WorldWideScience

Sample records for axially symmetric deformed

  1. Chaotic motion in axially symmetric potentials with oblate quadrupole deformation

    Energy Technology Data Exchange (ETDEWEB)

    Letelier, Patricio S. [Departamento de Matematica Aplicada, IMECC, Universidade Estadual de Campinas, 13083-859, Campinas, SP (Brazil); Ramos-Caro, Javier, E-mail: javier@ime.unicamp.br [Departamento de Matematica Aplicada, IMECC, Universidade Estadual de Campinas, 13083-859, Campinas, SP (Brazil); Lopez-Suspes, Framsol, E-mail: framsol@gmail.com [Facultad de Telecomunicaciones, Universidad Santo Tomas and Escuela de Fisica, Universidad Industrial de Santander, Bucaramanga (Colombia)

    2011-10-03

    By computing the Poincare's surfaces of section and Lyapunov exponents, we study the effect of introducing an oblate quadrupole in the dynamics associated with two generic spherical potentials of physical interest: the central monopole and the isotropic harmonic oscillator. In the former case we find saddle points in the effective potential, in contrast to the statements presented by Gueron and Letelier in [E. Gueron, P.S. Letelier, Phys. Rev. E 63 (2001) 035201]. The results we show in the second case have application in nuclear or atomic physics. In particular, we find values of oblate deformation leading to a disappearance of shell structure in the single-particle spectrum. -- Highlights: → We find chaotic motion around a monopole with oblate quadrupole deformation. → This corrects the statements introduced in [E. Gueron, P.S. Letelier, Phys. Rev. E 63 (2001) 035201]. → We present an alternative model for the potential due to an oblate deformed nuclei. → This leads to stochastic regions in the phase space of classical orbits. → It suggests that the shell structure of single-particle spectrum tends to disappear.

  2. Charge-exchange QRPA with the Gogny Force for Axially-symmetric Deformed Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Martini, M., E-mail: martini.marco@gmail.com [Institut d' Astronomie et d' Astrophysique, Université Libre de Bruxelles, CP-226, 1050 Brussels (Belgium); CEA, DAM, DIF, F-91297 Arpajon (France); Goriely, S. [Institut d' Astronomie et d' Astrophysique, Université Libre de Bruxelles, CP-226, 1050 Brussels (Belgium); Péru, S. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2014-06-15

    In recent years fully consistent quasiparticle random-phase approximation (QRPA) calculations using finite range Gogny force have been performed to study electromagnetic excitations of several axially-symmetric deformed nuclei up to the {sup 238}U. Here we present the extension of this approach to the charge-exchange nuclear excitations (pnQRPA). In particular we focus on the Isobaric Analog and Gamow-Teller resonances. A comparison of the predicted GT strength distribution with existing experimental data is presented. The role of nuclear deformation is shown. Special attention is paid to β-decay half-lives calculations for which experimental data exist and for specific isotone chains of relevance for the r-process nucleosynthesis.

  3. Exact axially symmetric galactic dynamos

    Science.gov (United States)

    Henriksen, R. N.; Woodfinden, A.; Irwin, J. A.

    2018-05-01

    We give a selection of exact dynamos in axial symmetry on a galactic scale. These include some steady examples, at least one of which is wholly analytic in terms of simple functions and has been discussed elsewhere. Most solutions are found in terms of special functions, such as associated Lagrange or hypergeometric functions. They may be considered exact in the sense that they are known to any desired accuracy in principle. The new aspect developed here is to present scale-invariant solutions with zero resistivity that are self-similar in time. The time dependence is either a power law or an exponential factor, but since the geometry of the solution is self-similar in time we do not need to fix a time to study it. Several examples are discussed. Our results demonstrate (without the need to invoke any other mechanisms) X-shaped magnetic fields and (axially symmetric) magnetic spiral arms (both of which are well observed and documented) and predict reversing rotation measures in galaxy haloes (now observed in the CHANG-ES sample) as well as the fact that planar magnetic spirals are lifted into the galactic halo.

  4. Theorem on axially symmetric gravitational vacuum configurations

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulos, A; Le Denmat, G [Paris-6 Univ., 75 (France). Inst. Henri Poincare

    1977-01-24

    A theorem is proved which asserts the non-existence of axially symmetric gravitational vacuum configurations with non-stationary rotation only. The eventual consequences in black-hole physics are suggested.

  5. The Axially Symmetric One-Monopole

    International Nuclear Information System (INIS)

    Wong, K.-M.; Teh, Rosy

    2009-01-01

    We present new classical generalized one-monopole solution of the SU(2) Yang-Mills-Higgs theory with the Higgs field in the adjoint representation. We show that this solution with θ-winding number m = 1 and φ-winding number n = 1 is an axially symmetric generalization of the 't Hooft-Polyakov one-monopole. We construct this axially symmetric one-monopole solution by generalizing the large distance asymptotic solutions of the 't Hooft-Polyakov one-monopole to the Jacobi elliptic functions and solving the second order equations of motion numerically when the Higgs potential is vanishing. This solution is a non-BPS solution.

  6. Geometric inequalities for axially symmetric black holes

    International Nuclear Information System (INIS)

    Dain, Sergio

    2012-01-01

    A geometric inequality in general relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities play an important role in the characterization of the gravitational collapse; they are closely related with the cosmic censorship conjecture. Axially symmetric black holes are the natural candidates to study these inequalities because the quasi-local angular momentum is well defined for them. We review recent results in this subject and we also describe the main ideas behind the proofs. Finally, a list of relevant open problems is presented. (topical review)

  7. Axially symmetric Lorentzian wormholes in general relativity

    International Nuclear Information System (INIS)

    Schein, F.

    1997-11-01

    The field equations of Einstein's theory of general relativity, being local, do not fix the global structure of space-time. They admit topologically non-trivial solutions, including spatially closed universes and the amazing possibility of shortcuts for travel between distant regions in space and time - so-called Lorentzian wormholes. The aim of this thesis is to (mathematically) construct space-times which contain traversal wormholes connecting arbitrary distant regions of an asymptotically flat or asymptotically de Sitter universe. Since the wormhole mouths appear as two separate masses in the exterior space, space-time can at best be axially symmetric. We eliminate the non-staticity caused by the gravitational attraction of the mouths by anchoring them by strings held at infinity or, alternatively, by electric repulsion. The space-times are obtained by surgically grafting together well-known solutions of Einstein's equations along timelike hypersurfaces. This surgery naturally concentrates a non-zero stress-energy tensor on the boundary between the two space-times which can be investigated by using the standard thin shell formalism. It turns out that, when using charged black holes, the provided constructions are possible without violation of any of the energy conditions. In general, observers living in the axially symmetric, asymptotically flat (respectively asymptotically de Sitter) region axe able to send causal signals through the topologically non-trivial region. However, the wormhole space-times contain closed timelike curves. Because of this explicit violation of global hyperbolicity these models do not serve as counterexamples to known topological censorship theorems. (author)

  8. The geometrical theory of diffraction for axially symmetric reflectors

    DEFF Research Database (Denmark)

    Rusch, W.; Sørensen, O.

    1975-01-01

    The geometrical theory of diffraction (GTD) (cf. [1], for example) may be applied advantageously to many axially symmetric reflector antenna geometries. The material in this communication presents analytical, computational, and experimental results for commonly encountered reflector geometries...

  9. Report on the Dynamical Evolution of an Axially Symmetric Quasar ...

    Indian Academy of Sciences (India)

    retical arguments together with some numerical evidence. The evolution of the orbits is studied, as mass is transported from the disk to the nucleus. ... galaxies and non-axially symmetric quasar models (see Papadopoulos & Caranicolas.

  10. first principles derivation of a stress function for axially symmetric

    African Journals Online (AJOL)

    HOD

    governing partial differential equations of linear isotropic elasticity were reduced to the solution of the biharmonic ... The stress function was then applied to solve the axially symmetric ..... [1] Borg S.K.: Fundamentals of Engineering Elasticity,.

  11. On the axially symmetric equilibrium of a magnetically confined plasma

    International Nuclear Information System (INIS)

    Lehnert, B.

    1975-01-01

    The axially symmetric equilibrium of a magnetically confined plasma is reconsidered, with the special purpose of studying high-beta schemes with a purely poloidal magnetic field. A number of special solutions of the pressure and magnetic flux functions are shown to exist, the obtained results may form starting-points in a further analysis of physically relevant configurations. (Auth.)

  12. Static axially symmetric gravitational fields with shell sources

    International Nuclear Information System (INIS)

    McCrea, J.D.

    1976-01-01

    Israel's (Israel, W., 1966, Nuovo Cim., vol.44, 1-14) method for treating surface layers in general relativity is applied to construct shell sources for exterior static axially symmetric gravitational fields. Consideration is restricted to cases in which the 3-cylinder representing the history of the shell is an equipotential surface of the exterior field and consequently the space-time inside this 3-cylinder is flat. (author)

  13. Dynamic control of knee axial deformities

    Directory of Open Access Journals (Sweden)

    E. E. Malyshev

    2013-01-01

    Full Text Available The authors have evaluated the clinical examination of the patients with axial malalignments in the knee by the original method and device which was named varovalgometer. The measurements were conducted by tension of the cord through the spina iliaca anterior superior and the middle of the lower pole of patella. The deviation of the center of the ankle estimated by metal ruler which was positioned perpendicular to the lower leg axis on the level of the ankle joint line. The results of comparison of our method and computer navigation in 53 patients during the TKA show no statistically significant varieties but they differ by average 5° of valgus in clinical examination in comparison with mechanical axis which was identified by computer navigation. The dynamic control of axial malalignment can be used in clinical practice for estimation of the results of treatment of pathology with axial deformities in the knee; for the control of reduction and secondary displacement of the fractures around the knee; for assessment of instability; in planning of correctional osteotomies and intraoperative control of deformity correction; for estimation of Q angle in subluxation and recurrent dislocation of patella; in planning of TKA; during the growth of child it allows to assess the progression of deformity.

  14. Axially symmetric reconstruction of plasma emission and absorption coefficients

    International Nuclear Information System (INIS)

    Yang Lixin; Jia Hui; Yang Jiankun; Li Xiujian; Chen Shaorong; Liu Xishun

    2013-01-01

    A layered structure imaging model is developed in order to reconstruct emission coefficients and absorption coefficients simultaneously, in laser fusion core plasma diagnostics. A novel axially symmetric reconstruction method that utilizes the LM (Levenberg-Marquardt) nonlinear least squares minimization algorithm is proposed based on the layered structure. Numerical simulation results demonstrate that the proposed method is sufficiently accurate to reconstruct emission coefficients and absorption coefficients, and when the standard deviation of noise is 0.01, the errors of emission coefficients and absorption coefficients are 0.17, 0.22, respectively. Furthermore, this method could perform much better on reconstruction effect compared with traditional inverse Abel transform algorithms. (authors)

  15. Meissner effect for axially symmetric charged black holes

    Science.gov (United States)

    Gürlebeck, Norman; Scholtz, Martin

    2018-04-01

    In our previous work [N. Gürlebeck and M. Scholtz, Phys. Rev. D 95, 064010 (2017), 10.1103/PhysRevD.95.064010], we have shown that electric and magnetic fields are expelled from the horizons of extremal, stationary and axially symmetric uncharged black holes; this is called the Meissner effect for black holes. Here, we generalize this result in several directions. First, we allow that the black hole carries charge, which requires a generalization of the definition of the Meissner effect. Next, we introduce the notion of almost isolated horizons, which is weaker than the usual notion of isolated horizons, since the geometry of the former is not necessarily completely time independent. Moreover, we allow the horizon to be pierced by strings, thereby violating the usual assumption on the spherical topology made in the definition of the weakly isolated horizon. Finally, we spell out in detail all assumptions entering the proof and show that the Meissner effect is an inherent property of black holes even in full nonlinear theory.

  16. Whittaker Vector of Deformed Virasoro Algebra and Macdonald Symmetric Functions

    Science.gov (United States)

    Yanagida, Shintarou

    2016-03-01

    We give a proof of Awata and Yamada's conjecture for the explicit formula of Whittaker vector of the deformed Virasoro algebra realized in the Fock space. The formula is expressed as a summation over Macdonald symmetric functions with factored coefficients. In the proof, we fully use currents appearing in the Fock representation of Ding-Iohara-Miki quantum algebra.

  17. Decay Properties of Axially Symmetric D-Solutions to the Steady Navier-Stokes Equations

    Science.gov (United States)

    Weng, Shangkun

    2018-03-01

    We investigate the decay properties of smooth axially symmetric D-solutions to the steady Navier-Stokes equations. The achievements of this paper are two folds. One is improved decay rates of u_{θ } and \

  18. On the axially symmetric non-rotating vacuum solutions of Rosen's equations

    International Nuclear Information System (INIS)

    Bozhkov, Y.

    1990-10-01

    It is shown that all axially symmetric nonrotating solutions of Rosen's field equations can be expressed in terms of two harmonic functions. It is also shown that the total energy of Rosen's metric is Mc 2 . (author). 8 refs

  19. The space-time outside a source of gravitational radiation: the axially symmetric null fluid

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, L. [Universidad Central de Venezuela, Escuela de Fisica, Facultad de Ciencias, Caracas (Venezuela, Bolivarian Republic of); Universidad de Salamanca, Instituto Universitario de Fisica Fundamental y Matematicas, Salamanca (Spain); Di Prisco, A. [Universidad Central de Venezuela, Escuela de Fisica, Facultad de Ciencias, Caracas (Venezuela, Bolivarian Republic of); Ospino, J. [Universidad de Salamanca, Departamento de Matematica Aplicada and Instituto Universitario de Fisica Fundamental y Matematicas, Salamanca (Spain)

    2016-11-15

    We carry out a study of the exterior of an axially and reflection symmetric source of gravitational radiation. The exterior of such a source is filled with a null fluid produced by the dissipative processes inherent to the emission of gravitational radiation, thereby representing a generalization of the Vaidya metric for axially and reflection symmetric space-times. The role of the vorticity, and its relationship with the presence of gravitational radiation is put in evidence. The spherically symmetric case (Vaidya) is, asymptotically, recovered within the context of the 1 + 3 formalism. (orig.)

  20. Axially symmetrical stresses measurement in the cylindrical tube using DIC with hole-drilling

    Science.gov (United States)

    Ma, Yinji; Yao, Xuefeng; Zhang, Danwen

    2015-03-01

    In this paper, a new method combining the digital image correlation (DIC) with the hole-drilling technology to characterize the axially symmetrical stresses of the cylindrical tube is developed. First, the theoretical expressions of the axially symmetrical stresses in the cylindrical tube are derived based on the displacement or strain fields before and after hole-drilling. Second, the release of the axially symmetrical stresses for the cylindrical tube caused by hole-drilling is simulated by the finite element method (FEM), which indicates that the axially symmetrical stresses of the cylindrical tube calculated by the cylindrical solution is more accuracy than that for traditionally planar solution. Finally, both the speckle image information and the displacement field of the cylindrical tube before and after hole-drilling are extracted by combining the DIC with the hole-drilling technology, then the axially symmetrical loading induced stresses of the cylindrical tube are obtained, which agree well with the results from the strain gauge method.

  1. The Hall instability of unsteady inhomogeneous axially symmetric magnetized plasmas

    International Nuclear Information System (INIS)

    Shtemler, Yuri M.; Mond, Michael; Liverts, Edward

    2004-01-01

    The Hall instability in cylindrically symmetric resistive magnetized plasmas in vacuum is investigated. The unperturbed self-similar equilibrium solutions for imploding Z-pinches with time-dependent total current I t ∼t S ,S>1/3, are subjected by short-wave sausage perturbations. The instability criterion is derived in slow-time, frozen-radius approximation. In cylindrically symmetric configurations the instability is driven by the magnetic field curvature. The near-axis and near-edge branches of the neutral curve in the plane of the inverse Hall parameter and phase velocity with the frozen radial coordinate as a parameter are separated by the critical point, where the modified gradient from the unperturbed number density changes sign. The critical radius may be treated as a new characteristic size of the Z-pinch that emerges due to the instability: the pinch is envisaged restructured by the short-scale high-frequency Hall instability, in which a central stable core is surrounded by an outer shell. Such a modified equilibrium may explain the observed enhanced stability against magnetohydrodynamic modes

  2. Comparison of femoropopliteal artery stents under axial and radial compression, axial tension, bending, and torsion deformations.

    Science.gov (United States)

    Maleckis, Kaspars; Deegan, Paul; Poulson, William; Sievers, Cole; Desyatova, Anastasia; MacTaggart, Jason; Kamenskiy, Alexey

    2017-11-01

    High failure rates of Peripheral Arterial Disease (PAD) stenting appear to be associated with the inability of certain stent designs to accommodate severe biomechanical environment of the femoropopliteal artery (FPA) that bends, twists, and axially compresses during limb flexion. Twelve Nitinol stents (Absolute Pro, Supera, Lifestent, Innova, Zilver, Smart Control, Smart Flex, EverFlex, Viabahn, Tigris, Misago, and Complete SE) were quasi-statically tested under bench-top axial and radial compression, axial tension, bending, and torsional deformations. Stents were compared in terms of force-strain behavior, stiffness, and geometrical shape under each deformation mode. Tigris was the least stiff stent under axial compression (6.6N/m axial stiffness) and bending (0.1N/m) deformations, while Smart Control was the stiffest (575.3N/m and 105.4N/m, respectively). Under radial compression Complete SE was the stiffest (892.8N/m), while Smart Control had the lowest radial stiffness (211.0N/m). Viabahn and Supera had the lowest and highest torsional stiffness (2.2μNm/° and 959.2μNm/°), respectively. None of the 12 PAD stents demonstrated superior characteristics under all deformation modes and many experienced global buckling and diameter pinching. Though it is yet to be determined which of these deformation modes might have greater clinical impact, results of the current analysis may help guide development of new stents with improved mechanical characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The hidden symmetries and their algebraic structure of the static axially symmetric SDYM fields

    International Nuclear Information System (INIS)

    Hao Sanru

    1993-01-01

    A new explicit transformation about the static axially symmetric self-dual Yang-Mills (SDYM) fields is presented. The theory has proved that the new transformation is a symmetric one. For the two kinds of the Lie algebraic generators of the Lie group SL (N. R) /SO (N), the corresponding transformations are given. By making use of the Yang-Baxter equality and their square brackets, the loop and conformal algebraic structures of the symmetric transformations for the basic fields have been obtained. All the results obtained can be directly generalized to the other models

  4. Mathematical Model of Induction Heating Processes in Axial Symmetric Inductor-Detail Systems

    Directory of Open Access Journals (Sweden)

    Maik Streblau

    2014-05-01

    Full Text Available The wide variety of models for analysis of processes in the inductor-detail systems makes it necessary to summarize them. This is a difficult task because of the variety of inductor-detail system configurations. This paper aims to present a multi physics mathematical model for complex analysis of electromagnetic and thermal fields in axial symmetric systems inductor-detail.

  5. The effect of axial loads on free vibration of symmetric frame structures using continuous system method

    Directory of Open Access Journals (Sweden)

    Elham Ghandi

    2016-09-01

    Full Text Available The free vibration of frame structures has been usually studied in literature without considering the effect of axial loads. In this paper, the continuous system method is employed to investigate this effect on the free flexural and torsional vibration of two and three dimensional symmetric frames. In the continuous system method, in approximate analysis of buildings, commonly, the structure is replaced by an equivalent beam which matches the dominant characteristics of the structure. Accordingly, the natural frequencies of the symmetric frame structures are obtained through solving the governing differential equation of the equivalent beam whose stiffness and mass are supposed to be uniformly distributed along the length. The corresponding axial load applied to the replaced beam is calculated based on the total weight and the number of stories of the building. A numerical example is presented to show the simplicity and efficiency of the proposed solution.

  6. Alloy synthesis using the mach stem region in an axial symmetric implosive shock: Understanding the pressure strain-temperature contributions

    Energy Technology Data Exchange (ETDEWEB)

    Staudhammer, Karl P.

    2004-01-01

    The Mach stem region in an axial symmetric shock implosion has generally been avoided in the dynamic consolidation of powders for a number of reasons. The prime reason being that the convergence of the shock waves in the cylindrical axis produce enormous pressures and concomitant temperatures that have melted tungsten. This shock wave convergence consequently results in a discontinuity in the hydro-code calculations. Dynamic deformation experiments on gold plated 304L stainless steel powders were undertaken. These experiments utilized pressures of 0.08 to 1.0 Mbar and contained a symmetric radial melt region along the central axis of the sample holder. To understand the role of deformation in a porous material, the pressure, and temperature as well as the deformation heat and associated defects must be accounted for. When the added heat of consolidation deformation exceeds the melt temperature of the 304 powders, a melt zone results that can consume large regions of the compact while still under the high-pressure pulse. As the shock wave traverses the sample and is removed in a momentum trap, its pressure/temperature are quenched. It is within this region that very high diffusion/alloying occurs and has been observed in the gold plated powders. Anomalous increases of gold diffusion into 304 stainless steel have been observed via optical microscopy, scanning electron microscopy and EDAX measurements. Values exceeding 1200 m/sec have been measured and correlated to the powder sizes, size distribution and packing density, concomitant with sample container strains ranging from 2.0% to 26%.

  7. Precession mode on high-K configurations: non-collective axially-symmetric limit of wobbling motion

    International Nuclear Information System (INIS)

    Shimizu, Yoshifumi R; Matsuzaki, Masayuki; Matsuyanagi, Kenichi

    2006-01-01

    The precession mode, the rotational excitation built on the high-K isomeric state, in comparison with the recently identified wobbling mode has been studied. The random-phase-approximation (RPA) formalism, which has been developed for the nuclear wobbling motion, is invoked and the precession phonon is obtained by the non-collective axially symmetric limit of the formalism. The excitation energies and the electromagnetic properties of the precession bands in 178 W are calculated, and it is found that the results of RPA calculations well correspond to those of the rotor model; the correspondence can be understood by an adiabatic approximation to the RPA phonon. As a by-product, it is also found that the problem of too small out-of-band B(E2) in our previous RPA wobbling calculations can be solved by a suitable choice of the triaxial deformation which corresponds to the one used in the rotor model

  8. Dynamics of axial symmetric system in self-interacting Brans-Dicke gravity

    International Nuclear Information System (INIS)

    Sharif, M.; Manzoor, Rubab

    2016-01-01

    This paper investigates the dynamics of an axial reflection symmetric model in self-interacting Brans-Dicke gravity for anisotropic fluid. We formulate hydrodynamical equations and discuss oscillations using a time-dependent perturbation for both spin-dependent and spin-independent cases. The expressions of the frequency, the total energy density, and the equation of motion of the oscillating model are obtained. We study the instability of the oscillating models in weak approximations. It is found that the oscillations and stability of the model depend upon the dark energy source along with anisotropy and reflection effects. We conclude that the axial reflection system remains stable for stiffness parameter Γ = 1, collapses for Γ > 1, and becomes unstable for 0 < Γ < 1. (orig.)

  9. Axially symmetric stationary black-hole states of the Einstein gravitational theory

    International Nuclear Information System (INIS)

    Meinhardt, R.

    1976-01-01

    Some aspects of the thepry of black-hole states of the Einstein gravitational theory are reviewed in this paper. First explicit vacuum solutions of Einstein's field equations are searched for when the space-time admits 2 isometries (axially symmetric and stationary), which could be considered as candidates for black holes. Then the Liapounov stability of these solutions is studied. A generalization of the Ernst potential is introduced for solutions of Einstein's vacuum field equations with axial symmetry only, and this allows to construct a dynamical system. Using the theory of ''multiple integrals in the calculus of variations'' it is possible to show that the weakest casuality condition (chronology) is a necessary condition for the Liapounov stability. Finally, it is shown that the Kerr solution is Liapounov stable under a given topology

  10. New classes of bi-axially symmetric solutions to four-dimensional Vasiliev higher spin gravity

    Energy Technology Data Exchange (ETDEWEB)

    Sundell, Per; Yin, Yihao [Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago de Chile (Chile)

    2017-01-11

    We present new infinite-dimensional spaces of bi-axially symmetric asymptotically anti-de Sitter solutions to four-dimensional Vasiliev higher spin gravity, obtained by modifications of the Ansatz used in https://arxiv.org/abs/1107.1217, which gave rise to a Type-D solution space. The current Ansatz is based on internal semigroup algebras (without identity) generated by exponentials formed out of the bi-axial symmetry generators. After having switched on the vacuum gauge function, the resulting generalized Weyl tensor is given by a sum of generalized Petrov type-D tensors that are Kerr-like or 2-brane-like in the asymptotic AdS{sub 4} region, and the twistor space connection is smooth in twistor space over finite regions of spacetime. We provide evidence for that the linearized twistor space connection can be brought to Vasiliev gauge.

  11. Dynamics of axial symmetric system in self-interacting Brans-Dicke gravity

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M. [University of the Punjab, Department of Mathematics, Lahore (Pakistan); Manzoor, Rubab [University of Management and Technology, Department of Mathematics, Lahore (Pakistan)

    2016-06-15

    This paper investigates the dynamics of an axial reflection symmetric model in self-interacting Brans-Dicke gravity for anisotropic fluid. We formulate hydrodynamical equations and discuss oscillations using a time-dependent perturbation for both spin-dependent and spin-independent cases. The expressions of the frequency, the total energy density, and the equation of motion of the oscillating model are obtained. We study the instability of the oscillating models in weak approximations. It is found that the oscillations and stability of the model depend upon the dark energy source along with anisotropy and reflection effects. We conclude that the axial reflection system remains stable for stiffness parameter Γ = 1, collapses for Γ > 1, and becomes unstable for 0 < Γ < 1. (orig.)

  12. Axially symmetric stationary black-hole states of the Einstein gravitational theory

    Energy Technology Data Exchange (ETDEWEB)

    Meinhardt, R [Chile Univ., Santiago. Departamento de Fisica

    1976-01-01

    Some aspects of the theory of black-hole states of the Einstein gravitational theory are reviewed in this paper. First explicit vacuum solutions of Einstein's field equations are searched for when the space-time admits 2 isometries (axially symmetric and stationary), which could be considered as candidates for black holes. Then the Liapounov stability of these solutions is studied. A generalization of the Ernst potential is introduced for solutions of Einstein's vacuum field equations with axial symmetry only, and this allows to construct a dynamical system. Using the theory of ''multiple integrals in the calculus of variations'' it is possible to show that the weakest casuality condition (chronology) is a necessary condition for the Liapounov stability. Finally, it is shown that the Kerr solution is Liapounov stable under a given topology.

  13. A new method for generating axially-symmetric and radially-polarized beams

    International Nuclear Information System (INIS)

    Niu Chunhui; Gu Benyuan; Dong Bizhen; Zhang Yan

    2005-01-01

    A scheme for generating axially-symmetric and radially-polarized beams is proposed by using two diffractive phase elements (DPEs) made of birefringent materials. The design of these two DPEs is based on the general theory of phase-retrieval of optical system in combination with an iterative algorithm. The first DPE is used for demultiplexing two orthogonally linearly-polarized light beams to produce diffractive patterns, and the second DPE is used for compensating the phase difference to obtain the desired radially-polarized beam

  14. EBQ code: Transport of space-charge beams in axially symmetric devices

    Science.gov (United States)

    Paul, A. C.

    1982-11-01

    Such general-purpose space charge codes as EGUN, BATES, WODF, and TRANSPORT do not gracefully accommodate the simulation of relativistic space-charged beams propagating a long distance in axially symmetric devices where a high degree of cancellation has occurred between the self-magnetic and self-electric forces of the beam. The EBQ code was written specifically to follow high current beam particles where space charge is important in long distance flight in axially symmetric machines possessing external electric and magnetic field. EBQ simultaneously tracks all trajectories so as to allow procedures for charge deposition based on inter-ray separations. The orbits are treated in Cartesian geometry (position and momentum) with z as the independent variable. Poisson's equation is solved in cylindrical geometry on an orthogonal rectangular mesh. EBQ can also handle problems involving multiple ion species where the space charge from each must be included. Such problems arise in the design of ion sources where different charge and mass states are present.

  15. EBQ code: transport of space-charge beams in axially symmetric devices

    International Nuclear Information System (INIS)

    Paul, A.C.

    1982-11-01

    Such general-purpose space charge codes as EGUN, BATES, WOLF, and TRANSPORT do not gracefully accommodate the simulation of relativistic space-charged beams propagating a long distance in axially symmetric devices where a high degree of cancellation has occurred between the self-magnetic and self-electric forces of the beam. The EBQ code was written specifically to follow high current beam particles where space charge is important in long distance flight in axially symmetric machines possessing external electric and magnetic field. EBQ simultaneously tracks all trajectories so as to allow procedures for charge deposition based on inter-ray separations. The orbits are treated in Cartesian geometry (position and momentum) with z as the independent variable. Poisson's equation is solved in cylindrical geometry on an orthogonal rectangular mesh. EBQ can also handle problems involving multiple ion species where the space charge from each must be included. Such problems arise in the design of ion sources where different charge and mass states are present

  16. Exact and analytic solutions of the Ernst equation governing axially symmetric stationary vacuum gravitational fields

    International Nuclear Information System (INIS)

    Baxter, Mathew; Van Gorder, Robert A

    2013-01-01

    We obtain solutions to a transformation of the axially symmetric Ernst equation, which governs a class of exact solutions of Einstein's field equations. Physically, the equation serves as a model of axially symmetric stationary vacuum gravitational fields. By an application of the method of homotopy analysis, we are able to construct approximate analytic solutions to the relevant boundary value problem in the case where exact solutions are not possible. The results presented constitute a solution for a complicated nonlinear and singular initial value problem. Through appropriate selection of the auxiliary linear operator and convergence control parameter, we are able to obtain low order approximations which minimize residual error over the problem domain. The benefit to such approach is that we obtain very accurate approximations after computing very few terms, hence the computational efficiency is high. Finally, an exact solution is provided in a special case, and this corresponds to the analytical solutions obtained in the more general case. The approximate solutions agree qualitatively with the exact solutions. (paper)

  17. An FFT-accelerated fdtd scheme with exact absorbing conditions for characterizing axially symmetric resonant structures

    KAUST Repository

    Sirenko, Kostyantyn

    2011-01-01

    An accurate and efficient finite-difference time-domain (FDTD) method for characterizing transient waves interactions on axially symmetric structures is presented. The method achieves its accuracy and efficiency by employing localized and/or fast Fourier transform (FFT) accelerated exact absorbing conditions (EACs). The paper details the derivation of the EACs, discusses their implementation and discretization in an FDTD method, and proposes utilization of a blocked-FFT based algorithm for accelerating the computation of temporal convolutions present in nonlocal EACs. The proposed method allows transient analyses to be carried for long time intervals without any loss of accuracy and provides reliable numerical data pertinent to physical processes under resonant conditions. This renders the method highly useful in characterization of high-Q microwave radiators and energy compressors. Numerical results that demonstrate the accuracy and efficiency of the method are presented.

  18. Efficient characterization of phase space mapping in axially symmetric optical systems

    Science.gov (United States)

    Barbero, Sergio; Portilla, Javier

    2018-01-01

    Phase space mapping, typically between an object and image plane, characterizes an optical system within a geometrical optics framework. We propose a novel conceptual frame to characterize the phase mapping in axially symmetric optical systems for arbitrary object locations, not restricted to a specific object plane. The idea is based on decomposing the phase mapping into a set of bivariate equations corresponding to different values of the radial coordinate on a specific object surface (most likely the entrance pupil). These equations are then approximated through bivariate Chebyshev interpolation at Chebyshev nodes, which guarantees uniform convergence. Additionally, we propose the use of a new concept (effective object phase space), defined as the set of points of the phase space at the first optical element (typically the entrance pupil) that are effectively mapped onto the image surface. The effective object phase space provides, by means of an inclusion test, a way to avoid tracing rays that do not reach the image surface.

  19. Self-gravitating axially symmetric disks in general-relativistic rotation

    Science.gov (United States)

    Karkowski, Janusz; Kulczycki, Wojciech; Mach, Patryk; Malec, Edward; Odrzywołek, Andrzej; Piróg, Michał

    2018-05-01

    We integrate numerically axially symmetric stationary Einstein equations describing self-gravitating disks around spinless black holes. The numerical scheme is based on a method developed by Shibata, but contains important new ingredients. We derive a new general-relativistic Keplerian rotation law for self-gravitating disks around spinning black holes. Former results concerning rotation around spinless black holes emerge in the limit of a vanishing spin parameter. These rotation curves might be used for the description of rotating stars, after appropriate modification around the symmetry axis. They can be applied to the description of compact torus-black hole configurations, including active galactic nuclei or products of coalescences of two neutron stars.

  20. Steady Stokes flow past dumbbell shaped axially symmetric body of revolution: An analytic approach

    Directory of Open Access Journals (Sweden)

    Srivastava Kumar Deepak

    2012-01-01

    Full Text Available In this paper, the problem of steady Stokes flow past dumbbell-shaped axially symmetric isolated body of revolution about its axis of symmetry is considered by utilizing a method (Datta and Srivastava, 1999 based on body geometry under the restrictions of continuously turning tangent on the boundary. The relationship between drag and moment is established in transverse flow situation. The closed form expression of Stokes drag is then calculated for dumbbell-shaped body in terms of geometric parameters b, c, d and a with the aid of this linear relation and the formula of torque obtained by (Chwang and Wu, part 1, 1974 with the use of singularity distribution along axis of symmetry. Drag coefficient and moment coefficient are defined in various forms in terms of dumbbell parameters. Their numerical values are calculated and depicted in respective graphs and compared with some known values.

