WorldWideScience

Sample records for axisymmetric generalized harmonic

  1. General Criterion for Harmonicity

    Science.gov (United States)

    Proesmans, Karel; Vandebroek, Hans; Van den Broeck, Christian

    2017-10-01

    Inspired by Kubo-Anderson Markov processes, we introduce a new class of transfer matrices whose largest eigenvalue is determined by a simple explicit algebraic equation. Applications include the free energy calculation for various equilibrium systems and a general criterion for perfect harmonicity, i.e., a free energy that is exactly quadratic in the external field. As an illustration, we construct a "perfect spring," namely, a polymer with non-Gaussian, exponentially distributed subunits which, nevertheless, remains harmonic until it is fully stretched. This surprising discovery is confirmed by Monte Carlo and Langevin simulations.

  2. Partial Fourier analysis of time-harmonic Maxwell's equations in axisymmetric domains

    International Nuclear Information System (INIS)

    Nkemzi, Boniface

    2003-01-01

    We analyze the Fourier method for treating time-harmonic Maxwell's equations in three-dimensional axisymmetric domains with non-axisymmetric data. The Fourier method reduces the three-dimensional boundary value problem to a system of decoupled two-dimensional boundary value problems on the plane meridian domain of the axisymmetric domain. The reduction process is fully described and suitable weighted spaces are introduced on the meridian domain to characterize the two-dimensional solutions. In particular, existence and uniqueness of solutions of the two-dimensional problems is proved and a priori estimates for the solutions are given. (author)

  3. Stability of stationary-axisymmetric black holes in vacuum general relativity to axisymmetric electromagnetic perturbations

    Science.gov (United States)

    Prabhu, Kartik; Wald, Robert M.

    2018-01-01

    We consider arbitrary stationary and axisymmetric black holes in general relativity in (d +1) dimensions (with d ≥slant 3 ) that satisfy the vacuum Einstein equation and have a non-degenerate horizon. We prove that the canonical energy of axisymmetric electromagnetic perturbations is positive definite. This establishes that all vacuum black holes are stable to axisymmetric electromagnetic perturbations. Our results also hold for asymptotically de Sitter black holes that satisfy the vacuum Einstein equation with a positive cosmological constant. Our results also apply to extremal black holes provided that the initial perturbation vanishes in a neighborhood of the horizon.

  4. Some Generalized Harmonic Number Identities

    OpenAIRE

    Kronenburg, Maarten

    2011-01-01

    Summation by parts is used to find the sum of a finite series of generalized harmonic numbers involving a specific polynomial or rational function. The Euler-Maclaurin formula for sums of powers is used to find the sums of some finite series of generalized harmonic numbers involving nonnegative integer powers, which can be used to evaluate the sums of the finite series of generalized harmonic numbers involving polynomials. Many examples and a computer program are provided.

  5. Sums of Generalized Harmonic Series

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 9. Sums of Generalized Harmonic Series: For Kids from Five to Fifteen. Zurab Silagadze. General Article Volume 20 Issue 9 September 2015 pp 822-843 ... Keywords. Riemann zeta function; integral representation; Basel problem.

  6. Sums of Generalized Harmonic Series

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 9. Sums of Generalized Harmonic Series: For Kids from Five to Fifteen. Zurab Silagadze. General Article Volume 20 Issue 9 September 2015 pp 822-843. Fulltext. Click here to view fulltext PDF. Permanent link:

  7. General Lp-harmonic Blaschke bodies

    Indian Academy of Sciences (India)

    Based on the definition of harmonic Blaschke combination, Lutwak [10] gave the con- cept of harmonic ... Now, we define the general L p-harmonic Blaschke bodies as follows: For K ∈ Sn o , p ≥ 1 and τ ∈ [−1, 1], the ..... [2] Alesker S, Bernig A and Schuster F E, Harmonic analysis of translation invariant valuations, Geom.

  8. General Lp-harmonic Blaschke bodies

    Indian Academy of Sciences (India)

    Lutwak introduced the harmonic Blaschke combination and the harmonic Blaschke body of a star body. Further, Feng and Wang introduced the concept of the -harmonic Blaschke body of a star body. In this paper, we define the notion of general -harmonic Blaschke bodies and establish some of its properties.

  9. Uniformly rotating, axisymmetric, and triaxial quark stars in general relativity

    Science.gov (United States)

    Zhou, Enping; Tsokaros, Antonios; Rezzolla, Luciano; Xu, Renxin; Uryū, Kōji

    2018-01-01

    Quasiequilibrium models of uniformly rotating axisymmetric and triaxial quark stars are computed in a general-relativistic gravity scenario. The Isenberg-Wilson-Mathews (IWM) formulation is employed and the Compact Object Calculator (cocal) code is extended to treat rotating stars with finite surface density and new equations of state (EOSs). Besides the MIT bag model for quark matter which is composed of deconfined quarks, we examine a new EOS proposed by Lai and Xu that is based on quark clustering and results in a stiff EOS that can support masses up to 3.3 M⊙ in the case we considered. We perform convergence tests for our new code to evaluate the effect of finite surface density in the accuracy of our solutions and construct sequences of solutions for both small and high compactness. The onset of secular instability due to viscous dissipation is identified and possible implications are discussed. An estimate of the gravitational wave amplitude and luminosity based on quadrupole formulas is presented and comparison with neutron stars is discussed.

  10. General Lp-harmonic Blaschke bodies

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences; Volume 124; Issue 1. General -Harmonic Blaschke Bodies. Yibin Feng Weidong Wang. Volume 124 Issue 1 February 2014 pp ... Author Affiliations. Yibin Feng1 Weidong Wang1. Department of Mathematics, China Three Gorges University, Yichang 443002, China ...

  11. Harmonic curvatures and generalized helices in En

    International Nuclear Information System (INIS)

    Camci, Cetin; Ilarslan, Kazim; Kula, Levent; Hacisalihoglu, H. Hilmi

    2009-01-01

    In n-dimensional Euclidean space E n , harmonic curvatures of a non-degenerate curve defined by Ozdamar and Hacisalihoglu [Ozdamar E, Hacisalihoglu HH. A characterization of Inclined curves in Euclidean n-space. Comm Fac Sci Univ Ankara, Ser A1 1975;24:15-23]. In this paper, we give some characterizations for a non-degenerate curve α to be a generalized helix by using its harmonic curvatures. Also we define the generalized Darboux vector D of a non-degenerate curve α in n-dimensional Euclidean space E n and we show that the generalized Darboux vector D lies in the kernel of Frenet matrix M(s) if and only if the curve α is a generalized helix in the sense of Hayden.

  12. On the axisymmetric Lewis metric

    International Nuclear Information System (INIS)

    Gariel, J.; Marcilhacy, G.

    2001-03-01

    We obtain the general solution of the axisymmetric stationary vacuum spacetime of Lewis. After precising the fundamental hypothesis of Lewis, we demonstrate that the solution is related to an arbitrary harmonic function. Formally, these solutions are the same as for the corresponding cylindrically symmetric case, and can be classified in a similar way. Furthermore, the interpretation, in the cylindrically symmetric system, of the field equations as decribing the motion of a classical particle in a central force field is still valid. (author)

  13. Professional Military Development of Major General Ernest N. Harmon

    National Research Council Canada - National Science Library

    Dale, Matthew B

    2008-01-01

    This study is a partial biography of Major General Ernest N. Harmon, focusing on his military career from his West Point graduation in 1917 to his assuming command of the 2nd Armored Division in 1942...

  14. Automatic computation and solution of generalized harmonic balance equations

    Science.gov (United States)

    Peyton Jones, J. C.; Yaser, K. S. A.; Stevenson, J.

    2018-02-01

    Generalized methods are presented for generating and solving the harmonic balance equations for a broad class of nonlinear differential or difference equations and for a general set of harmonics chosen by the user. In particular, a new algorithm for automatically generating the Jacobian of the balance equations enables efficient solution of these equations using continuation methods. Efficient numeric validation techniques are also presented, and the combined algorithm is applied to the analysis of dc, fundamental, second and third harmonic response of a nonlinear automotive damper.

  15. Generalized harmonic spatial coordinates and hyperbolic shift conditions

    International Nuclear Information System (INIS)

    Alcubierre, Miguel; Corichi, Alejandro; Nunez, Dario; Salgado, Marcelo; Gonzalez, Jose A.; Reimann, Bernd

    2005-01-01

    We propose a generalization of the condition for harmonic spatial coordinates analogous to the generalization of the harmonic time slices introduced by Bona et al., and closely related to dynamic shift conditions recently proposed by Lindblom and Scheel, and Bona and Palenzuela. These generalized harmonic spatial coordinates imply a condition for the shift vector that has the form of an evolution equation for the shift components. We find that in order to decouple the slicing condition from the evolution equation for the shift it is necessary to use a rescaled shift vector. The initial form of the generalized harmonic shift condition is not spatially covariant, but we propose a simple way to make it fully covariant so that it can be used in coordinate systems other than Cartesian. We also analyze the effect of the shift condition proposed here on the hyperbolicity of the evolution equations of general relativity in 1+1 dimensions and 3+1 spherical symmetry, and study the possible development of blowups. Finally, we perform a series of numerical experiments to illustrate the behavior of this shift condition

  16. Thermal state of the general time-dependent harmonic oscillator

    Indian Academy of Sciences (India)

    Taking advantage of dynamical invariant operator, we derived quantum mechanical solution of general time-dependent harmonic oscillator. ... The domain part of the email address of all email addresses used by the office of Indian Academy of Sciences, including those of the staff, the journals, various programmes, and ...

  17. Coherent states of general time-dependent harmonic oscillator

    Indian Academy of Sciences (India)

    Abstract. By introducing an invariant operator, we obtain exact wave functions for a general time-dependent quadratic harmonic oscillator. The coherent states, both in x- and p-spaces, are calculated. We confirm that the uncertainty product in coherent state is always larger than Η/2 and is equal to the minimum of the ...

  18. New construction of coherent states for generalized harmonic oscillators

    International Nuclear Information System (INIS)

    El Baz, M.; Hassouni, Y.; Madouri, F.

    2001-08-01

    A dynamical algebra A q , englobing many of the deformed harmonic oscillator algebras is introduced. One of its special cases is extensively developed. A general method for constructing coherent states related to any algebra of the type A q is discussed. The construction following this method is carried out for the special case. (author)

  19. Analytic and algorithmic aspects of generalized harmonic sums and polylogarithms

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, Jakob; Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2013-01-15

    In recent three-loop calculations of massive Feynman integrals within Quantum Chromodynamics (QCD) and, e.g., in recent combinatorial problems the so-called generalized harmonic sums (in short S-sums) arise. They are characterized by rational (or real) numerator weights also different from {+-}1. In this article we explore the algorithmic and analytic properties of these sums systematically. We work out the Mellin and inverse Mellin transform which connects the sums under consideration with the associated Poincare iterated integrals, also called generalized harmonic polylogarithms. In this regard, we obtain explicit analytic continuations by means of asymptotic expansions of the S-sums which started to occur frequently in current QCD calculations. In addition, we derive algebraic and structural relations, like differentiation w.r.t. the external summation index and different multi-argument relations, for the compactification of S-sum expressions. Finally, we calculate algebraic relations for infinite S-sums, or equivalently for generalized harmonic polylogarithms evaluated at special values. The corresponding algorithms and relations are encoded in the computer algebra package HarmonicSums.

  20. Harmonic Analysis Associated with the Generalized Weinstein Operator

    Directory of Open Access Journals (Sweden)

    Ahmed Abouelaz

    2015-11-01

    Full Text Available In this paper we consider a generalized Weinstein operator ∆d,α,n on Rd−1×]0,∞[, which generalizes the Weinstein operator ∆d,α, we define the generalized Weinstein intertwining operator Rα,n which turn out to be transmutation operator between ∆d,α,n and the Laplacian operator ∆d. We build the dual of the generalized Weinstein intertwining operatortRα,n, another hand we prove the formula related Rα,n andtRα,n . We exploit these transmutation operators to develop a new harmonic analysis corresponding to ∆d,α,n.

  1. Harmonic sums, polylogarithms, special numbers, and their generalizations

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, Jakob [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2013-04-15

    In these introductory lectures we discuss classes of presently known nested sums, associated iterated integrals, and special constants which hierarchically appear in the evaluation of massless and massive Feynman diagrams at higher loops. These quantities are elements of stuffle and shuffle algebras implying algebraic relations being widely independent of the special quantities considered. They are supplemented by structural relations. The generalizations are given in terms of generalized harmonic sums, (generalized) cyclotomic sums, and sums containing in addition binomial and inverse-binomial weights. To all these quantities iterated integrals and special numbers are associated. We also discuss the analytic continuation of nested sums of different kind to complex values of the external summation bound N.

  2. Flux-force relation for non-axisymmetric tori in general flux coordinates and neoclassical toroidal plasma viscosity

    Science.gov (United States)

    Shaing, K. C.; Chu, M. S.; Sabbagh, S. A.

    2010-12-01

    Flux-force relation, a fundamental relation that relates transport fluxes to forces, for non-axisymmetric tori in general magnetic flux coordinates that are not Hamada coordinates, is derived. The derivation is based on kinetic theory instead of fluid theory. It is shown that pressure force also contributes to the relation in non-Hamada coordinates in general to make the relation compatible with kinetic theory and to make it coordinates invariant. The results are applied to the theory for the neoclassical toroidal viscosity in tokamaks that have error fields or resistive magnetohydrodynamic (MHD) modes.

  3. Further summation formulae related to generalized harmonic numbers

    Science.gov (United States)

    Zheng, De-Yin

    2007-11-01

    By employing the univariate series expansion of classical hypergeometric series formulae, Shen [L.-C. Shen, Remarks on some integrals and series involving the Stirling numbers and [zeta](n), Trans. Amer. Math. Soc. 347 (1995) 1391-1399] and Choi and Srivastava [J. Choi, H.M. Srivastava, Certain classes of infinite series, Monatsh. Math. 127 (1999) 15-25; J. Choi, H.M. Srivastava, Explicit evaluation of Euler and related sums, Ramanujan J. 10 (2005) 51-70] investigated the evaluation of infinite series related to generalized harmonic numbers. More summation formulae have systematically been derived by Chu [W. Chu, Hypergeometric series and the Riemann Zeta function, Acta Arith. 82 (1997) 103-118], who developed fully this approach to the multivariate case. The present paper will explore the hypergeometric series method further and establish numerous summation formulae expressing infinite series related to generalized harmonic numbers in terms of the Riemann Zeta function [zeta](m) with m=5,6,7, including several known ones as examples.

  4. Efficient molecular density functional theory using generalized spherical harmonics expansions.

    Science.gov (United States)

    Ding, Lu; Levesque, Maximilien; Borgis, Daniel; Belloni, Luc

    2017-09-07

    We show that generalized spherical harmonics are well suited for representing the space and orientation molecular density in the resolution of the molecular density functional theory. We consider the common system made of a rigid solute of arbitrary complexity immersed in a molecular solvent, both represented by molecules with interacting atomic sites and classical force fields. The molecular solvent density ρ(r,Ω) around the solute is a function of the position r≡(x,y,z) and of the three Euler angles Ω≡(θ,ϕ,ψ) describing the solvent orientation. The standard density functional, equivalent to the hypernetted-chain closure for the solute-solvent correlations in the liquid theory, is minimized with respect to ρ(r,Ω). The up-to-now very expensive angular convolution products are advantageously replaced by simple products between projections onto generalized spherical harmonics. The dramatic gain in speed of resolution enables to explore in a systematic way molecular solutes of up to nanometric sizes in arbitrary solvents and to calculate their solvation free energy and associated microscopic solvent structure in at most a few minutes. We finally illustrate the formalism by tackling the solvation of molecules of various complexities in water.

  5. Coherent states of general time-dependent harmonic oscillator

    Indian Academy of Sciences (India)

    The wave function can then be found easily, by making use of these ladder operators. Glauber proposed standard coherent states for a harmonic oscillator which is the prototype for most of the coherent states [3,4]. The coherent states form a very convenient representation for problems of quantum mechanics and can be ...

  6. Two-dimensional generalized harmonic oscillators and their Darboux partners

    International Nuclear Information System (INIS)

    Schulze-Halberg, Axel

    2011-01-01

    We construct two-dimensional Darboux partners of the shifted harmonic oscillator potential and of an isotonic oscillator potential belonging to the Smorodinsky–Winternitz class of superintegrable systems. The transformed solutions, their potentials and the corresponding discrete energy spectra are computed in explicit form. (paper)

  7. Thermal state of the general time-dependent harmonic oscillator

    Indian Academy of Sciences (India)

    Harmonic oscillator that has time-dependent mass or frequency may be a good example of time-dependent Hamiltonian systems. Although a large number of dynamical systems have been investigated using approximation and perturbation method in the literature [2,3], we confine our concern to the exact quantum solution ...

  8. Thermal inertia effect in an axisymmetric thermoelastic problem based on generalized thermoelasticity

    International Nuclear Information System (INIS)

    Xie Yushu; Li Fatao

    2010-01-01

    The objective of this paper is to study thermal inertia effect due to the fact of the properties of the hyperbolic equations based on LS theory in generalized thermoelasticity. Simulations in a 2D hollow cylinder for uncoupled dynamic thermal stresses and thermal displacements were predicted by use of finite element method with Newmark algorithm. The thermal inertia effect on LS theory in rapid transient heat transfer process is also investigated in comparison with in steady heat transfer process. When different specific heat capacity is chosen, dynamic thermal stresses appear different types of vibration, in which less heat capacity causes more violent dynamic thermal stresses because of the thermal inertia effect. Both dynamic thermal stresses and thermal displacements in rapid transient heat transfer process have the larger amplitude and higher frequency than in steady heat transfer process due to thermal inertia from the results of simulation, which is consistent with the nature of the generalized thermoelasticity.

  9. Three-Phase Multiple Harmonic Sequence Detection Based on Generalized Delayed Signal Superposition

    DEFF Research Database (Denmark)

    Lu, Yong; Xiao, Guochun; Wang, Xiongfei

    2016-01-01

    Grid synchronization has always been an important challenge for three-phase grid-connected converters under unbalanced and distorted grid conditions. Moreover, how to quickly and accurately extract multiple harmonic sequence information is essential for control systems. In this paper, a three......-phase multiple harmonic sequence detection method is proposed for estimating both the fundamental and harmonic sequence components under adverse grid conditions. This detection method is denoted as MG DSS-PLL since it contains Multiple Generalized Delayed Signal Superposition operators and a Phase-Locked Loop...

  10. Electromagnetic fields created by a beam in an axisymmetric infinitely thick single-layer resistive pipe: general formulas and low frequency approximations

    CERN Document Server

    Mounet, Nicolas Frank; CERN. Geneva. ATS Department

    2015-01-01

    This note provides general and approximate formulas for the electromagnetic fields created by a passing beam in an axisymmetric infinitely thick resistive pipe made of a single homogeneous layer. The full derivations and their resulting approximate expressions at low and intermediate frequencies are given here, as well as the conditions under which those approximations are valid. Beam-coupling impedances are also computed, and examples are shown.

  11. Generalization of Solovev’s approach to finding equilibrium solutions for axisymmetric plasmas with flow

    Science.gov (United States)

    M, S. CHU; Yemin, HU; Wenfeng, GUO

    2018-03-01

    Solovev’s approach of finding equilibrium solutions was found to be extremely useful for generating a library of linear-superposable equilibria for the purpose of shaping studies. This set of solutions was subsequently expanded to include the vacuum solutions of Zheng, Wootton and Solano, resulting in a set of functions {SOLOVEV_ZWS} that were usually used for all toroidally symmetric plasmas, commonly recognized as being able to accommodate any desired plasma shapes (complete-shaping capability). The possibility of extending the Solovev approach to toroidal equilibria with a general plasma flow is examined theoretically. We found that the only meaningful extension is to plasmas with a pure toroidal rotation and with a constant Mach number. We also show that the simplification ansatz made to the current profiles, which was the basis of the Solovev approach, should be applied more systematically to include an internal boundary condition at the magnetic axis; resulting in a modified and more useful set {SOLOVEV_ZWSm}. Explicit expressions of functions in this set are given for equilibria with a quasi-constant current density profile, with a toroidal flow at a constant Mach number and with specific heat capacity 1. The properties of {SOLOVEV_ZWSm} are studied analytically. Numerical examples of achievable equilibria are demonstrated. Although the shaping capability of the set {SOLOVE_ZWSm} is quite extensive, it nevertheless still does not have complete shaping capability, particularly for plasmas with negative curvature points on the plasma boundary such as the doublets or indented bean shaped tokamaks.

  12. Grid Synchronization with Selective Harmonic Detection Based on Generalized Delayed Signal Superposition

    DEFF Research Database (Denmark)

    Lu, Yong; Xiao, Guochun; Wang, Xiongfei

    2018-01-01

    Grid synchronization has always been an important challenge for grid-connected converters under extremely distorted grid conditions. Moreover, how to quickly and accurately extract multiple required harmonics is also essential for control systems. In this paper, two types of Generalized Delayed...... Signal Superposition (GDSS) operators capable of extracting any arbitrary harmonic component out of an input signal are derived. In order to show the benefits of GDSS operators, a new grid information estimation concept based on multiple GDSS operators (referred to as MGDSS-PLL) is proposed to track...... the fundamental and multiple targeted harmonics under single-phase and three-phase adverse grid conditions. The introduced MGDSS-PLL can be flexibly tuned to extract any harmonic components according to specific requirements within one fundamental period and it also exhibits great robustness to grid disturbances...

  13. Generalized topology for resonators having N commensurate harmonics

    Science.gov (United States)

    Danzi, Francesco; Gibert, James M.; Frulla, Giacomo; Cestino, Enrico

    2018-04-01

    Despite the ubiquity of both linear and nonlinear multimember resonators in MEMS and kinetic energy harvesting devices very few research efforts examine the orientation of members in the resonator on its dynamic behavior. Previous efforts to design this type of resonator constrains the members to have relative orientations that are 0○ or 90○ to each other, i.e., the elements are connected inline with adjoining members or are perpendicular to adjoining members. The work expands upon the existing body of research by considering the effect of the relative orientation between members on the dynamic behavior of the system. In this manuscript, we derive a generalized reduced-order model for the design of a multi-member planar resonator that has integer multiple modal frequencies. The model is based on a Rayleigh Ritz approximation where the number of degrees of freedom equals the number of structural members in the resonator. The analysis allows the generation of design curves, representing all the possible solutions for modal frequencies that are commensurate. The generalized model, valid for an N-DOF structure, is then restricted for a 2- and 3-DOF system/member resonator, where the linear dynamic behavior of the resonator is investigated in depth. Furthermore, this analysis demonstrates a rule of thumb; relaxing restrictions on the relative orientation of members in a planar structure, allows the structure to exhibit exactly N commensurable frequencies if it contains N members.

  14. 75 FR 22699 - Mandatory Reporting of Greenhouse Gases: Minor Harmonizing Changes to the General Provisions

    Science.gov (United States)

    2010-04-30

    ... AGENCY 40 CFR Part 98 RIN 2060-AQ15 Mandatory Reporting of Greenhouse Gases: Minor Harmonizing Changes to... withdrawing the direct final rule to amend the general provisions for the Mandatory Greenhouse Gas (GHG... Part 98 Environmental protection, Administrative practice and procedure, Greenhouse gases, Suppliers...

  15. The heat flows and harmonic maps from complete manifolds into generalized regular balls

    International Nuclear Information System (INIS)

    Li Jiayu.

    1993-01-01

    Let M be a complete Riemannian manifold (compact (with or without boundary) or noncompact). Let N be a complete Riemannian manifold. We generalize the existence result for harmonic maps obtained by Hildebrandt-Kaul-Widman using the heat flow method. (author). 21 refs

  16. Numerical artifacts in the Generalized Porous Medium Equation: Why harmonic averaging itself is not to blame

    Science.gov (United States)

    Maddix, Danielle C.; Sampaio, Luiz; Gerritsen, Margot

    2018-05-01

    The degenerate parabolic Generalized Porous Medium Equation (GPME) poses numerical challenges due to self-sharpening and its sharp corner solutions. For these problems, we show results for two subclasses of the GPME with differentiable k (p) with respect to p, namely the Porous Medium Equation (PME) and the superslow diffusion equation. Spurious temporal oscillations, and nonphysical locking and lagging have been reported in the literature. These issues have been attributed to harmonic averaging of the coefficient k (p) for small p, and arithmetic averaging has been suggested as an alternative. We show that harmonic averaging is not solely responsible and that an improved discretization can mitigate these issues. Here, we investigate the causes of these numerical artifacts using modified equation analysis. The modified equation framework can be used for any type of discretization. We show results for the second order finite volume method. The observed problems with harmonic averaging can be traced to two leading error terms in its modified equation. This is also illustrated numerically through a Modified Harmonic Method (MHM) that can locally modify the critical terms to remove the aforementioned numerical artifacts.

  17. Non-isospectrality of the generalized Swanson Hamiltonian and harmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Midya, Bikashkali; Dube, P P; Roychoudhury, Rajkumar, E-mail: bikash.midya@gmail.com, E-mail: ppdube1@gmail.com, E-mail: raj@isical.ac.in [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108 (India)

    2011-02-11

    The generalized Swanson Hamiltonian H{sub GS}=w(a-tilde a-tilde{sup {dagger}}+1/2)+{alpha}{alpha}-tilde{sup 2}+{beta}a-tilde{sup {dagger}}{sup 2} with a-tilde = A(x) d/dx + B(x) can be transformed into an equivalent Hermitian Hamiltonian with the help of a similarity transformation. It is shown that the equivalent Hermitian Hamiltonian can be further transformed into the harmonic oscillator Hamiltonian so long as [a-ilde,a-tilde{sup {dagger}}]=constant. However, the main objective of this communication is to show that though the commutator of a-tilde and a-tilde{sup {dagger}} is constant, the generalized Swanson Hamiltonian is not necessarily isospectral to the harmonic oscillator. The reason for this anomaly is discussed in the framework of position-dependent mass models by choosing A(x) as the inverse square root of the mass function. (fast track communication)

  18. Axisymmetric finite deformation membrane problems

    Energy Technology Data Exchange (ETDEWEB)

    Feng, W.W.

    1980-12-12

    Many biomechanic problems involve the analysis of finite deformation axisymmetric membranes. This paper presents the general formulation for solving a class of axisymmetric membrane problems. The material nonlinearity, as well as the geometric nonlinearity, is considered. Two methods are presented to solve these problems. The first method is solving a set of differential equilibrium equations. The governing equations are reduced to three first-order ordinary-differential equations with explicit derivatives. The second method is the Ritz method where a general potential energy functional valid for all axisymmetric deformed positions is presented. The geometric admissible functions that govern the deformed configuration are written in terms of a series with unknown coefficients. These unknown coefficients are determined by the minimum potential energy principle that of all geometric admissible deformed configurations, the equilibrium configuration minimizes the potential energy. Some examples are presented. A comparison between these two methods is mentioned.

  19. Generalized harmonic, cyclotomic, and binomial sums, their polylogarithms and special numbers

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, J.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); Bluemlein, J. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2013-10-15

    A survey is given on mathematical structures which emerge in multi-loop Feynman diagrams. These are multiply nested sums, and, associated to them by an inverse Mellin transform, specific iterated integrals. Both classes lead to sets of special numbers. Starting with harmonic sums and polylogarithms we discuss recent extensions of these quantities as cyclotomic, generalized (cyclotomic), and binomially weighted sums, associated iterated integrals and special constants and their relations.

  20. Generalized Lyapunov exponents of the random harmonic oscillator: Cumulant expansion approach

    Science.gov (United States)

    Vallejos, Raúl O.; Anteneodo, Celia

    2012-02-01

    The cumulant expansion is used to estimate generalized Lyapunov exponents of the random-frequency harmonic oscillator. Three stochastic processes are considered: Gaussian white noise, Ornstein-Uhlenbeck, and Poisson shot noise. In some cases, nontrivial numerical difficulties arise. These are mostly solved by implementing an appropriate importance-sampling Monte Carlo scheme. We analyze the relation between random-frequency oscillators and many-particle systems with pairwise interactions like the Lennard-Jones gas.

  1. Texture correction in neutron powder diffraction data of molybdite using the generalized spherical harmonic model

    Science.gov (United States)

    Sitepu, H.; O'Connor, B. H.; Benmarouane, A.; Hansen, T.; Ritter, C.; Brokmeier, H.-G.

    2004-07-01

    Texture correction of isostatically pressed molybdite powders has been carried out using the D1A high-resolution fixed wavelength 25-detector powder diffractometer at the Institut Laue-Langevin. All of the samples were spun during the data collections to improve particle statistics. In the present study, the GSAS Rietveld program was used for analysis of each pattern, in which the generalized spherical harmonic (GSH) is generated using selection rules depending on the crystal symmetry of the phase under investigation. The default sample texture symmetry was chosen to be cylindrical and the maximum of eight harmonic orders was selected. The results indicate that the correct crystal structure can be obtained when applying corrections to intensities using the GSH description.

  2. Dipole mechanism of spontaneous breaking of N = 2 supersymmetry. II. Reformulation and generalization in harmonic superspace

    International Nuclear Information System (INIS)

    Ohta, N.

    1985-01-01

    After elucidating the component structure of N = 2 supersymmetric gauge theories in the harmonic superspace formalism with central charges, we reformulate our previous dipole mechanism of spontaneous breaking of N = 2 supersymmetry free from the Nambu-Goldstone-fermion difficulties in this formalism. This allows a generalization of our previous model of generating finiteness-preserving mass terms for scalar hypermultiplets; we can also obtain the gauge-fermion and scalar mass terms together with specific cubic interactions for scalar fields. The mechanism is equivalent to the so-called spurion method

  3. Fast digital envelope detector based on generalized harmonic wavelet transform for BOTDR performance improvement

    International Nuclear Information System (INIS)

    Yang, Wei; Yang, Yuanhong; Yang, Mingwei

    2014-01-01

    We propose a fast digital envelope detector (DED) based on the generalized harmonic wavelet transform to improve the performance of coherent heterodyne Brillouin optical time domain reflectometry. The proposed DED can obtain undistorted envelopes due to the zero phase-shift ideal bandpass filter (BPF) characteristics of the generalized harmonic wavelet (GHW). Its envelope average ability benefits from the passband designing flexibility of the GHW, and its demodulation speed can be accelerated by using a fast algorithm that only analyses signals of interest within the passband of the GHW with reduced computational complexity. The feasibility and advantage of the proposed DED are verified by simulations and experiments. With an optimized bandwidth, Brillouin frequency shift accuracy improvements of 19.4% and 11.14%, as well as envelope demodulation speed increases of 39.1% and 24.9%, are experimentally attained by the proposed DED over Hilbert transform (HT) and Morlet wavelet transform (MWT) based DEDs, respectively. Spatial resolution by the proposed DED is undegraded, which is identical to the undegraded value by HT-DED with an allpass filter characteristic and better than the degraded value by MWT-DED with a Gaussian BPF characteristic. (paper)

  4. Interaction of low-frequency axisymmetric ultrasonic guided waves with bends in pipes of arbitrary bend angle and general bend radius.

    Science.gov (United States)

    Verma, Bhupesh; Mishra, Tarun Kumar; Balasubramaniam, Krishnan; Rajagopal, Prabhu

    2014-03-01

    The use of ultrasonic guided waves for the inspection of pipes with elbow and U-type bends has received much attention in recent years, but studies for more general bend angles which may also occur commonly, for example in cross-country pipes, are limited. Here, we address this topic considering a general bend angle φ, a more general mean bend radius R in terms of the wavelength of the mode studied and pipe thickness b. We use 3D Finite Element (FE) simulation to understand the propagation of fundamental axisymmetric L(0,2) mode across bends of different angles φ. The effect of the ratio of the mean bend radius to the wavelength of the mode studied, on the transmission and reflection of incident wave is also considered. The studies show that as the bend angle is reduced, a progressively larger extent of mode-conversion affects the transmission and velocity characteristics of the L(0,2) mode. However the overall message on the potential of guided waves for inspection and monitoring of bent pipes remains positive, as bends seem to impact mode transmission only to the extent of 20% even at low bend angles. The conclusions seem to be valid for different typical pipe thicknesses b and bend radii. The modeling approach is validated by experiments and discussed in light of physics of guided waves. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Quantum harmonic Brownian motion in a general environment: A modified phase-space approach

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Leehwa [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1993-06-23

    After extensive investigations over three decades, the linear-coupling model and its equivalents have become the standard microscopic models for quantum harmonic Brownian motion, in which a harmonically bound Brownian particle is coupled to a quantum dissipative heat bath of general type modeled by infinitely many harmonic oscillators. The dynamics of these models have been studied by many authors using the quantum Langevin equation, the path-integral approach, quasi-probability distribution functions (e.g., the Wigner function), etc. However, the quantum Langevin equation is only applicable to some special problems, while other approaches all involve complicated calculations due to the inevitable reduction (i.e., contraction) operation for ignoring/eliminating the degrees of freedom of the heat bath. In this dissertation, the author proposes an improved methodology via a modified phase-space approach which employs the characteristic function (the symplectic Fourier transform of the Wigner function) as the representative of the density operator. This representative is claimed to be the most natural one for performing the reduction, not only because of its simplicity but also because of its manifestation of geometric meaning. Accordingly, it is particularly convenient for studying the time evolution of the Brownian particle with an arbitrary initial state. The power of this characteristic function is illuminated through a detailed study of several physically interesting problems, including the environment-induced damping of quantum interference, the exact quantum Fokker-Planck equations, and the relaxation of non-factorizable initial states. All derivations and calculations axe shown to be much simplified in comparison with other approaches. In addition to dynamical problems, a novel derivation of the fluctuation-dissipation theorem which is valid for all quantum linear systems is presented.

  6. Quantum harmonic Brownian motion in a general environment: A modified phase-space approach

    International Nuclear Information System (INIS)

    Yeh, L.

    1993-01-01

    After extensive investigations over three decades, the linear-coupling model and its equivalents have become the standard microscopic models for quantum harmonic Brownian motion, in which a harmonically bound Brownian particle is coupled to a quantum dissipative heat bath of general type modeled by infinitely many harmonic oscillators. The dynamics of these models have been studied by many authors using the quantum Langevin equation, the path-integral approach, quasi-probability distribution functions (e.g., the Wigner function), etc. However, the quantum Langevin equation is only applicable to some special problems, while other approaches all involve complicated calculations due to the inevitable reduction (i.e., contraction) operation for ignoring/eliminating the degrees of freedom of the heat bath. In this dissertation, the author proposes an improved methodology via a modified phase-space approach which employs the characteristic function (the symplectic Fourier transform of the Wigner function) as the representative of the density operator. This representative is claimed to be the most natural one for performing the reduction, not only because of its simplicity but also because of its manifestation of geometric meaning. Accordingly, it is particularly convenient for studying the time evolution of the Brownian particle with an arbitrary initial state. The power of this characteristic function is illuminated through a detailed study of several physically interesting problems, including the environment-induced damping of quantum interference, the exact quantum Fokker-Planck equations, and the relaxation of non-factorizable initial states. All derivations and calculations axe shown to be much simplified in comparison with other approaches. In addition to dynamical problems, a novel derivation of the fluctuation-dissipation theorem which is valid for all quantum linear systems is presented

  7. Static harmonization of dynamically harmonized Fourier transform ion cyclotron resonance cell.

    Science.gov (United States)

    Zhdanova, Ekaterina; Kostyukevich, Yury; Nikolaev, Eugene

    2017-08-01

    Static harmonization in the Fourier transform ion cyclotron resonance cell improves the resolving power of the cell and prevents dephasing of the ion cloud in the case of any trajectory of the charged particle, not necessarily axisymmetric cyclotron (as opposed to dynamic harmonization). We reveal that the Fourier transform ion cyclotron resonance cell with dynamic harmonization (paracell) is proved to be statically harmonized. The volume of the statically harmonized potential distribution increases with an increase in the number of trap segments.

  8. Generalizations of Karp's theorem to elastic scattering theory

    Science.gov (United States)

    Tuong, Ha-Duong

    Karp's theorem states that if the far field pattern corresponding to the scattering of a time-harmonic acoustic plane wave by a sound-soft obstacle in R2 is invariant under the group of rotations, then the scatterer is a circle. The theorem is generalized to the elastic scattering problems and the axisymmetric scatterers in R3.

  9. 75 FR 14081 - Mandatory Reporting of Greenhouse Gases: Minor Harmonizing Changes to the General Provisions

    Science.gov (United States)

    2010-03-24

    ... AGENCY 40 CFR Part 98 RIN 2060-AQ15 Mandatory Reporting of Greenhouse Gases: Minor Harmonizing Changes to... greenhouse gas suppliers (subpart OO): (A) All producers of industrial greenhouse gases. (B) Importers of industrial greenhouse gases with annual bulk imports of N2O, fluorinated GHG, and CO2 that in combination are...

  10. Simulation study of generalized electron cyclotron harmonic waves and nonlinear scattering in a magnetized plasma

    International Nuclear Information System (INIS)

    Martinez, R.M.

    1983-01-01

    Part One examines the properties of electron cyclotron harmonic waves by means of computer simulation. The electromagnetic cyclotron harmonic modes not previously observed in simulation are emphasized and compared with the better known electrostatic (Bernstein) modes for perpendicular propagation. The investigation is performed by a spectrum analysis (both wavelength and frequency) of the thermal equilibrium electromagnetic fluctuation fields present in the simulation. A numerical solution of the fully electromagnetic dispersion relation shows that extreme frequency resolution is necessary to discern shifts of the electromagnetic mode frequencies from the cyclotron harmonics except at high plasma density or temperature. The simulation results show that at high plasma pressure the amplitude of the electromagnetic modes can become greater than that of the electrostatic modes. Part Two examines the interaction of an external electromagnetic wave with the electrostatic cylotron harmonic modes. The stimulated Raman scattering with an extraordinary wave as the pump is observed to occur in a wavelength regime where it would be prevented by Landau damping in an unmagnetized plasma

  11. Explicit formulas for generalized harmonic perturbations of the infinite quantum well with an application to Mathieu equations

    International Nuclear Information System (INIS)

    García-Ravelo, J.; Trujillo, A. L.; Schulze-Halberg, A.

    2012-01-01

    We obtain explicit formulas for perturbative corrections of the infinite quantum well model. The formulas we obtain are based on a class of matrix elements that we construct by means of two-parameter ladder operators associated with the infinite quantum well system. Our approach can be used to construct solutions to Schrödinger-type equations that involve generalized harmonic perturbations of their potentials, such as cosine powers, Fourier series, and more general functions. As a particular case, we obtain characteristic values for odd periodic solutions of the Mathieu equation.

  12. Streamline topology of axisymmetric flows

    DEFF Research Database (Denmark)

    Brøns, Morten

    Topological fluid mechanics in the sense of the present paper is the study and classification of flow patterns close to a critical point. Here we discuss the topology of steady viscous incompressible axisymmetric flows in the vicinity of the axis. Following previous studies the velocity field $v...... to the authors knowledge has not been used systematically to high orders in topological fluid mechanics. We compare the general results with experimental and computational results on the Vogel-Ronneberg flow. We show that the topology changes observed when recirculating bubbles on the vortex axis are created...... and interact follow the topological classification and that the complete set of patterns found is contained in a codimension-4 unfolding of the most simple singular configuration....

  13. State of the art in trueness and interlaboratory harmonization for 10 analytes in general clinical chemistry.

    Science.gov (United States)

    Miller, W Greg; Myers, Gary L; Ashwood, Edward R; Killeen, Anthony A; Wang, Edward; Ehlers, Glenn W; Hassemer, David; Lo, Stanley F; Seccombe, David; Siekmann, Lothar; Thienpont, Linda M; Toth, Alan

    2008-05-01

    Harmonization and standardization of results among different clinical laboratories is necessary for clinical practice guidelines to be established. To evaluate the state of the art in measuring 10 routine chemistry analytes. A specimen prepared as off-the-clot pooled sera and 4 conventionally prepared specimens were sent to participants in the College of American Pathologists Chemistry Survey. Analyte concentrations were assigned by reference measurement procedures. Approximately 6000 clinical laboratories. For glucose, iron, potassium, and uric acid, more than 87.5% of peer groups meet the desirable bias goals based on biologic variability criteria. The remaining 6 analytes had less than 52% of peer groups that met the desirable bias criteria. Routine measurement procedures for some analytes had acceptable traceability to reference systems. Conventionally prepared proficiency testing specimens were not adequately commutable with a fresh frozen specimen to be used to evaluate trueness of methods compared with a reference measurement procedure.

  14. Axisymmetric control in tokamaks

    International Nuclear Information System (INIS)

    Humphreys, D.A.

    1991-02-01

    Vertically elongated tokamak plasmas are intrinsically susceptible to vertical axisymmetric instabilities as a result of the quadrupole field which must be applied to produce the elongation. The present work analyzes the axisymmetric control necessary to stabilize elongated equilibria, with special application to the Alcator C-MOD tokamak. A rigid current-conserving filamentary plasma model is applied to Alcator C-MOD stability analysis, and limitations of the model are addressed. A more physically accurate nonrigid plasma model is developed using a perturbed equilibrium approach to estimate linearized plasma response to conductor current variations. This model includes novel flux conservation and vacuum vessel stabilization effects. It is found that the nonrigid model predicts significantly higher growth rates than predicted by the rigid model applied to the same equilibria. The nonrigid model is then applied to active control system design. Multivariable pole placement techniques are used to determine performance optimized control laws. Formalisms are developed for implementing and improving nominal feedback laws using the C-MOD digital-analog hybrid control system architecture. A proportional-derivative output observer which does not require solution of the nonlinear Ricatti equation is developed to help accomplish this implementation. The nonrigid flux conserving perturbed equilibrium plasma model indicates that equilibria with separatrix elongation of at least κ sep = 1.85 can be stabilized robustly with the present control architecture and conductor/sensor configuration

  15. Harmonic supergraphs

    International Nuclear Information System (INIS)

    Galperin, A.; Ivanov, E.; Ogievetsky, V.; Sokatchev, E.

    1985-01-01

    This paper completes a descrption of the quantization procedure in the harmonic superspace approach. The Feynman rules for N=2 matter and Yang-Mills theories are derived and the various examples of harmonic supergraph calculations are given. Calculations appear to be not more difficult than those in the N=1 case. The integration over harmonic variables does not lead to any troubles, a non-locality in these disappears on-shell. The important property is that the quantum corrections are always writen as integrals over the full harmonic superspace even though the initial action is an integral over the analytic subspace. As a by-product our results imply a very simple proof of finiteness of a wide class of the N=4, d=2 non-linear Σ-models. The most general self-couplings of hypermultiplets including those with broken SU(2) are considered.The duality relations among the N=2 linear multiplet and both kinds of hypermultiplet are established

  16. On harmonizing nuclear energy law. Introductory remarks to the general theme of Nuclear Inter-Jura '85

    International Nuclear Information System (INIS)

    Pelzer, N.

    1986-01-01

    The president of AIDN/INLA Norbert Pelzer points out that international harmonization can easier be achieved in nuclear energy law than in other legal disciplines. In many States there already exist widely harmonized laws, because national legislation had to adopt international obligations. International harmonization of nuclear energy law leads to a higher degree of international legal certainty. (WG) [de

  17. Plasma harmonics

    CERN Document Server

    Ganeev, Rashid A

    2014-01-01

    Preface; Why plasma harmonics? A very brief introduction Early stage of plasma harmonic studies - hopes and frustrations New developments in plasma harmonics studies: first successes Improvements of plasma harmonics; Theoretical basics of plasma harmonics; Basics of HHG Harmonic generation in fullerenes using few-cycle pulsesVarious approaches for description of observed peculiarities of resonant enhancement of a single harmonic in laser plasmaTwo-colour pump resonance-induced enhancement of odd and even harmonics from a tin plasmaCalculations of single harmonic generation from Mn plasma;Low-o

  18. 75 FR 12489 - Mandatory Reporting of Greenhouse Gases: Minor Harmonizing Changes to the General Provisions

    Science.gov (United States)

    2010-03-16

    ... facilities General Stationary Fuel Combustion Sources.... Facilities operating boilers, process heaters, incinerators, turbines, and internal combustion engines. 211 Extractors of crude petroleum and natural gas. 321... manufacturing facilities. Hydrogen Production 325120 Hydrogen manufacturing facilities. Iron and Steel...

  19. HARMONIZATION OF THE CONSUMER CONTRACT DISPOSITIONS WITH THE GENERAL CONTRACT RULES

    Directory of Open Access Journals (Sweden)

    Alexandru MATEESCU

    2016-05-01

    Full Text Available This work contains and mainly tackles the contract of consumption, its differences and similitudes to a general contract, manners of applying it, and the way in which the former can be better coordinated and correlated to the general contracting terms, established by the civil law. Along the years, the consumption contract has undergone several addenda and it has come to represent an instrument of both refference and regulation for the socio-economical relations between two parties who have a commercial agreement. The general law frame has had a great influence in the development of the consumption contract, as well as on its applicability conditions and its manner of deployment. Through the development of the judicial law concerning the contract of concumption, this type of agreement has influenced, through its human and social nature, both the general contract, and the specific frame it relates to. The relationship between the two types of contract is one of interdependence, which is determined by the need of judicial regulation in the Romanian and European economy. The ceaselees development of interhuman relations pushes society towards maintaining a continuous study of the advancement of specific legislation and judicial regulation. The main purpose of this work is analyzing the general judicial frame and the way in which the differences between the general contract and the consumption one may represent a benefic and mutual influence on protecting the citizens’ rights, which in the case of the consumption contract encompasses the protection of consumers’ rights. Also, it will analyze the aspects that determine the manner of application and the the differences that can be surmounted in order to achieve a better cohesion between these types of contracts.

  20. Generalized stochastic resonance for a fractional harmonic oscillator with bias-signal-modulated trichotomous noise

    Science.gov (United States)

    Lin, Lifeng; Wang, Huiqi; Huang, Xipei; Wen, Yongxian

    2018-03-01

    For a fractional linear oscillator subjected to both parametric excitation of trichotomous noise and external excitation of bias-signal-modulated trichotomous noise, the generalized stochastic resonance (GSR) phenomena are investigated in this paper in case the noises are cross-correlative. First, the generalized Shapiro-Loginov formula and generalized fractional Shapiro-Loginov formula are derived. Then, by using the generalized (fractional) Shapiro-Loginov formula and the Laplace transformation technique, the exact expression of the first-order moment of the system’s steady response is obtained. The numerical results show that the evolution of the output amplitude amplification is nonmonotonic with the frequency of periodic signal, the noise parameters, and the fractional order. The GSR phenomena, including single-peak GSR, double-peak GSR and triple-peak GSR, are observed in this system. In addition, the interplay of the multiplicative trichotomous noise, bias-signal-modulated trichotomous noise and memory can induce and diversify the stochastic multi-resonance (SMR) phenomena, and the two kinds of trichotomous noises play opposite roles on the GSR.

  1. Modeling axisymmetric flow and transport

    Science.gov (United States)

    Langevin, C.D.

    2008-01-01

    Unmodified versions of common computer programs such as MODFLOW, MT3DMS, and SEAWAT that use Cartesian geometry can accurately simulate axially symmetric ground water flow and solute transport. Axisymmetric flow and transport are simulated by adjusting several input parameters to account for the increase in flow area with radial distance from the injection or extraction well. Logarithmic weighting of interblock transmissivity, a standard option in MODFLOW, can be used for axisymmetric models to represent the linear change in hydraulic conductance within a single finite-difference cell. Results from three test problems (ground water extraction, an aquifer push-pull test, and upconing of saline water into an extraction well) show good agreement with analytical solutions or with results from other numerical models designed specifically to simulate the axisymmetric geometry. Axisymmetric models are not commonly used but can offer an efficient alternative to full three-dimensional models, provided the assumption of axial symmetry can be justified. For the upconing problem, the axisymmetric model was more than 1000 times faster than an equivalent three-dimensional model. Computational gains with the axisymmetric models may be useful for quickly determining appropriate levels of grid resolution for three-dimensional models and for estimating aquifer parameters from field tests.

  2. Parameter identification in a generalized time-harmonic Rayleigh damping model for elastography.

    Directory of Open Access Journals (Sweden)

    Elijah E W Van Houten

    Full Text Available The identifiability of the two damping components of a Generalized Rayleigh Damping model is investigated through analysis of the continuum equilibrium equations as well as a simple spring-mass system. Generalized Rayleigh Damping provides a more diversified attenuation model than pure Viscoelasticity, with two parameters to describe attenuation effects and account for the complex damping behavior found in biological tissue. For heterogeneous Rayleigh Damped materials, there is no equivalent Viscoelastic system to describe the observed motions. For homogeneous systems, the inverse problem to determine the two Rayleigh Damping components is seen to be uniquely posed, in the sense that the inverse matrix for parameter identification is full rank, with certain conditions: when either multi-frequency data is available or when both shear and dilatational wave propagation is taken into account. For the multi-frequency case, the frequency dependency of the elastic parameters adds a level of complexity to the reconstruction problem that must be addressed for reasonable solutions. For the dilatational wave case, the accuracy of compressional wave measurement in fluid saturated soft tissues becomes an issue for qualitative parameter identification. These issues can be addressed with reasonable assumptions on the negligible damping levels of dilatational waves in soft tissue. In general, the parameters of a Generalized Rayleigh Damping model are identifiable for the elastography inverse problem, although with more complex conditions than the simpler Viscoelastic damping model. The value of this approach is the additional structural information provided by the Generalized Rayleigh Damping model, which can be linked to tissue composition as well as rheological interpretations.

  3. A General Airman: Millard Harmon and the South Pacific in World War II

    Science.gov (United States)

    2009-01-01

    Corps and who were unaccustomed to the workings of large organizations. Moreover, Harmon’s own staff, initially overpopulated with air officers...preaching about hygiene and health in the trenches, something he had learned as a young infantryman, earned him credibility with rank-and-file grunts... cared for, I shall not hesitate to resolve this difficulty by relieving you of further responsibility as my deputy.”16 As the senior air general in

  4. The Stochastic Resonance Behaviors of a Generalized Harmonic Oscillator Subject to Multiplicative and Periodically Modulated Noises

    Directory of Open Access Journals (Sweden)

    Suchuan Zhong

    2016-01-01

    Full Text Available The stochastic resonance (SR characteristics of a generalized Langevin linear system driven by a multiplicative noise and a periodically modulated noise are studied (the two noises are correlated. In this paper, we consider a generalized Langevin equation (GLE driven by an internal noise with long-memory and long-range dependence, such as fractional Gaussian noise (fGn and Mittag-Leffler noise (M-Ln. Such a model is appropriate to characterize the chemical and biological solutions as well as to some nanotechnological devices. An exact analytic expression of the output amplitude is obtained. Based on it, some characteristic features of stochastic resonance phenomenon are revealed. On the other hand, by the use of the exact expression, we obtain the phase diagram for the resonant behaviors of the output amplitude versus noise intensity under different values of system parameters. These useful results presented in this paper can give the theoretical basis for practical use and control of the SR phenomenon of this mathematical model in future works.

