\mu^\\mp}}}})$ & $<$ & $1.6(...
Rare B-meson decays at the crossroads
International Nuclear Information System (INIS)
Ali, Ahmed
2016-07-01
Experimental era of rare B-decays started with the measurement of B→K * γ by CLEO in 1993, followed two years later by the measurement of the inclusive decay B→X s γ, which serves as the standard candle in this field. The frontier has moved in the meanwhile to the experiments at the LHC, in particular, LHCb, with the decay B 0 →μ + μ - at about 1 part in 10 10 being the smallest branching fraction measured so far. Experimental precision achieved in this area has put the standard model to unprecedented stringent tests and more are in the offing in the near future. I review some key measurements in radiative, semileptonic and leptonic rare B-decays, contrast them with their estimates in the SM, and focus on several mismatches reported recently. They are too numerous to be ignored, yet, standing alone, none of them is significant enough to warrant the breakdown of the SM. Rare B-decays find themselves at the crossroads, possibly pointing to new horizons, but quite likely requiring an improved theoretical description in the context of the SM. An independent precision experiment such as Belle II may help greatly in clearing some of the current experimental issues.
B-meson spectroscopy in HQET at order 1/m
International Nuclear Information System (INIS)
Bernardoni, Fabio; Fritsch, Patrick; Univ. Autonoma de Madrid; Gerardin, Antoine; Univ. Blaise Pascal CNRS/IN2P3, Aubiere; Heitger, Jochen; Hippel, Georg von; Simma, Hubert
2015-05-01
We present a study of the B spectrum performed in the framework of Heavy Quark Effective Theory expanded to next-to-leading order in 1/m b and non-perturbative in the strong coupling. Our analyses have been performed on N f =2 lattice gauge field ensembles corresponding to three different lattice spacings and a wide range of pion masses. We obtain the B s -meson mass and hyperfine splittings of the B- and B s -mesons that are in good agreement with the experimental values and examine the mass difference m B s -m B as a further cross-check of our previous estimate of the b-quark mass. We also report on the mass splitting between the first excited state and the ground state in the B and B s systems.
B meson excitations with chirally improved light quarks
Energy Technology Data Exchange (ETDEWEB)
Burch, Tommy [University of Regensburg (Germany); University of Utah (United States); Chakrabarti, Dipanker [University of Regensburg (Germany); Swansea University (United Kingdom); Hagen, Christian; Maurer, Thilo; Schaefer, Andreas [University of Regensburg (Germany); Lang, Christian; Limmer, Markus [University of Graz (Austria)
2008-07-01
We present our latest results for the excitations of static-light mesons on both quenched and unquenched lattices, where the light quarks are simulated using the chirally improved (CI) lattice Dirac operator. To improve our results we use a new technique to estimate the light quark propagator. The b quark is treated as infinitely heavy, in the so-called static approximation. We are able to find several excited states reaching from S-waves up to D-waves for both B and B{sub s}.
Search for Penguin Decays of $B$ Mesons at CDF
Energy Technology Data Exchange (ETDEWEB)
Kordas, Kostas [McGill U.
2000-01-01
Using a data sample of integrated luminosity $\\int$ Ldt = 28.9 $\\pm$ 1.2 $pb^{-1}$ of proton antiproton collisions at a center-of-mass energy $\\sqrt{s}$ = 1.8 TeV collected with the CDF detector at the Fermilab Tevatron collider, we searched for "penguin" radiative decays of $B^0_d$ and $B^0_s$ mesons which involve the flavor-changing neutral-current transition of a $b$ quark into an $s$ quark with the emission of a photon, $b \\to s\\gamma$ . Speciffcally, we searched for the decays $B^0_d \\to K^{*0}$, $K^{*0} \\to K^+ \\pi^-$ and $B^0_s \\to \\phi\\gamma, \\phi \\to K^+ K^-$, as well as for the charge conjugate chains....
An asymmetric B-meson factory at PEP
International Nuclear Information System (INIS)
Garren, A.; Chattopadhyay, S.; Chin, Y.; Oddone, P.; Zisman, M.S.; Donald, M.; Feldman, G.; Paterson, J.M.; Rees, J.
1989-03-01
A preliminary design for a B-factory has been made using asymmetric collisions between positrons in the PEP storage ring and electrons in a new, log-energy ring. The design utilizes small-aperture, permanent-magnet quadrupoles close to the interaction point (IP). Optimization of optical and beam parameters at the IP will be discussed, as well as the lattice design of the interaction region and of the rings. 7 refs., 3 figs., 2 tabs
Inclusive decays of {ital B} mesons to charmonium
Energy Technology Data Exchange (ETDEWEB)
Balest, R.; Cho, K.; Ford, W.T.; Johnson, D.R.; Lingel, K.; Lohner, M.; Rankin, P.; Smith, J.G.; Alexander, J.P.; Bebek, C.; Berkelman, K.; Bloom, K.; Browder, T.E.; Cassel, D.G.; Cho, H.A.; Coffman, D.M.; Crowcroft, D.S.; Drell, P.S.; Dumas, D.J.; Ehrlich, R.; Gaidarev, P.; Garcia-Sciveres, M.; Geiser, B.; Gittelman, B.; Gray, S.W.; Hartill, D.L.; Heltsley, B.K.; Henderson, S.; Jones, C.D.; Jones, S.L.; Kandaswamy, J.; Katayama, N.; Kim, P.C.; Kreinick, D.L.; Ludwig, G.S.; Masui, J.; Mevissen, J.; Mistry, N.B.; Ng, C.R.; Nordberg, E.; Patterson, J.R.; Peterson, D.; Riley, D.; Salman, S.; Sapper, M.; Wuerthwein, F.; Avery, P.; Freyberger, A.; Rodriguez, J.; Yang, S.; Yelton, J.; Cinabro, D.; Liu, T.; Saulnier, M.; Wilson, R.; Yamamoto, H.; Bergfeld, T.; Eisenstein, B.I.; Gollin, G.; Ong, B.; Palmer, M.; Selen, M.; Thaler, J.J.; Edwards, K.W.; Ogg, M.; Bellerive, A.; Britton, D.I.; Hyatt, E.R.F.; MacFarlane, D.B.; Patel, P.M.; Spaan, B.; Sadoff, A.J.; Ammar, R.; Baringer, P.; Bean, A.; Besson, D.; Coppage, D.; Copty, N.; Davis, R.; Hancock, N.; Kelly, M.; Kotov, S.; Kravchenko, I.; Kwak, N.; Lam, H.; Kubota, Y.; Lattery, M.; Momayezi, M.; Nelson, J.K.; Patton, S.; Poling, R.; Savinov, V.; Schrenk, S.; Wang, R.; Alam, M.S.; Kim, I.J.; Ling, Z.; Mahmood, A.H.; O`Neill, J.J.; Severini, H.; Sun, C.R.; Wappler, F.; Crawford, G.; Daubenmier, C.M.; Fulton, R.; Fujino, D.; Gan, K.K.; Honscheid, K.; Kagan, H.; Kass, R.; Lee, J.; Sung, M.; White, C.; Wolf, A.; Zoeller, M.M.; Butler, F.; Fu, X.; Nemati, B.; Ross, W.R.; Skubic, P.; Wood, M.; Bishai, M.; Fast, J.; Gerndt, E.; Hinson, J.W.; McIlwain, R.L.; Miao, T.; Miller, D.H.; Modesitt, M.; Payne, D.; Shibata, E.I.; Shipsey, I.P.J.; Wang, P.N.; Battle, M.; Ernst, J.; Gibbons, L.; Kwon, Y.; Roberts, S.; Thorndike, E.H.; Wang, C.H.; Dominick, J.; Lambrecht, M.; Sanghera, S.; Shelkov, V.; Skwarnicki, T.; Stroynowski, R.; Volobouev, I.; Wei, G.; Artuso, M.; Gao, M.; Goldberg, M.; He, D.; Horwitz, N.; Moneti, G.C.; (CLEO Collabor...
1995-09-01
We have used the CLEO-II detector at the Cornell Electron Storage Ringe (CESR) to study the inclusive production of charmonium mesons in a sample of 2.15 million {ital B{bar B}} events. We find inclusive branching fractions of (1.12{plus_minus}0.04{plus_minus}0.06)% for {ital B}{r_arrow}{ital J}/{psi}{ital X}, (0.34{plus_minus}0.04{plus_minus}0.03)% for {ital B}{r_arrow}{psi}{prime}{ital X}, and (0.40{plus_minus}0.06{plus_minus}0.04)% for {ital B}{r_arrow}{chi}{sub {ital c}1}{ital X}. We also find some evidence for the inclusive production of {chi}{sub {ital c}2}, and set an upper limit for the branching fraction of the inclusive decay {ital B}{r_arrow}{eta}{sub {ital c}}{ital X} of 0.9% at 90% confidence level. Momentum spectra for inclusive {ital J}/{psi}, {psi}{prime}, and {chi}{sub {ital c}1} production are presented. These measurements are compared to theoretical calculations.
International Nuclear Information System (INIS)
Anikin, I. V.; Besse, A.; Ivanov, D. Yu.; Pire, B.; Szymanowski, L.; Wallon, S.
2011-01-01
We apply a previously developed scheme to consistently include the twist-3 distribution amplitudes for transversely polarized ρ mesons in order to evaluate, in the framework of k T factorization, the helicity amplitudes for exclusive leptoproduction of a light vector meson, at leading order in α s . We compare our results with high energy experimental data for the ratios of helicity amplitudes T 11 /T 00 and T 01 /T 00 and get a good description of the data.
On the singularities of massive superstring amplitudes
International Nuclear Information System (INIS)
Foda, O.
1987-01-01
Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are not terms in the perturbative expansion of physical S-matrix elements: These can be defined only with massless external states. Consistent massive amplitudes repuire an off-shell formalism. (orig.)
On the singularities of massive superstring amplitudes
Energy Technology Data Exchange (ETDEWEB)
Foda, O.
1987-06-04
Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are not terms in the perturbative expansion of physical S-matrix elements: These can be defined only with massless external states. Consistent massive amplitudes repuire an off-shell formalism.
New relations for graviton-matter amplitudes
CERN. Geneva
2018-01-01
I report on recent progress in finding compact expressions for scattering amplitudes involving gravitons and gluons as well as massive scalar and fermionic matter particles. At tree level the single graviton emission amplitudes may be expressed as linear combination of purely non-gravitational ones. At the one-loop level recent results on all four point Einstein-Yang-Mills amplitudes with at most one opposite helicity state using unitarity methods are reported.
Analytical properties of multiple production amplitudes
Energy Technology Data Exchange (ETDEWEB)
Medvedev, B V; Pavlov, V P; Polivanov, M K; Sukhanov, A D [Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Teoreticheskoj i Ehksperimental' noj Fiziki; AN SSSR, Moscow. Matematicheskij Inst.)
1984-05-01
Local analytical properties of amplitudes 2..-->..3 and 2..-->..4 are studied. The amplitudes are shown to be analytical functions of total and partial energies at fixed momentum transfers in the neighbourhood of any physical point on the energy shell 14 (for the 2..-->..3 case) and 242 (for the 2..-->..4 case) boundary values are expressed through the amplitudes of real processes.
Gravothermal catastrophe of finite amplitude
Energy Technology Data Exchange (ETDEWEB)
Hachisu, I; Sugimoto, D [Tokyo Univ. (Japan). Coll. of General Education; Nakada, Y; Nomoto, K
1978-08-01
Development of the gravothermal catastrophe is followed numerically for self-gravitating gas system enclosed by an adiabatic wall, which is isothermal in the initial state. It is found that the final fate of the catastrophe is in two ways depending on the initial perturbations. When the initial perturbation produces a temperature distribution decreasing outward, the contraction proceeds in the central region and the central density increases unlimitedly, as the heat flows outward. When the initial temperature distribution is increasing outward, on the other hand, the central region expands as the heat flows into the central region. Then the density contrast is reduced and finally the system reaches another isothermal configuration with the same energy but with a lower density contrast and a higher entropy. This final configuration is gravothermally stable and may be called a thermal system. In the former case of the unlimited contraction, the final density profile is determined essentially by the density and temperature dependence of the heat conductivity. In the case of a system under the force of the inverse square law, the final density distribution is well approximated by a power law so that the mass contained in the condensed core is relatively small. A possibility of formation of a black hole in stellar systems is also discussed.
Gravothermal catastrophe of finite amplitude
International Nuclear Information System (INIS)
Hachisu, Izumi; Sugimoto, Daiichiro; Nakada, Yoshikazu; Nomoto, Ken-ichi.
1978-01-01
Development of the gravothermal catastrophe is followed numerically for self-gravitating gas system enclosed by an adiabatic wall, which is isothermal in the initial state. It is found that the final fate of the catastrophe is in two ways depending on the initial perturbations. When the initial perturbation produces a temperature distribution decreasing outward, the contraction proceeds in the central region and the central density increases unlimitedly, as the heat flows outward. When the initial temperature distribution is increasing outward, on the other hand, the central region expands as the heat flows into the central region. Then the density contrast is reduced and finally the system reaches another isothermal configuration with the same energy but with a lower density contrast and a higher entropy. This final configuration is gravothermally stable and may be called a thermal system. In the former case of the unlimited contraction, the final density profile is determined essentially by the density and temperature dependence of the heat conductivity. In the case of a system under the force of the inverse square law, the final density distribution is well approximated by a power law so that the mass contained in the condensed core is relatively small. A possibility of formation of a black hole in stellar systems is also discussed. (author)
Amplitude structure of off-shell processes
International Nuclear Information System (INIS)
Fearing, H.W.; Goldstein, G.R.; Moravcsik, M.J.
1984-01-01
The structure of M matrices, or scattering amplitudes, and of potentials for off-shell processes is discussed with the objective of determining how one can obtain information on off-shell amplitudes of a process in terms of the physical observables of a larger process in which the first process is embedded. The procedure found is inevitably model dependent, but within a particular model for embedding, a determination of the physically measurable amplitudes of the larger process is able to yield a determination of the off-shell amplitudes of the embedded process
Amplitude modulation reduces loudness adaptation to high-frequency tones.
Wynne, Dwight P; George, Sahara E; Zeng, Fan-Gang
2015-07-01
Long-term loudness perception of a sound has been presumed to depend on the spatial distribution of activated auditory nerve fibers as well as their temporal firing pattern. The relative contributions of those two factors were investigated by measuring loudness adaptation to sinusoidally amplitude-modulated 12-kHz tones. The tones had a total duration of 180 s and were either unmodulated or 100%-modulated at one of three frequencies (4, 20, or 100 Hz), and additionally varied in modulation depth from 0% to 100% at the 4-Hz frequency only. Every 30 s, normal-hearing subjects estimated the loudness of one of the stimuli played at 15 dB above threshold in random order. Without any amplitude modulation, the loudness of the unmodulated tone after 180 s was only 20% of the loudness at the onset of the stimulus. Amplitude modulation systematically reduced the amount of loudness adaptation, with the 100%-modulated stimuli, regardless of modulation frequency, maintaining on average 55%-80% of the loudness at onset after 180 s. Because the present low-frequency amplitude modulation produced minimal changes in long-term spectral cues affecting the spatial distribution of excitation produced by a 12-kHz pure tone, the present result indicates that neural synchronization is critical to maintaining loudness perception over time.
Gearbox Vibration Signal Amplitude and Frequency Modulation
Directory of Open Access Journals (Sweden)
Fakher Chaari
2012-01-01
Full Text Available Gearboxes usually run under fluctuating load conditions during service, however most of papers available in the literature describe models of gearboxes under stationary load conditions. Main task of published papers is fault modeling for their detection. Considering real situation from industry, the assumption of stationarity of load conditions cannot be longer kept. Vibration signals issued from monitoring in maintenance operations differ from mentioned models (due to load non-stationarity and may be difficult to analyze which lead to erroneous diagnosis of the system. The objective of this paper is to study the influence of time varying load conditions on a gearbox dynamic behavior. To investigate this, a simple spur gear system without defects is modeled. It is subjected to a time varying load. The speed-torque characteristic of the driving motor is considered. The load variation induces speed variation, which causes a variation in the gearmesh stiffness period. Computer simulation shows deep amplitude modulations with sidebands that don't differ from those obtained when there is a defective tooth. In order to put in evidence the time varying load effects, Short Time Fourier Transform and then Smoothed Wigner-Ville distribution are used. Results show that the last one is well suited for the studied case.
Yang, Liping; Zhang, Lei; He, Jiansen; Tu, Chuanyi; Li, Shengtai; Wang, Xin; Wang, Linghua
2018-03-01
Multi-order structure functions in the solar wind are reported to display a monofractal scaling when sampled parallel to the local magnetic field and a multifractal scaling when measured perpendicularly. Whether and to what extent will the scaling anisotropy be weakened by the enhancement of turbulence amplitude relative to the background magnetic strength? In this study, based on two runs of the magnetohydrodynamic (MHD) turbulence simulation with different relative levels of turbulence amplitude, we investigate and compare the scaling of multi-order magnetic structure functions and magnetic probability distribution functions (PDFs) as well as their dependence on the direction of the local field. The numerical results show that for the case of large-amplitude MHD turbulence, the multi-order structure functions display a multifractal scaling at all angles to the local magnetic field, with PDFs deviating significantly from the Gaussian distribution and a flatness larger than 3 at all angles. In contrast, for the case of small-amplitude MHD turbulence, the multi-order structure functions and PDFs have different features in the quasi-parallel and quasi-perpendicular directions: a monofractal scaling and Gaussian-like distribution in the former, and a conversion of a monofractal scaling and Gaussian-like distribution into a multifractal scaling and non-Gaussian tail distribution in the latter. These results hint that when intermittencies are abundant and intense, the multifractal scaling in the structure functions can appear even if it is in the quasi-parallel direction; otherwise, the monofractal scaling in the structure functions remains even if it is in the quasi-perpendicular direction.
Automation of loop amplitudes in numerical approach
International Nuclear Information System (INIS)
Fujimoto, J.; Ishikawa, T.; Shimizu, Y.; Kato, K.; Nakazawa, N.; Kaneko, T.
1997-01-01
An automatic calculating system GRACE-L1 of one-loop Feynman amplitude is reviewed. This system can be applied to 2 to 2-body one-loop processes. A sample calculation of 2 to 3-body one-loop amplitudes is also presented. (orig.)
