WorldWideScience

Sample records for azd2171 inhibits endothelial

  1. Sickle erythrocytes inhibit human endothelial cell DNA synthesis

    International Nuclear Information System (INIS)

    Patients with sickle cell anemia experience severe vascular occlusive phenomena including acute pain crisis and cerebral infarction. Obstruction occurs at both the microvascular and the arterial level, and the clinical presentation of vascular events is heterogeneous, suggesting a complex etiology. Interaction between sickle erythrocytes and the endothelium may contribute to vascular occlusion due to alteration of endothelial function. To investigate this hypothesis, human vascular endothelial cells were overlaid with sickle or normal erythrocytes and stimulated to synthesize DNA. The erythrocytes were sedimented onto replicate monolayers by centrifugation for 10 minutes at 17 g to insure contact with the endothelial cells. Incorporation of 3H-thymidine into endothelial cell DNA was markedly inhibited during contact with sickle erythrocytes. This inhibitory effect was enhanced more than twofold when autologous sickle plasma was present during endothelial cell labeling. Normal erythrocytes, with or without autologous plasma, had a modest effect on endothelial cell DNA synthesis. When sickle erythrocytes in autologous sickle plasma were applied to endothelial monolayers for 1 minute, 10 minutes, or 1 hour and then removed, subsequent DNA synthesis by the endothelial cells was inhibited by 30% to 40%. Although adherence of sickle erythrocytes to the endothelial monolayers was observed under these experimental conditions, the effect of sickle erythrocytes on endothelial DNA synthesis occurred in the absence of significant adherence. Hence, human endothelial cell DNA synthesis is partially inhibited by contact with sickle erythrocytes. The inhibitory effect of sickle erythrocytes occurs during a brief (1 minute) contact with the endothelial monolayers, and persists for at least 6 hours of 3H-thymidine labeling

  2. Genipin inhibits endothelial exocytosis via nitric oxide in cultured human umbilical vein endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Guang-fa WANG; Shao-yu WU; Jin-jun RAO; Lin L(U); Wei XU; Jian-xin PANG; Zhong-qiu LIU; Shu-guang WU; Jia-jie ZHANG

    2009-01-01

    Aim: Exocytosis of endothelial Weibel-Palade bodies, which contain von Willebrand factor (VWF), P-selectin and other modulators, plays an important role in both inflammation and thrombosis. The present study investigates whether genipin,an aglycon of geniposide, inhibits endothelial exocytosis.Methods: Human umbilical vein endothelial cells (HUVECs) were isolated from umbilical cords and cultured. The concentration of VWF in cell supernatants was measured using an ELISA Kit. P-selectin translocation on the cell surface was analyzed by cell surface ELISA. Cell viability was measured using a Cell Counting Kit-8. Mouse bleeding times were measured by amputating the tail tip. Western blot analysis was used to determine the amount of endothelial nitric oxide synthase (eNOS) and phospho-eNOS present. Nitric oxide (NO) was measured in the cell supernatants as nitrite using an NO Colorimetric Assay.Results: Genipin inhibited thrombin-induced VWF release and P-selectin translocation in HUVECs in a dose- and time-dependent manner. The drug had no cytotoxic effect on the cells at the same doses that were able to inhibit exocytosis. The functional study that demonstrated that genipin inhibited exocytosis in vivo also showed that genipin prolonged the mouse bleeding time. Furthermore, genipin activated eNOS phosphorylation, promoted enzyme activation and increased NO production. L-NAME, an inhibitor of NOS, reversed the inhibitory effects of genipin on endothelial exocytosis.Conclusion: Genipin inhibits endothelial exocytosis in HUVECs. The mechanism by which this compound inhibits exocytosis may be related to its ability to stimulate eNOS activation and NO production. Our findings suggest a novel antiinflammatory mechanism for genipin. This compound may represent a new treatment for inflammation and/or thrombosis in which excess endothelial exocytosis plays a pathophysiological role.

  3. Lonidamine Causes Inhibition of Angiogenesis-Related Endothelial Cell Functions

    OpenAIRE

    Donatella Del Bufalo; Daniela Trisciuoglio; Marco Scarsella; Giulia D'Amati; Antonio Candiloro; Angela Iervolino; Carlo Leonetti; Gabriella Zupi

    2004-01-01

    The aim of this study was to assess whether lonidamine (LND) interferes with some steps in angiogenesis progression. We report here, for the first time, that LND inhibited angiogenic-related endothelial cell functions in a dose-dependent manner (1-50 μg/ml). In particular, LND decreased proliferation, migration, invasion, and morphogenesis on matrigel of different endothelial cell lines. Zymographic and Western blot analysis assays showed that LND treatment produced a reduction in the secreti...

  4. Prolonged cyclic strain inhibits human endothelial cell growth.

    Science.gov (United States)

    Peyton, Kelly J; Liu, Xiao-ming; Durante, William

    2016-01-01

    The vascular endothelium is continuously exposed to cyclic mechanical strain due to the periodic change in vessel diameter as a result of pulsatile blood flow. Since emerging evidence indicates the cyclic strain plays an integral role in regulating endothelial cell function, the present study determined whether application of a physiologic regimen of cyclic strain (6% at 1 hertz) influences the proliferation of human arterial endothelial cells. Prolonged exposure of human dermal microvascular or human aortic endothelial cells to cyclic strain for up to 7 days resulted in a marked decrease in cell growth. The strain-mediated anti-proliferative effect was associated with the arrest of endothelial cells in the G2/M phase of the cell cycle, did not involve cell detachment or cytotoxicity, and was due to the induction of p21. Interestingly, the inhibition in endothelial cell growth was independent of the strain regimen since prolonged application of constant or intermittent 6% strain was also able to block endothelial cell proliferation. The ability of chronic physiologic cyclic strain to inhibit endothelial cell growth represents a previously unrecognized mechanism by which hemodynamic forces maintain these cells in a quiescent, non-proliferative state. PMID:26709656

  5. Lonidamine Causes Inhibition of Angiogenesis-Related Endothelial Cell Functions

    Directory of Open Access Journals (Sweden)

    Donatella Del Bufalo

    2004-09-01

    Full Text Available The aim of this study was to assess whether lonidamine (LND interferes with some steps in angiogenesis progression. We report here, for the first time, that LND inhibited angiogenic-related endothelial cell functions in a dose-dependent manner (1-50 μg/ml. In particular, LND decreased proliferation, migration, invasion, and morphogenesis on matrigel of different endothelial cell lines. Zymographic and Western blot analysis assays showed that LND treatment produced a reduction in the secretion of matrix metalloproteinase-2 and metalloproteinase-9 by endothelial cells. Vessel formation in a matrigel plug was also reduced by LND. The viability, migration, invasion, and matrix metalloproteinase production of different tumor cell lines were not affected by low doses of LND (1-10 μg/ml, whereas 50 μg/ml LND, which corresponds to the dose used in clinical management of tumors, triggered apoptosis both in endothelial and tumor cells. Together, these data demonstrate that LND is a compound that interferes with endothelial cell functions, both at low and high doses. Thus, the effect of LND on endothelial cell functions, previously undescribed, may be a significant contributor to the antitumor effect of LND observed for clinical management of solid tumors.

  6. Dexmedetomidine inhibits vasoconstriction via activation of endothelial nitric oxide synthase

    Science.gov (United States)

    Nong, Lidan; Ma, Jue; Zhang, Guangyan; Deng, Chunyu; Mao, Songsong; Li, Haifeng

    2016-01-01

    Despite the complex vascular effects of dexmedetomidine (DEX), its actions on human pulmonary resistance arteries remain unknown. The present study tested the hypothesis that DEX inhibits vascular tension in human pulmonary arteries through the endothelial nitric oxide synthase (eNOS) mediated production of nitric oxide (NO). Pulmonary artery segments were obtained from 62 patients who underwent lung resection. The direct effects of DEX on human pulmonary artery tension and changes in vascular tension were determined by isometric force measurements recorded on a myograph. Arterial contractions caused by increasing concentrations of serotonin with DEX in the presence or absence of L-NAME (endothelial nitric oxide synthase inhibitor), yohimbine (α2-adrenoceptor antagonist) and indomethacin (cyclooxygenase inhibitor) as antagonists were also measured. DEX had no effect on endothelium-intact pulmonary arteries, whereas at concentrations of 10–8~10–6 mol/L, it elicited contractions in endothelium-denuded pulmonary arteries. DEX (0.3, 1, or 3×10–9 mmol/L) inhibited serotonin-induced contraction in arteries with intact endothelium in a dose-dependent manner. L-NAME and yohimbine abolished DEX-induced inhibition, whereas indomethacin had no effect. No inhibitory effect was observed in endothelium-denuded pulmonary arteries. DEX-induced inhibition of vasoconstriction in human pulmonary arteries is mediated by NO production induced by the activation of endothelial α2-adrenoceptor and nitric oxide synthase. PMID:27610030

  7. Inhibition of endothelial cell apoptosis by netrin-1 during angiogenesis.

    Science.gov (United States)

    Castets, Marie; Coissieux, Marie-May; Delloye-Bourgeois, Céline; Bernard, Laure; Delcros, Jean-Guy; Bernet, Agnès; Laudet, Vincent; Mehlen, Patrick

    2009-04-01

    Netrin-1 was recently proposed to play an important role in embryonic and pathological angiogenesis. However, data reported led to the apparently contradictory conclusions that netrin-1 is either a pro- or an antiangiogenic factor. Here, we reconcile these opposing observations by demonstrating that netrin-1 acts as a survival factor for endothelial cells, blocking the proapoptotic effect of the dependence receptor UNC5B and its downstream death signaling effector, the serine/threonine kinase DAPK. The netrin-1 effect on blood vessel development is mimicked by caspase inhibitors in ex vivo assays, and the inhibition of caspase activity, the silencing of the UNC5B receptor, and the silencing of DAPK are each sufficient to rescue the vascular sprouting defects induced by netrin-1 silencing in zebrafish. Thus, the proapoptotic effect of unbound UNC5B and the survival effect of netrin-1 on endothelial cells finely tune the angiogenic process. PMID:19386270

  8. Automated quantification reveals hyperglycemia inhibits endothelial angiogenic function.

    Directory of Open Access Journals (Sweden)

    Anthony R Prisco

    Full Text Available Diabetes Mellitus (DM has reached epidemic levels globally. A contributing factor to the development of DM is high blood glucose (hyperglycemia. One complication associated with DM is a decreased angiogenesis. The Matrigel tube formation assay (TFA is the most widely utilized in vitro assay designed to assess angiogenic factors and conditions. In spite of the widespread use of Matrigel TFAs, quantification is labor-intensive and subjective, often limiting experiential design and interpretation of results. This study describes the development and validation of an open source software tool for high throughput, morphometric analysis of TFA images and the validation of an in vitro hyperglycemic model of DM.Endothelial cells mimic angiogenesis when placed onto a Matrigel coated surface by forming tube-like structures. The goal of this study was to develop an open-source software algorithm requiring minimal user input (Pipeline v1.3 to automatically quantify tubular metrics from TFA images. Using Pipeline, the ability of endothelial cells to form tubes was assessed after culture in normal or high glucose for 1 or 2 weeks. A significant decrease in the total tube length and number of branch points was found when comparing groups treated with high glucose for 2 weeks versus normal glucose or 1 week of high glucose.Using Pipeline, it was determined that hyperglycemia inhibits formation of endothelial tubes in vitro. Analysis using Pipeline was more accurate and significantly faster than manual analysis. The Pipeline algorithm was shown to have additional applications, such as detection of retinal vasculature.

  9. Cilengitide inhibits proliferation and differentiation of human endothelial progenitor cells in vitro

    International Nuclear Information System (INIS)

    Bone marrow derived hematopoietic stem cells can function as endothelial progenitor cells. They are recruited to malignant tumors and differentiate into endothelial cells. This mechanism of neovascularization termed vasculogenesis is distinct from proliferation of pre-existing vessels. To better understand vasculogenesis we developed a cell culture model with expansion and subsequent endothelial differentiation of human CD133+ progenitor cells in vitro. αvβ3-integrins are expressed by endothelial cells and play a role in the attachment of endothelial cells to the extracellular matrix. We investigated the effect of Cilengitide, a peptide-like, high affinity inhibitor of αvβ3- and αvβ5-integrins in our in vitro system. We could show expression of αvβ3-integrin on 60 ± 9% of non-adherent endothelial progenitors and on 91 ± 7% of differentiated endothelial cells. αvβ3-integrin was absent on CD133+ hematopoietic stem cells. Cilengitide inhibited proliferation of CD133+ cells in a dose-dependent manner. The development of adherent endothelial cells from expanded CD133+ cells was reduced even stronger by Cilengitide underlining its effect on integrin mediated cell adhesion. Expression of endothelial antigens CD144 and von Willebrand factor on differentiating endothelial precursors was decreased by Cilengitide. In summary, Cilengitide inhibits proliferation and differentiation of human endothelial precursor cells underlining its anti-angiogenic effects

  10. Inhibition of Endothelial p53 Improves Metabolic Abnormalities Related to Dietary Obesity

    Directory of Open Access Journals (Sweden)

    Masataka Yokoyama

    2014-06-01

    Full Text Available Accumulating evidence has suggested a role for p53 activation in various age-associated conditions. Here, we identified a crucial role of endothelial p53 activation in the regulation of glucose homeostasis. Endothelial expression of p53 was markedly upregulated when mice were fed a high-calorie diet. Disruption of endothelial p53 activation improved dietary inactivation of endothelial nitric oxide synthase that upregulated the expression of peroxisome proliferator-activated receptor-γ coactivator-1α in skeletal muscle, thereby increasing mitochondrial biogenesis and oxygen consumption. Mice with endothelial cell-specific p53 deficiency fed a high-calorie diet showed improvement of insulin sensitivity and less fat accumulation, compared with control littermates. Conversely, upregulation of endothelial p53 caused metabolic abnormalities. These results indicate that inhibition of endothelial p53 could be a novel therapeutic target to block the vicious cycle of cardiovascular and metabolic abnormalities associated with obesity.

  11. Delta- and gamma-tocotrienol isomers are potent in inhibiting inflammation and endothelial activation in stimulated human endothelial cells

    Science.gov (United States)

    Muid, Suhaila; Froemming, Gabriele R. Anisah; Rahman, Thuhairah; Ali, A. Manaf; Nawawi, Hapizah M.

    2016-01-01

    Background Tocotrienols (TCTs) are more potent antioxidants than α-tocopherol (TOC). However, the effectiveness and mechanism of the action of TCT isomers as anti-atherosclerotic agents in stimulated human endothelial cells under inflammatory conditions are not well established. Aims 1) To compare the effects of different TCT isomers on inflammation, endothelial activation, and endothelial nitric oxide synthase (eNOS). 2) To identify the two most potent TCT isomers in stimulated human endothelial cells. 3) To investigate the effects of TCT isomers on NFκB activation, and protein and gene expression levels in stimulated human endothelial cells. Methods Human umbilical vein endothelial cells were incubated with various concentrations of TCT isomers or α-TOC (0.3–10 µM), together with lipopolysaccharides for 16 h. Supernatant cells were collected and measured for protein and gene expression of cytokines (interleukin-6, or IL-6; tumor necrosis factor-alpha, or TNF-α), adhesion molecules (intercellular cell adhesion molecule-1, or ICAM-1; vascular cell adhesion molecule-1, or VCAM-1; and e-selectin), eNOS, and NFκB. Results δ-TCT is the most potent TCT isomer in the inhibition of IL-6, ICAM-1, VCAM-1, and NFκB, and it is the second potent in inhibiting e-selectin and eNOS. γ-TCT isomer is the most potent isomer in inhibiting e-selectin and eNOS, and it is the second most potent in inhibiting is IL-6, VCAM-1, and NFκB. For ICAM-1 protein expression, the most potent is δ-TCT followed by α-TCT. α- and β-TCT inhibit IL-6 at the highest concentration (10 µM) but enhance IL-6 at lower concentrations. γ-TCT markedly increases eNOS expression by 8–11-fold at higher concentrations (5–10 µM) but exhibits neutral effects at lower concentrations. Conclusion δ- and γ-TCT are the two most potent TCT isomers in terms of the inhibition of inflammation and endothelial activation whilst enhancing eNOS, possibly mediated via the NFκB pathway. Hence, there is a

  12. Hyperactive S6K1 mediates oxidative stress and endothelial dysfunction in aging: inhibition by resveratrol.

    Directory of Open Access Journals (Sweden)

    Angana G Rajapakse

    Full Text Available Mammalian target of rapamycin (mTOR/S6K1 signalling emerges as a critical regulator of aging. Yet, a role of mTOR/S6K1 in aging-associated vascular endothelial dysfunction remains unknown. In this study, we investigated the role of S6K1 in aging-associated endothelial dysfunction and effects of the polyphenol resveratrol on S6K1 in aging endothelial cells. We show here that senescent endothelial cells displayed higher S6K1 activity, increased superoxide production and decreased bioactive nitric oxide (NO levels than young endothelial cells, which is contributed by eNOS uncoupling. Silencing S6K1 in senescent cells reduced superoxide generation and enhanced NO production. Conversely, over-expression of a constitutively active S6K1 mutant in young endothelial cells mimicked endothelial dysfunction of the senescent cells through eNOS uncoupling and induced premature cellular senescence. Like the mTOR/S6K1 inhibitor rapamycin, resveratrol inhibited S6K1 signalling, resulting in decreased superoxide generation and enhanced NO levels in the senescent cells. Consistent with the data from cultured cells, an enhanced S6K1 activity, increased superoxide generation, and decreased bioactive NO levels associated with eNOS uncoupling were also detected in aortas of old WKY rats (aged 20-24 months as compared to the young animals (1-3 months. Treatment of aortas of old rats with resveratrol or rapamycin inhibited S6K1 activity, oxidative stress, and improved endothelial NO production. Our data demonstrate a causal role of the hyperactive S6K1 in eNOS uncoupling leading to endothelial dysfunction and vascular aging. Resveratrol improves endothelial function in aging, at least in part, through inhibition of S6K1. Targeting S6K1 may thus represent a novel therapeutic approach for aging-associated vascular disease.

  13. Chlorine Gas Exposure Causes Systemic Endothelial Dysfunction by Inhibiting Endothelial Nitric Oxide Synthase–Dependent Signaling

    OpenAIRE

    Honavar, Jaideep; Samal, Andrey A.; Bradley, Kelley M.; Brandon, Angela; Balanay, Joann; Squadrito, Giuseppe L.; MohanKumar, Krishnan; Maheshwari, Akhil; Postlethwait, Edward M.; Matalon, Sadis; Patel, Rakesh P.

    2010-01-01

    Chlorine gas (Cl2) exposure during accidents or in the military setting results primarily in injury to the lungs. However, the potential for Cl2 exposure to promote injury to the systemic vasculature leading to compromised vascular function has not been studied. We hypothesized that Cl2 promotes extrapulmonary endothelial dysfunction characterized by a loss of endothelial nitric oxide synthase (eNOS)-derived signaling. Male Sprague Dawley rats were exposed to Cl2 for 30 minutes, and eNOS-depe...

  14. Rapamycin inhibits proliferation and differentiation of human endothelial progenitor cells in vitro

    International Nuclear Information System (INIS)

    Bone-marrow-derived, circulating endothelial precursor cells contribute to neoangiogenesis in various diseases. Rapamycin has recently been shown to have anti-angiogenic effects in an experimental tumor model. Our group has developed a culture system that allows expansion and endothelial differentiation of human CD133+ precursor cells. We could show by PCR analysis that mTOR, the rapamycin-binding protein, was expressed in fresh CD133+ cells, in expanded cells after 28 days, and in differentiated endothelial cells. Rapamycin inhibited proliferation of CD133+ cells dose dependently at similar concentrations as hematopoietic Jurkat or HL-60 cells. Apoptosis was induced by rapamycin after 48 h of treatment, which could be reduced by preincubation with FK 506. Furthermore, the development of adherent endothelial cells from expanded CD133+ cells was dose dependently inhibited. Expression of endothelial antigens CD144 and von Willebrand factor on differentiating endothelial precursors was reduced by rapamycin. In summary, rapamycin inhibits proliferation and differentiation of human endothelial precursor cells underlining its anti-angiogenic effects

  15. Lonidamine Causes Inhibition of Angiogenesis-Related Endothelial Cell Functions1

    OpenAIRE

    Del Bufalo, Donatella; Trisciuoglio, Daniela; Scarsella, Marco; d'Amati, Giulia; Candiloro, Antonio; Iervolino, Angela; Leonetti, Carlo; Zupi, Gabriella

    2004-01-01

    The aim of this study was to assess whether lonidamine (LND) interferes with some steps in angiogenesis progression. We report here, for the first time, that LND inhibited angiogenic-related endothelial cell functions in a dose-dependent manner (1–50 µg/ml). In particular, LND decreased proliferation, migration, invasion, and morphogenesis on matrigel of different endothelial cell lines. Zymographic and Western blot analysis assays showed that LND treatment produced a reduction in the secreti...

  16. Rapamycin Inhibits Lymphatic Endothelial Cell Tube Formation by Downregulating Vascular Endothelial Growth Factor Receptor 3 Protein Expression

    Directory of Open Access Journals (Sweden)

    Yan Luo

    2012-03-01

    Full Text Available Mammalian target of rapamycin (mTOR controls lymphangiogenesis. However, the underlying mechanism is not clear. Here we show that rapamycin suppressed insulin-like growth factor 1 (IGF-1- or fetal bovine serum (FBS-stimulated lymphatic endothelial cell (LEC tube formation, an in vitro model of lymphangiogenesis. Expression of a rapamycin-resistant and kinase-active mTOR (S2035T, mTOR-T, but not a rapamycin-resistant and kinase-dead mTOR (S2035T/D2357E, mTOR-TE, conferred resistance to rapamycin inhibition of LEC tube formation, suggesting that rapamycin inhibition of LEC tube formation is mTOR kinase activity dependent. Also, rapamycin inhibited proliferation and motility in the LECs. Furthermore, we found that rapamycin inhibited protein expression of VEGF receptor 3 (VEGFR-3 by inhibiting protein synthesis and promoting protein degradation of VEGFR-3 in the cells. Down-regulation of VEGFR-3 mimicked the effect of rapamycin, inhibiting IGF-1- or FBS-stimulated tube formation, whereas over-expression of VEGFR-3 conferred high resistance to rapamycin inhibition of LEC tube formation. The results indicate that rapamycin inhibits LEC tube formation at least in part by downregulating VEGFR-3 protein expression.

  17. Brassinosteroids inhibit in vitro angiogenesis in human endothelial cells

    Czech Academy of Sciences Publication Activity Database

    Rárová, L.; Zahler, S.; Liebl, J.; Kryštof, Vladimír; Sedlák, David; Bartůněk, Petr; Kohout, Ladislav; Strnad, Miroslav

    2012-01-01

    Roč. 77, č. 13 (2012), s. 1502-1509. ISSN 0039-128X R&D Projects: GA MŠk(CZ) LC06077 Grant ostatní: GA MŠk(CZ) ED0007/01/01 Institutional research plan: CEZ:AV0Z50380511; CEZ:AV0Z50520514; CEZ:AV0Z40550506 Keywords : Angiogenesis * Human umbilical vein endothelial cells * Migration Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.803, year: 2012

  18. Purple sweet potato color inhibits endothelial premature senescence by blocking the NLRP3 inflammasome.

    Science.gov (United States)

    Sun, Chunhui; Fan, Shaohua; Wang, Xin; Lu, Jun; Zhang, Zifeng; Wu, Dongmei; Shan, Qun; Zheng, Yuanlin

    2015-10-01

    Purple sweet potato color (PSPC), flavonoids isolated from purple sweet potato, has been well demonstrated for the pharmacological properties. In the present study, we attempt to explore whether the antisenescence was involved in PSPC-mediated protection against endothelium dysfunction in type 2 diabetes mellitus (T2DM) and, if involved, what are the possible mechanisms. The results showed that atherogenesis and endothelial senescence in the thoracic aorta were promoted in mice with prediabetes; meanwhile, PSPC attenuated the deterioration of vascular vessel and inhibited the endothelial senescence. Diabetes mellitus is a documented high-risk factor for the development of atherosclerosis. Studies show that D-galactose (D-gal) promotes endothelial cell senescence in vitro. In our study, we have determined that PSPC could suppress the D-gal-induced premature senescence and the abnormal endothelial function, discovered in the early stages of atherosclerosis induced by T2DM. We have discovered that the PSPC down-regulates reactive oxygen species (ROS) accumulation and the NLRP3 inflammasome functions. Furthermore, the premature senescence induced by D-gal was inhibited after attenuation of ROS and deactivation of NLRP3 inflammasomes. However, once the NLRP3 inflammasomes are overactivated, PSPC could not restrain cell senescence. These data imply that the beneficial effects of PSPC on diabetes-induced endothelial dysfunction and senescence are mediated through ROS and NLRP3 signaling pathways, suggesting a potential target for the prevention of endothelial senescence-related cardiovascular diseases. PMID:26164602

  19. RhoB controls endothelial barrier recovery by inhibiting Rac1 trafficking to the cell border.

    Science.gov (United States)

    Marcos-Ramiro, Beatriz; García-Weber, Diego; Barroso, Susana; Feito, Jorge; Ortega, María C; Cernuda-Morollón, Eva; Reglero-Real, Natalia; Fernández-Martín, Laura; Durán, Maria C; Alonso, Miguel A; Correas, Isabel; Cox, Susan; Ridley, Anne J; Millán, Jaime

    2016-05-01

    Endothelial barrier dysfunction underlies chronic inflammatory diseases. In searching for new proteins essential to the human endothelial inflammatory response, we have found that the endosomal GTPase RhoB is up-regulated in response to inflammatory cytokines and expressed in the endothelium of some chronically inflamed tissues. We show that although RhoB and the related RhoA and RhoC play additive and redundant roles in various aspects of endothelial barrier function, RhoB specifically inhibits barrier restoration after acute cell contraction by preventing plasma membrane extension. During barrier restoration, RhoB trafficking is induced between vesicles containing RhoB nanoclusters and plasma membrane protrusions. The Rho GTPase Rac1 controls membrane spreading and stabilizes endothelial barriers. We show that RhoB colocalizes with Rac1 in endosomes and inhibits Rac1 activity and trafficking to the cell border during barrier recovery. Inhibition of endosomal trafficking impairs barrier reformation, whereas induction of Rac1 translocation to the plasma membrane accelerates it. Therefore, RhoB-specific regulation of Rac1 trafficking controls endothelial barrier integrity during inflammation. PMID:27138256

  20. SNS-032 Prevents Tumor Cell-Induced Angiogenesis By Inhibiting Vascular Endothelial Growth Factor

    Directory of Open Access Journals (Sweden)

    M. Aktar Ali

    2007-05-01

    Full Text Available Cell proliferation, migration, and capillary network formation of endothelial cells are the fundamental steps for angiogenesis, which involves the formation of new blood vessels. The purpose of this study is to investigate the effect of a novel aminothiazole SNS-032 on these critical steps for in vitro angiogenesis using a coculture system consisting of human umbilical vein endothelial cells (HUVECs and human glioblastoma cells (U87MG. SNS-032 is a potent selective inhibitor of cyclin-dependent kinases 2, 7, and 9, and inhibits both transcription and cell cycle. In this study, we examined the proliferation and viability of HUVECs and U87MG cells in the presence of SNS-032 and observed a dose-dependent inhibition of cellular proliferation in both cell lines. SNS-032 inhibited threedimensional capillary network formations of endothelial cells. In a coculture study, SNS-032 completely prevented U87MG cell-mediated capillary formation of HUVECs. This inhibitor also prevented the migration of HUVECs when cultured alone or cocultured with U87MG cells. In addition, SNS-032 significantly prevented the production of vascular endothelial growth factor (VEGF in both cell lines, whereas SNS-032 was less effective in preventing capillary network formation and migration of endothelial cells when an active recombinant VEGF was added to the medium. In conclusion, SNS-032 prevents in vitro angiogenesis, and this action is attributable to blocking of VEGF.

  1. RNA interference inhibits expression of vascular endothelial growth factor (VEGF) in human retinal pigment epithelial cells

    Institute of Scientific and Technical Information of China (English)

    CAI Chun-mei; SUN Bao-chen; LIU Xu-yang; WANG Jin-jin; LI Jun-fa; HAN Song; WANG Ning-li; LU Qing-jun

    2005-01-01

    @@ Choroidal neovascularization (CNV), a major cause of vision loss, is the result of the increased vascular endothelial growth factor (VEGF) expression in human retinal pigment epithelial (RPE) cells. It is important to inhibit the expression of VEGF protein in RPE cells.

  2. Lonidamine Causes Inhibition of Angiogenesis-Related Endothelial Cell Functions1

    Science.gov (United States)

    Del Bufalo, Donatella; Trisciuoglio, Daniela; Scarsella, Marco; D'Amati, Giulia; Candiloro, Antonio; Iervolino, Angela; Leonetti, Carlo; Zupi, Gabriella

    2004-01-01

    Abstract The aim of this study was to assess whether lonidamine (LND) interferes with some steps in angiogenesis progression. We report here, for the first time, that LND inhibited angiogenic-related endothelial cell functions in a dose-dependent manner (1–50 µg/ml). In particular, LND decreased proliferation, migration, invasion, and morphogenesis on matrigel of different endothelial cell lines. Zymographic and Western blot analysis assays showed that LND treatment produced a reduction in the secretion of matrix metalloproteinase- 2 and metalloproteinase-9 by endothelial cells. Vessel formation in a matrigel plug was also reduced by LND. The viability, migration, invasion, and matrix metalloproteinase production of different tumor cell lines were not affected by low doses of LND (1–10 µg/ml), whereas 50 µg/ml LND, which corresponds to the dose used in clinical management of tumors, triggered apoptosis both in endothelial and tumor cells. Together, these data demonstrate that LND is a compound that interferes with endothelial cell functions, both at low and high doses. Thus, the effect of LND on endothelial cell functions, previously undescribed, may be a significant contributor to the antitumor effect of LND observed for clinical management of solid tumors. PMID:15548359

  3. Shear Stress Inhibits Apoptosis of Ischemic Brain Microvascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Xiafeng Shen

    2013-01-01

    Full Text Available As a therapeutic strategy for ischemic stroke, to restore or increase cerebral blood flow (CBF is the most fundamental option. Laminar shear stress (LS, as an important force generated by CBF, mainly acts on brain microvascular endothelial cells (BMECs. In order to study whether LS was a protective factor in stroke, we investigated LS-intervented ischemic apoptosis of rat BMECs (rBMECs through PE Annexin V/7-AAD, JC-1 and Hoechst 33258 staining to observe the membranous, mitochondrial and nuclear dysfunction. Real-time PCR and western blot were also used to test the gene and protein expressions of Tie-2, Bcl-2 and Akt, which were respectively related to maintain membranous, mitochondrial and nuclear norm. The results showed that LS could be a helpful stimulus for ischemic rBMECs survival. Simultaneously, membranous, mitochondrial and nuclear regulation played an important role in this process.

  4. TGF-β2 inhibits AKT activation and FGF-2-induced corneal endothelial cell proliferation

    International Nuclear Information System (INIS)

    The corneal endothelial cells form a boundary layer between anterior chamber and cornea. This single cell layer is important to maintain cornea transparency by eliciting net fluid transport into the anterior chamber. Injuries of the corneal endothelial layer in humans lead to corneal swelling and translucence. This hindrance is thought to be due to limited proliferative capacity of the endothelial layer. Fibroblast growth factor 2 (FGF-2) and transforming growth factor-beta 2 (TGF-β2) are both found in aqueous humor, and these two cytokines promote and inhibit cell growth, respectively. The intracellular signaling mechanisms by which TGF-β2 suppresses the mitogenic response to FGF-2, however, remain unclear. We have addressed this question by investigating potential crosstalk between FGF-2-induced and TGF-β2-regulated intracellular signaling events in cultured bovine corneal endothelial (BCE) cells. We found that TGF-β2 and FGF-2 oppositely affect BCE cell proliferation and TGF-β2 can override the stimulating effects of FGF-2 by increasing COX-2 expression in these cells. Consistent with these findings, overexpression of COX-2 significantly reduced FGF-2-induced cell proliferation whereas a COX-2 specific inhibitor NS398 reversed the effect of TGF-β2 on FGF-2-induced cell proliferation. The COX-2 product prostaglandin E2 (PGE-2) blocks FGF-2-induced cell proliferation. Whereas FGF-2 stimulates cell proliferation by activating the AKT pathway, TGF-β2 and PGE-2 both inhibit this pathway. In accordance with the effect of PGE-2, cAMP also inhibits FGF-2-induced AKT activation. These findings suggest that the mitogenic response to FGF-2 in vivo in the corneal endothelial layer may be inhibited by TGF-β2-induced suppression of the PI3-kinase/AKT signaling pathway

  5. TRAF6 inhibits proangiogenic signals in endothelial cells and regulates the expression of vascular endothelial growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Bruneau, Sarah; Datta, Dipak; Flaxenburg, Jesse A.; Pal, Soumitro [Transplantation Research Center, Division of Nephrology, Department of Medicine, Children' s Hospital Boston, Boston, MA (United States); Department of Pediatrics, Harvard Medical School, Boston, MA (United States); Briscoe, David M., E-mail: david.briscoe@childrens.harvard.edu [Transplantation Research Center, Division of Nephrology, Department of Medicine, Children' s Hospital Boston, Boston, MA (United States); Department of Pediatrics, Harvard Medical School, Boston, MA (United States)

    2012-03-02

    Highlights: Black-Right-Pointing-Pointer TNF-receptor associated factors (TRAFs) function in the angiogenesis response. Black-Right-Pointing-Pointer TRAF6 regulates basal and inducible expression of VEGF in endothelial cells (EC). Black-Right-Pointing-Pointer TRAF6 is an endogenous inhibitor of EC proliferation and migration in EC. Black-Right-Pointing-Pointer TRAF6 inhibits VEGF expression in part via its ability to regulate Src signaling. -- Abstract: TNF-family molecules induce the expression Vascular Endothelial Growth Factor (VEGF) in endothelial cells (EC) and elicit signaling responses that result in angiogenesis. However, the role of TNF-receptor associated factors (TRAFs) as upstream regulators of VEGF expression or as mediators of angiogenesis is not known. In this study, HUVEC were cotransfected with a full-length VEGF promoter-luciferase construct and siRNAs to TRAF 1, -2, -3, -5, -6, and promoter activity was measured. Paradoxically, rather than inhibiting VEGF expression, we found that knockdown of TRAF6 resulted in a 4-6-fold increase in basal VEGF promoter activity compared to control siRNA-transfected EC (P < 0.0001). In addition, knockdown of TRAF 1, -2, -3 or -5 resulted in a slight increase or no change in VEGF promoter activation. Using [{sup 3}H]thymidine incorporation assays as well as the in vitro wound healing assay, we also found that basal rates of EC proliferation and migration were increased following TRAF6 knockdown; and this response was inhibited by the addition of a blocking anti-VEGF antibody into cell cultures. Using a limited protein array to gain insight into TRAF6-dependent intermediary signaling responses, we observed that TRAF6 knockdown resulted in an increase in the activity of Src family kinases. In addition, we found that treatment with AZD-0530, a pharmacological Src inhibitor, reduced the regulatory effect of TRAF6 knockdown on VEGF promoter activity. Collectively, these findings define a novel pro-angiogenic signaling

  6. Three diketopiperazines from marine-derived bacteria inhibit LPS-induced endothelial inflammatory responses.

    Science.gov (United States)

    Kang, Hyejin; Ku, Sae-Kwang; Choi, Hyukjae; Bae, Jong-Sup

    2016-04-15

    Diketopiperazine is a natural products found from bacteria, fungi, marine sponges, gorgonian and red algae. They are cyclic dipeptides possessing relatively simple and rigid structures with chiral nature and various side chains. Endothelial dysfunction is a key pathological feature of many inflammatory diseases, including sepsis. In the present study, three (1-3) of diketopiperazines were isolated from two strains of marine-derived bacteria. The compounds were investigated for their effects against lipopolysaccharide (LPS)-mediated endothelial inflammatory responses in vitro and in vivo. From 1μM, 1-3 inhibited LPS-induced hyperpermeability, adhesion, and migration of leukocytes across a human endothelial cell monolayer and in mice in a dose-dependent manner suggesting that 1-3 may serve as potential scaffolds for the development of therapeutic agents to treat vascular inflammatory disorders. PMID:26988307

  7. Heparin cofactor II inhibits arterial thrombosis after endothelial injury

    OpenAIRE

    Li HE; Vicente, Cristina P; Westrick, Randal J.; Eitzman, Daniel T.; Tollefsen, Douglas M.

    2002-01-01

    Heparin cofactor II (HCII) is a plasma protein that inhibits thrombin rapidly in the presence of dermatan sulfate, heparan sulfate, or heparin. HCII has been proposed to regulate coagulation or to participate in processes such as inflammation, atherosclerosis, and wound repair. To investigate the physiologic function of HCII, about 2 kb of the mouse HCII gene, encoding the N-terminal half of the protein, was deleted by homologous recombination in embryonic stem cells. Crosses of F1 HCII+/–...

  8. Angiotensin II Inhibits Insulin Binding to Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Su-Jin Oh

    2011-06-01

    Full Text Available BackgroundInsulin-mediated glucose uptake in insulin target tissues is correlated with interstitial insulin concentration, rather than plasma insulin concentration. Therefore, insulin delivery to the interstitium of target tissues is very important, and the endothelium may also play an important role in the development of insulin resistance.MethodsAfter treating bovine aortic endothelial cells with angiotensin II (ATII, we observed the changes in insulin binding capacity and the amounts of insulin receptor (IR on the cell membranes and in the cytosol.ResultsAfter treatment of 10-7M ATII, insulin binding was decreased progressively, up to 60% at 60 minutes (P<0.05. ATII receptor blocker (eprosartan dose dependently improved the insulin binding capacity which was reduced by ATII (P<0.05. At 200 µM, eprosartan fully restored insulin binding capacity, althogh it resulted in only a 20% to 30% restoration at the therapeutic concentration. ATII did not affect the total amount of IR, but it did reduce the amount of IR on the plasma membrane and increased that in the cytosol.ConclusionATII decreased the insulin binding capacity of the tested cells. ATII did not affect the total amount of IR but did decrease the amount of IR on the plasma membrane. Our data indicate that ATII decreases insulin binding by translocating IR from the plasma membrane to the cytosol. The binding of insulin to IR is important for insulin-induced vasodilation and transendothelial insulin transport. Therefore, ATII may cause insulin resistance through this endothelium-based mechanism.

  9. Tumor endothelial marker 5 expression in endothelial cells during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of cell proliferation

    International Nuclear Information System (INIS)

    Tumor endothelial marker (TEM) 5 is an adhesion G-protein-coupled receptor upregulated in endothelial cells during tumor and physiologic angiogenesis. So far, the mechanisms leading to upregulation of TEM5 and its function during angiogenesis have not been identified. Here, we report that TEM5 expression in endothelial cells is induced during capillary-like network formation on Matrigel, during capillary morphogenesis in a three-dimensional collagen I matrix, and upon confluence on a two-dimensional matrix. TEM5 expression was not induced by a variety of soluble angiogenic factors, including VEGF and bFGF, in subconfluent endothelial cells. TEM5 upregulation was blocked by toxin B from Clostridium difficile, an inhibitor of the small GTPases Rho, Rac, and Cdc42. The Rho inhibitor C3 transferase from Clostridium botulinum did not affect TEM5 expression, whereas the Rac inhibitor NSC23766 suppressed TEM5 upregulation. An excess of the soluble TEM5 extracellular domain or an inhibitory monoclonal TEM5 antibody blocked contact inhibition of endothelial cell proliferation resulting in multilayered islands within the endothelial monolayer and increased vessel density during capillary formation. Based on our results we conclude that TEM5 expression during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of proliferation in endothelial cells.

  10. Tumor endothelial marker 5 expression in endothelial cells during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Vallon, Mario, E-mail: m.vallon@arcor.de [Nuklearmedizinische Klinik und Poliklinik, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Rohde, Franziska; Janssen, Klaus-Peter [Chirurgische Klinik und Poliklinik, Technische Universitaet Muenchen, Munich (Germany); Essler, Markus [Nuklearmedizinische Klinik und Poliklinik, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany)

    2010-02-01

    Tumor endothelial marker (TEM) 5 is an adhesion G-protein-coupled receptor upregulated in endothelial cells during tumor and physiologic angiogenesis. So far, the mechanisms leading to upregulation of TEM5 and its function during angiogenesis have not been identified. Here, we report that TEM5 expression in endothelial cells is induced during capillary-like network formation on Matrigel, during capillary morphogenesis in a three-dimensional collagen I matrix, and upon confluence on a two-dimensional matrix. TEM5 expression was not induced by a variety of soluble angiogenic factors, including VEGF and bFGF, in subconfluent endothelial cells. TEM5 upregulation was blocked by toxin B from Clostridium difficile, an inhibitor of the small GTPases Rho, Rac, and Cdc42. The Rho inhibitor C3 transferase from Clostridium botulinum did not affect TEM5 expression, whereas the Rac inhibitor NSC23766 suppressed TEM5 upregulation. An excess of the soluble TEM5 extracellular domain or an inhibitory monoclonal TEM5 antibody blocked contact inhibition of endothelial cell proliferation resulting in multilayered islands within the endothelial monolayer and increased vessel density during capillary formation. Based on our results we conclude that TEM5 expression during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of proliferation in endothelial cells.

  11. Nuclear p120 catenin unlocks mitotic block of contact-inhibited human corneal endothelial monolayers without disrupting adherent junctions.

    Science.gov (United States)

    Zhu, Ying-Ting; Chen, Hung-Chi; Chen, Szu-Yu; Tseng, Scheffer C G

    2012-08-01

    Contact inhibition ubiquitously exists in non-transformed cells that are in contact with neighboring cells. This phenomenon explains the poor regenerative capacity of in vivo human corneal endothelial cells during aging, injury and surgery. This study demonstrated that the conventional approach of expanding human corneal endothelial cells by disrupting contact inhibition with EDTA followed by bFGF activated canonical Wnt signaling and lost the normal phenotype to endothelial-mesenchymal transition, especially if TGFβ1 was added. By contrast, siRNA against p120 catenin (CTNND1) also uniquely promoted proliferation of the endothelial cells by activating trafficking of p120 catenin to the nucleus, thus relieving repression by nuclear Kaiso. This nuclear p120-catenin-Kaiso signaling is associated with activation of RhoA-ROCK signaling, destabilization of microtubules and inhibition of Hippo signaling, but not with activation of Wnt-β-catenin signaling. Consequently, proliferating human corneal endothelial cells maintained a hexagonal shape, with junctional expression of N-cadherin, ZO-1 and Na(+)/K(+)-ATPase. Further expansion of human corneal endothelial monolayers with a normal phenotype and a higher density was possible by prolonging treatment with p120 catenin siRNA followed by its withdrawal. This new strategy of perturbing contact inhibition by selective activation of p120-catenin-Kaiso signaling without disrupting adherent junction could be used to engineer surgical grafts containing normal human corneal endothelial cells to meet a global corneal shortage and for endothelial keratoplasties. PMID:22505615

  12. Two-chain high molecular weight kininogen induces endothelial cell apoptosis and inhibits angiogenesis: partial activity within domain 5.

    Science.gov (United States)

    Zhang, J C; Claffey, K; Sakthivel, R; Darzynkiewicz, Z; Shaw, D E; Leal, J; Wang, Y C; Lu, F M; McCrae, K R

    2000-12-01

    We previously reported that the binding of two-chain high molecular weight kininogen (HKa) to endothelial cells may occur through interactions with endothelial urokinase receptors. Since the binding of urokinase to urokinase receptors activates signaling responses and may stimulate mitogenesis, we assessed the effect of HKa binding on endothelial cell proliferation. Unexpectedly, HKa inhibited proliferation in response to several growth factors, with 50% inhibition caused by approximately 10 nM HKa. This activity was Zn(2+) dependent and not shared by either single-chain high molecular weight kininogen (HK) or low molecular weight kininogen. HKa selectively inhibited the proliferation of human umbilical vein and dermal microvascular endothelial cells, but did not affect that of umbilical vein or human aortic smooth muscle cells, trophoblasts, fibroblasts, or carcinoma cells. Inhibition of endothelial proliferation by HKa was associated with endothelial cell apoptosis and unaffected by antibodies that block the binding of HK or HKa to any of their known endothelial receptors. Recombinant HK domain 5 displayed activity similar to that of HKa. In vivo, HKa inhibited neovascularization of subcutaneously implanted Matrigel plugs, as well as rat corneal angiogenesis. These results demonstrate that HKa is a novel inhibitor of angiogenesis, whose activity is dependent on the unique conformation of the two-chain molecule. PMID:11099478

  13. Mo polyoxometalate nanoparticles inhibit tumor growth and vascular endothelial growth factor induced angiogenesis

    International Nuclear Information System (INIS)

    Tumor growth depends on angiogenesis, which can furnish the oxygen and nutrients that proliferate tumor cells. Thus, blocking angiogenesis can be an effective strategy to inhibit tumor growth. In this work, three typical nanoparticles based on polyoxometalates (POMs) have been prepared; we investigated their capability as antitumor and anti-angiogenesis agents. We found that Mo POM nanoparticles, especially complex 3, inhibited the growth of human hepatocellular liver carcinoma cells (HepG2) through cellular reactive oxygen species levels’ elevation and mitochondrial membrane potential damage. Complex 3 also suppressed the proliferation, migration, and tube formation of endothelial cells in vitro and chicken chorioallantoic membrane development ex vivo. Furthermore, western blot analysis of cell signaling molecules indicated that Mo POMs blocked the vascular endothelial growth factor receptor 2-mediated ERK1/2 and AKT signaling pathways in endothelial cells. Using transmission electron microscopy, we demonstrated their cellular uptake and localization within the cytoplasm of HepG2 cells. These results indicate that, owing to the extraordinary physical and chemical properties, Mo POM nanoparticles can significantly inhibit tumor growth and angiogenesis, which makes them potential drug candidates in anticancer and anti-angiogenesis therapies. (paper)

  14. Mo polyoxometalate nanoparticles inhibit tumor growth and vascular endothelial growth factor induced angiogenesis

    Science.gov (United States)

    Zheng, Wenjing; Yang, Licong; Liu, Ying; Qin, Xiuying; Zhou, Yanhui; Zhou, Yunshan; Liu, Jie

    2014-06-01

    Tumor growth depends on angiogenesis, which can furnish the oxygen and nutrients that proliferate tumor cells. Thus, blocking angiogenesis can be an effective strategy to inhibit tumor growth. In this work, three typical nanoparticles based on polyoxometalates (POMs) have been prepared; we investigated their capability as antitumor and anti-angiogenesis agents. We found that Mo POM nanoparticles, especially complex 3, inhibited the growth of human hepatocellular liver carcinoma cells (HepG2) through cellular reactive oxygen species levels’ elevation and mitochondrial membrane potential damage. Complex 3 also suppressed the proliferation, migration, and tube formation of endothelial cells in vitro and chicken chorioallantoic membrane development ex vivo. Furthermore, western blot analysis of cell signaling molecules indicated that Mo POMs blocked the vascular endothelial growth factor receptor 2-mediated ERK1/2 and AKT signaling pathways in endothelial cells. Using transmission electron microscopy, we demonstrated their cellular uptake and localization within the cytoplasm of HepG2 cells. These results indicate that, owing to the extraordinary physical and chemical properties, Mo POM nanoparticles can significantly inhibit tumor growth and angiogenesis, which makes them potential drug candidates in anticancer and anti-angiogenesis therapies.

  15. ACE Inhibition and Endothelial Function: Main Findings of PERFECT, a Sub-Study of the EUROPA Trial

    NARCIS (Netherlands)

    Bots, M.L.; Remme, W.J.; Lüscher, T.F.; Fox, K.M.; Bertrand, M.; Ferrari, R.; Simoons, M.L.; Grobbee, D.E.; EUROPA-PERFECT Investigators

    2007-01-01

    Background: ACE inhibition results in secondary prevention of coronary artery disease (CAD) through different mechanisms including improvement of endothelial dysfunction. The Perindopril-Function of the Endothelium in Coronary artery disease Trial (PERFECT) evaluated whether long-term administratio

  16. GPER inhibits diabetes-mediated RhoA activation to prevent vascular endothelial dysfunction.

    Science.gov (United States)

    Li, Zilin; Cheng, Liang; Liang, Hongliang; Duan, Weixun; Hu, Jing; Zhi, Weiwei; Yang, Jinbao; Liu, Zhenhua; Zhao, Minggao; Liu, Jincheng

    2016-02-01

    The effect of estrogen receptors on diabetes-induced vascular dysfunction is critical, but ambiguous. Individuals with diabetic vascular disease may require estrogen receptor-specific targeted therapy in the future. The G protein-coupled estrogen receptor (GPER) has beneficial effects on vascular function. However, its fundamental mechanisms are unclear. The RhoA/Rho-kinase pathway contributes to diabetic vascular complications, whereas estrogen can suppress Rho-kinase function. Thus, we assumed that GPER inhibits diabetes-mediated RhoA activation to prevent vascular dysfunction. We further investigated the underlying mechanisms involved in this process. Vascular endothelial cells and ex vivo cultured ovariectomized (OVX) C57BL/6 mouse aortae were treated with high glucose (HG) alone or in combination with GPER agonist (G1). G1 treatment was also administered to OVX db/db mice for 8 weeks. An ex-vivo isovolumic myograph was used to analyze the endothelium-dependent vasodilation and endothelium-independent contraction of mouse aortae. Apoptosis, oxidative stress, and inflammation were attenuated in G1-pretreated vascular endothelial cells. G1 significantly decreased the phosphorylation of inhibitory endothelial nitric oxide (NO) synthase residue threonine 495 (eNOS Thr495), inhibited RhoA expression, and increased NO production. Additionally, G1 rescued the impaired endothelium-dependent relaxation and inhibited RhoA activation in the thoracic aorta of OVX db/db mice and ex-vivo cultured OVX C57BL/6 mouse aortae treated with HG. Estrogens acting via GPER could protect vascular endothelium, and GPER activation might elicit ERα-independent effect to inhibit RhoA/Rho-kinase pathway. Additionally, GPER activation might reduce vascular smooth muscle contraction by inhibiting RhoA activation. Thus, the results of the present study suggest a new therapeutic paradigm for end-stage vascular dysfunction by inhibiting RhoA/Rho-kinase pathway via GPER activation. PMID:26785611

  17. Inhibition of TGF-β signaling enables human corneal endothelial cell expansion in vitro for use in regenerative medicine.

    Directory of Open Access Journals (Sweden)

    Naoki Okumura

    Full Text Available Corneal endothelial dysfunctions occurring in patients with Fuchs' endothelial corneal dystrophy, pseudoexfoliation syndrome, corneal endotheliitis, and surgically induced corneal endothelial damage cause blindness due to the loss of endothelial function that maintains corneal transparency. Transplantation of cultivated corneal endothelial cells (CECs has been researched to repair endothelial dysfunction in animal models, though the in vitro expansion of human CECs (HCECs is a pivotal practical issue. In this study we established an optimum condition for the cultivation of HCECs. When exposed to culture conditions, both primate and human CECs showed two distinct phenotypes: contact-inhibited polygonal monolayer and fibroblastic phenotypes. The use of SB431542, a selective inhibitor of the transforming growth factor-beta (TGF-β receptor, counteracted the fibroblastic phenotypes to the normal contact-inhibited monolayer, and these polygonal cells maintained endothelial physiological functions. Expression of ZO-1 and Na(+/K(+-ATPase maintained their subcellular localization at the plasma membrane. Furthermore, expression of type I collagen and fibronectin was greatly reduced. This present study may prove to be the substantial protocol to provide the efficient in vitro expansion of HCECs with an inhibitor to the TGF-β receptor, and may ultimately provide clinicians with a new therapeutic modality in regenerative medicine for the treatment of corneal endothelial dysfunctions.

  18. ADAMTS1 inhibits lymphangiogenesis by attenuating phosphorylation of the lymphatic endothelial cell-specific VEGF receptor

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Junko; Takahashi, Katsuyuki; Ogawa, Hiroko; Asano, Keiichi; Faruk Hatipoglu, Omer; Zeynel Cilek, Mehmet; Obika, Masanari; Ohtsuki, Takashi [Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama (Japan); Hofmann, Matthias [Department of Dermatology, Venereology and Allergology, Goethe University, Frankfurt (Germany); Kusachi, Shozo [Department of Medical Technology, Okayama University Graduate School of Health Sciences, Okayama (Japan); Ninomiya, Yoshifumi [Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama (Japan); Hirohata, Satoshi, E-mail: hirohas@cc.okayama-u.ac.jp [Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama (Japan); International Center, Okayama University, Okayama (Japan)

    2014-05-01

    Angiogenesis and lymphangiogenesis play roles in malignant tumor progression, dissemination, and metastasis. ADAMTS1, a member of the matrix metalloproteinase family, is known to inhibit angiogenesis. Recombinant ADAMTS1 was shown to strongly inhibit angiogenesis. We investigated whether ADAMTS1 inhibited lymphangiogenesis in the present study. We examined cell proliferation and cell migration in normal human dermal lymphatic microvascular endothelial cells (HMVEC-dLy) transduced with or without adenoviral human ADAMTS1 gene therapy. We then examined the VEGFC/VEGFR3 signal transduction pathway in ADAMTS1-transduced HMVEC-dLy. Cell proliferation and tube formation in Matrigel were significantly lower with transduced ADAMTS1 than with control (non-transduced HMVEC-dLy). The phosphorylation of VEGFR3 was also attenuated by ADAMTS1 gene therapy in HMVEC-dLy. Immunoprecipitation assays revealed that ADAMTS1 formed a complex with VEGFC. Our results demonstrated that ADAMTS1 inhibited lymphangiogenesis in vitro. The data highlight the new function of ADAMTS1 in the regulation of lymphangiogenesis and the therapeutic potential of ADAMTS1 in cancer therapy. - Highlights: • ADAMTS1 significantly inhibited tube formation and cell proliferation in HMVEC-dLy. • Reduced lymph endothelial cell migration in ADAMTS1 transduced co-culture systems. • VEGFC-stimulated phosphorylation of VEGFR3 is attenuated by ADAMTS1. • Reduced phosphorylation of Akt and ERK1/2 in ADAMTS1 treated HMVEC-dLy. • ADAMTS1 binds directly to VEGFC.

  19. ADAMTS1 inhibits lymphangiogenesis by attenuating phosphorylation of the lymphatic endothelial cell-specific VEGF receptor

    International Nuclear Information System (INIS)

    Angiogenesis and lymphangiogenesis play roles in malignant tumor progression, dissemination, and metastasis. ADAMTS1, a member of the matrix metalloproteinase family, is known to inhibit angiogenesis. Recombinant ADAMTS1 was shown to strongly inhibit angiogenesis. We investigated whether ADAMTS1 inhibited lymphangiogenesis in the present study. We examined cell proliferation and cell migration in normal human dermal lymphatic microvascular endothelial cells (HMVEC-dLy) transduced with or without adenoviral human ADAMTS1 gene therapy. We then examined the VEGFC/VEGFR3 signal transduction pathway in ADAMTS1-transduced HMVEC-dLy. Cell proliferation and tube formation in Matrigel were significantly lower with transduced ADAMTS1 than with control (non-transduced HMVEC-dLy). The phosphorylation of VEGFR3 was also attenuated by ADAMTS1 gene therapy in HMVEC-dLy. Immunoprecipitation assays revealed that ADAMTS1 formed a complex with VEGFC. Our results demonstrated that ADAMTS1 inhibited lymphangiogenesis in vitro. The data highlight the new function of ADAMTS1 in the regulation of lymphangiogenesis and the therapeutic potential of ADAMTS1 in cancer therapy. - Highlights: • ADAMTS1 significantly inhibited tube formation and cell proliferation in HMVEC-dLy. • Reduced lymph endothelial cell migration in ADAMTS1 transduced co-culture systems. • VEGFC-stimulated phosphorylation of VEGFR3 is attenuated by ADAMTS1. • Reduced phosphorylation of Akt and ERK1/2 in ADAMTS1 treated HMVEC-dLy. • ADAMTS1 binds directly to VEGFC

  20. Tissue-engineered endothelial cell layers on surface-modified Ti for inhibiting in vitro platelet adhesion

    International Nuclear Information System (INIS)

    A tissue-engineered endothelial layer was prepared by culturing endothelial cells on a fibroblast growth factor-2 (FGF-2)–l-ascorbic acid phosphate magnesium salt n-hydrate (AsMg)–apatite (Ap) coated titanium plate. The FGF-2–AsMg–Ap coated Ti plate was prepared by immersing a Ti plate in supersaturated calcium phosphate solutions supplemented with FGF-2 and AsMg. The FGF-2–AsMg–Ap layer on the Ti plate accelerated proliferation of human umbilical vein endothelial cells (HUVECs), and showed slightly higher, but not statistically significant, nitric oxide release from HUVECs than on as-prepared Ti. The endothelial layer maintained proper function of the endothelial cells and markedly inhibited in vitro platelet adhesion. The tissue-engineered endothelial layer formed on the FGF-2–AsMg–Ap layer is promising for ameliorating platelet activation and thrombus formation on cardiovascular implants. (paper)

  1. Coniferyl aldehyde attenuates radiation enteropathy by inhibiting cell death and promoting endothelial cell function.

    Directory of Open Access Journals (Sweden)

    Ye-Ji Jeong

    Full Text Available Radiation enteropathy is a common complication in cancer patients. The aim of this study was to investigate whether radiation-induced intestinal injury could be alleviated by coniferyl aldehyde (CA, an HSF1-inducing agent that increases cellular HSP70 expression. We systemically administered CA to mice with radiation enteropathy following abdominal irradiation (IR to demonstrate the protective effects of CA against radiation-induced gastrointestinal injury. CA clearly alleviated acute radiation-induced intestinal damage, as reflected by the histopathological data and it also attenuated sub-acute enteritis. CA prevented intestinal crypt cell death and protected the microvasculature in the lamina propria during the acute and sub-acute phases of damage. CA induced HSF1 and HSP70 expression in both intestinal epithelial cells and endothelial cells in vitro. Additionally, CA protected against not only the apoptotic cell death of both endothelial and epithelial cells but also the loss of endothelial cell function following IR, indicating that CA has beneficial effects on the intestine. Our results provide novel insight into the effects of CA and suggest its role as a therapeutic candidate for radiation-induced enteropathy due to its ability to promote rapid re-proliferation of the intestinal epithelium by the synergic effects of the inhibition of cell death and the promotion of endothelial cell function.

  2. Olive oil compounds inhibit vascular endothelial growth factor receptor-2 phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Lamy, Sylvie, E-mail: lamy.sylvie@uqam.ca; Ouanouki, Amira; Béliveau, Richard; Desrosiers, Richard R.

    2014-03-10

    Vascular endothelial growth factor (VEGF) triggers crucial signaling processes that regulate tumor angiogenesis and, therefore, represents an attractive target for the development of novel anticancer therapeutics. Several epidemiological studies have confirmed that abundant consumption of foods from plant origin is associated with reduced risk of developing cancers. In the Mediterranean basin, the consumption of extra virgin olive oil is an important constituent of the diet. Compared to other vegetable oils, the presence of several phenolic antioxidants in olive oil is believed to prevent the occurrence of a variety of pathological processes, such as cancer. While the strong antioxidant potential of these molecules is well characterized, their antiangiogenic activities remain unknown. The aim of this study is to investigate whether tyrosol (Tyr), hydroxytyrosol (HT), taxifolin (Tax), oleuropein (OL) and oleic acid (OA), five compounds contained in extra virgin olive oil, can affect in vitro angiogenesis. We found that HT, Tax and OA were the most potent angiogenesis inhibitors through their inhibitory effect on specific autophosphorylation sites of VEGFR-2 (Tyr951, Tyr1059, Tyr1175 and Tyr1214) leading to the inhibition of endothelial cell (EC) signaling. Inhibition of VEGFR-2 by these olive oil compounds significantly reduced VEGF-induced EC proliferation and migration as well as their morphogenic differentiation into capillary-like tubular structures in Matrigel. Our study demonstrates that HT, Tax and OA are novel and potent inhibitors of the VEGFR-2 signaling pathway. These findings emphasize the chemopreventive properties of olive oil and highlight the importance of nutrition in cancer prevention. - Highlights: • We investigated five compounds contained in extra virgin olive oil on angiogenesis. • Hydroxytyrosol, taxifolin and oleic acid are the best angiogenesis inhibitors. • Olive oil compounds affect endothelial cell functions essential for

  3. Olive oil compounds inhibit vascular endothelial growth factor receptor-2 phosphorylation

    International Nuclear Information System (INIS)

    Vascular endothelial growth factor (VEGF) triggers crucial signaling processes that regulate tumor angiogenesis and, therefore, represents an attractive target for the development of novel anticancer therapeutics. Several epidemiological studies have confirmed that abundant consumption of foods from plant origin is associated with reduced risk of developing cancers. In the Mediterranean basin, the consumption of extra virgin olive oil is an important constituent of the diet. Compared to other vegetable oils, the presence of several phenolic antioxidants in olive oil is believed to prevent the occurrence of a variety of pathological processes, such as cancer. While the strong antioxidant potential of these molecules is well characterized, their antiangiogenic activities remain unknown. The aim of this study is to investigate whether tyrosol (Tyr), hydroxytyrosol (HT), taxifolin (Tax), oleuropein (OL) and oleic acid (OA), five compounds contained in extra virgin olive oil, can affect in vitro angiogenesis. We found that HT, Tax and OA were the most potent angiogenesis inhibitors through their inhibitory effect on specific autophosphorylation sites of VEGFR-2 (Tyr951, Tyr1059, Tyr1175 and Tyr1214) leading to the inhibition of endothelial cell (EC) signaling. Inhibition of VEGFR-2 by these olive oil compounds significantly reduced VEGF-induced EC proliferation and migration as well as their morphogenic differentiation into capillary-like tubular structures in Matrigel. Our study demonstrates that HT, Tax and OA are novel and potent inhibitors of the VEGFR-2 signaling pathway. These findings emphasize the chemopreventive properties of olive oil and highlight the importance of nutrition in cancer prevention. - Highlights: • We investigated five compounds contained in extra virgin olive oil on angiogenesis. • Hydroxytyrosol, taxifolin and oleic acid are the best angiogenesis inhibitors. • Olive oil compounds affect endothelial cell functions essential for

  4. Inhibition of Rho and Rac geranylgeranylation by atorvastatin is critical for preservation of endothelial junction integrity.

    Directory of Open Access Journals (Sweden)

    Hongbing Xiao

    Full Text Available BACKGROUND: Small GTPases (guanosine triphosphate, GTP are involved in many critical cellular processes, including inflammation, proliferation, and migration. GTP loading and isoprenylation are two important post-translational modifications of small GTPases, and are critical for their normal function. In this study, we investigated the role of post-translational modifications of small GTPases in regulating endothelial cell inflammatory responses and junctional integrity. METHODS AND RESULTS: Confluent human umbilical vein endothelial cell (HUVECs treated with atorvastatin demonstrated significantly decreased lipopolysaccharide (LPS-mediated IL-6 and IL-8 generation. The inhibitory effect of atorvastatin (Atorva was attenuated by co-treatment with 100 µM mevalonate (MVA or 10 µM geranylgeranyl pyrophosphate (GGPP, but not by 10 µM farnesyl pyrophosphate (FPP. Atorvastatin treatment of HUVECs produced a time-dependent increase in GTP loading of all Rho GTPases, and induced the translocation of small Rho GTPases from the cellular membrane to the cytosol, which was reversed by 100 µM MVA and 10 µM GGPP, but not by 10 µM FPP. Atorvastatin significantly attenuated thrombin-induced HUVECs permeability, increased VE-cadherin targeting to cell junctions, and preserved junction integrity. These effects were partially reversed by GGPP but not by FPP, indicating that geranylgeranylation of small GTPases plays a major role in regulating endothelial junction integrity. Silencing of small GTPases showed that Rho and Rac, but not Cdc42, play central role in HUVECs junction integrity. CONCLUSIONS: In conclusion, our studies show that post-translational modification of small GTPases plays a vital role in regulating endothelial inflammatory response and endothelial junction integrity. Atorvastatin increased GTP loading and inhibited isoprenylation of small GTPases, accompanied by reduced inflammatory response and preserved cellular junction integrity.

  5. PGC-1-related coactivator (PRC) negatively regulates endothelial adhesion of monocytes via inhibition of NF κB activity

    International Nuclear Information System (INIS)

    Highlights: •First time to display that LPS downregulate the expression of PRC. •First time to show that PRC inhibits the induction of VCAM-1 and E-selectin. •First time to show that PRC inhibit monocytes attachment to endothelial cells. •First time to display that PRC inhibits transcriptional activity of NF-κB. •PRC protects the respiration rate and suppresses the glycolysis rate against LPS. -- Abstract: PGC-1-related coactivator (PRC) is a growth-regulated transcriptional cofactor known to activate many of the nuclear genes specifying mitochondrial respiratory function. Endothelial dysfunction is a prominent feature found in many inflammatory diseases. Adhesion molecules, such as VCAM-1, mediate the attachment of monocytes to endothelial cells, thereby playing an important role in endothelial inflammation. The effects of PRC in regards to endothelial inflammation remain unknown. In this study, our findings show that PRC can be inhibited by the inflammatory cytokine LPS in cultured human umbilical vein endothelial cells (HUVECs). In the presence of LPS, the expression of endothelial cell adhesion molecular, such as VCAM1 and E-selectin, is found to be increased. These effects can be negated by overexpression of PRC. Importantly, monocyte adhesion to endothelial cells caused by LPS is significantly attenuated by PRC. In addition, overexpression of PRC protects mitochondrial metabolic function and suppresses the rate of glycolysis against LPS. It is also found that overexpression of PRC decreases the transcriptional activity of NF-κB. These findings suggest that PRC is a negative regulator of endothelial inflammation

  6. Aspirin inhibits interleukin 1-induced prostaglandin H synthase expression in cultured endothelial cells

    International Nuclear Information System (INIS)

    Prostaglandin H (PGH) synthase is a key enzyme in the biosynthesis of prostaglandins, thromboxane, and prostacyclin. In cultured human umbilical vein endothelial cells, interleukin 1 (IL-1) is known to induce the synthesis of this enzyme, thereby raising the level of PGH synthase protein severalfold over the basal level. Pretreatment with aspirin at low concentrations inhibited more than 60% of the enzyme mass and also the cyclooxygenase activity in IL-1-induced cells with only minimal effects on the basal level of the synthase enzyme in cells without IL-1. Sodium salicylate exhibited a similar inhibitory action whereas indomethacin had no apparent effect. Similarly low levels of aspirin inhibited the increased L-[35S]methionine incorporation into PGH synthase that was induced by IL0-1 and also suppressed expression of the 2.7-kilobase PGH synthase mRNA. These results suggest that in cultured endothelial cells a potent inhibition of eicosanoid biosynthetic capacity can be effected by aspirin or salicylate at the level of PGH synthase gene expression. The aspirin effect may well be due to degradation of salicylate

  7. Aspirin inhibits interleukin 1-induced prostaglandin H synthase expression in cultured endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, K.K.; Sanduja, R.; Tsai, A.L.; Ferhanoglu, B.; Loose-Mitchell, D.S. (Univ. of Texas Medical School, Houston (United States))

    1991-03-15

    Prostaglandin H (PGH) synthase is a key enzyme in the biosynthesis of prostaglandins, thromboxane, and prostacyclin. In cultured human umbilical vein endothelial cells, interleukin 1 (IL-1) is known to induce the synthesis of this enzyme, thereby raising the level of PGH synthase protein severalfold over the basal level. Pretreatment with aspirin at low concentrations inhibited more than 60% of the enzyme mass and also the cyclooxygenase activity in IL-1-induced cells with only minimal effects on the basal level of the synthase enzyme in cells without IL-1. Sodium salicylate exhibited a similar inhibitory action whereas indomethacin had no apparent effect. Similarly low levels of aspirin inhibited the increased L-({sup 35}S)methionine incorporation into PGH synthase that was induced by IL0-1 and also suppressed expression of the 2.7-kilobase PGH synthase mRNA. These results suggest that in cultured endothelial cells a potent inhibition of eicosanoid biosynthetic capacity can be effected by aspirin or salicylate at the level of PGH synthase gene expression. The aspirin effect may well be due to degradation of salicylate.

  8. Natural phenylpropanoids inhibit lipoprotein-induced endothelin-1 secretion by endothelial cells.

    Science.gov (United States)

    Martin-Nizard, Françoise; Sahpaz, Sevser; Kandoussi, Abdelmejid; Carpentier, Marie; Fruchart, Jean-Charles; Duriez, Patrick; Bailleul, François

    2004-12-01

    There is increasing evidence that oxidized low-density lipoproteins (Ox-LDL) might be involved in the pathogenesis of atherosclerosis and it has been reported that polyphenols inhibit LDL peroxidation and atherosclerosis. Endothelin-1 (ET-1) is a potent vasoconstrictor peptide isolated from endothelial cells and it induces smooth muscle cell proliferation. ET-1 secretion is increased in atheroma and induces deleterious effects such as vasospasm and atherosclerosis. The goal of this study was to test the effect of four natural phenolic compounds against copper-oxidized LDL (Cu-LDL)-induced ET-1 liberation by bovine aortic endothelial cells (BAEC). The tested compounds were phenylpropanoid glycosides previously isolated from the aerial parts of Marrubium vulgare L. (acteoside 1, forsythoside B 2, arenarioside 3 and ballotetroside 4). ET-1 secretion increased when cells were incubated with Cu-LDL but the compounds 1-4 inhibited this increase. These results were confirmed by quantitative-polymerase chain reaction (QPCR) analysis. Since ET-1 plays an important role in atherosclerosis development, our work suggests that the tested phenylpropanoids could have a beneficial effect in inhibiting atherosclerosis development. PMID:15563769

  9. Dual mechanisms of NF-κB inhibition in carnosol-treated endothelial cells

    International Nuclear Information System (INIS)

    The increased adhesion of monocytes to injured endothelial layers is a critical early event in atherogenesis. Under inflammatory conditions, there is increased expression of specific cell adhesion molecules on activated vascular endothelial cells, which increases monocyte adhesion. In our current study, we demonstrate a putative mechanism for the anti-inflammatory effects of carnosol, a diterpene derived from the herb rosemary. Our results show that both carnosol and rosemary essential oils inhibit the adhesion of TNFα-induced monocytes to endothelial cells and suppress the expression of ICAM-1 at the transcriptional level. Moreover, carnosol was found to exert its inhibitory effects by blocking the degradation of the inhibitory protein IκBα in short term pretreatments but not in 12 h pretreatments. Our data show that carnosol reduces IKK-β phosphorylation in pretreatments of less than 3 h. In TNFα-treated ECs, NF-κB nuclear translocation and transcriptional activity was abolished by up to 12 h of carnosol pretreatment and this was blocked by Nrf-2 siRNA. The long-term inhibitory effects of carnosol thus appear to be mediated through its induction of Nrf-2-related genes. The inhibition of ICAM-1 expression and p65 translocation is reversed by HO-1 siRNA. Carnosol also upregulates the Nrf-2-related glutathione synthase gene and thereby increases the GSH levels after 9 h of exposure. Treating ECs with a GSH synthesis inhibitor, BSO, blocks the inhibitory effects of carnosol. In addition, carnosol increases p65 glutathionylation. Hence, our present findings indicate that carnosol suppresses TNFα-induced singling pathways through the inhibition of IKK-β activity or the upregulation of HO-1 expression. The resulting GSH levels are dependent, however, on the length of the carnosol pretreatment period.

  10. A newly synthesized sinapic acid derivative inhibits endothelial activation in vitro and in vivo.

    Science.gov (United States)

    Zeng, Xiaoyun; Zheng, Jinhong; Fu, Chenglai; Su, Hang; Sun, Xiaoli; Zhang, Xuesi; Hou, Yingjian; Zhu, Yi

    2013-05-01

    Inhibition of oxidative stress and inflammation in vascular endothelial cells (ECs) may represent a new therapeutic strategy against endothelial activation. Sinapic acid (SA), a phenylpropanoid compound, is found in natural herbs and high-bran cereals and has moderate antioxidant activity. We aimed to develop new SA agents with the properties of antioxidation and blocking EC activation for possible therapy of cardiovascular disease. We designed and synthesized 10 SA derivatives according to their chemical structures. Preliminary screening of the compounds involved scavenging hydroxyl radicals and 2,2-diphenyl-1-picrylhydrazyl (DPPH(⋅)), croton oil-induced ear edema in mice, and analysis of the mRNA expression of adhesion molecules in ECs. 1-Acetyl-sinapic acyl-4-(3'-chlorine-)benzylpiperazine (SA9) had the strongest antioxidant and anti-inflammatory activities both in vitro and in vivo. Thus, the effect of SA9 was further studied. SA9 inhibited tumor necrosis factor α-induced upregulation of adhesion molecules in ECs at both mRNA and protein levels, as well as the consequent monocyte adhesion to ECs. In vivo, result of face-to-face immunostaining showed that SA9 reduced lipopolysaccharide-induced expression of intercellular adhesion molecule-1 in mouse aortic intima. To study the molecular mechanism, results from luciferase assay, nuclear translocation of NF-κB, and Western blot indicated that the mechanism of the anti-inflammatory effects of SA9 might be suppression of intracellular generation of ROS and inhibition of NF-κB activation in ECs. SA9 is a prototype of a novel class of antioxidant with anti-inflammatory effects in ECs. It may represent a new therapeutic approach for preventing endothelial activation in cardiovascular disorders. PMID:23470287

  11. Aspirin inhibits interleukin 1-induced prostaglandin H synthase expression in cultured endothelial cells.

    OpenAIRE

    Wu, K. K.; Sanduja, R; Tsai, A. L.; Ferhanoglu, B.; Loose-Mitchell, D S

    1991-01-01

    Prostaglandin H (PGH) synthase (EC 1.14.99.1) is a key enzyme in the biosynthesis of prostaglandins, thromboxane, and prostacyclin. In cultured human umbilical vein endothelial cells, interleukin 1 (IL-1) is known to induce the synthesis of this enzyme, thereby raising the level of PGH synthase protein severalfold over the basal level. Pretreatment with aspirin at low concentrations (0.1-1 micrograms/ml) inhibited more than 60% of the enzyme mass and also the cyclooxygenase activity in IL-1-i...

  12. Lithium prevents early cytosolic calcium increase and secondary injurious calcium overload in glycolytically inhibited endothelial cells

    International Nuclear Information System (INIS)

    Highlights: •We investigate free calcium as a central signalling element in endothelial cells. •Inhibition of glycolysis with 2-deoxy-D-glucose reduces cellular ATP. •This manoeuvre leads to a biphasic increase and overload of free calcium. •Pre-treatment with lithium for 24 h abolishes both phases of the calcium increase. •This provides a new strategy to protect endothelial calcium homeostasis and barrier function. -- Abstract: Cytosolic free calcium concentration ([Ca2+]i) is a central signalling element for the maintenance of endothelial barrier function. Under physiological conditions, it is controlled within narrow limits. Metabolic inhibition during ischemia/reperfusion, however, induces [Ca2+]i overload, which results in barrier failure. In a model of cultured porcine aortic endothelial monolayers (EC), we addressed the question of whether [Ca2+]i overload can be prevented by lithium treatment. [Ca2+]i and ATP were analysed using Fura-2 and HPLC, respectively. The combined inhibition of glycolytic and mitochondrial ATP synthesis by 2-desoxy-D-glucose (5 mM; 2-DG) plus sodium cyanide (5 mM; NaCN) caused a significant decrease in cellular ATP content (14 ± 1 nmol/mg protein vs. 18 ± 1 nmol/mg protein in the control, n = 6 culture dishes, P 2+]i (278 ± 24 nM vs. 71 ± 2 nM in the control, n = 60 cells, P 2+]i response of EC was biphasic with a peak after 1 min (183 ± 6 nM vs. 71 ± 1 nM, n = 60 cells, P 2+]i. A 24-h pre-treatment with 10 mM of lithium chloride before the inhibition of ATP synthesis abolished both phases of the 2-DG-induced [Ca2+]i increase. This effect was not observed when lithium chloride was added simultaneously with 2-DG. We conclude that lithium chloride abolishes the injurious [Ca2+]i overload in EC and that this most likely occurs by preventing inositol 3-phosphate-sensitive Ca2+-release from the endoplasmic reticulum. Though further research is needed, these findings provide a novel option for therapeutic strategies to

  13. Fibroblast growth factor 21 as a possible endogenous factor inhibits apoptosis in cardiac endothelial cells

    Institute of Scientific and Technical Information of China (English)

    L(U) Yun; ZHANG Ying-chuan; LIU Jing-hua; ZHANG Li-ke; DU Jie; ZENG Xiang-jun; HAO Gang; HUANG Ji; ZHAO Dong-hui; WANG Guo-zhong

    2010-01-01

    Background Fibroblast growth factor 21 (FGF21) is a new member of FGF super family that is an important endogenous regulator for systemic glucose and lipid metabolism. This study aimed to explore whether FGF21 reduces atherosclerotic injury and prevents endothelial dysfunction as an independent protection factor.Methods The present study was designed to investigate the changes of FGF21 levels induced by oxidized-low density lipoprotein (ox-LDL), and the changes of apoptosis affected by regulating FGF21 expression. The FGF21 mRNA levels of cultured cardiac microvascular endothelial cells (CMECs) were determined by real time-PCR and the protein concentration in culture media was detected by enzyme-linked immunosorbent assay. We analyzed the different expression levels of untreated controls and CMFCs incubated with ox-LDL, and the changes of CMECs apoptosis initiated by the enhancement or suppression of FGF21 levels.Results The secretion levels of FGF21 mRNA and protein were significantly upregulated in CMECs incubated with ox-LDL. Furthermore, FGF21 levels increased by 200 μmol/L bezafibrate could reduce CMECs apoptosis, and inhibit FGF21 expression by shRNA induced apoptosis (P <0.05).Conclusions FGF21 may be a signal of injured target tissue, and may play physiological roles in improving the endothelial function at an early stage of atherosclerosis and in stopping the development of coronary heart disease.

  14. R-Ras Inhibits VEGF-Induced p38MAPK Activation and HSP27 Phosphorylation in Endothelial Cells.

    Science.gov (United States)

    Sawada, Junko; Li, Fangfei; Komatsu, Masanobu

    2015-01-01

    R-Ras is a Ras family small GTPase that is highly expressed in mature functional blood vessels in normal tissues. It inhibits pathological angiogenesis and promotes vessel maturation and stabilization. Previous studies suggest that R-Ras affects cellular signaling in endothelial cells, pericytes and smooth-muscle cells to regulate vessel formation and remodeling in adult tissues. R-Ras suppresses VEGF-induced endothelial permeability and vessel sprouting while promoting normalization of pathologically developing vessels in mice. It attenuates VEGF receptor-2 (VEGFR2) activation by inhibiting internalization of the receptor upon VEGF ligand binding, leading to significant reduction of VEGFR2 autophosphorylation. Here, we show that R-Ras strongly suppresses the VEGF-dependent activation of stress-activated protein kinase-2/p38 mitogen-activated protein kinase (SAPK2/p38MAPK) and the phosphorylation of downstream heat-shock protein 27 (HSP27), a regulator of actin cytoskeleton organization, in endothelial cells. The suppression of p38MAPK activation and HSP27 phosphorylation by R-Ras concurred with altered actin cytoskeleton architecture, reduced membrane protrusion and inhibition of endothelial cell migration toward VEGF. Silencing of endogenous R-Ras by RNA interference increased membrane protrusion and cell migration stimulated by VEGF, and these effects were offset by p38MAPK inhibitor SB203580. These results suggest that R-Ras regulates angiogenic activities of endothelial cells in part via inhibition of the p38MAPK-HSP27 axis of VEGF signaling. PMID:27029009

  15. Infantile hemangioma-derived stem cells and endothelial cells are inhibited by class 3 semaphorins

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Hironao [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Surgery, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295 (Japan); Huang, Lan [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Surgery, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Kelly, Ryan P.; Oudenaarden, Clara R.L. [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Dagher, Adelle; Hofmann, Nicole A.; Moses, Marsha A. [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Surgery, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Bischoff, Joyce, E-mail: joyce.bischoff@childrens.harvard.edu [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Surgery, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Klagsbrun, Michael, E-mail: michael.klagsbrun@childrens.harvard.edu [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Surgery, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Pathology, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States)

    2015-08-14

    Class 3 semaphorins were discovered as a family of axon guidance molecules, but are now known to be involved in diverse biologic processes. In this study, we investigated the anti-angiogenic potential of SEMA3E and SEMA3F (SEMA3E&F) in infantile hemangioma (IH). IH is a common vascular tumor that involves both vasculogenesis and angiogenesis. Our lab has identified and isolated hemangioma stem cells (HemSC), glucose transporter 1 positive (GLUT1{sup +}) endothelial cells (designated as GLUT1{sup sel} cells) based on anti-GLUT1 magnetic beads selection and GLUT1-negative endothelial cells (named HemEC). We have shown that these types of cells play important roles in hemangiogenesis. We report here that SEMA3E inhibited HemEC migration and proliferation while SEMA3F was able to suppress the migration and proliferation in all three types of cells. Confocal microscopy showed that stress fibers in HemEC were reduced by SEMA3E&F and that stress fibers in HemSC were decreased by SEMA3F, which led to cytoskeletal collapse and loss of cell motility in both cell types. Additionally, SEMA3E&F were able to inhibit vascular endothelial growth factor (VEGF)-induced sprouts in all three types of cells. Further, SEMA3E&F reduced the level of p-VEGFR2 and its downstream p-ERK in HemEC. These results demonstrate that SEMA3E&F inhibit IH cell proliferation and suppress the angiogenic activities of migration and sprout formation. SEMA3E&F may have therapeutic potential to treat or prevent growth of highly proliferative IH. - Highlights: • SEMA3E&F reduce actin stress fibers and induce cytoskeletal collapse in HemEC. • SEMA3E&F inhibit angiogenic activities of HemEC. • SEMA3E&F can interrupt the VEGF-A-VEGFR2-ERK signaling pathway in HemEC. • Plexin D1 and NRP2 are induced during HemSC/GLUT1{sup sel}-to-EC differentiation.

  16. Infantile hemangioma-derived stem cells and endothelial cells are inhibited by class 3 semaphorins

    International Nuclear Information System (INIS)

    Class 3 semaphorins were discovered as a family of axon guidance molecules, but are now known to be involved in diverse biologic processes. In this study, we investigated the anti-angiogenic potential of SEMA3E and SEMA3F (SEMA3E&F) in infantile hemangioma (IH). IH is a common vascular tumor that involves both vasculogenesis and angiogenesis. Our lab has identified and isolated hemangioma stem cells (HemSC), glucose transporter 1 positive (GLUT1+) endothelial cells (designated as GLUT1sel cells) based on anti-GLUT1 magnetic beads selection and GLUT1-negative endothelial cells (named HemEC). We have shown that these types of cells play important roles in hemangiogenesis. We report here that SEMA3E inhibited HemEC migration and proliferation while SEMA3F was able to suppress the migration and proliferation in all three types of cells. Confocal microscopy showed that stress fibers in HemEC were reduced by SEMA3E&F and that stress fibers in HemSC were decreased by SEMA3F, which led to cytoskeletal collapse and loss of cell motility in both cell types. Additionally, SEMA3E&F were able to inhibit vascular endothelial growth factor (VEGF)-induced sprouts in all three types of cells. Further, SEMA3E&F reduced the level of p-VEGFR2 and its downstream p-ERK in HemEC. These results demonstrate that SEMA3E&F inhibit IH cell proliferation and suppress the angiogenic activities of migration and sprout formation. SEMA3E&F may have therapeutic potential to treat or prevent growth of highly proliferative IH. - Highlights: • SEMA3E&F reduce actin stress fibers and induce cytoskeletal collapse in HemEC. • SEMA3E&F inhibit angiogenic activities of HemEC. • SEMA3E&F can interrupt the VEGF-A-VEGFR2-ERK signaling pathway in HemEC. • Plexin D1 and NRP2 are induced during HemSC/GLUT1sel-to-EC differentiation

  17. Treatment of metastatic colorectal carcinomas by systemic inhibition of vascular endothelial growth factor signaling in mice

    Institute of Scientific and Technical Information of China (English)

    Volker Schmitz; Miroslaw Kornek; Tobias Hilbert; Christian Dzienisowicz; Esther Raskopf; Christian Rabe; Tilman Sauerbruch; Cheng Qian; Wolfgang H Caselmann

    2005-01-01

    AIM: Tumor angiogenesis has been shown to be promoted by vascular endothelial growth factor (VEGF) via stimulating endothelial cell proliferation, migration, and survival.Blockade of VEGF signaling by different means has been demonstrated to result in reduced tumor growth and suppression of tumor angiogenesis in distinct tumor entities.Here, we tested a recombinant adenovirus, AdsFlt1-3,that encodes an antagonistically acting fragment of the VEGF receptor 1 (Flt-1), for systemic antitumor effects in pre-established subcutaneous CRC tumors in mice.METHODS: Murine colorectal carcinoma cells (CT26) were inoculated subcutaneously into Balb/c mice forin vivo studies. Tumor size and survival were determined. 293cell line was used for propagation of the adenoviral vectors.Human lung cancer line 4549 and human umbilical vein endothelial cells were transfected forin vitro experiments.RESULTS: Infection of tumor cells with AdsFlt1-3 resulted in protein secretion into cell supernatant, demonstrating correct vector function. As expected, the secreted sFlt1-3 protein had no direct effect on CT26 tumor cell proliferation in vitro, but endothelial cell function was inhibited by about 46% as compared to the AdLacZ control in a tube formation assay. When AdsFlt1-3 (5×109 PFU/animal) was applied to tumor bearing mice, we found a tumor inhibition by 72% at d 12 after treatment initiation. In spite of these antitumoral effects, the survival time was not improved.According to reduced intratumoral microvessel density in AdsFlt1-3-treated mice, the antitumor mechanism can be attributed to angiostatic vector effects. We did not detect increased systemic VEGF levels after AdsFlt1-3 treatment and liver toxicity was low as judged by serum alanine aminotransferase determination.CONCLUSION: In this study we confirmed the value of a systemic administration of AdsFlt1-3 to block VEGF signaling as antitumor therapy in an experimental metastatic colorectal carcinoma model in mice.