  5. Expansion in higher harmonics of boson stars using a generalized Ruffini-Bonazzola approach. Part 1. Bound states

    Energy Technology Data Exchange (ETDEWEB)

    Eby, Joshua; Suranyi, Peter; Wijewardhana, L. C. R.

    2018-04-01

    The method pioneered by Ruffini and Bonazzola (RB) to describe boson stars involves an expansion of the boson field which is linear in creation and annihilation operators. This expansion constitutes an exact solution to a non-interacting field theory, and has been used as a reasonable ansatz for an interacting one. In this work, we show how one can go beyond the RB ansatz towards an exact solution of the interacting operator Klein-Gordon equation, which can be solved iteratively to ever higher precision. Our Generalized Ruffini-Bonazzola approach takes into account contributions from nontrivial harmonic dependence of the wavefunction, using a sum of terms with energy $k\\,E_0$, where $k\\geq1$ and $E_0$ is the chemical potential of a single bound axion. The method critically depends on an expansion in a parameter $\\Delta \\equiv \\sqrt{1-E_0{}^2/m^2}<1$, where $m$ is the mass of the boson. In the case of the axion potential, we calculate corrections which are relevant for axion stars in the transition or dense branches. We find with high precision the local minimum of the mass, $M_{min}\\approx 463\\,f^2/m$, at $\\Delta\\approx0.27$, where $f$ is the axion decay constant. This point marks the crossover from transition to dense branches of solutions, and a corresponding crossover from structural instability to stability.

  6. Topological fluid mechanics of Axisymmetric Flow

    DEFF Research Database (Denmark)

    Brøns, Morten

    1998-01-01

    Topological fluid mechanics in the sense of the present paper is the study and classification of flow patterns close to a critical point. Here we discuss the topology of steady viscous incompressible axisymmetric flows in the vicinity of the axis. Following previous studies the velocity field v...... to the authors knowledge has not been used systematically to high orders in topological fluid mechanics. We compare the general results with experimental and computational results on the Vogel-Ronneberg flow. We show that the topology changes observed when recirculating bubbles on the vortex axis are created...

  7. Numerical Evaluation of Harmonic Polylogarithms

    CERN Document Server

    Gehrmann, T

    2001-01-01

    Harmonic polylogarithms $\\H(\\vec{a};x)$, a generalization of Nielsen's polylogarithms ${S}_{n,p}(x)$, appear frequently in analytic calculations of radiative corrections in quantum field theory. We present an algorithm for the numerical evaluation of harmonic polylogarithms of arbitrary real argument. This algorithm is implemented into a FORTRAN subroutine hplog to compute harmonic polylogarithms up to weight 4.

  8. Modelling axisymmetric cod-ends made of different mesh types

    DEFF Research Database (Denmark)

    Priour, D.; Herrmann, Bent; O'Neill, F.G.

    2009-01-01

    Cod-ends are the rearmost part of trawl fishing gears. They collect the catch, and for many important species it is where fish selection takes place. Generally speaking they are axisymmetric, and their shape is influenced by the catch volume, the mesh shape, and the material characteristics. The ...

  9. Harmonic statistics

    Science.gov (United States)

    Eliazar, Iddo

    2017-05-01

    The exponential, the normal, and the Poisson statistical laws are of major importance due to their universality. Harmonic statistics are as universal as the three aforementioned laws, but yet they fall short in their 'public relations' for the following reason: the full scope of harmonic statistics cannot be described in terms of a statistical law. In this paper we describe harmonic statistics, in their full scope, via an object termed harmonic Poisson process: a Poisson process, over the positive half-line, with a harmonic intensity. The paper reviews the harmonic Poisson process, investigates its properties, and presents the connections of this object to an assortment of topics: uniform statistics, scale invariance, random multiplicative perturbations, Pareto and inverse-Pareto statistics, exponential growth and exponential decay, power-law renormalization, convergence and domains of attraction, the Langevin equation, diffusions, Benford's law, and 1/f noise.

  10. Seismic analysis of axisymmetric shells

    International Nuclear Information System (INIS)

    Jospin, R.J.; Toledo, E.M.; Feijoo, R.A.

    1984-01-01

    Axisymmetric shells subjected to multiple support excitation are studied. The shells are spatialy discretized by the finite element method and in order to obtain estimates for the maximum values of displacements and stresses the response spectrum tecnique is used. Finally, some numerical results are presented and discussed in the case of a shell of revolution with vertical symmetry axis, subjected to seismic ground motions in the horizontal, vertical and rocking directions. (Author) [pt

  11. Adaptive simultaneous motion and vibration control for a multi flexible-link mechanism with uncertain general harmonic disturbance

    Science.gov (United States)

    Wang, Ji; Pi, Yangjun; Hu, Yumei; Zhu, Zhencai; Zeng, Lingbin

    2017-11-01

    In this paper, a new motion and vibration synthesized control system-a linear quadratic regulator/strain rate feedback controller (LQR/SRF) with adaptive disturbance attenuation is presented for a multi flexible-link mechanism subjected to uncertain harmonic disturbances with arbitrary frequencies and unknown magnitudes. In the proposed controller, nodal strain rates are introduced into the model of the multi flexible-link mechanism, based upon which a synthesized LQR controller where both rigid-body motion and elastic deformation are considered is designed. The uncertain harmonic disturbances would be canceled in the feedback loop by its approximated value which is computed online via an adaptive update law. Asymptotic stability of the closed-loop system is proved by the Lyapunov analysis. The effectiveness of the proposed controller is shown via simulation.

  12. Generalized Wideband Harmonic Imaging of Nonlinearly Loaded Scatterers: Theory, Analysis, and Application for Forward-Looking Radar Target Detection

    Science.gov (United States)

    2014-09-01

    The concept of nonlinear radar has been explored within the radio-frequency identification ( RFID ) community: associated applications range from...Proc. SPIE. 2003;5089. 3 Wang T, Sjahputera O, Keller JM. Landmine detection using forward-looking GPR with object tracking , Proc. SPIE...Comput. Electron. Agr. 2002;35:151–169. 7 Nikitin PV, Rao KVS. Harmonic scattering from passive UHF RFID tags. Proc. IEEE Antennas and Propagat. Soc

  13. Acoustic Scattering by Axisymmetric Finite-Length Bodies with Application to Fish: Measurement and Modeling

    National Research Council Canada - National Science Library

    Reeder, D

    2002-01-01

    ... laboratory acoustic measurements. A general acoustic scattering model is developed that is accurate and numerically efficient for a wide range of frequencies, angles of orientation, irregular axisymmetric shapes and boundary...

  14. Harmonic statistics

    Energy Technology Data Exchange (ETDEWEB)

    Eliazar, Iddo, E-mail: eliazar@post.tau.ac.il

    2017-05-15

    The exponential, the normal, and the Poisson statistical laws are of major importance due to their universality. Harmonic statistics are as universal as the three aforementioned laws, but yet they fall short in their ‘public relations’ for the following reason: the full scope of harmonic statistics cannot be described in terms of a statistical law. In this paper we describe harmonic statistics, in their full scope, via an object termed harmonic Poisson process: a Poisson process, over the positive half-line, with a harmonic intensity. The paper reviews the harmonic Poisson process, investigates its properties, and presents the connections of this object to an assortment of topics: uniform statistics, scale invariance, random multiplicative perturbations, Pareto and inverse-Pareto statistics, exponential growth and exponential decay, power-law renormalization, convergence and domains of attraction, the Langevin equation, diffusions, Benford’s law, and 1/f noise. - Highlights: • Harmonic statistics are described and reviewed in detail. • Connections to various statistical laws are established. • Connections to perturbation, renormalization and dynamics are established.

  15. Second harmonic inversion for ultrasound contrast harmonic imaging

    Science.gov (United States)

    Pasovic, Mirza; Danilouchkine, Mike; Faez, Telli; van Neer, Paul L. M. J.; Cachard, Christian; van der Steen, Antonius F. W.; Basset, Olivier; de Jong, Nico

    2011-06-01

    Ultrasound contrast agents (UCAs) are small micro-bubbles that behave nonlinearly when exposed to an ultrasound wave. This nonlinear behavior can be observed through the generated higher harmonics in a back-scattered echo. In past years several techniques have been proposed to detect or image harmonics produced by UCAs. In these proposed works, the harmonics generated in the medium during the propagation of the ultrasound wave played an important role, since these harmonics compete with the harmonics generated by the micro-bubbles. We present a method for the reduction of the second harmonic generated during nonlinear-propagation-dubbed second harmonic inversion (SHI). A general expression for the suppression signals is also derived. The SHI technique uses two pulses, p' and p'', of the same frequency f0 and the same amplitude P0 to cancel out the second harmonic generated by nonlinearities of the medium. Simulations show that the second harmonic is reduced by 40 dB on a large axial range. Experimental SHI B-mode images, from a tissue-mimicking phantom and UCAs, show an improvement in the agent-to-tissue ratio (ATR) of 20 dB compared to standard second harmonic imaging and 13 dB of improvement in harmonic power Doppler.

  16. Second harmonic inversion for ultrasound contrast harmonic imaging

    International Nuclear Information System (INIS)

    Pasovic, Mirza; Danilouchkine, Mike; Faez, Telli; Van Neer, Paul L M J; Van der Steen, Antonius F W; De Jong, Nico; Cachard, Christian; Basset, Olivier

    2011-01-01

    Ultrasound contrast agents (UCAs) are small micro-bubbles that behave nonlinearly when exposed to an ultrasound wave. This nonlinear behavior can be observed through the generated higher harmonics in a back-scattered echo. In past years several techniques have been proposed to detect or image harmonics produced by UCAs. In these proposed works, the harmonics generated in the medium during the propagation of the ultrasound wave played an important role, since these harmonics compete with the harmonics generated by the micro-bubbles. We present a method for the reduction of the second harmonic generated during nonlinear-propagation-dubbed second harmonic inversion (SHI). A general expression for the suppression signals is also derived. The SHI technique uses two pulses, p' and p'', of the same frequency f 0 and the same amplitude P 0 to cancel out the second harmonic generated by nonlinearities of the medium. Simulations show that the second harmonic is reduced by 40 dB on a large axial range. Experimental SHI B-mode images, from a tissue-mimicking phantom and UCAs, show an improvement in the agent-to-tissue ratio (ATR) of 20 dB compared to standard second harmonic imaging and 13 dB of improvement in harmonic power Doppler.

  17. Tides and tidal harmonics at Umbharat, Gujarat

    Digital Repository Service at National Institute of Oceanography (India)

    Suryanarayana, A.; Swamy, G.N.

    A part of the data on tides recorded at Machiwada near Umbharat, Gulf of Cambay during April 1978 was subjected to harmonic analysis following the Admiralty procedure. The general tidal characteristics and the value of four major harmonic...

  18. Axisymmetric Marangoni convection in microencapsulation

    Science.gov (United States)

    Subramanian, Pravin; Zebib, Abdelfattah; McQuillan, Barry

    2005-07-01

    Spherical shells used as laser targets in inertial confinement fusion (ICF) experiments are made by microencapsulation. In one phase of manufacturing, the spherical shells contain a solvent (fluorobenzene (FB)) and a solute (polystyrene (PAMS)) in a water-FB environment. Evaporation of the FB results in the desired hardened plastic hollow spherical shells, 1-2 mm in diameter. Perfect sphericity is demanded for efficient fusion ignition and the observed surface roughness maybe driven by Marangoni instabilities due to surface tension dependence on the FB concentration (buoyant forces are negligible in this micro-scale problem). Here we model this drying process and compute nonlinear, time-dependent, axisymmetric, variable viscosity, infinite Schmidt number solutocapillary convection in the shells. Comparison with results from linear theory and available experiments are made.

  19. CRUCIB: an axisymmetric convection code

    International Nuclear Information System (INIS)

    Bertram, L.A.

    1975-03-01

    The CRUCIB code was written in support of an experimental program aimed at measurement of thermal diffusivities of refractory liquids. Precise values of diffusivity are necessary to realistic analysis of reactor safety problems, nuclear waste disposal procedures, and fundamental metal forming processes. The code calculates the axisymmetric transient convective motions produced in a right circular cylindrical crucible, which is surface heated by an annular heat pulse. Emphasis of this report is placed on the input-output options of the CRUCIB code, which are tailored to assess the importance of the convective heat transfer in determining the surface temperature distribution. Use is limited to Prandtl numbers less than unity; larger values can be accommodated by replacement of a single block of the code, if desired. (U.S.)

  20. Thermodynamic properties of ideal Fermi gases in a harmonic potential in an n-dimensional space under the generalized uncertainty principle

    Science.gov (United States)

    Li, Heling; Ren, Jinxiu; Wang, Wenwei; Yang, Bin; Shen, Hongjun

    2018-02-01

    Using the semi-classical (Thomas-Fermi) approximation, the thermodynamic properties of ideal Fermi gases in a harmonic potential in an n-dimensional space are studied under the generalized uncertainty principle (GUP). The mean particle number, internal energy, heat capacity and other thermodynamic variables of the Fermi system are calculated analytically. Then, analytical expressions of the mean particle number, internal energy, heat capacity, chemical potential, Fermi energy, ground state energy and amendments of the GUP are obtained at low temperatures. The influence of both the GUP and the harmonic potential on the thermodynamic properties of a copper-electron gas and other systems with higher electron densities are studied numerically at low temperatures. We find: (1) When the GUP is considered, the influence of the harmonic potential is very much larger, and the amendments produced by the GUP increase by eight to nine orders of magnitude compared to when no external potential is applied to the electron gas. (2) The larger the particle density, or the smaller the particle masses, the bigger the influence of the GUP. (3) The effect of the GUP increases with the increase in the spatial dimensions. (4) The amendments of the chemical potential, Fermi energy and ground state energy increase with an increase in temperature, while the heat capacity decreases. T F0 is the Fermi temperature of the ideal Fermi system in a harmonic potential. When the temperature is lower than a certain value (0.22 times T F0 for the copper-electron gas, and this value decreases with increasing electron density), the amendment to the internal energy is positive, however, the amendment decreases with increasing temperature. When the temperature increases to the value, the amendment is zero, and when the temperature is higher than the value, the amendment to the internal energy is negative and the absolute value of the amendment increases with increasing temperature. (5) When electron

  1. Identification of multiple modes of axisymmetric or circularly repetitive structures

    International Nuclear Information System (INIS)

    Kopff, P.

    1983-01-01

    The axisymmetric structures, or those composed with circularly repetitive elements, often display multiple modes, which are not easy to separate by modal identification of experimental responses. To be able to solve in situ some problems related to the vibrational behaviour of reactor vessels or other such huge structures, ELECTRICITY DE FRANCE developed a few years ago, experimental capabilities providing heavy harmonic driving forces, and elaborate data acquisition, signal processing and modal identification software, self-contained in an integrated mobile test facility. The modal analysis techniques we have developed with the LABORATOIRE DE MECANIQUE Appliquee of University of BESANCON (FRANCE) were especially suited for identification of multiple or separation of quasi-multiple modes, i.e. very close and strongly coupled resonances. Besides, the curve fitting methods involved, compute the same complex eigen-frequencies for all the vibration pick-ups, for better accuracy of the related eigen-vector components. Moreover, the latest extensions of these algorithms give us the means to deal with non-linear behaviour. The performances of these programs are drawn from some experimental results on axisymmetric or circularly repetitive structure, we tested in our laboratory to validate the computational hypothesis used in models for seismic responses of breeder reactor vessels. (orig.)

  2. Stress analysis in a non axisymmetric loaded reactor pressure vessel

    International Nuclear Information System (INIS)

    Albuquerque, Levi Barcelos; Assis, Gracia Menezes V. de; Miranda, Carlos Alexandre J.; Cruz, Julio Ricardo B.; Mattar Neto, Miguel

    1995-01-01

    In this work we intend to present the stress analysis of a PWR vessel under postulated concentrated loads. The vessel was modeled with Axisymmetric solid 4 nodes harmonic finite elements with the use of the ANSYS program, version 5.0. The bolts connecting the vessel flanges were modeled with beam elements. Some considerations were made to model the contact between the flanges. The perforated part of the vessel tori spherical head was modeled (with reduced properties due to its holes) to introduce its stiffness and loads but was not within the scope of this work. The loading consists of some usual ones, as pressure, dead weight, bolts preload, seismic load and some postulated ones as concentrated loads, over the vessel, modeled by Fourier Series. The results in the axisymmetric model are taken in terms of linearized stresses, obtained in some circumferential positions and for each position, in some sections along the vessel. Using the ASME Code (Section III, Division 1, Sub-section NB) the stresses are within the allowable limits. In order to draw some conclusions about stress linearization, the membrane plus bending stresses (Pl + Pb) are obtained and compared in some sections, using three different methods. (author)

  3. Correction of intensities for preferred orientation in neutron-diffraction data of NiTi shape-memory alloy using the generalized spherical-harmonic description

    CERN Document Server

    Sitepu, H; Stalick, J K

    2002-01-01

    Analysis of quantitative texture (crystallographic preferred orientation, PO) in polycrystalline materials is of interest not only because the PO gives errors in quantitative phase analysis, but also because it can affect the results of structure determination from powder diffraction data. In the present study, texture characterization of the polycrystalline Ni-rich NiTi shape-memory alloy (SMA) of nominal composition 50.14 atomic percent nickel has been carried out using the BT-1 high-resolution, fixed-wavelength, 32-detector powder diffractometer at the NIST Center for Neutron Research. Data were collected along the differential scanning calorimeter (DSC) heating curve. The results obtained from Rietveld refinement with the generalized spherical harmonic (GSH) description for all neutron diffraction data sets show that the weight percentages for monoclinic and cubic phases during the phase transition are consistent with the DSC heating curve. (orig.)

  4. Adaptative mixed methods to axisymmetric shells

    International Nuclear Information System (INIS)

    Malta, S.M.C.; Loula, A.F.D.; Garcia, E.L.M.

    1989-09-01

    The mixed Petrov-Galerkin method is applied to axisymmetric shells with uniform and non uniform meshes. Numerical experiments with a cylindrical shell showed a significant improvement in convergence and accuracy with adaptive meshes. (A.C.A.S.) [pt

  5. Harmonic engine

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2009-10-20

    A high efficiency harmonic engine based on a resonantly reciprocating piston expander that extracts work from heat and pressurizes working fluid in a reciprocating piston compressor. The engine preferably includes harmonic oscillator valves capable of oscillating at a resonant frequency for controlling the flow of working fluid into and out of the expander, and also preferably includes a shunt line connecting an expansion chamber of the expander to a buffer chamber of the expander for minimizing pressure variations in the fluidic circuit of the engine. The engine is especially designed to operate with very high temperature input to the expander and very low temperature input to the compressor, to produce very high thermal conversion efficiency.

  6. Nonlinear focusing of ultrasonic waves by an axisymmetric diffraction grating embedded in water

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez, N.; Picó, R. [Instituto de Investigación para la Gestión Integrada de zonas Costeras, Universitat Politècnica de València, Paranimf 1, 46730 Grao de Gandia, València (Spain); Romero-García, V. [LUNAM Université, Université du Maine, LAUM UMR CNRS 6613, Av. O. Messiaen, 72085 Le Mans (France); Garcia-Raffi, L. M. [Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 València (Spain); Staliunas, K. [ICREA, Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Colom, 11, E-08222 Terrassa, Barcelona (Spain)

    2015-11-16

    We report the nonlinear focusing of ultrasonic waves by an axisymmetric diffraction grating immersed in water. In the linear regime, the system presents high focal gain (32 dB), with a narrow beam-width and intense side lobes as it is common in focusing by Fresnel-like lenses. Activating the nonlinearity of the host medium by using high amplitude incident waves, the focusing properties of the lens dramatically change. Theoretical predictions show that the focal gain of the system extraordinary increases in the strongly nonlinear regime (Mach number of 6.1 × 10{sup −4}). Particularly, the harmonic generation is locally activated at the focal spot, and the second harmonic beam is characterized by strongly reduced side-lobes and an excellent beam profile as experiments show in agreement with theory. The results can motivate applications in medical therapy or second harmonic imaging.

  7. Uncertainties in field-line tracing in the magnetosphere. Part I: the axisymmetric part of the internal geomagnetic field

    Directory of Open Access Journals (Sweden)

    J. Comer

    Full Text Available The technique of tracing along magnetic field lines is widely used in magnetospheric physics to provide a "magnetic frame of reference'' that facilitates both the planning of experiments and the interpretation of observations. The precision of any such magnetic frame of reference depends critically on the accurate representation of the various sources of magnetic field in the magnetosphere. In order to consider this important problem systematically, a study is initiated to estimate first the uncertainties in magnetic-field-line tracing in the magnetosphere that arise solely from the published (standard errors in the specification of the geomagnetic field of internal origin. Because of the complexity in computing these uncertainties for the complete geomagnetic field of internal origin, attention is focused in this preliminary paper on the uncertainties in magnetic-field-line tracing that result from the standard errors in just the axisymmetric part of the internal geomagnetic field. An exact analytic equation exists for the magnetic field lines of an arbitrary linear combination of axisymmetric multipoles. This equation is used to derive numerical estimates of the uncertainties in magnetic-field-line tracing that are due to the published standard errors in the axisymmetric spherical harmonic coefficients (i.e. gn0 ± δgn0. Numerical results determined from the analytic equation are compared with computational results based on stepwise numerical integration along magnetic field lines. Excellent agreement is obtained between the analytical and computational methods in the axisymmetric case, which provides great confidence in the accuracy of the computer program used for stepwise numerical integration along magnetic field lines. This computer program is then used in the following paper to estimate the uncertainties in magnetic-field-line tracing in the magnetosphere that arise from the published standard errors in the full set of spherical

  8. Harmonically excited orbital variations

    International Nuclear Information System (INIS)

    Morgan, T.

    1985-01-01

    Rephrasing the equations of motion for orbital maneuvers in terms of Lagrangian generalized coordinates instead of Newtonian rectangular cartesian coordinates can make certain harmonic terms in the orbital angular momentum vector more readily apparent. In this formulation the equations of motion adopt the form of a damped harmonic oscillator when torques are applied to the orbit in a variationally prescribed manner. The frequencies of the oscillator equation are in some ways unexpected but can nonetheless be exploited through resonant forcing functions to achieve large secular variations in the orbital elements. Two cases are discussed using a circular orbit as the control case: (1) large changes in orbital inclination achieved by harmonic excitation rather than one impulsive velocity change, and (2) periodic and secular changes to the longitude of the ascending node using both stable and unstable excitation strategies. The implications of these equations are also discussed for both artificial satellites and natural satellites. For the former, two utilitarian orbits are suggested, each exploiting a form of harmonic excitation. 5 refs

  9. Supersonic quasi-axisymmetric vortex breakdown

    Science.gov (United States)

    Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.

    1991-01-01

    An extensive computational study of supersonic quasi-axisymmetric vortex breakdown in a configured circular duct is presented. The unsteady, compressible, full Navier-Stokes (NS) equations are used. The NS equations are solved for the quasi-axisymmetric flows using an implicit, upwind, flux difference splitting, finite volume scheme. The quasi-axisymmetric solutions are time accurate and are obtained by forcing the components of the flowfield vector to be equal on two axial planes, which are in close proximity of each other. The effect of Reynolds number, for laminar flows, on the evolution and persistence of vortex breakdown, is studied. Finally, the effect of swirl ration at the duct inlet is investigated.

  10. Harmonic analysis

    CERN Document Server

    Helson, Henry

    2010-01-01

    This second edition has been enlarged and considerably rewritten. Among the new topics are infinite product spaces with applications to probability, disintegration of measures on product spaces, positive definite functions on the line, and additional information about Weyl's theorems on equidistribution. Topics that have continued from the first edition include Minkowski's theorem, measures with bounded powers, idempotent measures, spectral sets of bounded functions and a theorem of Szego, and the Wiener Tauberian theorem. Readers of the book should have studied the Lebesgue integral, the elementary theory of analytic and harmonic functions, and the basic theory of Banach spaces. The treatment is classical and as simple as possible. This is an instructional book, not a treatise. Mathematics students interested in analysis will find here what they need to know about Fourier analysis. Physicists and others can use the book as a reference for more advanced topics.

  11. Computer Aided Process Planning for Non-Axisymmetric Deep Drawing Products

    Science.gov (United States)

    Park, Dong Hwan; Yarlagadda, Prasad K. D. V.

    2004-06-01

    In general, deep drawing products have various cross-section shapes such as cylindrical, rectangular and non-axisymmetric shapes. The application of the surface area calculation to non-axisymmetric deep drawing process has not been published yet. In this research, a surface area calculation for non-axisymmetric deep drawing products with elliptical shape was constructed for a design of blank shape of deep drawing products by using an AutoLISP function of AutoCAD software. A computer-aided process planning (CAPP) system for rotationally symmetric deep drawing products has been developed. However, the application of the system to non-axisymmetric components has not been reported yet. Thus, the CAPP system for non-axisymmetric deep drawing products with elliptical shape was constructed by using process sequence design. The system developed in this work consists of four modules. The first is recognition of shape module to recognize non-axisymmetric products. The second is a three-dimensional (3-D) modeling module to calculate the surface area for non-axisymmetric products. The third is a blank design module to create an oval-shaped blank with the identical surface area. The forth is a process planning module based on the production rules that play the best important role in an expert system for manufacturing. The production rules are generated and upgraded by interviewing field engineers. Especially, the drawing coefficient, the punch and die radii for elliptical shape products are considered as main design parameters. The suitability of this system was verified by applying to a real deep drawing product. This CAPP system constructed would be very useful to reduce lead-time for manufacturing and improve an accuracy of products.

  12. Principles of harmonic analysis

    CERN Document Server

    Deitmar, Anton

    2014-01-01

    This book offers a complete and streamlined treatment of the central principles of abelian harmonic analysis: Pontryagin duality, the Plancherel theorem and the Poisson summation formula, as well as their respective generalizations to non-abelian groups, including the Selberg trace formula. The principles are then applied to spectral analysis of Heisenberg manifolds and Riemann surfaces. This new edition contains a new chapter on p-adic and adelic groups, as well as a complementary section on direct and projective limits. Many of the supporting proofs have been revised and refined. The book is an excellent resource for graduate students who wish to learn and understand harmonic analysis and for researchers seeking to apply it.

  13. Sums of Generalized Harmonic Series

    Indian Academy of Sciences (India)

    IAS Admin

    plicity, magic and the depth that allows one to go be- yond the particular case (1). The simplicity, however, is not everywhere explicit in [11] and [12], while the magic longs for explanation after the first admiration fades away. Below we will try to enhance the simplicity of the approach and somewhat uncover the secret of the.

  14. Sums of Generalized Harmonic Series

    Indian Academy of Sciences (India)

    IAS Admin

    For Kids from Five to Fifteen. Zurab Silagadze. Keywords. Riemann zeta function, integral representation, Basel problem. We examine the remarkable connection, first dis- covered by Beukers, Kolk and Calabi, between ζ(2n), the value of the Riemann Zeta-function at an even positive integer, and the volume of some.

  15. The spectrum of axisymmetric torsional Alfven waves

    International Nuclear Information System (INIS)

    Sy, W.N.

    1977-03-01

    The spectrum of axisymmetric torsional Alfven waves propagating in a cylindrical, non-uniform, resistive plasma waveguide has been analysed by a method of singular perturbations. A simple condition has been derived which predicts whether the spectrum is continuous or discrete under given physical conditions. Application of this result to resolve an apparent discrepancy in experimental observations is briefly discussed. (Author)

  16. On harmonic morphisms projecting harmonic functions to harmonic functions

    International Nuclear Information System (INIS)

    Mustafa, M.T.

    2002-08-01

    For Riemannian manifolds M and N. admitting a submersive harmonic morphism φ with compact fibres, we introduce the vertical and horizontal components of a real-valued function f on V is contained in M. By comparing the Laplacians on M and N. we determine conditions under which a harmonic function on V=φ -1 (U) is contained in M projects down, via its horizontal component, to a harmonic function on U is contained in N. (author)

  17. Use of the generalized spherical harmonic model for describing crystallographic texture in polycrystalline NiTi shape-memory alloy with time-of-flight neutron powder diffraction data

    CERN Document Server

    Sitepu, H; Dreele, R B V

    2002-01-01

    We present a feasibility study to extract quantitative texture and precise crystal structure information of polycrystalline monoclinic NiTi shape-memory alloys from a simultaneous refinement of 52 time-of-flight neutron-diffraction patterns taken in 13 orientations in the diffractometer. The multiple-data-set capabilities and the generalized spherical harmonic texture model of the GSAS program system were employed. (orig.)

  18. Axisymmetric instability in a noncircular tokamak

    International Nuclear Information System (INIS)

    Lipschultz, B.

    1979-10-01

    The stability of dee, inverse-dee and square cross section plasmas to axisymmetric modes has been investigated experimentally in Tokapole II, a tokamak with a four-null poloidal divertor. Experimental results are closely compared with predictions of two numerical stability codes - the PEST code (ideal MHD, linear stability) adapted to tokapole geometry and a code which follows the nonlinear evolution of shapes similar to tokapole equilibria

  19. Axisymmetric ideal magnetohydrodynamic equilibria with incompressible flows

    International Nuclear Information System (INIS)

    Tasso, H.; Throumoulopoulos, G.N.

    1997-12-01

    It is shown that the ideal MHD equilibrium states of an axisymmetric plasma with incompressible flows are governed by an elliptic partial differential equation for the poloidal magnetic flux function ψ containing five surface quantities along with a relation for the pressure. Exact equilibria are constructed including those with non vanishing poloidal and toroidal flows and differentially varying radial electric fields. Unlike the case in cylindrical incompressible equilibria with isothermal magnetic surfaces which should have necessarily circular cross sections [G. N. Throumoulopoulos and H. Tasso, Phys. Plasmas 4, 1492 (1997)], no restriction appears on the shapes of the magnetic surfaces in the corresponding axisymmetric equilibria. The latter equilibria satisfy a set of six ordinary differential equations which for flows parallel to the magnetic field B can be solved semianalytically. In addition, it is proved the non existence of incompressible axisymmetric equilibria with (a) purely poloidal flows and (b) non-parallel flows with isothermal magnetic surfaces and vertical stroke B vertical stroke = vertical stroke B vertical stroke (ψ) (omnigenous equilibria). (orig.)

  20. Two examples of escaping harmonic maps

    International Nuclear Information System (INIS)

    Pereira do Valle, A.; Verjovsky, A.

    1988-12-01

    This paper is part of a study on the existence of special harmonic maps on complete non-compact Riemannian manifolds. We generalize the notion of escaping geodesic and prove some results on the existence of escaping harmonic maps. 11 refs, 6 figs

  1. Harmonic manifolds with minimal horospheres are flat

    Indian Academy of Sciences (India)

    Abstract. In this note we reprove the known theorem: Harmonic manifolds with minimal horospheres are flat. It turns out that our proof is simpler and more direct than the original one. We also reprove the theorem: Ricci flat harmonic manifolds are flat, which is generally affirmed by appealing to Cheeger–Gromov splitting ...

  2. Harmonic Manifolds with Minimal Horospheres are Flat

    Indian Academy of Sciences (India)

    In this note we reprove the known theorem: Harmonic manifolds with minimal horospheres are flat. It turns out that our proof is simpler and more direct than the original one. We also reprove the theorem: Ricci flat harmonic manifolds are flat, which is generally affirmed by appealing to Cheeger–Gromov splitting theorem.

  3. Variational problems with obstacles and harmonic maps

    International Nuclear Information System (INIS)

    Musina, R.

    1990-08-01

    Our first purpose is to find a generalization of the usual definition of a harmonic map between two Riemannian manifolds in order to consider less regular target spaces. Our second aim was to extend a result by Chen and Struwe about the heat flow of harmonic mappings into manifolds with boundary. 19 refs

  4. Low Cost Method of Manufacturing Cooled Axisymmetric Scramjets, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Scramjet engine developers are working on advanced axisymmetric engine concepts that may not be feasible due to limitations of currently available manufacturing...

  5. Ideal, steady-state, axisymmetric magnetohydrodynamic equations with flow

    International Nuclear Information System (INIS)

    Baransky, Y.A.

    1987-01-01

    The motivation of this study is to gain additional understanding of the effect of rotation on the equilibrium of a plasma. The axisymmetric equilibria of ideal magnetohydrodynamics (MHD) with flow have been studied numerically and analytically. A general discussion is provided of previous work on plasmas with flow and comparisons are made to the static model. A variational principle has been derived for the two dimensional problem with comments as to appropriate boundary conditions. An inverse aspect ratio expansion has been used for a study of the toroidal flow equation for both low- and high-β. The inverse aspect ratio expansion has also been used for a study of equations with both poloidal and toroidal flow. An overview is provided of the adaptive finite-difference code which was developed to solve the full equations. (FI)

  6. Numerical determination of axisymmetric toroidal magnetohydrodynamic equilibria

    International Nuclear Information System (INIS)

    Johnson, J.L.; Dalhed, H.E.; Greene, J.M.

    1978-07-01

    Numerical schemes for the determination of stationary axisymmetric toroidal equilibria appropriate for modeling real experimental devices are given. Iterative schemes are used to solve the elliptic nonlinear partial differential equation for the poloidal flux function psi. The principal emphasis is on solving the free boundary (plasma-vacuum interface) equilibrium problem where external current-carrying toroidal coils support the plasma column, but fixed boundary (e.g., conducting shell) cases are also included. The toroidal current distribution is given by specifying the pressure and either the poloidal current or the safety factor profiles as functions of psi. Examples of the application of the codes to tokamak design at PPPL are given

  7. Reversed straining in axisymmetric compression test

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Wanheim, Tarras; Lindegren, Maria

    2005-01-01

    A large group of the cold forging processes is carried out in a thick – walled container with the deformation force transmitted through a punch moving axially in the container. The work piece, being entrapped between punch and container will expand and exert a radial pressure resulting in an expa...... to simulate these conditions a reversed axisymmetrical material tester is designed and constructed. Three different materials were tested, aluminum alloy AA6082, technically pure copper (99.5%) and cold forging steel Ma8, at different temperatures found during cold forging....

  8. An axisymmetric inertia-gravity wave generator

    Science.gov (United States)

    Maurer, P.; Ghaemsaidi, S. J.; Joubaud, S.; Peacock, T.; Odier, P.

    2017-10-01

    There has been a rich interplay between laboratory experimental studies of internal waves and advancing understanding of their role in the ocean and atmosphere. In this study, we present and demonstrate the concept for a new form of laboratory internal wave generator that can excite axisymmetric wave fields of arbitrary radial structure. The construction and operation of the generator are detailed, and its capabilities are demonstrated through a pair of experiments using a Bessel function and a bourrelet (i.e., ring-shaped) configuration. The results of the experiments are compared with the predictions of an accompanying analytical model.

  9. Quantitative shearography in axisymmetric gas temperature measurements

    Science.gov (United States)

    VanDerWege, Brad A.; O'Brien, Christopher J.; Hochgreb, Simone

    1999-06-01

    This paper describes the use of shearing interferometry (shearography) for the quantitative measurement of gas temperatures in axisymmetric systems in which vibration and shock are substantial, and measurement time is limited. The setup and principle of operation of the interferometer are described, as well as Fourier-transform-based fringe pattern analysis, Abel transform, and sensitivity of the phase lead to temperature calculation. A helium jet and a Bunsen burner flame are shown as verification of the diagnostic. The accuracy of the measured temperature profile is shown to be limited by the Abel transform and is critically dependent on the reference temperature used.

  10. Numerical analyses of radiative heat transfer in any arbitrarily-shaped axisymmetric enclosures

    International Nuclear Information System (INIS)

    Ben Salah, M.; Askri, F; Jemni, A.; Nasrallah, S. Ben

    2006-01-01

    A numerical approach for the treatment of radiative heat transfer in any irregularly-shaped axisymmetric enclosure filled with absorbing, emitting and scattering gray media is developed. Radiative transfer equation (RTE) is formulated for a general axisymmetric geometrical configurations, and the discretized equation is conducted using an unstructured meshes, generated by an appropriate computer algorithm, and the control volume finite element method which frequently adopted in CFD problems. A computer procedure has been done to solve the discretized RTE and to examine the accuracy and the computational efficiency of the proposed numerical approach. By using this computer algorithm, five test cases, a cylindrical enclosure with absorbing and emitting medium, a diffuser shaped axisymmetric enclosure, a finite axisymmetric cylindrical enclosure with a curved wall, a furnace with axially varying medium temperature and a rocket nozzle, are treated and the obtained results agree very well with other published works. Furthermore, the developed computer procedure has an accurate CPU time and it can be coupled easily with CFD codes

  11. Axisymmetric vibrations of thick shells of revolution

    International Nuclear Information System (INIS)

    Suzuki, Katsuyoshi; Kosawada, Tadashi; Takahashi, Shin

    1983-01-01

    Axisymmetric shells of revolution are used for chemical plants, nuclear power plants, aircrafts, structures and so on, and the elucidation of their free vibration is important for the design. In this study, the axisymmetric vibration of a barrel-shaped shell was analyzed by the modified thick shell theory. The Lagrangian during one period of the vibration of a shell of revolution was determined, and from its stopping condition, the vibration equations and the boundary conditions were derived. The vibration equations were analyzed strictly by using the series solution. Moreover, the basic equations for the strain of a shell and others were based on those of Love. As the examples of numerical calculation, the natural frequency and vibration mode of the symmetrical shells of revolution fixed at both ends and supported at both ends were determined, and their characteristics were clarified. By comparing the results of this study with the results by thin shell theory, the effects of shearing deformation and rotary inertia on the natural frequency and vibration mode were clarified. The theoretical analysis and the numerical calculation are described. The effects of shearing deformation and rotary inertia on the natural frequency became larger in the higher order vibration. The vibration mode did not much change in both theories. (Kako, I.)

  12. Near surface stress analysis strategies for axisymmetric fretting

    Indian Academy of Sciences (India)

    In this paper, we develop design tools for Near Surface Analysis (NSA) for understanding axisymmetric fretting. Axisymmetric Fretting Analysis (AFA) becomes formidable owing to localised tractions that call for Fourier transform techniques. We develop two different NSA strategies based on two-dimensional plane strain ...

  13. Secular instability of axisymmetric rotating stars to gravitational radiation reaction

    International Nuclear Information System (INIS)

    Managan, R.A.

    1985-01-01

    A generalization of the Eulerian variational principle derived by Ipser and Managan, for nonaxisymmetric neutral modes of axisymmetric fluid configurations, is developed. The principle provides a variational basis for calculating the frequencies of nonaxisymmetric normal modes proportional to e/sup i/(sigmat + mphi). A modified form of this principle, valid for sigma near 0, is also developed. The latter principle is used to locate the points where the frequency of a nonaxisymmetric normal mode of an axisymmetric rotating fluid configuration passes through zero. lt is at these points that the configuration becomes secularly unstable to gravitational radiation reaction (GRR). This is demonstrated directly by including the GRR potential and showing that the imaginary part of sigma passes through zero and becomes negative at these points. The imaginary part of the frequency is used to estimate the e-folding time of the mode. This variational principle is applied to sequences of rotating polytropes. The sequences are constructed using four rotation laws at each value of the polytropic index n = 0.5, 1.0, 1.5, 2.0, and 3.0. The values of (T/W)/sub m/, the ratio of the rotational kinetic energy to the magnitude of the gravitational potential energy at the onset of instability, and timescales for the modes with m = 2, 3, and 4 are estimated for each sequence. The value of (T/W) 2 is largely independent of the equation of state and rotation law. For m > 2, (T/W)/sub m/ decreases as the equation of state becomes softer, i.e., as the polytropic index n increases, and increases as the amount of differential rotation increases. The most striking result of this behavior occurs for uniform rotation

  14. NOVA: a nonvariational code for solving MHD stability of axisymmetric toroidal plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Chance, M.S.

    1986-04-01

    A nonvariational approach for determining the ideal MHD stability of axisymmetric toroidal confinement systems is presented. The code (NOVA) employs cubic B-spline finite elements and Fourier expansion in a general flux coordinate (psi, theta, zeta) system. Better accuracy and faster convergence were obtained in comparison with the variational PEST and ERATO codes. The nonvariational approach can be extended to problems having non-Hermitian eigenmode equations where variational energy principles cannot be obtained

  15. Charged particle dynamics in axisymmetric nonconservative beams

    International Nuclear Information System (INIS)

    Radchenko, V.I.; Nikonov, O.I.

    1998-01-01

    Many of ion-beam technologies lead to the requirement of cross-section minimization of a particle beam in the object region acted upon, or to the problem of minimization of charged particle beam emittance (the growth rate of emittance) for a specified segment of the beam formation. In this paper we study the above problem for axisymmetric beams representing a nonconservative system of charged particles. It is shown that under certain assumptions the beam in question can be described by appropriate equations that possess an explicit solution. The latter allows one to study the influence of particle density distribution at the starting point on the future beam evolution. The results are based on approaches developed in J.D. Lawson (1977); V.I. Radchenko, G.D. Ved'manov (1995); O.I. Nikonov (1994). (orig.)

  16. Compact neutron imaging system using axisymmetric mirrors

    Science.gov (United States)

    Khaykovich, Boris; Moncton, David E; Gubarev, Mikhail V; Ramsey, Brian D; Engelhaupt, Darell E

    2014-05-27

    A dispersed release of neutrons is generated from a source. A portion of this dispersed neutron release is reflected by surfaces of a plurality of nested, axisymmetric mirrors in at least an inner mirror layer and an outer mirror layer, wherein the neutrons reflected by the inner mirror layer are incident on at least one mirror surface of the inner mirror layer N times, wherein N is an integer, and wherein neutrons reflected by the outer mirror are incident on a plurality of mirror surfaces of the outer layer N+i times, where i is a positive integer, to redirect the neutrons toward a target. The mirrors can be formed by a periodically reversed pulsed-plating process.

  17. Electrostatic axisymmetric mirror with removable spherical aberration

    International Nuclear Information System (INIS)

    Birmuzaev, S.B.; Serikbaeva, G.S.; Hizirova, M.A.

    1999-01-01

    The electrostatic axisymmetric mirror, assembled from three coaxial cylinders with an equal diameter d and under the potential v1, v2 and v3, was computed. The proportions of geometrical and electric parameters of the mirror, with which the spherical 3-order aberration may be eliminated, were determined. The computation outcomes of the case, when the focal power of the mirror is enough large and the object plane in the focus is out of its field, are presented (Fig. 1 - potentials proportion that makes elimination of the spherical aberration possible; Fig. 2 - the focus coordinates when the spherical aberration is eliminated). The geometrical values are presented by d, and the electric ones are presented by v1. The figures on the curves present a length of the second (middle) electrode. The zero point is located in the middle of the gap between the first and second electrodes The investigated mirror may be used as a lens for the transmission electron microscope

  18. Harmonic oscillator and nuclear pseudospin

    International Nuclear Information System (INIS)

    Lisboa, Ronai; Malheiro, Manuel; Castro, Antonio S. de; Alberto, Pedro; Fiolhais, Manuel

    2004-01-01

    A generalized relativistic harmonic oscillator for spin 1/2 particles is studied. The Dirac Hamiltonian contains a scalar S and a vector V quadratic potentials in the radial coordinate, as well as a tensor potential U, linear in r. Setting either Σ = S + V or Δ = V - S to zero, analytical solutions for bound states are found. The eingenenergies and their nonrelativistic limits are presented and particular cases are discussed, especially the case Σ = 0, for which pseudospin symmetry is exact

  19. Representation Discovery using Harmonic Analysis

    CERN Document Server

    Mahadevan, Sridhar

    2008-01-01

    Representations are at the heart of artificial intelligence (AI). This book is devoted to the problem of representation discovery: how can an intelligent system construct representations from its experience? Representation discovery re-parameterizes the state space - prior to the application of information retrieval, machine learning, or optimization techniques - facilitating later inference processes by constructing new task-specific bases adapted to the state space geometry. This book presents a general approach to representation discovery using the framework of harmonic analysis, in particu

  20. Finite volume approximation of the three-dimensional flow equation in axisymmetric, heterogeneous porous media based on local analytical solution

    KAUST Repository

    Salama, Amgad

    2013-09-01

    In this work the problem of flow in three-dimensional, axisymmetric, heterogeneous porous medium domain is investigated numerically. For this system, it is natural to use cylindrical coordinate system, which is useful in describing phenomena that have some rotational symmetry about the longitudinal axis. This can happen in porous media, for example, in the vicinity of production/injection wells. The basic feature of this system is the fact that the flux component (volume flow rate per unit area) in the radial direction is changing because of the continuous change of the area. In this case, variables change rapidly closer to the axis of symmetry and this requires the mesh to be denser. In this work, we generalize a methodology that allows coarser mesh to be used and yet yields accurate results. This method is based on constructing local analytical solution in each cell in the radial direction and moves the derivatives in the other directions to the source term. A new expression for the harmonic mean of the hydraulic conductivity in the radial direction is developed. Apparently, this approach conforms to the analytical solution for uni-directional flows in radial direction in homogeneous porous media. For the case when the porous medium is heterogeneous or the boundary conditions is more complex, comparing with the mesh-independent solution, this approach requires only coarser mesh to arrive at this solution while the traditional methods require more denser mesh. Comparisons for different hydraulic conductivity scenarios and boundary conditions have also been introduced. © 2013 Elsevier B.V.

  1. Pseudospin symmetry and the relativistic harmonic oscillator

    International Nuclear Information System (INIS)

    Lisboa, R.; Malheiro, M.; Castro, A.S. de; Alberto, P.; Fiolhais, M.

    2004-01-01

    A generalized relativistic harmonic oscillator for spin 1/2 particles is studied. The Dirac Hamiltonian contains a scalar S and a vector V quadratic potentials in the radial coordinate, as well as a tensor potential U linear in r. Setting either or both combinations Σ=S+V and Δ=V-S to zero, analytical solutions for bound states of the corresponding Dirac equations are found. The eigenenergies and wave functions are presented and particular cases are discussed, devoting a special attention to the nonrelativistic limit and the case Σ=0, for which pseudospin symmetry is exact. We also show that the case U=Δ=0 is the most natural generalization of the nonrelativistic harmonic oscillator. The radial node structure of the Dirac spinor is studied for several combinations of harmonic-oscillator potentials, and that study allows us to explain why nuclear intruder levels cannot be described in the framework of the relativistic harmonic oscillator in the pseudospin limit

  2. On Perturbation Solutions for Axisymmetric Bending Boundary Values of a Deep Thin Spherical Shell

    Directory of Open Access Journals (Sweden)

    Rong Xiao

    2014-01-01

    Full Text Available On the basis of the general theory of elastic thin shells and the Kirchhoff-Love hypothesis, a fundamental equation for a thin shell under the moment theory is established. In this study, the author derives Reissner’s equation with a transverse shear force Q1 and the displacement component w. These basic unknown quantities are derived considering the axisymmetry of the deep, thin spherical shell and manage to constitute a boundary value question of axisymmetric bending of the deep thin spherical shell under boundary conditions. The asymptotic solution is obtained by the composite expansion method. At the end of this paper, to prove the correctness and accuracy of the derivation, an example is given to compare the numerical solution by ANSYS and the perturbation solution. Meanwhile, the effects of material and geometric parameters on the nonlinear response of axisymmetric deep thin spherical shell under uniform external pressure are also analyzed in this paper.

  3. DUGDALE-MAUGIS ADHESIVE NORMAL CONTACT OF AXISYMMETRIC POWER-LAW GRADED ELASTIC BODIES

    Directory of Open Access Journals (Sweden)

    Emanuel Willert

    2018-02-01

    Full Text Available A closed-form general analytic solution is presented for the adhesive normal contact of convex axisymmetric power-law graded elastic bodies using a Dugdale-Maugis model for the adhesive stress. The case of spherical contacting bodies is studied in detail. The known JKR- and DMT-limits can be derived from the general solution, whereas the transition between both can be captured introducing a generalized Tabor parameter depending on the material grading. The influence of the Tabor parameter and the material grading is studied.

  4. Axisymmetric Magnetic Mirror Fusion-Fission Hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martovetsky, N. N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Molvik, A. W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ryutov, D. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simonen, T. C. [Univ. of California, Berkeley, CA (United States)

    2011-05-13

    The achieved performance of the gas dynamic trap version of magnetic mirrors and today’s technology we believe are sufficient with modest further efforts for a neutron source for material testing (Q=Pfusion/Pinput~0.1). The performance needed for commercial power production requires considerable further advances to achieve the necessary high Q>>10. An early application of the mirror, requiring intermediate performance and intermediate values of Q~1 are the hybrid applications. The Axisymmetric Mirror has a number of attractive features as a driver for a fusion-fission hybrid system: geometrical simplicity, inherently steady-state operation, and the presence of the natural divertors in the form of end tanks. This level of physics performance has the virtue of low risk and only modest R&D needed and its simplicity promises economy advantages. Operation at Q~1 allows for relatively low electron temperatures, in the range of 4 keV, for the DT injection energy ~ 80 keV. A simple mirror with the plasma diameter of 1 m and mirror-to-mirror length of 35 m is discussed. Simple circular superconducting coils are based on today’s technology. The positive ion neutral beams are similar to existing units but designed for steady state. A brief qualitative discussion of three groups of physics issues is presented: axial heat loss, MHD stability in the axisymmetric geometry, microstability of sloshing ions. Burning fission reactor wastes by fissioning actinides (transuranics: Pu, Np, Am, Cm, .. or just minor actinides: Np, Am, Cm, …) in the hybrid will multiply fusion’s energy by a factor of ~10 or more and diminish the Q needed to less than 1 to overcome the cost of recirculating power for good economics. The economic value of destroying actinides by fissioning is rather low based on either the cost of long-term storage or even deep geologic disposal so most of the revenues of hybrids will come from electrical power. Hybrids that obtain revenues from

  5. bessel functions for axisymmetric elasticity problems of the elastic

    African Journals Online (AJOL)

    HOD

    . ) ( ) r. (. ) ( ). The governing partial differential equation for axisymmetric elasticity problems are the strain- displacement equations, the differential equations of equilibrium and the material constitutive laws, subject to the displacement and ...

  6. Departures from Axisymmetric Balance Dynamics during Secondary Eyewall Formation

    Science.gov (United States)

    2014-10-01

    tangential wind tendencies of the mesoscale integration with those diagnosed as the axisymmetric balanced response of a vortex subject to diabatic ...the mesoscale integration with those diagnosed as the axisymmetric balanced response of a vortex subject to diabatic and tangential momentum forcing...secondary circulation will develop to oppose the forcing of diabatic heating and/or friction. After the seminal work of Eliassen (1951), a number of

  7. Computational study of axisymmetric modes in noncircular cross section tokamaks

    International Nuclear Information System (INIS)

    Johnson, J.L.; Chance, M.S.; Greene, J.M.; Grimm, R.C.; Jardin, S.C.; Kerner, W.; Manickam, J.; Weimer, K.E.