  1. Particles versus fields in PT-symmetrically deformed integrable ...

    Indian Academy of Sciences (India)

    reversal and parity transformation, can be used to construct new integrable models. Some complex valued multi-particle systems, such as deformations of the Calogero–Moser– Sutherland models, are shown to arise naturally from real valued ...

  2. Modular coils and finite-β operation of a quasi-axially symmetric tokamak

    International Nuclear Information System (INIS)

    Drevlak, M.

    1998-01-01

    Quasi-axially symmetric tokamaks (QA tokamaks) are an extension of the conventional tokamak concept. In these devices the magnetic field strength is independent of the generalized toroidal magnetic co-ordinate even though the cross-sectional shape changes. An optimized plasma equilibrium belonging to the class of QA tokamaks has been proposed by Nuehrenberg. It features the small aspect ratio of a tokamak while allowing part of the rotational transform to be generated by the external field. In this article, two particular aspects of the viability of QA tokamaks are explored, namely the feasibility of modular coils and the possibility of maintaining quasi-axial symmetry in the free-boundary equilibria obtained with the coils found. A set of easily feasible modular coils for the configuration is presented. It was designed using the extended version of the NESCOIL code (MERKEL, P., Nucl. Fusion 27 (1987) 867). Using this coil system, free-boundary calculations of the plasma equilibrium were carried out using the NEMEC code (HIRSHMAN, S.P., VAN RIJ, W.I., MERKEL, P., Comput. Phys. Commun. 43 (1986) 143). It is observed that the effects of finite β and net toroidal plasma current can be compensated for with good precision by applying a vertical magnetic field and by separately adjusting the currents of the modular coils. A set of fully three dimensional (3-D) auxiliary coils is proposed to exert control on the rotational transform in the plasma. Deterioration of the quasi-axial symmetry induced by the auxiliary coils can be avoided by adequate adjustment of the currents in the primary coils. Finally, the neoclassical transport properties of the configuration are examined. It is observed that optimization with respect to confinement of the alpha particles can be maintained at operation with finite toroidal current if the aforementioned corrective measures are used. In this case, the neoclassical behaviour is shown to be very similar to that of a conventional tokamak

  3. Stationary axially symmetric exterior solutions in the five-dimensional representation of the Brans-Dicke-Jordan theory of gravitation

    International Nuclear Information System (INIS)

    Bruckman, W.

    1986-01-01

    The inverse scattering method of Belinsky and Zakharov is used to investigate axially symmetric stationary vacuum soliton solutions in the five-dimensional representation of the Brans-Dicke-Jordan theory of gravitation, where the scalar field of the theory is an element of a five-dimensional metric. The resulting equations for the spacetime metric are similar to those of solitons in general relativity, while the scalar field generated is the product of a simple function of the coordinates and an already known scalar field solution. A family of solutions is considered that reduce, in the absence of rotation, to the five-dimensional form of a well-known Weyl-Levi Civita axially symmetric static vacuum solution. With a suitable choice of parameters, this static limit becomes equivalent to the spherically symmetric solution of the Brans-Dicke theory. An exact metric, in which the Kerr-scalar McIntosh solution is a special case, is given explicitly

  4. High-speed three-dimensional plasma temperature determination of axially symmetric free-burning arcs

    International Nuclear Information System (INIS)

    Bachmann, B; Ekkert, K; Bachmann, J-P; Marques, J-L; Schein, J; Kozakov, R; Gött, G; Schöpp, H; Uhrlandt, D

    2013-01-01

    In this paper we introduce an experimental technique that allows for high-speed, three-dimensional determination of electron density and temperature in axially symmetric free-burning arcs. Optical filters with narrow spectral bands of 487.5–488.5 nm and 689–699 nm are utilized to gain two-dimensional spectral information of a free-burning argon tungsten inert gas arc. A setup of mirrors allows one to image identical arc sections of the two spectral bands onto a single camera chip. Two-different Abel inversion algorithms have been developed to reconstruct the original radial distribution of emission coefficients detected with each spectral window and to confirm the results. With the assumption of local thermodynamic equilibrium we calculate emission coefficients as a function of temperature by application of the Saha equation, the ideal gas law, the quasineutral gas condition and the NIST compilation of spectral lines. Ratios of calculated emission coefficients are compared with measured ones yielding local plasma temperatures. In the case of axial symmetry the three-dimensional plasma temperature distributions have been determined at dc currents of 100, 125, 150 and 200 A yielding temperatures up to 20000 K in the hot cathode region. These measurements have been validated by four different techniques utilizing a high-resolution spectrometer at different positions in the plasma. Plasma temperatures show good agreement throughout the different methods. Additionally spatially resolved transient plasma temperatures have been measured of a dc pulsed process employing a high-speed frame rate of 33000 frames per second showing the modulation of the arc isothermals with time and providing information about the sensitivity of the experimental approach. (paper)

  5. The deformation analysis of the KALIMER breakeven core driver fuel pin based on the axial power profile during irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Uk; Lee, Byoung Oon; Kim, Young Kyun; Hong, Ser Gi; Chang, Jin Wook; Lee, Ki Bok; Kim, Young Il

    2003-03-01

    In this study, material properties such as coolant specific heat, film heat transfer coefficient, cladding thermal conductivity, surface diffusion coefficient of the multi-bubble are improved in MACSIS-Mod1. The axial power and flux profile module was also incorporated with irradiation history. The performance and feasibility of the driver fuel pin have been analyzed for nominal parameters based on the conceptual design for the KALIMER breakeven core by MACSIS-MOD1 code. The fuel slug centerline temperature takes the maximum at 700mm from the bottom of the slug in spite of the nearly symmetric axial power distribution. The cladding mid-wall and coolant temperatures take the maximum at the top of the pin. Temperature of the fuel slug surface over the entire irradiation life is much lower than the fuel-clad eutectic reaction temperature. The fission gas release of the driver fuel pin at the End Of Life(EOL) is predicted to be 68.61% and plenum pressure is too low to cause cladding yielding. The probability that the fuel pin would fail is estimated to be much less than that allowed in the design criteria. The maximum radial deformation of the fuel pin is 1.928%, satisfying the preliminary design criterion (3%) for fuel pin deformation. Therefore the conceptual design parameters of the driver fuel pin for the KALIMER breakeven core are expected to satisfy the preliminary criteria on temperature, fluence limit, deformation limit etc.

  6. The deformation analysis of the KALIMER breakeven core driver fuel pin based on the axial power profile during irradiation

    International Nuclear Information System (INIS)

    Lee, Dong Uk; Lee, Byoung Oon; Kim, Young Kyun; Hong, Ser Gi; Chang, Jin Wook; Lee, Ki Bok; Kim, Young Il

    2003-03-01

    In this study, material properties such as coolant specific heat, film heat transfer coefficient, cladding thermal conductivity, surface diffusion coefficient of the multi-bubble are improved in MACSIS-Mod1. The axial power and flux profile module was also incorporated with irradiation history. The performance and feasibility of the driver fuel pin have been analyzed for nominal parameters based on the conceptual design for the KALIMER breakeven core by MACSIS-MOD1 code. The fuel slug centerline temperature takes the maximum at 700mm from the bottom of the slug in spite of the nearly symmetric axial power distribution. The cladding mid-wall and coolant temperatures take the maximum at the top of the pin. Temperature of the fuel slug surface over the entire irradiation life is much lower than the fuel-clad eutectic reaction temperature. The fission gas release of the driver fuel pin at the End Of Life(EOL) is predicted to be 68.61% and plenum pressure is too low to cause cladding yielding. The probability that the fuel pin would fail is estimated to be much less than that allowed in the design criteria. The maximum radial deformation of the fuel pin is 1.928%, satisfying the preliminary design criterion (3%) for fuel pin deformation. Therefore the conceptual design parameters of the driver fuel pin for the KALIMER breakeven core are expected to satisfy the preliminary criteria on temperature, fluence limit, deformation limit etc

  7. Ground-state properties of axially deformed Sr isotopes in Skyrme-Hartree-Fock-Bogolyubov method

    International Nuclear Information System (INIS)

    Yilmaz, A.H.; Bayram, T.; Demirci, M.; Engin, B.; Bayram, T.

    2010-01-01

    Binding energies, the mean-square nuclear radii, neutron radii, quadrupole moments and deformation parameters to axially deformed Strontium isotopes were evaluated using Hartree-Fock-Bogolyubov method. Shape coexistence was also discussed. The results were compared with experimental data and some estimates obtained within some nuclear models. The calculations were performed for SIy4 set of Skyrme forces and for wide range of the neutron numbers of Sr isotopes

  8. Deformation and orientation effects in the binary symmetric decay of 20,21,22Ne*

    International Nuclear Information System (INIS)

    Singh, BirBikram; Kaur, Manpreet; Gupta, Raj K.

    2014-01-01

    We have extended the study of binary symmetric decay (BSD) of extremely light mass compound systems 20,21,22 Ne* formed in 10,11 B+ 10,11 B reactions at E lab = 48 MeV, to explore the role of deformations and orientations, using the Dynamical Cluster decay Model (DCM). In the present work, we find that with inclusion of quadruple deformations and 'hot compact' orientations of nuclei σ ff increases in comparison to the case of spherical considerations of nuclei

  9. Deformation and collapse of zircaloy fuel rod cladding into plenum axial gaps

    International Nuclear Information System (INIS)

    Pfennigwerth, P.L.; Gorscak, D.A.; Selsley, I.A.

    1983-01-01

    To minimize support structure, blanket and reflector fuel rods of the thoria urania-fueled Light Water Breeder Reactor (LWBR) were designed with non-freestanding Zircaloy-4 cladding. An analytical model was developed to predict deformation of unirradiated cladding into axial gaps of fuel rod plenum regions where it is unsupported. This model uses the ACCEPT finite element computer program to calculate elastic-plastic deformation of cladding due to external pressure. The finite element is 20-node, triquadratic, isoparametric, and 3-dimensional. Its curved surface permits accurate modeling of the tube geometry, including geometric nonuniformities such as circumferential wall thickness variation and initial tube out-of-roundness. Progressive increases in axial gap length due to cladding elongation and fuel stack shrinkage are modeled, as are deformations of fuel pellets and stainless steel support sleeves which bound plenum axial gaps in LWBR type blanket fuel rods. Zircaloy-4 primary and secondary thermal creep representations were developed from uniaxial creep testing of fuel rod tubing. Creep response to multi-axial loading is modeled with a variation of Hill's formulation for anisotropic materials. Coefficients accounting for anisotropic thermal creep in Zircaloy-4 tubes were developed from creep testing of externally pressurized tubes having fixed axial gaps in the range 2.5 cm to 5.7 cm and radial clearances over simulated fuel pellets ranging from zero to 0.089 mm. (orig./RW)

  10. A wide low-mass binary model for the origin of axially symmetric non-thermal radio sources

    International Nuclear Information System (INIS)

    Kool, M. de; Heuvel, E.P.J. van den

    1985-01-01

    An accreting binary model has been proposed by recent workers to account for the origin of the axially symmetric non-thermal radio sources. The authors show that the only type of binary system that can produce the observed structural properties, is a relatively wide neutron star binary, in which the companion of the neutron star is a low-mass giant. Binaries of this type are expected to resemble closely the eight brightest galactic bulge X-ray sources as well as the progenitors of the two wide radio pulsar binaries. (U.K.)

  11. Constitutive relations describing creep deformation for multi-axial time-dependent stress states

    Science.gov (United States)

    McCartney, L. N.

    1981-02-01

    A THEORY of primary and secondary creep deformation in metals is presented, which is based upon the concept of tensor internal state variables and the principles of continuum mechanics and thermodynamics. The theory is able to account for both multi-axial and time-dependent stress and strain states. The wellknown concepts of elastic, anelastic and plastic strains follow naturally from the theory. Homogeneous stress states are considered in detail and a simplified theory is derived by linearizing with respect to the internal state variables. It is demonstrated that the model can be developed in such a way that multi-axial constant-stress creep data can be presented as a single relationship between an equivalent stress and an equivalent strain. It is shown how the theory may be used to describe the multi-axial deformation of metals which are subjected to constant stress states. The multi-axial strain response to a general cyclic stress state is calculated. For uni-axial stress states, square-wave loading and a thermal fatigue stress cycle are analysed.

  12. Detecting Milling Deformation in 7075 Aluminum Alloy Aeronautical Monolithic Components Using the Quasi-Symmetric Machining Method

    Directory of Open Access Journals (Sweden)

    Qiong Wu

    2016-04-01

    Full Text Available The deformation of aeronautical monolithic components due to CNC machining is a bottle-neck issue in the aviation industry. The residual stress releases and redistributes in the process of material removal, and the distortion of the monolithic component is generated. The traditional one-side machining method will produce oversize deformation. Based on the three-stage CNC machining method, the quasi-symmetric machining method is developed in this study to reduce deformation by symmetry material removal using the M-symmetry distribution law of residual stress. The mechanism of milling deformation due to residual stress is investigated. A deformation experiment was conducted using traditional one-side machining method and quasi-symmetric machining method to compare with finite element method (FEM. The deformation parameters are validated by comparative results. Most of the errors are within 10%. The reason for these errors is determined to improve the reliability of the method. Moreover, the maximum deformation value of using quasi-symmetric machining method is within 20% of that of using the traditional one-side machining method. This result shows the quasi-symmetric machining method is effective in reducing deformation caused by residual stress. Thus, this research introduces an effective method for reducing the deformation of monolithic thin-walled components in the CNC milling process.

  13. A fast inverse consistent deformable image registration method based on symmetric optical flow computation

    International Nuclear Information System (INIS)

    Yang Deshan; Li Hua; Low, Daniel A; Deasy, Joseph O; Naqa, Issam El

    2008-01-01

    Deformable image registration is widely used in various radiation therapy applications including daily treatment planning adaptation to map planned tissue or dose to changing anatomy. In this work, a simple and efficient inverse consistency deformable registration method is proposed with aims of higher registration accuracy and faster convergence speed. Instead of registering image I to a second image J, the two images are symmetrically deformed toward one another in multiple passes, until both deformed images are matched and correct registration is therefore achieved. In each pass, a delta motion field is computed by minimizing a symmetric optical flow system cost function using modified optical flow algorithms. The images are then further deformed with the delta motion field in the positive and negative directions respectively, and then used for the next pass. The magnitude of the delta motion field is forced to be less than 0.4 voxel for every pass in order to guarantee smoothness and invertibility for the two overall motion fields that are accumulating the delta motion fields in both positive and negative directions, respectively. The final motion fields to register the original images I and J, in either direction, are calculated by inverting one overall motion field and combining the inversion result with the other overall motion field. The final motion fields are inversely consistent and this is ensured by the symmetric way that registration is carried out. The proposed method is demonstrated with phantom images, artificially deformed patient images and 4D-CT images. Our results suggest that the proposed method is able to improve the overall accuracy (reducing registration error by 30% or more, compared to the original and inversely inconsistent optical flow algorithms), reduce the inverse consistency error (by 95% or more) and increase the convergence rate (by 100% or more). The overall computation speed may slightly decrease, or increase in most cases

  14. Influence of various stresses on diametral and axial plastic deformations of the Phenix reactor fuel cans

    International Nuclear Information System (INIS)

    Guerin, Y.; Boutard, J.L.

    1983-04-01

    Dimensions of fuel cans are modified during irradiation in fast reactors: diameter increase is produced by steel swelling and irradiation creep under the pressure of fission gases and length increase integrates swelling. Diameter and density measured on fuel cans in SS 316, irradiated in the Phenix reactor, show that interaction spacer-can and interaction between pins produce plastic deformations. The interaction spacer-can leads not only to a helical deflection of the pin but also a slight axial plastic compression associated to a diametral plastic deformation. There is also a leveling of elongation in these strained pins because of friction with neighbouring pins [fr

  15. Molecular statics simulations of buckling and yielding of gold nanowires deformed in axial compression

    International Nuclear Information System (INIS)

    Jiang, W.; Batra, R.C.

    2009-01-01

    We use molecular statics simulations with the embedded atom method potential to delineate yielding (material instability) and buckling (structural instability) in gold nanowires deformed axially in compression. It is found that both local (stacking faults) and global instabilities occur when the gold nanowire yields but only global instabilities occur when the nanowire buckles. Furthermore strong surface effects reorient the lattice structure which significantly increases Young's modulus in the axial direction and cause a nanowire of relatively small slenderness ratio (e.g., 14) to buckle. Upon complete unloading of the nanowires, the average axial stress and the total potential energy revert to their values in the reference configuration for the nanowires that buckled but not for the one that yielded.

  16. Correction of axial deformity during lengthening in fibular hypoplasia: Hexapodal versus monorail external fixation.

    Science.gov (United States)

    Chalopin, A; Geffroy, L; Pesenti, S; Hamel, A; Launay, F

    2017-09-01

    Childhood fibular hypoplasia is a rare pathology which may or may not involve limb-length discrepancy and axial deformity in one or more dimensions. The objective of the present study was to compare the quality of the axial correction achieved in lengthening procedures by hexapodal versus monorail external fixators. The hypothesis was that the hexapodal fixator provides more precise correction. A retrospective multicenter study included 52 children with fibular hypoplasia. Seventy-two tibias were analyzed, in 2 groups: 52 using a hexapodal fixator, and 20 using a monorail fixator. Mean age was 10.2 years. Mean lengthening was 5.7cm. Deformities were analyzed and measured in 3 dimensions and classified in 4 preoperative types and 4 post-lengthening types according to residual deformity. Complete correction was achieved in 26 tibias in the hexapodal group (50%) and 2 tibias in the monorail group (10%). Mean post-correction mechanical axis deviation was smaller in the hexapodal group: 12.83mm, versus 14.29mm in the monorail group. Mean post-correction mechanical lateral distal femoral angle was 87.5° in the hexapodal group, versus 84.3° in the monorail group (P=0.002), and mean mechanical medial proximal tibial angle 86.9° versus 89.5°, respectively (P=0.015). No previous studies focused on this congenital pathology in lengthening and axial correction programs for childhood lower-limb deformity. The present study found the hexapodal fixator to be more effective in conserving or restoring mechanical axes during progressive bone lengthening for fibular hypoplasia. The hexapodal fixator met the requirements of limb-length equalization in childhood congenital lower-limb hypoplasia, providing better axial correction than the monorail fixator. IV. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Microscopic Measurements of Axial Accumulation of Red Blood Cells in Capillary Flows Effects of Deformability

    Science.gov (United States)

    Sasaki, Takahiro; Seki, Junji; Itano, Tomoaki; Sugihara-Seki, Masako

    2017-11-01

    In the microcirculation, red blood cells (RBCs) are known to accumulate in the region near the central axis of microvessels, which is called the ``axial accumulation''. Although this behavior of RBCs is considered to originate from high deformability of RBCs, there have been few experimental studies on the mechanism. In order to elucidate the effect of RBC deformability on the axial accumulation, we measured the cross-sectional distributions of RBCs flowing through capillary tubes with a high spatial resolution by a newly devised observation system for intact and softened RBCs as well as hardened RBCs to various degrees. It was found that the intact and softened RBCs are concentrated in the small area centered on the tube axis, whereas the hardened RBCs are dispersed widely over the tube cross section dependent on the degree of hardness. These results demonstrate clearly the essential role of the deformability of RBCs in the ``axial accumulation'' of RBCs. JSPS KAKENHI Grant Number 17H03176, Kansai University ORDIST group funds.

  18. Individual particle motion and the effect of scattering in an axially symmetric magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Garren, A; Riddell, R J; Smith, L; Henrich, L R [Radiation Laboratory, University of California, Berkeley, CA (United States); Bing, G; Northrop, T G; Roberts, J E [Radiation Laboratory, University of California, Livermore, CA (United States)

    1958-07-01

    The possibility of confining charged particles with magnetic mirrors has long been recognized. A mirror field has axial symmetry and a magnitude that increases along the axis away from a central region in which the particles are to be contained. Heretofore, the likelihood of confinement has been based on the approximate invariance of the magnetic moment as described by Alfven. If the magnetic moment of a particle with given energy is too small the particle escapes axially through the mirror. The moment can become small because it is not a rigorous constant of the motion or because of Coulomb scattering of the particle. Both these effects have been studied; the first by analytic and numerical methods and the second by numerical solution of the Fokker- Planck equation.

  19. Discrete Element Simulations and Experiments on the Deformation of Cohesive Powders in a Bi-Axial Box

    NARCIS (Netherlands)

    Imole, Olukayode Isaiah; Kumar, Nishant; Magnanimo, Vanessa; Luding, Stefan

    2012-01-01

    We compare element test experiments and simulations on the deformation of frictional, cohesive particles in a bi-axial box. We show that computer simulations with the Discrete Element Method qualitatively reproduce a uniaxial compression element test in the true bi-axial tester. We highlight the

  20. METHOD OF DIMENSIONALITY REDUCTION IN CONTACT MECHANICS AND FRICTION: A USERS HANDBOOK. I. AXIALLY-SYMMETRIC CONTACTS

    Directory of Open Access Journals (Sweden)

    Valentin L. Popov

    2014-04-01

    Full Text Available The Method of Dimensionality Reduction (MDR is a method of calculation and simulation of contacts of elastic and viscoelastic bodies. It consists essentially of two simple steps: (a substitution of the three-dimensional continuum by a uniquely defined one-dimensional linearly elastic or viscoelastic foundation (Winkler foundation and (b transformation of the three-dimensional profile of the contacting bodies by means of the MDR-transformation. As soon as these two steps are completed, the contact problem can be considered to be solved. For axial symmetric contacts, only a small calculation by hand is required which does not exceed elementary calculus and will not be a barrier for any practically-oriented engineer. Alternatively, the MDR can be implemented numerically, which is almost trivial due to the independence of the foundation elements. In spite of their simplicity, all the results are exact. The present paper is a short practical guide to the MDR.

  1. Approximate calculation of electronic energy levels of axially symmetric quantum dot and quantum ring by using energy dependent effective mass

    International Nuclear Information System (INIS)

    Yu-Min, Liu; Zhong-Yuan, Yu; Xiao-Min, Ren

    2009-01-01

    Calculations of electronic structures about the semiconductor quantum dot and the semiconductor quantum ring are presented in this paper. To reduce the calculation costs, for the quantum dot and the quantum ring, their simplified axially symmetric shapes are utilized in our analysis. The energy dependent effective mass is taken into account in solving the Schrödinger equations in the single band effective mass approximation. The calculated results show that the energy dependent effective mass should be considered only for relatively small volume quantum dots or small quantum rings. For large size quantum materials, both the energy dependent effective mass and the parabolic effective mass can give the same results. The energy states and the effective masses of the quantum dot and the quantum ring as a function of geometric parameters are also discussed in detail. (general)

  2. High-K precession modes: Axially symmetric limit of wobbling motion in the cranked random-phase approximation description

    International Nuclear Information System (INIS)

    Shimizu, Yoshifumi R.; Matsuzaki, Masayuki; Matsuyanagi, Kenichi

    2005-01-01

    The rotational band built on the high-K multi-quasiparticle state can be interpreted as a multi-phonon band of the precession mode, which represents the precessional rotation about the axis perpendicular to the direction of the intrinsic angular momentum. By using the axially symmetric limit of the random-phase approximation (RPA) formalism developed for the nuclear wobbling motion, we study the properties of the precession modes in 178 W: the excitation energies, B(E2) and B(M1) values. We show that the excitations of such a specific type of rotation can be well described by the RPA formalism, which gives new insight into the wobbling motion in the triaxial superdeformed nuclei from a microscopic viewpoint

  3. Stationary axially symmetric perturbations of a rotating black hole. [Space-time perturbation, Newman-Penrose formalism

    Energy Technology Data Exchange (ETDEWEB)

    Demianski, M [California Inst. of Tech., Pasadena (USA)

    1976-07-01

    A stationary axially symmetric perturbation of a rotating black hole due to a distribution of test matter is investigated. The Newman-Penrose spin coefficient formalism is used to derive a general set of equations describing the perturbed space-time. In a linear approximation it is shown that the mass and angular momentum of a rotating black hole is not affected by the perturbation. The metric perturbations near the horizon are given. It is concluded that given a perturbing test fluid distribution, one can always find a corresponding metric perturbation such that the mass and angular momentum of the black hole are not changed. It was also noticed that when a tends to M, those perturbed spin coefficients and components of the Weyl tensor which determine the intrinsic properties of the incoming null cone near the horizon grow indefinitely.

  4. The gravitational potential of axially symmetric bodies from a regularized green kernel

    Science.gov (United States)

    Trova, A.; Huré, J.-M.; Hersant, F.

    2011-12-01

    The determination of the gravitational potential inside celestial bodies (rotating stars, discs, planets, asteroids) is a common challenge in numerical Astrophysics. Under axial symmetry, the potential is classically found from a two-dimensional integral over the body's meridional cross-section. Because it involves an improper integral, high accuracy is generally difficult to reach. We have discovered that, for homogeneous bodies, the singular Green kernel can be converted into a regular kernel by direct analytical integration. This new kernel, easily managed with standard techniques, opens interesting horizons, not only for numerical calculus but also to generate approximations, in particular for geometrically thin discs and rings.

  5. The origin of transverse anisotropy in axially symmetric single molecule magnets.

    Science.gov (United States)

    Barra, Anne-Laure; Caneschi, Andrea; Cornia, Andrea; Gatteschi, Dante; Gorini, Lapo; Heiniger, Leo-Philipp; Sessoli, Roberta; Sorace, Lorenzo

    2007-09-05

    Single-crystal high-frequency electron paramagnetic resonance spectroscopy has been employed on a truly axial single molecule magnet of formula [Mn(12)O(12)(tBu-CH(2)CO(2))16(CH(3)OH)4].CH(3)OH to investigate the origin of the transverse magnetic anisotropy, a crucial parameter that rules the quantum tunneling of the magnetization. The crystal structure, including the absolute structure of the crystal used for EPR experiments, has been fully determined and found to belong to I4 tetragonal space group. The angular dependence of the resonance fields in the crystallographic ab plane shows the presence of high-order tetragonal anisotropy and strong dependence on the MS sublevels with the second-highest-field transition being angular independent. This was rationalized including competing fourth- and sixth-order transverse parameters in a giant spin Hamiltonian which describes the magnetic anisotropy in the ground S = 10 spin state of the cluster. To establish the origin of these anisotropy terms, the experimental results have been further analyzed using a simplified multispin Hamiltonian which takes into account the exchange interactions and the single ion magnetic anisotropy of the Mn(III) centers. It has been possible to establish magnetostructural correlations with spin Hamiltonian parameters up to the sixth order. Transverse anisotropy in axial single molecule magnets was found to originate from the multispin nature of the system and from the breakdown of the strong exchange approximation. The tilting of the single-ion easy axes of magnetization with respect to the 4-fold molecular axis of the cluster plays the major role in determining the transverse anisotropy. Counterintuitively, the projections of the single ion easy axes on the ab plane correspond to hard axes of magnetization.

  6. Neutron tomography of axially symmetric objects using 14 MeV neutrons from a portable neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, P., E-mail: peter.andersson@physics.uu.se; Andersson-Sunden, E.; Sjöstrand, H.; Jacobsson-Svärd, S. [Department of Physics and Astronomy, Division of Applied Nuclear Physics, Uppsala University, Lägerhyddsgatan 1, 751 20 Uppsala (Sweden)

    2014-08-01

    In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the time-averaged void distribution in these loops. Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantage of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed. In this article, three axially symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm, and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper. Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020, and 0.022 cm{sup −1}, solid POM attenuation coefficient. The accuracy and precision is high enough to provide a useful

  7. Neutron tomography of axially symmetric objects using 14 MeV neutrons from a portable neutron generator.

    Science.gov (United States)

    Andersson, P; Andersson-Sunden, E; Sjöstrand, H; Jacobsson-Svärd, S

    2014-08-01

    In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the time-averaged void distribution in these loops. Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantage of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed. In this article, three axially symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm, and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper. Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020, and 0.022 cm(-1), solid POM attenuation coefficient. The accuracy and precision is high enough to provide a useful

  8. Invariant Imbedding T-Matrix Method for Axial Symmetric Hydrometeors with Extreme Aspect Ratios

    Science.gov (United States)

    Pelissier, C.; Clune, T.; Kuo, K. S.; Munchak, S. J.; Adams, I. S.

    2017-12-01

    The single-scattering properties (SSPs) of hydrometeors are the fundamental quantities for physics-based precipitation retrievals. Thus, efficient computation of their electromagnetic scattering is of great value. Whereas the semi-analytical T-Matrix methods are likely the most efficient for nonspherical hydrometeors with axial symmetry, they are not suitable for arbitrarily shaped hydrometeors absent of any significant symmetry, for which volume integral methods such as those based on Discrete Dipole Approximation (DDA) are required. Currently the two leading T-matrix methods are the Extended Boundary Condition Method (EBCM) and the Invariant Imbedding T-matrix Method incorporating Lorentz-Mie Separation of Variables (IITM+SOV). EBCM is known to outperform IITM+SOV for hydrometeors with modest aspect ratios. However, in cases when aspect ratios become extreme, such as needle-like particles with large height to diameter values, EBCM fails to converge. Such hydrometeors with extreme aspect ratios are known to be present in solid precipitation and their SSPs are required to model the radiative responses accurately. In these cases, IITM+SOV is shown to converge. An efficient, parallelized C++ implementation for both EBCM and IITM+SOV has been developed to conduct a performance comparison between EBCM, IITM+SOV, and DDSCAT (a popular implementation of DDA). We present the comparison results and discuss details. Our intent is to release the combined ECBM & IITM+SOV software to the community under an open source license.

  9. FEAST 3.1: finite-element modeling of sheath deformation such as longitudinal ridging and collapse into axial gap

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Xu, Z.; Kim, Y-S.; Lai, L.; Cheng, G.; Xu, S. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada)

    2010-07-01

    During normal operation, the collapsible CANDU® fuel sheath deforms, especially, it may deform into longitudinal ridges or collapse instantaneously into the axial gaps between the end pellet and endcap or between two neighbouring pellets. These phenomena occur under certain conditions, such as the coolant pressure exceeding critical pressures for longitudinal ridging or axial collapse. Both longitudinal ridging and axial collapse phenomena result from plastic instability in the sheath under coolant pressure. Longitudinal ridging features one or multiple lobes or 'ridges' (outward from the sheath surface) formed along the sheath in the longitudinal direction. Axial collapse features a 'valley' around the sheath circumference. Both phenomena can lead to sheath overstrain, which in turn potentially leads to sheath failure. The LONGER code, which contains empirical correlations, has been used to predict the critical pressures for these two sheath deformation phenomena. To study fuel behaviour outside of the application ranges of the LONGER empirical correlations, a mechanistic model is needed. FEAST (Finite Element Analysis for Stresses) is an AECL computer code used to assess the structural integrity of the CANDU fuel element. The FEAST code has recently been developed (to Version 3.1) to model processes occurring during longitudinal ridge formation and instantaneous collapse into the axial gap. The new models include those for geometric non-linearity (large deformation, large material rotation), non-linear stress-strain curve for plastic deformation, Zr-4 sheath creep law, and variable Young’s Modulus etc. This paper describes the mechanistic model (FEAST 3.1) development for analyses of longitudinal ridging and instantaneous collapse into axial gap, and the comparison with the results from empirical correlations in LONGER. (author)

  10. FEAST 3.1: finite-element modeling of sheath deformation such as longitudinal ridging and collapse into axial gap

    International Nuclear Information System (INIS)

    Wang, X.; Xu, Z.; Kim, Y-S.; Lai, L.; Cheng, G.; Xu, S.

    2010-01-01

    During normal operation, the collapsible CANDU® fuel sheath deforms, especially, it may deform into longitudinal ridges or collapse instantaneously into the axial gaps between the end pellet and endcap or between two neighbouring pellets. These phenomena occur under certain conditions, such as the coolant pressure exceeding critical pressures for longitudinal ridging or axial collapse. Both longitudinal ridging and axial collapse phenomena result from plastic instability in the sheath under coolant pressure. Longitudinal ridging features one or multiple lobes or 'ridges' (outward from the sheath surface) formed along the sheath in the longitudinal direction. Axial collapse features a 'valley' around the sheath circumference. Both phenomena can lead to sheath overstrain, which in turn potentially leads to sheath failure. The LONGER code, which contains empirical correlations, has been used to predict the critical pressures for these two sheath deformation phenomena. To study fuel behaviour outside of the application ranges of the LONGER empirical correlations, a mechanistic model is needed. FEAST (Finite Element Analysis for Stresses) is an AECL computer code used to assess the structural integrity of the CANDU fuel element. The FEAST code has recently been developed (to Version 3.1) to model processes occurring during longitudinal ridge formation and instantaneous collapse into the axial gap. The new models include those for geometric non-linearity (large deformation, large material rotation), non-linear stress-strain curve for plastic deformation, Zr-4 sheath creep law, and variable Young’s Modulus etc. This paper describes the mechanistic model (FEAST 3.1) development for analyses of longitudinal ridging and instantaneous collapse into axial gap, and the comparison with the results from empirical correlations in LONGER. (author)

  11. Multi-axial load application and DIC measurement of advanced composite beam deformation behavior

    Directory of Open Access Journals (Sweden)

    Berggreen C.