  18. Lithium prevents early cytosolic calcium increase and secondary injurious calcium overload in glycolytically inhibited endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Bosche, Bert, E-mail: bert.bosche@uk-essen.de [Department of Neurology, University of Duisburg-Essen (Germany); Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch Laboratories of the Max Planck Society and the Medical Faculty of the University of Cologne (Germany); Schäfer, Matthias, E-mail: matthias.schaefer@sanofi.com [Institute of Physiology, Justus-Liebig-University Giessen (Germany); Graf, Rudolf, E-mail: rudolf.graf@nf.mpg.de [Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch Laboratories of the Max Planck Society and the Medical Faculty of the University of Cologne (Germany); Härtel, Frauke V., E-mail: frauke.haertel@tu-dresden.de [Institute of Physiology, Medical Faculty Carl Gustav Carus, Technical University Dresden (Germany); Schäfer, Ute, E-mail: ute.schaefer@medunigraz.at [Research Unit for Experimental Neurotraumatology, Medical University of Graz (Austria); Noll, Thomas, E-mail: thomas.noll@tu-dresden.de [Institute of Physiology, Medical Faculty Carl Gustav Carus, Technical University Dresden (Germany)

    2013-05-03

    Highlights: •We investigate free calcium as a central signalling element in endothelial cells. •Inhibition of glycolysis with 2-deoxy-D-glucose reduces cellular ATP. •This manoeuvre leads to a biphasic increase and overload of free calcium. •Pre-treatment with lithium for 24 h abolishes both phases of the calcium increase. •This provides a new strategy to protect endothelial calcium homeostasis and barrier function. -- Abstract: Cytosolic free calcium concentration ([Ca{sup 2+}]{sub i}) is a central signalling element for the maintenance of endothelial barrier function. Under physiological conditions, it is controlled within narrow limits. Metabolic inhibition during ischemia/reperfusion, however, induces [Ca{sup 2+}]{sub i} overload, which results in barrier failure. In a model of cultured porcine aortic endothelial monolayers (EC), we addressed the question of whether [Ca{sup 2+}]{sub i} overload can be prevented by lithium treatment. [Ca{sup 2+}]{sub i} and ATP were analysed using Fura-2 and HPLC, respectively. The combined inhibition of glycolytic and mitochondrial ATP synthesis by 2-desoxy-D-glucose (5 mM; 2-DG) plus sodium cyanide (5 mM; NaCN) caused a significant decrease in cellular ATP content (14 ± 1 nmol/mg protein vs. 18 ± 1 nmol/mg protein in the control, n = 6 culture dishes, P < 0.05), an increase in [Ca{sup 2+}]{sub i} (278 ± 24 nM vs. 71 ± 2 nM in the control, n = 60 cells, P < 0.05), and the formation of gaps between adjacent EC. These observations indicate that there is impaired barrier function at an early state of metabolic inhibition. Glycolytic inhibition alone by 10 mM 2-DG led to a similar decrease in ATP content (14 ± 2 nmol/mg vs. 18 ± 1 nmol/mg in the control, P < 0.05) with a delay of 5 min. The [Ca{sup 2+}]{sub i} response of EC was biphasic with a peak after 1 min (183 ± 6 nM vs. 71 ± 1 nM, n = 60 cells, P < 0.05) followed by a sustained increase in [Ca{sup 2+}]{sub i}. A 24-h pre-treatment with 10 mM of lithium

  19. Rho GTPase/Rho Kinase Negatively Regulates Endothelial Nitric Oxide Synthase Phosphorylation through the Inhibition of Protein Kinase B/Akt in Human Endothelial Cells

    Science.gov (United States)

    Ming, Xiu-Fen; Viswambharan, Hema; Barandier, Christine; Ruffieux, Jean; Kaibuchi, Kozo; Rusconi, Sandro; Yang, Zhihong

    2002-01-01

    Endothelial nitric oxide synthase (eNOS) is an important regulator of cardiovascular homeostasis by production of nitric oxide (NO) from vascular endothelial cells. It can be activated by protein kinase B (PKB)/Akt via phosphorylation at Ser-1177. We are interested in the role of Rho GTPase/Rho kinase (ROCK) pathway in regulation of eNOS expression and activation. Using adenovirus-mediated gene transfer in human umbilical vein endothelial cells (HUVECs), we show here that both active RhoA and ROCK not only downregulate eNOS gene expression as reported previously but also inhibit eNOS phosphorylation at Ser-1177 and cellular NO production with concomitant suppression of PKB activation. Moreover, coexpression of a constitutive active form of PKB restores the phosphorylation but not gene expression of eNOS in the presence of active RhoA. Furthermore, we show that thrombin inhibits eNOS phosphorylation, as well as expression via Rho/ROCK pathway. Expression of the active PKB reverses eNOS phosphorylation but has no effect on downregulation of eNOS expression induced by thrombin. Taken together, these data demonstrate that Rho/ROCK pathway negatively regulates eNOS phosphorylation through inhibition of PKB, whereas it downregulates eNOS expression independent of PKB. PMID:12446767

  20. Inhibition of endothelial activation: a new way to treat cerebral malaria?

    Directory of Open Access Journals (Sweden)

    2005-09-01

    Full Text Available BACKGROUND: Malaria is still a major public health problem, partly because the pathogenesis of its major complication, cerebral malaria (CM, remains incompletely understood. However tumor necrosis factor (TNF is thought to play a key role in the development of this neurological syndrome, as well as lymphotoxin alpha (LT. METHODS AND FINDINGS: Using an in vitro model of CM based on human brain-derived endothelial cells (HBEC-5i, we demonstrate the anti-inflammatory effect of LMP-420, a 2-NH2-6-Cl-9-[(5-dihydroxyboryl-pentyl] purine that is a transcriptional inhibitor of TNF. When added before or concomitantly to TNF, LMP-420 inhibits endothelial cell (EC activation, i.e., the up-regulation of both ICAM-1 and VCAM-1 on HBEC-5i surfaces. Subsequently, LMP-420 abolishes the cytoadherence of ICAM-1-specific Plasmodium falciparum-parasitized red blood cells on these EC. Identical but weaker effects are observed when LMP-420 is added with LT. LMP-420 also causes a dramatic reduction of HBEC-5i vesiculation induced by TNF or LT stimulation, as assessed by microparticle release. CONCLUSION: These data provide evidence for a strong in vitro anti-inflammatory effect of LMP-420 and suggest that targeting host cell pathogenic mechanisms might provide a new therapeutic approach to improving the outcome of CM patients.

  1. Flavonoids from the leaves of Carya cathayensis Sarg. inhibit vascular endothelial growth factor-induced angiogenesis.

    Science.gov (United States)

    Tian, Sha-Sha; Jiang, Fu-Sheng; Zhang, Kun; Zhu, Xue-Xin; Jin, Bo; Lu, Jin-Jian; Ding, Zhi-Shan

    2014-01-01

    The total flavonoids (TFs) were isolated from the leaves of Carya cathayensis Sarg. (LCC), a well-known Chinese medicinal herb commercially cultivated in Tianmu Mountain district, a cross area of Zhejiang and Anhui provinces in China. Five flavonoids, i.e. cardamonin, pinostrobin chalcone (PC), wogonin, chrysin, and pinocembrin were the main components of the TFs. The TFs and these pure compounds suppressed vascular endothelial growth factor (VEGF)-induced angiogenesis as detected in the mouse aortic ring assay, and cardamonin showed the best effect among them. To further elucidate the mechanisms for suppressing angiogenesis of these flavonoids, assays of VEGF-induced proliferation and migration in human umbilical vein endothelial cells (HUVECs) were performed. The TFs, cardamonin, pinocembrin, and chrysin obviously suppressed both VEGF-induced HUVEC proliferation and migration. However, PC and wogonin not only slightly inhibited VEGF-induced proliferation but also remarkably suppressed those of migration in HUVECs. Our further study showed that cardamonin decreased the phosphorylation of ERK and AKT induced by VEGF with a dose-dependent manner in HUVECs. Our findings indicate that the TFs and these pure flavonoids may become potential preventive and/or therapeutic agents against angiogenesis-related diseases. PMID:24096161

  2. Butein Inhibits Angiogenesis of Human Endothelial Progenitor Cells via the Translation Dependent Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Ching-Hu Chung

    2013-01-01

    Full Text Available Compelling evidence indicates that bone marrow-derived endothelial progenitor cells (EPCs can contribute to postnatal neovascularization and tumor angiogenesis. EPCs have been shown to play a “catalytic” role in metastatic progression by mediating the angiogenic switch. Understanding the pharmacological functions and molecular targets of natural products is critical for drug development. Butein, a natural chalcone derivative, has been reported to exert potent anticancer activity. However, the antiangiogenic activity of butein has not been addressed. In this study, we found that butein inhibited serum- and vascular endothelial growth factor- (VEGF- induced cell proliferation, migration, and tube formation of human EPCs in a concentration dependent manner without cytotoxic effect. Furthermore, butein markedly abrogated VEGF-induced vessels sprouting from aortic rings and suppressed microvessel formation in the Matrigel implant assay in vivo. In addition, butein concentration-dependently repressed the phosphorylation of Akt, mTOR, and the major downstream effectors, p70S6K, 4E-BP1, and eIF4E in EPCs. Taken together, our results demonstrate for the first time that butein exhibits the antiangiogenic effect both in vitro and in vivo by targeting the translational machinery. Butein is a promising angiogenesis inhibitor with the potential for treatment of cancer and other angiogenesis-related diseases.

  3. miR-101 inhibits cholangiocarcinoma angiogenesis through targeting vascular endothelial growth factor (VEGF).

    Science.gov (United States)

    Zhang, Jinqiang; Han, Chang; Zhu, Hanqing; Song, Kyoungsub; Wu, Tong

    2013-05-01

    Recent evidence has suggested an important role of miRNAs in liver biology and diseases, although the implication of miRNAs in cholangiocarcinoma remains to be defined further. This study was designed to examine the biological function and molecular mechanism of miR-101 in cholangiocarcinogenesis and tumor progression. In situ hybridization and quantitative RT-PCR were performed to determine the expression of miR-101 in human cholangiocarcinoma tissues and cell lines. Compared with noncancerous biliary epithelial cells, the expression of miR-101 is decreased in 43.5% of human cholangiocarcinoma specimens and in all three cholangiocarcinoma cell lines used in this study. Forced overexpression of miR-101 significantly inhibited cholangiocarcinoma growth in severe combined immunodeficiency mice. miR-101-overexpressed xenograft tumor tissues showed decreased capillary densities and decreased levels of vascular endothelial growth factor (VEGF) and cyclooxygenase-2 (COX-2). The VEGF and COX-2 mRNAs were identified as the bona fide targets of miR-101 in cholangiocarcinoma cells by both computational analysis and experimental assays. miR-101 inhibits cholangiocarcinoma angiogenesis by direct targeting of VEGF mRNA 3'untranslated region and by repression of VEGF gene transcription through inhibition of COX-2. This study established a novel tumor-suppressor role of miR-101 in cholangiocarcinoma and it suggests the possibility of targeting miR-101 and related signaling pathways for future therapy. PMID:23608225

  4. Troglitazone inhibits endothelial cell proliferation through suppression of casein kinase 2 activity

    International Nuclear Information System (INIS)

    Troglitazone, an agonist of peroxisome proliferator activated receptorγ (PPARγ), has been reported to inhibit endothelial cell proliferation by suppressing Akt activation. Recently, it has been also proposed that phosphatase and tensin homolog deleted from chromosome 10 (PTEN) plays an important role in such effect of troglitazone. However, the mechanism of how troglitazone regulates PTEN remains to be elucidated. We therefore investigated the effects of troglitazone on casein kinase 2 (CK2), which is known to negatively regulate PTEN activity. Troglitazone significantly inhibited serum-induced proliferation of HUVEC in a concentration dependent manner. Serum-induced Akt and its downstream signaling pathway activation was attenuated by troglitazone (10 μM) pretreatment. The phosphorylation of PTEN, which was directly related to Akt activation, was decreased with troglitazone pretreatment and was inversely proportional to CK2 activity. DRB, a CK2 inhibitor, also showed effects similar to that of troglitazone on Akt and its downstream signaling molecules. In conclusion, our results suggest that troglitazone inhibits proliferation of HUVECs through suppression of CK2 activity rendering PTEN to remain activated, and this effect of troglitazone in HUVECs seems to be PPARγ independent

  5. Delivery of small interfering RNA for inhibition of endothelial cell apoptosis by hypoxia and serum deprivation

    International Nuclear Information System (INIS)

    RNA interference (RNAi) for anti-angiogenic or pro-apoptotic factors in endothelial cells (ECs) has great potential for the treatment of ischemic diseases by promoting angiogenesis or inhibiting apoptosis. Here, we report the utility of small interfering RNA (siRNA) in inhibiting EC apoptosis induced by tumor necrosis factor-α (TNF-α). siRNA was designed and synthesized targeting tumor necrosis factor-α receptor-1 (TNFR-1) and Src homology 2 domain-containing protein tyrosine phosphatase-1 (SHP-1). Human umbilical vein endothelial cells (HUVECs) were cultured under in vitro hypoxic and serum-deprived conditions to simulate in vivo ischemic conditions. Two days after liposomal delivery of siRNA targeting TNFR-1 and SHP-1, significant silencing of each target (TNFR-1; 76.5% and SHP-1; 97.2%) was detected. Under serum-deprived hypoxic (1% oxygen) conditions, TNF-α expression in HUVECs increased relative to normoxic (20% oxygen) and serum-containing conditions. Despite enhanced TNF-α expression, suppression of TNFR-1 or SHP-1 by siRNA delivery not only enhanced expression of angiogenic factors (KDR/Flk-1 and eNOS) and anti-apoptotic factor (Bcl-xL) but also reduced expression of a pro-apoptotic factor (Bax). Transfection of TNFR-1 or SHP-1 siRNA significantly decreased the HUVEC apoptosis while significantly enhancing HUVEC proliferation and capillary formation. The present study demonstrates that TNFR-1 and SHP-1 may be useful targets for the treatment of myocardial or hindlimb ischemia

  6. Adenovirus viral interleukin-10 inhibits adhesion molecule expressions induced by hypoxia/reoxygenation in cerebrovascular endothelial cells1

    Institute of Scientific and Technical Information of China (English)

    Hui KANG; Peng-yuan YANG; Yao-cheng RUI

    2008-01-01

    Aim: To investigate the effects of recombinant adenovirus encoding viral interleukin-10 (vIL-10), a potent anti-inflammatory cytokine, on adhesion mol-ecule expressions and the adhesion rates of leukocytes to endothelial cells in cerebrovascular endothelial cells injured by hypoxia/reoxygenation (H/R). Methods: A recombinant adenovirus expressing vIL-10 (Ad/vIL-10 (or the green fluorescent protein (Ad/GFP) gene was constructed. A cerebrovascular endothe-lial cell line bend.3 was pretreated with a different multiplicity of infection (MOI) of Ad/vIL-10 or Ad/GFP and then exposed to hypoxia for 9 h followed by reoxygenation for 12 h. The culture supernatants were tested for the expression of vIL-10 and endogenous murine IL-10 (mIL-10) by ELISA. The effects of Ad/vIL-10 on monocyte-endothelial cell adhesion were represented as the adhesion rate. Subsequently, the expressions of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1(VCAM-1) in the endothelial cells after treat-ment with Ad/vIL-10 and H/R were analyzed by Western blotting and real-time PCR. Results: vIL-10 was expressed in cultured bEnd.3 after Ad/vIL-10 transfec-tion and was significantly increased by H/R. Ad/vIL-10 or Ad/GFP did not affect the mlL-10 level. H/R increased the mIL-10 expression, but insignificantly. Mono-cyte-endothelial cell adhesion induced by H/R was significantly inhibited by pretreatment with Ad/vIL-10 (MOI: 80). ICAM-I, and VCAM-1 in bEnd.3 and were significantly increased after H/R, while pretreatment with Ad/vIL-10 (MOI: 80) significantly inhibited their expressions. Ad/GFP did not markedly affect mono-cyte-endothelial adhesion and the expressions of ICAM-1 and VCAM-1 induced by H/R. Conclusion: Ad/vIL-10 significantly inhibits the upregulation of endot-helial adhesion molecule expressions and the increase of adhesion of monocytes-endothelial cells induced by H/R, indicating that vIL-10 gene transfer is of far-reaching significance in the therapy of

  7. Hypoxia inhibits pulmonary artery endothelial cell apoptosis via the e-selectin/biliverdin reductase pathway.

    Science.gov (United States)

    Song, Shasha; Yi, Zhi; Zhang, Min; Mao, Min; Fu, Li; Zhao, Xijuan; Liu, Zizhen; Gao, Jiayin; Cao, Weiwei; Liu, Yumei; Shi, Hengyuan; Zhu, Daling

    2016-07-01

    Hypoxia-induced inhibition of apoptosis in pulmonary artery endothelial cells (PAECs) has an important role in pulmonary arterial remodeling leading to aggravated hypoxic pulmonary arterial hypertension. However, the mechanisms involved in the hypoxia-induced inhibition of PAEC apoptosis have not been elucidated. e-selectin and biliverdin reductase (BVR) have been reported to contribute to the cascade of apoptosis in several cell lines but not in PAECs. In the present study, we show that the expression of e-selectin and BVR was both up-regulated by hypoxia in PAECs. Moreover, hypoxia attenuated the decreased cell survival and apoptotic protein expression, and increased DNA fragmentation induced by serum deprivation in the PAECs, which was mediated by the e-selectin/BVR pathway. In addition, by examining the mitochondrial membrane potential and mitochondrial membrane proteins (Bcl-2 and BAX), we show that the mitochondrial-dependent apoptosis pathway was necessary for the e-selectin/BVR pathway inducing the anti-apoptotic effect of hypoxia in PAECs. Taken all together, our data show that the e-selectin/BVR pathway participates in the inhibitory process of hypoxia in PAEC apoptosis which is mediated by the mitochondrial-dependent apoptosis pathway. PMID:27033411

  8. Melatonin inhibits the expression of vascular endothelial growth factor in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    Dong Lv; Pei-Lin Cui; Shi-Wei Yao; You-Qing Xu; Zhao-Xu Yang

    2012-01-01

    Objective:To investigate the effects of melatonin on cellular proliferation and endogenous vascular endothelial growth factor (VEGF) expression in pancreatic carcinoma cells (PANC-1).Methods:PANC-1 cells were cultured for this study.The secreted VEGF concentration in the culture medium was determined using ELISA method,VEGF production in the tumor cells was detected by immunocytochemistry,and VEGF mRNA expression was determined by RT-PCR.Results:Higher melatonin concentrations significantly inhibited cellular proliferation,with 1 mmol/L concentration exhibiting the highest inhibitory effect (P<0.01).VEGF concentrations in the cell culture supernatants and intra-cellules were all significantly reduced after melatonin (1 mmol/L) incubation (P<0.05).VEGF mRNA expression decreased markedly in a time-dependent manner during the observation period (P<0.05).Conclusions:High melatonin concentrations markedly inhibited the proliferation of pancreatic carcinoma cells.The endogenous VEGF expression was also suppressed by melatonin incubation.

  9. Antisense oligodeoxynucleotide inhibits vascular endothelial growth factor expression in U937 foam cells

    Institute of Scientific and Technical Information of China (English)

    YANGPeng-Yuan; RUIYao-Cheng; JINYou-Xin; LITie-Jun; QIUYan; ZHANGLi; WANGJie-Song

    2003-01-01

    AIM:To study the expression of vascular endothelial growth factor (VEGF) induced by oxidized low density liprotein (ox-LDL) and the inhibitory effects of antisense oligodeoxynucleotide (asODN) on the levels of VEGF protein and mRNA in the U937 foam cells. METHODS: U937 cells were incubated with ox-LDL 80 mg/L for 48h, then ,the foam cells were treated with asODN (0,5,10, and 20μmol/L). The VEGF concentration in the media was determined by ELISA. The VEGF protein expression level in cells was measured by immuohistochemistry; the positive ratio detected by a morphometrical analysis system was used as the amount of the VEGF expression level. The VEGF mRNA level was examined by Northern blotting. RESULTS: After U937 cells were incubated with ox-LDL, VEGF expression level increased greatly both in the cells and in the media. asODN markeldy inhibited the increase of VEGF. After treatment with asODN 20μmol/L, the VEGF protein concentration in the media decreased by 45.0%, the VEGF positive ratio detected by immuohistochemistry in cells decreased by 64.9%, and the VEGF mRNA level decreased by 47.1%. CONCLUSION: The expression of VEGF in U937 foam cells was strong. asODN inhibited VEGF expression significantly in U937 foam cells in vitro.

  10. Diesel exhaust particulate extracts inhibit transcription of nuclear respiratory factor-1 and cell viability in human umbilical vein endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Mattingly, Kathleen A.; Klinge, Carolyn M. [University of Louisville School of Medicine, Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, Louisville, KY (United States)

    2012-04-15

    Endothelial dysfunction precedes cardiovascular disease and is accompanied by mitochondrial dysfunction. Here we tested the hypothesis that diesel exhaust particulate extracts (DEPEs), prepared from a truck run at different speeds and engine loads, would inhibit genomic estrogen receptor activation of nuclear respiratory factor-1 (NRF-1) transcription in human umbilical vein endothelial cells (HUVECs). Additionally, we examined how DEPEs affect NRF-1-regulated TFAM expression and, in turn, Tfam-regulated mtDNA-encoded cytochrome c oxidase subunit I (COI, MTCO1) and NADH dehydrogenase subunit I (NDI) expression as well as cell proliferation and viability. We report that 17{beta}-estradiol (E{sub 2}), 4-hydroxytamoxifen (4-OHT), and raloxifene increased NRF-1 transcription in HUVECs in an ER-dependent manner. DEPEs inhibited NRF-1 transcription, and this suppression was not ablated by concomitant treatment with E{sub 2}, 4-OHT, or raloxifene, indicating that the effect was not due to inhibition of ER activity. While E{sub 2} increased HUVEC proliferation and viability, DEPEs inhibited viability but not proliferation. Resveratrol increased NRF-1 transcription in an ER-dependent manner in HUVECs, and ablated DEPE inhibition of basal NRF-1 expression. Given that NRF-1 is a key nuclear transcription factor regulating genes involved in mitochondrial activity and biogenesis, these data suggest that DEPEs may adversely affect mitochondrial function leading to endothelial dysfunction and resveratrol may block these effects. (orig.)

  11. Heme Oxygenase-1 Inhibits HLA Class I Antibody-Dependent Endothelial Cell Activation.

    Directory of Open Access Journals (Sweden)

    Eva Zilian

    Full Text Available Antibody-mediated rejection (AMR is a key limiting factor for long-term graft survival in solid organ transplantation. Human leukocyte antigen (HLA class I (HLA I antibodies (Abs play a major role in the pathogenesis of AMR via their interactions with HLA molecules on vascular endothelial cells (ECs. The antioxidant enzyme heme oxygenase (HO-1 has anti-inflammatory functions in the endothelium. As complement-independent effects of HLA I Abs can activate ECs, it was the goal of the current study to investigate the role of HO-1 on activation of human ECs by HLA I Abs. In cell cultures of various primary human macro- and microvascular ECs treatment with monoclonal pan- and allele-specific HLA I Abs up-regulated the expression of inducible proinflammatory adhesion molecules and chemokines (vascular cell adhesion molecule-1 [VCAM-1], intercellular cell adhesion molecule-1 [ICAM-1], interleukin-8 [IL-8] and monocyte chemotactic protein 1 [MCP-1]. Pharmacological induction of HO-1 with cobalt-protoporphyrin IX reduced, whereas inhibition of HO-1 with either zinc-protoporphyrin IX or siRNA-mediated knockdown increased HLA I Ab-dependent up-regulation of VCAM-1. Treatment with two carbon monoxide (CO-releasing molecules, which liberate the gaseous HO product CO, blocked HLA I Ab-dependent EC activation. Finally, in an in vitro adhesion assay exposure of ECs to HLA I Abs led to increased monocyte binding, which was counteracted by up-regulation of HO-1. In conclusion, HLA I Ab-dependent EC activation is modulated by endothelial HO-1 and targeted induction of this enzyme may be a novel therapeutic approach for the treatment of AMR in solid organ transplantation.

  12. Amiloride attenuates lipopolysaccharide-accelerated atherosclerosis via inhibition of NHE1-dependent endothelial cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    Gui-mei CUI; Yu-xi ZHAO; Na-na ZHANG; Zeng-shan LIU; Wan-chun SUN; Qi-sheng PENG

    2013-01-01

    Aim: To investigate the effects of the potassium-sparing diuretic amiloride on endothelial cell apoptosis during lipopolysaccharide (LPS)-accelerated atherosclerosis.Methods: Human umbilical vein endothelial cells (HUVECs) were exposed to LPS (100 ng/mL) in the presence of drugs tested.The activity of Na+/H+ exchanger 1 (NHE1) and calpain,intracellular free Ca2+ level ([Ca2+]i),as well as the expression of apoptosis-related proteins in the cells were measured.For in vivo study,ApoE-deficient (ApoE-/-) mice were fed high-fat diets with 0.5% (w/w) amiloride for 4 weeks and LPS (10 μg/mouse) infusion into caudal veins.Afterwards,atherosclerotic lesions,NHE1 activity and Bcl-2 expression in the aortic tissues were evaluated.Results: LPS treatment increased NHE1 activity and [Ca2+]i in HUVECs in a time-dependent manner,which was associated with increased activity of the Ca2+-dependent protease calpain.Amiloride (1-10 μmol/L) significantly suppressed LPS-induced increases in NHE1 activity,[Ca2+]i.and calpain activity.In the presence of the Ca2+ chelator BAPTA (0.5 mmol/L),LPS-induced increase of calpain activity was also abolished.In LPS-treated HUVECs,the expression of Bcl-2 protein was significantly decreased without altering its mRNA level.In the presence of amiloride (10 μmol/L) or the calpain inhibitor ZLLal (50 μmol/L),the down-regulation of Bcl-2 protein by LPS was blocked.LPS treatment did not alter the expression of Bax and Bak proteins in HUVECs.In the presence of amiloride,BAPTA or ZLLal,LPS-induced HUVEC apoptosis was significantly attenuated.In ApoE-/-mice,administration of amiloride significantly suppressed LPS-accelerated atherosclerosis and LPS-induced increase of NHE1 activity,and reversed LPS-induced down-regulation of Bcl-2 expression.Conclusion: LPS stimulates NHE1 activity,increases [Ca2+]i,and activates calpain,which leads to endothelial cell apoptosis related to decreased Bcl-2 expression.Amiloride inhibits NHE1 activity,thus attenuates LPS

  13. Inhibition of Store-Operated Calcium Entry Protects Endothelial Progenitor Cells from H2O2-Induced Apoptosis.

    Science.gov (United States)

    Wang, Yan-Wei; Zhang, Ji-Hang; Yu, Yang; Yu, Jie; Huang, Lan

    2016-07-01

    Store-operated calcium entry (SOCE), a major mode of extracellular calcium entry, plays roles in a variety of cell activities. Accumulating evidence indicates that the intracellular calcium ion concentration and calcium signaling are critical for the responses induced by oxidative stress. The present study was designed to investigate the potential effect of SOCE inhibition on H2O2-induced apoptosis in endothelial progenitor cells (EPCs), which are the predominant cells involved in endothelial repair. The results showed that H2O2-induced EPC apoptosis was reversed by SOCE inhibition induced either using the SOCE antagonist ML-9 or via silencing of stromal interaction molecule 1 (STIM1), a component of SOCE. Furthermore, SOCE inhibition repressed the increases in intracellular reactive oxygen species (ROS) levels and endoplasmic reticulum (ER) stress and ameliorated the mitochondrial dysfunction caused by H2O2. Our findings provide evidence that SOCE inhibition exerts a protective effect on EPCs in response to oxidative stress induced by H2O2 and may serve as a potential therapeutic strategy against vascular endothelial injury. PMID:27169819

  14. Structure-function analysis of Leishmania lipophosphoglycan. Distinct domains that mediate binding and inhibition of endothelial cell function.

    Science.gov (United States)

    Ho, J L; Kim, H K; Sass, P M; He, S; Geng, J; Xu, H; Zhu, B; Turco, S J; Lo, S K

    1996-10-01

    We have shown that Leishmania lipophosphoglycan (LPG) inhibits IL-1 beta gene expression in human monocytes. Here, we show that LPG can bind in a time-dependent manner and suppress endothelial cell activation, possibly via specific LPG domains. Endotoxin (10 ng/ml, 4 h) consistently caused endothelium to increase monocyte adhesion (approximately 20-fold). LPG pretreatment (2 microM, 2 h) completely blocked endotoxin-mediated monocyte adhesion. LPG did not grossly suppress endothelial functions because TNF-alpha- and IL-1 beta-mediated adhesion toward monocytes were not affected. Using four highly purified LPG fragments (namely, repeating phosphodisaccharide (PGM), phosphoglycan, phosphosaccharide core-lyso-alkyl-phosphatidylinositol (core-PI), and lyso-alkyl-phosphatidylinositol (lyso-PI)), we examined whether these fragments can independently inhibit endothelial adhesion. In contrast to that of intact LPG, neither the four LPG fragments (2 microM, 2 h) independently nor the co-addition of phosphoglycan and core-P1 fragments blocked the endotoxin-mediated adhesion to monocytes. To determine whether the fragments can reverse the effect of intact LPG, endothelial cells were first pretreated with the LPG fragments (10 microM, 15 min), followed by the addition of LPG (2 microM). All four LPG fragments fully reversed the effect of LPG. Simultaneous addition of LPG fragments and intact LPG caused only partial suppression (approximately 45%), while the addition of LPG fragments 14 min later had no reversal effect. Flow cytometry revealed that only core-P1 and lyso-P1 competitively inhibited (approximately 30%) LPG binding. Conversely, LPG competed with the binding of [3H]lyso-P1 (approximately 30%). Furthermore, mAb against the PGM reversed (approximately 70%) the effect of LPG. Thus, the lyso-P1 domain on LPG mediates binding to endothelial cells, whereas the PGM domain mediates the cell inhibitory effect. PMID:8816410

  15. Bone Marrow Mesenchymal Stem Cells Inhibit Lipopolysaccharide-Induced Inflammatory Reactions in Macrophages and Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Dequan Li

    2016-01-01

    Full Text Available Background. Systemic inflammatory response syndrome (SIRS accompanied by trauma can lead to multiple organ dysfunction syndrome (MODS and even death. Early inhibition of the inflammation is necessary for damage control. Bone marrow mesenchymal stem cells (BMSCs, as a novel therapy modality, have been shown to reduce inflammatory responses in human and animal models. Methods. In this study, we used Western blot, quantitative PCR, and enzyme-linked immunosorbent assay (ELISA to assess the activity of BMSCs to suppress the inflammation induced by lipopolysaccharide (LPS in human umbilical cord endothelial cells (HUVECs and alveolar macrophages. Results. Our results demonstrated that LPS caused an inflammatory response in alveolar macrophages and HUVECs, increased permeability of HUVEC, upregulated expression of toll-like receptor (TLR 2, TLR4, phosphorylated p65, downregulated release of IL10, and promoted release of TNF-α in both cells. Coculture with BMSCs attenuated all of these activities induced by LPS in the two tested cell types. Conclusions. Together, our results demonstrate that BMSCs dosage dependently attenuates the inflammation damage of alveolar macrophages and HUVECs induced by LPS.

  16. Aspirin inhibits tumor necrosis factor-α-stimulated fractalkine expression in human umbilical vein endothelial cells

    Institute of Scientific and Technical Information of China (English)

    JIANG De-qian; LIU Hong; ZHANG She-bing; ZHANG Xiao-lian

    2009-01-01

    Background Fractalkine is an important chemokine mediating local monocyte accumulation and inflammatory reactions in the vascular wall. Aspirin inhibits inflammatory cytokine expression closely related to atherosclerosis through the way independent of platelet and cyclooxygenase (COX). There has been no report about the effect of aspirin on fractalkine expression. We aimed to determine the fractalkine expression in human umbilical vein endothelial cell (HUVEC) stimulated by tumor necrosis factor (TNF)-α and the effect of aspirin intervention.Methods Six of 8 HUVEC groups received either different concentrations of aspirin (0.02, 0.2, 1.0, 5.0 mmol/L) or 40 μmol/L pyrrolidinecarbodithioc acid (PDTC) or 0.5 μmol/L NS-398. The other two groups were negative control and positive control (TNF-α-stimulated). After being incubated for 24 hours, cells of the 8 groups except the negative control one were stimulated with TNF-a (4 ng/ml) for another 24 hours. After that, the cells were collected for RNA isolation and protein extraction.Results Both mRNA and protein expressions of fractalkine in HUVEC were upregulated by 4 ng/ml TNF-α stimulation,Aspirin inhibited fractalkine expression in a dose-dependent manner at mRNA and protein levels. Nuclear factor-kappa B inhibitor, PDTC, effectively decreased the fractalkine expression. Fractalkine expression was not influenced by COX-2 selective inhibitor NS-398. COX-1 protein expression was not changed by either TNF-α stimulation or aspirin, PDTC,NS-398 intervention. Both mRNA and protein expression of COX-2 in HUVEC were upregulated by 4 ng/ml TNF-α stimulation. Aspirin decreased COX-2 expression in a dose-dependent manner at mRNA and protein levels.Conclusions TNF-α-stimulated fractalkine expression is suppressed by aspirin in a dose-dependent manner through the nuclear factor-kappa B p65 pathway.

  17. The extracellular regulated kinases (ERK) 1/2 mediate cannabinoid-induced inhibition of gap junctional communication in endothelial cells

    OpenAIRE

    Brandes, R P; Popp, R; G. Ott; Bredenkötter, D; Wallner, C.; Busse, R.; Fleming, I.

    2002-01-01

    Cannabinoids are potent inhibitors of endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxations. We set out to study the mechanism underlying this effect and the possible role of cannabinoid-induced changes in intercellular gap junction communication.In cultured endothelial cells, Δ9-tetrahydrocannabinol (Δ9-THC) and the cannabinoid receptor agonist HU210, increased the phosphorylation of extracellular regulated kinases 1/2 (ERK1/2) and inhibited gap junctional communication, as ...

  18. Inhibition of miR-200c Restores Endothelial Function in Diabetic Mice Through Suppression of COX-2.

    Science.gov (United States)

    Zhang, Huina; Liu, Jian; Qu, Dan; Wang, Li; Luo, Jiang-Yun; Lau, Chi Wai; Liu, Pingsheng; Gao, Zhen; Tipoe, George L; Lee, Hung Kay; Ng, Chi Fai; Ma, Ronald Ching Wan; Yao, Xiaoqiang; Huang, Yu

    2016-05-01

    Endothelial dysfunction plays a crucial role in the development of diabetic vasculopathy. Our initial quantitative PCR results showed an increased miR-200c expression in arteries from diabetic mice and patients with diabetes. However, whether miR-200c is involved in diabetic endothelial dysfunction is unknown. Overexpression of miR-200c impaired endothelium-dependent relaxations (EDRs) in nondiabetic mouse aortas, whereas suppression of miR-200c by anti-miR-200c enhanced EDRs in diabetic db/db mice. miR-200c suppressed ZEB1 expression, and ZEB1 overexpression ameliorated endothelial dysfunction induced by miR-200c or associated with diabetes. More importantly, overexpression of anti-miR-200c or ZEB1 in vivo attenuated miR-200c expression and improved EDRs in db/db mice. Mechanistic study with the use of COX-2(-/-) mice revealed that COX-2 mediated miR-200c-induced endothelial dysfunction and that miR-200c upregulated COX-2 expression in endothelial cells through suppression of ZEB1 and increased production of prostaglandin E2, which also reduced EDR. This study demonstrates for the first time to our knowledge that miR-200c is a new mediator of diabetic endothelial dysfunction and inhibition of miR-200c rescues EDRs in diabetic mice. These new findings suggest the potential usefulness of miR-200c as the target for drug intervention against diabetic vascular complications. PMID:26822089

  19. Curcumin inhibits advanced glycation end product-induced oxidative stress and inflammatory responses in endothelial cell damage via trapping methylglyoxal

    Science.gov (United States)

    SUN, YAN PING; GU, JUN FEI; TAN, XIAO BIN; WANG, CHUN FEI; JIA, XIAO BIN; FENG, LIANG; LIU, JI PING

    2016-01-01

    Methylglyoxal (MGO)-induced carbonyl stress and pro-inflammatory responses have been suggested to contribute to endothelial dysfunction. Curcumin (Cur), a polyphenolic compound from Curcuma longa L., may protect endothelial cells against carbonyl stress-induced damage by trapping dicarbonyl compounds such as MGO. However, Cur-MGO adducts have not been studied in depth to date and it remains to be known whether Cur-MGO adducts are able to attenuate endothelial damage by trapping MGO. In the present study, 1,2-diaminobenzene was reacted with MGO to ensure the reliability of the reaction system. Cur was demonstrated to trap MGO at a 1:1 ratio to form adducts 1, 2 and 3 within 720 min. The structures of these adducts were identified by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. The kinetic curves of Cur (10−7, 10−6 and 10−5 M) were measured from 0–168 h by fluorescent intensity. Cur significantly inhibited the formation of advanced glycation end products (AGEs). The differences in oxidative damage and the levels of pro-inflammatory cytokines following MGO + HSA or Cur-MGO treatment were investigated in human umbilical vein endothelial cells (HUVECs). Exposure of HUVECs to the Cur-MGO reaction adducts significantly reduced the intracellular ROS levels and improved cell viability compared with MGO alone. Furthermore, there was a significant reduction in the expression levels of transforming growth factor-β1 and intercellular adhesion molecule-1 following treatment with Cur-MGO adducts compared with MGO alone. These results provide further evidence that the trapping of MGO by Cur inhibits the formation of AGEs. The current study indicates that the protective effect of Cur on carbonyl stress and pro-inflammatory responses in endothelial damage occurs via the trapping of MGO. PMID:26718010

  20. Identification of Peptides Inhibiting Adhesion of Monocytes to the Injured Vascular Endothelial Cells through Phage-displaying Screening

    Institute of Scientific and Technical Information of China (English)

    Yu GUO; Jia ZHANG; Ji-Cheng WANG; Feng-Xiang YAN; Bing-Yang ZHU; Hong-Lin HUANG; Duan-Fang LIAO

    2005-01-01

    Using oxidized low-density lipoprotein (LDL)-injured vascular endothelial cells (ECs) as target cells, peptides specifically binding to the injured ECs were screened from a phage-displaying peptide library by using the whole-cell screening technique after three cycles of the "adsorption-elution-amplification"procedure. Positive phage clones were identified by ELISA, and the inserted amino acid sequences in the displaying peptides were deduced from confirmation with DNA sequencing. The adhesion rate of ECs to monocytes was evaluated by cell counting. The activity of endothelial nitric oxide synthase (eNOS), and the expression levels of caveolin- 1 and intercellular adhesion molecule- 1 (ICAM- 1) were determined by Western blotting. Six positive clones specifically binding to injured ECV304 endothelial cells were selected from fourteen clones. Interestingly, four phages had peptides with tandem leucine, and two of these even shared an identical sequence. Functional analysis demonstrated that the YCPRYVRRKLENELLVL peptide shared by two clones inhibited the expression of ICAM-1, increased nitric oxide concentration in the culture media, and upregulated the expression of caveolin-1 and eNOS. As a result, the adhesion rate of monocytes to ECV304 cells was significantly reduced by 12.1%. These data suggest that the anti-adhesion effect of these novel peptides is related to the regulation of the caveolin-1/nitric oxide signal transduction pathway, and could be of use in potential therapeutic agents against certain cardiovascular diseases initiated by vascular endothelial cell damage.

  1. 8,9-Dehydrohispanolone-15,16-lactol diterpene prevents LPS-triggered inflammatory responses by inhibiting endothelial activation.

    Science.gov (United States)

    Jiménez-García, Lidia; Través, Paqui G; López-Fontal, Raquel; Herranz, Sandra; Higueras, María Angeles; de Las Heras, Beatriz; Hortelano, Sonsoles; Luque, Alfonso

    2016-07-15

    Endothelial activation contributes to lung inflammatory disorders by inducing leucocyte recruitment to pulmonary parenchyma. Consequently, vascular-targeted therapies constitute promising strategies for the treatment of inflammatory pathologies. In the present study, we evaluated the effect of 8,9-dehydrohispanolone-15,16-lactol diterpene (DT) on lung endothelium during inflammation. Lung endothelial cells pre-treated with DT and activated with lipopolysaccharide (LPS) or tumour necrosis factor-α (TNF-α) exhibited reduced expression of the pro-inflammatory cytokines Cxcl10, Ccl5 and Cxcl1, whereas the anti-inflammatory molecules IL1r2 and IL-10 were induced. Consistent with this result, DT pre-treatment inhibited nuclear factor κB (NF-κB) nuclear translocation, by interfering with IκBα phosphorylation, and consequently NF-κB transcriptional activity in endothelium activated by LPS or TNF-α. Furthermore, DT, probably through p38 signalling, induced transcriptional activation of genes containing activator protein 1 (AP-1)-binding elements. Inhibition of p38 prevented IL1r2 mRNA expression in endothelium incubated with DT alone or in combination with LPS or TNF-α. Accordingly, conditioned medium (CM) from these cells failed to stimulate leucocytes as measured by a reduction in adhesive ability of the leucocyte cell line J774 to fibronectin (FN). Additionally, DT reduced the expression of the endothelial adhesion molecules E-selectin, vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) after activation. Similarly, expression of VCAM-1 and ICAM-1 molecules on the lung endothelial layer of C57/BL6 mice pre-treated with DT and challenged with LPS were unchanged. Finally, inhibition of vascular adhesion molecule expression by DT decreased the interaction of J774 cells with lung endothelial cells in an inflammatory environment. Our findings establish DT as a novel endothelial inhibitor for the treatment of inflammatory

  2. Tanshinone IIA Induces Heme Oxygenase 1 Expression and Inhibits Cyclic Strain-Induced Interleukin 8 Expression in Vascular Endothelial Cells.

    Science.gov (United States)

    Zhuang, Shaowei; Cheng, Tzu-Hurng; Shih, Nang-Lang; Liu, Ju-Chi; Chen, Jin-Jer; Hong, Hong-Jye; Chan, Paul

    2016-04-01

    Tanshinone IIA is the main effective component of Salvia miltiorrhiza, known as "Danshen," which has been used in many therapeutic remedies in traditional Chinese medicine. However, the direct effects of tanshinone IIA on vascular endothelial cells have not yet been fully described. In the present study, we demonstrated that tanshinone IIA increased heme oxygenase-1 (HO-1) expression in human umbilical vein endothelial cells. Western blot analyses and experiments with specific inhibitors indicated tanshinone IIA enhanced HO-1 expression through the activation of phosphoinositide 3-kinase (PI3K)/Akt and the subsequent induction of nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation. In addition, tanshinone IIA inhibited cyclic strain induced interleukin-8 (IL-8) expression. HO-1 silencing significantly abrogated the repressive effects of tanshinone IIA on strain-induced IL-8 expression, which suggests HO-1 has a role in mediating the effects of tanshinone IIA. This study reports for the first time that tanshinone IIA inhibits cyclic strain-induced IL-8 expression via the induction of HO-1 in endothelial cells, providing valuable new insight into the molecular pathways that may contribute to the effects of tanshinone IIA. PMID:27080946

  3. Nitric Oxide Inhibits Hetero-adhesion of Cancer Cells to Endothelial Cells: Restraining Circulating Tumor Cells from Initiating Metastatic Cascade

    Science.gov (United States)

    Lu, Yusheng; Yu, Ting; Liang, Haiyan; Wang, Jichuang; Xie, Jingjing; Shao, Jingwei; Gao, Yu; Yu, Suhong; Chen, Shuming; Wang, Lie; Jia, Lee

    2014-03-01

    Adhesion of circulating tumor cells (CTCs) to vascular endothelial bed becomes a crucial starting point in metastatic cascade. We hypothesized that nitric oxide (NO) may prevent cancer metastasis from happening by its direct vasodilation and inhibition of cell adhesion molecules (CAMs). Here we show that S-nitrosocaptopril (CAP-NO, a typical NO donor) produced direct vasorelaxation that can be antagonized by typical NO scavenger hemoglobin and guanylate cyclase inhibitor. Cytokines significantly stimulated production of typical CAMs by the highly-purified human umbilical vein endothelial cells (HUVECs). CAP-NO inhibited expression of the stimulated CAMs (particularly VCAM-1) and the resultant hetero-adhesion of human colorectal cancer cells HT-29 to the HUVECs in a concentration-dependent manner. The same concentration of CAP-NO, however, did not significantly affect cell viability, cell cycle and mitochondrial membrane potential of HT-29, thus excluding the possibility that inhibition of the hetero-adhesion was caused by cytotoxicity by CAP-NO on HT-29. Hemoglobin reversed the inhibition of CAP-NO on both the hetero-adhesion between HT-29 and HUVECs and VCAM-1 expression. These data demonstrate that CAP-NO, by directly releasing NO, produces vasorelaxation and interferes with hetero-adhesion of cancer cells to vascular endothelium via down-regulating expression of CAMs. The study highlights the importance of NO in cancer metastatic prevention.

  4. A 220-kilodalton glycoprotein in yeast extract inhibits Staphylococcus aureus adherence to human endothelial cells.

    OpenAIRE

    Elliott, D.A.; Hatcher, V B; Lowy, F D

    1991-01-01

    A 220-kDa glycoprotein from yeast extract causes a twofold decrease in S. aureus adherence to human endothelial cells in vitro. Medium constituents can have a significant effect on bacterial adherence interactions.

  5. C-reactive protein decreases interleukin-8 production in human endothelial progenitor cells by inhibition of p38 MAPK pathway

    Institute of Scientific and Technical Information of China (English)

    NAN Jing-long; LI Jian-jun; HE Jian-guo

    2009-01-01

    Background C-reactive protein (CRP) has been reported to damage the vascular wall by inducing endothelial dysfunction and inflammation,and it is also speculated to have a role in attenuating angiogenic functions of human endothelial progenitor cells (EPCs).Interleukin-8 (IL-8) is an important mediator of the paracrine mitogenic effect of EPCs,which has direct angiogenic effects on mature endothelial cells.We,herein,investigated the direct effect of CRP on IL-8 production and gene expression in cultured human EPCs.Methods EPCs were isolated from the peripheral venous blood of healthy male volunteers.Cells were cultured in EndoCultTM liquid medium in the absence and presence of CRP at clinically relevant concentrations (5 to 25 μg/ml) for different durations (3 to 48 hours).IL-8 protein and mRNA of cultured EPCs were evaluated using ELISA and real-time PCR.Results The results showed that CRP at a concentration of 10 pg/ml significantly reduced IL-8 secretion of cultured EPCs with a peak at 25 μg/ml,and also decreased mRNA expression in EPCs with a peak at 12 hours.In addition,preincubation of EPCs with SB203580,an inhibitor of p38 mitogen-activated protein kinase (MAPK) decreased CRP inhibition of IL-8 mRNA expression at 12 hours in EPCs.Conclusions Our study,for the first time,demonstrates that CRP directly inhibits EPCs IL-8 secretion,a key cytokine player of angiogenesis induced by EPCs.Inhibition occurred in part via an effect of CRP to active the p38 MAPK signal transduction pathway in EPC.The ability of CRP to inhibit EPCs IL-8 secretion may represent an important mechanism that further links inflammation to cardiovascular disease.

  6. Platelet endothelial cell adhesion molecule-1 signaling inhibits the activation of human platelets

    OpenAIRE

    Cicmil, Milenko; Stevens, Jo; Leduc, Mireille; Bon, Cassian; Gibbins, Jonathan M.

    2002-01-01

    Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) is a 130-kd transmembrane glycoprotein and a member of the growing family of receptors with immunoreceptor tyrosine-based inhibitory motifs (ITIMs). PECAM-1 is expressed on platelets, certain T cells, monocytes, neutrophils, and vascular endothelial cells and is involved in a range of cellular processes, though the role of PECAM-1 in platelets is unclear. Cross-linking of PECAM-1 results in phosphorylation of the ITIM allowing the r...

  7. Flavonoids inhibit cytokine-induced endothelial cell adhesion protein gene expression.

    OpenAIRE

    Gerritsen, M. E.; Carley, W. W.; Ranges, G. E.; Shen, C. P.; Phan, S. A.; Ligon, G. F.; Perry, C. A.

    1995-01-01

    Treatment of human endothelial cells with cytokines such as interleukin-1, tumor necrosis factor-alpha (TNF-alpha) or interferon-gamma induces the expression of specific leukocyte adhesion molecules on the endothelial cell surface. Interfering with either leukocyte adhesion or adhesion protein upregulation is an important therapeutic target as evidenced by the potent anti-inflammatory actions of neutralizing antibodies to these ligands in various animal models and in patients. In the present ...

  8. Inhibition of the mitochondrial unfolded protein response by acetylcholine alleviated hypoxia/reoxygenation-induced apoptosis of endothelial cells.

    Science.gov (United States)

    Xu, Man; Bi, Xueyuan; He, Xi; Yu, Xiaojiang; Zhao, Ming; Zang, Weijin

    2016-05-18

    The mitochondrial unfolded protein response (UPR(mt)) is involved in numerous diseases that have the common feature of mitochondrial dysfunction. However, its pathophysiological relevance in the context of hypoxia/reoxygenation (H/R) in endothelial cells remains elusive. Previous studies have demonstrated that acetylcholine (ACh) protects against cardiomyocyte injury by suppressing generation of mitochondrial reactive oxygen species (mtROS). This study aimed to explore the role of UPR(mt) in endothelial cells during H/R and to clarify the beneficial effects of ACh. Our results demonstrated that H/R triggered UPR(mt) in endothelial cells, as evidenced by the elevation of heat shock protein 60 and LON protease 1 protein levels, and resulted in release of mitochondrial pro-apoptotic proteins, including cytochrome C, Omi/high temperature requirement protein A 2 and second mitochondrial activator of caspases/direct inhibitor of apoptosis-binding protein with low PI, from the mitochondria to cytosol. ACh administration markedly decreased UPR(mt) by inhibiting mtROS and alleviating the mitonuclear protein imbalance. Consequently, ACh alleviated the release of pro-apoptotic proteins and restored mitochondrial ultrastructure and function, thereby reducing the number of terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling (TUNEL)-positive cells. Intriguingly, 4-diphenylacetoxy-N-methylpiperidine methiodide, a type-3 muscarinic ACh receptor (M3AChR) inhibitor, abolished the ACh-elicited attenuation of UPR(mt) and TUNEL positive cells, indicating that the salutary effects of ACh were likely mediated by M3AChR in endothelial cells. In conclusion, our studies demonstrated that UPR(mt) might be essential for triggering the mitochondrion-associated apoptotic pathway during H/R. ACh markedly suppressed UPR(mt) by inhibiting mtROS and alleviating the mitonuclear protein imbalance, presumably through M3AChR. PMID:27111378

  9. Omentin inhibits TNF-α-induced expression of adhesion molecules in endothelial cells via ERK/NF-κB pathway

    International Nuclear Information System (INIS)

    Highlights: ► Omentin inhibited TNF-α-induced adhesion of THP-1 cells to HUVECs. ► Omentin reduces expression of ICAM-1 and VCAM-1 induced by TNF-α in HUVECs. ► Omentin inhibits TNF-α-induced ERK and NF-κB activation in HUVECs. ► Omentin supreeses TNF-α-induced expression of ICAM-1 and VCAM-1 via ERK/NF-κB pathway. -- Abstract: In the present study, we investigated whether omentin affected the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-α (TNF-α) induced human umbilical vein endothelial cells (HUVECs). Our data showed that omentin decreased TNF-α-induced expression of ICAM-1 and VCAM-1 in HUVECs. In addition, omentin inhibited TNF-α-induced adhesion of THP-1 cells to HUVECs. Further, we found that omentin inhibited TNF-α-activated signal pathway of nuclear factor-κB (NF-κB) by preventing NF-κB inhibitory protein (IκBα) degradation and NF-κB/DNA binding activity. Omentin pretreatment significantly inhibited TNF-α-induced ERK activity and ERK phosphorylation in HUVECs. Pretreatment with PD98059 suppressed TNF-α-induced NF-κB activity. Omentin, NF-kB inhibitor (BAY11-7082) and ERK inhibitor (PD98059) reduced the up-regulation of ICAM-1 and VCAM-1 induced by TNF-α. These results suggest that omentin may inhibit TNF-α-induced expression of adhesion molecules in endothelial cells via blocking ERK/NF-κB pathway.

  10. Endothelial derived factors inhibit anoikis of head and neck cancer stem cells

    Science.gov (United States)

    Campos, Marcia S.; Neiva, Kathleen G.; Meyers, Kristy A.; Krishnamurthy, Sudha; Nör, Jacques E.

    2011-01-01

    Recent evidence demonstrated that cancer stem cells reside in close proximity to blood vessels in human head and neck squamous cell carcinomas (HNSCC). These findings suggest the existence of a supporting perivascular niche for cancer stem cells. Objective The purpose of this study was to evaluate the effect of endothelial cell-secreted factors on the behavior of head and neck cancer stem-like cells (HNCSC). Materials and methods HNCSC were identified by sorting UM-SCC-22A (cell line derived from a primary squamous cell carcinoma of the oropharynx) and UM-SCC-22B (derived from the metastatic lymph node of the same patient) for CD44 expression and ALDH (aldehyde dehydrogenase) activity. HNCSC (ALDH+CD44+) and control (ALDH−CD44−) cells were cultured in ultra-low attachment plates in presence of conditioned medium from primary human endothelial cells. Results ALDH+CD44+ generated more orospheres than control cells when cultured in suspension. The growth factor milieu secreted by endothelial cells protected HNCSC against anoikis. Mechanistic studies revealed that endothelial cell-secreted vascular endothelial growth factor (VEGF) induces proliferation of HNCSC derived from primary UM-SCC-22A, but not from the metastatic UM-SCC-22B. Likewise, blockade of VEGF abrogated endothelial cell-induced Akt phosphorylation in HNCSC derived from UM-SCC-22A while it had a modest effect in Akt phosphorylation in HNCSC from UM-SCC-22B. Conclusion This study revealed that endothelial cells initiate a crosstalk that protect head and neck cancer stem cells against anoikis, and suggest that therapeutic interference with this crosstalk might be beneficial for patients with head and neck cancer. PMID:22014666

  11. Inhibition of tumor necrosis factor-α-induced expression of adhesion molecules in human endothelial cells by the saponins derived from roots of Platycodon grandiflorum

    International Nuclear Information System (INIS)

    Adhesion molecules play an important role in the development of atherogenesis and are produced by endothelial cells after being stimulated with various inflammatory cytokines. This study examined the effect of saponins that were isolated from the roots of Platycodon grandiflorum A. DC (Campanulaceae), Changkil saponins (CKS), on the cytokine-induced monocyte/human endothelial cell interaction, which is a crucial early event in atherogenesis. CKS significantly inhibited the TNFα-induced increase in monocyte adhesion to endothelial cells as well as decreased the protein and mRNA expression levels of vascular adhesion molecule-1 and intercellular cell adhesion molecule-1 on endothelial cells. Furthermore, CKS significantly inhibited the TNFα-induced production of intracellular reactive oxygen species (ROS) and activation of NF-κB by preventing IκB degradation and inhibiting IκB kinase activity. Overall, CKS has anti-atherosclerotic and anti-inflammatory activity, which is least in part the result of it reducing the cytokine-induced endothelial adhesion to monocytes by inhibiting intracellular ROS production, NF-κB activation, and cell adhesion molecule expression in endothelial cells

  12. A complex extracellular sphingomyelinase of Pseudomonas aeruginosa inhibits angiogenesis by selective cytotoxicity to endothelial cells.

    Directory of Open Access Journals (Sweden)

    Michael L Vasil

    2009-05-01

    Full Text Available The hemolytic phospholipase C (PlcHR expressed by Pseudomonas aeruginosa is the original member of a Phosphoesterase Superfamily, which includes phosphorylcholine-specific phospholipases C (PC-PLC produced by frank and opportunistic pathogens. PlcHR, but not all its family members, is also a potent sphingomyelinase (SMase. Data presented herein indicate that picomolar (pM concentrations of PlcHR are selectively lethal to endothelial cells (EC. An RGD motif of PlcHR contributes to this selectivity. Peptides containing an RGD motif (i.e., GRGDS, but not control peptides (i.e., GDGRS, block the effects of PlcHR on calcium signaling and cytotoxicity to EC. Moreover, RGD variants of PlcHR (e.g., RGE, KGD are significantly reduced in their binding and toxicity, but retain the enzymatic activity of the wild type PlcHR. PlcHR also inhibits several EC-dependent in vitro assays (i.e., EC migration, EC invasion, and EC tubule formation, which represent key processes involved in angiogenesis (i.e., formation of new blood vessels from existing vasculature. Finally, the impact of PlcHR in an in vivo model of angiogenesis in transgenic zebrafish, and ones treated with an antisense morpholino to knock down a key blood cell regulator, were evaluated because in vitro assays cannot fully represent the complex processes of angiogenesis. As little as 2 ng/embryo of PlcHR was lethal to approximately 50% of EGFP-labeled EC at 6 h after injection of embryos at 48 hpf (hours post-fertilization. An active site mutant of PlcHR (Thr178Ala exhibited 120-fold reduced inhibitory activity in the EC invasion assay, and 20 ng/embryo elicited no detectable inhibitory activity in the zebrafish model. Taken together, these observations are pertinent to the distinctive vasculitis and poor wound healing associated with P. aeruginosa sepsis and suggest that the potent antiangiogenic properties of PlcHR are worthy of further investigation for the treatment of diseases where

  13. Inhibition of a store-operated Ca2+ entry pathway in human endothelial cells by the isoquinoline derivative LOE 908.

    OpenAIRE

    Encabo, A.; Romanin, C; Birke, F. W.; Kukovetz, W. R.; Groschner, K

    1996-01-01

    1. The novel cation channel blocker, LOE 908, was tested for its effects on Ca2+ entry and membrane currents activated by depletion of intracellular Ca2+ stores in human endothelial cells. 2. LOE 908 inhibited store-operated Ca2+ entry induced by direct depletion of Ca2+ stores with 100 nM thapsigargin or 100 nM ionomycin with an EC50 of 2 microM and 4 microM, respectively. 3. LOE 908 did not affect thapsigargin- or ionomycin-induced Ca2+ release from intracellular stores up to concentrations...

  14. Silencing heme oxygenase-1 gene expression in retinal pigment epithelial cells inhibits proliferation, migration and tube formation of cocultured endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenjie [Ophthalmology Hospital, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001 (China); Zhang, Xiaomei, E-mail: zhangxm667@163.com [Ophthalmology Hospital, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001 (China); Lu, Hong [Ophthalmology Hospital, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001 (China); Matsukura, Makoto [Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082 (Japan); Zhao, Jien; Shinohara, Makoto [Ashikita Institution for Developmental Disabilities, 2813 Oaza Ashikita, Ashikita-machi, Ashikita, Kumamoto 869-5461 (Japan)

    2013-05-10

    Highlights: •HO-1 is highly induced in RPE cells by hypoxia. •Inhibition of HO-1 activity and knockdown of HO-1 expression inhibit VEGF expression in RPE cells under hypoxia. •Knockdown of HO-1 in RPE cells inhibits angiogenesis of endothelial cells in vitro. -- Abstract: Heme oxygenase-1 (HO-1) plays an important role in the vasculature and in the angiogenesis of tumors, wounds and other environments. Retinal pigment epithelial (RPE) cells and choroidal endothelial cells (CECs) are the main cells involved in choroidal neovascularization (CNV), a process in which hypoxia plays an important role. Our aim was to evaluate the role of human RPE-cell HO-1 in the angiogenic activities of cocultured endothelial cells under hypoxia. Small interfering RNA (siRNA) for HO-1 was transfected into human RPE cell line ARPE-19, and zinc protoporphyrin (ZnPP) was used to inhibit HO-1 activity. Knockdown of HO-1 expression and inhibition of HO-1 activity resulted in potent reduction of the expression of vascular endothelial growth factor (VEGF) under hypoxia. Furthermore, knockdown of HO-1 suppressed the proliferation, migration and tube formation of cocultured endothelial cells. These findings indicated that HO-1 might have an angiogenic effect in CNV through modulation of VEGF expression and might be a potential target for treating CNV.

  15. Silencing heme oxygenase-1 gene expression in retinal pigment epithelial cells inhibits proliferation, migration and tube formation of cocultured endothelial cells

    International Nuclear Information System (INIS)

    Highlights: •HO-1 is highly induced in RPE cells by hypoxia. •Inhibition of HO-1 activity and knockdown of HO-1 expression inhibit VEGF expression in RPE cells under hypoxia. •Knockdown of HO-1 in RPE cells inhibits angiogenesis of endothelial cells in vitro. -- Abstract: Heme oxygenase-1 (HO-1) plays an important role in the vasculature and in the angiogenesis of tumors, wounds and other environments. Retinal pigment epithelial (RPE) cells and choroidal endothelial cells (CECs) are the main cells involved in choroidal neovascularization (CNV), a process in which hypoxia plays an important role. Our aim was to evaluate the role of human RPE-cell HO-1 in the angiogenic activities of cocultured endothelial cells under hypoxia. Small interfering RNA (siRNA) for HO-1 was transfected into human RPE cell line ARPE-19, and zinc protoporphyrin (ZnPP) was used to inhibit HO-1 activity. Knockdown of HO-1 expression and inhibition of HO-1 activity resulted in potent reduction of the expression of vascular endothelial growth factor (VEGF) under hypoxia. Furthermore, knockdown of HO-1 suppressed the proliferation, migration and tube formation of cocultured endothelial cells. These findings indicated that HO-1 might have an angiogenic effect in CNV through modulation of VEGF expression and might be a potential target for treating CNV

  16. Evidence that tumor necrosis factor-related apoptosis inducing ligand (TRAIL) inhibits angiogenesis by inducing vascular endothelial cell apoptosis

    International Nuclear Information System (INIS)

    Tumor necrosis factor (TNF) and its related ligands TNF-related apoptosis inducing ligand (TRAIL) and Fas ligand (FasL) play roles in the regulation of vascular responses, but their effect on the formation of new blood vessels (angiogenesis) is unclear. Therefore, we have examined the effects of these ligands on angiogenesis modeled with primary cultures of human umbilical vein endothelial cells (HUVEC). To examine angiogenesis in the context of the central nervous system, we have also modeled cerebral angiogenesis with the human brain endothelial cell line hCMEC/D3. Parameters studied were bromodeoxyuridine (BrdU) incorporation and cell number (MTT) assay (to assess endothelial proliferation), scratch assay (migration) and networks on Matrigel (tube formation). In our hands, neither TRAIL nor FasL (1, 10, and 100 ng/ml) had an effect on parameters of angiogenesis in the HUVEC model. In hCMEC/D3 cells by contrast, TRAIL inhibited all parameters (10-100 ng/ml, 24 h). This was due to apoptosis, since its action was blocked by the pan-caspase inhibitor zVADfmk (5 x 10-5 mol/l) and TRAIL increased caspase-3 activity 1 h after application. However FasL (100 ng/ml) increased BrdU uptake without other effects. We conclude that TRAIL has different effects on in vitro angiogenesis depending on which model is used, but that FasL is generally ineffective when applied in vitro. The data suggest that TRAIL primarily influences angiogenesis by the induction of vascular endothelial apoptosis, leading to vessel regression.

  17. LXR agonist T0901317 upregulates thrombomodulin expression in glomerular endothelial cells by inhibition of nuclear factor‑κB.

    Science.gov (United States)

    Ding, Hanlu; Li, Yi; Feng, Yunlin; Chen, Jin; Zhong, Xiang; Wang, Nan; Wang, Wei; Zhang, Ping; Wang, Li

    2016-06-01

    Dysfunction of glomerular endothelial cells (GECs) induces a variety of symptoms, including proteinuria, inflammation, vascular diseases, fibrosis and thrombosis. Thrombomodulin (TM) acts as a vasoprotective molecule on the surface of the vascular endothelial cells to maintain the homeostasis of the endothelial microenvironment by suppressing cellular proliferation, adhesion and inflammatory responses. Liver X receptor (LXR), a nuclear receptor (NR) and a bile acid‑activated transcription factor, regulates metabolism and cholesterol transport, vascular tension and inflammation. Previous studies indicated that TM expression is upregulated by various NRs; however, it is unclear whether pharmacological modulation of LXR may affect TM expression and GEC function. The current study revealed that LXR activation by its agonist, T0901317, upregulates the expression and activity of TM. This effect was mediated specifically through LXR‑α, and not through LXR‑β. Additionally, T0901317 treatment inhibited nuclear factor‑κB (NF‑κB) signaling and the secretion of high glucose‑induced proinflammatory mediators, including tumor necrosis factor‑α and interleukin‑1β in GECs. Co‑immunoprecipitation experiments determined that treatment with T0901317 enhances the interaction between LXR‑α and the transcriptional coactivator, p300, in GEC extracts. The present findings suggest that NF‑κB may be a negative regulator of TM expression, and its removal may contribute to TM gene expression, particularly when in competition with the T0901317‑enhanced formation of the LXR/p300 complex. Therefore, LXR may be a novel molecular target for manipulating TM in GECs, which may advance the treatment of endothelial cell‑associated diseases. PMID:27082844

  18. IL-27 inhibits lymphatic endothelial cell proliferation by STAT1-regulated gene expression

    DEFF Research Database (Denmark)

    Nielsen, Sebastian Rune; Hammer, Troels; Gibson, Josefine; Pepper, Michael S; Nisato, Riccardo E; Dissing, Steen; Tritsaris, Katerina

    2013-01-01

    OBJECTIVE: IL-27 belongs to the IL-12 family of cytokines and is recognized for its role in Th cell differentiation and as an inhibitor of tumor-angiogenesis. The purpose of this study was to investigate the effect of IL-27 on proliferation of lymphatic endothelial cells to gain insight into the ...

  19. Neferine inhibits the upregulation of CCL5 and CCR5 in vascular endothelial cells during chronic high glucose treatment.

    Science.gov (United States)

    Li, Guilin; Zhu, Gaochun; Gao, Yun; Xiao, Wen; Xu, Hong; Liu, Shuangmei; Tu, Guihua; Peng, Haiying; Zheng, Chaoran; Liang, Shangdong; Li, Guodong

    2013-04-01

    We investigated whether the expressions of CCL5 and CCR5 participate in dysfunctional changes in human umbilical vein endothelial cells (HUVECs) induced by chronic high glucose treatment and examined whether neferine exerts its therapeutic effects by blocking the development of dysfunctional vascular endothelium. HUVECs were cultured with control or high concentrations of glucose in the absence or presence of neferine for 5 days. Nitric acid reductase method was used to detect the concentration of nitric oxide (NO) released into culture media. The level of intracellular reactive oxygen species (ROS) was measured by fluorescent DCFH-DA probe. The expressions of 84 genes related to endothelial cell biology were assessed by Human Endothelial Cell Biology RT(2) Profiler PCR Array. The expressions of the chemokine CCL5 and its receptor CCR5 were further determined by real-time RT-PCR and western blotting. PCR array indicated that CCL5 was the most significantly upregulated when HUVECs were exposed to chronic high glucose; the intracellular ROS level and the expressions of CCL5 and CCR5 at both mRNA and protein levels were significantly increased, whereas NO production was decreased simultaneously. The increased level of ROS and elevated expressions of CCL5 and CCR5 at high glucose were significantly inhibited by neferine; meanwhile the decreased NO production upon chronic high glucose treatment was relieved. An antioxidant (vitamin E) exerted similar beneficial effects. These data indicate that neferine can reduce the upregulation of CCL5 and CCR5 of vascular endothelium exposure to chronic high glucose and prevent or inhibit subsequent occurrence of inflammation in blood vessels possibly through antioxidation. PMID:23053727

  20. Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis.

    Directory of Open Access Journals (Sweden)

    Pierre Sonveaux

    Full Text Available Switching to a glycolytic metabolism is a rapid adaptation of tumor cells to hypoxia. Although this metabolic conversion may primarily represent a rescue pathway to meet the bioenergetic and biosynthetic demands of proliferating tumor cells, it also creates a gradient of lactate that mirrors the gradient of oxygen in tumors. More than a metabolic waste, the lactate anion is known to participate to cancer aggressiveness, in part through activation of the hypoxia-inducible factor-1 (HIF-1 pathway in tumor cells. Whether lactate may also directly favor HIF-1 activation in endothelial cells (ECs thereby offering a new druggable option to block angiogenesis is however an unanswered question. In this study, we therefore focused on the role in ECs of monocarboxylate transporter 1 (MCT1 that we previously identified to be the main facilitator of lactate uptake in cancer cells. We found that blockade of lactate influx into ECs led to inhibition of HIF-1-dependent angiogenesis. Our demonstration is based on the unprecedented characterization of lactate-induced HIF-1 activation in normoxic ECs and the consecutive increase in vascular endothelial growth factor receptor 2 (VEGFR2 and basic fibroblast growth factor (bFGF expression. Furthermore, using a variety of functional assays including endothelial cell migration and tubulogenesis together with in vivo imaging of tumor angiogenesis through intravital microscopy and immunohistochemistry, we documented that MCT1 blockers could act as bona fide HIF-1 inhibitors leading to anti-angiogenic effects. Together with the previous demonstration of MCT1 being a key regulator of lactate exchange between tumor cells, the current study identifies MCT1 inhibition as a therapeutic modality combining antimetabolic and anti-angiogenic activities.

  1. Cryptotanshinone inhibits TNF-α-induced LOX-1 expression by suppressing reactive oxygen species (ROS) formation in endothelial cells.

    Science.gov (United States)

    Ran, Xiaoli; Zhao, Wenwen; Li, Wenping; Shi, Jingshan; Chen, Xiuping

    2016-07-01

    Cryptotanshinone (CPT) is a natural compound isolated from traditional Chinese medicine Salvia miltiorrhiza Bunge. In the present study, the regulatory effect and potential mechanisms of CPT on tumor necrosis factor alpha (TNF-α) induced lectin-like receptor for oxidized low density lipoprotein (LOX-1) were investigated. Human umbilical vein endothelial cells (HUVECs) were cultured and the effect of TNF-α on LOX-1 expression at mRNA and protein levels was determined by Real-time PCR and Western blotting respectively. The formation of intracellular ROS was determined with fluorescence probe CM-DCFH2-DA. The endothelial ox-LDL uptake was evaluated with DiI-ox-LDL. The effect of CPT on LOX-1 expression was also evaluated with SD rats. TNF-α induced LOX-1 expression in a dose- and time-dependent manner in endothelial cells. TNF-α induced ROS formation, phosphorylation of NF-κB p65 and ERK, and LOX-1 expression, which were suppressed by rotenone, DPI, NAC, and CPT. NF-κB inhibitor BAY11-7082 and ERK inhibitor PD98059 inhibited TNF-α-induced LOX-1 expression. CPT and NAC suppressed TNF-α-induced LOX-1 expression and phosphorylation of NF-κB p65 and ERK in rat aorta. These data suggested that TNF-α induced LOX-1 expression via ROS activated NF-κB/ERK pathway, which could be inhibited by CPT. This study provides new insights for the anti-atherosclerotic effect of CPT. PMID:27382351

  2. Scutellarein inhibits hypoxia- and moderately-high glucose-induced proliferation and VEGF expression in human retinal endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Rong GAO; Bang-hao ZHU; Shi-bo TANG; Jiang-feng WANG; Jun REN

    2008-01-01

    Aim: This study was designed to examine the effect of scutellarein on high glu-cose- and hypoxia-stimulated proliferation of human retinal endothelial cells (HREC). Methods: HREC were cultured under normal glucose (NG), moderate, and high glucose (NG supplemented with 10 or 25 mmol/L D-glucose) and/or hypoxic (cobalt chloride treated) conditions. Cell proliferation was evaluated by a cell counting kit. The expression of vascular endothelial growth factor (VEGF) was assessed by Western blot analysis. Results: The proliferation of HREC was significantly elevated in response to moderately-high glucose and hypoxic conditions. The combination of high glucose and hypoxia did not have any additive effects on cell proliferation. Consistent with the proliferation data, the expression of VEGF was also upregulated under both moderately-high glucose and hypoxic conditions. The treatment with scutellarein (1 × 10-11-1 × 10-5 mol/L) significantly inhibited high glucose- or hypoxia-induced cell proliferation and VEGF expression. Conclusion: Both hypoxia and moderately-high glucose were potent stimuli for cell proliferation and VEGF expression in HREC without any significant additive effects. Scutellarein is capable of inhibiting the proliferation of HREC, which is possibly related to its ability to suppress the VEGF expression.

  3. Silencing stromal interaction molecule 1 by RNA interference inhibits the proliferation and migration of endothelial progenitor cells

    International Nuclear Information System (INIS)

    Research highlights: → STIM1 and TRPC1 are expressed in EPCs. → Knockdown of STIM1 inhibits the proliferation, migration and SOCE of EPCs. → TRPC1-SOC cooperates with STIM1 to mediate the SOCE of EPCs. -- Abstract: Knockdown of stromal interaction molecule 1 (STIM1) significantly suppresses neointima hyperplasia after vascular injury. Endothelial progenitor cells (EPCs) are the major source of cells that respond to endothelium repair and contribute to re-endothelialization by reducing neointima formation after vascular injury. We hypothesized that the effect of STIM1 on neointima hyperplasia inhibition is mediated through its effect on the biological properties of EPCs. In this study, we investigated the effects of STIM1 on the proliferation and migration of EPCs and examined the effect of STIM1 knockdown using cultured rat bone marrow-derived EPCs. STIM1 was expressed in EPCs, and knockdown of STIM1 by adenoviral delivery of small interfering RNA (siRNA) significantly suppressed the proliferation and migration of EPCs. Furthermore, STIM1 knockdown decreased store-operated channel entry 48 h after transfection. Replenishment with recombinant human STIM1 reversed the effects of STIM1 knockdown. Our data suggest that the store-operated transient receptor potential canonical 1 channel is involved in regulating the biological properties of EPCs through STIM1. STIM1 is a potent regulator of cell proliferation and migration in rat EPCs and may play an important role in the biological properties of EPCs.

  4. Bevacizumab, an anti-vascular endothelial growth factor antibody, inhibits osteoarthritis

    OpenAIRE

    Nagai, Toshihiro; Sato, Masato; Kobayashi, Miyuki; Yokoyama, Munetaka; Tani, Yoshiki; Mochida, Joji

    2014-01-01

    Introduction Angiogenesis is an important factor in the development of osteoarthritis (OA). We investigated the efficacy of bevacizumab, an antibody against vascular endothelial growth factor and an inhibitor of angiogenesis, in the treatment of OA using a rabbit model of anterior cruciate ligament transection. Methods First, we evaluated the response of gene expression and histology of the normal joint to bevacizumab treatment. Next, in a rabbit model of OA induced by anterior cruciate ligam...

  5. Matrix metalloproteinase-19 inhibits growth of endothelial cells by generating angiostatin-like fragments from plasminogen

    Czech Academy of Sciences Publication Activity Database

    Brauer, Rena; Beck, Inken; Roderfeld, M.; Roeb, E.; Sedláček, Radislav

    2011-01-01

    Roč. 12, - (2011), e38. ISSN 1471-2091 R&D Projects: GA ČR GC301/08/J053; GA ČR GP301/09/P662 Institutional research plan: CEZ:AV0Z50520701; CEZ:AV0Z50520514 Keywords : matrix metalloproteinase-19 * angiogenesis * endothelial cells Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.988, year: 2011

  6. Carbon monoxide inhibits Fas activating antibody-induced apoptosis in endothelial cells

    OpenAIRE

    Wang Xue; Wang Yong; Lee Seon-Jin; Kim Hong Pyo; Choi Augustine MK; Ryter Stefan W

    2011-01-01

    Abstract Background The extrinsic apoptotic pathway initiates when a death ligand, such as the Fas ligand, interacts with its cell surface receptor (ie., Fas/CD95), forming a death-inducing signaling complex (DISC). The Fas-dependent apoptotic pathway has been implicated in several models of lung or vascular injury. Carbon monoxide, an enzymatic product of heme oxygenase-1, exerts antiapoptotic effects at low concentration in vitro and in vivo. Methods Using mouse lung endothelial cells (MLEC...

  7. Asymmetric dimethylarginine inhibits HSP90 activity in Pulmonary Arterial Endothelial Cells: Role of Mitochondrial Dysfunction

    OpenAIRE

    Sud, Neetu; Wells, Sandra M.; Wiseman, Dean A.; Wilham, Jason; Black, Stephen M.

    2008-01-01

    Increased ADMA levels have been implicated in the pathogenesis of a number of conditions affecting the cardiovascular system. However, the mechanism(s) by which ADMA exerts its effect has not been adequately elucidated. Thus, the purpose of this study was to determine the effect of increased ADMA on nitric oxide (NO) signaling and to begin to elucidate the mechanism by which ADMA acts. Our initial data demonstrated that that ADMA increased NOS uncoupling both in recombinant human endothelial ...

  8. Poly(ADP-ribose) polymerase 1 inhibition protects human aortic endothelial cells against LPS-induced inflammation response

    Institute of Scientific and Technical Information of China (English)

    Xiaonu Peng; Wenjun Li; Wei Zhang

    2012-01-01

    Atherosclerosis is a chronic inflammatory disease.Tolllike receptor 4 (TLR4) is an important signaling receptor and plays a critical role in the inflammatory response.Poly(ADP-ribose) polymerase 1 (PARP1) is a nuclear enzyme that can regulate the expression of various inflammatory genes.In this study,we investigated the role and the underlying mechanisms of PARP1 on lipopolysaccharide (LPS)-induced inflammation in human aortic endothelial cells.Compared with the control,LPS stimulation increased the protein expression of TLR4 and PARP1.TLR4 inhibition reduced LPS-induced upregulation of inducible nitric oxide synthase (iNOS) and ICAM-1 as well as PARP1. Nuclear factor κB (NF-κB) inhibition decreased ICAM-1 and iNOS expression.Inhibition of PARP1 decreased protein expression of inflammatory cytokines induced by LPS stimulation,probably through preventing NF-KB nuclear translocation. Our study demonstrated that LPS increased ICAM-1 and iNOS expression via TLR4/PARP1/NF-KB pathway.PARP1 might be an indispensable factor in TLR4-mediated inflammation after LPS stimulation.PARP1 inhibition might shed light on the treatment of LPS-induced inflammatory cytokines expression during atherosclerosis.

  9. Hsp90 inhibition suppresses NF-κB transcriptional activation via Sirt-2 in human lung microvascular endothelial cells.

    Science.gov (United States)

    Thangjam, Gagan S; Birmpas, Charalampos; Barabutis, Nektarios; Gregory, Betsy W; Clemens, Mary Ann; Newton, Joseph R; Fulton, David; Catravas, John D

    2016-05-15

    The ability of anti-heat shock protein 90 (Hsp90) drugs to attenuate NF-κB-mediated transcription is the major basis for their anti-inflammatory properties. While the molecular mechanisms underlying this effect are not clear, they appear to be distinct in human endothelial cells. We now show for the first time that type 2 sirtuin (Sirt-2) histone deacetylase binds human NF-κB target gene promoter and prevents the recruitment of NF-κB proteins and subsequent assembly of RNA polymerase II complex in human lung microvascular endothelial cells. Hsp90 inhibitors stabilize the Sirt-2/promoter interaction and impose a "transcriptional block," which is reversed by either inhibition or downregulation of Sirt-2 protein expression. Furthermore, this process is independent of NF-κB (p65) Lysine 310 deacetylation, suggesting that it is distinct from known Sirt-2-dependent mechanisms. We demonstrate that Sirt-2 is recruited to NF-κB target gene promoter via interaction with core histones. Upon inflammatory challenge, chromatin remodeling and core histone H3 displacement from the promoter region removes Sirt-2 and allows NF-κB/coactivator recruitment essential for RNA Pol II-dependent mRNA induction. This novel mechanism may have important implications in pulmonary inflammation. PMID:27036868

  10. Adenosine inhibits neutrophil vascular endothelial growth factor release and transendothelial migration via A2B receptor activation.

    LENUS (Irish Health Repository)

    Wakai, A

    2012-02-03

    The effects of adenosine on neutrophil (polymorphonuclear neutrophils; PMN)-directed changes in vascular permeability are poorly characterized. This study investigated whether adenosine modulates activated PMN vascular endothelial growth factor (vascular permeability factor; VEGF) release and transendothelial migration. PMN activated with tumour necrosis factor-alpha (TNF-alpha, 10 ng\\/mL) were incubated with adenosine and its receptor-specific analogues. Culture supernatants were assayed for VEGF. PMN transendothelial migration across human umbilical vein endothelial cell (HUVEC) monolayers was assessed in vitro. Adhesion molecule receptor expression was assessed flow cytometrically. Adenosine and some of its receptor-specific analogues dose-dependently inhibited activated PMN VEGF release. The rank order of potency was consistent with the affinity profile of human A2B receptors. The inhibitory effect of adenosine was reversed by 3,7-dimethyl-1-propargylxanthine, an A2 receptor antagonist. Adenosine (100 microM) or the A2B receptor agonist 5\\'-N-ethylcarboxamidoadenosine (NECA, 100 microM) significantly reduced PMN transendothelial migration. However, expression of activated PMN beta2 integrins and HUVEC ICAM-1 were not significantly altered by adenosine or NECA. Adenosine attenuates human PMN VEGF release and transendothelial migration via the A2B receptor. This provides a novel target for the modulation of PMN-directed vascular hyperpermeability in conditions such as the capillary leak syndrome.

  11. Inhibition of a store-operated Ca2+ entry pathway in human endothelial cells by the isoquinoline derivative LOE 908.

    Science.gov (United States)

    Encabo, A; Romanin, C; Birke, F W; Kukovetz, W R; Groschner, K

    1996-10-01

    1. The novel cation channel blocker, LOE 908, was tested for its effects on Ca2+ entry and membrane currents activated by depletion of intracellular Ca2+ stores in human endothelial cells. 2. LOE 908 inhibited store-operated Ca2+ entry induced by direct depletion of Ca2+ stores with 100 nM thapsigargin or 100 nM ionomycin with an EC50 of 2 microM and 4 microM, respectively. 3. LOE 908 did not affect thapsigargin- or ionomycin-induced Ca2+ release from intracellular stores up to concentrations of 3 microM. 4. LOE 908 reversibly suppressed thapsigargin- as well as ionomycin-induced whole-cell membrane currents. 5. The LOE 908-sensitive membrane conductance corresponded to a cation permeability of 5.5 and 6.9 fold selectivity for Ca2+ over K+ in the presence of thapsigargin and ionomycin, respectively. 6. Our results suggest that the isoquinoline, LOE 908 is a novel, potent inhibitor of the store-operated (capacitive) Ca2+ entry pathway in endothelial cells. PMID:8904644

  12. Inhibitive effects of anti-oxidative vitamins on mannitol-induced apoptosis of vascular endothelial cells

    Institute of Scientific and Technical Information of China (English)

    PAN Kai-yu; SHEN Mei-ping; YE Zhi-hong; DAI Xiao-na; SHANG Shi-qiang

    2006-01-01

    Objective: Study blood vessel injury and gene expression indicating vascular endothelial cell apoptosis induced by mannitol with and without administration of anti-oxidative vitamins. Methods: Healthy rabbits were randomly divided into four groups. Mannitol was injected into the vein of the rabbit ear in each animal. Pre-treatment prior to mannitol injection was performed with normal saline (group B), vitamin C (group C) and vitamin E (group D). Blood vessel injury was assessed under electron and light microscopy. In a second experiment, cell culture specimen of human umbilical vein endothelial cells were treated with mannitol. Pre-treatment was done with normal saline (sample B), vitamin C (sample C) and vitamin E (sample D).Total RNA was extracted with the original single step procedure, followed by hybridisation and analysis of gene expression.Results: In the animal experiment, serious blood vessel injury was seen in group A and group B. Group D showed light injury only,and normal tissue without pathological changes was seen in group C. Of all 330 apoptosis-related genes analysed in human cell culture specimen, no significant difference was seen after pre-treatment with normal saline, compared with the gene chip without pre-treatment. On the gene chip pre-treated with vitamin C, 45 apoptosis genes were down-regulated and 34 anti-apoptosis genes were up-regulated. Pre-treatment with vitamin E resulted in the down-regulation of 3 apoptosis genes. Conclusion: Vitamin C can protect vascular endothelial cells from mannitol-induced injury.