    1976-09-01

    A major computational program to investigate the MHD equilibrium, stability, and nonlinear evolution properties of realistic tokamak configurations is proceeding. Preliminary application is made to the Princeton PDX device. Both axisymmetric (n = 0) modes and kink (n = 1) modes are found; the growth rates depend sensitively on the configuration. A study of the nonlinear evolution of axisymmetric modes in such a device shows that flux conservation in the vacuum region can limit their growth

  8. Rotational Motion of Axisymmetric Marangoni Swimmers

    Science.gov (United States)

    Rothstein, Jonathan; Uvanovic, Nick

    2017-11-01

    A series of experiments will be presented investigating the motion of millimeter-sized particles on the surface of water. The particles were partially coated with ethanol and carefully placed on a water interface in a series of Petri dishes with different diameters. High speed particle motion was driven by strong surface tension gradients as the ethanol slowly diffuses from the particles into the water resulting in a Marangoni flow. The velocity and acceleration of the particles where measured. In addition to straight line motion, the presence of the bounding walls of the circular Petri dish was found to induce an asymmetric, rotational motion of the axisymmetric Marangoni swimmers. The rotation rate and radius of curvature was found to be a function of the size of the Petri dish and the curvature of the air-water interface near the edge of the dish. For large Petri dishes or small particles, rotation motion was observed far from the bounding walls. In these cases, the symmetry break appears to be the result of the onset of votex shedding. Finally, multiple spherical particles were observed to undergo assembly driven by capillary forces followed by explosive disassembly.

  9. Harmonic oscillator Green's function

    International Nuclear Information System (INIS)

    Macek, J.H.; Ovchinnikov, S.Yu.; Khrebtukov, D.B.

    2000-01-01

    The Green's function for the harmonic oscillator in three dimensions plays an important role in the theory of atomic collisions. One representation of low-energy ion-atom collisions involves harmonic oscillator potentials. A closed-form expression for the harmonic oscillator Green's function, needed to exploit this representation, is derived. This expression is similar to the expression for the Coulomb Green's function obtained by Hostler and Pratt. Calculations of electron distributions for a model system of ion-atom collisions are reported to illustrate the theory.

  10. A pretandem harmonic buncher

    International Nuclear Information System (INIS)

    Lin, Qui-xun; Van Wechel, T.D.

    1987-01-01

    A single gap harmonic buncher has been constructed as a pretandem buncher. Over 85% of a proton dc beam has been bunched into pulses. The width (fwhm) of the pulses is 0.7 ns. The buncher is based on that built at Argonne. Changes were made to the buncher's configuration so that the buncher could be tuned to the desired four harmonic frequencies. A method of calibrating and setting the relative phases and amplitudes of the four harmonic frequencies has been used to obtain an optimum sawtooth-like bunching waveform

  11. Harmonic Analyzing of the Double PWM Converter in DFIG Based on Mathematical Model

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2017-12-01

    Full Text Available Harmonic pollution of double fed induction generators (DFIGs has become a vital concern for its undesirable effects on power quality issues of wind generation systems and grid-connected system, and the double pulse width modulation (PWMconverter is one of the main harmonic sources in DFIGs. Thus the harmonic analysis of the converter in DFIGs is a necessary step to evaluate their harmonic pollution of DFIGs. This paper proposes a detailed harmonic modeling method to discuss the main harmonic components in a converter. In general the harmonic modeling could be divided into the low-order harmonic part (up to 30th order and the high-order harmonic part (greater than order 30 parts in general. The low-order harmonics are produced by the circuit topology and control algorithm, and the harmonic component will be different if the control strategy changes. The high-order harmonics are produced by the modulation of the switching function to the dc variable. In this paper, the low-order harmonic modeling is established according to the directions of power flow under the vector control (VC, and the high-order harmonic modeling is established by the switching function of space vector PWM and dc currents. Meanwhile, the simulations of harmonic a components in a converter are accomplished in a real time digital simulation system. The results indicate that the proposed modeling could effectively show the harmonics distribution of the converter in DFIGs.

  12. Axisymmetric core collapse simulations using characteristic numerical relativity

    International Nuclear Information System (INIS)

    Siebel, Florian; Mueller, Ewald; Font, Jose A.; Papadopoulos, Philippos

    2003-01-01

    We present results from nonrotating axisymmetric stellar core collapse simulations in general relativity. Our hydrodynamics code has proved robust and accurate enough to allow for a detailed analysis of the global dynamics of the collapse. Contrary to traditional approaches based on the 3+1 formulation of the gravitational field equations, our framework uses a foliation based on a family of outgoing light cones, emanating from a regular center, and terminating at future null infinity. Such a coordinate system is well adapted to the study of interesting dynamical spacetimes in relativistic astrophysics such as stellar core collapse and neutron star formation. Perhaps most importantly this procedure allows for the extraction of gravitational waves at future null infinity, along with the commonly used quadrupole formalism for the gravitational wave extraction. Our results concerning the gravitational wave signals show noticeable disagreement when those are extracted by computing the Bondi news at future null infinity on the one hand and by using the quadrupole formula on the other hand. We have a strong indication that for our setup the quadrupole formula on the null cone does not lead to physical gravitational wave signals. The Bondi gravitational wave signals extracted at infinity show typical oscillation frequencies of about 0.5 kHz

  13. Linear theory of the tearing instability in axisymmetric toroidal devices

    International Nuclear Information System (INIS)

    Rogister, A.; Singh, R.

    1988-08-01

    We derive a very general kinetic equation describing the linear evolution of low m/l modes in axisymmetric toroidal plasmas with arbitrary cross sections. Included are: Ion sound, inertia, diamagnetic drifts, finite poloidal beta, and finite ion Larmor radius effects. Assuming the magnetic surfaces to form a set of nested tori with circular cross sections of shifted centers, and introducing adequate simplifications justified by our knowledge of experimental tokamak plasmas, we then obtain explicitely the sets of equations describing the coupling of the quasimodes 0/1, 1/1, 2/1, and, for m≥2, m/1, (m+1)/1. By keeping finite aspect ratio effects into account when calculating the jump of the derivative of the eigenfunction, it is shown that the theory can explain the rapid evolution, within one sawtooth period, of the growth rate of the sawteeth precursors from resistive values to magnetohydrodynamic ones. The characteristics thus theoretically required from current profiles in sawtoothing discharges have clearly been observed. Other aspects of the full theory could be relevant to the phenomenon of major disruptions. (orig.)

  14. Plasma equilibria and stationary flows in axisymmetric systems. Pt. 3

    International Nuclear Information System (INIS)

    Zelazny, R.; Stankiewicz, R.; Galkowski, A.; Potempski, S.; Pietak, R.

    1990-08-01

    The problem of the importance of poloidal flows for the behaviour of plasmas in axisymmetric systems has caused a lot of discussion and controversy during the last 15 years. There is no doubt that the mere existence of poloidal flow transforms the elliptic Grad-Shafranov-Schlueter equation into a system of mixed type partial differential equation and an algebraic multivalued Bernoulli equation. This fact leads to the appearance of Bernoulli branches in the solutions. Then, one can come across three branches of elliptic solutions as well as two branches of hyperbolic solutions with the possible appearance of phenomena connected with ''transsonic'' effects. Problems connected with such a mathematical situation have been extensively discussed in the report with the same title, dated May 1988, which we shall call later Part I of our studies on this subject. The present report, considered as Part III, is devoted to the presentation of results of efforts aimed at constructing programmes which allow us to solve the extended Grad-Shafranov-Schlueter equation (EGSS) (with stationary flows) in a more realistic situation relevant to the JET operating conditions. The main problem is to specify for a wider class of profiles the boundary conditions at the magnetic axis for a system of nonlinear ordinary differential equations ODE, resulting from EGSS equation after application of Fourier transformation techniques and of inverse method approach. The present report elaborates a much more general case and describes the computational framework enabling us to derive those boundary conditions. (author)

  15. Turbulent contributions to Ohm's law in axisymmetric magnetized plasmas

    Science.gov (United States)

    Chavdarovski, I.; Gatto, R.

    2017-07-01

    The effect of magnetic turbulence in shaping the current density in axisymmetric magnetized plasmas is analyzed using a turbulent extension of Ohm's law derived from the self-consistent action-angle transport theory. Besides the well-known hyper-resistive (helicity-conserving) contribution, the generalized Ohm's law contains an anomalous resistivity term and a turbulent bootstrap-like term proportional to the current density derivative. The numerical solution of the equation for equilibrium and turbulence profiles characteristic of conventional and advanced scenarios shows that, through the "turbulent bootstrap" effect and anomalous resistivity, power and parallel current can be generated which are a sizable portion (about 20%-25%) of the corresponding effects associated with the neoclassical bootstrap effect. The degree of alignment of the turbulence peak and the pressure gradient plays an important role in defining the steady-state regime. In a fully bootstrapped tokamak, the hyper-resistivity is essential in overcoming the intrinsic limitation of the hollow current profile.

  16. Transverse linear dynamics in an axisymmetric ionization cooling channel

    Directory of Open Access Journals (Sweden)

    G. Dugan

    2001-10-01

    Full Text Available This paper outlines a formalism for the description of the linear transverse dynamics of charged particles in an axisymmetric ionization cooling channel. The particle trajectories in the absence of Coulomb scattering are described in terms of lattice functions à la Courant and Snyder, which depend only on the electric and magnetic fields in the channel. The process of multiple Coulomb scattering, which introduces stochastic terms into the particle equations of motion, is treated (in Gaussian approximation by obtaining the distribution function in phase space as a solution of a Fokker-Planck equation. The distribution function is then used to obtain moment equations for the transverse variables and for combinations of variables such as the emittance and angular momentum. The distribution function is also used to obtain an expression for the peak four-dimensional phase space density and for the fraction of the beam that is within a certain area in phase space. The special case of a periodic channel is then considered and expressions for the asymptotic rms emittance and peak phase space density are obtained. Finally, the application of the general formalism to a numerical example, based on the reported design of a cooling channel for a neutrino source, is considered, and comparisons are made with numerical simulations of that channel.

  17. Numerical evaluation of two-dimensional harmonic polylogarithms

    CERN Document Server

    Gehrmann, T

    2002-01-01

    The two-dimensional harmonic polylogarithms $\\G(\\vec{a}(z);y)$, a generalization of the harmonic polylogarithms, themselves a generalization of Nielsen's polylogarithms, appear in analytic calculations of multi-loop radiative corrections in quantum field theory. We present an algorithm for the numerical evaluation of two-dimensional harmonic polylogarithms, with the two arguments $y,z$ varying in the triangle $0\\le y \\le 1$, $ 0\\le z \\le 1$, $\\ 0\\le (y+z) \\le 1$. This algorithm is implemented into a {\\tt FORTRAN} subroutine {\\tt tdhpl} to compute two-dimensional harmonic polylogarithms up to weight 4.

  18. New Classes of Quasi-Axisymmetric Configurations

    International Nuclear Information System (INIS)

    Ku, L. P.; Garabedian, P. R.

    2005-01-01

    Stellarators with quasi-axially symmetric (QA) magnetic field structure have attracted considerable interests in recent years. They are expected to have good particle orbits found in tokamaks and may be made passively stable to MHD perturbations found in conventional stellarators. A proof-of-principle device, the National Compact Stellarator Experiment (NCSX), is being designed and operation is expected to begin in 2008 [1]. In parallel, a reactor studies project (ARIES-CS) is being conducted to examine critical issues of compact stellarators as power producing reactors [2]. It is under the auspices of this project that we made an extensive survey of the aspect ratio-rotational transform space to look for regions endowed with particularly interesting characteristics. We report in this paper the progress made in identifying new configurations with unique features of different emphasis that may be of interest from the standpoint of both power producing reactors and near term physics experiments. NCSX is a highly optimized configuration in both physics and coil properties. The baseline plasma was chosen for its low aspect ratio (A equal 4.5), low non-axisymmetric residues in the magnetic spectrum (<2.5%) and good MHD stability characteristics. The coils were designed with sufficient room to accommodate the scrape-off, vacuum vessel, diagnostics, etc., and with enough flexibility to accommodate a wide variety of operating scenarios. However, the configuration space is vast and complex. Possibilities exist that there are other configurations also having good properties. To look beyond NCSX, we asked ourselves: are there other configurations more attractive and what additional properties will make a quasi-axisymmetric stellarator (QAS) more attractive? We note that recent experimental results from W7AS and LHD showed that, while magnetohydrodynamic (MHD) activities apparently existed in these devices, the plasmas nevertheless were quiescent and remained quasi

  19. Harmonization versus Mutual Recognition

    DEFF Research Database (Denmark)

    Jørgensen, Jan Guldager; Schröder, Philipp

    with the opportunity to start export sales. In contrast, harmonization, in particular the prospect that one’s own national (but not the foreign) standard becomes the only globally accepted standard, opens the foreign market without balancing entry at home. We study these scenarios in a reduced form lobby game with two......, harmonized standards may fail to harvest the full pro-competitive effects from trade liberalization compared to mutual recognition; moreover, the issue is most pronounced in markets featuring price competition....

  20. Analytic modeling of axisymmetric disruption halo currents

    International Nuclear Information System (INIS)

    Humphreys, D.A.; Kellman, A.G.

    1999-01-01

    Currents which can flow in plasma facing components during disruptions pose a challenge to the design of next generation tokamaks. Induced toroidal eddy currents and both induced and conducted poloidal ''halo'' currents can produce design-limiting electromagnetic loads. While induction of toroidal and poloidal currents in passive structures is a well-understood phenomenon, the driving terms and scalings for poloidal currents flowing on open field lines during disruptions are less well established. A model of halo current evolution is presented in which the current is induced in the halo by decay of the plasma current and change in enclosed toroidal flux while being convected into the halo from the core by plasma motion. Fundamental physical processes and scalings are described in a simplified analytic version of the model. The peak axisymmetric halo current is found to depend on halo and core plasma characteristics during the current quench, including machine and plasma dimensions, resistivities, safety factor, and vertical stability growth rate. Two extreme regimes in poloidal halo current amplitude are identified depending on the minimum halo safety factor reached during the disruption. A 'type I' disruption is characterized by a minimum safety factor that remains relatively high (typically 2 - 3, comparable to the predisruption safety factor), and a relatively low poloidal halo current. A 'type II' disruption is characterized by a minimum safety factor comparable to unity and a relatively high poloidal halo current. Model predictions for these two regimes are found to agree well with halo current measurements from vertical displacement event disruptions in DIII-D [T. S. Taylor, K. H. Burrell, D. R. Baker, G. L. Jackson, R. J. La Haye, M. A. Mahdavi, R. Prater, T. C. Simonen, and A. D. Turnbull, open-quotes Results from the DIII-D Scientific Research Program,close quotes in Proceedings of the 17th IAEA Fusion Energy Conference, Yokohama, 1998, to be published in

  1. Harmonic ratcheting for fast acceleration

    Directory of Open Access Journals (Sweden)

    N. Cook

    2014-04-01

    Full Text Available A major challenge in the design of rf cavities for the acceleration of medium-energy charged ions is the need to rapidly sweep the radio frequency over a large range. From low-power medical synchrotrons to high-power accelerator driven subcritical reactor systems, and from fixed focus alternating gradient accelerators to rapid cycling synchrotrons, there is a strong need for more efficient, and faster, acceleration of protons and light ions in the semirelativistic range of hundreds of MeV/u. A conventional way to achieve a large, rapid frequency sweep (perhaps over a range of a factor of 6 is to use custom-designed ferrite-loaded cavities. Ferrite rings enable the precise tuning of the resonant frequency of a cavity, through the control of the incremental permeability that is possible by introducing a pseudoconstant azimuthal magnetic field. However, rapid changes over large permeability ranges incur anomalous behavior such as the “Q-loss” and “f-dot” loss phenomena that limit performance while requiring high bias currents. Notwithstanding the incomplete understanding of these phenomena, they can be ameliorated by introducing a “harmonic ratcheting” acceleration scheme in which two or more rf cavities take turns accelerating the beam—one turns on when the other turns off, at different harmonics—so that the radio frequency can be constrained to remain in a smaller range. Harmonic ratcheting also has straightforward performance advantages, depending on the particular parameter set at hand. In some typical cases it is possible to halve the length of the cavities, or to double the effective gap voltage, or to double the repetition rate. This paper discusses and quantifies the advantages of harmonic ratcheting in general. Simulation results for the particular case of a rapid cycling medical synchrotron ratcheting from harmonic number 9 to 2 show that stability and performance criteria are met even when realistic engineering details

  2. Linking high harmonics from gases and solids.

    Science.gov (United States)

    Vampa, G; Hammond, T J; Thiré, N; Schmidt, B E; Légaré, F; McDonald, C R; Brabec, T; Corkum, P B

    2015-06-25

    When intense light interacts with an atomic gas, recollision between an ionizing electron and its parent ion creates high-order harmonics of the fundamental laser frequency. This sub-cycle effect generates coherent soft X-rays and attosecond pulses, and provides a means to image molecular orbitals. Recently, high harmonics have been generated from bulk crystals, but what mechanism dominates the emission remains uncertain. To resolve this issue, we adapt measurement methods from gas-phase research to solid zinc oxide driven by mid-infrared laser fields of 0.25 volts per ångström. We find that when we alter the generation process with a second-harmonic beam, the modified harmonic spectrum bears the signature of a generalized recollision between an electron and its associated hole. In addition, we find that solid-state high harmonics are perturbed by fields so weak that they are present in conventional electronic circuits, thus opening a route to integrate electronics with attosecond and high-harmonic technology. Future experiments will permit the band structure of a solid to be tomographically reconstructed.

  3. Harmonic oscillator and nuclear pseudospin

    International Nuclear Information System (INIS)

    Lisboa, Ronai; Malheiro, Manuel; Castro, Antonio S. de; Alberto, Pedro; Fiolhais, M.

    2004-01-01

    A generalized relativistic harmonic oscillator for spin 1/2 particles is studied. The Dirac Hamiltonians contains a scalar S and a vector V quadratic potentials in the radial coordinate, as well as a tensor potential U, linear in r. Setting either Σ=S+V or Δ=V - S to zero, analytical solutions for bound states are found. The eigenenergies and their nonrelativistic limits are present and particular cases are discussed, especially the case Σ=0, for which pseudospin symmetry is exact. (author)

  4. Non-axisymmetric ideal equilibrium and stability of ITER plasmas with rotating RMPs

    Science.gov (United States)

    Ham, C. J.; Cramp, R. G. J.; Gibson, S.; Lazerson, S. A.; Chapman, I. T.; Kirk, A.

    2016-08-01

    The magnetic perturbations produced by the resonant magnetic perturbation (RMP) coils will be rotated in ITER so that the spiral patterns due to strike point splitting which are locked to the RMP also rotate. This is to ensure even power deposition on the divertor plates. VMEC equilibria are calculated for different phases of the RMP rotation. It is demonstrated that the off harmonics rotate in the opposite direction to the main harmonic. This is an important topic for future research to control and optimize ITER appropriately. High confinement mode (H-mode) is favourable for the economics of a potential fusion power plant and its use is planned in ITER. However, the high pressure gradient at the edge of the plasma can trigger periodic eruptions called edge localized modes (ELMs). ELMs have the potential to shorten the life of the divertor in ITER (Loarte et al 2003 Plasma Phys. Control. Fusion 45 1549) and so methods for mitigating or suppressing ELMs in ITER will be important. Non-axisymmetric RMP coils will be installed in ITER for ELM control. Sampling theory is used to show that there will be significant a {{n}\\text{coils}}-{{n}\\text{rmp}} harmonic sideband. There are nine coils toroidally in ITER so {{n}\\text{coils}}=9 . This results in a significant n  =  6 component to the {{n}\\text{rmp}}=3 applied field and a significant n  =  5 component to the {{n}\\text{rmp}}=4 applied field. Although the vacuum field has similar amplitudes of these harmonics the plasma response to the various harmonics dictates the final equilibrium. Magnetic perturbations with toroidal mode number n  =  3 and n  =  4 are applied to a 15 MA, {{q}95}≈ 3 burning ITER plasma. We use a three-dimensional ideal magnetohydrodynamic model (VMEC) to calculate ITER equilibria with applied RMPs and to determine growth rates of infinite n ballooning modes (COBRA). The {{n}\\text{rmp}}=4 case shows little change in ballooning mode growth rate as the RMP is

  5. HARMONIZATION OF TAX POLICIES: REVIEWING MACEDONIA AND CROATIA

    Directory of Open Access Journals (Sweden)

    Sasho Kozuharov

    2015-12-01

    Full Text Available The tax harmonization is a complex issue in the process of European integration. The tax harmonization is a process of convergence of the tax system based on mutual set of rules and, in general, it means existence of identical or similar tax rates for the tax payers in European Union, i.e. Euro zone. In case there are identical tax rates, then we are talking about a, so called, total explicit tax harmonization, whereas, if there are similar tax rates, we are talking about partial explicit tax harmonization, which refers to determination of the highest and the lowest tax rates. Thus, countries can determine the tax rates of certain taxes. The total harmonization, besides tax rates harmonization, means structural harmonization or harmonization of the tax structure. The harmonization of direct taxes mainly relies on the following main objectives: avoiding tax evasion and elimination of double taxation. The harmonization of regulations and directives in the field of indirect taxes is necessary in terms of establishing a single market, or removal of barriers to the free movement of goods, people, services and capital.

  6. Second harmonic generation imaging

    CERN Document Server

    2013-01-01

    Second-harmonic generation (SHG) microscopy has shown great promise for imaging live cells and tissues, with applications in basic science, medical research, and tissue engineering. Second Harmonic Generation Imaging offers a complete guide to this optical modality, from basic principles, instrumentation, methods, and image analysis to biomedical applications. The book features contributions by experts in second-harmonic imaging, including many pioneering researchers in the field. Written for researchers at all levels, it takes an in-depth look at the current state of the art and possibilities of SHG microscopy. Organized into three sections, the book: Provides an introduction to the physics of the process, step-by-step instructions on how to build an SHG microscope, and comparisons with related imaging techniques Gives an overview of the capabilities of SHG microscopy for imaging tissues and cells—including cell membranes, muscle, collagen in tissues, and microtubules in live cells—by summarizing experi...

  7. Harmonic uniflow engine

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Charles L.

    2016-03-22

    A reciprocating-piston uniflow engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. When released, the inlet valve head undergoes a single oscillation past the equilibrium position to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. In other embodiments, the harmonic oscillator arrangement of the inlet valve enables the uniflow engine to be reversibly operated as a uniflow compressor.

  8. Tokamak equilibria with non-parallel flow in a triangularity-deformed axisymmetric toroidal coordinate system

    Directory of Open Access Journals (Sweden)

    Ap Kuiroukidis

    2018-01-01

    Full Text Available We consider a generalized Grad–Shafranov equation (GGSE in a triangularity-deformed axisymmetric toroidal coordinate system and solve it numerically for the generic case of ITER-like and JET-like equilibria with non-parallel flow. It turns out that increase of the triangularity improves confinement by leading to larger values of the toroidal beta and the safety factor. This result is supported by the application of a criterion for linear stability valid for equilibria with flow parallel to the magnetic field. Also, the parallel flow has a weaker stabilizing effect.

  9. Two-point boundary value and Cauchy formulations in an axisymmetrical MHD equilibrium problem

    International Nuclear Information System (INIS)

    Atanasiu, C.V.; Subbotin, A.A.

    1999-01-01

    In this paper we present two equilibrium solvers for axisymmetrical toroidal configurations, both based on the expansion in poloidal angle method. The first one has been conceived as a two-point boundary value solver in a system of coordinates with straight field lines, while the second one uses a well-conditioned Cauchy formulation of the problem in a general curvilinear coordinate system. In order to check the capability of our moment methods to describe equilibrium accurately, a comparison of the moment solutions with analytical solutions obtained for a Solov'ev equilibrium has been performed. (author)

  10. Adverse consequences of a moving vacuum-plasma boundary on axisymmetric ac helicity injection

    International Nuclear Information System (INIS)

    Bellan, P.M.

    1986-01-01

    The recent prediction of Liewer, Gould, and Bellan that a moving plasma-vacuum boundary significantly lowers the effectiveness of ac helicity injection is generalized by resolution of the apparent discrepancy between the helicity-conservation equations of Jensen and Chu and of Moffatt. It is shown that, if there are axisymmetric circular flux surfaces and a moving vacuum-plasma boundary, the helicity injected by oscillating fields (if net injection occurs) is simply consumed by an increase in helicity dissipation due to the same oscillating fields

  11. Harmonic arbitrary waveform generator

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Brock Franklin

    2017-11-28

    High frequency arbitrary waveforms have applications in radar, communications, medical imaging, therapy, electronic warfare, and charged particle acceleration and control. State of the art arbitrary waveform generators are limited in the frequency they can operate by the speed of the Digital to Analog converters that directly create their arbitrary waveforms. The architecture of the Harmonic Arbitrary Waveform Generator allows the phase and amplitude of the high frequency content of waveforms to be controlled without taxing the Digital to Analog converters that control them. The Harmonic Arbitrary Waveform Generator converts a high frequency input, into a precision, adjustable, high frequency arbitrary waveform.

  12. A new proof of the theorem: Harmonic manifolds with minimal ...

    Indian Academy of Sciences (India)

    In this note we reprove the known theorem: Harmonic manifolds with minimal horospheres are flat. It turns out that our proof is simpler and more direct than the original one. We also reprove the theorem: Ricci flat harmonic manifolds are flat, which is generally affirmed by appealing to Cheeger–Gromov splitting theorem.

  13. Booster Double Harmonic Setup Notes

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, C. J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2015-02-17

    The motivation behind implementing a booster double harmonic include the reduced transverse space charge force from a reduced peak beam current and reduced momentum spread of the beam, both of which can be achieved from flattening the RF bucket. RF capture and acceleration of polarized protons (PP) is first set up in the single harmonic mode with RF harmonic h=1. Once capture and acceleration have been set up in the single harmonic mode, the second harmonic system is brought on and programmed to operate in concert with the single harmonic system.

  14. Marshall N. Rosenbluth Outstanding Doctoral Thesis Award Talk: Control of Non-Axisymmetric Fields With Static and Dynamic Boundary Conditions

    Science.gov (United States)

    Paz-Soldan, C.

    2013-10-01

    Small deformations of the otherwise axisymmetric field, known as ``error fields'' (EFs), lead to large changes in global MHD stability. This talk will compare results from both 1) a line-tied screw-pinch with rotating conducting walls and 2) the DIII-D tokamak to illustrate that in both devices the EF has greatest effect where it overlaps with the spatial structure of its global kink mode. In both configurations the kink structure in the symmetry direction is well described by a single mode number (azimuthal m = 1 , toroidal n = 1 , respectively) and EF ordering is clear. In the asymmetric direction (axial and poloidal, respectively) the harmonics of the kink are coupled (by line-tying and toroidicity, respectively) and thus EF ordering is not straightforward. In the pinch, the kink is axially localized to the anode region and consequently the anode EF dominates the MHD stability. In DIII-D, the poloidal harmonics of the n = 1 EF whose pitch is smaller than the local field-line pitch are empirically shown to be dominant across a wide breadth of EF optimization experiments. In analogy with the pinch, these harmonics are also where overlap with the kink is greatest and thus where the largest plasma kink response is found. The robustness of the kink structure further enables vacuum-field cost-function minimization techniques to accurately predict optimal EF correction coil currents by strongly weighting the kink-like poloidal harmonics in the minimization. To test the limits of this paradigm recent experiments in DIII-D imposed field structures that lack kink-overlapping harmonics, yielding ~10X less sensitivity. The very different plasmas of the pinch and tokamak thus both demonstrate the dominance of the kink mode in determining optimal EF correction. Supported by US DOE under DE-AC05-06OR23100, DE-FG02-00ER54603, DE-FC02-04ER54698, and NSF 0903900.

  15. Axisymmetric flow and heat transfer to modified second grade fluid over a radially stretching sheet

    Directory of Open Access Journals (Sweden)

    Masood Khan

    Full Text Available In the present work, an analysis is made to the two-dimensional axisymmetric flow and heat transfer of a modified second grade fluid over an isothermal non-linear radially stretching sheet. The momentum and energy equations are modelled and the boundary layer equations are derived. The governing equations for velocity and temperature are turned down into a system of ordinary differential equations by invoking appropriate transformations which are then solved numerically via fourth and fifth order Runge-Kutta Fehlberg method. Moreover, the influence of the pertinent parameters namely the generalized second grade parameter, stretching parameter, the power-law index and the generalized Prandtl number is graphically portrayed. It is inferred that the generalized second grade parameter uplifted the momentum boundary layer while lessened the thermal boundary layer. Furthermore, the impact of stretching parameter is more pronounced for the second grade fluid (m = 0 in contrast with the power-law fluid (k = 0. For some special cases, comparisons are made with previously reported results and an excellent agreement is established. Keywords: Modified second grade fluid, Axisymmetric flow, Heat transfer, Non-linear stretching sheet

  16. Stress in Harmonic Serialism

    Science.gov (United States)

    Pruitt, Kathryn Ringler

    2012-01-01

    This dissertation proposes a model of word stress in a derivational version of Optimality Theory (OT) called Harmonic Serialism (HS; Prince and Smolensky 1993/2004, McCarthy 2000, 2006, 2010a). In this model, the metrical structure of a word is derived through a series of optimizations in which the "best" metrical foot is chosen…

  17. Harmonic Intravascular Ultrasound

    NARCIS (Netherlands)

    M.E. Frijlink (Martijn)

    2006-01-01

    textabstractMedical ultrasound is a popular imaging modality in cardiology. Harmonic Imaging is a technique that has been shown to increase the image quality of diagnostic ultrasound at frequencies below 10 MHz. However, Intravascular Ultrasound, which is a technique to acoustically investigate

  18. Fast Harmonic Chirp Summation

    DEFF Research Database (Denmark)

    Nielsen, Jesper Kjær; Jensen, Tobias Lindstrøm; Jensen, Jesper Rindom

    2017-01-01

    -robust to noise, or very computationally inten- sive. In this paper, we propose a fast algorithm for the harmonic chirp summation method which has been demonstrated in the liter- ature to be accurate and robust to noise. The proposed algorithm is orders of magnitudes faster than previous algorithms which is also...

  19. A Harmonic Motion Experiment

    Science.gov (United States)

    Gluck, P.; Krakower, Zeev

    2010-01-01

    We present a unit comprising theory, simulation and experiment for a body oscillating on a vertical spring, in which the simultaneous use of a force probe and an ultrasonic range finder enables one to explore quantitatively and understand many aspects of simple and damped harmonic motions. (Contains 14 figures.)

  20. An Enhanced GINGER Simulation Code with Harmonic Emission and HDF5 IO Capabilities

    International Nuclear Information System (INIS)

    Fawley, William M.

    2006-01-01

    GINGER [1] is an axisymmetric, polychromatic (r-z-t) FEL simulation code originally developed in the mid-1980's to model the performance of single-pass amplifiers. Over the past 15 years GINGER's capabilities have been extended to include more complicated configurations such as undulators with drift spaces, dispersive sections, and vacuum chamber wakefield effects; multi-pass oscillators; and multi-stage harmonic cascades. Its coding base has been tuned to permit running effectively on platforms ranging from desktop PC's to massively parallel processors such as the IBM-SP. Recently, we have made significant changes to GINGER by replacing the original predictor-corrector field solver with a new direct implicit algorithm, adding harmonic emission capability, and switching to the HDF5 IO library [2] for output diagnostics. In this paper, we discuss some details regarding these changes and also present simulation results for LCLS SASE emission at λ = 0.15 nm and higher harmonics

  1. On the variational approach to axisymmetric magnetohydrodynamic equilibria

    International Nuclear Information System (INIS)

    Andreussi, T.; Pegoraro, F.

    2008-01-01

    The variational formulation of the axisymmetric magnetohydrodynamic equilibrium equations with plasma flows is addressed and a more comprehensive method is presented that allows, in particular, for open boundary conditions and discontinuous (shock) solutions. A numerical procedure based on the variational formulation is described and a validation test for an open conical geometry, including also hydrodynamic shocks, is investigated.

  2. Non-Radial Oscillations in an Axisymmetric MHD Incompressible Fluid

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... ... oscillations by perturbing the MHD equilibrium solution for an axisymmetric incompressible fluid. The fluid motion and the magnetic field are expressed as scalars , , and , respectively. In deriving the exact solution for the equilibrium state, we neglect the contribution due to meridional circulation.

  3. Axisymmetric Lattice Boltzmann Model of Droplet Impact on Solid Surfaces

    Science.gov (United States)

    Dalgamoni, Hussein; Yong, Xin

    2017-11-01

    Droplet impact is a ubiquitous fluid phenomena encountered in scientific and engineering applications such as ink-jet printing, coating, electronics manufacturing, and many others. It is of great technological importance to understand the detailed dynamics of drop impact on various surfaces. The lattice Boltzmann method (LBM) emerges as an efficient method for modeling complex fluid systems involving rapidly evolving fluid-fluid and fluid-solid interfaces with complex geometries. In this work, we model droplet impact on flat solid substrates with well-defined wetting behavior using a two-phase axisymmetric LBM with high density and viscosity contrasts. We extend the two-dimensional Lee and Liu model to capture axisymmetric effect in the normal impact. First we compare the 2D axisymmetric results with the 2D and 3D results reported by Lee and Liu to probe the effect of axisymmetric terms. Then, we explore the effects of Weber number, Ohnesorge number, and droplet-surface equilibrium contact angle on the impact. The dynamic contact angle and spreading factor of the droplet during impact are investigated to qualitatively characterize the impact dynamics.

  4. Non-Axisymmetric Shaping of Tokamaks Preserving Quasi-Axisymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Long-Poe Ku and Allen H. Boozer

    2009-06-05

    If quasi-axisymmetry is preserved, non-axisymmetric shaping can be used to design tokamaks that do not require current drive, are resilient to disruptions, and have robust plasma stability without feedback. Suggestions for addressing the critical issues of tokamaks can only be validated when presented with sufficient specificity that validating experiments can be designed. The purpose of this paper is provide that specificity for non-axisymmetric shaping. To our knowledge, no other suggestions for the solution of a number of tokamak issues, such as disruptions, have reached this level of specificity. Sequences of three-field-period quasi-axisymmetric plasmas are studied. These sequences address the questions: (1) What can be achieved at various levels of non-axisymmetric shaping? (2) What simplifications to the coils can be achieved by going to a larger aspect ratio? (3) What range of shaping can be achieved in a single experimental facility? The sequences of plasmas found in this study provide a set of interesting and potentially important configurations.

  5. Potential formation in axisymmetrized tandem mirror GAMMA 10

    International Nuclear Information System (INIS)

    Cho, T.; Ichimura, M.; Inutake, M.

    1985-01-01

    The paper reports experimental results on potential formation and end plugging in the axisymmetrized tandem mirror GAMMA 10. The plugging at both ends has been achieved by a combination of neutral beams and gyrotrons. The presence of a plug potential with a thermal barrier in an axisymmetric mirror has been confirmed by direct measurement of the axial potential profile. Enhancement of axial particle confinement has been observed during the end plugging. Non-ambipolar radial transport has been greatly reduced in the axisymmetrized magnetic configuration. The potentials measured by beam probes and end loss analysers are 0.7, 0.4 and 1.1 kV in the central, barrier and plug regions, respectively. Strong end plugging is observed when the central-cell density is higher than the densities in the plug and the barrier, and the plug density remains higher than the barrier density. The plug electron temperature is higher than the central temperature. Hot electrons forming a football-shaped profile have been stably produced in the axisymmetric mirror. The beta value and the fraction of the hot electrons reach up to 5% and 0.8, respectively. Central-cell ion-cyclotron resonance heating can sustain a stable plasma with higher density and ion temperature when resonance surfaces exist in both the anchor and the central cells. (author)

  6. RESEARCH ON THE INTERNATIONAL ACCOUNTING HARMONIZATION PROCESS

    Directory of Open Access Journals (Sweden)

    Tatiana Danescu

    2016-12-01

    Full Text Available During the last decades, the need of harmonization of the financial reporting frameworks has become more acute, mostly because the capital markets are not restricted anymore by country borders and capital movement has outlined the phenomenon of globalization and internationalism. A significant step in harmonizing the financial reporting was done in the process of normalization through different sets of rules and principles, recognized and applied in many states are the International Financial Reporting Standards (IFRS. The process of international recognition of these standards continues along with conceptual development which is based on epistemological research on specific markets, industries, economies open to international capital flows. In this context it becomes of interest to identify and understand generally accepted and applied accounting elements which carry forward the accounting harmonization process along with factors and circumstances that create diversity in nationally applied financial reporting frameworks.

  7. Efficiency of the generation of impulsion by cyclotron waves currents of the electrons in an Axisymmetric Tokamak

    International Nuclear Information System (INIS)

    Gutierrez T, C.; Beltran P, M.

    2004-01-01

    The neoclassical theory of transport is used to calculate the current efficiency of electronic cyclotron impulsion (ECCD) in an axisymmetric tokamak in the few collisions regime. The standard parameter of the tokamak is used to obtain a system of equations that describe the hydrodynamic of the plasma, where the ponderomotive force (PM) due to high power radio frequency waves is taken in account. The PM force is produced in the proximity of electron cyclotron resonance surface in a specific poloidal localization. The efficiency ECCD is analyzed in the cases of first and second harmonic (for different angles of injection of radio frequency waves) and it is validated using the experimental values of the TCV and T-10 tokamaks. The results are according to those obtained by means of the techniques of the Green functions. (Author)

  8. General Lp-harmonic Blaschke bodies

    Indian Academy of Sciences (India)

    (1.1). If ρK is positive and continuous, then K will be called a star body (about the origin). For the set of star bodies containing the origin in their interiors, the set of star bodies whose centroid lie at the origin and the set of origin-symmetric star bodies in Rn, we write Sn o ,. Sn e and Sn s , respectively. Two star bodies K and L ...

  9. The Harmonization of Accounting

    Directory of Open Access Journals (Sweden)

    Hajnal Noémi

    2017-11-01

    Full Text Available The development and configuration of the regulatory framework of the accounting systems in Romania and Hungary took place in different ways. Among the reasons for the diversities in these countries’ accounting systems, the following can be certainly mentioned: different purposes of taxation, legal structure, the accountancy’s connection with the corporate law and family law, diversification on corporate financing policy, and cultural heterogeneity. Both countries quickly caught up with the international accounting harmonization standards. The adaptation of the international accounting standards has many advantages and disadvantages; these have been discussed in several previous researches. This paper aims at comparing the Romanian and Hungarian states’ accounting regulations from the early 1990s, which were implemented in order to harmonize the states’ accountancy regulations with the international standards, and their impact on the economy, based on secondary analysis.

  10. On spherical harmonic representation of transient waves in dispersive media

    International Nuclear Information System (INIS)

    Borisov, Victor V

    2003-01-01

    Axisymmetric transient solutions to the inhomogeneous telegraph equation are constructed in terms of spherical harmonics. Explicit solutions of the initial-value problem are derived in the spacetime domain by means of the Smirnov method of incomplete separation of variables and the Riemann formula. The corresponding Riemann function is constructed with the help of the Olevsky theorem. Solutions for some source distributions on a sphere expanding with a velocity greater than the wavefront velocity are obtained. This allows an analogous solution in the case of a circle belonging to a sphere expanding with the wavefront velocity to be written at once. Application of the scalar solution to a description of electromagnetic waves is also discussed

  11. [Harmonization of TSH Measurements.

    Science.gov (United States)

    Takeoka, Keiko; Hidaka, Yoh; Hishinuma, Akira; Ikeda, Katsuyoshi; Okubo, Shigeo; Tsuchiya, Tatsuyuki; Hashiguchi, Teruto; Furuta, Koh; Hotta, Taeko; Matsushita, Kazuyuki; Matsumoto, Hiroyuki; Murakami, Masami; Maekawa, Masato

    2016-05-01

    The measured concentration of thyroid stimulating hormone (TSH) differs depending on the reagents used. Harmonization of TSH is crucial because the decision limits are described in current clinical practice guide- lines as absolute values, e.g. 2.5 mIU/L in early pregnancy. In this study, we tried to harmonize the report- ed concentrations of TSH using the all-procedure trimmed mean. TSH was measured in 146 serum samples, with values ranging from 0.01 to 18.8 mIU/L, using 4 immunoassays. The concentration of TSH was highest with E test TOSOH and lowest with LUMIPULSE. The concentrations with each reagent were recalculated with the following formulas: E test TOSOH 0.855x-0.014; ECLusys 0.993x+0.079; ARCHITECT 1.041x- 0.010; and LUMIPULSE 1.096x-0.015. Recalculation eliminated the between-assay discrepancy. These formulas may be used until harmonization of TSH is achieved by the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC).

  12. Harmonic and geometric analysis

    CERN Document Server

    Citti, Giovanna; Pérez, Carlos; Sarti, Alessandro; Zhong, Xiao

    2015-01-01

    This book presents an expanded version of four series of lectures delivered by the authors at the CRM. Harmonic analysis, understood in a broad sense, has a very wide interplay with partial differential equations and in particular with the theory of quasiconformal mappings and its applications. Some areas in which real analysis has been extremely influential are PDE's and geometric analysis. Their foundations and subsequent developments made extensive use of the Calderón–Zygmund theory, especially the Lp inequalities for Calderón–Zygmund operators (Beurling transform and Riesz transform, among others) and the theory of Muckenhoupt weights.  The first chapter is an application of harmonic analysis and the Heisenberg group to understanding human vision, while the second and third chapters cover some of the main topics on linear and multilinear harmonic analysis. The last serves as a comprehensive introduction to a deep result from De Giorgi, Moser and Nash on the regularity of elliptic partial differen...

  13. N=4 supersymmetric mechanics in harmonic superspace

    International Nuclear Information System (INIS)

    Ivanov, E.; Lechtenfeld, O.

    2003-01-01

    We define N=4, d=1 harmonic superspace HR 1+2vertical bar4 with an SU(2)/U(1) harmonic part, SU(2) being one of two factors of the R-symmetry group SU(2) x SU(2) of N=4, d=1 Poincare supersymmetry. We reformulate, in this new setting, the models of N=4 supersymmetric quantum mechanics associated with the off-shell multiplets (3, 4, 1) and (4, 4, 0). The latter admit a natural description as constrained superfields living in an analytic subspace of HR 1+2vertical bar4 . We construct the relevant superfield actions consisting of a sigma-model as well as a superpotential parts and demonstrate that the superpotentials can be written off shell in a manifestly N=4 supersymmetric form only in the analytic superspace. The constraints implied by N=4 supersymmetry for the component bosonic target-space metrics, scalar potentials and background one-forms automatically follow from the harmonic superspace description. The analytic superspace is shown to be closed under the most general N=4, d=1 superconformal group D(2,1;α). We give its action on the analytic superfields comprising the (3, 4, 1) and (4, 4, 0) multiplets, reveal a surprising relation between the latter and present the corresponding superconformally invariant actions. The harmonic superspace approach suggests a natural generalization of these multiplets, with a [2(n+1), 4n, 2(n-1)] off-shell content for n > 2. (author)

  14. Harmonic Distortion of Rectifier Topologies for Adjustable Speed Drives

    DEFF Research Database (Denmark)

    Hansen, Steffan

    rectifier are presented. The first level is an ideal model where the diode rectifier basically is treated as an independent (harmonic) current source. The second level is an empirical model, where simulated (or measured) values of the harmonic currents of the diode rectifier for different parameters...... are discussed. Finally a cost - benefit analysis is presented based on available market information and a general step-by-step approach is proposed to find the cost-optimal rectifier topology that fulfills individual requirements. The applicability of the stepwise method to find the costoptimal rectifier...... and to find reasonable (economical) solutions if the harmonic distortion is exceeding acceptable levels. To define some acceptable harmonic levels, the international standards IEC 61000-2-2, IEC 61000-2-4, the harmonic limiting standards EN 61000-3-2, EN 61000-3-12 (draft) and IEEE 519-1992 are reviewed...

  15. Axisymmetric instability in a noncircular tokamak: experiment and theory

    International Nuclear Information System (INIS)

    Lipschultz, B.; Prager, S.C.; Todd, A.M.M.; Delucia, J.

    1979-09-01

    The stability of dee, inverse-dee and square cross section plasmas to axisymmetric modes has been investigated experimentally in Tokapole II, a tokamak with a four-null poloidal divertor. Experimental results are closely compared with predictions of two numerical stability codes -- the PEST code (ideal MHD, linear stability) adapted to tokapole geometry and a code which follows the nonlinear evolution of shapes similar to tokapole equilibria. Experimentally, the square is vertically stable and both dee's unstable to a vertical nonrigid axisymmetric shift. The central magnetic axis displacement grows exponentially with a growth time approximately 10 3 poloidal Alfven times plasma time. Proper initial positioning of the plasma on the midplane allows passive feedback to nonlinearly restore vertical motion to a small stable oscillation. Experimental poloidal flux plots are produced directly from internal magnetic probe measurements

  16. Fluid simulations of edge turbulence for stellarators and axisymmetric configurations

    Science.gov (United States)

    Kleiber, R.; Scott, B.

    2005-10-01

    Nonlinear electromagnetic fluid simulations in a flux tube are used to compute the edge turbulence for a family of axisymmetric configurations with different rotational transform profiles (ι) and the stellarator Wendelstein 7-X (W7-X) [Grieger et al., Plasma Physics and Controlled Nuclear Fusion Research, 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 525]. The influence of the ι profile on anomalous transport and the strength of zonal flows in these axisymmetric equilibria are studied and the results are connected to simulations for the W7-X equilibrium. A strong decrease in transport is found by increasing ι or switching the sign of the shear from tokamak-(ι'0). The effect of pressure-induced changes in the W7-X equilibrium geometry on the transport at fixed parameters is studied and a decrease in the transport following changes in the zonal flows is found.

  17. Stability of flow over axisymmetric bodies with porous suction strips

    Science.gov (United States)

    Nayfeh, A. H.; Reed, H. L.

    1982-01-01

    Linear triple deck, closed form solutions for mean-flow quantities are developed for axisymmetric incompressible flow past a body with porous strips. The solutions account for upstream influence and are linear superpositions of the flow past the body without suction plus the perturbations due to the suction strips. Flow past the suctionless body is calculated using the Transition Analysis Program System, and a simple linear optimization scheme to determine number, spacing, and mass flow rate through the strips on an axisymmetric body is developed using the linear, triple-deck, closed-form solutions. The theory is demonstrated by predicting optimal strip distributions, and the effect of various adverse pressure-gradient situations on stability is studied.

  18. Small Engine Technology (SET) - Task 14 Axisymmetric Engine Simulation Environment

    Science.gov (United States)

    Miller, Max J.

    1999-01-01

    As part of the NPSS (Numerical Propulsion Simulation System) project, NASA Lewis has a goal of developing an U.S. industry standard for an axisymmetric engine simulation environment. In this program, AlliedSignal Engines (AE) contributed to this goal by evaluating the ENG20 software and developing support tools. ENG20 is a NASA developed axisymmetric engine simulation tool. The project was divided into six subtasks which are summarized below: Evaluate the capabilities of the ENG20 code using an existing test case to see how this procedure can capture the component interactions for a full engine. Link AE's compressor and turbine axisymmetric streamline curvature codes (UD0300M and TAPS) with ENG20, which will provide the necessary boundary conditions for an ENG20 engine simulation. Evaluate GE's Global Data System (GDS), attempt to use GDS to do the linking of codes described in Subtask 2 above. Use a turbofan engine test case to evaluate various aspects of the system, including the linkage of UD0300M and TAPS with ENG20 and the GE data storage system. Also, compare the solution results with cycle deck results, axisymmetric solutions (UD0300M and TAPS), and test data to determine the accuracy of the solution. Evaluate the order of accuracy and the convergence time for the solution. Provide a monthly status report and a final formal report documenting AE's evaluation of ENG20. Provide the developed interfaces that link UD0300M and TAPS with ENG20, to NASA. The interface that links UD0300M with ENG20 will be compatible with the industr,, version of UD0300M.

  19. General

    Indian Academy of Sciences (India)

    Page S20: NMR compound 4i. Page S22: NMR compound 4j. General: Chemicals were purchased from Fluka, Merck and Aldrich Chemical Companies. All the products were characterized by comparison of their IR, 1H NMR and 13C NMR spectroscopic data and their melting points with reported values. General procedure ...

  20. Modeling axisymmetric flows dynamics of films, jets, and drops

    CERN Document Server

    Middleman, Stanley

    1995-01-01

    This concise book is intended to fulfill two purposes: to provide an important supplement to classic texts by carrying fluid dynamics students on into the realm of free boundary flows; and to demonstrate the art of mathematical modeling based on knowledge, intuition, and observation. In the authors words, the overall goal is make the complex simple, without losing the essence--the virtue--of the complexity.Modeling Axisymmetric Flows: Dynamics of Films, Jets, and Drops is the first book to cover the topics of axisymmetric laminar flows; free-boundary flows; and dynamics of drops, jets, and films. The text also features comparisons of models to experiments, and it includes a large selection of problems at the end of each chapter.Key Features* Contains problems at the end of each chapter* Compares real-world experimental data to theory* Provides one of the first comprehensive examinations of axisymmetric laminar flows, free-boundary flows, and dynamics of drops, jets, and films* Includes development of basic eq...

  1. Energy and energy flux in axisymmetric slow and fast waves

    Science.gov (United States)

    Moreels, M. G.; Van Doorsselaere, T.; Grant, S. D. T.; Jess, D. B.; Goossens, M.

    2015-06-01

    Aims: We aim to calculate the kinetic, magnetic, thermal, and total energy densities and the flux of energy in axisymmetric sausage modes. The resulting equations should contain as few parameters as possible to facilitate applicability for different observations. Methods: The background equilibrium is a one-dimensional cylindrical flux tube model with a piecewise constant radial density profile. This enables us to use linearised magnetohydrodynamic equations to calculate the energy densities and the flux of energy for axisymmetric sausage modes. Results: The equations used to calculate the energy densities and the flux of energy in axisymmetric sausage modes depend on the radius of the flux tube, the equilibrium sound and Alfvén speeds, the density of the plasma, the period and phase speed of the wave, and the radial or longitudinal components of the Lagrangian displacement at the flux tube boundary. Approximate relations for limiting cases of propagating slow and fast sausage modes are also obtained. We also obtained the dispersive first-order correction term to the phase speed for both the fundamental slow body mode under coronal conditions and the slow surface mode under photospheric conditions. Appendix A is available in electronic form at http://www.aanda.org

  2. Three-Dimensional Electromagnetic High Frequency Axisymmetric Cavity Scars.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt

    2014-10-01

    This report examines the localization of high frequency electromagnetic fi elds in three-dimensional axisymmetric cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This report treats both the case where the opposing sides, or mirrors, are convex, where there are no interior foci, and the case where they are concave, leading to interior foci. The scalar problem is treated fi rst but the approximations required to treat the vector fi eld components are also examined. Particular att ention is focused on the normalization through the electromagnetic energy theorem. Both projections of the fi eld along the scarred orbit as well as point statistics are examined. Statistical comparisons are m ade with a numerical calculation of the scars run with an axisymmetric simulation. This axisymmetric cas eformstheoppositeextreme(wherethetwomirror radii at each end of the ray orbit are equal) from the two -dimensional solution examined previously (where one mirror radius is vastly di ff erent from the other). The enhancement of the fi eldontheorbitaxiscanbe larger here than in the two-dimensional case. Intentionally Left Blank

  3. Harmonic sums and polylogarithms generated by cyclotomic polynomials

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, Jakob; Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2011-05-15

    The computation of Feynman integrals in massive higher order perturbative calculations in renormalizable Quantum Field Theories requires extensions of multiply nested harmonic sums, which can be generated as real representations by Mellin transforms of Poincare-iterated integrals including denominators of higher cyclotomic polynomials. We derive the cyclotomic harmonic polylogarithms and harmonic sums and study their algebraic and structural relations. The analytic continuation of cyclotomic harmonic sums to complex values of N is performed using analytic representations. We also consider special values of the cyclotomic harmonic polylogarithms at argument x=1, resp., for the cyclotomic harmonic sums at N{yields}{infinity}, which are related to colored multiple zeta values, deriving various of their relations, based on the stuffle and shuffle algebras and three multiple argument relations. We also consider infinite generalized nested harmonic sums at roots of unity which are related to the infinite cyclotomic harmonic sums. Basis representations are derived for weight w=1,2 sums up to cyclotomy l=20. (orig.)