On the singularities of massive superstring amplitudes
Foda, O.
1987-01-01
Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are
Scattering Amplitudes via Algebraic Geometry Methods
DEFF Research Database (Denmark)
Søgaard, Mads
Feynman diagrams. The study of multiloop scattering amplitudes is crucial for the new era of precision phenomenology at the Large Hadron Collider (LHC) at CERN. Loop-level scattering amplitudes can be reduced to a basis of linearly independent integrals whose coefficients are extracted from generalized...
Full amplitude models of 15 day Cepheids
International Nuclear Information System (INIS)
Cogan, B.C.; Cox, A.N.; King, D.S.
1980-01-01
Numerical models of Cepheids have been computed with a range of effective temperatures and compositions. The amplitudes increase if the helium abundance increases or if the effective temperature decreases. The latter effect is contrary to observational data. The models also exhibit velocity amplitudes which are much lower than those observed
Helicity amplitudes for matter-coupled gravity
International Nuclear Information System (INIS)
Aldrovandi, R.; Novaes, S.F.; Spehler, D.
1992-07-01
The Weyl-van der Waerden spinor formalism is applied to the evaluation of helicity invariant amplitudes in the framework of linearized gravitation. The graviton couplings to spin-0, 1 - 2 , 1, and 3 - 2 particles are given, and, to exhibit the reach of this method, the helicity amplitudes for the process electron + positron → photon + graviton are obtained. (author)
Nobukawa, Teruyoshi; Nomura, Takanori
2016-09-05
A holographic data storage system using digital holography is proposed to record and retrieve multilevel complex amplitude data pages. Digital holographic techniques are capable of modulating and detecting complex amplitude distribution using current electronic devices. These techniques allow the development of a simple, compact, and stable holographic storage system that mainly consists of a single phase-only spatial light modulator and an image sensor. As a proof-of-principle experiment, complex amplitude data pages with binary amplitude and four-level phase are recorded and retrieved. Experimental results show the feasibility of the proposed holographic data storage system.
New relations for gauge-theory amplitudes
International Nuclear Information System (INIS)
Bern, Z.; Carrasco, J. J. M.; Johansson, H.
2008-01-01
We present an identity satisfied by the kinematic factors of diagrams describing the tree amplitudes of massless gauge theories. This identity is a kinematic analog of the Jacobi identity for color factors. Using this we find new relations between color-ordered partial amplitudes. We discuss applications to multiloop calculations via the unitarity method. In particular, we illustrate the relations between different contributions to a two-loop four-point QCD amplitude. We also use this identity to reorganize gravity tree amplitudes diagram by diagram, offering new insight into the structure of the Kawai-Lewellen-Tye (KLT) relations between gauge and gravity tree amplitudes. This insight leads to similar but novel relations. We expect this to be helpful in higher-loop studies of the ultraviolet properties of gravity theories.
Charge amplitude distribution of the Gossip gaseous pixel detector
Blanco Carballo, V.M.; Chefdeville, M.A.; Colas, P.; Giomataris, Y.; van der Graaf, H.; Gromov, V.; Hartjes, F.; Kluit, R.; Koffeman, E.; Salm, Cora; Schmitz, Jurriaan; Smits, Sander M.; Timmermans, J.; Timmermans, J.; Visschers, J.L.
2007-01-01
The Gossip gaseous pixel detector is being developed for the detection of charged particles in extreme high radiation environments as foreseen close to the interaction point of the proposed super LHC. The detecting medium is a thin layer of gas. Because of the low density of this medium, only a few
Effects of strength training on mechanomyographic amplitude
International Nuclear Information System (INIS)
DeFreitas, Jason M; Beck, Travis W; Stock, Matt S
2012-01-01
The aim of the present study was to determine if the patterns of mechanomyographic (MMG) amplitude across force would change with strength training. Twenty-two healthy men completed an 8-week strength training program. During three separate testing visits (pre-test, week 4, and week 8), the MMG signal was detected from the vastus lateralis as the subjects performed isometric step muscle actions of the leg extensors from 10–100% of maximal voluntary contraction (MVC). During pre-testing, the MMG amplitude increased linearly with force to 66% MVC and then plateaued. Conversely, weeks 4 and 8 demonstrated an increase in MMG amplitude up to ∼85% of the subject's original MVC before plateauing. Furthermore, seven of the ten force levels (30–60% and 80–100%) showed a significant decrease in mean MMG amplitude values after training, which consequently led to a decrease in the slope of the MMG amplitude/force relationship. The decreases in MMG amplitude at lower force levels are indicative of hypertrophy, since fewer motor units would be required to produce the same absolute force if the motor units increased in size. However, despite the clear changes in the mean values, analyses of individual subjects revealed that only 55% of the subjects demonstrated a significant decrease in the slope of the MMG amplitude/force relationship. (paper)
Holographic corrections to meson scattering amplitudes
Energy Technology Data Exchange (ETDEWEB)
Armoni, Adi; Ireson, Edwin, E-mail: 746616@swansea.ac.uk
2017-06-15
We compute meson scattering amplitudes using the holographic duality between confining gauge theories and string theory, in order to consider holographic corrections to the Veneziano amplitude and associated higher-point functions. The generic nature of such computations is explained, thanks to the well-understood nature of confining string backgrounds, and two different examples of the calculation in given backgrounds are used to illustrate the details. The effect we discover, whilst only qualitative, is re-obtainable in many such examples, in four-point but also higher point amplitudes.
Amplitude-Mode Dynamics of Polariton Condensates
International Nuclear Information System (INIS)
Brierley, R. T.; Littlewood, P. B.; Eastham, P. R.
2011-01-01
We study the stability of collective amplitude excitations in nonequilibrium polariton condensates. These excitations correspond to renormalized upper polaritons and to the collective amplitude modes of atomic gases and superconductors. They would be present following a quantum quench or could be created directly by resonant excitation. We show that uniform amplitude excitations are unstable to the production of excitations at finite wave vectors, leading to the formation of density-modulated phases. The physical processes causing the instabilities can be understood by analogy to optical parametric oscillators and the atomic Bose supernova.
Hidden simplicity of gauge theory amplitudes
Energy Technology Data Exchange (ETDEWEB)
Drummond, J M, E-mail: drummond@lapp.in2p3.f [LAPTH, Universite de Savoie, CNRS, B.P. 110, F-74941 Annecy-le-Vieux, Cedex (France)
2010-11-07
These notes were given as lectures at the CERN Winter School on Supergravity, Strings and Gauge Theory 2010. We describe the structure of scattering amplitudes in gauge theories, focussing on the maximally supersymmetric theory to highlight the hidden symmetries which appear. Using the Britto, Cachzo, Feng and Witten (BCFW) recursion relations we solve the tree-level S-matrix in N=4 super Yang-Mills theory and describe how it produces a sum of invariants of a large symmetry algebra. We review amplitudes in the planar theory beyond tree level, describing the connection between amplitudes and Wilson loops, and discuss the implications of the hidden symmetries.
Amplitude growth due to random, correlated kicks
International Nuclear Information System (INIS)
Michelotti, L.; Mills, F.
1989-03-01
Historically, stochastic processes, such as gas scattering or stochastic cooling, have been treated by the Fokker-Planck equation. In this approach, usually considered for one dimension only, the equation can be considered as a continuity equation for a variable which would be a constant of the motion in the absence of the stochastic process, for example, the action variable, I = ε/2π for betatron oscillations, where ε is the area of the Courant-Snyder ellipse, or energy in the case of unbunched beams, or the action variable for phase oscillations in case the beam is bunched. A flux, /Phi/, including diffusive terms can be defined, usually to second order. /Phi/ = M 1 F(I) + M 2 ∂F/∂I + /hor ellipsis/. M 1 and M 2 are the expectation values of δI and (δI) 2 due to the individual stochastic kicks over some period of time, long enough that the variance of these quantities is sufficiently small. Then the Fokker-Planck equation is just ∂F/∂I + ∂/Phi//∂I = 0. In many cases those where the beam distribution has already achieved its final shape, it is sufficient to find the rate of increase of by taking simple averages over the Fokker-Planck equation. At the time this work was begun, there was good knowledge of the second moment for general stochastic processes due to stochastic cooling theory, but the form of the first moment was known only for extremely wideband processes. The purposes of this note are to derive an expression relating the expected single particle amplitude growth to the noise autocorrelation function and to obtain, thereby, the form of M 1 for narrow band processes. 4 refs
Analytic continuation of dual Feynman amplitudes
International Nuclear Information System (INIS)
Bleher, P.M.
1981-01-01
A notion of dual Feynman amplitude is introduced and a theorem on the existence of analytic continuation of this amplitude from the convergence domain to the whole complex is proved. The case under consideration corresponds to massless power propagators and the analytic continuation is constructed on the propagators powers. Analytic continuation poles and singular set of external impulses are found explicitly. The proof of the theorem on the existence of analytic continuation is based on the introduction of α-representation for dual Feynman amplitudes. In proving, the so-called ''trees formula'' and ''trees-with-cycles formula'' are established that are dual by formulation to the trees and 2-trees formulae for usual Feynman amplitudes. (Auth.)
Amplitude-Integrated EEG in the Newborn
Directory of Open Access Journals (Sweden)
J Gordon Millichap
2008-11-01
Full Text Available Th value of amplitude-integrated electroencephalography (aEEG in the newborn is explored by researchers at Washington University, St Louis; Wilhelmina Children’s Hospital, Utrecht, Netherlands; and Uppsala University Hospital, Sweden.
Effective string theory and QCD scattering amplitudes
International Nuclear Information System (INIS)
Makeenko, Yuri
2011-01-01
QCD string is formed at distances larger than the confinement scale and can be described by the Polchinski-Strominger effective string theory with a nonpolynomial action, which has nevertheless a well-defined semiclassical expansion around a long-string ground state. We utilize modern ideas about the Wilson-loop/scattering-amplitude duality to calculate scattering amplitudes and show that the expansion parameter in the effective string theory is small in the Regge kinematical regime. For the amplitudes we obtain the Regge behavior with a linear trajectory of the intercept (d-2)/24 in d dimensions, which is computed semiclassically as a momentum-space Luescher term, and discuss an application to meson scattering amplitudes in QCD.
Scattering Amplitudes via Algebraic Geometry Methods
Søgaard, Mads; Damgaard, Poul Henrik
This thesis describes recent progress in the understanding of the mathematical structure of scattering amplitudes in quantum field theory. The primary purpose is to develop an enhanced analytic framework for computing multiloop scattering amplitudes in generic gauge theories including QCD without Feynman diagrams. The study of multiloop scattering amplitudes is crucial for the new era of precision phenomenology at the Large Hadron Collider (LHC) at CERN. Loop-level scattering amplitudes can be reduced to a basis of linearly independent integrals whose coefficients are extracted from generalized unitarity cuts. We take advantage of principles from algebraic geometry in order to extend the notion of maximal cuts to a large class of two- and three-loop integrals. This allows us to derive unique and surprisingly compact formulae for the coefficients of the basis integrals. Our results are expressed in terms of certain linear combinations of multivariate residues and elliptic integrals computed from products of ...
Effective gluon interactions from superstring disk amplitudes
Energy Technology Data Exchange (ETDEWEB)
Oprisa, D.
2006-05-15
In this thesis an efficient method for the calculation of the N-point tree-level string amplitudes is presented. Furthermore it is shown that the six-gluon open-superstring disk amplitude can be expressed by a basis of six triple hypergeometric functions, which encode the full {alpha}' dependence. In this connection material for obtaining the {alpha}' expansion of these functions is derived. Hereby many Euler-Zagier sums are calculated including multiple harmonic series. (HSI)
Effective gluon interactions from superstring disk amplitudes
International Nuclear Information System (INIS)
Oprisa, D.
2006-05-01
In this thesis an efficient method for the calculation of the N-point tree-level string amplitudes is presented. Furthermore it is shown that the six-gluon open-superstring disk amplitude can be expressed by a basis of six triple hypergeometric functions, which encode the full α' dependence. In this connection material for obtaining the α' expansion of these functions is derived. Hereby many Euler-Zagier sums are calculated including multiple harmonic series. (HSI)
Employing helicity amplitudes for resummation in SCET
International Nuclear Information System (INIS)
Moult, Ian; Stewart, Iain W.; Tackmann, Frank J.; Waalewijn, Wouter J.; Nikhef, Amsterdam
2016-05-01
Helicity amplitudes are the fundamental ingredients of many QCD calculations for multi-leg processes. We describe how these can seamlessly be combined with resummation in Soft-Collinear Effective Theory (SCET), by constructing a helicity operator basis for which the Wilson coefficients are directly given in terms of color-ordered helicity amplitudes. This basis is crossing symmetric and has simple transformation properties under discrete symmetries.
The amplitude of quantum field theory
International Nuclear Information System (INIS)
Medvedev, B.V.; Pavlov, V.P.; Polivanov, M.K.; Sukhanov, A.D.
1989-01-01
General properties of the transition amplitude in axiomatic quantum field theory are discussed. Bogolyubov's axiomatic method is chosen as the variant of the theory. The axioms of this method are analyzed. In particular, the significance of the off-shell extension and of the various forms of the causality condition are examined. A complete proof is given of the existence of a single analytic function whose boundary values are the amplitudes of all channels of a process with given particle number
The Cepheid bump progression and amplitude equations
International Nuclear Information System (INIS)
Kovacs, G.; Buchler, J.R.
1989-01-01
It is shown that the characteristic and systematic behavior of the low-order Fourier amplitudes and phases of hydrodynamically generated radial velocity and light curves of Cepheid model sequences is very well captured not only qualitatively but also quantitatively by the amplitude equation formalism. The 2:1 resonance between the fundamental and the second overtone plays an essential role in the behavior of the models 8 refs
Computational evaluation of amplitude modulation for enhanced magnetic nanoparticle hyperthermia.
Soetaert, Frederik; Dupré, Luc; Ivkov, Robert; Crevecoeur, Guillaume
2015-10-01
Magnetic nanoparticles (MNPs) can interact with alternating magnetic fields (AMFs) to deposit localized energy for hyperthermia treatment of cancer. Hyperthermia is useful in the context of multimodality treatments with radiation or chemotherapy to enhance disease control without increased toxicity. The unique attributes of heat deposition and transfer with MNPs have generated considerable attention and have been the focus of extensive investigations to elucidate mechanisms and optimize performance. Three-dimensional (3D) simulations are often conducted with the finite element method (FEM) using the Pennes' bioheat equation. In the current study, the Pennes' equation was modified to include a thermal damage-dependent perfusion profile to improve model predictions with respect to known physiological responses to tissue heating. A normal distribution of MNPs in a model liver tumor was combined with empirical nanoparticle heating data to calculate tumor temperature distributions and resulting survival fraction of cancer cells. In addition, calculated spatiotemporal temperature changes were compared among magnetic field amplitude modulations of a base 150-kHz sinusoidal waveform, specifically, no modulation, sinusoidal, rectangular, and triangular modulation. Complex relationships were observed between nanoparticle heating and cancer tissue damage when amplitude modulation and damage-related perfusion profiles were varied. These results are tantalizing and motivate further exploration of amplitude modulation as a means to enhance efficiency of and overcome technical challenges associated with magnetic nanoparticle hyperthermia (MNH).
Scalar-field amplitudes in black-hole evaporation
International Nuclear Information System (INIS)
Farley, A.N.St.J.; D'Eath, P.D.
2004-01-01
We consider the quantum-mechanical decay of a Schwarzschild-like black hole into almost-flat space and weak radiation at a very late time. That is, we are concerned with evaluating quantum amplitudes (not just probabilities) for transitions from initial to final states. In this quantum description, no information is lost because of the black hole. The Lagrangian is taken, in the first instance, to consist of the simplest locally supersymmetric generalization of Einstein gravity and a massless scalar field. The quantum amplitude to go from given initial to final bosonic data in a slightly complexified time-interval T=τexp(-iθ) at infinity may be approximated by the form constxexp(-I), where I is the (complex) Euclidean action of the classical solution filling in between the boundary data. Additionally, in a pure supergravity theory, the amplitude constxexp(-I) is exact. Suppose that Dirichlet boundary data for gravity and the scalar field are posed on an initial spacelike hypersurface extending to spatial infinity, just prior to collapse, and on a corresponding final spacelike surface, sufficiently far to the future of the initial surface to catch all the Hawking radiation. Only in an averaged sense will this radiation have an approximately spherically-symmetric distribution. If the time-interval T had been taken to be exactly real, then the resulting 'hyperbolic Dirichlet boundary-value problem' would, as is well known, not be well posed. Provided instead ('Euclidean strategy') that one takes T complex, as above (0<θ=<π/2), one expects that the field equations become strongly elliptic, and that there exists a unique solution to the classical boundary-value problem. Within this context, by expanding the bosonic part of the action to quadratic order in perturbations about the classical solution, one obtains the quantum amplitude for weak-field final configurations, up to normalization. Such amplitudes are here calculated for weak final scalar fields
Cosmophysical Factors in the Fluctuation Amplitude Spectrum of Brownian Motion
Directory of Open Access Journals (Sweden)
Kaminsky A. V.
2010-04-01
Full Text Available Phenomenon of the regular variability of the fine structure of the fluctuation in the amplitude distributions (shapes of related histograms for the case of Brownian motion was investigated. We took an advantage of the dynamic light scattering method (DLS to get a stochastically fluctuated signal determined by Brownian motion. Shape of the histograms is most likely to vary, synchronous, in two proximally located independent cells containing Brownian particles. The synchronism persists in the cells distant at 2m from each other, and positioned meridionally. With a parallel-wise positioning of the cells, high probability of the synchronous variation in the shape of the histograms by local time has been observed. This result meets the previous conclusion about the dependency of histogram shapes ("fluctuation amplitudes" of the spectra of stochastic processes upon rotation of the Earth.