  13. Inhibition of MMP synthesis by doxycycline and chemically modified tetracyclines (CMTs) in human endothelial cells

    NARCIS (Netherlands)

    Hanemaaijer, R.; Visser, H.; Koolwijk, P.; Sorsa, T.; Salo, T.; Golub, L.M.; Hinsbergh, V.W. van

    1998-01-01

    Doxycycline is a commonly used broad-spectrum antibiotic. Recently, it has been shown that it also inhibits the activity of mammalian collagenases and gelatinases, an activity unrelated to its antimicrobial efficacy. In this study, we show that doxycycline not only inhibits MMP-8 and MMP-9 (gelatina

  14. Inhibition of corneal neovascularization with new Tyrosine Kinase Inhibitors targeting vascular endothelial growth factor receptors: Sunitinib malate and Sorafenib

    Directory of Open Access Journals (Sweden)

    Delnia Arshadi

    2007-06-01

    Full Text Available Corneal neovascularization (NV is a significant, sight-threatening, complication of many ocular surface disorders. Presence of new vessels in cornea can compromise clarity and thus vision. The data supporting a causal role for vascular endothelial growth factor (VEGF in corneal NV are extensive. Inhibition of VEGF remains as a main strategy for treating corneal NV. There is a growing body of evidence that corneal NV can be reduced by using anti-VEGF agents. Sunitinib malate and Sorafenib are new orally bio-available anti-angiogenic agents undergoing tests of efficacy in the treatment of various types of cancers. The main mechanism of these drugs is inhibiting angiogenesis by diminishing signaling through VEGF receptor1 (VEGFR1, VEGFR2, and platelet-derived growth factor receptors. Since VEGF exerts its angiogenic effects through tyrosine kinase receptors in cornea, any mechanisms which reduce VEGF signaling may inhibit corneal NV or at least attenuate it. Based on this fact we herein hypothesize that Sunitinib malate and Sorafenib can be prepared in topical form and be used in corneal neovascularization states. These approaches offer new hope for the successful treatment of corneal NV. Further investigations in animal models are needed to place these two drugs alongside corneal NV therapeutics.

  15. Thrombin inhibits HMGB1-mediated proinflammatory signaling responses when endothelial protein C receptor is occupied by its natural ligand

    Directory of Open Access Journals (Sweden)

    Jong-Sup Bae

    2013-11-01

    Full Text Available High mobility group box 1 (HMGB1 is involved in thepathogenesis of vascular diseases. Unlike activated protein C(APC, the activation of PAR-1 by thrombin is known to elicitproinflammatory responses. To determine whether the occupancyof EPCR by the Gla-domain of APC is responsible for thePAR-1-dependent antiinflammatory activity of the protease, wepretreated HUVECs with the PC zymogen and then activatedPAR-1 with thrombin. It was found that thrombin downregulatesthe HMGB1-mediated induction of both TNF-α andIL-6 and inhibits the activation of both p38 MAPK and NF-κB inHUVECs pretreated with PC. Furthermore, thrombin inhibitedHMGB1-mediated hyperpermeability and leukocyte adhesion/migration by inhibiting the expression of cell adhesion moleculesin HUVECs if EPCR was occupied. Collectively, theseresults suggest the concept that thrombin can initiate proinflammatoryresponses in vascular endothelial cells through theactivation of PAR-1 may not hold true for normal vesselsexpressing EPCR under in vivo conditions. [BMB Reports 2013;46(11: 544-549

  16. Phosphorothioate oligonucleotide inhibits tissue factor expression in endothelial cells induced by blood flow shear stress in rats

    Institute of Scientific and Technical Information of China (English)

    Li Qianning; Yang Yimin; Ying Dajun; Cheng Rongchuan; Gong Zili; Liu Yong; Zhou Zhujuan; Zheng Jian

    2008-01-01

    Objective: To determine the effect of antiparallel phosphorothioate triplex-forming oligonucleotide (apsTFO),which was designed according to shear stress response element (SSRE) in tissue factor (TF) gene promoter region, on the expression of endothelial TF in carotid artery stenosis rats. Methods: Rat model of severe carotid artery stenosis were inflicted by silica gel tube ligation. Half an hour before the model infliction, GT20-apsTFO, GT20-psTFO and GT21-apsTFO labeled with green fluorescence (FITC) were injected into the vena caudalis of rat at a dose of 0.5 mg/kg.Half an hour, 4 or 9 h after the ligation, the distribution of TFO in the common carotid artery, the liver and the kidney was detected with aid of fluorescence microscopy. And the mRNA and protein expressions of TF, Egr-1 and Spl in the above-mentioned organs were determined with in situ hybridization and immunohistoehemical assay respectively in 6 h after the model establishment, and the results were analyzed with an image analysis system. Results: Only in 1 h after TFO injection, fluorescent granules appeared in the liver, the kidney and the vascular wall and lumen of carotid artery,and then in 4.5 h, they still deposited in above sites except the vascular lumen. GT20-apsTFO and GT21-apsTFO significant down-regulated the mRNA and protein expressions of TF compared to the rats without treatment (P0.05).The 3 TFOs had no inhibition on the mRNA and protein expressions of Egr-I and Spl. Conclusion: Pretreated apsTFO can partly come into the vascular endothelial cells, and inhibit TF expression induced by shear stress, but had no effect on Egr-1 and Spl gene expressions.

  17. Inhibition of miR-7 promotes angiogenesis in human umbilical vein endothelial cells by upregulating VEGF via KLF4.

    Science.gov (United States)

    Li, Yi-Ze; Wen, Lei; Wei, Xu; Wang, Qian-Rong; Xu, Long-Wen; Zhang, Hong-Mei; Liu, Wen-Chao

    2016-09-01

    Recent lentiviral-based microRNA (miRNA) library screening has identified miRNA-7 (miR-7) as an anti‑angiogenic miRNA in human umbilical vein endothelial cells (HUVECs). However, the underlying mechanism of miR-7 in the suppression of angiogenesis remains largely unknown. In the present study, we report that miR-7 inhibition promoted angiogenesis by upregulating vascular endothelial growth factor (VEGF) and directly targeting Krüppel-like factor 4 (KLF4). Downregulation of miR-7 promoted tube formation of HUVECs, accompanied by upregulation of mRNA and protein levels of both VEGF and KLF4. miR-7 directly targeted KLF4 as demonstrated by luciferase reporter assay and miR-7 mimics decreased KLF4. Furthermore, bioinformatic analysis revealed the presence of multiple DNA-binding elements of KLF4 in the VEGF promoter. Chromatin immunoprecipitation (ChIP) demonstrated that the KLF4 antibody specifically pulled down the VEGF promoter in the HUVECs. Furthermore, ectopic overexpression of KLF4 induced VEGF mRNA and protein levels. In addition, KLF4 silencing inhibited the angiogenesis induced by the miR-7 inhibitor in the HUVECs. Our results demonstrated that KLF4 is a direct target of miR-7 and a transcription activator of VEGF. These findings indicate that the miR-7-KLF4-VEGF signaling axis plays an important role in the regulation of angiogenesis in HUVECs, suggesting that miR-7 is a potential agent for the development of anti-angiogenic therapeutics in vascular diseases and solid tumors. PMID:27431648

  18. An algorithm for the management of hypertension in the setting of vascular endothelial growth factor signaling inhibition.

    Science.gov (United States)

    Copur, M Sitki; Obermiller, Angela

    2011-09-01

    Vascular endothelial growth factor (VEGF) signaling is considered to be one of the key factors involved in tumor-associated angiogenesis. Inhibition of angiogenesis has significantly improved anticancer therapy making it one of the cornerstones of treatment for various solid tumors. Several antiangiogenesis inhibitory compounds (eg, bevacizumab, sunitinib, sorafenib) are now widely used in the treatment of patients with colorectal, non-small-cell lung, advanced renal cell, hepatocellular, and breast cancer. One of the most commonly observed side effects of inhibition of VEGF signaling is hypertension, which is dose-dependent and varies in incidence among the different angiogenesis inhibitor drugs. Poorly controlled hypertension not only can lead to cardiovascular events, renal disease, and stroke, but may also necessitate discontinuation of anticancer therapy, thereby potentially limiting overall clinical benefit. In contrast, hypertension induced by VEGF inhibitors has been shown to represent an important pharmacodynamic biomarker of oncologic response. For the practicing oncologist, knowledge and optimal management of this toxicity is essential. Because of the lack of controlled studies on this topic, no clear recommendations are available. In this article, we review the available preclinical and clinical data on the pathogenesis and management of hypertension resulting from anti-VEGF inhibitor therapy and propose a treatment algorithm that our group has now implemented for daily clinical practice. PMID:21855035

  19. Phenothiazines inhibit copper and endothelial cell-induced peroxidation of low density lipoprotein. A comparative study with probucol, butylated hydroxytoluene and vitamin E.

    Science.gov (United States)

    Breugnot, C; Mazière, C; Salmon, S; Auclair, M; Santus, R; Morlière, P; Lenaers, A; Mazière, J C

    1990-11-01

    The effect of two phenothiazines, chlorpromazine (CPZ) and trifluoperazine (TFP) on the copper and endothelial cell-induced peroxidation of low density lipoprotein (LDL) has been studied and compared to that of drugs previously shown to protect LDL against peroxidation: probucol (PBC) and butylated hydroxytoluene (BHT). Incubation with CPZ or TFP inhibited in a dose-dependent manner LDL peroxidation induced either by copper ions or by cultured endothelial cells. Both the electrophoretic mobility and the thiobarbituric reactive substance content of LDL returned to almost normal values in the presence of 50 microM CPZ or TFP. The two studied phenothiazines also strongly inhibited the hydrolysis of LDL phosphatidylcholine which accompanies copper or endothelial cell-induced peroxidation of the particle. CPZ and TFP were as effective as PBC and BHT in inhibiting the LDL peroxidation. Whereas copper or endothelial cell-oxidized LDL were recognized and rapidly catabolized by mouse peritoneal macrophages, CPZ- or TFP-, as well as PBC- or BHT-treated LDL were not. Moreover, it was found that, in contrast to vitamin E, neither CPZ nor PBC reacted with model peroxy radicals formed by gamma irradiation of aerated ethanol. The possible mechanisms underlying this protective effect of phenothiazines against LDL oxidative modification are discussed. PMID:2242028

  20. Albendazole inhibits endothelial cell migration, tube formation, vasopermeability, VEGF receptor-2 expression and suppresses retinal neovascularization in ROP model of angiogenesis

    International Nuclear Information System (INIS)

    The angiogenic process begins with the cell proliferation and migration into the primary vascular network, and leads to vascularization of previously avascular tissues and organs as well to growth and remodeling of the initially homogeneous capillary plexus to form a new microcirculation. Additionally, an increase in microvascular permeability is a crucial step in angiogenesis. Vascular endothelial growth factor (VEGF) plays a central role in angiogenesis. We have previously reported that albendazole suppresses VEGF levels and inhibits malignant ascites formation, suggesting a possible effect on angiogenesis. This study was therefore designed to investigate the antiangiogenic effect of albendazole in non-cancerous models of angiogenesis. In vitro, treatment of human umbilical vein endothelial cells (HUVECs) with albendazole led to inhibition of tube formation, migration, permeability and down-regulation of the VEGF type 2 receptor (VEGFR-2). In vivo albendazole profoundly inhibited hyperoxia-induced retinal angiogenesis in mice. These results provide new insights into the antiangiogenic effects of albendazole.

  1. Rap1 spatially controls ArhGAP29 to inhibit Rho signaling during endothelial barrier regulation

    NARCIS (Netherlands)

    Post, A.; Pannekoek, W. J.; Ponsioen, B.; Vliem, M. J.; Bos, J. L.

    2015-01-01

    The small GTPase Rap1 controls the actin cytoskeleton by regulating Rho GTPase signaling. We recently established that the Rap1 effectors Radil and Rasip1, together with the Rho GTPase activating protein ArhGAP29, mediate Rap1-induced inhibition of Rho signaling in the processes of epithelial cell s

  2. Bone Marrow Mesenchymal Stem Cells Inhibit Lipopolysaccharide-Induced Inflammatory Reactions in Macrophages and Endothelial Cells

    OpenAIRE

    Dequan Li; Cong Wang; Chuang Chi; Yuanyuan Wang; Jing Zhao; Jun Fang; Jingye Pan

    2016-01-01

    Background. Systemic inflammatory response syndrome (SIRS) accompanied by trauma can lead to multiple organ dysfunction syndrome (MODS) and even death. Early inhibition of the inflammation is necessary for damage control. Bone marrow mesenchymal stem cells (BMSCs), as a novel therapy modality, have been shown to reduce inflammatory responses in human and animal models. Methods. In this study, we used Western blot, quantitative PCR, and enzyme-linked immunosorbent assay (ELISA) to assess the a...

  3. A selective estrogen receptor modulator inhibits TNF-alpha-induced apoptosis by activating ERK1/2 signaling pathway in vascular endothelial cells.

    Science.gov (United States)

    Yu, Jing; Eto, Masato; Akishita, Masahiro; Okabe, Tetsuro; Ouchi, Yasuyoshi

    2009-07-01

    Tumor necrosis factor (TNF-alpha) is a pleiotropic cytokine exerting both inflammatory and cell death activity and is thought to play a role in the pathogenesis of atherosclerosis. The present study was designed to examine whether the raloxifene analogue, LY117018 could inhibit TNF-alpha-induced apoptosis in vascular endothelial cells and to clarify the involved mechanisms. Apoptosis of endothelial cells was determined by DNA fragmentation assay and the activation of caspase-3. LY117018 significantly inhibited TNF-alpha-induced caspase-3 activation and cell DNA fragmentation levels in bovine carotid artery endothelial cells. The inhibitory effect of LY117018 was abolished by an estrogen receptor antagonist ICI 182,780. p38 MAPK, JNK, ERK1/2 and Akt have been shown to act as apoptotic or anti-apoptotic signals. TNF-alpha stimulated the phosphorylation levels of p38 MAPK, JNK, ERK1/2 and Akt in vascular endothelial cells. TNF-alpha-induced apoptosis was significantly decreased by SB203580, a p38 MAPK inhibitor or SP600125, a JNK inhibitor, but was enhanced by an ERK1/2 pathway inhibitor, PD98059 or a PI3-kinase/Akt pathway inhibitor, wortmannin. The anti-apoptotic effect of LY117018 was abrogated only by PD98059 but was not affected by the inhibitors for p38 MAPK, JNK, or Akt. LY117018 stimulated the further increase in phosphorylation of ERK1/2 in TNF-alpha treated endothelial cells but it did not affect phosphorylation levels of p38 MAPK, JNK or Akt. These results suggest that LY 110718 prevents caspase-3 dependent apoptosis induced by TNF-alpha in vascular endothelial cells through activation of the estrogen receptors and the ERK1/2 signaling pathway. PMID:19275968

  4. Red Raspberry Phenols Inhibit Angiogenesis: A Morphological and Subcellular Analysis Upon Human Endothelial Cells.

    Science.gov (United States)

    Sousa, M; Machado, V; Costa, R; Figueira, M E; Sepodes, B; Barata, P; Ribeiro, L; Soares, R

    2016-07-01

    Polyphenols are a class of natural compounds whose potential as antioxidant, anti-inflammatory, and anti-angiogenesis has been reported in many pathological conditions. Red raspberry extract, rich in polyphenols, has been reported to exert anti-inflammatory effects and prevent cell proliferation in distinct animal models. However, the signaling pathways involved remain unknown. Herein, we used human microvascular endothelial cells (HMVECs) to determine the influence of red raspberry phenolic compound extract concentrations, ranging from 10 to 250 µg gallic acid equivalents (GAE)/mL, on endothelium viability (MTS assay), proliferation (BrdU incorporation), migration (injury assay), and capillary-like structures formation (Matrigel assay). Protein expression in cell lysates was determined by Western blot analysis. We showed that red raspberry extracts reduced cell viability (GI50  = 87,64 ± 6,59 μg GAE/mL) and proliferation in a dose-dependent manner. A significant abrogation of cells ability to migrate to injured areas, even at low concentrations, was observed by injury assay. Cell assembly into capillary-like structures on Matrigel also decreased in a dose dependent-manner for higher extract concentrations, as well as the number of branching points per unit of area. Protein expression analysis showed a dose-dependent decrease in Phospho-VEGFR2 expression, implying abrogation of VEGF signaling activity. We also showed for the first time that red raspberry phenolic compounds induce the rearrangement of filamentous actin cytoskeleton, with an isotropy increase found for higher testing concentrations. Taken together, our findings corroborate the anti-angiogenic potential of red raspberry phenolic compounds and provide new insights into their mode of action upon endothelium. J. Cell. Biochem. 117: 1604-1612, 2016. © 2015 Wiley Periodicals, Inc. PMID:26590362

  5. Diallyl trisulfide inhibits angiogenic features of human umbilical vein endothelial cells by causing Akt inactivation and down-regulation of VEGF and VEGF-R2.

    Science.gov (United States)

    Xiao, Dong; Li, Mengfeng; Herman-Antosiewicz, Anna; Antosiewicz, Jedrzej; Xiao, Hui; Lew, Karen L; Zeng, Yan; Marynowski, Stanley W; Singh, Shivendra V

    2006-01-01

    We have shown recently that diallyl trisulfide (DATS), a cancer-chemopreventive constituent of garlic, inactivates Akt to trigger mitochondrial translocation of proapoptotic protein BAD in human prostate cancer cells. Because Akt activation is implicated in the promotion of endothelial cell survival and angiogenesis, we hypothesized that DATS may inhibit angiogenesis. In the present study, we tested this hypothesis using human umbilical vein endothelial cells (HUVECs) as a model. Survival of HUVECs was reduced significantly in the presence of DATS in a concentration-dependent manner, with an IC50 of approximately 4 microM. The DATS-mediated suppression of HUVEC survival was associated with apoptosis induction characterized by accumulation of subdiploid cells, cytoplasmic histone-associated DNA fragmentation, and cleavage of caspase-3 and poly-(ADP-ribose)-polymerase. The DATS-induced DNA fragmentation was significantly attenuated in the presence of pan-caspase inhibitor zVAD-fmk and specific inhibitors of caspase-9 (zLEHD-fmk) and caspase-8 (zIETD-fmk). DATS treatment inhibited the formation of capillary-like tube structure and migration by HUVECs in association with suppression of vascular endothelial growth factor (VEGF) secretion and VEGF receptor-2 protein level and inactivation of Akt kinase. DATS treatment also caused activation of extracellular signal-regulated kinase 1/2 (ERK1/2) but not c-Jun NH2-terminal kinase (JNK) or p38 mitogen-activated protein kinase (p38MAPK).DATS-mediatedapoptosis induction and inhibition of HUVEC tube formation was partially but statistically significantly attenuated by pharmacologic inhibition of ERK1/2 but not JNK or p38MAPK. The present study demonstrates, for the first time, that DATS has the ability to inhibit angiogenic features of human endothelial cells. PMID:16965246

  6. Inhibition of the proliferation and acceleration of migration of vascular endothelial cells by increased cysteine-rich motor neuron 1

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Yukiko; Morimoto, Mayuka [Department of Immunobiology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women' s University, 11-68 Koshien Kyuban-cho, Nishinomiya, Hyogo 663-8179 (Japan); Toda, Ken-ichi [Department of Dermatology, Kitano Hospital, The Tazuke Kofukai Nedical Institute, 2-4-20 Ohgimachi, Kita-ku, Osaka 530-8480 (Japan); Shinya, Tomohiro; Sato, Keizo [Department of Clinical Biochemistry, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, Nobeoka, Miyazaki 882-8508 (Japan); Takahashi, Satoru, E-mail: imwalrus@mukogawa-u.ac.jp [Department of Immunobiology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women' s University, 11-68 Koshien Kyuban-cho, Nishinomiya, Hyogo 663-8179 (Japan); Institute for Biosciences, Mukogawa Women' s University, 11-68 Koshien Kyuban-cho, Nishinomiya, Hyogo 663-8179 (Japan)

    2015-07-03

    Cysteine-rich motor neuron 1 (CRIM1) is upregulated only in extracellular matrix gels by angiogenic factors such as vascular endothelial growth factor (VEGF). It then plays a critical role in the tube formation of endothelial cells. In the present study, we investigated the effects of increased CRIM1 on other endothelial functions such as proliferation and migration. Knock down of CRIM1 had no effect on VEGF-induced proliferation or migration of human umbilical vein endothelial cells (HUVECs), indicating that basal CRIM1 is not involved in the proliferation or migration of endothelial cells. Stable CRIM1-overexpressing endothelial F-2 cells, termed CR1 and CR2, were constructed, because it was difficult to prepare monolayer HUVECs that expressed high levels of CRIM1. Proliferation was reduced and migration was accelerated in both CR1 and CR2 cells, compared with normal F-2 cells. Furthermore, the transient overexpression of CRIM1 resulted in decreased proliferation and increased migration of bovine aortic endothelial cells. In contrast, neither proliferation nor migration of COS-7 cells were changed by the overexpression of CRIM1. These results demonstrate that increased CRIM1 reduces the proliferation and accelerates the migration of endothelial cells. These CRIM1 effects might contribute to tube formation of endothelial cells. CRIM1 induced by angiogenic factors may serve as a regulator in endothelial cells to switch from proliferating cells to morphological differentiation. - Highlights: • CRIM1 was upregulated only in tubular endothelial cells, but not in monolayers. • Increased CRIM1 reduced the proliferation of endothelial cells. • Increased CRIM1 accelerated the migration of endothelial cells. • Increased CRIM1 had no effect on the proliferation or migration of COS-7 cells.

  7. Inhibition of the proliferation and acceleration of migration of vascular endothelial cells by increased cysteine-rich motor neuron 1

    International Nuclear Information System (INIS)

    Cysteine-rich motor neuron 1 (CRIM1) is upregulated only in extracellular matrix gels by angiogenic factors such as vascular endothelial growth factor (VEGF). It then plays a critical role in the tube formation of endothelial cells. In the present study, we investigated the effects of increased CRIM1 on other endothelial functions such as proliferation and migration. Knock down of CRIM1 had no effect on VEGF-induced proliferation or migration of human umbilical vein endothelial cells (HUVECs), indicating that basal CRIM1 is not involved in the proliferation or migration of endothelial cells. Stable CRIM1-overexpressing endothelial F-2 cells, termed CR1 and CR2, were constructed, because it was difficult to prepare monolayer HUVECs that expressed high levels of CRIM1. Proliferation was reduced and migration was accelerated in both CR1 and CR2 cells, compared with normal F-2 cells. Furthermore, the transient overexpression of CRIM1 resulted in decreased proliferation and increased migration of bovine aortic endothelial cells. In contrast, neither proliferation nor migration of COS-7 cells were changed by the overexpression of CRIM1. These results demonstrate that increased CRIM1 reduces the proliferation and accelerates the migration of endothelial cells. These CRIM1 effects might contribute to tube formation of endothelial cells. CRIM1 induced by angiogenic factors may serve as a regulator in endothelial cells to switch from proliferating cells to morphological differentiation. - Highlights: • CRIM1 was upregulated only in tubular endothelial cells, but not in monolayers. • Increased CRIM1 reduced the proliferation of endothelial cells. • Increased CRIM1 accelerated the migration of endothelial cells. • Increased CRIM1 had no effect on the proliferation or migration of COS-7 cells

  8. Mediterranean diet polyphenols reduce inflammatory angiogenesis through MMP-9 and COX-2 inhibition in human vascular endothelial cells: a potentially protective mechanism in atherosclerotic vascular disease and cancer.

    Science.gov (United States)

    Scoditti, Egeria; Calabriso, Nadia; Massaro, Marika; Pellegrino, Mariangela; Storelli, Carlo; Martines, Giuseppe; De Caterina, Raffaele; Carluccio, Maria Annunziata

    2012-11-15

    Diets with high content of antioxidant polyphenols are associated with low prevalence of cardiovascular diseases and cancer. Inflammatory angiogenesis is a key pathogenic process both in cancer and atherosclerosis, and is tightly regulated by the proinflammatory enzyme cyclooxygenase (COX)-2 and the matrix degrading enzymes matrix metalloproteinases (MMPs). We studied the effects of antioxidant polyphenols from virgin olive oil (oleuropein and hydroxytyrosol) and red wine (resveratrol and quercetin) on endothelial cell angiogenic response in vitro, and explored underlying mechanisms. Cultured endothelial cells were pre-incubated with 0.1-50 μmol/L polyphenols before stimulation with phorbol myristate acetate (PMA). All tested polyphenols reduced endothelial cell tube formation on matrigel and migration in wound healing assays. The reduced angiogenesis was associated with the inhibition of PMA-induced COX-2 protein expression and prostanoid production, as well as MMP-9 protein release and gelatinolytic activity. These effects were accompanied by a significant reduction in the stimulated intracellular reactive oxygen species levels and in the activation of the redox-sensitive transcription factor nuclear factor (NF)-κB. Our findings reveal that olive oil and red wine polyphenols reduce inflammatory angiogenesis in cultured endothelial cells, through MMP-9 and COX-2 inhibition, supporting a potential protective role for dietary polyphenols in atherosclerotic vascular disease and cancer. PMID:22595400

  9. Ligustrazini Inhibits Endotoxin Induced PAI-1 Expression in Human Umbilical Vein Endothelial Cells

    Institute of Scientific and Technical Information of China (English)

    阮秋蓉; 邓仲端; 宋建新

    2001-01-01

    Plasminogen activator inhibitor 1 (PAI-1) is one of important coagulant factors. Endotoxin lipopolysaccharide (LPS) induces thrombosis by stimulating PAI-1 secretion of vascular cells (EC). Using sandwich enzyme-linked immunosorbent assay (ELISA) and Northern blot, was investigated the effects of Chinese medicine ligustrazini on PAI-1 expression in EC and LPS-stimulated EC. The results showed that ligustrazini inhibited both basal and LPS-induced PAI-1 mRNA expression in EC. The effect of ligustrazini on LPS-induced PAI-1 secretion worked in a dose-dependent manner. This study provided theoretic and experimental evidence for use of ligustrazini against septic shock and cardiovascular diseases.

  10. Genistein inhibits human TNF-α-induced porcine endothelial cell adhesiveness for human monocytes and natural killer cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Cellular immune response is a major barrier to xenotransplantation. Human tumor necrosis factor-α (hTNF-α) possesses cross-species activity and directly amplifies the immune rejection via the upregulation of adhesion molecules on porcine endothelium. We investigated the role of protein tyrosine phosphorylation in the induction of expression of E-sclectin and vascular cell adhesion molecule-1 (VCAM-1), and the augmentation of adhesion of human peripheral blood monocytes (PBMo) and natural killer cells (PBNK), after rhTNF-α-stimulation of porcine aortic endothelial cells (PAEC) in vitro, rhTNF-α-increased adhesiveness of PAEC for both PBMo and PBNK was dose-dependently reduced by pretreatment of PAEC with the selective protein tyrosine kinase (PTK) inhibitor genistein. The inhibitory effect occurred at the early time of PAEC activation triggered by rhTNF-α, and was completely reversible. PTK activity assay indicated that genistein also suppressed rhTNF-α stimulated activation of protein tyrosine kinases (PTKs) in PAEC in a dose-dependent manner. Flow cytometric analysis showed that genistein inhibited the upregulation of E-selectin and VCAM-1 by rhTNF-α. These results suggest that PTKs may regulate the expression of E-selectin and VCAM-1 on PAEC and the adherence of PBMo and PBNK induced by rhTNF-α. Moreover, dietary genistein, used as an adhesion antagonist, may contribute to managing the cell-mediated rejection in the clinical application.

  11. Islet-activating protein inhibits leukotriene D4- and leukotriene C4- but not bradykinin- or calcium ionophore-induced prostacyclin synthesis in bovine endothelial cells.

    OpenAIRE

    Clark, M. A.; Conway, T.M.; Bennett, C F; Crooke, S T; Stadel, J M

    1986-01-01

    Incubation of the bovine endothelial cell line, CPAE, with leukotriene D4, leukotriene C4, bradykinin, or the calcium ionophore A23187 results in the release of arachidonic acid metabolites including 6-keto-prostaglandin F1 alpha, the stable metabolite of prostacyclin. Pretreatment of these cells with the pertussis toxin islet-activating protein (IAP) results in a dose-dependent inhibition of the release of arachidonic acid metabolites and prostacyclin in response to leukotriene D4 and leukot...

  12. Culture supernatants of breast cancer cell line MDA-MB-231 treated with parthenolide inhibit the proliferation, migration, and lumen formation capacity of human umbilical vein endothelial cells

    Institute of Scientific and Technical Information of China (English)

    LI Cai-juan; GUO Su-fen; SHI Tie-mei

    2012-01-01

    Background Parthenolide has been tested for anti-tumor activities,such as anti-proliferation and pro-apoptosis in recent studies.However,little is known about its role in the process of tumor angiogenesis.This study aims to investigate the effects and potential mechanisms of parthenolide on the proliferation,migration and lumen formation capacity of human umbilical vein endothelial cells.Methods Different concentrations of parthenolide were applied to the human breast cancer cell line MDA-MB-231 cells.After 24-hour incubation,the culture supematants were harvested and used to treat human umbilical vein endothelial cells for 24 hours.Then an inverted fluorescence phase contrast microscope was used to evaluate the human umbilical vein endothelial cells.The secretion of vascular endothelial growth factor (VEGF),interleukin (IL)-8 and matrix metalloproteinases (MMP)-9 in the culture supernatant of the MDA-MB-231 cells was then measured with enzyme-linked immunosorbent assay (ELISA) assays.Results Suppression of proliferation,migration,and the lumen formation capacity of human umbilical vein endothelial cells was observed in the presence of the culture supernatants from the breast cancer cell line treated with different concentrations of parthenolide.Parthenolide decreased the levels of the angiogenic factors MMP-9,VEGF,and IL-8secreted by the MDA-MB-231 cells.Conclusions Parthenolide may suppress angiogenesis through decreasing angiogenic factors secreted by breast cancer cells to interfere with the proliferation,migration and lumen-like structure formation of endothelial cells,thereby inhibiting tumor growth.It is a promising potential anti-angiogenic drug.

  13. Silver nanoparticles inhibit VEGF-and IL-1β-induced vascular permeability via Src dependent pathway in porcine retinal endothelial cells

    Directory of Open Access Journals (Sweden)

    Park Jongsun

    2009-10-01

    Full Text Available Abstract The aim of this study is to determine the effects of silver nanoparticles (Ag-NP on vascular endothelial growth factor (VEGF-and interleukin-1 beta (IL-1β-induced vascular permeability, and to detect the underlying signaling mechanisms involved in endothelial cells. Porcine retinal endothelial cells (PRECs were exposed to VEGF, IL-1β and Ag-NP at different combinations and endothelial cell permeability was analyzed by measuring the flux of RITC-dextran across the PRECs monolayer. We found that VEGF and IL-1β increase flux of dextran across a PRECs monolayer, and Ag-NP block solute flux induced by both VEGF and IL-1β. To explore the signalling pathway involved VEGF- and IL-1β-induced endothelial alteration, PRECs were treated with Src inhibitor PP2 prior to VEGF and IL-1β treatment, and the effects were recorded. Further, to clarify the possible involvement of the Src pathways in endothelial cell permeability, plasmid encoding dominant negative(DN and constitutively active(CA form of Src kinases were transfected into PRECs, 24 h prior to VEGF and IL-1β exposure and the effects were recorded. Overexpression of DN Src blocked both VEGF-and IL-1β-induced permeability, while overexpression of CA Src rescues the inhibitory action of Ag-NP in the presence or absence of VEGF and IL-1β. Further, an in vitro kinase assay was performed to identify the presence of the Src phosphorylation at Y419. We report that VEGF and IL-1β-stimulate endothelial permeability via Src dependent pathway by increasing the Src phosphorylation and Ag-NP block the VEGF-and IL-1β-induced Src phosphorylation at Y419. These results demonstrate that Ag-NP may inhibit the VEGF-and IL-1β-induced permeability through inactivation of Src kinase pathway and this pathway may represent a potential therapeutic target to inhibit the ocular diseases such as diabetic retinopathy.

  14. Tongxinluo Inhibits Cyclooxygenase-2, Inducible Nitric Oxide Synthase, Hypoxia-inducible Factor-2α/Vascular Endothelial Growth Factor to Antagonize Injury in Hypoxia-stimulated Cardiac Microvascular Endothelial Cells

    Institute of Scientific and Technical Information of China (English)

    Yan-Ning Li; Xiu-Juan Wang; Bin Li; Kun Liu; Jin-Sheng Qi; Bing-Hui Liu; Ye Tian

    2015-01-01

    Background:Endothelial dysfunction is considered as the initiating process and pathological basis of cardiovascular disease.Cyclooxygenase-2 (COX-2) and prostacyclin synthase (PGIS),inducible nitric oxide synthase (iNOS) and endothelial NOS (eNOS)are key enzymes with opposing actions in inflammation and oxidative stress,which are believed to be the major driver of endothelial dysfunction.And in hypoxia (Hx),Hx-inducible factor (HIF)-1 α and HIF-2α are predominantly induced to activate vascular endothelial growth factor (VEGF),resulting in abnormal proliferation.Whether and how Tongxinluo (TXL) modulates COX-2,PGIS,iNOS,eNOS,HIF-1 α,HIF-2α,and VEGF in Hx-stimulated human cardiac microvascular endothelial cells (HCMECs) have not been clarified.Methods:HCMEC were treated with CoCl2 to mimic Hx and the mRNA expressions of COX-2,PGIS,iNOS,eNOS,HIF-1α,HIF-2α,and VEGF were first confirmed,and then their mRNA expression and protein content as well as the cell pathological alterations were evaluated for TXL treatment with different concentrations.In addition,the effector molecular of inflammation prostaglandin E2 (PGE2)and the oxidative marker nitrotyrosine (NT) was adopted to reflect HCMEC injury.Results:Hx could induce time-dependent increase of COX-2,iNOS,HIF-2α,and VEGF in HCMEC.Based on the Hx-induced increase,TXL could mainly decrease COX-2,iNOS,HIF-2α,and VEGF in a concentration-dependent manner,with limited effect on the increase of PGIS and eNOS.Their protein contents verified the mRNA expression changes,which was consistent with the cell morphological alterations.Furthermore,high dose TXL could inhibit the Hx-induced increase of PGE2 and NT contents,attenuating the inflammatory and oxidative injury.Conclusions:TXL could inhibit inflammation-related COX-2,oxidative stress-related iNOS,and HIF-2α/VEGF to antagonize Hx-induced HCMEC injury.

  15. Increased expression of microRNA-221 inhibits PAK1 in endothelial progenitor cells and impairs its function via c-Raf/MEK/ERK pathway

    International Nuclear Information System (INIS)

    Highlights: ► MicroRNA-221 is upregulated in the endothelial progenitor cells of atherosclerosis patients. ► PAK1 is a direct target of microRNA-221. ► MicroRNA-221 inhibits EPCs proliferation through c-Raf/MEK/ERK pathway. -- Abstract: Coronary artery disease (CAD) is associated with high mortality and occurs via endothelial injury. Endothelial progenitor cells (EPCs) restore the integrity of the endothelium and protect it from atherosclerosis. In this study, we compared the expression of microRNAs (miRNAs) in EPCs in atherosclerosis patients and normal controls. We found that miR-221 expression was significantly up-regulated in patients compared with controls. We predicted and identified p21/Cdc42/Rac1-activated kinase 1 (PAK1) as a novel target of miR-221 in EPCs. We also demonstrated that miR-221 targeted a putative binding site in the 3′UTR of PAK1, and absence of this site was inversely associated with miR-221 expression in EPCs. We confirmed this relationship using a luciferase reporter assay. Furthermore, overexpression of miR-221 in EPCs significantly decreased EPC proliferation, in accordance with the inhibitory effects induced by decreased PAK1. Overall, these findings demonstrate that miR-221 affects the MEK/ERK pathway by targeting PAK1 to inhibit the proliferation of EPCs

  16. Inhibition of Vascular Endothelial Growth Factor A and Hypoxia-Inducible Factor 1α Maximizes the Effects of Radiation in Sarcoma Mouse Models Through Destruction of Tumor Vasculature

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae-June [Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Yoon, Changhwan [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Park, Do Joong [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Department of Surgery, Seoul National University Bundang Hospital, Sungnam (Korea, Republic of); Kim, Yeo-Jung [Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Schmidt, Benjamin [Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Lee, Yoon-Jin [Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Tap, William D. [Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Eisinger-Mathason, T.S. Karin [Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Choy, Edwin [Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Kirsch, David G. [Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Simon, M. Celeste [Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Howard Hughes Medical Institute (United States); and others

    2015-03-01

    Purpose: To examine the addition of genetic or pharmacologic inhibition of hypoxia-inducible factor 1α (HIF-1α) to radiation therapy (RT) and vascular endothelial growth factor A (VEGF-A) inhibition (ie trimodality therapy) for soft-tissue sarcoma. Methods and Materials: Hypoxia-inducible factor 1α was inhibited using short hairpin RNA or low metronomic doses of doxorubicin, which blocks HIF-1α binding to DNA. Trimodality therapy was examined in a mouse xenograft model and a genetically engineered mouse model of sarcoma, as well as in vitro in tumor endothelial cells (ECs) and 4 sarcoma cell lines. Results: In both mouse models, any monotherapy or bimodality therapy resulted in tumor growth beyond 250 mm{sup 3} within the 12-day treatment period, but trimodality therapy with RT, VEGF-A inhibition, and HIF-1α inhibition kept tumors at <250 mm{sup 3} for up to 30 days. Trimodality therapy on tumors reduced HIF-1α activity as measured by expression of nuclear HIF-1α by 87% to 95% compared with RT alone, and cytoplasmic carbonic anhydrase 9 by 79% to 82%. Trimodality therapy also increased EC-specific apoptosis 2- to 4-fold more than RT alone and reduced microvessel density by 75% to 82%. When tumor ECs were treated in vitro with trimodality therapy under hypoxia, there were significant decreases in proliferation and colony formation and increases in DNA damage (as measured by Comet assay and γH2AX expression) and apoptosis (as measured by cleaved caspase 3 expression). Trimodality therapy had much less pronounced effects when 4 sarcoma cell lines were examined in these same assays. Conclusions: Inhibition of HIF-1α is highly effective when combined with RT and VEGF-A inhibition in blocking sarcoma growth by maximizing DNA damage and apoptosis in tumor ECs, leading to loss of tumor vasculature.

  17. Inhibition of Vascular Endothelial Growth Factor A and Hypoxia-Inducible Factor 1α Maximizes the Effects of Radiation in Sarcoma Mouse Models Through Destruction of Tumor Vasculature

    International Nuclear Information System (INIS)

    Purpose: To examine the addition of genetic or pharmacologic inhibition of hypoxia-inducible factor 1α (HIF-1α) to radiation therapy (RT) and vascular endothelial growth factor A (VEGF-A) inhibition (ie trimodality therapy) for soft-tissue sarcoma. Methods and Materials: Hypoxia-inducible factor 1α was inhibited using short hairpin RNA or low metronomic doses of doxorubicin, which blocks HIF-1α binding to DNA. Trimodality therapy was examined in a mouse xenograft model and a genetically engineered mouse model of sarcoma, as well as in vitro in tumor endothelial cells (ECs) and 4 sarcoma cell lines. Results: In both mouse models, any monotherapy or bimodality therapy resulted in tumor growth beyond 250 mm3 within the 12-day treatment period, but trimodality therapy with RT, VEGF-A inhibition, and HIF-1α inhibition kept tumors at <250 mm3 for up to 30 days. Trimodality therapy on tumors reduced HIF-1α activity as measured by expression of nuclear HIF-1α by 87% to 95% compared with RT alone, and cytoplasmic carbonic anhydrase 9 by 79% to 82%. Trimodality therapy also increased EC-specific apoptosis 2- to 4-fold more than RT alone and reduced microvessel density by 75% to 82%. When tumor ECs were treated in vitro with trimodality therapy under hypoxia, there were significant decreases in proliferation and colony formation and increases in DNA damage (as measured by Comet assay and γH2AX expression) and apoptosis (as measured by cleaved caspase 3 expression). Trimodality therapy had much less pronounced effects when 4 sarcoma cell lines were examined in these same assays. Conclusions: Inhibition of HIF-1α is highly effective when combined with RT and VEGF-A inhibition in blocking sarcoma growth by maximizing DNA damage and apoptosis in tumor ECs, leading to loss of tumor vasculature

  18. Juice and phenolic fractions of the berry Aristotelia chilensis inhibit LDL oxidation in vitro and protect human endothelial cells against oxidative stress.

    Science.gov (United States)

    Miranda-Rottmann, Soledad; Aspillaga, Augusto A; Pérez, Druso D; Vasquez, Luis; Martinez, Alvaro L F; Leighton, Federico

    2002-12-18

    Oxidative modification of low-density lipoprotein (LDL) particles is a key event in the development of atherosclerosis. Oxidized LDL induces oxidative stress and modifies gene expression in endothelial cells. Berries constitute a rich dietary source of phenolic antioxidants. We found that the endemic Chilean berry Aristotelia chilensis (ach) has higher phenol content and scores better for total radical-trapping potential and total antioxidant reactivity in in vitro antioxidant capacity tests, when compared to different commercial berries. The juice of ach is also effective in inhibiting copper-induced LDL oxidation. In human endothelial cell cultures, the addition of ach juice significantly protects from hydrogen peroxide-induced intracellular oxidative stress and is dose-dependent. The aqueous, anthocyanin-rich fraction of ach juice accounts for most of ach's antioxidant properties. These results show that ach is a rich source of phenolics with high antioxidant capacity and suggest that it may have antiatherogenic properties. PMID:12475268

  19. EGCG protects endothelial cells against PCB 126-induced inflammation through inhibition of AhR and induction of Nrf2-regulated genes

    International Nuclear Information System (INIS)

    Tea flavonoids such as epigallocatechin gallate (EGCG) protect against vascular diseases such as atherosclerosis via their antioxidant and anti-inflammatory functions. Persistent and widespread environmental pollutants, including polychlorinated biphenyls (PCB), can induce oxidative stress and inflammation in vascular endothelial cells. Even though PCBs are no longer produced, they are still detected in human blood and tissues and thus considered a risk for vascular dysfunction. We hypothesized that EGCG can protect endothelial cells against PCB-induced cell damage via its antioxidant and anti-inflammatory properties. To test this hypothesis, primary vascular endothelial cells were pretreated with EGCG, followed by exposure to the coplanar PCB 126. Exposure to PCB 126 significantly increased cytochrome P450 1A1 (Cyp1A1) mRNA and protein expression and superoxide production, events which were significantly attenuated following pretreatment with EGCG. Similarly, EGCG also reduced DNA binding of NF-κB and downstream expression of inflammatory markers such as monocyte chemotactic protein-1 (MCP-1) and vascular cell adhesion protein-1 (VCAM-1) after PCB exposure. Furthermore, EGCG decreased endogenous or base-line levels of Cyp1A1, MCP-1 and VCAM-1 in endothelial cells. Most of all, treatment of EGCG upregulated expression of NF-E2-related factor 2 (Nrf2)-controlled antioxidant genes, including glutathione S transferase (GST) and NAD(P)H:quinone oxidoreductase 1 (NQO1), in a dose-dependent manner. In contrast, silencing of Nrf2 increased Cyp1A1, MCP-1 and VCAM-1 and decreased GST and NQO1 expression, respectively. These data suggest that EGCG can inhibit AhR regulated genes and induce Nrf2-regulated antioxidant enzymes, thus providing protection against PCB-induced inflammatory responses in endothelial cells. -- Highlights: ► PCBs cause endothelial inflammation and subsequent atherosclerosis. ► Nutrition can modulate toxicity by environmental pollutants. ► We

  20. EGCG protects endothelial cells against PCB 126-induced inflammation through inhibition of AhR and induction of Nrf2-regulated genes

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sung Gu [Superfund Research Program, University of Kentucky, Lexington, KY 40536 (United States); Department of Animal and Food Sciences, College of Agriculture, University of Kentucky, Lexington, KY 40536 (United States); Han, Seong-Su [Department of Pathology, College of Medicine, University of Iowa, Iowa City, IA 52242 (United States); Toborek, Michal [Department of Neurosurgery, University of Kentucky, Lexington, KY 40536 (United States); Hennig, Bernhard, E-mail: bhennig@uky.edu [Superfund Research Program, University of Kentucky, Lexington, KY 40536 (United States); Department of Animal and Food Sciences, College of Agriculture, University of Kentucky, Lexington, KY 40536 (United States)

    2012-06-01

    Tea flavonoids such as epigallocatechin gallate (EGCG) protect against vascular diseases such as atherosclerosis via their antioxidant and anti-inflammatory functions. Persistent and widespread environmental pollutants, including polychlorinated biphenyls (PCB), can induce oxidative stress and inflammation in vascular endothelial cells. Even though PCBs are no longer produced, they are still detected in human blood and tissues and thus considered a risk for vascular dysfunction. We hypothesized that EGCG can protect endothelial cells against PCB-induced cell damage via its antioxidant and anti-inflammatory properties. To test this hypothesis, primary vascular endothelial cells were pretreated with EGCG, followed by exposure to the coplanar PCB 126. Exposure to PCB 126 significantly increased cytochrome P450 1A1 (Cyp1A1) mRNA and protein expression and superoxide production, events which were significantly attenuated following pretreatment with EGCG. Similarly, EGCG also reduced DNA binding of NF-κB and downstream expression of inflammatory markers such as monocyte chemotactic protein-1 (MCP-1) and vascular cell adhesion protein-1 (VCAM-1) after PCB exposure. Furthermore, EGCG decreased endogenous or base-line levels of Cyp1A1, MCP-1 and VCAM-1 in endothelial cells. Most of all, treatment of EGCG upregulated expression of NF-E2-related factor 2 (Nrf2)-controlled antioxidant genes, including glutathione S transferase (GST) and NAD(P)H:quinone oxidoreductase 1 (NQO1), in a dose-dependent manner. In contrast, silencing of Nrf2 increased Cyp1A1, MCP-1 and VCAM-1 and decreased GST and NQO1 expression, respectively. These data suggest that EGCG can inhibit AhR regulated genes and induce Nrf2-regulated antioxidant enzymes, thus providing protection against PCB-induced inflammatory responses in endothelial cells. -- Highlights: ► PCBs cause endothelial inflammation and subsequent atherosclerosis. ► Nutrition can modulate toxicity by environmental pollutants. ► We

  1. Estrogens, selective estrogen receptor modulators, and a selective estrogen receptor down-regulator inhibit endothelial production of tissue factor pathway inhibitor 1

    Directory of Open Access Journals (Sweden)

    Ree Anne

    2006-10-01

    Full Text Available Abstract Background Hormone therapy, oral contraceptives, and tamoxifen increase the risk of thrombotic disease. These compounds also reduce plasma content of tissue factor pathway inhibitor-1 (TFPI, which is the physiological inhibitor of the tissue factor pathway of coagulation. The current aim was to study if estrogens and estrogen receptor (ER modulators may inhibit TFPI production in cultured endothelial cells and, if so, identify possible mechanisms involved. Methods Human endothelial cell cultures were treated with 17β-estradiol (E2, 17α-ethinylestradiol (EE2, tamoxifen, raloxifene, or fulvestrant. Protein levels of TFPI in cell media and cell lysates were measured by an enzyme-linked immunosorbent assay, and TFPI mRNA levels were assessed by quantitative PCR. Expression of ERα was analysed by immunostaining. Results All compounds (each in a concentration of 10 nM reduced TFPI in cell medium, by 34% (E2, 21% (EE2, 16% (tamoxifen, and 28% (raloxifene, respectively, with identical inhibitory effects on cellular TFPI levels. Expression of TFPI mRNA was principally unchanged. Treatment with fulvestrant, which was also associated with down-regulation of secreted TFPI (9% with 10 nM and 26% with 1000 nM, abolished the TFPI-inhibiting effect of raloxifene, but not of the other compounds. Notably, the combination of 1000 nM fulvestrant and 10 nM raloxifene increased TFPI secretion, and, conversely, 10 nM of either tamoxifen or raloxifene seemed to partly (tamoxifen or fully (raloxifene counteract the inhibitory effect of 1000 nM fulvestrant. The cells did not express the regular nuclear 66 kDa ERα, but instead a 45 kDa ERα, which was not regulated by estrogens or ER modulators. Conclusion E2, EE2, tamoxifen, raloxifene, and fulvestrant inhibited endothelial production of TFPI by a mechanism apparently independent of TFPI transcription.

  2. Carbon monoxide released by CORM-401 uncouples mitochondrial respiration and inhibits glycolysis in endothelial cells: A role for mitoBKCa channels.

    Science.gov (United States)

    Kaczara, Patrycja; Motterlini, Roberto; Rosen, Gerald M; Augustynek, Bartlomiej; Bednarczyk, Piotr; Szewczyk, Adam; Foresti, Roberta; Chlopicki, Stefan

    2015-10-01

    Carbon monoxide (CO), a product of heme degradation by heme oxygenases, plays an important role in vascular homeostasis. Recent evidence indicates that mitochondria are among a number of molecular targets that mediate the cellular actions of CO. In the present study we characterized the effects of CO released from CORM-401 on mitochondrial respiration and glycolysis in intact human endothelial cells using electron paramagnetic resonance (EPR) oximetry and the Seahorse XF technology. We found that CORM-401 (10-100μM) induced a persistent increase in the oxygen consumption rate (OCR) that was accompanied by inhibition of glycolysis (extracellular acidification rate, ECAR) and a decrease in ATP-turnover. Furthermore, CORM-401 increased proton leak, diminished mitochondrial reserve capacity and enhanced non-mitochondrial respiration. Inactive CORM-401 (iCORM-401) neither induced mitochondrial uncoupling nor inhibited glycolysis, supporting a direct role of CO in the endothelial metabolic response induced by CORM-401. Interestingly, blockade of mitochondrial large-conductance calcium-regulated potassium ion channels (mitoBKCa) with paxilline abolished the increase in OCR promoted by CORM-401 without affecting ECAR; patch-clamp experiments confirmed that CO derived from CORM-401 activated mitoBKCa channels present in mitochondria. Conversely, stabilization of glycolysis by MG132 prevented CORM-401-mediated decrease in ECAR but did not modify the OCR response. In summary, we demonstrated in intact endothelial cells that CO induces a two-component metabolic response: uncoupling of mitochondrial respiration dependent on the activation of mitoBKCa channels and inhibition of glycolysis independent of mitoBKCa channels. PMID:26185029

  3. Vascular Endothelial Growth Factor-Receptor 1 Inhibition Aggravates Diabetic Nephropathy through eNOS Signaling Pathway in db/db Mice

    OpenAIRE

    Keun Suk Yang; Ji Hee Lim; Tae Woo Kim; Min Young Kim; Yaeni Kim; Sungjin Chung; Seok Joon Shin; Beom Soon Choi; Hyung Wook Kim; Yong-Soo Kim; Yoon Sik Chang; Hye Won Kim; Cheol Whee Park

    2014-01-01

    The manipulation of vascular endothelial growth factor (VEGF)-receptors (VEGFRs) in diabetic nephropathy is as controversial as issue as ever. It is known to be VEGF-A and VEGFR2 that regulate most of the cellular actions of VEGF in experimental diabetic nephropathy. On the other hand, such factors as VEGF-A, -B and placenta growth factor bind to VEGFR1 with high affinity. Such notion instigated us to investigate on whether selective VEGFR1 inhibition with GNQWFI hexamer aggravates the progre...

  4. Monoclonal antibody OKM5 inhibits the in vitro binding of Plasmodium falciparum-infected erythrocytes to monocytes, endothelial, and C32 melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Barnwell, J.W.; Ockenhouse, C.F.; Knowles, D.M. II

    1985-11-01

    Plasmodium falciparum-infected erythrocytes bind in vitro to human endothelial cells, monocytes, and a certain melanoma cell line. Evidence suggests that this interaction is mediated by similar mechanisms which lead to the sequestration of parasitized erythrocytes in vivo through their attachment to endothelial cells of small blood vessels. They show here the monoclonal antibody OKM5, previously shown to react with the membranes of endothelial cells, monocyte,s and platelets, also reacts with the C32 melanoma cell line which also binds P. falciparum-infected erythrocytes. At relatively low concentrations, OKM5 inhibits and reverses the in vitro adherence of infected erythrocytes to target cells. As with monocytes, OKM5 antibody recognizes an /sup 125/I-labeled protein of approximately 88 Kd on the surface of C32 melanoma cells. It seems likely, therefore, that the 88 Kd polypeptide plays a role in cytoadherence, possibly as the receptor or part of a receptor for a ligand on the surface of infected erythrocytes.

  5. Characterization of neural stem cells and their progeny in the sensory circumventricular organs of adult mouse.

    Science.gov (United States)

    Furube, Eriko; Morita, Mitsuhiro; Miyata, Seiji

    2015-11-01

    Although evidence has accumulated that neurogenesis and gliogenesis occur in the subventricular zone (SVZ) and subgranular zone (SGZ) of adult mammalian brains, recent studies indicate the presence of neural stem cells (NSCs) in adult brains, particularly the circumventricular regions. In the present study, we aimed to determine characterization of NSCs and their progenitor cells in the sensory circumventricular organs (CVOs), including organum vasculosum of the lamina terminalis, subfornical organ, and area postrema of adult mouse. There were two types of NSCs: tanycyte-like ependymal cells and astrocyte-like cells. Astrocyte-like NSCs proliferated slowly and oligodendrocyte progenitor cells (OPCs) and neural progenitor cells (NPCs) actively divided. Molecular marker protein expression of NSCs and their progenitor cells were similar to those reported in the SVZ and SGZ, except that astrocyte-like NSCs expressed S100β. These circumventricular NSCs possessed the capacity to give rise to oligodendrocytes and sparse numbers of neurons and astrocytes in the sensory CVOs and adjacent brain regions. The inhibition of vascular endothelial growth factor (VEGF) signaling by using a VEGF receptor-associated tyrosine kinase inhibitor AZD2171 largely suppressed basal proliferation of OPCs. A single systemic administration of lipopolysaccharide attenuated proliferation of OPCs and induced remarkable proliferation of microglia. The present study indicates that sensory circumventricular NSCs provide new neurons and glial cells in the sensory CVOs and adjacent brain regions. PMID:25994374

  6. Effects of ACE inhibition on endothelial progenitor cell mobilization and prognosis after acute myocardial infarction in type 2 diabetic patients

    Directory of Open Access Journals (Sweden)

    Jia-Yin Sun

    2013-05-01

    Full Text Available OBJECTIVE: We aimed to assess the chemotactic response of endothelial progenitor cells to angiotensin-converting enzyme inhibitors in T2DM patients after acute myocardial infarction, as well as the associated prognosis. METHODS: Sixty-eight T2DM patients with acute myocardial infarction were randomized to either receive or not receive daily oral perindopril 4 mg, and 36 non-diabetic patients with acute myocardial infarction were enrolled as controls. The numbers of circulating CD45−/low+CD34+CD133+KDR+ endothelial progenitor cells, as well as the stromal cell-derived factor-α and high-sensitivity C reactive protein levels, were measured before acute percutaneous coronary intervention and on days 1, 3, 5, 7, 14, and 28 after percutaneous coronary intervention. Patients were followed up for 6 months. Chinese Clinical Trial Registry: ChiCTR-TRC-12002599. RESULTS: T2DM patients had lower circulating endothelial progenitor cell counts, decreased plasma vascular endothelial growth factor and α levels, and higher plasma high-sensitivity C reactive protein levels compared with non-diabetic controls. After receiving perindopril, the number of circulating endothelial progenitor cells increased from day 3 to 7, as did the plasma levels of vascular endothelial growth factor and stromal cell-derived factor-α, compared with the levels in T2DM controls. Plasma high-sensitivity C reactive protein levels in the treated group decreased to the same levels as those in non-diabetic controls. Furthermore, compared with T2DM controls, the perindopril-treated T2DM patients had lower cardiovascular mortality and occurrence of heart failure symptoms (p<0.05 and better left ventricle function (p<0.01. CONCLUSIONS: The use of angiotensin-converting enzyme inhibitors represents a novel approach for improving cardiovascular repair after acute myocardial infarction in T2DM patients.

  7. Angiotensin converting enzyme and vascular endothelial growth factor responses to exercise training in claudicants: the role of ace inhibition

    OpenAIRE

    Ng, P

    2009-01-01

    Exercise training is well recognised as an effective treatment for intermittent claudication. The mechanism underlying exercise induced improvements is multi-factorial but remains poorly understood. Low angiotensin-converting enzyme (ACE) activity has been associated with enhanced responses to endurance training. Specifically, low ACE activity has been associated with improved muscle metabolism, endothelial function, and suppressed inflammatory responses; processes linked with exercise traini...

  8. Aspirin inhibits Chlamydia pneumoniae : Induced nuclear factor-kappa B activation, cytokine expression, and bacterial development in human endothelial cells

    NARCIS (Netherlands)

    Tiran, A; Gruber, HJ; Graier, WF; Wagner, AH; van Leeuwen, EBM; Tiran, B

    2002-01-01

    Objective-Chlamydia pneumoniae has been associated with atherosclerosis. Infection of vascular endothelial cells with C pneumoniae increases the expression of proatherogenic cytokines mediated by nuclear factor (NF)-kappaB, a transcription factor. The present study was designed to test the effect of

  9. Role of voltage-dependent potassium channels and myo-endothelial gap junctions in 4-aminopyridine-induced inhibition of acetylcholine relaxation in rat carotid artery.

    Science.gov (United States)

    Gupta, Praveen K; Subramani, Jaganathan; Leo, Marie Dennis Marcus; Sikarwar, Anurag S; Parida, Subhashree; Prakash, Vellanki Ravi; Mishra, Santosh K

    2008-09-01

    The present study examined the role of voltage-gated potassium (K(v)) channels and myo-endothelial gap junctions in 4-aminopyridine-induced inhibition of acetylcholine-evoked endothelium-dependent relaxation and NO release in the rat carotid artery. The acetylcholine-induced relaxation was drastically inhibited by 94% and 82%, respectively in the presence of either 100 microM N(G)-nitro-l-arginine methyl ester (L-NAME) or 10 microM 1H-[1,2,4]oxadiazolo[4,3,a]quinoxalin-1-one (ODQ), while it was abolished following endothelium removal. 4-aminopyridine (1 mM), a preferential blocker of the K(v) channels significantly decreased the vasodilator potency, as well as efficacy of acetylcholine (pD(2) 5.7+/-0.09, R(max) 86.1+/-3.5% versus control 6.7+/-0.10 R(max) 106+/-3.5%, n=6), but had no effect on the relaxations elicited by either sodium nitroprusside (SNP) or 8-bromo-cyclic guanosine monophosphate (8-Br-cGMP). 4-AP (1 mM) also inhibited acetylcholine (3 microM)-stimulated nitrite release in the carotid artery segments (99.4+/-4.93 pmol/mg tissue weight wt; n=6 versus control 123.8+/-7.43 pmol/mg tissue weight wt, n=6). 18alpha-glycyrrhetinic acid (18alpha-GA, 5 microM), a gap junction blocker, completely prevented the inhibition of acetylcholine-induced relaxation, as well as nitrite release by 4-AP. In the pulmonary artery, however antagonism of acetylcholine-evoked relaxation by 4-AP was not reversed by 18alpha-GA. These results suggest that 4-AP-induced inhibition of endothelium-dependent relaxation and NO release involves electrical coupling between vascular smooth muscle and endothelial cells via myo-endothelial gap junctions in the rat carotid artery, but not in the pulmonary artery. Further, direct activation of 4-AP-sensitive vascular K(v) channels by endothelium-derived NO is not evident in the carotid blood vessel, while this appears to be an important mechanism of acetylcholine-induced relaxation in the pulmonary artery. PMID:18577383

  10. Combination of interferon-alpha and 5-fluorouracil inhibits endothelial cell growth directly and by regulation of angiogenic factors released by tumor cells

    International Nuclear Information System (INIS)

    The combination therapy of interferon (IFN)-alpha and 5-fluorouracil (5-FU) improved the prognosis of the patients with hepatocellular carcinoma (HCC). To determine the molecular mechanisms of the anti-tumor and anti-angiogenic effects, we examined the direct anti-proliferative effects on human umbilical vein endothelial cells (HUVEC) and indirect effects by regulating secretion of angiogenic factors from HCC cells. The direct effects on HUVEC were examined by TUNEL, Annexin-V assays and cell cycles analysis. For analysis of the indirect effects, the apoptosis induced by the conditioned medium from HCC cell treated by IFN-alpha/5-FU and expression of angiogenic factors was examined. IFN-alpha and 5-FU alone had anti-proliferative properties on HUVEC and their combination significantly inhibited the growth (compared with control, 5-FU or IFN alone). TUNEL and Annexin-V assays showed no apoptosis. Cell cycle analysis revealed that IFN-alpha and 5-FU delayed cell cycle progression in HUVEC with S-phase accumulation. The conditioned medium from HuH-7 cells after treatment with IFN/5-FU significantly inhibited HUVEC growth and induced apoptosis, and contained high levels of angiopoietin (Ang)-1 and low levels of vascular endothelial growth factor (VEGF) and Ang-2. Knockdown of Ang-1 in HuH-7 cells abrogated the anti-proliferative effects on HUVEC while knockdown of Ang-2 partially rescue the cells. These results suggested that IFN-alpha and 5-FU had direct growth inhibitory effects on endothelial cells, as well as anti-angiogenic effects through regulation of angiogenic factors released from HCC cells. Modulation of VEGF and Angs secretion by IFN-alpha and 5-FU may contribute to their anti-angiogenic and anti-tumor effects on HCC

  11. Ammonia inhibits the C-type natriuretic peptide-dependent cyclic GMP synthesis and calcium accumulation in a rat brain endothelial cell line.

    Science.gov (United States)

    Konopacka, Agnieszka; Zielińska, Magdalena; Albrecht, Jan

    2008-05-01

    Recently we reported a decrease of C-type natriuretic peptide (CNP)-dependent, natriuretic peptide receptor 2 (NPR2)-mediated cyclic GMP (cGMP) synthesis in a non-neuronal compartment of cerebral cortical slices of hyperammonemic rats [Zielińska, M., Fresko, I., Konopacka, A., Felipo, V., Albrecht, J., 2007. Hyperammonemia inhibits the natriuretic peptide receptor 2 (NPR2)-mediated cyclic GMP synthesis in the astrocytic compartment of rat cerebral cortex slices. Neurotoxicology 28, 1260-1263]. Here we accounted for the possible involvement of cerebral capillary endothelial cells in this response by measuring the effect of ammonia on the CNP-mediated cGMP formation and intracellular calcium ([Ca2+]i) accumulation in a rat cerebral endothelial cell line (RBE-4). We first established that stimulation of cGMP synthesis in RBE-4 cells was coupled to protein kinase G (PKG)-mediated Ca2+ influx from the medium which was inhibited by an L-type channel blocker nimodipine. Ammonia treatment (1h, 5mM NH4Cl) evoked a substantial decrease of CNP-stimulated cGMP synthesis which was related to a decreased binding of CNP to NPR2 receptors, and depressed the CNP-dependent [Ca2+]i accumulation in these cells. Ammonia also abolished the CNP-dependent Ca2+ accumulation in the absence of Na+. In cells incubated with ammonia in the absence of Ca2+ a slight CNP-dependent increase of [Ca2+]i was observed, most likely representing Ca2+ release from intracellular stores. Depression of CNP-dependent cGMP-mediated [Ca2+]i accumulation may contribute to cerebral vascular endothelial dysfunction associated with hyperammonemia or hepatic encephalopathy. PMID:18222015

  12. Kruppel-like factor 2 inhibit the angiogenesis of cultured human liver sinusoidal endothelial cells through the ERK1/2 signaling pathway

    International Nuclear Information System (INIS)

    Kruppel-like factor 2 (KLF2) is a crucial anti-angiogenic factor. However, its precise role in hepatic angiogenesis induced by liver sinusoidal endothelial cells (LSECs) remain unclear. This study was aimed to evaluate the effect of KLF2 on angiogenesis of LSECs and to explore the corresponding mechanism. Cultured human LSECs were infected with different lentiviruses to overexpress or suppress KLF2 expression. The CCK-8 assay, transwell migration assay and tube formation test, were used to investigate the roles of KLF2 in the proliferation, migration and vessel tube formation of LSECs, respectively. The expression and phosphorylation of ERK1/2 were detected by western blot. We discovered that the up-regulation of KLF2 expression dramatically inhibited proliferation, migration and tube formation in treated LSECs. Correspondingly, down-regulation of KLF2 expression significantly promoted proliferation, migration and tube formation in treated LSECs. Additionally, KLF2 inhibited the phosphorylation of ERK1/2 pathway, followed by the function of KLF2 in the angiogenesis of LSECs disrupted. In conclusion, KLF2 suppressed the angiogenesis of LSECs through inhibition of cell proliferation, migration, and vessel tube formation. These functions of KLF2 may be mediated through the ERK1/2 signaling pathway. - Highlights: • Overexpression of KLF2 inhibits the proliferation and migration of LSECs. • Overexpression of KLF2 inhibits the angiogenesis of LSECs. • ERK1/2 signaling pathway involved in the anti-angiogenic process of KLF2 on LSECs

  13. Kruppel-like factor 2 inhibit the angiogenesis of cultured human liver sinusoidal endothelial cells through the ERK1/2 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xiao-Qing, E-mail: zeng.xiaoqing@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Li, Na, E-mail: Linala.2009@163.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Pan, Du-Yi, E-mail: lasikesmi@hotmail.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Miao, Qing, E-mail: sadsadvenus@163.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Ma, Gui-Fen, E-mail: ma.guifen@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Liu, Yi-Mei, E-mail: liuyimei1988@163.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Tseng, Yu-Jen, E-mail: dianatseng14@gmail.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Li, Feng, E-mail: li.feng2@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Xu, Li-Li, E-mail: xu.lili3@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Chen, Shi-Yao, E-mail: chen.shiyao@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Institute of Endoscopic Research of Zhongshan Hospital, Fudan University, Shanghai (China)

    2015-09-04

    Kruppel-like factor 2 (KLF2) is a crucial anti-angiogenic factor. However, its precise role in hepatic angiogenesis induced by liver sinusoidal endothelial cells (LSECs) remain unclear. This study was aimed to evaluate the effect of KLF2 on angiogenesis of LSECs and to explore the corresponding mechanism. Cultured human LSECs were infected with different lentiviruses to overexpress or suppress KLF2 expression. The CCK-8 assay, transwell migration assay and tube formation test, were used to investigate the roles of KLF2 in the proliferation, migration and vessel tube formation of LSECs, respectively. The expression and phosphorylation of ERK1/2 were detected by western blot. We discovered that the up-regulation of KLF2 expression dramatically inhibited proliferation, migration and tube formation in treated LSECs. Correspondingly, down-regulation of KLF2 expression significantly promoted proliferation, migration and tube formation in treated LSECs. Additionally, KLF2 inhibited the phosphorylation of ERK1/2 pathway, followed by the function of KLF2 in the angiogenesis of LSECs disrupted. In conclusion, KLF2 suppressed the angiogenesis of LSECs through inhibition of cell proliferation, migration, and vessel tube formation. These functions of KLF2 may be mediated through the ERK1/2 signaling pathway. - Highlights: • Overexpression of KLF2 inhibits the proliferation and migration of LSECs. • Overexpression of KLF2 inhibits the angiogenesis of LSECs. • ERK1/2 signaling pathway involved in the anti-angiogenic process of KLF2 on LSECs.

  14. Activation of P2X7 and P2Y11 purinergic receptors inhibits migration and normalizes tumor-derived endothelial cells via cAMP signaling.

    Science.gov (United States)

    Avanzato, D; Genova, T; Fiorio Pla, A; Bernardini, M; Bianco, S; Bussolati, B; Mancardi, D; Giraudo, E; Maione, F; Cassoni, P; Castellano, I; Munaron, L

    2016-01-01

    Purinergic signaling is involved in inflammation and cancer. Extracellular ATP accumulates in tumor interstitium, reaching hundreds micromolar concentrations, but its functional role on tumor vasculature and endothelium is unknown. Here we show that high ATP doses (>20 μM) strongly inhibit migration of endothelial cells from human breast carcinoma (BTEC), but not of normal human microvascular EC. Lower doses (1-10 mm result ineffective. The anti-migratory activity is associated with cytoskeleton remodeling and is significantly prevented by hypoxia. Pharmacological and molecular evidences suggest a major role for P2X7R and P2Y11R in ATP-mediated inhibition of TEC migration: selective activation of these purinergic receptors by BzATP mimics the anti-migratory effect of ATP, which is in turn impaired by their pharmacological or molecular silencing. Downstream pathway includes calcium-dependent Adenilyl Cyclase 10 (AC10) recruitment, cAMP release and EPAC-1 activation. Notably, high ATP enhances TEC-mediated attraction of human pericytes, leading to a decrease of endothelial permeability, a hallmark of vessel normalization. Finally, we provide the first evidence of in vivo P2X7R expression in blood vessels of murine and human breast carcinoma. In conclusion, we have identified a purinergic pathway selectively acting as an antiangiogenic and normalizing signal for human tumor-derived vascular endothelium. PMID:27586846

  15. CS5931, a Novel Polypeptide in Ciona savignyi, Represses Angiogenesis via Inhibiting Vascular Endothelial Growth Factor (VEGF and Matrix Metalloproteinases (MMPs

    Directory of Open Access Journals (Sweden)

    Ge Liu

    2014-03-01

    Full Text Available CS5931 is a novel polypeptide from Ciona savignyi with anticancer activities. Previous study in our laboratory has shown that CS5931 can induce cell death via mitochondrial apoptotic pathway. In the present study, we found that the polypeptide could inhibit angiogenesis both in vitro and in vivo. CS5931 inhibited the proliferation, migration and formation of capillary-like structures of HUVECs (Human Umbilical Vein Endothelial Cell in a dose-dependent manner. Additionally, CS5931 repressed spontaneous angiogenesis of the zebrafish vessels. Further studies showed that CS5931 also blocked vascular endothelial growth factor (VEGF production but without any effect on its mRNA expression. Moreover, CS5931 reduced the expression of matrix metalloproteinases (MMP-2 and MMP-9 both on protein and mRNA levels in HUVEC cells. We demonstrated that CS5931 possessed strong anti-angiogenic activity both in vitro and in vivo, possible via VEGF and MMPs. This study indicates that CS5931 has the potential to be developed as a novel therapeutic agent as an inhibitor of angiogenesis for the treatment of cancer.

  16. OSU-A9 inhibits angiogenesis in human umbilical vein endothelial cells via disrupting Akt–NF-κB and MAPK signaling pathways

    International Nuclear Information System (INIS)

    Since the introduction of angiogenesis as a useful target for cancer therapy, few agents have been approved for clinical use due to the rapid development of resistance. This problem can be minimized by simultaneous targeting of multiple angiogenesis signaling pathways, a potential strategy in cancer management known as polypharmacology. The current study aimed at exploring the anti-angiogenic activity of OSU-A9, an indole-3-carbinol-derived pleotropic agent that targets mainly Akt–nuclear factor-kappa B (NF-κB) signaling which regulates many key players of angiogenesis such as vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs). Human umbilical vein endothelial cells (HUVECs) were used to study the in vitro anti-angiogenic effect of OSU-A9 on several key steps of angiogenesis. Results showed that OSU-A9 effectively inhibited cell proliferation and induced apoptosis and cell cycle arrest in HUVECs. Besides, OSU-A9 inhibited angiogenesis as evidenced by abrogation of migration/invasion and Matrigel tube formation in HUVECs and attenuation of the in vivo neovascularization in the chicken chorioallantoic membrane assay. Mechanistically, Western blot, RT-PCR and ELISA analyses showed the ability of OSU-A9 to inhibit MMP-2 production and VEGF expression induced by hypoxia or phorbol-12-myristyl-13-acetate. Furthermore, dual inhibition of Akt–NF-κB and mitogen-activated protein kinase (MAPK) signaling, the key regulators of angiogenesis, was observed. Together, the current study highlights evidences for the promising anti-angiogenic activity of OSU-A9, at least in part through the inhibition of Akt–NF-κB and MAPK signaling and their consequent inhibition of VEGF and MMP-2. These findings support OSU-A9's clinical promise as a component of anticancer therapy. - Highlights: • The antiangiogenic activity of OSU-A9 in HUVECs was explored. • OSU-A9 inhibited HUVECs proliferation, migration, invasion and tube formation. • OSU-A9

  17. OSU-A9 inhibits angiogenesis in human umbilical vein endothelial cells via disrupting Akt–NF-κB and MAPK signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Omar, Hany A. [Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210 (United States); Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Arafa, El-Shaimaa A. [Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Salama, Samir A. [Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11511 (Egypt); Arab, Hany H. [Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562 (Egypt); Wu, Chieh-Hsi, E-mail: chhswu@mail.cmu.edu.tw [School of Pharmacy, China Medical University, Taichung 40402, Taiwan (China); Weng, Jing-Ru, E-mail: columnster@gmail.com [Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan (China)

    2013-11-01

    Since the introduction of angiogenesis as a useful target for cancer therapy, few agents have been approved for clinical use due to the rapid development of resistance. This problem can be minimized by simultaneous targeting of multiple angiogenesis signaling pathways, a potential strategy in cancer management known as polypharmacology. The current study aimed at exploring the anti-angiogenic activity of OSU-A9, an indole-3-carbinol-derived pleotropic agent that targets mainly Akt–nuclear factor-kappa B (NF-κB) signaling which regulates many key players of angiogenesis such as vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs). Human umbilical vein endothelial cells (HUVECs) were used to study the in vitro anti-angiogenic effect of OSU-A9 on several key steps of angiogenesis. Results showed that OSU-A9 effectively inhibited cell proliferation and induced apoptosis and cell cycle arrest in HUVECs. Besides, OSU-A9 inhibited angiogenesis as evidenced by abrogation of migration/invasion and Matrigel tube formation in HUVECs and attenuation of the in vivo neovascularization in the chicken chorioallantoic membrane assay. Mechanistically, Western blot, RT-PCR and ELISA analyses showed the ability of OSU-A9 to inhibit MMP-2 production and VEGF expression induced by hypoxia or phorbol-12-myristyl-13-acetate. Furthermore, dual inhibition of Akt–NF-κB and mitogen-activated protein kinase (MAPK) signaling, the key regulators of angiogenesis, was observed. Together, the current study highlights evidences for the promising anti-angiogenic activity of OSU-A9, at least in part through the inhibition of Akt–NF-κB and MAPK signaling and their consequent inhibition of VEGF and MMP-2. These findings support OSU-A9's clinical promise as a component of anticancer therapy. - Highlights: • The antiangiogenic activity of OSU-A9 in HUVECs was explored. • OSU-A9 inhibited HUVECs proliferation, migration, invasion and tube formation. • OSU-A9

  18. The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: L-glutamine inhibits the generation of L-arginine by cultured endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Sessa, W.C.; Hecker, M.; Mitchell, J.A. Vane, J.R. (William Harvey Research Inst., London (England))

    1990-11-01

    The mechanism by which L-glutamine (L-Gln) inhibits the release of endothelium-derived factor from bovine aortic cultured endothelial cells was investigated. The intracellular concentration of L-arginine (L-Arg) in Arg-depleted endothelial cells was inversely related to the level of L-Gln. Removal of L-Gln from the culture medium (usually containing L-Gln at 2 mM) abolished the inhibitory effect of the culture medium on L-Arg generation. L-Gln (0.2 and 2 mM) but not D-Gln inhibited the generation of L-Arg by both Arg-depleted and nondepleted endothelial cells. L-Gln did not interfere with the uptake of L-Arg or the metabolism of L-Arg-L-Phe to L-Arg but inhibited the formation of L-Arg from L-citrulline (L-Cit), L-Cit-L-Phe, and N{sup G}-monomethyl-L-arginine. L-Gln also inhibited the conversion of L-({sup 14}C)Cit to L-({sup 14}C)Arg by Arg-depleted endothelial cells. However, L-Gln did not inhibit the conversion of L-argininosuccinic acid to L-Arg by endothelial cell homogenates. Thus, L-Gln interferes with the conversion of L-Cit to L-Arg probably by acting on argininosuccinate synthetase rather than argininosuccinate lyase. L-Gln also inhibited the generation of L-Arg by the monocyte-macrophage cell line J774 but had no effect on the conversion of L-Cit to L-Arg by these cells. As the release of endothelium-derived relaxing factor from cultured and non-cultured endothelial cells is limited by the availability of L-Arg, endogenous L-Gln may play a regulatory role in the biosynthesis of endothelium-derived relaxing factor.

  19. The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: L-glutamine inhibits the generation of L-arginine by cultured endothelial cells

    International Nuclear Information System (INIS)

    The mechanism by which L-glutamine (L-Gln) inhibits the release of endothelium-derived factor from bovine aortic cultured endothelial cells was investigated. The intracellular concentration of L-arginine (L-Arg) in Arg-depleted endothelial cells was inversely related to the level of L-Gln. Removal of L-Gln from the culture medium (usually containing L-Gln at 2 mM) abolished the inhibitory effect of the culture medium on L-Arg generation. L-Gln (0.2 and 2 mM) but not D-Gln inhibited the generation of L-Arg by both Arg-depleted and nondepleted endothelial cells. L-Gln did not interfere with the uptake of L-Arg or the metabolism of L-Arg-L-Phe to L-Arg but inhibited the formation of L-Arg from L-citrulline (L-Cit), L-Cit-L-Phe, and NG-monomethyl-L-arginine. L-Gln also inhibited the conversion of L-[14C]Cit to L-[14C]Arg by Arg-depleted endothelial cells. However, L-Gln did not inhibit the conversion of L-argininosuccinic acid to L-Arg by endothelial cell homogenates. Thus, L-Gln interferes with the conversion of L-Cit to L-Arg probably by acting on argininosuccinate synthetase rather than argininosuccinate lyase. L-Gln also inhibited the generation of L-Arg by the monocyte-macrophage cell line J774 but had no effect on the conversion of L-Cit to L-Arg by these cells. As the release of endothelium-derived relaxing factor from cultured and non-cultured endothelial cells is limited by the availability of L-Arg, endogenous L-Gln may play a regulatory role in the biosynthesis of endothelium-derived relaxing factor

  20. Cytotoxicity of VEGF121/rGel on vascular endothelial cells resulting in inhibition of angiogenesis is mediated via VEGFR-2

    Directory of Open Access Journals (Sweden)

    Hittelman Walter N

    2011-08-01

    Full Text Available Abstract Background The fusion protein VEGF121/rGel composed of the growth factor VEGF121 and the plant toxin gelonin targets the tumor neovasculature and exerts impressive anti-vascular effects. We have previously shown that VEGF121/rGel is cytotoxic to endothelial cells overexpressing VEGFR-2 but not to endothelial cells overexpressing VEGFR-1. In this study, we examined the basis for the specific toxicity of this construct and assessed its intracellular effects in vitro and in vivo. Methods We investigated the binding, cytotoxicity and internalization profile of VEGF121/rGel on endothelial cells expressing VEGFR-1 or VEGFR-2, identified its effects on angiogenesis models in vitro and ex vivo, and explored its intracellular effects on a number of molecular pathways using microarray analysis. Results Incubation of PAE/VEGFR-2 and PAE/VEGFR-1 cells with 125I-VEGF121/rGel demonstrated binding specificity that was competed with unlabeled VEGF121/rGel but not with unlabeled gelonin. Assessment of the effect of VEGF121/rGel on blocking tube formation in vitro revealed a 100-fold difference in IC50 levels between PAE/VEGFR-2 (1 nM and PAE/VEGFR-1 (100 nM cells. VEGF121/rGel entered PAE/VEGFR-2 cells within one hour of treatment but was not detected in PAE/VEGFR-1 cells up to 24 hours after treatment. In vascularization studies using chicken chorioallantoic membranes, 1 nM VEGF121/rGel completely inhibited bFGF-stimulated neovascular growth. The cytotoxic effects of VEGF121/rGel were not apoptotic since treated cells were TUNEL-negative with no evidence of PARP cleavage or alteration in the protein levels of select apoptotic markers. Microarray analysis of VEGF121/rGel-treated HUVECs revealed the upregulation of a unique "fingerprint" profile of 22 genes that control cell adhesion, apoptosis, transcription regulation, chemotaxis, and inflammatory response. Conclusions Taken together, these data confirm the selectivity of VEGF121/rGel for VEGFR-2

  1. Insulin-stimulated production of nitric oxide is inhibited by wortmannin. Direct measurement in vascular endothelial cells.

    OpenAIRE

    Zeng, G.; Quon, M J

    1996-01-01

    Hypertension is associated with insulin-resistant states such as diabetes and obesity. Nitric oxide (NO) contributes to regulation of blood pressure. To gain insight into potential mechanisms linking hypertension with insulin resistance we directly measured and characterized NO production from human umbilical vein endothelial cells (HUVEC) in response to insulin using an amperometric NO-selective electrode. Insulin stimulation of HUVEC resulted in rapid, dose-dependent production of NO with a...

  2. Vitamin E analogues inhibit angiogenesis by selective induction of apoptosis in proliferating endothelial cells: the role of oxidative stress

    Czech Academy of Sciences Publication Activity Database

    Dong, L.F.; Swettenham, E.; Eliasson, J.; Wang, X. F.; Gold, M.; Medunic, Y.; Stantic, M.; Low, P.; Procházka, L.; Witting, P. K.; Turánek, J.; Akporiaye, E.T.; Ralph, S.J.; Neužil, Jiří

    2007-01-01

    Roč. 67, č. 24 (2007), s. 11906-11913. ISSN 0008-5472 R&D Projects: GA AV ČR KAN200520703; GA AV ČR IAA500520602 Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z50520701 Keywords : mitocans * proliferating endothelial cells * apoptosis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.672, year: 2007

  3. Comparative study on saponin fractions from Panax notoginseng inhibiting inflammation-induced endothelial adhesion molecule expression and monocyte adhesion

    OpenAIRE

    Wang, Nan; Wan, Jian-Bo; Chan, Shun-wan; Deng, Yan-Hui; Yu, Nan; Zhang, Qing-Wen; Wang, Yi-Tao; Lee, Simon Ming-Yuen

    2011-01-01

    Background Panax notoginseng is commonly used for the treatment of cardiovascular diseases in China. The present study investigates the effects of three different saponin fractions (ie total saponins, PNS; protopanaxadiol-type saponin, PDS; and protopanaxatriol-type saponin, PTS) and two major individual ingredients (ie ginsenoside Rg1 and Rb1) from P. notoginseng on the endothelial inflammatory response in vitro and in vivo. Methods Recombinant human tumor necrosis factor-α (TNF-α) was added...

  4. Role of pigment epithelium-derived factor in the involution of hemangioma: Autocrine growth inhibition of hemangioma-derived endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung-Jin [Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Department of Biomedical Science, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Yun, Jang-Hyuk; Heo, Jong-Ik [Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Lee, Eun Hui [Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Min, Hye Sook [Department of Pathology, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of); Choi, Tae Hyun, E-mail: psthchoi@snu.ac.kr [Department of Plastic and Reconstructive Surgery, Seoul National University Children’s Hospital, Seoul 110-744 (Korea, Republic of); Department of Pediatric Plastic and Reconstructive Surgery, Seoul National University Children’s Hospital, Seoul 110-744 (Korea, Republic of); Cho, Chung-Hyun, E-mail: iamhyun@snu.ac.kr [Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Department of Biomedical Science, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Cancer Research Institute, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of)

    2014-11-14

    Highlights: • PEDF was expressed and induced during the involuting phase of IH. • PEDF inhibited the cell growth of the involuting HemECs in an autocrine manner. • PEDF suppression restored the impaired cell growth of the involuting HemECs. - Abstract: Hemangioma is a benign tumor derived from abnormal blood vessel growth. Unlike other vascular tumor counterparts, a hemangioma is known to proliferate during its early stage but it is followed by a stage of involution where regression of the tumor occurs. The critical onset leading to the involution of hemangioma is currently not well understood. This study focused on the molecular identities of the involution of hemangioma. We demonstrated that a soluble factor released from the involuting phase of hemangioma-derived endothelial cells (HemECs) and identified pigment epithelium-derived factor (PEDF) as an anti-angiogenic factor that was associated with the growth inhibition of the involuting HemECs. The growth inhibition of the involuting HemECs was reversed by suppression of PEDF in the involuting HemECs. Furthermore, we found that PEDF was more up-regulated in the involuting phase of hemangioma tissues than in the proliferating or the involuted. Taken together, we propose that PEDF accelerates the involution of hemangioma by growth inhibition of HemECs in an autocrine manner. The regulatory mechanism of PEDF expression could be a potential therapeutic target to treat hemangiomas.