  4. Analysis of Even Harmonics Generation in an Isolated Electric Power System

    Science.gov (United States)

    Kanao, Norikazu; Hayashi, Yasuhiro; Matsuki, Junya

    Harmonics bred from loads are mainly odd order because the current waveform has half-wave symmetry. Since the even harmonics are negligibly small, those are not generally measured in electric power systems. However, even harmonics were measured at a 500/275/154kV substation in Hokuriku Electric Power Company after removal of a transmission line fault. The even harmonics caused malfunctions of protective digital relays because the relays used 4th harmonics at the input filter as automatic supervisory signal. This paper describes the mechanism of generation of the even harmonics by comparing measured waveforms with ATP-EMTP simulation results. As a result of analysis, it is cleared that even harmonics are generated by three causes. The first cause is a magnetizing current of transformers due to flux deviation by DC component of a fault current. The second one is due to harmonic conversion of a synchronous machine which generates even harmonics when direct current component or even harmonic current flow into the machine. The third one is that increase of harmonic impedance due to an isolated power system produces harmonic voltages. The design of the input filter of protective digital relays should consider even harmonics generation in an isolated power system.

  5. Axisymmetric accretion flows very near black holes and Rosen-collapsed objects

    International Nuclear Information System (INIS)

    Stoeger, W.R.

    1979-01-01

    Motivated by the need for stronger observational leverage on the black hole hypothesis and for a more detailed characterization of axisymmetric accretion flows across the marginally stable circular orbit rsub(ms), a general approach for describing the non-Keplerian accretion in the region rsub(H) 0 , where rsub(H) = radius of the event horizon and r 0 > = rsub(ms) is developed. The procedure possesses many advantages, including easily imposed consistency with the Keplerian for r > rsub(o), the avoidance of ad hoc boundary conditions at rsub(ms) and/or at rsub(H) and its application also to accretion in Rosen's bimetric theory, whose spherically symmetric solution has the same qualitative orbital topography as that of general relativity. It becomes apparent, furthermore, that the particular viscosity law chosen in this procedure will have a crucial bearing on the flow in the region rsub(ms) 0 . (author)

  6. An axisymmetric method of creep analysis for primary and secondary creep

    International Nuclear Information System (INIS)

    Jahed, Hamid; Bidabadi, Jalal

    2003-01-01

    A general axisymmetric method for elastic-plastic analysis was previously proposed by Jahed and Dubey [ASME J Pressure Vessels Technol 119 (1997) 264]. In the present work the method is extended to the time domain. General rate type governing equations are derived and solved in terms of rate of change of displacement as a function of rate of change in loading. Different types of loading, such as internal and external pressure, centrifugal loading and temperature gradient, are considered. To derive specific equations and employ the proposed formulation, the problem of an inhomogeneous non-uniform rotating disc is worked out. Primary and secondary creep behaviour is predicted using the proposed method and results are compared to FEM results. The problem of creep in pressurized vessels is also solved. Several numerical examples show the effectiveness and robustness of the proposed method

  7. Harmonic analysis and applications

    CERN Document Server

    Heil, Christopher

    2007-01-01

    This self-contained volume in honor of John J. Benedetto covers a wide range of topics in harmonic analysis and related areas. These include weighted-norm inequalities, frame theory, wavelet theory, time-frequency analysis, and sampling theory. The chapters are clustered by topic to provide authoritative expositions that will be of lasting interest. The original papers collected are written by prominent researchers and professionals in the field. The book pays tribute to John J. Benedetto's achievements and expresses an appreciation for the mathematical and personal inspiration he has given to

  8. Harmonic Response of Magneto-electro-elastic Sensors Bonded to Cylindrical Shells

    Directory of Open Access Journals (Sweden)

    B. Biju

    2010-05-01

    Full Text Available This paper deals with semi analytical finite element formulation for coupled magneto-electro-elastic sensor bonded to a mild steel cylindrical shell. The cylinder is subjected to harmonically varying internal pressure with clamped free and clamped-clamped boundary condition. Numerical results are presented for the first three axial modes associated with the axisymmetric mode of the shell with different sensor locations. The sensor response is controlled mainly by its radial displacement in all the modes. The third mode response becomes significant when the sensor is placed at the free end of the mild steel cylinder for clamped free boundary condition.

  9. Transversally Lipschitz Harmonic Functions are Lipschitz

    OpenAIRE

    Ravisankar, Sivaguru

    2012-01-01

    Let \\Omega\\subset\\mathbb{R}^n be a bounded domain with C^\\infty boundary. We show that a harmonic function in \\Omega that is Lipschitz along a family of curves transversal to b\\Omega is Lipschitz in \\Omega. The space of Lipschitz functions we consider is defined using the notion of a majorant which is a certain generalization of the power functions t^\\alpha, 0

  10. Harmonic maps of finite energy for Finsler manifolds

    Science.gov (United States)

    Li, Jintang; Wang, Yiling

    2018-03-01

    In this paper, we study some properties of harmonic maps for Finsler manifolds. Some Liouville theorems on harmonic maps for Finsler manifolds are given. Let M be a complete simply connected Riemannian manifold with non-negative Ricci curvature and M bar be a complete Berwald manifold with non-positive flag curvature. The main purpose of this paper is to prove that there exists no non-degenerate harmonic map ϕ from M to M bar with ∫SM e(ϕ) dVSM < ∞, which generalizes the result of Schoen and Yau (1976) from Riemannian manifolds to Berwald manifolds.

  11. Twistor fibrations giving primitive harmonic maps of finite type

    Directory of Open Access Journals (Sweden)

    Rui Pacheco

    2005-01-01

    Full Text Available Primitive harmonic maps of finite type from a Riemann surface M into a k-symmetric space G/H are obtained by integrating a pair of commuting Hamiltonian vector fields on certain finite-dimensional subspaces of loop algebras. We will clarify and generalize Ohnita and Udagawa's results concerning homogeneous projections p:G/H→G/K, with H⊂K, preserving finite-type property for primitive harmonic maps.

  12. Harmonic Series Meets Fibonacci Sequence

    Science.gov (United States)

    Chen, Hongwei; Kennedy, Chris

    2012-01-01

    The terms of a conditionally convergent series may be rearranged to converge to any prescribed real value. What if the harmonic series is grouped into Fibonacci length blocks? Or the harmonic series is arranged in alternating Fibonacci length blocks? Or rearranged and alternated into separate blocks of even and odd terms of Fibonacci length?

  13. Second harmonic generation microscopy

    DEFF Research Database (Denmark)

    Brüggemann, Dagmar Adeline; Brewer, Jonathan R.; Risbo, Jens

    2010-01-01

    Myofibers and collagen show non-linear optical properties enabling imaging using second harmonic generation (SHG) microscopy. The technique is evaluated for use as a tool for real-time studies of thermally induced changes in thin samples of unfixed and unstained pork. The forward and the backward......-temperature endotherm peak observable in the differential scanning calorimetry (DSC) thermograms. DSC analysis of epimysium, the connective tissue layer that enfold skeletal muscles, produces one large endotherm starting at 57 °C and peaking at 59.5 °C. SHG microscopy of collagen fibers reveals a variability of thermal...... indicating regions of much higher thermal stability. It is seen that the benefits of the structural and temporal information available from SHG microscopy reveals complementary information to a traditional DSC measurement and enables a more complete understanding of the thermal denaturation process....

  14. Harmonics in transmission power systems

    DEFF Research Database (Denmark)

    Wiechowski, Wojciech Tomasz

    Some time ago, Energinet.dk, the Transmission System Operator of the 150 kV and 400 kV transmission network in Denmark, had experienced operational malfunctions of some of the measuring and protection equipment. Also an overloading of a harmonic filter has been reported, and therefore, a need...... end only so the ground is not used as a return path. A way to reduce the capacitive coupling is to provide shielding. Harmonic currents are measured using the conventional inductive voltage transformers. Both protective and metering cores were compared if they could be used for harmonic measurements....... The comparison shows that results obtained used both types of the cores are the same, so it is concluded that both cores can be used for harmonic measurements. Low-inductance resistors are introduced in the secondary circuits, in series with the metering and protective relaying. On those resistors, the harmonic...

  15. Analytic axisymmetric equilibria with pressure anisotropy and non-parallel flow

    Science.gov (United States)

    Kuiroukidis, A.; Evangelias, A.; Throumoulopoulos, G. N.

    2017-10-01

    We extend previous work by two of the authors [Evangelias and Throumoulopoulos 2016 Plasma Phys. Control. Fusion 58 045022] and find analytic solutions to a generalized Grad-Shafranov equation (GGSE) with pressure anisotropy, hollow toroidal current density and incompressible flow of arbitrary direction. By specifying the surface-function terms involved in the GGSE as quadratic functions of the poloidal magnetic flux function, we derive analytic tokamak pertinent equilibria. It turns out that, irrespective of the shape of the toroidal current density profile, which is noticeably affected by the pressure anisotropy, this anisotropy has a paramagnetic effect for {p}\\parallel > {p}\\perp and a diamagnetic one for {p}\\parallel < {p}\\perp . In addition, the parallel flow induces paramagnetism, while the residual toroidal flow associated with the electric field induces diamagnetism. The analytic results obtained here contribute to the physics understanding of axisymmetric equilibria with pressure anisotropy and flow, and can be employed for validating equilibrium codes.

  16. A Family of Vortices to Study Axisymmetric Vortex Breakdown and Reconnection

    Science.gov (United States)

    Young, Larry A.

    2007-01-01

    A new analytic model describing a family of vortices has been developed to study some of the axisymmetric vortex breakdown and reconnection fluid dynamic processes underlying body-vortex interactions that are frequently manifested in rotorcraft and propeller-driven fixed-wing aircraft wakes. The family of vortices incorporates a wide range of prescribed initial vorticity distributions -- including single or dual-core vorticity distributions. The result is analytical solutions for the vorticity and velocities for each member of the family of vortices. This model is of sufficient generality to further illustrate the dependence of vortex reconnection and breakdown on initial vorticity distribution as was suggested by earlier analytical work. This family of vortices, though laminar in nature, is anticipated to provide valuable insight into the vortical evolution of large-scale rotor and propeller wakes.

  17. Eddy currents in a nonperiodic vacuum vessel induced by axisymmetric plasma motion

    International Nuclear Information System (INIS)

    DeLucia, J.

    1985-12-01

    A method is described for calculating the two-dimensional trajectory of a vertically or horizontally unstable axisymmetric tokamak plasma in the presence of a resistive vacuum vessel. The vessel is not assumed to have toroidal symmetry. The plasma is represented by a current-filament loop that is free to move vertically and to change its major radius. Its position is evolved in time self-consistently with the vacuum vessel eddy currents. The plasma current, internal inductance, and poloidal beta can be specified functions of time so that eddy currents resulting from a disruption can be modeled. The vacuum vessel is represented by a set of current-filaments whose positions and orientations are chosen to model the dominant eddy current paths. Although the specific application is to TFTR, the present model is of general applicability. 7 refs., 4 figs., 2 tabs

  18. Thermal optical effect in axisymmetric structural laser resonator

    Science.gov (United States)

    Xu, Yonggen; Li, Yude

    2012-02-01

    In order to study the thermal optical effect (TOE) resulting from the axisymmetrical sources of thermal energy at the output mirror of CO 2 laser, the Heat Conduction Poisson Equation (HCPE) has been solved in the output mirror. Then the temperature distribution is given. The temperature variations will cause the surface distortion and the phase shift at the output mirror. Therefore, the output laser beam will be subject to thermal optical distortion and phase change. The numerical examples are to confirm our calculated results.

  19. Axisymmetric tandem mirror stabilized by a magnetic limiter

    International Nuclear Information System (INIS)

    Kesner, J.; Post, R.S.; Lane, B.

    1985-06-01

    In order to stabilize MHD-like, fast growing m = 1 fluctuations in the central cell of a tandem mirror we propose the introduction of a magnetic limiter. The magnetic limiter would create a ring null in the magnetic field. Electrons which enter the null can stream azimuthally and thereby ''short-circuit'' m = 1 fluctuations. Some pressure could be maintained on the separatrix flux surface by locating the null on a local magnetic maxima or by axial plugging. This scheme introduces the possibility of a fully axisymmetric tandem mirror

  20. A high-precision algorithm for axisymmetric flow

    Directory of Open Access Journals (Sweden)

    A. Gokhman

    1995-01-01

    Full Text Available We present a new algorithm for highly accurate computation of axisymmetric potential flow. The principal feature of the algorithm is the use of orthogonal curvilinear coordinates. These coordinates are used to write down the equations and to specify quadrilateral elements following the boundary. In particular, boundary conditions for the Stokes' stream-function are satisfied exactly. The velocity field is determined by differentiating the stream-function. We avoid the use of quadratures in the evaluation of Galerkin integrals, and instead use splining of the boundaries of elements to take the double integrals of the shape functions in closed form. This is very accurate and not time consuming.

  1. Accuracy Improvement in Magnetic Field Modeling for an Axisymmetric Electromagnet

    Science.gov (United States)

    Ilin, Andrew V.; Chang-Diaz, Franklin R.; Gurieva, Yana L.; Il,in, Valery P.

    2000-01-01

    This paper examines the accuracy and calculation speed for the magnetic field computation in an axisymmetric electromagnet. Different numerical techniques, based on an adaptive nonuniform grid, high order finite difference approximations, and semi-analitical calculation of boundary conditions are considered. These techniques are being applied to the modeling of the Variable Specific Impulse Magnetoplasma Rocket. For high-accuracy calculations, a fourth-order scheme offers dramatic advantages over a second order scheme. For complex physical configurations of interest in plasma propulsion, a second-order scheme with nonuniform mesh gives the best results. Also, the relative advantages of various methods are described when the speed of computation is an important consideration.

  2. Modelling Acoustic Wave Propagation in Axisymmetric Varying-Radius Waveguides

    DEFF Research Database (Denmark)

    Bæk, David; Willatzen, Morten

    2008-01-01

    A computationally fast and accurate model (a set of coupled ordinary differential equations) for fluid sound-wave propagation in infinite axisymmetric waveguides of varying radius is proposed. The model accounts for fluid heat conduction and fluid irrotational viscosity. The model problem is solved...... by expanding solutions in terms of cross-sectional eigenfunctions following Stevenson’s method. A transfer matrix can be easily constructed from simple model responses of a given waveguide and later used in computing the response to any complex wave input. Energy losses due to heat conduction and viscous...

  3. Fusion-product transport in axisymmetric tokamaks: losses and thermalization

    Energy Technology Data Exchange (ETDEWEB)

    Hively, L.M.

    1980-01-01

    High-energy fusion-product losses from an axisymmetric tokamak plasma are studied. Prompt-escape loss fluxes (i.e. prior to slowing down) are calculated including the non-separable dependence of flux as a function of poloidal angle and local angle-of-incidence at the first wall. Fusion-product (fp) thermalization and heating are calculated assuming classical slowing down. The present analytical model describes fast ion orbits and their distribution function in realistic, high-..beta.., non-circular tokamak equilibria. First-orbit losses, trapping effects, and slowing-down drifts are also treated.

  4. Platonic polyhedra tune the 3-sphere: harmonic analysis on simplices

    International Nuclear Information System (INIS)

    Kramer, Peter

    2009-01-01

    A spherical topological manifold of dimension n- 1 forms a prototile on its cover, the (n- 1)-sphere. The tiling is generated by the fixpoint-free action of the group of deck transformations. By a general theorem, this group is isomorphic to the first homotopy group. A basis for the harmonic analysis on the (n- 1)-sphere is given by the spherical harmonics that transform according to irreducible representations of the orthogonal group. Multiplicity and selection rules appear in the form of reduction of group representations. The deck transformations form a subgroup and so the representations of the orthogonal group can be reduced to those of this subgroup. Upon reducing to the identity representation of the subgroup, the reduced subset of spherical harmonics becomes periodic on the tiling and tunes the harmonic analysis on the (n-1)-sphere to the manifold. A particular class of spherical 3-manifolds arises from the Platonic polyhedra. The harmonic analysis on the Poincare dodecahedral 3-manifold was analyzed along these lines. For comparison we construct here the harmonic analysis on simplicial spherical manifolds of dimension n=1, 2, 3. Harmonic analysis can be applied to the cosmic microwave background observed in astrophysics. Selection rules found in this analysis can detect the multiple connectivity of spherical 3-manifolds on the space part of cosmic space-time.

  5. MMS Observations of Harmonic Electromagnetic Cyclotron Waves

    Science.gov (United States)

    Usanova, M.; Ahmadi, N.; Ergun, R.; Trattner, K. J.; Fuselier, S. A.; Torbert, R. B.; Mauk, B.; Le Contel, O.; Giles, B. L.; Russell, C. T.; Burch, J.; Strangeway, R. J.

    2017-12-01

    Harmonically related electromagnetic ion cyclotron waves with the fundamental frequency near the O+ cyclotron frequency were observed by the four MMS spacecraft on May 20, 2016. The wave activity was detected by the spacecraft on their inbound passage through the Earth's morning magnetosphere during generally quiet geomagnetic conditions but enhanced solar wind dynamic pressure. It was also associated with an enhancement of energetic H+ and O+ ions. The waves are seen in both magnetic and electric fields, formed by over ten higher order harmonics, most pronounced in the electric field. The wave activity lasted for about an hour with some wave packets giving rise to short-lived structures extending from Hz to kHz range. These observations are particularly interesting since they suggest cross-frequency coupling between the lower and higher frequency modes. Further work will focus on examining the nature and role of these waves in the energetic particle dynamics from a theoretical perspective.

  6. Automated detection and characterization of harmonic tremor in continuous seismic data

    Science.gov (United States)

    Roman, Diana C.

    2017-06-01

    Harmonic tremor is a common feature of volcanic, hydrothermal, and ice sheet seismicity and is thus an important proxy for monitoring changes in these systems. However, no automated methods for detecting harmonic tremor currently exist. Because harmonic tremor shares characteristics with speech and music, digital signal processing techniques for analyzing these signals can be adapted. I develop a novel pitch-detection-based algorithm to automatically identify occurrences of harmonic tremor and characterize their frequency content. The algorithm is applied to seismic data from Popocatepetl Volcano, Mexico, and benchmarked against a monthlong manually detected catalog of harmonic tremor events. During a period of heightened eruptive activity from December 2014 to May 2015, the algorithm detects 1465 min of harmonic tremor, which generally precede periods of heightened explosive activity. These results demonstrate the algorithm's ability to accurately characterize harmonic tremor while highlighting the need for additional work to understand its causes and implications at restless volcanoes.

  7. Elastic layer under axisymmetric indentation and surface energy effects

    Science.gov (United States)

    Intarit, Pong-in; Senjuntichai, Teerapong; Rungamornrat, Jaroon

    2018-04-01

    In this paper, a continuum-based approach is adopted to investigate the contact problem of an elastic layer with finite thickness and rigid base subjected to axisymmetric indentation with the consideration of surface energy effects. A complete Gurtin-Murdoch surface elasticity is employed to consider the influence of surface stresses. The indentation problem of a rigid frictionless punch with arbitrary axisymmetric profiles is formulated by employing the displacement Green's functions, derived with the aid of Hankel integral transform technique. The problem is solved by assuming the contact pressure distribution in terms of a linear combination of admissible functions and undetermined coefficients. Those coefficients are then obtained by employing a collocation technique and an efficient numerical quadrature scheme. The accuracy of proposed solution technique is verified by comparing with existing solutions for rigid indentation on an elastic half-space. Selected numerical results for the indenters with flat-ended cylindrical and paraboloidal punch profiles are presented to portray the influence of surface energy effects on elastic fields of the finite layer. It is found that the presence of surface stresses renders the layer stiffer, and the size-dependent behavior of elastic fields is observed in the present solutions. In addition, the surface energy effects become more pronounced with smaller contact area; thus, the influence of surface energy cannot be ignored in the analysis of indentation problem especially when the indenter size is very small such as in the case of nanoindentation.

  8. Aerodynamics characteristic of axisymmetric surface protuberance in supersonic regime

    KAUST Repository

    Qamar, Adnan

    2012-01-01

    The present work deals with the problem of an axi-symmetric surface protuberance mounted on a spherical nosed body of revolution. The numerical computations are carried out for laminar supersonic viscous flow for trapezoidal shape axi-symmetric protuberances. A free stream Mach number ranging from 3 to 8 in steps of 1 at a fixed free stream Reynolds number of 1.8x10(4) has been used in the present study. The steady solutions are obtained using a time marching approach. A newly developed Particle Velocity Upwinding (PVU) scheme has been used for the computation. The spatial flow pattern exhibits a strong bow shock in front of the hemispherical nose, which engulfs the entire base body. Near the protuberance, the fluid particle decelerates due to the adverse pressure created by the protuberance and thus the flow separates in front of the protuberance. This point of separation is found to be a function of Mach number and the protuberance shape. A low-pressure expansion region dominates the base region of the obstacle. The reattachment point for the base separation is also a function of Mach number. As the Mach number is increased the reattachment point shifts toward the protuberances base. A weak recompression shock is also seen in the base, which affects the separated zone behind the protuberance. The important design parameters such as skin friction, heat transfer, drag, and surface pressure coefficients are reported extensively.

  9. Uncertainty evaluation method for axi-symmetric measurement machines

    Directory of Open Access Journals (Sweden)

    Muelaner Jody Emlyn

    2016-01-01

    Full Text Available This paper describes a method of uncertainty evaluation for axi-symmetric measurement machines. Specialized measuring machines for the inspection of axisymmetric components enable the measurement of properties such as roundness (radial runout, axial runout and coning. These machines typically consist of a rotary table and a number of contact measurement probes located on slideways. Sources of uncertainty include the probe calibration process, probe repeatability, probe alignment, geometric errors in the rotary table, the dimensional stability of the structure holding the probes and form errors in the reference hemisphere which is used to calibrate the system. The generic method is described and an evaluation of an industrial machine is described as a worked example. Expanded uncertainties, at 95% confidence, were then calculated for the measurement of; radial runout (1.2 μm with a plunger probe or 1.7 μm with a lever probe; axial runout (1.2 μm with a plunger probe or 1.5 μm with a lever probe; and coning/swash (0.44 arcseconds with a plunger probe or 0.60 arcseconds with a lever probe.

  10. Axisymmetric magnetic mirrors for plasma confinement. Recent development and perspectives

    International Nuclear Information System (INIS)

    Kruglyakov, E.P.; Dimov, G.I.; Ivanov, A.A.; Koidan, V.S.

    2003-01-01

    Mirrors are the only one class of fusion systems which completely differs topologically from the systems with closed magnetic configurations. At present, three modern types of different mirror machines for plasma confinement and heating exist in Novosibirsk (Gas Dynamic Trap,- GDT, Multi-mirror,- GOL-3, and Tandem Mirror,- AMBAL-M). All these systems are attractive from the engineering point of view because of very simple axisymmetric geometry of magnetic configurations. In the present paper, the status of different confinement systems is presented. The experiments most crucial for the mirror concept are described such as a demonstration of different principles of suppression of electron heat conductivity (GDT, GOL-3), finding of MHD stable regimes of plasma confinement in axisymmetric geometry of magnetic field (GDT, AMBAL-M), an effective heating of a dense plasma by relativistic electron beam (GOL-3), observation of radial diffusion of quiescent plasma with practically classical diffusion coefficient (AMBAL-M), etc. It should be mentioned that on the basis of the GDT it is possible to make a very important intermediate step. Using 'warm' plasma and oblique injection of fast atoms of D and T one can create a powerful 14 MeV neutron source with a moderate irradiation area (about 1 square meter) and, accordingly, with low tritium consumption. The main plasma parameters achieved are presented and the future perspectives of different mirror machines are outlined. (author)

  11. Hot Wire Measurements in a Axisymmetric Shear Layer with Swirl

    Science.gov (United States)

    Ewing, D.; Pollard, A.

    1996-11-01

    It is well known that the introduction of swirl in an axisymmetric jet can influence the development of and mixing in the near field of the jet. Recent efforts to compute this flow have demonstrated that the development of the near field is dependent on parameters at the jet outlet other than distribution of the swirl component, such as the distribution the mean radial velocity (Xai, J.L., Smith, B.L., Benim, A. C., Schmidli, J., and Yadigaroglu, G. (1996) Influence of Boundary Conditions on Swirling Flow in Combustors, Proc. ASME Fluid. Eng. Div. Summer Meeting), San Diego, Ca., July 7-11.. An experimental rig has been designed to produce co-axial round and annular swirling jets with uniform outlet conditions in each flow. The flow rate and swirl component from each of these jets can be controlled independently and the rig can be configured to produce both co- and counter-swirling flows. Thus, the rig can be used to carry out an extensive investigation of the effect of swirl on the development of axisymmetric flows. The key design features of the rig and the first sets of hot-wire measurements in the shear layer will be reported here.

  12. Power quality issues current harmonics

    CERN Document Server

    Mikkili, Suresh

    2015-01-01

    Power Quality Issues: Current Harmonics provides solutions for the mitigation of power quality problems related to harmonics. Focusing on active power filters (APFs) due to their excellent harmonic and reactive power compensation in two-wire (single phase), three-wire (three-phase without neutral), and four-wire (three-phase with neutral) AC power networks with nonlinear loads, the text:Introduces the APF technology, describing various APF configurations and offering guidelines for the selection of APFs for specific application considerationsCompares shunt active filter (SHAF) control strategi

  13. Numerical computation of gravitational field of general extended body and its application to rotation curve study of galaxies

    Science.gov (United States)

    Fukushima, Toshio

    2017-06-01

    Reviewed are recently developed methods of the numerical integration of the gravitational field of general two- or three-dimensional bodies with arbitrary shape and mass density distribution: (i) an axisymmetric infinitely-thin disc (Fukushima 2016a, MNRAS, 456, 3702), (ii) a general infinitely-thin plate (Fukushima 2016b, MNRAS, 459, 3825), (iii) a plane-symmetric and axisymmetric ring-like object (Fukushima 2016c, AJ, 152, 35), (iv) an axisymmetric thick disc (Fukushima 2016d, MNRAS, 462, 2138), and (v) a general three-dimensional body (Fukushima 2016e, MNRAS, 463, 1500). The key techniques employed are (a) the split quadrature method using the double exponential rule (Takahashi and Mori, 1973, Numer. Math., 21, 206), (b) the precise and fast computation of complete elliptic integrals (Fukushima 2015, J. Comp. Appl. Math., 282, 71), (c) Ridder's algorithm of numerical differentiaion (Ridder 1982, Adv. Eng. Softw., 4, 75), (d) the recursive computation of the zonal toroidal harmonics, and (e) the integration variable transformation to the local spherical polar coordinates. These devices succesfully regularize the Newton kernel in the integrands so as to provide accurate integral values. For example, the general 3D potential is regularly integrated as Φ (\\vec{x}) = - G \\int_0^∞ ( \\int_{-1}^1 ( \\int_0^{2π} ρ (\\vec{x}+\\vec{q}) dψ ) dγ ) q dq, where \\vec{q} = q (√{1-γ^2} cos ψ, √{1-γ^2} sin ψ, γ), is the relative position vector referred to \\vec{x}, the position vector at which the potential is evaluated. As a result, the new methods can compute the potential and acceleration vector very accurately. In fact, the axisymmetric integration reproduces the Miyamoto-Nagai potential with 14 correct digits. The developed methods are applied to the gravitational field study of galaxies and protoplanetary discs. Among them, the investigation on the rotation curve of M33 supports a disc-like structure of the dark matter with a double-power-law surface

  14. Topological Fluid Mechanics with Applications to Free Surfaces and Axisymmetric Flows

    DEFF Research Database (Denmark)

    Brøns, Morten

    1996-01-01

    Topological fluid mechanics is the study of qualitative features of fluid patterns. We discuss applications to the flow beneath a stagnant surface film, and to patterns in axisymmetric flow.......Topological fluid mechanics is the study of qualitative features of fluid patterns. We discuss applications to the flow beneath a stagnant surface film, and to patterns in axisymmetric flow....

  15. On the heat transfer of enhancement condensation of vapor over the surface of an axisymmetric cylinder

    International Nuclear Information System (INIS)

    Xiou, W.J.; Ru, Y.A.; Mo, C.S.; Yi, H.S.

    1987-01-01

    The heat transfer of enhancement condensation of the vapor over the surface of an axisymmetric cylinder has been first studied theoretically in this paper. The problems of an axisymmetric cylinder are transformed into plate problems. The effects of some parameters on heat transfer coefficients of the vapor condensation over the surface of an axisymmetric cylinder have been discussed here. The heat transfer of the vapor condensation over an elliptical cylinder and an axisymmetric wing-shape cylinder has compared with the heat transfer of the vapor condensation over a tube surface. The conclusion is that the heat transfer of the vapor condensation over an elliptical cylinder and an axisymmetric wing-shape cylinder is greater than that over tubes

  16. Tissue Harmonic Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Joachim

    The main purpose of this PhD project is to develop an ultrasonic method for tissue harmonic synthetic aperture imaging. The motivation is to advance the field of synthetic aperture imaging in ultrasound, which has shown great potentials in the clinic. Suggestions for synthetic aperture tissue...... system complexity compared to conventional synthetic aperture techniques. In this project, SASB is sought combined with a pulse inversion technique for 2nd harmonic tissue harmonic imaging. The advantages in tissue harmonic imaging (THI) are expected to further improve the image quality of SASB....... The first part of the scientific contribution investigates an implementation of pulse inversion for THI on the experimental ultrasound system SARUS. The technique is initially implemented for linear array transducers and then expanded for convex array transducers. The technique is evaluated based on spatial...

  17. Classical and multilinear harmonic analysis

    CERN Document Server

    Muscalu, Camil

    2013-01-01

    This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained and useful to graduates and researchers in pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. The first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderón-Zygmund and Littlewood-Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman-Meyer theory; Carleson's resolution of the Lusin conjecture; Calderón's commutators and the Cauchy integral on Lipschitz curves. The material in this vo...

  18. Introduction to abstract harmonic analysis

    CERN Document Server

    Loomis, Lynn H

    2011-01-01

    Written by a prominent figure in the field of harmonic analysis, this classic monograph is geared toward advanced undergraduates and graduate students and focuses on methods related to Gelfand's theory of Banach algebra. 1953 edition.

  19. Means of Harmonization in Religious Discourse

    Directory of Open Access Journals (Sweden)

    Irina Ščukina

    2012-12-01

    Full Text Available Means of harmonization of religious discourse are considered by studying communicational behaviour (verbal and nonverbal between the religion institution and believers. The following factors defining specificity of realization of harmonization in Orthodox and other religious texts are taken into account: the communication channel between the author and the reader, a defining speech genre, the command of language (communication code, and extra-linguistic factors. It is shown that sharing the general social, historical and national experience, as well as a lexical overlapping of actors on both sides of the communication channel are the deciding elements of the harmonization process. The analysis also shows that usage of rational argumentation is more likely to lead to harmonisation in comparison to other rhetoric tools (i. e. affective ones or story-telling. Rational and unemotional sermonic discourse is perceived as a sign of respect (namely, for the listener's intelligence. Another successful and much-applied way seems to be evoking a feeling of equality, unity and/or identity between clerics and their flocks.

  20. CONTROVERSIAL ASPECTS REGARDING THE ACCOUNTING HARMONIZATION PROCESS IN ROMANIA. HARMONIZATION, CONVERGENCE OR CONFORMITY?

    Directory of Open Access Journals (Sweden)

    Andreica Horia Tudor

    2010-12-01

    Full Text Available The new configuration of the international economic relations which are in a general globalization process determined by the international capital circulation requires the compatibility and comparison of the information provided by the financial statements. The investors and the entrepreneurs wish to understand and to be able to compare the entities financial situation and performances, no matter the juridical and accounting system which are subdued to by their localization. The differences between the important variety of the accounting systems were identified long time ago and since then there have been efforts made in order to conceive a economic financial reporting structure, accessible to the entire accounting world. Therefore, there is the need of normalization, harmonization, and convergence in accounting. Our intention in the current paper is to bring again into discussion the problem of accounting harmonization, emphasizing a few aspects which in the Romanian context we consider to be controversial and which require some clarifications. This paper represents a brief review of the evolution of the accounting harmonization in Romania, analyzing the difficult moments and mainly it is focused on the conceptual understanding of the concepts of harmonization, convergence, and conformity in the Romanian accounting. Our approach is not an exhaustive one, but it has as objective to reflect on the importance of the stages of accounting modernization in Romania. In the last part of this paper, the conclusions that we reached after study, are presented synthetically, as well as the continuation of the approach initiated in other papers.

  1. Echo-Enabled Harmonic Generation

    Energy Technology Data Exchange (ETDEWEB)

    Stupakov, Gennady; /SLAC

    2012-06-28

    A recently proposed concept of the Echo-Enabled Harmonic Generation (EEHG) FEL uses two laser modulators in combination with two dispersion sections to generate a high-harmonic density modulation in a relativistic beam. This seeding technique holds promise of a one-stage soft x-ray FEL that radiates not only transversely but also longitudinally coherent pulses. Currently, an experimental verification of the concept is being conducted at the SLAC National Accelerator Laboratory aimed at the demonstration of the EEHG.

  2. Axisymmetric Tornado Simulations with a Semi-Slip Boundary

    Directory of Open Access Journals (Sweden)

    Brian H. Fiedler

    2017-12-01

    Full Text Available The structure of natural tornadoes and simulated analogs are sensitive to the lower boundary condition for friction. Three-dimensional numerical simulations of storms require a choice for turbulence parameterizations and resolution of wind near the lower boundary. This article explores some of the consequences of choices of a surface drag coefficient on the structure of a mature simulated tornado, using a conventional axisymmetric model. The surface drag parameterization is explored over the range of the semi-slip condition, including the extremes of no-slip and free-slip. A moderate semi-slip condition allows for an extreme pressure deficit, but without the unrealistic vortex breakdown of the no-slip condition.

  3. Cellular blebs: pressure-driven, axisymmetric, membrane protrusions

    KAUST Repository

    Woolley, Thomas E.

    2013-07-16

    Blebs are cellular protrusions that are used by cells for multiple purposes including locomotion. A mechanical model for the problem of pressure-driven blebs based on force and moment balances of an axisymmetric shell model is proposed. The formation of a bleb is initiated by weakening the shell over a small region, and the deformation of the cellular membrane from the cortex is obtained during inflation. However, simply weakening the shell leads to an area increase of more than 4 %, which is physically unrealistic. Thus, the model is extended to include a reconfiguration process that allows large blebs to form with small increases in area. It is observed that both geometric and biomechanical constraints are important in this process. In particular, it is shown that although blebs are driven by a pressure difference across the cellular membrane, it is not the limiting factor in determining bleb size. © 2013 Springer-Verlag Berlin Heidelberg.

  4. Numerical calculation of axisymmetric non-neutral plasma equilibria

    Science.gov (United States)

    Spencer, Ross L.; Rasband, S. N.; Vanfleet, Richard R.

    1993-12-01

    Efficient techniques for computing axisymmetric non-neutral plasma equilibria are described. These equilibria may be obtained either by requiring global thermal equilibrium, by specifying the midplane radial density profile, or by specifying the radial profile of ∫n dz. Both splines and finite-differences are used, and the accuracy of the two is compared by using a new characterization of the thermal equilibrium density profile which gives a simple formula for estimating the radial and axial gradient scale lengths of thermal equilibria. It is found that for global thermal equilibrium 1% accuracy is achieved with splines if the distance between neighboring splines is about two Debye lengths while finite differences require a grid spacing of about one-half Debye length to achieve the same accuracy.

  5. Energetic Particle Transport in Compact Quasi-axisymmetric Stellarators

    International Nuclear Information System (INIS)

    Redi, M.H.; Mynick, H.E.; Suewattana, M.; White, R.B.; Zarnstorff, M.C.; Isaev, M.Yu.; Mikhailov, M.I.; Subbotin, A.A.

    1999-01-01

    Hamiltonian coordinate, guiding-center code calculations of the confinement of suprathermal ions in quasi-axisymmetric stellarator (QAS) designs have been carried out to evaluate the attractiveness of compact configurations which are optimized for ballooning stability. A new stellarator particle-following code is used to predict ion loss rates and particle confinement for thermal and neutral beam ions in a small experiment with R = 145 cm, B = 1-2 T and for alpha particles in a reactor-size device. In contrast to tokamaks, it is found that high edge poloidal flux has limited value in improving ion confinement in QAS, since collisional pitch-angle scattering drives ions into ripple wells and stochastic field regions, where they are quickly lost. The necessity for reduced stellarator ripple fields is emphasized. The high neutral beam ion loss predicted for these configurations suggests that more interesting physics could be explored with an experiment of less constrained size and magnetic field geometry

  6. Flow in axisymmetric expansion in a catalytic converter

    DEFF Research Database (Denmark)

    Gotfredsen, Erik; Meyer, Knud Erik

    The flow in an axisymmetric expansion (circular diffusor) is used in many different engineering applications, such as heat exchangers, catalytic converters and filters. These applications require a relatively uniform flow at the inlet. To minimise the pressure loss, an ideal solution would...... for a specific local flow rate and a non-uniform inflow to the catalyst will severely reduce the efficiency of the process. Since each ship will have a unique design the flow system, it is desirable to be able to design the system using Computational Fluid Dynamics (CFD). However, CFD fails to predict flow......-scaled model of the catalytic converter is constructed, see figure 1. The experiments are performed at laboratory conditions, with lower pressure, temperature and velocity than the full-scale catalytic converter. The Reynolds number based on the velocity in the inlet pipe and the diameter of the converter...

  7. Pressure drop coefficient of laminar Newtonian flow in axisymmetric diffusers

    International Nuclear Information System (INIS)

    Rosa, S.; Pinho, F.T.

    2006-01-01

    The laminar flow of Newtonian fluids in axisymmetric diffusers has been numerically investigated to evaluate the pressure-loss coefficient as a function of Reynolds number, diffusion angle and expansion ratio. The numerical simulations were carried out with a finite-volume based code using non-orthogonal collocated grids and second order accurate differencing schemes to discretize all terms of the transport equations. The calculations were carried out for Reynolds numbers between 2 and 200, diffusion angles from 0 deg. to 90 deg. and expansion ratios of 1.5 and 2 and the data are presented in tabular form and as correlations. A simplified 1D theoretical analysis helped explain the various contributions to the loss coefficient and its difference relative to the reversible pressure variation due to differences between the actual and fully developed friction losses, distortions of the velocity profiles and pressure non-uniformity upstream and downstream of the expansion section

  8. Relationships between solid spherical and toroidal harmonics

    OpenAIRE

    Majic, Matt; Ru, Eric C. Le

    2018-01-01

    We derive new relationships expressing solid spherical harmonics as series of toroidal harmonics and vice versa. The expansions include regular and irregular spherical harmonics, ring and axial toroidal harmonics of even and odd parity about the plane of the torus. The expansion coefficients are given in terms of a recurrence relation. As an example application we apply one of the expansions to express the potential of a charged conducting torus on a basis of spherical harmonics.

  9. Some Hermite-Hadamard-Fejer type inequalities for Harmonically convex functions via Fractional Integral

    Directory of Open Access Journals (Sweden)

    Sercan TURHAN

    2016-04-01

    Full Text Available In this paper, we gave the new general identity for differentiable functions. As a result of this identity some new and general inequalities for differentiable harmonically-convex functions are obtained.

  10. Thin circular cylinder under axisymmetrical thermal and mechanical loading

    International Nuclear Information System (INIS)

    Arnaudeau, F.; Zarka, J.; Gerij, J.

    1977-01-01

    To assess structural integrity of components subjected to cyclic thermal loadings one must look at thermal ratchetting as a possible failure mode. Considering a thin circular cylinder subjected to constant internal pressure and cyclically varying thermal gradient through the thickness Bree, J. Strain Analysis 2 (1967) No.3, obtained a diagram that serves as a foundation for many design rules (e.g.: ASME code). The upper part of the french LMFBR main vessel is subjected to an axisymmetrical axial thermal loading and an axial load (own weight). Operation of the reactor leads to cyclic variations of the axial thermal loading. The question that arises is whether or not the Bree diagram is realistic for such loading conditions. A special purpose computer code (Ratch) was developed to analyse a thin circular cylinder subjected to axisymmetrical mechanical and thermal loadings. The Mendelson's approach of this problem is followed. Classical Kirchoff-Love hypothesis of thin shells is used and a state of plane stress is assumed. Space integrations are performed by Gaussian quadrature in the axial direction and by Simpson's one third rule throughout the thickness. Thermoelastic-plastic constitutive equations are solved with an implicit scheme (Nguyen). Thermovisco-plastic constitutive equations are solved with an explicit time integration scheme (Treanor's algorithm especially fitted). A Bree type diagram is obtained for an axial step of temperature which varies cyclically and a sustained constant axial load. The material behavior is assumed perfectly plastic and creep effect is not considered. Results show that the domain where no ratchetting occurs is reduced when compared with the domain predicted by the Bree diagram

  11. Harmonic analysis on spaces of homogeneous type

    CERN Document Server

    Deng, Donggao

    2009-01-01

    The dramatic changes that came about in analysis during the twentieth century are truly amazing. In the thirties, complex methods and Fourier series played a seminal role. After many improvements, mostly achieved by the Calderón-Zygmund school, the action today is taking place in spaces of homogeneous type. No group structure is available and the Fourier transform is missing, but a version of harmonic analysis is still available. Indeed the geometry is conducting the analysis. The authors succeed in generalizing the construction of wavelet bases to spaces of homogeneous type. However wavelet bases are replaced by frames, which in many applications serve the same purpose.

  12. Stress analysis in a non axisymmetric loaded reactor pressure vessel; Verificacao de tensoes em um vaso de pressao nuclear com carregamentos nao-axissimetricos

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, Levi Barcelos; Assis, Gracia Menezes V. de [Coordenadoria para Projetos Especiais (COPESP), Sao Paulo, SP (Brazil); Miranda, Carlos Alexandre J.; Cruz, Julio Ricardo B.; Mattar Neto, Miguel [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    1995-12-31

    In this work we intend to present the stress analysis of a PWR vessel under postulated concentrated loads. The vessel was modeled with Axisymmetric solid 4 nodes harmonic finite elements with the use of the ANSYS program, version 5.0. The bolts connecting the vessel flanges were modeled with beam elements. Some considerations were made to model the contact between the flanges. The perforated part of the vessel tori spherical head was modeled (with reduced properties due to its holes) to introduce its stiffness and loads but was not within the scope of this work. The loading consists of some usual ones, as pressure, dead weight, bolts preload, seismic load and some postulated ones as concentrated loads, over the vessel, modeled by Fourier Series. The results in the axisymmetric model are taken in terms of linearized stresses, obtained in some circumferential positions and for each position, in some sections along the vessel. Using the ASME Code (Section III, Division 1, Sub-section NB) the stresses are within the allowable limits. In order to draw some conclusions about stress linearization, the membrane plus bending stresses (Pl + Pb) are obtained and compared in some sections, using three different methods. (author) 4 refs., 15 figs., 7 tabs.

  13. Axisymmetric flow and heat transfer to modified second grade fluid over a radially stretching sheet

    Science.gov (United States)

    Khan, Masood; Rahman, Masood ur; Manzur, Mehwish

    In the present work, an analysis is made to the two-dimensional axisymmetric flow and heat transfer of a modified second grade fluid over an isothermal non-linear radially stretching sheet. The momentum and energy equations are modelled and the boundary layer equations are derived. The governing equations for velocity and temperature are turned down into a system of ordinary differential equations by invoking appropriate transformations which are then solved numerically via fourth and fifth order Runge-Kutta Fehlberg method. Moreover, the influence of the pertinent parameters namely the generalized second grade parameter, stretching parameter, the power-law index and the generalized Prandtl number is graphically portrayed. It is inferred that the generalized second grade parameter uplifted the momentum boundary layer while lessened the thermal boundary layer. Furthermore, the impact of stretching parameter is more pronounced for the second grade fluid (m = 0) in contrast with the power-law fluid (k = 0). For some special cases, comparisons are made with previously reported results and an excellent agreement is established.

  14. TAX HARMONIZATION VERSUS FISCAL COMPETITION

    Directory of Open Access Journals (Sweden)

    Florin Alexandru MACSIM

    2016-12-01

    Full Text Available Recent years have brought into discussion once again subjects like tax harmonization and fiscal competition. Every time the European Union tends to take a step forward critics enter the scene and give contrary arguments to European integration. Through this article we have offered our readers a compelling view over the “battle” between tax harmonization and fiscal competition. While tax harmonization has key advantages as less costs regarding public revenues, leads to higher degree of integration and allows the usage of fiscal transfers between regions, fiscal competition is no less and presents key advantages as high reductions in tax rates and opens a large path for new investments, especially FDI. Choosing tax harmonization or fiscal competition depends on a multitude of variables, of circumstances, the decision of choosing one path or the other being ultimately influenced by the view of central and local authorities. Our analysis indicates that if we refer to a group of countries that are a part of a monetary union or that form a federation, tax harmonization seems to be the best path to choose. Moving the analysis to a group of regions that aren’t taking any kind of correlated actions or that have not signed any major treaties regarding monetary or fiscal policies, the optimal solution is fiscal competition.

  15. Axisymmetric thermoviscoelastoplastic state of branched laminar shells, taking account of transverse-shear and torsional deformation

    International Nuclear Information System (INIS)

    Galishin, A.Z.

    1995-01-01

    The nonaxisymmetric thermoelastic stress-strain state (SSS) of branched laminar orthotropic shells was considered; the axisymmetric thermoviscoelastic SSS of branched laminar orthotropic shells was considered; and the axisymmetric thermoviscoelastoplastic SSS of branched laminar isotropic shells was considered, taking into account of the transverse-shear deformation. In the present work, in contrast, the axisymmetric thermoviscoelastoplastic SSS of branched laminar isotropic shells is considered, taking account of transverse-shear and torsional deformation. Layers that are made from orthotropic materials and deform in the elastic region may be present

  16. Determination of two dimensional axisymmetric finite element model for reactor coolant piping nozzles

    International Nuclear Information System (INIS)

    Choi, S. N.; Kim, H. N.; Jang, K. S.; Kim, H. J.

    2000-01-01

    The purpose of this paper is to determine a two dimensional axisymmetric model through a comparative study between a three dimensional and an axisymmetric finite element analysis of the reactor coolant piping nozzle subject to internal pressure. The finite element analysis results show that the stress adopting the axisymmetric model with the radius of equivalent spherical vessel are well agree with that adopting the three dimensional model. The radii of equivalent spherical vessel are 3.5 times and 7.3 times of the radius of the reactor coolant piping for the safety injection nozzle and for the residual heat removal nozzle, respectively

  17. Static third-harmonic lines in widely variable fiber continuum generation

    Science.gov (United States)

    Tu, Haohua; Zhao, Youbo; Liu, Yuan; Boppart, Stephen A.

    2014-01-01

    An intriguing phenomenon of third-harmonic generation under fiber continuum generation is the emission of an anharmonic signal. One popular interpretation of this effect has developed into a general theory of fiber third-harmonic generation. Here we produce "static" third-harmonic lines dictated fully by fiber properties independent of pump parameters, in contrast to the signals of all known phase-matched nonlinear optical processes that vary dynamically with these parameters. We argue that the anharmonic signal is an illusion of the continuum generation, that it is in fact harmonic, and that this theory should be reevaluated.

  18. Harmonic superspaces of extended supersymmetry

    International Nuclear Information System (INIS)

    Ivanov, E.; Kalitzin, S.; Nguyen Ai Viet; Ogievetsky, V.

    1984-01-01

    The main technical apparatus of the harmonic superspace approach to extended SUSY, the calculus of harmonic variables on homogeneous spaces of the SUSY automorphism groups, is presented in detail for N=2, 3, 4. The basic harmonics for the coset manifolds G/H with G=SU(2), H=U(1); G=SU(3), H=SU(2)xU(1) and H=U(1)xU(1); G=SU(4), H=SU(3)xU(1), H=SU(2)xSU(2)xU(1), H=SU(2)xU(1)xU(1) and H=U(1)xU(1)xU(1); G=USp(2), H=SU(2)xSU(2), H=SU(2)xU(1) and H=U(1)xU(1) are tabulated a number of useful relations among them

  19. HARMONIZED EUROPE OR EUROPEAN HARMONY?

    Directory of Open Access Journals (Sweden)

    Cosmin Marinescu

    2007-07-01

    Full Text Available Recent evolutions in Europe raise questions on the viability of the present economic and social model that defines the European construction project. In this paper, the author will try to explain the viability of institutional European model that sticks between free market mechanisms and protectionism. The main challenge for the EU is about the possibility to bring together the institutional convergence and the welfare for all Europeans. This is the result of the view, still dominant, of European politics elite, according to which institutional harmonization is the solution of a more dynamic and prosper Europe. But, economic realities convince us that, more and more, a harmonized, standardized Europe is not necessarily identical with a Europe of harmony and social cooperation. If „development through integration” seems to be harmonization through „institutional transplant”, how could then be the European model one sufficiently wide open to market, which creates the prosperity so long waited for by new member countries?

  20. Secondary magnetic field harmonics dependence on vacuum beam chamber geometry

    Directory of Open Access Journals (Sweden)

    S. Y. Shim

    2013-08-01

    Full Text Available The harmonic magnetic field properties due to eddy currents have been studied with respect to the geometry of the vacuum beam chamber. We derived a generalized formula enabling the precise prediction of any field harmonics generated by eddy currents in beam tubes with different cross-sectional geometries. Applying our model to study the properties of field harmonics in beam tubes with linear dipole magnetic field ramping clearly proved that the circular cross section tube generates only a dipole field from eddy currents. The elliptic tube showed noticeable magnitudes of sextupole and dipole fields. We demonstrate theoretically that it is feasible to suppress the generation of the sextupole field component by appropriately varying the tube wall thickness as a function of angle around the tube circumference. This result indicates that it is possible to design an elliptical-shaped beam tube that generates a dipole field component with zero magnitude of sextupole. In a rectangular-shaped beam tube, one of the selected harmonic fields can be prevented if an appropriate wall thickness ratio between the horizontal and vertical tube walls is properly chosen. Our generalized formalism can be used for optimization of arbitrarily complex-shaped beam tubes, with respect to suppression of detrimental field harmonics.