    2010-06-01

    Full Text Available For the validation of a new beam element formulation, a wide set of experimental data consisting of deformation patterns obtained for a number of specially designed composite beam elements, have been obtained. The composite materials applied in the beams consist of glass-fiber reinforced plastic with specially designed layup configurations promoting advanced coupling behavior. Furthermore, the beams are designed with different cross-section shapes. The data obtained from the experiments are also used in order to improve the general understanding related to practical implementation of mechanisms of elastic couplings due to anisotropic properties of composite materials. The knowledge gained from these experiments is therefore essential in order to facilitate an implementation of passive control in future large wind turbine blades. A test setup based on a four-column MTS servo-hydraulic testing machine with a maximum capacity of 100 kN was developed, see Figure 1. The setup allows installing and testing beams of different cross-sections applying load cases such as axial extension, shear force bending, pure bending in two principal directions as well as pure torsion, see Figure 2. In order to apply multi-axial loading, a load application system consisting of three hydraulic actuators were mounted in two planes using multi-axial servo-hydraulic control. The actuator setup consists of the main actuator on the servo-hydraulic test machine working in the vertical axis (depicted on Figure 1 placed at the testing machine crosshead and used for application of vertical forces to the specimens. Two extra actuators are placed in a horizontal plane on the T-slot table of the test machine in different positions in order to apply loading at the tip of the specimen in various configurations. In order to precisely characterize the global as well as surface deformations of the beam specimens tested, a combination of different measurement systems were used during

  12. Fully automatic measurements of axial vertebral rotation for assessment of spinal deformity in idiopathic scoliosis

    International Nuclear Information System (INIS)

    Forsberg, Daniel; Andersson, Mats; Knutsson, Hans; Lundström, Claes; Vavruch, Ludvig; Tropp, Hans

    2013-01-01

    Reliable measurements of spinal deformities in idiopathic scoliosis are vital, since they are used for assessing the degree of scoliosis, deciding upon treatment and monitoring the progression of the disease. However, commonly used two dimensional methods (e.g. the Cobb angle) do not fully capture the three dimensional deformity at hand in scoliosis, of which axial vertebral rotation (AVR) is considered to be of great importance. There are manual methods for measuring the AVR, but they are often time-consuming and related with a high intra- and inter-observer variability. In this paper, we present a fully automatic method for estimating the AVR in images from computed tomography. The proposed method is evaluated on four scoliotic patients with 17 vertebrae each and compared with manual measurements performed by three observers using the standard method by Aaro–Dahlborn. The comparison shows that the difference in measured AVR between automatic and manual measurements are on the same level as the inter-observer difference. This is further supported by a high intraclass correlation coefficient (0.971–0.979), obtained when comparing the automatic measurements with the manual measurements of each observer. Hence, the provided results and the computational performance, only requiring approximately 10 to 15 s for processing an entire volume, demonstrate the potential clinical value of the proposed method. (paper)

  13. The distribution of deformation in parallel fault-related folds with migrating axial surfaces: comparison between fault-propagation and fault-bend folding

    Science.gov (United States)

    Salvini, Francesco; Storti, Fabrizio

    2001-01-01

    In fault-related folds that form by axial surface migration, rocks undergo deformation as they pass through axial surfaces. The distribution and intensity of deformation in these structures has been impacted by the history of axial surface migration. Upon fold initiation, unique dip panels develop, each with a characteristic deformation intensity, depending on their history. During fold growth, rocks that pass through axial surfaces are transported between dip panels and accumulate additional deformation. By tracking the pattern of axial surface migration in model folds, we predict the distribution of relative deformation intensity in simple-step, parallel fault-bend and fault-propagation anticlines. In both cases the deformation is partitioned into unique domains we call deformation panels. For a given rheology of the folded multilayer, deformation intensity will be homogeneously distributed in each deformation panel. Fold limbs are always deformed. The flat crests of fault-propagation anticlines are always undeformed. Two asymmetric deformation panels develop in fault-propagation folds above ramp angles exceeding 29°. For lower ramp angles, an additional, more intensely-deformed panel develops at the transition between the crest and the forelimb. Deformation in the flat crests of fault-bend anticlines occurs when fault displacement exceeds the length of the footwall ramp, but is never found immediately hinterland of the crest to forelimb transition. In environments dominated by brittle deformation, our models may serve as a first-order approximation of the distribution of fractures in fault-related folds.

  14. Effect of Stacking Layup on Spring-back Deformation of Symmetrical Flat Laminate Composites Manufactured through Autoclave Processing

    Science.gov (United States)

    Nasir, M. N. M.; Seman, M. A.; Mezeix, L.; Aminanda, Y.; Rivai, A.; Ali, K. M.

    2017-03-01

    The residual stresses that develop within fibre-reinforced laminate composites during autoclave processing lead to dimensional warpage known as spring-back deformation. A number of experiments have been conducted on flat laminate composites with unidirectional fibre orientation to examine the effects of both the intrinsic and extrinsic parameters on the warpage. This paper extends the study on to the symmetrical layup effect on spring-back for flat laminate composites. Plies stacked at various symmetrical sequences were fabricated to observe the severity of the resulting warpage. Essentially, the experimental results demonstrated that the symmetrical layups reduce the laminate stiffness in its principal direction compared to the unidirectional laminate thus, raising the spring-back warpage with the exception of the [45/-45]S layup due to its quasi-isotropic property.

  15. Effect of an axially-symmetric cyclonic vortex on the sea surface temperature in the Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Villanueva, E.E.; Mendoza, V.M.; Adem, J. [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)]. E-mail: eevu@atmosfera.unam.mx

    2006-04-15

    A model for the mixed layer of the Gulf of Mexico has been used to determine the effect that an idealized cyclonic vortex has in the sea surface temperature. The model consists of the equations of conservation of thermal energy and this of balance between mechanical energy and thermal energy, last based on the Kraus-Turner theory; both equations are vertically integrated in the mixed layer. As atmospheric forcing, we prescribe the surface wind associated with an axially-symmetric cyclonic vortex characterized by two parameters: the maximum tangential velocity and the radius at which that velocity is reached. The values of these two parameters, which depend on the position of the vortex, correspond to two cases: hurricane Hilda, which crossed the central part of the Gulf of Mexico between September 29 and October 3, 1964 and hurricane Gilbert whose trajectory between 11 and 17 September, 1988 crossed the Caribbean Sea, the Yucatan Peninsula and the southwest Gulf of Mexico. The results show that a cyclonic vortex with such characteristics, produce during its passage by the sea vertical turbulent water transport through the thermocline (entrainment) that is able to cool down the mixed layer in several degrees and increases the thermocline depth in several meters, in agreement with the observations. [Spanish] Se aplica un modelo de capa de mezcla para el Golfo de Mexico con el objeto de determinar el efecto de un vortice ciclonico idealizado sobre la temperatura de la superficie del mar. El modelo consiste basicamente de dos ecuaciones, la de conservacion de energia termica y la de balance entre energia mecanica y energia termica, esta ultima derivada de la teoria de Kraus-Turner; ambas ecuaciones son verticalmente integradas y acopladas en la capa de mezcla. Como forzamiento atmosferico sobre la superficie del mar se prescribe el viento asociado a un vortice ciclonico axialmente simetrico caracterizado por dos parametros: la velocidad tangencial maxima y el radio al

  16. C sub 6 sub 0 fullerene and its molecular complexes under axial and shear deformation

    CERN Document Server

    Spitsina, N G; Bashkin, I V; Meletov, K P

    2002-01-01

    We have studied the pristine C sub 6 sub 0 and its molecular complexes with the organic donors bis(ethylenedithio) tetrathiafulvalene (BEDT-TTF or ET) and tetramethyltetraselenafulvalene (TMTSF) by means of ESR and Raman spectroscopy at high pressure. The important changes in the ESR signal of C sub 6 sub 0 were observed under axial pressure combined with shear deformation. It is shown that the treatment at a anisotropic pressure of 4 GPa results in a reduction in the symmetry of the C sub 6 sub 0 molecule and the formation of radicals. Treatment of the molecular complex of (ET) sub 2 centre dot C sub 6 sub 0 at a pressure of approx 4.5 GPa and a temperature of 150 deg. C leads to the formation of C sub 6 sub 0 dimers. The Raman spectra of the molecular complex C sub 6 sub 0 centre dot TMTSF centre dot 2(CS sub 2) were measured in situ at ambient temperature and pressures up to 9.5 GPa. The pressure behaviour of the Raman peaks reveals singularity at 5.0 +- 0.5 GPa related to the softening and splitting of so...

  17. Correction of the axial and appendicular deformities in a patient with Silver-Russel syndrome

    Directory of Open Access Journals (Sweden)

    Ali Al Kaissi

    2015-01-01

    Full Text Available Background: Scoliosis and limb length discrepancy are the major orthopaedic abnormalities in patients with Silver-Russel syndrome (SRS. In this paper, we describe a series of orthopaedic interventions in an attempt to overcome the progressive pathologic mechanism in a 7-year-old girl who manifested the full phenotypic features of SRS. Materials and Methods: Unilateral hip dislocation, progressive scoliosis and limb length discrepancy have been dealt with through Pemberton osteotomy, spinal fusion and Taylor-Spatial-Frame respectively. Results: In order to correct the axial and the appendicular deformities a sum of seven operations were performed (between the age of 7 years and 13 years. Pemberton osteotomy was performed to treat dislocation of her right hip because of developmental dysplasia of the hip. Spinal fusion (spondylodesis of segments Th3-L5 was done to correct her scoliosis. And, to overcome the limb length discrepancy of 15-cm we used Taylor-Spatial-Frame with percutaneous distal corticotomy of the femur, and the proximal tibia, as well as the foot, were performed. We were able to minimize the limb length discrepancy to 5 cm. The girl became able to walk with the aid of a below knee orthosis and through lifting the left limb with 5-cm height shoe. Conclusion: Limb lengthening surgery in patients with multiple malformation complex as in SRS is associated with high recurrence risk because of; muscular hypotonia, overtubulation of the long bones, and the poor bone regenerative quality. Our interventions were principally directed towards improving the cosmetic outlook, functions and the biomechanics.

  18. Development of plastic deformations in 12Kh18N10T steel under cyclic symmetrical bending of specimens of various length

    Energy Technology Data Exchange (ETDEWEB)

    Pisarenko, G.S.; Leonets, V.A.; Bega, N.D. (AN Ukrainskoj SSR, Kiev. Inst. Problem Prochnosti)

    1983-08-01

    Effect of specimen length on intensity of plastic deformation development and cyclic strength is studied for annealed 12Kh18N10T steel under cyclic symmetrical bending. The intensity of microplastic deformations and cyclic strength of annealed 12Kh18N10T steel in the considered case is due to self-heating.

  19. From particle in a box to PT -symmetric systems via isospectral deformation

    OpenAIRE

    Cherian, Philip; Abhinav, Kumar; Panigrahi, P. K.

    2011-01-01

    A family of PT -symmetric complex potentials is obtained, which is isospectral to free particle in an infinite complex box in one dimension (1-D). These are generalizations to the cosec2 (x) potential, isospectral to particle in a real infinite box. In the complex plane, the infinite box is extended parallel to the real axis having a real width, which is found to be an integral multiple of a constant quantum factor, arising due to boundary conditions necessary for maintaining the PT -symmetry...

  20. Characterization of the matrix glass transition in carbon-epoxy laminates using the CSD test geometry. [centro-symmetric deformation

    Science.gov (United States)

    Sternstein, S. S.; Yang, P.

    1983-01-01

    A new test geometry, referred to as centro-symmetric deformation (CSD), is proposed for characterizing the viscoelastic behavior of the matrix of carbon-epoxy laminates. The sample consists of a thin disk, typically 6-14 plies thick, having a nominal diameter of 30 mm. The disk is freely supported on a circular anvil; the load is applied to the center of the disk using an 8-mm-diameter ball bearing nosepiece. The CSD test geometry provides viscoelastic dispersion data which are independent of the angular orientation of the sample. The test geometry is sufficiently sensitive to matrix changes to allow its use for postcuring, humidity, crosslink density, and other matrix change studies. Test results are presented for a carbon-epoxy laminate.

  1. In vivo evaluation of axial integrity of coronary stents using intravascular ultrasound: Insights on longitudinal stent deformation.

    Science.gov (United States)

    Dvir, Danny; Kitabata, Hironori; Barbash, Israel M; Minha, Sa'ar; Badr, Salem; Loh, Joshua P; Chen, Fang; Torguson, Rebecca; Waksman, Ron

    2014-09-01

    To evaluate the axial integrity of different coronary stents using intravascular ultrasound (IVUS). Longitudinal stent deformation was recently reported. Consecutive patients who underwent IVUS analysis after drug-eluting stent (DES) implantation for de novo coronary lesions were evaluated. Stent length was compared with label length for calculation of absolute change and relative difference (absolute change divided by label length). A total of 233 DES utilizing five different platforms were included. The median absolute change in stent length was 0.90 mm (interquartile range [IQR] 0.48-1.39) and the relative difference was 5.24% (IQR 2.55-8.29). There was no significant difference among the groups in median absolute or relative change: Cypher 0.89 mm/3.89%, Taxus 0.88 mm/5.39%, Endeavor 1.16 mm/6.77%, Xience V 0.86 mm/5.80%, and PROMUS Element 0.79 mm/5.34% (P = 0.085, P = 0.072, respectively). Multivariate logistic regression revealed that the Cypher stent was independently correlated with a lower change in length, whereas stent label length and deployment pressure were correlated with higher absolute change. The axial integrity of DES platforms examined in vivo was high, with only mild changes in stent length after implantation. While there are differences between first- and second-generation DES, axial integrity among second-generation DES was similar. © 2013 Wiley Periodicals, Inc.

  2. Analysis of axially symmetric wire antennas by the use of exact kernel of electric field integral equation

    Directory of Open Access Journals (Sweden)

    Krneta Aleksandra J.

    2016-01-01

    Full Text Available The paper presents a new method for the analysis of wire antennas with axial symmetry. Truncated cones have been applied to precisely model antenna geometry, while the exact kernel of the electric field integral equation has been used for computation. Accuracy and efficiency of the method has been further increased by the use of higher order basis functions for current expansion, and by selecting integration methods based on singularity cancelation techniques for the calculation of potential and impedance integrals. The method has been applied to the analysis of a typical dipole antenna, thick dipole antenna and a coaxial line. The obtained results verify the high accuracy of the method. [Projekat Ministarstva nauke Republike Srbije, br. TR-32005

  3. Multi-Axial Deformation Setup for Microscopic Testing of Sheet Metal to Fracture

    NARCIS (Netherlands)

    Tasan, C.C.; Hoefnagels, J.P.M.; Dekkers, E.C.A.; Geers, M.G.D.

    2012-01-01

    While the industrial interest in sheet metal with improved specific-properties led to the design of new alloys with complex microstructures, predicting their safe forming limits and understanding their microstructural deformation mechanisms remain as significant challenges largely due to the

  4. Simple description of odd-A nuclei around the critical point of the spherical to axially deformed shape phase transition

    International Nuclear Information System (INIS)

    Zhang Yu; Pan Feng; Liu Yuxin; Luo Yanan; Draayer, J. P.

    2011-01-01

    An analytically solvable model, X(3/2j+1), is proposed to describe odd-A nuclei near the X(3) critical point. The model is constructed based on a collective core described by the X(3) critical point symmetry coupled to a spin-j particle. A detailed analysis of the spectral patterns for cases j=1/2 and j=3/2 is provided to illustrate dynamical features of the model. By comparing theory with experimental data and results of other models, it is found that the X(3/2j+1) model can be taken as a simple yet very effective scheme to describe those odd-A nuclei with an even-even core at the critical point of the spherical to axially deformed shape phase transition.

  5. Use of the reciprocity theorem for a closed form solution of scattering of the lowest axially symmetric torsional wave mode by a defect in a pipe.

    Science.gov (United States)

    Lee, Jaesun; Achenbach, Jan D; Cho, Younho

    2018-03-01

    Guided waves can effectively be used for inspection of large scale structures. Surface corrosion is often found as major defect type in large scale structures such as pipelines. Guided wave interaction with surface corrosion can provide useful information for sizing and classification. In this paper, the elastodynamic reciprocity theorem is used to formulate and solve complicated scattering problems in a simple manner. The approach has already been applied to scattering of Rayleigh and Lamb waves by defects to produce closed form solutions of amplitude of scattered waves. In this paper, the scattering of the lowest axially symmetric torsional mode, which is widely used in commercial applications, is analyzed by the reciprocity theorem. In the present paper, the theorem is used to determine the scattering of the lowest torsional mode by a tapered defect that was earlier considered experimentally and numerically by the finite element method. It is shown that by the presented method it is simple to obtain the ratio of amplitudes of scattered torsional modes for a tapered notch. The results show a good agreement with earlier numerical results. The wave field superposition technique in conjunction with the reciprocity theorem simplifies the solution of the scattering problem to yield a closed form solution which can play a significant role in quantitative signal interpretation. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. symmetrically deformed integrable systems

    Indian Academy of Sciences (India)

    plex Liouville theory, a rigorous proof for the reality of the spectrum was found by Faddeev and .... to use non-rational potentials? Can one have more .... The freedom in the choice of the functions R(ϵ),I(ϵ) may then be used to satisfy the ...

  7. Self-deformation in a direct current driven helium jet micro discharge

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S. F.; Zhong, X. X., E-mail: xxzhong@sjtu.edu.cn [State Key Laboratory of Advanced Optical Communication Systems and Networks and Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2016-01-15

    We report on the experimental observation of three dimensional self-deformation in an atmospheric micro discharge of the helium microjet through a tube into the ambient air upon a water electrode. The geometry of the discharge system is axial symmetric. While decreasing the discharge current, three dimensional collective motion of plasma filaments is directly observed. The three dimensional configuration of the discharge self changed from an axial symmetrical horn to a rectangular horn when the water acts as a cathode.

  8. Self-deformation in a direct current driven helium jet micro discharge

    Science.gov (United States)

    Xu, S. F.; Zhong, X. X.

    2016-01-01

    We report on the experimental observation of three dimensional self-deformation in an atmospheric micro discharge of the helium microjet through a tube into the ambient air upon a water electrode. The geometry of the discharge system is axial symmetric. While decreasing the discharge current, three dimensional collective motion of plasma filaments is directly observed. The three dimensional configuration of the discharge self changed from an axial symmetrical horn to a rectangular horn when the water acts as a cathode.

  9. Self-deformation in a direct current driven helium jet micro discharge

    International Nuclear Information System (INIS)

    Xu, S. F.; Zhong, X. X.

    2016-01-01

    We report on the experimental observation of three dimensional self-deformation in an atmospheric micro discharge of the helium microjet through a tube into the ambient air upon a water electrode. The geometry of the discharge system is axial symmetric. While decreasing the discharge current, three dimensional collective motion of plasma filaments is directly observed. The three dimensional configuration of the discharge self changed from an axial symmetrical horn to a rectangular horn when the water acts as a cathode

  10. Dose dependence of tensoresistance for the symmetrical orientation of the deformation axis relatively to all isoenergetic ellipsoids in γ-irradiated (60Co n-Si crystals

    Directory of Open Access Journals (Sweden)

    G.P. Gaidar

    2018-03-01

    Full Text Available The dose dependence of tensoresistance X /0, which was measured at the symmetrical orientation of the deformation axis (compression relatively to all isoenergetic ellipsoids both in the initial and in -irradiated samples, was investigated in n-Si crystals. It has been shown that changing the irradiation doses is accompanied by not only quantitative but also qualitative changes in the functional dependence X /0 = f (Х. Features of tensoresistance in n-Si irradiated samples were found depending on three crystallographic directions, along which the samples were cut out and the mechanical stress Х was applied.

  11. Classical studies of the ellipsoidal shapes for dynamical deformation theories of the nucleus

    International Nuclear Information System (INIS)

    Remaud, B.

    1978-01-01

    The shape-dependent functions of the Liquid Drop and the Droplet Models are analytically calculated for an ellipsoid. Using the ellipsoidal symmetries, these functions (including the curvature function) are written in terms of three basic expressions. The nuclear deformation energy can be calculated in a simple way for axially symmetric and asymmetric ellipsoidal nuclei whatever the magnitude of the deformation is

  12. Bifurcations and chaos of classical trajectories in a deformed nuclear potential

    International Nuclear Information System (INIS)

    Carbonell, J.; Arvieu, R.

    1983-01-01

    The organization of the phase space of a classical nucleon in an axially symmetric deformed potential with the restriction Lsub(z)=0 is studied by drawing the Poincare surfaces of section. In the limit of small deformations three simple limits help to understand this organization. Moreover important bifurcations of periodic trajectories occur. At higher deformations multifurcations and chaos are observed. Chaos is developed to a larger extent in the heavier nuclei. (author)

  13. Republication of: New solutions to Einstein's equations of gravitation. B. Explicit determination of static, axially symmetric fields. By Rudolf Bach. With a supplement on the static two-body problem. By H. Weyl.

    Science.gov (United States)

    Bach, Rudolf; Weyl, Hermann

    2012-03-01

    This is the English translation of the third of a series of 3 papers by Hermann Weyl (the third one jointly with Rudolf Bach), first published in 1917-1922, in which the authors derived and discussed the now-famous Weyl two-body static axially symmetric vacuum solution of Einstein's equations. The English translations of the other two papers are published alongside this one. The papers have been selected by the Editors of General Relativity and Gravitation for re-publication in the Golden Oldies series of the journal. This republication is accompanied by an editorial note written by Gernot Neugebauer, David Petroff and Bahram Mashhoon, and by a brief biography of R. Bach, written by H. Goenner.

  14. Axial distribution of deformation in the cladding of pressurized water reactor fuel rods in a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Rose, K.M.; Mann, C.A.; Hindle, E.D.

    1979-01-01

    In the event of a loss-of-coolant accident in a pressurized water reactor, the cladding of the fuel rods would undergo a temperature excursion while being subject to tensile hoop stress. The deformation behavior of 470-mm lengths of Zircaloy-4 fuel cladding has been studied experimentally; under a range of stress levels in the high-alpha range of zirconium (600 to 850 0 C), diametral strains of up to 70% were observed over the greater part of their length. A negative-feedback mechanism is suggested, based on the reduction of secondary creep rate following cooling by enhanced heat loss at swelling areas. An approximate analysis based on this mechanism was found to be in reasonable agreement with the experimental results. A computer modeling code is being developed to predict cladding deformation under realistic conditions

  15. Axial distribution of deformation in the cladding of pressurized water reactor fuel rods in a loss-of-coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Rose, K.M.; Mann, C.A.; Hindle, E.D.

    1979-12-01

    In the event of a loss-of-coolant accident in a pressurized water reactor, the cladding of the fuel rods would undergo a temperature excursion while being subject to tensile hoop stress. The deformation behavior of 470-mm lengths of Zircaloy-4 fuel cladding has been studied experimentally; under a range of stress levels in the high-alpha range of zirconium (600 to 850/sup 0/C), diametral strains of up to 70% were observed over the greater part of their length. A negative-feedback mechanism is suggested, based on the reduction of secondary creep rate following cooling by enhanced heat loss at swelling areas. An approximate analysis based on this mechanism was found to be in reasonable agreement with the experimental results. A computer modeling code is being developed to predict cladding deformation under realistic conditions.

  16. Axially symmetric U-O-Ln- and U-O-U-containing molecules from the control of uranyl reduction with simple f-block halides

    International Nuclear Information System (INIS)

    Arnold, Polly L.; Cowie, Bradley E.; Suvova, Marketa; Zegke, Markus; Love, Jason B.; Magnani, Nicola; Colineau, Eric; Griveau, Jean-Christophe; Caciuffo, Roberto

    2017-01-01

    The reduction of U"V"I uranyl halides or amides with simple Ln"I"I or U"I"I"I salts forms highly symmetric, linear, oxo-bridged trinuclear U"V/Ln"I"I"I/U"V, Ln"I"I"I/U"I"V/Ln"I"I"I, and U"I"V/U"I"V/U"I"V complexes or linear Ln"I"I"I/U"V polymers depending on the stoichiometry and solvent. The reactions can be tuned to give the products of one- or two-electron uranyl reduction. The reactivity and magnetism of these compounds are discussed in the context of using a series of strongly oxo-coupled homo- and heterometallic poly(f-block) chains to better understand fundamental electronic structure in the f-block. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Axially symmetric U-O-Ln- and U-O-U-containing molecules from the control of uranyl reduction with simple f-block halides

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Polly L.; Cowie, Bradley E.; Suvova, Marketa; Zegke, Markus; Love, Jason B. [EaStCHEM School of Chemistry, University of Edinburgh (United Kingdom); Magnani, Nicola; Colineau, Eric; Griveau, Jean-Christophe; Caciuffo, Roberto [European Commission, Directorate for Nuclear Safety and Security, Joint Research Centre, Karlsruhe (Germany)

    2017-08-28

    The reduction of U{sup VI} uranyl halides or amides with simple Ln{sup II} or U{sup III} salts forms highly symmetric, linear, oxo-bridged trinuclear U{sup V}/Ln{sup III}/U{sup V}, Ln{sup III}/U{sup IV}/Ln{sup III}, and U{sup IV}/U{sup IV}/U{sup IV} complexes or linear Ln{sup III}/U{sup V} polymers depending on the stoichiometry and solvent. The reactions can be tuned to give the products of one- or two-electron uranyl reduction. The reactivity and magnetism of these compounds are discussed in the context of using a series of strongly oxo-coupled homo- and heterometallic poly(f-block) chains to better understand fundamental electronic structure in the f-block. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Deformation behavior of Cu bicrystals with the Σ9(110)(221) symmetric tilt grain boundary under pure shear studied by atomistic simulation method

    International Nuclear Information System (INIS)

    Wan Liang; Wang Shaoqing

    2010-01-01

    The deformation behavior of Cu bicrystals with the symmetric tilt grain boundary (STGB) under pure shear has been studied by atomistic simulation method with the embedded atom method (EAM) interatomic potentials. By using an energy minimization method, it shows that there are two optimized structures of this grain boundary (GB) which correspond to two local energy minima on the potential energy surface of the GB. The structure with lower energy is the stable one while the other is a metastable structure. The pure shear process of the bicrystals at ambient temperature has been studied by molecular dynamics (MD) simulation method. The simulated results indicate that there are three structure transformation modes of this GB depending on the shear direction: (1) pure GB sliding; (2) GB atomic shuffling accompanied by dislocation emission from GB; (3) GB migration coupled GB sliding, namely, GB coupling motion. In addition, an analysis of the structure evolution of the GB shows that, there are two mechanisms for GB coupling motion depending on the shear direction. One is the collective motion of GB atoms and the other is structure transformation realized by uncorrelated atomic shuffling processes. The former mechanism can induce structure transition of GB between the stable one and the metastable one, while the latter introduces faceting of the GB. (authors)

  19. ¹⁴N Quadrupole Resonance line broadening due to the earth magnetic field, occuring only in the case of an axially symmetric electric field gradient tensor.

    Science.gov (United States)

    Aissani, Sarra; Guendouz, Laouès; Marande, Pierre-Louis; Canet, Daniel

    2015-01-01

    As demonstrated before, the application of a weak static B0 magnetic field (less than 10 G) may produce definite effects on the ¹⁴N Quadrupole Resonance line when the electric field gradient tensor at the nitrogen nucleus level is of axial symmetry. Here, we address more precisely the problem of the relative orientation of the two magnetic fields (the static field and the radio-frequency field of the pure NQR experiment). For a field of 6G, the evolution of the signal intensity, as a function of this relative orientation, is in very good agreement with the theoretical predictions. There is in particular an intensity loss by a factor of three when going from the parallel configuration to the perpendicular configuration. By contrast, when dealing with a very weak magnetic field (as the earth field, around 0.5 G), this effect drops to ca. 1.5 in the case Hexamethylenetetramine (HMT).This is explained by the fact that the Zeeman shift (due to the very weak magnetic field) becomes comparable to the natural line-width. The latter can therefore be determined by accounting for this competition. Still in the case of HMT, the estimated natural line-width is half the observed line-width. The extra broadening is thus attributed to earth magnetic field. The latter constitutes therefore the main cause of the difference between the natural transverse relaxation time (T₂) and the transverse relaxation time derived from the observed line-width (T₂(⁎)). Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Axially deformed solution of the Skyrme-Hartree-Fock-Bogoliubov equations using the transformed harmonic oscillator basis (II) HFBTHO v2.00d: A new version of the program

    Science.gov (United States)

    Stoitsov, M. V.; Schunck, N.; Kortelainen, M.; Michel, N.; Nam, H.; Olsen, E.; Sarich, J.; Wild, S.

    2013-06-01

    We describe the new version 2.00d of the code HFBTHO that solves the nuclear Skyrme-Hartree-Fock (HF) or Skyrme-Hartree-Fock-Bogoliubov (HFB) problem by using the cylindrical transformed deformed harmonic oscillator basis. In the new version, we have implemented the following features: (i) the modified Broyden method for non-linear problems, (ii) optional breaking of reflection symmetry, (iii) calculation of axial multipole moments, (iv) finite temperature formalism for the HFB method, (v) linear constraint method based on the approximation of the Random Phase Approximation (RPA) matrix for multi-constraint calculations, (vi) blocking of quasi-particles in the Equal Filling Approximation (EFA), (vii) framework for generalized energy density with arbitrary density-dependences, and (viii) shared memory parallelism via OpenMP pragmas. Program summaryProgram title: HFBTHO v2.00d Catalog identifier: ADUI_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUI_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 167228 No. of bytes in distributed program, including test data, etc.: 2672156 Distribution format: tar.gz Programming language: FORTRAN-95. Computer: Intel Pentium-III, Intel Xeon, AMD-Athlon, AMD-Opteron, Cray XT5, Cray XE6. Operating system: UNIX, LINUX, WindowsXP. RAM: 200 Mwords Word size: 8 bits Classification: 17.22. Does the new version supercede the previous version?: Yes Catalog identifier of previous version: ADUI_v1_0 Journal reference of previous version: Comput. Phys. Comm. 167 (2005) 43 Nature of problem: The solution of self-consistent mean-field equations for weakly-bound paired nuclei requires a correct description of the asymptotic properties of nuclear quasi-particle wave functions. In the present implementation, this is achieved by using the single-particle wave functions

  1. Implications of the center of rotation concept for the reconstruction of anterior column lordosis and axial preloads in spinal deformity surgery.

    Science.gov (United States)

    Koller, Heiko; Mayer, Michael; Zenner, Juliane; Resch, Herbert; Niederberger, Alfred; Fierlbeck, Johann; Hitzl, Wolfgang; Acosta, Frank L

    2012-07-01

    In thoracolumbar deformity surgery, anterior-only approaches are used for reconstruction of anterior column failures. It is generally advised that vertebral body replacements (VBRs) should be preloaded by compression. However, little is known regarding the impact of different techniques for generation of preloads and which surgical principle is best for restoration of lordosis. Therefore, the authors analyzed the effect of different surgical techniques to restore spinal alignment and lordosis as well as the ability to generate axial preloads on VBRs in anterior column reconstructions. The authors performed a laboratory study using 7 fresh-frozen specimens (from T-3 to S-1) to assess the ability for lordosis reconstruction of 5 techniques and their potential for increasing preloads on a modified distractable VBR in a 1-level thoracolumbar corpectomy. The testing protocol was as follows: 1) Radiographs of specimens were obtained. 2) A 1-level corpectomy was performed. 3) In alternating order, lordosis was applied using 1 of the 5 techniques. Then, preloads during insertion and after relaxation using the modified distractable VBR were assessed using a miniature load-cell incorporated in the modified distractable VBR. The modified distractable VBR was inserted into the corpectomy defect after lordosis was applied using 1) a lamina spreader; 2) the modified distractable VBR only; 3) the ArcoFix System (an angular stable plate system enabling in situ reduction); 4) a lordosizer (a customized instrument enabling reduction while replicating the intervertebral center of rotation [COR] according to the COR method); and 5) a lordosizer and top-loading screws ([LZ+TLS], distraction with the lordosizer applied on a 5.5-mm rod linked to 2 top-loading pedicle screws inserted laterally into the vertebra). Changes in the regional kyphosis angle were assessed radiographically using the Cobb method. The bone mineral density of specimens was 0.72 ± 22.6 g/cm(2). The maximum regional

  2. 3-dimensional magnetotelluric inversion including topography using deformed hexahedral edge finite elements and direct solvers parallelized on symmetric multiprocessor computers - Part II: direct data-space inverse solution

    Science.gov (United States)

    Kordy, M.; Wannamaker, P.; Maris, V.; Cherkaev, E.; Hill, G.

    2016-01-01

    Following the creation described in Part I of a deformable edge finite-element simulator for 3-D magnetotelluric (MT) responses using direct solvers, in Part II we develop an algorithm named HexMT for 3-D regularized inversion of MT data including topography. Direct solvers parallelized on large-RAM, symmetric multiprocessor (SMP) workstations are used also for the Gauss-Newton model update. By exploiting the data-space approach, the computational cost of the model update becomes much less in both time and computer memory than the cost of the forward simulation. In order to regularize using the second norm of the gradient, we factor the matrix related to the regularization term and apply its inverse to the Jacobian, which is done using the MKL PARDISO library. For dense matrix multiplication and factorization related to the model update, we use the PLASMA library which shows very good scalability across processor cores. A synthetic test inversion using a simple hill model shows that including topography can be important; in this case depression of the electric field by the hill can cause false conductors at depth or mask the presence of resistive structure. With a simple model of two buried bricks, a uniform spatial weighting for the norm of model smoothing recovered more accurate locations for the tomographic images compared to weightings which were a function of parameter Jacobians. We implement joint inversion for static distortion matrices tested using the Dublin secret model 2, for which we are able to reduce nRMS to ˜1.1 while avoiding oscillatory convergence. Finally we test the code on field data by inverting full impedance and tipper MT responses collected around Mount St Helens in the Cascade volcanic chain. Among several prominent structures, the north-south trending, eruption-controlling shear zone is clearly imaged in the inversion.