  5. AAV-P125A-endostatin and paclitaxel treatment increases endoreduplication in endothelial cells and inhibits metastasis of breast cancer.

    Science.gov (United States)

    Subramanian, I V; Devineni, S; Ghebre, R; Ghosh, G; Joshi, H P; Jing, Y; Truskinovsky, A M; Ramakrishnan, S

    2011-02-01

    Endostatin potentiates the antimitotic effects of paclitaxel (taxol) on endothelial cells (ECs). P125A-endostatin and taxol-treated ECs showed multipolar spindles and nuclear lobulation, leading to mitotic catastrophe and cell death. Induction of nuclear abnormalities was found to be dependent on β-catenin levels as wnt-mediated overexpression of β-catenin reversed the changes in nuclear morphology. These results prompted us to investigate whether antiangiogenic gene therapy and paclitaxel chemotherapy can synergistically inhibit angiogenesis and tumor growth. We first determined the effect of combination treatment in a transgenic mouse model of breast cancer. Intramuscular injection of recombinant adeno-associated virus type-2 virus induced sustained expression of P125A-endostatin. In vivo studies showed that combination therapy inhibited mammary cancer growth, delayed the onset of multifocal mammary adenocarcinomas, decreased tumor angiogenesis and increased survival in treated mice. In a second model, female athymic mice were orthotopically transplanted with a metastatic human breast cancer cell line. Antiangiogenic gene therapy in combination with paclitaxel inhibited tumor angiogenesis and lung/lymph-node metastasis in this model. These studies demonstrate cooperation between endostatin gene therapy and chemotherapy to inhibit tumor initiation, growth and metastasis. PMID:20844568

  6. Role of pigment epithelium-derived factor in the involution of hemangioma: Autocrine growth inhibition of hemangioma-derived endothelial cells

    International Nuclear Information System (INIS)

    Highlights: • PEDF was expressed and induced during the involuting phase of IH. • PEDF inhibited the cell growth of the involuting HemECs in an autocrine manner. • PEDF suppression restored the impaired cell growth of the involuting HemECs. - Abstract: Hemangioma is a benign tumor derived from abnormal blood vessel growth. Unlike other vascular tumor counterparts, a hemangioma is known to proliferate during its early stage but it is followed by a stage of involution where regression of the tumor occurs. The critical onset leading to the involution of hemangioma is currently not well understood. This study focused on the molecular identities of the involution of hemangioma. We demonstrated that a soluble factor released from the involuting phase of hemangioma-derived endothelial cells (HemECs) and identified pigment epithelium-derived factor (PEDF) as an anti-angiogenic factor that was associated with the growth inhibition of the involuting HemECs. The growth inhibition of the involuting HemECs was reversed by suppression of PEDF in the involuting HemECs. Furthermore, we found that PEDF was more up-regulated in the involuting phase of hemangioma tissues than in the proliferating or the involuted. Taken together, we propose that PEDF accelerates the involution of hemangioma by growth inhibition of HemECs in an autocrine manner. The regulatory mechanism of PEDF expression could be a potential therapeutic target to treat hemangiomas

  7. SERCA, complex I of the respiratory chain and ATP-synthase inhibition are involved in pleiotropic effects of NS1619 on endothelial cells.

    Science.gov (United States)

    Łukasiak, Agnieszka; Skup, Agata; Chlopicki, Stefan; Łomnicka, Magdalena; Kaczara, Patrycja; Proniewski, Bartosz; Szewczyk, Adam; Wrzosek, Antoni

    2016-09-01

    A large conductance potassium (BKCa) channel opener, NS1619 (1,3-dihydro-1- [2-hydroxy-5-(trifluoromethyl) phenyl]-5-(trifluoromethyl)-2H-benzimidazole-2-one), is well known for its protective effects against ischemia-reperfusion injury; however, the exact mode of its action remains unclear. The aim of this study was to characterize the effect of NS1619 on endothelial cells. The endothelial cell line EA.hy926, guinea pig hearts and submitochondrial particles isolated from the heart were used. In the isolated guinea pig hearts, which were perfused using the Langendorff technique, NS1619 caused a dose-dependent increase in coronary flow that was inhibited by L-NAME. In EA.hy926 cells, NS1619 also caused a dose-dependent increase in the intracellular calcium ion concentration [Ca(2+)]i, as measured using the FURA-2 fluorescent probe. Moreover, NS1619 decreased the oxygen consumption rate in EA.hy926 cells, as assessed using a Clark-type oxygen electrode. However, when NS1619 was applied in the presence of oligomycin, the oxygen consumption increased. NS1619 also decreased the mitochondrial membrane potential, as measured using a JC-1 fluorescent probe in the presence and absence of oligomycin. Additionally, the application of NS1619 to submitochondrial particles inhibited ATP synthase. In summary, NS1619 has pleiotropic actions on EA.hy926 cells and acts not only as an opener of the BKCa channel in EA.hy926 cells but also as an inhibitor of the respiratory chain component, sarcoplasmic reticulum ATPase, which leads to the release of Ca(2+) from the endoplasmic reticulum. Furthermore, NS1619 has the oligomycin-like property of inhibiting mitochondrial ATP synthase. PMID:27262382

  8. Vascular endothelial growth factor-receptor 1 inhibition aggravates diabetic nephropathy through eNOS signaling pathway in db/db mice.

    Directory of Open Access Journals (Sweden)

    Keun Suk Yang

    Full Text Available The manipulation of vascular endothelial growth factor (VEGF-receptors (VEGFRs in diabetic nephropathy is as controversial as issue as ever. It is known to be VEGF-A and VEGFR2 that regulate most of the cellular actions of VEGF in experimental diabetic nephropathy. On the other hand, such factors as VEGF-A, -B and placenta growth factor bind to VEGFR1 with high affinity. Such notion instigated us to investigate on whether selective VEGFR1 inhibition with GNQWFI hexamer aggravates the progression of diabetic nephropathy in db/db mice. While diabetes suppressed VEGFR1, it did increase VEGFR2 expressions in the glomerulus. Db/db mice with VEGFR1 inhibition showed more prominent features with respect to, albuminuria, mesangial matrix expansion, inflammatory cell infiltration and greater numbers of apoptotic cells in the glomerulus, and oxidative stress than that of control db/db mice. All these changes were related to the suppression of diabetes-induced increases in PI3K activity and Akt phosphorylation as well as the aggravation of endothelial dysfunction associated with the inactivation of FoxO3a and eNOS-NOx. In cultured human glomerular endothelial cells (HGECs, high-glucose media with VEGFR1 inhibition induced more apoptotic cells and oxidative stress than did high-glucose media alone, which were associated with the suppression of PI3K-Akt phosphorylation, independently of the activation of AMP-activated protein kinase, and inactivation of FoxO3a and eNOS-NOx pathway. In addition, transfection with VEGFR1 siRNA in HGECs also suppressed PI3K-Akt-eNOS signaling. In conclusion, the specific blockade of VEGFR1 with GNQWFI caused severe renal injury related to profound suppression of the PI3K-Akt, FoxO3a and eNOS-NOx pathway, giving rise to the oxidative stress-induced apoptosis of glomerular cells in type 2 diabetic nephropathy.

  9. Murine epidermal growth factor (EGF) fragment (33-42) inhibits both EGF- and laminin-dependent endothelial cell motility and angiogenesis.

    Science.gov (United States)

    Nelson, J; Allen, W E; Scott, W N; Bailie, J R; Walker, B; McFerran, N V; Wilson, D J

    1995-09-01

    Laminin, murine epidermal growth factor (mEGF), and the synthetic laminin peptide Lam.B1(925-933) (a linear peptide from the B1 chain of murine laminin, CDPGY1GSR-amide) all stimulate endothelial cell motility above basal rates, whereas a synthetic mEGF fragment, mEGF33-42 (a linear peptide from the C-loop of mEGF, acetyl-C-[S-Acm]-VIGYSGDR-C-[S-Acm]-amide), inhibits motility. In both human SK HEP-1 and embryonic chick endothelial cells, mEGF33-42 blocks both EGF- and laminin-stimulated locomotion of endothelial cells. In vivo, mEGF33-42 also blocks both laminin- and mEGF-induced angiogenesis in the chick. In the human cell line. Lam.B1(925-933) has an additive effect in coincubation with either laminin or mEGF, but it blocks their effects in the chick cells. Lam.B1(925-933) alone stimulates angiogenesis in the chick but blocks laminin-induced angiogenesis. Thus, mEGF33-42 acts as a general laminin antagonist, whereas Lam.B1(925-933) acts as a laminin agonist in human cells, but in chick cells it acts as a partial antagonist. We propose that the presence of an anionic group at the eighth residue of mEGF33-42 may be the source of the antagonistic effects seen with this peptide as compared with the laminin fragment. These findings have important implications in the design of human antiangiogenic agents, and also in the use of chick models in the study of human disease. PMID:7543818

  10. Depletion of Serotonin and Selective Inhibition of 2B Receptor Suppressed Tumor Angiogenesis by Inhibiting Endothelial Nitric Oxide Synthase and Extracellular Signal-Regulated Kinase 1/2 Phosphorylation

    Directory of Open Access Journals (Sweden)

    Masanori Asada

    2009-04-01

    Full Text Available The effects of serotonin (5-HT on tumor growth are inconsistent. We investigated whether a decreased level of 5-HT affected tumor growth using 5-HT transporter knockout (5-HTT-/- mice, which showed 5-HT depletion. When cancer cells were injected subcutaneously into both 5-HTT-/- and 5-HTT+/+ mice, the tumor growth was markedly attenuated in 5-HTT-/- mice. Serotonin levels in the blood, forebrain, and tumors of 5-HTT-/- mice bearing tumors were significantly smaller than those of their 5-HTT+/+ littermates. However, 5-HT did not increase cancer cells' proliferation in vitro. When we applied 5-HTT inhibitors to the wild mice bearing tumors, they did not inhibit tumor growth. The endothelial nitric oxide synthase (eNOS expressions in tumors were reduced in 5-HTT-/- mice compared with 5-HTT+/+ mice. Stimulations with 5-HT (1–50 µM induced eNOS expressions in human umbilical vein endothelial cell (HUVEC in a concentration-dependent manner. When we measured activations of multiple signaling pathways by using a high-throughput phosphospecific antibodies platform, 5-HT stimulated the extracellular signal-regulated kinase 1/2 (ERK1/2 in HUVEC. Moreover, we found that the physiological level of 5-HT induced phosphorylation of both ERK1/2 and eNOS in HUVEC. Human umbilical vein endothelial cell expressed both 5-HT2B and 5-HT2C receptors. SB204741, a specific 5-HT2B receptor inhibitor, blocked 5-HT-induced ERK1/2 and eNOS phosphorylations, whereas RS102221, a specific 5-HT2C receptor inhibitor, did not in HUVEC. SB204741 reduced microvessel density in tumors and inhibited the proliferation of HUVEC in vitro. These results suggest that regulation of 5-HT and 5-HT receptors, especially the 5-HT2B receptor, may serve as a therapeutic strategy in cancer therapy.

  11. MicroRNA-146a decreases high glucose/thrombin-induced endothelial inflammation by inhibiting NAPDH oxidase 4 expression.

    Science.gov (United States)

    Wang, Huang-Joe; Huang, Yuan-Li; Shih, Ya-Yun; Wu, Hsing-Yu; Peng, Ching-Tien; Lo, Wan-Yu

    2014-01-01

    Diabetes is associated with hyperglycemia and increased thrombin production. However, it is unknown whether a combination of high glucose and thrombin can modulate the expression of NAPDH oxidase (Nox) subtypes in human aortic endothelial cells (HAECs). Moreover, we investigated the role of a diabetes-associated microRNA (miR-146a) in a diabetic atherothrombosis model. We showed that high glucose (HG) exerted a synergistic effect with thrombin to induce a 10.69-fold increase in Nox4 mRNA level in HAECs. Increased Nox4 mRNA expression was associated with increased Nox4 protein expression and ROS production. Inflammatory cytokine kit identified that the treatment increased IL-8 and IL-6 levels. Moreover, HG/thrombin treatment caused an 11.43-fold increase of THP-1 adhesion to HAECs. In silico analysis identified the homology between miR-146a and the 3'-untranslated region of the Nox4 mRNA, and a luciferase reporter assay confirmed that the miR-146a mimic bound to this Nox4 regulatory region. Additionally, miR-146a expression was decreased to 58% of that in the control, indicating impaired feedback restraint of HG/thrombin-induced endothelial inflammation. In contrast, miR-146a mimic transfection attenuated HG/thrombin-induced upregulation of Nox4 expression, ROS generation, and inflammatory phenotypes. In conclusion, miR-146a is involved in the regulation of endothelial inflammation via modulation of Nox4 expression in a diabetic atherothrombosis model. PMID:25298619

  12. MicroRNA-146a Decreases High Glucose/Thrombin-Induced Endothelial Inflammation by Inhibiting NAPDH Oxidase 4 Expression

    Directory of Open Access Journals (Sweden)

    Huang-Joe Wang

    2014-01-01

    Full Text Available Diabetes is associated with hyperglycemia and increased thrombin production. However, it is unknown whether a combination of high glucose and thrombin can modulate the expression of NAPDH oxidase (Nox subtypes in human aortic endothelial cells (HAECs. Moreover, we investigated the role of a diabetes-associated microRNA (miR-146a in a diabetic atherothrombosis model. We showed that high glucose (HG exerted a synergistic effect with thrombin to induce a 10.69-fold increase in Nox4 mRNA level in HAECs. Increased Nox4 mRNA expression was associated with increased Nox4 protein expression and ROS production. Inflammatory cytokine kit identified that the treatment increased IL-8 and IL-6 levels. Moreover, HG/thrombin treatment caused an 11.43-fold increase of THP-1 adhesion to HAECs. In silico analysis identified the homology between miR-146a and the 3′-untranslated region of the Nox4 mRNA, and a luciferase reporter assay confirmed that the miR-146a mimic bound to this Nox4 regulatory region. Additionally, miR-146a expression was decreased to 58% of that in the control, indicating impaired feedback restraint of HG/thrombin-induced endothelial inflammation. In contrast, miR-146a mimic transfection attenuated HG/thrombin-induced upregulation of Nox4 expression, ROS generation, and inflammatory phenotypes. In conclusion, miR-146a is involved in the regulation of endothelial inflammation via modulation of Nox4 expression in a diabetic atherothrombosis model.

  13. MicroRNA-146a Decreases High Glucose/Thrombin-Induced Endothelial Inflammation by Inhibiting NAPDH Oxidase 4 Expression

    OpenAIRE

    Huang-Joe Wang; Yuan-Li Huang; Ya-Yun Shih; Hsing-Yu Wu; Ching-Tien Peng; Wan-Yu Lo

    2014-01-01

    Diabetes is associated with hyperglycemia and increased thrombin production. However, it is unknown whether a combination of high glucose and thrombin can modulate the expression of NAPDH oxidase (Nox) subtypes in human aortic endothelial cells (HAECs). Moreover, we investigated the role of a diabetes-associated microRNA (miR-146a) in a diabetic atherothrombosis model. We showed that high glucose (HG) exerted a synergistic effect with thrombin to induce a 10.69-fold increase in Nox4 mRNA leve...

  14. 6-Shogaol Protects against Oxidized LDL-Induced Endothelial Injruries by Inhibiting Oxidized LDL-Evoked LOX-1 Signaling

    Directory of Open Access Journals (Sweden)

    Yun kai Wang

    2013-01-01

    Full Text Available Endothelial dysfunction and oxLDL are believed to be early and critical events in atherogenesis. 6-Shogaol is the major bioactive compound present in Zingiber officinale and possesses the anti-atherosclerotic effect. However, the mechanisms remain poorly understood. The goal of this study was to investigate the effects of 6-shogaol on oxLDL-induced Human umbilical vein endothelial cells (HUVECs injuries and its possible molecular mechanisms. Hence, we studied the effects of 6-shogaol on cell apoptosis, cellular reactive oxygen species (ROS, NF-κB activation, Bcl-2 expression, and caspase -3, -8, -9 activities. In addition, E-selectin, MCP-1, and ICAM-1 were determined by ELISA. Our study show that oxLDL increased LOX-1 expression, ROS levels, NF-κB, caspases-9 and -3 activation and decreased Bcl-2 expression in HUVECs. These alterations were attenuated by 6-shogaol. Cotreatment with 6-shogaol and siRNA of LOX-1 synergistically reduced oxLDL-induced caspases -9, -3 activities and cell apoptosis. Overexpression of LOX-1 attenuated the protection by 6-shogaol and suppressed the effects of 6-shogaol on oxLDL-induced oxidative stress. In addition, oxLDL enhanced the activation of NF-κB and expression of adhesion molecules. Pretreatment with 6-shogaol, however, exerted significant cytoprotective effects in all events. Our data indicate that 6-shogaol might be a potential natural antiapoptotic agent for the treatment of atherosclerosis.

  15. Glossogyne tenuifolia Extract Inhibits TNF-α-Induced Expression of Adhesion Molecules in Human Umbilical Vein Endothelial Cells via Blocking the NF-kB Signaling Pathway.

    Science.gov (United States)

    Hsuan, Chin-Feng; Hsu, Hsia-Fen; Tseng, Wei-Kung; Lee, Thung-Lip; Wei, Yu-Feng; Hsu, Kwan-Lih; Wu, Chau-Chung; Houng, Jer-Yiing

    2015-01-01

    Chronic inflammation plays a pivotal role in the development of atherosclerosis, where the pro-inflammatory cytokine-induced expression of endothelial adhesion molecules and the recruitment of monocytes are the crucial events leading to its pathogenesis. Glossogyne tenuifolia ethanol extract (GTE) is shown to have potent anti-inflammatory and antioxidant activities. We evaluated the effects of GTE and its major components, luteolin (lut), luteolin-7-glucoside (lut-7-g), and oleanolic acid (OA) on TNF-α-induced expression of adhesion molecules in human umbilical vein endothelial cells (HUVECs). The results demonstrated that GTE, lut, and lut-7-g attenuated the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in TNF-α-activated HUVECs, and inhibited the adhesion of monocytes to TNF-α-activated HUVECs. The TNF-α-induced mRNA expression of ICAM-1 and VCAM-1 was also suppressed, revealing their inhibitory effects at the transcriptional level. Furthermore, GTE, lut, and lut-7-g blocked the TNF-α-induced degradation of nuclear factor-kB inhibitor (IkB), an indicator of the activation of nuclear factor-kB (NF-kB). In summary, GTE and its bioactive components were effective in preventing the adhesion of monocytes to cytokine-activated endothelium by the inhibition of expression of adhesion molecules, which in turn is mediated through blocking the activation and nuclear translocation of NF-kB. The current results reveal the therapeutic potential of GTE in atherosclerosis. PMID:26393541

  16. Inhibition of mitochondrial protein synthesis results in increased endothelial cell susceptibility to nitric oxide-induced apoptosis

    OpenAIRE

    Ramachandran, Anup; Moellering, Douglas R.; Ceaser, Erin; Shiva, Sruti; Xu, Jun; Darley-Usmar, Victor

    2002-01-01

    Mutations in mitochondrial DNA, affecting the activity of respiratory complexes, have been implicated in many chronic degenerative diseases. Mitochondrial proteins coded for by both the mitochondrial and nuclear genes are known to have important signaling roles in apoptosis. However, the impact of the inhibition of mitochondrial protein synthesis on apoptosis is largely unknown. This inhibition is particularly important in NO-dependent cytotoxicity, which is believed to have a significant mit...

  17. Cryptococcal Glucuronoxylomannan Inhibits Adhesion of Neutrophils to Stimulated Endothelium In Vitro by Affecting Both Neutrophils and Endothelial Cells

    OpenAIRE

    Ellerbroek, Pauline M.; Hoepelman, Andy I.M.; Wolbers, Floor; Zwaginga, Jaap Jan; Coenjaerts, Frank E. J.

    2002-01-01

    Cryptococcal infections are often characterized by a paucity of leukocytes in the infected tissues. Previous research has shown that the capsular polysaccharide glucuronoxylomannan (GXM) inhibits leukocyte migration. In this study we investigated whether the capsular polysaccharide GXM affects the migration of neutrophils (polymorphonuclear leukocytes [PMN]) through the endothelium by interfering with adhesion in a static adhesion model. Pretreatment of PMN with GXM inhibited PMN adhesion to ...

  18. Aromatic hydrocarbon receptor inhibits lysophosphatidic acid-induced vascular endothelial growth factor-A expression in PC-3 prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Pei-Yi; Lin, Yueh-Chien; Lan, Shun-Yan [Institute of Zoology, National Taiwan University, Taipei, Taiwan (China); Huang, Yuan-Li [Department of Biotechnology, Asia University, Taichung, Taiwan (China); Lee, Hsinyu, E-mail: hsinyu@ntu.edu.tw [Institute of Zoology, National Taiwan University, Taipei, Taiwan (China); Department of Life Science, National Taiwan University, Taipei, Taiwan (China)

    2013-08-02

    Highlights: •LPA-induced VEGF-A expression was regulated by HIF-1α and ARNT. •PI3K mediated LPA-induced VEGF-A expression. •AHR signaling inhibited LPA-induced VEGF-A expression in PC-3 cells. -- Abstract: Lysophosphatidic acid (LPA) is a lipid growth factor with multiple biological functions and has been shown to stimulate cancer cell secretion of vascular endothelial growth factor-A (VEGF-A) and trigger angiogenesis. Hypoxia-inducible factor-1 (HIF-1), a heterodimer consisting of HIF-1α and HIF-1β (also known as aromatic hydrocarbon receptor nuclear translocator (ARNT)) subunits, is an important regulator of angiogenesis in prostate cancer (PC) through the enhancement of VEGF-A expression. In this study, we first confirmed the ability of LPA to induce VEGF-A expression in PC-3 cells and then validated that LPA-induced VEGF-A expression was regulated by HIF-1α and ARNT through phosphatidylinositol 3-kinase activation. Aromatic hydrocarbon receptor (AHR), a receptor for dioxin-like compounds, functions as a transcription factor through dimerization with ARNT and was found to inhibit prostate carcinogenesis and vanadate-induced VEGF-A production. Since ARNT is a common dimerization partner of AHR and HIF-1α, we hypothesized that AHR might suppress LPA-induced VEGF-A expression in PC-3 cells by competing with HIF-1α for ARNT. Here we demonstrated that overexpression and ligand activation of AHR inhibited HIF-1-mediated VEGF-A induction by LPA treatment of PC-3 cells. In conclusion, our results suggested that AHR activation may inhibit LPA-induced VEGF-A expression in PC-3 cells by attenuating HIF-1α signaling, and subsequently, suppressing angiogenesis and metastasis of PC. These results suggested that AHR presents a potential therapeutic target for the prevention of PC metastasis.

  19. U-61,431F, a stable prostacyclin analogue, inhibits the proliferation of bovine vascular smooth muscle cells with little antiproliferative effect on endothelial cells

    International Nuclear Information System (INIS)

    The effects of U-61,431F, ciprostene, a stable prostacyclin analogue, were examined on the proliferation of cultured quiescent bovine aortic endothelial cells (EC) and smooth muscle cells (SMC). After stimulation with 5% fetal calf serum, U-61,431F suppressed both the DNA synthesis and proliferation of SMC dose-dependently at the concentration of 3-100 microM, but had no effect on either of them in EC at a concentration of up to 30 microM. The inhibitory effect on DNA synthesis was greater in SMC than in EC at 3-50 microM. When SMC were stimulated with platelet-derived growth factor (PDGF) for 2 hrs followed by a 22-hr incubation with insulin, U-61,431F (1-50 microM) administered at the time of PDGF stimulation did not inhibit DNA synthesis. SMC initiated and terminated DNA synthesis at about 15-18 h and 24 h after stimulation with serum, respectively. Inhibition of DNA synthesis in serum-stimulated SMC as a function of the addition time of U-61,431F reduced at 3-12 h after the stimulation. U-61,431F raised the cyclic AMP (cAMP) content in SMC. Moreover, a phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine, and a more specific cAMP phosphodiesterase inhibitor, Ro 20-1724, augmented the inhibition of DNA synthesis in SMC concomitant with further elevation of cAMP level. These results suggest that U-61,431F inhibits DNA synthesis of SMC acting in the progression stage rather than in the competence stage, with little antiproliferative effect on EC. cAMP may play an important role in its antiproliferative action in SMC

  20. Metformin and Resveratrol Inhibited High Glucose-Induced Metabolic Memory of Endothelial Senescence through SIRT1/p300/p53/p21 Pathway

    OpenAIRE

    Erli Zhang; Qianyun Guo; Haiyang Gao; Ruixia Xu; Siyong Teng; Yongjian Wu

    2015-01-01

    Endothelial senescence plays crucial roles in diabetic vascular complication. Recent evidence indicated that transient hyperglycaemia could potentiate persistent diabetic vascular complications, a phenomenon known as "metabolic memory." Although SIRT1 has been demonstrated to mediate high glucose-induced endothelial senescence, whether and how "metabolic memory" would affect endothelial senescence through SIRT1 signaling remains largely unknown. In this study, we investigated the involvement ...

  1. Prophylactic Administration of Fucoidan Represses Cancer Metastasis by Inhibiting Vascular Endothelial Growth Factor (VEGF and Matrix Metalloproteinases (MMPs in Lewis Tumor-Bearing Mice

    Directory of Open Access Journals (Sweden)

    Tse-Hung Huang

    2015-04-01

    Full Text Available Fucoidan, a heparin-like sulfated polysaccharide, is rich in brown algae. It has a wide assortment of protective activities against cancer, for example, induction of hepatocellular carcinoma senescence, induction of human breast and colon carcinoma apoptosis, and impediment of lung cancer cells migration and invasion. However, the anti-metastatic mechanism that fucoidan exploits remains elusive. In this report, we explored the effects of fucoidan on cachectic symptoms, tumor development, lung carcinoma cell spreading and proliferation, as well as expression of metastasis-associated proteins in the Lewis lung carcinoma (LLC cells-inoculated mice model. We discovered that administration of fucoidan has prophylactic effects on mitigation of cachectic body weight loss and improvement of lung masses in tumor-inoculated mice. These desired effects are attributed to inhibition of LLC spreading and proliferation in lung tissues. Fucoidan also down-regulates expression of matrix metalloproteinases (MMPs, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB and vascular endothelial growth factor (VEGF. Moreover, the tumor-bearing mice supplemented with fucoidan indeed benefit from an ensemble of the chemo-phylacticity. The fact is that fucoidan significantly decreases viability, migration, invasion, and MMPs activities of LLC cells. In summary, fucoidan is suitable to act as a chemo-preventative agent for minimizing cachectic symptoms as well as inhibiting lung carcinoma metastasis through down-regulating metastatic factors VEGF and MMPs.

  2. 3,4-oxo-isopropylidene-shikimic acid inhibits adhesion of polyrnorphonuclear leukocyte to TNF-α-induced endothelial cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Yi MA; Jian-ning SUN; Qiu-ping XU; Zi-li YOU; Ya-jian GUO

    2004-01-01

    AIM: To examine the effect of 3,4-oxo-isopropylidene-shikimic acid (ISA) on human polymorphonuclear leukocyte (PMN) adhesion to human umbilical vein endothelial cells (HUVEC) and explore its mechanism. METHODS:Adhesion of PMN to HUVEC was measured by rose bengal staining assay. Cell-ELISA and RT-PCR methods were used to examine the expression of adhesion molecules ICAM-1. Cell viability was detected with MTT assay.RESULTS: ISA (1-100 μmol/L) effectively reduced PMN adhesion to TNF-α-induced HUVEC with the inhibitory rate from 17.2 % to 53.5 %, and exerted no effect on PMN adhesion to normal HUVEC. Adhesion molecule ICAM-1 surface protein and mRNA expression induced by TNF-α(400 kU/L) were significantly inhibited by ISA. In addition, the cell viability of HUVEC was unchanged 48 h after treatment with ISA. CONCLUSION: ISA inhibited TNF-α-stimulated PMN-HUVEC adhesion and expression of ICAM- 1.

  3. Piper sarmentosum inhibits ICAM-1 and Nox4 gene expression in oxidative stress-induced human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Megat Mohd Nordin Nor

    2011-04-01

    Full Text Available Abstract Background Aqueous extract of Piper sarmentosum (AEPS is known to possess antioxidant and anti-atherosclerotic activities but the mechanism responsible for it remains unclear. In early part of atherosclerosis, nuclear factor-kappa B (NF-κB induces the expression of cellular adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1, intracellular adhesion molecule-1 (ICAM-1 and E-selectin. NADPH oxidase 4 (Nox4 is the predominant source of superoxide in the endothelial cells whereas superoxide dismutase 1 (SOD1, catalase (CAT and glutathione peroxidase (GPx are the antioxidant enzymes responsible for inactivating reactive oxygen species. The present study aimed to investigate the effects of AEPS on the gene expression of NF-κB, VCAM-1, ICAM-1, E-selectin, Nox4, SOD1, CAT and GPx in cultured human umbilical vein endothelial cells (HUVECs. Methods HUVECs were divided into four groups:- control; treatment with 180 μM hydrogen peroxide (H2O2; treatment with 150 μg/mL AEPS and concomitant treatment with AEPS and H2O2 for 24 hours. Total RNA was extracted from all the groups of HUVEC using TRI reagent. Subsequently, qPCR was carried out to determine the mRNA expression of NF-κB, VCAM-1, ICAM-1, E-selectin, Nox4, SOD1, CAT and GPx. The specificity of the reactions was verified using melting curve analysis and agarose gel electrophoresis. Results When stimulated with H2O2, HUVECs expressed higher level of ICAM-1 (1.3-fold and Nox4 (1.2-fold mRNA expression. However, AEPS treatment led to a reduction in the mRNA expression of ICAM-1 (p 2O2-induced HUVECs. AEPS also upregulated the mRNA expression of SOD1 (p Conclusion The expressional suppression of ICAM-1 and Nox4 and induction of antioxidant enzymes might be an important component of the vascular protective effect of AEPS.

  4. Anti-lipid phosphate phosphohydrolase-3 (LPP3 antibody inhibits bFGF- and VEGF-induced capillary morphogenesis of endothelial cells

    Directory of Open Access Journals (Sweden)

    Humtsoe Joseph O

    2005-08-01

    Full Text Available Abstract Background Angiogenesis, or the remodeling of existing vasculature serves as a lifeline to nourish developing embryos and starved tissues, and to accelerate wound healing, diabetic retinopathy, and tumor progression. Recent studies indicate that angiogenesis requires growth factor activity as well as cell adhesion events mediated by α5β1 and αvβ3 integrins. We previously demonstrated that human lipid phosphate phosphohydrolase-3 (LPP3 acts as a cell-associated ligand for α5β1 and αvβ3 integrins. Here, we test the hypothesis that an anti-LPP3 antibody can inhibit basic fibroblast growth factor (bFGF-and vascular endothelial growth factor (VEGF-induced capillary morphogenesis of endothelial cells (ECs. Results We report that bFGF and VEGF up-regulate LPP3 protein expression in ECs. Immunoprecipitation analyses show that LPP3 is a cell surface protein and undergoes N-glycosylation. Fluorescent activated cell sorting (FACS data suggest that anti-LPP3-RGD detects native neoepitope on the surface of activated ECs. Moreover, we demonstrate LPP3 protein expression in tumor endothelium alongside VEGF. The embedding of ECs into three-dimensional type I collagen in the presence of bFGF and VEGF induce capillary formation. Importantly, we show that the addition of an anti-LPP3 antibody specifically and significantly blocks bFGF- and VEGF-induced capillary morphogenesis of ECs. Conclusion These data suggest that activated ECs as well as tumor endothelium express LPP3 protein. In an in vitro assay, the anti-LPP3-RGD specifically blocks bFGF and VEGF induced capillary morphogenesis of ECs. Our results, therefore, suggest a role for LPP3 in angiogenesis.

  5. Vascular Endothelial-Targeted Therapy Combined with Cytotoxic Chemotherapy Induces Inflammatory Intratumoral Infiltrates and Inhibits Tumor Relapses after Surgery

    Directory of Open Access Journals (Sweden)

    Brendan F. Judy

    2012-04-01

    Full Text Available Surgery is the most effective therapy for cancer in the United States, but disease still recurs in more than 40% of patients within 5 years after resection. Chemotherapy is given postoperatively to prevent relapses; however, this approach has had marginal success. After surgery, recurrent tumors depend on rapid neovascular proliferation to deliver nutrients and oxygen. Phosphatidylserine (PS is exposed on the vascular endothelial cells in the tumor microenvironment but is notably absent on blood vessels in normal tissues. Thus, PS is an attractive target for cancer therapy after surgery. Syngeneic mice bearing TC1 lung cancer tumors were treated with mch1N11 (a novel mouse chimeric monoclonal antibody that targets PS, cisplatin (cis, or combination after surgery. Tumor relapses and disease progression were decreased 90% by combination therapy compared with a 50% response rate for cis alone (P = .02. Mice receiving postoperative mch1N11 had no wound-related complications or added systemic toxicity in comparison to control animals. Mechanistic studies demonstrated that the effects of mch1N11 were associated with a dense infiltration of inflammatory cells, particularly granulocytes. This strategy was independent of the adaptive immune system. Together, these data suggest that vascular-targeted strategies directed against exposed PS may be a powerful adjunct to postoperative chemotherapy in preventing relapses after cancer surgery.

  6. Mesenchymal stem cell-conditioned medium prevents radiation-induced liver injury by inhibiting inflammation and protecting sinusoidal endothelial cells

    International Nuclear Information System (INIS)

    Current management of radiation-induced liver injury is limited. Sinusoidal endothelial cell (SEC) apoptosis and inflammation are considered to be initiating events in hepatic damage. We hypothesized that mesenchymal stem cells (MSCs) possess anti-apoptotic and anti-inflammatory actions during hepatic irradiation, acting via paracrine mechanisms. This study aims to examine whether MSC-derived bioactive components are protective against radiation-induced liver injury in rats. MSC-conditioned medium (MSC-CM) was generated from rat bone marrow–derived MSCs. The effect of MSC-CM on the viability of irradiated SECs was examined by flow cytometric analysis. Activation of the Akt and ERK pathways was analyzed by western blot. MSC-CM was also delivered to Sprague–Dawley rats immediately before receiving liver irradiation, followed by testing for pathological features, changes in serum hyaluronic acid, ALT, and inflammatory cytokine levels, and liver cell apoptosis. MSC-CM enhanced the viability of irradiated SECs in vitro and induced Akt and ERK phosphorylation in these cells. Infusion of MSC-CM immediately before liver irradiation provided a significant anti-apoptotic effect on SECs and improved the histopathological features of injury in the irradiated liver. MSC-CM also reduced the secretion and expression of inflammatory cytokines and increased the expression of anti-inflammatory cytokines. MSC-derived bioactive components could be a novel therapeutic approach for treating radiation-induced liver injury. (author)

  7. Apolipoprotein(a) inhibits in vitro tube formation in endothelial cells: identification of roles for Kringle V and the plasminogen activation system.

    Science.gov (United States)

    Liu, Lei; Boffa, Michael B; Koschinsky, Marlys L

    2013-01-01

    Elevated plasma concentrations of lipoprotein(a) are associated with increased risk for atherothrombotic diseases. Apolipoprotein(a), the unique glycoprotein component of lipoprotein(a), is characterized by the presence of multiple kringle domains, and shares a high degree of sequence homology with the serine protease zymogen plasminogen. It has been shown that angiostatin, a proteolytic fragment of plasminogen containing kringles 1-4, can effectively inhibit angiogenesis. Moreover, proteolytic fragments of plasminogen containing kringle 5 are even more potent inhibitors of angiogenesis than angiostatin. Despite its strong similarity with plasminogen, the role of apolipoprotein(a) in angiogenesis remains controversial, with both pro- and anti-angiogenic effects reported. In the current study, we evaluated the ability of apolipoprotein(a) to inhibit VEGF- and angiopoietin-induced tube formation in human umbilical cord endothelial cells. A 17 kringle-containing form of recombinant apo(a) (17K), corresponding to a well-characterized, physiologically-relevant form of the molecule, effectively inhibited tube formation induced by either VEGF or angiopoietin-1. Using additional recombinant apolipoprotein(a) (r-apo(a)) variants, we demonstrated that this effect was dependent on the presence of an intact lysine-binding site in kringle V domain of apo(a), but not on the presence of the functional lysine-binding site in apo(a) kringle IV type 10; sequences within in the amino-terminal half of the molecule were also not required for the inhibitory effects of apo(a). We also showed that the apo(a)-mediated inhibition tube formation could be reversed, in part by the addition of plasmin or urokinase plasminogen activator, or by removal of plasminogen from the system. Further, we demonstrated that apo(a) treated with glycosidases to remove sialic acid was significantly less effective in inhibiting tube formation. This is the first report of a functional role for the glycosylation

  8. Apolipoprotein(a inhibits in vitro tube formation in endothelial cells: identification of roles for Kringle V and the plasminogen activation system.

    Directory of Open Access Journals (Sweden)

    Lei Liu

    Full Text Available Elevated plasma concentrations of lipoprotein(a are associated with increased risk for atherothrombotic diseases. Apolipoprotein(a, the unique glycoprotein component of lipoprotein(a, is characterized by the presence of multiple kringle domains, and shares a high degree of sequence homology with the serine protease zymogen plasminogen. It has been shown that angiostatin, a proteolytic fragment of plasminogen containing kringles 1-4, can effectively inhibit angiogenesis. Moreover, proteolytic fragments of plasminogen containing kringle 5 are even more potent inhibitors of angiogenesis than angiostatin. Despite its strong similarity with plasminogen, the role of apolipoprotein(a in angiogenesis remains controversial, with both pro- and anti-angiogenic effects reported. In the current study, we evaluated the ability of apolipoprotein(a to inhibit VEGF- and angiopoietin-induced tube formation in human umbilical cord endothelial cells. A 17 kringle-containing form of recombinant apo(a (17K, corresponding to a well-characterized, physiologically-relevant form of the molecule, effectively inhibited tube formation induced by either VEGF or angiopoietin-1. Using additional recombinant apolipoprotein(a (r-apo(a variants, we demonstrated that this effect was dependent on the presence of an intact lysine-binding site in kringle V domain of apo(a, but not on the presence of the functional lysine-binding site in apo(a kringle IV type 10; sequences within in the amino-terminal half of the molecule were also not required for the inhibitory effects of apo(a. We also showed that the apo(a-mediated inhibition tube formation could be reversed, in part by the addition of plasmin or urokinase plasminogen activator, or by removal of plasminogen from the system. Further, we demonstrated that apo(a treated with glycosidases to remove sialic acid was significantly less effective in inhibiting tube formation. This is the first report of a functional role for the

  9. Enhanced inhibition of murine prostatic carcinoma growth by immunization with or administration of viable human umbilical vein endothelial cells and CRM197

    Directory of Open Access Journals (Sweden)

    Zhang Huiyong

    2011-02-01

    Full Text Available Vaccination with xenogeneic and syngeneic endothelial cells is effective for inhibiting tumor growth. Nontoxic diphtheria toxin (CRM197, as an immunogen or as a specific inhibitor of heparin-binding EGF-like growth factor, has shown promising antitumor activity. Therefore, immunization with or administration of viable human umbilical vein endothelial cells (HUVECs combined with CRM197 could have an enhanced antitumor effect. Six-week-old C57BL/6J male mice were vaccinated with viable HUVECs, 1 x 10(6 viable HUVECs combined with 100 μg CRM197, or 100 μg CRM197 alone by ip injections once a week for 4 consecutive weeks. RM-1 cells (5 x 10(5 were inoculated by sc injection as a preventive procedure. During the therapeutic procedure, 6-week-old male C57BL/6J mice were challenged with 1 x 10(5 RM-1 cells, then injected sc with 1 x 10(6 viable HUVECs, 1 x 10(6 viable HUVECs + 100 μg CRM197, and 100 μg CRM197 alone twice a week for 4 consecutive weeks. Tumor volume and life span were monitored. We also investigated the effects of immunization with HUVECs on the aortic arch wall and on wound healing. Vaccination with or administration of viable HUVECs+CRM197 enhanced the inhibition of RM-1 prostatic carcinoma by 24 and 29%, respectively, and prolonged the life span for 3 and 4 days, respectively, compared with those of only vaccination or administration with viable HUVECs of tumor-bearing C57BL/6J mice. Furthermore, HUVEC immunization caused some damage to the aortic arch wall but did not have remarkable effects on the rate of wound healing; the wounds healed in approximately 13 days. Treatment with CRM197 in combination with viable HUVECs resulted in a marked enhancement of the antitumor effect in the preventive or therapeutic treatment for prostatic carcinoma in vivo, suggesting a novel combination for anti-cancer therapy.

  10. All-trans retinoic acid inhibits vascular endothelial growth factor expression in a cell model of neutrophil activation.

    Science.gov (United States)

    Tee, Meng Kian; Vigne, Jean-Louis; Taylor, Robert N

    2006-03-01

    Infiltrating neutrophil granulocytes are a particularly rich source of vascular endothelial growth factor (VEGF) in the endometrium and may contribute to the angiogenesis of endometriosis lesions. The objective of this study is to evaluate the expression and regulation of VEGF in endometrial neutrophils and in a model of neutrophil differentiation relevant to endometriosis. Immunohistochemistry was performed on endometriosis patient biopsies and cultured neutrophil-like HL-60 cells were assessed. The study was set in a reproductive biology division within an academic medical center. Endometrial biopsies were performed on women with endometriosis and HL-60 cells were treated with all-trans retinoic acid (atRA) and dimethyl sulfoxide in vitro. Immunofluorescence histochemistry, VEGF mRNA and protein quantification, and transfection studies of VEGF gene promoter-luciferase constructs were all main outcome measures. Immunofluorescence studies verified the presence of neutrophils in eutopic endometrium from women with endometriosis. Examination of the regulation of VEGF using differentiated HL-60 cells as a model, revealed that atRA induced a dose- and time-dependent suppression of VEGF mRNA and protein. Transient transfection, truncation, EMSA, and site-directed mutagenesis of human VEGF promoter-luciferase constructs in HL-60 cells indicated that atRA repressed VEGF gene transcription via a direct repeat 1 element located between -443 and -431 bp relative to the transcription initiation site. Because retinoic acid is synthesized de novo in endometrial cells under the influence of progesterone, our findings suggest that the up-regulated VEGF and angiogenesis in tissue from women with endometriosis may reflect failure of neutrophil differentiation in these cases, and provide a rationale for retinoid therapy in this condition. PMID:16322068

  11. Cytotoxic T lymphocyte-dependent tumor growth inhibition by a vascular endothelial growth factor-superantigen conjugate

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Qingwen [Shanghai Chest Hospital, Shanghai 200433 (China); State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200433 (China); Jiang, Songmin [State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200433 (China); Han, Baohui [Shanghai Chest Hospital, Shanghai 200433 (China); Sun, Tongwen [Wuhan Junyu Innovation Pharmaceuticals, Inc., Wuhan 430079 (China); Li, Zhengnan; Zhao, Lina; Gao, Qiang [College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Sun, Jialin, E-mail: jialin_sun@126.com [Wuhan Junyu Innovation Pharmaceuticals, Inc., Wuhan 430079 (China)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer We construct and purify a fusion protein VEGF-SEA. Black-Right-Pointing-Pointer VEGF-SEA strongly repressed the growth of murine solid sarcoma 180 (S180) tumors. Black-Right-Pointing-Pointer T cells driven by VEGF-SEA were accumulated around tumor cells bearing VEGFR by mice image model. Black-Right-Pointing-Pointer VEGF-SEA can serve as a tumor targeting agent and sequester CTLs into the tumor site. Black-Right-Pointing-Pointer The induced CTLs could release the cytokines, perforins and granzyme B to kill the tumor cells. -- Abstract: T cells are major lymphocytes in the blood and passengers across the tumor vasculature. If these T cells are retained in the tumor site, a therapeutic potential will be gained by turning them into tumor-reactive cytotoxic T lymphocytes (CTLs). A fusion protein composed of human vascular endothelial growth factor (VEGF) and staphylococcal enterotoxin A (SEA) with a D227A mutation strongly repressed the growth of murine solid sarcoma 180 (S180) tumors (control versus VEGF-SEA treated with 15 {mu}g, mean tumor weight: 1.128 g versus 0.252 g, difference = 0.876 g). CD4{sup +} and CD8{sup +} T cells driven by VEGF-SEA were accumulated around VEGFR expressing tumor cells and the induced CTLs could release the tumoricidal cytokines, such as interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha). Meanwhile, intratumoral CTLs secreted cytolytic pore-forming perforin and granzyme B proteins around tumor cells, leading to the death of tumor cells. The labeled fusion proteins were gradually targeted to the tumor site in an imaging mice model. These results show that VEGF-SEA can serve as a tumor targeting agent and sequester active infiltrating CTLs into the tumor site to kill tumor cells, and could therefore be a potential therapeutical drug for a variety of cancers.

  12. Minocycline inhibits neuroinflammation and enhances vascular endothelial growth factor expression in a cerebral ischemia/reperfusion rat model

    Institute of Scientific and Technical Information of China (English)

    Zhiyou Cai; Yong Yan; Changyin Yu; Jun Zhang

    2008-01-01

    BACKGROUND: Brain ischemia involves secondary inflammation, which significantly contributes to the outcome of ischemic insults. Vascular endothelial growth factor (VEGF) may play an important role in the vascular response to cerebral ischemia, because ischemia stimulates VEGF expression in the brain, and VEGF promotes formation of new cerebral blood vessels. Minocyclinc, a tetracycline derivative, protects against cerebral ischemia and reduces inflammation, oxidative stress, and apoptosis.OBJECTIVE: To observe the influence of minocycline on VEGE interleukin-1 beta (IL-1β), and tumor necrosis factor alpha (TNF-α) expression in Wistar rats with focal cerebral ischemia/rcperfusion injury, and to study the neuroproteetion mechanism of minocycline against focal cerebral ischemia/rcpeffusion injury.DESIGN, TIME AND SETTING: Randomized, controlled experiment, which was performed in the Chongqing Key Laboratory of Neurology between March 2007 and March 2008.MATERIALS: A total of 36 female, Wistar rats underwent surgery to insert a thread into the left middle cerebral artery. Animals were randomly divided into sham-operation, minocyclinc treatment, and ischemia/reperfusion groups, with 12 rats in each group. Minocycline (Huishi Pharmaceutical Limited Company, China) was dissolved to 0.5 g/L in normal saline.METHODS: A 0.5- 1.0 cm thread was inserted into rats from the sham-operation group. Rats in the ischemia/reperfusion group underwent ischemia and reperfusion. The minocycline group received minocycline (50 mg/kg) 12 and 24 hours following ischemia and reperfusion, whereas the other groups received saline at the corresponding time points.MAIN OUTCOME MEASURES: mRNA and protein expression of IL-1β and TNF-α was measured by reverse transcriptase-polymerasc chain reaction (RT-PCR) and enzyme linked immunosorbent assay (ELISA), respectively. VEGF mRNA and protein expression was examined by RT-PCR, Western blot, and ELISA.RESULTS: Minocycline decreased the focal infarct

  13. Inhibition of multiple vascular endothelial growth factor receptors (VEGFR) blocks lymph node metastases but inhibition of VEGFR-2 is sufficient to sensitize tumor cells to platinum-based chemotherapeutics.

    Science.gov (United States)

    Sini, Patrizia; Samarzija, Ivana; Baffert, Fabienne; Littlewood-Evans, Amanda; Schnell, Christian; Theuer, Andreas; Christian, Sven; Boos, Anja; Hess-Stumpp, Holger; Foekens, John A; Setyono-Han, Buddy; Wood, Jeanette; Hynes, Nancy E

    2008-03-01

    Vascular endothelial growth factor receptors (VEGFR) have important roles in cancer, affecting blood and lymphatic vessel functionality as well as tumor cells themselves. We compared the efficacy of a VEGFR tyrosine kinase inhibitor, PTK787/ZK222584 (PTK/ZK), which targets the three VEGFRs, with blocking antibodies directed against VEGFR-2 (DC101) or VEGF-A (Pab85618) in a metastatic melanoma model. Although all inhibitors exerted comparable effects on primary tumor growth, only PTK/ZK significantly reduced lymph node metastasis formation. A comparable decrease in lymphatic vessel density following blockade of VEGFR-2 (DC101) or the three VEGFRs (PTK/ZK) was observed in the metastases. However, the functionality of lymphatics surrounding the primary tumor was more significantly disrupted by PTK/ZK, indicating the importance of multiple VEGFRs in the metastatic process. The antimetastatic properties of PTK/ZK were confirmed in a breast carcinoma model. B16/BL6 tumor cells express VEGF ligands and their receptors. Blockade of a VEGFR-1 autocrine loop with PTK/ZK inhibited tumor cell migration. Furthermore, the tumor cells also showed enhanced sensitivity to platinum-based chemotherapy in combination with PTK/ZK, indicating that autocrine VEGFRs are promoting tumor cell migration and survival. In summary, our results suggest that, in addition to blocking angiogenesis, combined inhibition of the three VEGFRs may more efficiently target other aspects of tumor pathophysiology, including lymphatic vessel functionality, tumor cell dissemination, survival pathways, and response to chemotherapeutic compounds. PMID:18316624

  14. Corticotropin-releasing hormone and extracellular mitochondria augment IgE-stimulated human mast-cell vascular endothelial growth factor release, which is inhibited by luteolin

    Directory of Open Access Journals (Sweden)

    Asadi Shahrzad

    2012-05-01

    Full Text Available Abstract Background Autism spectrum disorders (ASDs are neurodevelopmental disorders characterized by varying degrees of dysfunctional social abilities, learning deficits, and stereotypic behaviors. Many patients with ASDs have ‘allergy-like’ symptoms and respond disproportionally to stress. We have previously shown that the peptide neurotensin (NT is increased in the serum of young children with autism and that can stimulate extracellular secretion of mitochondrial (mtDNA which was also increased in the serum of these children. Methods Human mast cells were stimulated by corticotropin-releasing hormone (CRH, mitochondrial DNA, IgE/anti-IgE, either for 24 hours to measure vascular endothelial growth factor (VEGF release by ELISA or for 6 hours or quantitative PCR. Results CRH augmented IgE/anti-IgE-induced human mast-cell release of VEGF and it also induced the expression of IgE receptor (FcεRI on mast cells. Moreover, sonicated mitochondria also augmented VEGF release, and this effect was blocked by the natural flavone luteolin. Conclusion These results indicate that stress and infection-mimicking extracellular mitochondrial components augment allergic inflammation that may be involved in the early pathogenesis of ASDs. Moreover, luteolin inhibits these processes and may be helpful in the treatment of ASDs.

  15. Inhibition of p38 Mitogen-Activated Protein Kinase Enhances the Apoptosis Induced by Oxidized Low-Density Lipoprotein in Endothelial Progenitor Cells.

    Science.gov (United States)

    Tie, Guodong; Yan, Jinglian; Messina, Julia A; Raffai, Robert L; Messina, Louis M

    2015-01-01

    Oxidized low-density lipoprotein (oxLDL) is an important risk factor in the development of atherosclerosis. oxLDL has been shown to decrease endothelial progenitor cell (EPC) number by inducing apoptosis. p38 mitogen-activated protein kinase (MAPK) was shown to be activated by oxLDL and participated in the regulation of EPC number and function. However, the role of p38 remains unknown. Here, we show that oxLDL-induced p38 phosphorylation in EPCs is time and dose dependent. Treatment with antioxidant N-acetyl cysteine restored oxLDL-induced p38 phosphorylation to basal levels. LOX-1-blocking antibody also significantly decreased oxLDL-induced p38 phosphorylation. Interestingly, TUNEL staining showed that pretreatment with the p38 inhibitor SB203580 further increased oxLDL-induced apoptosis in EPCs. In accordance with these findings, pretreatment with SB203580 further attenuated Akt phosphorylation in EPCs challenged with oxLDL, indicating an interaction between Akt and p38 MAPK pathways. In agreement, inhibition of p38 MAPK further attenuated Akt phosphorylation and increased apoptosis in EPCs isolated from hypercholesterolemic ApoE-/- mice. In conclusion, p38 MAPK serves as an anti-apoptotic pathway by supporting Akt activity when EPCs are challenged with oxLDL. PMID:27031525

  16. Inhibition of Tumor Angiogenesis and Tumor Growth by the DSL Domain of Human Delta-Like 1 Targeted to Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Xing-Cheng Zhao

    2013-07-01

    Full Text Available The growth of solid tumors depends on neovascularization. Several therapies targeting tumor angiogenesis have been developed. However, poor response in some tumors and emerging resistance necessitate further investigations of newdrug targets. Notch signal pathway plays a pivotal role in vascular development and tumor angiogenesis. Either blockade or forced activation of this pathway can inhibit angiogenesis. As blocking Notch pathway results in the formation of vascular neoplasm, activation of Notch pathway to prevent tumor angiogenesis might be an alternative choice. However, an in vivo deliverable reagent with highly efficient Notch-activating capacity has not been developed. Here, we generated a polypeptide, hD1R, which consists of the Delta-Serrate-Lag-2 fragment of the human Notch ligand Delta-like 1 and an arginine-glycine-aspartate (RGD motif targeting endothelial cells (ECs. We showed that hD1R could bind to ECs specifically through its RGD motif and effectively triggered Notch signaling in ECs. We demonstrated both in vitro and in vivo that hD1R inhibited angiogenic sprouting and EC proliferation. In tumor-bearing mice, the injection of hD1R effectively repressed tumor growth, most likely through increasing tumor hypoxia and tissue necrosis. The amount and width of vessels reduced remarkably in tumors of mice treated with hD1R. Moreover, vessels in tumors of mice treated with hD1R recruited more NG2+ perivascular cells and were better perfused. Combined application of hD1R and chemotherapy with cisplatin and teniposide revealed that these two treatments had additive antitumor effects. Our study provided a new strategy for antiangiogenic tumor therapy.

  17. Both common and specialty mushrooms inhibit adhesion molecule expression and in vitro binding of monocytes to human aortic endothelial cells in a pro-inflammatory environment

    Directory of Open Access Journals (Sweden)

    Martin Keith R

    2010-07-01

    Full Text Available Abstract Background Cardiovascular disease (CVD is a leading cause of mortality in the United States as well as globally. Epidemiological studies show that regular fruit and vegetable consumption reduces CVD risk, in part, due to antioxidant activity and immunomodulation since oxidative stress and inflammation are features of atherogenesis. Accumulating evidence also shows that dietary fungi, viz., mushrooms, can protect against chronic disease by altering inflammatory environments such as those associated with CVD although most research has focused on specialty mushrooms. In this study, we tested the ability of both common and specialty mushrooms to inhibit cellular processes associated with CVD. Methods Human aortic endothelial cells (HAEC were incubated overnight with control media with dimethylsulfoxide (DMSO vehicle (1% v/v or containing DMSO extracts of whole dehydrated mushrooms (0.1 mg/mL, which included Agaricus bisporus (white button and crimini, Lentinula edodes (shiitake, Pleurotus ostreatus (oyster, and Grifola frondosa (maitake. Monolayers were subsequently washed and incubated with medium alone or containing the pro-inflammatory cytokine IL-1β (5 ng/mL for 6 h to upregulate pro-atherosclerotic adhesion molecules (AM. AM expression was assayed by ELISA and binding of U937 human monocytes pre-loaded with fluorescent dye was determined. Results White button mushrooms consistently reduced (p Conclusion These data provide evidence that dietary mushrooms can inhibit cellular processes such as adhesion molecule expression and ultimate binding of monocytes to the endothelium under pro-inflammatory conditions, which are associated with CVD. As a result, these findings support the notion that dietary mushrooms can be protective against CVD.

  18. MicroRNA-101 inhibits the migration and invasion of intrahepatic cholangiocarcinoma cells via direct suppression of vascular endothelial growth factor-C.

    Science.gov (United States)

    Deng, Gang; Teng, Yinglu; Huang, Feizhou; Nie, Wanpin; Zhu, Lei; Huang, Wei; Xu, Hongbo

    2015-11-01

    MicroRNAs (miRs) have important roles in the pathogenesis of human malignancy. It has previously been suggested that deregulation of miR‑101 is associated with the progression of intrahepatic cholangiocarcinoma (ICC); however, the exact role of miR‑101 in the regulation of ICC metastasis remains largely unknown. The present study demonstrated that the expression levels of miR‑101 were significantly decreased in ICC tissue, as compared with matched adjacent normal tissue. Furthermore, miR‑101 was downregulated in the ICC‑9810 human ICC cell line, as compared with in the normal human intrahepatic biliary epithelial cell (HIBEC) line. Vascular endothelial growth factor (VEGF)‑C was identified as a target gene of miR‑101 in ICC‑9810 cells. The expression of VEGF‑C was negatively regulated by miR‑101 at the post‑transcriptional level in ICC‑9810 cells. Further investigation demonstrated that overexpression of miR‑101 markedly suppressed the migration and invasion of ICC‑9810 cells, and these effects were similar to those observed following VEGF‑C knockdown. Conversely, restoration of VEGF‑C reversed the inhibitory effects of miR‑101 overexpression on ICC‑9810 cell migration and invasion, thus suggesting that miR‑101 may suppress ICC‑9810 cell migration and invasion, at least partly via inhibition of VEGF‑C. It was also demonstrated that the mRNA and protein expression levels of VEGF‑C were frequently upregulated in ICC tissue and cells, and its expression level was inversely correlated with that of miR‑101 in ICC tissue. In conclusion, the present study identified important roles for miR‑101 and VEGF‑C in ICC, suggesting that miR‑101/VEGF‑C signaling may be a promising diagnostic and/or therapeutic target for ICC. PMID:26299768

  19. N-3 polyunsaturated Fatty acids prevent diabetic retinopathy by inhibition of retinal vascular damage and enhanced endothelial progenitor cell reparative function.

    Directory of Open Access Journals (Sweden)

    Maria Tikhonenko

    Full Text Available OBJECTIVE: The vasodegenerative phase of diabetic retinopathy is characterized by not only retinal vascular degeneration but also inadequate vascular repair due to compromised bone marrow derived endothelial progenitor cells (EPCs. We propose that n-3 polyunsaturated fatty acid (PUFA deficiency in diabetes results in activation of the central enzyme of sphingolipid metabolism, acid sphingomyelinase (ASM and that ASM represents a molecular metabolic link connecting the initial damage in the retina and the dysfunction of EPCs. RESEARCH DESIGN AND METHODS: Type 2 diabetic rats on control or docosahexaenoic acid (DHA-rich diet were studied. The number of acellular capillaries in the retinas was assessed by trypsin digest. mRNA levels of interleukin (IL-1β, IL-6, intracellular adhesion molecule (ICAM-1 in the retinas from diabetic animals were compared to controls and ASM protein was assessed by western analysis. EPCs were isolated from blood and bone marrow and their numbers and ability to form colonies in vitro, ASM activity and lipid profiles were determined. RESULTS: DHA-rich diet prevented diabetes-induced increase in the number of retinal acellular capillaries and significantly enhanced the life span of type 2 diabetic animals. DHA-rich diet blocked upregulation of ASM and other inflammatory markers in diabetic retina and prevented the increase in ASM activity in EPCs, normalized the numbers of circulating EPCs and improved EPC colony formation. CONCLUSIONS: In a type 2 diabetes animal model, DHA-rich diet fully prevented retinal vascular pathology through inhibition of ASM in both retina and EPCs, leading to a concomitant suppression of retinal inflammation and correction of EPC number and function.

  20. A comparative study on inhibition of total astragalus saponins and astragaloside IV on TNFR1-mediated signaling pathways in arterial endothelial cells.

    Directory of Open Access Journals (Sweden)

    Qin-she Liu

    Full Text Available BACKGROUND: Both total astragalus saponins (AST and it's main component astragaloside IV (ASIV have been used in China as cardiovascular protective medicines. However, the anti-inflammatory activities that are beneficial for cardiovascular health have never been compared directly and the molecular mechanisms remain unresolved. This study was conducted to compare the inhibitory effects of these drugs on TNFα-induced cell responses, related signaling pathways, and the underlying mechanisms in mouse arterial endothelial cells. METHODOLOGY/PRINCIPAL FINDINGS: Real-time qRT-PCR was performed to determine the expression of cell adhesion molecule (CAM genes. Immunofluorescent staining was used to detect the nuclear translocation of transcription factor NF-κB-p65. Western Blot analysis was used to identify TNFα-induced NF-κB-p65 phosphorylation, IκBα degradation, and caspase-3 cleavage. Cell surface proteins were isolated and TNFα receptor-1(TNFR1 expression was determined. The results suggest that both AST and ASIV attenuate TNFα-induced up-regulation of CAMs mRNA and upstream nuclear translocation and phosphorylation of NF-κB-p65. However, TNFR1-mediated IκBα degradation, cleavage of caspase-3 and apoptosis were inhibited only by AST. These differences in the actions of AST and ASIV could be explained by the presence of other components in AST, such as ASII and ASIII, which also had an inhibitory effect on TNFR1-induced IκBα degradation. Moreover, AST, but not ASIV, was able to reduce TNFR1 protein level on the cell surface. Furthermore, mechanistic investigation demonstrated that TNFR1-mediated IκBα degradation was reversed by the use of TAPI-0, an inhibitor of TNFα converting enzyme (TACE, suggesting the involvement of TACE in the modulation of surface TNFR1 level by AST. CONCLUSION: ASIV was not a better inhibitor than AST, at least on the inhibition of TNFα-induced inflammatory responses and TNFR1-mediated signaling pathways in

  1. Impact of adjuvant inhibition of vascular endothelial growth factor receptor tyrosine kinases on tumor growth delay and local tumor control after fractionated irradiation in human squamous cell carcinomas in nude mice

    International Nuclear Information System (INIS)

    Purpose: Previous experiments have shown that adjuvant inhibition of the vascular endothelial growth factor receptor after fractionated irradiation prolonged tumor growth delay and may also improve local tumor control. To test the latter hypothesis, local tumor control experiments were performed. Methods and materials: Human FaDu and UT-SCC-14 squamous cell carcinomas were studied in nude mice. The vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584 (50 mg/kg body weight b.i.d.) was administered for 75 days after irradiation with 30 fractions within 6 weeks. Tumor growth time and tumor control dose 50% (TCD50) were determined and compared to controls (carrier without PTK787/ZK222584). Results: Adjuvant administration of PTK787/ZK222584 significantly prolonged tumor growth time to reach 5 times the volume at start of drug treatment by an average of 11 days (95% confidence interval 0.06;22) in FaDu tumors and 29 days (0.6;58) in UT-SCC-14 tumors. In both tumor models, TCD50 values were not statistically significantly different between the groups treated with PTK787/ZK222584 compared to controls. Conclusions: Long-term inhibition of angiogenesis after radiotherapy significantly reduced the growth rate of local recurrences but did not improve local tumor control. This indicates that recurrences after irradiation depend on vascular endothelial growth factor-driven angiogenesis, but surviving tumor cells retain their clonogenic potential during adjuvant antiangiogenic treatment with PTK787/ZK222584

  2. The rationale and design of the antihypertensives and vascular, endothelial, and cognitive function (AVEC trial in elderly hypertensives with early cognitive impairment: Role of the renin angiotensin system inhibition

    Directory of Open Access Journals (Sweden)

    Hart Meaghan

    2009-11-01

    Full Text Available Abstract Background Prior evidence suggests that the renin angiotensin system and antihypertensives that inhibit this system play a role in cognitive, central vascular, and endothelial function. Our objective is to conduct a double-blind randomized controlled clinical trial, the antihypertensives and vascular, endothelial, and cognitive function (AVEC, to compare 1 year treatment of 3 antihypertensives (lisinopril, candesartan, or hydrochlorothiazide in their effect on memory and executive function, cerebral blood flow, and central endothelial function of seniors with hypertension and early objective evidence of executive or memory impairments. Methods/Design The overall experimental design of the AVEC trial is a 3-arm double blind randomized controlled clinical trial. A total of 100 community eligible individuals (60 years or older with hypertension and early cognitive impairment are being recruited from the greater Boston area and randomized to lisinopril, candesartan, or hydrochlorothiazide ("active control" for 12 months. The goal of the intervention is to achieve blood pressure control defined as SBP 20 and without clinical diagnosis of dementia or Alzheimer's disease. Individuals who are currently receiving antihypertensives are eligible to participate if the participants and the primary care providers are willing to taper their antihypertensives. Participants undergo cognitive assessment, measurements of cerebral blood flow using Transcranial Doppler, and central endothelial function by measuring changes in cerebral blood flow in response to changes in end tidal carbon dioxide at baseline (off antihypertensives, 6, and 12 months. Our outcomes are change in cognitive function score (executive and memory, cerebral blood flow, and carbon dioxide cerebral vasoreactivity. Discussion The AVEC trial is the first study to explore impact of antihypertensives in those who are showing early evidence of cognitive difficulties that did not reach the

  3. Melittin inhibits tumor angiogenesis modulated by endothelial progenitor cells associated with the SDF-1α/CXCR4 signaling pathway in a UMR-106 osteosarcoma xenograft mouse model.

    Science.gov (United States)

    Qin, Gang; Chen, Yongqiang; Li, Haidong; Xu, Suyang; Li, Yumei; Sun, Jian; Rao, Wu; Chen, Chaowei; Du, Mindong; He, Kaiyi; Ye, Yong

    2016-07-01

    Endothelial progenitor cells (EPCs) are important in tumor angiogenesis. Stromal cell-derived factor-1α (SDF-1α) and its receptor C-X-C chemokine receptor type 4 (CXCR4) are key in stem cell homing. Melittin, a component of bee venom, exerts antitumor activity, however, the underlying mechanisms remain to be elucidated. The present study aimed to assess the effects of melittin on EPCs and angiogenesis in a mouse model of osteosarcoma. UMR‑106 cells and EPCs were treated with various concentrations of melittin and cell viability was determined using the MTT assay. EPC adherence, migration and tube forming ability were assessed. Furthermore, SDF‑1α, AKT and extracellular signal‑regulated kinase (ERK)1/2 expression levels were detected by western blotting. Nude mice were inoculated with UMR‑106 cells to establish an osteosarcoma mouse model. The tumors were injected with melittin, and its effects were assessed by immunohistochemistry and immunofluorescence. Melittin decreased the viability of UMR‑106 cells and EPCs. In addition, it decreased EPC adhesion, migration and tube formation when compared with control and SDF‑1α‑treated cells. Melittin decreased the expression of phosphorylated (p)‑AKT, p‑ERK1/2, SDF‑1α and CXCR4 in UMR‑106 cells and EPCs when compared with the control. The proportions of cluster of differentiation (CD)34/CD133 double‑positive cells were 16.4±10.4% in the control, and 7.0±4.4, 2.9±1.2 and 1.3±0.3% in tumors treated with 160, 320 and 640 µg/kg melittin per day, respectively (P<0.05). At 11 days, melittin reduced the tumor size when compared with that of the control (control, 4.8±1.3 cm3; melittin, 3.2±0.6, 2.6±0.5, and 2.0±0.2 cm3 for 160, 320 and 640 µg/kg, respectively; all P<0.05). Melittin decreased the microvessel density, and SDF‑1α and CXCR4 protein expression levels in the tumors. Melittin may decrease the effect of osteosarcoma on EPC‑mediated angiogenesis, possibly via inhibition

  4. Comparisons of the Efficacy of a Jak1/2 Inhibitor (AZD1480 with a VEGF Signaling Inhibitor (Cediranib and Sham Treatments in Mouse Tumors Using DCE-MRI, DW-MRI, and Histology

    Directory of Open Access Journals (Sweden)

    Mary E. Loveless

    2012-01-01

    Full Text Available Jak1/2 inhibition suppresses STAT3 phosphorylation that is characteristic of many cancers. Activated STAT3 promotes the transcription of factors that enhance tumor growth, survival, and angiogenesis. AZD1480 is a novel small molecule inhibitor of Jak1/2, which is a key mediator of STAT3 activation. This study examined the use of diffusion-weighted (DW and dynamic contrast-enhanced (DCE magnetic resonance imaging (MRI biomarkers in assessing early tumor response to AZD1480. Cediranib (AZD2171, a vascular endothelial growth factor signaling inhibitor, was used as a comparator. Thirty mice were injected with Calu-6 lung cancer cells and randomized into the three treatment groups: AZD1480, cediranib, and sham. DW-MRI and DCE-MRI protocols were performed at baseline and at days 3 and 5 after treatment. The percent change from baseline measurements for Ktrans, ADC, and ve were calculated and compared with hematoxylin and eosin (H&E, CD31, cParp, and Ki-67 histology data. Decreases in Ktrans of 29% (P < .05 and 53% (P < .05 were observed at days 3 and 5, respectively, for the cediranib group. No significant changes in Ktrans occurred for the AZD1480 group, but a significant increase in ADC was demonstrated at days 3 (63%, P < .05 and 5 (49%, P < .05. CD31 staining indicated diminished vasculature in the cediranib group, whereas significantly increased cParp staining for apoptotic activity and extracellular space by image analysis of H&E were present in the AZD1480 group. These imaging biomarker changes, and corresponding histopathology, support the use of ADC, but not Ktrans, as a pharmacodynamic biomarker of response to AZD1480 at these time points.

  5. Induction of oxidative stress and inhibition of plasminogen activator inhibitor-1 production in endothelial cells following exposure to organic extracts of diesel exhaust particles and urban fine particles

    Energy Technology Data Exchange (ETDEWEB)

    Furuyama, Akiko; Koike, Eiko [National Institute for Environmental Studies, Inhalation toxicology Team, Tsukuba (Japan); Hirano, Seishiro [National Institute for Environmental Studies, Environmental Health Sciences Division, Tsukuba (Japan); Kobayashi, Takahiro [National Institute for Environmental Studies, Inhalation toxicology Team, Tsukuba (Japan); National Institute for Environmental Studies, Environmental Health Sciences Division, Tsukuba (Japan)

    2006-03-15

    Endothelial cells play important roles in anticoagulant and fibrinolytic systems. Recent studies suggest that increases in ambient particulate matter (PM) levels have been associated with an increase in mortality rate from cardiovascular diseases. We examined the production of heme oxygenase-1 (HO-1) and factors related to the fibrinolytic function by rat heart microvessel endothelial cells exposed to organic extracts of diesel exhaust particles (OE-DEP) and urban fine particles (OE-UFP) to investigate the direct effects of these soluble organic fractions in these PM on the fibrinolytic function of endothelial cells. The cell monolayer exposed to 10 {mu}g/ml OE-DEP produced a larger amount of HO-1 than cells exposed to 10 {mu}g/ml OE-UFP. OE-DEP and OE-UFP exposure reduced plasminogen activator inhibitor-1 (PAI-1) production by the cells but did not affect the production of thrombomodulin, tissue-type plasminogen activator, or urokinase-type plasminogen activator. Increased PAI-1 synthesis in response to treatment with 1.0 ng/ml tumor necrosis factor-{alpha} or 0.5 ng/ml transforming growth factor-{beta}1 was reduced by OE-DEP exposure. Suppression of PAI-1 production by OE-DEP exposure was mediated through oxidative stress and was independent of HO-1 activity. These results suggest that exposure to the soluble organic fraction of PM and DEP induced oxidative stress and reduced the PAI-1 production of endothelial cells. (orig.)

  6. Clematichinenoside inhibits VCAM-1 and ICAM-1 expression in TNF-α-treated endothelial cells via NADPH oxidase-dependent IκB kinase/NF-κB pathway.

    Science.gov (United States)

    Yan, Simin; Zhang, Xu; Zheng, Haili; Hu, Danhong; Zhang, Yongtian; Guan, Qinghua; Liu, Lifang; Ding, Qilong; Li, Yunman

    2015-01-01

    Proinflammatory cytokine TNF-α-induced adhesion of leukocytes to endothelial cells plays a critical role in the early stage of atherosclerosis. Oxidative stress and redox-sensitive transcription factors are implicated in the process. Thus, compounds that mediate intracellular redox status and regulate transcription factors are of great therapeutic interest. Clematichinenoside (AR), a triterpene saponin isolated from the root of Clematis chinensis Osbeck, was previously demonstrated to have anti-inflammatory and antioxidative properties. However, little is known about the exact mechanism underlying these actions. Thus we performed a detailed study on its effect on leukocytes-endothelial cells adhesion with TNF-α-stimulated human umbilical vein endothelial cells (HUVECs) and cell-free systems. First, we found that AR reduced TNF-α-induced VCAM-1 and ICAM-1 expression and their promoter activity, inhibited translocation of p65 and phosphorylation of IκBα, suppressed IκB kinase-β (IKK-β) activity, lowered O2(∙-) and H2O2 levels, tackled p47(phox) translocation, and decreased NOX4 NADPH oxidase expression. Second, we showed that AR exhibited no direct free radical scavenging ability in cell-free systems at concentrations that were used in intact cells. Besides, AR had no direct effect on the activity of IKK-β that was extracted from TNF-α-stimulated HUVECs. We also found that p47 translocation, NOX4 expression, and reactive oxygen species (ROS) levels were up-regulated before IκB phosphorylation in TNF-α-induced HUVECs. Moreover, TNF-α-enhanced IKK-β activity was also inhibited by (polyethylene glycol) PEG-catalase, N-acetylcysteine (NAC), and vitamin E. In conclusion, these results suggest that AR reduces VCAM-1 and ICAM-1 expression through NADPH oxidase-dependent IKK/NF-κB pathways in TNF-α-induced HUVECs, which finally suppress monocyte-HUVECs adhesion. This compound is potentially beneficial for early-stage atherosclerosis. PMID:25463279

  7. Inhibition of Hydrogen Sulfide-induced Angiogenesis and Inflammation in Vascular Endothelial Cells: Potential Mechanisms of Gastric Cancer Prevention by Korean Red Ginseng.

    Science.gov (United States)

    Choi, Ki-Seok; Song, Heup; Kim, Eun-Hee; Choi, Jae Hyung; Hong, Hua; Han, Young-Min; Hahm, Ki Baik

    2012-04-01

    Previously, we reported that Helicobacter pylori-associated gastritis and gastric cancer are closely associated with increased levels of hydrogen sulfide (H2S) and that Korean red ginseng significantly reduced the severity of H. pylori-associated gastric diseases by attenuating H2S generation. Because the incubation of endothelial cells with H2S has been known to enhance their angiogenic activities, we hypothesized that the amelioration of H2S-induced gastric inflammation or angiogenesis in human umbilical vascular endothelial cells (HUVECs) might explain the preventive effect of Korean red ginseng on H. pylori-associated carcinogenesis. The expression of inflammatory mediators, angiogenic growth factors, and angiogenic activities in the absence or presence of Korean red ginseng extracts (KRGE) were evaluated in HUVECs stimulated with the H2S generator sodium hydrogen sulfide (NaHS). KRGE efficiently decreased the expression of cystathionine β-synthase and cystathionine γ-lyase, enzymes that are essential for H2S synthesis. Concomitantly, a significant decrease in the expression of inflammatory mediators, including cyclooxygenase-2 and inducible nitric oxide synthase, and several angiogenic factors, including interleukin (IL)-8, hypoxia inducible factor-1a, vascular endothelial growth factor, IL-6, and matrix metalloproteinases, was observed; all of these factors are normally induced after NaHS. An in vitro angiogenesis assay demonstrated that NaHS significantly increased tube formation in endothelial cells, whereas KRGE pretreatment significantly attenuated tube formation. NaHS activated p38 and Akt, increasing the expression of angiogenic factors and the proliferation of HUVECs, whereas KRGE effectively abrogated this H2S-activated angiogenesis and the increase in inflammatory mediators in vascular endothelial cells. In conclusion, KRGE was able to mitigate H2S-induced angiogenesis, implying that antagonistic action against H2S-induced angiogenesis may be the

  8. The Role of Matrine and Mitogen-Ativated Protein Kinase/Extracellular Signal-Regulated Kinase Signal Transduction in the Inhibition of the Proliferation and Migration of Human Umbilical Veins Endothelial Cells Induced by Lung Cancer cells

    Directory of Open Access Journals (Sweden)

    Ming BAI

    2009-07-01

    Full Text Available Background and objective Matrine, one of the major alkaloid components of the traditional Chinese medicine Sophora roots, has a wide range of pharmacological effects including anti-inflammatory activities, growth inhibition and induction of cell differentiation and apoptosis. Motigen-activated protein kinase (MAPK/extracellular signal-regulated kinase (ERK has found to be a crucial signaling pathway in endothelial cells. The aim of this study is to investigate the role of Matrine and MAPK/ERK signal transduction in the inhibition of the proliferation and migration of human umbilical veins endothelial cells (HUVECs induced by lung cancer cells. Methods HUVECs were cultured with A549CM. Mat or PD98059 (i.e PD, specific inhibitor of MAPK/ERK, was added into the A549CM. The proliferation of the HUVECs was measured by cell counting. The migration of the HUVECs was observed by wound healing assay. The expression levels of ERK and p-ERK protein were detected by Western Blot analysis. Results On 24 hours after intervention, the A549CM significantly stimulated the proliferation, migration and expression of p-ERK of HUVECs. Compared with the A549CM group, Mat significantly inhibited the proliferation, migration and p-ERK expression of HUVECs induced by A549CM. While PD only decreased the proliferation and p-ERK expression of HUVECs induced by A549CM. PD had no effect in the migration of HUVECs. Conclusion The results demonstrated that Mat and PD98059 can effectively decrease proliferation and expression of p-ERK of HUVECs induced by A549CM. Furthermore Mat can also inhibit migration of HUVECs induced by A549CM that did not changed by PD98059. These data implied that suppressing MAPK/ERK signal transduction may play the crucial role in resisting lung cacinoma angiogenesis with Mat.

  9. Aspirin-induced histone acetylation in endothelial cells enhances synthesis of the secreted isoform of netrin-1 thus inhibiting monocyte vascular infiltration

    OpenAIRE

    Passacquale, Gabriella; Phinikaridou, Alkystis; Warboys, Christina; Cooper, Margaret; Lavin, Begona; Alfieri, Alessio; Andia, Marcelo E.; Botnar, Rene M; Ferro, Albert

    2015-01-01

    Background and Purpose There are conflicting data regarding whether netrin-1 retards or accelerates atherosclerosis progression, as it can lead either to monocyte repulsion from or retention within plaques depending on its cellular source. We investigated the effect of aspirin, which is widely used in cardiovascular prophylaxis, on the synthesis of different isoforms of netrin-1 by endothelial cells under pro-inflammatory conditions, and defined the net effect of aspirin-dependent systemic mo...

  10. Cinnamon extract inhibits angiogenesis in zebrafish and human endothelial cells by suppressing VEGFR1, VEGFR2, and PKC-mediated MAP kinase

    OpenAIRE

    Bansode, R. R.; Leung, T; Randolph, P.; L. L. Williams; Ahmedna, M.

    2013-01-01

    Angiogenesis is a process of new blood vessel generation and under pathological conditions, lead to tumor development, progression, and metastasis. Many bioactive components have been studied for its antiangiogenic properties as a preventive strategy against tumor development. This study is focused on the effects of cinnamon extract in modulating the pathway involved in angiogenesis. Human umbilical vein endothelial cells (HUVEC) were treated with cinnamon extract at a concentration of 25 μg/...

  11. MMP-2 suppression abrogates irradiation-induced microtubule formation in endothelial cells by inhibiting αvβ3-mediated SDF-1/CXCR4 signaling

    OpenAIRE

    Maddirela, Dilip Rajasekhar; Kesanakurti, Divya; Gujrati, Meena; Rao, Jasti S.

    2013-01-01

    The majority of glioblastoma multiforme (GBM) tumors recur after radiation (IR) treatment due to increased angiogenesis and IR-induced signaling events in endothelial cells (ECs) that are involved in tumor neovascularization; however, these signaling events have yet to be well characterized. In the present study, we observed that IR (8 Gy) significantly elevated MMP-2 expression and gelatinolytic activity in 4910 and 5310 human GBM xenograft cells. In addition, ECs treated with tumor-conditio...

  12. Comparative study on saponin fractions from Panax notoginseng inhibiting inflammation-induced endothelial adhesion molecule expression and monocyte adhesion

    OpenAIRE

    Deng Yan-Hui; Chan Shun-Wan; Wan Jian-Bo; Wang Nan; Yu Nan; Zhang Qing-Wen; Wang Yi-Tao; Lee Simon

    2011-01-01

    Abstract Background Panax notoginseng is commonly used for the treatment of cardiovascular diseases in China. The present study investigates the effects of three different saponin fractions (ie total saponins, PNS; protopanaxadiol-type saponin, PDS; and protopanaxatriol-type saponin, PTS) and two major individual ingredients (ie ginsenoside Rg1 and Rb1) from P. notoginseng on the endothelial inflammatory response in vitro and in vivo. Methods Recombinant human tumor necrosis factor-α (TNF-α) ...

  13. Induction of endothelial cell proliferation and von Willebrand factor expression and secretion by leukemic plasma of patients with chronic lymphocytic leukemia before and after inhibition of NF-κB.

    Science.gov (United States)

    Shahidi, Minoo; Mohsen Razavi, Seyed; Hayat, Parisa

    2016-09-01

    Although certain evidence has indicated a role for angiogenesis in the pathophysiology of hematopoietic malignancies, its role in chronic lymphocytic leukemia (CLL) prognosis is yet to be defined. To our knowledge, the effects of CLL plasma on cell culture have not been addressed. Therefore, we investigated the effects of CLL plasma on cell cycle regulation and von Willebrand factor (vWF) secretion, and expression in human umbilical vein endothelial cell cultures (HUVECs). Since nuclear factor-kappa B (NF-κB) transcription factor has been a therapeutic target for treatment of cancer, we inhibited NF-κB using small interfering RNA to clarify if there is a role for this factor in probable effects. The cells were treated with the plasma of patients with CLL. Subsequently, cell cycle phase distribution, vWF secretion, expression, and storage were detected using ELISA, flow cytometry, and immunohistochemical staining. In addition, NF-κB was inhibited using small interfering RNA. Plasma treatment promoted cell cycle progression by decreasing the cell number in G1 phase, while increasing the cell number in S phase and G2M phase. A significant increase of vWF expression, secretion, and storage was found, associated with the vWF levels of patients' plasma. We found that induction of cell cycle promotion, but not vWF expression and secretion, was partially suppressed by this inhibition. We found that endothelial cell cycle and vWF expression and secretion affected by CLL plasma and NF-κB play a role in the former. These findings would be useful for understanding the prognostic importance of plasma angiogenic factor levels in CLL. PMID:27472040

  14. Metformin and Resveratrol Inhibited High Glucose-Induced Metabolic Memory of Endothelial Senescence through SIRT1/p300/p53/p21 Pathway.

    Directory of Open Access Journals (Sweden)

    Erli Zhang

    Full Text Available Endothelial senescence plays crucial roles in diabetic vascular complication. Recent evidence indicated that transient hyperglycaemia could potentiate persistent diabetic vascular complications, a phenomenon known as "metabolic memory." Although SIRT1 has been demonstrated to mediate high glucose-induced endothelial senescence, whether and how "metabolic memory" would affect endothelial senescence through SIRT1 signaling remains largely unknown. In this study, we investigated the involvement of SIRT1 axis as well as the protective effects of resveratrol (RSV and metformin (MET, two potent SIRT1 activators, during the occurrence of "metabolic memory" of cellular senescence (senescent "memory". Human umbilical vascular endothelial cells (HUVECs were cultured in either normal glucose (NG/high glucose (HG media for 6 days, or 3 days of HG followed by 3 days of NG (HN, with or without RSV or MET treatment. It was shown that HN incubation triggered persistent downregulation of deacetylase SIRT1 and upregulation of acetyltransferase p300, leading to sustained hyperacetylation (at K382 and activation of p53, and subsequent p53/p21-mediated senescent "memory." In contrast, senescent "memory" was abrogated by overexpression of SIRT1 or knockdown of p300. Interestingly, we found that SIRT1 and p300 could regulate each other in response to HN stimulation, suggesting that a delicate balance between acetyltransferases and deacetylases may be particularly important for sustained acetylation and activation of non-histone proteins (such as p53, and eventually the occurrence of "metabolic memory." Furthermore, we found that RSV or MET treatment prevented senescent "memory" by modulating SIRT1/p300/p53/p21 pathway. Notably, early and continuous treatment of MET, but not RSV, was particularly important for preventing senescent "memory." In conclusion, short-term high glucose stimulation could induce sustained endothelial senescence via SIRT1/p300/p53/p21 pathway

  15. EETs Attenuate Ox-LDL-Induced LTB4 Production and Activity by Inhibiting p38 MAPK Phosphorylation and 5-LO/BLT1 Receptor Expression in Rat Pulmonary Arterial Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Jun-xia Jiang

    Full Text Available Cytochrome P-450 epoxygenase (EPOX-derived epoxyeicosatrienoic acids (EETs, 5-lipoxygenase (5-LO, and leukotriene B4 (LTB4, the product of 5-LO, all play a pivotal role in the vascular inflammatory process. We have previously shown that EETs can alleviate oxidized low-density lipoprotein (ox-LDL-induced endothelial inflammation in primary rat pulmonary artery endothelial cells (RPAECs. Here, we investigated whether ox-LDL can promote LTB4 production through the 5-LO pathway. We further explored how exogenous EETs influence ox-LDL-induced LTB4 production and activity. We found that treatment with ox-LDL increased the production of LTB4 and further led to the expression and release of both monocyte chemoattractant protein-1 (MCP-1/CCL2 and intercellular adhesion molecule-1 (ICAM-1. All of the above ox-LDL-induced changes were attenuated by the presence of 11,12-EET and 14,15-EET, as these molecules inhibited the 5-LO pathway. Furthermore, the LTB4 receptor 1 (BLT1 receptor antagonist U75302 attenuated ox-LDL-induced ICAM-1 and MCP-1/CCL2 expression and production, whereas LY255283, a LTB4 receptor 2 (BLT2 receptor antagonist, produced no such effects. Moreover, in RPAECs, we demonstrated that the increased expression of 5-LO and BLT1 following ox-LDL treatment resulted from the activation of nuclear factor-κB (NF-κB via the p38 mitogen-activated protein kinase (MAPK pathway. Our results indicated that EETs suppress ox-LDL-induced LTB4 production and subsequent inflammatory responses by downregulating the 5-LO/BLT1 receptor pathway, in which p38 MAPK phosphorylation activates NF-κB. These results suggest that the metabolism of arachidonic acid via the 5-LO and EPOX pathways may present a mutual constraint on the physiological regulation of vascular endothelial cells.