Scattering amplitudes in open superstring theory
Energy Technology Data Exchange (ETDEWEB)
Schlotterer, Oliver
2011-07-15
The present thesis deals with the theme field of the scattering amplitudes in theories of open superstrings. Especially two different formalisms for the handling of superstrings are introduced and applied for the calaculation of tree-level amplitudes - the Ramond- Neveu-Schwarz (RNS) and the Pure-Spinor (PS) formalism. The RNS approach is proved as flexible in order to describe compactification of the initially ten flat space-time dimensions to four dimensions. We solve the technical problems, which result from the interacting basing world-sheet theory with conformal symmetry. This is used to calculate phenomenologically relevant scattering amplitudes of gluons and quarks as well as production rates of massive harmonic vibrations, which were already identified as virtual exchange particles on the massless level. In the case of a low string mass scale in the range of some Tev the string-specific signatures in parton collisions can be observed in the near future in the LHC experiment at CERN and indicated as first experimental proof of the string theory. THose string effects occur universally for a wide class of string ground states respectively internal geometries and represent an elegant way to avoid the so-called landscape problem of the string theory. A further theme complex in this thesis is based on the PS formalism, which allows a manifestly supersymmetric treatment of scattering amplitudes in ten space-time dimension with sixteen supercharges. We introduce a family of superfields, which occur in massless amplitudes of the open string and can be naturally identified with diagrams of three-valued knots. Thereby we reach not only a compact superspace representation of the n-point field-theory amplitude but can also write the complete superstring n-point amplitude as minimal linear combination of partial amplitudes of the field theory as well as hypergeometric functions. The latter carry the string effects and are analyzed from different perspectives, above all
Scattering amplitudes in open superstring theory
International Nuclear Information System (INIS)
Schlotterer, Oliver
2011-01-01
The present thesis deals with the theme field of the scattering amplitudes in theories of open superstrings. Especially two different formalisms for the handling of superstrings are introduced and applied for the calaculation of tree-level amplitudes - the Ramond- Neveu-Schwarz (RNS) and the Pure-Spinor (PS) formalism. The RNS approach is proved as flexible in order to describe compactification of the initially ten flat space-time dimensions to four dimensions. We solve the technical problems, which result from the interacting basing world-sheet theory with conformal symmetry. This is used to calculate phenomenologically relevant scattering amplitudes of gluons and quarks as well as production rates of massive harmonic vibrations, which were already identified as virtual exchange particles on the massless level. In the case of a low string mass scale in the range of some Tev the string-specific signatures in parton collisions can be observed in the near future in the LHC experiment at CERN and indicated as first experimental proof of the string theory. THose string effects occur universally for a wide class of string ground states respectively internal geometries and represent an elegant way to avoid the so-called landscape problem of the string theory. A further theme complex in this thesis is based on the PS formalism, which allows a manifestly supersymmetric treatment of scattering amplitudes in ten space-time dimension with sixteen supercharges. We introduce a family of superfields, which occur in massless amplitudes of the open string and can be naturally identified with diagrams of three-valued knots. Thereby we reach not only a compact superspace representation of the n-point field-theory amplitude but can also write the complete superstring n-point amplitude as minimal linear combination of partial amplitudes of the field theory as well as hypergeometric functions. The latter carry the string effects and are analyzed from different perspectives, above all
Direct amplitude detuning measurement with ac dipole
Directory of Open Access Journals (Sweden)
S. White
2013-07-01
Full Text Available In circular machines, nonlinear dynamics can impact parameters such as beam lifetime and could result in limitations on the performance reach of the accelerator. Assessing and understanding these effects in experiments is essential to confirm the accuracy of the magnetic model and improve the machine performance. A direct measurement of the machine nonlinearities can be obtained by characterizing the dependency of the tune as a function of the amplitude of oscillations (usually defined as amplitude detuning. The conventional technique is to excite the beam to large amplitudes with a single kick and derive the tune from turn-by-turn data acquired with beam position monitors. Although this provides a very precise tune measurement it has the significant disadvantage of being destructive. An alternative, nondestructive way of exciting large amplitude oscillations is to use an ac dipole. The perturbation Hamiltonian in the presence of an ac dipole excitation shows a distinct behavior compared to the free oscillations which should be correctly taken into account in the interpretation of experimental data. The use of an ac dipole for direct amplitude detuning measurement requires careful data processing allowing one to observe the natural tune of the machine; the feasibility of such a measurement is demonstrated using experimental data from the Large Hadron Collider. An experimental proof of the theoretical derivations based on measurements performed at injection energy is provided as well as an application of this technique at top energy using a large number of excitations on the same beam.
Color-Kinematics Duality for QCD Amplitudes
Johansson, Henrik
2016-01-01
We show that color-kinematics duality is present in tree-level amplitudes of quantum chromodynamics with massive flavored quarks. Starting with the color structure of QCD, we work out a new color decomposition for n-point tree amplitudes in a reduced basis of primitive amplitudes. These primitives, with k quark-antiquark pairs and (n-2k) gluons, are taken in the (n-2)!/k! Melia basis, and are independent under the color-algebra Kleiss-Kuijf relations. This generalizes the color decomposition of Del Duca, Dixon, and Maltoni to an arbitrary number of quarks. The color coefficients in the new decomposition are given by compact expressions valid for arbitrary gauge group and representation. Considering the kinematic structure, we show through explicit calculations that color-kinematics duality holds for amplitudes with general configurations of gluons and massive quarks. The new (massive) amplitude relations that follow from the duality can be mapped to a well-defined subset of the familiar BCJ relations for gluo...
High energy hadron spin-flip amplitude
International Nuclear Information System (INIS)
Selyugin, O.V.
2016-01-01
The high-energy part of the hadron spin-flip amplitude is examined in the framework of the new high-energy general structure (HEGS) model of the elastic hadron scattering at high energies. The different forms of the hadron spin-flip amplitude are compared in the impact parameter representation. It is shown that the existing experimental data of the proton-proton and proton-antiproton elastic scattering at high energy in the region of the diffraction minimum and at large momentum transfer give support in the presence of the energy-independent part of the hadron spin-flip amplitude with the momentum dependence proposed in the works by Galynskii-Kuraev. [ru
Scaling of saturation amplitudes in baroclinic instability
International Nuclear Information System (INIS)
Shepherd, T.G.
1994-01-01
By using finite-amplitude conservation laws for pseudomomentum and pseudoenergy, rigorous upper bounds have been derived on the saturation amplitudes in baroclinic instability for layered and continuously-stratified quasi-geostrophic models. Bounds have been obtained for both the eddy energy and the eddy potential enstrophy. The bounds apply to conservative (inviscid, unforced) flow, as well as to forced-dissipative flow when the dissipation is proportional to the potential vorticity. This approach provides an efficient way of extracting an analytical estimate of the dynamical scalings of the saturation amplitudes in terms of crucial non-dimensional parameters. A possible use is in constructing eddy parameterization schemes for zonally-averaged climate models. The scaling dependences are summarized, and compared with those derived from weakly-nonlinear theory and from baroclinic-adjustment estimates
Analytic representations of Yang–Mills amplitudes
Energy Technology Data Exchange (ETDEWEB)
Bjerrum-Bohr, N.E.J. [Niels Bohr International Academy and Discovery Center, The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark); Bourjaily, Jacob L., E-mail: bourjaily@nbi.ku.dk [Niels Bohr International Academy and Discovery Center, The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark); Damgaard, Poul H. [Niels Bohr International Academy and Discovery Center, The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark); Feng, Bo [Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou City, 310027 (China)
2016-12-15
Scattering amplitudes in Yang–Mills theory can be represented in the formalism of Cachazo, He and Yuan (CHY) as integrals over an auxiliary projective space—fully localized on the support of the scattering equations. Because solving the scattering equations is difficult and summing over the solutions algebraically complex, a method of directly integrating the terms that appear in this representation has long been sought. We solve this important open problem by first rewriting the terms in a manifestly Möbius-invariant form and then using monodromy relations (inspired by analogy to string theory) to decompose terms into those for which combinatorial rules of integration are known. The result is the foundations of a systematic procedure to obtain analytic, covariant forms of Yang–Mills tree-amplitudes for any number of external legs and in any number of dimensions. As examples, we provide compact analytic expressions for amplitudes involving up to six gluons of arbitrary helicities.
Nonlinear (super)symmetries and amplitudes
Energy Technology Data Exchange (ETDEWEB)
Kallosh, Renata [Physics Department, Stanford University,382 Via Pueblo Mall, Stanford, CA 94305-4060 (United States)
2017-03-07
There is an increasing interest in nonlinear supersymmetries in cosmological model building. Independently, elegant expressions for the all-tree amplitudes in models with nonlinear symmetries, like D3 brane Dirac-Born-Infeld-Volkov-Akulov theory, were recently discovered. Using the generalized background field method we show how, in general, nonlinear symmetries of the action, bosonic and fermionic, constrain amplitudes beyond soft limits. The same identities control, for example, bosonic E{sub 7(7)} scalar sector symmetries as well as the fermionic goldstino symmetries. We present a universal derivation of the vanishing amplitudes in the single (bosonic or fermionic) soft limit. We explain why, universally, the double-soft limit probes the coset space algebra. We also provide identities describing the multiple-soft limit. We discuss loop corrections to N≥5 supergravity, to the D3 brane, and the UV completion of constrained multiplets in string theory.
Scattering Amplitudes and Worldsheet Models of QFTs
CERN. Geneva
2016-01-01
I will describe recent progress on the study of scattering amplitudes via ambitwistor strings and the scattering equations. Ambitwistor strings are worldsheet models of quantum field theories, inspired by string theory. They naturally lead to a representation of amplitudes based on the scattering equations. While worldsheet models and related ideas have had a wide-ranging impact on the modern study of amplitudes, their direct application at loop level is a very recent success. I will show how a major difficulty in the loop-level story, the technicalities of higher-genus Riemann surfaces, can be avoided by turning the higher-genus surface into a nodal Riemann sphere, with the nodes representing the loop momenta. I will present new formulas for the one-loop integrands of gauge theory and gravity, with or without supersymmetry, and also some two-loop results.
Relativistic amplitudes in terms of wave functions
International Nuclear Information System (INIS)
Karmanov, V.A.
1978-01-01
In the framework of the invariant diagram technique which arises at the formulation of the fueld theory on the light front the question about conditions at which the relativistic amplitudes may be expressed through the wave functions is investigated. The amplitudes obtained depend on four-vector ω, determining the light front surface. The way is shown to find such values of the four-vector ω, at which the contribution of diagrams not expressed through wave functions is minimal. The investigation carried out is equivalent to the study of the dependence of amplitudes of the old-fashioned perturbation theory in the in the infinite momentum frame on direction of the infinite momentum
Multiphoton amplitude in a constant background field
Ahmad, Aftab; Ahmadiniaz, Naser; Corradini, Olindo; Kim, Sang Pyo; Schubert, Christian
2018-01-01
In this contribution, we present our recent compact master formulas for the multiphoton amplitudes of a scalar propagator in a constant background field using the worldline fomulation of quantum field theory. The constant field has been included nonperturbatively, which is crucial for strong external fields. A possible application is the scattering of photons by electrons in a strong magnetic field, a process that has been a subject of great interest since the discovery of astrophysical objects like radio pulsars, which provide evidence that magnetic fields of the order of 1012G are present in nature. The presence of a strong external field leads to a strong deviation from the classical scattering amplitudes. We explicitly work out the Compton scattering amplitude in a magnetic field, which is a process of potential relevance for astrophysics. Our final result is compact and suitable for numerical integration.
Amplitude-modulated fiber-ring laser
DEFF Research Database (Denmark)
Caputo, J. G.; Clausen, Carl A. Balslev; Sørensen, Mads Peter
2000-01-01
Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self......-starting of stable solitonic pulses from small random noise, provided the modulation depth is small. The perturbative analysis leads to a nonlinear coupled return map for the amplitude, phase, and position of the soliton pulses circulating in the fiber-ring laser. We established the validity of this approach...
Amplitude Models for Discrimination and Yield Estimation
Energy Technology Data Exchange (ETDEWEB)
Phillips, William Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-09-01
This seminar presentation describes amplitude models and yield estimations that look at the data in order to inform legislation. The following points were brought forth in the summary: global models that will predict three-component amplitudes (R-T-Z) were produced; Q models match regional geology; corrected source spectra can be used for discrimination and yield estimation; three-component data increase coverage and reduce scatter in source spectral estimates; three-component efforts must include distance-dependent effects; a community effort on instrument calibration is needed.
Singularity Structure of Maximally Supersymmetric Scattering Amplitudes
DEFF Research Database (Denmark)
Arkani-Hamed, Nima; Bourjaily, Jacob L.; Cachazo, Freddy
2014-01-01
We present evidence that loop amplitudes in maximally supersymmetric (N=4) Yang-Mills theory (SYM) beyond the planar limit share some of the remarkable structures of the planar theory. In particular, we show that through two loops, the four-particle amplitude in full N=4 SYM has only logarithmic ...... singularities and is free of any poles at infinity—properties closely related to uniform transcendentality and the UV finiteness of the theory. We also briefly comment on implications for maximal (N=8) supergravity theory (SUGRA)....
Amplitude modulation detection with concurrent frequency modulation.
Nagaraj, Naveen K
2016-09-01
Human speech consists of concomitant temporal modulations in amplitude and frequency that are crucial for speech perception. In this study, amplitude modulation (AM) detection thresholds were measured for 550 and 5000 Hz carriers with and without concurrent frequency modulation (FM), at AM rates crucial for speech perception. Results indicate that adding 40 Hz FM interferes with AM detection, more so for 5000 Hz carrier and for frequency deviations exceeding the critical bandwidth of the carrier frequency. These findings suggest that future cochlear implant processors, encoding speech fine-structures may consider limiting the FM to narrow bandwidth and to low frequencies.
Gluon amplitudes as 2 d conformal correlators
Pasterski, Sabrina; Shao, Shu-Heng; Strominger, Andrew
2017-10-01
Recently, spin-one wave functions in four dimensions that are conformal primaries of the Lorentz group S L (2 ,C ) were constructed. We compute low-point, tree-level gluon scattering amplitudes in the space of these conformal primary wave functions. The answers have the same conformal covariance as correlators of spin-one primaries in a 2 d CFT. The Britto-Cachazo-Feng-Witten (BCFW) recursion relation between three- and four-point gluon amplitudes is recast into this conformal basis.
Precise generator of stability amplitude pulses
International Nuclear Information System (INIS)
Zhuk, N.A.; Zdesenko, Yu.G.; Kuts, V.N.
1989-01-01
A generator of stability amplitude pulses, designed for stabilization of a low-noise semiconducting spectrometer, used in investigations of 76 Ge2β-decay, is described. The generator contains a permanent-voltage source, a storage element and a switch based on a Hg relay. A thermostatic source provides a relative voltage instability less than ±5x10 -6 per 80h (standard deviation). The Hg relay is placed into a separate thermostat. The relative instability of output generator pulse amplitude does not exceed ±1.5x10 -5 per 24h
High energy multi-gluon exchange amplitudes
International Nuclear Information System (INIS)
Jaroszewicz, T.
1980-11-01
We examine perturbative high energy n-gluon exchange amplitudes calculated in the Coulomb gauge. If n exceeds the minimum required by the t-channel quantum numbers, such amplitudes are non-leading in lns. We derive a closed system of coupled integral equations for the corresponding two-particle n-gluon vertices, obtained by summing the leading powers of ln(N μ psup(μ)), where psup(μ) is the incident momentum and Nsup(μ) the gauge-defining vector. Our equations are infra-red finite, provided the external particles are colour singlets. (author)
COMPARISON OF HOLOGRAPHIC AND ITERATIVE METHODS FOR AMPLITUDE OBJECT RECONSTRUCTION
Directory of Open Access Journals (Sweden)
I. A. Shevkunov
2015-01-01
Full Text Available Experimental comparison of four methods for the wavefront reconstruction is presented. We considered two iterative and two holographic methods with different mathematical models and algorithms for recovery. The first two of these methods do not use a reference wave recording scheme that reduces requirements for stability of the installation. A major role in phase information reconstruction by such methods is played by a set of spatial intensity distributions, which are recorded as the recording matrix is being moved along the optical axis. The obtained data are used consistently for wavefront reconstruction using an iterative procedure. In the course of this procedure numerical distribution of the wavefront between the planes is performed. Thus, phase information of the wavefront is stored in every plane and calculated amplitude distributions are replaced for the measured ones in these planes. In the first of the compared methods, a two-dimensional Fresnel transform and iterative calculation in the object plane are used as a mathematical model. In the second approach, an angular spectrum method is used for numerical wavefront propagation, and the iterative calculation is carried out only between closely located planes of data registration. Two digital holography methods, based on the usage of the reference wave in the recording scheme and differing from each other by numerical reconstruction algorithm of digital holograms, are compared with the first two methods. The comparison proved that the iterative method based on 2D Fresnel transform gives results comparable with the result of common holographic method with the Fourier-filtering. It is shown that holographic method for reconstructing of the object complex amplitude in the process of the object amplitude reduction is the best among considered ones.
Amplitude ratios in ρ0 leptoproductions and GPDs
Directory of Open Access Journals (Sweden)
Goloskokov S.V.
2017-01-01
Using the model results we calculate the ratio of different helicity amplitudes for a transversely polarized proton target to the leading twist longitudinal amplitude. Our results are close to the amplitude ratios measured by HERMES.
Speech Enhancement by MAP Spectral Amplitude Estimation Using a Super-Gaussian Speech Model
Directory of Open Access Journals (Sweden)
Lotter Thomas
2005-01-01
Full Text Available This contribution presents two spectral amplitude estimators for acoustical background noise suppression based on maximum a posteriori estimation and super-Gaussian statistical modelling of the speech DFT amplitudes. The probability density function of the speech spectral amplitude is modelled with a simple parametric function, which allows a high approximation accuracy for Laplace- or Gamma-distributed real and imaginary parts of the speech DFT coefficients. Also, the statistical model can be adapted to optimally fit the distribution of the speech spectral amplitudes for a specific noise reduction system. Based on the super-Gaussian statistical model, computationally efficient maximum a posteriori speech estimators are derived, which outperform the commonly applied Ephraim-Malah algorithm.
Stora's fine notion of divergent amplitudes
Directory of Open Access Journals (Sweden)
Joseph C. Várilly
2016-11-01
Full Text Available Stora and coworkers refined the notion of divergent quantum amplitude, somewhat upsetting the standard power-counting recipe. This unexpectedly clears the way to new prototypes for free and interacting field theories of bosons of any mass and spin.