  1. Low-n shear Alfven spectra in axisymmetric toroidal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, C.Z.; Chance, M.S.

    1985-11-01

    In toroidal plasmas, the toroidal magnetic field is nonuniform over a magnetic surface and causes coupling of different poloidal harmonics. It is shown both analytically and numerically that the toroidicity not only breaks up the shear Alfven continuous spectrum, but also creates new, discrete, toroidicity-induced shear Alfven eigenmodes with frequencies inside the continuum gaps. Potential applications of the low-n toroidicity-induced shear Alfven eigenmodes on plasma heating and instabilities are addressed. 17 refs., 4 figs.

  2. Low-n shear Alfven spectra in axisymmetric toroidal plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Chance, M.S.

    1985-11-01

    In toroidal plasmas, the toroidal magnetic field is nonuniform over a magnetic surface and causes coupling of different poloidal harmonics. It is shown both analytically and numerically that the toroidicity not only breaks up the shear Alfven continuous spectrum, but also creates new, discrete, toroidicity-induced shear Alfven eigenmodes with frequencies inside the continuum gaps. Potential applications of the low-n toroidicity-induced shear Alfven eigenmodes on plasma heating and instabilities are addressed. 17 refs., 4 figs

  3. Three-dimensional magnetic field produced by an axisymmetric iron yoke

    International Nuclear Information System (INIS)

    Laslett, L.J.; Caspi, S.; Helm, M.; Brady, V.

    1991-06-01

    A computational procedure, in which separate analyses are performed for conductor and high permeability iron yoke, has been developed for calculating the three-dimensional magnetic field components. Whereas the field components of the isolated 3-D current array can be evaluated at all desired points through the use of a 3-D Biot-Savart law program, we have developed a method for calculating the supplemental field that will arise as a result of the presence of a surrounding high-permeability magnetic yoke with an axially-symmetric bore. We may speak of this supplemental field as an ''image field'' although we shall realize that is may be possible in general to attribute it only to a distinctly diffuse distribution of ''image current'' or magnetic moments. The boundary associated with the ''image field'' is such that at each point along the boundary of the high permeability iron the total scalar potential shall be constant, e.g. V i = -V d (where i=image and d=direct). When we describe both potentials as a series of ''harmonic components'' then the nature of the boundary condition is such that a de-coupling of one harmonic from another is preserved, and therefore it is also true that V i (n) = -V d (n) at the iron interface, where n is a harmonic number. When we solve the appropriate differential equations for these scalar potential functions throughout the iron-free region with the proper applied boundary condition for the scalar potential of each harmonic number, we achieve upon summation the appropriate field contribution of the surrounding high-permeability iron

  4. Harmonic functions with varying coefficients

    Directory of Open Access Journals (Sweden)

    Jacek Dziok

    2016-05-01

    Full Text Available Abstract Complex-valued harmonic functions that are univalent and sense preserving in the open unit disk can be written in the form f = h + g ‾ $f=h+\\overline{g}$ , where h and g are analytic. In this paper we investigate some classes of univalent harmonic functions with varying coefficients related to Janowski functions. By using the extreme points theory we obtain necessary and sufficient convolution conditions, coefficients estimates, distortion theorems, and integral mean inequalities for these classes of functions. The radii of starlikeness and convexity for these classes are also determined.

  5. Elements of abstract harmonic analysis

    CERN Document Server

    Bachman, George

    2013-01-01

    Elements of Abstract Harmonic Analysis provides an introduction to the fundamental concepts and basic theorems of abstract harmonic analysis. In order to give a reasonably complete and self-contained introduction to the subject, most of the proofs have been presented in great detail thereby making the development understandable to a very wide audience. Exercises have been supplied at the end of each chapter. Some of these are meant to extend the theory slightly while others should serve to test the reader's understanding of the material presented. The first chapter and part of the second give

  6. Euler potentials of current-free fields expressed in spherical harmonics

    Science.gov (United States)

    Stern, David P.

    1994-01-01

    Given a magnetic field B = -del(vector differential operator)(sub gamma) with gamma expanded in spherical harmonics, it is shown that analytic Euler potentials may be derived for B if gamma is asymmetrical but contains only the contribution of a single index n. This work generalizes a result for sectorial harmonics with n = m, derived by Willis and Gardiner (1988).

  7. Optimal Selective Harmonic Control for Power Harmonics Mitigation

    DEFF Research Database (Denmark)

    Zhou, Keliang; Yang, Yongheng; Blaabjerg, Frede

    2015-01-01

    of power harmonics. The proposed optimal SHC is of hybrid structure: all recursive SHC modules with weighted gains are connected in parallel. It bridges the real “nk+-m order RC” and the complex “parallel structure RC”. Compared to other IMP based control solutions, it offers an optimal trade-off among...

  8. Existence and stability of circular orbits in static and axisymmetric spacetimes

    Science.gov (United States)

    Jia, Junji; Pang, Xiankai; Yang, Nan

    2018-04-01

    The existence and stability of timelike and null circular orbits (COs) in the equatorial plane of general static and axisymmetric (SAS) spacetime are investigated in this work. Using the fixed point approach, we first obtained a necessary and sufficient condition for the non-existence of timelike COs. It is then proven that there will always exist timelike COs at large ρ in an asymptotically flat SAS spacetime with a positive ADM mass and moreover, these timelike COs are stable. Some other sufficient conditions on the stability of timelike COs are also solved. We then found the necessary and sufficient condition on the existence of null COs. It is generally shown that the existence of timelike COs in SAS spacetime does not imply the existence of null COs, and vice-versa, regardless whether the spacetime is asymptotically flat or the ADM mass is positive or not. These results are then used to show the existence of timelike COs and their stability in an SAS Einstein-Yang-Mills-Dilaton spacetimes whose metric is not completely known. We also used the theorems to deduce the existence of timelike and null COs in some known SAS spacetimes.

  9. Phase mixing of Alfvén waves in axisymmetric non-reflective magnetic plasma configurations

    Science.gov (United States)

    Petrukhin, N. S.; Ruderman, M. S.; Shurgalina, E. G.

    2018-02-01

    We study damping of phase-mixed Alfvén waves propagating in non-reflective axisymmetric magnetic plasma configurations. We derive the general equation describing the attenuation of the Alfvén wave amplitude. Then we applied the general theory to a particular case with the exponentially divergent magnetic field lines. The condition that the configuration is non-reflective determines the variation of the plasma density along the magnetic field lines. The density profiles exponentially decreasing with the height are not among non-reflective density profiles. However, we managed to find non-reflective profiles that fairly well approximate exponentially decreasing density. We calculate the variation of the total wave energy flux with the height for various values of shear viscosity. We found that to have a substantial amount of wave energy dissipated at the lower corona, one needs to increase shear viscosity by seven orders of magnitude in comparison with the value given by the classical plasma theory. An important result that we obtained is that the efficiency of the wave damping strongly depends on the density variation with the height. The stronger the density decrease, the weaker the wave damping is. On the basis of this result, we suggested a physical explanation of the phenomenon of the enhanced wave damping in equilibrium configurations with exponentially diverging magnetic field lines.

  10. A Simple Harmonic Universe

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Peter W.; /Stanford U., ITP; Horn, Bart; Kachru, Shamit; /Stanford U., ITP /SLAC; Rajendran, Surjeet; /Johns Hopkins U. /Stanford U., ITP; Torroba, Gonzalo; /Stanford U., ITP /SLAC

    2011-12-14

    We explore simple but novel bouncing solutions of general relativity that avoid singularities. These solutions require curvature k = +1, and are supported by a negative cosmological term and matter with -1 < w < -1 = 3. In the case of moderate bounces (where the ratio of the maximal scale factor a{sub +} to the minimal scale factor a{sub -} is {Omicron}(1)), the solutions are shown to be classically stable and cycle through an infinite set of bounces. For more extreme cases with large a{sub +} = a{sub -}, the solutions can still oscillate many times before classical instabilities take them out of the regime of validity of our approximations. In this regime, quantum particle production also leads eventually to a departure from the realm of validity of semiclassical general relativity, likely yielding a singular crunch. We briefly discuss possible applications of these models to realistic cosmology.

  11. Quantify Plasma Response to Non-Axisymmetric (3D) Magnetic Fields in Tokamaks, Final Report for FES (Fusion Energy Sciences) FY2014 Joint Research Target

    Energy Technology Data Exchange (ETDEWEB)

    Strait, E. J. [General Atomics, San Diego, CA (United States); Park, J. -K. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Marmar, E. S. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ahn, J. -W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Berkery, J. W. [Columbia Univ., New York, NY (United States); Burrell, K. H. [General Atomics, San Diego, CA (United States); Canik, J. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Delgado-Aparicio, L. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Ferraro, N. M. [General Atomics, San Diego, CA (United States); Garofalo, A. M. [General Atomics, San Diego, CA (United States); Gates, D. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Greenwald, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Kim, K. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); King, J. D. [General Atomics, San Diego, CA (United States); Lanctot, M. J. [General Atomics, San Diego, CA (United States); Lazerson, S. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Liu, Y. Q. [Culham Science Centre, Abingdon (United Kingdom). Euratom/CCFE Association; Logan, N. C. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Lore, J. D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Menard, J. E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Nazikian, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Shafer, M. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Paz-Soldan, C. [General Atomics, San Diego, CA (United States); Reiman, A. H. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Rice, J. E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Sabbagh, S. A. [Columbia Univ., New York, NY (United States); Sugiyama, L. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Turnbull, A. D. [General Atomics, San Diego, CA (United States); Volpe, F. [Columbia Univ., New York, NY (United States); Wang, Z. R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Wolfe, S. M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-09-30

    The goal of the 2014 Joint Research Target (JRT) has been to conduct experiments and analysis to investigate and quantify the response of tokamak plasmas to non-axisymmetric (3D) magnetic fields. Although tokamaks are conceptually axisymmetric devices, small asymmetries often result from inaccuracies in the manufacture and assembly of the magnet coils, or from nearby magnetized objects. In addition, non-axisymmetric fields may be deliberately applied for various purposes. Even at small amplitudes of order 10-4 of the main axisymmetric field, such “3D” fields can have profound impacts on the plasma performance. The effects are often detrimental (reduction of stabilizing plasma rotation, degradation of energy confinement, localized heat flux to the divertor, or excitation of instabilities) but may in some case be beneficial (maintenance of rotation, or suppression of instabilities). In general, the magnetic response of the plasma alters the 3D field, so that the magnetic field configuration within the plasma is not simply the sum of the external 3D field and the original axisymmetric field. Typically the plasma response consists of a mixture of local screening of the external field by currents induced at resonant surfaces in the plasma, and amplification of the external field by stable kink modes. Thus, validated magnetohydrodynamic (MHD) models of the plasma response to 3D fields are crucial to the interpretation of existing experiments and the prediction of plasma performance in future devices. The non-axisymmetric coil sets available at each facility allow well-controlled studies of the response to external 3D fields. The work performed in support of the 2014 Joint Research Target has included joint modeling and analysis of existing experimental data, and collaboration on new experiments designed to address the goals of the JRT. A major focus of the work was validation of numerical models through quantitative comparison to experimental data, in

  12. Computation of steady and unsteady compressible quasi-axisymmetric vortex flow and breakdown

    Science.gov (United States)

    Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.

    1991-01-01

    The unsteady, compressible Navier-Stokes equations are used to compute and analyze compressible quasi-axisymmetric isolated vortices. The Navier-Stokes equations are solved using an implicit, upwind, flux-difference splitting finite-volume scheme. The developed three-dimensional solver has been verified by comparing its solution profiles with those of a slender, quasi-axisymmetric vortex solver for a subsonic, isolated quasi-axisymmetric vortex in an unbounded domain. The Navier-Stokes solver is then used to solve for a supersonic quasi-axisymmetric vortex flow in a configured circular duct. Steady and unsteady vortex-shock interactions and breakdown have been captured. The problem has also been calculated using the Euler solver of the same code and the results are compared with those of the Navier-Stokes solver. The effect of the initial swirl has been tentatively studied.

  13. Computation of compressible quasi-axisymmetric slender vortex flow and breakdown

    Science.gov (United States)

    Kandil, Osama A.; Kandil, Hamdy A.

    1991-01-01

    The unsteady, compressible Navier-Stokes equations are used to compute and analyze compressible quasi-axisymmetric isolated vortices. The Navier-Stokes equations are solved using an implicit, upwind, flux difference splitting finite volume scheme. The developed three dimensional solver was verified by comparing its solution profiles with those of a slender, quasi-axisymmetric vortex solver for a subsonic, quasi-axisymmetric vortex in an unbounded domain. The Navier-Stokes solver is then used to solve for a supersonic, quasi-axisymmetric vortex flow in a configured circular duct. Steady and unsteady vortex-shock interactions and breakdown were captured. The problem was also calculated using the Euler solver of the same code; the results were compared with those of the Navier-Stokes solver. The effect of the initial swirl was investigated.

  14. Experiences with the use of axisymmetric elements in cosmic NASTRAN for static analysis

    Science.gov (United States)

    Cooper, Michael J.; Walton, William C.

    1991-01-01

    Discussed here are some recent finite element modeling experiences using the axisymmetric elements CONEAX, TRAPAX, and TRIAAX, from the COSMIC NASTRAN element library. These experiences were gained in the practical application of these elements to the static analysis of helicopter rotor force measuring systems for two design projects for the NASA Ames Research Center. These design projects were the Rotor Test Apparatus and the Large Rotor Test Apparatus, which are dedicated to basic helicopter research. Here, a genetic axisymmetric model is generated for illustrative purposes. Modeling considerations are discussed, and the advantages and disadvantages of using axisymmetric elements are presented. Asymmetric mechanical and thermal loads are applied to the structure, and single and multi-point constraints are addressed. An example that couples the axisymmetric model to a non-axisymmtric model is demonstrated, complete with DMAP alters. Recommendations for improving the elements and making them easier to use are offered.

  15. Coherence properties of the harmonic generation in intense laser field

    International Nuclear Information System (INIS)

    Salieres, P.

    1995-01-01

    In this thesis is presented an experimental and theoretical study of the harmonic generation in intense field and coherence properties of this radiation. The first part reminds the main harmonic specter characteristics. Follow then experimental studies of the tray extension with the laser lighting, the harmonic generation by ions, and the influence of the laser field on the efficiency of generation. The second part presents the quantum model of the harmonic generation in tunnel regime that we have used for the calculation of the dipoles. We compare dependence in lighting of some harmonic, by insisting on the characteristic behavior of the atomic phase. The theory of the propagation is presented in third part. After the reminder of the case of a perturbative polarization, we develop the case of the polarization in tunnel regime. With the help of numerical simulations, we show the influence of the atomic phase on the agreement of phase, and therefore on the efficiency of conversion and profiles of generation in the medium. The importance of the geometry of the interaction is underlined. The part IV presents the study of the spatial coherence of the harmonic radiation. We develop first consequences of the theory of the agreement of phase for profiles of emission. Then the comparison with experimental profiles is detailed in function of the different parameters( order of non linearity, laser lighting, position of the focus by report in the gaseous medium). The study of the spectral and temporal coherence of the part V begins with the experimental effect investigation of the ionization on specters of the harmonic of weak order. We present then theoretical predictions of the preceding model for spectral and temporal profiles of the harmonic of highest order, generated in tunnel regime. The part VI is devoted to the UVX source aspect of the harmonic radiation. General characteristics (number of photons, agreement) are first detailed, then we present the first experiences

  16. Rotation matrices for real spherical harmonics. Direct determination by recursion

    Energy Technology Data Exchange (ETDEWEB)

    Ivanic, J.; Ruedenberg, K. [Ames Lab., IA (United States)]|[Iowa State Univ., Ames, IA (United States)

    1996-04-11

    A recurrence procedure is derived for constructing the rotation matrices between real spherical harmonics directly in terms of the elements of the original 3 x 3 rotation matrix without the intermediary of any parameters. The procedure furnishes a simple, efficient, and general method for the formal as well as numerical evaluation of these representation matrices. 7 refs., 3 tabs.

  17. The resonating group method in an harmonic oscillator basis

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.; Gignoux, C.; Ayant, Y.

    1987-05-01

    The scattering states for a general many body system is formulated within the resonating group method. The resulting Lippman-Schwinger equation is solved in an harmonic oscillator basis for which a number of advantages are emphasized. The analytical formula giving the free propagator in that basis is fully derived

  18. High-power asymptotics of some weighted harmonic Bergman kernels

    Czech Academy of Sciences Publication Activity Database

    Engliš, Miroslav

    2016-01-01

    Roč. 271, č. 5 (2016), s. 1243-1261 ISSN 0022-1236 Institutional support: RVO:67985840 Keywords : Bergman kernel * harmonic Bergman kernel * asymptotic expansion Subject RIV: BA - General Mathematics Impact factor: 1.254, year: 2016 http://www.sciencedirect.com/science/article/pii/S0022123616301513

  19. Maximal Regularity of the Discrete Harmonic Oscillator Equation

    Directory of Open Access Journals (Sweden)

    Airton Castro

    2009-01-01

    Full Text Available We give a representation of the solution for the best approximation of the harmonic oscillator equation formulated in a general Banach space setting, and a characterization of lp-maximal regularity—or well posedness—solely in terms of R-boundedness properties of the resolvent operator involved in the equation.

  20. Using "Tracker" to Prove the Simple Harmonic Motion Equation

    Science.gov (United States)

    Kinchin, John

    2016-01-01

    Simple harmonic motion (SHM) is a common topic for many students to study. Using the free, though versatile, motion tracking software; "Tracker", we can extend the students experience and show that the general equation for SHM does lead to the correct period of a simple pendulum.

  1. Boundary singularity of Poisson and harmonic Bergman kernels

    Czech Academy of Sciences Publication Activity Database

    Engliš, Miroslav

    2015-01-01

    Roč. 429, č. 1 (2015), s. 233-272 ISSN 0022-247X R&D Projects: GA AV ČR IAA100190802 Institutional support: RVO:67985840 Keywords : harmonic Bergman kernel * Poisson kernel * pseudodifferential boundary operators Subject RIV: BA - General Mathematics Impact factor: 1.014, year: 2015 http://www.sciencedirect.com/science/article/pii/S0022247X15003170

  2. On Meromorphic Harmonic Functions with Respect to -Symmetric Points

    Directory of Open Access Journals (Sweden)

    Al-Shaqsi K

    2008-01-01

    Full Text Available Abstract In our previous work in this journal in 2008, we introduced the generalized derivative operator for . In this paper, we introduce a class of meromorphic harmonic function with respect to -symmetric points defined by . Coefficient bounds, distortion theorems, extreme points, convolution conditions, and convex combinations for the functions belonging to this class are obtained.

  3. EFFECTS OF LARGE-SCALE NON-AXISYMMETRIC PERTURBATIONS IN THE MEAN-FIELD SOLAR DYNAMO

    Energy Technology Data Exchange (ETDEWEB)

    Pipin, V. V. [Institute of Solar-Terrestrial Physics, Russian Academy of Sciences (Russian Federation); Kosovichev, A. G. [W.W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2015-11-10

    We explore the response of a nonlinear non-axisymmetric mean-field solar dynamo model to shallow non-axisymmetric perturbations. After a relaxation period, the amplitude of the non-axisymmetric field depends on the initial condition, helicity conservation, and the depth of perturbation. It is found that a perturbation that is anchored at 0.9 R{sub ⊙} has a profound effect on the dynamo process, producing a transient magnetic cycle of the axisymmetric magnetic field, if it is initiated at the growing phase of the cycle. The non-symmetric, with respect to the equator, perturbation results in a hemispheric asymmetry of the magnetic activity. The evolution of the axisymmetric and non-axisymmetric fields depends on the turbulent magnetic Reynolds number R{sub m}. In the range of R{sub m} = 10{sup 4}–10{sup 6} the evolution returns to the normal course in the next cycle, in which the non-axisymmetric field is generated due to a nonlinear α-effect and magnetic buoyancy. In the stationary state, the large-scale magnetic field demonstrates a phenomenon of “active longitudes” with cyclic 180° “flip-flop” changes of the large-scale magnetic field orientation. The flip-flop effect is known from observations of solar and stellar magnetic cycles. However, this effect disappears in the model, which includes the meridional circulation pattern determined by helioseismology. The rotation rate of the non-axisymmetric field components varies during the relaxation period and carries important information about the dynamo process.

  4. Three-dimensional axisymmetric elastic stresses at the junction of a hollow sphere and a cylinder (torsion, tension, internal pressure)

    International Nuclear Information System (INIS)

    Kishida, Michiya; Sasaki, Kazuaki; Kawano, Makoto.

    1984-01-01

    Generally on the top of pressure vessels, the joints for piping are often provided, and around these joints, large stress arises. At present, many thick wall pressure vessels are in use, therefore, the three-dimensional elastic stress analysis has become necessary, but the example of analysis is few. It is significant to show the possibility of analyzing accurately a stress field in a welded joint. In this study, as the form of joints, the joint of a hollow sphere and a cylinder was taken, and the three-dimensional axisymmetric elastic stress analysis was carried out to clarify the stress distribution. Besides, the effect of the joint forms on the stress distribution was discussed, and the comparison with the results obtained by other researchers was made. As the loading condition, the cases of applying torsion or tension at the cylinder end and applying uniform internal pressure to the inner wall were analyzed. The basic theory, the three-dimensional axisymmetric problem, the form and the loading condition, the numerical analysis and the results are reported. The analysis was performed relatively easily and with good accuracy. (Kako, I.)

  5. Harmonic structures and intrinsic torsion

    DEFF Research Database (Denmark)

    Conti, Diego; Madsen, Thomas Bruun

    We discuss the construction of 8-manifolds with harmonic Sp(2)Sp(1)-structures. In particular, we find 10 new examples of nilmanifolds that admit a closed 4-form Omega whose stabiliser is Sp(2)Sp(1). Our constructions entail the notion of SO(4)-structures on 7-manifolds. We present a thorough...

  6. Norbert Wiener and Harmonic Analysis

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 1. Norbert Wiener and Harmonic Analysis. Alladi Sitaram. Article-in-a-Box Volume 4 Issue 1 January 1999 pp 4-5. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/004/01/0004-0005 ...

  7. The Harmonics of Kansei Images

    DEFF Research Database (Denmark)

    Su, Jianning; Restrepo-Giraldo, John Dairo

    2008-01-01

    sensibility it elicits on a person (kansei), is a key factor in the design of tools to support designers in delivering the right product’s appearance. This paper presents an approach to mathematically represent a product’s kansei based on the frequency signature (harmonics) of a shape. This mathematical...

  8. Harmonic vibrations of multispan beams

    DEFF Research Database (Denmark)

    Dyrbye, Claes

    1996-01-01

    Free and forced harmonic vibrations of multispan beams are determined by a method which implies 1 equation regardless of the configuration. The necessary formulas are given in the paper. For beams with simple supports and the same length of all (n) spans, there is a rather big difference between...

  9. Validation of phantom-based harmonization for patient harmonization.

    Science.gov (United States)

    Panetta, Joseph V; Daube-Witherspoon, Margaret E; Karp, Joel S

    2017-07-01

    To improve the precision of multicenter clinical trials, several efforts are underway to determine scanner-specific parameters for harmonization using standardized phantom measurements. The goal of this study was to test the correspondence between quantification in phantom and patient images and validate the use of phantoms for harmonization of patient images. The National Electrical Manufacturers' Association image quality phantom with hot spheres was scanned on two time-of-flight PET scanners. Whole-body [ 18 F]-fluorodeoxyglucose (FDG)-PET scans were acquired of subjects on the same systems. List-mode events from spheres (diam.: 10-28 mm) measured in air on each scanner were embedded into the phantom and subject list-mode data from each scanner to create lesions with known uptake with respect to the local background in the phantom and each subject's liver and lung regions, as a proxy to characterize true lesion quantification. Images were analyzed using the contrast recovery coefficient (CRC) typically used in phantom studies and serving as a surrogate for the standardized uptake value used clinically. Postreconstruction filtering (resolution recovery and Gaussian smoothing) was applied to determine if the effect on the phantom images translates equivalently to subject images. Three postfiltering strategies were selected to harmonize the CRC mean or CRC max values between the two scanners based on the phantom measurements and then applied to the subject images. Both the average CRC mean and CRC max values for lesions embedded in the lung and liver in four subjects (BMI range 25-38) agreed to within 5% with the CRC values for lesions embedded in the phantom for all lesion sizes. In addition, the relative changes in CRC mean and CRC max resulting from the application of the postfilters on the subject and phantom images were consistent within measurement uncertainty. Further, the root mean squared percent difference (RMS pd ) between CRC values on the two scanners

  10. Dielectric tensor operator of hot plasmas in toroidal axisymmetric systems

    International Nuclear Information System (INIS)

    Brunner, S.; Vaclavik, J.

    1992-08-01

    Kinetic theory is used to develop equations describing dynamics of small-amplitude electromagnetic perturbations in toroidal axisymmetric plasmas. The closed Vlasov-Maxwell equations are first solved for a hot stationary plasma using the expansion in the small parameter ε e =ρ/L, where ρ is the Larmor radius and L a characteristic length scale of the stationary state. The ordering and additional assumptions are specified so as to obtain the well-known Grad-Shafranov equation. The dielectric tensor of such a plasma is then derived. The Vlasov equation for the perturbed distribution function is solved by the expansion in the small parameters ε e and ε p =ρ/λ, where λ is a characteristic wavelength of the perturbing electromagnetic field. The solution is obtained up to the first order in ε e and the second order in ε p . By integrating the resulting distribution function over velocity space, an explicit expression for the tensor is derived in the form of a two-dimensional partial differential operator. The operator is shown to possess the proper symmetry corresponding to the energy conservation law. (author) 6 refs

  11. Direct numerical simulation of axisymmetric laminar low-density jets

    Science.gov (United States)

    Gomez Lendinez, Daniel; Coenen, Wilfried; Sevilla, Alejandro

    2017-11-01

    The stability of submerged laminar axisymmetric low-density jets has been investigated experimentally (Kyle & Sreenivasan 1993, Hallberg & Strykowski 2006) and with linear analysis (Jendoubi & Strykowski 1994, Coenen & Sevilla 2012, Coenen et al. 2017). These jets become globally unstable when the Reynolds number is larger than a certain critical value which depends on the density ratio and on the velocity profile at the injector outlet. In this work, Direct Numerical Simulations using FreeFEM + + (Hecht 2012) with P1 elements for pressure and P2 for velocity and density are performed to complement the above mentioned studies. Density and velocity fields are analyzed at long time showing the unforced space-time evolution of nonlinear disturbances propagating along the jet. Using the Stuart-Landau model to fit the numerical results for the self-excited oscillations we have computed a neutral stability curve that shows good agreement with experiments and stability theory. Thanks to Spanish MINECO under projects DPI2014-59292-C3-1-P and DPI2015-71901-REDT for financial support.

  12. Adhesion and detachment of a capsule in axisymmetric flow

    Science.gov (United States)

    Keh, M. P.; Leal, L. G.

    2016-05-01

    The adhesion and detachment of a capsule on a solid boundary surface is studied via a combination of scaling theory and numerical simulation and the behavior is compared and contrasted with a vesicle. It is shown that the dominant physical property for both capsules and vesicles is the area dilation modulus Ks of the membrane. The nonzero shear modulus Gs for capsules increases the resistance to deformation and thus decreases slightly the equilibrium contact radius for an adhered capsule compared to an adhered vesicle. The detachment process in this study is due to an external axisymmetric flow. Unlike a rigid body that must be pulled away without change of shape, capsules (and vesicles) almost always detach dominantly by peeling in which the contact radius decreases but the minimum separation distance does not change until the final moments of detachment. Compared to a vesicle with the same Ks, a capsule maintains a more compact shape and is harder to elongate under a given external flow. Hence, the detachment process is slower for capsules compared to vesicles with the same Ks.

  13. First integrals of the axisymmetric shape equation of lipid membranes

    Science.gov (United States)

    Zhang, Yi-Heng; McDargh, Zachary; Tu, Zhan-Chun

    2018-03-01

    The shape equation of lipid membranes is a fourth-order partial differential equation. Under the axisymmetric condition, this equation was transformed into a second-order ordinary differential equation (ODE) by Zheng and Liu (Phys. Rev. E 48 2856 (1993)). Here we try to further reduce this second-order ODE to a first-order ODE. First, we invert the usual process of variational calculus, that is, we construct a Lagrangian for which the ODE is the corresponding Euler–Lagrange equation. Then, we seek symmetries of this Lagrangian according to the Noether theorem. Under a certain restriction on Lie groups of the shape equation, we find that the first integral only exists when the shape equation is identical to the Willmore equation, in which case the symmetry leading to the first integral is scale invariance. We also obtain the mechanical interpretation of the first integral by using the membrane stress tensor. Project supported by the National Natural Science Foundation of China (Grant No. 11274046) and the National Science Foundation of the United States (Grant No. 1515007).

  14. Axisymmetric bifurcations of thick spherical shells under inflation and compression

    KAUST Repository

    deBotton, G.

    2013-01-01

    Incremental equilibrium equations and corresponding boundary conditions for an isotropic, hyperelastic and incompressible material are summarized and then specialized to a form suitable for the analysis of a spherical shell subject to an internal or an external pressure. A thick-walled spherical shell during inflation is analyzed using four different material models. Specifically, one and two terms in the Ogden energy formulation, the Gent model and an I1 formulation recently proposed by Lopez-Pamies. We investigate the existence of local pressure maxima and minima and the dependence of the corresponding stretches on the material model and on shell thickness. These results are then used to investigate axisymmetric bifurcations of the inflated shell. The analysis is extended to determine the behavior of a thick-walled spherical shell subject to an external pressure. We find that the results of the two terms Ogden formulation, the Gent and the Lopez-Pamies models are very similar, for the one term Ogden material we identify additional critical stretches, which have not been reported in the literature before.© 2012 Published by Elsevier Ltd.

  15. Harmonic focus in thyroidectomy for substernal goiter

    DEFF Research Database (Denmark)

    Hahn, Christoffer Holst; Trolle, Waldemar; Sørensen, Christian Hjort

    2015-01-01

    OBJECTIVES: No previous prospective study has evaluated harmonic scalpel in thyroidectomy for substernal goiter. The objective of this study was to evaluate the use of harmonic scalpel (FOCUS shear, Ethicon Endo-Surgery) in thyroidectomy for substernal goiter for blood loss, operative time...... time was significantly longer in the harmonic group. CONCLUSION: Harmonic scalpel is a safe tool for thyroidectomy for substernal goiter. Its utilisation is associated with reduced blood loss, lower incidence of postoperative haemorrhage and shorter hospital stay....

  16. Development of a virtual metrology method using plasma harmonics analysis

    Science.gov (United States)

    Jun, H.; Shin, J.; Kim, S.; Choi, H.

    2017-07-01

    A virtual metrology technique based on plasma harmonics is developed for predicting semiconductor processes. From a plasma process performed by 300 mm photoresist stripper equipment, a strong correlation is found between optical plasma harmonics intensities and the process results, such as the photoresist strip rate and strip non-uniformity. Based on this finding, a general process prediction model is developed. The developed virtual metrology model shows that the R-squared (R2) values between the measured and predicted process results are 95% and 64% for the photoresist strip rate and photoresist strip non-uniformity, respectively. This is the first research on process prediction based on optical plasma harmonics analysis, and the results can be applied to semiconductor processes such as dry etching and plasma enhanced chemical vapor deposition.

  17. Hybrid harmonic compensation device adapted for variable speed drive system

    Science.gov (United States)

    Abramovich, B. N.; Sychev, Yu A.; Zimin, R. Yu

    2017-10-01

    The structure of the hybrid harmonic compensation device adapted for variable speed drive system is proposed in the paper. The main feature of the proposed device is the usage of common direct current link both for inverter of power frequency converter and for inverter of active part of the hybrid device. This decision allows to decrease the cost of active part of the proposed hybrid device. The proposed hybrid device is firstly intended for voltage and current harmonic determination and elimination. A mathematical model of generalized industrial power supply system with nonlinear load and the proposed hybrid device was developed by means of Matlab Simulink software. During simulation the proper efficiency of the proposed hybrid device is shown in different modes of voltage and current harmonic compensation.

  18. Development of a virtual metrology method using plasma harmonics analysis

    Directory of Open Access Journals (Sweden)

    H. Jun

    2017-07-01

    Full Text Available A virtual metrology technique based on plasma harmonics is developed for predicting semiconductor processes. From a plasma process performed by 300 mm photoresist stripper equipment, a strong correlation is found between optical plasma harmonics intensities and the process results, such as the photoresist strip rate and strip non-uniformity. Based on this finding, a general process prediction model is developed. The developed virtual metrology model shows that the R-squared (R2 values between the measured and predicted process results are 95% and 64% for the photoresist strip rate and photoresist strip non-uniformity, respectively. This is the first research on process prediction based on optical plasma harmonics analysis, and the results can be applied to semiconductor processes such as dry etching and plasma enhanced chemical vapor deposition.

  19. Dynamics of harmonically-confined systems: Some rigorous results

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhigang, E-mail: zwu@physics.queensu.ca; Zaremba, Eugene, E-mail: zaremba@sparky.phy.queensu.ca

    2014-03-15

    In this paper we consider the dynamics of harmonically-confined atomic gases. We present various general results which are independent of particle statistics, interatomic interactions and dimensionality. Of particular interest is the response of the system to external perturbations which can be either static or dynamic in nature. We prove an extended Harmonic Potential Theorem which is useful in determining the damping of the centre of mass motion when the system is prepared initially in a highly nonequilibrium state. We also study the response of the gas to a dynamic external potential whose position is made to oscillate sinusoidally in a given direction. We show in this case that either the energy absorption rate or the centre of mass dynamics can serve as a probe of the optical conductivity of the system. -- Highlights: •We derive various rigorous results on the dynamics of harmonically-confined atomic gases. •We derive an extension of the Harmonic Potential Theorem. •We demonstrate the link between the energy absorption rate in a harmonically-confined system and the optical conductivity.

  20. The Local Stellar Velocity Field via Vector Spherical Harmonics

    Science.gov (United States)

    Makarov, V. V.; Murphy, D. W.

    2007-01-01

    We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism.We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (V(sub X), V(sub Y), V(sub Z)) = (10.5, 18.5, 7.3) +/- 0.1 km s(exp -1) not for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (V(sub X), V(sub Y), V(sub Z)) = (9.9, 15.6, 6.9) +/- 0.2 km s(exp -1). The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star...

  1. Effective harmonic oscillator description of anharmonic molecular ...

    Indian Academy of Sciences (India)

    Administrator

    The effective harmonic oscillator is constructed variationally, by taking the trial wave function as a harmonic oscillator eigenfunction with the centroid and width parameter as variational para- eters. It is found that the effective harmonic oscillator approximation provides a description of the anharmonic eigenstates very similar ...

  2. Effects of harmonic roving on pitch discrimination

    DEFF Research Database (Denmark)

    Santurette, Sébastien; de Kérangal, Mathilde le Gal; Joshi, Suyash Narendra

    2015-01-01

    to impair pitch discrimination performance. Fundamental-frequency difference limens (F0DLs) were obtained in normal-hearing listeners with and without musical training for complex tones filtered between 1.5 and 3.5 kHz with F0s of 300 Hz (resolved harmonics) and 75 Hz (unresolved harmonics). The harmonicity...

  3. Third Harmonic Imaging using a Pulse Inversion

    DEFF Research Database (Denmark)

    Rasmussen, Joachim; Du, Yigang; Jensen, Jørgen Arendt

    2011-01-01

    The pulse inversion (PI) technique can be utilized to separate and enhance harmonic components of a waveform for tissue harmonic imaging. While most ultrasound systems can perform pulse inversion, only few image the 3rd harmonic component. PI pulse subtraction can isolate and enhance the 3rd...

  4. Probabilistic Harmonic Modeling of Wind Power Plants

    DEFF Research Database (Denmark)

    Guest, Emerson; Jensen, Kim H.; Rasmussen, Tonny Wederberg

    2017-01-01

    A probabilistic sequence domain (SD) harmonic model of a grid-connected voltage-source converter is used to estimate harmonic emissions in a wind power plant (WPP) comprised of Type-IV wind turbines. The SD representation naturally partitioned converter generated voltage harmonics into those...

  5. Nonlinear Free Vibration Analysis of Axisymmetric Polar Orthotropic Circular Membranes under the Fixed Boundary Condition

    Directory of Open Access Journals (Sweden)

    Zhoulian Zheng

    2014-01-01

    Full Text Available This paper presents the nonlinear free vibration analysis of axisymmetric polar orthotropic circular membrane, based on the large deflection theory of membrane and the principle of virtual displacement. We have derived the governing equations of nonlinear free vibration of circular membrane and solved them by the Galerkin method and the Bessel function to obtain the generally exact formula of nonlinear vibration frequency of circular membrane with outer edges fixed. The formula could be degraded into the solution from small deflection vibration; thus, its correctness has been verified. Finally, the paper gives the computational examples and comparative analysis with the other solution. The frequency is enlarged with the increase of the initial displacement, and the larger the initial displacement is, the larger the effect on the frequency is, and vice versa. When the initial displacement approaches zero, the result is consistent with that obtained on the basis of the small deflection theory. Results obtained from this paper provide the accurate theory for the measurement of the pretension of polar orthotropic composite materials by frequency method and some theoretical basis for the research of the dynamic response of membrane structure.

  6. Non-axisymmetric SOL-transport study for tokamaks and stellarators

    International Nuclear Information System (INIS)

    Sardei, F.; Feng, Y.; Kisslinger, J.; Grigull, P.; Kobayashi, M.; Harting, D.; Reiter, D.; Federici, G.; Loarte, A.

    2007-01-01

    The paper addresses basic features of non-axisymmetric edge transport induced in tokamaks by local limiters or external magnetic perturbations and in low-shear stellarators by the presence of edge magnetic islands. 3D simulations and, if available for comparison, experimental results are presented and discussed for three devices, ITER during start-up operation, TEXTOR-DED and W7-AS, having edge topologies totally different from each other. The modeling is performed with the EMC3/EIRENE code, which treats self-consistently plasma, neutral and impurity transport in a general 3D scrape-off layer (SOL) with arbitrarily complex geometry of magnetic configuration and plasma-facing components. Shown are code predictions of the power load on the ITER start-up limiters as well as modeling results on the transport in the TEXTOR-DED stochastic edge and on the physics of stable detachment in W7-AS. Experimental observations confirming the code simulations are referenced for both TEXTOR-DED and W7-AS, a direct comparison between modeling and experimental results is shown for W7-AS

  7. Introduction to Classical and Quantum Harmonic Oscillators

    International Nuclear Information System (INIS)

    Latal, H

    1997-01-01

    As the title aptly states, this book deals with harmonic oscillators of various kinds, from classical mechanical and electrical oscillations up to quantum oscillations. It is written in a lively language, and occasional interspersed anecdotes make the reading of an otherwise mathematically oriented text quite a pleasure. Although the author claims to have written an 'elementary introduction', it is certainly necessary to have a good deal of previous knowledge in physics (mechanics, electrodynamics, quantum theory), electrical engineering and, of course, mathematics in order to follow the general line of his arguments. The book begins with a thorough treatment of classical oscillators (free, damped, forced) that is followed by an elaboration on Fourier analysis. Lagrange and Hamilton formalisms are then introduced before the problem of coupled oscillations is attacked. A chapter on statistical perspectives leads over to the final discussion of quantum oscillations. With the book comes a diskette containing a number of worksheets (Microsoft Excel) that can be used by the reader for instant visualization to get a better qualitative and quantitative understanding of the material. To the reviewer it seems difficult to pinpoint exactly the range of prospective readership of the book. It can certainly not be intended as a textbook for students, but rather as a reference book for teachers of physics or researchers, who want to look up one or other aspect of harmonic oscillations, for which purpose the diskette represents a very valuable tool. (book review)

  8. Coherent and squeezed states for the 3D harmonic oscillator

    Science.gov (United States)

    Mazouz, Amel; Bentaiba, Mustapha; Mahieddine, Ali

    2017-01-01

    A three-dimensional harmonic oscillator is studied in the context of generalized coherent states. We construct its squeezed states as eigenstates of linear contribution of ladder operators which are associated to the generalized Heisenberg algebra. We study the probability density to show the compression effect on the squeezed states. Our analysis reveals that squeezed states give us some freedom on the precise knowledge of position of the particle while maintaining the Heisenberg uncertainty relation minimum, squeezed states remains squeezed states over time.

  9. Harmonic Detection at Initialization With Kalman Filter

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar; Imran, Raja Muhammad; Shoro, Ghulam Mustafa

    2014-01-01

    the affect of harmonics on the supply. For the detection of these harmonics various techniques are available and one of that technique is the Kalman filter. In this paper we investigate that what are the consequences when harmonic detection system based on Kalman Filtering is initialized......Most power electronic equipment these days generate harmonic disturbances, these devices hold nonlinear voltage/current characteristic. The harmonics generated can potentially be harmful to the consumer supply. Typically, filters are integrated at the power source or utility location to filter out...

  10. Harmonic space and quaternionic manifolds

    International Nuclear Information System (INIS)

    Galperin, A.; Ogievetsky, O.; Ivanov, E.

    1992-10-01

    A principle of harmonic analyticity underlying the quaternionic (quaternion-Kaehler) geometry is found, and the differential constraints which define this geometry are solved. To this end the original 4n-dimensional quaternionic manifold is extended to a biharmonic space. The latter includes additional harmonic coordinates associated with both the tangent local Sp(1) group and an extra rigid SU(2) group rotating the complex structures. An one-to-one correspondence is established between the quaternionic spaces and off-shell N=2 supersymmetric sigma-models coupled to N=2 supergravity. Coordinates of the analytic subspace are identified with superfields describing N=2 matter hypermultiplets and a compensating hypermultiplet of N=2 supergravity. As an illustration the potentials for the symmetric quaternionic spaces are presented. (K.A.) 22 refs

  11. Reynolds number and geometry effects in laminar axisymmetric isothermal counterflows

    KAUST Repository

    Scribano, Gianfranco

    2016-12-29

    The counterflow configuration is a canonical stagnation flow, featuring two opposed impinging round jets and a mixing layer across the stagnation plane. Although counterflows are used extensively in the study of reactive mixtures and other applications where mixing of two streams is required, quantitative data on the scaling properties of the flow field are lacking. The aim of this work is to characterize the velocity and mixing fields in isothermal counterflows over a wide range of conditions. The study features both experimental data from particle image velocimetry and results from detailed axisymmetric simulations. The scaling laws for the nondimensional velocity and mixture fraction are obtained as a function of an appropriate Reynolds number and the ratio of the separation distance of the nozzles to their diameter. In the range of flow configurations investigated, the nondimensional fields are found to depend primarily on the separation ratio and, to a lesser extent, the Reynolds number. The marked dependence of the velocity field with respect to the separation ratio is linked to a high pressure region at the stagnation point. On the other hand, Reynolds number effects highlight the role played by the wall boundary layer on the interior of the nozzles, which becomes less important as the separation ratio decreases. The normalized strain rate and scalar dissipation rate at the stagnation plane are found to attain limiting values only for high values of the Reynolds number. These asymptotic values depend markedly on the separation ratio and differ significantly from the values produced by analytical models. The scaling of the mixing field does not show a limiting behavior as the separation ratio decreases to the smallest practical value considered.

  12. Harmonic oscillator on a lattice

    International Nuclear Information System (INIS)

    Ader, J.P.; Bonnier, B.; Hontebeyrie, M.; Meyers, C.

    1983-01-01

    The continuum limit of the ground state energy for the harmonic oscillator with discrete time is derived for all possible choices of the lattice derivative. The occurrence of unphysical values is shown to arise whenever the lattice laplacian is not strictly positive on its Brillouin zone. These undesirable limits can either be finite and arbitrary (multiple spectrum) or infinite (overlapping sublattices with multiple spectrum). (orig.)

  13. Harmonic Lattice Dynamics of Germanium

    International Nuclear Information System (INIS)

    Nelin, G.

    1974-01-01

    The phonon dispersion relations of the Δ-, Λ-, and Σ-directions of germanium at 80 K are analysed in terms of current harmonic lattice dynamical models. On the basis of this experience, a new model is proposed which gives a unified account of the strong points of the previous models. The principal elements of the presented theory are quasiparticle bond charges combined with a valence force field

  14. Harmonic Lattice Dynamics of Germanium

    Energy Technology Data Exchange (ETDEWEB)

    Nelin, G.

    1974-07-01

    The phonon dispersion relations of the DELTA-, LAMBDA-, and SIGMA-directions of germanium at 80 K are analysed in terms of current harmonic lattice dynamical models. On the basis of this experience, a new model is proposed which gives a unified account of the strong points of the previous models. The principal elements of the presented theory are quasiparticle bond charges combined with a valence force field.

  15. Detection of Harmonic Occurring using Kalman Filtering

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar; Shoro, Ghulam Mustafa; Imran, Raja Muhammed

    2014-01-01

    As long as the load to a power system is linear which has been the case before 80's, typically no harmonics are produced. However, the modern power electronic equipment for controlled power consumption produces harmonic disturbances, these devices/equipment possess nonlinear voltage/current chara...... using Kalman filter. This may be very useful for example to quickly switching on certain filters based on the harmonic present. We are using a unique technique to detect the occurrence of harmonics......./current characteristic. These harmonics are not to be allowed to grow beyond a certain limit to avoid any grave consequence to the customer’s main supply. Filters can be implemented at the power source or utility location to eliminate these harmonics. In this paper we detect the instance at which these harmonics occur...

  16. Second Harmonic Generation of Unpolarized Light

    Science.gov (United States)

    Ding, Changqin; Ulcickas, James R. W.; Deng, Fengyuan; Simpson, Garth J.

    2017-11-01

    A Mueller tensor mathematical framework was applied for predicting and interpreting the second harmonic generation (SHG) produced with an unpolarized fundamental beam. In deep tissue imaging through SHG and multiphoton fluorescence, partial or complete depolarization of the incident light complicates polarization analysis. The proposed framework has the distinct advantage of seamlessly merging the purely polarized theory based on the Jones or Cartesian susceptibility tensors with a more general Mueller tensor framework capable of handling partial depolarized fundamental and/or SHG produced. The predictions of the model are in excellent agreement with experimental measurements of z -cut quartz and mouse tail tendon obtained with polarized and depolarized incident light. The polarization-dependent SHG produced with unpolarized fundamental allowed determination of collagen fiber orientation in agreement with orthogonal methods based on image analysis. This method has the distinct advantage of being immune to birefringence or depolarization of the fundamental beam for structural analysis of tissues.

  17. Asymmetric network connectivity using weighted harmonic averages

    Science.gov (United States)

    Morrison, Greg; Mahadevan, L.

    2011-02-01

    We propose a non-metric measure of the "closeness" felt between two nodes in an undirected, weighted graph using a simple weighted harmonic average of connectivity, that is a real-valued Generalized Erdös Number (GEN). While our measure is developed with a collaborative network in mind, the approach can be of use in a variety of artificial and real-world networks. We are able to distinguish between network topologies that standard distance metrics view as identical, and use our measure to study some simple analytically tractable networks. We show how this might be used to look at asymmetry in authorship networks such as those that inspired the integer Erdös numbers in mathematical coauthorships. We also show the utility of our approach to devise a ratings scheme that we apply to the data from the NetFlix prize, and find a significant improvement using our method over a baseline.

  18. MHD axisymmetric flow of power-law fluid over an unsteady stretching sheet with convective boundary conditions

    Directory of Open Access Journals (Sweden)

    Jawad Ahmed

    Full Text Available This paper examines the boundary layer flow and heat transfer characteristic in power law fluid model over unsteady radially stretching sheet under the influence of convective boundary conditions. A uniform magnetic field is applied transversely to the direction of the flow. The governing time dependent nonlinear boundary layer equations are reduced into nonlinear ordinary differential equations with the help of similarity transformations. The transformed coupled ordinary differential equations are then solved analytically by homotopy analysis method (HAM and numerically by shooting procedure. Effects of various governing parameters like, power law index n, magnetic parameter M, unsteadiness A, suction/injection S, Biot number γ and generalized Prandtl number Pr on velocity, temperature, local skin friction and the local Nusselt number are studied and discussed. It is found from the analysis that the magnetic parameter diminishes the velocity profile and the corresponding thermal boundary layer thickness. Keywords: Axisymmetric flow, Power law fluid, Unsteady stretching, Convective boundary conditions

  19. SICOS, 2-D Time-Dependent Creep Calculation of Plane or Axisymmetric Concrete Structure

    International Nuclear Information System (INIS)

    Plettenberg, W.; Schmidt, A.

    1984-01-01

    1 - Description of problem or function: Two-dimensional program for time-dependent calculation of plane and axisymmetric composite con- crete structures. Assumed material behaviour: - linear viscoelasticity (creep) for the concrete - Hooke's Law for liner and reinforcement The given structure may be represented by: - triangular constant strain concrete elements, plane or axisymmetric - plane or axisymmetric membrane steel elements (liner) - one-dimensional steel elements, in plane or axisymmetric geometry (prestress cables). Transient pressure loads and temperature distributions may be taken into account. Options for mesh generation, calculation of temperature distributions, restart and the representation of results are included. 2 - Method of solution: The program uses the finite-element method. The solution of the linear equation systems is performed either by utilization of the Gauss-Seidel iteration or by direct Gauss elimination possibly with reiteration. The calculation can also be per- formed with double-precision. 3 - Restrictions on the complexity of the problem: Restriction to axisymmetric and plane problems. Only linear-viscoelastic creep behaviour. No possibility of taking into account aging and shrinkage

  20. Current Harmonics Compensation in Microgrids Exploiting the Power Electronics Interfaces of Renewable Energy Sources

    Directory of Open Access Journals (Sweden)

    Ioannis Bouloumpasis

    2015-03-01

    Full Text Available This work presents a method of current harmonic reduction in a distorted distribution system. In order to evaluate the proposed method a grid with high-order current harmonics is assumed. The reduction of current distortion is feasible due to the pulse modulation of an active filter, which consists of a buck-boost converter connected back-to-back to a polarity swapping inverter. For a practical application, this system would be the power electronic interface of a Renewable Energy Source (RES and therefore it changes a source of harmonics to a damping harmonics system. Using the proposed method, the current Total Harmonic Distortion (THD of the grid is reduced below the acceptable limits and thus the general power quality of the system is improved. Simulations in the MATLAB/SIMULINK platform and experiments have been performed in order to verify the effectiveness of the proposed method.