  16. Selective Serotonin-norepinephrine Re-uptake Inhibition Limits Renovas-cular-hypertension Induced Cognitive Impairment, Endothelial Dysfunction, and Oxidative Stress Injury.

    Science.gov (United States)

    Singh, Prabhat; Sharma, Bhupesh

    2016-01-01

    Hypertension has been reported to induce cognitive decline and dementia of vascular origin. Serotonin- norepinephrine reuptake transporters take part in the control of inflammation, cognitive functions, motivational acts and deterioration of neurons. This study was carried out to examine the effect of venlafaxine; a specific serotonin-norepinephrine reuptake inhibitor (SNRI), in two-kidney-one-clip-2K1C (renovascular hypertension) provoked vascular dementia (VaD) in albino rats. 2K1C technique was performed to provoke renovascular-hypertension in adult male albino Wistar rats. Learning and memory were assessed by using the elevated plus maze and Morris water maze. Mean arterial blood pressure- MABP, as well as endothelial function, were assessed by means of BIOPAC system. Serum nitrosative stress (nitrite/ nitrate), aortic superoxide anion, brain oxidative stress, inflammation, cholinergic dysfunction and brain damage (2,3,5-triphenylterazolium chloride staining) were also assessed. 2K1C has increased MABP, endothelial dysfunction as well as learning and memory impairments. 2K1C method has increased serum nitrosative stress (reduced nitrite/nitrate level), oxidative stress (increased brain thiobarbituric acid reactive species and aortic superoxide anion content along with decreased levels of brain superoxide dismutase, glutathione, and catalase), brain inflammation (increased myeloperoxidase), cholinergic dysfunction (increased acetylcholinesterase activity) and brain damage. Treatment with venlafaxine considerably attenuated renovascular-hypertension induced cognition impairment, endothelial dysfunction, serum nitrosative stress, brain and aortic oxidative stress, cholinergic function, inflammation as well as cerebral damage. The finding of this study indicates that specific modulation of the serotonin-norepinephrine transporter perhaps regarded as potential interventions for the management of renovascular hypertension provoked VaD. PMID:26915517

  17. Melittin inhibits tumor angiogenesis modulated by endothelial progenitor cells associated with the SDF-1α/CXCR4 signaling pathway in a UMR-106 osteosarcoma xenograft mouse model

    OpenAIRE

    Qin, Gang; Chen, Yongqiang; Li, Haidong; Xu, Suyang; Li, Yumei; Sun, Jian; RAO, WU; CHEN, CHAOWEI; DU, MINDONG; HE, KAIYI; Ye, Yong

    2016-01-01

    Endothelial progenitor cells (EPCs) are important in tumor angiogenesis. Stromal cell-derived factor-1α (SDF-1α) and its receptor C-X-C chemokine receptor type 4 (CXCR4) are key in stem cell homing. Melittin, a component of bee venom, exerts antitumor activity, however, the underlying mechanisms remain to be elucidated. The present study aimed to assess the effects of melittin on EPCs and angiogenesis in a mouse model of osteosarcoma. UMR-106 cells and EPCs were treated with various concentra...

  18. Atorvastatin attenuates homocysteine-induced apoptosis in human umbilical vein endothelial cells via inhibiting NADPH oxidase-related oxidative stress-triggered p38MAPK signaling

    OpenAIRE

    Bao, Xiao-mei; Wu, Chun-Fang; Lu, Guo-ping

    2009-01-01

    Aim: To examine the effect of atorvastatin on homocysteine (Hcy)-induced reactive oxygen species (ROS) production and apoptosis in human umbilical vein endothelial cells (HUVECs). Methods: HUVECs were cultured with Hcy (0.1−5 mmol/L) in the presence or absence of atorvastatin (1−100 μmol//L) or various stress signaling inhibitors, including the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor diphenylene iodonium (DPI, 10 μmol/L), the p38 mitogen-activated protein kinase ...

  19. C-reactive protein decreases expression of VEGF receptors and neuropilins and inhibits VEGF165-induced cell proliferation in human endothelial cells

    International Nuclear Information System (INIS)

    C-reactive protein (CRP) is associated with cardiovascular disease. However, its biological functions for the vascular system are largely unknown. The objective of this study was to determine whether CRP could affect endothelial cell proliferation and expression of VEGF receptors (VEGFRs) and/or neuropilins. Human coronary artery endothelial cells (HCAECs) treated with CRP showed a significant reduction of mRNA levels of VEGFR-2, VEGFR-3, NRP-1, and NRP-2 by 34%, 63%, 41%, and 43%, respectively, as compared to untreated control cells (p 165-induced cell proliferation was determined by [3H]thymidine incorporation and MTS assay as well as capillary-like tube formation on Matrigel. HCAECs pretreated with CRP significantly decreased VEGF165-induced [3H]thymidine incorporation by 73%, MTS absorbance by 44%, and capillary-like tube formation by 54% as compared to CRP-untreated cells (p 165-induced HCAEC proliferation and capillary-like tube formation through downregulation of expression of VEGFRs and NRPs. This study suggests a new molecular mechanism underlying the adverse effect of CRP on the vascular system

  20. Inhibition of multiple vascular endothelial growth factor receptors (VEGFR) blocks lymph node metastases but inhibition of VEGFR-2 is sufficient to sensitize tumor cells to platinum-based chemotherapeutics

    OpenAIRE

    Sini, Patrizia; Samarzija, Ivana; Baffert, Fabienne; Littlewood-Evans, Amanda; Schnell, Christian; Theuer, Andreas; Christian, Sven; Boos, Anja; Hess-Stumpp, Holger; Foekens, John; Setyono-Han, Buddy; Wood, Jeanette; Hynes, Nancy

    2008-01-01

    textabstractVascular endothelial growth factor receptors (VEGFR) have important roles in cancer, affecting blood and lymphatic vessel functionality as well as tumor cells themselves. We compared the efficacy of a VEGFR tyrosine kinase inhibitor, PTK787/ZK222584 (PTK/ZK), which targets the three VEGFRs, with blocking antibodies directed against VEGFR-2 (DC101) or VEGF-A (Pab85618) in a metastatic melanoma model. Although all inhibitors exerted comparable effects on primary tumor growth, only P...

  1. Dual neural endopeptidase/endothelin-converting [corrected] enzyme inhibition improves endothelial function in mesenteric resistance arteries of young spontaneously hypertensive rats

    DEFF Research Database (Denmark)

    Lemkens, Pieter; Nelissen, Jelly; Meens, Merlijn J P M T;

    2012-01-01

    through cleavage of big ET1 by endothelin-converting enzyme (ECE) and neutral endopeptidase (NEP). METHOD: We investigated whether the dual NEP/ECE inhibitor SOL1 improves resistance artery function and structure in 12 weeks old spontaneously hypertensive rats (SHRs) and whether arterial structural...... impaired in SHRs. Chronic SOL1 treatment did not restore this response. CONCLUSION: Thus chronic SOL1 treatment during the development of hypertension in SHRs has no effect on blood pressure but improves several aspects of endothelium-dependent vasomotor responses but not arterial remodeling.......BACKGROUND: Endothelin-1 (ET1) is a potent vasoconstrictor peptide with pro-mitogenic and pro-inflammatory properties and is therefore of interest in the development of endothelial dysfunction, endothelium-dependent flow-related remodeling, and hypertension-related remodeling. ET1 can be formed...

  2. Hesperetin and its sulfate and glucuronide metabolites inhibit TNF-α induced human aortic endothelial cell migration and decrease plasminogen activator inhibitor-1 (PAI-1) levels.

    Science.gov (United States)

    Giménez-Bastida, Juan Antonio; González-Sarrías, Antonio; Vallejo, Fernando; Espín, Juan Carlos; Tomás-Barberán, Francisco A

    2016-01-01

    Epidemiological, clinical and preclinical studies have reported the protection offered by citrus consumption, mainly orange, against cardiovascular diseases, which is primarily mediated by the antiatherogenic and vasculoprotective effects of the flavanone hesperetin-7-O-rutinoside (hesperidin). However, flavanone aglycones or glycosides are not present in the bloodstream but their derived phase-II metabolites could be the actual bioactive molecules. To date, only a few studies have explored the effects of circulating hesperetin-derived metabolites (glucuronides and sulfates) on endothelial cells. Herein, we describe for the first time the effects of hesperetin 3'-O-glucuronide, hesperetin 7-O-glucuronide, hesperetin 3'-O-sulfate, hesperetin 7-O-sulfate and hesperetin on human aortic endothelial cell (HAEC) migration upon pro-inflammatory stimuli as an essential step to angiogenesis. Hesperetin and its derived metabolites, at physiologically relevant concentrations (1-10 μM), significantly attenuated cell migration in the presence of the pro-inflammatory cytokine TNF-α (50 ng mL(-1)), which was accompanied and perhaps mediated by a significant decrease in the levels of the thrombogenic plasminogen activator inhibitor-1 (PAI-1). However, hesperetin metabolites did not counteract the TNF-α-induced production of pro-inflammatory interleukin-6 (IL-6) and IL-8. We also study here for the first time, the metabolism of hesperetin and its derived metabolites by HAEC with and without a pro-inflammatory stimulus. All these results reinforce the concept according to which circulating phase-II hesperetin metabolites are critical molecules contributing to the cardioprotective effects upon consumption of citrus fruits such as orange. PMID:26456097

  3. In ovo leptin administration inhibits chorioallantoic membrane angiogenesis in female chicken embryos through the STAT3-mediated vascular endothelial growth factor (VEGF) pathway.

    Science.gov (United States)

    Su, L; Rao, K; Guo, F; Li, X; Ahmed, A A; Ni, Y; Grossmann, R; Zhao, R

    2012-07-01

    Previous studies indicate that leptin regulates placental angiogenesis and fetal growth in mammals and that in ovo leptin administration affects embryonic development and hatch weight in the chicken. To test the hypothesis that leptin affects embryonic growth through modifying chorioallantoic membrane (CAM) angiogenesis, we injected 0.5 μg of recombinant murine leptin into the albumen of fertilized eggs before incubation. On embryonic day 12 (E12), the number and the total area of blood vessels on CAM were measured, and expression of genes involved in angiogenesis was quantitated to show the possible mechanisms. Leptin in ovo administration decreased (P < 0.05) both the total area of blood vessels and the number of small-sized capillaries on CAM of E12 female chicken embryos, which coincided with significantly decreased (P < 0.05) embryo weight on E12 and BW at hatching. Vascular endothelial growth factor (VEGF) and inducible and endothelial nitric oxide synthases (iNOS and eNOS) were all downregulated (P < 0.05) in CAM both at the mRNA and protein/activity levels with reduced (P < 0.05) nitric oxide (NO) concentration in chorioallantoic fluid of female embryos. Furthermore, signal transducer and activator of transcription-3 (STAT3) was found to be diminished (P < 0.05) both at the mRNA and protein levels and associated with decreased (P < 0.05) binding of STAT3 to VEGF promotor in the CAM of leptin-treated E12 female embryos. These data suggest that in ovo leptin administration affects CAM angiogenesis and embryo growth in female chicken embryos, probably through STAT3-mediated VEGF/NO pathways. PMID:22417645

  4. ZD6474, an inhibitor of vascular endothelial growth factor receptor tyrosine kinase, inhibits growth of experimental lung metastasis and production of malignant pleural effusions in a non-small cell lung cancer model.

    Science.gov (United States)

    Matsumori, Yuka; Yano, Seiji; Goto, Hisatsugu; Nakataki, Emiko; Wedge, Stephen R; Ryan, Anderson J; Sone, Saburo

    2006-01-01

    ZD6474 is a novel, orally active inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2) tyrosine kinase, with some additional activity against epidermal growth factor receptor (EGFR) tyrosine kinase. The purpose of this study was to determine the potential of ZD6474 in the control of established experimental lung metastasis and pleural effusions produced by human non-small cell lung cancer (NSCLC) cells. PC14PE6 (adenocarcinoma) and H226 (squamous cell carcinoma) cells express high levels of EGFR and only PC14PE6 cells overexpress VEGF. Neither ZD6474 nor the EGFR tyrosine kinase inhibitor gefitinib inhibit proliferation of PC14PE6 or H226 cells in vitro. Both PC14PE6 and H226 cells inoculated intravenously into nude mice induced multiple lung nodules after 5-7 weeks. In addition, PC14PE6 cells produced bloody pleural effusions. Daily oral treatment with ZD6474 did not reduce the number of lung nodules produced by PC14PE6 or H226 cells, but did reduce the lung weight and the size of lung nodules. ZD6474 also inhibited the production of pleural effusions by PC14PE6 cells. Histological analyses of lung lesions revealed that ZD6474 treatment inhibited activation of VEGFR-2 and reduced tumor vascularization and tumor cell proliferation. Therapeutic effects of ZD6474 were considered likely to be due to inhibition of VEGFR-2 tyrosine kinase because gefitinib was inactive in this model. These results indicate that ZD6474, an inhibitor of VEGFR-2, may be useful in controlling the growth of established lung metastasis and pleural effusions by NSCLC. PMID:16783964

  5. Inhibition of radiation-induced up-regulation of leukocyte adhesion to endothelial cells with the platelet-activating factor inhibitor, BN52021

    International Nuclear Information System (INIS)

    Purpose: The inflammatory process is likely involved in normal tissue damage after radiation exposure, yet few studies have directly evaluated the factors that might be involved in the regulation of inflammation after irradiation in vivo. We tested the hypothesis that platelet-activating factor, a neutrophil agonist synthesized by endothelial cells, is involved in the upregulation of radiation-induced leukocyte-endothelial cell interactions by using an inhibitor of its receptor, BN52021. Methods and Materials: Fischer-344 rats with dorsal skin-fold window chambers were randomized to three experimental groups: control (sham irradiation); 6 Gy radiation; and 6 Gy + BN52021. BN52021 (0.5 mg/kg) was administered 5 min prior to 6 Gy radiation. Leukocytes were stained in vivo with i.v. acridine orange for visualization with fluorescent microscopy. Venous vessel diameters were measured and numbers of rolling leukocytes were counted per 30-s period. The number of adhering leukocytes per unit surface area was also determined. Differences among the three experimental groups for rolling and adhering leukocytes were analyzed using a mixed-effects linear model with vessel shear rate used as a covariate. Results are reported as means ± standard errors. Results: Irradiation caused upregulation of leukocyte rolling, as compared with sham-treated controls (p = 0.04): the BN compound in addition to radiation did not downregulate this effect. Irradiation also upregulated leukocyte adhesion (p < 0.001), but the addition of BN52021 prior to irradiation blocked this effect. The drug did not affect heart rate or blood pressure. Conclusions: These results support the hypothesis that radiation-induced upregulation of leukocyte adhesion is mediated by platelet-activating factor. These results are consistent with prior reports that platelet-activating factor is not involved in leukocyte rolling, which involves separate families of adhesion molecules from those that regulate adhesion. BN

  6. TGFβ inhibition enhances the generation of hematopoietic progenitors from human ES cell-derived hemogenic endothelial cells using a stepwise strategy

    Institute of Scientific and Technical Information of China (English)

    Chengyan Wang; Liying Du; Yang Gao; Ming Yin; Mingxiao Ding; Hongkui Deng; Xuming Tang; Xiaomeng Sun; Zhenchuan Miao; Yaxin Lv; Yanlei Yang; Huidan Zhang; Pengbo Zhang; Yang Liu

    2012-01-01

    Embryonic hematopoiesis is a complex process.Elucidating the mechanism regulating hematopoietic differentiation from pluripotent stem cells would allow us to establish a strategy to efficiently generate hematopoietic cells.However,the mechanism governing the generation of hematopoietic progenitors from human embryonic stem cells (hESCs)remains unknown.Here,on the basis of the emergence of CD43+ hematopoietic cells from hemogenic endothelial (HE) cells,we demonstrated that VEGF was essential and sufficient,and that bFGF was synergistic with VEGF to specify the HE cells and the subsequent transition into CD43+ hematopoietic cells.Significantly,we identified TGFβ as a novel signal to regulate hematopoietic development,as the TGFβ inhibitor SB 431542 significantly promoted the transition from HE cells into CD43+ hematopoietic progenitor cells (HPCs) during hESC differentiation.By defining these critical signaling factors during hematopoietic differentiation,we can efficiently generate HPCs from hESCs.Our strategy could offer an in vitro model to study early human hematopoietic development.

  7. Inhibition of atrial natriuretic peptide-induced cyclic GMP accumulation in the bovine endothelial cells with anti-atrial natriuretic peptide receptor antiserum

    International Nuclear Information System (INIS)

    Using an antiserum raised against the purified atrial natriuretic peptide (ANP) receptor that has a disulfide-linked homodimeric structure and represents one subtype of the multiple ANP receptors, we showed that the receptor is coupled to the guanylate cyclase activation; formerly, this type of ANP receptor is not considered to be coupled to the cyclase. The specificity of the antiserum was determined by immunoblot analysis and immunoprecipitation. The anti-receptor antiserum did not compete with 125I-ANP for binding to the receptor but it lowered the affinity of the receptor. When added to bovine endothelial cell cultures, the antiserum blocked the cyclic GMP response of the cells triggered by ANP. These results indicate that the subtype of the ANP receptor recognized by the antiserum is responsible for the activation of particulate guanylate cyclase as well as the double function type receptor that has been assumed to contain both the receptor domain and the catalytic domain for cGMP synthesis on the same molecule. The presence of dissociative complexes of ANP receptor and particulate guanylate cyclase was also demonstrated by radiation inactivation analysis

  8. Apolipoprotein(a) Inhibits In Vitro Tube Formation in Endothelial Cells: Identification of Roles for Kringle V and the Plasminogen Activation System

    OpenAIRE

    Lei Liu; Boffa, Michael B.; Koschinsky, Marlys L.

    2013-01-01

    Elevated plasma concentrations of lipoprotein(a) are associated with increased risk for atherothrombotic diseases. Apolipoprotein(a), the unique glycoprotein component of lipoprotein(a), is characterized by the presence of multiple kringle domains, and shares a high degree of sequence homology with the serine protease zymogen plasminogen. It has been shown that angiostatin, a proteolytic fragment of plasminogen containing kringles 1-4, can effectively inhibit angiogenesis. Moreover, proteolyt...

  9. Homocysteine alters monocyte-endothelial interaction in vitro

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Objective To determine whether homocysteine induced endothelial damage through monocyte-endothelial interaction and to characterize both cell types in vitro.Methods Radiomethods were performed on monocyte adhesion to/through endothelium and endothelial damage experiments. Results Homocysteine-treated endothelial cells increased monocyte adhesion and transmigration. Homocysteine-treated monocytes induced endothelial detachment, but this effect was blocked by catalase. These effects were increased with higher concentrations of homocysteine. Monocyte surface glycoprotein antibodies CD11b/CD18 and CD14 inhibited these processes.Conclusions Homocysteine alters monocyte-endothelial interaction in vitro, eventually bringing about endothelial damage through release of H2O2. These phenomena are mediated through monocyte surface glycoproteins CD11b/CD18 and CD14. Upregulation of these processes in vivo may contribute to acceleration of atherosclerosis in patients with elevated plasma homocysteine levels.

  10. 肾毒性物质对甲酚抑制内皮祖细胞增殖和eNOS磷酸化%Uremic solute p-cresol inhibits proliferation of endothelial progenitor cells and phosphorylation of eNOS

    Institute of Scientific and Technical Information of China (English)

    应远; 杨克; 刘艳; 陈秋静; 陆林; 沈卫峰; 张瑞岩

    2011-01-01

    Objective: To investigate the effects of p-cresol on the proliferation of late endothelial protenitor cells (EPCs) and activation of endothelial nitric oxide synthase (eNOS). Methods: Mononuclear cells were isolated by density gradient centrifugation. Isolated cells were cultured in the medium supplemented with vascular endothelial growth factor (VEGF) and other growth factors. Features of the EPCs were identified by morphology, immunoflurescence staining and flow cytometry. Attached cells were incubated with different concentrations of p-cresol (10, 20, 40 and 80μg/ml). Cell counting assay and colony forming assay were used to assess the proliferation of EPCs. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) was used to analyse transcription of eNOS. Phosphorylation of eNOS was investigated by western blot. Results: Late EPCs formed a typical cobblestone-like cells. Flurescence microscopy showed that late EPCs were positive for both Dil-ac-LDL uptake and FITC-UEA-1 binding. FACS showed this group of cells was CD34 and VEGFR2 positive but CD133 negative. Cell counting and colony forming assay showed p-cresol inhibited proliferation of EPCs in a dose dependent manner. Western blot revealed that p-cresol decreased the phosphorylative level of eNOS. Conclusion: Uremic solute p-cresol may inhibit proliferation of human late EPCs in vitro and depress phosphorylation of eNOS.%目的:观察对甲酚对人外周血晚期内皮祖细胞(EPCs)的体外增殖和内皮一氧化氮合酶(eNOS)活性的影响.方法:用密度梯度离心法分离健康成人外周血中的单个核细胞,在含有血管内皮生长因子等的培养基中培养.通过形态学、免疫荧光、流式细胞分析鉴定细胞,在贴壁细胞中加入不同浓度对甲酚,用细胞计数和集落生成实验法评价对甲酚对EPCs增殖的影响.定量PCR分析eNOS转录水平的变化,Western blot分析磷酸化eNOS的变化.结果:晚期EPCs为典型的铺路石样,CD34

  11. 雷公藤内酯醇对内皮细胞血管内皮细胞生长因子活性的影响%TRIPTOLIDE INHIBITS VASCULAR ENDOTHELIAL GROWTH FACTOR EXPRESSION AND PRODUCTION INENDOTHELIAL CELLS

    Institute of Scientific and Technical Information of China (English)

    胡可斌; 刘志红; 刘栋; 黎磊石

    2000-01-01

    目的:研究雷公藤内酯醇对人内皮细胞血管内皮细胞生长因子(VEGF)mRNA表达及VEGF生成与分泌的影响,进一步探讨雷公藤内酯醇降低肾小球肾炎患者尿蛋白的作用机制。方法:以人内皮细胞系ECV-304为研究对象,利用RT-PCR,流式细胞仪,酶联免疫吸附法(ELISA)检测不同剂量雷公藤内酯醇对佛波脂(PMA)诱导的内皮细胞VEGF mRNA表达及VEGF生成与分泌的影响。结果:雷公藤内酯醇可以抑制PMA诱导的内皮细胞VEGF mRNA表达及VEGF生成与分泌,并呈剂量依赖性。结论:雷公藤内酯醇抑制内皮细胞VEGF mRNA表达及VEGF生成与分泌可能是其雷公藤内酯醇降低肾小球肾炎患者尿蛋白的作用机制之一。%OBJECTIVE To investigate the effect of triptolide on vascular endothelial growth factor( VEGF) expression and secretion byendothelial cells,and explore the mechanism of anti-proteinuric effect of triptolide on glomerular nephritis. METHODOLOGYA human umbilical endothelium derived cell line(ECV-304)from ATCC was used in this study. VEGF mRNA expression,intracel-lular production and secretion of VEGF induced by PMA were measured by RT-PCR,flow cytometry and enzyme linked immunosorbent assay(ElISA). RESULTS 10-7mol/L PMA could significantiy increase VEGF mRNA expression, intracellular production and secretion of VEGF in endothelial cells, while triptolide could inhibit the effects of PMA in a dosedependent manner.CONCLUSION The antiproteinuric effect of triptolide on glomerular nephritis may be through its inhibitory effect on VEGF expression and production.

  12. 纳米金抑制血管内皮细胞增殖的分子机制%Molecular mechanism of nanogold inhibiting the proliferation of vascular endothelial cells

    Institute of Scientific and Technical Information of China (English)

    潘运龙; 覃莉; 蔡继业; 孙加升; 邱思远

    2008-01-01

    Objective To investigate whether nanogold can inhibit the proliferation of vascular endothelial cells, and to find out the molecular mechanism of their interaction. Methods Human umbili-cal vascular endothelial cells (HUVECs) were seeded in 96-well plates, serum-starved for 24 h, and then treated with nanogold (1000 nmol/L,100 μl) + VEGF165 (10 μg/L,100 μl),or VEGFI65 (10 μg/L,100 μl). The effects of nanogold on the growth of HUVECs were assessed by MTT assay. Nanogold (0.5ml) at three different concentrations (250,500,1000 nmol/L) were preincubated with bFGF (10 mg/L,0.5 ml) overnight at 4℃. bFGF was then precipitated from this complex with a saturating concentration of heparin-sepharose, and bFGF in the supernatant fraction or precipitated fraction was detected by bFGF an-tibody. VEGF165 (10 μg/L,100 μl) and nanogold at three different concentrations (125,250,500 nmol/L, 100 μl) were added to one of 5 wells of serum-starved HUVECs, and acted for 5 rain. The phosphoryla-tion of PLC-γ1 was detected with Western blot. Atomic force microscopy (AFM) was used to examine the sizes in nano-scale of nanogold acting with VEGF165. Results The proliferation multiple of HUVECs in nanogold + VEGFI65 group and VEGF165 group was 1.75 and 4.25, respectively, which indicated nano-gold inhibited the proliferation of HUVECs (t = 14.421 ,P <0.01). Nanogold could bind to bFGF with heparin binding domain. When concentration of VEGF165 was constantly 10 μg/L, an increase in nanogold concentration from 125 to 500 nmol/L, as a result nanogold more and more inhibited phosphorylation of PLC-γ1. The size of nanogold acting with VEGF165 probed with AFM was generally over 30 nm. Conclu-sion Combining to VEGF165 with heparin binding domain, nanogold can inhibit VEGF165-induced sig-naling. Therefore nanogold inhibits the proliferation of vascular endothelial cells.%目的 观察纳米金能否抑制血管内皮细胞增殖,以及作用的分子机制.方法 在96孔板内,无血清

  13. MicroRNA-34a regulation of endothelial senescence

    International Nuclear Information System (INIS)

    Research highlights: → MicroRNA-34a (miR-34a) regulates senescence and cell cycle progression in endothelial cells. → MiR-34a expression increases during endothelial cell senescence and in older mice. → SIRT1 is a miR-34a target gene in endothelial cells. → SIRT1 mediates the effects of miR-34a upon cell senescence in endothelial cells. -- Abstract: Endothelial senescence is thought to play a role in cardiovascular diseases such as atherosclerosis. We hypothesized that endothelial microRNAs (miRNAs) regulate endothelial survival and senescence. We found that miR-34a is highly expressed in primary endothelial cells. We observed that miR-34a expression increases in senescent human umbilical cord vein endothelial cells (HUVEC) and in heart and spleen of older mice. MiR-34a over-expression induces endothelial cell senescence and also suppresses cell proliferation by inhibiting cell cycle progression. Searching for how miR-34a affects senescence, we discovered that SIRT1 is a target of miR-34a. Over-expressing miR-34a inhibits SIRT1 protein expression, and knocking down miR-34a enhances SIRT1 expression. MiR-34a triggers endothelial senescence in part through SIRT1, since forced expression of SIRT1 blocks the ability of miR-34a to induce senescence. Our data suggest that miR-34a contributes to endothelial senescence through suppression of SIRT1.

  14. Endothelial cell-derived interleukin-6 regulates tumor growth

    International Nuclear Information System (INIS)

    Endothelial cells play a complex role in the pathobiology of cancer. This role is not limited to the making of blood vessels to allow for influx of oxygen and nutrients required for the high metabolic demands of tumor cells. Indeed, it has been recently shown that tumor-associated endothelial cells secrete molecules that enhance tumor cell survival and cancer stem cell self-renewal. The hypothesis underlying this work is that specific disruption of endothelial cell-initiated signaling inhibits tumor growth. Conditioned medium from primary human dermal microvascular endothelial cells (HDMEC) stably transduced with silencing RNA for IL-6 (or controls) was used to evaluate the role of endothelial-derived IL-6 on the activation of key signaling pathways in tumor cells. In addition, these endothelial cells were co-transplanted with tumor cells into immunodefficient mice to determine the impact of endothelial cell-derived IL-6 on tumor growth and angiogenesis. We observed that tumor cells adjacent to blood vessels show strong phosphorylation of STAT3, a key mediator of tumor progression. In search for a possible mechanism for the activation of the STAT3 signaling pathway, we observed that silencing interleukin (IL)-6 in tumor-associated endothelial cells inhibited STAT3 phosphorylation in tumor cells. Notably, tumors vascularized with IL-6-silenced endothelial cells showed lower intratumoral microvessel density, lower tumor cell proliferation, and slower growth than tumors vascularized with control endothelial cells. Collectively, these results demonstrate that IL-6 secreted by endothelial cells enhance tumor growth, and suggest that cancer patients might benefit from targeted approaches that block signaling events initiated by endothelial cells

  15. New therapeutic modality for corneal endothelial disease using Rho-associated kinase inhibitor eye drops.

    Science.gov (United States)

    Koizumi, Noriko; Okumura, Naoki; Ueno, Morio; Kinoshita, Shigeru

    2014-11-01

    Corneal endothelial dysfunction accompanied by visual disturbance is a primary indication for corneal endothelial transplantation. However, despite the value and potential of endothelial graft surgery, a strictly pharmacological approach for treating corneal endothelial dysfunction remains an attractive proposition. Previously, we reported that the selective Rho-associated kinase (ROCK) inhibitor Y-27632 promotes cell adhesion and proliferation, and inhibits the apoptosis of primate corneal endothelial cells in culture. These findings have led us to develop a novel medical treatment for the early phase of corneal endothelial disease using ROCK inhibitor eye drops. In rabbit and monkey models of partial endothelial dysfunction, we showed that corneal endothelial wound healing was accelerated via the topical application of ROCK inhibitor to the ocular surface, resulting in the regeneration of a corneal endothelial monolayer with a high endothelial cell density. Based on these animal studies, we are now attempting to advance the clinical application of ROCK inhibitor eye drops for patients with corneal endothelial dysfunction. A pilot clinical study was performed at the Kyoto Prefectural University of Medicine, and the effects of Y-27632 eye drops after transcorneal freezing were evaluated in 8 patients with corneal endothelial dysfunction. We observed a positive effect of ROCK inhibitor eye drops in treating patients with central edema caused by Fuchs corneal endothelial dystrophy. We believe that our new findings will contribute to the establishment of a new approach for the treatment of corneal endothelial dysfunction. PMID:25289721

  16. Anesthetic propofol overdose causes endothelial cytotoxicity in vitro and endothelial barrier dysfunction in vivo

    International Nuclear Information System (INIS)

    An overdose and a prolonged treatment of propofol may cause cellular cytotoxicity in multiple organs and tissues such as brain, heart, kidney, skeletal muscle, and immune cells; however, the underlying mechanism remains undocumented, particularly in vascular endothelial cells. Our previous studies showed that the activation of glycogen synthase kinase (GSK)-3 is pro-apoptotic in phagocytes during overdose of propofol treatment. Regarding the intravascular administration of propofol, we therefore hypothesized that propofol overdose also induces endothelial cytotoxicity via GSK-3. Propofol overdose (100 μg/ml) inhibited growth in human arterial and microvascular endothelial cells. After treatment, most of the endothelial cells experienced caspase-independent necrosis-like cell death. The activation of cathepsin D following lysosomal membrane permeabilization (LMP) determined necrosis-like cell death. Furthermore, propofol overdose also induced caspase-dependent apoptosis, at least in part. Caspase-3 was activated and acted downstream of mitochondrial transmembrane potential (MTP) loss; however, lysosomal cathepsins were not required for endothelial cell apoptosis. Notably, activation of GSK-3 was essential for propofol overdose-induced mitochondrial damage and apoptosis, but not necrosis-like cell death. Intraperitoneal administration of a propofol overdose in BALB/c mice caused an increase in peritoneal vascular permeability. These results demonstrate the cytotoxic effects of propofol overdose, including cathepsin D-regulated necrosis-like cell death and GSK-3-regulated mitochondrial apoptosis, on endothelial cells in vitro and the endothelial barrier dysfunction by propofol in vivo. Highlights: ► Propofol overdose causes apoptosis and necrosis in endothelial cells. ► Propofol overdose triggers lysosomal dysfunction independent of autophagy. ► Glycogen synthase kinase-3 facilitates propofol overdose-induced apoptosis. ► Propofol overdose causes an increase

  17. Anesthetic propofol overdose causes endothelial cytotoxicity in vitro and endothelial barrier dysfunction in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ming-Chung [Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Department of Anesthesiology, Chi Mei Medical Center, Liouying, Tainan, Taiwan (China); Chen, Chia-Ling [Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Yang, Tsan-Tzu; Choi, Pui-Ching [Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Hsing, Chung-Hsi [Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan (China); Department of Anesthesiology, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Lin, Chiou-Feng, E-mail: cflin@mail.ncku.edu.tw [Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China)

    2012-12-01

    An overdose and a prolonged treatment of propofol may cause cellular cytotoxicity in multiple organs and tissues such as brain, heart, kidney, skeletal muscle, and immune cells; however, the underlying mechanism remains undocumented, particularly in vascular endothelial cells. Our previous studies showed that the activation of glycogen synthase kinase (GSK)-3 is pro-apoptotic in phagocytes during overdose of propofol treatment. Regarding the intravascular administration of propofol, we therefore hypothesized that propofol overdose also induces endothelial cytotoxicity via GSK-3. Propofol overdose (100 μg/ml) inhibited growth in human arterial and microvascular endothelial cells. After treatment, most of the endothelial cells experienced caspase-independent necrosis-like cell death. The activation of cathepsin D following lysosomal membrane permeabilization (LMP) determined necrosis-like cell death. Furthermore, propofol overdose also induced caspase-dependent apoptosis, at least in part. Caspase-3 was activated and acted downstream of mitochondrial transmembrane potential (MTP) loss; however, lysosomal cathepsins were not required for endothelial cell apoptosis. Notably, activation of GSK-3 was essential for propofol overdose-induced mitochondrial damage and apoptosis, but not necrosis-like cell death. Intraperitoneal administration of a propofol overdose in BALB/c mice caused an increase in peritoneal vascular permeability. These results demonstrate the cytotoxic effects of propofol overdose, including cathepsin D-regulated necrosis-like cell death and GSK-3-regulated mitochondrial apoptosis, on endothelial cells in vitro and the endothelial barrier dysfunction by propofol in vivo. Highlights: ► Propofol overdose causes apoptosis and necrosis in endothelial cells. ► Propofol overdose triggers lysosomal dysfunction independent of autophagy. ► Glycogen synthase kinase-3 facilitates propofol overdose-induced apoptosis. ► Propofol overdose causes an increase

  18. Visualising dual downregulation of insulin-like growth factor receptor-1 and vascular endothelial growth factor-A by heat shock protein 90 inhibition effect in triple negative breast cancer

    NARCIS (Netherlands)

    Terwisscha Van Scheltinga, Anton G. T.; Berghuis, Paul; Nienhuis, Hilde H.; Timmer-Bosscha, Hetty; Pot, Linda; Gaykema, Sietske B. M.; Lub-de Hooge, Marjolijn N.; Kosterink, Jos G. W.; de Vries, Elisabeth G. E.; Schroder, Carolien P.

    2014-01-01

    Purpose: Triple negative breast cancer (TNBC) is biologically characterised by heterogeneous presence of molecular pathways underlying it. Insulin-like growth factor receptor-1 (IGF-1R) expression and vascular endothelial growth factor-A (VEGF-A) have been identified as key factors in these pathways

  19. Heparin Binds Endothelial Cell Growth Factor, the Principal Endothelial Cell Mitogen in Bovine Brain

    Science.gov (United States)

    Maciag, Thomas; Mehlman, Tevie; Friesel, Robert; Schreiber, Alain B.

    1984-08-01

    Endothelial cell growth factor (ECGF), an anionic polypeptide mitogen, binds to immobilized heparin. The interaction between the acidic polypeptide and the anionic carbohydrate suggests a mechanism that is independent of ion exchange. Monoclonal antibodies to purified bovine ECGF inhibited the biological activity of ECGF in crude preparations of bovine brain. These data indicate that ECGF is the principal mitogen for endothelial cells from bovine brain, that heparin affinity chromatography may be used to purify and concentrate ECGF, and that the affinity of ECGF for heparin may have structural and perhaps biological significance.

  20. Mitochondria and Endothelial Function

    OpenAIRE

    Kluge, Matthew A.; Fetterman, Jessica L.; Vita, Joseph A.

    2013-01-01

    In contrast to their role in other cell types with higher energy demands, mitochondria in endothelial cells primarily function in signaling cellular responses to environmental cues. This article provides an overview of key aspects of mitochondrial biology in endothelial cells, including subcellular location, biogenesis, dynamics, autophagy, ROS production and signaling, calcium homeostasis, regulated cell death, and heme biosynthesis. In each section, we introduce key concepts and then review...

  1. Increased endothelial cell-leukocyte interaction in murine schistosomiasis: possible priming of endothelial cells by the disease.

    Directory of Open Access Journals (Sweden)

    Suellen D S Oliveira

    Full Text Available BACKGROUND AND AIMS: Schistosomiasis is an intravascular parasitic disease associated with inflammation. Endothelial cells control leukocyte transmigration and vascular permeability being modulated by pro-inflammatory mediators. Recent data have shown that endothelial cells primed in vivo in the course of a disease keep the information in culture. Herein, we evaluated the impact of schistosomiasis on endothelial cell-regulated events in vivo and in vitro. METHODOLOGY AND PRINCIPAL FINDINGS: The experimental groups consisted of Schistosoma mansoni-infected and age-matched control mice. In vivo infection caused a marked influx of leukocytes and an increased protein leakage in the peritoneal cavity, characterizing an inflamed vascular and cellular profile. In vitro leukocyte-mesenteric endothelial cell adhesion was higher in cultured cells from infected mice as compared to controls, either in the basal condition or after treatment with the pro-inflammatory cytokine tumor necrosis factor (TNF. Nitric oxide (NO donation reduced leukocyte adhesion to endothelial cells from control and infected groups; however, in the later group the effect was more pronounced, probably due to a reduced NO production. Inhibition of control endothelial NO synthase (eNOS increased leukocyte adhesion to a level similar to the one observed in the infected group. Besides, the adhesion of control leukocytes to endothelial cells from infected animals is similar to the result of infected animals, confirming that schistosomiasis alters endothelial cells function. Furthermore, NO production as well as the expression of eNOS were reduced in cultured endothelial cells from infected animals. On the other hand, the expression of its repressor protein, namely caveolin-1, was similar in both control and infected groups. CONCLUSION/SIGNIFICANCE: Schistosomiasis increases vascular permeability and endothelial cell-leukocyte interaction in vivo and in vitro. These effects are partially

  2. Endothelin and endothelial dysfunction.

    Science.gov (United States)

    Masaki, Tomoh; Sawamura, Tatsuya

    2006-03-01

    Nitric oxide (NO) and endothelin (ET) produced in endothelial cells are leading molecules which regulate vascular function. Failure of the physiological balance between these two molecules is usually referred to as endothelial dysfunction. ET was initially identified as a potent vasoconstrictive peptide. Three ET isoforms and two ET receptors have been identified. One of the isoforms, ET-1, plays a significant role in many cardiovascular diseases. On the other hand, oxidized low-density lipoprotein (oxLDL) is known to induce endothelial dysfunction. The endothelial receptor for oxLDL was cloned, and named lectin-like oxidized receptor-1 (LOX-1). Activation of LOX-1 generates reactive oxygen species (ROS), and acivates a transcriptional factor, nuclear factor κB (NFκB), resulting in down-regulation of NO and up-regulation of ET-1. LOX-1 might be a key molecule in the generation of endothelial dysfunction. In endothelial dysfunction, ET-1 is an aggravating factor of cardiovascular diseases. PMID:25792766

  3. Differentiation state determines neural effects on microvascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Muffley, Lara A., E-mail: muffley@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Pan, Shin-Chen, E-mail: pansc@mail.ncku.edu.tw [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Smith, Andria N., E-mail: gnaunderwater@gmail.com [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Ga, Maricar, E-mail: marga16@uw.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Hocking, Anne M., E-mail: ahocking@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Gibran, Nicole S., E-mail: nicoleg@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States)

    2012-10-01

    Growing evidence indicates that nerves and capillaries interact paracrinely in uninjured skin and cutaneous wounds. Although mature neurons are the predominant neural cell in the skin, neural progenitor cells have also been detected in uninjured adult skin. The aim of this study was to characterize differential paracrine effects of neural progenitor cells and mature sensory neurons on dermal microvascular endothelial cells. Our results suggest that neural progenitor cells and mature sensory neurons have unique secretory profiles and distinct effects on dermal microvascular endothelial cell proliferation, migration, and nitric oxide production. Neural progenitor cells and dorsal root ganglion neurons secrete different proteins related to angiogenesis. Specific to neural progenitor cells were dipeptidyl peptidase-4, IGFBP-2, pentraxin-3, serpin f1, TIMP-1, TIMP-4 and VEGF. In contrast, endostatin, FGF-1, MCP-1 and thrombospondin-2 were specific to dorsal root ganglion neurons. Microvascular endothelial cell proliferation was inhibited by dorsal root ganglion neurons but unaffected by neural progenitor cells. In contrast, microvascular endothelial cell migration in a scratch wound assay was inhibited by neural progenitor cells and unaffected by dorsal root ganglion neurons. In addition, nitric oxide production by microvascular endothelial cells was increased by dorsal root ganglion neurons but unaffected by neural progenitor cells. -- Highlights: Black-Right-Pointing-Pointer Dorsal root ganglion neurons, not neural progenitor cells, regulate microvascular endothelial cell proliferation. Black-Right-Pointing-Pointer Neural progenitor cells, not dorsal root ganglion neurons, regulate microvascular endothelial cell migration. Black-Right-Pointing-Pointer Neural progenitor cells and dorsal root ganglion neurons do not effect microvascular endothelial tube formation. Black-Right-Pointing-Pointer Dorsal root ganglion neurons, not neural progenitor cells, regulate

  4. Angiostatin binds ATP synthase on the surface of human endothelial cells

    OpenAIRE

    Moser, Tammy L.; Stack, M. Sharon; Asplin, Iain; Enghild, Jan J; Højrup, Peter; Everitt, Lorraine; Hubchak, Susan; Schnaper, H. William; Pizzo, Salvatore V.

    1999-01-01

    Angiostatin, a proteolytic fragment of plasminogen, is a potent antagonist of angiogenesis and an inhibitor of endothelial cell migration and proliferation. To determine whether the mechanism by which angiostatin inhibits endothelial cell migration and/or proliferation involves binding to cell surface plasminogen receptors, we isolated the binding proteins for plasminogen and angiostatin from human umbilical vein endothelial cells. Binding studies demonstrated that plasminogen and angiostatin...

  5. Nitric oxide modulates lipopolysaccharide-induced endothelial platelet endothelial cell adhesion molecule expression via interleukin-10.

    Science.gov (United States)

    Hebeda, C B; Teixeira, S A; Tamura, E K; Muscará, M N; de Mello, S B V; Markus, R P; Farsky, S H P

    2011-08-01

    We have shown previously that nitric oxide (NO) controls platelet endothelial cell adhesion molecule (PECAM-1) expression on both neutrophils and endothelial cells under physiological conditions. Here, the molecular mechanism by which NO regulates lipopolysaccharide (LPS)-induced endothelial PECAM-1 expression and the role of interleukin (IL)-10 on this control was investigated. For this purpose, N-(G)-nitro-L-arginine methyl ester (L-NAME; 20 mg/kg/day for 14 days dissolved in drinking water) was used to inhibit both constitutive (cNOS) and inducible nitric oxide (iNOS) synthase activities in LPS-stimulated Wistar rats (5 mg/kg, intraperitoneally). This treatment resulted in reduced levels of serum NO. Under this condition, circulating levels of IL-10 was enhanced, secreted mainly by circulating lymphocytes, dependent on transcriptional activation, and endothelial PECAM-1 expression was reduced independently on reduced gene synthesis. The connection between NO, IL-10 and PECAM-1 expression was examined by incubating LPS-stimulated (1 µg/ml) cultured endothelial cells obtained from naive rats with supernatant of LPS-stimulated lymphocytes, which were obtained from blood of control or L-NAME-treated rats. Supernatant of LPS-stimulated lymphocytes obtained from L-NAME-treated rats, which contained higher levels of IL-10, reduced LPS-induced PECAM-1 expression by endothelial cells, and this reduction was reversed by adding the anti-IL-10 monoclonal antibody. Therefore, an association between NO, IL-10 and PECAM-1 was found and may represent a novel mechanism by which NO controls endothelial cell functions. PMID:21564091

  6. Novel mechanisms of endothelial mechano-transduction

    Science.gov (United States)

    Abe, Jun-ichi; Berk, Bradford C

    2014-01-01

    Atherosclerosis is a focal disease that develops preferentially where non-laminar, disturbed blood flow (d-flow) occurs such as branches, bifurcations, and curvatures of large arteries. Endothelial cells sense and respond differently to d-flow compared to steady laminar flow (s-flow). D-flow that occurs in so-called athero-prone areas activates pro-inflammatory and apoptotic signaling, and this results in endothelial dysfunction and leads to subsequent development of atherosclerosis. In contrast, s-flow as “athero-protective flow” promotes expression of many anti-inflammatory genes such as Kruppel-like factor 2 (KLF2) and endothelial nitric oxide synthase (eNOS) and inhibits endothelial inflammation and athrogenesis. Here we will discuss that d-flow and s-flow induce pro- and anti-atherogenic events via flow type-specific “mechanotransduction” pathways. We will focus on five mechano-sensitive pathways: MEK5 (MAPK/ERK kinase 5)-ERK5-KLF2 signaling, ERK5-PPAR (peroxisome proliferator-activated receptor) signaling, and mechano-signaling pathways involving SUMOylation, protein kinase C-ζ, (PKCζ), and p90 ribosomal S6 kinase (p90RSK). We believe that clarifying regulation mechanisms between these two flow types will provide new insights into therapeutic approaches for the prevention and treatment of atherosclerosis. PMID:25301843

  7. Doinseunggitang Ameliorates Endothelial Dysfunction in Diabetic Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Jung Joo Yoon

    2013-01-01

    Full Text Available Atherosclerosis, a chronic and progressive disease characterized by vascular inflammation, is a leading cause of death in diabetes patients. Doinseunggitang (DYSGT, traditional prescription, has been used for promoting blood circulation to remove blood stasis. The aim of this study was to investigate the beneficial effects of DYSGT on endothelial dysfunction in diabetic atherosclerosis animal model. Apolipoprotein E knockout (ApoE KO mice fed on a Western diet were treated with DYSGT (200 mg/kg/day. DYSGT significantly lowered blood glucose level and glucose tolerance as well as systolic blood pressure. Metabolic parameter showed that DYSGT markedly decreased triglyceride and LDL-cholesterol levels. In the thoracic aorta, the impairment of vasorelaxation response to acetylcholine and atherosclerotic lesion was attenuated by DYSGT. Furthermore, DYSGT restored the reduction of endothelial nitric oxide synthase (eNOS expression, leading to the inhibition of intracellular adhesion molecule-1 (ICAM-1 and endothelin-1 (ET-1 expression. In conclusion, DYSGT improved the development of diabetic atherosclerosis via attenuation of the endothelial dysfunction, possibly by inhibiting ET-1, cell adhesion molecules, and lesion formation. Therefore, these results suggest that Korean traditional prescription Doinseunggitang may be useful in the treatment and prevention of diabetic vascular complications.

  8. A biphasic endothelial stress-survival mechanism regulates the cellular response to vascular endothelial growth factor A

    International Nuclear Information System (INIS)

    Vascular endothelial growth factor A (VEGF-A) is an essential cytokine that regulates endothelial function and angiogenesis. VEGF-A binding to endothelial receptor tyrosine kinases such as VEGFR1 and VEGFR2 triggers cellular responses including survival, proliferation and new blood vessel sprouting. Increased levels of a soluble VEGFR1 splice variant (sFlt-1) correlate with endothelial dysfunction in pathologies such as pre-eclampsia; however the cellular mechanism(s) underlying the regulation and function of sFlt-1 are unclear. Here, we demonstrate the existence of a biphasic stress response in endothelial cells, using serum deprivation as a model of endothelial dysfunction. The early phase is characterized by a high VEGFR2:sFlt-1 ratio, which is reversed in the late phase. A functional consequence is a short-term increase in VEGF-A-stimulated intracellular signaling. In the late phase, sFlt-1 is secreted and deposited at the extracellular matrix. We hypothesized that under stress, increased endothelial sFlt-1 levels reduce VEGF-A bioavailability: VEGF-A treatment induces sFlt-1 expression at the cell surface and VEGF-A silencing inhibits sFlt-1 anchorage to the extracellular matrix. Treatment with recombinant sFlt-1 inhibits VEGF-A-stimulated in vitro angiogenesis and sFlt-1 silencing enhances this process. In this response, increased VEGFR2 levels are regulated by the phosphatidylinositol-3-kinase and PKB/Akt signaling pathways and increased sFlt-1 levels by the ERK1/2 signaling pathway. We conclude that during serum withdrawal, cellular sensing of environmental stress modulates sFlt-1 and VEGFR2 levels, regulating VEGF-A bioavailability and ensuring cell survival takes precedence over cell proliferation and migration. These findings may underpin an important mechanism contributing to endothelial dysfunction in pathological states. -- Highlights: ► Endothelial cells mount a stress response under conditions of low serum. ► Endothelial VEGFR levels are

  9. A biphasic endothelial stress-survival mechanism regulates the cellular response to vascular endothelial growth factor A

    Energy Technology Data Exchange (ETDEWEB)

    Latham, Antony M.; Odell, Adam F. [Endothelial Cell Biology Unit, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT (United Kingdom); Mughal, Nadeem A. [Leeds Vascular Institute, Leeds General Infirmary, Great George Street, Leeds LS1 3EX (United Kingdom); Issitt, Theo; Ulyatt, Clare; Walker, John H. [Endothelial Cell Biology Unit, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT (United Kingdom); Homer-Vanniasinkam, Shervanthi [Leeds Vascular Institute, Leeds General Infirmary, Great George Street, Leeds LS1 3EX (United Kingdom); Ponnambalam, Sreenivasan, E-mail: s.ponnambalam@leeds.ac.uk [Endothelial Cell Biology Unit, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2012-11-01

    Vascular endothelial growth factor A (VEGF-A) is an essential cytokine that regulates endothelial function and angiogenesis. VEGF-A binding to endothelial receptor tyrosine kinases such as VEGFR1 and VEGFR2 triggers cellular responses including survival, proliferation and new blood vessel sprouting. Increased levels of a soluble VEGFR1 splice variant (sFlt-1) correlate with endothelial dysfunction in pathologies such as pre-eclampsia; however the cellular mechanism(s) underlying the regulation and function of sFlt-1 are unclear. Here, we demonstrate the existence of a biphasic stress response in endothelial cells, using serum deprivation as a model of endothelial dysfunction. The early phase is characterized by a high VEGFR2:sFlt-1 ratio, which is reversed in the late phase. A functional consequence is a short-term increase in VEGF-A-stimulated intracellular signaling. In the late phase, sFlt-1 is secreted and deposited at the extracellular matrix. We hypothesized that under stress, increased endothelial sFlt-1 levels reduce VEGF-A bioavailability: VEGF-A treatment induces sFlt-1 expression at the cell surface and VEGF-A silencing inhibits sFlt-1 anchorage to the extracellular matrix. Treatment with recombinant sFlt-1 inhibits VEGF-A-stimulated in vitro angiogenesis and sFlt-1 silencing enhances this process. In this response, increased VEGFR2 levels are regulated by the phosphatidylinositol-3-kinase and PKB/Akt signaling pathways and increased sFlt-1 levels by the ERK1/2 signaling pathway. We conclude that during serum withdrawal, cellular sensing of environmental stress modulates sFlt-1 and VEGFR2 levels, regulating VEGF-A bioavailability and ensuring cell survival takes precedence over cell proliferation and migration. These findings may underpin an important mechanism contributing to endothelial dysfunction in pathological states. -- Highlights: Black-Right-Pointing-Pointer Endothelial cells mount a stress response under conditions of low serum. Black

  10. Enhancement of tumor necrosis factor-induced endothelial cell injury by cycloheximide

    International Nuclear Information System (INIS)

    Tumor necrosis factor (TNF), a potent polypeptide mediator released by activated monocytes and macrophages, has a number of proinflammatory effects on endothelial cells. TNF is cytotoxic to tumor cells in vivo and in vitro, but TNF-induced toxicity to endothelial cells is less well established. We now report that cycloheximide (CHX), an inhibitor of protein synthesis, renders endothelial cells highly susceptible to TNF-induced lysis. TNF alone did not change the overall rate of protein synthesis by endothelial cells, whereas the addition of CHX completely abolished protein synthesis. Endothelial cells incubated in TNF alone in high concentrations (up to 1,000 U/ml) showed minimal rounding up and release of 51Cr. Likewise, CHX alone (5 micrograms/ml) had no significant effect on endothelial cell morphology and release of 51Cr. However, incubation of endothelial cells in both CHX and TNF caused injury in a dose-dependent manner. Morphological evidence of cell retraction, rounding, and detachment began within 2 h, but specific 51Cr release did not begin to rise until after 4 h. These changes were not observed when endothelial cells were incubated with TNF/CHX at 4 degrees C. The combination of TNF/CHX was lethal to all endothelial cells tested (bovine pulmonary artery, human umbilical vein, and human aorta), with human aortic cells showing the most pronounced changes. We conclude that healthy endothelial cells are resistant to TNF-induced lysis, but inhibition of their ability to make protein renders them highly susceptible

  11. Fuchs' endothelial corneal dystrophy

    DEFF Research Database (Denmark)

    Nielsen, Esben; Ivarsen, Anders; Kristensen, Simon; Hjortdal, Jesper

    2016-01-01

    with normal corneas who received cataract surgery (control group). Subjects were recruited between March 2013 and July 2014. Observational procedures included the following: best-corrected visual acuity (BCVA), contrast sensitivity (CS), Catquest-9SF questionnaire, Scheimpflug tomography and anterior......PURPOSE: To investigate the determining factors of vision and subjective outcome after Descemet's stripping automated endothelial keratoplasty (DSAEK) for Fuchs' endothelial dystrophy (FECD). METHODS: In a prospective study, 41 FECD patients who received DSAEK were compared to 40 cataract patients...... OCT. Examinations were carried out before surgery and at 3-, 6- and 12-month follow-up. Main outcome measures were associations between corneal optics and visual parameters, as well as subjective improvement (Catquest-9SF effect size) RESULTS: Best-corrected visual acuity (BCVA) negatively correlated...

  12. Endothelial microparticles carrying hedgehog-interacting protein induce continuous endothelial damage in the pathogenesis of acute graft-versus-host disease.

    Science.gov (United States)

    Nie, Di-Min; Wu, Qiu-Ling; Zheng, Peng; Chen, Ping; Zhang, Ran; Li, Bei-Bei; Fang, Jun; Xia, Ling-Hui; Hong, Mei

    2016-05-15

    Accumulating evidence suggests that endothelial microparticles (EMPs), a marker of endothelial damage, are elevated in acute graft-versus-host disease (aGVHD), and that endothelial damage is implicated in the pathogenesis of aGVHD, but the mechanisms remain elusive. In this study, we detected the plasma EMP levels and endothelial damage in patients and mice with aGVHD in vivo and then examined the effects of EMPs derived from injured endothelial cells (ECs) on endothelial damage and the role of hedgehog-interacting protein (HHIP) carried by EMPs in these effects in vitro. Our results showed that EMPs were persistently increased in the early posttransplantation phase in patients and mice with aGVHD. Meanwhile, endothelial damage was continuous in aGVHD mice, but was temporary in non-aGVHD mice after transplantation. In vitro, EMPs induced endothelial damage, including increased EC apoptosis, enhanced reactive oxygen species, decreased nitric oxide production and impaired angiogenic activity. Enhanced expression of HHIP, an antagonist for the Sonic hedgehog (SHH) signaling pathway, was observed in patients and mice with aGVHD and EMPs from injured ECs. The endothelial damage induced by EMPs was reversed when the HHIP incorporated into EMPs was silenced with an HHIP small interfering RNA or inhibited with the SHH pathway agonist, Smoothened agonist. This work supports a feasible vicious cycle in which EMPs generated during endothelial injury, in turn, aggravate endothelial damage by carrying HHIP into target ECs, contributing to the continuously deteriorating endothelial damage in the development of aGVHD. EMPs harboring HHIP would represent a potential therapeutic target for aGVHD. PMID:27009877

  13. Endothelial cell-initiated extravasation of cancer cells visualized in zebrafish

    Directory of Open Access Journals (Sweden)

    Masamitsu Kanada

    2014-12-01

    Full Text Available The extravasation of cancer cells, a key step for distant metastasis, is thought to be initiated by disruption of the endothelial barrier by malignant cancer cells. An endothelial covering-type extravasation of cancer cells in addition to conventional cancer cell invasion-type extravasation was dynamically visualized in a zebrafish hematogenous metastasis model. The inhibition of VEGF-signaling impaired the invasion-type extravasation via inhibition of cancer cell polarization and motility. Paradoxically, the anti-angiogenic treatment showed the promotion, rather than the inhibition, of the endothelial covering-type extravasation of cancer cells, with structural changes in the endothelial walls. These findings may be a set of clues to the full understanding of the metastatic process as well as the metastatic acceleration by anti-angiogenic reagents observed in preclinical studies.

  14. Endothelial RIG-I activation impairs endothelial function

    International Nuclear Information System (INIS)

    Highlights: ► RIG-I activation impairs endothelial function in vivo. ► RIG-I activation alters HCAEC biology in vitro. ► EPC function is affected by RIG-I stimulation in vitro. -- Abstract: Background: Endothelial dysfunction is a crucial part of the chronic inflammatory atherosclerotic process and is mediated by innate and acquired immune mechanisms. Recent studies suggest that pattern recognition receptors (PRR) specialized in immunorecognition of nucleic acids may play an important role in endothelial biology in a proatherogenic manner. Here, we analyzed the impact of endothelial retinoic acid inducible gene I (RIG-I) activation upon vascular endothelial biology. Methods and results: Wild type mice were injected intravenously with 32.5 μg of the RIG-ligand 3pRNA (RNA with triphosphate at the 5′end) or polyA control every other day for 7 days. In 3pRNA-treated mice, endothelium-depended vasodilation was significantly impaired, vascular oxidative stress significantly increased and circulating endothelial microparticle (EMP) numbers significantly elevated compared to controls. To gain further insight in RIG-I dependent endothelial biology, cultured human coronary endothelial cells (HCAEC) and endothelial progenitor cells (EPC) were stimulated in vitro with 3pRNA. Both cells types express RIG-I and react with receptor upregulation upon stimulation. Reactive oxygen species (ROS) formation is enhanced in both cell types, whereas apoptosis and proliferation is not significantly affected in HCAEC. Importantly, HCAEC release significant amounts of proinflammatory cytokines in response to RIG-I stimulation. Conclusion: This study shows that activation of the cytoplasmatic nucleic acid receptor RIG-I leads to endothelial dysfunction. RIG-I induced endothelial damage could therefore be an important pathway in atherogenesis.

  15. Endothelial RIG-I activation impairs endothelial function

    Energy Technology Data Exchange (ETDEWEB)

    Asdonk, Tobias, E-mail: tobias.asdonk@ukb.uni-bonn.de [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Motz, Inga; Werner, Nikos [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Coch, Christoph; Barchet, Winfried; Hartmann, Gunther [Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Nickenig, Georg; Zimmer, Sebastian [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer RIG-I activation impairs endothelial function in vivo. Black-Right-Pointing-Pointer RIG-I activation alters HCAEC biology in vitro. Black-Right-Pointing-Pointer EPC function is affected by RIG-I stimulation in vitro. -- Abstract: Background: Endothelial dysfunction is a crucial part of the chronic inflammatory atherosclerotic process and is mediated by innate and acquired immune mechanisms. Recent studies suggest that pattern recognition receptors (PRR) specialized in immunorecognition of nucleic acids may play an important role in endothelial biology in a proatherogenic manner. Here, we analyzed the impact of endothelial retinoic acid inducible gene I (RIG-I) activation upon vascular endothelial biology. Methods and results: Wild type mice were injected intravenously with 32.5 {mu}g of the RIG-ligand 3pRNA (RNA with triphosphate at the 5 Prime end) or polyA control every other day for 7 days. In 3pRNA-treated mice, endothelium-depended vasodilation was significantly impaired, vascular oxidative stress significantly increased and circulating endothelial microparticle (EMP) numbers significantly elevated compared to controls. To gain further insight in RIG-I dependent endothelial biology, cultured human coronary endothelial cells (HCAEC) and endothelial progenitor cells (EPC) were stimulated in vitro with 3pRNA. Both cells types express RIG-I and react with receptor upregulation upon stimulation. Reactive oxygen species (ROS) formation is enhanced in both cell types, whereas apoptosis and proliferation is not significantly affected in HCAEC. Importantly, HCAEC release significant amounts of proinflammatory cytokines in response to RIG-I stimulation. Conclusion: This study shows that activation of the cytoplasmatic nucleic acid receptor RIG-I leads to endothelial dysfunction. RIG-I induced endothelial damage could therefore be an important pathway in atherogenesis.

  16. Na(+), K(+)-ATPase dysfunction causes cerebrovascular endothelial cell degeneration in rat prefrontal cortex slice cultures.

    Science.gov (United States)

    Kurauchi, Yuki; Hisatsune, Akinori; Seki, Takahiro; Katsuki, Hiroshi

    2016-08-01

    Cerebrovascular endothelial cell dysfunction resulting in imbalance of cerebral blood flow contributes to the onset of psychiatric disorders such as depression, schizophrenia and bipolar disorder. Although decrease in Na(+), K(+)-ATPase activity has been reported in the patients with schizophrenia and bipolar disorder, the contribution of Na(+), K(+)-ATPase to endothelial cell dysfunction remains poorly understood. Here, by using rat neonatal prefrontal cortex slice cultures, we demonstrated that pharmacological inhibition of Na(+), K(+)-ATPase by ouabain induced endothelial cell injury. Treatment with ouabain significantly decreased immunoreactive area of rat endothelial cell antigen-1 (RECA-1), a marker of endothelial cells, in a time-dependent manner. Ouabain also decreased Bcl-2/Bax ratio and phosphorylation level of glycogen synthase kinase 3β (GSK3β) (Ser9), which were prevented by lithium carbonate. On the other hand, ouabain-induced endothelial cell injury was exacerbated by concomitant treatment with LY294002, an inhibitor of phosphoinositide 3- (PI3-) kinase. We also found that xestospongin C, an inhibitor of inositol triphosphate (IP3) receptor, but not SEA0400, an inhibitor of Na(+), Ca(2+) exchanger (NCX), protected endothelial cells from cytotoxicity of ouabain. These results suggest that cerebrovascular endothelial cell degeneration induced by Na(+), K(+)-ATPase inhibition resulting in Ca(2+) release from endoplasmic reticulum (ER) and activation of GSK3β signaling underlies pathogenesis of these psychiatric disorders. PMID:27208492

  17. Tpl2 Inhibitors Thwart Endothelial Cell Function in Angiogenesis and Peritoneal Dissemination

    Directory of Open Access Journals (Sweden)

    Wen-Jane Lee

    2013-09-01

    Full Text Available Angiogenesis is critical in the development of cancer, which involves several angiogenic factors in its peritoneal dissemination. The role of protein tumor progression locus 2 (Tpl2 in angiogenic factor-related endothelial cell angiogenesis is still unclear. To understand the precise mechanism(s of Tpl2 inhibition in endothelial cells, this study investigated the role of Tpl2 in mediating angiogenic signals using in vitro, in vivo, and ex vivo models. Results showed that inhibition of Tpl2 inhibitor significantly reduced peritoneal dissemination in a mouse model by positron emission tomography/computed tomography imaging. Simultaneously, inhibiting Tpl2 blocked angiogenesis in tumor nodules and prevented angiogenic factor-induced proliferating cell nuclear antigen (PCNA in endothelial cells. Vascular endothelial growth factor (VEGF or chemokine (C-X-C motif ligand 1 (CXCL1 increased Tpl2 kinase activity and phosphorylation in a dose- and time-dependent manner. Furthermore, Tpl2 inhibition or ablation by siRNA prevented the angiogenic signal-induced tube formation in Matrigel plug assay or aortic ring assay. Inhibiting Tpl2 also prevented the angiogenic factor-induced chemotactic motility and migration of endothelial cells. Tpl2 inhibition by CXCL1 or epidermal growth factor in endothelial cells was associated with inactivation of CCAAT/enhancer binding protein β, nuclear factor κ light-chain enhancer of activated B cells, and activating protein 1 and suppression of VEGF expression. Thus, Tpl2 inhibitors thwart Tpl2-regulated VEGF by inactivating transcription factors involved in angiogenic factor-triggered endothelial cell angiogenesis. These results suggest that the therapeutic inhibition of Tpl2 may extend beyond cancer and include the treatment of other diseases involving pathologic angiogenesis.

  18. Endothelial dysfunction: EDCF revisited

    Institute of Scientific and Technical Information of China (English)

    PAUL M Vanhoutte

    2008-01-01

    Endothelial cells can initiate contraction (constriction) of the vascular smooth muscle cells that surround them. Such endothelium-dependent, acute increases in contractile tone can be due to the withdrawal of the production of nitric oxide, to the production of vasoconstrictor peptides (angiotensin Ⅱ, endothelin-1), to the formation of oxygen-derived free radicals(superoxide anions) and/or the release of vasoconstrictor metabolites of arachidonic acid. The latter have been termed endothelium-derived contracting factor (EDCF) as they can contribute to moment-to-moment changes in contractile activity of the underlying vascular smooth muscle cells. To judge from animal experiments, EDCF-mediated responses are exacerbated when the production of nitric oxide is impaired as well as by aging, spontaneous hypertension and diabetes. To judge from human studies, they contribute to the blunting of endothelium-dependent vasodilatations in aged subjects and essential hypertensive patients. Since EDCF causes vasoconstriction by activation of the TP-receptors on the vascular smooth muscle cells, selective antagonists at these receptors prevent endothelium-dependent contractions, and curtail the endothelial dysfunction in hypertension and diabetes.

  19. Abl family kinases regulate endothelial barrier function in vitro and in mice.

    Directory of Open Access Journals (Sweden)

    Elizabeth M Chislock

    Full Text Available The maintenance of endothelial barrier function is essential for normal physiology, and increased vascular permeability is a feature of a wide variety of pathological conditions, leading to complications including edema and tissue damage. Use of the pharmacological inhibitor imatinib, which targets the Abl family of non-receptor tyrosine kinases (Abl and Arg, as well as other tyrosine kinases including the platelet-derived growth factor receptor (PDGFR, Kit, colony stimulating factor 1 receptor (CSF1R, and discoidin domain receptors, has shown protective effects in animal models of inflammation, sepsis, and other pathologies characterized by enhanced vascular permeability. However, the imatinib targets involved in modulation of vascular permeability have not been well-characterized, as imatinib inhibits multiple tyrosine kinases not only in endothelial cells and pericytes but also immune cells important for disorders associated with pathological inflammation and abnormal vascular permeability. In this work we employ endothelial Abl knockout mice to show for the first time a direct role for Abl in the regulation of vascular permeability in vivo. Using both Abl/Arg-specific pharmacological inhibition and endothelial Abl knockout mice, we demonstrate a requirement for Abl kinase activity in the induction of endothelial permeability by vascular endothelial growth factor both in vitro and in vivo. Notably, Abl kinase inhibition also impaired endothelial permeability in response to the inflammatory mediators thrombin and histamine. Mechanistically, we show that loss of Abl kinase activity was accompanied by activation of the barrier-stabilizing GTPases Rac1 and Rap1, as well as inhibition of agonist-induced Ca(2+ mobilization and generation of acto-myosin contractility. In all, these findings suggest that pharmacological targeting of the Abl kinases may be capable of inhibiting endothelial permeability induced by a broad range of agonists and that use

  20. New thiazolidinediones affect endothelial cell activation and angiogenesis.

    Science.gov (United States)

    Rudnicki, Martina; Tripodi, Gustavo L; Ferrer, Renila; Boscá, Lisardo; Pitta, Marina G R; Pitta, Ivan R; Abdalla, Dulcineia S P

    2016-07-01

    Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor-γ (PPARγ) agonists used in treating type 2 diabetes that may exhibit beneficial pleiotropic effects on endothelial cells. In this study, we characterized the effects of three new TZDs [GQ-32 (3-biphenyl-4-ylmethyl-5-(4-nitro-benzylidene)-thiazolidine-2,4-dione), GQ-169 (5-(4-chloro-benzylidene)-3-(2,6-dichloro-benzyl)-thiazolidine-2,4-dione), and LYSO-7 (5-(5-bromo-1H-indol-3-ylmethylene)-3-(4-chlorobenzyl)-thiazolidine-2,4-dione)] on endothelial cells. The effects of the new TZDs were evaluated on the production of nitric oxide (NO) and reactive oxygen species (ROS), cell migration, tube formation and the gene expression of adhesion molecules and angiogenic mediators in human umbilical vein endothelial cells (HUVECs). PPARγ activation by new TZDs was addressed with a reporter gene assay. The three new TZDs activated PPARγ and suppressed the tumor necrosis factor α-induced expression of vascular cell adhesion molecule 1 and intercellular adhesion molecule 1. GQ-169 and LYSO-7 also inhibited the glucose-induced ROS production. Although NO production assessed with 4-amino-5-methylamino-2',7'-difluorofluorescein-FM probe indicated that all tested TZDs enhanced intracellular levels of NO, only LYSO-7 treatment significantly increased the release of NO from HUVEC measured by chemiluminescence analysis of culture media. Additionally, GQ-32 and GQ-169 induced endothelial cell migration and tube formation by the up-regulation of angiogenic molecules expression, such as vascular endothelial growth factor A and interleukin 8. GQ-169 also increased the mRNA levels of basic fibroblast growth factor, and GQ-32 enhanced transforming growth factor-β expression. Together, the results of this study reveal that these new TZDs act as partial agonists of PPARγ and modulate endothelial cell activation and endothelial dysfunction besides to stimulate migration and tube formation. PMID:27108791

  1. Simvastatin Ameliorates Matrix Stiffness-Mediated Endothelial Monolayer Disruption.

    Directory of Open Access Journals (Sweden)

    Marsha C Lampi

    Full Text Available Arterial stiffening accompanies both aging and atherosclerosis, and age-related stiffening of the arterial intima increases RhoA activity and cell contractility contributing to increased endothelium permeability. Notably, statins are 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA reductase inhibitors whose pleiotropic effects include disrupting small GTPase activity; therefore, we hypothesized the statin simvastatin could be used to attenuate RhoA activity and inhibit the deleterious effects of increased age-related matrix stiffness on endothelial barrier function. Using polyacrylamide gels with stiffnesses of 2.5, 5, and 10 kPa to mimic the physiological stiffness of young and aged arteries, endothelial cells were grown to confluence and treated with simvastatin. Our data indicate that RhoA and phosphorylated myosin light chain activity increase with matrix stiffness but are attenuated when treated with the statin. Increases in cell contractility, cell-cell junction size, and indirect measurements of intercellular tension that increase with matrix stiffness, and are correlated with matrix stiffness-dependent increases in monolayer permeability, also decrease with statin treatment. Furthermore, we report that simvastatin increases activated Rac1 levels that contribute to endothelial barrier enhancing cytoskeletal reorganization. Simvastatin, which is prescribed clinically due to its ability to lower cholesterol, alters the endothelial cell response to increased matrix stiffness to restore endothelial monolayer barrier function, and therefore, presents a possible therapeutic intervention to prevent atherogenesis initiated by age-related arterial stiffening.

  2. Hydrogen sulfide and endothelial dysfunction: relationship with nitric oxide.

    Science.gov (United States)

    Altaany, Zaid; Moccia, Francesco; Munaron, Luca; Mancardi, Daniele; Wang, Rui

    2014-01-01

    The endothelium is a cellular monolayer that lines the inner surface of blood vessels and plays a central role in the maintenance of cardiovascular homeostasis by controlling platelet aggregation, vascular tone, blood fluidity and fibrinolysis, adhesion and transmigration of inflammatory cells, and angiogenesis. Endothelial dysfunctions are associated with various cardiovascular diseases, including atherosclerosis, hypertension, myocardial infarction, and cardiovascular complications of diabetes. Numerous studies have established the anti-inflammatory, anti-apoptotic, and anti-oxidant effects of hydrogen sulfide (H2S), the latest member to join the gasotransmitter family along with nitric oxide and carbon monoxide, on vascular endothelium. In addition, H2S may prime endothelial cells (ECs) toward angiogenesis and contribute to wound healing, besides to its well-known ability to relax vascular smooth muscle cells (VSMCs), and thereby reducing blood pressure. Finally, H2S may inhibit VSMC proliferation and platelet aggregation. Consistently, a deficit in H2S homeostasis is involved in the pathogenesis of atherosclerosis and of hyperglycaemic endothelial injury. Therefore, the application of H2S-releasing drugs or using gene therapy to increase endogenous H2S level may help restore endothelial function and antagonize the progression of cardiovascular diseases. The present article reviews recent studies on the role of H2S in endothelial homeostasis, under both physiological and pathological conditions, and its putative therapeutic applications. PMID:25005182

  3. Arsenite induces endothelial cytotoxicity by down-regulation of vascular endothelial nitric oxide synthase

    International Nuclear Information System (INIS)

    Epidemiological studies have demonstrated a high association of inorganic arsenic exposure with vascular diseases. Recent research has also linked this vascular damage to impairment of endothelial nitric oxide synthase (eNOS) function by arsenic exposure. However, the role of eNOS in regulating the arsenite-induced vascular dysfunction still remains to be clarified. In our present study, we investigated the effect of arsenite on Akt1 and eNOS and its involvement in cytotoxicity of vascular endothelial cells. Our study demonstrated that arsenite decreased the protein levels of both Akt1 and eNOS accompanied with increased levels of ubiquitination of total cell lysates. We found that inhibition of the ubiquitin-proteasome pathway by MG-132 could partially protect Akt1 and eNOS from degradation by arsenite together with a proportional protection from the arsenite-induced cytoxicity. Moreover, up-regulation of eNOS protein expression significantly attenuated the arsenite-induced cytotoxicity and eNOS activity could be significantly inhibited after incubation with arsenite for 24 h in a cell-free system. Our study indicated that endothelial eNOS activity could be attenuated by arsenite via the ubiquitin-proteasome-mediated degradation of Akt1/eNOS as well as via direct inhibition of eNOS activity. Our study also demonstrated that eNOS actually played a protective role in arsenite-induced cytoxicity. These observations supported the hypothesis that the impairment of eNOS function by arsenite is one of the mechanisms leading to vascular changes and diseases

  4. A small interfering RNA targeting vascular endothelial growth factor efficiently inhibits growth of VX2 cells and VX2 tumor model of hepatocellular carcinoma in rabbit by transarterial embolization-mediated siRNA delivery

    Science.gov (United States)

    Zou, Yu; Guo, Chuan-Gen; Yang, Zheng-Gang; Sun, Jun-Hui; Zhang, Min-Ming; Fu, Cai-Yun

    2016-01-01

    Introduction Hepatocellular carcinoma is currently the second leading cause of cancer-related deaths worldwide with an increasing incidence. Objective The objective of this study is to investigate the effect of vascular endothelial growth factor small interfering RNA (VEGF-siRNA) on rabbit VX2 carcinoma cell viability in vitro and the effect of transarterial embolization (TAE)-mediated VEGF-siRNA delivery on the growth of rabbit VX2 liver-transplanted model in vivo. Methods Quantitative reverse transcription polymerase chain reaction, enzyme-linked immunosorbent assay, and Western blot technologies were used to detect the expression level of VEGF. TAE and computed tomography scan were used to deliver the VEGF-siRNA and detect the tumor volume in vivo, respectively. Microvessel density was detected by immunohistochemistry with CD34 antibody. A biochemical autoanalyzer was used to evaluate the hepatic and renal toxicity. Results The designed VEGF-siRNAs could effectively decrease the expression levels of VEGF mRNA and protein in vitro and in vivo. In vitro, the viability of rabbit VX2 carcinoma cells was reduced by 38.5%±7.3% (VEGF-siRNA no 1) and 30.0%±5.8% (VEGF-siRNA no 3) at 48 hours after transfection. Moreover, in rabbit VX2 liver-transplanted model, the growth ratios of tumors at 28 days after TAE-mediated siRNA delivery were 155.18%±19.42% in the control group, 79.67%±19.63% in the low-dose group, and 36.09%±15.73% in the high-dose group, with significant differences among these three groups. Microvessel density dropped to 34.22±4.01 and 22.63±4.07 in the low-dose group and high-dose group, respectively, compared with the control group (57.88±5.67), with significant differences among these three groups. Furthermore, inoculation of VX2 tumor into the liver itself at later stage induced significant increase in alanine aminotransferase and aspartate aminotransferase, indicating an obvious damage of liver functions, while treatment of VX2 tumor via TAE

  5. Effects of AMPK on high glucose stimulated apoptosis of endothelial cells via regulation of calcium influx

    Directory of Open Access Journals (Sweden)

    Ting LU

    2015-11-01

    Full Text Available Objective To investigate the inhibitory effect of adenosine monophosphate (AMP-dependent protein kinase (AMPK on high glucose-stimulated endothelial cell apoptosis and its mechanism. Methods MS-1 endothelial cells were cultured in vitro, and they were treated with AMPK agonist, AMPK inhibitor, 2-APB (a blocker of store operated Ca2+ channel (SOCC and (or high glucose, and a control group without any intervention were set up. TUNEL assay was performed to determine apoptotic cells. Laser scanning confocal microscopy was used to assess the Ca2+ influx into cells, and Western-blotting was performed to determine the expressions of Stim1 and Orai1 of the store operated Ca2+ channel (SOCC proteins. Results Apoptosis of endothelial cells was induced significantly, and the expressions of Stim1 and Orai1 were upregulated in high glucose group compared with that in control group (P<0.05. The rate of apoptosis of high glucose-induced endothelial cell was found to be increased in AMPK inhibitor group and decreased in AMPK agonist group, and the expressions of Stim1 and Orai1 were found to be down-regulated in AMPK agonist group as compared with that in high glucose group (P<0.05. Compared with the control group, high glucose stimulation significantly induced the Ca2+ influx to endothelial cells; compared with high glucose group, 2-APB significantly inhibited high glucose-induced Ca2+ influx to endothelial cells, and blocked the inducing effect of high-glucose on endothelial cell apoptosis. Compared with high glucose group, AMPK agonist significantly inhibited high glucose-induced cell Ca2+ influx. Conclusion By reducing the expressions of Stim1 and Orai1, AMPK may inhibit SOCC-mediated Ca2+ influx, and block the high glucose-stimulated endothelial cell apoptosis, thus play an important protective role in sustaining endothelial cell function. DOI: 10.11855/j.issn.0577-7402.2015.10.01

  6. Oxidized LDL signals through Rho-GTPase to induce endothelial cell stiffening and promote capillary formation.

    Science.gov (United States)

    Oh, Myung-Jin; Zhang, Chongxu; LeMaster, Elizabeth; Adamos, Crystal; Berdyshev, Evgeny; Bogachkov, Yedida; Kohler, Erin E; Baruah, Jugajyoti; Fang, Yun; Schraufnagel, Dean E; Wary, Kishore K; Levitan, Irena

    2016-05-01

    Endothelial biomechanics is emerging as a key factor in endothelial function. Here, we address the mechanisms of endothelial stiffening induced by oxidized LDL (oxLDL) and investigate the role of oxLDL in lumen formation. We show that oxLDL-induced endothelial stiffening is mediated by CD36-dependent activation of RhoA and its downstream target, Rho kinase (ROCK), via inhibition of myosin light-chain phosphatase (MLCP) and myosin light-chain (MLC)2 phosphorylation. The LC-MS/MS analysis identifies 7-ketocholesterol (7KC) as the major oxysterol in oxLDL. Similarly to oxLDL, 7KC induces RhoA activation, MLCP inhibition, and MLC2 phosphorylation resulting in endothelial stiffening. OxLDL also facilitates formation of endothelial branching networks in 3D collagen gels in vitro and induces increased formation of functional blood vessels in a Matrigel plug assay in vivo. Both effects are RhoA and ROCK dependent. An increase in lumen formation was also observed in response to pre-exposing the cells to 7KC, an oxysterol that induces endothelial stiffening, but not to 5α,6α epoxide that does not affect endothelial stiffness. Importantly, loading cells with cholesterol prevented oxLDL-induced RhoA activation and the downstream signaling cascade, and reversed oxLDL-induced lumen formation. In summary, we show that oxLDL-induced endothelial stiffening is mediated by the CD36/RhoA/ROCK/MLCP/MLC2 pathway and is associated with increased endothelial angiogenic activity. PMID:26989083

  7. Improved endothelialization of titanium vascular implants by extracellular matrix secreted from endothelial cells.

    Science.gov (United States)

    Tu, Qiufen; Zhao, Yuancong; Xue, Xiaoqing; Wang, Jin; Huang, Nan

    2010-12-01

    A variety of metals have been widely used in construction of cardiovascular implants (CVIs), such as artificial heart valves, ventricular pumps, and vascular stents. Although great effects have been put into rigorous anticoagulation, late thrombosis still occurred due to inferior blood and cell compatibility. Natural endothelium is popularly regarded as the only substance that has long-term anticoagulant ability. So, establishment of a compact endothelial cell (EC) monolayer on CVIs surface is a guarantee for their long-term potency. In the work described here, titanium (Ti) disks were coated with extracellular matrix (ECM) directly secreted by human umbilical vein endothelial cells (HUVECs), so as to help ECs proliferate and migrate and to improve their endothelialization in vivo. Deposition of ECM on Ti disks was detected by immunofluorescence microscopy, diffuse reflectance Fourier transform infrared spectroscopy, scanning electron microscopy, and atomic force microscopy. The surface topography and wettability of the Ti disks significantly changed after ECM deposition. Most importantly, it was found that ECM deposition inhibited platelet adhesion, stimulated EC proliferation, increased EC migration speed in vitro, and eventually accelerated the re-cellularization speed of Ti disks in vivo. These important results render it reasonable and feasible to modify CVIs with ECM secreted from ECs for improving their long-term potency. PMID:20666613

  8. Endothelial Microparticle-Derived Reactive Oxygen Species: Role in Endothelial Signaling and Vascular Function.

    Science.gov (United States)

    Burger, Dylan; Turner, Maddison; Munkonda, Mercedes N; Touyz, Rhian M

    2016-01-01

    Endothelial microparticles are effectors of endothelial damage; however mechanisms involved are unclear. We examined the effects of eMPs on cultured endothelial cells (ECs) and isolated vessels and investigated the role of eMP-derived reactive oxygen species (ROS) and redox signaling in these processes. eMPs were isolated from EC media and their ability to directly produce ROS was assessed by lucigenin and liquid chromatography. Nicotinamide adenine dinucleotide phosphate oxidase (Nox) subunits were probed by Western blot. ECs were treated with eMPs and effects on kinase signaling, superoxide anion (O2 (∙-)) generation, and nitric oxide (NO) production were examined. Acetylcholine-mediated vasorelaxation was assessed by myography in eMP-treated mesenteric arteries. eMPs contained Nox1, Nox2, Nox4, p47(phox), p67(phox), and p22(phox) and they produced ROS which was inhibited by the Nox inhibitor, apocynin. eMPs increased phosphorylation of ERK1/2 and Src, increased O2 (∙-) production, and decreased A23187-induced NO production in ECs. Pretreatment of eMPs with apocynin diminished eMP-mediated effects on ROS and NO production but had no effect on eMP-mediated kinase activation or impairment in vasorelaxation. Our findings identify a novel mechanism whereby eMP-derived ROS contributes to MP bioactivity. These interactions may be important in conditions associated with vascular injury and increased eMP formation. PMID:27313830

  9. Chronic nitroglycerine administration reduces endothelial nitric oxide production in rabbit mesenteric resistance artery

    OpenAIRE

    Yamamoto, Tamao; Kajikuri, Junko; Watanabe, Yoshimasa; Suzuki, Yoshikatsu; Suzumori, Kaoru; Itoh, Takeo

    2005-01-01

    We investigated whether 10 days' in vivo treatment with nitroglycerine (NTG) would inhibit nitric oxide production by the endothelial cells of resistance arteries ex vivo and, if so, what the underlying mechanism might be.ACh increased the intracellular nitric oxide concentration ([NO]i; estimated using the nitric oxide-sensitive fluorescent dye diaminofluorescein-2) within the endothelial cells of rabbit mesenteric resistance arteries. This effect was significantly smaller in arteries isolat...