Connected formulas for amplitudes in standard model
Energy Technology Data Exchange (ETDEWEB)
He, Song [CAS Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100190 (China); School of Physical Sciences, University of Chinese Academy of Sciences,No. 19A Yuquan Road, Beijing 100049 (China); Zhang, Yong [Department of Physics, Beijing Normal University,Beijing 100875 (China); CAS Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100190 (China)
2017-03-17
Witten’s twistor string theory has led to new representations of S-matrix in massless QFT as a single object, including Cachazo-He-Yuan formulas in general and connected formulas in four dimensions. As a first step towards more realistic processes of the standard model, we extend the construction to QCD tree amplitudes with massless quarks and those with a Higgs boson. For both cases, we find connected formulas in four dimensions for all multiplicities which are very similar to the one for Yang-Mills amplitudes. The formula for quark-gluon color-ordered amplitudes differs from the pure-gluon case only by a Jacobian factor that depends on flavors and orderings of the quarks. In the formula for Higgs plus multi-parton amplitudes, the massive Higgs boson is effectively described by two additional massless legs which do not appear in the Parke-Taylor factor. The latter also represents the first twistor-string/connected formula for form factors.
Ward identities for amplitudes with reggeized gluons
International Nuclear Information System (INIS)
Bartles, J.; Vacca, G.P.
2012-05-01
Starting from the effective action of high energy QCD we derive Ward identities for Green's functions of reggeized gluons. They follow from the gauge invariance of the effective action, and allow to derive new representations of amplitudes containing physical particles as well as reggeized gluons. We explicitly demonstrate their validity for the BFKL kernel, and we present a new derivation of the kernel.
Scattering amplitudes in super-renormalizable gravity
International Nuclear Information System (INIS)
Donà, Pietro; Giaccari, Stefano; Modesto, Leonardo; Rachwał, Lesław; Zhu, Yiwei
2015-01-01
We explicitly compute the tree-level on-shell four-graviton amplitudes in four, five and six dimensions for local and weakly nonlocal gravitational theories that are quadratic in both, the Ricci and scalar curvature with form factors of the d’Alembertian operator inserted between. More specifically we are interested in renormalizable, super-renormalizable or finite theories. The scattering amplitudes for these theories turn out to be the same as the ones of Einstein gravity regardless of the explicit form of the form factors. As a special case the four-graviton scattering amplitudes in Weyl conformal gravity are identically zero. Using a field redefinition, we prove that the outcome is correct for any number of external gravitons (on-shell n−point functions) and in any dimension for a large class of theories. However, when an operator quadratic in the Riemann tensor is added in any dimension (with the exception of the Gauss-Bonnet term in four dimensions) the result is completely altered, and the scattering amplitudes depend on all the form factors introduced in the action.
Kaon decay amplitudes using staggered fermions
International Nuclear Information System (INIS)
Sharpe, S.R.
1986-12-01
A status report is given of an attempt, using staggered fermions to calculate the real and imaginary parts of the amplitudes for K → ππ,. Semi-quantitative results are found for the imaginary parts, and these suggest that ε' might be smaller than previously expected in the standard model
Constraints on low energy Compton scattering amplitudes
International Nuclear Information System (INIS)
Raszillier, I.
1979-04-01
We derive the constraints and correlations of fairly general type for Compton scattering amplitudes at energies below photoproduction threshold and fixed momentum transfer, following from (an upper bound on) the corresponding differential cross section above photoproduction threshold. The derivation involves the solution of an extremal problem in a certain space of vector - valued analytic functions. (author)
Analytic properties of many-particle amplitudes
Energy Technology Data Exchange (ETDEWEB)
Medvedev, B V; Pavlov, V P; Polivanov, M K; Sukhanov, A D [Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Teoreticheskoj i Ehksperimental' noj Fiziki; AN SSSR, Moscow. Matematicheskij Inst.)
1982-08-01
In the framework of N. N. Bogolyubov axiomatic approach the complete proof of the existence of an analytic function the boundary values of which are the amplitudes of any channel of n-particle process is given. The one-particle structure of this function is described.
Time and amplitude dependent damping in a single crystal of zirconium
International Nuclear Information System (INIS)
Atrens, A.; Ritchie, I.G.; Sprungmann, K.W.; CEA Centre d'Etudes Nucleaires de Grenoble, 38
1977-01-01
The amplitude dependent and time dependent damping in a single crystal of zirconium has been investigated in the temperature range ambient to 400 0 C. The results are attributed to a combination of dislocation unpinning and pin rearrangement. After stabilization of the pin distribution by vibration conditioning, followed by a sudden large increase in amplitude, it is shown that the specimen retains a memory of the stabilized state
Energy Technology Data Exchange (ETDEWEB)
Logunov, A A; Medvedev, B V; Mestvirishvili, M A; Pavlov, V P; Polivanov, M K; Sukhanov, A D [Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Serpukhov. Inst. Fiziki Vysokikh Ehnergij
1977-11-01
Investigation of analytical structure of the three-particle forward scattering amplitude with respect to energy variable of one of particles is performed. The results obtained make it possible to draw the conclusions on crossing properties of the amplitude and to derive the generalized optical theorem relating the discontinuity of the amplitude to the distribution function of an inclusive process. For a special case when two of three particles are of zero mass, a dispersion relation is proved.
Cascaded Amplitude Modulations in Sound Texture Perception
DEFF Research Database (Denmark)
McWalter, Richard Ian; Dau, Torsten
2017-01-01
. In this study, we investigated the perception of sound textures that contain rhythmic structure, specifically second-order amplitude modulations that arise from the interaction of different modulation rates, previously described as "beating" in the envelope-frequency domain. We developed an auditory texture...... model that utilizes a cascade of modulation filterbanks that capture the structure of simple rhythmic patterns. The model was examined in a series of psychophysical listening experiments using synthetic sound textures-stimuli generated using time-averaged statistics measured from real-world textures....... In a texture identification task, our results indicated that second-order amplitude modulation sensitivity enhanced recognition. Next, we examined the contribution of the second-order modulation analysis in a preference task, where the proposed auditory texture model was preferred over a range of model...
Source amplitudes for active exterior cloaking
International Nuclear Information System (INIS)
Norris, Andrew N; Amirkulova, Feruza A; Parnell, William J
2012-01-01
The active cloak comprises a discrete set of multipole sources that destructively interfere with an incident time harmonic scalar wave to produce zero total field over a finite spatial region. For a given number of sources and their positions in two dimensions it is shown that the multipole amplitudes can be expressed as infinite sums of the coefficients of the incident wave decomposed into regular Bessel functions. The field generated by the active sources vanishes in the infinite region exterior to a set of circles defined by the relative positions of the sources. The results provide a direct solution to the inverse problem of determining the source amplitudes. They also define a broad class of non-radiating discrete sources. (paper)
Constructing QCD one-loop amplitudes
International Nuclear Information System (INIS)
Forde, D
2008-01-01
In the context of constructing one-loop amplitudes using a unitarity bootstrap approach we discuss a general systematic procedure for obtaining the coefficients of the scalar bubble and triangle integral functions of one-loop amplitudes. Coefficients are extracted after examining the behavior of the cut integrand as the unconstrained parameters of a specifically chosen parameterization of the cut loop momentum approach infinity. Measurements of new physics at the forthcoming experimental program at CERN's Large Hadron Collider (LHC) will require a precise understanding of processes at next-to-leading order (NLO). This places increased demands for the computation of new one-loop amplitudes. This in turn has spurred recent developments towards improved calculational techniques. Direct calculations using Feynman diagrams are in general inefficient. Developments of more efficient techniques have usually centered around unitarity techniques [1], where tree amplitudes are effectively 'glued' together to form loops. The most straightforward application of this method, in which the cut loop momentum is in D = 4, allows for the computation of 'cut-constructible' terms only, i.e. (poly)logarithmic containing terms and any related constants. QCD amplitudes contain, in addition to such terms, rational pieces which cannot be derived using such cuts. These 'missing' rational parts can be extracted using cut loop momenta in D = 4-2 (var e psilon). The greater difficulty of such calculations has restricted the application of this approach, although recent developments [3, 4] have provided new promise for this technique. Recently the application of on-shell recursion relations [5] to obtaining the 'missing' rational parts of one-loop processes [6] has provided an alternative very promising solution to this problem. In combination with unitarity methods an 'on-shell bootstrap' approach provides an efficient technique for computing complete one-loop QCD amplitudes [7]. Additionally
Differential equations, associators, and recurrences for amplitudes
Directory of Open Access Journals (Sweden)
Georg Puhlfürst
2016-01-01
Full Text Available We provide new methods to straightforwardly obtain compact and analytic expressions for ϵ-expansions of functions appearing in both field and string theory amplitudes. An algebraic method is presented to explicitly solve for recurrence relations connecting different ϵ-orders of a power series solution in ϵ of a differential equation. This strategy generalizes the usual iteration by Picard's method. Our tools are demonstrated for generalized hypergeometric functions. Furthermore, we match the ϵ-expansion of specific generalized hypergeometric functions with the underlying Drinfeld associator with proper Lie algebra and monodromy representations. We also apply our tools for computing ϵ-expansions for solutions to generic first-order Fuchsian equations (Schlesinger system. Finally, we set up our methods to systematically get compact and explicit α′-expansions of tree-level superstring amplitudes to any order in α′.
Unitarity and amplitudes for high energies
International Nuclear Information System (INIS)
Efimov, G.V.
1997-01-01
It is shown that in the quantum field theory of scalar particles with mass m the following inequalities for the upper bound for the amplitude of elastic scattering Μ(s,t) |Μ(s,t)| 0 )s, (|t|≥|t 0 |>0) and for the total cross section of scalar particles σ tot (s)≤C|d/dt ln Im Μ(s,t)| t=0 , (s → ∞) are valid. This result is based on the unitarity of the S-matrix on the mass shell and on a natural assumption that the imaginary part of the elastic scattering Im Μ(s,t) is a differentiable and convex down function in some vicinity of t=0. The locality of the theory and the analyticity of the elastic amplitude in the Martin-Lehmann ellipse are not used in proving these inequalities
Large amplitude waves and fields in plasmas
International Nuclear Information System (INIS)
Angelis, U. de; Naples Univ.
1990-02-01
In this review, based mostly on the results of the recent workshop on ''Large Amplitude Waves and Fields in Plasmas'' held at ICTP (Trieste, Italy) in May 1989 during the Spring College on Plasma Physics, I will mostly concentrate on underdense, cold, homogeneous plasmas, discussing some of the alternative (to fusion) uses of laser-plasma interaction. In Part I an outline of some basic non-linear processes is given, together with some recent experimental results. The processes are chosen because of their relevance to the applications or because new interesting developments have been reported at the ICTP workshop (or both). In Part II the excitation mechanisms and uses of large amplitude plasma waves are presented: these include phase-conjugation in plasmas, plasma based accelerators (beat-wave, plasma wake-field and laser wake-field), plasma lenses and plasma wigglers for Free Electron Lasers. (author)
Integrable spin chains and scattering amplitudes
Energy Technology Data Exchange (ETDEWEB)
Bartels, J.; Prygarin, A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Lipatov, L.N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Petersburg Nuclear Physics Institute (Russian Federation); Sankt-Peterburgskij Univ., St. Petersburg (Russian Federation)
2011-04-15
In this review we show that the multi-particle scattering amplitudes in N=4 SYM at large N{sub c} and in the multi-Regge kinematics for some physical regions have the high energy behavior appearing from the contribution of the Mandelstam cuts in the complex angular momentum plane of the corresponding t-channel partial waves. These Mandelstam cuts or Regge cuts are resulting from gluon composite states in the adjoint representation of the gauge group SU(N{sub c}). In the leading logarithmic approximation (LLA) their contribution to the six point amplitude is in full agreement with the known two-loop result. The Hamiltonian for the Mandelstam states constructed from n gluons in LLA coincides with the local Hamiltonian of an integrable open spin chain. We construct the corresponding wave functions using the integrals of motion and the Baxter-Sklyanin approach. (orig.)
On the infinities of closed superstring amplitudes
International Nuclear Information System (INIS)
Restuccia, A.; Taylor, J.G.
1988-01-01
The authors present an analysis of possible infinities that may be present in uncompactified multi-loop heterotic and type II superstring amplitudes constructed, without use of the short-string limit, in the light-cone gauge, and with use of a closed [10]-SUSY field theory algebra. Various types of degenerations of the integrand are discussed on the string worldsheet. No infinities are found, modulo (for type II) a particular identity for Green's functions
Deep Inelastic Scattering at the Amplitude Level
International Nuclear Information System (INIS)
Brodsky, Stanley J.
2005-01-01
The deep inelastic lepton scattering and deeply virtual Compton scattering cross sections can be interpreted in terms of the fundamental wavefunctions defined by the light-front Fock expansion, thus allowing tests of QCD at the amplitude level. The AdS/CFT correspondence between gauge theory and string theory provides remarkable new insights into QCD, including a model for hadronic wavefunctions which display conformal scaling at short distances and color confinement at large distances
Multichannel conformal blocks for scattering amplitudes
Belitsky, A. V.
2018-05-01
By performing resummation of small fermion-antifermion pairs within the pentagon form factor program to scattering amplitudes in planar N = 4 superYang-Mills theory, we construct multichannel conformal blocks within the flux-tube picture for N-sided NMHV polygons. This procedure is equivalent to summation of descendants of conformal primaries in the OPE framework. The resulting conformal partial waves are determined by multivariable hypergeometric series of Lauricella-Saran type.
How to calculate the Coulomb scattering amplitude
International Nuclear Information System (INIS)
Grosse, H.; Narnhofer, H.; Thirring, W.
1974-01-01
The derivation of scattering amplitudes for Coulomb scattering is discussed. A derivation of the S-matrix elements for a dense set of states in momentum space is given in the framework of time dependent scattering theory. The convergence of the S-matrix is studied. A purely algebraic derivation of the S-matrix elements and phase shifts is also presented. (HFdV)
Accommodative Amplitude in School-Age Children
Directory of Open Access Journals (Sweden)
Ikaunieks Gatis
2017-10-01
Full Text Available In children, intensive near-work affects the accommodation system of the eye. Younger children, due to anatomical parameters, read at smaller distance than older children and we can expect that the accommodation system of younger can be affected more than that of older children. We wanted to test this hypothesis. Some authors showed that the norms of amplitude of accommodation (AA developed by Hofstetter (1950 not always could be applied for children. We also wanted to verify these results. A total of 106 (age 7-15 children participated in the study. Distance visual acuity was measured for all children and only data of children with good visual acuity 1.0 or more (dec. units were analysed (73 children. Accommodative amplitude was measured before and after lessons using subjective push-up technique (with RAF Near Point Ruler. The results showed that the amplitude of accommodation reduced significantly (p < 0.05 during the day and decrease of AA was similar in different age groups (about ~0.70 D. Additional measurements are needed to verify that the observed changes in AA were associated with fatigue effect. The results showed lower accommodation values compared to average values calculated according to the Hofstetter equation (p < 0.05.
Scattering amplitudes from multivariate polynomial division
Energy Technology Data Exchange (ETDEWEB)
Mastrolia, Pierpaolo, E-mail: pierpaolo.mastrolia@cern.ch [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Dipartimento di Fisica e Astronomia, Universita di Padova, Padova (Italy); INFN Sezione di Padova, via Marzolo 8, 35131 Padova (Italy); Mirabella, Edoardo, E-mail: mirabell@mppmu.mpg.de [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Ossola, Giovanni, E-mail: GOssola@citytech.cuny.edu [New York City College of Technology, City University of New York, 300 Jay Street, Brooklyn, NY 11201 (United States); Graduate School and University Center, City University of New York, 365 Fifth Avenue, New York, NY 10016 (United States); Peraro, Tiziano, E-mail: peraro@mppmu.mpg.de [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany)
2012-11-15
We show that the evaluation of scattering amplitudes can be formulated as a problem of multivariate polynomial division, with the components of the integration-momenta as indeterminates. We present a recurrence relation which, independently of the number of loops, leads to the multi-particle pole decomposition of the integrands of the scattering amplitudes. The recursive algorithm is based on the weak Nullstellensatz theorem and on the division modulo the Groebner basis associated to all possible multi-particle cuts. We apply it to dimensionally regulated one-loop amplitudes, recovering the well-known integrand-decomposition formula. Finally, we focus on the maximum-cut, defined as a system of on-shell conditions constraining the components of all the integration-momenta. By means of the Finiteness Theorem and of the Shape Lemma, we prove that the residue at the maximum-cut is parametrized by a number of coefficients equal to the number of solutions of the cut itself.
Cascaded Amplitude Modulations in Sound Texture Perception
Directory of Open Access Journals (Sweden)
Richard McWalter
2017-09-01
Full Text Available Sound textures, such as crackling fire or chirping crickets, represent a broad class of sounds defined by their homogeneous temporal structure. It has been suggested that the perception of texture is mediated by time-averaged summary statistics measured from early auditory representations. In this study, we investigated the perception of sound textures that contain rhythmic structure, specifically second-order amplitude modulations that arise from the interaction of different modulation rates, previously described as “beating” in the envelope-frequency domain. We developed an auditory texture model that utilizes a cascade of modulation filterbanks that capture the structure of simple rhythmic patterns. The model was examined in a series of psychophysical listening experiments using synthetic sound textures—stimuli generated using time-averaged statistics measured from real-world textures. In a texture identification task, our results indicated that second-order amplitude modulation sensitivity enhanced recognition. Next, we examined the contribution of the second-order modulation analysis in a preference task, where the proposed auditory texture model was preferred over a range of model deviants that lacked second-order modulation rate sensitivity. Lastly, the discriminability of textures that included second-order amplitude modulations appeared to be perceived using a time-averaging process. Overall, our results demonstrate that the inclusion of second-order modulation analysis generates improvements in the perceived quality of synthetic textures compared to the first-order modulation analysis considered in previous approaches.
Transversity Amplitudes in Hypercharge Exchange Processes
International Nuclear Information System (INIS)
Aguilar Benitez de Lugo, M.