  3. Thermocapillary Convection in Floating Zone with Axial Magnetic Fields

    Science.gov (United States)

    Liang, Ruquan; Yang, Shuo; Li, Jizhao

    2014-02-01

    Numerical simulations on the effects of axial magnetic fields on the thermocapillary convection in a liquid bridge of silicone-oil-based ferrofluid under zero gravity have been conducted. The Navier-Stokes equations coupled with the energy conservation equation are solved on a staggered grid, and the mass conserving level set approach is used to capture the free surface deformation of the liquid bridge. The obvious effects of the magnetic fields on the flow pattern as well as the velocity and temperature distributions in the liquid bridge can be detected. The axial magnetic fields suppress the thermocapillary convection and a stagnant flow zone is formed between the circulating flow and the symmetric axis as the magnetic fields increase. The axial magnetic fields affect not only the velocity level inside the liquid bridge but also the velocity level on the free surface. The temperature contours near the free surface illustrates conduction-type temperature profiles at moderate strength fields.

  4. Diffraction scattering and disintegration of complex particles by nonspherical deformable nuclei

    International Nuclear Information System (INIS)

    Evlanov, M.V.; Isupov, V.Y.; Tartakovskii, V.K.

    1989-01-01

    We study the dependence of the differential and integrated cross sections for diffraction scattering and disintegration of complex particles by axially symmetric and non-axially-symmetric nuclei on the shape, deformability, and diffuseness of the nuclear surface, and also on the structure of the incident particles and rescattering processes. It is shown that when all of these factors are taken into account, as well as the interaction in the final state between the disintegration products of the incident particle, a satisfactory description of complicated coincidence experiments can be obtained, and also inelastic scattering experiments with excitation of collective states of the target nucleus

  5. Propagation of Axially Symmetric Detonation Waves

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R L; Roeske, F; Souers, P C; Tarver, C M; Chow, C T S; Lee, R S; McGuire, E M; Overturf, G E; Vitello, P A

    2002-06-26

    We have studied the non-ideal propagation of detonation waves in LX-10 and in the insensitive explosive TATB. Explosively-driven, 5.8-mm-diameter, 0.125-mm-thick aluminum flyer plates were used to initiate 38-mm-diameter, hemispherical samples of LX-10 pressed to a density of 1.86 g/cm{sup 3} and of TATB at a density of 1.80 g/cm{sup 3}. The TATB powder was a grade called ultrafine (UFTATB), having an arithmetic mean particle diameter of about 8-10 {micro}m and a specific surface area of about 4.5 m{sup 2}/g. Using PMMA as a transducer, output pressure was measured at 5 discrete points on the booster using a Fabry-Perot velocimeter. Breakout time was measured on a line across the booster with a streak camera. Each of the experimental geometries was calculated using the Ignition and Growth Reactive Flow Model, the JWL++ Model and the Programmed Burn Model. Boosters at both ambient and cold (-20 C and -54 C) temperatures have been experimentally and computationally studied. A comparison of experimental and modeling results is presented.

  6. Characterization of axially-symmetric magnetic elds

    CERN Document Server

    AUTHOR|(CDS)2087237; Buzio, Marco

    In solenoids for particle accelerators, the magnetic field is usually mapped by means of 3D Hall-sensing systems through a burdensome and costly procedure. A further problem arises from a coherent treatment between the beam physics requirements, the qualification of numerical models, the design and manufacturing of the magnet, and the magnetic measurements. For example, when the magnet is misaligned with respect to the longitudinal direction of the mapper, the fringe field shows spurious components. A method was therefore developed for measuring the magnetic field of axisymmetric magnets by exploiting their inherent symmetry. The method yields a measurement of the magnetic flux linked with a pair of sensing coils as a function of their longitudinal position. An induction transducer, sensitive to the longitudinal and radial components of the solenoid under test, has been designed and constructed. A transport system moves the transducer along the magnet axis, covering the full length of the magnet and including...

  7. Reactive control of subsonic axial fan noise in a duct.

    Science.gov (United States)

    Liu, Y; Choy, Y S; Huang, L; Cheng, L

    2014-10-01

    Suppressing the ducted fan noise at low frequencies without varying the flow capacity is still a technical challenge. This study examines a conceived device consisting of two tensioned membranes backed with cavities housing the axial fan for suppression of the sound radiation from the axial fan directly. The noise suppression is achieved by destructive interference between the sound fields from the axial fan of a dipole nature and sound radiation from the membrane via vibroacoustics coupling. A two-dimensional model with the flow effect is presented which allows the performance of the device to be explored analytically. The air flow influences the symmetrical behavior and excites the odd in vacuo mode response of the membrane due to kinematic coupling. Such an asymmetrical effect can be compromised with off-center alignment of the axial fan. Tension plays an important role to sustain the performance to revoke the deformation of the membrane during the axial fan operation. With the design of four appropriately tensioned membranes covered by a cylindrical cavity, the first and second blade passage frequencies of the axial fan can be reduced by at least 20 dB. The satisfactory agreement between experiment and theory demonstrates that its feasibility is practical.

  8. Symmetric textures

    International Nuclear Information System (INIS)

    Ramond, P.

    1993-01-01

    The Wolfenstein parametrization is extended to the quark masses in the deep ultraviolet, and an algorithm to derive symmetric textures which are compatible with existing data is developed. It is found that there are only five such textures

  9. Relativistic quasiparticle random phase approximation in deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Pena Arteaga, D.

    2007-06-25

    Covariant density functional theory is used to study the influence of electromagnetic radiation on deformed superfluid nuclei. The relativistic Hartree-Bogolyubov equations and the resulting diagonalization problem of the quasiparticle random phase approximation are solved for axially symmetric systems in a fully self-consistent way by a newly developed parallel code. Three different kinds of high precision energy functionals are investigated and special care is taken for the decoupling of the Goldstone modes. This allows the microscopic investigation of Pygmy and scissor resonances in electric and magnetic dipole fields. Excellent agreement with recent experiments is found and new types of modes are predicted for deformed systems with large neutron excess. (orig.)

  10. Axially deformed solution of the Skyrme-Hartree-Fock-Bogolyubov equations using the transformed harmonic oscillator basis (III) HFBTHO (v3.00): A new version of the program

    Science.gov (United States)

    Perez, R. Navarro; Schunck, N.; Lasseri, R.-D.; Zhang, C.; Sarich, J.

    2017-11-01

    intrinsic densities. In the present version of HFBTHO, the energy density derives either from the zero-range Skyrme or the finite-range Gogny effective two-body interaction between nucleons. Nuclear super-fluidity is treated at the Hartree-Fock-Bogolyubov (HFB) approximation. Constraints on the nuclear shape allows probing the potential energy surface of the nucleus as needed e.g., for the description of shape isomers or fission. The implementation of a local scale transformation of the single-particle basis in which the HFB solutions are expanded provide a tool to properly compute the structure of weakly-bound nuclei. Solution method: The program uses the axial Transformed Harmonic Oscillator (THO) single-particle basis to expand quasiparticle wave functions. It iteratively diagonalizes the Hartree-Fock-Bogolyubov Hamiltonian based on generalized Skyrme-like energy densities and zero-range pairing interactions or the finite-range Gogny force until a self-consistent solution is found. A previous version of the program was presented in M.V. Stoitsov, N. Schunck, M. Kortelainen, N. Michel, H. Nam, E. Olsen, J. Sarich, and S. Wild, Comput. Phys. Commun. 184 (2013) 1592-1604 with much of the formalism presented in the original paper M.V. Stoitsov, J. Dobaczewski, W. Nazarewicz, P. Ring, Comput. Phys. Commun. 167 (2005) 43-63. Additional comments: The user must have access to (i) the LAPACK subroutines DSYEEVR, DSYEVD, DSYTRF and DSYTRI, and their dependencies, which compute eigenvalues and eigenfunctions of real symmetric matrices, (ii) the LAPACK subroutines DGETRI and DGETRF, which invert arbitrary real matrices, and (iii) the BLAS routines DCOPY, DSCAL, DGEMM and DGEMV for double-precision linear algebra (or provide another set of subroutines that can perform such tasks). The BLAS and LAPACK subroutines can be obtained from the Netlib Repository at the University of Tennessee, Knoxville: http://netlib2.cs.utk.edu/.

  11. Symmetric modular torsatron

    Science.gov (United States)

    Rome, J.A.; Harris, J.H.

    1984-01-01

    A fusion reactor device is provided in which the magnetic fields for plasma confinement in a toroidal configuration is produced by a plurality of symmetrical modular coils arranged to form a symmetric modular torsatron referred to as a symmotron. Each of the identical modular coils is helically deformed and comprise one field period of the torsatron. Helical segments of each coil are connected by means of toroidally directed windbacks which may also provide part of the vertical field required for positioning the plasma. The stray fields of the windback segments may be compensated by toroidal coils. A variety of magnetic confinement flux surface configurations may be produced by proper modulation of the winding pitch of the helical segments of the coils, as in a conventional torsatron, winding the helix on a noncircular cross section and varying the poloidal and radial location of the windbacks and the compensating toroidal ring coils.

  12. Axial myopathy

    DEFF Research Database (Denmark)

    Witting, Nanna; Andersen, Linda K; Vissing, John

    2016-01-01

    Classically, myopathies are categorized according to limb or cranial nerve muscle affection, but with the growing use of magnetic resonance imaging it has become evident that many well-known myopathies have significant involvement of the axial musculature. New disease entities with selective axial...

  13. Plastic deformation behavior and bonding strength of an EBW joint between 9Cr-ODS and JLF-1 estimated by symmetric four-point bend tests combined with FEM analysis

    International Nuclear Information System (INIS)

    Fu, Haiying; Nagasaka, Takuya; Muroga, Takeo; Guan, Wenhai; Nogami, Shuhei; Serizawa, Hisashi; Geng, Shaofei; Yabuuchi, Kiyohiro; Kimura, Akihiko

    2016-01-01

    The joint between 9Cr-ODS and JLF-1 made by electron beam welding (EBW) fractured at the JLF-1 base metal (BM) during uniaxial tensile tests. Thus, the bonding strength of the joint was not determined and was estimated as more than the ultimate tensile strength of the BM in this case. Symmetric four-point bend tests which concentrate the stress inside the inner span including the weld metal (WM) were carried out at room temperature (RT) and 550 °C to investigate how the bonding strength is more than the ultimate tensile strength of the BM. The normal stress at the center of the weld bead can be calculated with elastic theory up to only 0.25% in strain, though the joint showed more than 10% in strain due to plastic deformation. Thus, finite element method (FEM) was utilized to simulate the plastic deformation behavior of the joint during bend tests. According to the fitting of the FEM output, such as load and displacement of the upper jig contacting the specimens, to the experimental results, the bonding strength of the joint at RT and 550 °C were estimated as 854 MPa and 505 MPa, respectively.

  14. Plastic deformation behavior and bonding strength of an EBW joint between 9Cr-ODS and JLF-1 estimated by symmetric four-point bend tests combined with FEM analysis

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Haiying [SOKENDAI (The Graduate University for Advanced Studies), 322-6 Oroshi-cho, Toki 509-5292 (Japan); Nagasaka, Takuya; Muroga, Takeo [SOKENDAI (The Graduate University for Advanced Studies), 322-6 Oroshi-cho, Toki 509-5292 (Japan); National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Guan, Wenhai; Nogami, Shuhei [Tohoku University, 6-6-01-2 Aramaki-aza-Aoba, Aoba-ku, Sendai 980-8578 (Japan); Serizawa, Hisashi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki 567-0047 (Japan); Geng, Shaofei [SOKENDAI (The Graduate University for Advanced Studies), 322-6 Oroshi-cho, Toki 509-5292 (Japan); Yabuuchi, Kiyohiro; Kimura, Akihiko [Institute of Advanced Energy, Kyoto University, Uji 611-0011 (Japan)

    2016-01-15

    The joint between 9Cr-ODS and JLF-1 made by electron beam welding (EBW) fractured at the JLF-1 base metal (BM) during uniaxial tensile tests. Thus, the bonding strength of the joint was not determined and was estimated as more than the ultimate tensile strength of the BM in this case. Symmetric four-point bend tests which concentrate the stress inside the inner span including the weld metal (WM) were carried out at room temperature (RT) and 550 °C to investigate how the bonding strength is more than the ultimate tensile strength of the BM. The normal stress at the center of the weld bead can be calculated with elastic theory up to only 0.25% in strain, though the joint showed more than 10% in strain due to plastic deformation. Thus, finite element method (FEM) was utilized to simulate the plastic deformation behavior of the joint during bend tests. According to the fitting of the FEM output, such as load and displacement of the upper jig contacting the specimens, to the experimental results, the bonding strength of the joint at RT and 550 °C were estimated as 854 MPa and 505 MPa, respectively.

  15. Calculating beta decay in the deformed self-consistent quasiparticle random phase approximation

    Energy Technology Data Exchange (ETDEWEB)

    Engel, Jonathan, E-mail: engelj@physics.unc.edu [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255 (United States); Mustonen, M. T., E-mail: mika.mustonen@yale.edu [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255 (United States); Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, CT 06052 (United States)

    2016-06-21

    We discuss a recent global calculation of beta-decay rates in the self-consistent Skyrme quasiparticle random phase approximation (QRPA), with axially symmetric nuclear deformation treated explicitly. The calculation makes makes use of the finite-amplitude method, first proposed by Nakatsukasa and collaborators, to reduce computation time. The results are comparable in quality to those of several other global QRPA calculations. The QRPA may have reached the limit of its accuracy.

  16. A novel SUSY energy bound-states treatment of the Klein-Gordon equation with PT-symmetric and q-deformed parameter Hulthén potential

    Science.gov (United States)

    Aktas, M.

    2018-01-01

    In this study, we focus on investigating the exact relativistic bound-state spectra for supersymmetric, PT-supersymmetric and non-Hermitian versions of the q-deformed parameter Hulthén potential. The Hamiltonian hierarchy mechanism, namely the factorization method, is adopted within the framework of SUSYQM. This algebraic approach is used in solving the Klein-Gordon equation with the potential cases. The results obtained analytically by executing the straightforward calculations are in consistent forms for certain values of q. Achieving the results may have a particular interest for such applications. That is, they can be involved in determining the quantum structural properties of molecules for ro-vibrational states, and optical spectra characteristics of semiconductor devices with regard to the lattice dynamics. They are also employed to construct the broken or unbroken case of the supersymmetric particle model concerning the interaction between the elementary particles.

  17. Order and chaos in nuclear and metal cluster deformation

    International Nuclear Information System (INIS)

    Radu, S.

    1995-08-01

    The vast amount of nuclear and metal cluster data indicates that shell structure and deformation are two simultaneous properties. A conflicting situation is therefore encountered as the shell structure, a firm expression of order, is apparently not compatible with the non-integrable nature of the models incorporating deformation. The main issue covered in this thesis is the intricate connection between deformation and chaotic behaviour in deformation models pertinent to nuclear structure and metal cluster physics. It is shown that, at least in some cases, it is possible to reconcile the occurrence of shell structure with non-integrability. The coupling of an axially deformed harmonic oscillator to an axially symmetric octupole term renders the problem non-integrable. The chaotic character of the motion is strongly dependent on the type of deformation, in that a prolate shape shows virtually no chaos, while in an oblate case the motion exhibits fully developed chaos when the octupole term is switched on. Whereas the problem is non-integrable, the quantum mechanical spectrum nevertheless shows some shell structure in the prolate case for particular, yet fairly large octupole strengths; for spherical or oblate deformation the shell structure disappears. This result is explained in terms of classical periodic orbits which are found by employing the 'removal of resonances method'. Particular emphasis is put on the effect of the hexadecapole deformation which is important in fission processes. The combined effect of octupole and hexadecapole deformation leads to important conclusions for the experimental work as a high degree of ambiguity is signaled for the interpretation of data. The ambiguity results from the discovery of a mutual cancellation of the octupole and hexadecapole deformation in prolate superdeformed systems. The phenomenological Nilsson model is treated in a similar way. It is argued that while in nuclei it produces good results for the low-lying levels

  18. Moving towards high-power, high-frequency and low-resistance CNT supercapacitors by tuning the CNT length, axial deformation and contact resistance

    Science.gov (United States)

    Basiricò, L.; Lanzara, G.

    2012-08-01

    In this paper it is shown that the electrochemical behaviour of vertically aligned multi-walled carbon nanotube (VANT) supercapacitors is influenced by the VANTs’ length (electrode thickness), by their axial compression and by their interface with the current collector. It is found that the VANTs, which can be interpreted as a dense array of nanochannels, have an active area available to ions that is strongly affected by the electrode’s thickness and compressional state. Consequently, the tested thinner electrodes, compressed electrodes or a combination of the two were found to be characterized by a significant improvement in terms of power density (up to 1246%), knee frequency (58 822% working up to 10 kHz), equivalent series resistance (ESR, up to 67%) and capacitance (up to 21%) when compared with thicker and/or uncompressed electrodes. These values are significantly higher than those reported in the literature where long VANTs with no control on compression are typically used. It is also shown that the ESR can be reduced not only by using shorter and compressed VANTs that have a higher conductance or by improving the electrode/collector electrical contact by changing the contact morphology at the nanoscale through compression, but also by depositing a thin platinum layer on the VANT tips in contact with the current collector (73% ESR decrease).

  19. Moving towards high-power, high-frequency and low-resistance CNT supercapacitors by tuning the CNT length, axial deformation and contact resistance

    International Nuclear Information System (INIS)

    Basiricò, L; Lanzara, G

    2012-01-01

    In this paper it is shown that the electrochemical behaviour of vertically aligned multi-walled carbon nanotube (VANT) supercapacitors is influenced by the VANTs’ length (electrode thickness), by their axial compression and by their interface with the current collector. It is found that the VANTs, which can be interpreted as a dense array of nanochannels, have an active area available to ions that is strongly affected by the electrode’s thickness and compressional state. Consequently, the tested thinner electrodes, compressed electrodes or a combination of the two were found to be characterized by a significant improvement in terms of power density (up to 1246%), knee frequency (58 822% working up to 10 kHz), equivalent series resistance (ESR, up to 67%) and capacitance (up to 21%) when compared with thicker and/or uncompressed electrodes. These values are significantly higher than those reported in the literature where long VANTs with no control on compression are typically used. It is also shown that the ESR can be reduced not only by using shorter and compressed VANTs that have a higher conductance or by improving the electrode/collector electrical contact by changing the contact morphology at the nanoscale through compression, but also by depositing a thin platinum layer on the VANT tips in contact with the current collector (73% ESR decrease). (paper)

  20. Finite element modelling of reinforced large-opening on the web of steel beam considering axial forces

    Science.gov (United States)

    Sukrawa, Made

    2017-11-01

    Experimental and analytical researches on the effect of web opening in steel beams have been repeatedly reported in literature because of the advantages gain from the many function of the opening. Most of the research on this area, however, did not consider deformation and stress in the beam due to axial force. In seismic design of steel structure, the axial force in the beam could be significantly high and therefore worth considering. In this study a beam extracted from a braced frame structure was analyzed using finite element models to investigate the effect of combined bending and axial forces on the deformation and stresses in the vicinity of the opening. Large size of square, rectangular, and circular openings of the same depth were reinforced and placed in pair, symmetrical to the concentrated load at mid span of the beam. Four types of reinforcement were used, all around (AA), short horizontal (SH), long horizontal (LH), and doubler plate (DP). The effect of axial load was also investigated using rigid frame model loaded vertically and laterally. Validation of the modelling technique was done prior to the parametric study. It was revealed that the axial force significantly contributes to the stress concentration near the hole. Stiffener of circular shape was effective to improve the stress distribution around the circular opening. For square and rectangular openings, however, the horizontal stiffener, extended beyond the edge of opening, performed better than the other type of stiffeners.

  1. Analytic study of plastic instabilities during tension or compression tests on a metallic plate bi-axially loaded in its plane: symmetric and antisymmetric modes with respect to the median plane

    International Nuclear Information System (INIS)

    Jouve, Dominique

    2012-01-01

    This report is a continuation of the thesis [23], devoted to the onset of necking plastic instabilities during tension tests on metallic plates bi-axially loaded in their plane. We are also interested here in compression tests, and in the development of antisymmetric defects with respect to the median plane of the plate. As in the thesis, we search for the dominant mode, i.e. the most unstable pair of wavelengths (λ1, λ2) in the loading plane. An approximate analytical formulation for the growth rate is proposed, especially for plane-strain tests in the absence of viscous effects, and for static tests in tension in the x1 and x2 loading directions. In that latter case, we retrieve published results [14][15]. For plane-strain tests, we show that infinitely dense networks of shear bands inclined at 45 deg. with respect to the loading direction instantaneously occur when heat softening prevails over work-hardening. (author)

  2. Gamow-Teller strength in deformed nuclei within self-consistent pnQRPA with the Gogny force

    Directory of Open Access Journals (Sweden)

    Martini M.

    2014-03-01

    Full Text Available In recent years fully consistent quasiparticle random-phase approximation (QRPA calculations using finite range Gogny force have been performed to study electromagnetic excitations of several axially-symmetric deformed nuclei up to the 238U. Here we present the extension of this approach to the charge-exchange nuclear excitations (pn-QRPA. In particular we focus on the Gamow-Teller (GT excitations. A comparison of the predicted GT strength distribution with existing experimental data is presented The role of nuclear deformation is shown. Special attention is paid to β-decay half-lives calculations for which experimental data exist.

  3. Causal symmetric spaces

    CERN Document Server

    Olafsson, Gestur; Helgason, Sigurdur

    1996-01-01

    This book is intended to introduce researchers and graduate students to the concepts of causal symmetric spaces. To date, results of recent studies considered standard by specialists have not been widely published. This book seeks to bring this information to students and researchers in geometry and analysis on causal symmetric spaces.Includes the newest results in harmonic analysis including Spherical functions on ordered symmetric space and the holmorphic discrete series and Hardy spaces on compactly casual symmetric spacesDeals with the infinitesimal situation, coverings of symmetric spaces, classification of causal symmetric pairs and invariant cone fieldsPresents basic geometric properties of semi-simple symmetric spacesIncludes appendices on Lie algebras and Lie groups, Bounded symmetric domains (Cayley transforms), Antiholomorphic Involutions on Bounded Domains and Para-Hermitian Symmetric Spaces

  4. Axial tomography

    International Nuclear Information System (INIS)

    Brueckner, K.A.; Lewis, J.H.

    1979-01-01

    The invention relates to axial tomography, sometimes referred to as cross-sectional x-ray. The apparatus described may utilize the conventional x-ray or ultrasonic source and detector and scanning mechanism for producing the plurality of sets of radiation detector output signals. It has the means for storing the detector output signals in analog form with the signals of one set overlying the signals of another set so that signals resulting from radiation through a zone of the object being examined are summed at a corresponding zone in the storage device, typically an electronic storage tube. The summed signals are read from the storage device with a radially inversely proportional reader producing a second signal for storage, again typically in an electronic storage tube. These signals stored in the second storage device are read with Laplacian relation, with the resultant sigal being a video signal that may be connected to a TV monitor for display of the sectional image. In alternative embodiments, optical film systems and electrostatic systems are utilized. (JTA)

  5. Facade Layout Symmetrization

    KAUST Repository

    Jiang, Haiyong

    2016-04-11

    We present an automatic algorithm for symmetrizing facade layouts. Our method symmetrizes a given facade layout while minimally modifying the original layout. Based on the principles of symmetry in urban design, we formulate the problem of facade layout symmetrization as an optimization problem. Our system further enhances the regularity of the final layout by redistributing and aligning boxes in the layout. We demonstrate that the proposed solution can generate symmetric facade layouts efficiently. © 2015 IEEE.

  6. Symmetrization of Facade Layouts

    KAUST Repository

    Jiang, Haiyong; Yan, Dong-Ming; Dong, Weiming; Wu, Fuzhang; Nan, Liangliang; Zhang, Xiaopeng

    2016-01-01

    We present an automatic approach for symmetrizing urban facade layouts. Our method can generate a symmetric layout through minimally modifying the original input layout. Based on the principles of symmetry in urban design, we formulate facade layout symmetrization as an optimization problem. Our method further enhances the regularity of the final layout by redistributing and aligning elements in the layout. We demonstrate that the proposed solution can effectively generate symmetric facade layouts.

  7. Facade Layout Symmetrization

    KAUST Repository

    Jiang, Haiyong; Dong, Weiming; Yan, Dongming; Zhang, Xiaopeng

    2016-01-01

    We present an automatic algorithm for symmetrizing facade layouts. Our method symmetrizes a given facade layout while minimally modifying the original layout. Based on the principles of symmetry in urban design, we formulate the problem of facade layout symmetrization as an optimization problem. Our system further enhances the regularity of the final layout by redistributing and aligning boxes in the layout. We demonstrate that the proposed solution can generate symmetric facade layouts efficiently. © 2015 IEEE.

  8. Symmetrization of Facade Layouts

    KAUST Repository

    Jiang, Haiyong

    2016-02-26

    We present an automatic approach for symmetrizing urban facade layouts. Our method can generate a symmetric layout through minimally modifying the original input layout. Based on the principles of symmetry in urban design, we formulate facade layout symmetrization as an optimization problem. Our method further enhances the regularity of the final layout by redistributing and aligning elements in the layout. We demonstrate that the proposed solution can effectively generate symmetric facade layouts.

  9. Controlling thermal deformation by using composite materials having variable fiber volume fraction

    International Nuclear Information System (INIS)

    Bouremana, M.; Tounsi, A.; Kaci, A.; Mechab, I.

    2009-01-01

    In application, many thin structural components such as beams, plates and shells experience a through-thickness temperature variation. This temperature variation can produce both an in-plane expansion and an out-of-plane (bending) curvature. Given that these thin components interact with or connect to other components, we often wish to minimize the thermal deformation or match the thermal deformation of another component. This is accomplished by using a composite whose fibers have a negative axial thermal expansion coefficient. By varying the fiber volume fraction within a symmetric laminated beam to create a functionally graded material (FGM), certain thermal deformations can be controlled or tailored. Specifically, a beam can be designed which does not curve under a steady-state through-thickness temperature variation. Continuous gradation of the fiber volume fraction in the FGM layer is modelled in the form of a mth power polynomial of the coordinate axis in thickness direction of the beam. The beam results are independent of the actual temperature values, within the limitations of steady-state heat transfer and constant material properties. The influence of volume fiber fraction distributions are studied to match or eliminate an in-plane expansion coefficient, or to match a desired axial stiffness. Combining two fiber types to create a hybrid FGM can offer desirable increase in axial and bending stiffness while still retaining the useful thermal deformation behavior.

  10. Geological ductile deformation mapping at the Olkiluoto site, Eurajoki, Finland

    Energy Technology Data Exchange (ETDEWEB)

    Engstroem, J. [Geological Survey of Finland, Espoo (Finland)

    2013-12-15

    During 2010-2012 eight larger excavated and cleaned outcrops were investigated to study the polyphase nature of the ductile deformation within the Olkiluoto Island. A detailed structural geological mapping together with a thin section study was performed to get a broader and better understanding of the nature and occurrence of these different ductile deformation phases. These outcrops were selected to represent all different ductile deformation phases recognized earlier during the site investigations. The relicts of primary sedimentary structures and products of the earliest deformations (D{sub 0}-D{sub 1}) are mostly obscured by later deformation events. The D{sub 2}-D{sub 4} is the most significant ductile deformation phases occurring on the Olkiluoto Island and almost all structural features can be labeled within these three phases. The outcrops for this investigation were selected mostly from the eastern part of the Olkiluoto Island because that part of the Island has been less investigated previously. As a reference, one outcrop was selected in the western part of the Island where it was previously known that this location had especially well preserved structures of the second deformation phase (D{sub 2}). The S{sub 2} foliation is E-W orientated with moderate dip towards south. A few folds can be associated with this deformational event, mostly having a tight to isoclinal character. During D{sub 3} the migmatites were re-deformed and migrated leucosomes, were intruded mainly parallel to S{sub 3} axial surfaces having a NE-SW orientation. Generally the dip of the S{sub 3} axial surfaces is slightly more steeper (55- 65 deg C) than that of the S{sub 2} axial surfaces, which shows a more moderate dip (40-65 deg C). F{sub 3} fold structures are quite common in the eastern part of Island showing asymmetrical, overturned, shear folds usually with a dextral sense of shear. Large scale D{sub 3} shear structures contain blastomylonites as characteristic fault rocks

  11. A continuum membrane model for small deformations of a spider orb-web

    Science.gov (United States)

    Morassi, Antonino; Soler, Alejandro; Zaera, Ramón

    2017-09-01

    In this paper we propose a continuum membrane model for the infinitesimal deformation of a spider web. The model is derived in the simple context of axially-symmetric webs formed by radial threads connected with circumferential threads belonging to concentric circles. Under suitable assumption on the tensile pre-stress acting in the referential configuration, the out-of-plane static equilibrium and the free transverse and in-plane vibration of a supported circular orb-web are studied in detail. The accuracy of the model in describing a discrete spider web is numerically investigated.

  12. On Symmetric Polynomials

    OpenAIRE

    Golden, Ryan; Cho, Ilwoo

    2015-01-01

    In this paper, we study structure theorems of algebras of symmetric functions. Based on a certain relation on elementary symmetric polynomials generating such algebras, we consider perturbation in the algebras. In particular, we understand generators of the algebras as perturbations. From such perturbations, define injective maps on generators, which induce algebra-monomorphisms (or embeddings) on the algebras. They provide inductive structure theorems on algebras of symmetric polynomials. As...

  13. Axially alignable nuclear fuel pellets

    International Nuclear Information System (INIS)

    Johansson, E.B.; Klahn, D.H.; Marlowe, M.O.

    1978-01-01

    An axially alignable nuclear fuel pellet of the type stacked in end-to-end relationship within a tubular cladding is described. Fuel cladding failures can occur at pellet interface locations due to mechanical interaction between misaligned fuel pellets and the cladding. Mechanical interaction between the cladding and the fuel pellets loads the cladding and causes increased cladding stresses. Nuclear fuel pellets are provided with an end structure that increases plastic deformation of the pellets at the interface between pellets so that lower alignment forces are required to straighten axially misaligned pellets. Plastic deformation of the pellet ends results in less interactions beween the cladding and the fuel pellets and significantly lowers cladding stresses. The geometry of pellets constructed according to the invention also reduces alignment forces required to straighten fuel pellets that are tilted within the cladding. Plastic deformation of the pellets at the pellet interfaces is increased by providing pellets with at least one end face having a centrally-disposed raised area of convex shape so that the mean temperature and shear stress of the contact area is higher than that of prior art pellets

  14. Symmetric cryptographic protocols

    CERN Document Server

    Ramkumar, Mahalingam

    2014-01-01

    This book focuses on protocols and constructions that make good use of symmetric pseudo random functions (PRF) like block ciphers and hash functions - the building blocks for symmetric cryptography. Readers will benefit from detailed discussion of several strategies for utilizing symmetric PRFs. Coverage includes various key distribution strategies for unicast, broadcast and multicast security, and strategies for constructing efficient digests of dynamic databases using binary hash trees.   •        Provides detailed coverage of symmetric key protocols •        Describes various applications of symmetric building blocks •        Includes strategies for constructing compact and efficient digests of dynamic databases

  15. Geometric characteristics of aberrations of plane-symmetric optical systems

    International Nuclear Information System (INIS)

    Lu Lijun; Deng Zhiyong

    2009-01-01

    The geometric characteristics of aberrations of plane-symmetric optical systems are studied in detail with a wave-aberration theory. It is dealt with as an extension of the Seidel aberrations to realize a consistent aberration theory from axially symmetric to plane-symmetric systems. The aberration distribution is analyzed with the spot diagram of a ray and an aberration curve. Moreover, the root-mean-square value and the centroid of aberration distribution are discussed. The numerical results are obtained with the focusing optics of a toroidal mirror at grazing incidence.

  16. Beyond axial symmetry: An improved class of models for global data

    KAUST Repository

    Castruccio, Stefano; Genton, Marc G.

    2014-01-01

    An important class of models for data on a spherical domain, called axially symmetric, assumes stationarity across longitudes but not across latitudes. The main aim of this work is to introduce a new and more flexible class of models by relaxing the assumption of longitudinal stationarity in the context of regularly gridded climate model output. In this investigation, two other related topics are discussed: the lack of fit of an axially symmetric parametric model compared with a non-parametric model and to longitudinally reversible processes, an important subclass of axially symmetric models.

  17. Beyond axial symmetry: An improved class of models for global data

    KAUST Repository

    Castruccio, Stefano

    2014-03-01

    An important class of models for data on a spherical domain, called axially symmetric, assumes stationarity across longitudes but not across latitudes. The main aim of this work is to introduce a new and more flexible class of models by relaxing the assumption of longitudinal stationarity in the context of regularly gridded climate model output. In this investigation, two other related topics are discussed: the lack of fit of an axially symmetric parametric model compared with a non-parametric model and to longitudinally reversible processes, an important subclass of axially symmetric models.