  10. Differential effects of hydrogen peroxide on indices of endothelial cell function

    OpenAIRE

    1984-01-01

    The responses of pig aortic endothelial cells to sublethal doses of potentially toxic stimuli were investigated by monitoring K+ efflux, prostaglandin production, and the release of cytoplasmic purines. Xanthine plus xanthine oxidase reversibly stimulated these three parameters of endothelial cell function at doses that were not cytotoxic, as measured by chromium release, adenine uptake, and vital dye exclusion. The effects of xanthine plus xanthine oxidase were inhibited by catalase but not ...

  11. Basal and inducible anti-inflammatory epoxygenase activity in endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Askari, Ara A. [Barts and the London, Queen Mary University, London (United Kingdom); Thomson, Scott [Comparative Biomedical Sciences, Royal Veterinary College, London (United Kingdom); Edin, Matthew L.; Lih, Fred B.; Zeldin, Darryl C. [Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (United States); Bishop-Bailey, David, E-mail: dbishopbailey@rvc.ac.uk [Comparative Biomedical Sciences, Royal Veterinary College, London (United Kingdom)

    2014-04-04

    Highlights: • We examined epoxygenase product formation and regulation in endothelial cells. • The epoxygenase CYP2J2 is an LPS (TLR-4) inducible enzyme in endothelial cells. • The endothelial cell line EA.Hy926 synthesises epoxygenase products. • Inhibition of endothelial epoxygenases increases TNFα secretion. • Soluble epoxide hydrolase inhibitors reduce inflammation-induced TNFα and NFκB. - Abstract: The roles of CYP lipid-metabolizing pathways in endothelial cells are poorly understood. Human endothelial cells expressed CYP2J2 and soluble epoxide hydrolase (sEH) mRNA and protein. The TLR-4 agonist LPS (1 μg/ml; 24 h) induced CYP2J2 but not sEH mRNA and protein. LC–MS/MS analysis of the stable commonly used human endothelial cell line EA.Hy926 showed active epoxygenase and epoxide hydrolase activity: with arachidonic acid (stable epoxide products 5,6-DHET, and 14,15-DHET), linoleic acid (9,10-EPOME and 12,13-EPOME and their stable epoxide hydrolase products 9,10-DHOME and 12,13-DHOME), docosahexaenoic acid (stable epoxide hydrolase product 19,20-DiHDPA) and eicosapentaenoic acid (stable epoxide hydrolase product 17,18-DHET) being formed. Inhibition of epoxygenases using either SKF525A or MS-PPOH induced TNFα release, but did not affect LPS, IL-1β, or phorbol-12-myristate-13-acetate (PMA)-induced TNFα release. In contrast, inhibition of soluble epoxide hydrolase by AUDA or TPPU inhibited basal, LPS, IL-1β and PMA induced TNFα release, and LPS-induced NFκB p65 nuclear translocation. In conclusion, human endothelial cells contain a TLR-4 regulated epoxygenase CYP2J2 and metabolize linoleic acid > eicosapentaenoic acid > arachidonic acid > docosahexaenoic acid to products with anti-inflammatory activity.

  12. Basal and inducible anti-inflammatory epoxygenase activity in endothelial cells

    International Nuclear Information System (INIS)

    Highlights: • We examined epoxygenase product formation and regulation in endothelial cells. • The epoxygenase CYP2J2 is an LPS (TLR-4) inducible enzyme in endothelial cells. • The endothelial cell line EA.Hy926 synthesises epoxygenase products. • Inhibition of endothelial epoxygenases increases TNFα secretion. • Soluble epoxide hydrolase inhibitors reduce inflammation-induced TNFα and NFκB. - Abstract: The roles of CYP lipid-metabolizing pathways in endothelial cells are poorly understood. Human endothelial cells expressed CYP2J2 and soluble epoxide hydrolase (sEH) mRNA and protein. The TLR-4 agonist LPS (1 μg/ml; 24 h) induced CYP2J2 but not sEH mRNA and protein. LC–MS/MS analysis of the stable commonly used human endothelial cell line EA.Hy926 showed active epoxygenase and epoxide hydrolase activity: with arachidonic acid (stable epoxide products 5,6-DHET, and 14,15-DHET), linoleic acid (9,10-EPOME and 12,13-EPOME and their stable epoxide hydrolase products 9,10-DHOME and 12,13-DHOME), docosahexaenoic acid (stable epoxide hydrolase product 19,20-DiHDPA) and eicosapentaenoic acid (stable epoxide hydrolase product 17,18-DHET) being formed. Inhibition of epoxygenases using either SKF525A or MS-PPOH induced TNFα release, but did not affect LPS, IL-1β, or phorbol-12-myristate-13-acetate (PMA)-induced TNFα release. In contrast, inhibition of soluble epoxide hydrolase by AUDA or TPPU inhibited basal, LPS, IL-1β and PMA induced TNFα release, and LPS-induced NFκB p65 nuclear translocation. In conclusion, human endothelial cells contain a TLR-4 regulated epoxygenase CYP2J2 and metabolize linoleic acid > eicosapentaenoic acid > arachidonic acid > docosahexaenoic acid to products with anti-inflammatory activity

  13. Involvement of Heme Oxygenase-1 in Orexin-A-induced Angiogenesis in Vascular Endothelial Cells

    OpenAIRE

    Kim, Mi-Kyoung; Park, Hyun-Joo; Kim, Su-Ryun; Choi, Yoon Kyung; Bae, Soo-Kyung; Bae, Moon-Kyoung

    2015-01-01

    The cytoprotective enzyme heme oxygenase-1 (HO-1) influences endothelial cell survival, proliferation, inflammatory response, and angiogenesis in response to various angiogenic stimuli. In this study, we investigate the involvement of HO-1 in the angiogenic activity of orexin-A. We showed that orexin-A stimulates expression and activity of HO-1 in human umbilical vein endothelial cells (HUVECs). Furthermore, we showed that inhibition of HO-1 by tin (Sn) protoporphryin-IX (SnPP) reduced orexin...

  14. Autophagy regulates endothelial cell processing, maturation and secretion of von Willebrand factor

    OpenAIRE

    Torisu, Takehiro; Torisu, Kumiko; Lee, In Hye; Liu, Jie; Malide, Daniela; Combs, Christian A.; Wu, Xufeng S.; Rovira, Ilsa I.; Fergusson, Maria M; Weigert, Roberto; Connelly, Patricia S.; Daniels, Mathew P.; Komatsu, Masaaki; Cao, Liu; Finkel, Toren

    2013-01-01

    Endothelial secretion of von Willebrand factor (VWF) from intracellular organelles known as Weibel-Palade bodies (WPBs) is required for platelet adhesion to the injured vessel wall. Here, we demonstrate that WPBs are in some cases found near or within autophagosomes and that endothelial autophagosomes contain abundant VWF protein. Pharmacological inhibitors of autophagy, or knockdown of the essential autophagy genes Atg5 or Atg7, inhibits the in vitro secretion of VWF. Furthermore, while mice...

  15. Bone Marrow-Derived Endothelial Progenitors Expressing Delta-Like 4 (Dll4) Regulate Tumor Angiogenesis

    OpenAIRE

    Real, Carla; Remédio, Leonor; Caiado, Francisco; Igreja, Cátia; Borges, Cristina; Trindade, Alexandre; Pinto-do-Ó, Perpétua; Yagita, Hideo; Duarte, Antonio; Dias, Sérgio

    2011-01-01

    Neo-blood vessel growth (angiogenesis), which may involve the activation of pre-existing endothelial cells (EC) and/or the recruitment of bone marrow-derived vascular precursor cells (BM-VPC), is essential for tumor growth. Molecularly, besides the well established roles for Vascular endothelial growth factor (VEGF), recent findings show the Notch signalling pathway, in particular the ligand Delta-like 4 (Dll4), is also essential for adequate tumor angiogenesis; Dll4 inhibition results in imp...

  16. A small interfering RNA targeting vascular endothelial growth factor efficiently inhibits growth of VX2 cells and VX2 tumor model of hepatocellular carcinoma in rabbit by transarterial embolization-mediated siRNA delivery

    Directory of Open Access Journals (Sweden)

    Zou Y

    2016-03-01

    Full Text Available Yu Zou,1,2 Chuan-Gen Guo,2 Zheng-Gang Yang,3 Jun-Hui Sun,4 Min-Ming Zhang,5 Cai-Yun Fu6,71Department of Radiology, Women’s Hospital, School of Medicine, Zhejiang University, 2Department of Radiology, First Affiliated Hospital, School of Medicine, Zhejiang University, 3Institute of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, 4Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 5Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 6College of Life Sciences, Zhejiang Sci-Tech University, 7Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, People’s Republic of China Introduction: Hepatocellular carcinoma is currently the second leading cause of cancer-related deaths worldwide with an increasing incidence.Objective: The objective of this study is to investigate the effect of vascular endothelial growth factor small interfering RNA (VEGF-siRNA on rabbit VX2 carcinoma cell viability in vitro and the effect of transarterial embolization (TAE-mediated VEGF-siRNA delivery on the growth of rabbit VX2 liver-transplanted model in vivo.Methods: Quantitative reverse transcription polymerase chain reaction, enzyme-linked immunosorbent assay, and Western blot technologies were used to detect the expression level of VEGF. TAE and computed tomography scan were used to deliver the VEGF-siRNA and detect the tumor volume in vivo, respectively. Microvessel density was detected by immunohistochemistry with CD34 antibody. A biochemical autoanalyzer was used to evaluate the hepatic and renal toxicity.Results: The designed VEGF-siRNAs could effectively decrease the expression levels of VEGF mRNA and protein in vitro and in vivo. In vitro, the viability of rabbit VX2 carcinoma cells was reduced by 38.5%±7.3% (VEGF-siRNA no 1 and 30.0%±5.8% (VEGF

  17. Endothelial Cells Stimulate Self-Renewal and Expand Neurogenesis of Neural Stem Cells

    Science.gov (United States)

    Shen, Qin; Goderie, Susan K.; Jin, Li; Karanth, Nithin; Sun, Yu; Abramova, Natalia; Vincent, Peter; Pumiglia, Kevin; Temple, Sally

    2004-05-01

    Neural stem cells are reported to lie in a vascular niche, but there is no direct evidence for a functional relationship between the stem cells and blood vessel component cells. We show that endothelial cells but not vascular smooth muscle cells release soluble factors that stimulate the self-renewal of neural stem cells, inhibit their differentiation, and enhance their neuron production. Both embryonic and adult neural stem cells respond, allowing extensive production of both projection neuron and interneuron types in vitro. Endothelial coculture stimulates neuroepithelial cell contact, activating Notch and Hes1 to promote self-renewal. These findings identify endothelial cells as a critical component of the neural stem cell niche.

  18. [Hypertension, endothelial dysfunction and cardiovascular risk].

    Science.gov (United States)

    Nitenberg, A

    2006-10-01

    Increased blood pressure induces functional and structural changes of the vascular endothelium. Depression of endothelium-dependant vasodilatation is an early manifestation of endothelial dysfunction due to hypertension. It can be demonstrated by pharmacological or physiological tests. Decreased availability of nitric oxide (NO) is a major determinant of the depression of vasodilatation. It may be caused by a reduction in the activity of NO-endothelial synthase (NOSe) related to: 1) a deficit in substrate (L-arginine), 2) an inhibition by asymmetrical dimethylarginine, 3) a deficit in the cofactor tetrahydrobiopterin (BH4). However, the increase in oxidative stress, a producer of superoxide radicals which combine with NO to form peroxynitrates (ONOO-), is the determining factor. It is related to activation of membranous NAD(P)H oxidases initiated by the stimulation of activating mecanosensors of protein C kinase. The message is amplified by oxidation of BH4 which transforms the NOSe into a producer of superoxide radicals. A cascade of auto-amplification loops leading to atherosclerosis and its complications is then triggered. The superoxide radicals and the peroxynitrates oxidise the LDL-cholesterol. They activate the nuclear factor-kappaB which controls the genes stimulating the expression of many proteins: angiotensinogen and AT1 receptors which stimulate the sympathetic system, receptors of oxidised LDL, adhesion and migration factors (ICAM-1, VCAM-1, E-selectin and MCP-1), pro-inflammatory cytokins (interleukines and TNF-alpha), growth factors (MAP kinases), plasminogen activator inhibitor 1. The monocytes and smooth muscle cells produce metalloproteinases and pro-inflammatory cytokins which destabilise the atheromatous plaque and favourise vascular remodelling. Inshort, the endothelial dysfunction due to hypertension plays a role in a complex physiopathological process and is a marker of future cardiovascular events. PMID:17100143

  19. Influence of pro-angiogenic cytokines on proliferative activity and survival of endothelial cells

    Directory of Open Access Journals (Sweden)

    Solyanik G. I.

    2010-04-01

    Full Text Available Aim. Tumor angiogenesis in contrast to physiological one is characterized by high level of malignant cell production of proangiogenic cytokines, which have different influence on functional activity of endothelial cells. The goal of the study – to carry out a comparative analysis of the influence of a vascular endothelial growth factor (VEGF and an epidermal growth factor (EGF on proliferative activity and survival of endothelial cells upon their confluent and exponential growth. Methods. The proliferative activity of endothelial cells was determined by MTT-test and their viability was detected by the trypane blue exclusion test. Results. It was shown that EGF (irrespectively of the level of serum factors in concentrations higher than 10 ng/ml activated the proliferative activity of confluent endotheliocytes in a concentration-dependent manner by 18–36 % (ð < 0.05 as compared to the control, while this cytokine didn’t affect the endothelial cells in the exponential growth phase. VEGF in wide concentration range didn’t display the mitogenic effect on endotheliocytes in both confluent and exponential growth phases. Furthermore, VEGF in concentrations higher than 100 ng/ml inhibited proliferative activity of confluent endothelial cells by 12 % (ð < 0.05. In case of deficiency of nutrients, EGF and VEGF promoted the survival of endothelial cells, considerably decreasing their death. Conclusions. EGF, in contrast to VEGF, stimulates proliferation and survival of the endothelial cells, whereas VEGF has significant influence only on the survival of the cells

  20. Biological behaviour and role of endothelial progenitor cells in vascular diseases

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qiu-hua; SHE Ming-peng

    2007-01-01

    Obiective To review the biological behaviour of endothelial progenitor cells and their role in vascular diseases.Data sources The data used in this review were mainly from Medline and PubMed for relevant English language articles published from 1985 to March 2007.The search term was "endothelial progenitor cells".Study selection Articles about the biological behaviour of endothelial progenitor cells and their roles in the pathogenesis of vascular diseases such as atherogenesis were used.Results Progenitor cells in bone marrow,peripheral blood and adventitia can differentiate into mature endothelial cells (ECs).The progenitor cells,which express certain surface markers including AC133,CD34 and KDR,enable restoration of the microcirculation and ECs when injury or ischaemia occurs.Endothelial progenitor cells used in experimental models and clinical trials for ischaemic syndromes could restore endothelial integrity and inhibit neointima development.Moreover,their number and functional properties are influenced by certain cytokines and atherosclerotic risk factors.Impairment of the progenitor cells might limit the regenerative capacity,even lead to the development of atherosclerosis or other vascular diseases.Conclusions Endothelial progenitor cells have a particular role in prevention and treatment of certain cardiovascular diseases.However,many challenges remain in understanding differentiation of endothelial progenitor cells,their mobilization and revascularization.

  1. CD13/APN regulates endothelial invasion and filopodia formation

    OpenAIRE

    Petrovic, Nenad; Schacke, Wolfgang; Gahagan, J. Reed; O'Conor, Catherine A.; Winnicka, Beata; Conway, Rebecca E.; Mina-Osorio, Paola; Shapiro, Linda H.

    2007-01-01

    CD13/aminopeptidase N is a transmembrane peptidase that is induced in the vasculature of solid tumors and is a potent angiogenic regulator. Here, we demonstrate that CD13 controls endothelial cell invasion in response to the serum peptide bradykinin by facilitating signal transduction at the level of the plasma membrane. Inhibition of CD13 abrogates bradykinin B2 receptor internalization, leading to the attenuation of downstream events such as bradykinin-induced activation of Cdc42 and filopo...

  2. Endothelial progenitor cells in atherosclerosis

    OpenAIRE

    Du, Fuyong; Zhou, Jun; Gong, Ren; Huang, Xiao; Pansuria, Meghana; Virtue, Anthony; Li, Xinyuan; Wang, Hong; Yang, Xiao-Feng

    2012-01-01

    Endothelial progenitor cells (EPCs) are involved in the maintenance of endothelial homoeostasis and in the process of new vessel formation. Experimental and clinical studies have shown that atherosclerosis is associated with reduced numbers and dysfunction of EPCs; and that medications alone are able to partially reverse the impairment of EPCs in patients with atherosclerosis. Therefore, novel EPC-based therapies may provide enhancement in restoring EPCs’ population and improvement of vascula...

  3. Arsenic, reactive oxygen, and endothelial dysfunction.

    Science.gov (United States)

    Ellinsworth, David C

    2015-06-01

    Human exposure to drinking water contaminated with arsenic is a serious global health concern and predisposes to cardiovascular disease states, such as hypertension, atherosclerosis, and microvascular disease. The most sensitive target of arsenic toxicity in the vasculature is the endothelium, and incubation of these cells with low concentrations of arsenite, a naturally occurring and highly toxic inorganic form of arsenic, rapidly induces reactive oxygen species (ROS) formation via activation of a specific NADPH oxidase (Nox2). Arsenite also induces ROS accumulation in vascular smooth muscle cells, but this is relatively delayed because, depending on the vessel from which they originate, these cells often lack Nox2 and/or its essential regulatory cytosolic subunits. The net effect of such activity is attenuation of endothelium-dependent conduit artery dilation via superoxide anion-mediated scavenging of nitric oxide (NO) and inhibition and downregulation of endothelial NO synthase, events that are temporally matched to the accumulation of oxidants across the vessel wall. By contrast, ROS induced by the more toxic organic trivalent arsenic metabolites (monomethylarsonous and dimethylarsinous acids) may originate from sources other than Nox2. As such, the mechanisms through which vascular oxidative stress develops in vivo under continuous exposure to all three of these potent arsenicals are unknown. This review is a comprehensive analysis of the mechanisms that mediate arsenic effects associated with Nox2 activation, ROS activity, and endothelial dysfunction, and also considers future avenues of research into what is a relatively poorly understood topic with major implications for human health. PMID:25788710

  4. SIRT1 regulates endothelial Notch signaling in lung cancer.

    Directory of Open Access Journals (Sweden)

    Mian Xie

    Full Text Available BACKGROUND: Sirtuin 1 (SIRT1 acts as a key regulator of vascular endothelial homeostasis, angiogenesis, and endothelial dysfunction. However, the underlying mechanism for SIRT1-mediated lung carcinoma angiogenesis remains unknown. Herein, we report that the nicotinamide adenine dinucleotide 1 (NAD1-dependent deacetylase SIRT1 can function as an intrinsic negative modulator of Delta-like ligand 4 (DLL4/Notch signaling in Lewis lung carcinoma (LLC xenograft-derived vascular endothelial cells (lung cancer-derived ECs. PRINCIPAL FINDINGS: SIRT1 negatively regulates Notch1 intracellular domain (N1IC and Notch1 target genes HEY1 and HEY2 in response to Delta-like ligand 4 (DLL4 stimulation. Furthermore, SIRT1 deacetylated and repressed N1IC expression. Quantitative chromatin immunoprecipitation (qChIP analysis and gene reporter assay demonstrated that SIRT1 bound to one highly conserved region, which was located at approximately -500 bp upstream of the transcriptional start site of Notch1,and repressed Notch1 transcription. Inhibition of endothelial cell growth and sprouting angiogenesis by DLL4/Notch signaling was enhanced in SIRT1-silenced lung cancer-derived EC and rescued by Notch inhibitor DAPT. In vivo, an increase in proangiogenic activity was observed in Matrigel plugs from endothelial-specific SIRT1 knock-in mice. SIRT1 also enhanced tumor neovascularization and tumor growth of LLC xenografts. CONCLUSIONS: Our results show that SIRT1 facilitates endothelial cell branching and proliferation to increase vessel density and promote lung tumor growth through down-regulation of DLL4/Notch signaling and deacetylation of N1IC. Thus, targeting SIRT1 activity or/and gene expression may represent a novel mechanism in the treatment of lung cancer.

  5. Vascular endothelial growth factor antagonist therapy for retinopathy of prematurity.

    Science.gov (United States)

    Hartnett, M Elizabeth

    2014-12-01

    In this article, the growing problem of retinopathy of prematurity (ROP) worldwide, treatments for severe ROP including standard-of-care laser treatment, and the need for new treatments are discussed. Also discussed are the reasons to consider inhibiting the vascular endothelial growth factor (VEGF) signaling pathway in severe ROP and the concerns about broad VEGF inhibition. Finally, the potential role of VEGF in ROP based on studies in animal models of oxygen-induced retinopathy, the effects of anti-VEGF based on basic research data, and the clinical relevance of these data are covered. PMID:25459781

  6. Production of soluble Neprilysin by endothelial cells

    International Nuclear Information System (INIS)

    Highlights: • A soluble full-length form of Neprilysin exists in media of endothelial cells. • Exosomal release is the key mechanism for the production of soluble Neprilysin. • Inhibition of ADAM-17 by specific inhibitors reduce Neprilysin release. • Exosome mediated release of Neprilysin is dependent on ADAM-17 activity. - Abstract: A non-membrane bound form of Neprilysin (NEP) with catalytic activity has the potential to cleave substrates throughout the circulation, thus leading to systemic effects of NEP. We used the endothelial cell line Ea.hy926 to identify the possible role of exosomes and A Disintegrin and Metalloprotease 17 (ADAM-17) in the production of non-membrane bound NEP. Using a bradykinin based quenched fluorescent substrate (40 μM) assay, we determined the activity of recombinant human NEP (rhNEP; 12 ng), and NEP in the media of endothelial cells (10% v/v; after 24 h incubation with cells) to be 9.35 ± 0.70 and 6.54 ± 0.41 μmols of substrate cleaved over 3 h, respectively. The presence of NEP in the media was also confirmed by Western blotting. At present there are no commercially available inhibitors specific for ADAM-17. We therefore synthesised two inhibitors TPI2155-14 and TPI2155-17, specific for ADAM-17 with IC50 values of 5.36 and 4.32 μM, respectively. Treatment of cells with TPI2155-14 (15 μM) and TPI2155-17 (4.3 μM) resulted in a significant decrease in NEP activity in media (62.37 ± 1.43 and 38.30 ± 4.70, respectively as a % of control; P < 0.0001), implicating a possible role for ADAM-17 in NEP release. However, centrifuging media (100,000g for 1 h at 4 °C) removed all NEP activity from the supernatant indicating the likely role of exosomes in the release of NEP. Our data therefore indicated for the first time that NEP is released from endothelial cells via exosomes, and that this process is dependent on ADAM-17

  7. Production of soluble Neprilysin by endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Kuruppu, Sanjaya, E-mail: Sanjaya.Kuruppu@monash.edu [Department of Biochemistry and Molecular Biology, Building 77, Monash University, Wellington Rd, Clayton, Vic 3800 (Australia); Rajapakse, Niwanthi W. [Department of Physiology, Building 13F, Monash University, Wellington Rd, Clayton, Vic 3800 (Australia); Minond, Dmitriy [Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port Saint Lucie, FL 34987 (United States); Smith, A. Ian [Department of Biochemistry and Molecular Biology, Building 77, Monash University, Wellington Rd, Clayton, Vic 3800 (Australia)

    2014-04-04

    Highlights: • A soluble full-length form of Neprilysin exists in media of endothelial cells. • Exosomal release is the key mechanism for the production of soluble Neprilysin. • Inhibition of ADAM-17 by specific inhibitors reduce Neprilysin release. • Exosome mediated release of Neprilysin is dependent on ADAM-17 activity. - Abstract: A non-membrane bound form of Neprilysin (NEP) with catalytic activity has the potential to cleave substrates throughout the circulation, thus leading to systemic effects of NEP. We used the endothelial cell line Ea.hy926 to identify the possible role of exosomes and A Disintegrin and Metalloprotease 17 (ADAM-17) in the production of non-membrane bound NEP. Using a bradykinin based quenched fluorescent substrate (40 μM) assay, we determined the activity of recombinant human NEP (rhNEP; 12 ng), and NEP in the media of endothelial cells (10% v/v; after 24 h incubation with cells) to be 9.35 ± 0.70 and 6.54 ± 0.41 μmols of substrate cleaved over 3 h, respectively. The presence of NEP in the media was also confirmed by Western blotting. At present there are no commercially available inhibitors specific for ADAM-17. We therefore synthesised two inhibitors TPI2155-14 and TPI2155-17, specific for ADAM-17 with IC{sub 50} values of 5.36 and 4.32 μM, respectively. Treatment of cells with TPI2155-14 (15 μM) and TPI2155-17 (4.3 μM) resulted in a significant decrease in NEP activity in media (62.37 ± 1.43 and 38.30 ± 4.70, respectively as a % of control; P < 0.0001), implicating a possible role for ADAM-17 in NEP release. However, centrifuging media (100,000g for 1 h at 4 °C) removed all NEP activity from the supernatant indicating the likely role of exosomes in the release of NEP. Our data therefore indicated for the first time that NEP is released from endothelial cells via exosomes, and that this process is dependent on ADAM-17.

  8. Effects of Panax notoginseng saponins on vascular endothelial cells in vitro

    Institute of Scientific and Technical Information of China (English)

    關超然; 關加荤

    2000-01-01

    AIM: To investigate the inhibition of endothelium-dependent in vitro vascular relaxation induced by the total saponins (gensenosides) from Panax notoginseng ( PNS ) and the effect of PNS on the cytosolic Ca2 + concentration on cultured bovine pulmonary artery endothelial cells.METHODS: The endothelial-dependent vascular relaxation was assessed using acetylcholine (ACh) or cyclopiazonic acid (CPA) induced relaxation in endothelium-intact rat aorta. Cytosolic Caa + level was assessed in real time using dynamic digital fluorescence ratio imaging.RESULTS: In addition to its direct relaxation of the smooth muscle cells at high concentrations, PNS, at 100 mg/L having little effect on smooth muscle, caused a marked inhibition of endothelium-dependent relaxation brought about by PNS. This inhibitory effect was due to its inhibition of elevation of cytosolic Ca2 + , which is required for the activation of NO generation and release from the vascular endothelial cells. Nifedipine has no effect on either the endothelium-dependent relaxation or the cytosolic Ca2 + level in the cultured endothelial cells.CONCLUSION: Our findings are consistent with the known action of PNS on receptor-operated Ca2 + channels and support our contention that PNS inhibits endotheliumdependent relaxation by preventing the increase of Ca2 + level in endothelial cells via the receptor-operated Ca2 + channels in the presence of ACh or the non-selective cation channels opened by CPA.

  9. Endothelial disruptive proinflammatory effects of nicotine and e-cigarette vapor exposures

    Science.gov (United States)

    Schweitzer, Kelly S.; Chen, Steven X.; Law, Sarah; Van Demark, Mary; Poirier, Christophe; Justice, Matthew J.; Hubbard, Walter C.; Kim, Elena S.; Lai, Xianyin; Wang, Mu; Kranz, William D.; Carroll, Clinton J.; Ray, Bruce D.; Bittman, Robert; Goodpaster, John

    2015-01-01

    The increased use of inhaled nicotine via e-cigarettes has unknown risks to lung health. Having previously shown that cigarette smoke (CS) extract disrupts the lung microvasculature barrier function by endothelial cell activation and cytoskeletal rearrangement, we investigated the contribution of nicotine in CS or e-cigarettes (e-Cig) to lung endothelial injury. Primary lung microvascular endothelial cells were exposed to nicotine, e-Cig solution, or condensed e-Cig vapor (1–20 mM nicotine) or to nicotine-free CS extract or e-Cig solutions. Compared with nicotine-containing extract, nicotine free-CS extract (10–20%) caused significantly less endothelial permeability as measured with electric cell-substrate impedance sensing. Nicotine exposures triggered dose-dependent loss of endothelial barrier in cultured cell monolayers and rapidly increased lung inflammation and oxidative stress in mice. The endothelial barrier disruptive effects were associated with increased intracellular ceramides, p38 MAPK activation, and myosin light chain (MLC) phosphorylation, and was critically mediated by Rho-activated kinase via inhibition of MLC-phosphatase unit MYPT1. Although nicotine at sufficient concentrations to cause endothelial barrier loss did not trigger cell necrosis, it markedly inhibited cell proliferation. Augmentation of sphingosine-1-phosphate (S1P) signaling via S1P1 improved both endothelial cell proliferation and barrier function during nicotine exposures. Nicotine-independent effects of e-Cig solutions were noted, which may be attributable to acrolein, detected along with propylene glycol, glycerol, and nicotine by NMR, mass spectrometry, and gas chromatography, in both e-Cig solutions and vapor. These results suggest that soluble components of e-Cig, including nicotine, cause dose-dependent loss of lung endothelial barrier function, which is associated with oxidative stress and brisk inflammation. PMID:25979079

  10. Endothelial dysfunction in patients with primary hypertension and hyperhomocysteinemia

    Directory of Open Access Journals (Sweden)

    Aleksandra Baszczuk

    2014-01-01

    Full Text Available It is widely accepted that endothelial dysfunction is the basis of the development of cardiovascular diseases, including hypertension. With regard to hypertension, endothelial dysfunction is concerned mainly with impaired vascular expansion; however, it is also related to the intensity of the development of atherosclerosis and thrombosis. Among the factors that cause damage to the endothelium, along with classic risk factors, is hyperhomocysteinemia. Hyperhomocysteinemia promotes the formation of oxygen radicals, lowering the oxidation-reduction potential, adversely affects the biosynthesis and function of vasodilator factors in the vascular wall, contributes to the inhibition of endothelial cell division with intense myocyte proliferation and migration, and impairs production of extracellular matrix components in the vascular wall. In addition, high levels of homocysteine and its derivatives contribute to the modification of LDL and HDL particles, inflammation and disorders in coagulation and fibrinolysis. Biochemical effects of the impact of hyperhomocysteinemia on endothelium can lead to damage of endothelial cells, dysfunction of diastolic function of vessels and reduction of their flexibility through its influence on vascular wall remodeling. These changes lead to an increase in blood pressure, strengthening the development of hypertension and target organ damage in patients with this disease.

  11. Endothelial Cells Promote Pigmentation through Endothelin Receptor B Activation.

    Science.gov (United States)

    Regazzetti, Claire; De Donatis, Gian Marco; Ghorbel, Houda Hammami; Cardot-Leccia, Nathalie; Ambrosetti, Damien; Bahadoran, Philippe; Chignon-Sicard, Bérengère; Lacour, Jean-Philippe; Ballotti, Robert; Mahns, Andre; Passeron, Thierry

    2015-12-01

    Findings of increased vascularization in melasma lesions and hyperpigmentation in acquired bilateral telangiectatic macules suggested a link between pigmentation and vascularization. Using high-magnification digital epiluminescence dermatoscopy, laser confocal microscopy, and histological examination, we showed that benign vascular lesions of the skin have restricted but significant hyperpigmentation compared with the surrounding skin. We then studied the role of microvascular endothelial cells in regulating skin pigmentation using an in vitro co-culture model using endothelial cells and melanocytes. These experiments showed that endothelin 1 released by microvascular endothelial cells induces increased melanogenesis signaling, characterized by microphthalmia-associated transcription factor phosphorylation, and increased tyrosinase and dopachrome tautomerase levels. Immunostaining for endothelin 1 in vascular lesions confirmed the increased expression on the basal layer of the epidermis above small vessels compared with perilesional skin. Endothelin acts through the activation of endothelin receptor B and the mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK)1/2, and p38, to induce melanogenesis. Finally, culturing of reconstructed skin with microvascular endothelial cells led to increased skin pigmentation that could be prevented by inhibiting EDNRB. Taken together these results demonstrated the role of underlying microvascularization in skin pigmentation, a finding that could open new fields of research for regulating physiological pigmentation and for treating pigmentation disorders such as melasma. PMID:26308584

  12. The endothelial cyclooxygenase pathway: Insights from mouse arteries.

    Science.gov (United States)

    Luo, Wenhong; Liu, Bin; Zhou, Yingbi

    2016-06-01

    To date, cyclooxygenase-2 (COX-2) is commonly believed to be the major mediator of endothelial prostacyclin (prostaglandin I2; PGI2) synthesis that balances the effect of thromboxane (Tx) A2 synthesis mediated by the other COX isoform, COX-1 in platelets. Accordingly, selective inhibition of COX-2 is considered to cause vasoconstriction, platelet aggregation, and hence increase the incidence of cardiovascular events. This idea has been claimed to be substantiated by experiments on mouse models, some of which are deficient in one of the two COX isoforms. However, results from our studies and those of others using similar mouse models suggest that COX-1 is the major functional isoform in vascular endothelium. Also, although PGI2 is recognized as a potent vasodilator, in some arteries endothelial COX activation causes vasoconstrictor response. This has again been recognized by studies, especially those performed on mouse arteries, to result largely from endothelial PGI2 synthesis. Therefore, evidence that supports a role for COX-1 as the major mediator of PGI2 synthesis in mouse vascular endothelium, reasons for the inconsistency, and results that elucidate underlying mechanisms for divergent vasomotor reactions to endothelial COX activation will be discussed in this review. In addition, we address the possible pathological implications and limitations of findings obtained from studies performed on mouse arteries. PMID:27020548

  13. Metabolic fate of rat heart endothelial lipoprotein lipase

    International Nuclear Information System (INIS)

    When isolated rat hearts were perfused with medium containing 125I-labeled bovine lipoprotein lipase (LPL), they bound both lipase activity and radioactivity. More than 80% of the bound lipase could be rapidly released by heparin. Low concentrations of bovine LPL displaced 50-60% of the endogeneous, endothelial-bound LPL. Higher concentrations caused additional binding. Both binding and exchange were rapid processes. The hearts continuously released endogenous LPL into the medium. An antiserum that inhibited bovine but not rat LPL was used to differentiate endogeneous and exogeneous LPL activity. When the pool of endothelial LPL was labeled with bovine 125I-labeled LPL and then chased with unlabeled bovine LPL, approximately 50% of the labeled lipase was rapidly displaced. During chase perfusion with medium only, catalytically active bovine LPL appeared in the perfusate. The rate of release was similar to that observed for endogeneous LPL activity and amounted to 10-13% of the heparin-releasable fraction in the first 5 min of perfusion. There was little or no degradation of bovine 125I-labeled LPL to fragments or acid-soluble products. These results indicate that endothelial LPL is accessible for exchange with exogeneous LPL and that detachment rather than degradation may be the pathway for catabolism of endothelial LPL

  14. Thioredoxin inhibits human vascular endothelial cell adhesion molecules expression via Smad3/AP-1 pathway%硫氧还蛋白通过Smad3/AP-1通路抑制人血管内皮细胞黏附蛋白的表达

    Institute of Scientific and Technical Information of China (English)

    陈北冬; 王文东; 赵革新; 马丽娜; 刘雪青; 齐若梅

    2013-01-01

    .Trx activity was detected by insulin disulfide reduction assay,and cellular reactive oxygen species (ROS)production was detected by fluorescent probe DCFH-DA.Results As compared with control group,Trx protein expression level was enhanced in Ad-trx group and the Trx activity in Ad-Trx group was upregulated by (26.2 ±3.3)%.The result of ROS detection showed that overexpression of Trx significantly inhibited the cellular ROS generation.As compared with control group,overexpression of Trx obviously inhibited the adhesion molecules expression but markedly promoted the phosphorylation of Smad3 in endothelial cells with or without oxLDL stimulation (P<0.05).Pretreatment of cells with SIS3,a specific inhibitor of Smad3 phosphorylation,reversed Trx-induced inhibition of adhesion molecules expression.Further studies showed that pretreatment of cells with SIS3 enhanced oxLDL-induced AP-1 subunit c-fos nuclear expression.Conclusions The enhancement of Smad3 phosphorylation and c-Fos nuclear expression are mainly responsible for the Trx-induced downregulation of adhesion molecules.

  15. Interleukin 1 is an autocrine regulator of human endothelial cell growth

    International Nuclear Information System (INIS)

    Proliferation of endothelial cells is regulated through the autocrine production of growth factors and the expression of cognate surface receptors. In this study, the authors demonstrate that interleukin 1 (IL-1) is an inhibitor of endothelial growth in vitro and in vivo. IL-1 arrested growing, cultured endothelial cells in G1 phase; inhibition of proliferation was dose dependent and occurred in parallel with occupancy of endothelial surface IL-1 receptors. In an angiogenesis model, IL-1 could inhibit fibroblast growth factor-induced vessel formation. The autocrine nature of the IL-1 effect on endothelial proliferation was demonstrated by the observation that occupancy of cell-surface receptors by endogenous IL-1 depressed cell growth. The potential significance of this finding was emphasized by the detection of IL-1 in the native endothelium of human umbilical veins. A mechanism by which IL-1 may exert its inhibitory effect on endothelial cell growth was suggested by studies showing that IL-1 decreased the expression of high-affinity fibroblast growth factor binding sites on endothelium. These results point to a potentially important role of IL-1 in regulating blood vessel growth the suggest that autocrine production of inhibitory factors may be a mechanism controlling proliferation of normal cells

  16. PKCδ regulates force signaling during VEGF/CXCL4 induced dissociation of endothelial tubes.

    Directory of Open Access Journals (Sweden)

    Joshua Jamison

    Full Text Available Wound healing requires the vasculature to re-establish itself from the severed ends; endothelial cells within capillaries must detach from neighboring cells before they can migrate into the nascent wound bed to initiate angiogenesis. The dissociation of these endothelial capillaries is driven partially by platelets' release of growth factors and cytokines, particularly the chemokine CXCL4/platelet factor-4 (PF4 that increases cell-cell de-adherence. As this retraction is partly mediated by increased transcellular contractility, the protein kinase c-δ/myosin light chain-2 (PKCδ/MLC-2 signaling axis becomes a candidate mechanism to drive endothelial dissociation. We hypothesize that PKCδ activation induces contractility through MLC-2 to promote dissociation of endothelial cords after exposure to platelet-released CXCL4 and VEGF. To investigate this mechanism of contractility, endothelial cells were allowed to form cords following CXCL4 addition to perpetuate cord dissociation. In this study, CXCL4-induced dissociation was reduced by a VEGFR inhibitor (sunitinib malate and/or PKCδ inhibition. During combined CXCL4+VEGF treatment, increased contractility mediated by MLC-2 that is dependent on PKCδ regulation. As cellular force is transmitted to focal adhesions, zyxin, a focal adhesion protein that is mechano-responsive, was upregulated after PKCδ inhibition. This study suggests that growth factor regulation of PKCδ may be involved in CXCL4-mediated dissociation of endothelial cords.

  17. 金黄色葡萄球菌超抗原样蛋白-5抑制人脐血源性内皮祖细胞黏附功能及其机制研究%Staphylococcal superantigen-like protein-5 inhibits adhesion of human umbilical cord blood-derived endothelial progenitor cells to P-selectin-coated surface

    Institute of Scientific and Technical Information of China (English)

    梁华; 曲小龙; 胡厚源; 宋治远; 程彦; 张静

    2011-01-01

    目的 研究金黄色葡萄球菌超抗原样蛋白-5 (staphylococcal superantigen-like protein-5,SSL5)与人脐血源性内皮祖细胞(endothelial progenitor cells,EPCs)表面P-选择素糖蛋白配体-1 (P-selectin glycoprotein ligand-1,PSGL-1) 的结合情况,及其对内皮祖细胞黏附功能的影响.方法 从金黄色葡萄球菌 NCTC 8325菌株的基因组中,扩增ssl5基因,并进行重组SSL5蛋白表达载体的构建.采用密度梯度离心法分离得到脐血中的单个核细胞并进行体外培养,对贴壁细胞在激光共聚焦显微镜下观察其摄取乙酰化低密度脂蛋白(DiI-acLDL)和结合荆豆凝集素(FITC-UEA-1)的情况.以流式细胞仪分析SSL5与EPCs表面PSGL-1的结合情况;以calcein-AM负载EPCs后,定量分析SSL5对EPCs在P-选择素包被表面黏附的抑制作用.结果 DiI-acLDL/ FITC-UEA-1双染阳性的细胞为EPCs.PSGL-1在EPCs表面有较丰富的表达,阳性细胞率为76.6%.SSL5与EPCs的结合随着SSL5浓度的增加而显著升高;并且,SSL5可竞争性抑制抗PSGL-1单克隆抗体(KPL-1)与EPCs的结合.SSL5可显著抑制EPCs在P-选择素表面的黏附,终浓度为30 mg/L的SSL5对EPCs在P-选择素表面黏附的抑制率已接近10 mg/L的KPL-1的效应,两者与空白对照组比较,差异有统计学意义(P<0.01).结论 SSL5可与EPCs表面的PSGL-1结合,而抑制EPCs在P-选择素表面的黏附,提示SSL5可能通过抑制EPCs与损伤内皮或激活的血小板之间的黏附,进而抑制EPCs对损伤内皮的修复作用.%Objective To investigate the binding of staphylococcal superantigen-like protein-5 (SSL5) to P-selectin glycoprotein ligand-1 (PSGL-1) on human umbilical cord blood-derived endothelial progenitor cells (EPCs) and the inhibitive effect of SSL5 on the adhesion of EPCs to P-selectin-coated surface.Methods SSL5 gene was amplified from the genome of Staphylococcus aureus NCTC 8325 and cloned into a vector for expressing recombinant SSL5 protein. Mononuclear cells were

  18. Endothelial keratoplasty: evolution and horizons

    Directory of Open Access Journals (Sweden)

    Gustavo Teixeira Grottone

    2012-12-01

    Full Text Available Endothelial keratoplasty has been adopted by corneal surgeons worldwide as an alternative to penetrating keratoplasty (PK in the treatment of corneal endothelial disorders. Since the first surgeries in 1998, different surgical techniques have been used to replace the diseased endothelium. Compared with penetrating keratoplasty, all these techniques may provide faster and better visual rehabilitation with minimal change in refractive power of the transplanted cornea, minimal induced astigmatism, elimination of suture-induced complications and late wound dehiscence, and a reduced demand for postoperative care. Translational research involving cell-based therapy is the next step in work on endothelial keratoplasty. The present review updates information on comparisons among different techniques and predicts the direction of future treatment.

  19. Genetics of corneal endothelial dystrophies

    Indian Academy of Sciences (India)

    Chitra Kannabiran

    2009-12-01

    The corneal endothelium maintains the level of hydration in the cornea. Dysfunction of the endothelium results in excess accumulation of water in the corneal stroma, leading to swelling of the stroma and loss of transparency. There are four different corneal endothelial dystrophies that are hereditary, progressive, non-inflammatory disorders involving dysfunction of the corneal endothelium. Each of the endothelial dystrophies is genetically heterogeneous with different modes of transmission and/or different genes involved in each subtype. Genes responsible for disease have been identified for only a subset of corneal endothelial dystrophies. Knowledge of genes involved and their function in the corneal endothelium can aid understanding the pathogenesis of the disorder as well as reveal pathways that are important for normal functioning of the endothelium.

  20. Induction of endothelial cell proliferation by angiogenic factors released by activated monocytes

    International Nuclear Information System (INIS)

    Introduction: Cell-cell interaction is an essential component of atherosclerotic plaque development. Activated monocytes appear to play a central role in the development of atherosclerosis, not only through foam cell formation but also via the production of various growth factors that induce proliferation of different cell types that are involved in the plaque development. Using serum free co-culture method, we determined the effect of monocytes on endothelial cell proliferation. Methods: Endothelial cell proliferation is determined by the amount of [3H]thymidine incorporated in to the DNA. Basic fibroblast growth factor (b-FGF), vascular endothelial growth factor (VEGF) and interleukin-8 (IL-8) levels in the conditioned medium were determined by ELISA. Results: Conditioned medium from unactivated monocytes partially inhibited endothelial cell proliferation, whereas conditioned medium from activated monocytes promoted endothelial cell proliferation. The mitogenic effect of conditioned medium derived from activated monocytes is due to the presence of b-FGF, VEGF and IL-8. Neutralizing antibodies against b-FGF, VEGF and IL-8 partially reversed the mitogenic effect of conditioned medium derived from activated monocytes. When b-FGF, VEGF and IL-8 were immunoprecipitated from conditioned medium derived from activated monocytes, it is less mitogenic to endothelial cells. Conclusion: Activated monocytes may play an important role in the development of atherosclerotic plaque by producing endothelial cell growth factors

  1. Traumatic corneal endothelial rings from homemade explosives.

    Science.gov (United States)

    Ng, Soo Khai; Rudkin, Adam K; Galanopoulos, Anna

    2013-08-01

    Traumatic corneal endothelial rings are remarkably rare ocular findings that may result from blast injury. We present a unique case of bilateral traumatic corneal endothelial rings secondary to blast injury from homemade explosives. PMID:23474743

  2. Shear-Induced Nitric Oxide Production by Endothelial Cells.

    Science.gov (United States)

    Sriram, Krishna; Laughlin, Justin G; Rangamani, Padmini; Tartakovsky, Daniel M

    2016-07-12

    We present a biochemical model of the wall shear stress-induced activation of endothelial nitric oxide synthase (eNOS) in an endothelial cell. The model includes three key mechanotransducers: mechanosensing ion channels, integrins, and G protein-coupled receptors. The reaction cascade consists of two interconnected parts. The first is rapid activation of calcium, which results in formation of calcium-calmodulin complexes, followed by recruitment of eNOS from caveolae. The second is phosphorylation of eNOS by protein kinases PKC and AKT. The model also includes a negative feedback loop due to inhibition of calcium influx into the cell by cyclic guanosine monophosphate (cGMP). In this feedback, increased nitric oxide (NO) levels cause an increase in cGMP levels, so that cGMP inhibition of calcium influx can limit NO production. The model was used to predict the dynamics of NO production by an endothelial cell subjected to a step increase of wall shear stress from zero to a finite physiologically relevant value. Among several experimentally observed features, the model predicts a highly nonlinear, biphasic transient behavior of eNOS activation and NO production: a rapid initial activation due to the very rapid influx of calcium into the cytosol (occurring within 1-5 min) is followed by a sustained period of activation due to protein kinases. PMID:27410748

  3. IL-1β regulates the mouse Fas ligand expression in corneal endothelial cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jie; Yang Ke; TAN DeYong; ZENG JunYing; Alan FINE

    2007-01-01

    Constitutively expressed Fas ligand (FasL) in several distinct epithelial cell types appears to protect tissues by inducing apoptosis of Fas+ immune cells during inflammatory reactions.To study the relationship of FasL and inflammation process in cornea, we examined the effects of inflammatory cytokine IL-1βon the FasL production, expression and cytotoxic function in corneal endothelial cells.In this paper, we demonstrate that IL-1βinhibits the FasL production and expression in corneal endothelial cells.The promoter activities of FasL in these cells are reduced by IL-1βin a dose-dependent manner.Finally, we also find that IL-1βblock the cytotoxic effects of FasL derived from corneal endothelial cells to the Fas+ target cells.These data support the view that FasL derived from corneal endothelial cells modulate inflammation within cornea.

  4. Endothelial potential of human embryonic stem cells

    OpenAIRE

    Levenberg, Shulamit; Zoldan, Janet; Basevitch, Yaara; Langer, Robert

    2007-01-01

    Growing interest in using endothelial cells for therapeutic purposes has led to exploring human embryonic stem cells as a potential source for endothelial progenitor cells. Embryonic stem cells are advantageous when compared with other endothelial cell origins, due to their high proliferation capability, pluripotency, and low immunogenity. However, there are many challenges and obstacles to overcome before the vision of using embryonic endothelial progenitor cells in the clinic can be realize...

  5. Jujuboside B Reduces Vascular Tension by Increasing Ca2+ Influx and Activating Endothelial Nitric Oxide Synthase.

    Science.gov (United States)

    Zhao, Yixiu; Zhang, Xin; Li, Jiannan; Bian, Yu; Sheng, Miaomiao; Liu, Bin; Fu, Zidong; Zhang, Yan; Yang, Baofeng

    2016-01-01

    Jujuboside B has been reported to have protective effect on many cardiovascular diseases. However, the effects of Jujuboside B on vascular tension and endothelial function are unknown. The present study investigated the effects of Jujuboside B on reducing vascular tension, protecting endothelial function and the potential mechanisms. The tension of isolated rat thoracic aorta ring was measured by Wire myograph system. The concentration of nitric oxide (NO) and the activity of endothelial nitric oxide synthase (eNOS) in human aortic endothelial cells (HAECs) were determined by Griess reagent method and enzyme-linked immune sorbent assay. The protein levels of eNOS and p-eNOS at Serine-1177 were determined by western blot analysis. Intracellular Ca2+ concentration in HAECs was measured by laser confocal imaging microscopy. Results showed that Jujuboside B reduced the tension of rat thoracic aorta rings with intact endothelium in a dose-dependent manner. L-NAME, KN93, EGTA, SKF96365, iberiotoxin and glibenclamide significantly attenuated Jujuboside B-induced vasodilation in endothelium-intact tissues. In contrast, indometacin and 4-DAMP had no such effects. Jujuboside B also promoted NO generation and increased eNOS activity, which were attenuated by L-NAME, EGTA and SKF96365. Moreover, Jujuboside B increased intracellular Ca2+ concentration dose-dependently, which was inhibited by EGTA and SKF96365. Besides, Jujuboside B induced a rapid Ca2+ influx instantaneously after depleting intracellular Ca2+ store, which was significantly inhibited by SKF96365. In conclusion, this study preliminarily confirmed that Jujuboside B reduced vascular tension endothelium-dependently. The underlying mechanisms involved that Jujuboside B increased extracellular Ca2+ influx through endothelial transient receptor potential cation (TRPC) channels, phosphorylated eNOS and promoted NO generation in vascular endothelial cells. In addition, Jujuboside B-induced vasodilation involved

  6. Retinal Endothelial Cell Apoptosis Stimulates Recruitment of Endothelial Progenitor Cells

    Science.gov (United States)

    Bhatwadekar, Ashay D.; Glenn, Josephine V.; Curtis, Tim M.; Grant, Maria B.; Stitt, Alan W.; Gardiner, Tom A.

    2013-01-01

    Purpose Bone marrow–derived endothelial progenitor cells (EPCs) contribute to vascular repair although it is uncertain how local endothelial cell apoptosis influences their reparative function. This study was conducted to determine how the presence of apoptotic bodies at sites of endothelial damage may influence participation of EPCs in retinal microvascular repair. Methods Microlesions of apoptotic cell death were created in monolayers of retinal microvascular endothelial cells (RMECs) by using the photodynamic drug verteporfin. The adhesion of early-EPCs to these lesions was studied before detachment of the apoptotic cells or after their removal from the wound site. Apoptotic bodies were fed to normal RMECs and mRNA levels for adhesion molecules were analyzed. Results Endothelial lesions where apoptotic bodies were left attached at the wound site showed a fivefold enhancement in EPC recruitment (P < 0.05) compared with lesions where the apoptotic cells had been removed. In intact RMEC monolayers exposed to apoptotic bodies, expression of ICAM, VCAM, and E-selectin was upregulated by 5- to 15-fold (P < 0.05– 0.001). EPCs showed a characteristic chemotactic response (P < 0.05) to conditioned medium obtained from apoptotic bodies, whereas analysis of the medium showed significantly increased levels of VEGF, IL-8, IL-6, and TNF-α when compared to control medium; SDF-1 remained unchanged. Conclusions The data indicate that apoptotic bodies derived from retinal capillary endothelium mediate release of proangiogenic cytokines and chemokines and induce adhesion molecule expression in a manner that facilitates EPC recruitment. PMID:19474402

  7. Intracellular pathways of insulin transport across vascular endothelial cells

    International Nuclear Information System (INIS)

    Processing and transport of hormones across vascular endothelial cells may modulate hormone action at subendothelial tissue sites. Insulin was transported across cultured rat capillary and bovine aortic endothelial cells, after a delay of 5-10 min, at a constant rate for 60 min at 37 degrees C. 125I-labeled insulin transport was inhibited by 88 +/- 11% (SE, n = 4) and 75 +/- 18% (SE, n = 4) in the presence of anti-insulin receptor antibody and unlabeled insulin (at 10(-7) M), respectively. Reverse phase high-performance liquid chromatography showed 88% of the 125I-insulin transported over 60 min was indistinguishable from the 125I-insulin added to the cells at 4 degrees C. In aortic endothelial cells preincubated with 2.3 x 10(-9) M of insulin for 24 h, insulin receptor binding was downregulated by 67%, and 125I-insulin transport was decreased by 52 +/- 11%. The proton ionophore monensin (0.05 mM) increased the internalized insulin in bovine aortic endothelial cells by 78%, with a corresponding decrease in 125I-insulin released by 76 +/- 2% (SE, n = 4). 125I-insulin transport across the aortic endothelial cell monolayer was similarly decreased (54 +/- 12%, SE, n = 4) by monensin. In contrast, the lysosomal protease inhibitor leupeptin had no effect. Degradation and transport were similarly dissociated by low temperature. At 15 degrees C, no significant insulin degradation was detected, whereas 125I-insulin release from the cells continued at 30 +/- 3% of the rate at 37 degrees C

  8. XIAP reverses various functional activities of FRNK in endothelial cells

    International Nuclear Information System (INIS)

    Highlights: ► FRNK domain is recruited into focal adhesion (FA), controlling endothelial cell adhesion. ► XIAP binds the FRNK domain of FAK. ► XIAP inhibits recruitment of FRNK into Fas and FRNK-promoted cell adhesion. ► XIAP plays a key role in vascular functions of FRNK or FRNK domain-mediated vascular functions of FAK. -- Abstract: In endothelial cells, focal adhesion kinase (FAK) regulates cell proliferation, migration, adhesion, and shear-stimulated activation of MAPK. We recently found that FAK is recruited into focal adhesion (FA) sites through interactions with XIAP (X-chromosome linked inhibitor of apoptosis protein) and activated by Src kinase in response to shear stress. In this study, we examined which domain(s) of FAK is(are) important for various vascular functions such as FA recruiting, XIAP-binding and shear stress-stimulated ERK activation. Through a series of experiments, we determined that the FRNK domain is recruited into FA sites and promotes endothelial cell adhesion. Interestingly, XIAP knockdown was shown to reduce FA recruitment of FRNK and the cell adhesive effect of FRNK. In addition, we found that XIAP interacts with FRNK, suggesting cross-talk between XIAP and FRNK. We also demonstrated that FRNK inhibits endothelial cell migration and shear-stimulated ERK activation. These inhibitory effects of FRNK were reversed by XIAP knockdown. Taken together, we can conclude that XIAP plays a key role in vascular functions of FRNK or FRNK domain-mediated vascular functions of FAK.

  9. Acetylbritannilactone Modulates Vascular Endothelial Growth Factor Signaling and Regulates Angiogenesis in Endothelial Cells.

    Science.gov (United States)

    Zhao, Jingshan; Niu, Honglin; Li, Aiying; Nie, Lei

    2016-01-01

    The present study was conducted to determine the effects of 1-O-acetylbritannilactone (ABL), a compound extracted from Inula britannica L., on vascular endothelial growth factor (VEGF) signaling and angiogenesis in endothelial cells (ECs). We showed that ABL promotes VEGF-induced cell proliferation, growth, migration, and tube formation in cultured human ECs. Furthermore, the modulatory effect of ABL on VEGF-induced Akt, MAPK p42/44, and p38 phosphorylation, as well as on upstream VEGFR-2 phosphorylation, were associated with VEGF-dependent Matrigel angiogenesis in vivo. In addition, animals treated with ABL (26 mg/kg/day) recovered blood flow significantly earlier than control animals, suggesting that ABL affects ischemia-mediated angiogenesis and arteriogenesis in vivo. Finally, we demonstrated that ABL strongly reduced the levels of VEGFR-2 on the cell surface, enhanced VEGFR-2 endocytosis, which consistent with inhibited VE-cadherin, a negative regulator of VEGF signaling associated with VEGFR-2 complex formation, but did not alter VE-cadherin or VEGFR-2 expression in ECs. Our results suggest that ABL may serve as a novel therapeutic intervention for various cardiovascular diseases, including chronic ischemia, by regulating VEGF signaling and modulating angiogenesis. PMID:26863518

  10. A novel adipocytokine, chemerin exerts anti-inflammatory roles in human vascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamawaki, Hideyuki, E-mail: yamawaki@vmas.kitasato-u.ac.jp [Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Aomori 034-8628 (Japan); Kameshima, Satoshi; Usui, Tatsuya; Okada, Muneyoshi; Hara, Yukio [Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Aomori 034-8628 (Japan)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer Chemerin is a novel adipocytokine with almost unknown function in vasculature. Black-Right-Pointing-Pointer Chemerin activates Akt/eNOS/NO pathways in endothelial cells. Black-Right-Pointing-Pointer Chemerin inhibits TNF-{alpha}-induced monocyte adhesion to endothelial cells. Black-Right-Pointing-Pointer Chemerin inhibits TNF-induced VCAM-1 via suppressing NF-{kappa}B and p38 signal. Black-Right-Pointing-Pointer Chemerin is anti-inflammatory through producing NO in vascular endothelium. -- Abstract: Chemerin is a recently identified adipocytokine which plays a role on inflammation and adipocytes metabolism. However, its function in vasculature is largely unknown. We examined the effects of chemerin on vascular endothelial inflammatory states. Treatment of human umbilical vein endothelial cells with chemerin (300 ng/ml, 20 min) induced phosphorylation of Akt (Ser473) and endothelial nitric oxide (NO) synthase (eNOS) (Ser1177). Consistently, chemerin increased intracellular cyclic GMP content. Pretreatment with chemerin (1-300 ng/ml, 24 h) significantly inhibited phosphorylation of nuclear factor (NF)-{kappa}B p65 (Ser536) and p38 as well as vascular cell adhesion molecule (VCAM)-1 expression induced by tumor necrosis factor (TNF)-{alpha} (5 ng/ml, 20 min-6 h). Inhibitor of NF-{kappa}B or p38 significantly inhibited the TNF-{alpha}-induced VCAM-1 expression. Chemerin also inhibited TNF-{alpha}-induced VCAM-1 expression in rat isolated aorta. Moreover, chemerin significantly inhibited monocytes adhesion to TNF-{alpha}-stimulated endothelial cells. The inhibitory effect of chemerin on TNF-{alpha}-induced VCAM-1 was reversed by a NOS inhibitor. Conversely, an NO donor, sodium nitroprusside significantly inhibited TNF-{alpha}-induced VCAM-1. The present results for the first time demonstrate that chemerin plays anti-inflammatory roles by preventing TNF-{alpha}-induced VCAM-1 expression and monocytes adhesion in vascular

  11. A novel adipocytokine, chemerin exerts anti-inflammatory roles in human vascular endothelial cells

    International Nuclear Information System (INIS)

    Highlights: ► Chemerin is a novel adipocytokine with almost unknown function in vasculature. ► Chemerin activates Akt/eNOS/NO pathways in endothelial cells. ► Chemerin inhibits TNF-α-induced monocyte adhesion to endothelial cells. ► Chemerin inhibits TNF-induced VCAM-1 via suppressing NF-κB and p38 signal. ► Chemerin is anti-inflammatory through producing NO in vascular endothelium. -- Abstract: Chemerin is a recently identified adipocytokine which plays a role on inflammation and adipocytes metabolism. However, its function in vasculature is largely unknown. We examined the effects of chemerin on vascular endothelial inflammatory states. Treatment of human umbilical vein endothelial cells with chemerin (300 ng/ml, 20 min) induced phosphorylation of Akt (Ser473) and endothelial nitric oxide (NO) synthase (eNOS) (Ser1177). Consistently, chemerin increased intracellular cyclic GMP content. Pretreatment with chemerin (1–300 ng/ml, 24 h) significantly inhibited phosphorylation of nuclear factor (NF)-κB p65 (Ser536) and p38 as well as vascular cell adhesion molecule (VCAM)-1 expression induced by tumor necrosis factor (TNF)-α (5 ng/ml, 20 min–6 h). Inhibitor of NF-κB or p38 significantly inhibited the TNF-α-induced VCAM-1 expression. Chemerin also inhibited TNF-α-induced VCAM-1 expression in rat isolated aorta. Moreover, chemerin significantly inhibited monocytes adhesion to TNF-α-stimulated endothelial cells. The inhibitory effect of chemerin on TNF-α-induced VCAM-1 was reversed by a NOS inhibitor. Conversely, an NO donor, sodium nitroprusside significantly inhibited TNF-α-induced VCAM-1. The present results for the first time demonstrate that chemerin plays anti-inflammatory roles by preventing TNF-α-induced VCAM-1 expression and monocytes adhesion in vascular endothelial cells. The effect is mediated via inhibiting activation of NF-κB and p38 through stimulation of Akt/eNOS signaling and NO production.

  12. Vascular endothelial growth factor A and vascular endothelial growth factor receptor 2 expression in non-small cell lung cancer patients: relation to prognosis

    DEFF Research Database (Denmark)

    Bonnesen, Barbara; Pappot, Helle; Holmstav, Julie;

    2009-01-01

    elements in neoplastic cells and their microenvironment have recently been and are continuously developed including drugs inhibiting the angiogenic system. Angiogenic factor vascular endothelial growth factor (VEGF) and its receptor vascular endothelial growth factor receptor 2 (VEGFR2) seem to play key...... stained on whole tumour slides. Kaplan-Meier survival curves were generated to evaluate the significance of immunohistochemical VEGF-A and VEGFR2 expression for the prognosis. RESULTS: VEGF-A and VEGFR2 expression was observed in the majority of NSCLC patients. VEGF-A expression showed a correlation to...

  13. CD40-TRAF Signaling Upregulates CX3CL1 and TNF-α in Human Aortic Endothelial Cells but Not in Retinal Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Jennifer A Greene

    Full Text Available CD40, CX3CL1 and TNF-α promote atheroma and neointima formation. CD40 and TNF-α are also central to the development of diabetic retinopathy while CX3CL1 may play a role in the pathogenesis of this retinopathy. The purpose of this study was to examine whether CD40 ligation increases CX3CL1 and TNF-α protein expression in human endothelial cells from the aorta and retina. CD154 (CD40 ligand upregulated membrane-bound and soluble CX3CL1 in human aortic endothelial cells. CD154 triggered TNF-α production by human aortic endothelial cells. TNF Receptor Associated Factors (TRAF are key mediators of CD40 signaling. Compared to human aortic endothelial cells that express wt CD40, cells that express CD40 with a mutation that prevents TRAF2,3 recruitment, or CD40 with a mutation that prevents TRAF6 recruitment exhibited a profound inhibition of CD154-driven upregulation of membrane bound and soluble CX3CL1 as well as of TNF-α secretion. While both CD154 and TNF-α upregulated CX3CL1 in human aortic endothelial cells, these stimuli could act independently of each other. In contrast to human aortic endothelial cells, human retinal endothelial cells did not increase membrane bound or soluble CX3CL1 expression or secrete TNF-α in response to CD154 even though CD40 ligation upregulated ICAM-1 and CCL2 in these cells. Moreover, TNF-α did not upregulate CX3CL1 in retinal endothelial cells. In conclusion, CD40 ligation increases CX3CL1 protein levels and induces TNF-α production in endothelial cells. However, endothelial cells are heterogeneous in regards to these responses. Human aortic but not retinal endothelial cells upregulated CX3CL1 and TNF-α in response to CD40 ligation, as well as upregulated CX3CL1 in response to TNF-α. These dissimilarities may contribute to differences in regulation of inflammation in large vessels versus the retina.

  14. Cheiradone: a vascular endothelial cell growth factor receptor antagonist

    Directory of Open Access Journals (Sweden)

    Ahmed Nessar

    2008-01-01

    Full Text Available Abstract Background Angiogenesis, the growth of new blood vessels from the pre-existing vasculature is associated with physiological (for example wound healing and pathological conditions (tumour development. Vascular endothelial growth factor (VEGF, fibroblast growth factor-2 (FGF-2 and epidermal growth factor (EGF are the major angiogenic regulators. We have identified a natural product (cheiradone isolated from a Euphorbia species which inhibited in vivo and in vitro VEGF- stimulated angiogenesis but had no effect on FGF-2 or EGF activity. Two primary cultures, bovine aortic and human dermal endothelial cells were used in in vitro (proliferation, wound healing, invasion in Matrigel and tube formation and in vivo (the chick chorioallantoic membrane models of angiogenesis in the presence of growth factors and cheiradone. In all cases, the concentration of cheiradone which caused 50% inhibition (IC50 was determined. The effect of cheiradone on the binding of growth factors to their receptors was also investigated. Results Cheiradone inhibited all stages of VEGF-induced angiogenesis with IC50 values in the range 5.20–7.50 μM but did not inhibit FGF-2 or EGF-induced angiogenesis. It also inhibited VEGF binding to VEGF receptor-1 and 2 with IC50 values of 2.9 and 0.61 μM respectively. Conclusion Cheiradone inhibited VEGF-induced angiogenesis by binding to VEGF receptors -1 and -2 and may be a useful investigative tool to study the specific contribution of VEGF to angiogenesis and may have therapeutic potential.

  15. Combined Contribution of Endothelial Relaxing Autacoides in the Rat Femoral Artery Response to CPCA: An Adenosine A2 Receptor Agonist

    OpenAIRE

    Miroslav Radenković; Marko Stojanović; Radmila Janković; Mirko Topalović; Milica Stojiljković

    2012-01-01

    We examined the contribution of endothelial relaxing factors and potassium channels in actions of CPCA, potent adenosine A2 receptor agonist, on isolated intact male rat femoral artery (FA). CPCA produced concentration-dependent relaxation of FA, which was notably, but not completely, reduced after endothelial denudation. DPCPX, A1 receptor antagonist, had no significant effect, while SCH 58261 (A2A receptor antagonist) notably reduced CPCA-evoked effect. Pharmacological inhibition of nitric ...

  16. Effect of Antimicrobial Compounds on Balamuthia mandrillaris Encystment and Human Brain Microvascular Endothelial Cell Cytopathogenicity▿

    OpenAIRE

    Siddiqui, Ruqaiyyah; Matin, Abdul; Warhurst, David; Stins, Monique; Khan, Naveed Ahmed

    2007-01-01

    Cycloheximide, ketoconazole, or preexposure of organisms to cytochalasin D prevented Balamuthia mandrillaris-associated cytopathogenicity in human brain microvascular endothelial cells, which constitute the blood-brain barrier. In an assay for inhibition of cyst production, these three agents prevented the production of cysts, suggesting that the biosynthesis of proteins and ergosterol and the polymerization of actin are important in cytopathogenicity and encystment.

  17. Vascular endothelial growth factor signaling is necessary for expansion of medullary microvessels during postnatal kidney development

    DEFF Research Database (Denmark)

    Tinning, Anne R; Jensen, Boye L; Johnsen, Iben;

    2016-01-01

    Postnatal inhibition or deletion of angiotensin II (ANG II) AT1 receptors impairs renal medullary mircrovascular development through a mechanism that may include vascular endothelial growth factor (VEGF). The present study was designed to test if VEGF/VEGF receptor signaling is necessary for the ...

  18. Effects of lead and mercury on histamine uptake by glial and endothelial cells

    International Nuclear Information System (INIS)

    The effects of lead and mercury on [3H]-histamine uptake by cultured astroglial and endothelial cells of rat brain were studied. Experimental data showed that both metal ions inhibited the uptake in both cell types of concentrations as low as 1-10 μM. The effects were consistent with non/competitive inhibitions. With either lead or mercury exposure, the inhibition of the uptake was greater in astroglial than in cerebral endothelial cells. Contrary to the above finding, 100 μM of mercuric chloride produced stimulation of histamine uptake and this stimulation was much more pronounced in cultured cerebral endothelial cells than in astroglial cells. Inhibition of [3H]-histamine uptake by lead acetate and mercuric chloride was considered to be association with a loss of the transmembrane Na+ and/or K+ gradient while stimulation of the uptake by high concentration of mercury might be related to a direct effect on histamine transporter. It is note-worthy, that cultured astroglial cells, derived from neonatal rat brain, are much more sensitive to the toxic effects of these heavy metal ions than cultured endothelial cells derived from the brain capillaries often same species of animals. (au) 18 refs

  19. Nuclear translocation of phosphorylated STAT3 regulates VEGF-A-induced lymphatic endothelial cell migration and tube formation

    Energy Technology Data Exchange (ETDEWEB)

    Okazaki, Hideki; Tokumaru, Sho; Hanakawa, Yasushi; Shiraishi, Ken; Shirakata, Yuji; Dai, Xiuju; Yang, Lijun; Tohyama, Mikiko; Hashimoto, Koji [Department of Dermatology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295 (Japan); Sayama, Koji, E-mail: sayama@m.ehime-u.ac.jp [Department of Dermatology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295 (Japan)

    2011-09-02

    Highlights: {yields} VEGF-A enhanced lymphatic endothelial cell migration and increased tube formation. {yields} VEGF-A treated lymphatic endothelial cell showed activation of STAT3. {yields} Dominant-negative STAT3 inhibited VEGF-A-induced lymphatic endothelial cell migration and tube formation. -- Abstract: Vascular endothelial growth factor (VEGF) is an endothelial cell-specific growth factor that regulates endothelial functions, and signal transducers and activators of transcription (STATs) are known to be important during VEGF receptor signaling. The aim of this study was to determine whether STAT3 regulates VEGF-induced lymphatic endothelial cell (LEC) migration and tube formation. VEGF-A (33 ng/ml) enhanced LEC migration by 2-fold and increased tube length by 25% compared with the control, as analyzed using a Boyden chamber and Matrigel assay, respectively. Western blot analysis and immunostaining revealed that VEGF-A induced the nuclear translocation of phosphorylated STAT3 in LECs, and this translocation was blocked by the transfection of LECs with an adenovirus vector expressing a dominant-negative mutant of STAT3 (Ax-STAT3F). Transfection with Ax-STAT3F also almost completely inhibited VEGF-A-induced LEC migration and tube formation. These results indicate that STAT3 is essential for VEGF-A-induced LEC migration and tube formation and that STAT3 regulates LEC functions.

  20. Influenza Virus Infection Induces Platelet-Endothelial Adhesion Which Contributes to Lung Injury.

    Science.gov (United States)

    Sugiyama, Michael G; Gamage, Asela; Zyla, Roman; Armstrong, Susan M; Advani, Suzanne; Advani, Andrew; Wang, Changsen; Lee, Warren L

    2016-02-01

    Lung injury after influenza infection is characterized by increased permeability of the lung microvasculature, culminating in acute respiratory failure. Platelets interact with activated endothelial cells and have been implicated in the pathogenesis of some forms of acute lung injury. Autopsy studies have revealed pulmonary microthrombi after influenza infection, and epidemiological studies suggest that influenza vaccination is protective against pulmonary thromboembolism; however, the effect of influenza infection on platelet-endothelial interactions is unclear. We demonstrate that endothelial infection with both laboratory and clinical strains of influenza virus increased the adhesion of human platelets to primary human lung microvascular endothelial cells. Platelets adhered to infected cells as well as to neighboring cells, suggesting a paracrine effect. Influenza infection caused the upregulation of von Willebrand factor and ICAM-1, but blocking these receptors did not prevent platelet-endothelial adhesion. Instead, platelet adhesion was inhibited by both RGDS peptide and a blocking antibody to platelet integrin α5β1, implicating endothelial fibronectin. Concordantly, lung histology from infected mice revealed viral dose-dependent colocalization of viral nucleoprotein and the endothelial marker PECAM-1, while platelet adhesion and fibronectin deposition also were observed in the lungs of influenza-infected mice. Inhibition of platelets using acetylsalicylic acid significantly improved survival, a finding confirmed using a second antiplatelet agent. Thus, influenza infection induces platelet-lung endothelial adhesion via fibronectin, contributing to mortality from acute lung injury. The inhibition of platelets may constitute a practical adjunctive strategy to the treatment of severe infections with influenza.IMPORTANCE There is growing appreciation of the involvement of the lung endothelium in the pathogenesis of severe infections with influenza virus. We have

  1. Impaired Vitamin D Signaling in Endothelial Cell Leads to an Enhanced Leukocyte-Endothelium Interplay: Implications for Atherosclerosis Development.

    Directory of Open Access Journals (Sweden)

    Milica Bozic

    Full Text Available Endothelial cell activation leading to leukocyte recruitment and adhesion plays an essential role in the initiation and progression of atherosclerosis. Vitamin D has cardioprotective actions, while its deficiency is a risk factor for the progression of cardiovascular damage. Our aim was to assess the role of basal levels of vitamin D receptor (VDR on the early leukocyte recruitment and related endothelial cell-adhesion-molecule expression, as essential prerequisites for the onset of atherosclerosis. Knockdown of VDR in endothelial cells (shVDR led to endothelial cell activation, characterized by upregulation of VCAM-1, ICAM-1 and IL-6, decreased peripheral blood mononuclear cell (PBMC rolling velocity and increased PBMC rolling flux and adhesion to the endothelium. shVDR cells showed decreased IκBα levels and accumulation of p65 in the nucleus compared to shRNA controls. Inhibition of NF-κB activation with super-repressor IκBα blunted all signs of endothelial cell activation caused by downregulation of VDR in endothelial cells. In vivo, deletion of VDR led to significantly larger aortic arch and aortic root lesions in apoE-/- mice, with higher macrophage content. apoE-/-VDR-/-mice showed higher aortic expression of VCAM-1, ICAM-1 and IL-6 when compared to apoE-/-VDR+/+ mice. Our data demonstrate that lack of VDR signaling in endothelial cells leads to a state of endothelial activation with increased leukocyte-endothelial cell interactions that may contribute to the more severe plaque accumulation observed in apoE-/-VDR-/- mice. The results reveal an important role for basal levels of endothelial VDR in limiting endothelial cell inflammation and atherosclerosis.

  2. Endothelial dysfunction: a comprehensive appraisal

    Directory of Open Access Journals (Sweden)

    Vilariño Jorge O

    2006-02-01

    Full Text Available Abstract The endothelium is a thin monocelular layer that covers all the inner surface of the blood vessels, separating the circulating blood from the tissues. It is not an inactive organ, quite the opposite. It works as a receptor-efector organ and responds to each physical or chemical stimulus with the release of the correct substance with which it may maintain vasomotor balance and vascular-tissue homeostasis. It has the property of producing, independently, both agonistic and antagonistic substances that help to keep homeostasis and its function is not only autocrine, but also paracrine and endocrine. In this way it modulates the vascular smooth muscle cells producing relaxation or contraction, and therefore vasodilatation or vasoconstriction. The endothelium regulating homeostasis by controlling the production of prothrombotic and antithrombotic components, and fibrynolitics and antifibrynolitics. Also intervenes in cell proliferation and migration, in leukocyte adhesion and activation and in immunological and inflammatory processes. Cardiovascular risk factors cause oxidative stress that alters the endothelial cells capacity and leads to the so called endothelial "dysfunction" reducing its capacity to maintain homeostasis and leads to the development of pathological inflammatory processes and vascular disease. There are different techniques to evaluate the endothelium functional capacity, that depend on the amount of NO produced and the vasodilatation effect. The percentage of vasodilatation with respect to the basal value represents the endothelial functional capacity. Taking into account that shear stress is one of the most important stimulants for the synthesis and release of NO, the non-invasive technique most often used is the transient flow-modulate "endothelium-dependent" post-ischemic vasodilatation, performed on conductance arteries such as the brachial, radial or femoral arteries. This vasodilatation is compared with the

  3. Withaferin A protects against palmitic acid-induced endothelial insulin resistance and dysfunction through suppression of oxidative stress and inflammation.

    Science.gov (United States)

    Batumalaie, Kalaivani; Amin, Muhammad Arif; Murugan, Dharmani Devi; Sattar, Munavvar Zubaid Abdul; Abdullah, Nor Azizan

    2016-01-01

    Activation of inflammatory pathways via reactive oxygen species (ROS) by free fatty acids (FFA) in obesity gives rise to insulin resistance and endothelial dysfunction. Withaferin A (WA), possesses both antioxidant and anti-inflammatory properties and therefore would be a good strategy to suppress palmitic acid (PA)-induced oxidative stress and inflammation and hence, insulin resistance and dysfunction in the endothelium. Effect of WA on PA-induced insulin resistance in human umbilical vein endothelial cells (HUVECs) was determined by evaluating insulin signaling mechanisms whilst effect of this drug on PA-induced endothelial dysfunction was determined in acetylcholine-mediated relaxation in isolated rat aortic preparations. WA significantly inhibited ROS production and inflammation induced by PA. Furthermore, WA significantly decreased TNF-α and IL-6 production in endothelial cells by specifically suppressing IKKβ/NF-κβ phosphorylation. WA inhibited inflammation-stimulated IRS-1 serine phosphorylation and improved the impaired insulin PI3-K signaling, and restored the decreased nitric oxide (NO) production triggered by PA. WA also decreased endothelin-1 and plasminogen activator inhibitor type-1 levels, and restored the impaired endothelium-mediated vasodilation in isolated aortic preparations. These findings suggest that WA inhibited both ROS production and inflammation to restore impaired insulin resistance in cultured endothelial cells and improve endothelial dysfunction in rat aortic rings. PMID:27250532

  4. Fatty acid-binding protein 4 impairs the insulin-dependent nitric oxide pathway in vascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Aragonès Gemma

    2012-06-01

    Full Text Available Abstract Background Recent studies have shown that fatty acid-binding protein 4 (FABP4 plasma levels are associated with impaired endothelial function in type 2 diabetes (T2D. In this work, we analysed the effect of FABP4 on the insulin-mediated nitric oxide (NO production by endothelial cells in vitro. Methods In human umbilical vascular endothelial cells (HUVECs, we measured the effects of FABP4 on the insulin-mediated endothelial nitric oxide synthase (eNOS expression and activation and on NO production. We also explored the impact of exogenous FABP4 on the insulin-signalling pathway (insulin receptor substrate 1 (IRS1 and Akt. Results We found that eNOS expression and activation and NO production are significantly inhibited by exogenous FABP4 in HUVECs. FABP4 induced an alteration of the insulin-mediated eNOS pathway by inhibiting IRS1 and Akt activation. These results suggest that FABP4 induces endothelial dysfunction by inhibiting the activation of the insulin-signalling pathway resulting in decreased eNOS activation and NO production. Conclusion These findings provide a mechanistic linkage between FABP4 and impaired endothelial function in diabetes, which leads to an increased cardiovascular risk.

  5. Challenges in pediatric endothelial keratoplasty

    Directory of Open Access Journals (Sweden)

    Vikas Mittal

    2014-01-01

    Full Text Available We performed endothelial keratoplasty (EK in three eyes of two siblings (2.5 years, male and 3.5 years, female with congenital hereditary endothelial dystrophy (CHED and report the intraoperative and postoperative difficulties. Repeated iris prolapse, apprehension of crystalline lens touch due to positive vitreous pressure, and need for frequent air injections to attach the graft were intraoperative challenges in all three eyes. These were addressed by use of Sheet′s glide instead of Busin′s glide during graft insertion and suturing of main and side ports before air injection. One eye had graft dislocation on second postoperative day due to eye rubbing by the child. Graft was repositioned with air and a venting incision was created. Postoperative examination required repeated general anesthesia. Corneal edema resolved completely in all three eyes. Present case series highlights the possible intraoperative and postoperative challenges and their solutions in pediatric EK for CHED.

  6. Signal transduction in endothelial cells by the angiogenesis inhibitor histidine-rich glycoprotein targets focal adhesions

    International Nuclear Information System (INIS)

    Histidine-rich glycoprotein (HRGP) is an abundant heparin-binding plasma protein. We have shown that a fragment released from the central histidine/proline-rich (His/Pro-rich) domain of HRGP blocks endothelial cell migration in vitro and vascularization and growth of murine fibrosarcoma in vivo. The minimal active HRGP domain exerting the anti-angiogenic effect was recently narrowed down to a 35 amino acid peptide, HRGP330, derived from the His/Pro-rich domain of HRGP. By use of a signal transduction antibody array representing 400 different signal transduction molecules, we now show that HRGP and the synthetic peptide HRGP330 specifically induce tyrosine phosphorylation of focal adhesion kinase and its downstream substrate paxillin in endothelial cells. HRGP/HRGP330 treatment of endothelial cells induced disruption of actin stress fibers, a process reversed by treatment of cells with the FAK inhibitor geldanamycin. In addition, VEGF-mediated endothelial cell tubular morphogenesis in a three-dimensional collagen matrix was inhibited by HRGP and HRGP330. In contrast, VEGF-induced proliferation was not affected by HRGP or HRGP330, demonstrating the central role of cell migration during tube formation. In conclusion, our data show that HRGP targets focal adhesions in endothelial cells, thereby disrupting the cytoskeletal organization and the ability of endothelial cells to assemble into vessel structures

  7. Study of apoptosis induced by cytostatics and vegetal extracts on human endothelial cell line.

    Science.gov (United States)

    Bârzu, Simona Natalia; Bădulescu, Maria Mihaela; Lupu, Andreea Roxana; Cremer, Lidia; Szegli, G; Kerek, F; Călugăru, Ana

    2008-01-01

    Angiogenesis, the biological process by which new capillaries are formed from pre-existing vessels, is a tightly controlled and complex process involving several factors with both stimulating and inhibiting steps. In solid tumor growth, a specific clinical turning point is the transition to the vascular phase. Once it develops an intrinsic vascular network, a tumor grows indefinitely. Tumor angiogenesis depends mainly on the release by neoplasic cells of growth factors specific for endothelial cells (ECs), able to stimulate growth of the host blood vessels. The aim of this study was to analyze the apoptotic effect of some cytostatics, Vinblastine, Rapamycin and Doxorubicin, and vegetal extracts (called VOB) isolated and purified from Vitis sp., on human EA.hy926 endothelial cell line. In a proliferation assay using Crystal Violet, we demonstrated that Vinblastine and Rapamycin cytostatics have synergistic effect on endothelial cell line EA.hy926 growth inhibition. The inhibitory effects of Vinblastine and Doxorubicin were enhanced by VOB vegetal extracts. A combined treatment of cytostatics and VOB vegetal extracts resulted in a stronger antiproliferative effect of EA.hy926 endothelial cells. Results obtained regarding the apoptosis induced on EA.hy926 endothelial cells showed that each compound alone was able to induce a significant percent of apoptotic cells in a dose-dependent manner. PMID:19284159

  8. Interaction of plasminogen-related protein B with endothelial and smooth muscle cells in vitro.

    Science.gov (United States)

    Morioka, Hideo; Morii, Takeshi; Vogel, Tikva; Hornicek, Francis J; Weissbach, Lawrence

    2003-07-01

    Plasminogen-related protein B (PRP-B) closely resembles the N-terminal plasminogen activation peptide, which is released from plasminogen during conversion to plasmin. We have previously demonstrated that the steady-state level of mRNA encoding PRP-B is increased within tumor tissues, and that recombinant PRP-B antagonizes neoplastic growth when administered systemically to mice harboring tumors, but no insights into the cell targets of PRP-B have been presented. Employing serum-free medium optimized for culturing human endothelial or smooth muscle cells, we show that recombinant PRP-B inhibits basic fibroblast growth factor-dependent cell migration for both cell types, as well as tube formation of endothelial cells. Comparison with the angiogenesis inhibitors angiostatin and endostatin revealed similar results. Recombinant PRP-B is effective in promoting cell attachment of endothelial and smooth muscle cells, and antibody interference experiments reveal that the interaction of recombinant PRP-B with endothelial cells is mediated at least in part by alpha(v)-containing integrins. Inhibition of angiogenesis in vivo by PRP-B was demonstrated in the chicken chorioallantoic membrane assay. PRP-B and other antiangiogenic molecules may elicit metabolic perturbations in endothelial cells as well as perivascular mesenchymal cells such as smooth muscle cells and pericytes. PMID:12799192

  9. Endothelial keratoplasty (a literature review

    Directory of Open Access Journals (Sweden)

    B.E. Malyugin

    2013-01-01

    Full Text Available ABSTRACT There is presented a comprehensive overview of the history, trends and advances of endothelial keratoplasty — one of the modern trends in corneal transplantation, which includes different surgical methods for treatment of patients with corneal endothelium dysfunction by selective replacement it with posterior lamellar graft of donor cornea. This type of operations showed a significant advantage compared to a standard penetrating keratoplasty, which is a standard procedure for many years in treatment different corneal diseases.