1979-01-01
' In this work we present several techniques developed for the extraction of the. Transversity amplitudes governing quasi two-body meson baryon reactions with hypercharge exchange. We review the methods used in processes having a pure spin configuration, as well as the more relevant results obtained with data from K p and Tp interactions at intermediate energies. The predictions of the additive quark model and the ones following from exchange degeneracy and etoxicity are discussed. We present a formalism for amplitude analysis developed for reactions with mixed spin configurations and discuss the methods of parametric estimation of the moduli and phases of the amplitudes, as well as the various tests employed to check the goodness of the fits. The calculation of the generalized joint density matrices is given and we propose a method based on the generalization of the idea of multipole moments, which allows to investigate the structure of the decay angular correlations and establishes the quality of the fits and the validity of the simplifying assumptions currently used in this type of studies. (Author) 43 refs
Investigating the amplitude of interactive footstep sounds and soundscape reproduction
DEFF Research Database (Denmark)
Turchet, Luca; Serafin, Stefania
2013-01-01
In this paper, we study the perception of amplitude of soundscapes and interactively generated footstep sounds provided both through headphones and a surround sound system. In particular, we investigate whether there exists a value for the amplitude of soundscapes and footstep sounds which...... of soundscapes does not significantly affect the selected amplitude of footstep sounds. Similarly, the perception of the soundscapes amplitude is not significantly affected by the selected amplitude of footstep sounds....
One-loop triple collinear splitting amplitudes in QCD
Energy Technology Data Exchange (ETDEWEB)
Badger, Simon; Buciuni, Francesco; Peraro, Tiziano [Higgs Centre for Theoretical Physics, School of Physics and Astronomy, University of Edinburgh,Edinburgh EH9 3JZ, Scotland (United Kingdom)
2015-09-28
We study the factorisation properties of one-loop scattering amplitudes in the triple collinear limit and extract the universal splitting amplitudes for processes initiated by a gluon. The splitting amplitudes are derived from the analytic Higgs plus four partons amplitudes. We present compact results for primitive helicity splitting amplitudes making use of super-symmetric decompositions. The universality of the collinear factorisation is checked numerically against the full colour six parton squared matrix elements.
Bilateral preictal signature of phase-amplitude coupling in canine epilepsy.
Gagliano, Laura; Bou Assi, Elie; Nguyen, Dang K; Rihana, Sandy; Sawan, Mohamad
2018-01-01
Seizure forecasting would improve the quality of life of patients with refractory epilepsy. Although early findings were optimistic, no single feature has been found capable of individually characterizing brain dynamics during transition to seizure. Cross-frequency phase amplitude coupling has been recently proposed as a precursor of seizure activity. This work evaluates the existence of a statistically significant difference in mean phase amplitude coupling distribution between the preictal and interictal states of seizures in dogs with bilaterally implanted intracranial electrodes. Results show a statistically significant change (p<0.05) of phase amplitude coupling during the preictal phase. This change is correlated with the position of implanted electrodes and is more significant within high-gamma frequency bands. These findings highlight the potential benefit of bilateral iEEG analysis and the feasibility of seizure forecasting based on slow modulation of high frequency amplitude. Copyright © 2017 Elsevier B.V. All rights reserved.
Ethnic differences in electrocardiographic amplitude measurements
International Nuclear Information System (INIS)
Mansi, Ishak A.; Nash, Ira S.
2004-01-01
There is a controversy regarding ethnic differences in electrocardiographic (ECG) patterns because of the potentially confounding socioeconomic, nutritional, environmental and occupational factors. We reviewed the first 1000 medical files of a multiethnic community, where all individuals shared similar living conditions. Only healthy adults age 15 to 60 years were included. Wave amplitudes were measured manually from the standard 12lead ECG. Minnesota coding was used. ECG from 597 subjects were included in the study: 350 Saudi Arabians, 95 Indians, 17 Sri-Lankans, 39 Filipinos, and 57 Caucasians; 349 were men. the mean +-SD of Sokolow-Lyon voltage (SLV) in men was signifcantly different among ethnic groups (2.9+-0.86, 2.64+-0.79, 2.73+-0.72, 3.23+-0.61, 2.94+-0.6, 2.58+-0.79 mV, P=0.0006, for Saudi's, Indians, Jordanians, Filipinos, Sri-Lankans, and Caucasians, respectively). SLV was similar among ethnic groups in women. The prevalence of early transition pattern was also different among ethnic groups in men but not women (15.8%, 34.6%, 17.9%, 21.7%, 35.3%, 26.8% in Suadi, Indian, Jordanian, Filipino, Sri-Lankan, and Caucasian, respectively, P=0.037). T wave amplitude was significantly different among ethnic groups in selected lead. ECG wave amplitude differs with ethnic region even when other factors are similar. Using SLV of 3.5 mV as a criterion may overestimate the incidence of left ventricular hypertrophy in some ethnic groups. The pattern of high R wave in lead V1is common in healthy adults in certain ethnic groups. T wave height differs with ethnic origin and sex. (author)
Loop amplitudes in an extended gravity theory
Dunbar, David C.; Godwin, John H.; Jehu, Guy R.; Perkins, Warren B.
2018-05-01
We extend the S-matrix of gravity by the addition of the minimal three-point amplitude or equivalently adding R3 terms to the Lagrangian. We demonstrate how Unitarity can be used to simply examine the renormalisability of this theory and determine the R4 counter-terms that arise at one-loop. We find that the combination of R4 terms that arise in the extended theory is complementary to the R4 counter-term associated with supersymmetric Lagrangians.
Loop-quantum-gravity vertex amplitude.
Engle, Jonathan; Pereira, Roberto; Rovelli, Carlo
2007-10-19
Spin foam models are hoped to provide the dynamics of loop-quantum gravity. However, the most popular of these, the Barrett-Crane model, does not have the good boundary state space and there are indications that it fails to yield good low-energy n-point functions. We present an alternative dynamics that can be derived as a quantization of a Regge discretization of Euclidean general relativity, where second class constraints are imposed weakly. Its state space matches the SO(3) loop gravity one and it yields an SO(4)-covariant vertex amplitude for Euclidean loop gravity.
Speech production in amplitude-modulated noise
DEFF Research Database (Denmark)
Macdonald, Ewen N; Raufer, Stefan
2013-01-01
The Lombard effect refers to the phenomenon where talkers automatically increase their level of speech in a noisy environment. While many studies have characterized how the Lombard effect influences different measures of speech production (e.g., F0, spectral tilt, etc.), few have investigated...... the consequences of temporally fluctuating noise. In the present study, 20 talkers produced speech in a variety of noise conditions, including both steady-state and amplitude-modulated white noise. While listening to noise over headphones, talkers produced randomly generated five word sentences. Similar...... of noisy environments and will alter their speech accordingly....
Optical twists in phase and amplitude
DEFF Research Database (Denmark)
Daria, Vincent R.; Palima, Darwin; Glückstad, Jesper
2011-01-01
where both phase and amplitude express a helical profile as the beam propagates in free space. Such a beam can be accurately referred to as an optical twister. We characterize optical twisters and demonstrate their capacity to induce spiral motion on particles trapped along the twisters’ path. Unlike LG...... beams, the far field projection of the twisted optical beam maintains a high photon concentration even at higher values of topological charge. Optical twisters have therefore profound applications to fundamental studies of light and atoms such as in quantum entanglement of the OAM, toroidal traps...
First order correction to quasiclassical scattering amplitude
International Nuclear Information System (INIS)
Kuz'menko, A.V.
1978-01-01
First order (with respect to h) correction to quasiclassical with the aid of scattering amplitude in nonrelativistic quantum mechanics is considered. This correction is represented by two-loop diagrams and includes the double integrals. With the aid of classical equations of motion, the sum of the contributions of the two-loop diagrams is transformed into the expression which includes one-dimensional integrals only. The specific property of the expression obtained is that the integrand does not possess any singularities in the focal points of the classical trajectory. The general formula takes much simpler form in the case of one-dimensional systems
Inverse amplitude method and Adler zeros
International Nuclear Information System (INIS)
Gomez Nicola, A.; Pelaez, J. R.; Rios, G.
2008-01-01
The inverse amplitude method is a powerful unitarization technique to enlarge the energy applicability region of effective Lagrangians. It has been widely used to describe resonances in hadronic physics, combined with chiral perturbation theory, as well as in the strongly interacting symmetry breaking sector. In this work we show how it can be slightly modified to also account for the subthreshold region, incorporating correctly the Adler zeros required by chiral symmetry and eliminating spurious poles. These improvements produce negligible effects on the physical region.
Survey of vibration amplitudes throughout the linac
International Nuclear Information System (INIS)
Werner, K.L.
1984-01-01
The magnitude of vibrations of the Linac structure due to on site disturbances, such as cooling towers, pumps, generators, Highway 280 overpass traffic, is of interest. CN-263, for example, discusses tolerances of random (i.e., uncorrelated) quad jitter and suggests that amplitudes should not exceed 0.7 microns rms. This note describes the results of a series of measurements carried out in the summer of 1983. In general, the tolerance is not exceeded, but there appears not to be a good safety factor at low frequencies
Reduction in plasmaspheric hiss wave amplitudes during a substorm
Li, H.; Yuan, Z.; Yu, X.; Deng, X.; Tang, R.; Chen, Z.; Zhou, M.; Huang, S.
2017-12-01
Plasmaspheric hiss is an important plasma wave in controlling the overall structure and dynamics of radiation belt electrons, so the distribution and generation mechanism of plasmaspheric hiss waves is worthy of study. Previous studies have found that the amplitude of plasmaspheric hiss waves tends to increase as substorm activity increases. In this study, through analysis of a hiss event observed by the Van Allen Radiation Belt Storm Probes (RBSP), it is found that the intensity of plasmaspheric hiss waves at magnetic local time (MLT) > 1300 (L≈5) is reduced or even disappears during a substorm. After calculating energetic electron trajectories, we suggest that this is because electrons are prevented from entering the plasmasphere at MLT > 1300 (L≈5) by the stronger convection electric field during the substorm. The calculations are consistent with direct observations from the RBSP satellites. The results highlight the significant and complex variability of plasmaspheric hiss waves. The amplitude of these waves on the dayside is not necessarily positively correlated with substorm activity, as negative correlations may be observed on the afternoon side during a substorm.
Multichannel amplitude analyser for nuclear spectrometry
International Nuclear Information System (INIS)
Jankovic, S.; Milovanovic, B.
2003-01-01
A multichannel amplitude analyser with 4096 channels was designed. It is based on a fast 12-bit analog-to-digital converter. The intended purpose of the instrument is recording nuclear spectra by means of scintillation detectors. The computer link is established through an opto-isolated serial connection cable, thus reducing instrument sensitivity to disturbances originating from digital circuitry. Refreshing of the data displayed on the screen occurs on every 2.5 seconds. The impulse peak detection is implemented through the differentiation of the amplified input signal, while the synchronization with the data coming from the converter output is established by taking advantage of the internal 'pipeline' structure of the converter itself. The mode of operation of the built-in microcontroller provides that there are no missed impulses, and the simple logic network prevents the initiation of the amplitude reading sequence for the next impulse in case it appears shortly after its precedent. The solution proposed here demonstrated a good performance at a comparatively low manufacturing cost, and is thus suitable for educational purposes (author)
Getting superstring amplitudes by degenerating Riemann surfaces
International Nuclear Information System (INIS)
Matone, Marco; Volpato, Roberto
2010-01-01
We explicitly show how the chiral superstring amplitudes can be obtained through factorisation of the higher genus chiral measure induced by suitable degenerations of Riemann surfaces. This powerful tool also allows to derive, at any genera, consistency relations involving the amplitudes and the measure. A key point concerns the choice of the local coordinate at the node on degenerate Riemann surfaces that greatly simplifies the computations. As a first application, starting from recent ansaetze for the chiral measure up to genus five, we compute the chiral two-point function for massless Neveu-Schwarz states at genus two, three and four. For genus higher than three, these computations include some new corrections to the conjectural formulae appeared so far in the literature. After GSO projection, the two-point function vanishes at genus two and three, as expected from space-time supersymmetry arguments, but not at genus four. This suggests that the ansatz for the superstring measure should be corrected for genus higher than four.
The Construction of Spin Foam Vertex Amplitudes
Directory of Open Access Journals (Sweden)
Eugenio Bianchi
2013-01-01
Full Text Available Spin foam vertex amplitudes are the key ingredient of spin foam models for quantum gravity. These fall into the realm of discretized path integral, and can be seen as generalized lattice gauge theories. They can be seen as an attempt at a 4-dimensional generalization of the Ponzano-Regge model for 3d quantum gravity. We motivate and review the construction of the vertex amplitudes of recent spin foam models, giving two different and complementary perspectives of this construction. The first proceeds by extracting geometric configurations from a topological theory of the BF type, and can be seen to be in the tradition of the work of Barrett, Crane, Freidel and Krasnov. The second keeps closer contact to the structure of Loop Quantum Gravity and tries to identify an appropriate set of constraints to define a Lorentz-invariant interaction of its quanta of space. This approach is in the tradition of the work of Smolin, Markopoulous, Engle, Pereira, Rovelli and Livine.
International Nuclear Information System (INIS)
Westphal, T; Nijssen, R P L
2014-01-01
The effect of Constant Life Diagram (CLD) formulation on the fatigue life prediction under variable amplitude (VA) loading was investigated based on variable amplitude tests using three different load spectra representative for wind turbine loading. Next to the Wisper and WisperX spectra, the recently developed NewWisper2 spectrum was used. Based on these variable amplitude fatigue results the prediction accuracy of 4 CLD formulations is investigated. In the study a piecewise linear CLD based on the S-N curves for 9 load ratios compares favourably in terms of prediction accuracy and conservativeness. For the specific laminate used in this study Boerstra's Multislope model provides a good alternative at reduced test effort
Westphal, T.; Nijssen, R. P. L.
2014-12-01
The effect of Constant Life Diagram (CLD) formulation on the fatigue life prediction under variable amplitude (VA) loading was investigated based on variable amplitude tests using three different load spectra representative for wind turbine loading. Next to the Wisper and WisperX spectra, the recently developed NewWisper2 spectrum was used. Based on these variable amplitude fatigue results the prediction accuracy of 4 CLD formulations is investigated. In the study a piecewise linear CLD based on the S-N curves for 9 load ratios compares favourably in terms of prediction accuracy and conservativeness. For the specific laminate used in this study Boerstra's Multislope model provides a good alternative at reduced test effort.
Amplitude death in a ring of nonidentical nonlinear oscillators with unidirectional coupling.
Ryu, Jung-Wan; Kim, Jong-Ho; Son, Woo-Sik; Hwang, Dong-Uk
2017-08-01
We study the collective behaviors in a ring of coupled nonidentical nonlinear oscillators with unidirectional coupling, of which natural frequencies are distributed in a random way. We find the amplitude death phenomena in the case of unidirectional couplings and discuss the differences between the cases of bidirectional and unidirectional couplings. There are three main differences; there exists neither partial amplitude death nor local clustering behavior but an oblique line structure which represents directional signal flow on the spatio-temporal patterns in the unidirectional coupling case. The unidirectional coupling has the advantage of easily obtaining global amplitude death in a ring of coupled oscillators with randomly distributed natural frequency. Finally, we explain the results using the eigenvalue analysis of the Jacobian matrix at the origin and also discuss the transition of dynamical behavior coming from connection structure as the coupling strength increases.
Probabilistic Amplitude Shaping With Hard Decision Decoding and Staircase Codes
Sheikh, Alireza; Amat, Alexandre Graell i.; Liva, Gianluigi; Steiner, Fabian
2018-05-01
We consider probabilistic amplitude shaping (PAS) as a means of increasing the spectral efficiency of fiber-optic communication systems. In contrast to previous works in the literature, we consider probabilistic shaping with hard decision decoding (HDD). In particular, we apply the PAS recently introduced by B\\"ocherer \\emph{et al.} to a coded modulation (CM) scheme with bit-wise HDD that uses a staircase code as the forward error correction code. We show that the CM scheme with PAS and staircase codes yields significant gains in spectral efficiency with respect to the baseline scheme using a staircase code and a standard constellation with uniformly distributed signal points. Using a single staircase code, the proposed scheme achieves performance within $0.57$--$1.44$ dB of the corresponding achievable information rate for a wide range of spectral efficiencies.
Thrombelastography Early Amplitudes in bleeding and coagulopathic trauma patients
DEFF Research Database (Denmark)
Laursen, Thomas Holst; Meyer, Martin A S; Meyer, Anna Sina P
2018-01-01
BACKGROUND: Early amplitudes in the viscoelastic hemostatic assays Thrombelastography (TEG) and Rotation Thromboelastometry (ROTEM) provide fast results, which is critical in resuscitation of bleeding patients. This study investigated associations between TEG early amplitudes and standard TEG var...
International Nuclear Information System (INIS)
Sabry, R.
2009-01-01
A finite amplitude theory for ion-acoustic solitary waves and double layers in multicomponent plasma consisting of hot positrons, cold ions, and electrons with two-electron temperature distributions is presented. Conditions are obtained under which large amplitude stationary ion-acoustic solitary waves and double layers can exist. For the physical parameters of interest, the ion-acoustic solitary wave (double layers) profiles and the relationship between the maximum soliton (double layers) amplitude and the Mach number are found. Also, we have presented the region of existence of the large amplitude ion-acoustic waves by analyzing the structure of the pseudopotential. For the selected range of parameters, it is found that only positive solitary waves and double layers can exist. An analysis for the small amplitude limit through the Sagdeev pseudopotential analysis and the reductive perturbation theory shows the existence of positive and negative ion-acoustic solitary waves and double layers. The effects of positron concentration and temperature ratio on the characteristics of the solitary ion-acoustic waves and double layers (namely, the amplitude and width) are discussed in detail. The relevance of this investigation to space and laboratory plasmas is pointed out.
Variational principles for the projected breakup amplitude
International Nuclear Information System (INIS)
Hahn, Y.