  1. Statistical Analysis and Comparison of Harmonics Measured in Offshore Wind Farms

    DEFF Research Database (Denmark)

    Kocewiak, Lukasz Hubert; Hjerrild, Jesper; Bak, Claus Leth

    2011-01-01

    The paper shows statistical analysis of harmonic components measured in different offshore wind farms. Harmonic analysis is a complex task and requires many aspects, such as measurements, data processing, modeling, validation, to be taken into consideration. The paper describes measurement process...... and shows sophisticated analysis on representative harmonic measurements from Avedøre Holme, Gunfleet Sands and Burbo Bank wind farms. The nature of generation and behavior of harmonic components in offshore wind farms clearly presented and explained based on probabilistic approach. Some issues regarding...... commonly applied standards are also put forward in the discussion. Based on measurements and data analysis it is shown that a general overview about wind farm harmonic behaviour cannot be fully observed only based on single-value measurements as suggested in the standards but using more descriptive...

  2. Harmonic Propagation and Interaction Evaluation between Small-Scale Wind Farms and Nonlinear Loads

    Directory of Open Access Journals (Sweden)

    Cheng-Xiong Mao

    2013-07-01

    Full Text Available Distributed generation is a flexible and effective way to utilize renewable energy. The dispersed generators are quite close to the load, and pose some power quality problems such as harmonic current emissions. This paper focuses on the harmonic propagation and interaction between a small-scale wind farm and nonlinear loads in the distribution grid. Firstly, by setting the wind turbines as P – Q(V nodes, the paper discusses the expanding Newton-Raphson power flow method for the wind farm. Then the generalized gamma mixture models are proposed to study the non-characteristic harmonic propagation of the wind farm, which are based on Gaussian mixture models, improved phasor clustering and generalized Gamma models. After the integration of the small-scale wind farm, harmonic emissions of nonlinear loads will become random and fluctuating due to the non-stationary wind power. Furthermore, in this paper the harmonic coupled admittance matrix model of nonlinear loads combined with a wind farm is deduced by rigorous formulas. Then the harmonic propagation and interaction between a real wind farm and nonlinear loads are analyzed by the harmonic coupled admittance matrix and generalized gamma mixture models. Finally, the proposed models and methods are verified through the corresponding simulation models in MATLAB/SIMULINK and PSCAD/EMTDC.

  3. Optimization of second-harmonic's quantization precision for intensity modulation noise suppressing in a digital RFOG

    Science.gov (United States)

    Ying, Diqing; Ye, Kebin; Wang, Zeyu; Mao, Jianmin; Jin, Zhonghe

    2017-12-01

    Aiming at the demodulation signal compensation technique for intensity modulation noise suppressing in a digital RFOG, which is based on the detection of closed loop's second-harmonic, the quantization precision for second-harmonic is discussed and optimized. By analyzing second-harmonic's fluctuation under the intensity modulation noise equal to shot noise limited sensitivity, the expression for the required minimum quantization bits of second-harmonic signal is obtained. Based on this expression, numerical simulations are carried out to optimize the quantization bits in a digital RFOG in detail. Based on over-sampling technique, the stability of gyro output signal with different quantization bits and rotation rates is tested to verify the theoretically analyzed results. It is concluded that the minimum quantization bits of second-harmonic is related to the rotation rate and the ratio of second-harmonic's maximum to minimum, and it gets larger as these two parameters are increased. Especially, the required minimum quantization bits for second-harmonic would generally exceed that supported only by hardware circuits, which leads to the adoption of over-sampling technique. And it is proven that the quantization precision improvement for second-harmonic, realized by the over-sampling technique, does work in improving the effect of intensity modulation noise suppressing.

  4. Temperature measurement of an axisymmetric flame using phase shift holographic interferometry with fast Fourier transform

    Science.gov (United States)

    Tieng, S. M.; Lai, W. Z.

    Because of the importance of the temperature scalar measurements in combination diagonostics, application of phase shift holographic interferometry to temperature measurement of an axisymmetrically premixed flame was experimentally investigated. The test apparatus is an axisymmetric Bunsen burner. Propane of 99 percent purity is used as the gaseous fuel. A fast Fourier transform, a more efficient and accurate approach for Abel inversion, is used for reconstructed the axisymmetric temperature field from the interferometric data. The temperature distribution is compared with the thermocouple-measured values. The comparison shows that the proposed technique is satisfactory. The result errors are analyzed in detail. It is shown that this technique overcomes most of the earlier problems and limitations detrimental to the conventional holographic interferometry.

  5. Nuclear pharmacy education: international harmonization

    International Nuclear Information System (INIS)

    Shaw, S.M.; Cox, P.H.

    1998-01-01

    Education of nuclear pharmacists exists in many countries around the world. The approach and level of education varies between countries depending upon the expectations of the nuclear pharmacist, the work site and the economic environment. In Australia, training is provided through distance learning. In Europe and Canada, nuclear pharmacists and radiochemists receive postgraduate education in order to engage in the small-scale preparation and quality control of radiopharmaceuticals as well as research and development. In the U.S.A., nuclear pharmacy practitioners obtain basic knowledge primarily through undergraduate programs taken when pursuit the first professional degree in pharmacy. Licensed practitioners in pharmacy enter the practice of nuclear pharmacy through distance learning programs or short courses. While different approaches to education exist, there is a basic core of knowledge and a level of competence required of all nuclear pharmacists and radiochemists providing radiopharmaceutical products and services. It was with this realization that efforts were initiated to develop harmonization concepts and documents pertaining to education in nuclear pharmacy. The benefits of international harmonization in nuclear pharmacy education are numerous. Assurance of the availability of quality professionals to provide optimal products and care to the patient is a principle benefit. Spanning national barriers through the demonstration of self governance and unification in education will enhance the goal of increased freedom of employment between countries. Harmonization endeavors will improve existing education programs through sharing of innovative concepts and knowledge between educators. Documents generated will benefit new educational programs especially in developing nations. A committee on harmonization in nuclear pharmacy education was formed consisting of educators and practitioners from the international community. A working document on education was

  6. Making space for harmonic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Michelotti, Leo; /Fermilab

    2004-11-01

    If we restrict the number of harmonic oscillator energy eigenstates to some finite value, N, then the discrete spectrum of the corresponding position operator comprise the roots of the Hermite polynomial H{sub N+1}. Its range is just large enough to accommodate classical motion at high energy. A negative energy term must be added to the Hamiltonian which affects only the last eigenstate, |N>, suggesting it is concentrated at the extrema of this finite ''space''. Calculations support a conjecture that, in the limit of large N, the global distribution of points approaches the differential form for classical action.

  7. Non-axisymmetric line-driven disc winds - I. Disc perturbations

    Science.gov (United States)

    Dyda, Sergei; Proga, Daniel

    2018-04-01

    We study mass outflows driven from accretion discs by radiation pressure due to spectral lines. To investigate non-axisymmetric effects, we use the ATHENA++ code and develop a new module to account for radiation pressure driving. In 2D, our new simulations are consistent with previous 2D axisymmetric solutions by Proga et al., who used the ZEUS 2D code. Specifically, we find that the disc winds are time dependent, characterized by a dense stream confined to ˜45° relative to the disc mid-plane and bounded on the polar side by a less dense, fast stream. In 3D, we introduce a vertical, ϕ-dependent, subsonic velocity perturbation in the disc mid-plane. The perturbation does not change the overall character of the solution but global outflow properties such as the mass, momentum, and kinetic energy fluxes are altered by up to 100 per cent. Non-axisymmetric density structures develop and persist mainly at the base of the wind. They are relatively small, and their densities can be a few times higher than the azimuthal average. The structure of the non-axisymmetric and axisymmetric solutions differ also in other ways. Perhaps most importantly from the observational point of view are the differences in the so-called clumping factors, that serve as a proxy for emissivity due to two body processes. In particular, the spatially averaged clumping factor over the entire fast stream, while it is of a comparable value in both solutions, it varies about 10 times faster in the non-axisymmetric case.

  8. Flow of Polymer Melts in Plane- and Axi-symmetric Converging Dies

    DEFF Research Database (Denmark)

    Lauridsen, Carsten Linding; Kjær, Erik Michael; Haudrum, Jan

    1997-01-01

    The extensional flow has considerable influence on the pressure loss in converging flows, which are present in both extrusion and injection moulding. Both plane- and axi-symmetric converging flows have been studied with LDPE, HDPE and PS. The transient extensional viscosities are determined in all...... cases. The extensional viscous description used is the one proposed by Cogswell (3). The extensional viscosities in the two now different flow fields ate compared. The plane-symmetric extensional viscosity is found to be larger than the axi-symmetric for the HDPE melt. The two viscosities are comparable...

  9. The Local Stellar Velocity Field via Vector Spherical Harmonics

    Science.gov (United States)

    Markarov, V. V.; Murphy, D. W.

    2007-01-01

    We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism. We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (V(sub X), V(sub Y), V(sub Z)) (10.5, 18.5, 7.3) +/- 0.1 km s(exp -1) not corrected for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (V(sub X), V(sub Y), V(sub Z)) (9.9, 15.6, 6.9) +/- 0.2 km s(exp -1). The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star. The Oort parameters determined by a straightforward least-squares adjustment in vector spherical harmonics are A=14.0 +/- 1.4, B=13.1 +/- 1.2, K=1.1 +/- 1.8, and C=2.9 +/- 1.4 km s(exp -1) kpc(exp -1). The physical meaning and the implications of these parameters are discussed in the framework of a general linear model of the velocity field. We find a few statistically significant higher degree harmonic terms that do not correspond to any parameters in the classical linear model. One of them, a third-degree electric harmonic, is tentatively explained as the response to a negative linear gradient of rotation velocity with distance from the Galactic plane, which we estimate at approximately -20 km s(exp -1) kpc(exp -1). A similar vertical gradient of rotation velocity has been detected for more distant stars representing the thick disk (z greater than 1 kpc

  10. A neural network model of harmonic detection

    Science.gov (United States)

    Lewis, Clifford F.

    2003-04-01

    Harmonic detection theories postulate that a virtual pitch is perceived when a sufficient number of harmonics is present. The harmonics need not be consecutive, but higher harmonics contribute less than lower harmonics [J. Raatgever and F. A. Bilsen, in Auditory Physiology and Perception, edited by Y. Cazals, K. Horner, and L. Demany (Pergamon, Oxford, 1992), pp. 215-222 M. K. McBeath and J. F. Wayand, Abstracts of the Psychonom. Soc. 3, 55 (1998)]. A neural network model is presented that has the potential to simulate this operation. Harmonics are first passed through a bank of rounded exponential filters with lateral inhibition. The results are used as inputs for an autoassociator neural network. The model is trained using harmonic data for symphonic musical instruments, in order to test whether it can self-organize by learning associations between co-occurring harmonics. It is shown that the trained model can complete the pattern for missing-fundamental sounds. The Performance of the model in harmonic detection will be compared with experimental results for humans.

  11. Introduction to classical and quantum harmonic oscillators

    CERN Document Server

    Bloch, Sylvan C

    2013-01-01

    From conch shells to lasers . harmonic oscillators, the timeless scientific phenomenon As intriguing to Galileo as they are to scientists today, harmonic oscillators have provided a simple and compelling paradigm for understanding the complexities that underlie some of nature's and mankind's most fascinating creations. From early string and wind instruments fashioned from bows and seashells to the intense precision of lasers, harmonic oscillators have existed in various forms, as objects of beauty and scientific use. And harmonic oscillation has endured as one of science's most fascinating con

  12. Effect of undulator harmonics field on free-electron laser harmonic generation

    Directory of Open Access Journals (Sweden)

    Qika Jia

    2011-06-01

    Full Text Available The harmonics field effect of a planar undulator on free-electron laser (FEL harmonic generation has been analyzed. For both the linear case and the nonlinear case, the harmonic fraction of the radiation can be characterized by the coupling coefficients. The modification of the coupling coefficients is given when the third harmonics magnetic field component exists, thus the enhancement of the harmonic radiation can be predicted. The numerical results show that with the third harmonics magnetic field component that has the opposite sign to the fundamental, the intensity of third-harmonic radiation can be increased distinctly for both the small signal gain and the nonlinear harmonic generation. The increase is larger for the smaller undulator deflecting parameter.

  13. Resonantly-initiated quantum trajectories and their role in the generation of near-threshold harmonics

    Science.gov (United States)

    Camp, Seth; Beaulieu, Samuel; Schafer, Kenneth J.; Gaarde, Mette B.

    2018-03-01

    We present a theoretical study of the role that resonant enhancement plays in the temporal and spectral properties of near-threshold harmonics in argon, driven by a moderately intense, near-infrared laser pulse. By studying how the temporal profile of the eleventh harmonic (H11) changes with peak intensity and pulse duration, we show that H11 is predominantly emitted when the instantaneous intensity of the laser pulse is such that a high-lying excited state is Stark-shifted into multiphoton resonance with the ground state. We demonstrate that if this resonant intensity is lower than the peak intensity, the harmonic pulse will in general exhibit two peaks in time, on the rising and falling edges of the laser pulse. The resonantly enhanced harmonic radiation exhibits strong characteristics of semi-classical long and short quantum paths, and in general both paths are enhanced by the resonance. We find that the resonant enhancement leads to the harmonic radiation being emitted between .5 and 1.1 optical cycles after the time of multiphoton resonance, indicating that the resonance introduces a delay as compared to non-resonant emission. We further demonstrate that the resonantly enhanced long-trajectory contribution to the harmonic radiation manifests in the spectral domain as red- and blueshifted features near the central harmonic frequency. Finally, we compare the single argon atom response to the macroscopic response of an argon gas and show that spectral and temporal effects of the resonance are still recognizable after propagation.

  14. Contribution in the area of harmonics in electric power systems; Contribuicoes na area de harmonicos em sistemas eletricos de potencia

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Aloisio de

    1989-07-01

    A general approach of the state of art of the harmonic generation, its sources, its limits, its measurement methods and its effects on the electric system components is presented. This thesis shows that this is an open field to research, modelling and solutions. It also helps towards the investigation of the effects caused by harmonics on the conventional KWh energy meters and on potential and current transformers. It presents the basis for the development and construction of prototypes to be utilized in the generation and measurement of harmonics. Finally a practical approach has been given to calculate the equivalent harmonic impedance as seen by a giving consumer. (author)

  15. Any Admissible Harmonic Ritz Value Set is Possible for GMRES

    Czech Academy of Sciences Publication Activity Database

    Du, K.; Duintjer Tebbens, Jurjen; Meurant, G.

    2017-01-01

    Roč. 47, September 18 (2017), s. 37-56 ISSN 1068-9613 R&D Projects: GA ČR GA13-06684S Institutional support: RVO:67985807 Keywords : Ritz values * harmonic Ritz values * GMRES convergence * prescribed residual norms * FOM convergence Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.925, year: 2016 http://etna.mcs.kent.edu/volumes/2011-2020/vol47/abstract.php?vol=47&pages=37-56

  16. Thermodynamics of trajectories and local fluctuation theorems for harmonic quantum networks

    International Nuclear Information System (INIS)

    Pigeon, Simon; Fusco, Lorenzo; Xuereb, André; Chiara, Gabriele De; Paternostro, Mauro

    2016-01-01

    We present a general method to undertake a thorough analysis of the thermodynamics of the quantum jump trajectories followed by an arbitrary quantum harmonic network undergoing linear and bilinear dynamics. The approach is based on the phase-space representation of the state of a harmonic network. The large deviation function associated with this system encodes the full counting statistics of exchange and also allows one to deduce fluctuation theorems (FTs) obeyed by the dynamics. We illustrate the method showing the validity of a local FT about the exchange of excitations between a restricted part of the environment (i.e., a local bath) and a harmonic network coupled with different schemes. (paper)

  17. Sparsity and Multi-resolution BSS Method for Harmonic Signal Extraction

    Directory of Open Access Journals (Sweden)

    Baofeng CHEN

    2014-05-01

    Full Text Available Using the sparsity property in the frequency domain of harmonic signals, this paper gives a harmonic extraction algorithm based on multi-resolution blind source separation (BSS method. After the general and detailed definition of the multi-resolution BSS model is given, the wavelet packet decomposition based multi-resolution BSS algorithm for harmonic signal extraction is constructed in detail. Some simulations of the proposed algorithm are exhibited in the simulation part to demonstrate the validity of the method. At last, we discuss the impact of multiresolution BSS research and outline potential future research directions and applications.

  18. Input Harmonic Analysis on the Slim DC-Link Drive Using Harmonic State Space Model

    DEFF Research Database (Denmark)

    Yang, Feng; Kwon, Jun Bum; Wang, Xiongfei

    2017-01-01

    variation according to the switching instant, the harmonics at the steady-state condition, as well as the coupling between the multiple harmonic impedances. By using this model, the impaction on the harmonics performance by the film capacitor and the grid inductance is derived. Simulation and experimental...

  19. Harmonic Mitigation Methods in Large Offshore Wind Power Plants

    DEFF Research Database (Denmark)

    Kocewiak, Łukasz Hubert; Chaudhary, Sanjay; Hesselbæk, Bo

    2013-01-01

    Various sources of harmonic problems in large wind power plants (WPPs) and optimized harmonic mitigation methods are presented in this paper. The harmonic problems such as sources of harmonic emission and amplification as well as harmonic stability are identified. Also modern preventive...

  20. Renormalizable N=2 supersymmetric and gauge invariant interactions from the N=2 harmonic superspace with central charges

    International Nuclear Information System (INIS)

    Saidi, E.H.

    1986-04-01

    The N=2 harmonic-superspace in the presence of central charges is developed. Renormalizable interactions unusual in N=2 supersymmetric theories, are derived in a consistent way. Symmetries generated by the central charges are discussed. A certain equivalence between N=2 harmonic superspace with and without central charges is established. A non-abelian generalization of the model is given. (author)

  1. Hyper-spherical harmonics and anharmonics in m-dimensional space

    International Nuclear Information System (INIS)

    Shojaei, M.R.; Rajabi, A.A.; Hasanabadi, H.

    2008-01-01

    In quantum mechanics the hyper-spherical method is one of the most well-established and successful computational tools. The general theory of harmonic polynomials and hyper-spherical harmonics is of central importance in this paper. The interaction potential V is assumed to depend on the hyper-radius ρ only where ρ is the function of the Jacobi relative coordinate x 1 , x 2 ,…, x n which are functions of the particles' relative positions. (author)

  2. Axi-Symmetric Simulation of the Slump Flow Test for Self-Compacting

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm; Szabo, Peter; Geiker, Mette Rica

    2004-01-01

    . This paper presents a numerical axi-symmetric approach for simulation of the slump flow test. Simulations are compared to experimental test results on the rheological properties and slump flow. Former rheological investigations on SCC indicate a non-Newtonian behaviour according to the Bingham model....

  3. Flow of Polymer Melts in Plane- and Axi-symmetric Converging Dies

    DEFF Research Database (Denmark)

    Lauridsen, Carsten Linding; Kjær, Erik Michael; Haudrum, Jan

    1997-01-01

    The extensional flow has considerable influence on the pressure loss in converging flows, which are present in both extrusion and injection moulding. Both plane- and axi-symmetric converging flows have been studied with LDPE, HDPE and PS. The transient extensional viscosities are determined in all...

  4. Studying the coupled eigenoscillations of an axisymmetric tower-elevated tank system by the multimodal method

    Science.gov (United States)

    Gavrilyuk, I.; Hermann, M.; Trotsenko, Yu.; Timokha, A.

    2013-10-01

    Employing the virtual work variational principle and the linear multimodal method for the liquid sloshing in an axisymmetric tank, we study coupled eigenoscillations of a tower and an elevated tank partially filled by a liquid. An emphasis is placed on the case of an upright circular cylindrical tank. Theoretical results are compared with known experimental data.

  5. Dynamic analysis of reactor containment building using axisymmetric finite element model

    International Nuclear Information System (INIS)

    Thakkar, S.K.; Dubey, R.N.

    1989-01-01

    The structural safety of nuclear reactor building during earthquake is of great importance in view of possibility of radiation hazards. The rational evaluation of forces and displacements in various portions of structure and foundation during strong ground motion is most important for safe performance and economic design of the reactor building. The accuracy of results of dynamic analysis is naturally dependent on the type of mathematical model employed. Three types of mathematical models are employed for dynamic analysis of reactor building beam model axisymmetric finite element model and three dimensional model. In this paper emphasis is laid on axisymmetric model. This model of containment building is considered a reinfinement over conventional beam model of the structure. The nuclear reactor building on a rocky foundation is considered herein. The foundation-structure interaction is relatively less in this condition. The objective of the paper is to highlight the significance of modelling of non-axisymmetric portion of building, such as reactor internals by equivalent axisymmetric body, on the structural response of the building

  6. ASSESSMENT OF BACTERIAL BIOSURFACTANT PRODUCTION THROUGH AXISYMMETRICAL DROP SHAPE-ANALYSIS BY PROFILE

    NARCIS (Netherlands)

    VANDERVEGT, W; VANDERMEI, HC; BUSSCHER, HJ

    Axisymmetric drop shape analysis by profile (ADSA-P) is a technique developed in colloid and surface science to simultaneously determine the contact angle and liquid surface tension from the profile of a droplet resting on a solid surface. In this paper is described how ADSA-P can be employed to

  7. Low-frequency behavior of the turbulent axisymmetric near-wake

    NARCIS (Netherlands)

    Gentile, V.; Schrijer, F.F.J.; van Oudheusden, B.W.; Scarano, F.

    2016-01-01

    The turbulent wake past an axisymmetric body is investigated with time-resolved stereoscopic particle image velocimetry (PIV) at a Reynolds number ReD = 6.7 × 104 based on the object diameter. The azimuthal organization of the near-wake is studied at different locations downstream of the trailing

  8. Experimental investigation into the unsteady effects on non-axisymmetric turbine endwall contouring

    CSIR Research Space (South Africa)

    Dunn, Dwain I

    2010-01-01

    Full Text Available Turbine manufacturers are striving to develop turbines that are more efficient. One area of focus has been the control of secondary flows through the use of non-axisymmetric endwalls. The majority of development has been performed in cascades...

  9. Corrections and comments on the multipole moments of axisymmetric electrovacuum spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Sotiriou, Thomas P; Apostolatos, Theocharis A [Section of Astrophysics, Astronomy, and Mechanics Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos GR-15783, Athens (Greece)

    2004-12-21

    Following the method of Hoenselaers and Perjes, we present a new corrected and dimensionally consistent set of multipole gravitational and electromagnetic moments for stationary axisymmetric spacetimes. Furthermore, we use our results to compute the multipole moments, both gravitational and electromagnetic, of a Kerr-Newman black hole.

  10. Electromagnetic Simulations for an Axisymmetric Gregorian Reflector System for a Space Deployed Inflatable Antenna

    Science.gov (United States)

    2016-01-22

    Electromagnetic Simulations for an Axisymmetric Gregorian Reflector System for a Space-Deployed Inflatable Antenna Alan J. Fenn Lincoln...system for potential space deployment is explored. The antenna utilizes a planar array located near the vertex of the primary reflector. Numerical...electromagnetic simulations based on the multilevel fast multipole method (MLFMM) were used to analyze and optimize the antenna parameters for

  11. Hydrodynamic Stability Analysis of the Externally Excited Axisymmetric Mode in Reacting, Swirling Jets

    Science.gov (United States)

    Emerson, Benjamin; Lieuwen, Tim

    2017-11-01

    This study investigates the forced response characteristics of axisymmetric structures in density-stratified swirling jets. The reacting, swirling jet is an important canonical flow field for modern combustion systems. This work is motivated by the combustion instability problem for such systems, where acoustically excited vortical structures may drive oscillatory heat release of combustion. Previous hydrodynamics studies have shown that the stability of helical structures is highly sensitive to the swirl number. However, the combustion literature has shown that axisymmetric structures (in contrast to helical structures) are often responsible for most of the heat release response. Therefore, this work performs a spatial stability analysis to study the swirl number sensitivity of the forced response of the axisymmetric mode. A spatio-temporal analysis is conducted in tandem to investigate the swirl number sensitivity of the impulse response of this mode. The results show that at low values of the swirl number, the axisymmetric mode stability is a weak function of the swirl number, but that new modes and stability bifurcations appear at high swirl numbers.

  12. Flow of Polymer Melts in Plane- and Axi-Symmetric Converging Dies

    DEFF Research Database (Denmark)

    Lauridsen, Carsten Linding; Kjær, Erik Michael; Haudrum, Jan

    1998-01-01

    The extensional flow has considerable influence on the pressure loss in converging flows, which are present in both extrusion and injection moulding. Both plane- and axi-symmetric converging flows have been studied with LDPE, HDPE and PS. The transient extensional viscosities are determined in al...

  13. The Harmonic Series Diverges Again and Again

    Science.gov (United States)

    Kifowit, Steven J.; Stamps, Terra A.

    2006-01-01

    The harmonic series is one of the most celebrated infinite series of mathematics. A quick glance at a variety of modern calculus textbooks reveals that there are two very popular proofs of the divergence of the harmonic series. In this article, the authors survey these popular proofs along with many other proofs that are equally simple and…

  14. The harmonized INFOGEST in vitro digestion method

    NARCIS (Netherlands)

    Egger, Lotti; Ménard, Olivia; Delgado-Andrade, Cristina; Alvito, Paula; Assunção, Ricardo; Balance, Simon; Barberá, Reyes; Brodkorb, Andre; Cattenoz, Thomas; Clemente, Alfonso; Comi, Irene; Dupont, Didier; Garcia-Llatas, Guadalupe; Lagarda, María Jesús; Feunteun, Le Steven; Janssen Duijghuijsen, Lonneke; Karakaya, Sibel; Lesmes, Uri; Mackie, Alan R.; Martins, Carla; Meynier, Anne; Miralles, Beatriz; Murray, B.S.; Pihlanto, Anne; Picariello, Gianluca; Santos, C.N.; Simsek, Sebnem; Recio, Isidra; Rigby, Neil; Rioux, Laurie Eve; Stoffers, Helena; Tavares, Ana; Tavares, Lucelia; Turgeon, Sylvie; Ulleberg, E.K.; Vegarud, G.E.; Vergères, Guy; Portmann, Reto

    2016-01-01

    Within the active field of in vitro digestion in food research, the COST Action INFOGEST aimed to harmonize in vitro protocols simulating human digestion on the basis of physiologically inferred conditions. A harmonized static in vitro digestion (IVD) method was recently published as a primary

  15. (Bi)-harmonicity of (warped) product maps

    International Nuclear Information System (INIS)

    Todjihounde, L.

    2006-01-01

    In this paper we introduce the (warped) product of maps defined between Riemannian (warped) product spaces and we give necessary and sufficient conditions for (warped) product maps to be (bi)-harmonic. We obtain from these results good characterizations of non trivial harmonic metrics and nonharmonic biharmonic metrics on warped product spaces. (author)

  16. Dynamics and control of instrumented harmonic drives

    Science.gov (United States)

    Kazerooni, H.; Ellis, S. R. (Principal Investigator)

    1995-01-01

    Since torque in harmonic drives is transmitted by a pure couple, harmonic drives do not generate radial forces and therefore can be instrumented with torque sensors without interference from radial forces. The installation of torque sensors on the stationary component of harmonic drives (the Flexipline cup in this research work) produce backdrivability needed for robotic and telerobotic compliant maneuvers. Backdrivability of a harmonic drive, when used as torque increaser, means that the output shaft can be rotated via finite amount of torque. A high ratio harmonic drive is non-backdrivable because its output shaft cannot be turned by applying a torque on it. This article first develops the dynamic behavior of a harmonic drive, in particular the non-backdrivability, in terms of a sensitivity transfer function. The instrumentation of the harmonic drive with torque sensor is then described. This leads to a description of the control architecture which allows modulation of the sensitivity transfer function within the limits established by the closed-loop stability. A set of experiments on an active hand controller, powered by a DC motor coupled to an instrumented harmonic drive, is given to exhibit this method's limitations.

  17. Fractal Subseries of the Harmonic Series

    OpenAIRE

    Korvin, Gabor

    2009-01-01

    We study the convergence of certain subseries of the harmonic series corresponding to increasing sequences of integers whose digits in a certain base are not uniformly distributed. We also discuss the case of irregular sequences, where the frequency distribution of some of the digits does not exist. Examples are given for irregular sequences where the corresponding harmonic subseries is convergent, or divergent, respectively.

  18. Effective harmonic oscillator description of anharmonic molecular ...

    Indian Academy of Sciences (India)

    ... a harmonic oscillator eigenfunction with the centroid and width parameter as variational paraeters. It is found that the effective harmonic oscillator approximation provides a description of the anharmonic eigenstates very similar to the vibrational self consistent field results. Coriolis coupling is also included in these studies.

  19. Hyperspherical Harmonics and Their Physical Applications

    DEFF Research Database (Denmark)

    Avery, James Emil; Avery, John Scales

    Hyperspherical harmonics are extremely useful in nuclear physics and reactive scattering theory. However, their use has been confined to specialists with very strong backgrounds in mathematics. This book aims to change the theory of hyperspherical harmonics from an esoteric field, mastered...

  20. Effective harmonic oscillator description of anharmonic molecular ...

    Indian Academy of Sciences (India)

    Administrator

    function as a harmonic oscillator eigenfunction with the centroid and width parameter as variational para- eters. It is found that the effective harmonic oscillator approximation provides a description of the anharmonic eigenstates very similar to the vibrational self consistent field results. Coriolis coupling is also included in ...

  1. Harmonic mapping problem and affine capacity

    OpenAIRE

    Iwaniec, Tadeusz; Kovalev, Leonid V.; Onninen, Jani

    2010-01-01

    The Harmonic Mapping Problem asks when there exists a harmonic homeomorphism between two given domains. It arises in the theory of minimal surfaces and in calculus of variations, specifically in hyperelasticity theory. We investigate this problem for doubly connected domains in the plane, where it already presents considerable challenge and leads to several interesting open questions.

  2. The Harmonic Organization of Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Xiaoqin eWang

    2013-12-01

    Full Text Available A fundamental structure of sounds encountered in the natural environment is the harmonicity. Harmonicity is an essential component of music found in all cultures. It is also a unique feature of vocal communication sounds such as human speech and animal vocalizations. Harmonics in sounds are produced by a variety of acoustic generators and reflectors in the natural environment, including vocal apparatuses of humans and animal species as well as music instruments of many types. We live in an acoustic world full of harmonicity. Given the widespread existence of the harmonicity in many aspects of the hearing environment, it is natural to expect that it be reflected in the evolution and development of the auditory systems of both humans and animals, in particular the auditory cortex. Recent neuroimaging and neurophysiology experiments have identified regions of non-primary auditory cortex in humans and non-human primates that have selective responses to harmonic pitches. Accumulating evidence has also shown that neurons in many regions of the auditory cortex exhibit characteristic responses to harmonically related frequencies beyond the range of pitch. Together, these findings suggest that a fundamental organizational principle of auditory cortex is based on the harmonicity. Such an organization likely plays an important role in music processing by the brain. It may also form the basis of the preference for particular classes of music and voice sounds.

  3. Sunspots and Their Simple Harmonic Motion

    Science.gov (United States)

    Ribeiro, C. I.

    2013-01-01

    In this paper an example of a simple harmonic motion, the apparent motion of sunspots due to the Sun's rotation, is described, which can be used to teach this subject to high-school students. Using real images of the Sun, students can calculate the star's rotation period with the simple harmonic motion mathematical expression.

  4. Achieving sustainable development through tax harmonization ...

    African Journals Online (AJOL)

    Using Nigeria as a case study, this article examines the efficacy of tax harmonization as an option for the achievement of two objectives: the integration of a developing country with other economies, and its sustainable development. It highlights the nexus between tax harmonization – a tax policy option – and sustainable ...

  5. Organometallic Salts Generate Optical Second Harmonics

    Science.gov (United States)

    Marder, Seth R.; Perry, Joseph W.

    1991-01-01

    Series of organometallic salts exhibit large second-order dielectric susceptibilities, as evidenced by generation of second harmonics when illuminated at visible and near-infrared wavelengths. Investigations of these and related compounds continue with view toward development of materials for use as optical second-harmonic generators, electro-optical modulators, optical switches, piezoelectric sensors, and parametric crystals.

  6. Harmonic force field for nitro compounds.

    Science.gov (United States)

    Bellido, Edson P; Seminario, Jorge M

    2012-06-01

    Molecular simulations leading to sensors for the detection of explosive compounds require force field parameters that can reproduce the mechanical and vibrational properties of energetic materials. We developed precise harmonic force fields for alanine polypeptides and glycine oligopeptides using the FUERZA procedure that uses the Hessian tensor (obtained from ab initio calculations) to calculate precise parameters. In this work, we used the same procedure to calculate generalized force field parameters of several nitro compounds. We found a linear relationship between force constant and bond distance. The average angle in the nitro compounds was 116°, excluding the 90° angle of the carbon atoms in the octanitrocubane. The calculated parameters permitted the accurate molecular modeling of nitro compounds containing many functional groups. Results were acceptable when compared with others obtained using methods that are specific for one type of molecule, and much better than others obtained using methods that are too general (these ignore the chemical effects of surrounding atoms on the bonding and therefore the bond strength, which affects the mechanical and vibrational properties of the whole molecule).

  7. Quantum wormholes and harmonic oscillators

    Science.gov (United States)

    Garay, Luis J.

    1993-01-01

    The quantum state of a wormhole can be represented by a path integral over all asymptotically Euclidean four-geometries and all matter fields which have prescribed values, the arguments of the wave function, on a three-surface which divides the space time manifold into two disconnected parts. Minisuperspace models which consist of a homogeneous massless scalar field coupled to a Friedmann-Robertson-Walker space time are considered. Once the path integral over the lapse function is performed, the requirement that the space time be asymptotically Euclidean can be accomplished by fixing the asymptotic gravitational momentum in the remaining path integral. It is argued that there does not exist any wave function which corresponds to asymptotic field configurations such that the effective gravitational constant is negative in the asymptotic region. Then, the wormhole wave functions can be written as linear combinations of harmonic oscillator wave functions.

  8. Damping of coupled harmonic oscillators

    Science.gov (United States)

    Dolfo, Gilles; Vigué, Jacques

    2018-03-01

    When two harmonic oscillators are coupled in the presence of damping, their dynamics exhibit two very different regimes depending on the relative magnitude of the coupling and damping terms At resonance, when the coupling has its largest effect, if the coupling dominates the damping, there is a periodic exchange of energy between the two oscillators while, in the opposite case, the energy transfer from one oscillator to the other one is irreversible. We prove that the border between these two regimes goes through an exceptional point and we briefly explain what is an exceptional point. The present paper is written for undergraduate students, with some knowledge in classical mechanics, but it may also be of interest for graduate students.

  9. Pairwise harmonics for shape analysis

    KAUST Repository

    Zheng, Youyi

    2013-07-01

    This paper introduces a simple yet effective shape analysis mechanism for geometry processing. Unlike traditional shape analysis techniques which compute descriptors per surface point up to certain neighborhoods, we introduce a shape analysis framework in which the descriptors are based on pairs of surface points. Such a pairwise analysis approach leads to a new class of shape descriptors that are more global, discriminative, and can effectively capture the variations in the underlying geometry. Specifically, we introduce new shape descriptors based on the isocurves of harmonic functions whose global maximum and minimum occur at the point pair. We show that these shape descriptors can infer shape structures and consistently lead to simpler and more efficient algorithms than the state-of-the-art methods for three applications: intrinsic reflectional symmetry axis computation, matching shape extremities, and simultaneous surface segmentation and skeletonization. © 2012 IEEE.

  10. Harmonics in large offshore wind farms

    DEFF Research Database (Denmark)

    Kocewiak, Lukasz Hubert

    challenges to the industry in relation to understanding the nature, propagation and effects of harmonics. Recently, the wind power sector is rapidly developing. This creates new challenges to the industry, and therefore more and more research projects, including harmonic analyses especially focused on wind...... power applications, are conducted and that is why the project was initiated and successfully developed. Also experience from the past regarding offshore projects developed in the company and various harmonic aspects causes a need to carry out extensive harmonic research. The research project.......g. measurements, data processing, data analysis, modelling, and models application) in harmonic studies. Based on the framework, also the structure of the report was organized. This allows the reader to go through all of the stages in project development starting from measurements, through data processing...

  11. Harmonics Monitoring Survey on LED Lamps

    Directory of Open Access Journals (Sweden)

    Abdelrahman Ahmed Akila

    2017-03-01

    Full Text Available Light Emitting Diode (LED lamps are being increasingly used in many applications. These LED lamps operate using a driver, which is a switching device. Hence, LED lamps will be a source of harmonics in the power system. These harmonics if not well treated, may cause severe performance and operational problems. In this paper, harmonics (amplitude and phase angles generated by both LED lamps and conventional fluorescent lamps will be studied practically. Then they will be analyzed and evaluated. Compared to each other harmonics generated by both LED and conventional florescent lamps, self mitigation may occur based on the phase angle of these harmonics. All data will be measured using power analyzer and will be done on a sample of actual lamps.

  12. High order harmonic generation in rare gases

    Energy Technology Data Exchange (ETDEWEB)

    Budil, Kimberly Susan [Univ. of California, Davis, CA (United States)

    1994-05-01

    The process of high order harmonic generation in atomic gases has shown great promise as a method of generating extremely short wavelength radiation, extending far into the extreme ultraviolet (XUV). The process is conceptually simple. A very intense laser pulse (I ~1013-1014 W/cm2) is focused into a dense (~1017 particles/cm3) atomic medium, causing the atoms to become polarized. These atomic dipoles are then coherently driven by the laser field and begin to radiate at odd harmonics of the laser field. This dissertation is a study of both the physical mechanism of harmonic generation as well as its development as a source of coherent XUV radiation. Recently, a semiclassical theory has been proposed which provides a simple, intuitive description of harmonic generation. In this picture the process is treated in two steps. The atom ionizes via tunneling after which its classical motion in the laser field is studied. Electron trajectories which return to the vicinity of the nucleus may recombine and emit a harmonic photon, while those which do not return will ionize. An experiment was performed to test the validity of this model wherein the trajectory of the electron as it orbits the nucleus or ion core is perturbed by driving the process with elliptically, rather than linearly, polarized laser radiation. The semiclassical theory predicts a rapid turn-off of harmonic production as the ellipticity of the driving field is increased. This decrease in harmonic production is observed experimentally and a simple quantum mechanical theory is used to model the data. The second major focus of this work was on development of the harmonic "source". A series of experiments were performed examining the spatial profiles of the harmonics. The quality of the spatial profile is crucial if the harmonics are to be used as the source for experiments, particularly if they must be refocused.

  13. Contact analysis of the native radiocapitellar joint compared with axisymmetric and nonaxisymmetric radial head hemiarthroplasty.

    Science.gov (United States)

    Langohr, G Daniel G; Willing, Ryan; Medley, John B; King, Graham J W; Johnson, James A

    2015-05-01

    Radial head (RH) implants are manufactured from stiff materials, resulting in reduced radiocapitellar contact area that may lead to cartilage degeneration. Although the native RH is nonaxisymmetric, most implants are axisymmetric, potentially contributing to altered contact mechanics. This study compared the joint contact area (Ac) and maximum contact stress (σmax) of axisymmetric and nonaxisymmetric RH implants to the native radiocapitellar joint. The contact mechanics of intact elbows derived from cadaveric computed tomography data (n = 15) were compared with axisymmetric (size: 18, 20, 22 mm) and nonaxisymmetric (size: 16 × 18, 18 × 20, 20 × 22 mm) RH hemiarthroplasty reconstructed elbows using Abaqus finite element software. Under a 100 N load, Ac and σmax were computed for ±90° pronation-supination and 0°, 45°, 90°, and 135° flexion. Compared with native, both hemiarthroplasty models produced significantly lower Ac and higher σmax (P < .001). In the best orientation, the nonaxisymmetric RH provided significantly larger Ac at 0° and 135° flexion (P = .03, P = .007) and reduced levels of σmax at 45° and 90° flexion (P = .003, P < .001). However, there was also a worst orientation that reduced Ac and increased σmax for all flexion angles (P < .003 for all). The native RH was less sensitive to rotation than the nonaxisymmetric RH in terms of σmax (P < .001). The axisymmetric RH was not sensitive to rotation. Whereas a nonaxisymmetric RH can provide improved contact mechanics at certain forearm rotations and flexions, there are also orientations where Ac is reduced and σmax is increased. Axisymmetric designs are more consistent throughout forearm rotation and therefore may be more forgiving than the nonaxisymmetric RH implant design used in this study. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  14. Structural relations of harmonic sums and Mellin transforms up to weight w=5

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, Johannes

    2009-01-15

    We derive the structural relations between the Mellin transforms of weighted Nielsen integrals emerging in the calculation of massless or massive single-scale quantities in QED and QCD, such as anomalous dimensions and Wilson coefficients, and other hard scattering cross sections depending on a single scale. The set of all multiple harmonic sums up to weight five cover the sums needed in the calculation of the 3-loop anomalous dimensions. The relations extend the set resulting from the quasi-shuffle product between harmonic sums studied earlier. Unlike the shuffle relations, they depend on the value of the quantities considered. Up to weight w=5, 242 nested harmonic sums contribute. In the present physical applications it is sufficient to consider the sub-set of harmonic sums not containing an index i=-1, which consists out of 69 sums. The algebraic relations reduce this set to 30 sums. Due to the structural relations a final reduction of the number of harmonic sums to 15 basic functions is obtained. These functions can be represented in terms of factorial series, supplemented by harmonic sums which are algebraically reducible. Complete analytic representations are given for these 15 meromorphic functions in the complex plane deriving their asymptotic- and recursion relations. A general outline is presented on the way nested harmonic sums and multiple zeta values emerge in higher order calculations of zero- and single scale quantities. (orig.)

  15. A simulation study of harmonics regeneration in noise reduction for electric and acoustic stimulation.

    Science.gov (United States)

    Hu, Yi

    2010-05-01

    Recent research results show that combined electric and acoustic stimulation (EAS) significantly improves speech recognition in noise, and it is generally established that access to the improved F0 representation of target speech, along with the glimpse cues, provide the EAS benefits. Under noisy listening conditions, noise signals degrade these important cues by introducing undesired temporal-frequency components and corrupting harmonics structure. In this study, the potential of combining noise reduction and harmonics regeneration techniques was investigated to further improve speech intelligibility in noise by providing improved beneficial cues for EAS. Three hypotheses were tested: (1) noise reduction methods can improve speech intelligibility in noise for EAS; (2) harmonics regeneration after noise reduction can further improve speech intelligibility in noise for EAS; and (3) harmonics sideband constraints in frequency domain (or equivalently, amplitude modulation in temporal domain), even deterministic ones, can provide additional benefits. Test results demonstrate that combining noise reduction and harmonics regeneration can significantly improve speech recognition in noise for EAS, and it is also beneficial to preserve the harmonics sidebands under adverse listening conditions. This finding warrants further work into the development of algorithms that regenerate harmonics and the related sidebands for EAS processing under noisy conditions.

  16. Efficiency of the generation of impulsion by cyclotron waves currents of the electrons in an Axisymmetric Tokamak; Eficiencia de la generacion de corrientes de impulsion por ondas ciclotronicas de los electrones en un Tokamak axisimetrico

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez T, C.; Beltran P, M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-07-01

    The neoclassical theory of transport is used to calculate the current efficiency of electronic cyclotron impulsion (ECCD) in an axisymmetric tokamak in the few collisions regime. The standard parameter of the tokamak is used to obtain a system of equations that describe the hydrodynamic of the plasma, where the ponderomotive force (PM) due to high power radio frequency waves is taken in account. The PM force is produced in the proximity of electron cyclotron resonance surface in a specific poloidal localization. The efficiency ECCD is analyzed in the cases of first and second harmonic (for different angles of injection of radio frequency waves) and it is validated using the experimental values of the TCV and T-10 tokamaks. The results are according to those obtained by means of the techniques of the Green functions. (Author)

  17. High-order harmonic generation by polyatomic molecules

    Science.gov (United States)

    Odžak, S.; Hasović, E.; Milošević, D. B.

    2017-04-01

    We present a theory of high-order harmonic generation by arbitrary polyatomic molecules based on the molecular strong-field approximation (MSFA) in the framework of the S-matrix theory. A polyatomic molecule is modeled by an (N + 1)-particle system, which consists of N heavy atomic (ionic) centers and an electron. We derived various versions (with or without the dressing of the initial and/or final molecular state) of the MSFA. The general expression for the T-matrix element takes a simple form for neutral polyatomic molecules. We show the existence of the interference minima in the harmonic spectrum and explain these minima as a multiple-slit type of interference. This is illustrated by numerical examples for the nitrous oxide (N2O) molecule exposed to strong linearly polarized laser field.

  18. Harmonization: A Need for EU Action on Consumer Credit?

    DEFF Research Database (Denmark)

    Jørgensen, Tanja

    2015-01-01

    As in the consumer area in general, the objective of the internal market has been applied as a reason why there is a EU need for action regarding consumer credit. Even though it is more than 25 years ago since the first Consumer Credit Directive harmonized aspects of the legislation in the Member...... States, cross-border activities are still extremely low. The achievement of the internal market depends on the consumers’ and the creditors’ overall incentives to cross-border activities, where harmonized aspects of the legislation are only an insignificant motivation. Despite a need for EU action may...... seem small, there is still a need for EU action, but with a different approach that considers the nature of consumer credit. This means a focus on preventing overindebtedness and ensuring financial stability as well as a high level of consumer protection in a financialized and thereby more complex...

  19. Spherical harmonic expansion of short-range screened Coulomb interactions

    Energy Technology Data Exchange (ETDEWEB)

    Angyan, Janos G [Laboratoire de Cristallographie et de Modelisation des Materiaux Mineraux et Biologiques, UMR 7036, CNRS-Universite Henri Poincare, BP 239, F-54506 Vandoeuvre-les-Nancy (France); Gerber, Iann [Laboratoire de Cristallographie et de Modelisation des Materiaux Mineraux et Biologiques, UMR 7036, CNRS-Universite Henri Poincare, BP 239, F-54506 Vandoeuvre-les-Nancy (France); Marsman, Martijn [Institut fuer Materialphysik and Center for Computational Materials Science, Universitaet Wien, Sensengasse 8, A-1090, Vienna (Austria)

    2006-07-07

    Spherical harmonic expansions of the screened Coulomb interaction kernel involving the complementary error function are required in various problems in atomic, molecular and solid state physics, like for the evaluation of Ewald-type lattice sums or for range-separated hybrid density functionals. A general analytical expression is derived for the kernel, which is non-separable in the radial variables. With the help of series expansions a separable approximate form is proposed, which is in close analogy with the conventional multipole expansion of the Coulomb kernel in spherical harmonics. The convergence behaviour of these expansions is studied and illustrated by the electrostatic potential of an elementary charge distribution formed by products of Slater-type atomic orbitals.

  20. Fourier-Jacobi harmonic analysis and approximation of functions

    International Nuclear Information System (INIS)

    Platonov, S S

    2014-01-01

    We use the methods of Fourier-Jacobi harmonic analysis to study problems of the approximation of functions by algebraic polynomials in weighted function spaces on [−1,1]. We prove analogues of Jackson's direct theorem for the moduli of smoothness of all orders constructed on the basis of Jacobi generalized translations. The moduli of smoothness are shown to be equivalent to K-functionals constructed from Sobolev-type spaces. We define Nikol'skii-Besov spaces for the Jacobi generalized translation and describe them in terms of best approximations. We also prove analogues of some inverse theorems of Stechkin

  1. Selective harmonic control for power converters

    DEFF Research Database (Denmark)

    Zhou, Keliang; Yang, Yongheng; Blaabjerg, Frede

    2014-01-01

    This paper proposes an Internal Model Principle (IMP) based Selective Harmonic Controller (SHC) for power converters. The proposed SHC offers an optimal control solution for power converters to mitigate power harmonics. It makes a good trade-off among cost, complexity and performance. It has high...... accuracy and fast transient response, and it is cost-effective, easy for real-time implementation, and compatible for design rules-of-thumb. An application on a three-phase PWM converter has confirmed the effectiveness of the proposed control scheme in terms of harmonic mitigation....

  2. Harmonic Distortion in CMOS Current Mirrors

    DEFF Research Database (Denmark)

    Bruun, Erik

    1998-01-01

    One of the origins of harmonic distortion in CMOS current mirrors is the inevitable mismatch between the MOS transistors involved. In this paper we examine both single current mirrors and complementary class AB current mirrors and develop an analytical model for the mismatch induced harmonic...... distortion. This analytical model is verified through simulations and is used for a discussion of the impact of mismatch on harmonic distortion properties of CMOS current mirrors. It is found that distortion levels somewhat below 1% can be attained by carefully matching the mirror transistors but ultra low...... distortion is not achievable with CMOS current mirrors...

  3. Double Harmonic Transmission (D.H.T.

    Directory of Open Access Journals (Sweden)

    Sava Ianici

    2006-10-01

    Full Text Available The paper presents the construction and functioning of a new type of harmonic drive named double harmonic transmission (D.H.T.. In the second part of this paper is presented the dynamic analysis of the double harmonic transmission, which is based on the results of the experimental researches on the D.H.T. This study of the stress status and the forces distribution is necessary for to determine the durability on the portant elements of the D.H.T.

  4. Harmonic Aspects of Offshore Wind Farms

    DEFF Research Database (Denmark)

    Kocewiak, Lukasz Hubert; Bak, Claus Leth; Hjerrild, Jesper

    2010-01-01

    This paper presents the aim, the work and the findings of a PhD project entitled "Harmonics in Large Offshore Wind Farms". It focuses on the importance of harmonic analysis in order to obtain a better performance of future wind farms. The topic is investigated by the PhD project at Aalborg...... University (AAU) and DONG Energy. The objective of the project is to improve and understand the nature of harmonic emission and propagation in wind farms (WFs), based on available information, measurement data and simulation tools. The aim of the project is to obtain validated models and analysis methods...... of offshore wind farm (OWF) systems....

  5. Adaptive Virtual Impedance Scheme for Selective Compensation of Voltage Unbalance and Harmonics in Microgrids

    DEFF Research Database (Denmark)

    Savaghebi, Mehdi; Shafiee, Qobad; Vasquez, Juan Carlos

    2015-01-01

    and current inner control loops in order to fix the filter capacitor voltage and a virtual impedance loop mainly for voltage harmonics and unbalance compensation. The virtual impedance is set by the central secondary controller to mitigate the voltage distortion at sensitive load bus (SLB). Secondary...... controller is connected to a measurement unit to obtain the data of voltage harmonics and unbalance at microgrid SLB and broadcasts the commands for adjusting the virtual impedance of each unit. A general case with a combined voltage harmonic and unbalance distortion is considered. In such a case, voltage...... distortion is mitigated by selective insertion of capacitive virtual impedances for negative sequence of fundamental component as well as positive and negative sequences of main harmonics. The values of virtual capacitances are determined based on the required voltage quality at the load bus; thus...

  6. An Active Trap Filter for Switching Harmonics Attenuation of Low-Pulse-Ratio Inverters

    DEFF Research Database (Denmark)

    Bai, Haofeng; Wang, Xiongfei; Loh, Poh Chiang

    2017-01-01

    Switching harmonic attenuation has always been challenging for inverters used in high power conversion applications, where ratio of switching to fundamental frequency is low. Addition of multiple LC-trap filters is no doubt a feasible cost-effective method, which has increasingly been used......, but generally susceptible to filter parameter variations and harmonic resonances. This paper hence presents an alternative Active Trap Filter (ATF), based on a series-LC-filtered inverter, for attenuating switching harmonics in a flexible, while yet not cost burdensome, approach. A direct impedance synthesis...... method has also been proposed for the ATF to better enforce its active switching harmonic bypassing ability. Compared with conventional schemes for controlling active power filters, the proposed method is more readily implemented, since it requires neither current reference generation nor high...