  18. Coupled dilaton and electromagnetic field in cylindrically symmetric ...

    Indian Academy of Sciences (India)

    An exact solution is obtained for coupled dilaton and electromagnetic field in a cylindrically symmetric spacetime where an axial magnetic field as well as a radial electric field both are present. Depending on the choice of the arbitrary constants our solution reduces either to dilatonic gravity with pure electric field or to that ...

  19. Centrioles in Symmetric Spaces

    OpenAIRE

    Quast, Peter

    2011-01-01

    We describe all centrioles in irreducible simply connected pointed symmetric spaces of compact type in terms of the root system of the ambient space, and we study some geometric properties of centrioles.

  20. A symmetrical rail accelerator

    International Nuclear Information System (INIS)

    Igenbergs, E.

    1991-01-01

    This paper reports on the symmetrical rail accelerator that has four rails, which are arranged symmetrically around the bore. The opposite rails have the same polarity and the adjacent rails the opposite polarity. In this configuration the radial force acting upon the individual rails is significantly smaller than in a conventional 2-rail configuration and a plasma armature is focussed towards the axis of the barrel. Experimental results indicate a higher efficiency compared to a conventional rail accelerator

  1. Symmetric eikonal expansion

    International Nuclear Information System (INIS)

    Matsuki, Takayuki

    1976-01-01

    Symmetric eikonal expansion for the scattering amplitude is formulated for nonrelativistic and relativistic potential scatterings and also for the quantum field theory. The first approximations coincide with those of Levy and Sucher. The obtained scattering amplitudes are time reversal invariant for all cases and are crossing symmetric for the quantum field theory in each order of approximation. The improved eikonal phase introduced by Levy and Sucher is also derived from the different approximation scheme from the above. (auth.)

  2. On isotropic cylindrically symmetric stellar models

    International Nuclear Information System (INIS)

    Nolan, Brien C; Nolan, Louise V

    2004-01-01

    We attempt to match the most general cylindrically symmetric vacuum spacetime with a Robertson-Walker interior. The matching conditions show that the interior must be dust filled and that the boundary must be comoving. Further, we show that the vacuum region must be polarized. Imposing the condition that there are no trapped cylinders on an initial time slice, we can apply a result of Thorne's and show that trapped cylinders never evolve. This results in a simplified line element which we prove to be incompatible with the dust interior. This result demonstrates the impossibility of the existence of an isotropic cylindrically symmetric star (or even a star which has a cylindrically symmetric portion). We investigate the problem from a different perspective by looking at the expansion scalars of invariant null geodesic congruences and, applying to the cylindrical case, the result that the product of the signs of the expansion scalars must be continuous across the boundary. The result may also be understood in relation to recent results about the impossibility of the static axially symmetric analogue of the Einstein-Straus model

  3. Multiple symmetrical lipomatosis (Madelung's disease) - a case report

    International Nuclear Information System (INIS)

    Vieira, Marcelo Vasconcelos; Abreu, Marcelo de; Furtado, Claudia Dietz; Silveira, Marcio Fleck da; Furtado, Alvaro Porto Alegre; Genro, Carlos Horacio; Grazziotin, Rossano Ughini

    2001-01-01

    Multiple symmetrical lipomatosis (Madelung's disease) is a rare disorder characterized by deep accumulation of fat tissue, involving mainly the neck, shoulders and chest. This disease is associated with heavy alcohol intake and it is more common in men of Mediterranean origin. This disease can cause severe aesthetic deformities and progressive respiratory dysfunction. We report a case of a patient with multiple symmetrical lipomatosis and describe the clinical and radiological features of this disorder. (author)

  4. Buckling of pressure-loaded, long, shear deformable, cylindrical laminated shells

    Science.gov (United States)

    Anastasiadis, John S.; Simitses, George J.

    A higher-order shell theory was developed (kinematic relations, constitutive relations, equilibrium equations and boundary conditions), which includes initial geometric imperfections and transverse shear effects for a laminated cylindrical shell under the action of pressure, axial compression and in-plane shear. Through the perturbation technique, buckling equations are derived for the corresponding 'perfect geometry' symmetric laminated configuration. Critical pressures are computed for very long cylinders for several stacking sequences, several radius-to-total-thickness ratios, three lamina materials (boron/epoxy, graphite/epoxy, and Kevlar/epoxy), and three shell theories: classical, first-order shear deformable and higher- (third-)order shear deformable. The results provide valuable information concerning the applicability (accurate prediction of buckling pressures) of the various shell theories.

  5. Multiparty symmetric sum types

    DEFF Research Database (Denmark)

    Nielsen, Lasse; Yoshida, Nobuko; Honda, Kohei

    2010-01-01

    This paper introduces a new theory of multiparty session types based on symmetric sum types, by which we can type non-deterministic orchestration choice behaviours. While the original branching type in session types can represent a choice made by a single participant and accepted by others...... determining how the session proceeds, the symmetric sum type represents a choice made by agreement among all the participants of a session. Such behaviour can be found in many practical systems, including collaborative workflow in healthcare systems for clinical practice guidelines (CPGs). Processes...... with the symmetric sums can be embedded into the original branching types using conductor processes. We show that this type-driven embedding preserves typability, satisfies semantic soundness and completeness, and meets the encodability criteria adapted to the typed setting. The theory leads to an efficient...

  6. Counting with symmetric functions

    CERN Document Server

    Mendes, Anthony

    2015-01-01

    This monograph provides a self-contained introduction to symmetric functions and their use in enumerative combinatorics.  It is the first book to explore many of the methods and results that the authors present. Numerous exercises are included throughout, along with full solutions, to illustrate concepts and also highlight many interesting mathematical ideas. The text begins by introducing fundamental combinatorial objects such as permutations and integer partitions, as well as generating functions.  Symmetric functions are considered in the next chapter, with a unique emphasis on the combinatorics of the transition matrices between bases of symmetric functions.  Chapter 3 uses this introductory material to describe how to find an assortment of generating functions for permutation statistics, and then these techniques are extended to find generating functions for a variety of objects in Chapter 4.  The next two chapters present the Robinson-Schensted-Knuth algorithm and a method for proving Pólya’s enu...

  7. Symmetric Tensor Decomposition

    DEFF Research Database (Denmark)

    Brachat, Jerome; Comon, Pierre; Mourrain, Bernard

    2010-01-01

    We present an algorithm for decomposing a symmetric tensor, of dimension n and order d, as a sum of rank-1 symmetric tensors, extending the algorithm of Sylvester devised in 1886 for binary forms. We recall the correspondence between the decomposition of a homogeneous polynomial in n variables...... of polynomial equations of small degree in non-generic cases. We propose a new algorithm for symmetric tensor decomposition, based on this characterization and on linear algebra computations with Hankel matrices. The impact of this contribution is two-fold. First it permits an efficient computation...... of the decomposition of any tensor of sub-generic rank, as opposed to widely used iterative algorithms with unproved global convergence (e.g. Alternate Least Squares or gradient descents). Second, it gives tools for understanding uniqueness conditions and for detecting the rank....

  8. Supersymmetric axial anomalies and the Wess-Zumino action

    International Nuclear Information System (INIS)

    Harada, K.; Shizuya, K.

    1988-01-01

    We derive, by an algebraic method, a manifestly supersymmetric extension of Bardeen's minimal form of axial anomalies, which obeys the Wess-Zumino consistency condition. The left-right symmetric form of the anomalies is also obtained by a reduction procedure. We construct the supersymmetric Wess-Zumino effective action and study its low-energy features. (orig.)

  9. Axial and focal-plane diffraction catastrophe integrals

    International Nuclear Information System (INIS)

    Berry, M V; Howls, C J

    2010-01-01

    Exact expressions in terms of Bessel functions are found for some of the diffraction catastrophe integrals that decorate caustics in optics and mechanics. These are the axial and focal-plane sections of the elliptic and hyperbolic umbilic diffraction catastrophes, and symmetric elliptic and hyperbolic unfoldings of the X 9 diffraction catastrophes. These representations reveal unexpected relations between the integrals.

  10. Distributed Searchable Symmetric Encryption

    NARCIS (Netherlands)

    Bösch, C.T.; Peter, Andreas; Leenders, Bram; Lim, Hoon Wei; Tang, Qiang; Wang, Huaxiong; Hartel, Pieter H.; Jonker, Willem

    Searchable Symmetric Encryption (SSE) allows a client to store encrypted data on a storage provider in such a way, that the client is able to search and retrieve the data selectively without the storage provider learning the contents of the data or the words being searched for. Practical SSE schemes

  11. Behaviour of a neutral particle with spin in an axial magnetic field

    International Nuclear Information System (INIS)

    Sorokin, S.V.; Ehpp, V.Ya.

    1982-01-01

    Proceeding from the Tamm-Good equation taking into account the spin influence on motion trajectory, the neutral particle motion tracjectory and vector turn of spin polarizition in axial magnetic field have been found. The behaviour of a neutral particle possessing its own magnetic moment in an axially-symmetric stationary magnetic field is considered

  12. Second harmonic generation of off axial vortex beam in the case of walk-off effect

    Science.gov (United States)

    Chen, Shunyi; Ding, Panfeng; Pu, Jixiong

    2016-07-01

    Process of off axial vortex beam propagating in negative uniaxial crystal is investigated in this work. Firstly, we get the formulae of the normalized electric field and calculate the location of vortices for second harmonic beam in two type of phase matching. Then, numerical analysis verifies that the intensity distribution and location of vortices of the first order original vortex beam depend on the walk-off angle and off axial magnitude. It is shown that, in type I phase matching, the distribution of vortices is symmetrical about the horizontal axis, the separation distance increases as the off axial magnitude increases or the off axial magnitude deceases. However, in type II phase matching, the vortices are symmetrical along with some vertical axis, and increase of the walk-off angle or off axial magnitude leads to larger separation distance. Finally, the case of high order original off axial vortex beam is also investigated.

  13. Is nucleon deformed?

    International Nuclear Information System (INIS)

    Abbas, Afsar

    1992-01-01

    The surprising answer to this question Is nucleon deformed? is : Yes. The evidence comes from a study of the quark model of the single nucleon and when it is found in a nucleus. It turns out that many of the long standing problems of the Naive Quark Model are taken care of if the nucleon is assumed to be deformed. Only one value of the parameter P D ∼1/4 (which specifies deformation) fits g A (the axial vector coupling constant) for all the semileptonic decay of baryons, the F/D ratio, the pion-nucleon-delta coupling constant fsub(πNΔ), the double delta coupling constant 1 fsub(πΔΔ), the Ml transition moment μΔN and g 1 p the spin structure function of proton 2 . All this gives strong hint that both neutron and proton are deformed. It is important to look for further signatures of this deformation. When this deformed nucleon finds itself in a nuclear medium its deformation decreases. So much that in a heavy nucleus the nucleons are actually spherical. We look into the Gamow-Teller strengths, magnetic moments and magnetic transition strengths in nuclei to study this property. (author). 15 refs

  14. Metamorphosis of helical magnetorotational instability in the presence axial electric current

    OpenAIRE

    Priede, Jānis

    2014-01-01

    This paper presents numerical linear stability analysis of a cylindrical Taylor-Couette flow of liquid metal carrying axial electric current in a generally helical external magnetic field. Axially symmetric disturbances are considered in the inductionless approximation corresponding to zero magnetic Prandtl number. Axial symmetry allows us to reveal an entirely new electromagnetic instability. First, we show that the electric current passing through the liquid can extend the range of helical ...

  15. BWR AXIAL PROFILE

    International Nuclear Information System (INIS)

    Huffer, J.

    2004-01-01

    The purpose of this calculation is to develop axial profiles for estimating the axial variation in burnup of a boiling water reactor (BWR) assembly spent nuclear fuel (SNF) given the average burnup of an assembly. A discharged fuel assembly typically exhibits higher burnup in the center and lower burnup at the ends of the assembly. Criticality safety analyses taking credit for SNF burnup must account for axially varying burnup relative to calculations based on uniformly distributed assembly average burnup due to the under-burned tips. Thus, accounting for axially varying burnup in criticality analyses is also referred to as accounting for the ''end effect'' reactivity. The magnitude of the reactivity change due to ''end effect'' is dependent on the initial assembly enrichment, the assembly average burnup, and the particular axial profile characterizing the burnup distribution. The set of bounding axial profiles should incorporate multiple BWR core designs and provide statistical confidence (95 percent confidence that 95 percent of the population is bound by the profile) that end nodes are conservatively represented. The profiles should also conserve the overall burnup of the fuel assembly. More background on BWR axial profiles is provided in Attachment I

  16. On the dynamic stability of shear deformable beams under a tensile load

    Science.gov (United States)

    Caddemi, S.; Caliò, I.; Cannizzaro, F.

    2016-07-01

    Loss of stability of beams in a linear static context due to the action of tensile loads has been disclosed only recently in the scientific literature. However, tensile instability in the dynamic regime has been only marginally covered. Several aspects concerning the role of shear deformation on the tensile dynamic instability on continuous and discontinuous beams are still to be addressed. It may appear as a paradox, but also for the case of the universally studied Timoshenko beam model, despite its old origin, frequency-axial load diagrams in the range of negative values of the load (i.e. tensile load) has never been brought to light. In this paper, for the first time, the influence of a conservative tensile axial loads on the dynamic behaviour of the Timoshenko model, according to the Haringx theory, is assessed. It is shown that, under increasing tensile loads, regions of positive/negative fundamental frequency variations can be distinguished. In addition, the beam undergoes eigen-mode changes, from symmetric to anti-symmetric shapes, until tensile instability of divergence type is reached. As a further original contribution on the subject, taking advantage of a new closed form solution, it is shown that the same peculiarities are recovered for an axially loaded Euler-Bernoulli vibrating beam with multiple elastic sliders. This latter model can be considered as the discrete counterpart of the Timoshenko beam-column in which the internal sliders concentrate the shear deformation that in the Timoshenko model is continuously distributed. Original aspects regarding the evolution of the vibration frequencies and the relevant mode shapes with the tensile load value are highlighted.

  17. Computerised Axial Tomography (CAT)

    Science.gov (United States)

    1990-06-01

    Ministry of’ Defence, Defence Research Information Centre, UK. Computerised Axial Tomography ( CAT ) Report Secufty C"uMiauion tide Onadtiicadon (U. R, Cor S...DRIC T 8485 COMPUTERISED AXIAL TOMOGRAPHY ( CAT ) F.P. GENTILE, F. SABETTA, V. TRO1* ISS R 78/4.Rome, 1.5 Mlarch 1978 (from Italian) B Distribution(f...dello Radiazioni ISSN 0390--6477 F.P. GENTILE, F. SABETTA. V. TROI Computerised Axial Tomography ( CAT ) March 15, 1978). This paper is a review of

  18. Symmetric waterbomb origami.

    Science.gov (United States)

    Chen, Yan; Feng, Huijuan; Ma, Jiayao; Peng, Rui; You, Zhong

    2016-06-01

    The traditional waterbomb origami, produced from a pattern consisting of a series of vertices where six creases meet, is one of the most widely used origami patterns. From a rigid origami viewpoint, it generally has multiple degrees of freedom, but when the pattern is folded symmetrically, the mobility reduces to one. This paper presents a thorough kinematic investigation on symmetric folding of the waterbomb pattern. It has been found that the pattern can have two folding paths under certain circumstance. Moreover, the pattern can be used to fold thick panels. Not only do the additional constraints imposed to fold the thick panels lead to single degree of freedom folding, but the folding process is also kinematically equivalent to the origami of zero-thickness sheets. The findings pave the way for the pattern being readily used to fold deployable structures ranging from flat roofs to large solar panels.

  19. Symmetric vectors and algebraic classification

    International Nuclear Information System (INIS)

    Leibowitz, E.

    1980-01-01

    The concept of symmetric vector field in Riemannian manifolds, which arises in the study of relativistic cosmological models, is analyzed. Symmetric vectors are tied up with the algebraic properties of the manifold curvature. A procedure for generating a congruence of symmetric fields out of a given pair is outlined. The case of a three-dimensional manifold of constant curvature (''isotropic universe'') is studied in detail, with all its symmetric vector fields being explicitly constructed

  20. Representations of locally symmetric spaces

    International Nuclear Information System (INIS)

    Rahman, M.S.

    1995-09-01

    Locally symmetric spaces in reference to globally and Hermitian symmetric Riemannian spaces are studied. Some relations between locally and globally symmetric spaces are exhibited. A lucid account of results on relevant spaces, motivated by fundamental problems, are formulated as theorems and propositions. (author). 10 refs

  1. Signatures for axial chromodynamics

    International Nuclear Information System (INIS)

    Pati, J.C.

    1978-07-01

    Within the context of basic left-right symmetry and the hypothesis of unification of weak, electromagnetic and strong forces at a mass level approximately equal to 10 4 -10 6 GeV, relatively light ''mass'' axial gluons, confined or liberated, must be postulated. The authors remark that the existence of such ''light'' axial gluons supplementing the familiar vector octet preserves the successes of QCD, both for deep inelastic processes and charmonium physics. Through the characteristic spin-spin force, generated by their exchange, they may even help resolve some of the discrepancies between vector QCD predictions and charmonium physics. The main remark of this note is that if colour is liberated, not only vector but also axial-vector gluons are produced in high-energy e - e + experiments, e.g. at PETRA and PEP, with fairly large cross-section. Distinctive decay modes of such liberated axial gluons are noted

  2. Adjustable static and dynamic actuation of clamped-guided beams using electrothermal axial loads

    KAUST Repository

    Alcheikh, Nouha

    2018-02-14

    The paper presents adjustable static and dynamic actuations of in-plane clamped-guided beams. The structures, of variable stiffness, can be used as highly tunable resonators and actuators. Axial loads are applied through electrothermal U-shaped and flexure beams actuators stacked near the edges of curved (arch) beams. The electrothermal actuators can be configurred in various ways to adjust as desired the mechanical stiffness of the structures; thereby controlling their deformation stroke as actuators and their operating resonance frequency as resonators. The experimental and finite element results demonstrate the flexibility of the designs in terms of static displacements and resonance frequencies of the first and second symmetric modes of the arches. The results show considerable increase in the resonance frequency and deflection of the microbeam upon changing end actuation conditions, which can be promising for low voltage actuation and tunable resonators applications, such as filters and memory devices. As case studies of potential device configurations of the proposed design, we demonstrate eight possibilities of achieving new static and dynamic behaviors, which produce various resonance frequencies and static displacement curves. The ability to actively shift the entire frequency response curve of a device is desirable for several applications to compensate for in-use anchor degradations and deformations. As an example, we experimentally demonstrate using the device as a resonant logic gate, with active resonance tuning, showing fundamental 2-bit logic functions, such as AND,XOR, and NOR.

  3. Adjustable static and dynamic actuation of clamped-guided beams using electrothermal axial loads

    KAUST Repository

    Alcheikh, Nouha; Tella, Sherif Adekunle; Younis, Mohammad I.

    2018-01-01

    The paper presents adjustable static and dynamic actuations of in-plane clamped-guided beams. The structures, of variable stiffness, can be used as highly tunable resonators and actuators. Axial loads are applied through electrothermal U-shaped and flexure beams actuators stacked near the edges of curved (arch) beams. The electrothermal actuators can be configurred in various ways to adjust as desired the mechanical stiffness of the structures; thereby controlling their deformation stroke as actuators and their operating resonance frequency as resonators. The experimental and finite element results demonstrate the flexibility of the designs in terms of static displacements and resonance frequencies of the first and second symmetric modes of the arches. The results show considerable increase in the resonance frequency and deflection of the microbeam upon changing end actuation conditions, which can be promising for low voltage actuation and tunable resonators applications, such as filters and memory devices. As case studies of potential device configurations of the proposed design, we demonstrate eight possibilities of achieving new static and dynamic behaviors, which produce various resonance frequencies and static displacement curves. The ability to actively shift the entire frequency response curve of a device is desirable for several applications to compensate for in-use anchor degradations and deformations. As an example, we experimentally demonstrate using the device as a resonant logic gate, with active resonance tuning, showing fundamental 2-bit logic functions, such as AND,XOR, and NOR.

  4. Holographic Spherically Symmetric Metrics

    Science.gov (United States)

    Petri, Michael

    The holographic principle (HP) conjectures, that the maximum number of degrees of freedom of any realistic physical system is proportional to the system's boundary area. The HP has its roots in the study of black holes. It has recently been applied to cosmological solutions. In this article we apply the HP to spherically symmetric static space-times. We find that any regular spherically symmetric object saturating the HP is subject to tight constraints on the (interior) metric, energy-density, temperature and entropy-density. Whenever gravity can be described by a metric theory, gravity is macroscopically scale invariant and the laws of thermodynamics hold locally and globally, the (interior) metric of a regular holographic object is uniquely determined up to a constant factor and the interior matter-state must follow well defined scaling relations. When the metric theory of gravity is general relativity, the interior matter has an overall string equation of state (EOS) and a unique total energy-density. Thus the holographic metric derived in this article can serve as simple interior 4D realization of Mathur's string fuzzball proposal. Some properties of the holographic metric and its possible experimental verification are discussed. The geodesics of the holographic metric describe an isotropically expanding (or contracting) universe with a nearly homogeneous matter-distribution within the local Hubble volume. Due to the overall string EOS the active gravitational mass-density is zero, resulting in a coasting expansion with Ht = 1, which is compatible with the recent GRB-data.

  5. Symmetric extendibility of quantum states

    OpenAIRE

    Nowakowski, Marcin L.

    2015-01-01

    Studies on symmetric extendibility of quantum states become especially important in a context of analysis of one-way quantum measures of entanglement, distilabillity and security of quantum protocols. In this paper we analyse composite systems containing a symmetric extendible part with a particular attention devoted to one-way security of such systems. Further, we introduce a new one-way monotone based on the best symmetric approximation of quantum state. We underpin those results with geome...

  6. A symmetric safety valve

    International Nuclear Information System (INIS)

    Burtraw, Dallas; Palmer, Karen; Kahn, Danny

    2010-01-01

    How to set policy in the presence of uncertainty has been central in debates over climate policy. Concern about costs has motivated the proposal for a cap-and-trade program for carbon dioxide, with a 'safety valve' that would mitigate against spikes in the cost of emission reductions by introducing additional emission allowances into the market when marginal costs rise above the specified allowance price level. We find two significant problems, both stemming from the asymmetry of an instrument that mitigates only against a price increase. One is that most important examples of price volatility in cap-and-trade programs have occurred not when prices spiked, but instead when allowance prices collapsed. Second, a single-sided safety valve may have unintended consequences for investment. We illustrate that a symmetric safety valve provides environmental and welfare improvements relative to the conventional one-sided approach.

  7. Axial gravity, massless fermions and trace anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Bonora, L. [International School for Advanced Studies (SISSA), Trieste (Italy); KEK, Tsukuba (Japan). KEK Theory Center; INFN, Sezione di Trieste (Italy); Cvitan, M.; Giaccari, S.; Stemberga, T. [Zagreb Univ. (Croatia). Dept. of Physics; Prester, P.D. [Rijeka Univ. (Croatia). Dept. of Physics; Pereira, A.D. [UERJ-Univ. Estadual do Rio de Janeiro (Brazil). Dept. de Fisica Teorica; UFF-Univ. Federal Fluminense, Niteroi (Brazil). Inst. de Fisica

    2017-08-15

    This article deals with two main topics. One is odd parity trace anomalies in Weyl fermion theories in a 4d curved background, the second is the introduction of axial gravity. The motivation for reconsidering the former is to clarify the theoretical background underlying the approach and complete the calculation of the anomaly. The reference is in particular to the difference between Weyl and massless Majorana fermions and to the possible contributions from tadpole and seagull terms in the Feynman diagram approach. A first, basic, result of this paper is that a more thorough treatment, taking account of such additional terms and using dimensional regularization, confirms the earlier result. The introduction of an axial symmetric tensor besides the usual gravitational metric is instrumental to a different derivation of the same result using Dirac fermions, which are coupled not only to the usual metric but also to the additional axial tensor. The action of Majorana and Weyl fermions can be obtained in two different limits of such a general configuration. The results obtained in this way confirm the previously obtained ones. (orig.)

  8. Axial gravity, massless fermions and trace anomalies

    International Nuclear Information System (INIS)

    Bonora, L.; Cvitan, M.; Giaccari, S.; Stemberga, T.; Prester, P.D.; Pereira, A.D.; UFF-Univ. Federal Fluminense, Niteroi

    2017-01-01

    This article deals with two main topics. One is odd parity trace anomalies in Weyl fermion theories in a 4d curved background, the second is the introduction of axial gravity. The motivation for reconsidering the former is to clarify the theoretical background underlying the approach and complete the calculation of the anomaly. The reference is in particular to the difference between Weyl and massless Majorana fermions and to the possible contributions from tadpole and seagull terms in the Feynman diagram approach. A first, basic, result of this paper is that a more thorough treatment, taking account of such additional terms and using dimensional regularization, confirms the earlier result. The introduction of an axial symmetric tensor besides the usual gravitational metric is instrumental to a different derivation of the same result using Dirac fermions, which are coupled not only to the usual metric but also to the additional axial tensor. The action of Majorana and Weyl fermions can be obtained in two different limits of such a general configuration. The results obtained in this way confirm the previously obtained ones. (orig.)

  9. Symmetric q-Bessel functions

    Directory of Open Access Journals (Sweden)

    Giuseppe Dattoli

    1996-05-01

    Full Text Available q analog of bessel functions, symmetric under the interchange of q and q^ −1 are introduced. The definition is based on the generating function realized as product of symmetric q-exponential functions with appropriate arguments. Symmetric q-Bessel function are shown to satisfy various identities as well as second-order q-differential equations, which in the limit q → 1 reproduce those obeyed by the usual cylindrical Bessel functions. A brief discussion on the possible algebraic setting for symmetric q-Bessel functions is also provided.

  10. Characterization of Generalized Young Measures Generated by Symmetric Gradients

    Science.gov (United States)

    De Philippis, Guido; Rindler, Filip

    2017-06-01

    This work establishes a characterization theorem for (generalized) Young measures generated by symmetric derivatives of functions of bounded deformation (BD) in the spirit of the classical Kinderlehrer-Pedregal theorem. Our result places such Young measures in duality with symmetric-quasiconvex functions with linear growth. The "local" proof strategy combines blow-up arguments with the singular structure theorem in BD (the analogue of Alberti's rank-one theorem in BV), which was recently proved by the authors. As an application of our characterization theorem we show how an atomic part in a BD-Young measure can be split off in generating sequences.

  11. Periodicity effects of axial waves in elastic compound rods

    DEFF Research Database (Denmark)

    Nielsen, R. B.; Sorokin, S. V.

    2015-01-01

    Floquet analysis is applied to the Bernoulli-Euler model for axial waves in a periodic rod. Explicit asymptotic formulae for the stop band borders are given and the topology of the stop band pattern is explained. Eigenfrequencies of the symmetric unit cell are determined by the Phase-closure Prin......Floquet analysis is applied to the Bernoulli-Euler model for axial waves in a periodic rod. Explicit asymptotic formulae for the stop band borders are given and the topology of the stop band pattern is explained. Eigenfrequencies of the symmetric unit cell are determined by the Phase......-closure Principle, and their correspondence with stop band formation is shown. Steady-state and transient dynamics of a periodic rod of finite length are analysed numerically and the difference in structural response when excitation is done in either stop- or pass bands is demonstrated. A physical interpretation...

  12. Conformally symmetric traversable wormholes

    International Nuclear Information System (INIS)

    Boehmer, Christian G.; Harko, Tiberiu; Lobo, Francisco S. N.

    2007-01-01

    Exact solutions of traversable wormholes are found under the assumption of spherical symmetry and the existence of a nonstatic conformal symmetry, which presents a more systematic approach in searching for exact wormhole solutions. In this work, a wide variety of solutions are deduced by considering choices for the form function, a specific linear equation of state relating the energy density and the pressure anisotropy, and various phantom wormhole geometries are explored. A large class of solutions impose that the spatial distribution of the exotic matter is restricted to the throat neighborhood, with a cutoff of the stress-energy tensor at a finite junction interface, although asymptotically flat exact solutions are also found. Using the 'volume integral quantifier', it is found that the conformally symmetric phantom wormhole geometries may, in principle, be constructed by infinitesimally small amounts of averaged null energy condition violating matter. Considering the tidal acceleration traversability conditions for the phantom wormhole geometry, specific wormhole dimensions and the traversal velocity are also deduced

  13. On renormalization of axial anomaly

    International Nuclear Information System (INIS)

    Efremov, A.V.; Teryaev, O.V.

    1989-01-01

    It is shown that multiplicative renormalization of the axial singlet current results in renormalization of the axial anomaly in all orders of perturbation theory. It is a necessary condition for the Adler - Bardeen theorem being valid. 10 refs.; 2 figs

  14. Axial tomographic scanner

    International Nuclear Information System (INIS)

    1976-01-01

    An axial tomographic system is described comprising axial tomographic means for collecting sets of data corresponding to the transmission or absorption of a number of beams of penetrating radiation through a planar slice of an object. It includes means to locate an object to be analyzed, a source and detector for directing one or more beams of penetrating radiation through the object from the source to the detector, and means to rotate (and optionally translate) the source as well as means to process the collected sets of data. Data collection, data processing, and data display can each be conducted independently of each other. An additional advantage of the system described is that the raw data (i.e., the originally collected data) are not destroyed by the data processing but instead are retained intact for further reference or use, if needed

  15. Elasto/visco-plastic deformations of thin shells of revolution

    International Nuclear Information System (INIS)

    Takezono, S.; Akashi, T.

    1979-01-01

    This paper is concerned with the numerical analysis of large elasto/visco-plastic deformations of this shells of revolution under axi-symmetrical loading with applications to pressure vessels. (orig.)

  16. Axial clamp for nuclear reactor head penetration conoseal joints

    International Nuclear Information System (INIS)

    Hackley, T.A.

    1986-01-01

    A method for forming a sealed coupling between two bodies each body presenting an abutment surface, the bodies being arranged so that their respective abutment surfaces are axially adjacent one another and define a space therebetween in which a deformable gasket is disposed. An axial external force is applied to the bodies for compressing the abutment surfaces together against the gasket to form a seal between the bodies and the bodies are immobilized relative to one another while the external force is being applied to the bodies so that sufficient compression will be maintained by the abutment surfaces to preserve the integrity of the seal when the external axial force is withdrawn. The external axial force is then withdrawn, leaving the two bodies coupled together via the seal. (author)

  17. Cladding axial elongation models for FRAP-T6

    International Nuclear Information System (INIS)

    Shah, V.N.; Carlson, E.R.; Berna, G.A.

    1983-01-01

    This paper presents a description of the cladding axial elongation models developed at the Idaho National Engineering Laboratory (INEL) for use by the FRAP-T6 computer code in analyzing the response of fuel rods during reactor transients in light water reactors (LWR). The FRAP-T6 code contains models (FRACAS-II subcode) that analyze the structural response of a fuel rod including pellet-cladding-mechanical-interaction (PCMI). Recently, four models were incorporated into FRACAS-II to calculate cladding axial deformation: (a) axial PCMI, (b) trapped fuel stack, (c) fuel relocation, and (d) effective fuel thermal expansion. Comparisons of cladding axial elongation measurements from two experiments with the corresponding FRAP-T6 calculations are presented

  18. Spherically symmetric static spacetimes in vacuum f(T) gravity

    International Nuclear Information System (INIS)

    Ferraro, Rafael; Fiorini, Franco

    2011-01-01

    We show that Schwarzschild geometry remains as a vacuum solution for those four-dimensional f(T) gravitational theories behaving as ultraviolet deformations of general relativity. In the gentler context of three-dimensional gravity, we also find that the infrared-deformed f(T) gravities, like the ones used to describe the late cosmic speed up of the Universe, have as the circularly symmetric vacuum solution a Deser-de Sitter or a Banados, Teitelboim and Zanelli-like spacetime with an effective cosmological constant depending on the infrared scale present in the function f(T).

  19. Axial nonimaging characteristics of imaging lenses: discussion.

    Science.gov (United States)

    Siew, Ronian

    2016-05-01

    At observation planes away from the image plane, an imaging lens is a nonimaging optic. We examine the variation of axial irradiance with distance in image space and highlight the following little-known observation for discussion: On a per-unit-area basis, the position of the highest concentration in image space is generally not at the focal plane. This characteristic is contrary to common experience, and it offers an additional degree of freedom for the design of detection systems. Additionally, it would also apply to lenses with negative refractive index. The position of peak concentration and its irradiance is dependent upon the location and irradiance of the image. As such, this discussion also includes a close examination of expressions for image irradiance and explains how they are related to irradiance calculations beyond the image plane. This study is restricted to rotationally symmetric refractive imaging systems with incoherent extended Lambertian sources.

  20. Multi-axial response of idealized cermets

    International Nuclear Information System (INIS)

    Pickering, E.G.; Bele, E.; Deshpande, V.S.