1976-01-01
Two alternate forms of variational principles for the breakup amplitude describing the two- to three-cluster transition are derived such that all the integrals involved in the intermediate stages are well defined. The first form contains a trial Green's function with which both the initial and final state trial wave functions are constructed. The earlier form of the Kohn-type variational principle derived by Lieber, Rosenberg, and Spruch is recovered, however, when this connection between the trial functions is removed. The second form of the variational principle is derived by projecting out from the trial functions all the open channel components which correspond to the two-cluster structures including the rearrangement channels. The remaining part of the wave functions describes the channels with three-cluster structures, and the integrals involving this part are then mathematically well defined
Single isospin decay amplitude and CP violation
Energy Technology Data Exchange (ETDEWEB)
Deshpande, N.G. [Oregon Univ., Eugene, OR (United States). Inst. of Theoretical Science; He, Xiaogang [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Pakvasa, S. [Hawaii Univ., Honolulu, HI (United States). Dept. of Physics and Astronomy
1996-06-01
While for K meson or hyperon decays, the partial rate asymmetries are always zero if the final states are single isospin states, in B decays the situation is dramatically different and partial rate asymmetries can be non-zero if the final states are single isospin states. Partial rate asymmetries were calculated for several B decays with single isospin amplitude in the finale states using factorization approximation. It was found that more intermediate on-shell states with different Cabbibbo-Kobayashi-Maskawa factors are allowed in B decay and CP violating partial rate asymmetries need not to be zero even if the final state contains only a single isospin state. 17 refs., 4 figs.
Large amplitude parallel propagating electromagnetic oscillitons
International Nuclear Information System (INIS)
Cattaert, Tom; Verheest, Frank
2005-01-01
Earlier systematic nonlinear treatments of parallel propagating electromagnetic waves have been given within a fluid dynamic approach, in a frame where the nonlinear structures are stationary and various constraining first integrals can be obtained. This has lead to the concept of oscillitons that has found application in various space plasmas. The present paper differs in three main aspects from the previous studies: first, the invariants are derived in the plasma frame, as customary in the Sagdeev method, thus retaining in Maxwell's equations all possible effects. Second, a single differential equation is obtained for the parallel fluid velocity, in a form reminiscent of the Sagdeev integrals, hence allowing a fully nonlinear discussion of the oscilliton properties, at such amplitudes as the underlying Mach number restrictions allow. Third, the transition to weakly nonlinear whistler oscillitons is done in an analytical rather than a numerical fashion
Amplitude and phase modulation with waveguide optics
International Nuclear Information System (INIS)
Burkhart, S.C.; Wilcox, R.B.; Browning, D.; Penko, F.A.
1996-01-01
We have developed amplitude and phase modulation systems for glass lasers using integrated electro-optic modulators and solid state high-speed electronics. The present and future generation of lasers for Inertial Confinement Fusion require laser beams with complex temporal and phase shaping to compensate for laser gain saturation, mitigate parametric processes such as transverse stimulated Brillouin scattering in optics, and to provide specialized drive to the fusion targets. These functions can be performed using bulk optoelectronic modulators, however using high-speed electronics to drive low voltage integrated optical modulators has many practical advantages. In particular, we utilize microwave GaAs transistors to perform precision, 250 ps resolution temporal shaping. Optical bandwidth is generated using a microwave oscillator at 3 GHz amplified by a solid state amplifier. This drives an integrated electrooptic modulator to achieve laser bandwidths exceeding 30 GHz
Topological amplitudes in heterotic superstring theory
International Nuclear Information System (INIS)
Antoniadis, I.; Taylor, T.R.
1996-06-01
We show that certain heterotic string amplitudes are given in terms of correlators of the twisted topological (2,0) SCFT, corresponding to the internal sector of the N = 1 spacetime supersymmetric background. The genus g topological partition function F g corresponds to a term in the effective action of the form W 2g , where W is the gauge or gravitational superfield. We study also recursion relations related to holomorphic anomalies, showing that, contrary to the type II case, they involve correlators of anti-chiral superfields. The corresponding terms in the effective action are of the form W 2g II n , where II is a chiral superfield obtained by chiral projection of a general superfield. We observe that the structure of the recursion relations is that of N = 1 spacetime supersymmetry Ward identity. We give also a solution of the tree level recursion relations and discuss orbifold examples. (author). 23 refs, 2 figs
Polynomial structures in one-loop amplitudes
International Nuclear Information System (INIS)
Britto, Ruth; Feng Bo; Yang Gang
2008-01-01
A general one-loop scattering amplitude may be expanded in terms of master integrals. The coefficients of the master integrals can be obtained from tree-level input in a two-step process. First, use known formulas to write the coefficients of (4-2ε)-dimensional master integrals; these formulas depend on an additional variable, u, which encodes the dimensional shift. Second, convert the u-dependent coefficients of (4-2ε)-dimensional master integrals to explicit coefficients of dimensionally shifted master integrals. This procedure requires the initial formulas for coefficients to have polynomial dependence on u. Here, we give a proof of this property in the case of massless propagators. The proof is constructive. Thus, as a byproduct, we produce different algebraic expressions for the scalar integral coefficients, in which the polynomial property is apparent. In these formulas, the box and pentagon contributions are separated explicitly.
Amplitude analysis of $B^0 → ¯D^0 K^+ π^-$ decays
Aaij, R.; Raven, G.
2015-01-01
The Dalitz plot distribution of B0→D¯0K+π- decays is studied using a data sample corresponding to 3.0fb-1 of pp collision data recorded by the LHCb experiment during 2011 and 2012. The data are described by an amplitude model that contains contributions from intermediate K∗(892)0, K∗(1410)0,
Higher-order multipole amplitude measurement in psi ' -> gamma chi(c2)
Ablikim, M.; Achasov, M. N.; Alberto, D.; An, F. F.; An, Q.; An, Z. H.; Bai, J. Z.; Baldini, R.; Ban, Y.; Becker, J.; Berger, N.; Bertani, M.; Bian, J. M.; Boger, E.; Bondarenko, O.; Boyko, I.; Briere, R. A.; Bytev, V.; Cai, X.; Calcaterra, A. C.; Cao, G. F.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, Y.; Chen, Y. B.; Cheng, H. P.; Chu, Y. P.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dedovich, D.; Deng, Z. Y.; Denysenko, I.; Destefanis, M.; Ding, Y.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Fang, J.; Fang, S. S.; Feng, C. Q.; Fu, C. D.; Fu, J. L.; Gao, Y.; Geng, C.; Goetzen, K.; Gong, W. X.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y. P.; Han, Y. L.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, M.; He, Z. Y.; Heng, Y. K.; Hou, Z. L.; Hu, H. M.; Hu, J. F.; Hu, T.; Huang, B.; Huang, G. M.; Huang, J. S.; Huang, X. T.; Huang, Y. P.; Hussain, T.; Ji, C. S.; Ji, Q.; Ji, X. B.; Ji, X. L.; Jia, L. K.; Jiang, L. L.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Jing, F. F.; Kalantar-Nayestanaki, N.; Kavatsyuk, M.; Kuehn, W.; Lai, W.; Lange, J. S.; Leung, J. K. C.; Li, C. H.; Li, Cheng; Li, Cui; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, K.; Li, Lei; Li, N. B.; Li, Q. J.; Li, S. L.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, X. R.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, X. T.; Liu, B. J.; Liu, C. L.; Liu, C. X.; Liu, C. Y.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H.; Liu, H. B.; Liu, H. H.; Liu, H. M.; Liu, H. W.; Liu, J. P.; Liu, K.; Liu, K.; Liu, K. Y.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. H.; Liu, Y. B.; Liu, Y. W.; Liu, Yong; Liu, Z. A.; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H.; Lu, G. R.; Lu, H. J.; Lu, J. G.; Lu, Q. W.; Lu, X. R.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Ma, C. L.; Ma, F. C.; Ma, H. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X.; Ma, X. Y.; Maggiora, M.; Malik, Q. A.; Mao, H.; Mao, Y. J.; Mao, Z. P.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Muchnoi, N. Yu; Nefedov, Y.; Nikolaev, I. B.; Ning, Z.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Park, J. W.; Pelizaeus, M.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Pun, C. S. J.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, X. S.; Qiu, J. F.; Rashid, K. H.; Rong, G.; Ruan, X. D.; Sarantsev, A.; Schulze, J.; Shao, M.; Shen, C. P.; Shen, X. Y.; Sheng, H. Y.; Shepherd, M. R.; Song, X. Y.; Spataro, S.; Spruck, B.; Sun, D. H.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. D.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tian, H. L.; Toth, D.; Varner, G. S.; Wang, B.; Wang, B. Q.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q.; Wang, Q. J.; Wang, S. G.; Wang, X. L.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. Y.; Wei, D. H.; Wen, Q. G.; Wen, S. P.; Wiedner, U.; Wu, L. H.; Wu, N.; Wu, W.; Wu, Z.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, G. M.; Xu, H.; Xu, Q. J.; Xu, X. P.; Xu, Y.; Xu, Z. R.; Xu, Z. Z.; Xue, Z.; Yan, L.; Yan, W. B.; Yan, Y. H.; Yang, H. X.; Yang, T.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yu, B. X.; Yu, C. X.; Yu, S. P.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, L.; Zhang, S. H.; Zhang, T. R.; Zhang, X. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. S.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, H. S.; Zhao, Jiawei; Zhao, Jingwei; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, X. H.; Zhao, Y. B.; Zhao, Z. G.; Zhao, Z. L.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, Y. H.; Zheng, Z. P.; Zhong, B.; Zhong, J.; Zhong, L.; Zhou, L.; Zhou, X. K.; Zhou, X. R.; Zhu, C.; Zhu, K.; Zhu, K. J.; Zhu, S. H.; Zhu, X. L.; Zhu, X. W.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; Zuo, J. X.
2011-01-01
Using 106 x 10(6) psi' events collected with the BESIII detector at the BEPCII storage ring, the higher-order multipole amplitudes in the radiative transition psi' -> gamma chi(c2) -> gamma pi(+)pi(-)/gamma K+K- are measured. A fit to the chi(c2) production and decay angular distributions yields M2
Tree-level gluon amplitudes on the celestial sphere
Schreiber, Anders Ø.; Volovich, Anastasia; Zlotnikov, Michael
2018-06-01
Pasterski, Shao and Strominger have recently proposed that massless scattering amplitudes can be mapped to correlators on the celestial sphere at infinity via a Mellin transform. We apply this prescription to arbitrary n-point tree-level gluon amplitudes. The Mellin transforms of MHV amplitudes are given by generalized hypergeometric functions on the Grassmannian Gr (4 , n), while generic non-MHV amplitudes are given by more complicated Gelfand A-hypergeometric functions.
Corrections to the box diagram amplitude due to kaon mass
International Nuclear Information System (INIS)
Datta, A.; Kumbhakar, D.
1985-08-01
The K 0 -anti-K 0 mixing amplitude is calculated without using the standard zero external momentum approximation. The resulting corrections are numerically significant for the real part of the amplitude. In the imaginary part of the amplitude the effects of similar corrections are less important. Implications for Δmsub(k) and epsilon are discussed. (author)
MHV Vertices And Tree Amplitudes In Gauge Theory
International Nuclear Information System (INIS)
Cachazo, Freddy; Svrcek, Peter; Witten, Edward
2004-01-01
As an alternative to the usual Feynman graphs, tree amplitudes in Yang-Mills theory can be constructed from tree graphs in which the vertices are tree level MHV scattering amplitudes, continued off shell in a particular fashion. The formalism leads to new and relatively simple formulas for many amplitudes, and can be heuristically derived from twistor space. (author)
Non-supersymmetric loop amplitudes and MHV vertices
International Nuclear Information System (INIS)
Bedford, James; Brandhuber, Andreas; Spence, Bill; Travaglini, Gabriele
2005-01-01
We show how the MHV diagram description of Yang-Mills theories can be used to study non-supersymmetric loop amplitudes. In particular, we derive a compact expression for the cut-constructible part of the general one-loop MHV multi-gluon scattering amplitude in pure Yang-Mills theory. We show that in special cases this expression reduces to known amplitudes-the amplitude with adjacent negative-helicity gluons, and the five gluon non-adjacent amplitude. Finally, we briefly discuss the twistor space interpretation of our result
Phase and amplitude detection system for the Stanford Linear Accelerator
International Nuclear Information System (INIS)
Fox, J.D.; Schwarz, H.D.
1983-01-01
A computer controlled phase and amplitude detection system to measure and stabilize the rf power sources in the Stanford Linear Accelerator is described. This system measures the instantaneous phase and amplitude of a 1 microsecond 2856 MHz rf pulse and will be used for phase feedback control and for amplitude and phase jitter detection. This paper discusses the measurement system performance requirements for the operation of the Stanford Linear Collider, and the design and implementation of the phase and amplitude detection system. The fundamental software algorithms used in the measurement are described, as is the performance of the prototype phase and amplitude detector system
Leading Wave Amplitude of a Tsunami
Kanoglu, U.
2015-12-01
Okal and Synolakis (EGU General Assembly 2015, Geophysical Research Abstracts-Vol. 17-7622) recently discussed that why the maximum amplitude of a tsunami might not occur for the first wave. Okal and Synolakis list observations from 2011 Japan tsunami, which reached to Papeete, Tahiti with a fourth wave being largest and 72 min later after the first wave; 1960 Chilean tsunami reached Hilo, Hawaii with a maximum wave arriving 1 hour later with a height of 5m, first wave being only 1.2m. Largest later waves is a problem not only for local authorities both in terms of warning to the public and rescue efforts but also mislead the public thinking that it is safe to return shoreline or evacuated site after arrival of the first wave. Okal and Synolakis considered Hammack's (1972, Ph.D. Dissertation, Calif. Inst. Tech., 261 pp., Pasadena) linear dispersive analytical solution with a tsunami generation through an uplifting of a circular plug on the ocean floor. They performed parametric study for the radius of the plug and the depth of the ocean since these are the independent scaling lengths in the problem. They identified transition distance, as the second wave being larger, regarding the parameters of the problem. Here, we extend their analysis to an initial wave field with a finite crest length and, in addition, to a most common tsunami initial wave form of N-wave as presented by Tadepalli and Synolakis (1994, Proc. R. Soc. A: Math. Phys. Eng. Sci., 445, 99-112). We compare our results with non-dispersive linear shallow water wave results as presented by Kanoglu et al. (2013, Proc. R. Soc. A: Math. Phys. Eng. Sci., 469, 20130015), investigating focusing feature. We discuss the results both in terms of leading wave amplitude and tsunami focusing. Acknowledgment: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 603839 (Project ASTARTE - Assessment, Strategy and Risk
Effects of amplitude modulation on perception of wind turbine noise
Energy Technology Data Exchange (ETDEWEB)
Yoon, Ki Seop; Lee, Soo Gab; Gwak, Doo Young [Dept. of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Seong, Yeol Wan [Ammunition Engineering Team, Defense Agency for Technology and Quality, Daejeon (Korea, Republic of); Lee, Seung Hoon [Aerodynamics Research Team, Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Hong, Ji Young [Transportation Environmental Research Team, Green Transport and Logistics Institute, Korea Railroad Research Institute, Uiwang (Korea, Republic of)
2016-10-15
Wind turbine noise is considered to be easily detectable and highly annoying at relatively lower sound levels than other noise sources. Many previous studies attributed this characteristic to amplitude modulation. However, it is unclear whether amplitude modulation is the main cause of these properties of wind turbine noise. Therefore, the aim of the current study is to identify the relationship between amplitude modulation and these two properties of wind turbine noise. For this investigation, two experiments were conducted. In the first experiment, 12 participants determined the detection thresholds of six target sounds in the presence of background noise. In the second experiment, 12 participants matched the loudness of modified sounds without amplitude modulation to that of target sounds with amplitude modulation. The results showed that the detection threshold was lowered as the modulation depth increased; additionally, sounds with amplitude modulation had higher subjective loudness than those without amplitude modulation.
Effects of amplitude modulation on perception of wind turbine noise
International Nuclear Information System (INIS)
Yoon, Ki Seop; Lee, Soo Gab; Gwak, Doo Young; Seong, Yeol Wan; Lee, Seung Hoon; Hong, Ji Young
2016-01-01
Wind turbine noise is considered to be easily detectable and highly annoying at relatively lower sound levels than other noise sources. Many previous studies attributed this characteristic to amplitude modulation. However, it is unclear whether amplitude modulation is the main cause of these properties of wind turbine noise. Therefore, the aim of the current study is to identify the relationship between amplitude modulation and these two properties of wind turbine noise. For this investigation, two experiments were conducted. In the first experiment, 12 participants determined the detection thresholds of six target sounds in the presence of background noise. In the second experiment, 12 participants matched the loudness of modified sounds without amplitude modulation to that of target sounds with amplitude modulation. The results showed that the detection threshold was lowered as the modulation depth increased; additionally, sounds with amplitude modulation had higher subjective loudness than those without amplitude modulation
The pulsed amplitude unit for the SLC
International Nuclear Information System (INIS)
Rolfe, J.; Browne, M.J.; Jobe, R.K.
1987-02-01
There is a recurring requirement in the SLC for the control of devices such as magnets, phase shifters, and attenuators on a beam-by-beam basis. The Pulsed Amplitude Unit (PAU) is a single width CAMAC module developed for this purpose. It provides digitally programmed analog output voltages on a beam-by-beam basis. Up to 32 preprogrammed values of output voltage are available from the single analog output of the module, and any of these values can be associated with any of the 256 possible SLC beam definitions. A 12-bit Analog-to-Digital Converter (ADC) digitizes an analog input signal at the appropriate beam time and stores it in a buffer memory. This feature is normally used to monitor the response of the device being controlled by the PAU at each beam time. Initial application of the PAU is a part of the system that controls the output of Klystrons in the SLC. The PAU combines several different functions in a single module. In order to accommodate these functions in a single width CAMAC module, field programmed logic is used extensively. Field Programmable Logic Arrays, Programmed Array Logic, and a Field Programmable Logic Sequencer are employed
Electroweak amplitudes in chiral quark models
International Nuclear Information System (INIS)
Fiolhais, Manuel
2004-01-01
After referring to some basic features of chiral models for baryons, with quarks and mesons, we describe how to construct model states representing physical baryons. We consider soliton models such as the Linear Sigma Model or the Chromodielectric Model, and bag models such as the Cloudy Bag Model. These models are solved approximately using variational approaches whose starting point is a mean-field description. We go beyond the mean-field description by introducing quantum fluctuations in the mesonic degrees of freedom. This is achieved, in a first step, by using a quantum state to represent meson clouds and, secondly, by performing an angular momentum and isospin projection from the mean-field state (actually a coherent state). Model states for baryons (nucleon, Delta, Roper) constructed in this way are used to determine several physical properties. I this seminar we paid a particular attention to the nucleon-delta electromagnetic and weak transition, presenting the model predictions for the electromagnetic and axial amplitudes
Nonlinear amplitude dynamics in flagellar beating.