  7. Analysis of Harmonics Suppression by Active Damping Control on Multi Slim DC-link Drives

    DEFF Research Database (Denmark)

    Yang, Feng; Máthé, Lászlo; Lu, Kaiyuan

    2016-01-01

    Compared with conventional dc-link drive, slim dc-link drive is expected to achieve lower cost and longer life time. However, harmonics distortion problem may occur in such drive systems. This paper proposes to use an active damping control method to suppress the harmonic distortion...... with the benefit of low cost and also low loss. A new analysis method, based on the frequency domain impedance model, is presented to explore the mechanism of harmonics suppression. Also, a general method is presented to build the impedance model of a PMSM drive system using Field Oriented Control (FOC) method....... Some design issues, including power levels, current control bandwidth and harmonic interaction, are discussed when the drive system is fed by a weak grid. Case studies on a two-drive system composed by two slim dc-link drive units are provided to verify the proposed analysis method....

  8. A method to remove odd harmonic interferences in square wave reference digital lock-in amplifier.

    Science.gov (United States)

    Li, Gang; Zhang, Shengzhao; Zhou, Mei; Li, Yongcheng; Lin, Ling

    2013-02-01

    Digital lock-in amplifier using square wave reference is much easier to be implemented compared to digital lock-in amplifier using sinusoidal wave reference. However, because of the odd harmonics containing in the square wave reference, the interferences at the odd harmonics of the reference cannot be removed with conventional algorithm. A new square wave digital lock-in algorithm is presented in this paper. It cannot only be capable of removing the interferences of the odd harmonics in the signal, but also can detect the amplitudes and the phases of the interferences. The real and imaginary parts of the frequency component of interest and those of the odd harmonic interferences are calculated simultaneously. The results of simulation experiments show the feasibility of the proposed algorithm. The algorithm is computationally efficient and thus suitable for weak signal detection implemented in the general microprocessor.

  9. An object-oriented approach for harmonization of multimedia markup languages

    Science.gov (United States)

    Chen, Yih-Feng; Kuo, May-Chen; Sun, Xiaoming; Kuo, C.-C. Jay

    2003-12-01

    An object-oriented methodology is proposed to harmonize several different markup languages in this research. First, we adopt the Unified Modelling Language (UML) as the data model to formalize the concept and the process of the harmonization process between the eXtensible Markup Language (XML) applications. Then, we design the Harmonization eXtensible Markup Language (HXML) based on the data model and formalize the transformation between the Document Type Definitions (DTDs) of the original XML applications and HXML. The transformation between instances is also discussed. We use the harmonization of SMIL and X3D as an example to demonstrate the proposed methodology. This methodology can be generalized to various application domains.

  10. Professional Military Development of Major General Ernest N. Harmon

    Science.gov (United States)

    2008-06-13

    Stubbs, Mary Lee and Stanley Russell Conner . Armor-Cavalry: Regular and Reserve, Lineage Series, Part I (Washington, D.C.: Government Printing...College 250 Gibbon Ave. Fort Leavenworth, KS 66027-2314 Defense Technical Information Center/OCA 825 John J. Kingman Rd., Suite 944 Fort Belvoir

  11. A posteriori error estimates for axisymmetric and nonlinear problems

    Czech Academy of Sciences Publication Activity Database

    Křížek, Michal; Němec, J.; Vejchodský, Tomáš

    2001-01-01

    Roč. 15, - (2001), s. 219-236 ISSN 1019-7168 R&D Projects: GA ČR GA201/01/1200; GA MŠk ME 148 Keywords : weigted Sobolev spaces%a posteriori error estimates%finite elements Subject RIV: BA - General Mathematics Impact factor: 0.886, year: 2001

  12. Stability analysis of non-axisymmetric three-dimensional finite ...

    Indian Academy of Sciences (India)

    College, Hooghly 712 103, India. 2Department of Mechanical ... Using a variant of Hill's method, the problem reduces to a generalized Eigen value problem of order nm × nm, with n as the order of ... complicated over years, the number of degrees of freedom involved also increased manifold. ∗. For correspondence. 597 ...

  13. High-harmonic spectroscopy of oriented OCS molecules: emission of even and odd harmonics.

    Science.gov (United States)

    Kraus, P M; Rupenyan, A; Wörner, H J

    2012-12-07

    We study the emission of even and odd high-harmonic orders from oriented OCS molecules. We use an intense, nonresonant femtosecond laser pulse superimposed with its phase-controlled second harmonic field to impulsively align and orient a dense sample of molecules from which we subsequently generate high-order harmonics. The even harmonics appear around the full revivals of the rotational dynamics. We demonstrate perfect coherent control over their intensity through the subcycle delay of the two-color fields. The odd harmonics are insensitive to the degree of orientation, but modulate with the degree of axis alignment, in agreement with calculated photorecombination dipole moments. We further compare the shape of the even and odd harmonic spectra with our calculations and determine the degree of orientation.

  14. Characteristic and Non-Characteristic Harmonics, Harmonic Cancellations and Relevant International Standards in Variable Speed Drives

    Directory of Open Access Journals (Sweden)

    Syed M. Islam

    2002-06-01

    Full Text Available This paper will present a review of characteristic harmonics in both single phase and three phase drive front end rectifiers, discuss recent research findings in identifying sources and production of non-characteristic harmonics and amplification of harmonic levels when the front end rectifiers are fed from non-ideal supply conditions. Significant amount of triplens may be generated due to unbalances in utility supply voltage wave form and anticipated harmonic levels may vary widely. The paper will also discuss international harmonic standards such as the AS 2279, IEEE 519, and IEC 61000 series applicable to rectifier loads. Finally, the paper will present techniques to reduce harmonic levels by mixing of single phase and three phase non-linear loads resulting from mutual cancellations.

  15. Developing Castable Metal Harmonic Drives Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This effort utilizes the high elastic strain limit and net-shaped processing of metallic glasses to fabricate low-cost harmonic drives that outperform steel. ...

  16. Transformation of Real Spherical Harmonics under Rotations

    Science.gov (United States)

    Romanowski, Z.; Krukowski, St.; Jalbout, A. F.

    2008-08-01

    The algorithm rotating the real spherical harmonics is presented. The convenient and ready to use formulae for l = 0, 1, 2, 3 are listed. The rotation in R3 space is determined by the rotation axis and the rotation angle; the Euler angles are not used. The proposed algorithm consists of three steps. (i) Express the real spherical harmonics as the linear combination of canonical polynomials. (ii) Rotate the canonical polynomials. (iii) Express the rotated canonical polynomials as the linear combination of real spherical harmonics. Since the three step procedure can be treated as a superposition of rotations, the searched rotation matrix for real spherical harmonics is a product of three matrices. The explicit formulae of matrix elements are given for l = 0, 1, 2, 3, what corresponds to s, p, d, f atomic orbitals.

  17. Stable harmonic maps from complete manifolds

    International Nuclear Information System (INIS)

    Xin, Y.L.

    1986-01-01

    By choosing distinguished cross-sections in the second variational formula for harmonic maps from manifolds with not too fast volume growth into certain submanifolds in the Euclidean space some Liouville type theorems have been proved in this article. (author)

  18. On conformal supergravity and harmonic superspace

    Energy Technology Data Exchange (ETDEWEB)

    Butter, Daniel [Nikhef Theory Group,Science Park 105, 1098 XG Amsterdam (Netherlands)

    2016-03-16

    This paper describes a fully covariant approach to harmonic superspace. It is based on the conformal superspace description of conformal supergravity and involves extending the supermanifold M{sup 4|8} by the tangent bundle of ℂP{sup 1}. The resulting superspace M{sup 4|8}×TℂP{sup 1} can be identified in a certain gauge with the conventional harmonic superspace M{sup 4|8}×S{sup 2}. This approach not only makes the connection to projective superspace transparent, but simplifies calculations in harmonic superspace significantly by eliminating the need to deal directly with supergravity prepotentials. As an application of the covariant approach, we derive from harmonic superspace the full component action for the sigma model of a hyperkähler cone coupled to conformal supergravity. Further applications are also sketched.

  19. Chemical Applications of Second Harmonic Rayleigh Scattering ...

    Indian Academy of Sciences (India)

    Chemical Applications of Second Harmonic Rayleigh Scattering Puspendu Kumar Das Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012, India pkdas@ipc.iisc.ernet.in.

  20. Reduction of Harmonics by 18-Pulse Rectifier

    Directory of Open Access Journals (Sweden)

    Stanislav Kocman

    2008-01-01

    Full Text Available Operation of such electrical devices as data processing and electronics devices, adjustable speed drives or uninterruptible power supply can cause problems by generating harmonic currents into the network, from which they are supplied. Effects of these harmonic currents are various, they can get worse the quality of supply voltage in the network or to have negative influences on devices connected to this network. There are various technical solutions for reduction of harmonics. One of them is using of multi-pulse rectifiers, whereas the 18-pulse rectifier in the structure of adjustable speed drive is briefly presented in this paper including some results of its behaviour. The examined experimental measurements confirmed its very good efficiency in the harmonic mitigation.

  1. Multisite EPR oximetry from multiple quadrature harmonics.

    Science.gov (United States)

    Ahmad, R; Som, S; Johnson, D H; Zweier, J L; Kuppusamy, P; Potter, L C

    2012-01-01

    Multisite continuous wave (CW) electron paramagnetic resonance (EPR) oximetry using multiple quadrature field modulation harmonics is presented. First, a recently developed digital receiver is used to extract multiple harmonics of field modulated projection data. Second, a forward model is presented that relates the projection data to unknown parameters, including linewidth at each site. Third, a maximum likelihood estimator of unknown parameters is reported using an iterative algorithm capable of jointly processing multiple quadrature harmonics. The data modeling and processing are applicable for parametric lineshapes under nonsaturating conditions. Joint processing of multiple harmonics leads to 2-3-fold acceleration of EPR data acquisition. For demonstration in two spatial dimensions, both simulations and phantom studies on an L-band system are reported. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Harmonic Content of the BESSY FEL Radiation

    CERN Document Server

    Meseck, Atoosa

    2005-01-01

    BESSY proposes a linac-based cascaded High-Gain Harmonic-Generation (HGHG) free electron laser (FEL) multi-user facility. The BESSY soft X-ray FEL will consist of three undulator lines. The associated tunable lasers will cover the spectral range of 230nm to 460nm. Two to four HGHG stages reduce the seed wavelength to the desired radiation range of 1.24nm < λ < 51nm. The harmonic content of the high-intensity radiator output can be used to reduce the number of necessary HGHG stages. Moreover the higher harmonic content of the final output extends the offered spectral range and thus is of high interest for the user community. In this paper, the higher harmonic content of the final output as well as of the output of several radiators are investigated. The main parameters such as output power, pulse duration and bandwidth as well as their suitability for seeding are discussed.

  3. SEVENTH HARMONIC 20 GHz CO-GENERATOR

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L

    2014-04-08

    To satisfy the need for multi-MW rf sources in frequency ranges where commercial sources do not exist, a study was undertaken on a class of devices based on gyro-harmonic frequency multiplication. This mechanism relies upon adding energy in gyrating motion to a linear electron beam that traverses a rotating-mode TE111-mode drive cavity in a dc magnetic field. The beam then drifts along the magnetic field into a second cavity, operating in the TEn11-mode tuned to the nth harmonic of the drive cavity. Studies of this configuration have been carried out for 2 < n < 7. Results are given for multi-MW, efficient operation of a 7th harmonic device operating at 20 GHz, and a 2nd harmonic device operating at 22.4 GHz.

  4. Filtration of harmonics in traction transformer substations, positive side effects on the additional harmonics

    OpenAIRE

    Kolář, Václav; Kocman, Stanislav

    2011-01-01

    The article deals with harmonics filtration in railway traction transformer substations. In traction transforms substations in the Czech Republic there are filters of 3rd and 5th harmonics. The article discuses side effect of these filters – suppression of additional harmonics. The article is based on measurement and simulation results. Przedstawiono metodę filtracji harmonicznych w trakcyjnej podstacji transformatorowej. Przedfstawiono wyniki symulacji i pomiarów. Web of Science ...

  5. Potential of the Galaxy from the Besançon galaxy model including non-axisymmetric components: Preliminary results

    Science.gov (United States)

    Fernández-Trincado, J. G.; Robin, A. C.; Bienaymé, O.; Reylé, C.; Valenzuela, O.; Pichardo, B.

    2014-07-01

    In this contributed poster we present a preliminary attempt to compute a non-axisymmetric potential together with previous axisymmetric potential of the Besançon galaxy model. The contribution by non-axisymmetric components are modeled by the superposition of inhomogeneous ellipsoids to approximate the triaxial bar and superposition of homogeneous oblate spheroids for a stellar halo, possibly triaxial. Finally, we have computed the potential and force field for these non-axisymmetric components in order to constraint the total mass of the Milky Way. We present preliminary results for the rotation curve and the contribution of the bar to it. This approach will allow future studies of dynamical constraints from comparisons of kinematical simulations with upcoming surveys such as RAVE, BRAVA, APOGEE, and GAIA in the near future. More details, are presented in https://gaia.ub.edu/Twiki/pub/GREATITNFC/ProgramFinalconference/Poster_JG.Fern%e1ndez.pdf.

  6. Accurate calculation of high harmonics generated by relativistic Thomson scattering

    International Nuclear Information System (INIS)

    Popa, Alexandru

    2008-01-01

    The recent emergence of the field of ultraintense laser pulses, corresponding to beam intensities higher than 10 18 W cm -2 , brings about the problem of the high harmonic generation (HHG) by the relativistic Thomson scattering of the electromagnetic radiation by free electrons. Starting from the equations of the relativistic motion of the electron in the electromagnetic field, we give an exact solution of this problem. Taking into account the Lienard-Wiechert equations, we obtain a periodic scattered electromagnetic field. Without loss of generality, the solution is strongly simplified by observing that the electromagnetic field is always normal to the direction electron-detector. The Fourier series expansion of this field leads to accurate expressions of the high harmonics generated by the Thomson scattering. Our calculations lead to a discrete HHG spectrum, whose shape and angular distribution are in agreement with the experimental data from the literature. Since no approximations were made, our approach is also valid in the ultrarelativistic regime, corresponding to intensities higher than 10 23 W cm -2 , where it predicts a strong increase of the HHG intensities and of the order of harmonics. In this domain, the nonlinear Thomson scattering could be an efficient source of hard x-rays

  7. Porous gravity currents: Axisymmetric propagation in horizontally graded medium and a review of similarity solutions

    Science.gov (United States)

    Lauriola, I.; Felisa, G.; Petrolo, D.; Di Federico, V.; Longo, S.

    2018-05-01

    We present an investigation on the combined effect of fluid rheology and permeability variations on the propagation of porous gravity currents in axisymmetric geometry. The fluid is taken to be of power-law type with behaviour index n and the permeability to depend from the distance from the source as a power-law function of exponent β. The model represents the injection of a current of non-Newtonian fluid along a vertical bore hole in porous media with space-dependent properties. The injection is either instantaneous (α = 0) or continuous (α > 0). A self-similar solution describing the rate of propagation and the profile of the current is derived under the assumption of small aspect ratio between the current average thickness and length. The limitations on model parameters imposed by the model assumptions are discussed in depth, considering currents of increasing/decreasing velocity, thickness, and aspect ratio, and the sensitivity of the radius, thickness, and aspect ratio to model parameters. Several critical values of α and β discriminating between opposite tendencies are thus determined. Experimental validation is performed using shear-thinning suspensions and Newtonian mixtures in different regimes. A box filled with ballotini of different diameter is used to reproduce the current, with observations from the side and bottom. Most experimental results for the radius and profile of the current agree well with the self-similar solution except at the beginning of the process, due to the limitations of the 2-D assumption and to boundary effects near the injection zone. The results for this specific case corroborate a general model for currents with constant or time-varying volume of power-law fluids propagating in porous domains of plane or radial geometry, with uniform or varying permeability, and the possible effect of channelization. All results obtained in the present and previous papers for the key parameters governing the dynamics of power-law gravity

  8. 12CO emission from EP Aquarii: Another example of an axi-symmetric AGB wind?

    Science.gov (United States)

    Nhung, P. T.; Hoai, D. T.; Winters, J. M.; Le Bertre, T.; Diep, P. N.; Phuong, N. T.; Thao, N. T.; Tuan-Anh, P.; Darriulat, P.

    2015-11-01

    strengthens our interpretation in terms of an axisymmetric outflow. While the phenomenological model presented here reproduces well the general features of the observations, not only qualitatively but also quantitatively, significant differences are also revealed, which would require a better spatial resolution to be properly described and understood. Based on observations carried out with the IRAM Plateau-de-Bure Interferometer and the IRAM 30-m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).

  9. Fractal harmonic law and waterproof/dustproof

    Directory of Open Access Journals (Sweden)

    Kong Hai-Yan

    2014-01-01

    Full Text Available The fractal harmonic law admits that the friction between the pure water and the moving surface is the minimum when fractal dimensions of water in Angstrom scale are equal to fractal dimensions of the moving surface in micro scale. In the paper, the fractal harmonic law is applied to demonstrate the mechanism of waterproof/ dustproof. The waterproof phenomenon of goose feathers and lotus leaves is illustrated to verify our results and experimental results agree well with our theoretical analysis.

  10. International Harmonization of Reactor Licensing Regulations

    International Nuclear Information System (INIS)

    Kuhnt, Dietmar.

    1977-01-01

    The purpose of a harmonization policy for reactor licensing regulations on the basis of already considerable experience is to attain greater rationalisation in this field, in the interest of economic policy and healthy competition, and most important, radiation protection and safety of installations. This paper considers the legal instruments for such harmonization and the conditions for their implementation, in particular within the Communities framework. (NEA) [fr

  11. On solution of Maxwell's equations in axisymmetric domains with edges. Part II: Numerical aspects

    International Nuclear Information System (INIS)

    Nkemzi, Boniface

    2003-10-01

    In this paper we consider the Fourier-finite-element method for treating the Maxwell's equations in three-dimensional axisymmetric domains with reentrant edges. By means of partial Fourier analysis, the 3D BVP is decomposed into an infinite sequence of 2D variational equations in the plane meridian domain of the axisymmetric domain, a finite number of which is considered and treated using nodal H 1 -conforming finite elements. For domains with reentrant edges, the singular field method is employed to compensate the singular behavior of the solutions. Emphases are given to estimates of the Fourier-finite-element approximation error and convergence analysis in the H 1 -norm under different regularity assumptions. (author)

  12. Excitation of nonaxisymmetric perturbations by the axisymmetric explosive magnetorotational instability in Keplerian discs

    Science.gov (United States)

    Shtemler, Yu.; Mond, M.; Liverts, E.

    2018-02-01

    The excitation of nonaxisymmetric quasi-resonant triads by clustering around a dominant axisymmetric explosively unstable magnetorotational instability (MRI) in Keplerian discs is investigated. Clustering, namely, the mutual interactions of a large number of quasi-resonant triads that are connected by a single dominant explosively unstable axisymmetric triad, is invoked in order to provide a viable mechanism for the stabilization of the explosive nature of the latter. The results, however, are of wider scope as the proposed clustering scenario also provides a strong mechanism for the excitation of high-amplitude nonaxisymmetric perturbations. The latter play a major role in the nonlinear evolution of the MRI on the route to fully developed turbulence.

  13. Application of Quasi-Newton methods to the analysis of axisymmetric pressure vessels

    International Nuclear Information System (INIS)

    Parisi, D.A.C.

    1987-01-01

    This work studies the application of Quasi-Newton techniques to material nonlinear analysis of axisymmetrical pressure vessels by the finite element method. In the formulation the material bahavior is described by an isotropic elastoplastic model with strain hardening. The continum is discretized through triangular finite elements of axisymmetrical solids with linear interpolation of the displacement field. The incremental governing equations are derived by the virtual work. The solution of the system of simultaneous nonlinear equations is solved iteratively by the Quasi-Newton method employing the BFGS update. The numerical performance of the proposed method is compared with the Newton-Raphson method and some of its variants through some selected examples. (author) [pt

  14. Effect of Axisymmetric Aft Wall Angle Cavity in Supersonic Flow Field

    Science.gov (United States)

    Jeyakumar, S.; Assis, Shan M.; Jayaraman, K.

    2018-03-01

    Cavity plays a significant role in scramjet combustors to enhance mixing and flame holding of supersonic streams. In this study, the characteristics of axisymmetric cavity with varying aft wall angles in a non-reacting supersonic flow field are experimentally investigated. The experiments are conducted in a blow-down type supersonic flow facility. The facility consists of a supersonic nozzle followed by a circular cross sectional duct. The axisymmetric cavity is incorporated inside the duct. Cavity aft wall is inclined with two consecutive angles. The performance of the aft wall cavities are compared with rectangular cavity. Decreasing aft wall angle reduces the cavity drag due to the stable flow field which is vital for flame holding in supersonic combustor. Uniform mixing and gradual decrease in stagnation pressure loss can be achieved by decreasing the cavity aft wall angle.

  15. High harmonic generation from axial chiral molecules.

    Science.gov (United States)

    Wang, Dian; Zhu, Xiaosong; Liu, Xi; Li, Liang; Zhang, Xiaofan; Lan, Pengfei; Lu, Peixiang

    2017-09-18

    Axial chiral molecules, whose stereogenic element is an axis rather than a chiral center, have attracted widespread interest due to their important application, such as asymmetric synthesis and chirality transfer. We investigate high harmonic generation from axial chiral molecules with bichromatic counterrotating circularly polarized laser fields. High harmonic generation from three typical molecules: (Sa)-3-chloropropa-1,2-dien-1-ol, propadiene, and (Ra)-2,3-pentadiene is simulated with time-dependent density-functional theory and strong field approximation. We found that harmonic spectra for 3D oriented axial chiral molecules exhibit obvious circular dichroism. However, the circular dichroism of High harmonic generation from an achiral molecule is much trivial. Moreover, the dichroism of high harmonic generation still exists when axial chiral molecules are 1D oriented,such as (Sa) -3-chloropropa-1,2-dien-1-ol. For a special form of axial chiral molecules with the formula abC=C=Cab (a, b are different substituents), like (Ra)-2,3-pentadiene, the dichroism discriminations disappear when the molecules are only in 1D orientation. The circular dichroism of high harmonic generation from axial chiral molecules is well explained by the trajectory analysis based on the semiclassical three-step mechanism.

  16. Harmonic moment dynamics in Laplacian growth

    Science.gov (United States)

    Leshchiner, Alexander; Thrasher, Matthew; Mineev-Weinstein, Mark B.; Swinney, Harry L.

    2010-01-01

    Harmonic moments are integrals of integer powers of z=x+iy over a domain. Here, the domain is an exterior of a bubble of air growing in an oil layer between two horizontal closely spaced plates. Harmonic moments are a natural basis for such Laplacian growth phenomena because, unlike other representations, these moments linearize the zero surface tension problem [S. Richardson, J. Fluid Mech. 56, 609 (1972)], so that all moments except the lowest one (the area of the bubble) are conserved in time. In our experiments, we directly determine the harmonic moments and show that for nonzero surface tension, all moments (except the lowest one) decay in time rather than exhibiting the divergences of other representations. Further, we derive an expression that relates the derivative of the kth harmonic moment Mk to measurable quantities (surface tension, viscosity, the distance between the plates, and a line integral over the contour encompassing the growing bubble). The laboratory observations are in good accord with the expression we derive for dMk/dt , which is proportional to the surface tension; thus in the zero surface tension limit, the moments (above k=0 ) are all conserved, in accord with Richardson’s theory. In addition, from the measurements of the time evolution of the harmonic moments we obtain a value for the surface tension that is within 20% of the accepted value. In conclusion, our analysis and laboratory observations demonstrate that an interface dynamics description in terms of harmonic moments is physically realizable and robust.

  17. Utilization of axisymmetrical models in the description of the fluctuating temperature field and in the calculation of turbulent thermal diffusivity

    International Nuclear Information System (INIS)

    Cintra Filho, J. de S.

    1981-01-01

    The fluctuating temperature field structure is studied for the case of turbulent circular pipe flow. Experimentally determined integral length scales are used in modeling this structure in terms of axisymmetric forms. It is found that the appropriate angle of axisymmetry is larger than the one for modeling the large scale velocity structure. The axisymmetric model is then used to examine the validity and the prediction capability of the Tyldesley and Silver's non-spherical eddy diffusivity theory. (Author) [pt

  18. Axisymmetric solid-of-revolution finite elements with rotational degrees of freedom

    CSIR Research Space (South Africa)

    Long, CS

    2009-01-01

    Full Text Available of the axis of radial symmetry. Weissman and Taylor [23] introduced two elements based on the Hellinger- Reissner functional. Their elements employ the popular Pian and Sumihara interpolation, modified to obtain correct rank for the axisymmetric case... option however. Essentially, we adopt the procedure suggested by Jog and Annabat- tula [25], who proposed the selection of interpolation functions such that zero- energy modes (associated with reduced integrations schemes) are captured. In their paper...

  19. Numerical analysis of laser ablation using the axisymmetric two-temperature model

    Science.gov (United States)

    Dziatkiewicz, Jolanta; Majchrzak, Ewa

    2018-01-01

    Laser ablation of the axisymmetric micro-domain is analyzed. To describe the thermal processes occurring in the micro-domain the two-temperature hyperbolic model supplemented by the boundary and initial conditions is used. This model takes into account the phase changes of material (solid-liquid and liquid-vapour) and the ablation process. At the stage of numerical computations the finite difference method with staggered grid is used. In the final part the results of computations are shown.

  20. AxisSPH:devising and validating an axisymmetric smoothed particle hydrodynamics code

    OpenAIRE

    Relaño Castillo, Antonio

    2012-01-01

    A two-dimensional axisymmetric implementation of the smoothed particle hydrodynamics (SPH) technique, called for short AxisSPH, has been described in this thesis, along with a number of basic tests and realistic applications. The main goal of this work was to fill a gap on a topic which has been scarcely addressed in the published literature concerning SPH. Although the application of AxisSPH to the simulation of real problems is restricted to those systems which display the appropriate ...

  1. Effects of shape and stroke parameters on the propulsion performance of an axisymmetric swimmer

    International Nuclear Information System (INIS)

    Peng Jifeng; Alben, Silas

    2012-01-01

    In nature, there exists a special group of aquatic animals which have an axisymmetric body and whose primary swimming mechanism is to use periodic body contractions to generate vortex rings in the surrounding fluid. Using jellyfish medusae as an example, this study develops a mathematical model of body kinematics of an axisymmetric swimmer and uses a computational approach to investigate the induced vortex wakes. Wake characteristics are identified for swimmers using jet propulsion and rowing, two mechanisms identified in previous studies of medusan propulsion. The parameter space of body kinematics is explored through four quantities: a measure of body shape, stroke amplitude, the ratio between body contraction duration and extension duration, and the pulsing frequency. The effects of these parameters on thrust, input power requirement and circulation production are quantified. Two metrics, cruising speed and energy cost of locomotion, are used to evaluate the propulsion performance. The study finds that a more prolate-shaped swimmer with larger stroke amplitudes is able to swim faster, but its cost of locomotion is also higher. In contrast, a more oblate-shaped swimmer with smaller stroke amplitudes uses less energy for its locomotion, but swims more slowly. Compared with symmetric strokes with equal durations of contraction and extension, faster bell contractions increase the swimming speed whereas faster bell extensions decrease it, but both require a larger energy input. This study shows that besides the well-studied correlations between medusan body shape and locomotion, stroke variables also affect the propulsion performance. It provides a framework for comparing the propulsion performance of axisymmetric swimmers based on their body kinematics when it is difficult to measure and analyze their wakes empirically. The knowledge from this study is also useful for the design of robotic swimmers that use axisymmetric body contractions for propulsion. (paper)

  2. Preliminary summary of particle transport effects in non-axisymmetric tandem mirrors

    International Nuclear Information System (INIS)

    Baldwin, D.E.

    1978-01-01

    This report reviews the physical basis for the theory of enhanced transport in non-axisymmetric tandem mirror systems recently published by Ryutov, et al. For TMX and thermal ions in a reactor, the radial loss is estimated to be somewhat less than the axial loss; energetic alphas in reactors are susceptible to rapid loss. A number of variations of current magnetic field designs are suggested for reducing this transport

  3. Solving the Axisymmetric Inverse Heat Conduction Problem by a Wavelet Dual Least Squares Method

    Directory of Open Access Journals (Sweden)

    Fu Chu-Li

    2009-01-01

    Full Text Available We consider an axisymmetric inverse heat conduction problem of determining the surface temperature from a fixed location inside a cylinder. This problem is ill-posed; the solution (if it exists does not depend continuously on the data. A special project method—dual least squares method generated by the family of Shannon wavelet is applied to formulate regularized solution. Meanwhile, an order optimal error estimate between the approximate solution and exact solution is proved.

  4. MHD stability calculations of high-β quasi-axisymmetric stellarators

    International Nuclear Information System (INIS)

    Fu, G.Y.; Ku, L.P.; Pomphrey, N.; Redi, M.; Kessel, C.; Monticello, D.; Reiman, A.; Hughes, M.; Cooper, W.A.; Nuehrenberg, C.

    2001-01-01

    The MHD stability of quasi-axisymmetric compact stellarators is investigated. It is shown that bootstrap current driven external kink modes can be stabilized by a combination of edge magnetic shear and appropriate 3D plasma boundary shaping while maintaining good quasi-axisymmetry. The results demonstrate that there exists a new class of stellarators with quasi-axisymmetry, large bootstrap current, high MHD beta limit, and compact size. (author)

  5. MHD Stability Calculations of High-Beta Quasi-Axisymmetric Stellarators

    International Nuclear Information System (INIS)

    Kessel, C.; Fu, G.Y.; Ku, L.P.; Redi, M.H.; Pomphrey, N.

    1999-01-01

    The MHD stability of quasi-axisymmetric compact stellarators is investigated. It is shown that bootstrap current driven external kink modes can be stabilized by a combination of edge magnetic shear and appropriate 3D plasma boundary shaping while maintaining good quasi-axisymmetry. The results demonstrate that there exists a new class of stellarators with quasi-axisymmetry, large bootstrap current, high MHD beta limit, and compact size

  6. MHD stability calculations of high-β quasi-axisymmetric stellarators

    International Nuclear Information System (INIS)

    Fu, G.Y.; Ku, L.P.; Pomphrey, N.; Redi, M.H.; Kessel, C.; Monticello, D.A.; Reiman, A.; Hughes, M.; Cooper, W.A.; Nuehrenberg, C.

    1999-01-01

    The MHD stability of quasi-axisymmetric compact stellarators is investigated. It is shown that bootstrap current driven external kink modes can be stabilized by a combination of edge magnetic shear and appropriate 3D plasma boundary shaping while maintaining good quasi-axisymmetry. The results demonstrate that there exists a new class of stellarators with quasi-axisymmetry, large bootstrap current, high MHD beta limit, and compact size. (author)

  7. The nonlinear behaviour of axisymmetric hydromagnetic waves in a partially ionized plasma

    International Nuclear Information System (INIS)

    Sawley, M.

    1977-10-01

    Finite amplitude effects in the propagation of axisymmetric hydromagnetic waves in a cylindrical, magnetized plasma are considered. The influence of the Hall term and the presence of neutral atoms on the resulting second order fields is examined. The combined effect of these two factors is to produce a substantial secord order azimuthal field, in addition to the axial field predicted by earlier work which neglected these factors. In some circumstances this azimuthal field is much larger than the axial field. (Author)

  8. Comparison of in vitro flows past a mechanical heart valve in anatomical and axisymmetric aorta models

    Science.gov (United States)

    Haya, Laura; Tavoularis, Stavros

    2017-06-01

    Flow characteristics past a bileaflet mechanical heart valve were measured under physiological flow conditions in a straight tube with an axisymmetric expansion, similar to vessels used in previous studies, and in an anatomical model of the aorta. We found that anatomical features, including the three-lobed sinus and the aorta's curvature affected significantly the flow characteristics. The turbulent and viscous stresses were presented and discussed as indicators for potential blood damage and thrombosis. Both types of stresses, averaged over the two axial measurement planes, were significantly lower in the anatomical model than in the axisymmetric one. This difference was attributed to the lower height-to-width ratio and more gradual contraction of the anatomical aortic sinus. The curvature of the aorta caused asymmetries in the velocity and stress distributions during forward flow. Secondary flows resulting from the aorta's curvature are thought to have redistributed the fluid stresses transversely, resulting in a more homogeneous stress distribution in the anatomical aortic root than in the axisymmetric root. The results of this study demonstrate the importance of modelling accurately the aortic geometry in experimental and computational studies of prosthetic devices. Moreover, our findings suggest that grafts used for aortic root replacement should approximate as closely as possible the shape of the natural sinuses.

  9. Waveforms for optimal sub-keV high-order harmonics with synthesized two- or three-colour laser fields.

    Science.gov (United States)

    Jin, Cheng; Wang, Guoli; Wei, Hui; Le, Anh-Thu; Lin, C D

    2014-05-30

    High-order harmonics extending to the X-ray region generated in a gas medium by intense lasers offer the potential for providing tabletop broadband light sources but so far are limited by their low conversion efficiency. Here we show that harmonics can be enhanced by one to two orders of magnitude without an increase in the total laser power if the laser's waveform is optimized by synthesizing two- or three-colour fields. The harmonics thus generated are also favourably phase-matched so that radiation is efficiently built up in the gas medium. Our results, combined with the emerging intense high-repetition MHz lasers, promise to increase harmonic yields by several orders to make harmonics feasible in the near future as general bright tabletop light sources, including intense attosecond pulses.

  10. Harmonic mapping character of Rosen's bimetric theory of gravity and the geometry of its harmonic mapping space

    International Nuclear Information System (INIS)

    Stoeger, W.R.; Whitman, A.P.; Knill, R.J.

    1985-01-01

    After showing that Rosen's bimetric theory of gravity is a harmonic map, the geometry of the ten-dimensional harmonic mapping space (HMS), and of its nine-dimensional symmetric submanifolds, which are the leaves of the codimension one foliation of the HMS, is detailed. Both structures are global affinely symmetric spaces. For each, the metric, connections, and Riemann, Ricci, and scalar curvatures are given. The Killing vectors in each case are also worked out and related to the ''conserved quantities'' naturally associated with the harmonic mapping character of the theory. The structure of the Rosen HMS is very much like that determined by the DeWitt metric on the six-dimensional Wheeler superspace of all positive definite three-dimensional metrics. It is clear that a slight modification of the Rosen HMS metric will yield the corresponding metric on the space of all four-dimensional metrics of Lorentz signature. Finally, interesting avenues of further research are indicated, particularly with respect to the structure and comparison of Lagrangian-based gravitational theories which are similar to Einstein's general relativity

  11. A static axisymmetric exact solution of f(R)-gravity

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez-Pineres, Antonio C., E-mail: acgutierrez@correo.nucleares.unam.mx [Facultad de Ciencias Basicas, Universidad Tecnologica de Bolivar, CO 131001 Cartagena de Indias (Colombia); Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, A.P. 70-543, 04510 Mexico D.F. (Mexico); Lopez-Monsalvo, Cesar S., E-mail: cesar.slm@correo.nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, A.P. 70-543, 04510 Mexico D.F. (Mexico)

    2013-01-29

    We present an exact, axially symmetric, static, vacuum solution for f(R)-gravity in Weyl's canonical coordinates. We obtain a general explicit expression for the dependence of df(R)/dR upon the r and z coordinates and then the corresponding explicit form of f(R), which must be consistent with the field equations. We analyze in detail the modified Schwarzschild solution in prolate spheroidal coordinates. Finally, we study the curvature invariants and show that, in the case of f(R){ne}R, this solution corresponds to a naked singularity.

  12. Harmonic radiation emission from periodic lattices irradiated by short-pulse elliptically polarized laser light.

    Science.gov (United States)

    Ondarza-Rovira, R; Boyd, T J

    2001-10-01

    Radiated emission at high-order harmonic numbers is observed from thin crystalline layers irradiated by short femtosecond elliptically polarized laser light. The applied external radiation field drives the free electrons in the material to large oscillation amplitudes and harmonics are generated by the electronic response to the periodic lattice potential. A model was modified by introducing a more general expression for the lattice force that by sharpening or by smoothing the potential in turn allows the strength of the electronic perturbation to be varied. The electron motion is computed numerically by solving the electromagnetic force equation and by regarding the lattice potential as a perturbative source. For linearly polarized laser light the radiation spectra are characterized by emission lines forming a flat plateau in the region of low harmonic orders with a sharp cutoff for higher numbers. For circular polarization strong emission is found for two harmonic numbers, the first in the low-harmonic region and the second around the cutoff. By solving analytically the electron motion in an elliptically polarized laser field, an exact expression for the electron displacement in all three spatial directions is found. The amplitude of the oscillations sets the analytic form for calculating the peak harmonic numbers emitted from the laser-lattice interaction. The radiation effect studied here, if detected, might hold some potential as a diagnostic and could be used, in principle, as a method for determining the lattice parameter in crystalline structures.

  13. Magnetohydrodynamic equilibrium of axisymmetric systems with toroidal rotation

    International Nuclear Information System (INIS)

    Mansur, N.L.P.

    1986-01-01

    A model for studying magnetohydrodynamic equilibrium of axisymetrically confined plasma with toroidal rotation, extended to the Grad. Shafranov equation is presented. The expression used for the scalar pressure is modifiec, and the influence of toroidal magnetic field is included, The equation for general motion of axisymetrically confined plasma, particularizing for rotation movements is described. Two cases are compared: one supposes the entropy as a function of poloidal magnetic flux and other supposes the temperature as a function of flux. The equations for these two cases obtaining a simplified expression by others approximations are established. The proposed model is compared with Shibata model, which uses density as function of flux, and with the ideal spheromak model. A set of cases taking in account experimental data is studied. (M.C.K.) [pt

  14. Modeling Sound Propagation Through Non-Axisymmetric Jets

    Science.gov (United States)

    Leib, Stewart J.

    2014-01-01

    A method for computing the far-field adjoint Green's function of the generalized acoustic analogy equations under a locally parallel mean flow approximation is presented. The method is based on expanding the mean-flow-dependent coefficients in the governing equation and the scalar Green's function in truncated Fourier series in the azimuthal direction and a finite difference approximation in the radial direction in circular cylindrical coordinates. The combined spectral/finite difference method yields a highly banded system of algebraic equations that can be efficiently solved using a standard sparse system solver. The method is applied to test cases, with mean flow specified by analytical functions, corresponding to two noise reduction concepts of current interest: the offset jet and the fluid shield. Sample results for the Green's function are given for these two test cases and recommendations made as to the use of the method as part of a RANS-based jet noise prediction code.

  15. Tensor spherical harmonics and tensor multipoles. II. Minkowski space

    International Nuclear Information System (INIS)

    Daumens, M.; Minnaert, P.

    1976-01-01

    The bases of tensor spherical harmonics and of tensor multipoles discussed in the preceding paper are generalized in the Hilbert space of Minkowski tensor fields. The transformation properties of the tensor multipoles under Lorentz transformation lead to the notion of irreducible tensor multipoles. We show that the usual 4-vector multipoles are themselves irreducible, and we build the irreducible tensor multipoles of the second order. We also give their relations with the symmetric tensor multipoles defined by Zerilli for application to the gravitational radiation

  16. On the conformal equivalence of harmonic maps and exponentially harmonic maps

    International Nuclear Information System (INIS)

    Hong Minchun.

    1991-06-01

    Suppose that (M,g) and (N,h) are compact smooth Riemannian manifolds without boundaries. For m = dim M ≥3, and Φ: (M,g) → (N,h) is exponentially harmonic, there exists a smooth metric g-tilde conformally equivalent to g such that Φ: (M,g-tilde) → (N,h) is harmonic. (author). 7 refs

  17. A Combined Experimental and Numerical Modeling Study of the Deformation and Rupture of Axisymmetric Liquid Bridges under Coaxial Stretching.

    Science.gov (United States)

    Zhuang, Jinda; Ju, Y Sungtaek

    2015-09-22

    The deformation and rupture of axisymmetric liquid bridges being stretched between two fully wetted coaxial disks are studied experimentally and theoretically. We numerically solve the time-dependent Navier-Stokes equations while tracking the deformation of the liquid-air interface using the arbitrary Lagrangian-Eulerian (ALE) moving mesh method to fully account for the effects of inertia and viscous forces on bridge dynamics. The effects of the stretching velocity, liquid properties, and liquid volume on the dynamics of liquid bridges are systematically investigated to provide direct experimental validation of our numerical model for stretching velocities as high as 3 m/s. The Ohnesorge number (Oh) of liquid bridges is a primary factor governing the dynamics of liquid bridge rupture, especially the dependence of the rupture distance on the stretching velocity. The rupture distance generally increases with the stretching velocity, far in excess of the static stability limit. For bridges with low Ohnesorge numbers, however, the rupture distance stay nearly constant or decreases with the stretching velocity within certain velocity windows due to the relative rupture position switching and the thread shape change. Our work provides an experimentally validated modeling approach and experimental data to help establish foundation for systematic further studies and applications of liquid bridges.

  18. Analytic electrostatic solution of an axisymmetric accelerator gap

    International Nuclear Information System (INIS)

    Boyd, J.K.

    1995-01-01

    Numerous computer codes calculate beam dynamics of particles traversing an accelerating gap. In order to carry out these calculations the electric field of a gap must be determined. The electric field is obtained from derivatives of the scalar potential which solves Laplace's equation and satisfies the appropriate boundary conditions. An integral approach for the solution of Laplace's equation is used in this work since the objective is to determine the potential and fields without solving on a traditional spatial grid. The motivation is to quickly obtain forces for particle transport, and eliminate the need to keep track of a large number of grid point fields. The problem then becomes one of how to evaluate the appropriate integral. In this work the integral solution has been converted to a finite sum of easily computed functions. Representing the integral solution in this manner provides a readily calculable formulation and avoids a number of difficulties inherent in dealing with an integral that can be weakly convergent in some regimes, and is, in general, highly oscillatory

  19. Regulatory harmonization of the Saskatchewan uranium mines

    International Nuclear Information System (INIS)

    Forbes, R.; Moulding, T.; Alderman, G.

    2006-01-01

    The uranium mining industry in Saskatchewan produces approximately 30% of the world's production of uranium. The industry is regulated by federal and provincial regulators. The Canadian Nuclear Safety Commission is the principal federal regulator. The principal Saskatchewan provincial regulators are Saskatchewan Environment for provincial environmental regulations and Saskatchewan Labour for occupational health and safety regulations. In the past, mine and mill operators have requested harmonization in areas such as inspections and reporting requirements from the regulators. On February 14, 2003, Saskatchewan Environment, Saskatchewan Labour and the Canadian Nuclear Safety Commission signed a historical agreement for federal/provincial co-operation called the Canadian Nuclear Safety Commission - Saskatchewan Administrative Agreement for the Regulation of Health, Safety and the Environment at Saskatchewan Uranium Mines and Mills. This initiative responds to a recommendation made by the Joint Federal-Provincial Panel on Uranium Mining Developments in Northern Saskatchewan in 1997 and lays the groundwork to co-ordinate and harmonize their respective regulatory regimes. The implementation of the Agreement has been very successful. This paper will address the content of the Agreement including the commitments, the deliverables and the expectations for a harmonized compliance program, harmonized reporting, and the review of harmonized assessment and licensing processes as well as possible referencing of Saskatchewan Environment and Saskatchewan Labour regulations in the Nuclear Safety and Control Act. The management and implementation process will also be discussed including the schedule, stakeholder communication, the results to date and the lessons learned. (author)

  20. On the equivalence between the discrete ordinates and the spherical harmonics methods in radiative transfer

    International Nuclear Information System (INIS)

    Barichello, L.B.; Siewert, C.E.

    1998-01-01

    In this work concerning steady-state radiative-transfer calculations in plane-parallel media, the equivalence between the discrete ordinates method and the spherical harmonics method is proved. More specifically, it is shown that for standard radiative-transfer problems without the imposed restriction of azimuthal symmetry the two methods yield identical results for the radiation intensity when the quadrature scheme for the discrete ordinates method is defined by the zeros of the associated Legendre functions and when generalized Mark boundary conditions are used to define the spherical harmonics solution. It is also shown that, with these choices for a quadrature scheme and for the boundary conditions, the two methods can be formulated so as to require the same computational effort. Finally a justification for using the generalized Mark boundary conditions in the spherical harmonics solution is given

  1. Study on A Control Method of PAPF for Resonance Damping and Harmonics Compensation in Power System

    DEFF Research Database (Denmark)

    Zhou, Fang; Wu, Longhui; Chen, Zhe

    2009-01-01

    In power system, capacitors are widely used to compensate reactive power, which generally cause resonance problems in harmonic distorted network. In this paper, A method of using a parallel active power filter (PAPF) to damp the resonances is proposed. The proposed method is compound with traditi......In power system, capacitors are widely used to compensate reactive power, which generally cause resonance problems in harmonic distorted network. In this paper, A method of using a parallel active power filter (PAPF) to damp the resonances is proposed. The proposed method is compound...... with traditional method, it shows that whether the capacitor current is included in the detecting current of PAPF or not. Also the PAPF with proposed method has strong ability in harmonic compensation. Finally, the experiment results are presented to verify the analysis....

  2. Research on the Superposition of Harmonic Loss Considering Skin Effect

    Science.gov (United States)

    Jiang, Li-Min; Yan, Hua-Guang; Meng, Jun-Xia; Yin, Zhong-Dong; Lin, Zhi

    2017-05-01

    Power system harmonic will cause extra power loss. The higher the harmonic order, the more obvious the skin effect, which means current density becomes larger near the surface of conductor. When several harmonics with different frequency exist, whether the current density distribution of each harmonic is independent, and whether the total harmonic loss can be regarded as the sum of each harmonic loss, need further research. In this paper, based on the basic principle of electromagnetic field, the expressions of the current density distribution and power loss under multiple harmonics background are deduced, and the superposition of harmonic loss considering skin effect is also proved, which can provide theory basis of harmonic loss calculation.

  3. Three-Phase Harmonic Analysis Method for Unbalanced Distribution Systems

    Directory of Open Access Journals (Sweden)

    Jen-Hao Teng

    2014-01-01

    Full Text Available Due to the unbalanced features of distribution systems, a three-phase harmonic analysis method is essential to accurately analyze the harmonic impact on distribution systems. Moreover, harmonic analysis is the basic tool for harmonic filter design and harmonic resonance mitigation; therefore, the computational performance should also be efficient. An accurate and efficient three-phase harmonic analysis method for unbalanced distribution systems is proposed in this paper. The variations of bus voltages, bus current injections and branch currents affected by harmonic current injections can be analyzed by two relationship matrices developed from the topological characteristics of distribution systems. Some useful formulas are then derived to solve the three-phase harmonic propagation problem. After the harmonic propagation for each harmonic order is calculated, the total harmonic distortion (THD for bus voltages can be calculated accordingly. The proposed method has better computational performance, since the time-consuming full admittance matrix inverse employed by the commonly-used harmonic analysis methods is not necessary in the solution procedure. In addition, the proposed method can provide novel viewpoints in calculating the branch currents and bus voltages under harmonic pollution which are vital for harmonic filter design. Test results demonstrate the effectiveness and efficiency of the proposed method.

  4. Optical Third-Harmonic Generation in Graphene

    Directory of Open Access Journals (Sweden)

    Sung-Young Hong

    2013-06-01

    Full Text Available We report strong third-harmonic generation in monolayer graphene grown by chemical vapor deposition and transferred to an amorphous silica (glass substrate; the photon energy is in three-photon resonance with the exciton-shifted van Hove singularity at the M point of graphene. The polarization selection rules are derived and experimentally verified. In addition, our polarization- and azimuthal-rotation-dependent third-harmonic-generation measurements reveal in-plane isotropy as well as anisotropy between the in-plane and out-of-plane nonlinear optical responses of graphene. Since the third-harmonic signal exceeds that from bulk glass by more than 2 orders of magnitude, the signal contrast permits background-free scanning of graphene and provides insight into the structural properties of graphene.

  5. Harmonic Maass forms and mock modular forms

    CERN Document Server

    Bringmann, Kathrin; Ono, Ken

    2017-01-01

    Modular forms and Jacobi forms play a central role in many areas of mathematics. Over the last 10-15 years, this theory has been extended to certain non-holomorphic functions, the so-called "harmonic Maass forms". The first glimpses of this theory appeared in Ramanujan's enigmatic last letter to G. H. Hardy written from his deathbed. Ramanujan discovered functions he called "mock theta functions" which over eighty years later were recognized as pieces of harmonic Maass forms. This book contains the essential features of the theory of harmonic Maass forms and mock modular forms, together with a wide variety of applications to algebraic number theory, combinatorics, elliptic curves, mathematical physics, quantum modular forms, and representation theory.

  6. Second International Workshop on Harmonic Oscillators

    Science.gov (United States)

    Han, Daesoo (Editor); Wolf, Kurt Bernardo (Editor)

    1995-01-01

    The Second International Workshop on Harmonic Oscillators was held at the Hotel Hacienda Cocoyoc from March 23 to 25, 1994. The Workshop gathered 67 participants; there were 10 invited lecturers, 30 plenary oral presentations, 15 posters, and plenty of discussion divided into the five sessions of this volume. The Organizing Committee was asked by the chairman of several Mexican funding agencies what exactly was meant by harmonic oscillators, and for what purpose the new research could be useful. Harmonic oscillators - as we explained - is a code name for a family of mathematical models based on the theory of Lie algebras and groups, with applications in a growing range of physical theories and technologies: molecular, atomic, nuclear and particle physics; quantum optics and communication theory.

  7. Optical High Harmonic Generation in C60

    Science.gov (United States)

    Zhang, Guoping

    2005-03-01

    C60 et al. Physical Review Letters Physical Review B High harmonic generation (HHG) requires a strong laser field, but in a relatively weak laser field is sufficient. Numerical results presented here show while its low order harmonics result from the laser field, its high order ones are mainly from the multiple excitations. Since high order harmonics directly correlate electronic transitions, the HHG spectrum accurately measures transition energies. Therefore, is not only a promising material for HHG, but may also present an opportunity to develop HHG into an electronic structure probing tool. References: G. P. Zhang, 91, 176801 (2003); G. P. Zhang and T. F. George, 68, 165410 (2003); P. B. Corkum, 71, 1994 (1993); G. P. Zhang and Thomas F. George, 93, 147401 (2004); H. Niikura ,ature 417, 917 (2002); ibid. 421, 826 (2003); Y. Mairesse ,cience 302, 1540 (2003); A. Baltuska ,ature 421, 611 (2003).