    2016-01-01

    The yield response of two idealized cermets comprising mono and bi-disperse steel spheres in a Sn/Pb solder matrix has been investigated for a range of axisymmetric stress states. Proportional stress path experiments are reported, from which are extracted the initial yield surfaces and their evolution with increasing plastic strain. The initial yield strength is nearly independent of the hydrostatic pressure but the strain hardening rate increases with stress triaxiality up to a critical value. For higher triaxialities, the responses are independent of hydrostatic pressure. Multi-axial measurements along with X-ray tomography were used to demonstrate that the deformation of these idealized cermets occurs by two competing mechanisms: (i) a granular flow mechanism that operates at low levels of triaxiality, where volumetric dilation occurs under compressive stress states, and (ii) a plastically incompressible mechanism that operates at high stress triaxialities. A phenomenological viscoplastic constitutive model that incorporates both deformation mechanisms is presented. While such multi-axial measurements are difficult for commercial cermets with yield strengths on the order of a few GPa, the form of their constitutive relation is expected to be similar to that of the idealized cermets presented here.

  1. Mesotherapy for benign symmetric lipomatosis.

    Science.gov (United States)

    Hasegawa, Toshio; Matsukura, Tomoyuki; Ikeda, Shigaku

    2010-04-01

    Benign symmetric lipomatosis, also known as Madelung disease, is a rare disorder characterized by fat distribution around the shoulders, arms, and neck in the context of chronic alcoholism. Complete excision of nonencapsulated lipomas is difficult. However, reports describing conservative therapeutic measures for lipomatosis are rare. The authors present the case of a 42-year-old man with a diagnosis of benign symmetric lipomatosis who had multiple, large, symmetrical masses in his neck. Multiple phosphatidylcholine injections in the neck were administered 4 weeks apart, a total of seven times to achieve lipolysis. The patient's lipomatosis improved in response to the injections, and he achieved good cosmetic results. Intralesional injection, termed mesotherapy, using phosphatidylcholine is a potentially effective therapy for benign symmetric lipomatosis that should be reconsidered as a therapeutic option for this disease.

  2. Critical Axial Load

    Directory of Open Access Journals (Sweden)

    Walt Wells

    2008-01-01

    Full Text Available Our objective in this paper is to solve a second order differential equation for a long, simply supported column member subjected to a lateral axial load using Heun's numerical method. We will use the solution to find the critical load at which the column member will fail due to buckling. We will calculate this load using Euler's derived analytical approach for an exact solution, as well as Euler's Numerical Method. We will then compare the three calculated values to see how much they deviate from one another. During the critical load calculation, it will be necessary to calculate the moment of inertia for the column member.

  3. Looking for symmetric Bell inequalities

    OpenAIRE

    Bancal, Jean-Daniel; Gisin, Nicolas; Pironio, Stefano

    2010-01-01

    Finding all Bell inequalities for a given number of parties, measurement settings and measurement outcomes is in general a computationally hard task. We show that all Bell inequalities which are symmetric under the exchange of parties can be found by examining a symmetrized polytope which is simpler than the full Bell polytope. As an illustration of our method, we generate 238 885 new Bell inequalities and 1085 new Svetlichny inequalities. We find, in particular, facet inequalities for Bell e...

  4. 'Static' octupole deformation at high spin

    International Nuclear Information System (INIS)

    Nazarewicz, W.

    1985-01-01

    Rotational bands characterized by spin states of alternating parity p=(-1) I connected by enhanced E1 transitions have recently been observed in several nuclei from the Ra-Th region. They can be interpreted by means of a reflection asymmetric mean field theory. The interplay between octupole deformation and rotation is briefly discussed. For nuclei with ground state octupole deformation a transition to a reflection symmetric shape is expected around I=22. (orig.)

  5. Thermoelastoplastic Deformation of a Multilayer Ball

    Science.gov (United States)

    Murashkin, E. V.; Dats, E. P.

    2017-09-01

    The problem of centrally symmetric deformation of a multilayer elastoplastic ball in the process of successive accretion of preheated layers to its outer surface is considered in the framework of small elastoplastic deformations. The problems of residual stress formation in the elastoplastic ball with an inclusion and a cavity are solved under various mechanical boundary conditions on the inner surface and for prescribed thermal compression distributions. The graphs of residual stress and displacement fields are constructed.

  6. Plastic deformation

    NARCIS (Netherlands)

    Sitter, de L.U.

    1937-01-01

    § 1. Plastic deformation of solid matter under high confining pressures has been insufficiently studied. Jeffreys 1) devotes a few paragraphs to deformation of solid matter as a preface to his chapter on the isostasy problem. He distinguishes two properties of solid matter with regard to its

  7. Confining but chirally symmetric dense and cold matter

    International Nuclear Information System (INIS)

    Glozman, L. Ya.

    2012-01-01

    The possibility for existence of cold, dense chirally symmetric matter with confinement is reviewed. The answer to this question crucially depends on the mechanism of mass generation in QCD and interconnection of confinement and chiral symmetry breaking. This question can be clarified from spectroscopy of hadrons and their axial properties. Almost systematical parity doubling of highly excited hadrons suggests that their mass is not related to chiral symmetry breaking in the vacuum and is approximately chirally symmetric. Then there is a possibility for existence of confining but chirally symmetric matter. We clarify a possible mechanism underlying such a phase at low temperatures and large density. Namely, at large density the Pauli blocking prevents the gap equation to generate a solution with broken chiral symmetry. However, the chirally symmetric part of the quark Green function as well as all color non-singlet quantities are still infrared divergent, meaning that the system is with confinement. A possible phase transition to such a matter is most probably of the first order. This is because there are no chiral partners to the lowest lying hadrons.

  8. Light-front view of the axial anomaly

    International Nuclear Information System (INIS)

    Ji, C.; Rey, S.

    1996-01-01

    Motivated by an apparent puzzle of the light-front vacua incompatible with the axial anomaly, we have considered the two-dimensional massless Schwinger model for an arbitrary interpolating angle of Hornbostel close-quote s interpolating quantization surface. By examining spectral deformation of the Dirac sea under an external electric field semiclassically, we have found that the axial anomaly is quantization angle independent. This indicates an intricate nontrivial vacuum structure present even in the light-front limit. copyright 1996 The American Physical Society

  9. Axial skeletal CT densitometry

    International Nuclear Information System (INIS)

    Lampmann, L.E.H.

    1982-01-01

    Since the discovery of the Roentgen ray a precise and accurate assessment of bone mineral content has been a challenge to many investigators. A number of methods have been developed but no one satisfied. Considering its technical possibilities computed tomography is very promising in determination of bone mineral content (BMC). The new modality enables BMC estimations in the axial skeletal trabecular bone. CT densitometry can be performed on a normal commercially available third generation whole body CT scanner. No dedicated device in a special clinical set-up is necessary. In this study 106 patients, most of them clinically suspected of osteoporosis, were examined. The new method CT densitometry has been evaluated. The results have been correlated to alternative BMC determination methods. (Auth.)

  10. RG flows for λ-deformed CFTs

    Directory of Open Access Journals (Sweden)

    E. Sagkrioti

    2018-05-01

    Full Text Available We study the renormalization group equations of the fully anisotropic λ-deformed CFTs involving the direct product of two current algebras at different levels k1,2 for general semi-simple groups. The exact, in the deformation parameters, β-function is found via the effective action of the quantum fluctuations around a classical background as well as from gravitational techniques. Furthermore, agreement with known results for symmetric couplings and/or for equal levels, is demonstrated. We study in detail the two coupling case arising by splitting the group into a subgroup and the corresponding coset manifold which consistency requires to be either a symmetric-space one or a non-symmetric Einstein-space.

  11. RG flows for λ-deformed CFTs

    Science.gov (United States)

    Sagkrioti, E.; Sfetsos, K.; Siampos, K.

    2018-05-01

    We study the renormalization group equations of the fully anisotropic λ-deformed CFTs involving the direct product of two current algebras at different levels k1,2 for general semi-simple groups. The exact, in the deformation parameters, β-function is found via the effective action of the quantum fluctuations around a classical background as well as from gravitational techniques. Furthermore, agreement with known results for symmetric couplings and/or for equal levels, is demonstrated. We study in detail the two coupling case arising by splitting the group into a subgroup and the corresponding coset manifold which consistency requires to be either a symmetric-space one or a non-symmetric Einstein-space.

  12. Harmonic analysis on symmetric spaces

    CERN Document Server

    Terras, Audrey

    This text explores the geometry and analysis of higher rank analogues of the symmetric spaces introduced in volume one. To illuminate both the parallels and differences of the higher rank theory, the space of positive matrices is treated in a manner mirroring that of the upper-half space in volume one. This concrete example furnishes motivation for the general theory of noncompact symmetric spaces, which is outlined in the final chapter. The book emphasizes motivation and comprehensibility, concrete examples and explicit computations (by pen and paper, and by computer), history, and, above all, applications in mathematics, statistics, physics, and engineering. The second edition includes new sections on Donald St. P. Richards’s central limit theorem for O(n)-invariant random variables on the symmetric space of GL(n, R), on random  matrix theory, and on advances in the theory of automorphic forms on arithmetic groups.

  13. The nucleon axial isoscalar coupling constant and the Bjorken sum rule

    International Nuclear Information System (INIS)

    Belyaev, V.M.; Ioffe, B.L.; Kogan, Ya.I.

    1984-01-01

    The nucleon coupling constant with the axial isoscalar current entering the Bjorken sum rule for the deep inelastic scattering of polarized electrons on a polarized target is calculated in nonperturbative QCD. The result, gsub(A)sup(s) approximately 0.5, is about a factor of two smaller as compared to that of the SU(6) symmetric quark model

  14. Looking for symmetric Bell inequalities

    International Nuclear Information System (INIS)

    Bancal, Jean-Daniel; Gisin, Nicolas; Pironio, Stefano

    2010-01-01

    Finding all Bell inequalities for a given number of parties, measurement settings and measurement outcomes is in general a computationally hard task. We show that all Bell inequalities which are symmetric under the exchange of parties can be found by examining a symmetrized polytope which is simpler than the full Bell polytope. As an illustration of our method, we generate 238 885 new Bell inequalities and 1085 new Svetlichny inequalities. We find, in particular, facet inequalities for Bell experiments involving two parties and two measurement settings that are not of the Collins-Gisin-Linden-Massar-Popescu type.

  15. Symmetric normalisation for intuitionistic logic

    DEFF Research Database (Denmark)

    Guenot, Nicolas; Straßburger, Lutz

    2014-01-01

    We present two proof systems for implication-only intuitionistic logic in the calculus of structures. The first is a direct adaptation of the standard sequent calculus to the deep inference setting, and we describe a procedure for cut elimination, similar to the one from the sequent calculus......, but using a non-local rewriting. The second system is the symmetric completion of the first, as normally given in deep inference for logics with a DeMorgan duality: all inference rules have duals, as cut is dual to the identity axiom. We prove a generalisation of cut elimination, that we call symmetric...

  16. Diagrams for symmetric product orbifolds

    International Nuclear Information System (INIS)

    Pakman, Ari; Rastelli, Leonardo; Razamat, Shlomo S.

    2009-01-01

    We develop a diagrammatic language for symmetric product orbifolds of two-dimensional conformal field theories. Correlation functions of twist operators are written as sums of diagrams: each diagram corresponds to a branched covering map from a surface where the fields are single-valued to the base sphere where twist operators are inserted. This diagrammatic language facilitates the study of the large N limit and makes more transparent the analogy between symmetric product orbifolds and free non-abelian gauge theories. We give a general algorithm to calculate the leading large N contribution to four-point correlators of twist fields.

  17. Looking for symmetric Bell inequalities

    Energy Technology Data Exchange (ETDEWEB)

    Bancal, Jean-Daniel; Gisin, Nicolas [Group of Applied Physics, University of Geneva, 20 rue de l' Ecole-de Medecine, CH-1211 Geneva 4 (Switzerland); Pironio, Stefano, E-mail: jean-daniel.bancal@unige.c [Laboratoire d' Information Quantique, Universite Libre de Bruxelles (Belgium)

    2010-09-24

    Finding all Bell inequalities for a given number of parties, measurement settings and measurement outcomes is in general a computationally hard task. We show that all Bell inequalities which are symmetric under the exchange of parties can be found by examining a symmetrized polytope which is simpler than the full Bell polytope. As an illustration of our method, we generate 238 885 new Bell inequalities and 1085 new Svetlichny inequalities. We find, in particular, facet inequalities for Bell experiments involving two parties and two measurement settings that are not of the Collins-Gisin-Linden-Massar-Popescu type.

  18. Symmetric autocompensating quantum key distribution

    Science.gov (United States)

    Walton, Zachary D.; Sergienko, Alexander V.; Levitin, Lev B.; Saleh, Bahaa E. A.; Teich, Malvin C.

    2004-08-01

    We present quantum key distribution schemes which are autocompensating (require no alignment) and symmetric (Alice and Bob receive photons from a central source) for both polarization and time-bin qubits. The primary benefit of the symmetric configuration is that both Alice and Bob may have passive setups (neither Alice nor Bob is required to make active changes for each run of the protocol). We show that both the polarization and the time-bin schemes may be implemented with existing technology. The new schemes are related to previously described schemes by the concept of advanced waves.

  19. Anisotropic yield surfaces in bi-axial cyclic plasticity

    International Nuclear Information System (INIS)

    Rider, R.J.; Harvey, S.J.; Breckell, T.H.

    1985-01-01

    Some aspects of the behaviour of yield surfaces and work-hardening surfaces occurring in biaxial cyclic plasticity have been studied experimentally and theoretically. The experimental work consisted of subjecting thin-walled tubular steel specimens to cyclic plastic torsion in the presence of sustained axial loads of various magnitudes. The experimental results show that considerable anisotropy is induced when the cyclic shear strains are dominant. Although the true shapes of yield and work-hardening surfaces can be very complex, a mathematical model is presented which includes both anisotropy and Bauschinger effects. The model is able to qualitatively predict the deformation patterns during a cycle of applied plastic shear strain for a range of sustained axial stresses and also indicate the material response to changes in axial stress. (orig.)

  20. Dissipative Axial Inflation

    CERN Document Server

    Notari, Alessio

    2016-12-22

    We analyze in detail the background cosmological evolution of a scalar field coupled to a massless abelian gauge field through an axial term $\\frac{\\phi}{f_\\gamma} F \\tilde{F}$, such as in the case of an axion. Gauge fields in this case are known to experience tachyonic growth and therefore can backreact on the background as an effective dissipation into radiation energy density $\\rho_R$, which which can lead to inflation without the need of a flat potential. We analyze the system, for momenta $k$ smaller than the cutoff $f_\\gamma$, including numerically the backreaction. We consider the evolution from a given static initial condition and explicitly show that, if $f_\\gamma$ is smaller than the field excursion $\\phi_0$ by about a factor of at least ${\\cal O} (20)$, there is a friction effect which turns on before that the field can fall down and which can then lead to a very long stage of inflation with a generic potential. In addition we find superimposed oscillations, which would get imprinted on any kind of...

  1. Symmetric relations of finite negativity

    NARCIS (Netherlands)

    Kaltenbaeck, M.; Winkler, H.; Woracek, H.; Forster, KH; Jonas, P; Langer, H

    2006-01-01

    We construct and investigate a space which is related to a symmetric linear relation S of finite negativity on an almost Pontryagin space. This space is the indefinite generalization of the completion of dom S with respect to (S.,.) for a strictly positive S on a Hilbert space.

  2. Tilting-connected symmetric algebras

    OpenAIRE

    Aihara, Takuma

    2010-01-01

    The notion of silting mutation was introduced by Iyama and the author. In this paper we mainly study silting mutation for self-injective algebras and prove that any representation-finite symmetric algebra is tilting-connected. Moreover we give some sufficient conditions for a Bongartz-type Lemma to hold for silting objects.

  3. Symmetric group representations and Z

    OpenAIRE

    Adve, Anshul; Yong, Alexander

    2017-01-01

    We discuss implications of the following statement about the representation theory of symmetric groups: every integer appears infinitely often as an irreducible character evaluation, and every nonnegative integer appears infinitely often as a Littlewood-Richardson coefficient and as a Kronecker coefficient.

  4. Symmetric Key Authentication Services Revisited

    NARCIS (Netherlands)

    Crispo, B.; Popescu, B.C.; Tanenbaum, A.S.

    2004-01-01

    Most of the symmetric key authentication schemes deployed today are based on principles introduced by Needham and Schroeder [15] more than twenty years ago. However, since then, the computing environment has evolved from a LAN-based client-server world to include new paradigms, including wide area

  5. Quantum systems and symmetric spaces

    International Nuclear Information System (INIS)

    Olshanetsky, M.A.; Perelomov, A.M.

    1978-01-01

    Certain class of quantum systems with Hamiltonians related to invariant operators on symmetric spaces has been investigated. A number of physical facts have been derived as a consequence. In the classical limit completely integrable systems related to root systems are obtained

  6. The symmetric longest queue system

    NARCIS (Netherlands)

    van Houtum, Geert-Jan; Adan, Ivo; van der Wal, Jan

    1997-01-01

    We derive the performance of the exponential symmetric longest queue system from two variants: a longest queue system with Threshold Rejection of jobs and one with Threshold Addition of jobs. It is shown that these two systems provide lower and upper bounds for the performance of the longest queue

  7. Symmetric imaging findings in neuroradiology

    International Nuclear Information System (INIS)

    Zlatareva, D.

    2015-01-01

    Full text: Learning objectives: to make a list of diseases and syndromes which manifest as bilateral symmetric findings on computed tomography and magnetic resonance imaging; to discuss the clinical and radiological differential diagnosis for these diseases; to explain which of these conditions necessitates urgent therapy and when additional studies and laboratory can precise diagnosis. There is symmetry in human body and quite often we compare the affected side to the normal one but in neuroradiology we might have bilateral findings which affected pair structures or corresponding anatomic areas. It is very rare when clinical data prompt diagnosis. Usually clinicians suspect such an involvement but Ct and MRI can reveal symmetric changes and are one of the leading diagnostic tool. The most common location of bilateral findings is basal ganglia and thalamus. There are a number of diseases affecting these structures symmetrically: metabolic and systemic diseases, intoxication, neurodegeneration and vascular conditions, toxoplasmosis, tumors and some infections. Malformations of cortical development and especially bilateral perisylvian polymicrogyria requires not only exact report on the most affected parts but in some cases genetic tests or combination with other clinical symptoms. In the case of herpes simplex encephalitis bilateral temporal involvement is common and this finding very often prompt therapy even before laboratory results. Posterior reversible encephalopathy syndrome (PReS) and some forms of hypoxic ischemic encephalopathy can lead to symmetric changes. In these acute conditions MR plays a crucial role not only in diagnosis but also in monitoring of the therapeutic effect. Patients with neurofibromatosis type 1 or type 2 can demonstrate bilateral optic glioma combined with spinal neurofibroma and bilateral acoustic schwanoma respectively. Mirror-image aneurysm affecting both internal carotid or middle cerebral arteries is an example of symmetry in

  8. Preferred orientation of a naturally and experimentally deformed pyrrhotite ore by X-ray and neutron diffraction texture analysis

    International Nuclear Information System (INIS)

    Niederschlag, E.; Brokmeier, H.G.; Siemes, H.

    1994-01-01

    Two samples of polycrystalline naturally deformed hexagonal Pyrrhotite were deformed experimentally in axial compression tests with different temperatures and strain. The texture of the naturally deformed ore was investigated both by X-ray and neutron texture analyses. Texture measurements on the experimentally deformed ore were carried out by neutron diffraction. (orig.)

  9. Ultraviolet and infrared aspects of the axial anomaly. I

    International Nuclear Information System (INIS)

    Horejsi, J.

    1992-01-01

    The paper is the first part of a brief review of some perturbative aspects of the Adler-Bell-Jackiw axial anomaly, described in terms of ultraviolet and infrared behavior of the famous VVA triangle graph. Apart from a general overview of the diversified role played by the anomaly in quantum field theory and particle physics, an elementary introduction is presented to the subject of the anomaly, comprehensible to an uninitiated reader with only a basic background in quantum field theory. The ultraviolet aspects of the anomaly are stressed and the topics covered are the following: vector and axial-vector Ward identities for the VVA triangle graph; the anomaly and several ways to derive it, namely the symmetric momentum cut-off and shifting the integration variables in linearly divergent integrals; the Adler-Rosenberg argument; the Pauli-Villars method; and dimensional regularization. (author) 2 figs., 34 refs

  10. Deformation microstructures

    DEFF Research Database (Denmark)

    Hansen, N.; Huang, X.; Hughes, D.A.

    2004-01-01

    Microstructural characterization and modeling has shown that a variety of metals deformed by different thermomechanical processes follows a general path of grain subdivision, by dislocation boundaries and high angle boundaries. This subdivision has been observed to very small structural scales...... of the order of 10 nm, produced by deformation under large sliding loads. Limits to the evolution of microstructural parameters during monotonic loading have been investigated based on a characterization by transmission electron microscopy. Such limits have been observed at an equivalent strain of about 10...

  11. Characterization of Multiflux Axial Compressors

    International Nuclear Information System (INIS)

    Brasnarof, Daniel; Kyung Kyu-Hyung; Rivarola, Martin; Gonzalez Jose; Florido, Pablo; Orellano, Pablo; Bergallo, Juan

    2003-01-01

    In the present work the results of analytical models of performance are compared with experimental data acquired in the multi flux axial compressor test facility, built in The Pilcaniyeu Technological Complex for the SIGMA project.We describe the experimental circuit and the data of the dispersion inside the axial compressor obtained using a tracer gas through one of the annular inlets.The attained results can be used to validate the design code for the multi flux axial compressors and SIGMA industrial plant

  12. Axial gap rotating electrical machine

    Science.gov (United States)

    None

    2016-02-23

    Direct drive rotating electrical machines with axial air gaps are disclosed. In these machines, a rotor ring and stator ring define an axial air gap between them. Sets of gap-maintaining rolling supports bear between the rotor ring and the stator ring at their peripheries to maintain the axial air gap. Also disclosed are wind turbines using these generators, and structures and methods for mounting direct drive rotating electrical generators to the hubs of wind turbines. In particular, the rotor ring of the generator may be carried directly by the hub of a wind turbine to rotate relative to a shaft without being mounted directly to the shaft.

  13. Study of axial magnetic effect

    Energy Technology Data Exchange (ETDEWEB)

    Braguta, Victor [IHEP, Protvino, Moscow region, 142284 Russia ITEP, B. Cheremushkinskaya street 25, Moscow, 117218 (Russian Federation); School of Biomedicine, Far Eastern Federal University, Ajax 10 Building 25, Russian island, Vladivostok, 690922 (Russian Federation); Chernodub, M. N. [CNRS, Laboratoire de Mathématiques et Physique Théorique, Université François-Rabelais Tours, Fédération Denis Poisson, Parc de Grandmont, 37200 Tours, France Department of Physics and Astronomy, University of Gent, Krijgslaan 281, S9, B-9000 Gent (Belgium); School of Biomedicine, Far Eastern Federal University, Ajax 10 Building 25, Russian island, Vladivostok, 690922 (Russian Federation); Goy, V. A. [School of Natural Sciences, Far Eastern Federal University, Sukhanova street 8, Vladivostok, 690950 (Russian Federation); Landsteiner, K. [Instituto de Física Teórica UAM/CSIC, C/ Nicolás Cabrera 13-15, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Molochkov, A. V. [School of Biomedicine, Far Eastern Federal University, Ajax 10 Building 25, Russian island, Vladivostok, 690922 (Russian Federation); Ulybyshev, M. [ITEP, B. Cheremushkinskaya street 25, Moscow, 117218 Russia Institute for Theoretical Problems of Microphysics, Moscow State University, Moscow, 119899 (Russian Federation)

    2016-01-22

    The Axial Magnetic Effect manifests itself as an equilibrium energy flow of massless fermions induced by the axial (chiral) magnetic field. Here we study the Axial Magnetic Effect in the quenched SU(2) lattice gauge theory with massless overlap fermions at finite temperature. We numerically observe that in the low-temperature hadron phase the effect is absent due to the quark confinement. In the high-temperature deconfinement phase the energy flow is an increasing function of the temperature which reaches the predicted asymptotic T{sup 2} behavior at high temperatures. We find, however, that energy flow is about one order of magnitude lower compared to a theoretical prediction.

  14. Axial clamp for nuclear reactor head penetration conoseal joints

    International Nuclear Information System (INIS)

    Hackley, T.A.

    1987-01-01

    A method is described for forming a sealed coupling between two bodies, each body presenting an annular abutment surface. The respective bodies are arranged so that their respective annular abutment surfaces are axially adjacent one another, defining a space therebetween, wherein a deformable gasket is disposed within the space. The method comprises: providing one of the bodies with an annular projection; providing the other body with threads for receiving an annular locknut which can be tightened to bear against the annular projection of the one body; applying an external axial forced to the bodies for compressing the abutment surfaces together against the gasket to form a seal between the bodies; immobilizing the bodies relative to one another while the external force is being applied to the bodies by hand-tightening an annular locknut via the threads of the other body until the locknut abuts the annular projection of the one body, substantially preventing relative axial movement between the bodies when the external axial force is withdrawn; and withdrawing the external axial force applied to the bodies, leaving the two bodies coupled together via the seal

  15. Dissipative axial inflation

    Energy Technology Data Exchange (ETDEWEB)

    Notari, Alessio [Departament de Física Fondamental i Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès 1, Barcelona, 08028 Spain (Spain); Tywoniuk, Konrad, E-mail: notari@ffn.ub.es, E-mail: konrad.tywoniuk@cern.ch [Theoretical Physics Department, CERN, Geneva (Switzerland)

    2016-12-01

    We analyze in detail the background cosmological evolution of a scalar field coupled to a massless abelian gauge field through an axial term φ/ f {sub γ} F ∼ F , such as in the case of an axion. Gauge fields in this case are known to experience tachyonic growth and therefore can backreact on the background as an effective dissipation into radiation energy density ρ{sub R}, which can lead to inflation without the need of a flat potential. We analyze the system, for momenta k smaller than the cutoff f {sub γ}, including the backreaction numerically. We consider the evolution from a given static initial condition and explicitly show that, if f {sub γ} is smaller than the field excursion φ{sub 0} by about a factor of at least O (20), there is a friction effect which turns on before the field can fall down and which can then lead to a very long stage of inflation with a generic potential. In addition we find superimposed oscillations, which would get imprinted on any kind of perturbations, scalars and tensors. Such oscillations have a period of 4–5 efolds and an amplitude which is typically less than a few percent and decreases linearly with f {sub γ}. We also stress that the curvature perturbation on uniform density slices should be sensitive to slow-roll parameters related to ρ{sub R} rather than φ-dot {sup 2}/2 and we discuss the existence of friction terms acting on the perturbations, although we postpone a calculation of the power spectrum and of non-gaussianity to future work and we simply define and compute suitable slow roll parameters. Finally we stress that this scenario may be realized in the axion case, if the coupling 1/ f {sub γ} to U(1) (photons) is much larger than the coupling 1/ f {sub G} to non-abelian gauge fields (gluons), since the latter sets the range of the potential and therefore the maximal allowed φ{sub 0∼} f {sub G}.

  16. Parity-Time Symmetric Photonics

    KAUST Repository

    Zhao, Han

    2018-01-17

    The establishment of non-Hermitian quantum mechanics (such as parity-time (PT) symmetry) stimulates a paradigmatic shift for studying symmetries of complex potentials. Owing to the convenient manipulation of optical gain and loss in analogy to the complex quantum potentials, photonics provides an ideal platform for visualization of many conceptually striking predictions from the non-Hermitian quantum theory. A rapidly developing field has emerged, namely, PT symmetric photonics, demonstrating intriguing optical phenomena including eigenstate coalescence and spontaneous PT symmetry breaking. The advance of quantum physics, as the feedback, provides photonics with brand-new paradigms to explore the entire complex permittivity plane for novel optical functionalities. Here, we review recent exciting breakthroughs in PT symmetric photonics while systematically presenting their underlying principles guided by non-Hermitian symmetries. The potential device applications for optical communication and computing, bio-chemical sensing, and healthcare are also discussed.

  17. Homotheties of cylindrically symmetric static spacetimes

    International Nuclear Information System (INIS)

    Qadir, A.; Ziad, M.; Sharif, M.

    1998-08-01

    In this note we consider the homotheties of cylindrically symmetric static spacetimes. We find that we can provide a complete list of all metrics that admit non-trivial homothetic motions and are cylindrically symmetric static. (author)

  18. Maximally Symmetric Composite Higgs Models.

    Science.gov (United States)

    Csáki, Csaba; Ma, Teng; Shu, Jing

    2017-09-29

    Maximal symmetry is a novel tool for composite pseudo Goldstone boson Higgs models: it is a remnant of an enhanced global symmetry of the composite fermion sector involving a twisting with the Higgs field. Maximal symmetry has far-reaching consequences: it ensures that the Higgs potential is finite and fully calculable, and also minimizes the tuning. We present a detailed analysis of the maximally symmetric SO(5)/SO(4) model and comment on its observational consequences.

  19. Minimal Length Effects on Tunnelling from Spherically Symmetric Black Holes

    Directory of Open Access Journals (Sweden)

    Benrong Mu

    2015-01-01

    Full Text Available We investigate effects of the minimal length on quantum tunnelling from spherically symmetric black holes using the Hamilton-Jacobi method incorporating the minimal length. We first derive the deformed Hamilton-Jacobi equations for scalars and fermions, both of which have the same expressions. The minimal length correction to the Hawking temperature is found to depend on the black hole’s mass and the mass and angular momentum of emitted particles. Finally, we calculate a Schwarzschild black hole's luminosity and find the black hole evaporates to zero mass in infinite time.

  20. On symmetric structures of order two

    Directory of Open Access Journals (Sweden)

    Michel Bousquet

    2008-04-01

    Full Text Available Let (ω n 0 < n be the sequence known as Integer Sequence A047749 http://www.research.att.com/ njas/sequences/A047749 In this paper, we show that the integer ω n enumerates various kinds of symmetric structures of order two. We first consider ternary trees having a reflexive symmetry and we relate all symmetric combinatorial objects by means of bijection. We then generalize the symmetric structures and correspondences to an infinite family of symmetric objects.

  1. An Explicit Formula for Symmetric Polynomials Related to the Eigenfunctions of Calogero-Sutherland Models

    Directory of Open Access Journals (Sweden)

    Martin Hallnäs

    2007-03-01

    Full Text Available We review a recent construction of an explicit analytic series representation for symmetric polynomials which up to a groundstate factor are eigenfunctions of Calogero-Sutherland type models. We also indicate a generalisation of this result to polynomials which give the eigenfunctions of so-called 'deformed' Calogero-Sutherland type models.

  2. Development of Row of Vibration Insulators and its Mathematical Models on a Base of Common Multi-parameter Scheme of Element Axial Line

    Science.gov (United States)

    Ponomarev, Yury K.

    2018-01-01

    The mathematical model of deformation of a cable (rope) vibration insulator consisting of two identical clips connected by means of elastic elements of a complex axial line is developed in detail. The axial line of the element is symmetric relatively to the horizontal axis of the shape and is made up of five rectilinear sections of arbitrary length a, b, c, conjugated to four radius sections with parameters R1 and R2 with angular extent 90°. On the basis of linear representations of the theory of bending and torsion of mechanics of materials, applied mechanics and linear algebra, a mathematical model of loading of an element and a vibration insulator as a whole in the direction of the vertical Y axis has been developed. Generalized characteristics of the friction and elastic forces for an elastic element with a complete set of the listed sections are obtained. Further, with the help of nullification in the generalized model of the characteristics of certain parameters, special cases of friction and elastic forces are obtained without taking into account the nullified parameters. Simultaneously, on the basis of the 3D computer-aided design system, volumetric models of simplified structures were created, given in the work. It is shown that, with the help of a variation of the five parameters of the axial scheme of the element, in combination with the variation of the moment of inertia of the rope section and the number of elements entering the ensemble, the load characteristics and stiffness of the vibration insulators can be changed tens and hundreds of times. This opens up unlimited possibilities for the optimal design of vibration protection systems in terms of weight characteristics, in cost, in terms of vibration intensity, in overall dimensions in different directions, which is very important for aerospace and transport engineering.

  3. Baryon symmetric big bang cosmology

    International Nuclear Information System (INIS)

    Stecker, F.W.

    1978-01-01

    It is stated that the framework of baryon symmetric big bang (BSBB) cosmology offers our greatest potential for deducting the evolution of the Universe because its physical laws and processes have the minimum number of arbitrary assumptions about initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the Universe and how galaxies and galaxy clusters are formed. BSBB cosmology also provides the only acceptable explanation at present for the origin of the cosmic γ-ray background radiation. (author)

  4. Symmetric functions and orthogonal polynomials

    CERN Document Server

    Macdonald, I G

    1997-01-01

    One of the most classical areas of algebra, the theory of symmetric functions and orthogonal polynomials has long been known to be connected to combinatorics, representation theory, and other branches of mathematics. Written by perhaps the most famous author on the topic, this volume explains some of the current developments regarding these connections. It is based on lectures presented by the author at Rutgers University. Specifically, he gives recent results on orthogonal polynomials associated with affine Hecke algebras, surveying the proofs of certain famous combinatorial conjectures.

  5. Immanant Conversion on Symmetric Matrices

    Directory of Open Access Journals (Sweden)

    Purificação Coelho M.

    2014-01-01

    Full Text Available Letr Σn(C denote the space of all n χ n symmetric matrices over the complex field C. The main objective of this paper is to prove that the maps Φ : Σn(C -> Σn (C satisfying for any fixed irre- ducible characters X, X' -SC the condition dx(A +aB = dχ·(Φ(Α + αΦ(Β for all matrices A,В ε Σ„(С and all scalars a ε C are automatically linear and bijective. As a corollary of the above result we characterize all such maps Φ acting on ΣИ(С.