Oriola, David; Gadêlha, Hermes; Casademunt, Jaume
2017-03-01
The physical basis of flagellar and ciliary beating is a major problem in biology which is still far from completely understood. The fundamental cytoskeleton structure of cilia and flagella is the axoneme, a cylindrical array of microtubule doublets connected by passive cross-linkers and dynein motor proteins. The complex interplay of these elements leads to the generation of self-organized bending waves. Although many mathematical models have been proposed to understand this process, few attempts have been made to assess the role of dyneins on the nonlinear nature of the axoneme. Here, we investigate the nonlinear dynamics of flagella by considering an axonemal sliding control mechanism for dynein activity. This approach unveils the nonlinear selection of the oscillation amplitudes, which are typically either missed or prescribed in mathematical models. The explicit set of nonlinear equations are derived and solved numerically. Our analysis reveals the spatio-temporal dynamics of dynein populations and flagellum shape for different regimes of motor activity, medium viscosity and flagellum elasticity. Unstable modes saturate via the coupling of dynein kinetics and flagellum shape without the need of invoking a nonlinear axonemal response. Hence, our work reveals a novel mechanism for the saturation of unstable modes in axonemal beating.
An amplitude modulated radio frequency plasma generator
Lei, Fan; Li, Xiaoping; Liu, Yanming; Liu, Donglin; Yang, Min; Xie, Kai; Yao, Bo
2017-04-01
A glow discharge plasma generator and diagnostic system has been developed to study the effects of rapidly variable plasmas on electromagnetic wave propagation, mimicking the plasma sheath conditions encountered in space vehicle reentry. The plasma chamber is 400 mm in diameter and 240 mm in length, with a 300-mm-diameter unobstructed clear aperture. Electron densities produced are in the mid 1010 electrons/cm3. An 800 W radio frequency (RF) generator is capacitively coupled through an RF matcher to an internally cooled stainless steel electrode to form the plasma. The RF power is amplitude modulated by a waveform generator that operates at different frequencies. The resulting plasma contains electron density modulations caused by the varying power levels. A 10 GHz microwave horn antenna pair situated on opposite sides of the chamber serves as the source and detector of probe radiation. The microwave power feed to the source horn is split and one portion is sent directly to a high-speed recording oscilloscope. On mixing this with the signal from the pickup horn antenna, the plasma-induced phase shift between the two signals gives the path-integrated electron density with its complete time dependent variation. Care is taken to avoid microwave reflections and extensive shielding is in place to minimize electronic pickup. Data clearly show the low frequency modulation of the electron density as well as higher harmonics and plasma fluctuations.
Open string topological amplitudes and gaugino masses
International Nuclear Information System (INIS)
Antoniadis, I.; Narain, K.S.; Taylor, T.R.
2005-09-01
We discuss the moduli-dependent couplings of the higher derivative F-terms (TrW 2 ) h-1 , where W is the gauge N =1 chiral superfield. They are determined by the genus zero topological partition function F (0,h) , on a world-sheet with h boundaries. By string duality, these terms are also related to heterotic topological amplitudes studied in the past, with the topological twist applied only in the left-moving supersymmetric sector of the internal N =(2,0) superconformal field theory. The holomorphic anomaly of these couplings relates them to terms of the form Π n (TrW 2 ) h-2 , where Π's represent chiral projections of non-holomorphic functions of chiral superfields. An important property of these couplings is that they violate R-symmetry for h ≥ 3. As a result, once supersymmetry is broken by D-term expectation values, (TrW 2 ) 2 generates gaugino masses that can be hierarchically smaller than the scalar masses, behaving as m 1/2 ∼ m 0 4 in string units. Similarly, ΠTrW 2 generates Dirac masses for non-chiral brane fermions, of the same order of magnitude. This mechanism can be used for instance to obtain fermion masses at the TeV scale for scalar masses as high as m 0 ∼ O (10 13 ) GeV. We present explicit examples in toroidal string compactifications with intersecting D-branes. (author)
Casimir amplitudes in topological quantum phase transitions.
Griffith, M A; Continentino, M A
2018-01-01
Topological phase transitions constitute a new class of quantum critical phenomena. They cannot be described within the usual framework of the Landau theory since, in general, the different phases cannot be distinguished by an order parameter, neither can they be related to different symmetries. In most cases, however, one can identify a diverging length at these topological transitions. This allows us to describe them using a scaling approach and to introduce a set of critical exponents that characterize their universality class. Here we consider some relevant models of quantum topological transitions associated with well-defined critical exponents that are related by a quantum hyperscaling relation. We extend to these models a finite-size scaling approach based on techniques for calculating the Casimir force in electromagnetism. This procedure allows us to obtain universal Casimir amplitudes at their quantum critical points. Our results verify the validity of finite-size scaling in these systems and confirm the values of the critical exponents obtained previously.
Effective anisotropy through traveltime and amplitude matching
Wang, Hui
2014-08-05
Introducing anisotropy to seismic wave propagation reveals more realistic physics of our Earth\\'s subsurface as compared to the isotropic assumption. However wavefield modeling, the engine of seismic inverse problems, in anisotropic media still suffers from computational burdens, in particular with complex anisotropy such as transversely isotropic (TI) and Orthorhombic anisotropy. We develop effective isotropic velocity and density models to package the effects of anisotropy such that the wave propagation behavior using these effective models approximate those of the original anisotropic model. We build these effective models through the high frequency asymptotic approximation based on the eikonal and transport equations. We match the geometrical behavior of the wave-fields, given by traveltimes, from the anisotropic and isotropic eikonal equations. This matching yields the effective isotropic velocity that approximates the kinematics of the anisotropic wavefield. Equivalently, we calculate the effective densities by equating the anisotropic and isotropic transport equations. The effective velocities and densities are then fed into the isotropic acoustic variable density wave equation to obtain cheaper anisotropic wavefields. We justify our approach by testing it on an elliptical anisotropic model. The numerical results demonstrate a good matching of both traveltime and amplitude between anisotropic and effective isotropic wavefields.
The pulsed amplitude unit for the SLC
International Nuclear Information System (INIS)
Rolfe, J.; Browne, M.J.; Jobe, R.K.
1987-01-01
There is a recurring requirement in the SLC for the control of devices such as magnets, phase shifters, and attenuators on a beam-by-beam basis. The Pulsed Amplitude Unit (PAU) is a single width CAMAC module developed for this purpose. It provides digitally programmed analog output voltages on a beam-by-beam basis. Up to 32 preprogrammed values of output voltage are available from the single analog output of the module, and any of these values can be associated with any of the 256 possible SLC beam definitions. A 12-bit Analog-to-Digital converter (ADC) digitizes an analog input signal at the appropriate beam time and stores it in a buffer memory. This feature is normally used to monitor the response of the device being controlled by the PAU at each beam time. Initial application of the PAU at is as part of the system that controls the output of Klystorns in the SLC. The PAU combines several different functions in a single module. In order to accommodate these functions in a single width CAMAC module, field programmed logic is used extensively. Field Programmable Logic Arrays, Programmed Array Logic, and a Field Programmable Logic Sequencer are employed
Tsunami Amplitude Estimation from Real-Time GNSS.
Jeffries, C.; MacInnes, B. T.; Melbourne, T. I.
2017-12-01
Tsunami early warning systems currently comprise modeling of observations from the global seismic network, deep-ocean DART buoys, and a global distribution of tide gauges. While these tools work well for tsunamis traveling teleseismic distances, saturation of seismic magnitude estimation in the near field can result in significant underestimation of tsunami excitation for local warning. Moreover, DART buoy and tide gauge observations cannot be used to rectify the underestimation in the available time, typically 10-20 minutes, before local runup occurs. Real-time GNSS measurements of coseismic offsets may be used to estimate finite faulting within 1-2 minutes and, in turn, tsunami excitation for local warning purposes. We describe here a tsunami amplitude estimation algorithm; implemented for the Cascadia subduction zone, that uses continuous GNSS position streams to estimate finite faulting. The system is based on a time-domain convolution of fault slip that uses a pre-computed catalog of hydrodynamic Green's functions generated with the GeoClaw shallow-water wave simulation software and maps seismic slip along each section of the fault to points located off the Cascadia coast in 20m of water depth and relies on the principle of the linearity in tsunami wave propagation. The system draws continuous slip estimates from a message broker, convolves the slip with appropriate Green's functions which are then superimposed to produce wave amplitude at each coastal location. The maximum amplitude and its arrival time are then passed into a database for subsequent monitoring and display. We plan on testing this system using a suite of synthetic earthquakes calculated for Cascadia whose ground motions are simulated at 500 existing Cascadia GPS sites, as well as real earthquakes for which we have continuous GNSS time series and surveyed runup heights, including Maule, Chile 2010 and Tohoku, Japan 2011. This system has been implemented in the CWU Geodesy Lab for the Cascadia
Complex amplitude reconstruction by iterative amplitude-phase retrieval algorithm with reference
Shen, Cheng; Guo, Cheng; Tan, Jiubin; Liu, Shutian; Liu, Zhengjun
2018-06-01
Multi-image iterative phase retrieval methods have been successfully applied in plenty of research fields due to their simple but efficient implementation. However, there is a mismatch between the measurement of the first long imaging distance and the sequential interval. In this paper, an amplitude-phase retrieval algorithm with reference is put forward without additional measurements or priori knowledge. It gets rid of measuring the first imaging distance. With a designed update formula, it significantly raises the convergence speed and the reconstruction fidelity, especially in phase retrieval. Its superiority over the original amplitude-phase retrieval (APR) method is validated by numerical analysis and experiments. Furthermore, it provides a conceptual design of a compact holographic image sensor, which can achieve numerical refocusing easily.
Theoretical Study of Amplitude Modulation Application during Radio Frequency Electrocoagulation
Directory of Open Access Journals (Sweden)
V. A. Karpuhin
2015-01-01
Full Text Available This article concerns the investigation results of influence of the amplitude-modulated acting signal parameters on the thermoelectric characteristics of biological tissues for a specified geometry of the working electrode section during RF mono-polar electrocoagulation. The geometric model ‘electrode - a biological tissue’ was suggested to study the distribution of power and temperature fields in biological tissue during mono-polar coagulation. The model of biological tissue is represented as a cylinder and the needle electrode is an ellipsoid immersed in the biological tissue. The heat and quasi-electrostatics equations are used as a mathematical model. These equations are solved in Comsol Multiphysics environment.As a result, we have got the following findings: the technique of calculating parameters of the PAM acting signal which has a fixed carrier frequency for the needle electrode of a specified geometry and the immersion depth in biological tissues is suggested. Parameters of PAM signal are determined for this electrode geometry. These parameters provide a 60 ... 80°C heating range of biological tissues near the working part of the tool for different amplitudes of acting signal during RF coagulation. It has been found out that both the temperature and the relaxation frequency of biological tissue depend on exposure time for the needle electrode of a specified geometry and immersion depth of the working part of tool into biological tissue.It is shown that the relaxation frequency of the biological tissue, subjected to the radiofrequency pulses, linearly depends on its heating temperature and can be used as a numerical criterion for maintaining the specified temperature conditions. It is found that the relaxation frequency of the biological tissue depends on the contact area of the tool working part and biological tissues. To reduce this dependence it is necessary to provide automatic current control of the output action.
Energy Technology Data Exchange (ETDEWEB)
Aguilar Benitez de Lugo, M.
1979-07-01
In this work we present several techniques developed for the extraction of the. Transversity amplitudes governing quasi two-body meson baryon reactions with hypercharge exchange. We review the methods used In processes having a pure spin configuration, as well as the more relevant results obtained with data from K{sup p} and Tp interactions at intermediate energies. The predictions of the additive quark model and the ones following from exchange degeneracy and etoxicity are discussed. We present a formalism for amplitude analysis developed for reactions with mixed spin configurations and discuss the methods of parametric estimation of the moduli and phases of.the amplitudes, as well as the various tests employed to check the goodness of the fits. The calculation of the generalized joint density matrices is given and we propose a method based on the generalization of the idea of multipole moments, which allows to investigate the structure of the decay angular correlations and establishes the quality of the fits and the validity of the simplifying assumptions currently used in this type of studies. (Author) 43 refs.
Detection of cardiac wall motion defects with combined amplitude/phase analysis
International Nuclear Information System (INIS)
Bacharach, S.L.; Green, M.V.; Bonow, R.O.; Pace, L.; Brunetti, A.; Larson, S.M.
1985-01-01
Fourier phase images have been used with some success to detect and quantify left ventricular (LV) wall motion defects. In abnormal regions of the LV, wall motion asynchronies often cause the time activity curve (TAC) to be shifted in phase. Such regional shifts are detected by analysis of the distribution function of phase values over the LV. However, not all wall motion defects result in detectable regional phase abnormalities. Such abnormalities may cause a reduction in the magnitude of contraction (and hence TAC amplitude) without any appreciable change in TAC shape(and hence phase). In an attempt to improve the sensitivity of the Fourier phase method for the detection of wall motion defects the authors analyzed the distribution function of Fourier amplitude as well as phase. 26 individuals with normal cardiac function and no history of cardiac disease served as controls. The goal was to detect and quantify wall motion as compared to the consensus of 3 independent observers viewing the scintigraphic cines. 26 subjects with coronary artery disease and mild wall motion defects (22 with normal EF) were studied ate rest. They found that analysis of the skew of thew amplitude distribution function improved the sensitivity for the detection of wall motion abnormalities at rest in the group from 65% to 85% (17/26 detected by phase alone, 22/26 by combined phase and amplitude analysis) while retaining a 0 false positive rate in the normal group. The authors conclude that analysis of Fourier amplitude distribution functions can significantly increase the sensitivity of phase imaging for detection of wall motion abnormalities
Direct generation of all-optical random numbers from optical pulse amplitude chaos.
Li, Pu; Wang, Yun-Cai; Wang, An-Bang; Yang, Ling-Zhen; Zhang, Ming-Jiang; Zhang, Jian-Zhong
2012-02-13
We propose and theoretically demonstrate an all-optical method for directly generating all-optical random numbers from pulse amplitude chaos produced by a mode-locked fiber ring laser. Under an appropriate pump intensity, the mode-locked laser can experience a quasi-periodic route to chaos. Such a chaos consists of a stream of pulses with a fixed repetition frequency but random intensities. In this method, we do not require sampling procedure and external triggered clocks but directly quantize the chaotic pulses stream into random number sequence via an all-optical flip-flop. Moreover, our simulation results show that the pulse amplitude chaos has no periodicity and possesses a highly symmetric distribution of amplitude. Thus, in theory, the obtained random number sequence without post-processing has a high-quality randomness verified by industry-standard statistical tests.
Conformist-contrarian interactions and amplitude dependence in the Kuramoto model
Lohe, M. A.
2014-11-01
We derive exact formulas for the frequency of synchronized oscillations in Kuramoto models with conformist-contrarian interactions, and determine necessary conditions for synchronization to occur. Numerical computations show that for certain parameters repulsive nodes behave as conformists, and that in other cases attractive nodes can display frustration, being neither conformist nor contrarian. The signs of repulsive couplings can be placed equivalently outside the sum, as proposed in Hong and Strogatz (2011 Phys. Rev. Lett. 106 054102), or inside the sum as in Hong and Strogatz (2012 Phys. Rev. E 85 056210), but the two models have different characteristics for small magnitudes of the coupling constants. In the latter case we show that the distributed coupling constants can be viewed as oscillator amplitudes which are constant in time, with the property that oscillators of small amplitude couple only weakly to connected nodes. Such models provide a means of investigating the effect of amplitude variations on synchronization properties.
Conformist–contrarian interactions and amplitude dependence in the Kuramoto model
International Nuclear Information System (INIS)
Lohe, M A
2014-01-01
We derive exact formulas for the frequency of synchronized oscillations in Kuramoto models with conformist–contrarian interactions, and determine necessary conditions for synchronization to occur. Numerical computations show that for certain parameters repulsive nodes behave as conformists, and that in other cases attractive nodes can display frustration, being neither conformist nor contrarian. The signs of repulsive couplings can be placed equivalently outside the sum, as proposed in Hong and Strogatz (2011 Phys. Rev. Lett. 106 054102), or inside the sum as in Hong and Strogatz (2012 Phys. Rev. E 85 056210), but the two models have different characteristics for small magnitudes of the coupling constants. In the latter case we show that the distributed coupling constants can be viewed as oscillator amplitudes which are constant in time, with the property that oscillators of small amplitude couple only weakly to connected nodes. Such models provide a means of investigating the effect of amplitude variations on synchronization properties. (paper)
A heating mechanism of ions due to large amplitude coherent ion acoustic wave
International Nuclear Information System (INIS)
Yajima, Nobuo; Kawai, Yoshinobu; Kogiso, Ken.
1978-05-01
Ion heating mechanism in a plasma with a coherent ion acoustic wave is studied experimentally and numerically. Ions are accelerated periodically in the electrostatic potential of the coherent wave and their oscillation energy is converted into the thermal energy of ions through the collision with the neutral atoms in plasma. The Monte Carlo calculation is applied to obtain the ion temperature. The amplitude of the electrostatic potential, the mean number of collisions and the mean life time of ions are treated as parameters in the calculation. The numerical results are compared with the experiments and both of them agree well. It is found that the ion temperature increases as the amplitude of the coherent wave increases and the high energy tail in the distribution function of ions are observed for the case of large wave-amplitude. (author)
Control of broadband optically generated ultrasound pulses using binary amplitude holograms.
Brown, Michael D; Jaros, Jiri; Cox, Ben T; Treeby, Bradley E
2016-04-01
In this work, the use of binary amplitude holography is investigated as a mechanism to focus broadband acoustic pulses generated by high peak-power pulsed lasers. Two algorithms are described for the calculation of the binary holograms; one using ray-tracing, and one using an optimization based on direct binary search. It is shown using numerical simulations that when a binary amplitude hologram is excited by a train of laser pulses at its design frequency, the acoustic field can be focused at a pre-determined distribution of points, including single and multiple focal points, and line and square foci. The numerical results are validated by acoustic field measurements from binary amplitude holograms, excited by a high peak-power laser.