  10. Endothelial targeting of cowpea mosaic virus (CPMV via surface vimentin.

    Directory of Open Access Journals (Sweden)

    Kristopher J Koudelka

    2009-05-01

    Full Text Available Cowpea mosaic virus (CPMV is a plant comovirus in the picornavirus superfamily, and is used for a wide variety of biomedical and material science applications. Although its replication is restricted to plants, CPMV binds to and enters mammalian cells, including endothelial cells and particularly tumor neovascular endothelium in vivo. This natural capacity has lead to the use of CPMV as a sensor for intravital imaging of vascular development. Binding of CPMV to endothelial cells occurs via interaction with a 54 kD cell-surface protein, but this protein has not previously been identified. Here we identify the CPMV binding protein as a cell-surface form of the intermediate filament vimentin. The CPMV-vimentin interaction was established using proteomic screens and confirmed by direct interaction of CPMV with purified vimentin, as well as inhibition in a vimentin-knockout cell line. Vimentin and CPMV were also co-localized in vascular endothelium of mouse and rat in vivo. Together these studies indicate that surface vimentin mediates binding and may lead to internalization of CPMV in vivo, establishing surface vimentin as an important vascular endothelial ligand for nanoparticle targeting to tumors. These results also establish vimentin as a ligand for picornaviruses in both the plant and animal kingdoms of life. Since bacterial pathogens and several other classes of viruses also bind to surface vimentin, these studies suggest a common role for surface vimentin in pathogen transmission.

  11. Mechanisms of lung endothelial barrier disruption induced by cigarette smoke: role of oxidative stress and ceramides.

    Science.gov (United States)

    Schweitzer, Kelly S; Hatoum, Hadi; Brown, Mary Beth; Gupta, Mehak; Justice, Matthew J; Beteck, Besem; Van Demark, Mary; Gu, Yuan; Presson, Robert G; Hubbard, Walter C; Petrache, Irina

    2011-12-01

    The epithelial and endothelial cells lining the alveolus form a barrier essential for the preservation of the lung respiratory function, which is, however, vulnerable to excessive oxidative, inflammatory, and apoptotic insults. Whereas profound breaches in this barrier function cause pulmonary edema, more subtle changes may contribute to inflammation. The mechanisms by which cigarette smoke (CS) exposure induce lung inflammation are not fully understood, but an early alteration in the epithelial barrier function has been documented. We sought to investigate the occurrence and mechanisms by which soluble components of mainstream CS disrupt the lung endothelial cell barrier function. Using cultured primary rat microvascular cell monolayers, we report that CS induces endothelial cell barrier disruption in a dose- and time-dependent manner of similar magnitude to that of the epithelial cell barrier. CS exposure triggered a mechanism of neutral sphingomyelinase-mediated ceramide upregulation and p38 MAPK and JNK activation that were oxidative stress dependent and that, along with Rho kinase activation, mediated the endothelial barrier dysfunction. The morphological changes in endothelial cell monolayers induced by CS included actin cytoskeletal rearrangement, junctional protein zonula occludens-1 loss, and intercellular gap formation, which were abolished by the glutathione modulator N-acetylcysteine and ameliorated by neutral sphingomyelinase inhibition. The direct application of ceramide recapitulated the effects of CS, by disrupting both endothelial and epithelial cells barrier, by a mechanism that was redox and apoptosis independent and required Rho kinase activation. Furthermore, ceramide induced dose-dependent alterations of alveolar microcirculatory barrier in vivo, measured by two-photon excitation microscopy in the intact rat. In conclusion, soluble components of CS have direct endothelial barrier-disruptive effects that could be ameliorated by glutathione

  12. Cataract surgery after Descemet stripping endothelial keratoplasty

    Directory of Open Access Journals (Sweden)

    Sunita Chaurasia

    2012-01-01

    Full Text Available Management of endothelial dysfunction in phakic patients is sometimes a dilemma for corneal surgeons. Phakic patients with visually significant cataract and endothelial dysfunction are preferably managed by performing combined cataract surgery with endothelial keratoplasty. However, combined surgery may be deferred in eyes with early incipient cataract, younger age and where anterior chamber is poorly visualized. As cataract formation may be accelerated after endothelial keratoplasty, these eyes may need cataract surgery subsequently. Surgical intervention in eyes with endothelial keratoplasty is of concern as this may affect the graft adversely and threaten graft survival. In this report, we describe the intraoperative surgical details and postoperative clinical course of a patient who underwent phacoemulsification with intraocular lens implantation after Descemet stripping automated endothelial keratoplasty (DSAEK.

  13. Fo Shou San, an ancient Chinese herbal decoction, protects endothelial function through increasing endothelial nitric oxide synthase activity.

    Directory of Open Access Journals (Sweden)

    Cathy W C Bi

    Full Text Available Fo Shou San (FSS is an ancient herbal decoction comprised of Chuanxiong Rhizoma (CR; Chuanxiong and Angelicae Sinensis Radix (ASR; Danggui in a ratio of 2:3. Previous studies indicate that FSS promotes blood circulation and dissipates blood stasis, thus which is being used widely to treat vascular diseases. Here, we aim to determine the cellular mechanism for the vascular benefit of FSS. The treatment of FSS reversed homocysteine-induced impairment of acetylcholine (ACh-evoked endothelium-dependent relaxation in aortic rings, isolated from rats. Like radical oxygen species (ROS scavenger tempol, FSS attenuated homocysteine-stimulated ROS generation in cultured human umbilical vein endothelial cells (HUVECs, and it also stimulated the production of nitric oxide (NO as measured by fluorescence dye and biochemical assay. In addition, the phosphorylation levels of both Akt kinase and endothelial NO synthases (eNOS were markedly increased by FSS treatment, which was abolished by an Akt inhibitor triciribine. Likewise, triciribine reversed FSS-induced NO production in HUVECs. Finally, FSS elevated intracellular Ca(2+ levels in HUVECs, and the Ca(2+ chelator BAPTA-AM inhibited the FSS-stimulated eNOS phosphorylation. The present results show that this ancient herbal decoction benefits endothelial function through increased activity of Akt kinase and eNOS; this effect is causally via a rise of intracellular Ca(2+ and a reduction of ROS.

  14. Recombinant Treponema pallidum protein Tp0965 activates endothelial cells and increases the permeability of endothelial cell monolayer.

    Science.gov (United States)

    Zhang, Rui-Li; Zhang, Jing-Ping; Wang, Qian-Qiu

    2014-01-01

    The recombinant Treponema pallidum protein Tp0965 (rTp0965), one of the many proteins derived from the genome of T. pallidum subsp. pallidum, shows strong immunogenicity and immunoreactivity. In this study, we investigated the effects of rTp0965 on the endothelial barrier. Treatment of human umbilical vein endothelial cells (HUVECs) with rTp0965 resulted in increased levels of ICAM-1, E-selectin, and MCP-1 mRNA and protein expression. These increases contributed to the adhesion and chemataxis of monocytes (THP-1 cells) to HUVECs preincubated with rTp0965. In addition, rTp0965 induced reorganization of F-actin and decreased expression of claudin-1 in HUVECs. Interestingly, inhibition of the RhoA/ROCK signal pathway protected against rTp0965-induced higher endothelial permeability as well as transendothelial migration of monocytes. These data indicate that Tp0965 protein may play an important role in the immunopathogenesis of syphilis. PMID:25514584

  15. Recombinant Treponema pallidum protein Tp0965 activates endothelial cells and increases the permeability of endothelial cell monolayer.

    Directory of Open Access Journals (Sweden)

    Rui-Li Zhang

    Full Text Available The recombinant Treponema pallidum protein Tp0965 (rTp0965, one of the many proteins derived from the genome of T. pallidum subsp. pallidum, shows strong immunogenicity and immunoreactivity. In this study, we investigated the effects of rTp0965 on the endothelial barrier. Treatment of human umbilical vein endothelial cells (HUVECs with rTp0965 resulted in increased levels of ICAM-1, E-selectin, and MCP-1 mRNA and protein expression. These increases contributed to the adhesion and chemataxis of monocytes (THP-1 cells to HUVECs preincubated with rTp0965. In addition, rTp0965 induced reorganization of F-actin and decreased expression of claudin-1 in HUVECs. Interestingly, inhibition of the RhoA/ROCK signal pathway protected against rTp0965-induced higher endothelial permeability as well as transendothelial migration of monocytes. These data indicate that Tp0965 protein may play an important role in the immunopathogenesis of syphilis.

  16. Iptakalim rescues human pulmonary artery endothelial cells from hypoxia-induced nitric oxide system dysfunction

    OpenAIRE

    Zong, Feng; Zuo, Xiang-Rong; Wang, Qiang; ZHANG, SHI-JIANG; Xie, Wei-Ping; Wang, Hong

    2011-01-01

    The aim of this study was to assess whether hypoxia inhibits endothelial nitric oxide synthase (eNOS) activity and nitric oxide (NO) production, and whether iptakalim may rescue human pulmonary artery endothelial cells (HPAECs) from hypoxia-induced NO system dysfunction. HPAECs were cultured under hypoxic conditions in the absence or presence of 0.1, 10 and 1,000 μM iptakalim or the combination of 10 μM iptakalim and 1, 10 and 100 μM glibenclamide for 24 h, and the eNOS activity and NO levels...

  17. Regulation of retinal endothelial cell apoptosis through activation of the IGFBP-3 receptor

    OpenAIRE

    Zhang, Qiuhua; Soderland, Carl; Steinle, Jena J.

    2013-01-01

    The goal of this study was to investigate whether insulin-like growth factor binding protein-3 receptor (IGFBP-3 receptor) is required for IGFBP-3 to inhibit retinal endothelial cell (REC) apoptosis. REC were grown in normal glucose (5 mM) or high glucose medium (25 mM) for 3 days. Once cells reached confluence, they were transfected with an endothelial- specific IGFBP-3 plasmid DNA (non-IGF binding; IGFBP-3 NB) at 1 μg/ml for 24 h. Cell proteins were extracted and analyzed for IGFBP-3 recept...

  18. Amino acids and metal ions protect endothelial cells from lethal injury

    Energy Technology Data Exchange (ETDEWEB)

    Varani, J.; Ginsburg, I.; Johnson, K.J.; Gibbs, D.F.; Weinberg, J.M.; Ward, P.A. (Univ. of Michigan, Ann Arbor (United States))

    1991-03-11

    Killing of rat pulmonary artery endothelial cells by activated neutrophils is dependent on generation of hydrogen peroxide and its conversion to a highly toxic radical (presumably the hydroxyl radical) in a ferrous iron-dependent reaction. Glycine (as well as several other amino acids) is capable of inhibiting endothelial cell killing in vitro by either activated neutrophils or reagent hydrogen peroxide. Inhibition of killing is enhanced in the presence of micromolar concentrations of manganous ion (Mn2+). The combined effects of glycine and Mn2+ require concomitant presence of bicarbonate ion and is inhibited by high phosphate levels. Glycine can also protect endothelial cells from lethal injury inducted by ionomycin. There appears to be no enhancement with Mn2+, however against this form of lethal injury. The protective effects of glycine, Mn2+ and bicarbonate ion against injury by hydrogen peroxide is associated with a direct disproportionation of the hydrogen peroxide to water with little generation of molecular oxygen. Either glycine or Mn2+ alone does not have this effect. In addition to protecting endothelial cells from hydrogen peroxide-mediated injury, glycine or MN2+ is almost completely protective. Additionally, treatment of rats with concentrations of EDTA that do not by themselves induce injury greatly accentuates lung injury induced by glucose oxidase. These findings suggest that circulating amino acids in combination with Mn2+ and bicarbonate ions may contribute to the normal anti-oxidant barrier. These findings may also form the basis for a possible new therapeutic approach to oxygen radical-mediated injury.

  19. Microalbuminuria, endothelial dysfunction and cardiovascular risk

    DEFF Research Database (Denmark)

    Feldt-Rasmussen, B

    provided evidence of endothelial dysfunction in patients with microalbuminuria, which may be the common link accounting for the associations mentioned above. In this context, a number of markers of endothelial cell dysfunction have been found to be increased in patients with microalbuminuria. In addition......, a number of functional in vivo tests of endothelial dysfunction have been performed in Type 1 and Type 2 diabetic patients as well as in normal controls. Overall, these studies indicate the existence of a functional vascular dysfunction in Type 1 diabetic patients and normal controls with...... microalbuminuria, which may be related to dysfunction of endothelial cells....

  20. Endothelial function and coronary artery disease.

    Science.gov (United States)

    Kinlay, S; Libby, P; Ganz, P

    2001-08-01

    The endothelium produces a number of vasodilator and vasoconstrictor substances that not only regulate vasomotor tone, but also the recruitment and activity of inflammatory cells and the propensity towards thrombosis. Endothelial vasomotor function is a convenient way to assess these other functions, and is related to the long-term risk of cardiovascular disease. Lipids (particularly low density lipoprotein cholesterol) and oxidant stress play a major role in impairing these functions, by reducing the bioavailability of nitric oxide and activating pro-inflammatory signalling pathways such as nuclear factor kappa B. Biomechanical forces on the endothelium, including low shear stress from disturbed blood flow, also activate the endothelium increasing vasomotor dysfunction and promoting inflammation by upregulating pro-atherogenic genes. In contrast, normal laminar shear stress promotes the expression of genes that may protect against atherosclerosis. The sub-cellular structure of endothelial cells includes caveolae that play an integral part in regulating the activity of endothelial nitric oxide synthase. Low density lipoprotein cholesterol and oxidant stress impair caveolae structure and function and adversely affect endothelial function. Lipid-independent pathways of endothelial cell activation are increasingly recognized, and may provide new therapeutic targets. Endothelial vasoconstrictors, such as endothelin, antagonize endothelium-derived vasodilators and contribute to endothelial dysfunction. Some but not all studies have linked certain genetic polymorphisms of the nitric oxide synthase enzyme to vascular disease and impaired endothelial function. Such genetic heterogeneity may nonetheless offer new insights into the variability of endothelial function. PMID:11507322

  1. Transcellular transport of angiotensin II through a cultured arterial endothelial monolayer

    International Nuclear Information System (INIS)

    We have studied the mechanisms of angiotensin II (A-II) transport through a cultured arterial endothelial cell monolayer. The transport of 125I-labeled A-II was inhibited by excess unlabeled A-II (50 microM) and [Sar1, Ile8]-A-II (50 microM), but was not inhibited by bradykinin (50 microM). The transport process was shown to be temperature dependent and was inhibited by 10 mM NaN3 plus 50 mM 2-deoxyglucose. Monensin (50 microM), an inhibitor of endocytotic trafficking, reduced the rate of transport of 125I-A-II. It is also shown that the specific pathway for A-II transport was unidirectional from the apical to the basolateral surface of the endothelial cell monolayer

  2. Inhibitory Effect of the Punica granatum Fruit Extract on Angiotensin-II Type I Receptor and Thromboxane B2 in Endothelial Cells Induced by Plasma from Preeclamptic Patients.

    Science.gov (United States)

    Kusumawati, Widya; Keman, Kusnarman; Soeharto, Setyawati

    2016-01-01

    This study aims to evaluate whether the Punica granatum fruit extract modulates the Angiotensin-II Type I receptor (AT1-R) and thromboxane B2 level in endothelial cells induced by plasma from preeclamptic patients. Endothelial cells were obtained from human umbilical vascular endothelial cells. At confluence, endothelial cells were divided into five groups, which included endothelial cells exposed to 2% plasma from normal pregnancy (NP), endothelial cells exposed to 2% plasma from preeclamptic patients (PP), and endothelial cells exposed to PP in the presence of ethanolic extract of Punica granatum (PP + PG) at the following three doses: 14; 28; and 56 ppm. The expression of AT1-R was observed by immunohistochemistry technique, and thromboxane B2 level was done by immunoassay technique. Plasma from PP significantly increased AT1-R expression and thromboxane B2 levels compared to cells treated by normal pregnancy plasma. The increasing of AT1-R expression significantly (P Punica granatum extract. Moreover, the increasing of thromboxane B2 levels significantly (P Punica granatum extract. We further concluded that Punica granatum fruit protects and inhibits the sensitivity of endothelial cells to plasma from preeclamptic patients due to inhibition of AT1-R expression (56 ppm) and reduced thromboxane B2 levels (14 ppm). PMID:26989513

  3. Ankyrin-G Inhibits Endocytosis of Cadherin Dimers.

    Science.gov (United States)

    Cadwell, Chantel M; Jenkins, Paul M; Bennett, Vann; Kowalczyk, Andrew P

    2016-01-01

    Dynamic regulation of endothelial cell adhesion is central to vascular development and maintenance. Furthermore, altered endothelial adhesion is implicated in numerous diseases. Therefore, normal vascular patterning and maintenance require tight regulation of endothelial cell adhesion dynamics. However, the mechanisms that control junctional plasticity are not fully understood. Vascular endothelial cadherin (VE-cadherin) is an adhesive protein found in adherens junctions of endothelial cells. VE-cadherin mediates adhesion through trans interactions formed by its extracellular domain. Trans binding is followed by cis interactions that laterally cluster the cadherin in junctions. VE-cadherin is linked to the actin cytoskeleton through cytoplasmic interactions with β- and α-catenin, which serve to increase adhesive strength. Furthermore, p120-catenin binds to the cytoplasmic tail of cadherin and stabilizes it at the plasma membrane. Here we report that induced cis dimerization of VE-cadherin inhibits endocytosis independent of both p120 binding and trans interactions. However, we find that ankyrin-G, a protein that links membrane proteins to the spectrin-actin cytoskeleton, associates with VE-cadherin and inhibits its endocytosis. Ankyrin-G inhibits VE-cadherin endocytosis independent of p120 binding. We propose a model in which ankyrin-G associates with and inhibits the endocytosis of VE-cadherin cis dimers. Our findings support a novel mechanism for regulation of VE-cadherin endocytosis through ankyrin association with cadherin engaged in lateral interactions. PMID:26574545

  4. Nitric oxide up-regulates endothelial expression of angiotensin II type 2 receptors.

    Science.gov (United States)

    Dao, Vu Thao-Vi; Medini, Sawsan; Bisha, Marion; Balz, Vera; Suvorava, Tatsiana; Bas, Murat; Kojda, Georg

    2016-07-15

    Increasing vascular NO levels following up-regulation of endothelial nitric oxide synthase (eNOS) is considered beneficial in cardiovascular disease. Whether such beneficial effects exerted by increased NO-levels include the vascular renin-angiotensin system remains elucidated. Exposure of endothelial cells originated from porcine aorta, mouse brain and human umbilical veins to different NO-donors showed that expression of the angiotensin-II-type-2-receptor (AT2) mRNA and protein is up-regulated by activation of soluble guanylyl cyclase, protein kinase G and p38 mitogen-activated protein kinase without changing AT2 mRNA stability. In mice, endothelial-specific overexpression of eNOS stimulated, while chronic treatment with the NOS-blocker l-nitroarginine inhibited AT2 expression. The NO-induced AT2 up-regulation was associated with a profound inhibition of angiotensin-converting enzyme (ACE)-activity. In endothelial cells this reduction of ACE-activity was reversed by either the AT2 antagonist PD 123119 or by inhibition of transcription with actinomycin D. Furthermore, in C57Bl/6 mice an acute i.v. bolus of l-nitroarginine did not change AT2-expression and ACE-activity suggesting that inhibition of ACE-activity by endogenous NO is crucially dependent on AT2 protein level. Likewise, three weeks of either voluntary or forced exercise training increased AT2 expression and reduced ACE-activity in C57Bl/6 but not in mice lacking eNOS suggesting significance of this signaling interaction for vascular physiology. Finally, aortic AT2 expression is about 5 times greater in female as compared to male C57Bl/6 and at the same time aortic ACE activity is reduced in females by more than 50%. Together these findings imply that endothelial NO regulates AT2 expression and that AT2 may regulate ACE-activity. PMID:27235748

  5. Specific endothelial binding and tumor uptake of radiolabeled angiostatin

    International Nuclear Information System (INIS)

    Angiostatin (AS) is a potent antiangiogenic agent which inhibits tumor growth through specific action on proliferating endothelial cells. Imaging of radiolabeled AS would enhance our knowledge on the pharmacokinetics of AS and might provide useful information relating to tumor neovasculature. We therefore investigated the potential of radiolabeled AS as a novel tumor imaging agent. Human angiostatin was radioiodine labeled using the lactoperoxidase method. Competition binding studies showed a dose-dependent inhibition of 125I-AS binding to endothelial cells by excess unlabeled AS, and a displacement curve demonstrated that specific binding was dose dependent and saturable, with a Kd value of 169 nM. Gel analysis showed that 125I-AS remained stable in serum for up to 24 h without significant degradation. Intravenously injected 125I-AS in rats was cleared from the blood in an exponential fashion. Biodistribution data from human colon cancer-bearing Balb/C nude mice showed high uptake in the kidneys, stomach, liver, and lungs. Tumor uptake was 3.2±0.7, 2.6±0.2, and 1.7±0.2%ID/g at 2, 4, and 9 h after injection, respectively. Tumor to muscle count ratio increased from 3.1±0.5 at 2 h to 4.4±0.5 at 9 h. Serial scintigraphy from 1 to 5 h after 123I-AS injection demonstrated high uptake in the kidneys and bladder, consistent with renal excretion. There was clear demarcation of tumor by 1 h, with gradual increase in contrast over time (4-h tumor to contralateral thigh ratio =4.7±1.1). Thus, radioiodine-labeled angiostatin binds specifically to endothelial cells and has potential as a novel tumor imaging agent. (orig.)

  6. Specific endothelial binding and tumor uptake of radiolabeled angiostatin

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung-Han; Song, Sung Hee; Paik, Jin-Young; Byun, Sang Sung; Lee, Sang-Yoon; Choe, Yearn Seong; Kim, Byung-Tae [Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwondong, Kangnamgu, Seoul (Korea)

    2003-07-01

    Angiostatin (AS) is a potent antiangiogenic agent which inhibits tumor growth through specific action on proliferating endothelial cells. Imaging of radiolabeled AS would enhance our knowledge on the pharmacokinetics of AS and might provide useful information relating to tumor neovasculature. We therefore investigated the potential of radiolabeled AS as a novel tumor imaging agent. Human angiostatin was radioiodine labeled using the lactoperoxidase method. Competition binding studies showed a dose-dependent inhibition of {sup 125}I-AS binding to endothelial cells by excess unlabeled AS, and a displacement curve demonstrated that specific binding was dose dependent and saturable, with a K{sub d} value of 169 nM. Gel analysis showed that {sup 125}I-AS remained stable in serum for up to 24 h without significant degradation. Intravenously injected {sup 125}I-AS in rats was cleared from the blood in an exponential fashion. Biodistribution data from human colon cancer-bearing Balb/C nude mice showed high uptake in the kidneys, stomach, liver, and lungs. Tumor uptake was 3.2{+-}0.7, 2.6{+-}0.2, and 1.7{+-}0.2%ID/g at 2, 4, and 9 h after injection, respectively. Tumor to muscle count ratio increased from 3.1{+-}0.5 at 2 h to 4.4{+-}0.5 at 9 h. Serial scintigraphy from 1 to 5 h after {sup 123}I-AS injection demonstrated high uptake in the kidneys and bladder, consistent with renal excretion. There was clear demarcation of tumor by 1 h, with gradual increase in contrast over time (4-h tumor to contralateral thigh ratio =4.7{+-}1.1). Thus, radioiodine-labeled angiostatin binds specifically to endothelial cells and has potential as a novel tumor imaging agent. (orig.)

  7. EFFECTS OF TOTAL SAPONINS OF PANAX NOTOGINSENG AND LIGUSTRAZINE ON THE PROLIFERATION OF CEREBRAL MICROVASCULAR ENDOTHELIAL CELLS OF RATS

    Institute of Scientific and Technical Information of China (English)

    李敏杰; 刘勇; 丁海燕

    2002-01-01

    Objective To investigate the effects of Total Saponins of Panax notoginseng(PNS) and Liguastrazine(LIT) on the proliferation of cultured cerebral microvascular endothelial cells. Methods The inverted microscope was used to observe endothelial cells and immunochemical methods was also used to detect FVIII-related antigens so as to observe endothelial cells. PNS or LIT in concentrations 0.5 g*L-1, 1.0 g*L-1 and 2.0 g*L-1 were used on the cultured cerebral endothelial cells of rats for 24 hours. MTT method was adopted to determine the outcome of endothelial proliferation. Results 1. Immunochemical methods was used to detect FVIII-related antigens. The brownish yellow showed positive, and the observation of the cultured endothelial cells under inverted microscope showed that the cells appeared to be in the morphological form of cobble-stones. 2. PNS in lower concentration (0.5 g*L-1) could facilitate the proliferation of the cells, while 1 g*L-1 and 2 g*L-1 of PNS could inhibit the proliferation of the cells. 0.5 g*L-1 of LIT could facilitate the proliferation of cellswhile LIT of 1 g*L-1 and 2 g*L-1 had no significant effect. Conclusion The two kind of TCM ingredients extracted in lower concentration could facilitate the proliferation of the cells. And, at the same concentration, the inhibition of PNS on the cells is stronger than that of LIT.

  8. Inducing effects of hepatocyte growth factor on the expression of vascular endothelial growth factor in human colorectal carcinoma cells through MEK and PI3K signaling pathways

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-hua; WEI Wei; XU Hao; WANG Yan-yan; WU Wen-xi

    2007-01-01

    Background Vascular endothelial growth factor plays a key role in human colorectal carcinoma invasion and metastasis. However, the regulation mechanism remains unknown. Recent studies have shown that several cytokines can regulate the expression of vascular endothelial growth factor in tumor cells. In this study, we investigated whether hepatocyte growth factor can regulate the expression of vascular endothelial growth factor in colorectal carcinoma cells.Methods Hepatocyte growth factor and vascular endothelial growth factor in human serum were measured by ELISA.The mRNA level of vascular endothelial growth factor was analyzed by reverse transcription-PCR. Western blot assay was performed to evaluate levels of c-Met and several other proteins involved in the MAPK and PI3K signaling pathways in colorectal carcinoma cells.Results Serum hepatocyte growth factor and vascular endothelial growth factor were significantly increased in colorectal carcinoma subjects. In vitro extraneous hepatocyte growth factor markedly increased protein and mRNA levels of vascular endothelial growth factor in colorectal carcinoma cells. Hepatocyte growth factor induced phosphorylation of c-Met, ERK1/2 and AKT in a dose-dependent manner. Specific inhibitors on MEK and PI3K inhibited the hepatocyte growth factor-induced expression of vascular endothelial growth factor in colorectal carcinoma cells.Conclusion This present study indicates that hepatocyte growth factor upregulates the expression of vascular endothelial growth factor in colorectal carcinoma cells via the MEK/ERK and PI3K/AKT signaling pathways.

  9. Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells.

    Science.gov (United States)

    Patsch, Christoph; Challet-Meylan, Ludivine; Thoma, Eva C; Urich, Eduard; Heckel, Tobias; O'Sullivan, John F; Grainger, Stephanie J; Kapp, Friedrich G; Sun, Lin; Christensen, Klaus; Xia, Yulei; Florido, Mary H C; He, Wei; Pan, Wei; Prummer, Michael; Warren, Curtis R; Jakob-Roetne, Roland; Certa, Ulrich; Jagasia, Ravi; Freskgård, Per-Ola; Adatto, Isaac; Kling, Dorothee; Huang, Paul; Zon, Leonard I; Chaikof, Elliot L; Gerszten, Robert E; Graf, Martin; Iacone, Roberto; Cowan, Chad A

    2015-08-01

    The use of human pluripotent stem cells for in vitro disease modelling and clinical applications requires protocols that convert these cells into relevant adult cell types. Here, we report the rapid and efficient differentiation of human pluripotent stem cells into vascular endothelial and smooth muscle cells. We found that GSK3 inhibition and BMP4 treatment rapidly committed pluripotent cells to a mesodermal fate and subsequent exposure to VEGF-A or PDGF-BB resulted in the differentiation of either endothelial or vascular smooth muscle cells, respectively. Both protocols produced mature cells with efficiencies exceeding 80% within six days. On purification to 99% via surface markers, endothelial cells maintained their identity, as assessed by marker gene expression, and showed relevant in vitro and in vivo functionality. Global transcriptional and metabolomic analyses confirmed that the cells closely resembled their in vivo counterparts. Our results suggest that these cells could be used to faithfully model human disease. PMID:26214132

  10. Insulin Resistance and Endothelial Dysfunction Constitute a Common Therapeutic Target in Cardiometabolic Disorders

    Directory of Open Access Journals (Sweden)

    A. Janus

    2016-01-01

    Full Text Available Insulin resistance and other risk factors for atherosclerosis, such as hypertension and hypercholesterolemia, promote endothelial dysfunction and lead to development of metabolic syndrome which constitutes an introduction to cardiovascular disease. The insulin resistance and endothelial dysfunction cross talk between each other by numerous metabolic pathways. Hence, targeting one of these pathologies with pleiotropic treatment exerts beneficial effect on another one. Combined and expletive treatment of hypertension, lipid disorders, and insulin resistance with nonpharmacological interventions and conventional pharmacotherapy may inhibit the transformation of metabolic disturbances to fully developed cardiovascular disease. This paper summarises the common therapeutic targets for insulin resistance, endothelial dysfunction, and vascular inflammatory reaction at molecular level and analyses the potential pleiotropic effects of drugs used currently in management of cardiovascular disease, metabolic syndrome, and diabetes.

  11. Evaluation of endothelial function using finger plethysmography

    OpenAIRE

    2009-01-01

    Evaluation of endothelial function using finger plethysmography A. K. Faizi, D. W. Kornmo and S. Agewall Department of Medicine, Aker University Hospital and Oslo University, Oslo, Norway Correspondence to Stefan Agewall, Department of Medicine, Aker University Hospital and Oslo University, 0514 Oslo, Norway E-mail: Copyright Journal compilation © 2009 Scandinavian Society of Clinical Physiology and Nuclear Medicine KEYWORDS endothelial functio...

  12. Vascular endothelial dysfunction and pharmacological treatment

    Institute of Scientific and Technical Information of China (English)

    Jin; Bo; Su

    2015-01-01

    The endothelium exerts multiple actions involving regulation of vascular permeability and tone, coagulation and fibrinolysis, inflammatory and immunological reactions and cell growth. Alterations of one or more such actions may cause vascular endothelial dysfunction. Different risk factors such as hypercholesterolemia, homocystinemia, hyperglycemia, hypertension, smo-king, inflammation, and aging contribute to the development of endothelial dysfunction. Mechanisms underlying endothelial dysfunction are multiple, including impaired endothelium-derived vasodilators, enhanced endothelium-derived vasoconstrictors, over production of reactive oxygen species and reactive nitrogen species, activation of inflammatory and immune reactions, and imbalance of coagulation and fibrinolysis. Endothelial dysfunction occurs in many cardiovascular diseases, which involves different mechanisms, depending on specific risk factors affecting the disease. Among these mechanisms, a reduction in nitric oxide(NO) bioavailability plays a central role in the development of endothelial dysfunction because NO exerts diverse physiological actions, including vasodilation, anti-inflammation, antiplatelet, antiproliferation and antimigration. Experimental and clinical studies have demonstrated that a variety of currently used or investigational drugs, such as angiotensin-converting enzyme inhibitors, angiotensin AT1 receptors blockers, angiotensin-(1-7), antioxidants, beta-blockers, calcium channel blockers, endothelial NO synthase enhancers, phosphodiesterase 5 inhibitors, sphingosine-1-phosphate and statins, exert endothelial protective effects. Due to the difference in mechanisms of action, these drugs need to be used according to specific mechanisms underlying endothelial dysfunction of the disease.

  13. Determinants of visual quality after endothelial keratoplasty.

    Science.gov (United States)

    Turnbull, Andrew M J; Tsatsos, Michael; Hossain, Parwez N; Anderson, David F

    2016-01-01

    Endothelial keratoplasty is now favored over full-thickness penetrating keratoplasty for corneal decompensation secondary to endothelial dysfunction. Although endothelial keratoplasty has evolved as surgeons strive to improve outcomes, fewer patients than expected achieve best corrected visual acuity of 20/20 despite healthy grafts and no ocular comorbidities. Reasons for this remain unclear, with theories including anterior stromal changes, differences in graft thickness and regularity, induced high-order aberrations, and the nature of the graft-host interface. Newer iterations of endothelial keratoplasty such as thin manual Descemet stripping endothelial keratoplasty, ultrathin automated Descemet stripping endothelial keratoplasty, and Descemet membrane endothelial keratoplasty have achieved rates of 20/20 acuity of approximately 50%, comparable to modern cataract surgery, and it may be that a ceiling exists, particularly in the older age group of patients. Establishing the relative contribution of the factors that determine visual quality following endothelial keratoplasty will help drive further innovation, optimizing visual and patient-reported outcomes while improving surgical efficacy and safety. PMID:26708363

  14. Signaling hierarchy regulating human endothelial cell development

    Science.gov (United States)

    Our present knowledge of the regulation of mammalian endothelial cell differentiation has been largely derived from studies of mouse embryonic development. However, unique mechanisms and hierarchy of signals that govern human endothelial cell development are unknown and, thus, explored in these stud...

  15. Glatiramer acetate (GA) prevents TNF-α-induced monocyte adhesion to primary endothelial cells through interfering with the NF-κB pathway

    International Nuclear Information System (INIS)

    Highlights: • GA inhibited TNF-α-induced binding of monocytes to endothelial cells. • GA inhibited the induction of adhesion molecules MCP-1, VCAM-1 and E-selectin. • GA inhibits NF-κB p65 nuclear translocation and transcriptional activity. • GA inhibits TNF-α-induced IκBα degradation. - Abstract: Pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) is considered to be the major one contributing to the process of development of endothelial dysfunction. Exposure to TNF-α induces the expression of a number of proinflammatory chemokines, such as monocyte chemotactic protein-1 (MCP-1), and adhesion molecules, including vascular adhesion molecule-1 (VCAM-1) and E-selectin, which mediate the interaction of invading monocytes with vascular endothelial cells. Glatiramer acetate (GA) is a licensed clinical drug for treating patients suffering from multiple sclerosis (MS). The effects of GA in vascular disease have not shown before. In this study, we found that GA significantly inhibited TNF-α-induced binding of monocytes to endothelial cells. Mechanistically, we found that GA ameliorated the upregulation of MCP-1, VCAM-1, and E-selectin induced by TNF-α. Notably, this process is mediated by inhibiting the nuclear translocation and activation of NF-κB. Our results also indicate that GA pretreatment attenuates the up-regulation of COX-2 and iNOS. These data suggest that GA might have a potential benefit in therapeutic endothelial dysfunction related diseases

  16. Glatiramer acetate (GA) prevents TNF-α-induced monocyte adhesion to primary endothelial cells through interfering with the NF-κB pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Guoqian; Zhang, Xueyan; Su, Zhendong; Li, Xueqi, E-mail: xueqili075@yeah.net

    2015-01-30

    Highlights: • GA inhibited TNF-α-induced binding of monocytes to endothelial cells. • GA inhibited the induction of adhesion molecules MCP-1, VCAM-1 and E-selectin. • GA inhibits NF-κB p65 nuclear translocation and transcriptional activity. • GA inhibits TNF-α-induced IκBα degradation. - Abstract: Pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) is considered to be the major one contributing to the process of development of endothelial dysfunction. Exposure to TNF-α induces the expression of a number of proinflammatory chemokines, such as monocyte chemotactic protein-1 (MCP-1), and adhesion molecules, including vascular adhesion molecule-1 (VCAM-1) and E-selectin, which mediate the interaction of invading monocytes with vascular endothelial cells. Glatiramer acetate (GA) is a licensed clinical drug for treating patients suffering from multiple sclerosis (MS). The effects of GA in vascular disease have not shown before. In this study, we found that GA significantly inhibited TNF-α-induced binding of monocytes to endothelial cells. Mechanistically, we found that GA ameliorated the upregulation of MCP-1, VCAM-1, and E-selectin induced by TNF-α. Notably, this process is mediated by inhibiting the nuclear translocation and activation of NF-κB. Our results also indicate that GA pretreatment attenuates the up-regulation of COX-2 and iNOS. These data suggest that GA might have a potential benefit in therapeutic endothelial dysfunction related diseases.

  17. Urotensin II induces interleukin 8 expression in human umbilical vein endothelial cells.

    Directory of Open Access Journals (Sweden)

    Chung-Yi Lee

    Full Text Available BACKGROUND: Urotensin II (U-II, an 11-amino acid peptide, exerts a wide range of actions in cardiovascular systems. Interleukin-8 (IL-8 is secreted by endothelial cells, thereby enhancing endothelial cell survival, proliferation, and angiogenesis. However, the interrelationship between U-II and IL-8 as well as the detailed intracellular mechanism of U-II in vascular endothelial cells remain unclear. The aim of this study was to investigate the effect of U-II on IL-8 expression and to explore its intracellular mechanism in human umbilical vein endothelial cells. METHODS/PRINCIPAL FINDINGS: Primary human umbilical vein endothelial cells were used. Expression of IL-8 was determined by real-time quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and luciferase reporter assay. Western blot analyses and experiments with specific inhibitors were performed to reveal the downstream signaling pathways as concerned. U-II increased the mRNA/protein levels of IL-8 in human umbilical vein endothelial cells. The U-II effects were significantly inhibited by its receptor antagonist [Orn(5]-URP. Western blot analyses and experiments with specific inhibitors indicated the involvement of phosphorylation of p38 mitogen-activated protein kinase and extracellular signal-regulated kinase in U-II-induced IL-8 expression. Luciferase reporter assay further revealed that U-II induces the transcriptional activity of IL-8. The site-directed mutagenesis indicated that the mutation of AP-1 and NF-kB binding sites reduced U-II-increased IL-8 promoter activities. Proliferation of human umbilical vein endothelial cells induced by U-II could be inhibited significantly by IL-8 RNA interference. CONCLUSION/SIGNIFICANCE: The results show that U-II induces IL-8 expression in human umbilical vein endothelial cells via p38 mitogen-activated protein kinase and extracellular signal-regulated kinase signaling pathways and IL-8 is involved in the U

  18. Endothelial dysfunction after non-cardiac surgery

    DEFF Research Database (Denmark)

    Søndergaard, E S; Fonnes, S; Gögenur, I

    2015-01-01

    BACKGROUND: More than 50% of patients with increased troponin levels after non-cardiac surgery have an impaired endothelial function pre-operatively. Non-invasive markers of endothelial function have been developed for the assessment of endothelial dysfunction. The aim of this paper was to...... systematically review the literature to evaluate the association between non-cardiac surgery and non-invasive markers of endothelial function. METHODS: A systematic search was conducted in MEDLINE, EMBASE and Cochrane Library Database according to the PRISMA guidelines. Endothelial dysfunction was described only...... with non-invasive measurements done both pre- and post-operatively and published in English. All types of non-cardiac surgery and both men and women of all ages were included. RESULTS: We found 1722 eligible studies in our search, and of these, five studies fulfilled our inclusion and exclusion...

  19. Cardamonin inhibits agonist-induced vascular contractility via Rho-kinase and MEK inhibition.

    Science.gov (United States)

    Je, Hyun Dong; Jeong, Ji Hoon

    2016-01-01

    The present study was undertaken to investigate the influence of cardamonin on vascular smooth muscle contractility and to determine the mechanism(s) involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Cardamonin significantly relaxed fluoride-, phenylephrine-, and phorbol ester-induced vascular contractions, suggesting that it has an anti-hypertensive effect on agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, cardamonin significantly inhibited the fluoride-induced increase in pMYPT1 level and phenylephrine-induced increase in pERK1/2 level, suggesting inhibition of Rho-kinase and MEK activity and subsequent phosphorylation of MYPT1 and ERK1/2. This study provides evidence that the relaxing effect of cardamonin on agonist-induced vascular contraction regardless of endothelial function involves inhibition of Rho-kinase and MEK activity. PMID:26807025

  20. Early life stress in male mice induces superoxide production and endothelial dysfunction in adulthood.

    Science.gov (United States)

    Ho, Dao H; Burch, Mariah L; Musall, Benjamin; Musall, Jacqueline B; Hyndman, Kelly A; Pollock, Jennifer S

    2016-05-01

    Early life stress (ELS) is a risk for cardiovascular disease in adulthood although very little mechanistic insight is available. Because oxidative stress and endothelial dysfunction are major contributors to cardiovascular risk, we hypothesized that ELS induces endothelial dysfunction in adult male mice via increased superoxide production. Studies employed a mouse model of ELS, maternal separation with early weaning (MSEW), in which litters were separated from the dam for 4 h/day [postnatal days (PD) 2-5] and 8 h/day (PD6-16), and weaned at PD17. Control litters remained undisturbed until weaning at PD21. When compared with control mice, thoracic aortic rings from adult male MSEW mice displayed significant endothelial dysfunction that was reversed by the superoxide scavenger, polyethylene glycol-superoxide dismutase (PEG-SOD). PEG-SOD-inhibitable superoxide production by aortae from MSEW mice was significantly greater than observed in control aortae, although unaffected by nitric oxide synthase inhibition, suggesting that uncoupled nitric oxide synthase was not responsible for the accelerated superoxide production. Aortic SOD expression, plasma SOD activity, and total antioxidant activity were similar in MSEW and control mice, indicating unaltered antioxidant capacity in MSEW mice. Increased expression of the NADPH oxidase subunits, NOX2 and NOX4, was evident in the aortae of MSEW mice. Moreover, endothelial dysfunction and superoxide production in MSEW mice was reversed with the NADPH oxidase inhibitor, apocynin, indicating increased NADPH oxidase-dependent superoxide production and endothelial dysfunction. The finding that MSEW induces superoxide production and endothelial dysfunction in adult mice may provide a mechanistic link between ELS and adult cardiovascular disease risk. PMID:26921433

  1. Release of endothelial cell lipoprotein lipase by plasma lipoproteins and free fatty acids

    International Nuclear Information System (INIS)

    Lipoprotein lipase (LPL) bound to the lumenal surface of vascular endothelial cells is responsible for the hydrolysis of triglycerides in plasma lipoproteins. Studies were performed to investigate whether human plasma lipoproteins and/or free fatty acids would release LPL which was bound to endothelial cells. Purified bovine milk LPL was incubated with cultured porcine aortic endothelial cells resulting in the association of enzyme activity with the cells. When the cells were then incubated with media containing chylomicrons or very low density lipoproteins (VLDL), a concentration-dependent decrease in the cell-associated LPL enzymatic activity was observed. In contrast, incubation with media containing low density lipoproteins or high density lipoproteins produced a much smaller decrease in the cell-associated enzymatic activity. The addition of increasing molar ratios of oleic acid:bovine serum albumin to the media also reduced enzyme activity associated with the endothelial cells. To determine whether the decrease in LPL activity was due to release of the enzyme from the cells or inactivation of the enzyme, studies were performed utilizing radioiodinated bovine LPL. Radiolabeled LPL protein was released from endothelial cells by chylomicrons, VLDL, and by free fatty acids (i.e. oleic acid bound to bovine serum albumin). The release of radiolabeled LPL by VLDL correlated with the generation of free fatty acids from the hydrolysis of VLDL triglyceride by LPL bound to the cells. Inhibition of LPL enzymatic activity by use of a specific monoclonal antibody, reduced the extent of release of 125I-LPL from the endothelial cells by the added VLDL. These results demonstrated that LPL enzymatic activity and protein were removed from endothelial cells by triglyceride-rich lipoproteins (chylomicrons and VLDL) and oleic acid

  2. Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress

    Science.gov (United States)

    McNally, J. Scott; Davis, Michael E.; Giddens, Don P.; Saha, Aniket; Hwang, Jinah; Dikalov, Sergey; Jo, Hanjoong; Harrison, David G.

    2003-01-01

    Oscillatory shear stress occurs at sites of the circulation that are vulnerable to atherosclerosis. Because oxidative stress contributes to atherosclerosis, we sought to determine whether oscillatory shear stress increases endothelial production of reactive oxygen species and to define the enzymes responsible for this phenomenon. Bovine aortic endothelial cells were exposed to static, laminar (15 dyn/cm2), and oscillatory shear stress (+/-15 dyn/cm2). Oscillatory shear increased superoxide (O2.-) production by more than threefold over static and laminar conditions as detected using electron spin resonance (ESR). This increase in O2*- was inhibited by oxypurinol and culture of endothelial cells with tungsten but not by inhibitors of other enzymatic sources. Oxypurinol also prevented H2O2 production in response to oscillatory shear stress as measured by dichlorofluorescin diacetate and Amplex Red fluorescence. Xanthine-dependent O2*- production was increased in homogenates of endothelial cells exposed to oscillatory shear stress. This was associated with decreased xanthine dehydrogenase (XDH) protein levels and enzymatic activity resulting in an elevated ratio of xanthine oxidase (XO) to XDH. We also studied endothelial cells lacking the p47phox subunit of the NAD(P)H oxidase. These cells exhibited dramatically depressed O2*- production and had minimal XO protein and activity. Transfection of these cells with p47phox restored XO protein levels. Finally, in bovine aortic endothelial cells, prolonged inhibition of the NAD(P)H oxidase with apocynin decreased XO protein levels and prevented endothelial cell stimulation of O2*- production in response to oscillatory shear stress. These data suggest that the NAD(P)H oxidase maintains endothelial cell XO levels and that XO is responsible for increased reactive oxygen species production in response to oscillatory shear stress.

  3. A novel approach to prevent endothelial hyperpermeability: the Crataegus extract WS® 1442 targets the cAMP/Rap1 pathway.

    Science.gov (United States)

    Bubik, Martin F; Willer, Elisabeth A; Bihari, Peter; Jürgenliemk, Guido; Ammer, Hermann; Krombach, Fritz; Zahler, Stefan; Vollmar, Angelika M; Fürst, Robert

    2012-01-01

    Endothelial hyperpermeability followed by edema formation is a hallmark of many severe disorders. Effective drugs directly targeting endothelial barrier function are widely lacking. We hypothesized that the hawthorn (Crataegus spp.) extract WS® 1442, a proven multi-component drug against moderate forms of heart failure, would prevent vascular leakage by affecting endothelial barrier-regulating systems. In vivo, WS® 1442 inhibited the histamine-evoked extravasation of FITC-dextran from mouse cremaster muscle venules. In cultured human endothelial cells, WS® 1442 blocked the thrombin-induced FITC-dextran permeability. By applying biochemical and microscopic techniques, we revealed that WS® 1442 abrogates detrimental effects of thrombin on adherens junctions (vascular endothelial-cadherin), the F-actin cytoskeleton, and the contractile apparatus (myosin light chain). Mechanistically, WS® 1442 inhibited the thrombin-induced rise of intracellular calcium (ratiometric measurement), followed by an inactivation of PKC and RhoA (pulldown assay). Moreover, WS® 1442 increased endothelial cAMP levels (ELISA), which consequently activated PKA and Rap1 (pulldown assay). Utilizing pharmacological inhibitors or siRNA, we found that PKA is not involved in barrier protection, whereas Epac1, Rap1, and Rac1 play a crucial role in the WS® 1442-induced activation of cortactin, which triggers a strong cortical actin rearrangement. In summary, WS® 1442 effectively protects against endothelial barrier dysfunction in vitro and in vivo. It specifically interacts with endothelial permeability-regulating systems by blocking the Ca(2+)/PKC/RhoA and activating the cAMP/Epac1/Rap1 pathway. As a proven safe herbal drug, WS® 1442 opens a novel pharmacological approach to treat hyperpermeability-associated diseases. This in-depth mechanistic work contributes to a better acceptance of this herbal remedy. PMID:22085704

  4. Production of neutralizing monoclonal antibody against human vascular endothelial growth factor receptor Ⅱ

    Institute of Scientific and Technical Information of China (English)

    Rong LI; Dong-sheng XIONG; Xiao-feng SHAO; Jia LIU; Yuan-fu XU; Yuan-sheng XU; Han-zhi LIU; Zhen-ping ZHU; Chun-zheng YANG

    2004-01-01

    AIM: To prepare neutralizing monoclonal antibody (mAb) against extracellular immunoglobulin (Ig)-like domainⅢ of vascular endothelial growth factor receptor KDR and study its biological activity. METHODS: Soluble KDR Ig domain Ⅲ (KDR-Ⅲ) fusion protein was expressed in E Coli and purified from the bacterial periplasmic extracts via an affinity chromatography. Monoclonal antibodies against KDR-Ⅲ were prepared by hybridoma technique. ELISA and FACS analysis were used to identify its specificity. Immunoprecipitation and [3H]-thymidine incorporation assay were also used to detect the activity of anti-KDR mAb blocking the phosphorylation of KDR tyrosine kinase receptor and the influence on vascular endothelial growth factor-induced mitogenesis of human endothelial ceils.RESULTS: A monoclonal antibody, Ycom1D3 (IgG1), was generated from a mouse immunized with the recombinant KDR-Ⅲ protein. Ycom1D3 bound specifically to both the soluble KDR-Ⅲ and the cell-surface expressed KDR. Ycom1D3 effectively blocked VEGF/KDR interaction and inhibited VEGF-stimulated KDR activation in human endothelial cells. Furthermore, the antibody efficiently neutralized VEGF-induced mitogenesis of human endothelial cells. CONCLUSION: Our results suggest that the anti-KDR mAb, Ycom1D3, has potential applications in the treatment of cancer and other diseases where pathological angiogenesis is involved.

  5. The effect of bisphosphonates on the endothelial differentiation of mesenchymal stem cells.

    Science.gov (United States)

    Sharma, Dileep; Hamlet, Stephen Mark; Petcu, Eugen Bogdan; Ivanovski, Saso

    2016-01-01

    The contribution of the local stem cell niche to providing an adequate vascular framework during healing cannot be overemphasized. Bisphosphonates (BPs) are known to have a direct effect on the local vasculature, but their effect on progenitor cell differentiation is unknown. This in vitro study evaluated the effect(s) of various BPs on the differentiation of human placental mesenchymal stem cells (pMSCs) along the endothelial lineage and their subsequent functional and morphogenic capabilities. pMSC multipotency was confirmed by successful differentiation into cells of both the osteogenic and endothelial lineages, as demonstrated by positive Alizarin Red S staining and Ac-LDL uptake. pMSC differentiation in the presence of non-cytotoxic BP concentrations showed that nitrogen containing BPs had a significant inhibitory effect on cell migration and endothelial marker gene expression, as well as compromised endothelial differentiation as demonstrated using von Willebrand factor immunofluorescence staining and tube formation assay. This in vitro study demonstrated that at non-cytotoxic levels, nitrogen-containing BPs inhibit differentiation of pMSCs into cells of an endothelial lineage and affect the downstream functional capability of these cells supporting a multi-modal effect of BPs on angiogenesis as pathogenic mechanism contributing to bone healing disorders such as bisphosphonate related osteonecrosis of the jaws (BRONJ). PMID:26857282

  6. Protein engineering to develop a redox insensitive endothelial nitric oxide synthase

    Directory of Open Access Journals (Sweden)

    Ruslan Rafikov

    2014-01-01

    Full Text Available The zinc tetrathiolate (ZnS4 cluster is an important structural feature of endothelial nitric oxide synthase (eNOS. The cluster is located on the dimeric interface and four cysteine residues (C94 and C99 from two adjacent subunits form a cluster with a Zn ion in the center of a tetrahedral configuration. Due to its high sensitivity to oxidants this cluster is responsible for eNOS dimer destabilization during periods of redox stress. In this work we utilized site directed mutagenesis to replace the redox sensitive cysteine residues in the ZnS4 cluster with redox stable tetra-arginines. Our data indicate that this C94R/C99R eNOS mutant is active. In addition, this mutant protein is insensitive to dimer disruption and inhibition when challenged with hydrogen peroxide (H2O2. Further, the overexpression of the C94R/C99R mutant preserved the angiogenic response in endothelial cells challenged with H2O2. The over-expression of the C94R/C99R mutant preserved the ability of endothelial cells to migrate towards vascular endothelial growth factor (VEGF and preserved the endothelial monolayer in a scratch wound assay. We propose that this dimer stable eNOS mutant could be utilized in the treatment of diseases in which there is eNOS dysfunction due to high levels of oxidative stress.

  7. Expression and Function of the Homeostatic Molecule Del-1 in Endothelial Cells and the Periodontal Tissue

    Directory of Open Access Journals (Sweden)

    Jieun Shin

    2013-01-01

    Full Text Available Developmental endothelial locus-1 (Del-1 is an endothelial cell-secreted protein that limits the recruitment of neutrophils by antagonizing the interaction between the LFA-1 integrin on neutrophils and the intercellular adhesion molecule (ICAM-1 on endothelial cells. Mice with genetic or age-associated Del-1 deficiency exhibit increased neutrophil infiltration in the periodontium resulting in inflammatory bone loss. Here we investigated additional novel mechanisms whereby Del-1 could interfere with neutrophil recruitment and inflammation. Treatment of human endothelial cells with Del-1 did not affect the expression of endothelial molecules involved in the leukocyte adhesion cascade (ICAM-1, VCAM-1, and E-selectin. Moreover, genetic or age-associated Del-1 deficiency did not significantly alter the expression of these adhesion molecules in the murine periodontium, further ruling out altered adhesion molecule expression as a mechanism whereby Del-1 regulates leukocyte recruitment. Strikingly, Del-1 inhibited ICAM-1-dependent chemokine release (CXCL2, CCL3 by neutrophils. Therefore, Del-1 could potentially suppress the amplification of inflammatory cell recruitment mediated through chemokine release by infiltrating neutrophils. Interestingly, Del-1 was itself regulated by inflammatory stimuli, which generally exerted opposite effects on adhesion molecule expression. The reciprocal regulation between Del-1 and inflammation may contribute to optimally balance the protective and the potentially harmful effects of inflammatory cell recruitment.

  8. Targeting Endothelial Adhesion Molecule Transcription for Treatment of Inflammatory Disease: A Proof-of-Concept Study

    Directory of Open Access Journals (Sweden)

    Liam M. Ashander

    2016-01-01

    Full Text Available Targeting the endothelial adhesion molecules that control leukocyte trafficking into a tissue has been explored as a biological therapy for inflammatory diseases. However, these molecules also participate in leukocyte migration for immune surveillance, and inhibiting the physiological level of an adhesion molecule might promote infection or malignancy. We explored the concept of targeting endothelial adhesion molecule transcription during inflammation in a human system. Intercellular adhesion molecule 1 (ICAM-1 mediates leukocyte migration across the retinal endothelium in noninfectious posterior uveitis. We observed an increase in the transcription factor, nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NF-κB1, in parallel with ICAM-1, in human retinal endothelial cells treated with tumor necrosis factor-alpha (TNF-α, and identified putative binding sites for NF-κB1 within the ICAM-1 regulatory region. We targeted induced NF-κB1 expression in endothelial cells with small interfering (siRNA. Knockdown of NF-κB1 significantly decreased cell surface expression of ICAM-1 protein induced by TNF-α but did not reduce constitutive ICAM-1 expression. Consistently, NF-κB1 knockdown significantly reduced leukocyte binding to cell monolayers in the presence of TNF-α but did not impact baseline binding. Findings of this proof-of-concept study indicate that induced transcription of endothelial adhesion molecules might be targeted therapeutically for inflammatory disease in humans.

  9. [Transplantation of corneal endothelial cells].

    Science.gov (United States)

    Amano, Shiro

    2002-12-01

    Though conventional corneal transplantation has achieved great success, it still has several drawbacks including limited availability of donor corneas, recurrent allograft rejection, and subsequent graft failure in certain cases. Reconstructing clinically usable corneas by applying the technology of regenerative medicine can offer a solution to these problems, as well as making corneal transplantation a non-emergency surgery and enabling the usage of banked corneal cells. In the present study, we focused on corneal endothelium that is critical for corneal transparency and investigated the reconstruction of cornea utilizing cultured human corneal endothelial cells (HCECs). We succeeded in steadily culturing HCECs by using culture dishes pre-coated with extracellular matrix produced by calf corneal endothelial cells and culture media that contained basic fibroblast growth factor and fetal bovine serum. We performed the following analysis utilizing these cultured HCECs. The older the donor was, the more frequently large senescent cells appeared in the passaged HCECs. The telomeres of HCECs were measured as terminal restriction fragments (TRF) by Southern blotting. HCECs, in vivo from donors in their seventies had a long TRFs of over 12 kilobases. Passaging shortened the TRFs but there was no difference in TRFs among donors of various ages. These results indicated that shortening of telomere length is not related to senescence of HCECs. We investigated the role of advanced glycation end products (AGEs) in the senescence of in vivo HCECs. The results indicated that AGE-protein in the aqueous humor is endocytosed into HCECs via AGE receptors expressed on the surface of HCECs and damages HCECs by producing reactive oxygen species and inducing apoptosis, suggesting that AGEs, at least partly, cause the senescence of HECEs. HCECs were cultured using adult human serum instead of bovine serum to get rid of bovine material that can be infected with prions. Primary and passage

  10. MicroRNA-21 exhibits antiangiogenic function by targeting RhoB expression in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Céline Sabatel

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are endogenously expressed small non-coding RNAs that regulate gene expression at post-transcriptional level. The recent discovery of the involvement of these RNAs in the control of angiogenesis renders them very attractive in the development of new approaches for restoring the angiogenic balance. Whereas miRNA-21 has been demonstrated to be highly expressed in endothelial cells, the potential function of this miRNA in angiogenesis has never been investigated. METHODOLOGY/PRINCIPAL FINDINGS: We first observed in endothelial cells a negative regulation of miR-21 expression by serum and bFGF, two pro-angiogenic factors. Then using in vitro angiogenic assays, we observed that miR-21 acts as a negative modulator of angiogenesis. miR-21 overexpression reduced endothelial cell proliferation, migration and the ability of these cells to form tubes whereas miR-21 inhibition using a LNA-anti-miR led to opposite effects. Expression of miR-21 in endothelial cells also led to a reduction in the organization of actin into stress fibers, which may explain the decrease in cell migration. Further mechanistic studies showed that miR-21 targets RhoB, as revealed by a decrease in RhoB expression and activity in miR-21 overexpressing cells. RhoB silencing impairs endothelial cell migration and tubulogenesis, thus providing a possible mechanism for miR-21 to inhibit angiogenesis. Finally, the therapeutic potential of miR-21 as an angiogenesis inhibitor was demonstrated in vivo in a mouse model of choroidal neovascularization. CONCLUSIONS/SIGNIFICANCE: Our results identify miR-21 as a new angiogenesis inhibitor and suggest that inhibition of cell migration and tubulogenesis is mediated through repression of RhoB.

  11. In vitro evaluation of endothelial exosomes as carriers for small interfering ribonucleic acid delivery

    Directory of Open Access Journals (Sweden)

    Banizs AB

    2014-09-01

    Full Text Available Anna B Banizs,1 Tao Huang,1 Kelly Dryden,2 Stuart S Berr,1 James R Stone,1 Robert K Nakamoto,2 Weibin Shi,1 Jiang He1 1Department of Radiology and Medical Imaging, 2Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA Abstract: Exosomes, one subpopulation of nanosize extracellular vesicles derived from multivesicular bodies, ranging from 30 to 150 nm in size, emerged as promising carriers for small interfering ribonucleic acid (siRNA delivery, as they are capable of transmitting molecular messages between cells through carried small noncoding RNAs, messenger RNAs, deoxyribonucleic acids, and proteins. Endothelial cells are involved in a number of important biological processes, and are a major source of circulating exosomes. In this study, we prepared exosomes from endothelial cells and evaluated their capacity to deliver siRNA into primary endothelial cells. Exosomes were isolated and purified by sequential centrifugation and ultracentrifugation from cultured mouse aortic endothelial cells. Similar to exosome particles from other cell sources, endothelial exosomes are nanometer-size vesicles, examined by both the NanoSight instrument and transmission electron microscopy. Enzyme-linked immunosorbent assay analysis confirmed the expression of two exosome markers: CD9 and CD63. Flow cytometry and fluorescence microscopy studies demonstrated that endothelial exosomes were heterogeneously distributed within cells. In a gene-silencing study with luciferase-expressing endothelial cells, exosomes loaded with siRNA inhibited luciferase expression by more than 40%. In contrast, siRNA alone and control siRNA only suppressed luciferase expression by less than 15%. In conclusion, we demonstrated that endothelial exosomes have the capability to accommodate and deliver short foreign nucleic acids into endothelial cells. Keywords: extracellular vesicles, exosomes, gene delivery, siRNA, endothelium

  12. A boost of BMP4 accelerates the commitment of human embryonic stem cells to the endothelial lineage.

    Science.gov (United States)

    Goldman, Orit; Feraud, Olivier; Boyer-Di Ponio, Julie; Driancourt, Catherine; Clay, Denis; Le Bousse-Kerdiles, Marie-Caroline; Bennaceur-Griscelli, Annelise; Uzan, Georges

    2009-08-01

    Embryoid bodies (EBs) generated during differentiation of human embryonic stem cells (hESCs) contain vascular-like structures, suggesting that commitment of mesoderm progenitors into endothelial cells occurs spontaneously. We showed that bone morphogenetic protein 4 (BMP4), an inducer of mesoderm, accelerates the peak expression of CD133/kinase insert domain-containing receptor (KDR) and CD144/KDR. Because the CD133(+)KDR(+) population could represent endothelial progenitors, we sorted them at day 7 and cultured them in endothelial medium. These cells were, however, unable to differentiate into endothelial cells. Under standard conditions, the CD144(+)KDR(+) population represents up to 10% of the total cells at day 12. In culture, these cells, if sorted, give rise to a homogeneous population with a morphology typical of endothelial cells and express endothelial markers. These endothelial cells derived from the day 12 sorted population were functional, as assessed by different in vitro assays. When EBs were stimulated by BMP4, the CD144(+)KDR(+) peak was shifted to day 7. Most of these cells, however, were CD31(-), becoming CD31(+) in culture. They then expressed von Willebrand factor and were functional. This suggests that, initially, the BMP4-boosted day 7, CD144(+)KDR(+)CD31(-) population represents immature endothelial cells that differentiate into mature endothelial cells in culture. The expression of OCT3/4, a marker of immaturity for hESCs decreases during EB differentiation, decreasing faster following BMP4 induction. We also show that BMP4 inhibits the global expression of GATA2 and RUNX1, two transcription factors involved in hemangioblast formation, at day 7 and day 12. PMID:19544443

  13. Salidroside improves homocysteine-induced endothelial dysfunction by reducing oxidative stress.

    Science.gov (United States)

    Leung, Sin Bond; Zhang, Huina; Lau, Chi Wai; Huang, Yu; Lin, Zhixiu

    2013-01-01

    Hyperhomocysteinemia is associated with an increased risk for cardiovascular diseases through increased oxidative stress. Salidroside is an active ingredient of the root of Rhodiola rosea with documented antioxidative, antihypoxia and neuroprotective properties. However, the vascular benefits of salidroside against endothelial dysfunction have yet to be explored. The present study, therefore, aimed to investigate the protective effect of salidroside on homocysteine-induced endothelial dysfunction. Functional studies on the rat aortas were performed to delineate the vascular effect of salidroside. DHE imaging was used to evaluate the reactive oxygen species (ROS) level in aortic wall and endothelial cells. Western blotting was performed to assess the protein expression associated with oxidative stress and nitric oxide (NO) bioavailability. Exposure to homocysteine attenuated endothelium-dependent relaxations in rat aortas while salidroside pretreatment rescued it. Salidroside inhibited homocystein-induced elevation in the NOX2 expression and ROS overproduction in both aortas and cultured endothelial cells and increased phosphorylation of eNOS which was diminished by homocysteine. The present study shows that salidroside is effective in preserving the NO bioavailability and thus protects against homocysteine-induced impairment of endothelium-dependent relaxations, largely through inhibiting the NOX2 expression and ROS production. Our results indicate a therapeutic potential of salidroside in the management of oxidative-stress-associated cardiovascular dysfunction. PMID:23589720

  14. Salidroside Improves Homocysteine-Induced Endothelial Dysfunction by Reducing Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Sin Bond Leung

    2013-01-01

    Full Text Available Hyperhomocysteinemia is associated with an increased risk for cardiovascular diseases through increased oxidative stress. Salidroside is an active ingredient of the root of Rhodiola rosea with documented antioxidative, antihypoxia and neuroprotective properties. However, the vascular benefits of salidroside against endothelial dysfunction have yet to be explored. The present study, therefore, aimed to investigate the protective effect of salidroside on homocysteine-induced endothelial dysfunction. Functional studies on the rat aortas were performed to delineate the vascular effect of salidroside. DHE imaging was used to evaluate the reactive oxygen species (ROS level in aortic wall and endothelial cells. Western blotting was performed to assess the protein expression associated with oxidative stress and nitric oxide (NO bioavailability. Exposure to homocysteine attenuated endothelium-dependent relaxations in rat aortas while salidroside pretreatment rescued it. Salidroside inhibited homocystein-induced elevation in the NOX2 expression and ROS overproduction in both aortas and cultured endothelial cells and increased phosphorylation of eNOS which was diminished by homocysteine. The present study shows that salidroside is effective in preserving the NO bioavailability and thus protects against homocysteine-induced impairment of endothelium-dependent relaxations, largely through inhibiting the NOX2 expression and ROS production. Our results indicate a therapeutic potential of salidroside in the management of oxidative-stress-associated cardiovascular dysfunction.

  15. The transcription factor MEF2C negatively controls angiogenic sprouting of endothelial cells depending on oxygen.

    Directory of Open Access Journals (Sweden)

    Caterina Sturtzel

    Full Text Available The MADS box transcription factor MEF2C has been detected by us to be upregulated by the angiogenic factors VEGF-A and bFGF in endothelial cells. We have here investigated its potential role for angiogenesis. MEF2C was surprisingly found to strongly inhibit angiogenic sprouting, whereas a dominant negative mutant rather induced sprouting. The factor mainly affected migratory processes of endothelial cells, but not proliferation. In gene profiling experiments we delineated the alpha-2-macroglobulin gene to be highly upregulated by MEF2C. Further data confirmed that MEF2C in endothelial cells indeed induces alpha-2-macroglobulin mRNA as well as the secretion of alpha-2-macroglobulin and that conditioned supernatants of cells overexpressing MEF2C inhibit sprouting. Alpha-2-macroglobulin mediates, at least to a large extent, the inhibitory effects of MEF2C as is shown by knockdown of alpha-2-macroglobulin mRNA by lentiviral shRNA expression which reduces the inhibitory effect. However, under hypoxic conditions the VEGF-A/bFGF-mediated upregulation of MEF2C is reduced and the production of alpha-2-macroglobulin largely abolished. Taken together, this suggests that the MEF2C/alpha-2-macroglobulin axis functions in endothelial cells as a negative feed-back mechanism that adapts sprouting activity to the oxygen concentration thus diminishing inappropriate and excess angiogenesis.

  16. Endothelial interleukin-6 defines the tumorigenic potential of primary human cancer stem cells.

    Science.gov (United States)

    Krishnamurthy, Sudha; Warner, Kristy A; Dong, Zhihong; Imai, Atsushi; Nör, Carolina; Ward, Brent B; Helman, Joseph I; Taichman, Russell S; Bellile, Emily L; McCauley, Laurie K; Polverini, Peter J; Prince, Mark E; Wicha, Max S; Nör, Jacques E

    2014-11-01

    Head and neck squamous cell carcinomas (HNSCC) contain a small subpopulation of stem cells endowed with unique capacity to generate tumors. These cancer stem cells (CSC) are localized in perivascular niches and rely on crosstalk with endothelial cells for survival and self-renewal, but the mechanisms involved are unknown. Here, we report that stromal interleukin (IL)-6 defines the tumorigenic capacity of CSC sorted from primary human HNSCC and transplanted into mice. In search for the cellular source of Interleukin-6 (IL-6), we observed a direct correlation between IL-6 levels in tumor-associated endothelial cells and the tumorigenicity of CSC. In vitro, endothelial cell-IL-6 enhanced orosphere formation, p-STAT3 activation, survival, and self-renewal of human CSC. Notably, a humanized anti-IL-6R antibody (tocilizumab) inhibited primary human CSC-mediated tumor initiation. Collectively, these data demonstrate that endothelial cell-secreted IL-6 defines the tumorigenic potential of CSC, and suggest that HNSCC patients might benefit from therapeutic inhibition of IL-6/IL-6R signaling. PMID:25078284

  17. Reinforcing endothelial junctions prevents microvessel permeability increase and tumor cell adhesion in microvessels in vivo

    Science.gov (United States)

    Fu, Bingmei M.; Yang, Jinlin; Cai, Bin; Fan, Jie; Zhang, Lin; Zeng, Min

    2015-10-01

    Tumor cell adhesion to the microvessel wall is a critical step during tumor metastasis. Vascular endothelial growth factor (VEGF), a secretion of tumor cells, can increase microvessel permeability and tumor cell adhesion in the microvessel. To test the hypothesis that inhibiting permeability increase can reduce tumor cell adhesion, we used in vivo fluorescence microscopy to measure both microvessel permeability and adhesion rates of human mammary carcinoma MDA-MB-231 cells in post-capillary venules of rat mesentery under the treatment of VEGF and a cAMP analog, 8-bromo-cAMP, which can decrease microvessel permeability. By immunostaining adherens junction proteins between endothelial cells forming the microvessel wall, we further investigated the structural mechanism by which cAMP abolishes VEGF-induced increase in microvessel permeability and tumor cell adhesion. Our results demonstrate that 1) Pretreatment of microvessels with cAMP can abolish VEGF-enhanced microvessel permeability and tumor cell adhesion; 2) Tumor cells prefer to adhere to the endothelial cell junctions instead of cell bodies; 3) VEGF increases microvessel permeability and tumor cell adhesion by compromising endothelial junctions while cAMP abolishes these effects of VEGF by reinforcing the junctions. These results suggest that strengthening the microvessel wall integrity can be a potential approach to inhibiting hematogenous tumor metastasis.

  18. Endothelial Semaphorin 7A Promotes Inflammation in Seawater Aspiration-Induced Acute Lung Injury

    Directory of Open Access Journals (Sweden)

    Minlong Zhang

    2014-10-01

    Full Text Available Inflammation is involved in the pathogenesis of seawater aspiration-induced acute lung injury (ALI. Although several studies have shown that Semaphorin 7A (SEMA7A promotes inflammation, there are limited reports regarding immunological function of SEMA7A in seawater aspiration-induced ALI. Therefore, we investigated the role of SEMA7A during seawater aspiration-induced ALI. Male Sprague–Dawley rats were underwent seawater instillation. Then, lung samples were collected at an indicated time for analysis. In addition, rat pulmonary microvascular endothelial cells (RPMVECs were cultured and then stimulated with 25% seawater for indicated time point. After these treatments, cells samples were collected for analysis. In vivo, seawater instillation induced lung histopathologic changes, pro-inflammation cytokines release and increased expression of SEMA7A. In vitro, seawater stimulation led to pro-inflammation cytokine release, cytoskeleton remodeling and increased monolayer permeability in pulmonary microvascular endothelial cells. In addition, knockdown of hypoxia-inducible factor (HIF-1α inhibited the seawater induced increase expression of SEMA7A. Meanwhile, knockdown of SEMA7A by specific siRNA inhibited the seawater induced aberrant inflammation, endothelial cytoskeleton remodeling and endothelial permeability. These results suggest that SEMA7A is critical in the development of lung inflammation and pulmonary edema in seawater aspiration-induced ALI, and may be a therapeutic target for this disease.

  19. Blood cells and endothelial barrier function.

    Science.gov (United States)

    Rodrigues, Stephen F; Granger, D Neil

    2015-01-01

    The barrier properties of endothelial cells are critical for the maintenance of water and protein balance between the intravascular and extravascular compartments. An impairment of endothelial barrier function has been implicated in the genesis and/or progression of a variety of pathological conditions, including pulmonary edema, ischemic stroke, neurodegenerative disorders, angioedema, sepsis and cancer. The altered barrier function in these conditions is often linked to the release of soluble mediators from resident cells (e.g., mast cells, macrophages) and/or recruited blood cells. The interaction of the mediators with receptors expressed on the surface of endothelial cells diminishes barrier function either by altering the expression of adhesive proteins in the inter-endothelial junctions, by altering the organization of the cytoskeleton, or both. Reactive oxygen species (ROS), proteolytic enzymes (e.g., matrix metalloproteinase, elastase), oncostatin M, and VEGF are part of a long list of mediators that have been implicated in endothelial barrier failure. In this review, we address the role of blood borne cells, including, neutrophils, lymphocytes, monocytes, and platelets, in the regulation of endothelial barrier function in health and disease. Attention is also devoted to new targets for therapeutic intervention in disease states with morbidity and mortality related to endothelial barrier dysfunction. PMID:25838983

  20. Human umbilical cord blood mononuclear cells activate the survival protein Akt in cardiac myocytes and endothelial cells that limits apoptosis and necrosis during hypoxia.

    Science.gov (United States)

    Henning, Robert J; Dennis, Steve; Sawmiller, Darrell; Hunter, Lorynn; Sanberg, Paul; Miller, Leslie

    2012-06-01

    We have previously reported that human umbilical cord blood mononuclear cells (HUCBC), which contain hematopoietic, mesenchymal, and endothelial stem cells, can significantly reduce acute myocardial infarction size. To determine the mechanism whereby HUCBC increase myocyte and vascular endothelial cell survival, we treated cardiac myocytes and coronary artery endothelial cells in separate experiments with HUCBC plus culture media or culture media alone and subjected the cells to 24 h of hypoxia or normoxia. We then determined in myocytes and endothelial cells activation of the cell survival protein Akt by Western blots. We also determined in these cells apoptosis by annexin V staining and necrosis by propidium iodide staining. Thereafter, we inhibited with API, a specific and sensitive Akt inhibitor, Akt activation in myocytes and endothelial cells cultured with HUCBC during hypoxia and determined cell apoptosis and necrosis. In cells cultured without HUCBC, hypoxia only slightly activated Akt. Moreover, hypoxia increased myocyte apoptosis by ≥ 226% and necrosis by 58% in comparison with myocytes in normoxia. Hypoxic treatment of endothelial cells without HUCBC increased apoptosis by 94% and necrosis by 59%. In contrast, hypoxia did not significantly affect HUCBC. Moreover, in myocyte + HUCBC cultures in hypoxia, HUCBC induced a ≥ 135% increase in myocyte phospho-Akt. Akt activation decreased myocyte apoptosis by 76% and necrosis by 35%. In endothelial cells, HUCBC increased phospho-Akt by 116%. HUCBC also decreased endothelial cell apoptosis by 58% and necrosis by 42%. Inhibition of Akt with API in myocytes and endothelial cells cultured with HUCBC during hypoxia nearly totally prevented the HUCBC-induced decrease in apoptosis and necrosis. We conclude that HUCBC can significantly decrease hypoxia-induced myocyte and endothelial cell apoptosis and necrosis by activating Akt in these cells and in this manner HUCBC can limit myocardial ischemia and injury. PMID

  1. Endothelial dysfunction impairs vascular neurotransmission in tail arteries.

    Science.gov (United States)

    Sousa, Joana B; Fresco, Paula; Diniz, Carmen

    2015-01-01

    The present study intends to clarify if endothelium dysfunction impairs vascular sympathetic neurotransmission. Electrically-evoked tritium overflow (100 pulses/5 Hz) was evaluated in arteries (intact and denuded) or exhibiting some degree of endothelium dysfunction (spontaneously hypertensive arteries), pre-incubated with [(3)H]-noradrenaline in the presence of enzymes (nitric oxide synthase (NOS); nicotinamide adenine dinucleotide phosphate (NADPH) oxidase; xanthine oxidase; cyclooxygenase; adenosine kinase) inhibitors and a nucleoside transporter inhibitor. Inhibition of endothelial nitric oxide synthase with L-NIO dihydrochloride reduced tritium overflow in intact arteries whereas inhibition of neuronal nitric oxide synthase with Nω-Propyl-L-arginine hydrochloride was devoid of effect showing that only endothelial nitric oxide synthase is involved in vascular sympathetic neuromodulation. Inhibition of enzymes involved in reactive oxygen species or prostaglandins production with apocynin and allopurinol or indomethacin, respectively, failed to alter tritium overflow. A facilitation or reduction of tritium overflow was observed in the presence of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) or of 5-iodotubericidin, respectively, but only in intact arteries. These effects can be ascribed to a tonic inhibitory effect mediated by A1 receptors. In denuded and hypertensive arteries, 7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c] pyrimidine (SCH 58261) reduced tritium overflow, suggesting the occurrence of a tonic activation of A2A receptors. When endogenous adenosine bioavailability was increased by the nucleoside transporter inhibitor, S-(4-Nitrobenzyl)-6-thioinosine, tritium overflow increased in intact, denuded and hypertensive arteries. Among the endothelium-derived substances studied that could alter vascular sympathetic transmission only adenosine/adenosine receptor mediated mechanisms were clearly impaired by endothelium injury

  2. Matrix stiffness regulates endothelial cell proliferation through septin 9.

    Directory of Open Access Journals (Sweden)

    Yi-Ting Yeh

    Full Text Available Endothelial proliferation, which is an important process in vascular homeostasis, can be regulated by the extracellular microenvironment. In this study we demonstrated that proliferation of endothelial cells (ECs was enhanced on hydrogels with high stiffness (HSG, 21.5 kPa in comparison to those with low stiffness (LSG, 1.72 kPa. ECs on HSG showed markedly prominent stress fibers and a higher RhoA activity than ECs on LSG. Blockade of RhoA attenuated stress fiber formation and proliferation of ECs on HSG, but had little effect on ECs on LSG; enhancement of RhoA had opposite effects. The phosphorylations of Src and Vav2, which are positive RhoA upstream effectors, were higher in ECs on HSG. The inhibition of Src/Vav2 attenuated the HSG-mediated RhoA activation and EC proliferation but exhibited nominal effects on ECs on LSG. Septin 9 (SEPT9, the negative upstream effector for RhoA, was significantly higher in ECs on LSG. The inhibition of SEPT9 increased RhoA activation, Src/Vav2 phosphorylations, and EC proliferation on LSG, but showed minor effects on ECs on HSG. We further demonstrated that the inactivation of integrin α(vβ(3 caused an increase of SEPT9 expression in ECs on HSG to attenuate Src/Vav2 phosphorylations and inhibit RhoA-dependent EC proliferation. These results demonstrate that the SEPT9/Src/Vav2/RhoA pathway constitutes an important molecular mechanism for the mechanical regulation of EC proliferation.

  3. Nuclear PIM1 confers resistance to rapamycin-impaired endothelial proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Walpen, Thomas; Kalus, Ina [Research Unit, Division Internal Medicine, University Hospital Zuerich, 8091 Zuerich (Switzerland); Schwaller, Juerg [Department of Biomedicine, University of Basel, 4031 Basel (Switzerland); Peier, Martin A. [Research Unit, Division Internal Medicine, University Hospital Zuerich, 8091 Zuerich (Switzerland); Battegay, Edouard J. [Research Unit, Division Internal Medicine, University Hospital Zuerich, 8091 Zuerich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), 8057 Zuerich (Switzerland); Humar, Rok, E-mail: Rok.Humar@usz.ch [Research Unit, Division Internal Medicine, University Hospital Zuerich, 8091 Zuerich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), 8057 Zuerich (Switzerland)

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer Pim1{sup -/-} endothelial cell proliferation displays increased sensitivity to rapamycin. Black-Right-Pointing-Pointer mTOR inhibition by rapamycin enhances PIM1 cytosolic and nuclear protein levels. Black-Right-Pointing-Pointer Truncation of Pim1 beyond serine 276 results in nuclear localization of the kinase. Black-Right-Pointing-Pointer Nuclear PIM1 increases endothelial proliferation independent of rapamycin. -- Abstract: The PIM serine/threonine kinases and the mTOR/AKT pathway integrate growth factor signaling and promote cell proliferation and survival. They both share phosphorylation targets and have overlapping functions, which can partially substitute for each other. In cancer cells PIM kinases have been reported to produce resistance to mTOR inhibition by rapamycin. Tumor growth depends highly on blood vessel infiltration into the malignant tissue and therefore on endothelial cell proliferation. We therefore investigated how the PIM1 kinase modulates growth inhibitory effects of rapamycin in mouse aortic endothelial cells (MAEC). We found that proliferation of MAEC lacking Pim1 was significantly more sensitive to rapamycin inhibition, compared to wildtype cells. Inhibition of mTOR and AKT in normal MAEC resulted in significantly elevated PIM1 protein levels in the cytosol and in the nucleus. We observed that truncation of the C-terminal part of Pim1 beyond Ser 276 resulted in almost exclusive nuclear localization of the protein. Re-expression of this Pim1 deletion mutant significantly increased the proliferation of Pim1{sup -/-} cells when compared to expression of the wildtype Pim1 cDNA. Finally, overexpression of the nuclear localization mutant and the wildtype Pim1 resulted in complete resistance to growth inhibition by rapamycin. Thus, mTOR inhibition-induced nuclear accumulation of PIM1 or expression of a nuclear C-terminal PIM1 truncation mutant is sufficient to increase endothelial cell proliferation

  4. Role of precoating in artificial vessel endothelialization

    Institute of Scientific and Technical Information of China (English)

    肖乐; 时德

    2004-01-01

    @@ As the progress of vascular surgery, artificial vessels have become the substitute for large and middle diameter vessels but have not for small diameter ones owing to thrombogenesis and occlusion within a short period of time after being applied.Artificial vessel endothelialization is one of the ideal methods to resolve such issue and has been improved continuously since Herring1 in 1978 put forward this term in the first time and utilized vascular endothelial cells (ECs) harvested from living animals to perform the test of artificial vessel endothelialization.

  5. Microvascular endothelial cells of the corpus luteum

    Directory of Open Access Journals (Sweden)

    Spanel-Borowski Katherina

    2003-11-01

    Full Text Available Abstract The cyclic nature of the capillary bed in the corpus luteum offers a unique experimental model to examine the life cycle of endothelial cells, involving discrete physiologically regulated steps of angiogenesis, blood vessel maturation and blood vessel regression. The granulosa cells and theca cells of the developing antral follicle and the steroidogenic cells of the corpus luteum produce and respond to angiogenic factors and vasoactive peptides. Following ovulation the neovascularization during the early stages of corpus luteum development has been compared to the rapid angiogenesis observed during tumor formation. On the other end of the spectrum, the microvascular endothelial cells are the first cells to undergo apoptosis at the onset of corpus luteum regression. Important insights on the morphology and function of luteal endothelial cells have been gained from a combination of in vitro and in vivo studies on endothelial cells. Endothelial cells communicate with cells comprising the functional unit of the corpus luteum, i.e., other vascular cells, steroidogenic cells, and immune cells. This review is designed to provide an overview of the types of endothelial cells present in the corpus luteum and their involvement in corpus luteum development and regression. Available evidence indicates that microvascular endothelial cells of the corpus luteum are not alike, and may differ during the process of angiogenesis and angioregression. The contributions of vasoactive peptides generated by the luteal endothelin-1 and the renin-angiotensin systems are discussed in context with the function of endothelial cells during corpus luteum formation and regression. The ability of two cytokines, tumor necrosis factor alpha and interferon gamma, are evaluated as paracrine mediators of endothelial cell function during angioregression. Finally, chemokines are discussed as a vital endothelial cell secretory products that contribute to the recruitment of

  6. Antiangiogenic properties of cafestol, a coffee diterpene, in human umbilical vein endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuaiyu [Food Biotechnology, University of Science and Technology, 113 Gwahangno, Yuseong-gu, Daejeon 305-333 (Korea, Republic of); Korea Food Research Institute, 516 Baekhyun-dong, Bundang-gu, Songnam, Kyungki-do 463-746 (Korea, Republic of); Yoon, Yeo Cho; Sung, Mi-Jeong; Hur, Haeng-Jeon [Korea Food Research Institute, 516 Baekhyun-dong, Bundang-gu, Songnam, Kyungki-do 463-746 (Korea, Republic of); Park, Jae-Ho, E-mail: jaehoparkmail@gmail.com [Korea Food Research Institute, 516 Baekhyun-dong, Bundang-gu, Songnam, Kyungki-do 463-746 (Korea, Republic of)

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Cafestol inhibits tube formation and migration of VEGF-stimulated HUVEC. Black-Right-Pointing-Pointer Cafestol inhibits phosphorylation of FAK and Akt. Black-Right-Pointing-Pointer Cafestol decreases NO production. -- Abstract: As angiogenesis plays important roles in tumor growth and metastasis, searching for antiangiogenic compounds is a promising tactic for treating cancers. Cafestol, a diterpene found mainly in unfiltered coffee, provides benefit through varied biological activity, including antitumorigenic, antioxidative, and anti-inflammatory effects. This study aimed to investigate the effects of cafestol on angiogenesis and to uncover the associated mechanism. We show that cafestol inhibits angiogenesis of human umbilical vascular endothelial cells. This inhibition affects the following specific steps of the angiogenic process: proliferation, migration, and tube formation. The inhibitory effects of cafestol are accompanied by decreasing phosphorylation of FAK and Akt and by a decrease in nitric oxide production. Overall, cafestol inhibits angiogenesis by affecting the angiogenic signaling pathway.