  6. Marginal Stability Diagrams for Infinite-n Ballooning Modes in Quasi-symmetric Stellarators

    International Nuclear Information System (INIS)

    Hudson, S.R.; Hegna, C.C.; Torasso, R.; Ware, A.

    2003-01-01

    By perturbing the pressure and rotational-transform profiles at a selected surface in a given equilibrium, and by inducing a coordinate variation such that the perturbed state is in equilibrium, a family of magnetohydrodynamic equilibria local to the surface and parameterized by the pressure gradient and shear is constructed for arbitrary stellarator geometry. The geometry of the surface is not changed. The perturbed equilibria are analyzed for infinite-n ballooning stability and marginal stability diagrams are constructed that are analogous to the (s; alpha) diagrams constructed for axi-symmetric configurations. The method describes how pressure and rotational-transform gradients influence the local shear, which in turn influences the ballooning stability. Stability diagrams for the quasi-axially-symmetric NCSX (National Compact Stellarator Experiment), a quasi-poloidally-symmetric configuration and the quasi-helically-symmetric HSX (Helically Symmetric Experiment) are presented. Regions of second-stability are observed in both NCSX and the quasi-poloidal configuration, whereas no second stable region is observed for the quasi-helically symmetric device. To explain the different regions of stability, the curvature and local shear of the quasi-poloidal configuration are analyzed. The results are seemingly consistent with the simple explanation: ballooning instability results when the local shear is small in regions of bad curvature. Examples will be given that show that the structure, and stability, of the ballooning mode is determined by the structure of the potential function arising in the Schroedinger form of the ballooning equation

  7. Potential surfaces in symmetric heavy-ion reactions

    International Nuclear Information System (INIS)

    Royer, G.; Piller, C.; Mignen, J.; Raffray, Y.

    1989-01-01

    The entrance channel in symmetric heavy-ion reactions is studied in the liquid-drop model approach including the nuclear proximity energy and allowing ellipsoidal deformations of the colliding nuclei. In the whole mass range a sudden transition occurs from oblate to prolate shapes when the proximity forces become important. This strongly affects the effective moment of inertia. The ellipsoidal deformations reduce the fusion barrier width for light systems and lower the potential barrier height for medium and heavy nuclei. The results are in agreement with the empirical effective barrier shift determined by Aguiar et al for the 58 Ni + 58 Ni, 74 Ge + 74 Ge and 80 Se + 80 Se systems. The sub-barrier fusion enhancement in heavy-ion reactions might be explained by the slowness of the process. Below the static fusion barrier, the reaction time is long; allowing some adiabaticity and deformations of the colliding ions. Above the barrier, the reaction is more sudden and the deformation degree of freedom is frozen

  8. A symmetric positive definite formulation for monolithic fluid structure interaction

    KAUST Repository

    Robinson-Mosher, Avi; Schroeder, Craig; Fedkiw, Ronald

    2011-01-01

    In this paper we consider a strongly coupled (monolithic) fluid structure interaction framework for incompressible flow, as opposed to a loosely coupled (partitioned) method. This requires solving a single linear system that combines the unknown velocities of the structure with the unknown pressures of the fluid. In our previous work, we were able to obtain a symmetric formulation of this coupled system; however, it was also indefinite, making it more difficult to solve. In fact in practice there have been cases where we have been unable to invert the system. In this paper we take a novel approach that consists of factoring the damping matrix of deformable structures and show that this can be used to obtain a symmetric positive definite system, at least to the extent that the uncoupled systems were symmetric positive definite. We use a traditional MAC grid discretization of the fluid and a fully Lagrangian discretization of the structures for the sake of exposition, noting that our procedure can be generalized to other scenarios. For the special case of rigid bodies, where there are no internal damping forces, we exactly recover the system of Batty et al. (2007) [4]. © 2010 Elsevier Inc.

  9. A symmetric positive definite formulation for monolithic fluid structure interaction

    KAUST Repository

    Robinson-Mosher, Avi

    2011-02-01

    In this paper we consider a strongly coupled (monolithic) fluid structure interaction framework for incompressible flow, as opposed to a loosely coupled (partitioned) method. This requires solving a single linear system that combines the unknown velocities of the structure with the unknown pressures of the fluid. In our previous work, we were able to obtain a symmetric formulation of this coupled system; however, it was also indefinite, making it more difficult to solve. In fact in practice there have been cases where we have been unable to invert the system. In this paper we take a novel approach that consists of factoring the damping matrix of deformable structures and show that this can be used to obtain a symmetric positive definite system, at least to the extent that the uncoupled systems were symmetric positive definite. We use a traditional MAC grid discretization of the fluid and a fully Lagrangian discretization of the structures for the sake of exposition, noting that our procedure can be generalized to other scenarios. For the special case of rigid bodies, where there are no internal damping forces, we exactly recover the system of Batty et al. (2007) [4]. © 2010 Elsevier Inc.

  10. S-HAMMER: hierarchical attribute-guided, symmetric diffeomorphic registration for MR brain images.

    Science.gov (United States)

    Wu, Guorong; Kim, Minjeong; Wang, Qian; Shen, Dinggang

    2014-03-01

    Deformable registration has been widely used in neuroscience studies for spatial normalization of brain images onto the standard space. Because of possible large anatomical differences across different individual brains, registration performance could be limited when trying to estimate a single directed deformation pathway, i.e., either from template to subject or from subject to template. Symmetric image registration, however, offers an effective way to simultaneously deform template and subject images toward each other until they meet at the middle point. Although some intensity-based registration algorithms have nicely incorporated this concept of symmetric deformation, the pointwise intensity matching between two images may not necessarily imply the matching of correct anatomical correspondences. Based on HAMMER registration algorithm (Shen and Davatzikos, [2002]: IEEE Trans Med Imaging 21:1421-1439), we integrate the strategies of hierarchical attribute matching and symmetric diffeomorphic deformation to build a new symmetric-diffeomorphic HAMMER registration algorithm, called as S-HAMMER. The performance of S-HAMMER has been extensively compared with 14 state-of-the-art nonrigid registration algorithms evaluated in (Klein et al., [2009]: NeuroImage 46:786-802) by using real brain images in LPBA40, IBSR18, CUMC12, and MGH10 datasets. In addition, the registration performance of S-HAMMER, by comparison with other methods, is also demonstrated on both elderly MR brain images (>70 years old) and the simulated brain images with ground-truth deformation fields. In all experiments, our proposed method achieves the best registration performance over all other registration methods, indicating the high applicability of our method in future neuroscience and clinical applications. Copyright © 2013 Wiley Periodicals, Inc.

  11. Quantum effects in non-maximally symmetric spaces

    International Nuclear Information System (INIS)

    Shen, T.C.

    1985-01-01

    Non-Maximally symmetric spaces provide a more general background to explore the relation between the geometry of the manifold and the quantum fields defined in the manifold than those with maximally symmetric spaces. A static Taub universe is used to study the effect of curvature anisotropy on the spontaneous symmetry breaking of a self-interacting scalar field. The one-loop effective potential on a λphi 4 field with arbitrary coupling xi is computed by zeta function regularization. For massless minimal coupled scalar fields, first order phase transitions can occur. Keeping the shape invariant but decreasing the curvature radius of the universe induces symmetry breaking. If the curvature radius is held constant, increasing deformation can restore the symmetry. Studies on the higher-dimensional Kaluza-Klein theories are also focused on the deformation effect. Using the dimensional regularization, the effective potential of the free scalar fields in M 4 x T/sup N/ and M 4 x (Taub) 3 spaces are obtained. The stability criterions for the static solutions of the self-consistent Einstein equations are derived. Stable solutions of the M 4 x S/sup N/ topology do not exist. With the Taub space as the internal space, the gauge coupling constants of SU(2), and U(1) can be determined geometrically. The weak angle is therefore predicted by geometry in this model

  12. Non-axial-symmetric Alfven waves in cylindrical, radial inhomogeneous plasmas

    International Nuclear Information System (INIS)

    Raeuchle, E.

    1978-08-01

    The propagation of nonaxialsymmetric Alfven waves is investigated theoretically. Eigenfunctions and dispersion relations are calculated numerically for radial inhomogeneous cylindrical plasmas. In the MHD treatment resistivity, neutral particle loading and ion cyclotron effects are included. The investigations are of importance for plasma heating by Alfven waves. (orig.) [de

  13. An FFT-accelerated fdtd scheme with exact absorbing conditions for characterizing axially symmetric resonant structures

    KAUST Repository

    Sirenko, Kostyantyn; Pazynin, Vadim L.; Sirenko, Yu K.; Bagci, Hakan

    2011-01-01

    under resonant conditions. This renders the method highly useful in characterization of high-Q microwave radiators and energy compressors. Numerical results that demonstrate the accuracy and efficiency of the method are presented.

  14. A Penalization Approach for Tomographic Reconstruction of Binary Axially Symmetric Objects

    International Nuclear Information System (INIS)

    Abraham, R.; Bergounioux, M.; Trelat, E.

    2008-01-01

    We propose a variational method for tomographic reconstruction of blurred and noised binary images based on a penalization process of a minimization problem settled in the space of bounded variation functions. We prove existence and/or uniqueness results and derive a penalized optimality system. Numerical simulations are provided to demonstrate the relevance of the approach

  15. Numerical relativity for D dimensional axially symmetric space-times: Formalism and code tests

    International Nuclear Information System (INIS)

    Zilhao, Miguel; Herdeiro, Carlos; Witek, Helvi; Nerozzi, Andrea; Sperhake, Ulrich; Cardoso, Vitor; Gualtieri, Leonardo

    2010-01-01

    The numerical evolution of Einstein's field equations in a generic background has the potential to answer a variety of important questions in physics: from applications to the gauge-gravity duality, to modeling black hole production in TeV gravity scenarios, to analysis of the stability of exact solutions, and to tests of cosmic censorship. In order to investigate these questions, we extend numerical relativity to more general space-times than those investigated hitherto, by developing a framework to study the numerical evolution of D dimensional vacuum space-times with an SO(D-2) isometry group for D≥5, or SO(D-3) for D≥6. Performing a dimensional reduction on a (D-4) sphere, the D dimensional vacuum Einstein equations are rewritten as a 3+1 dimensional system with source terms, and presented in the Baumgarte, Shapiro, Shibata, and Nakamura formulation. This allows the use of existing 3+1 dimensional numerical codes with small adaptations. Brill-Lindquist initial data are constructed in D dimensions and a procedure to match them to our 3+1 dimensional evolution equations is given. We have implemented our framework by adapting the Lean code and perform a variety of simulations of nonspinning black hole space-times. Specifically, we present a modified moving puncture gauge, which facilitates long-term stable simulations in D=5. We further demonstrate the internal consistency of the code by studying convergence and comparing numerical versus analytic results in the case of geodesic slicing for D=5, 6.

  16. The design of optical module of LED street lamp with non-axial symmetrical reflector

    Science.gov (United States)

    Lu, Ming-Jun; Chen, Chi-An; Chen, Yi-Yung; Whang, Allen Jong-Woei

    2010-05-01

    In recently, many research focus on the LED applications for environmental protection so a number of LED street lamps are presented. Although LED has many advantages for environmental protection, its special optical characteristics, such as intensity distribution, always limit the advantages in many applications. Therefore, we always need to do the secondary optical design for LED street lamp to replace the traditional optical designs that are designed for high-pressure sodium lamps and mercury lamps. According to the situation, we design an optical module of LED street lamp with LEDs and secondary optical design. First, the LEDs are placed on freeform reflector for the specific illuminated conditions. We design the optical module of street lamp with the two conditions that include the uniformity and the ratio of length to width in the illuminated area and without any light pollution. According to the simulation with the designed optical module, the uniformity in the illuminated area is about 0.6 that is better than the general condition, 0.3, and the ratio of length to width in the illuminated area is 3:1 in which the length is 30 meters and the width is 10 meters. Therefore, the design could let LED street lamp fits the two conditions, uniformity and ratio in the illuminated area.

  17. Stability of Axially Compressed Single-Cell Mono-Symmetric Thin ...

    African Journals Online (AJOL)

    The initial result of the formulation was in form of total potential energy functional, which was then minimized using Euler-Lagrange equation to obtain a set of differential equations of equilibrium in matrix form. The elements of the coefficient matrices of the governing differential equations of equilibrium were determined for ...

  18. Dispersion of axially symmetric waves in fluid-filled cylindrical shells

    DEFF Research Database (Denmark)

    Bao, X.L.; Überall, H.; Raju, P. K.

    2000-01-01

    Acoustic waves normally incident on an elastic cylindrical shell can cause the excitation of circumferential elastic waves on the shell. These shells may be empty and fluid immersed, or fluid filled in an ambient medium of air, or doubly fluid loaded inside and out. Circumferential waves...... on such shells have been investigated for the case of aluminum shells, and their phase-velocity dispersion curves have been obtained for double fluid loading [Bao, Raju, and Überall, J. Acoust. Soc. Am. 105, 2704 (1999)]. Similar results were obtained for empty or fluid-filled brass shells [Kumar, Acustica 27......, 317 (1972)]. We have extended the work of Kumar to the case of fluid-filled aluminum shells and steel shells imbedded in air. These cases demonstrate the existence of circumferential waves traveling in the filler fluid, exhibiting a certain simplicity of the dispersion curves of these waves...

  19. Spin-Orbit Qubits of Rare-Earth-Metal Ions in Axially Symmetric Crystal Fields

    Science.gov (United States)

    Bertaina, S.; Shim, J. H.; Gambarelli, S.; Malkin, B. Z.; Barbara, B.

    2009-11-01

    Contrary to the well-known spin qubits, rare-earth-metal qubits are characterized by a strong influence of crystal field due to large spin-orbit coupling. At low temperature and in the presence of resonance microwaves, it is the magnetic moment of the crystal-field ground state which nutates (for several μs) and the Rabi frequency ΩR is anisotropic. Here, we present a study of the variations of ΩR(H→0) with the magnitude and direction of the static magnetic field H→0 for the odd Er167 isotope in a single crystal CaWO4:Er3+. The hyperfine interactions split the ΩR(H→0) curve into eight different curves which are fitted numerically and described analytically. These “spin-orbit qubits” should allow detailed studies of decoherence mechanisms which become relevant at high temperature and open new ways for qubit addressing using properly oriented magnetic fields.

  20. Reply to C. M. Will on the axially symmetric two-body problem in general relativity

    International Nuclear Information System (INIS)

    Cooperstock, F.I.; Lim, P.H.

    1985-01-01

    The recent paper by Will (1983) is considered which purports to demonstrate that the gravitational radiation which the authors had computed from their model two-body free-fall system is consistent with the so-called quadrupole formula. It is shown that in fact the system presented by Will is different from the authors and that the illegitimate application of the quadrupole formula to the authors system leads to a smaller flux than that which is correctly deduced using general relativity and a proper consideration of nonlinearities. It is demonstrated that a judicious choice of stress release is propagated through the bodies as a superposition of plane and spherical waves leading to pressure fluctuations to the order in question. This underlines the essential distinction between the authors problem and the Will problem. Various aspects of the problem are also discussed. 25 references

  1. Theory of axially symmetric probes in a collisionless magnetoplasma: Aligned spheroids, finite cylinders, and disks

    International Nuclear Information System (INIS)

    Rubinstein, J.; Laframboise, J.G.

    1983-01-01

    A theory is presented for current collection by electrostatic probes in a collisionless, Maxwellian plasma containing a uniform magnetic field B, where the probes are spheroids or finite cylinders whose axis of symmetry is aligned with B, or disks perpendicular to B. The theory yields upper-bound and adiabatic-limit currents for the attracted particle species. For the repelled species, it yields upper and lower bounds. This work is an extension of existing theory for spherical probes by Rubinstein and Laframboise

  2. Thrust and torque vector characteristics of axially-symmetric E-sail

    Science.gov (United States)

    Bassetto, Marco; Mengali, Giovanni; Quarta, Alessandro A.

    2018-05-01

    The Electric Solar Wind Sail is an innovative propulsion system concept that gains propulsive acceleration from the interaction with charged particles released by the Sun. The aim of this paper is to obtain analytical expressions for the thrust and torque vectors of a spinning sail of given shape. Under the only assumption that each tether belongs to a plane containing the spacecraft spin axis, a general analytical relation is found for the thrust and torque vectors as a function of the spacecraft attitude relative to an orbital reference frame. The results are then applied to the noteworthy situation of a Sun-facing sail, that is, when the spacecraft spin axis is aligned with the Sun-spacecraft line, which approximatively coincides with the solar wind direction. In that case, the paper discusses the equilibrium shape of the generic conducting tether as a function of the sail geometry and the spin rate, using both a numerical and an analytical (approximate) approach. As a result, the structural characteristics of the conducting tether are related to the spacecraft geometric parameters.

  3. Refraction-enhanced backlit imaging of axially symmetric inertial confinement fusion plasmas.

    Science.gov (United States)

    Koch, Jeffrey A; Landen, Otto L; Suter, Laurence J; Masse, Laurent P; Clark, Daniel S; Ross, James S; Mackinnon, Andrew J; Meezan, Nathan B; Thomas, Cliff A; Ping, Yuan

    2013-05-20

    X-ray backlit radiographs of dense plasma shells can be significantly altered by refraction of x rays that would otherwise travel straight-ray paths, and this effect can be a powerful tool for diagnosing the spatial structure of the plasma being radiographed. We explore the conditions under which refraction effects may be observed, and we use analytical and numerical approaches to quantify these effects for one-dimensional radial opacity and density profiles characteristic of inertial-confinement fusion (ICF) implosions. We also show how analytical and numerical approaches allow approximate radial plasma opacity and density profiles to be inferred from point-projection refraction-enhanced radiography data. This imaging technique can provide unique data on electron density profiles in ICF plasmas that cannot be obtained using other techniques, and the uniform illumination provided by point-like x-ray backlighters eliminates a significant source of uncertainty in inferences of plasma opacity profiles from area-backlit pinhole imaging data when the backlight spatial profile cannot be independently characterized. The technique is particularly suited to in-flight radiography of imploding low-opacity shells surrounding hydrogen ice, because refraction is sensitive to the electron density of the hydrogen plasma even when it is invisible to absorption radiography. It may also provide an alternative approach to timing shockwaves created by the implosion drive, that are currently invisible to absorption radiography.

  4. Deformation induced martensitic transformation in stainless steels

    International Nuclear Information System (INIS)

    Nagy, E.; Mertinger, V.; Tranta, F.; Solyom, J.

    2003-01-01

    Deformation induced martensitic transformation was investigated in metastable austenitic stainless steel. This steel can present a microstructure of austenite (γ), α' martensite and non magnetic ε martensite. Uni-axial tensile test was used for loading at different temperatures below room temperature (from -120 to 20 deg. C). During the deformation the transformation takes place at certain places in an anisotropic way and texture also develops. Quantitative phase analysis was done by X-ray diffraction (XRD) and magnetic methods while the texture was described by X-ray diffraction using a special inverse pole figure. The quantitative phase analysis has shown that the formation of α' and ε martensite from austenite is the function of deformation rate, and deformation temperature. The transformation of the textured austenite takes place in an anisotropic way and a well defined crystallographic relationship between the parent and α' martensite phase has been measured

  5. Multiaxial ratcheting behavior of zirconium alloy tubes under combined cyclic axial load and internal pressure

    Energy Technology Data Exchange (ETDEWEB)

    Chen, G.; Zhang, X. [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Xu, D.K. [Environmental Corrosion Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Li, D.H. [Hunan Taohuajiang Nuclear Power Co., Ltd, Yiyang, 413000 (China); Chen, X. [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Zhang, Z., E-mail: zhe.zhang@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2017-06-15

    In this study, a series of uniaxial and multiaxial ratcheting tests were conducted at room temperature on zirconium alloy tubes. The experimental results showed that for uniaxial symmetrical cyclic test, the axial ratcheting strain ɛ{sub x} did not accumulate obviously in initial stage, but gradually increased up to 1% with increasing stress amplitude σ{sub xa}. For multiaxial ratcheting tests, the zirconium alloy tube was highly sensitive to both the axial stress amplitude σ{sub xa} and the internal pressure p{sub i}. The hoop ratcheting strain ɛ{sub θ} increased continuously with the increase of axial stress amplitude, whereas the evolution of axial ratcheting strain ɛ{sub x} was related to the axial stress amplitude. The internal pressure restricted the ratcheting accumulation in the axial direction, but promoted the hoop ratcheting strain on the contrary. The prior loading history greatly restrained the ratcheting behavior of subsequent cycling with a small internal pressure. - Highlights: •Uniaxial and multiaxial ratcheting behavior of the zirconium alloy tubes are investigated at room temperature. •The ratcheting depends greatly on the stress amplitude or internal pressure. •The interaction between the axial and hoop ratcheting mechanisms is greatly dependent on the internal pressure level. •The ratcheting is influenced significantly by the loading history of internal pressure.

  6. Multiaxial ratcheting behavior of zirconium alloy tubes under combined cyclic axial load and internal pressure

    International Nuclear Information System (INIS)

    Chen, G.; Zhang, X.; Xu, D.K.; Li, D.H.; Chen, X.; Zhang, Z.

    2017-01-01

    In this study, a series of uniaxial and multiaxial ratcheting tests were conducted at room temperature on zirconium alloy tubes. The experimental results showed that for uniaxial symmetrical cyclic test, the axial ratcheting strain ɛ x did not accumulate obviously in initial stage, but gradually increased up to 1% with increasing stress amplitude σ xa . For multiaxial ratcheting tests, the zirconium alloy tube was highly sensitive to both the axial stress amplitude σ xa and the internal pressure p i . The hoop ratcheting strain ɛ θ increased continuously with the increase of axial stress amplitude, whereas the evolution of axial ratcheting strain ɛ x was related to the axial stress amplitude. The internal pressure restricted the ratcheting accumulation in the axial direction, but promoted the hoop ratcheting strain on the contrary. The prior loading history greatly restrained the ratcheting behavior of subsequent cycling with a small internal pressure. - Highlights: •Uniaxial and multiaxial ratcheting behavior of the zirconium alloy tubes are investigated at room temperature. •The ratcheting depends greatly on the stress amplitude or internal pressure. •The interaction between the axial and hoop ratcheting mechanisms is greatly dependent on the internal pressure level. •The ratcheting is influenced significantly by the loading history of internal pressure.

  7. A Low Frequency FBG Accelerometer with Symmetrical Bended Spring Plates

    Directory of Open Access Journals (Sweden)

    Fufei Liu

    2017-01-01

    Full Text Available To meet the requirements for low-frequency vibration monitoring, a new type of FBG (fiber Bragg grating accelerometer with a bended spring plate is proposed. Two symmetrical bended spring plates are used as elastic elements, which drive the FBG to produce axial strains equal in magnitude but opposite in direction when exciting vibrations exist, leading to doubling the wavelength shift of the FBG. The mechanics model and a numerical method are presented in this paper, with which the influence of the structural parameters on the sensitivity and the eigenfrequency are discussed. The test results show that the sensitivity of the accelerometer is more than 1000 pm/g when the frequency is within the 0.7–20 Hz range.

  8. Globally optimal superconducting magnets part II: symmetric MSE coil arrangement.

    Science.gov (United States)

    Tieng, Quang M; Vegh, Viktor; Brereton, Ian M

    2009-01-01

    A globally optimal superconducting magnet coil design procedure based on the Minimum Stored Energy (MSE) current density map is outlined. The method has the ability to arrange coils in a manner that generates a strong and homogeneous axial magnetic field over a predefined region, and ensures the stray field external to the assembly and peak magnetic field at the wires are in acceptable ranges. The outlined strategy of allocating coils within a given domain suggests that coils should be placed around the perimeter of the domain with adjacent coils possessing alternating winding directions for optimum performance. The underlying current density maps from which the coils themselves are derived are unique, and optimized to possess minimal stored energy. Therefore, the method produces magnet designs with the lowest possible overall stored energy. Optimal coil layouts are provided for unshielded and shielded short bore symmetric superconducting magnets.

  9. Plastic deformation of 2D crumpled wires

    International Nuclear Information System (INIS)

    Gomes, M A F; Donato, C C; Brito, V P; Coelho, A S O

    2008-01-01

    When a single long piece of elastic wire is injected through channels into a confining two-dimensional cavity, a complex structure of hierarchical loops is formed. In the limit of maximum packing density, these structures are described by several scaling laws. In this paper this packing process is investigated but using plastic wires which give rise to completely irreversible structures of different morphology. In particular, the plastic deformation from circular to oblate configurations of crumpled wires is experimentally studied, obtained by the application of an axial strain. Among other things, it is shown that in spite of plasticity, irreversibility and very large deformations, scaling is still observed.

  10. A note on axial symmetries

    International Nuclear Information System (INIS)

    Beetle, Christopher; Wilder, Shawn

    2015-01-01

    This note describes how to characterize and normalize an axial Killing field on a general Riemannian geometry or four-dimensional Lorentzian geometry. No global assumptions are necessary, such as that the orbits of the Killing field all have period 2π. Rather, any Killing field that vanishes at at least one point necessarily has the expected global properties. (note)

  11. Axial structure of the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Veronique Bernard; Latifa Elouadrhiri; Ulf-G Meissner

    2002-01-01

    We review the current status of experimental and theoretical understanding of the axial nucleon structure at low and moderate energies. Topics considered include (quasi)elastic (anti)neutrino-nucleon scattering, charged pion electroproduction off nucleons and ordinary as well as radiative muon capture on the proton.

  12. Developing a Virtual Rock Deformation Laboratory

    Science.gov (United States)

    Zhu, W.; Ougier-simonin, A.; Lisabeth, H. P.; Banker, J. S.

    2012-12-01

    Experimental rock physics plays an important role in advancing earthquake research. Despite its importance in geophysics, reservoir engineering, waste deposits and energy resources, most geology departments in U.S. universities don't have rock deformation facilities. A virtual deformation laboratory can serve as an efficient tool to help geology students naturally and internationally learn about rock deformation. Working with computer science engineers, we built a virtual deformation laboratory that aims at fostering user interaction to facilitate classroom and outreach teaching and learning. The virtual lab is built to center around a triaxial deformation apparatus in which laboratory measurements of mechanical and transport properties such as stress, axial and radial strains, acoustic emission activities, wave velocities, and permeability are demonstrated. A student user can create her avatar to enter the virtual lab. In the virtual lab, the avatar can browse and choose among various rock samples, determine the testing conditions (pressure, temperature, strain rate, loading paths), then operate the virtual deformation machine to observe how deformation changes physical properties of rocks. Actual experimental results on the mechanical, frictional, sonic, acoustic and transport properties of different rocks at different conditions are compiled. The data acquisition system in the virtual lab is linked to the complied experimental data. Structural and microstructural images of deformed rocks are up-loaded and linked to different deformation tests. The integration of the microstructural image and the deformation data allows the student to visualize how forces reshape the structure of the rock and change the physical properties. The virtual lab is built using the Game Engine. The geological background, outstanding questions related to the geological environment, and physical and mechanical concepts associated with the problem will be illustrated on the web portal. In

  13. Probabilistic cloning of three symmetric states

    International Nuclear Information System (INIS)

    Jimenez, O.; Bergou, J.; Delgado, A.

    2010-01-01

    We study the probabilistic cloning of three symmetric states. These states are defined by a single complex quantity, the inner product among them. We show that three different probabilistic cloning machines are necessary to optimally clone all possible families of three symmetric states. We also show that the optimal cloning probability of generating M copies out of one original can be cast as the quotient between the success probability of unambiguously discriminating one and M copies of symmetric states.

  14. Small deformations of the Prasad-Sommerfield solution

    International Nuclear Information System (INIS)

    Adler, S.L.

    1979-01-01

    I study solutions of the static Euclidean anti-self-dual SU(2) Yang-Mills equations which differ by a small perturbation from the Prasad-Sommerfield solution. I find explicit expressions for two series of perturbation mode functions of angular momentum l and even and odd parity, and classify the modes according to several criteria. There are seven nondilatational modes which have singularities removable by gauge transformation: 3 translations (l = 1), 1 gauge mode (l = 0), and a family of 3 odd-parity gauge modes (l = 1). The translations and l = 0 gauge modes have nonvanishing, and normalizable, projections into the background gauge, while the odd-parity l = 1 modes have vanishing projection into the background gauge. Among the singular modes, there are an infinite number of modes, irregular at r = 0, which nonetheless satisfy the boundary conditions for finite-energy solutions on the sphere at infinity. I show, by discussing the analogous problem of the axially symmetric solutions of the stationary Einstein equations, that non-normalizable modes are relevant in determining whether a spherically symmetric solution of a nonlinear system has axially symmetric extensions. The analysis of perturbations around the Prasad-Sommerfield solution implies that if an axially symmetric extension exists, it cannot be reached by integration out along a tangent vector defined by a nonvanishing, nonsingular small-perturbation mode of the class explicitly constructed

  15. Classification of symmetric toroidal orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Maximilian; Ratz, Michael; Torrado, Jesus [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-09-15

    We provide a complete classification of six-dimensional symmetric toroidal orbifolds which yield N{>=}1 supersymmetry in 4D for the heterotic string. Our strategy is based on a classification of crystallographic space groups in six dimensions. We find in total 520 inequivalent toroidal orbifolds, 162 of them with Abelian point groups such as Z{sub 3}, Z{sub 4}, Z{sub 6}-I etc. and 358 with non-Abelian point groups such as S{sub 3}, D{sub 4}, A{sub 4} etc. We also briefly explore the properties of some orbifolds with Abelian point groups and N=1, i.e. specify the Hodge numbers and comment on the possible mechanisms (local or non-local) of gauge symmetry breaking.

  16. Nonlinear PT-symmetric plaquettes

    International Nuclear Information System (INIS)

    Li Kai; Kevrekidis, P G; Malomed, Boris A; Günther, Uwe

    2012-01-01

    We introduce four basic two-dimensional (2D) plaquette configurations with onsite cubic nonlinearities, which may be used as building blocks for 2D PT-symmetric lattices. For each configuration, we develop a dynamical model and examine its PTsymmetry. The corresponding nonlinear modes are analyzed starting from the Hamiltonian limit, with zero value of the gain–loss coefficient, γ. Once the relevant waveforms have been identified (chiefly, in an analytical form), their stability is examined by means of linearization in the vicinity of stationary points. This reveals diverse and, occasionally, fairly complex bifurcations. The evolution of unstable modes is explored by means of direct simulations. In particular, stable localized modes are found in these systems, although the majority of identified solutions are unstable. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)

  17. Relativistic fluids in spherically symmetric space

    International Nuclear Information System (INIS)

    Dipankar, R.

    1977-12-01

    Some of McVittie and Wiltshire's (1977) solutions of Walker's (1935) isotropy conditions for relativistic perfect fluid spheres are generalized. Solutions are spherically symmetric and conformally flat

  18. Bunionette deformity.

    Science.gov (United States)

    Cohen, Bruce E; Nicholson, Christopher W

    2007-05-01

    The bunionette, or tailor's bunion, is a lateral prominence of the fifth metatarsal head. Most commonly, bunionettes are the result of a widened 4-5 intermetatarsal angle with associated varus of the metatarsophalangeal joint. When symptomatic, these deformities often respond to nonsurgical treatment methods, such as wider shoes and padding techniques. When these methods are unsuccessful, surgical treatment is based on preoperative radiographs and associated lesions, such as hyperkeratoses. In rare situations, a simple lateral eminence resection is appropriate; however, the risk of recurrence or overresection is high with this technique. Patients with a lateral bow to the fifth metatarsal are treated with a distal chevron-type osteotomy. A widened 4-5 intermetatarsal angle often requires a diaphyseal osteotomy for correction.

  19. Effects of aging and sheet thickness on the room temperature deformation behavior and in-plane anisotropy of cold rolled and solution treated Nimonic C-263 alloy sheet

    Energy Technology Data Exchange (ETDEWEB)

    Ankamma, Kandula; Chandra Mohan Reddy, Gangireddy [Mahatma Ghandi Institute of Technology, Hyderabad (India). Mechanical Engineering Dept.; Singh, Ashok Kumar; Prasad, Konduri Satya [Defence Research and Development Organisation (DRDO), Hyderabad (India). Defence Metallurgical Research Lab.; Komaraiah, Methuku [Malla Reddy College of Engineering and Technology, Secunderabad (India); Eswara Prasad, Namburi [Regional Centre for Military Airworthiness (Materials), Hyderabad (India)

    2011-10-15

    The deformation behavior under uni-axial tensile loading is investigated and reported in the case of cold rolled Nimonic C-263 alloy sheet products of different thicknesses (0.5 mm and 1 mm) in the solution treated and aged conditions. The studies conducted include (i) Microstructure, (ii) X-ray diffraction, (iii) Texture and (iv) Tensile properties and inplane anisotropy in the yield behavior (both tensile yield strength and ultimate tensile strength as well as ductility). The results of the present study showed that despite the presence of weak crystallographic texture in this crystal symmetric material, the degrees of in-plane anisotropy in strength as well as plastic deformation properties are found to be significant in both solution treated and aged conditions, thus having significant technological relevance for both further processing and design purposes. Further, the influence of aging and sheet thickness on the tensile deformation behaviour is also found to be considerable. A brief discussion on the technological implications of these results is also included. (orig.)

  20. An exact dynamic stiffness matrix for axially loaded double-beam ...

    Indian Academy of Sciences (India)

    identical beams and the effects of shear deformation and rotary inertia. Further, even fewer papers about the free vibration of the double-beam systems considering the effects of the axial force, shear defor- mation and rotary inertia in a unitary ...