Observation of large-amplitude ion acoustic solitary waves in a plasma
International Nuclear Information System (INIS)
Nakamura, Yoshiharu
1987-01-01
Propagation of nonlinear ion acoustic waves in a multi-component plasma with negative ions is investigated in a double-plasma device. When the density of negative ions is larger than a critical value, a broad negative pulse evolves to rarefactive solitons, and a positive pulse whose amplitude is less than a certain threshold value becomes a subsonic wave train. In the same plasma, a positive pulse whose amplitude is larger than the threshold develops into a solitary wave. The critical amplitude is measured as a function of the density of negative ions and compared with predictions of the pseudo-potential method. The energy distribution of electrons in the solitary wave is also measured. (author)
Scattering amplitudes in four- and six-dimensional gauge theories
International Nuclear Information System (INIS)
Schuster, Theodor
2014-01-01
We study scattering amplitudes in quantum chromodynamics (QCD), N=4 super Yang-Mills (SYM) theory and the six-dimensional N=(1,1) SYM theory, focusing on the symmetries of and relations between the tree-level scattering amplitudes in these three gauge theories. We derive the tree level and one-loop color decomposition of an arbitrary QCD amplitude into primitive amplitudes. Furthermore, we derive identities spanning the null space among the primitive amplitudes. We prove that every color ordered tree amplitude of massless QCD can be obtained from gluon-gluino amplitudes of N=4 SYM theory. Furthermore, we derive analytical formulae for all gluon-gluino amplitudes relevant for QCD. We compare the numerical efficiency and accuracy of evaluating these closed analytic formulae for color ordered QCD tree amplitudes to a numerically efficient implementation of the Berends-Giele recursion. We derive the symmetries of massive tree amplitudes on the coulomb branch of N=4 SYM theory, which in turn can be obtained from N=(1,1) SYM theory by dimensional reduction. Furthermore, we investigate the tree amplitudes of N=(1, 1) SYM theory and explain how analytical formulae can be obtained from a numerical implementation of the supersymmetric BCFW recursion relation and investigate a potential uplift of the massless tree amplitudes of N=4 SYM theory. Finally we study an alternative to dimensional regularization of N=4 SYM theory. The infrared divergences are regulated by masses obtained from a Higgs mechanism. The corresponding string theory set-up suggests that the amplitudes have an exact dual conformal symmetry. We confirm this expectation and illustrate the calculational advantages of the massive regulator by explicit calculations.
Joint Inversion of Phase and Amplitude Data of Surface Waves for North American Upper Mantle
Hamada, K.; Yoshizawa, K.
2015-12-01
For the reconstruction of the laterally heterogeneous upper-mantle structure using surface waves, we generally use phase delay information of seismograms, which represents the average phase velocity perturbation along a ray path, while the amplitude information has been rarely used in the velocity mapping. Amplitude anomalies of surface waves contain a variety of information such as anelastic attenuation, elastic focusing/defocusing, geometrical spreading, and receiver effects. The effects of elastic focusing/defocusing are dependent on the second derivative of phase velocity across the ray path, and thus, are sensitive to shorter-wavelength structure than the conventional phase data. Therefore, suitably-corrected amplitude data of surface waves can be useful for improving the lateral resolution of phase velocity models. In this study, we collect a large-number of inter-station phase velocity and amplitude ratio data for fundamental-mode surface waves with a non-linear waveform fitting between two stations of USArray. The measured inter-station phase velocity and amplitude ratios are then inverted simultaneously for phase velocity maps and local amplification factor at receiver locations in North America. The synthetic experiments suggest that, while the phase velocity maps derived from phase data only reflect large-scale tectonic features, those from phase and amplitude data tend to exhibit better recovery of the strength of velocity perturbations, which emphasizes local-scale tectonic features with larger lateral velocity gradients; e.g., slow anomalies in Snake River Plain and Rio Grande Rift, where significant local amplification due to elastic focusing are observed. Also, the spatial distribution of receiver amplification factor shows a clear correlation with the velocity structure. Our results indicate that inter-station amplitude-ratio data can be of help in reconstructing shorter-wavelength structures of the upper mantle.
ALOHA: Automatic libraries of helicity amplitudes for Feynman diagram computations
de Aquino, Priscila; Link, William; Maltoni, Fabio; Mattelaer, Olivier; Stelzer, Tim
2012-10-01
We present an application that automatically writes the HELAS (HELicity Amplitude Subroutines) library corresponding to the Feynman rules of any quantum field theory Lagrangian. The code is written in Python and takes the Universal FeynRules Output (UFO) as an input. From this input it produces the complete set of routines, wave-functions and amplitudes, that are needed for the computation of Feynman diagrams at leading as well as at higher orders. The representation is language independent and currently it can output routines in Fortran, C++, and Python. A few sample applications implemented in the MADGRAPH 5 framework are presented. Program summary Program title: ALOHA Catalogue identifier: AEMS_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEMS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: http://www.opensource.org/licenses/UoI-NCSA.php No. of lines in distributed program, including test data, etc.: 6094320 No. of bytes in distributed program, including test data, etc.: 7479819 Distribution format: tar.gz Programming language: Python2.6 Computer: 32/64 bit Operating system: Linux/Mac/Windows RAM: 512 Mbytes Classification: 4.4, 11.6 Nature of problem: An effcient numerical evaluation of a squared matrix element can be done with the help of the helicity routines implemented in the HELAS library [1]. This static library contains a limited number of helicity functions and is therefore not always able to provide the needed routine in the presence of an arbitrary interaction. This program provides a way to automatically create the corresponding routines for any given model. Solution method: ALOHA takes the Feynman rules associated to the vertex obtained from the model information (in the UFO format [2]), and multiplies it by the different wavefunctions or propagators. As a result the analytical expression of the helicity routines is obtained. Subsequently, this expression is
International Nuclear Information System (INIS)
Neumann, W.; Hofmeister, H.; Heydenreich, J.; Komrska, J.
1988-01-01
The influence of the crystal shape on the fine structure of transmission electron diffraction (TED) patterns described by the crystal shape amplitude is discussed. A general algebraic expression for the crystal shape amplitude of any crystal polyhedron is used for computing the intensity distribution of TED reflections. The computer simulation method is applied to the analysis of the fine structure of TED patterns of small gold and palladium crystals having octahedral and tetrahedral habits. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Navelet-Noualhier, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1967-06-15
Helicity amplitudes are expressed via the spinor amplitudes in terms of the Joos invariant which have been shown by Williams to be free from kinematical singularities. This procedure allows to analyze the kinematical singularities of helicity amplitudes and separate them out, which results into the definition of regularized helicity amplitudes. A crossing matrix for helicity amplitudes, is written down, corresponding to the continuation path used to cross spinor amplitudes. We verify explicitly that the corresponding crossing matrix for regularized helicity amplitudes is uniform as it should be. Kinematical constraints which generalize, to the case of arbitrary spins and masses, relations which must hold between helicity amplitudes at some values of the energy variable in {pi}N {yields} {pi}N, {pi}{pi} {yields} NN-bar and NN-bar {yields} NN-bar reactions, appear as a consequence of the existence of poles in the crossing matrix between regularized helicity amplitudes. An english version of this work has been written with G. Cohen-Tannoudji and A. Morel and submitted for publication to Annals of Physics. (author) [French] Les amplitudes d'helicite pour une reaction a deux corps sont exprimees, par l'intermediaire des amplitudes spinorielles, en fonction d'amplitudes invariantes de Joos qui sont, comme l'a montre Williams, sans singularites cinematiques. Ce procede nous permet d'analyser puis d'eliminer les singularites cinematiques des amplitudes d'helicite. Ceci nous conduit a la definition d'amplitudes d'helicite 'regularisees'. Une relation de 'croisement' entre amplitudes d'helicite est ecrite; elle realise leur prolongement analytique le long du chemin utilise pour 'croiser' les amplitudes spinorielles. Nous verifions que les elements de la matrice de croisement entre amplitudes d'helicite 'regularisees' sont bien uniformes. Les contraintes cinematiques qui generalisent, au cas de masses et de spins arbitraires, les relations obtenues dans les reactions {pi
Eikonal representation of N-body Coulomb scattering amplitudes
International Nuclear Information System (INIS)
Fried, H.M.; Kang, K.; McKellar, B.H.J.
1983-01-01
A new technique for the construction of N-body Coulomb scattering amplitudes is proposed, suggested by the simplest case of N = 2: Calculate the scattering amplitude in eikonal approximation, discard the infinite phase factors which appear upon taking the limit of a Coulomb potential, and treat the remainder as an amplitude whose absolute value squared produces the exact, Coulomb differential cross section. The method easily generalizes to the N-body Coulomb problem for elastic scattering, and for inelastic rearrangement scattering of Coulomb bound states. We give explicit results for N = 3 and 4; in the N = 3 case we extract amplitudes for the processes (12)+3->1+2+3 (breakup), (12)+3->1+(23) (rearrangement), and (12)+3→(12)'+3 (inelastic scattering) as residues at the appropriate poles in the free-free amplitude. The method produces scattering amplitudes f/sub N/ given in terms of explicit quadratures over (N-2) 2 distinct integrands
Expansion of all multitrace tree level EYM amplitudes
Du, Yi-Jian; Feng, Bo; Teng, Fei
2017-12-01
In this paper, we investigate the expansion of tree level multitrace Einstein-Yang-Mills (EYM) amplitudes. First, we propose two types of recursive expansions of tree level EYM amplitudes with an arbitrary number of gluons, gravitons and traces by those amplitudes with fewer traces or/and gravitons. Then we give many support evidence, including proofs using the Cachazo-He-Yuan (CHY) formula and Britto-Cachazo-Feng-Witten (BCFW) recursive relation. As a byproduct, two types of generalized BCJ relations for multitrace EYM are further proposed, which will be useful in the BCFW proof. After one applies the recursive expansions repeatedly, any multitrace EYM amplitudes can be given in the Kleiss-Kuijf (KK) basis of tree level color ordered Yang-Mills (YM) amplitudes. Thus the Bern-Carrasco-Johansson (BCJ) numerators, as the expansion coefficients, for all multitrace EYM amplitudes are naturally constructed.
International Nuclear Information System (INIS)
Sordini, V.
2008-06-01
In this thesis we present CP violation studies in the B mesons system, and in particular measurements of the angle γ of the Unitarity Triangle, using data collected by the BABAR experiment. The angle γ is the relative weak phase between the V ub and V cb elements of the CKM matrix. A crucial parameter, which drives the sensitivity to γ, is the ratio r between b → u and b → c transition amplitudes. In the first part of the thesis, general issues on γ studies and the status of the present measurements are introduced. The experimental work is then detailed. It is composed of two different analyses of B 0 → D 0 (D-bar 0 )K *0 . In the first analysis, these decays are studied through the ADS method, where the neutral D mesons are reconstructed into K ± π ± , K ± π ± π 0 and K ± π ± π ± π ± final states. This analysis allows us to determine, for the first time, the ratio r for B 0 → D 0 (D-bar 0 )K *0 , which is found to be r equals (0.260 +0.077 -0.088). The large value for the parameter r makes the use of this channel interesting for present and future facilities, for the determination of γ. In the second analysis, the channel B 0 → D 0 (D-bar 0 )K *0 is studied with a Dalitz method and the neutral D mesons are reconstructed into K S π + π - final states. The determination of γ from this analysis is γ equals (162 ± 56) degrees, with a 180 degrees ambiguity. The result for r from the combination of the two analyses is: r equals (0.259 +0.073 -0.079). These results represent the first constraints on γ and r obtained from neutral B decays. Finally, data driven simulation studies are discussed, which show that the study of the B 0 → D 0 (D-bar 0 )K *0 is competitive, for the determination of γ, with the other analysis aiming to extract γ from charged B decays. (author)
Tensor exchange amplitudes in K +- N charge exchange reactions
International Nuclear Information System (INIS)
Svec, M.
1979-01-01
Tensor (A 2 ) exchange amplitudes in K +- N charge exchange (CEX) are constructed from the K +- N CEX data supplemented by information on the vector (rho) exchange amplitudes from πN sca tering. We observed new features in the t-structure of A 2 exchange amplitudes which contradict the t-de pendence anticipated by most of the Regge models. The results also provide evidence for violation of weak exchange degeneracy
Loop Amplitudes in Pure Yang-Mills from Generalised Unitarity
Brandhuber, Andreas; McNamara, Simon; Spence, Bill; Travaglini, Gabriele
2005-01-01
We show how generalised unitarity cuts in D = 4 - 2 epsilon dimensions can be used to calculate efficiently complete one-loop scattering amplitudes in non-supersymmetric Yang-Mills theory. This approach naturally generates the rational terms in the amplitudes, as well as the cut-constructible parts. We test the validity of our method by re-deriving the one-loop ++++, -+++, --++, -+-+ and +++++ gluon scattering amplitudes using generalised quadruple cuts and triple cuts in D dimensions.
Loop amplitudes in pure Yang-Mills from generalised unitarity
International Nuclear Information System (INIS)
Brandhuber, Andreas; McNamara, Simon; Spence, Bill; Travaglini, Gabriele
2005-01-01
We show how generalised unitarity cuts in D = 4-2ε dimensions can be used to calculate efficiently complete one-loop scattering amplitudes in non-supersymmetric Yang-Mills theory. This approach naturally generates the rational terms in the amplitudes, as well as the cut-constructible parts. We test the validity of our method by re-deriving the one-loop ++++, -+++, --++, -+-+ and +++++ gluon scattering amplitudes using generalised quadruple cuts and triple cuts in D dimensions
Loop amplitudes in pure Yang-Mills from generalised unitarity
Energy Technology Data Exchange (ETDEWEB)
Brandhuber, Andreas [Department of Physics, Queen Mary, University of London, Mile End Road, London, E1 4NS (United Kingdom); McNamara, Simon [Department of Physics, Queen Mary, University of London, Mile End Road, London, E1 4NS (United Kingdom); Spence, Bill [Department of Physics, Queen Mary, University of London, Mile End Road, London, E1 4NS (United Kingdom); Travaglini, Gabriele [Department of Physics, Queen Mary, University of London, Mile End Road, London, E1 4NS (United Kingdom)
2005-10-15
We show how generalised unitarity cuts in D = 4-2{epsilon} dimensions can be used to calculate efficiently complete one-loop scattering amplitudes in non-supersymmetric Yang-Mills theory. This approach naturally generates the rational terms in the amplitudes, as well as the cut-constructible parts. We test the validity of our method by re-deriving the one-loop ++++, -+++, --++, -+-+ and +++++ gluon scattering amplitudes using generalised quadruple cuts and triple cuts in D dimensions.
Calculation and modular properties of multiloop superstring amplitudes
International Nuclear Information System (INIS)
Danilov, G. S.
2013-01-01
Multiloop superstring amplitudes are calculated within an extensively used gauge where the two-dimensional gravitino field carries Grassmann moduli. In general, the amplitudes possess, instead of modular symmetry, symmetry with respect to modular transformation supplemented with appropriate transformations of two-dimensional local supersymmetry. If the number of loops is larger than three, the integrationmeasures are notmodular forms, while the expression for the amplitude contains integrals along the boundary of the fundamental region of the modular group.
Efficient analytic computation of higher-order QCD amplitudes
International Nuclear Information System (INIS)
Bern, Z.; Chalmers, G.; Dunbar, D.C.; Kosower, D.A.
1995-01-01
The authors review techniques simplifying the analytic calculation of one-loop QCD amplitudes with many external legs, for use in next-to-leading-order corrections to multi-jet processes. Particularly useful are the constraints imposed by perturbative unitarity, collinear singularities and a supersymmetry-inspired organization of helicity amplitudes. Certain sequences of one-loop helicity amplitudes with an arbitrary number of external gluons have been obtained using these constraints
Improved pion pion scattering amplitude from dispersion relation formalism
International Nuclear Information System (INIS)
Cavalcante, I.P.; Coutinho, Y.A.; Borges, J. Sa
2005-01-01
Pion-pion scattering amplitude is obtained from Chiral Perturbation Theory at one- and two-loop approximations. Dispersion relation formalism provides a more economic method, which was proved to reproduce the analytical structure of that amplitude at both approximation levels. This work extends the use of the formalism in order to compute further unitarity corrections to partial waves, including the D-wave amplitude. (author)
Ambitwistor strings and reggeon amplitudes in N=4 SYM
Directory of Open Access Journals (Sweden)
L.V. Bork
2017-11-01
Full Text Available We consider the description of reggeon amplitudes (Wilson lines form factors in N=4 SYM within the framework of four dimensional ambitwistor string theory. The latter is used to derive scattering equations representation for reggeon amplitudes with multiple reggeized gluons present. It is shown, that corresponding tree-level string correlation function correctly reproduces previously obtained Grassmannian integral representation of reggeon amplitudes in N=4 SYM.
The five-gluon amplitude and one-loop integrals
International Nuclear Information System (INIS)
Bern, Z.; Dixon, L.; Kosower, D.A.
1992-12-01
We review the conventional field theory description of the string motivated technique. This technique is applied to the one-loop five-gluon amplitude. To evaluate the amplitude a general method for computing dimensionally regulated one-loop integrals is outlined including results for one-loop integrals required for the pentagon diagram and beyond. Finally, two five-gluon helicity amplitudes are given
Renormalization in the complete Mellin representation of Feynman amplitudes
International Nuclear Information System (INIS)
Calan, C. de; David, F.; Rivasseau, V.
1981-01-01
The Feynmann amplitudes are renormalized in the formalism of the CM representation. This Mellin-Barnes type integral representation, previously introduced for the study of asymptotic behaviours, is shown to have the following interesting property: in contrast with the usual subtraction procedures, the renormalization leaves the CM intergrand unchanged, and only results into translations of the integration path. The explicit CM representation of the renormalized amplitudes is given. In addition, the dimensional regularization and the extension to spinor amplitudes are sketched. (orig.)
Algebraic evaluation of rational polynomials in one-loop amplitudes
International Nuclear Information System (INIS)
Binoth, Thomas; Guillet, Jean-Philippe; Heinrich, Gudrun
2007-01-01