  8. Harmonic and complex analysis in several variables

    CERN Document Server

    Krantz, Steven G

    2017-01-01

    Authored by a ranking authority in harmonic analysis of several complex variables, this book embodies a state-of-the-art entrée at the intersection of two important fields of research: complex analysis and harmonic analysis. Written with the graduate student in mind, it is assumed that the reader has familiarity with the basics of complex analysis of one and several complex variables as well as with real and functional analysis. The monograph is largely self-contained and develops the harmonic analysis of several complex variables from the first principles. The text includes copious examples, explanations, an exhaustive bibliography for further reading, and figures that illustrate the geometric nature of the subject. Each chapter ends with an exercise set. Additionally, each chapter begins with a prologue, introducing the reader to the subject matter that follows; capsules presented in each section give perspective and a spirited launch to the segment; preludes help put ideas into context. Mathematicians and...

  9. Intense Harmonic Emissions Observed in Saturn's Ionosphere

    Science.gov (United States)

    Sulaiman, A. H.; Kurth, W. S.; Persoon, A. M.; Menietti, J. D.; Farrell, W. M.; Ye, S.-Y.; Hospodarsky, G. B.; Gurnett, D. A.; Hadid, L. Z.

    2017-12-01

    The Cassini spacecraft's first Grand Finale orbit was carried out in April 2017. This set of 22 orbits had an inclination of 63° with a periapsis grazing Saturn's ionosphere, thus providing unprecedented coverage and proximity to the planet. Cassini's Radio and Plasma Wave Science instrument repeatedly detected intense electrostatic waves and their harmonics near closest approach in the dayside equatorial topside ionosphere. The fundamental modes were found to both scale and trend best with the H+ plasma or lower hybrid frequencies, depending on the plasma composition considered. The fine-structured harmonics are unlike previous observations, which scale with cyclotron frequencies. We explore their generation mechanism and show strong evidence of their association with whistler mode waves, consistent with theory. The possibility of Cassini's presence in the ionosphere influencing the resonance and harmonics is discussed. Given their link to the lower hybrid frequency, these emissions may offer clues to constraining Saturn's ionospheric properties.

  10. Information-theoretic measures of hyperspherical harmonics

    International Nuclear Information System (INIS)

    Dehesa, J. S.; Lopez-Rosa, S.; Yanez, R. J.

    2007-01-01

    The multidimensional spreading of the hyperspherical harmonics can be measured in a different and complementary manner by means of the following information-theoretic quantities: the Fisher information, the average density or first-order entropic moment, and the Shannon entropy. They give measures of the volume anisotropy of the eigenfunctions of any central potential in the hyperspace. Contrary to the Fisher information, which is a local measure because of its gradient-functional form, the other two quantities have a global character because they are powerlike (average density) and logarithmic (Shannon's entropy) functionals of the hyperspherical harmonics. In this paper we obtain the explicit expression of the first two measures and a lower bound to the Shannon entropy in terms of the labeling indices of the hyperspherical harmonics

  11. Harmonic maass forms and mock modular forms

    CERN Document Server

    Bringmann, Kathrin; Ono, Ken

    2017-01-01

    Modular forms and Jacobi forms play a central role in many areas of mathematics. Over the last 10-15 years, this theory has been extended to certain non-holomorphic functions, the so-called "harmonic Maass forms". The first glimpses of this theory appeared in Ramanujan's enigmatic last letter to G. H. Hardy written from his deathbed. Ramanujan discovered functions he called "mock theta functions" which over eighty years later were recognized as pieces of harmonic Maass forms. This book contains the essential features of the theory of harmonic Maass forms and mock modular forms, together with a wide variety of applications to algebraic number theory, combinatorics, elliptic curves, mathematical physics, quantum modular forms, and representation theory.

  12. Frequency chirp of harmonic and attosecond pulses

    International Nuclear Information System (INIS)

    Varju, K.; Johansson, P; L'Huillier, A.L.; Mairesse, Y.; Salieres, P.

    2005-01-01

    Full text: We have explored in detail the first- and second-order variations of the atomic phase as a function of the laser intensity and harmonic order. This unravels the similitudes and differences existing between the chirp of individual harmonic pulses and the chirp of the attosecond pulses. We show that the two techniques XFROG and RABITT used to characterize the two chirps (respectively) converge to give the same information, namely the values of the mixed partial derivatives of the atomic phase. This underlines the common physical origin of all these phenomena and provides a unified frame for their description and understanding. Ref. 1 (author)

  13. Music of the heavens Kepler's harmonic astronomy

    CERN Document Server

    Stephenson, Bruce

    2014-01-01

    Valued today for its development of the third law of planetary motion, Harmonice mundi (1619) was intended by Kepler to expand on ancient efforts to discern a Creator's plan for the planetary system--an arrangement thought to be based on harmonic relationships. Challenging critics who characterize Kepler's theories of harmonic astronomy as ""mystical,"" Bruce Stephenson offers the first thorough technical analysis of the music the astronomer thought the heavens made, and the logic that led him to find musical patterns in his data. In so doing, Stephenson illuminates crucial aspects of Kepler'

  14. Application of harmonic detection technology in methane telemetry

    Science.gov (United States)

    Huo, Yuehua; Fan, Weiqiang

    2017-08-01

    Methane telemetry plays a vital role in ensuring the safe production of coal mines and monitoring the leakage of natural gas pipelines. Harmonic detection is the key technology of methane telemetry accuracy and sensitivity, but the current telemetry distance is short, the relationship between different modulation parameters is complex, and the harmonic signal is affected by noise interference. These factors seriously affect the development of harmonic detection technology. In this paper, the principle of methane telemetry based on harmonic detection technology is introduced. The present situation and characteristics of harmonic detection technology are expounded. The problems existing in harmonic detection are analyzed. Finally, the future development trend is discussed.

  15. Entanglement in the harmonic chain and quantum fields

    International Nuclear Information System (INIS)

    Kofler, J.; Vedral, V.; Brukner, C.

    2005-01-01

    Full text: Relativistic field theory is a natural basis for the theoretical investigation of quantum entanglement, since the concept of locality and causality is inherently included. Vacuum entanglement of relativistic fields manifests itself in Hawking radiation and the Unruh effect. But it also is encountered in the linear harmonic chain, which - in the continuum limit and if generalized to three spatial dimensions - becomes the real scalar Klein-Gordon field. One can define average position and momentum operators for two separated blocks of oscillators in the harmonic chain and investigate the entanglement - by means of a separability criterion - between these blocks as a function of their distance and the coupling between the oscillators. This motivated us to rewrite the general separability conditions for continuous variables into the language of quantum field theory, where the position and momentum operator become integrals of the Klein-Gordon field and the conjugate momentum field, respectively. The role of the modes (or particles) is then merely played by the space(-time) regions over which the integration takes (author)

  16. An axisymmetric diffusion experiment for the determination of diffusion and sorption coefficients of rock samples.

    Science.gov (United States)

    Takeda, M; Hiratsuka, T; Ito, K; Finsterle, S

    2011-04-25

    Diffusion anisotropy is a critical property in predicting migration of substances in sedimentary formations with very low permeability. The diffusion anisotropy of sedimentary rocks has been evaluated mainly from laboratory diffusion experiments, in which the directional diffusivities are separately estimated by through-diffusion experiments using different rock samples, or concurrently by in-diffusion experiments in which only the tracer profile in a rock block is measured. To estimate the diffusion anisotropy from a single rock sample, this study proposes an axisymmetric diffusion test, in which tracer diffuses between a cylindrical rock sample and a surrounding solution reservoir. The tracer diffusion between the sample and reservoir can be monitored from the reservoir tracer concentrations, and the tracer profile could also be obtained after dismantling the sample. Semi-analytical solutions are derived for tracer concentrations in both the reservoir and sample, accounting for an anisotropic diffusion tensor of rank two as well as the dilution effects from sampling and replacement of reservoir solution. The transient and steady-state analyses were examined experimentally and numerically for different experimental configurations, but without the need for tracer profiling. These experimental configurations are tested for in- and out-diffusion experiments using Koetoi and Wakkanai mudstones and Shirahama sandstone, and are scrutinized by a numerical approach to identify favorable conditions for parameter estimation. The analysis reveals the difficulty in estimating diffusion anisotropy; test configurations are proposed for enhanced identifiability of diffusion anisotropy. Moreover, it is demonstrated that the axisymmetric diffusion test is efficient in obtaining the sorption parameter from both steady-state and transient data, and in determining the effective diffusion coefficient if isotropic diffusion is assumed. Moreover, measuring reservoir concentrations in an

  17. Pyroelectric and pyromagnetic effects on multiphase magneto–electro–elastic cylindrical shells for axisymmetric temperature

    International Nuclear Information System (INIS)

    Kondaiah, P; Shankar, K; Ganesan, N

    2013-01-01

    In this paper, a multiphase magneto–electro–elastic (MEE) cylindrical shell is investigated under thermal environments using semi-analytical finite element procedures. The main aim of this paper is to study the pyroelectric and pyromagnetic effects on multiphase MEE cylindrical shells subjected to a uniform axisymmetric temperature of 50 K under different boundary conditions. This numerical study is mainly focused on the pyroelectric and pyromagnetic effects on system parameters such as thermal displacements, thermal stresses, electric potential, magnetic potential, electric displacements and magnetic flux densities. It is found that there is a significant increase in electric potential due to the pyroelectric and pyromagnetic effects under clamped–free boundary conditions. (paper)

  18. A numerical study of two-phase Stokes flow in an axisymmetric flow-focusing device

    DEFF Research Database (Denmark)

    Jensen, Mads Jakob; Stone, H.A.; Bruus, Henrik

    2006-01-01

    We present a numerical investigation of the time-dependent dynamics of the creation of gas bubbles in an axisymmetric flow-focusing device. The liquid motion is treated as a Stokes flow, and using a generic framework we implement a second-order time-integration scheme and a free-surface model...... in MATLAB, which interfaces with the finite-element software FEMLAB. We derive scaling laws for the volume of a created bubble and for the gas flow rate, and confirm them numerically. Our results are consistent with existing experimental results by Garstecki et al. [Phys. Rev. Lett. 94, 164501 (2005...

  19. Vortex breakdown simulation - A circumspect study of the steady, laminar, axisymmetric model

    Science.gov (United States)

    Salas, M. D.; Kuruvila, G.

    1989-01-01

    The incompressible axisymmetric steady Navier-Stokes equations are written using the streamfunction-vorticity formulation. The resulting equations are discretized using a second-order central-difference scheme. The discretized equations are linearized and then solved using an exact LU decomposition, Gaussian elimination, and Newton iteration. Solutions are presented for Reynolds numbers (based on vortex core radius) 100-1800 and swirl parameter 0.9-1.1. The effects of inflow boundary conditions, the location of farfield and outflow boundaries, and mesh refinement are examined. Finally, the stability of the steady solutions is investigated by solving the time-dependent equations.

  20. Kinetic theory model predictions compared with low-thrust axisymmetric nozzle plume data

    Science.gov (United States)

    Riley, B. R.; Fuhrman, S. J.; Penko, P. F.

    1993-01-01

    A system of nonlinear integral equations equivalent to the steady-state Krook kinetic equation was used to model the flow from a low-thrust axisymmetric nozzle. The mathematical model was used to numerically calculate the number density, temperature, and velocity of a simple gas as it expands into a near vacuum. With these quantities the gas pressure and flow directions of the gas near the exit plane were calculated and compared with experimental values for a low-thrust nozzle of the same geometry and mass flow rate.

  1. On the blow-up problem for the axisymmetric 3D Euler equations

    International Nuclear Information System (INIS)

    Chae, Dongho

    2008-01-01

    In this paper we study the finite time blow-up problem for the axisymmetric 3D incompressible Euler equations with swirl. The evolution equations for the deformation tensor and the vorticity are reduced considerably in this case. Under the assumption of local minima for the pressure on the axis of symmetry with respect to the radial variations we show that the solution blows up in finite time. If we further assume that the second radial derivative vanishes on the axis, then the system reduces to the form of Constantin–Lax–Majda equations and can be integrated explicitly

  2. Complex stiffness formulation for the finite element analysis of anisotropic axisymmetric solids subjected to nonsymmetric loads

    International Nuclear Information System (INIS)

    Frater, J.; Lestingi, J.; Padovan, J.

    1977-01-01

    This paper describes the development of an improved semi-analytical finite element for the stress analysis of anisotropic axisymmetric solids subjected to nonsymmetric loads. Orthogonal functions in the form of finite Fourier exponential transforms, which satisfy the equations of equilibrium of the theory of elasticity for an anisotropic solid of revolution, are used to expand the imposed loadings and displacement field. It is found that the orthogonality conditions for the assumed solution reduce the theta-dependency, thus reducing the three dimensional problem to an infinite series of two dimensional problems. (Auth.)

  3. Modeling and analysis of unsteady axisymmetric squeezing fluid flow through porous medium channel with slip boundary.

    Science.gov (United States)

    Qayyum, Mubashir; Khan, Hamid; Rahim, M Tariq; Ullah, Inayat

    2015-01-01

    The aim of this article is to model and analyze an unsteady axisymmetric flow of non-conducting, Newtonian fluid squeezed between two circular plates passing through porous medium channel with slip boundary condition. A single fourth order nonlinear ordinary differential equation is obtained using similarity transformation. The resulting boundary value problem is solved using Homotopy Perturbation Method (HPM) and fourth order Explicit Runge Kutta Method (RK4). Convergence of HPM solution is verified by obtaining various order approximate solutions along with absolute residuals. Validity of HPM solution is confirmed by comparing analytical and numerical solutions. Furthermore, the effects of various dimensionless parameters on the longitudinal and normal velocity profiles are studied graphically.

  4. Analysis of Unsteady Axisymmetric Squeezing Fluid Flow with Slip and No-Slip Boundaries Using OHAM

    Directory of Open Access Journals (Sweden)

    Mubashir Qayyum

    2015-01-01

    Full Text Available In this manuscript, An unsteady axisymmetric flow of nonconducting, Newtonian fluid squeezed between two circular plates is studied with slip and no-slip boundaries. Using similarity transformation, the system of nonlinear partial differential equations is reduced to a single fourth order ordinary differential equation. The resulting boundary value problems are solved by optimal homotopy asymptotic method (OHAM and fourth order explicit Runge-Kutta method (RK4. It is observed that the results obtained from OHAM are in good agreement with numerical results by means of residuals. Furthermore, the effects of various dimensionless parameters on the velocity profiles are investigated graphically.

  5. The surface effect on axisymmetric wave propagation in piezoelectric cylindrical shells

    Directory of Open Access Journals (Sweden)

    Yunying Zhou

    2015-02-01

    Full Text Available Based on the surface piezoelectricity theory and first-order shear deformation theory, the surface effect on the axisymmetric wave propagating in piezoelectric cylindrical shells is analyzed. The Gurtin–Murdoch theory is utilized to get the nontraditional boundary conditions and constitutive equations of the surface, in company with classical governing equations of the bulk, from which the basic formulations are obtained. Numerical results show that the surface layer has a profound effect on wave characteristics in nanostructure at a higher mode.

  6. Enhanced understanding of non-axisymmetric intrinsic and controlled field impacts in tokamaks

    Science.gov (United States)

    In, Y.; Park, J.-K.; Jeon, Y. M.; Kim, J.; Park, G. Y.; Ahn, J.-W.; Loarte, A.; Ko, W. H.; Lee, H. H.; Yoo, J. W.; Juhn, J. W.; Yoon, S. W.; Park, H.; Physics Task Force in KSTAR, 3D

    2017-11-01

    An extensive study of intrinsic and controlled non-axisymmetric field (δB) impacts in KSTAR has enhanced the understanding about non-axisymmetric field physics and its implications, in particular, on resonant magnetic perturbation (RMP) physics and power threshold (P th) for L-H transition. The n  =  1 intrinsic non-axisymmetric field in KSTAR was measured to remain as low as δB/B 0 ~ 4  ×  10-5 even at high-beta plasmas (β N ~ 2), which corresponds to approximately 20% below the targeted ITER tolerance level. As for the RMP edge-localized-modes (ELM) control, robust n  =  1 RMP ELM-crash-suppression has been not only sustained for more than ~90 τ E, but also confirmed to be compatible with rotating RMP. An optimal window of radial position of lower X-point (i.e. R x   =  1.44+/- 0.02 m) proved to be quite critical to reach full n  =  1 RMP-driven ELM-crash-suppression, while a constraint of the safety factor could be relaxed (q 95  =  5 +/- 0.25). A more encouraging finding was that even when R x cannot be positioned in the optimal window, another systematic scan in the vicinity of the previously optimal R x allows for a new optimal window with relatively small variations of plasma parameters. Also, we have addressed the importance of optimal phasing (i.e. toroidal phase difference between adjacent rows) for n  =  1 RMP-driven ELM control, consistent with an ideal plasma response modeling which could predict phasing-dependent ELM suppression windows. In support of ITER RMP study, intentionally misaligned RMPs have been found to be quite effective during ELM-mitigation stage in lowering the peaks of divertor heat flux, as well as in broadening the ‘wet’ areas. Besides, a systematic survey of P th dependence on non-axisymmetric field has revealed the potential limit of the merit of low intrinsic non-axisymmetry. Considering that the ITER RMP coils are composed of 3-rows, just like in KSTAR, further 3D

  7. Numerical study of stress concentration in localized axisymmetric thinnings in shells and plates

    International Nuclear Information System (INIS)

    Neoberdin, Yu.A.; Maslenok, B.A.; Borintsev, A.B.; Egorov, M.F.; Shvetsov, A.V.

    1981-01-01

    Based on the method of finite elements and that of central composition orthogonal planning, regression equations are obtained for stress concentration coefficients for three different forms of localized thinning of a ring plate subjected to axisymmetric tension. The equations obtained allow the stress concentration coefficients to be determined in a plate and with a sufficient accuracy for practice, in shells over a wide range of changes in the hollow depth, grinding spot diameter and the plate or shell thickness. Recommendations are given as to the hollow shape securing the least stress concentration

  8. Antenna design for microwave hepatic ablation using an axisymmetric electromagnetic model

    Directory of Open Access Journals (Sweden)

    Converse Mark C

    2006-02-01

    Full Text Available Abstract Background An axisymmetric finite element method (FEM model was employed to demonstrate important techniques used in the design of antennas for hepatic microwave ablation (MWA. To effectively treat deep-seated hepatic tumors, these antennas should produce a highly localized specific absorption rate (SAR pattern and be efficient radiators at approved generator frequencies. Methods and results As an example, a double slot choked antenna for hepatic MWA was designed and implemented using FEMLAB™ 3.0. Discussion This paper emphasizes the importance of factors that can affect simulation accuracy, which include boundary conditions, the dielectric properties of liver tissue, and mesh resolution.

  9. Dynamical grid method for time dependent simulations of axisymmetric instabilities in tokamaks

    International Nuclear Information System (INIS)

    Jardin, S.C.; Johnson, J.L.; Greene, J.M.; Grimm, R.C.

    1977-07-01

    A natural nonorthogonal time-dependent coordinate transformation based on the magnetic field lines is utilized for the numerical integration of the two-dimensional axisymmetric time-dependent ideal MHD equations in tokamak geometry. The finite-difference grid is treated as a dynamical variable, and its equations of motion are integrated simultaneously with those for the fluid and magnetic field. The method is applicable to tokamak systems of arbitrary pressure and cross section. It is particularly useful for the nearly incompressible ideal MHD modes which are of interest in tokamak stability studies

  10. Turbulent properties of axisymmetric shock-wave/boundary-layer interaction flows

    Science.gov (United States)

    Brown, J. L.; Kussoy, M. I.; Coakley, T. J.

    1986-01-01

    A combined experimental and computational investigation of an axisymmetric turbulent shock-wave boundary-layer interaction flow is presented. Experimental measurements include both mean and fluctuating data obtained by LDV techniques and identify large scale unsteady motions associated with shock induced separation. Computations using the compressible Navier-Stokes equations, and a two-equation turbulence model are in relatively good agreement with experimental measurements. It is found that the large scale unsteady motions do not appear to have a critical impact on the ability to compute the mean properties of the flows investigated in this paper.

  11. Axisymmetric thermoviscoelastoplastic state of thin laminated shells made of a damageable material

    Science.gov (United States)

    Galishin, A. Z.

    2008-04-01

    A technique for the determination of the axisymmetric thermoviscoelastoplastic state of laminated thin shells made of a damageable material is developed. The technique is based on the kinematic equations of the theory of thin shells that account for transverse shear strains. The thermoviscoplastic equations, which describe the deformation of a shell element along paths of small curvature, are used as the constitutive equations. The equivalent stress that appears in the kinetic equations of damage and creep is determined from a failure criterion that accounts for the stress mode. The thermoviscoplastic deformation of a two-layer shell that models an element of a rocket engine nozzle is considered as an example

  12. An axisymmetric evolution code for the Einstein equations on hyperboloidal slices

    International Nuclear Information System (INIS)

    Rinne, Oliver

    2010-01-01

    We present the first stable dynamical numerical evolutions of the Einstein equations in terms of a conformally rescaled metric on hyperboloidal hypersurfaces extending to future null infinity. Axisymmetry is imposed in order to reduce the computational cost. The formulation is based on an earlier axisymmetric evolution scheme, adapted to time slices of constant mean curvature. Ideas from a previous study by Moncrief and the author are applied in order to regularize the formally singular evolution equations at future null infinity. Long-term stable and convergent evolutions of Schwarzschild spacetime are obtained, including a gravitational perturbation. The Bondi news function is evaluated at future null infinity.

  13. Bin-Picking based on Harmonic Shape Contexts and Graph-Based Matching

    DEFF Research Database (Denmark)

    Moeslund, Thomas B.; Kirkegaard, Jakob

    2006-01-01

    In this work we address the general bin-picking problem where 3D data is available. We apply Harmonic Shape Contexts (HSC) features since these are invariant to translation, scale, and 3D rotation. Each object is divided into a number of sub-models each represented by a number of HSC features. Th...

  14. Integral representations of equally positive integer-indexed harmonic sums at infinity

    OpenAIRE

    Jiu, Lin

    2016-01-01

    We identify a partition-theoretic generalization of Riemann zeta function and the equally positive integer-indexed harmonic sums at infinity, to obtain the generating function and the integral representations of the latter. The special cases coincide with zeta values at positive integer arguments.

  15. Pascu-Type Harmonic Functions with Positive Coefficients Involving Salagean Operator

    Directory of Open Access Journals (Sweden)

    K. Vijaya

    2014-01-01

    harmonic functions which are orientation preserving and univalent in the open unit disc. Among the results presented in this paper including the coeffcient bounds, distortion inequality, and covering property, extreme points, certain inclusion results, convolution properties, and partial sums for this generalized class of functions are discussed.

  16. Spatial mode discrimination using second harmonic generation

    DEFF Research Database (Denmark)

    Delaubert, Vincent; Lassen, Mikael Østergaard; Pulford, David

    2007-01-01

    Second harmonic generation can be used as a technique for controlling the spatial mode structure of optical beams. We demonstrate experimentally the generation of higher order spatial modes, and that it is possible to use nonlinear phase matching as a predictable and robust technique for the conv...

  17. Uniformly locally univalent harmonic map- pings

    Indian Academy of Sciences (India)

    63

    In Section 4, we consider relationships between the space BH(λ) and the harmonic Hardy space. ... Finally, in the last section, as applications of distortion estimate obtained in Section 3, we discuss the ...... [20] Ch. Pommerenke, Uniformly perfect sets and the Poincaré metric, Arch. Math. (Basel) 32(2)(1979), 192–199.

  18. Harmonic dynamical behaviour of thallous halides

    Indian Academy of Sciences (India)

    2015-11-27

    Nov 27, 2015 ... Harmonic dynamical behaviour of thallous halides (TlCl and TlBr) have been studied using the new van der Waals three-body force shell model (VTSM), which incorporates the effects of the van der Waals interaction along with long-range Coulomb interactions, three-body interactions and short-range ...

  19. Collective excitations of harmonically trapped ideal gases

    NARCIS (Netherlands)

    Van Schaeybroeck, B.; Lazarides, A.

    2009-01-01

    We theoretically study the collective excitations of an ideal gas confined in an isotropic harmonic trap. We give an exact solution to the Boltzmann-Vlasov equation; as expected for a single-component system, the associated mode frequencies are integer multiples of the trapping frequency. We show

  20. Laguerre polynomials by a harmonic oscillator

    Science.gov (United States)

    Baykal, Melek; Baykal, Ahmet

    2014-09-01

    The study of an isotropic harmonic oscillator, using the factorization method given in Ohanian's textbook on quantum mechanics, is refined and some collateral extensions of the method related to the ladder operators and the associated Laguerre polynomials are presented. In particular, some analytical properties of the associated Laguerre polynomials are derived using the ladder operators.

  1. Laguerre polynomials by a harmonic oscillator

    International Nuclear Information System (INIS)

    Baykal, Melek; Baykal, Ahmet

    2014-01-01

    The study of an isotropic harmonic oscillator, using the factorization method given in Ohanian's textbook on quantum mechanics, is refined and some collateral extensions of the method related to the ladder operators and the associated Laguerre polynomials are presented. In particular, some analytical properties of the associated Laguerre polynomials are derived using the ladder operators. (paper)

  2. Psychoacoustic Approaches for Harmonic Music Mixing

    Directory of Open Access Journals (Sweden)

    Roman B. Gebhardt

    2016-05-01

    Full Text Available The practice of harmonic mixing is a technique used by DJs for the beat-synchronous and harmonic alignment of two or more pieces of music. In this paper, we present a new harmonic mixing method based on psychoacoustic principles. Unlike existing commercial DJ-mixing software, which determines compatible matches between songs via key estimation and harmonic relationships in the circle of fifths, our approach is built around the measurement of musical consonance. Given two tracks, we first extract a set of partials using a sinusoidal model and average this information over sixteenth note temporal frames. By scaling the partials of one track over ±6 semitones (in 1/8th semitone steps, we determine the pitch-shift that maximizes the consonance of the resulting mix. For this, we measure the consonance between all combinations of dyads within each frame according to psychoacoustic models of roughness and pitch commonality. To evaluate our method, we conducted a listening test where short musical excerpts were mixed together under different pitch shifts and rated according to consonance and pleasantness. Results demonstrate that sensory roughness computed from a small number of partials in each of the musical audio signals constitutes a reliable indicator to yield maximum perceptual consonance and pleasantness ratings by musically-trained listeners.

  3. Challenges and Opportunities for Harmonizing Research Methodology

    DEFF Research Database (Denmark)

    van Hees, V. T.; Thaler-Kall, K.; Wolf, K. H.

    2016-01-01

    Objectives: Raw accelerometry is increasingly being used in physical activity research, but diversity in sensor design, attachment and signal processing challenges the comparability of research results. Therefore, efforts are needed to harmonize the methodology. In this article we reflect on how...

  4. ACCOUNTING HARMONIZATION AND HISTORICAL COST ACCOUNTING

    OpenAIRE

    Valentin Gabriel CRISTEA

    2017-01-01

    There is a huge interest in accounting harmonization and historical costs accounting, in what they offer us. In this article, different valuation models are discussed. Although one notices the movement from historical cost accounting to fair value accounting, each one has its advantages.

  5. Harmonic analysis of Doubly Fed Induction Generators

    DEFF Research Database (Denmark)

    Lindholm, Morten; Rasmussen, Tonny Wederberg

    2003-01-01

    This paper gives an overview of the frequency spectrum of the stator and rotor currents in a doubly fed induction generator (DFIG) used in wind power applications. The paper also presents a method to eliminate higher harmonics and interharmonics in the DFIG stator current. The method is implemented...

  6. Harmonic-hopping in Wallacea's bats.

    Science.gov (United States)

    Kingston, Tigga; Rossiter, Stephen J

    2004-06-10

    Evolutionary divergence between species is facilitated by ecological shifts, and divergence is particularly rapid when such shifts also promote assortative mating. Horseshoe bats are a diverse Old World family (Rhinolophidae) that have undergone a rapid radiation in the past 5 million years. These insectivorous bats use a predominantly pure-tone echolocation call matched to an auditory fovea (an over-representation of the pure-tone frequency in the cochlea and inferior colliculus) to detect the minute changes in echo amplitude and frequency generated when an insect flutters its wings. The emitted signal is the accentuated second harmonic of a series in which the fundamental and remaining harmonics are filtered out. Here we show that three distinct, sympatric size morphs of the large-eared horseshoe bat (Rhinolophus philippinensis) echolocate at different harmonics of the same fundamental frequency. These morphs have undergone recent genetic divergence, and this process has occurred in parallel more than once. We suggest that switching harmonics creates a discontinuity in the bats' perception of available prey that can initiate disruptive selection. Moreover, because call frequency in horseshoe bats has a dual function in resource acquisition and communication, ecological selection on frequency might lead to assortative mating and ultimately reproductive isolation and speciation, regardless of external barriers to gene flow.

  7. Thirring model partition functions and harmonic differentials

    Science.gov (United States)

    Freedman, D. Z.; Pilch, K.

    1988-10-01

    The partition function of the Thirring model on a Riemann surface is calculated using the representation of the model as a fermion interacting with an auxiliary vector potential. The Hodge decomposition of the potential is used and the integral over the harmonic forms is shown to reproduce exactly the soliton sum in the bosonic version of the theory.

  8. Sobolev spaces associated to the harmonic oscillator

    Indian Academy of Sciences (India)

    2Departamento de Matemática, Facultad de Ciencias, Universidad Autónoma de. Madrid, Spain. E-mail: bbongio@math.unl.edu.ar; joseluis.torrea@uam.es. MS received 27 September 2005. Abstract. We define the Hermite–Sobolev spaces naturally associated to the harmonic oscillator H = − + |x|2. Structural properties ...

  9. Information cloning of harmonic oscillator coherent states

    Indian Academy of Sciences (India)

    Abstract. We show that in the case of unknown harmonic oscillator coherent states it is possible to achieve what we call perfect information cloning. By this we mean that it is still possible to make arbitrary number of copies of a state which has exactly the same information content as the original unknown coherent state.

  10. Information cloning of harmonic oscillator coherent states

    Indian Academy of Sciences (India)

    article/fulltext/pram/059/02/0263-0267. Keywords. Cloning; coherent states. Abstract. We show that in the case of unknown harmonic oscillator coherent statesit is possible to achieve what we call perfect information cloning. By this we mean that ...

  11. High order harmonic generation from plasma mirror

    International Nuclear Information System (INIS)

    Thaury, C.

    2008-09-01

    When an intense laser beam is focused on a solid target, its surface is rapidly ionized and forms a dense plasma that reflects the incident field. For laser intensities above few 10 15 W/cm 2 , high order harmonics of the laser frequency, associated in the time domain to a train of atto-second pulses (1 as = 10 18 s), can be generated upon this reflection. Because such a plasma mirror can be used with arbitrarily high laser intensities, this process should eventually lead to the production of very intense pulses in the X-ray domain. In this thesis, we demonstrate that for laser intensities about 10 19 W/cm 2 , two mechanisms can contribute to the generation of high order harmonics: the coherent wake emission and the relativistic emission. These two mechanisms are studied both theoretically and experimentally. In particular, we show that, thanks to very different properties, the harmonics generated by these two processes can be unambiguously distinguished experimentally. We then investigate the phase properties of the harmonic, in the spectral and in the spatial domain. Finally, we illustrate how to exploit the coherence of the generation mechanisms to get information on the dynamics of the plasma electrons. (author)

  12. On computing ellipsoidal harmonics using Jekeli's renormalization

    Czech Academy of Sciences Publication Activity Database

    Sebera, Josef; Bouman, J.; Bosch, W.

    2012-01-01

    Roč. 86, č. 9 (2012), s. 713-726 ISSN 0949-7714 Institutional support: RVO:67985815 Keywords : Earth's gravitational field * spherical and ellipsoidal harmonics * hypergeometric function Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.808, year: 2012

  13. Power Divider for Waveforms Rich in Harmonics

    Science.gov (United States)

    Sims, William Herbert, III

    2005-01-01

    A method for dividing the power of an electronic signal rich in harmonics involves the use of an improved divider topology. A divider designed with this topology could be used, for example, to propagate a square-wave signal in an amplifier designed with a push-pull configuration to enable the generation of more power than could be generated in another configuration.

  14. Recursive harmonic analysis for computing Hansen coefficients

    Science.gov (United States)

    Adel Sharaf, Mohamed; Hassan Selim, Hadia

    2010-12-01

    We report on a simple pure numerical method developed for computing Hansen coefficients by using a recursive harmonic analysis technique. The precision criteria of the computations are very satisfactory and provide materials for computing Hansen's and Hansen's like expansions, and also to check the accuracy of some existing algorithms.

  15. Information cloning of harmonic oscillator coherent states

    Indian Academy of Sciences (India)

    We show that in the case of unknown harmonic oscillator coherent statesit is possible to achieve what we call perfect information cloning. By this we mean that it is still possible to make arbitrary number of copies of a state which has exactly the same information content as the original unknown coherent state. By making use ...

  16. determination of determination of total harmonic distortion

    African Journals Online (AJOL)

    eobe

    Modern day AC power systems are proliferated by the introduction of several kinds of nonlinear loads which generate harmonics in a power system and this has a cumulative negative effect on power quality. Examples of nonlinear loads are power elect nonlinear loads are power electronic devices, which cause distortion of ...

  17. ACCOUNTING HARMONIZATION AND HISTORICAL COST ACCOUNTING

    Directory of Open Access Journals (Sweden)

    Valentin Gabriel CRISTEA

    2017-05-01

    Full Text Available There is a huge interest in accounting harmonization and historical costs accounting, in what they offer us. In this article, different valuation models are discussed. Although one notices the movement from historical cost accounting to fair value accounting, each one has its advantages.

  18. Harmonic manifolds with minimal horospheres are flat

    Indian Academy of Sciences (India)

    spaces and locally rank one symmetric spaces. ... any simply connected harmonic manifold is either flat or a rank one symmetric space. .... constant functions on manifolds. The derivatives ∇. (k) σp···σp ωp can be expressed in terms of the curvature tensor and its covariant derivatives. For example, we have for v ∈ SpM,.

  19. Modelling the harmonized tertiary Institutions Salary Structure ...

    African Journals Online (AJOL)

    This paper analyses the Harmonized Tertiary Institution Salary Structure (HATISS IV) used in Nigeria. The irregularities in the structure are highlighted. A model that assumes a polynomial trend for the zero step salary, and exponential trend for the incremental rates, is suggested for the regularization of the structure.

  20. Selective Harmonic Virtual Impedance for Voltage Source Inverters with LCL filter in Microgrids

    DEFF Research Database (Denmark)

    Savaghebi, Mehdi; Vasquez, Juan Carlos; Jalilian, Alireza Jalilian

    2012-01-01

    is added in order to mitigate the voltage distortion after the output inductor and improve the load sharing among parallel inverters. A general case with a combined voltage harmonic and unbalance distortion is considered. In such a case, voltage distortion is mitigated by inserting capacitive virtual...... impedance for negative sequence of fundamental component as well as positive and negative sequences of main harmonic components. Furthermore, resistive virtual impedances are added at these components in order to provide a proper load sharing and make the overall system more damped. Simulation results...

  1. A single European pharmaceutical market: Does maximum harmonization enhance medicinal product innovation?

    DEFF Research Database (Denmark)

    Faeh, Andrea Beata

    2013-01-01

    The pharmaceutical sector in the European Union is innovative, but not innovative enough to compete on the world market. This article addresses this issue from the perspective of market harmonization, since the European Commission perceives – according to the ‘European 2020 Flagship Initiative...... – Innovation Union’ – market fragmentation to be one of the major causes of the lack of innovation. In order to establish if maximum harmonization benefits innovation, two distinct legal regimes in the pharmaceutical sector will be compared. The general rules for medicinal products are weighed against...

  2. Relationship between harmonic analysis on SU(2) and on SL(2,C)/SU(2)

    International Nuclear Information System (INIS)

    Healy, D.M. Jr.

    1986-01-01

    A topic of interest in harmonic analysis is the comparison of Fourier transforms on compact and noncompact spaces. The Poisson summation formula provides a classical example of this idea by providing an explicit relationship between harmonic analysis on the real line R and on the circle S 1 . This dissertation provides a new geometric proof of this formula, and then generalizes this approach to obtain a relationship between Fourier transforms on Upsilon, the space of positive matrices in SL(2,C), and Fourier transforms on SU(2)

  3. Confluent hypergeometric orthogonal polynomials related to the rational quantum Calogero system with harmonic confinement

    International Nuclear Information System (INIS)

    van Diejen, J.F.

    1997-01-01

    Two families (type A and type B) of confluent hypergeometric polynomials in several variables are studied. We describe the orthogonality properties, differential equations, and Pieri-type recurrence formulas for these families. In the one-variable case, the polynomials in question reduce to the Hermite polynomials (type A) and the Laguerre polynomials (type B), respectively. The multivariable confluent hypergeometric families considered here may be used to diagonalize the rational quantum Calogero models with harmonic confinement (for the classical root systems) and are closely connected to the (symmetric) generalized spherical harmonics investigated by Dunkl. (orig.)

  4. The Role of the Harmonic Vector Average in Motion Integration

    Directory of Open Access Journals (Sweden)

    Alan eJohnston

    2013-10-01

    Full Text Available The local speeds of object contours vary systematically with the cosine of the angle between the normal component of the local velocity and the global object motion direction. An array of Gabor elements whose speed changes with local spatial orientation in accordance with this pattern can appear to move as a single surface. The apparent direction of motion of plaids and Gabor arrays has variously been proposed to result from feature tracking, vector addition and vector averaging in addition to the geometrically correct global velocity as indicated by the intersection of constraints (IOC solution. Here a new combination rule, the harmonic vector average (HVA, is introduced, as well as a new algorithm for computing the IOC solution. The vector sum can be discounted as an integration strategy as it increases with the number of elements. The vector average over local vectors that vary in direction always provides an underestimate of the true global speed. The harmonic vector average however provides the correct global speed and direction for an unbiased sample of local velocities with respect to the global motion direction, as is the case for a simple closed contour. The HVA over biased samples provides an aggregate velocity estimate that can still be combined through an IOC computation to give an accurate estimate of the global velocity, which is not true of the vector average. Psychophysical results for type II Gabor arrays show perceived direction and speed falls close to the intersection of constraints direction for Gabor arrays having a wide range of orientations but the IOC prediction fails as the mean orientation shifts away from the global motion direction and the orientation range narrows. In this case perceived velocity generally defaults to the harmonic vector average.

  5. Studies on phase and squeezed states of quantum harmonic oscillators

    International Nuclear Information System (INIS)

    Ma, Xin.

    1989-01-01

    A fundamental quantum-mechanical problem on the phase of quantum harmonic oscillators, which has remained an enigma for more than sixty years since the first treatment by Dirac, is completely solved. Contrary to the common belief that no Hermitian phase operators can be found to describe the phase properties of a quantum harmonic oscillator, a well-defined Hermitian phase operator with an appropriate classical limit is constructed unambiguously. The approach is different in nature from those of many previous attempts which were more or less based on the idea of polar decomposition of the annihilation operator. The fundamental difference between the quantum phase and the classical phase in spite of their conceptual consistency is pointed out and explained. The eigenvalue spectrum and eigenstates of the phase operator are obtained. Some important properties of the phase operator and phase states are investigated. The rest of this research is devoted to the studies of multimode Gaussian squeezed states of quantum harmonic oscillators. Multimode squeeze operators and rotation operators are defined such that they have extremely similar algebraic properties as those of their single-mode counterparts. It is shown that the introduction of N-mode squeeze operators provides a convenient set of parameters to describe squeezing in multimode Gaussian squeezed states. The disentangling, normal ordering, and some other properties of N-mode squeeze operators are investigated. It is also shown that the time-evolution operator for a general N-mode quadratic Hamiltonian can be conveniently expressed as an operator product containing an N-mode squeeze operator, an N-mode rotation operator, and an N-mode displacement operator

  6. Probabilistic Aspects of Harmonic Emission of Large Offshore Wind Farms

    DEFF Research Database (Denmark)

    Jensen, Christian Flytkjær; Bak, Claus Leth; Kocewiak, Lukasz Hubert

    2011-01-01

    In this article, a new probabilistic method of as-sessment of harmonic emission of large offshore wind farms is presented. Based on measurements from the British wind farm Burbo Banks, probability density functions are estimated for the dominating low order harmonic currents injected by a single...... turbine. The degree and type of dependence between the harmonic emission and the operating point of a single turbine is established. A model of Burbo Banks, suitable for harmonic load flow studies, is created in DIgSILENT Power Factory along with a DPL-script that deals with the probabilistic issues...... of the harmonic emission. The simulated harmonic distortion at the PCC is compared to measurement. This reveals some diffi-culties regarding harmonic load flow studies. The harmonic background distortion in the grid to where the wind farm is connected must be included in the study. Furthermore, a very detailed...

  7. Equivariant harmonic maps into the sphere via isoparametric maps

    International Nuclear Information System (INIS)

    Xin, Y.L.

    1992-08-01

    By using concrete isoparametric maps we obtain some new equivariant harmonic maps between spheres and solve equivariant boundary value problems for harmonic maps from unit open ball B m+1 into S n . (author). 22 refs

  8. Technical notes. Spherical harmonics approximations of neutron transport

    Energy Technology Data Exchange (ETDEWEB)

    Demeny, A.; Dede, K.M.; Erdei, K.

    1976-12-01

    A double-range spherical harmonics approximation obtained by expanding the angular flux separately in the two regions combined with the conventional single-range spherical harmonics is found to give superior description of neutron transport.

  9. Hail, Procrustes! Harmonized accounting standards as a Procrustean bed

    NARCIS (Netherlands)

    Stecher, J.; Suijs, J.P.M.

    2012-01-01

    This article finds that the use of a harmonized accounting standard, such as the International Financial Reporting Standards, increases the information available to markets only if institutional differences across countries using the harmonized standard are insignificant. In all other cases,

  10. Calculation of harmonic losses and ampacity in low-voltage power cables when used for feeding large LED lighting loads

    Directory of Open Access Journals (Sweden)

    N. J. Milardovich

    2014-10-01

    Full Text Available A numerical investigation on the harmonic disturbances in low-voltage cables feeding large LED loads is reported. A frequency domain analysis on several commercially-available LEDs was performed to investigate the signature of the harmonic current injected into the power system. Four-core cables and four single-core cable arrangements (three phases and neutral of small, medium, and large conductor cross sections, with the neutral conductor cross section approximately equal to the half of the phase conductors, were examined. The cables were modelled by using electromagnetic finite-element analysis software. High harmonic power losses (up to 2.5 times the value corresponding to an undistorted current of the same rms value of the first harmonic of the LED current were found. A generalized ampacity model was employed for re-rating the cables. It was found that the cross section of the neutral conductor plays an important role in the derating of the cable ampacity due to the presence of a high-level of triplen harmonics in the distorted current. The ampacity of the cables should be derated by about 40 %, almost independent of the conductor cross sections. The calculation have shown that an incoming widespread use of LED lamps in lighting could create significant additional harmonic losses in the supplying low-voltage lines, and thus more severely harmonic emission limits should be defined for LED lamps.

  11. High spin rotations of nuclei with the harmonic oscillator potential

    International Nuclear Information System (INIS)

    Cerkaski, M.; Szymanski, Z.

    1978-01-01

    Calculations of the nuclear properties at high angular momentum have been performed recently. They are based on the liquid drop model of a nucleus and/or on the assumption of the single particle shell structure of the nucleonic motion. The calculations are usually complicated and involve long computer codes. In this article we shall discuss general trends in fast rotating nuclei in the approximation of the harmonic oscillator potential. We shall see that using the Bohr Mottelson simplified version of the rigorous solution of Valatin one can perform a rather simple analysis of the rotational bands, structure of the yrast line, moments of inertia etc. in the rotating nucleus. While the precision fit to experimental data in actual nuclei is not the purpose of this paper, one can still hope to reach some general understanding within the model of the simple relations resulting in nuclei at high spin. (author)

  12. DETERMINATION OF AVERAGED AXISYMMETRIC FLOW SURFACES AND MERIDIAN STREAMLINES IN THE CENTRIFUGAL PUMP USING NUMERICAL SIMULATION RESULTS

    Directory of Open Access Journals (Sweden)

    Jasmina Bogdanović-Jovanović

    2017-12-01

    Full Text Available One of the most important aims in the turbo pump design is to achieve an optimal design of the pump impeller. The basic assumption in the design procedure of the impeller is that of the axisymmetric fluid flow. It can be confirmed or disputed by using the method presented in the paper, which uses the results of numerical simulation of fluid flow in the pump impeller. The method is actually a procedure for determining averaged axisymmetric flow surfaces and meridian streamlines. Furthermore, according to the obtained streamlines, a correction of the impeller blade geometry can be made (if the streamlines deviate significantly from the assumed axisymmetric ones. It is also possible to calculate the specific works of the elementary stages and compare them with the previous assumptions. The pump impeller torque can be calculated as well.

  13. Non-Ideal ELM Stability and Non-Axisymmetric Field Penetration Calculations with M3D-C1

    Science.gov (United States)

    Ferraro, N. M.; Chu, M. S.; Snyder, P. B.; Jardin, S. C.; Luo, X.

    2009-11-01

    Numerical studies of ELM stability and non-axisymmetric field penetration in diverted DIII-D and NSTX equilibria are presented, with resistive and finite Larmor radius effects included. These results are obtained with the nonlinear two-fluid code M3D-C1, which has recently been extended to allow linear non-axisymmetric calculations. Benchmarks of M3D-C1 with ideal codes ELITE and GATO show good agreement for the linear stability of peeling-ballooning modes in the ideal limit. New calculations of the resistive stability of ideally stable DIII-D equilibria are presented. M3D-C1 has also been used to calculate the linear response to non-axisymmetric external fields; these calculations are benchmarked with Surfmn and MARS-F. New numerical methods implemented in M3D-C1 are presented, including the treatment of boundary conditions with C^1 elements in a non-rectangular mesh.

  14. RHIC susceptibility to variations in systematic magnetic harmonic errors

    International Nuclear Information System (INIS)

    Dell, G.F.; Peggs, S.; Pilat, F.; Satogata, T.; Tepikian, S.; Trbojevic, D.; Wei, J.

    1994-01-01

    Results of a study to determine the sensitivity of tune to uncertainties of the systematic magnetic harmonic errors in the 8 cm dipoles of RHIC are reported. Tolerances specified to the manufacturer for tooling and fabrication can result in systematic harmonics different from the expected values. Limits on the range of systematic harmonics have been established from magnet calculations, and the impact on tune from such harmonics has been established

  15. Harmonic calculation software for industrial applications with ASDs

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Asiminoaei, Lucian; Hansen, Steffan

    2007-01-01

    This article describes the evaluation of new harmonic calculation software. By using a combination of a prestored database and new interpolation techniques the software can provide the harmonic data on real applications of a very fast speed. The harmonic results obtained with this software have...... acceptable precision even with limited input data. The evaluation concludes that this approach is very practical compared to other advanced harmonic analysis methods. The results are supported by comparisons of calculations and masurements given in an industrial application....

  16. Harmonic Calculation Software for Industrial Applications with Adjustable Speed Drives

    DEFF Research Database (Denmark)

    Asiminoaei, Lucian; Hansen, S.; Blaabjerg, Frede

    2005-01-01

    This paper describes the evaluation of a new harmonic software. By using a combination of a pre-stored database and new interpolation techniques the software can very fast provide the harmonic data on real applications. The harmonic results obtained with this software have acceptable precision even...... with limited input data. The evaluation concludes here that this approach is very practical compared to other advanced harmonic analysis methods. The results are supported by comparisons of calculations and measurements given in an industrial application....

  17. A novel harmonic current sharing control strategy for parallel-connected inverters

    DEFF Research Database (Denmark)

    Guan, Yajuan; Guerrero, Josep M.; Savaghebi, Mehdi

    2017-01-01

    A novel control strategy which enables proportional linear and nonlinear loads sharing among paralleled inverters and voltage harmonic suppression is proposed in this paper. The proposed method is based on the autonomous currents sharing controller (ACSC) instead of conventional power droop control......) is used to proportionally share current components at different sequences and orders independently among the paralleled inverters. Proportional resonance controllers tuned at selected frequencies are used to suppress voltage harmonics. Simulations based on two 2.2 kW paralleled three-phase inverters...... to provide fast transient response, decoupling control and large stability margin. The current components at different sequences and orders are decomposed by a multi-second-order generalized integrator-based frequency locked loop (MSOGI-FLL). A harmonic-orthogonal-virtual-resistances controller (HOVR...

  18. The Legal Framework for Harmonization of Value Added Tax (VAT in European Union

    Directory of Open Access Journals (Sweden)

    Bedri PECI

    2017-03-01

    Full Text Available This article examines legal framework for harmonization of VAT, the role and basic principles of VAT in EU. It generally describes the nature and scope of the EU VAT system and the framework of the birth of EU VAT system, including the treatment of directives (Sixth VAT Directive, 1977 and the concept of harmonization of tax system in order to achieve the objectives of integration policies. The article also considers the impact have played the harmonization of national legal system and a fundamental role in the European integration process. It concludes that removing barriers to trade between countries ensure freedom of movement the persons, goods, services and capital it seems to be a significant steps forward and a prerequisite for the creation and effective functioning of the single market. The methods used are logical, normative, synthesis, deduction and comparative analysis of directives.

  19. Internal-Model-Principle-Based Specific Harmonics Repetitive Controller for Grid-Connected PWM Inverters

    Directory of Open Access Journals (Sweden)

    Wenzhou Lu

    2016-01-01

    Full Text Available This paper analyzes the general properties of IMP-based controller and presents an internal-model-principle-based (IMP-based specific harmonics repetitive control (SHRC scheme. The proposed SHRC is effective for specific nk±m order harmonics, with n>m≥0 and k=0,1,2,…. Using the properties of exponential function, SHRC can also be rewritten into the format of multiple resonant controllers in parallel, where the control gain of SHRC is n/2 multiple of that of conventional RC (CRC. Therefore, including SHRC in a stable closed-loop feedback control system, asymptotic disturbance eliminating, or reference tracking for any periodic signal only including these specific harmonic components at n/2 times faster error convergence rate compared with CRC can be achieved. Application examples of SHRC controlled three-phase/single-phase grid-connected PWM inverters demonstrate the effectiveness and advantages of the proposed SHRC scheme.

  20. Sensitivity of echo enabled harmonic generation to sinusoidal electron beam energy structure

    Directory of Open Access Journals (Sweden)

    E. Hemsing

    2017-06-01

    Full Text Available We analytically examine the bunching factor spectrum of a relativistic electron beam with sinusoidal energy structure that then undergoes an echo-enabled harmonic generation (EEHG transformation to produce high harmonics. The performance is found to be described primarily by a simple scaling parameter. The dependence of the bunching amplitude on fluctuations of critical parameters is derived analytically, and compared with simulations. Where applicable, EEHG is also compared with high gain harmonic generation (HGHG and we find that EEHG is generally less sensitive to several types of energy structure. In the presence of intermediate frequency modulations like those produced by the microbunching instability, EEHG has a substantially narrower intrinsic bunching pedestal.