  7. TAL-1/SCL and Its Partners E47 and LMO2 Up-Regulate VE-Cadherin Expression in Endothelial Cells▿ †

    OpenAIRE

    Deleuze, Virginie; Chalhoub, Elias; El-Hajj, Rawan; Dohet, Christiane; Le Clech, Mikaël; Couraud, Pierre-Olivier; Huber, Philippe; Mathieu, Danièle

    2007-01-01

    The basic helix-loop-helix TAL-1/SCL essential for hematopoietic development is also required during vascular development for embryonic angiogenesis. We reported that TAL-1 acts positively on postnatal angiogenesis by stimulating endothelial morphogenesis. Here, we investigated the functional consequences of TAL-1 silencing in human primary endothelial cells. We found that TAL-1 knockdown caused the inhibition of in vitro tubulomorphogenesis, which was associated with a dramatic reduction in ...

  8. Enalapril improves endothelial function in patients with migraine: A randomized, double-blind, placebo-controlled trial

    Directory of Open Access Journals (Sweden)

    Shaghayegh Haghjooy Javanmard

    2011-01-01

    Conclusions: These results indicate that ACE inhibition can improve endothelial function in patients with migraine, as it has been shown by both FMD and serum levels of nitric oxide. The mechanism could be either that Enalapril limits the angiotensin II-induced production of superoxide radicals which would normally inactivate nitric oxide, or that it may increase bradykinin-mediated nitric oxide release.

  9. Deletion of Protein Tyrosine Phosphatase 1B (PTP1B Enhances Endothelial Cyclooxygenase 2 Expression and Protects Mice from Type 1 Diabetes-Induced Endothelial Dysfunction.

    Directory of Open Access Journals (Sweden)

    David J Herren

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B dephosphorylates receptors tyrosine kinase and acts as a molecular brake on insulin signaling pathway. Conditions of metabolic dysfunction increase PTP1B, when deletion of PTP1B protects against metabolic disorders by increasing insulin signaling. Although vascular insulin signaling contributes to the control of glucose disposal, little is known regarding the direct role of PTP1B in the control of endothelial function. We hypothesized that metabolic dysfunctions increase PTP1B expression in endothelial cells and that PTP1B deletion prevents endothelial dysfunction in situation of diminished insulin secretion. Type I diabetes (T1DM was induced in wild-type (WT and PTP1B-deficient mice (KO with streptozotocin (STZ injection. After 28 days of T1DM, KO mice exhibited a similar reduction in body weight and plasma insulin levels and a comparable increase in glycemia (WT: 384 ± 20 vs. Ko: 432 ± 29 mg/dL, cholesterol and triglycerides, as WT mice. T1DM increased PTP1B expression and impaired endothelial NO-dependent relaxation, in mouse aorta. PTP1B deletion did not affect baseline endothelial function, but preserved endothelium-dependent relaxation, in T1DM mice. NO synthase inhibition with L-NAME abolished endothelial relaxation in control and T1DM WT mice, whereas L-NAME and the cyclooxygenases inhibitor indomethacin were required to abolish endothelium relaxation in T1DM KO mice. PTP1B deletion increased COX-2 expression and PGI2 levels, in mouse aorta and plasma respectively, in T1DM mice. In parallel, simulation of diabetic conditions increased PTP1B expression and knockdown of PTP1B increased COX-2 but not COX-1 expression, in primary human aortic endothelial cells. Taken together these data indicate that deletion of PTP1B protected endothelial function by compensating the reduction in NO bioavailability by increasing COX-2-mediated release of the vasodilator prostanoid PGI2, in T1DM mice.

  10. Beyond gastric acid reduction: Proton pump inhibitors induce heme oxygenase-1 in gastric and endothelial cells

    International Nuclear Information System (INIS)

    Proton pump inhibitors (PPIs) have been demonstrated to prevent gastric mucosal injury by mechanisms independent of acid inhibition. Here we demonstrate that both omeprazole and lansoprazole protect human gastric epithelial and endothelial cells against oxidative stress. This effect was abrogated in the presence of the heme oxygenase-1 (HO-1) inhibitor ZnBG. Exposure to either PPI resulted in a strong induction of HO-1 expression on mRNA and protein level, and led to an increased activity of this enzyme. Expression of cyclooxygenase isoforms 1 and 2 remained unaffected, and COX-inhibitors did not antagonize HO-1 induction by PPIs. Our results suggest that the antioxidant defense protein HO-1 is a target of PPIs in both endothelial and gastric epithelial cells. HO-1 induction might account for the gastroprotective effects of PPIs independently of acid inhibition, especially in NSAID gastropathy. Moreover, our findings provide additional perspectives for a possible but yet unexplored use of PPIs in vasoprotection

  11. [Regulation of endothelial cells functions by ultrasonic supernatant of Streptococcus pyogenes].

    Science.gov (United States)

    Starikova, É A; Lebedeva, A M; Burova, L A; Freĭdlin, I S

    2012-01-01

    Angiogenesis and vascular remodeling are vital components of inflammation. As an inflammation evolves, vessels expand to supply nutrients and inflammatory mediators, sustaining the accumulation of activated immune cells in the affected tissues. This study demonstrates that ultrasonic supernatant of Streptoccocus pyogenes has anti-angiogenic properties: inhibit EA.hy 926 human endothelial cells metabolism, adhesion, migration, proliferation. At the same time Streptococcal components inhibit signaling pathways that involve FAK and ERK1/2. These effects are not associated with necrosis or apoptosis in cell culture. Taking together, our results suggest that impairing angiogenic function of endothelial cells might contribute to the reduced tissue perfusion, hypoxia, and subsequent regional tissue necrosis caused by Streptococci group A. PMID:22567900

  12. Jujuboside B Reduces Vascular Tension by Increasing Ca2+ Influx and Activating Endothelial Nitric Oxide Synthase.

    Directory of Open Access Journals (Sweden)

    Yixiu Zhao

    Full Text Available Jujuboside B has been reported to have protective effect on many cardiovascular diseases. However, the effects of Jujuboside B on vascular tension and endothelial function are unknown. The present study investigated the effects of Jujuboside B on reducing vascular tension, protecting endothelial function and the potential mechanisms. The tension of isolated rat thoracic aorta ring was measured by Wire myograph system. The concentration of nitric oxide (NO and the activity of endothelial nitric oxide synthase (eNOS in human aortic endothelial cells (HAECs were determined by Griess reagent method and enzyme-linked immune sorbent assay. The protein levels of eNOS and p-eNOS at Serine-1177 were determined by western blot analysis. Intracellular Ca2+ concentration in HAECs was measured by laser confocal imaging microscopy. Results showed that Jujuboside B reduced the tension of rat thoracic aorta rings with intact endothelium in a dose-dependent manner. L-NAME, KN93, EGTA, SKF96365, iberiotoxin and glibenclamide significantly attenuated Jujuboside B-induced vasodilation in endothelium-intact tissues. In contrast, indometacin and 4-DAMP had no such effects. Jujuboside B also promoted NO generation and increased eNOS activity, which were attenuated by L-NAME, EGTA and SKF96365. Moreover, Jujuboside B increased intracellular Ca2+ concentration dose-dependently, which was inhibited by EGTA and SKF96365. Besides, Jujuboside B induced a rapid Ca2+ influx instantaneously after depleting intracellular Ca2+ store, which was significantly inhibited by SKF96365. In conclusion, this study preliminarily confirmed that Jujuboside B reduced vascular tension endothelium-dependently. The underlying mechanisms involved that Jujuboside B increased extracellular Ca2+ influx through endothelial transient receptor potential cation (TRPC channels, phosphorylated eNOS and promoted NO generation in vascular endothelial cells. In addition, Jujuboside B-induced vasodilation

  13. Junctional communication is induced in migrating capillary endothelial cells.

    Science.gov (United States)

    Pepper, M S; Spray, D C; Chanson, M; Montesano, R; Orci, L; Meda, P

    1989-12-01

    Using an in vitro model in which a confluent monolayer of capillary endothelial cells is mechanically wounded, gap junction-mediated intercellular communication has been studied by loading the cells with the fluorescent dye, Lucifer Yellow. Approximately 40-50% of the cells in a nonwounded confluent monolayer were coupled in groups of four to five cells (basal level). Basal levels of communication were also observed in sparse and preconfluent cultures, but were reduced in postconfluent monolayers. 30 min after wounding, coupling was markedly reduced between cells lining the wound. Communication at the wound was partially reestablished by 2 h, exceeded basal levels after 6 h and reached a maximum after 24 h, at which stage approximately 90% of the cells were coupled in groups of six to seven cells. When the wound had closed (after 8 d), the increase in communication was no longer observed. Induction of wound-associated communication was unaffected by exposure of the cells to the DNA synthesis inhibitor mitomycin C, but was prevented by the protein synthesis inhibitor, cycloheximide. The induction of wound-associated communication was also inhibited when migration was prevented by placing the cells immediately after wounding at 22 degrees C or after exposure to cytochalasin D, suggesting that the increase in communication is dependent on cells migrating into the wound area. In contrast, migration was not prevented when coupling was blocked by exposure of the cells to retinoic acid, although this agent did disrupt the characteristic sheet-like pattern of migration typically seen during endothelial repair. These results suggest that junctional communication may play an important role in wound repair, possibly by coordinating capillary endothelial cell migration. PMID:2592412

  14. Fate of cerium dioxide nanoparticles in endothelial cells: exocytosis

    International Nuclear Information System (INIS)

    Although cytotoxicity and endocytosis of nanoparticles have been the subject of numerous studies, investigations regarding exocytosis as an important mechanism to reduce intracellular nanoparticle accumulation are rather rare and there is a distinct lack of knowledge. The current study investigated the behavior of human microvascular endothelial cells to exocytose cerium dioxide (CeO2) nanoparticles (18.8 nm) by utilization of specific inhibitors [brefeldin A; nocodazole; methyl-β-cyclodextrin (MβcD)] and different analytical methods (flow cytometry, transmission electron microscopy, inductively coupled plasma mass spectrometry). Overall, it was found that endothelial cells were able to release CeO2 nanoparticles via exocytosis after the migration of nanoparticle containing endosomes toward the plasma membrane. The exocytosis process occurred mainly by fusion of vesicular membranes with plasma membrane resulting in the discharge of vesicular content to extracellular environment. Nevertheless, it seems to be likely that nanoparticles present in the cytosol could leave the cells in a direct manner. MβcD treatment led to the strongest inhibition of the nanoparticle exocytosis indicating a significant role of the plasma membrane cholesterol content in the exocytosis process. Brefeldin A (inhibitor of Golgi-to-cell-surface-transport) caused a higher inhibitory effect on exocytosis than nocodazole (inhibitor of microtubules). Thus, the transfer from distal Golgi compartments to the cell surface influenced the exocytosis process of the CeO2 nanoparticles more than the microtubule-associated transport. In conclusion, endothelial cells, which came in contact with nanoparticles, e.g., after intravenously applied nano-based drugs, can regulate their intracellular nanoparticle amount, which is necessary to avoid adverse nanoparticle effects on cells

  15. Cerebrovascular endothelial dysfunction induced by mercury exposure at low concentrations.

    Science.gov (United States)

    Wiggers, Giulia Alessandra; Furieri, Lorena Barros; Briones, Ana María; Avendaño, María Soledad; Peçanha, Franck Maciel; Vassallo, Dalton Valentim; Salaices, Mercedes; Alonso, María Jesús

    2016-03-01

    Mercury (Hg) has many harmful vascular effects by increasing oxidative stress, inflammation and vascular/endothelial dysfunction, all of which may contribute to cerebrovascular diseases development. We aimed to explore the effects of chronic low-mercury concentration on vascular function in cerebral arteries and the mechanisms involved. Basilar arteries from control (vehicle-saline solution, im) and mercury chloride (HgCl2)-treated rats for 30 days (first dose 4.6μg/kg, subsequent dose 0.07μg/kg/day, im, to cover daily loss) were used. Vascular reactivity, protein expression, nitric oxide (NO) levels and superoxide anion (O2(-)) production were analyzed. HgCl2 exposure increased serotonin contraction and reduced the endothelium-dependent vasodilatation to bradykinin. After NO synthase inhibition, serotonin responses were enhanced more in control than in mercury-treated rats while bradykinin-induced relaxation was abolished. NO levels were greater in control than Hg-treated rats. Tiron and indomethacin reduced vasoconstriction and increased the bradykinin-induced relaxation only in HgCl2-treated rats. Vascular O2(-) production was greater in mercury-treated when compared to control rats. Protein expressions of endothelial NO synthase, copper/zinc (Cu/Zn), Manganese (Mn) and extracellular-superoxide dismutases were similar in cerebral arteries from both groups. Results suggest that Hg treatment increases cerebrovascular reactivity by reducing endothelial negative modulation and NO bioavailability; this effect seems to be dependent on increased reactive oxygen species and prostanoids generation. These findings show, for the first time, that brain vasculature are also affected by chronic mercury exposure and offer further evidence that even at small concentration, HgCl2 is hazardous and might be an environmental risk factor accounting for cerebral vasospasm development. PMID:26945730

  16. Fate of cerium dioxide nanoparticles in endothelial cells: exocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, Claudia, E-mail: Claudia.Strobel@med.uni-jena.de [Jena University Hospital – Friedrich Schiller University Jena, Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology (Germany); Oehring, Hartmut [Jena University Hospital – Friedrich Schiller University Jena, Institute of Anatomy II (Germany); Herrmann, Rudolf [University of Augsburg, Department of Physics (Germany); Förster, Martin [Jena University Hospital – Friedrich Schiller University Jena, Department of Internal Medicine I, Division of Pulmonary Medicine and Allergy/Immunology (Germany); Reller, Armin [University of Augsburg, Department of Physics (Germany); Hilger, Ingrid, E-mail: ingrid.hilger@med.uni-jena.de [Jena University Hospital – Friedrich Schiller University Jena, Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology (Germany)

    2015-05-15

    Although cytotoxicity and endocytosis of nanoparticles have been the subject of numerous studies, investigations regarding exocytosis as an important mechanism to reduce intracellular nanoparticle accumulation are rather rare and there is a distinct lack of knowledge. The current study investigated the behavior of human microvascular endothelial cells to exocytose cerium dioxide (CeO{sub 2}) nanoparticles (18.8 nm) by utilization of specific inhibitors [brefeldin A; nocodazole; methyl-β-cyclodextrin (MβcD)] and different analytical methods (flow cytometry, transmission electron microscopy, inductively coupled plasma mass spectrometry). Overall, it was found that endothelial cells were able to release CeO{sub 2} nanoparticles via exocytosis after the migration of nanoparticle containing endosomes toward the plasma membrane. The exocytosis process occurred mainly by fusion of vesicular membranes with plasma membrane resulting in the discharge of vesicular content to extracellular environment. Nevertheless, it seems to be likely that nanoparticles present in the cytosol could leave the cells in a direct manner. MβcD treatment led to the strongest inhibition of the nanoparticle exocytosis indicating a significant role of the plasma membrane cholesterol content in the exocytosis process. Brefeldin A (inhibitor of Golgi-to-cell-surface-transport) caused a higher inhibitory effect on exocytosis than nocodazole (inhibitor of microtubules). Thus, the transfer from distal Golgi compartments to the cell surface influenced the exocytosis process of the CeO{sub 2} nanoparticles more than the microtubule-associated transport. In conclusion, endothelial cells, which came in contact with nanoparticles, e.g., after intravenously applied nano-based drugs, can regulate their intracellular nanoparticle amount, which is necessary to avoid adverse nanoparticle effects on cells.

  17. Carnosine facilitates nitric oxide production in endothelial f-2 cells.

    Science.gov (United States)

    Takahashi, Satoru; Nakashima, Yukiko; Toda, Ken-Ichi

    2009-11-01

    We examined the effect of carnosine (beta-alanyl-histidine) on nitric oxide (NO) production and endothelial NO synthase (eNOS) activation in endothelial F-2 cells. Carnosine enhanced NO production in a dose-dependent manner, and the stimulatory effect of carnosine was observed at concentrations exceeding 5 mM. The carnosine-stimulated NO production was inhibited by N(G)-nitro-L-arginine methyl ester, but not by N(G)-nitro-D-arginine methyl ester. In contrast, beta-alanine, histidine (carnosine components) and anserine (N-methyl carnosine) failed to increase NO production. Carnosine had no effect on NO production for the initial 5 min, but thereafter resulted in a gradual increase in NO production up to 15 min. Carnosine did not induce phosphorylation of eNOS at Ser1177. The carnosine-induced increase in NO production was observed even when extracellular Ca2+ was depleted by ethylene glycol bis(2-aminoethyl ether)-N,N,N'-N'-tetraacetic acid however, the effect was abolished upon depletion of intracellular Ca2+ by BAPTA. After F-2 cells were incubated with carnosine for 4 min, intracellular Ca2+ concentration gradually increased. The carnosine-induced increase in intracellular Ca2+ concentration occurred even in the absence of extracellular Ca2+. These results indicate that carnosine facilitates NO production in endothelial F-2 cells. It is also suggested that eNOS is activated by Ca2+, which might be released from intracellular Ca2+ stores in response to carnosine. PMID:19881293

  18. An IP-10 (CXCL10-derived peptide inhibits angiogenesis.

    Directory of Open Access Journals (Sweden)

    Cecelia C Yates-Binder

    Full Text Available Angiogenesis plays a critical role in processes such as organ development, wound healing, and tumor growth. It requires well-orchestrated integration of soluble and matrix factors and timely recognition of such signals to regulate this process. Previous work has shown that newly forming vessels express the chemokine receptor CXC receptor 3 (CXCR3 and, activation by its ligand IP-10 (CXCL10, both inhibits development of new vasculature and causes regression of newly formed vessels. To identify and develop new therapeutic agents to limit or reverse pathological angiogenesis, we identified a 21 amino acid fragment of IP-10, spanning the α-helical domain residues 77-98, that mimic the actions of the whole IP-10 molecule on endothelial cells. Treatment of the endothelial cells with the 22 amino acid fragment referred to as IP-10p significantly inhibited VEGF-induced endothelial motility and tube formation in vitro, properties critical for angiogenesis. Using a Matrigel plug assay in vivo, we demonstrate that IP-10p both prevented vessel formation and induced involution of nascent vessels. CXCR3 neutralizing antibody was able to block the inhibitory effects of the IP-10p, demonstrating specificity of the peptide. Inhibition of endothelial function by IP-10p was similar to that described for IP-10, secondary to CXCR3-mediated increase in cAMP production, activation of PKA inhibiting cell migration, and inhibition of VEGF-mediated m-calpain activation. IP-10p provides a novel therapeutic agent that inhibits endothelial cell function thus, allowing for the modulation of angiogenesis.

  19. Dehydroepiandrosterone Protects Endothelial Cells against Inflammatory Events Induced by Urban Particulate Matter and Titanium Dioxide Nanoparticles

    OpenAIRE

    Elizabeth Huerta-García; Angélica Montiél-Dávalos; Ernesto Alfaro-Moreno; Gisela Gutiérrez-Iglesias; Rebeca López-Marure

    2013-01-01

    Particulate matter (PM) and nanoparticles (NPs) induce activation and dysfunction of endothelial cells characterized by inhibition of proliferation, increase of adhesion and adhesion molecules expression, increase of ROS production, and death. DHEA has shown anti-inflammatory and antioxidant properties in HUVEC activated with proinflammatory agents. We evaluated if DHEA could protect against some inflammatory events produced by PM10 and TiO2 NPs in HUVEC. Adhesion was evaluated by a coculture...

  20. Cancer gene therapy with iCaspase-9 transcriptionally targeted to tumor endothelial cells

    OpenAIRE

    Song, Wenying; Dong, Zhihong; Jin, Taocong; Mantellini, Maria G.; Núñez, Gabriel; Jacques E Nör

    2008-01-01

    Antiangiogenic therapies have shown varying results partly because each tumor type secretes a distinct panel of angiogenic factors to sustain its own microvascular network. In addition, recent evidence demonstrated that tumors develop resistance to antiangiogenic therapy by turning on alternate angiogenic pathways when one pathway is therapeutically inhibited. Here, we test the hypothesis that expression of a caspase-based artificial death switch in tumor-associated endothelial cells will dis...

  1. Effect of Antimicrobial Compounds on Balamuthia mandrillaris Encystment and Human Brain Microvascular Endothelial Cell Cytopathogenicity▿

    Science.gov (United States)

    Siddiqui, Ruqaiyyah; Matin, Abdul; Warhurst, David; Stins, Monique; Khan, Naveed Ahmed

    2007-01-01

    Cycloheximide, ketoconazole, or preexposure of organisms to cytochalasin D prevented Balamuthia mandrillaris-associated cytopathogenicity in human brain microvascular endothelial cells, which constitute the blood-brain barrier. In an assay for inhibition of cyst production, these three agents prevented the production of cysts, suggesting that the biosynthesis of proteins and ergosterol and the polymerization of actin are important in cytopathogenicity and encystment. PMID:17875991

  2. Reinforcing endothelial junctions prevents microvessel permeability increase and tumor cell adhesion in microvessels in vivo

    OpenAIRE

    Bingmei M Fu; Jinlin Yang; Bin Cai; Jie Fan; Lin Zhang; Min Zeng

    2015-01-01

    Tumor cell adhesion to the microvessel wall is a critical step during tumor metastasis. Vascular endothelial growth factor (VEGF), a secretion of tumor cells, can increase microvessel permeability and tumor cell adhesion in the microvessel. To test the hypothesis that inhibiting permeability increase can reduce tumor cell adhesion, we used in vivo fluorescence microscopy to measure both microvessel permeability and adhesion rates of human mammary carcinoma MDA-MB-231 cells in post-capillary v...

  3. Heparin Attenuates the Expression of TNFα-induced Cerebral Endothelial Cell Adhesion Molecule

    OpenAIRE

    Lee, Jeong Ho; Kim, Chul Hoon; Seo, Gi Ho; Lee, Jinu; Kim, Joo Hee; Kim, Dong Goo; Ahn, Young Soo

    2008-01-01

    Heparin is a well-known anticoagulant widely used in various clinical settings. Interestingly, recent studies have indicated that heparin also has anti-inflammatory effects on neuroinflammation-related diseases, such as Alzheimer's disease and meningitis. However, the underlying mechanism of its actions remains unclear. In the present study, we examined the anti-inflammatory mechanism of heparin in cultured cerebral endothelial cells (CECs), and found that heparin inhibited the tumor necrosis...

  4. Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells

    OpenAIRE

    Patsch, Christoph; Challet-Meylan, Ludivine; Eva C Thoma; Urich, Eduard; Heckel, Tobias; O’Sullivan, John F.; Grainger, Stephanie J.; Kapp, Friedrich G.; Sun, Lin; Christensen, Klaus; Xia, Yulei; Florido, Mary H. C.; He, Wei; Pan, Wei; Prummer, Michael

    2015-01-01

    The use of human pluripotent stem cells for in vitro disease modeling and clinical applications requires protocols that convert these cells into relevant adult cell types. Here, we report the rapid and efficient differentiation of human pluripotent stem cells into vascular endothelial and smooth muscle cells. We found that GSK3 inhibition and BMP4 treatment rapidly committed pluripotent cells to a mesodermal fate and subsequent exposure to VEGF or PDGF-BB resulted in the differentiation of ei...

  5. Protective Pleiotropic Effect of Flavonoids on NAD + Levels in Endothelial Cells Exposed to High Glucose

    OpenAIRE

    Boesten, Daniëlle M. P. H. J.; von Ungern-Sternberg, Saskia N. I.; den Hartog, Gertjan J. M.; Aalt Bast

    2015-01-01

    NAD+ is important for oxidative metabolism by serving as an electron transporter. Hyperglycemia decreases NAD+ levels by activation of the polyol pathway and by overactivation of poly(ADP-ribose)-polymerase (PARP). We examined the protective role of three structurally related flavonoids (rutin, quercetin, and flavone) during high glucose conditions in an in vitro model using human umbilical vein endothelial cells (HUVECs). Additionally we assessed the ability of these flavonoids to inhibit al...

  6. Nuclear factor kappaB-mediated down-regulation of adhesion molecules: possible mechanism for inhibitory activity of bigelovin against inflammatory monocytes adhesion to endothelial cells.

    Science.gov (United States)

    Nam, Kung-Woo; Oh, Goo Taeg; Seo, Eun-Kyoung; Kim, Kyeong Ho; Koo, Uk; Lee, Sung-Jin; Mar, Woongchon

    2009-06-22

    The flowers of Inula britannica L. var. chinensis (Rupr.) Reg. (Compositae) are used in traditional medicine to treat asthma, chronic bronchitis, and acute pleurisy in China and Korea. However, the pharmacological actions of Inula britannica L. var. chinensis on endothelial cells and inflammatory monocytes are not clear. In this study, we investigated whether bigelovin, a sesquiterpene lactone isolated from the flowers of Inula britannica L. var. chinensis, inhibits monocyte adhesion and adhesion molecule expression in brain endothelial cells. We measured tumor necrosis factor-alpha (TNF-alpha)-enhanced Raw264.7 monocyte binding to brain endothelial cells and the levels of cell adhesion molecules, including vascular adhesion molecule-1 (VCAM-1), intracellular adhesion molecule-1 (ICAM-1), and endothelial-selectin (E-selectin) on the surface of brain endothelial cells. Bigelovin significantly inhibited these in a dose-dependent manner without affecting cell viability. Furthermore, bigelovin suppressed the nuclear factor kappaB (NF-kappaB) promoter-driven luciferase activity, NF-kappaB activation, and degradation of NF-kappaB inhibitor protein alpha (IkappaBalpha). These results indicate that bigelovin inhibits inflammatory monocyte adhesion to endothelial cells and the expression of VCAM-1, ICAM-1, and E-selectin by blocking IkappaBalpha degradation and NF-kappaB activation. PMID:19429369

  7. Anti-β2GPI antibodies stimulate endothelial cell microparticle release via a nonmuscle myosin II motor protein-dependent pathway.

    Science.gov (United States)

    Betapudi, Venkaiah; Lominadze, George; Hsi, Linda; Willard, Belinda; Wu, Meifang; McCrae, Keith R

    2013-11-28

    The antiphospholipid syndrome is characterized by thrombosis and recurrent fetal loss in patients with antiphospholipid antibodies (APLAs). Most pathogenic APLAs are directed against β2-glycoprotein I (β2GPI), a plasma phospholipid binding protein. One mechanism by which circulating antiphospholipid/anti-β2GPI antibodies may promote thrombosis is by inducing the release of procoagulant microparticles from endothelial cells. However, there is no information available concerning the mechanisms by which anti-β2GPI antibodies induce microparticle release. In seeking to identify proteins phosphorylated during anti-β2GPI antibody-induced endothelial activation, we observed phosphorylation of nonmuscle myosin II regulatory light chain (RLC), which regulates cytoskeletal assembly. In parallel, we observed a dramatic increase in the formation of filamentous actin, a two- to fivefold increase in the release of endothelial cell microparticles, and a 10- to 15-fold increase in the expression of E-selectin, intercellular adhesion molecule 1, vascular cell adhesion molecule 1, and tissue factor messenger RNA. Microparticle release, but not endothelial cell surface E-selectin expression, was blocked by inhibiting RLC phosphorylation or nonmuscle myosin II motor activity. These results suggest that distinct pathways, some of which mediate cytoskeletal assembly, regulate the endothelial cell response to anti-β2GPI antibodies. Inhibition of nonmuscle myosin II activation may provide a novel approach for inhibiting microparticle release by endothelial cells in response to anti-β2GPI antibodies. PMID:23954892

  8. High-throughput screening identifies idarubicin as a preferential inhibitor of smooth muscle versus endothelial cell proliferation.

    Directory of Open Access Journals (Sweden)

    Shakti A Goel

    Full Text Available Intimal hyperplasia is the cause of the recurrent occlusive vascular disease (restenosis. Drugs currently used to treat restenosis effectively inhibit smooth muscle cell (SMC proliferation, but also inhibit the growth of the protective luminal endothelial cell (EC lining, leading to thrombosis. To identify compounds that selectively inhibit SMC versus EC proliferation, we have developed a high-throughput screening (HTS format using human cells and have employed this to screen a multiple compound collection (NIH Clinical Collection. We developed an automated, accurate proliferation assay in 96-well plates using human aortic SMCs and ECs. Using this HTS format we screened a 447-drug NIH Clinical Library. We identified 11 compounds that inhibited SMC proliferation greater than 50%, among which idarubicin exhibited a unique feature of preferentially inhibiting SMC versus EC proliferation. Concentration-response analysis revealed this differential effect most evident over an ∼10 nM-5 µM window. In vivo testing of idarubicin in a rat carotid injury model at 14 days revealed an 80% reduction of intimal hyperplasia and a 45% increase of lumen size with no significant effect on re-endothelialization. Taken together, we have established a HTS assay of human vascular cell proliferation, and identified idarubicin as a selective inhibitor of SMC versus EC proliferation both in vitro and in vivo. Screening of larger and more diverse compound libraries may lead to the discovery of next-generation therapeutics that can inhibit intima hyperplasia without impairing re-endothelialization.

  9. Endothelial progenitor cells in cardiovascular diseases

    Institute of Scientific and Technical Information of China (English)

    Poay; Sian; Sabrina; Lee; Kian; Keong; Poh

    2014-01-01

    Endothelial dysfunction has been associated with the development of atherosclerosis and cardiovascular diseases. Adult endothelial progenitor cells(EPCs) are derived from hematopoietic stem cells and are capable of forming new blood vessels through a process of vas-culogenesis. There are studies which report correlations between circulating EPCs and cardiovascular risk fac-tors. There are also studies on how pharmacotherapies may influence levels of circulating EPCs. In this review, we discuss the potential role of endothelial progenitor cells as both diagnostic and prognostic biomarkers. In addition, we look at the interaction between cardio-vascular pharmacotherapies and endothelial progenitor cells. We also discuss how EPCs can be used directly and indirectly as a therapeutic agent. Finally, we evalu-ate the challenges facing EPC research and how these may be overcome.

  10. Genetics Home Reference: Fuchs endothelial dystrophy

    Science.gov (United States)

    ... a protein that is part of type VIII collagen. Type VIII collagen is largely found within the cornea, surrounding the endothelial cells. Specifically, type VIII collagen is a major component of a tissue at ...

  11. Novel mechanisms of endothelial dysfunction in diabetes

    OpenAIRE

    Yang, Guang; Lucas, Rudolf; Caldwell, Ruth; YAO, Lin; Romero, Maritza J.; Caldwell, Robert W.

    2010-01-01

    Diabetes mellitus is a major risk factor for cardiovascular morbidity and mortality. This condition increases the risk of developing coronary, cerebrovascular, and peripheral arterial disease fourfold. Endothelial dysfunction is a major contributor to the pathogenesis of vascular disease in diabetes mellitus patients and has recently received increased attention. In this review article, some recent developments that could improve the knowledge of diabetes-induced endothelial dysfunction are d...

  12. Reactive Oxygen Species, SUMOylation, and Endothelial Inflammation

    OpenAIRE

    Nhat-Tu Le; Corsetti, James P; Janet L. Dehoff-Sparks; Sparks, Charles E.; Keigi Fujiwara; Jun-ichi Abe

    2012-01-01

    Although the exact mechanism through which NADPH oxidases (Nox’s) generate reactive oxygen species (ROS) is still not completely understood, it is widely considered that ROS accumulation is the cause of oxidative stress in endothelial cells. Increasing pieces of evidence strongly indicate the role for ROS in endothelial inflammation and dysfunction and subsequent development of atherosclerotic plaques, which are causes of various pathological cardiac events. An overview for a causative relati...

  13. Endothelial cell micropatterning: Methods, effects, and applications

    OpenAIRE

    Anderson, Deirdre E.J.; Hinds, Monica T.

    2011-01-01

    The effects of flow on endothelial cells have been widely examined for the ability of fluid shear stress to alter cell morphology and function; however, the effects of endothelial cell morphology without flow have only recently been observed. An increase in lithographic techniques in cell culture spurred a corresponding increase in research aiming to confine cell morphology. These studies lead to a better understanding of how morphology and cytoskeletal configuration affect the structure and ...

  14. In vivo endothelial gene regulation in diabetes

    OpenAIRE

    Shohet Ralph V; Maresh J Gregory

    2008-01-01

    Abstract Background An authentic survey of the transcript-level response of the diabetic endothelium in vivo is key to understanding diabetic cardiovascular complications such as accelerated atherosclerosis and endothelial dysfunction. Methods We used streptozotocin to induce a model of type I diabetes in transgenic mice that express green fluorescent protein under the control of an endothelial-specific promoter (Tie2-GFP) allowing rapid isolation of aortic endothelium. Three weeks after trea...

  15. Blood cells and endothelial barrier function

    OpenAIRE

    Rodrigues, Stephen F.; Granger, D Neil

    2015-01-01

    The barrier properties of endothelial cells are critical for the maintenance of water and protein balance between the intravascular and extravascular compartments. An impairment of endothelial barrier function has been implicated in the genesis and/or progression of a variety of pathological conditions, including pulmonary edema, ischemic stroke, neurodegenerative disorders, angioedema, sepsis and cancer. The altered barrier function in these conditions is often linked to the release of solub...

  16. Hypoxia-induced endothelial NO synthase gene transcriptional activation is mediated through the tax-responsive element in endothelial cells.

    Science.gov (United States)

    Min, Jiho; Jin, Yoon-Mi; Moon, Je-Sung; Sung, Min-Sun; Jo, Sangmee Ahn; Jo, Inho

    2006-06-01

    Although hypoxia is known to induce upregulation of endothelial NO synthase (eNOS) gene expression, the underlying mechanism is largely unclear. In this study, we show that hypoxia increases eNOS gene expression through the binding of phosphorylated cAMP-responsive element binding (CREB) protein (pCREB) to the eNOS gene promoter. Hypoxia (1% O2) increased both eNOS expression and NO production, peaking at 24 hours, in bovine aortic endothelial cells, and these increases were accompanied by increases in pCREB. Treatment with the protein kinase A inhibitor H-89 or transfection with dominant-negative inhibitor of CREB reversed the hypoxia-induced increases in eNOS expression and NO production, with concomitant inhibition of the phosphorylation of CREB induced by hypoxia, suggesting an involvement of protein kinase A/pCREB-mediated pathway. To map the regulatory elements of the eNOS gene responsible for pCREB binding under hypoxia, we constructed an eNOS gene promoter (-1600 to +22 nucleotides) fused with a luciferase reporter gene [pGL2-eNOS(-1600)]. Hypoxia (for 24-hour incubation) increased the promoter activity by 2.36+/-0.18-fold in the bovine aortic endothelial cells transfected with pGL2-eNOS(-1600). However, progressive 5'-deletion from -1600 to -873 completely attenuated the hypoxia-induced increase in promoter activity. Electrophoretic mobility shift, anti-pCREB antibody supershift, and site-specific mutation analyses showed that pCREB is bound to the Tax-responsive element (TRE) site, a cAMP-responsive element-like site, located at -924 to -921 of the eNOS promoter. Our data demonstrate that the interaction between pCREB and the Tax-responsive element site within the eNOS promoter may represent a novel mechanism for the mediation of hypoxia-stimulated eNOS gene expression. PMID:16651461

  17. Endothelial dysfunction in cirrhosis: Role of inflammationand oxidative stress

    Institute of Scientific and Technical Information of China (English)

    Balasubramaniyan Vairappan

    2015-01-01

    This review describes the recent developments in thepathobiology of endothelial dysfunction (ED) in thecontext of cirrhosis with portal hypertension and definesnovel strategies and potential targets for therapy. EDhas prognostic implications by predicting unfavourableearly hepatic events and mortality in patients withportal hypertension and advanced liver diseases. EDcharacterised by an impaired bioactivity of nitric oxide(NO) within the hepatic circulation and is mainly dueto decreased bioavailability of NO and accelerateddegradation of NO with reactive oxygen species.Furthermore, elevated inflammatory markers also inhibitNO synthesis and causes ED in cirrhotic liver. Therefore,improvement of NO availability in the hepatic circulationcan be beneficial for the improvement of endothelialdysfunction and associated portal hypertension inpatients with cirrhosis. Furthermore, therapeutic agentsthat are identified in increasing NO bioavailabilitythrough improvement of hepatic endothelial nitricoxide synthase (eNOS) activity and reduction in hepaticasymmetric dimethylarginine, an endogenous modulatorof eNOS and a key mediator of elevated intrahepaticvascular tone in cirrhosis would be interestingtherapeutic approaches in patients with endothelialdysfunction and portal hypertension in advanced liverdiseases.

  18. Zinc regulates iNOS-derived nitric oxide formation in endothelial cells

    Directory of Open Access Journals (Sweden)

    Miriam M. Cortese-Krott

    2014-01-01

    Full Text Available Aberrant production of nitric oxide (NO by inducible NO synthase (iNOS has been implicated in the pathogenesis of endothelial dysfunction and vascular disease. Mechanisms responsible for the fine-tuning of iNOS activity in inflammation are still not fully understood. Zinc is an important structural element of NOS enzymes and is known to inhibit its catalytical activity. In this study we aimed to investigate the effects of zinc on iNOS activity and expression in endothelial cells. We found that zinc down-regulated the expression of iNOS (mRNA+protein and decreased cytokine-mediated activation of the iNOS promoter. Zinc-mediated regulation of iNOS expression was due to inhibition of NF-κB transactivation activity, as determined by a decrease in both NF-κB-driven luciferase reporter activity and expression of NF-κB target genes, including cyclooxygenase 2 and IL-1β. However, zinc did not affect NF-κB translocation into the nucleus, as assessed by Western blot analysis of nuclear and cytoplasmic fractions. Taken together our results demonstrate that zinc limits iNOS-derived high output NO production in endothelial cells by inhibiting NF-κB-dependent iNOS expression, pointing to a role of zinc as a regulator of iNOS activity in inflammation.

  19. Effects of NOX1 on fibroblastic changes of endothelial cells in radiation‑induced pulmonary fibrosis.

    Science.gov (United States)

    Choi, Seo-Hyun; Kim, Miseon; Lee, Hae-June; Kim, Eun-Ho; Kim, Chun-Ho; Lee, Yoon-Jin

    2016-05-01

    Lung fibrosis is a major complication in radiation‑induced lung damage following thoracic radiotherapy, while the underlying mechanism has remained to be elucidated. The present study performed immunofluorescence and immunoblot assays on irradiated human pulmonary artery endothelial cells (HPAECs) with or without pre‑treatment with VAS2870, a novel NADPH oxidase (NOX) inhibitor, or small hairpin (sh)RNA against NOX1, ‑2 or ‑4. VAS2870 reduced the cellular reactive oxygen species content induced by 5 Gy radiation in HPAECs and inhibited phenotypic changes in fibrotic cells, including increased alpha smooth muscle actin and vimentin, and decreased CD31 and vascular endothelial cadherin expression. These fibrotic changes were significantly inhibited by treatment with NOX1 shRNA, but not by NOX2 or NOX4 shRNA. Next, the role of NOX1 in pulmonary fibrosis development was assessed in the lung tissues of C57BL/6J mice following thoracic irradiation using trichrome staining. Administration of an NOX1‑specific inhibitor suppressed radiation‑induced collagen deposition and fibroblastic changes in the endothelial cells (ECs) of these mice. The results suggested that radiation‑induced pulmonary fibrosis may be efficiently reduced by specific inhibition of NOX1, an effect mediated by reduction of fibrotic changes of ECs. PMID:27053172

  20. Effects of NOX1 on fibroblastic changes of endothelial cells in radiation-induced pulmonary fibrosis

    Science.gov (United States)

    CHOI, SEO-HYUN; KIM, MISEON; LEE, HAE-JUNE; KIM, EUN-HO; KIM, CHUN-HO; LEE, YOON-JIN

    2016-01-01

    Lung fibrosis is a major complication in radiation-induced lung damage following thoracic radiotherapy, while the underlying mechanism has remained to be elucidated. The present study performed immunofluorescence and immunoblot assays on irradiated human pulmonary artery endothelial cells (HPAECs) with or without pre-treatment with VAS2870, a novel NADPH oxidase (NOX) inhibitor, or small hairpin (sh)RNA against NOX1, -2 or -4. VAS2870 reduced the cellular reactive oxygen species content induced by 5 Gy radiation in HPAECs and inhibited phenotypic changes in fibrotic cells, including increased alpha smooth muscle actin and vimentin, and decreased CD31 and vascular endothelial cadherin expression. These fibrotic changes were significantly inhibited by treatment with NOX1 shRNA, but not by NOX2 or NOX4 shRNA. Next, the role of NOX1 in pulmonary fibrosis development was assessed in the lung tissues of C57BL/6J mice following thoracic irradiation using trichrome staining. Administration of an NOX1-specific inhibitor suppressed radiation-induced collagen deposition and fibroblastic changes in the endothelial cells (ECs) of these mice. The results suggested that radiation-induced pulmonary fibrosis may be efficiently reduced by specific inhibition of NOX1, an effect mediated by reduction of fibrotic changes of ECs. PMID:27053172

  1. Extracellular matrix inspired surface functionalization with heparin, fibronectin and VEGF provides an anticoagulant and endothelialization supporting microenvironment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xue [Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu (China); Liu, Tao [Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu (China); Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai’an (China); Chen, Yuan [Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu (China); Zhang, Kun [Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu (China); School of Life Science, Zhengzhou University, Zhengzhou (China); Maitz, Manfred F. [Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu (China); Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, Hohe Str. 06, 01069 Dresden (Germany); Pan, Changjiang [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai’an (China); Chen, Junying, E-mail: chenjy@263.net [Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu (China); Huang, Nan [Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu (China)

    2014-11-30

    Highlights: • Surface modification with fibronectin, heparin and VEGF could selectively anticoagulant and promote endothelialization. • The bioactivity of biomolecules was more efficiently maintained via specific intermolecular interaction. • Poly-l-lysine interlayer was more feasible and the degradation product had no harm to human body. - Abstract: The biocompatibility of currently used coronary artery stent is still far from perfect, which closely related to insufficient endothelialization and thrombus formation. In this study, heparin, fibronectin and VEGF were immobilized on Ti surface to construct a multifunctional microenvironment with favorable properties to inhibit thrombosis formation and promote endothelialization simultaneously. The microenvironment on Ti surface was characterized in detail and demonstrated that the Hep/Fn/VEGF biofunctional coating was constructed successfully on Ti surface. The influence of surface properties such as chemical composition, roughness, hydrophilicity, and binding density of biomolecules on the performances of hemocompatibility and cytocompatibility was evaluated and discussed. Modified surface significantly enhanced the AT III binding density and prolonged the clotting time. In vitro platelet adhesion and activation assays further proved that the modified surface presented favorable anti-coagulant property. In addition, the proliferation of endothelial progenitor cells (EPCs) and endothelial cells (ECs) on the Hep/Fn/VEGF biofunctional coating was significantly promoted. In conclusion, the Hep/Fn/VEGF biofunctional coating was successfully constructed with desirable anticoagulant and endothelialization supporting properties. This work may provide a promising approach for biofunctional surface modification of coronary artery stent to acquire a desired multifunctional microenvironment.

  2. Endothelial Dicer promotes atherosclerosis and vascular inflammation by miRNA-103-mediated suppression of KLF4

    Science.gov (United States)

    Hartmann, Petra; Zhou, Zhe; Natarelli, Lucia; Wei, Yuanyuan; Nazari-Jahantigh, Maliheh; Zhu, Mengyu; Grommes, Jochen; Steffens, Sabine; Weber, Christian; Schober, Andreas

    2016-01-01

    MicroRNAs regulate the maladaptation of endothelial cells (ECs) to naturally occurring disturbed blood flow at arterial bifurcations resulting in arterial inflammation and atherosclerosis in response to hyperlipidemic stress. Here, we show that reduced endothelial expression of the RNAse Dicer, which generates almost all mature miRNAs, decreases monocyte adhesion, endothelial C–X–C motif chemokine 1 (CXCL1) expression, atherosclerosis and the lesional macrophage content in apolipoprotein E knockout mice (Apoe−/−) after exposure to a high-fat diet. Endothelial Dicer deficiency reduces the expression of unstable miRNAs, such as miR-103, and promotes Krüppel-like factor 4 (KLF4)-dependent gene expression in murine atherosclerotic arteries. MiR-103 mediated suppression of KLF4 increases monocyte adhesion to ECs by enhancing nuclear factor-κB-dependent CXCL1 expression. Inhibiting the interaction between miR-103 and KLF4 reduces atherosclerosis, lesional macrophage accumulation and endothelial CXCL1 expression. Overall, our study suggests that Dicer promotes endothelial maladaptation and atherosclerosis in part by miR-103-mediated suppression of KLF4. PMID:26837267

  3. Anti-atherosclerotic activity of platycodin D derived from roots of Platycodon grandiflorum in human endothelial cells.

    Science.gov (United States)

    Wu, Jingtao; Yang, Guiwen; Zhu, Wenxing; Wen, Wujun; Zhang, Fumiao; Yuan, Jinduo; An, Liguo

    2012-01-01

    This study examined the effects of platycodin D (PD), a triterpene saponin from the the root of Platycodon grandiflorum A.DC on human umbilical vein endothelial cells (HUVECs) in vitro, which were pre-treated with PD (0.01, 0.15, 0.25 mg/mL), respectively, and treated with 50 mg/L oxidized low-density lipoprotein (oxLDL). The levels of nitric oxide (NO) and malonaldehyde (MAD) in the culture medium, vascular cell adhesion molecule-1 (VCAM-1) and intercellular cell adhesion molecule-1 (ICAM-1) mRNA expression in endothelium cells and the adhesion of monocytes to endothelial cells were measured. The results showed that PD increased NO concentration and decreased MDA level induced by oxLDL in the medium of endothelial cells. Moreover, PD significantly inhibited the oxLDL-induced increase in monocyte adhesion to endothelial cells as well as decreasing mRNA expression levels of VCAM-1 and ICAM-1 on these cells. Based on these results, it is suggested that PD is a promising anti-atherosclerotic activity, which is at least in part the result of its increasing NO concentration, reducing the oxLDL-induced cell adhesion molecule expression in endothelial cells and the endothelial adhesion to monocytes. PMID:22863916

  4. Extracellular matrix inspired surface functionalization with heparin, fibronectin and VEGF provides an anticoagulant and endothelialization supporting microenvironment

    International Nuclear Information System (INIS)

    Highlights: • Surface modification with fibronectin, heparin and VEGF could selectively anticoagulant and promote endothelialization. • The bioactivity of biomolecules was more efficiently maintained via specific intermolecular interaction. • Poly-l-lysine interlayer was more feasible and the degradation product had no harm to human body. - Abstract: The biocompatibility of currently used coronary artery stent is still far from perfect, which closely related to insufficient endothelialization and thrombus formation. In this study, heparin, fibronectin and VEGF were immobilized on Ti surface to construct a multifunctional microenvironment with favorable properties to inhibit thrombosis formation and promote endothelialization simultaneously. The microenvironment on Ti surface was characterized in detail and demonstrated that the Hep/Fn/VEGF biofunctional coating was constructed successfully on Ti surface. The influence of surface properties such as chemical composition, roughness, hydrophilicity, and binding density of biomolecules on the performances of hemocompatibility and cytocompatibility was evaluated and discussed. Modified surface significantly enhanced the AT III binding density and prolonged the clotting time. In vitro platelet adhesion and activation assays further proved that the modified surface presented favorable anti-coagulant property. In addition, the proliferation of endothelial progenitor cells (EPCs) and endothelial cells (ECs) on the Hep/Fn/VEGF biofunctional coating was significantly promoted. In conclusion, the Hep/Fn/VEGF biofunctional coating was successfully constructed with desirable anticoagulant and endothelialization supporting properties. This work may provide a promising approach for biofunctional surface modification of coronary artery stent to acquire a desired multifunctional microenvironment

  5. Endothelial cell–restricted disruption of FoxM1 impairs endothelial repair following LPS-induced vascular injury

    OpenAIRE

    Zhao, You-Yang; Gao, Xiao-Pei; Zhao, Yidan D.; Mirza, Muhammad K.; Frey, Randall S.; Kalinichenko, Vladimir V.; Wang, I-Ching; Costa, Robert H.; Malik, Asrar B.

    2006-01-01

    Recovery of endothelial integrity after vascular injury is vital for endothelial barrier function and vascular homeostasis. However, little is known about the molecular mechanisms of endothelial barrier repair following injury. To investigate the functional role of forkhead box M1 (FoxM1) in the mechanism of endothelial repair, we generated endothelial cell–restricted FoxM1-deficient mice (FoxM1 CKO mice). These mutant mice were viable and exhibited no overt phenotype. However, in response to...

  6. HZE ⁵⁶Fe-ion irradiation induces endothelial dysfunction in rat aorta: role of xanthine oxidase.

    Science.gov (United States)

    Soucy, Kevin G; Lim, Hyun Kyo; Kim, Jae Hyung; Oh, Young; Attarzadeh, David O; Sevinc, Baris; Kuo, Maggie M; Shoukas, Artin A; Vazquez, Marcelo E; Berkowitz, Dan E

    2011-10-01

    Ionizing radiation has been implicated in the development of significant cardiovascular complications. Since radiation exposure is associated with space exploration, astronauts are potentially at increased risk of accelerated cardiovascular disease. This study investigated the effect of high atomic number, high-energy (HZE) iron-ion radiation on vascular and endothelial function as a model of space radiation. Rats were exposed to a single whole-body dose of iron-ion radiation at doses of 0, 0.5 or 1 Gy. In vivo aortic stiffness and ex vivo aortic tension responses were measured 6 and 8 months after exposure as indicators of chronic vascular injury. Rats exposed to 1 Gy iron ions demonstrated significantly increased aortic stiffness, as measured by pulse wave velocity. Aortic rings from irradiated rats exhibited impaired endothelial-dependent relaxation consistent with endothelial dysfunction. Acute xanthine oxidase (XO) inhibition or reactive oxygen species (ROS) scavenging restored endothelial-dependent responses to normal. In addition, XO activity was significantly elevated in rat aorta 4 months after whole-body irradiation. Furthermore, XO inhibition, initiated immediately after radiation exposure and continued until euthanasia, completely inhibited radiation-dependent XO activation. ROS production was elevated after 1 Gy irradiation while production of nitric oxide (NO) was significantly impaired. XO inhibition restored NO and ROS production. Finally, dietary XO inhibition preserved normal endothelial function and vascular stiffness after radiation exposure. These results demonstrate that radiation induced XO-dependent ROS production and nitroso-redox imbalance, leading to chronic vascular dysfunction. As a result, XO is a potential target for radioprotection. Enhancing the understanding of vascular radiation injury could lead to the development of effective methods to ameliorate radiation-induced vascular damage. PMID:21787183

  7. TRPM2 channel regulates endothelial barrier function.

    Science.gov (United States)

    Hecquet, Claudie M; Ahmmed, Gias U; Malik, Asrar B

    2010-01-01

    Oxidative [Au1]stress, through the production of oxygen metabolites such as hydrogen peroxide[Au2] (H(2)O(2)), increases vascular endothelial permeability and plays a crucial role in several lung diseases. The transient receptor potential (melastatin) 2 (TRPM2) is an oxidant-sensitive, nonselective cation channel that is widely expressed in mammalian tissues, including the vascular endothelium. We have demonstrated the involvement of TRPM2 in mediating oxidant-induced calcium entry and endothelial hyperpermeability in cultured pulmonary artery endothelial cells. Here, we provide evidence that neutrophil activation-dependent increase in endothelial permeability and neutrophil extravasation requires TRPM2 in cultured endothelial cells. In addition, protein kinase Calpha (PKCalpha) that rapidly colocalizes with the short (nonconducting) TRPM2 isoform after exposure to hydrogen peroxide positively regulates calcium entry through the functional TRPM2 channel. Thus, increase in lung microvessel permeability and neutrophil sequestration depends on the activation of endothelial TRPM2 by neutrophilic oxidants and on PKCalpha regulation of TRPM2 channel activity. Manipulating TRPM2 function in the endothelium may represent a novel strategy aimed to prevent oxidative stress-related vascular dysfunction. PMID:20204729

  8. In vivo endothelial gene regulation in diabetes

    Directory of Open Access Journals (Sweden)

    Shohet Ralph V

    2008-04-01

    Full Text Available Abstract Background An authentic survey of the transcript-level response of the diabetic endothelium in vivo is key to understanding diabetic cardiovascular complications such as accelerated atherosclerosis and endothelial dysfunction. Methods We used streptozotocin to induce a model of type I diabetes in transgenic mice that express green fluorescent protein under the control of an endothelial-specific promoter (Tie2-GFP allowing rapid isolation of aortic endothelium. Three weeks after treatment, endothelial cells were isolated from animals with blood glucose > 350 mg/dl. Aortae from the root to the renal bifurcation were rapidly processed by mincing and proteolytic digestion followed by fluorescent activated cell sorting to yield endothelial cell populations of >95% purity. RNA was isolated from >50,000 endothelial cells and subjected to oligo dT amplification prior to transcriptional analysis on microarrays displaying long oligonucleotides representing 32,000 murine transcripts. Five regulated transcripts were selected for analysis by real-time PCR. Results Within replicate microarray experiments, 19 transcripts were apparently dysregulated by at least 70% within diabetic mice. Up-regulation of glycam1, slc36a2, ces3, adipsin and adiponectin was confirmed by real-time PCR. Conclusion By comprehensively examining cellular gene responses in vivo in a whole animal model of type I diabetes, we have identified novel regulation of key endothelial transcripts that likely contribute to the metabolic and pro-inflammatory responses that accompany diabetes.

  9. Endothelial Dysfunction in Chronic Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Curtis M. Steyers

    2014-06-01

    Full Text Available Chronic inflammatory diseases are associated with accelerated atherosclerosis and increased risk of cardiovascular diseases (CVD. As the pathogenesis of atherosclerosis is increasingly recognized as an inflammatory process, similarities between atherosclerosis and systemic inflammatory diseases such as rheumatoid arthritis, inflammatory bowel diseases, lupus, psoriasis, spondyloarthritis and others have become a topic of interest. Endothelial dysfunction represents a key step in the initiation and maintenance of atherosclerosis and may serve as a marker for future risk of cardiovascular events. Patients with chronic inflammatory diseases manifest endothelial dysfunction, often early in the course of the disease. Therefore, mechanisms linking systemic inflammatory diseases and atherosclerosis may be best understood at the level of the endothelium. Multiple factors, including circulating inflammatory cytokines, TNF-α (tumor necrosis factor-α, reactive oxygen species, oxidized LDL (low density lipoprotein, autoantibodies and traditional risk factors directly and indirectly activate endothelial cells, leading to impaired vascular relaxation, increased leukocyte adhesion, increased endothelial permeability and generation of a pro-thrombotic state. Pharmacologic agents directed against TNF-α-mediated inflammation may decrease the risk of endothelial dysfunction and cardiovascular disease in these patients. Understanding the precise mechanisms driving endothelial dysfunction in patients with systemic inflammatory diseases may help elucidate the pathogenesis of atherosclerosis in the general population.

  10. Regulation of microRNA-155 in endothelial inflammation by targeting nuclear factor (NF)-κB P65.

    Science.gov (United States)

    Wu, Xiao-Yuan; Fan, Wen-Dong; Fang, Rong; Wu, Gui-Fu

    2014-11-01

    Increasing evidences have illuminated the fundamental role of inflammation in mediating all stages of atherosclerosis. miR-155, a typical multi-functional miRNA, has recently emerged as a novel component of inflammatory signal transduction in the pathogenesis of atherosclerosis. However, little is known about whether endothelial highly expressed miR-155 can regulate endothelial inflammation-related transcription factors and the predicted role of miR-155 as a negative feedback regulator in endothelial inflammation involved in atherosclerosis. Bioinformatics analysis showed that RELA (nuclear factor-κB p65) is a potential target gene of miR-155 and this was confirmed by a luciferase reporter assay. Our results show that microRNA-155 mediate endothelial inflammation and decrease NFкB p65 and adhesion molecule expression in TNFα-stimulated endothelial cells. Transfection with miR-155 significantly inhibited TNFα-induced monocyte adhesion to endothelium. Inhibition of miR-155 enhanced p65 level and endothelial inflammatory response which was counteracted through the depletion of P65 by Si-P65. On the other hand, knockdown of eNOS, another target of miR-155, while transfecting with miR-155 inhibitor resulted in more significant inflammatory response. miR-155 is highly expressed in TNFα treated HUVECs, deprived of endogenous p65 could reverse TNFα-induced upregulation of miR-155. Thus, TNFα induced miR-155 may serve as a negative feedback regulator in endothelial inflammation involved in atherosclerosis by targeting nuclear transcription factor P65. These results provide a rationale for intervention of intracellular microRNA as possible anti-atherosclerotic targets. PMID:24905663

  11. Improving hemocompatibility and accelerating endothelialization of vascular stents by a copper-titanium film.

    Science.gov (United States)

    Liu, Hengquan; Pan, Changjiang; Zhou, Shijie; Li, Junfeng; Huang, Nan; Dong, Lihua

    2016-12-01

    Bio-inorganic films and drug-eluting coatings are usually used to improve the hemocompatibility and inhibit restenosis of vascular stent; however, above bio-performances couldn't combine together with single materials. In the present study, we reported a simple approach to fabricate a metal film with the aim of imparting the stent with good blood compatibility and accelerating endothelialization. The films with various ratios of Cu and Ti were prepared through the physical vapor deposition. Phase structure and element composition were investigated by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. The releasing volume of copper ion in Cu/Ti film was determined by immersing test. The hemolysis ratio, platelet adhesion and clotting time were applied to evaluate the hemocompatibility. The proliferative behaviors of endothelial cells and smooth muscle cells under certain copper concentration were investigated in vitro and in vivo. Results indicated that copper-titanium films exhibited good hemocompatibility in vitro; however, the increase of Cu/Ti ratio could lead to increasing hemolysis ratio. Endothelial cells displayed more proliferative than smooth muscle cells when the copper concentration was <7.5μg/ml, however both cells tended to apoptosis to some degree when the copper concentration was increased. The complete endothelialization of the film with low copper in vivo was observed at the 2nd week, indicating that the copper-titanium film with the lower copper concentration could promote endothelialization. Therefore, the inorganic copper-titanium film could be potential biomaterials to improve blood compatibility and accelerating endothelialization of vascular stents. PMID:27612815

  12. Prostacyclin mediates endothelial COX-2-dependent neuroprotective effects during excitotoxic brain injury

    Directory of Open Access Journals (Sweden)

    An Y

    2014-05-01

    Full Text Available Ying An,1,2 Natalya Belevych,1,2 Yufen Wang,1,2 Hao Zhang,1 Jason S Nasse,3 Harvey Herschman,4 Qun Chen,1,2 Andrew Tarr,1,2 Xiaoyu Liu,1,2 Ning Quan1,21Institute for Behavior Medicine Research, 2Department of Oral Biology, College of Dentistry, 3Neuroscience Graduate Studies Program, The Ohio State University, Columbus, OH, USA; 4Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, USAAbstract: In a previous study, we found that intracerebral administration of excitotoxin (RS-(tetrazole-5yl glycine caused increased neural damage in the brain in an endothelial COX-2 deleted mouse line (Tie2Cre COX-2flox/flox. In this study, we investigated whether prostacyclin might mediate this endothelial COX-2-dependent neuroprotection. Administration of excitotoxin into the striatum induced the production of prostacyclin (PGI2 in wild type, but not in endothelial COX-2 deleted mice. Inhibition of PGI2 synthase exacerbated brain lesions induced by the excitotoxin in wild type, but not in endothelial COX-2 deleted mice. Administration of a PGI2 agonist reduced neural damage in both wild type and endothelial COX-2 deleted mice. Increased PGI2 synthase expression was found in infiltrating neutrophils. In an ex vivo assay, PGI2 reduced the excitotoxin-induced calcium influx into neurons, suggesting a cellular mechanism for PGI2 mediated neuroprotection. These results reveal that PGI2 mediates endothelial COX-2 dependent neuroprotection.Keywords: neural injury, prostaglandins, neutrophil, conditional COX-2 deletion, PGI2

  13. Cathepsin S Cleavage of Protease-Activated Receptor-2 on Endothelial Cells Promotes Microvascular Diabetes Complications.

    Science.gov (United States)

    Kumar Vr, Santhosh; Darisipudi, Murthy N; Steiger, Stefanie; Devarapu, Satish Kumar; Tato, Maia; Kukarni, Onkar P; Mulay, Shrikant R; Thomasova, Dana; Popper, Bastian; Demleitner, Jana; Zuchtriegel, Gabriele; Reichel, Christoph; Cohen, Clemens D; Lindenmeyer, Maja T; Liapis, Helen; Moll, Solange; Reid, Emma; Stitt, Alan W; Schott, Brigitte; Gruner, Sabine; Haap, Wolfgang; Ebeling, Martin; Hartmann, Guido; Anders, Hans-Joachim

    2016-06-01

    Endothelial dysfunction is a central pathomechanism in diabetes-associated complications. We hypothesized a pathogenic role in this dysfunction of cathepsin S (Cat-S), a cysteine protease that degrades elastic fibers and activates the protease-activated receptor-2 (PAR2) on endothelial cells. We found that injection of mice with recombinant Cat-S induced albuminuria and glomerular endothelial cell injury in a PAR2-dependent manner. In vivo microscopy confirmed a role for intrinsic Cat-S/PAR2 in ischemia-induced microvascular permeability. In vitro transcriptome analysis and experiments using siRNA or specific Cat-S and PAR2 antagonists revealed that Cat-S specifically impaired the integrity and barrier function of glomerular endothelial cells selectively through PAR2. In human and mouse type 2 diabetic nephropathy, only CD68(+) intrarenal monocytes expressed Cat-S mRNA, whereas Cat-S protein was present along endothelial cells and inside proximal tubular epithelial cells also. In contrast, the cysteine protease inhibitor cystatin C was expressed only in tubules. Delayed treatment of type 2 diabetic db/db mice with Cat-S or PAR2 inhibitors attenuated albuminuria and glomerulosclerosis (indicators of diabetic nephropathy) and attenuated albumin leakage into the retina and other structural markers of diabetic retinopathy. These data identify Cat-S as a monocyte/macrophage-derived circulating PAR2 agonist and mediator of endothelial dysfunction-related microvascular diabetes complications. Thus, Cat-S or PAR2 inhibition might be a novel strategy to prevent microvascular disease in diabetes and other diseases. PMID:26567242

  14. Angiostatin and endostatin: endothelial cell-specific endogenous inhibitors of angiogenesis and tumor growth.

    Science.gov (United States)

    Sim, B K

    1998-01-01

    Angiostatin and Endostatin are potent inhibitors of angiogenesis. These proteins are endogenously produced and specifically target endothelial cells resulting in angiogenesis inhibition. Recombinant preparations of these proteins inhibit the growth of metastases and regress primary tumors to dormant microscopic lesions. A variety of murine tumors as well as human breast, prostate and colon tumors in human xenograft models regress when treated with Angiostatin or Endostatin. Regression of tumors upon systemic treatment with these proteins is in part due to increased tumor cell apoptosis. Repeated cycles of Endostatin therapy lead to prolonged tumor dormancy without further treatment and are not associated with any apparent toxicity or acquired drug resistance. PMID:14517374

  15. Engineering a prostate-specific membrane antigen-activated tumor endothelial cell prodrug for cancer therapy

    DEFF Research Database (Denmark)

    Denmeade, Samuel R; Mhaka, Annastasiah M; Rosen, D Marc;

    2012-01-01

    Heterogeneous expression of drug target proteins within tumor sites is a major mechanism of resistance to anticancer therapies. We describe a strategy to selectively inhibit, within tumor sites, the function of a critical intracellular protein, the sarcoplasmic/endoplasmic reticulum calcium...... adenosine triphosphatase (SERCA) pump, whose proper function is required by all cell types for viability. To achieve targeted inhibition, we took advantage of the unique expression of the carboxypeptidase prostate-specific membrane antigen (PSMA) by tumor endothelial cells within the microenvironment of...

  16. INSULIN INDUCES NITRIC OXIDE PRODUCTION IN BOVINEAORTIC ENDOTHELIAL CELLS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To examine the effects of insulin on cell proliferation, nitric oxide (NO) release and nitric oxide synthase (NOS) gene expression in bovine aortic endothelial cells ( BAEC ) . Methods The mi togenesis was assessed by MTT method; the products of NO in the culture media, by Griess reaction; and the levels of NOS mRNA in BAEC , by RT/PCR tech nique. Results BAEC were not responsive to the growth-promoting effects of insulin. Stimulation with insulin resulted a dose-dependent rise of NO in the culture supernatants 2h later, with a maximum at 12~24h and a decline at 24h. This rise was inhibited by an inhibitor of NOS (L-NAME). NOS mRNA increased slightly in BAEC without statistical significance. Conelu sion The study suggested that the insulin-induced NO release might be caused directly by NOS activation.

  17. Hibiscus sabdariffa extract lowers blood pressure and improves endothelial function.

    Science.gov (United States)

    Joven, Jorge; March, Isabel; Espinel, Eugenia; Fernández-Arroyo, Salvador; Rodríguez-Gallego, Esther; Aragonès, Gerard; Beltrán-Debón, Raúl; Alonso-Villaverde, Carlos; Rios, Lidia; Martin-Paredero, Vicente; Menendez, Javier A; Micol, Vicente; Segura-Carretero, Antonio; Camps, Jordi

    2014-06-01

    Polyphenols from Hibiscus sabdariffa calices were administered to patients with metabolic syndrome (125 mg/kg/day for 4 wk, n = 31) and spontaneously hypertensive rats (125 or 60 mg/kg in a single dose or daily for 1 wk, n = 8 for each experimental group). The H. sabdariffa extract improved metabolism, displayed potent anti-inflammatory and antioxidant activities, and significantly reduced blood pressure in both humans and rats. Diuresis and inhibition of the angiotensin I-converting enzyme were found to be less important mechanisms than those related to the antioxidant, anti-inflammatory, and endothelium-dependent effects to explain the beneficial actions. Notably, polyphenols induced a favorable endothelial response that should be considered in the management of metabolic cardiovascular risks. PMID:24668839

  18. Inhibition of angiogenesis by S-adenosylmethionine

    International Nuclear Information System (INIS)

    Highlights: → Effects of S-adenosylmethionine (SAM) were investigated in endothelial cells. → Our results showed that SAM decreased proliferation of endothelial cells. → SAM influentially inhibited the percentage of cell migration. → SAM probably stopped migration as independent from its effects on proliferation. → SAM was shown to suppress in vitro angiogenesis. -- Abstract: Metastasis is a leading cause of mortality and morbidity in cancer. One of the steps in metastasis process is the formation of new blood vessels. Aberrant DNA methylation patterns are common in cancer cells. In recent studies, S-adenosylmethionine (SAM), which is a DNA methylating agent, has been found to have inhibitory effects on some carcinoma cells in vivo and in vitro. In the present study, we have used SAM to investigate whether it is effective against angiogenesis in vitro. Our results have shown that SAM can reduce the formation and organization of capillary-like structures of endothelial cells in tumoral environment. Besides, we have found SAM can block endothelial cell proliferation and the migration of cells towards growth factors-rich media. In conclusion, our study suggests that SAM may be used against angiogenesis as a natural bio-product.

  19. Endothelial dysfunction in DOCA-salt-hypertensive mice: role of neuronal nitric oxide synthase-derived hydrogen peroxide.

    Science.gov (United States)

    Silva, Grazielle C; Silva, Josiane F; Diniz, Thiago F; Lemos, Virginia S; Cortes, Steyner F

    2016-06-01

    Endothelial dysfunction is a common problem associated with hypertension and is considered a precursor to the development of micro- and macro-vascular complications. The present study investigated the involvement of nNOS (neuronal nitric oxide synthase) and H2O2 (hydrogen peroxide) in the impaired endothelium-dependent vasodilation of the mesenteric arteries of DOCA (deoxycorticosterone acetate)-salt-hypertensive mice. Myograph studies were used to investigate the endothelium-dependent vasodilator effect of ACh (acetylcholine). The expression and phosphorylation of nNOS and eNOS (endothelial nitric oxide synthase) were studied by Western blot analysis. Immunofluorescence was used to examine the localization of nNOS and eNOS in the endothelial layer of the mesenteric artery. The vasodilator effect of ACh is strongly impaired in mesenteric arteries of DOCA-salt-hypertensive mice. Non-selective inhibition of NOS sharply reduced the effect of ACh in both DOCA-salt-hypertensive and sham mice. Selective inhibition of nNOS and catalase led to a higher reduction in the effect of ACh in sham than in DOCA-salt-hypertensive mice. Production of H2O2 induced by ACh was significantly reduced in vessels from DOCA-salt-hypertensive mice, and it was blunted after nNOS inhibition. The expression of both eNOS and nNOS was considerably lower in DOCA-salt-hypertensive mice, whereas phosphorylation of their inhibitory sites was increased. The presence of nNOS was confirmed in the endothelial layer of mesenteric arteries from both sham and DOCA-salt-hypertensive mice. These results demonstrate that endothelial dysfunction in the mesenteric arteries of DOCA-salt-hypertensive mice is associated with reduced expression and functioning of nNOS and impaired production of nNOS-derived H2O2 Such findings offer a new perspective for the understanding of endothelial dysfunction in hypertension. PMID:26976926

  20. Effect of chronic treatment with the vasopeptidase inhibitor AVE 7688 and ramipril on endothelial function in atherogenic diet rabbits.

    Science.gov (United States)

    Weckler, Nadine; Leitzbach, Daniela; Kalinowski, Leszek; Malinski, Tadeusz; Busch, Andreas E; Linz, Wolfgang; Kalinowski, Ludmila

    2003-09-01

    Cardiovascular disease is the major cause of death in Western nations, although improved possibilities regarding diagnosis and therapy now exist. Endothelial dysfunction is triggered by cardiovascular risk factors such as hypercholesterolaemia, hypertension, adiposity and smoking, contributing to the common endpoint of atherosclerosis. This study examined the pharmacological effects of angiotensin-converting enzyme (ACE) and combined ACE-neutral endopeptidase (NEP) (vasopeptidase) inhibitors on endothelial dysfunction in the model of hyperlipidaemic rabbits. The focus of the study was to assess endothelial function after treatment with the ACE-NEP inhibitor AVE 7688 (30 mg/kg/day) in comparison to the ACE inhibitor (ACE-I) ramipril (1 mg/kg/day). Different parameters, such as endothelial function, blood pressure (BP), expansion of plaques, endothelial nitric oxide (NO) and superoxide (O2-) release and plasma levels of various lipidaemic parameters were analysed. Control groups consisted of one group fed only with normal diet, one group fed only with atherogenic diet and the direct control group fed with varied diets (six weeks atherogenic diet followed by 12 weeks normal diet). Since for the treatment of atherosclerosis, a change in feeding is absolutely necessary, in the present study, at the start of the treatments with AVE 7688 and ramipril, the rabbits food was changed to a normal diet. At the end of the study, mean arterial blood pressure (MAP) was measured in the anaesthetised animals. The values in standard, atherogenic and varied diet-fed rabbits were around 73 2 mmHg. Angiotensin I (Ang I) given intravenous (i.v.) induced a strong increase in MAP of about 20%. In both the treated groups Ang I-induced BP increase was inhibited. In contrast, i.v. bradykinin led to a strong reduction in MAP in both the treated groups of around 50%. Six weeks feeding with an atherogenic diet in the rabbits induced an enduring endothelial dysfunction despite the food

  1. Hyperphosphatemia, Phosphoprotein Phosphatases, and Microparticle Release in Vascular Endothelial Cells.

    Science.gov (United States)

    Abbasian, Nima; Burton, James O; Herbert, Karl E; Tregunna, Barbara-Emily; Brown, Jeremy R; Ghaderi-Najafabadi, Maryam; Brunskill, Nigel J; Goodall, Alison H; Bevington, Alan

    2015-09-01

    Hyperphosphatemia in patients with advanced CKD is thought to be an important contributor to cardiovascular risk, in part because of endothelial cell (EC) dysfunction induced by inorganic phosphate (Pi). Such patients also have an elevated circulating concentration of procoagulant endothelial microparticles (MPs), leading to a prothrombotic state, which may contribute to acute occlusive events. We hypothesized that hyperphosphatemia leads to MP formation from ECs through an elevation of intracellular Pi concentration, which directly inhibits phosphoprotein phosphatases, triggering a global increase in phosphorylation and cytoskeletal changes. In cultured human ECs (EAhy926), incubation with elevated extracellular Pi (2.5 mM) led to a rise in intracellular Pi concentration within 90 minutes. This was mediated by PiT1/slc20a1 Pi transporters and led to global accumulation of tyrosine- and serine/threonine-phosphorylated proteins, a marked increase in cellular Tropomyosin-3, plasma membrane blebbing, and release of 0.1- to 1-μm-diameter MPs. The effect of Pi was independent of oxidative stress or apoptosis. Similarly, global inhibition of phosphoprotein phosphatases with orthovanadate or fluoride yielded a global protein phosphorylation response and rapid release of MPs. The Pi-induced MPs expressed VE-cadherin and superficial phosphatidylserine, and in a thrombin generation assay, they displayed significantly more procoagulant activity than particles derived from cells incubated in medium with a physiologic level of Pi (1 mM). These data show a mechanism of Pi-induced cellular stress and signaling, which may be widely applicable in mammalian cells, and in ECs, it provides a novel pathologic link between hyperphosphatemia, generation of MPs, and thrombotic risk. PMID:25745026

  2. Allogeneic Mesenchymal Stem Cells Restore Endothelial Function in Heart Failure by Stimulating Endothelial Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Courtney Premer

    2015-05-01

    Interpretation: These findings reveal a novel mechanism whereby allogeneic, but not autologous, MSC administration results in the proliferation of functional EPCs and improvement in vascular reactivity, which in turn restores endothelial function towards normal in patients with HF. These findings have significant clinical and biological implications for the use of MSCs in HF and other disorders associated with endothelial dysfunction.

  3. Effects of vascular endothelial growth factor on angiogenesis of the endothelial cells isolated from cavernous malformations

    Institute of Scientific and Technical Information of China (English)

    TAN YuZhen; ZHAO Yao; WANG HaiJie; ZHOU LiangFu; MAO Ying; LIU Rui; SHU Jia; WANG YongFei

    2008-01-01

    Human cerebral cavernous malformation (CM) is a common vascular malformation of the central nervous system. We have investigated the biological characteristics of CM endothelial cells and the cellular and molecular mechanisms of CM angiogenesis to offer new insights into exploring effective measures for treatment of this disease. The endothelial cells were isolated from CM tissue masses dissected during operation and expanded in vitro. Expression of VEGFR-1 and VEGFR-2 was examined with immunocytochemical staining. Proliferation, migration and tube formation of CM endothelial cells were determined using MTT, wounding and transmigration assays, and three-dimensional collagen type Ⅰ gel respectively. The endothelial cells were successfully isolated from the tissue specimens of 25 CMs dissected without dipolar electrocoagulation. The cells show the general characteristics of the vascular endothelial cells. Expression of VEGFR-1 and VEGFR-2 on the cells is higher than that on the normal cerebral microvascular endothelial cells. After treatment with VEGF, numbers of the proliferated and migrated cells, the maximal distance of cell migration and the length and area of capillary-like struc-tures formed in the three-dimensional collagen gel increase significantly. These results demonstrate that expression of VEGFR-1 and VEGFR-2 on CM endothelial cells is up-regulated. By binding to re-ceptors, VEGF may activate the downstream signaling pathways and promote proliferation, migration and tube formation of CM endothelial cells. VEGF/VEGFR signaling pathways play important regulating roles in CM angiogenesis.

  4. The role of AMP-activated protein kinase in the functional effects of vascular endothelial growth factor-A and -B in human aortic endothelial cells

    Directory of Open Access Journals (Sweden)

    Reihill James A

    2011-04-01

    Full Text Available Abstract Background Vascular endothelial growth factors (VEGFs are key regulators of endothelial cell function and angiogenesis. We and others have previously demonstrated that VEGF-A stimulates AMP-activated protein kinase (AMPK in cultured endothelial cells. Furthermore, AMPK has been reported to regulate VEGF-mediated angiogenesis. The role of AMPK in the function of VEGF-B remains undetermined, as does the role of AMPK in VEGF-stimulated endothelial cell proliferation, a critical process in angiogenesis. Methods Human aortic endothelial cells (HAECs were incubated with VEGF-A and VEGF-B prior to examination of HAEC AMPK activity, proliferation, migration, fatty acid oxidation and fatty acid transport. The role of AMPK in the functional effects of VEGF-A and/or VEGF-B was assessed after downregulation of AMPK activity with chemical inhibitors or infection with adenoviruses expressing a dominant negative mutant AMPK. Results Incubation of HAECs with VEGF-B rapidly stimulated AMPK activity in a manner sensitive to an inhibitor of Ca2+/calmodulin-dependent kinase kinase (CaMKK, without increasing phosphorylation of endothelial NO synthase (eNOS phosphorylation at Ser1177. Downregulation of AMPK abrogated HAEC proliferation in response to VEGF-A or VEGF-B. However, activation of AMPK by agents other than VEGF inhibited proliferation. Downregulation of AMPK abrogated VEGF-A-stimulated HAEC migration, whereas infection with adenoviruses expressing constitutively active mutant AMPK stimulated chemokinesis. Neither VEGF-A nor VEGF-B had any significant effect on HAEC fatty acid oxidation, yet prolonged incubation with VEGF-A stimulated fatty acid uptake in an AMPK-dependent manner. Inhibition of eNOS abrogated VEGF-mediated proliferation and migration, but was without effect on VEGF-stimulated fatty acid transport, ERK or Akt phosphorylation. Conclusions These data suggest that VEGF-B stimulates AMPK by a CaMKK-dependent mechanism and stimulation of

  5. Targeting CD9 produces stimulus-independent antiangiogenic effects predominantly in activated endothelial cells during angiogenesis: A novel antiangiogenic therapy

    International Nuclear Information System (INIS)

    Highlights: → CD9 plays stimulus-independent roles in angiogenesis in vitro and in vivo. → Targeting CD9 expression is effective in an angiogenic disease model. → Targeting CD9 expression predominantly affects activated endothelial cells. → CD9 is involved in endothelial cell proliferation, but not survival. → CD9 is part of angiogenic machinery in endothelial cells during angiogenesis. -- Abstract: The precise roles of tetraspanin CD9 are unclear. Here we show that CD9 plays a stimulus-independent role in angiogenesis and that inhibiting CD9 expression or function is a potential antiangiogenic therapy. Knocking down CD9 expression significantly inhibited in vitro endothelial cell migration and invasion induced by vascular endothelial growth factor (VEGF) or hepatocyte growth factor (HGF). Injecting CD9-specific small interfering RNA (siRNA-CD9) markedly inhibited HGF- or VEGF-induced subconjunctival angiogenesis in vivo. Both results revealed potent and stimulus-independent antiangiogenic effects of targeting CD9. Furthermore, intravitreous injections of siRNA-CD9 or anti-CD9 antibodies were therapeutically effective for laser-induced retinal and choroidal neovascularization in mice, a representative ocular angiogenic disease model. In terms of the mechanism, growth factor receptor and downstream signaling activation were not affected, whereas abnormal localization of integrins and membrane type-1 matrix metalloproteinase was observed during angiogenesis, by knocking down CD9 expression. Notably, knocking down CD9 expression did not induce death and mildly inhibited proliferation of quiescent endothelial cells under conditions without an angiogenic stimulus. Thus, CD9 does not directly affect growth factor-induced signal transduction, which is required in angiogenesis and normal vasculature, but is part of the angiogenesis machinery in endothelial cells during angiogenesis. In conclusion, targeting CD9 produced stimulus-independent antiangiogenic effects

  6. Glioblastoma-derived Leptin Induces Tube Formation and Growth of Endothelial Cells: Comparison with VEGF Effects

    International Nuclear Information System (INIS)

    Leptin is a pleiotropic hormone whose mitogenic and angiogenic activity has been implicated in the development and progression of several malignancies, including brain tumors. In human brain cancer, especially in glioblastoma multiforme (GBM), leptin and its receptor (ObR) are overexpressed relative to normal tissue. Until present, the potential of intratumoral leptin to exert proangiogenic effects on endothelial cells has not been addressed. Using in vitro models, we investigated if GBM can express leptin, if leptin can affect angiogenic and mitogenic potential of endothelial cells, and if its action can be inhibited with specific ObR antagonists. Leptin effects were compared with that induced by the best-characterized angiogenic regulator, VEGF. We found that GBM cell lines LN18 and LN229 express leptin mRNA and LN18 cells secrete detectable amounts of leptin protein. Both lines also expressed and secreted VEGF. The conditioned medium (CM) of LN18 and LN 229 cultures as well as 200 ng/mL pure leptin or 50 ng/mL pure VEGF stimulated proliferation of human umbilical vein endothelial cells (HUVEC) at 24 h of treatment. Mitogenic effects of CM were ~2-fold greater than that of pure growth factors. Furthermore, CM treatment of HUVEC for 24 h increased tube formation by ~5.5-fold, while leptin increased tube formation by ~ 80% and VEGF by ~60% at 8 h. The mitogenic and angiogenic effects of both CM were blocked by Aca 1, a peptide ObR antagonist, and by SU1498, which inhibits the VEGF receptor. The best anti-angiogenic and cytostatic effects of Aca1 were obtained with 10 nM and 25 nM, respectively, while for SU1498, the best growth and angiogenic inhibition was observed at 5 μM. The combination of 5 μM SU1498 and Aca1 at 25 nM (growth inhibition) or at 10 nM (reduction of tube formation) produced superior effects compared with single agent treatments. Our data provide the first evidence that LN18 and LN 229 human GBM cells express leptin mRNA and might produce

  7. Proanthocyanidins, from Ribes nigrum leaves, reduce endothelial adhesion molecules ICAM-1 and VCAM-1

    Directory of Open Access Journals (Sweden)

    Desmecht D

    2005-08-01

    Full Text Available Abstract Background The effects of proanthocyanidins (PACs, isolated from blackcurrant (Ribes nigrum L. leaves, on neutrophil accumulation during inflammatory processes were investigated in vivo and in vitro. Methods In vivo studies were performed using carrageenin-induced pleurisy in rats pre-treated with PACs. Exudate volume and PMNs accumulation were measured. Leukocyte cell adhesion molecules (LFA-1, Mac-1 and VLA-4 mobilization in circulating granulocytes were analysed by flow cytometry and endothelial cell adhesion molecules (ICAM-1 and VCAM-1 were detected by immunohistochemistry on lung sections. In vitro studies were conducted on endothelial LT2 cells, stimulated with TNF-α, to evaluate ICAM-1, IL-8 and VEGF mRNA expression upon PACs treatment. Data sets were examined by one-way analysis of variance (ANOVA followed by a Scheffe post-hoc test. Results Pretreatment of the animals with PACs (10, 30 and 60 mg/kg inhibited dose-dependently carrageenin-induced pleurisy in rats by reducing pleural exudate formation and PMNs infliltration. Leukocyte cell adhesion molecules mobilization was not down-regulated on granulocytes by PACs. Immunohistochemistry on lung sections showed a decreased production of endothelial cell adhesion molecules. In vitro experiments demonstrated that PACs were able to significantly inhibit ICAM-1 but not IL-8 and VEGF165 mRNA expression. Moreover, VEGF121 mRNA expression was dose-dependently enhanced. Conclusion This study provides evidence to support the anti-inflammatory activity of proanthocyanidins is related to an inhibition of leukocyte infiltration which can be explained at least in part by a down-regulation of endothelial adhesion molecules, ICAM-1 and VCAM-1 and that these compounds are capable of modulating TNF-α-induced VEGF transcription.

  8. Sphingosine kinase-2 maintains viral latency and survival for KSHV-infected endothelial cells.

    Directory of Open Access Journals (Sweden)

    Lu Dai

    Full Text Available Phosphorylation of sphingosine by sphingosine kinases (SphK1 and SphK2 generates sphingosine-1-phosphate (S1P, a bioactive sphingolipid which promotes cancer cell survival and tumor progression in vivo. We have recently reported that targeting SphK2 induces apoptosis for human primary effusion lymphoma (PEL cell lines infected by the Kaposi's sarcoma-associated herpesvirus (KSHV, and this occurs in part through in