  1. Damped gyroscopic effects and axial-flexural-torsional coupling using spinning finite elements for wind-turbine blades characterization

    Science.gov (United States)

    Velazquez, Antonio; Swartz, R. Andrew

    2013-04-01

    Renewable energy sources like wind are important technologies, useful to alleviate for the current fossil-fuel crisis. Capturing wind energy in a more efficient way has resulted in the emergence of more sophisticated designs of wind turbines, particularly Horizontal-Axis Wind Turbines (HAWTs). To promote efficiency, traditional finite element methods have been widely used to characterize the aerodynamics of these types of multi-body systems and improve their design. Given their aeroelastic behavior, tapered-swept blades offer the potential to optimize energy capture and decrease fatigue loads. Nevertheless, modeling special complex geometries requires huge computational efforts necessitating tradeoffs between faster computation times at lower cost, and reliability and numerical accuracy. Indeed, the computational cost and the numerical effort invested, using traditional FE methods, to reproduce dependable aerodynamics of these complex-shape beams are sometimes prohibitive. A condensed Spinning Finite Element (SFE) method scheme is presented in this study aimed to alleviate this issue by means of modeling wind-turbine rotor blades properly with tapered-swept cross-section variations of arbitrary order via Lagrangian equations. Axial-flexural-torsional coupling is carried out on axial deformation, torsion, in-plane bending and out-of-plane bending using super-convergent elements. In this study, special attention is paid for the case of damped yaw effects, expressed within the described skew-symmetric damped gyroscopic matrix. Dynamics of the model are analyzed by achieving modal analysis with complex-number eigen-frequencies. By means of mass, damped gyroscopic, and stiffness (axial-flexural-torsional coupling) matrix condensation (order reduction), numerical analysis is carried out for several prototypes with different tapered, swept, and curved variation intensities, and for a practical range of spinning velocities at different rotation angles. A convergence study

  2. Characteristics of axial splits in failed BWR fuel rods

    International Nuclear Information System (INIS)

    Lysell, G.; Grigoriev, V.

    2000-01-01

    Secondary cladding defects in BWR fuel sometimes have the shape of long axial cracks or ''splits''. Due to the large open UO 2 surfaces exposed to the water, fission product and UO 2 release to the coolant can reach excessive levels leading to forced shut downs to remove the failed fuel rods. A number of such fuel rods have been examined in Studsvik over the last 10 years. The paper describes observations from the PIE of long cracks and discusses the driving force of the cracks. Details such as starting cracks, macroscopic and microscopic fracture surface appearance, cross sections of cracks, hydride precipitates, location and degree of plastic deformation are given. (author)

  3. A study of friction and axial effects in pellet-clad mechanical interaction

    International Nuclear Information System (INIS)

    Harriague, Santiago; Mayer, J.E.

    1982-01-01

    An analysis is made of the effect of friction and axial forces along the fuel rod in the pellet-cladding mechanical interaction in a commercial reactor under a power-up ramp. The effect of different pellet and rod shapes on their behaviour was also determined. A linear thermoelastic computer program was used in order to obtain the stiffness matrix of a compound structure from the stiffness of its components. Pellet-cladding displacements, localized deformations of the cladding in the interfaces between pellets, as well as pellet and cladding axial deformations were determined for different power axial profiles as well as for pellets with and without dishing and with height/diameter ratios of 1.7, 1 and 0.5. (M.E.L.) [es

  4. Operating limits for subassembly deformation in EBR-II

    International Nuclear Information System (INIS)

    Bottcher, J.H.

    1977-01-01

    The deformation of a subassembly in response to the core environment is frequently the life limiting factor for that component in an LMFBR. Deformation can occur as diametral and axial growth or bowing of the subassembly. Such deformation has caused several handling problems in both the core and the storage basket of EBR-II and may also have contributed to reactivity anomalies during reactor operation. These problems generally affect plant availability but the reactivity anomalies could lead to a potential safety hazard. Because of these effects the deformation mechanisms must be understood and modeled. Diametral and axial growth of subassembly ducts in EBR-II is due to swelling and creep and is a function of temperature, neutron fluence and stress. The source of stress in a duct is the hydraulic pressure difference across the wall. By coupling the calculated subassembly growth rate to the available clearance in the core or storage basket a limiting neutron fluence, or exposure, can be established

  5. Axial magnetic field produced by axially and radially magnetized permanent rings

    International Nuclear Information System (INIS)

    Peng, Q.L.; McMurry, S.M.; Coey, J.M.D.

    2004-01-01

    Axial magnetic fields produced by axially and radially magnetized permanent magnet rings were studied. First, the axial magnetic field produced by a current loop is introduced, from which the axial field generated by an infinitely thin solenoid and by an infinitely thin current disk can be derived. Then the axial fields produced by axially and by radially magnetized permanent magnet rings can be obtained. An analytic formula for the axial fields produced by two axially magnetized rings is given. A permanent magnet with a high axial gradient field is fabricated, the measured results agree with the theoretical calculation very well. As an example, the axial periodic field produced by an arrangement of alternating axially and radially magnetized rings has been discussed

  6. View of the Axial Field Spectrometer

    CERN Multimedia

    1980-01-01

    The Axial Field Spectrometer, with the vertical uranium/scintillator calorimeter and the central drift chamber retracted for service. One coil of the Open Axial Field Magnet is just visible to the right.

  7. Comprehensive asynchronous symmetric rendezvous algorithm in ...

    Indian Academy of Sciences (India)

    Meenu Chawla

    2017-11-10

    Nov 10, 2017 ... Simulation results affirm that CASR algorithm performs better in terms of average time-to-rendezvous as compared ... process; neighbour discovery; symmetric rendezvous algorithm. 1. .... dezvous in finite time under the symmetric model. The CH ..... CASR algorithm in Matlab 7.11 and performed several.

  8. Axial-Centrifugal Compressor Program

    Science.gov (United States)

    1975-10-01

    Assembly . .. . .... ..... 33 5 Tie Bolt...... .. .. .. .. . *.. .. .. .. .. .. ... 34 6 Axial Compressor Rotor Assembly Runouts . . .. . 34 7 CCV Blow...1.796 Impeller Slip Factor ’Ce2/U 2 ) .91 Impeller Wheel Speed ft/sec 1992.2 Impellet ’.ip Radius in. 3.780 Blade Tip Metal Angle- deg 0 Numbec of Blades...test item to the next Phase V component test. The test vehicle final balance levels and rotor runouts were normal at teardown, and no rubsI were

  9. Symmetric splitting of very light systems

    International Nuclear Information System (INIS)

    Grotowski, K.; Majka, Z.; Planeta, R.

    1985-01-01

    Fission reactions that produce fragments close to one half the mass of the composite system are traditionally observed in heavy nuclei. In light systems, symmetric splitting is rarely observed and poorly understood. It would be interesting to verify the existence of the symmetric splitting of compound nuclei with A 12 C + 40 Ca, 141 MeV 9 Be + 40 Ca and 153 MeV 6 Li + 40 Ca. The out-of-plane correlation of symmetric products was also measured for the reaction 186 MeV 12 C + 40 Ca. The coincidence measurements of the 12 C + 40 Ca system demonstrated that essentially all of the inclusive yield of symmetric products around 40 0 results from a binary decay. To characterize the dependence of the symmetric splitting process on the excitation energy of the 12 C + 40 C system, inclusive measurements were made at bombarding energies of 74, 132, 162, and 185 MeV

  10. Modelling larval transport in a axial convergence front

    Science.gov (United States)

    Robins, P.

    2010-12-01

    Marine larvae exhibit different vertical swimming behaviours, synchronised by factors such as tidal currents and daylight, in order to aid retention near the parent populations and hence promote production, avoid predation, or to stimulate digestion. This paper explores two types of larval migration in an estuarine axial convergent front which is an important circulatory mechanism in many coastal regions where larvae are concentrated. A parallelised, three-dimensional, ocean model was applied to an idealised estuarine channel which was parameterised from observations of an axial convergent front which occurs in the Conwy Estuary, U.K. (Nunes and Simpson, 1985). The model successfully simulates the bilateral cross-sectional recirculation of an axial convergent front, which has been attributed to lateral density gradients established by the interaction of the lateral shear of the longitudinal currents with the axial salinity gradients. On the flood tide, there is surface axial convergence whereas on the ebb tide, there is (weaker) surface divergence. Further simulations with increased/decreased tidal velocities and with stronger/weaker axial salinity gradients are planned so that the effects of a changing climate on the secondary flow can be understood. Three-dimensional Lagrangian Particle Tracking Models (PTMs) have been developed which use the simulated velocity fields to track larvae in the estuarine channel. The PTMs take into account the vertical migrations of two shellfish species that are commonly found in the Conwy Estuary: (i) tidal migration of the common shore crab (Carcinus maenas) and (ii), diel (daily) migration of the Great scallop (Pecten maximus). These migration behaviours are perhaps the most widespread amongst shellfish larvae and have been compared with passive (drifting) particles in order to assess their relative importance in terms of larval transport. Preliminary results suggest that the net along-estuary dispersal over a typical larval

  11. Axial Force Analysis and Roll Contour Configuration of Four-High CVC Mill

    Directory of Open Access Journals (Sweden)

    Guang-ming Liu

    2018-01-01

    Full Text Available In order to analyze the influence of technical parameters on work roll axial force of four-high continuous variable crown (CVC mill, the deformation analyzing model with top roll system and strip was established based on influence function method. Then a CVC work roll curve designing scheme was proposed and it was carried out on some cold rolling mill considering the requirement of comprehensive work roll axial force minimization. The status of comprehensive work roll axial force is improved considering the rolling schedule that is beneficial to the roller bearing. Corresponding to the newly designed work roll contour, the backup roll end chamfer was designed considering comprehensive performance of interroll stress concentration, comprehensive work roll axial force, and strip shape control ability. The distribution of roll wear with newly designed backup roll contour is more even according to the field application data. The newly established roll configuration scheme is beneficial to four-high CVC mill.

  12. Spherically symmetric charged compact stars

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Jaypee Institute of Information Technology University, Department of Mathematics, Noida, Uttar Pradesh (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India); Chowdhury, Sourav Roy [Seth Anandaram Jaipuria College, Department of Physics, Kolkata, West Bengal (India)

    2015-08-15

    In this article we consider the static spherically symmetric metric of embedding class 1. When solving the Einstein-Maxwell field equations we take into account the presence of ordinary baryonic matter together with the electric charge. Specific new charged stellar models are obtained where the solutions are entirely dependent on the electromagnetic field, such that the physical parameters, like density, pressure etc. do vanish for the vanishing charge. We systematically analyze altogether the three sets of Solutions I, II, and III of the stellar models for a suitable functional relation of ν(r). However, it is observed that only the Solution I provides a physically valid and well-behaved situation, whereas the Solutions II and III are not well behaved and hence not included in the study. Thereafter it is exclusively shown that the Solution I can pass through several standard physical tests performed by us. To validate the solution set presented here a comparison has also been made with that of the compact stars, like RX J 1856 - 37, Her X - 1, PSR 1937+21, PSRJ 1614-2230, and PSRJ 0348+0432, and we have shown the feasibility of the models. (orig.)

  13. Baryon symmetric big bang cosmology

    Science.gov (United States)

    Stecker, F. W.

    1978-01-01

    Both the quantum theory and Einsteins theory of special relativity lead to the supposition that matter and antimatter were produced in equal quantities during the big bang. It is noted that local matter/antimatter asymmetries may be reconciled with universal symmetry by assuming (1) a slight imbalance of matter over antimatter in the early universe, annihilation, and a subsequent remainder of matter; (2) localized regions of excess for one or the other type of matter as an initial condition; and (3) an extremely dense, high temperature state with zero net baryon number; i.e., matter/antimatter symmetry. Attention is given to the third assumption, which is the simplest and the most in keeping with current knowledge of the cosmos, especially as pertains the universality of 3 K background radiation. Mechanisms of galaxy formation are discussed, whereby matter and antimatter might have collided and annihilated each other, or have coexisted (and continue to coexist) at vast distances. It is pointed out that baryon symmetric big bang cosmology could probably be proved if an antinucleus could be detected in cosmic radiation.

  14. Substring-Searchable Symmetric Encryption

    Directory of Open Access Journals (Sweden)

    Chase Melissa

    2015-06-01

    Full Text Available In this paper, we consider a setting where a client wants to outsource storage of a large amount of private data and then perform substring search queries on the data – given a data string s and a search string p, find all occurrences of p as a substring of s. First, we formalize an encryption paradigm that we call queryable encryption, which generalizes searchable symmetric encryption (SSE and structured encryption. Then, we construct a queryable encryption scheme for substring queries. Our construction uses suffix trees and achieves asymptotic efficiency comparable to that of unencrypted suffix trees. Encryption of a string of length n takes O(λn time and produces a ciphertext of size O(λn, and querying for a substring of length m that occurs k times takes O(λm+k time and three rounds of communication. Our security definition guarantees correctness of query results and privacy of data and queries against a malicious adversary. Following the line of work started by Curtmola et al. (ACM CCS 2006, in order to construct more efficient schemes we allow the query protocol to leak some limited information that is captured precisely in the definition. We prove security of our substring-searchable encryption scheme against malicious adversaries, where the query protocol leaks limited information about memory access patterns through the suffix tree of the encrypted string.

  15. Prediction of Axial and Radial Creep in CANDU 6 Pressure Tubes

    International Nuclear Information System (INIS)

    Radu, Vasile S.

    2013-01-01

    Status and proposals: 1. A review of literature concerning on the in-reactor deformation of PTs has been carried ouţ. 2. A model based on MFNN has been proposed to assess the radial and axial creep of CANDU 6 PTs. 3. Preliminary discussion with Cernavoda NPP (Romania) has been lunched, and now the preparation of official documents (collaboration in providing the inspection data from fuel channel in Unit 1 and 2) are in progress. 4. Further activities: • Improvement MFNN to accommodate complex data base (eventually with many variables) for radial and axial in-reactor deformation PT, and to satisfy the requirements from NPP Cernavoda and hopefully from present CRP database; • To build-up a database by running the creep equations (if the creep constants are provided by AECL); training of MFNN on them and to qualify it as a tool for PT in-reactor deformation prediction

  16. Gamow-Teller strength distributions in 76Ge, 76,82Se, and 90,92Zr by the deformed proton-neutron QRPA

    Science.gov (United States)

    Ha, Eunja; Cheoun, Myung-Ki

    2015-02-01

    The deformed proton-neutron quasiparticle random phase approximation (QRPA) has been developed and applied to evaluate Gamow-Teller (GT) transition strength distributions, including high-lying excited states. The data of high-lying excited states are recently available beyond one or two nucleon threshold by charge exchange reactions using hundreds of MeV projectiles. Our calculations started with single-particle states calculated using a deformed, axially symmetric Woods-Saxon potential. The neutron-neutron and proton-proton pairing correlations are explicitly taken into account at the deformed Bardeen-Cooper-Schriffer theory. Additionally, the ground state correlations and two-particle and two-hole mixing states were included in the deformed QRPA. In this work, we used a realistic two-body interaction, given by the Brueckner G-matrix based on the CD Bonn potential to reduce the ambiguity on the nucleon-nucleon interactions inside nuclei. We applied our formalism to the GT transition strengths for 76Ge, 76,82Se, and 90,92Zr, and compared the results with the available experimental data. The GT strength distributions were sensitive to the deformation parameter as well as its sign, i.e., oblate or prolate. The Ikeda sum rule, which is usually thought to be satisfied under the one-body current approximation, regardless of nucleon models, was used to test our numerical calculations and shown to be satisfied without introducing the quenching factor, if high-lying GT excited states were properly taken into account. Most of the GT strength distributions of the nuclei considered in this work have the high-lying GT excited states beyond one-nucleon threshold, which are shown to be consistent with the available experimental data.

  17. Nonlinear analysis of shear deformable beam-columns partially ...

    African Journals Online (AJOL)

    In this paper, a boundary element method is developed for the nonlinear analysis of shear deformable beam-columns of arbitrary doubly symmetric simply or multiply connected constant cross section, partially supported on tensionless Winkler foundation, undergoing moderate large deflections under general boundary ...

  18. Uniqueness of flat spherically symmetric spacelike hypersurfaces admitted by spherically symmetric static spacetimes

    Science.gov (United States)

    Beig, Robert; Siddiqui, Azad A.

    2007-11-01

    It is known that spherically symmetric static spacetimes admit a foliation by flat hypersurfaces. Such foliations have explicitly been constructed for some spacetimes, using different approaches, but none of them have proved or even discussed the uniqueness of these foliations. The issue of uniqueness becomes more important due to suitability of flat foliations for studying black hole physics. Here, flat spherically symmetric spacelike hypersurfaces are obtained by a direct method. It is found that spherically symmetric static spacetimes admit flat spherically symmetric hypersurfaces, and that these hypersurfaces are unique up to translation under the timelike Killing vector. This result guarantees the uniqueness of flat spherically symmetric foliations for such spacetimes.

  19. Axial Crushing Behaviors of Thin-Walled Corrugated and Circular Tubes - A Comparative Study

    Science.gov (United States)

    Reyaz-Ur-Rahim, Mohd.; Bharti, P. K.; Umer, Afaque

    2017-10-01

    With the help of finite element analysis, this research paper deals with the energy absorption and collapse behavior with different corrugated section geometries of hollow tubes made of aluminum alloy 6060-T4. Literature available experimental data were used to validate the numerical models of the structures investigated. Based on the results available for symmetric crushing of circular tubes, models were developed to investigate corrugated thin-walled structures behavior. To study the collapse mechanism and energy absorbing ability in axial compression, the simulation was carried in ABAQUS /EXPLICIT code. In the simulation part, specimens were prepared and axially crushed to one-fourth length of the tube and the energy diagram of crushing force versus axial displacement is shown. The effect of various parameters such as pitch, mean diameter, corrugation, amplitude, the thickness is demonstrated with the help of diagrams. The overall result shows that the corrugated section geometry could be a good alternative to the conventional tubes.

  20. Are nasopharyngeal structures really symmetric?

    International Nuclear Information System (INIS)

    Ichimura, Keiichi

    1990-01-01

    Asymmetry of nasopharyngeal structure in CT scans, such as blunting of the lateral pharyngeal recesses (LPR, fossa of Rosenmuller) and depression of the parapharyngeal space, is regarded as an essential sign in the diagnosis of malignancies or aggressive inflammatory processes. The rate of nasopharyngeal symmetry, however, has been rarely reported so far. I examined axial CT scans of the nasopharynx of 220 patients who did not have any complaints of the nasopharynx or oropharynx. LPR, tube orifices, torus tubarius, intrapharyngeal muscles, paranasopharyngeal spaces, and deeper musculofacial planes were examined. The asymmetry rates were 17.8%, 15.8%, 16.8%, 3.7%, 5.5%, and 8.0% respectively. The former three superficial landmarks were more often asymmetric than the latter three plane tissues. There were no differences in symmetry between patients with histories of sinus surgery or facial fracture and others. The loss of symmetry of the nasopharyngeal structures, not only the deeper ones, but the superficial ones, seems to be a useful sign in differentiating the recalcitrant pathologies. (author)

  1. Modeling of the anode surface deformation in high-current vacuum arcs with AMF contacts

    International Nuclear Information System (INIS)

    Huang, Xiaolong; Wang, Lijun; Deng, Jie; Jia, Shenli; Qin, Kang; Shi, Zongqian

    2016-01-01

    A high-current vacuum arc subjected to an axial magnetic field is maintained in a diffuse status. With an increase in arc current, the energy carried by the arc column to the anode becomes larger and finally leads to the anode temperature exceeding the melting point of the anode material. When the anode melting pool is formed, and the rotational plasma of the arc column delivers its momentum to the melting pool, the anode melting pool starts to rotate and also flow outwards along the radial direction, which has been photographed by some researchers using high-speed cameras. In this paper, the anode temperature and melting status is calculated using the melting and solidification model. The swirl flow of the anode melting pool and deformation of the anode is calculated using the magneto-hydrodynamic (MHD) model with the volume of fraction (VOF) method. All the models are transient 2D axial-rotational symmetric models. The influence of the impaction force of the arc plasma, electromagnetic force, viscosity force, and surface tension of the liquid metal are all considered in the model. The heat flux density injected into the anode and the arc pressure are obtained from the 3D numerical simulation of the high-current vacuum arc using the MHD model, which gives more realistic parameters for the anode simulation. Simulation results show that the depth of the anode melting pool increases with an increase in the arc current. Some droplets sputter out from the anode surface, which is caused by the inertial centrifugal force of the rotational melting pool and strong plasma pressure. Compared with the previous anode melting model without consideration of anode deformation, when the deformation and swirl flow of the anode melting pool are considered, the anode temperature is relatively lower, and just a little more than the melting point of Cu. This is because of liquid droplets sputtering out of the anode surface taking much of the energy away from the anode surface. The

  2. Predicting the Coupling Properties of Axially-Textured Materials

    Directory of Open Access Journals (Sweden)

    María E. Fuentes-Montero

    2013-10-01

    Full Text Available A description of methods and computer programs for the prediction of “coupling properties” in axially-textured polycrystals is presented. Starting data are the single-crystal properties, texture and stereography. The validity and proper protocols for applying the Voigt, Reuss and Hill approximations to estimate coupling properties effective values is analyzed. Working algorithms for predicting mentioned averages are given. Bunge’s symmetrized spherical harmonics expansion of orientation distribution functions, inverse pole figures and (single and polycrystals physical properties is applied in all stages of the proposed methodology. The established mathematical route has been systematized in a working computer program. The discussion of piezoelectricity in a representative textured ferro-piezoelectric ceramic illustrates the application of the proposed methodology. Polycrystal coupling properties, predicted by the suggested route, are fairly close to experimentally measured ones.

  3. Predicting the Coupling Properties of Axially-Textured Materials

    Science.gov (United States)

    Fuentes-Cobas, Luis E.; Muñoz-Romero, Alejandro; Montero-Cabrera, María E.; Fuentes-Montero, Luis; Fuentes-Montero, María E.

    2013-01-01

    A description of methods and computer programs for the prediction of “coupling properties” in axially-textured polycrystals is presented. Starting data are the single-crystal properties, texture and stereography. The validity and proper protocols for applying the Voigt, Reuss and Hill approximations to estimate coupling properties effective values is analyzed. Working algorithms for predicting mentioned averages are given. Bunge’s symmetrized spherical harmonics expansion of orientation distribution functions, inverse pole figures and (single and polycrystals) physical properties is applied in all stages of the proposed methodology. The established mathematical route has been systematized in a working computer program. The discussion of piezoelectricity in a representative textured ferro-piezoelectric ceramic illustrates the application of the proposed methodology. Polycrystal coupling properties, predicted by the suggested route, are fairly close to experimentally measured ones. PMID:28788370

  4. Hamilton's equations for a fluid membrane: axial symmetry

    International Nuclear Information System (INIS)

    Capovilla, R; Guven, J; Rojas, E

    2005-01-01

    Consider a homogeneous fluid membrane, or vesicle, described by the Helfrich-Canham energy, quadratic in the mean curvature. When the membrane is axially symmetric, this energy can be viewed as an 'action' describing the motion of a particle; the contours of equilibrium geometries are identified with particle trajectories. A novel Hamiltonian formulation of the problem is presented which exhibits the following two features: (i) the second derivatives appearing in the action through the mean curvature are accommodated in a natural phase space and (ii) the intrinsic freedom associated with the choice of evolution parameter along the contour is preserved. As a result, the phase space involves momenta conjugate not only to the particle position but also to its velocity, and there are constraints on the phase space variables. This formulation provides the groundwork for a field theoretical generalization to arbitrary configurations, with the particle replaced by a loop in space

  5. Control of hole localization in magnetic semiconductors by axial strain

    Science.gov (United States)

    Raebiger, Hannes; Bae, Soungmin; Echeverría-Arrondo, Carlos; Ayuela, Andrés

    2018-02-01

    Mn and Fe-doped GaN are widely studied prototype systems for hole-mediated magnetic semiconductors. The nature of the hole states around the Mn and Fe impurities, however, remains under debate. Our self-interaction corrected density-functional calculations show that the charge neutral Mn 0 and positively charged Fe+ impurities have symmetry-broken d5+h ground states, in which the hole is trapped by one of the surrounding N atoms in a small polaron state. We further show that both systems also have a variety of other d5+h configurations, including symmetric, delocalized states, which may be stabilized by axial strain. This finding opens a pathway to promote long-range hole-mediated magnetic interactions by strain engineering and clarifies why highly strained thin-films samples often exhibit anomalous magnetic properties.

  6. A novel deformation mechanism for superplastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Muto, H.; Sakai, M. (Toyohashi Univ. of Technology (Japan). Dept. of Materials Science)

    1999-01-01

    Uniaxial compressive creep tests with strain value up to -0.1 for a [beta]-spodumene glass ceramic are conducted at 1060 C. From the observation of microstructural changes between before and after the creep deformations, it is shown that the grain-boundary sliding takes place via cooperative movement of groups of grains rather than individual grains under the large-scale-deformation. The deformation process and the surface technique used in this work are not only applicable to explain the deformation and flow of two-phase ceramics but also the superplastic deformation. (orig.) 12 refs.

  7. Texture and deformation mechanism of yttrium

    International Nuclear Information System (INIS)

    Adamesku, R.A.; Grebenkin, S.V.; Stepanenko, A.V.

    1992-01-01

    X-ray pole figure analysis was applied to study texture and deformation mechanism in pure and commercial polycrystalline yttrium on cold working. It was found that in cast yttrium the texture manifected itself weakly enough both for pure and commercial metal. Analysis of the data obtained made it possible to assert that cold deformation of pure yttrium in the initial stage occurred mainly by slip the role of which decreased at strains higher than 36%. The texture of heavily deformed commercial yttrium contained two components, these were an 'ideal' basic orientation and an axial one with the angle of inclination about 20 deg. Twinning mechanism was revealed to be also possible in commercial yttrium

  8. Seismic anisotropy in deforming salt bodies

    Science.gov (United States)

    Prasse, P.; Wookey, J. M.; Kendall, J. M.; Dutko, M.

    2017-12-01

    Salt is often involved in forming hydrocarbon traps. Studying salt dynamics and the deformation processes is important for the exploration industry. We have performed numerical texture simulations of single halite crystals deformed by simple shear and axial extension using the visco-plastic self consistent approach (VPSC). A methodology from subduction studies to estimate strain in a geodynamic simulation is applied to a complex high-resolution salt diapir model. The salt diapir deformation is modelled with the ELFEN software by our industrial partner Rockfield, which is based on a finite-element code. High strain areas at the bottom of the head-like strctures of the salt diapir show high amount of seismic anisotropy due to LPO development of halite crystals. The results demonstrate that a significant degree of seismic anisotropy can be generated, validating the view that this should be accounted for in the treatment of seismic data in, for example, salt diapir settings.

  9. The symmetric extendibility of quantum states

    International Nuclear Information System (INIS)

    Nowakowski, Marcin L

    2016-01-01

    Studies on the symmetric extendibility of quantum states have become particularly important in the context of the analysis of one-way quantum measures of entanglement, and the distillability and security of quantum protocols. In this paper we analyze composite systems containing a symmetric extendible part, with particular attention devoted to the one-way security of such systems. Further, we introduce a new one-way entanglement monotone based on the best symmetric approximation of a quantum state and the extendible number of a quantum state. We underpin these results with geometric observations about the structures of multi-party settings which posses substantial symmetric extendible components in their subspaces. The impossibility of reducing the maximal symmetric extendibility by means of the one-way local operations and classical communication method is pointed out on multiple copies. Finally, we state a conjecture linking symmetric extendibility with the one-way distillability and security of all quantum states, analyzing the behavior of a private key in the neighborhood of symmetric extendible states. (paper)

  10. Averaging in spherically symmetric cosmology

    International Nuclear Information System (INIS)

    Coley, A. A.; Pelavas, N.

    2007-01-01

    The averaging problem in cosmology is of fundamental importance. When applied to study cosmological evolution, the theory of macroscopic gravity (MG) can be regarded as a long-distance modification of general relativity. In the MG approach to the averaging problem in cosmology, the Einstein field equations on cosmological scales are modified by appropriate gravitational correlation terms. We study the averaging problem within the class of spherically symmetric cosmological models. That is, we shall take the microscopic equations and effect the averaging procedure to determine the precise form of the correlation tensor in this case. In particular, by working in volume-preserving coordinates, we calculate the form of the correlation tensor under some reasonable assumptions on the form for the inhomogeneous gravitational field and matter distribution. We find that the correlation tensor in a Friedmann-Lemaitre-Robertson-Walker (FLRW) background must be of the form of a spatial curvature. Inhomogeneities and spatial averaging, through this spatial curvature correction term, can have a very significant dynamical effect on the dynamics of the Universe and cosmological observations; in particular, we discuss whether spatial averaging might lead to a more conservative explanation of the observed acceleration of the Universe (without the introduction of exotic dark matter fields). We also find that the correlation tensor for a non-FLRW background can be interpreted as the sum of a spatial curvature and an anisotropic fluid. This may lead to interesting effects of averaging on astrophysical scales. We also discuss the results of averaging an inhomogeneous Lemaitre-Tolman-Bondi solution as well as calculations of linear perturbations (that is, the backreaction) in an FLRW background, which support the main conclusions of the analysis

  11. Darboux transformations and the symmetric fourth Painleve equation

    International Nuclear Information System (INIS)

    Sen, A; Hone, A N W; Clarkson, P A

    2005-01-01

    This paper is concerned with the group symmetries of the fourth Painleve equation P IV , a second-order nonlinear ordinary differential equation. It is well known that the parameter space of P IV admits the action of the extended affine Weyl group A-tilde 2 (1) . As shown by Noumi and Yamada, the action of A-tilde 2 (1) as Baecklund transformations of P IV provides a derivation of its symmetric form SP 4 . The dynamical system SP 4 is also equivalent to the isomonodromic deformation of an associated three-by-three matrix linear system (Lax pair). The action of the generators of A-tilde 2 (1) on this Lax pair is derived using the Darboux transformation for an associated third-order operator

  12. From bosonic topological transition to symmetric fermion mass generation

    Science.gov (United States)

    You, Yi-Zhuang; He, Yin-Chen; Vishwanath, Ashvin; Xu, Cenke

    2018-03-01

    A bosonic topological transition (BTT) is a quantum critical point between the bosonic symmetry-protected topological phase and the trivial phase. In this work, we investigate such a transition in a (2+1)-dimensional lattice model with the maximal microscopic symmetry: an internal SO (4 ) symmetry. We derive a description for this transition in terms of compact quantum electrodynamics (QED) with four fermion flavors (Nf=4 ). Within a systematic renormalization group analysis, we identify the critical point with the desired O (4 ) emergent symmetry and all expected deformations. By lowering the microscopic symmetry, we recover the previous Nf=2 noncompact QED description of the BTT. Finally, by merging two BTTs we recover a previously discussed theory of symmetric mass generation, as an SU (2 ) quantum chromodynamics-Higgs theory with Nf=4 flavors of SU (2 ) fundamental fermions and one SU (2 ) fundamental Higgs boson. This provides a consistency check on both theories.

  13. Linac design algorithm with symmetric segments

    International Nuclear Information System (INIS)

    Takeda, Harunori; Young, L.M.; Nath, S.; Billen, J.H.; Stovall, J.E.

    1996-01-01

    The cell lengths in linacs of traditional design are typically graded as a function of particle velocity. By making groups of cells and individual cells symmetric in both the CCDTL AND CCL, the cavity design as well as mechanical design and fabrication is simplified without compromising the performance. We have implemented a design algorithm in the PARMILA code in which cells and multi-cavity segments are made symmetric, significantly reducing the number of unique components. Using the symmetric algorithm, a sample linac design was generated and its performance compared with a similar one of conventional design

  14. Electron angular distribution axial channeling

    International Nuclear Information System (INIS)

    Khokonov, A.Kh.; Khokonov, M.Kh.

    1989-01-01

    Angular distributions of ultra-relativistic electrons are calculated in the assumption about presence of statistical equilibrium. Analysis is based on numerical solution of Fokker-Planck type kinetic equation. It is shown that in contrast to case of amorphous medium, the multiple scattering at axial channeling of negative particles results in self-focusing of the initial beam particles and due to it number of electrons moving at an angles to the chain, which are smaller, than critical angle of channeling, may increase by several times as compared to the initial one

  15. Assessment of Axial Behavior of Circular HPFRCC Members Externally Confined with FRP Sheets

    Directory of Open Access Journals (Sweden)

    Ugur Demir

    2018-01-01

    Full Text Available The aim of this paper is to identify the axial behavior characteristics of FRP (fiber reinforced polymer confined circular HPFRCC (high performance fiber reinforced cementitious composite members under compression. The test program comprised of 24 circular specimens with an average compressive strength of 102.7 MPa, including 21 carbon FRP (CFRP confined (2, 4, 6, 8 and 10 layers and three unconfined specimens. Transverse confinement generated by external FRP sheets resulted with a remarkable enhancement in axial strength and deformability, which is extremely important to resist seismic actions. The higher was the thickness of FRP confinement, the larger was the ultimate strain (εcu and peak compressive strength (f′cc of externally confined HPFRCC. When compared to FRP confined conventional concrete, different axial and lateral deformation characteristics were seen in FRP jacketed HPFRCC members. Higher strength and steel fiber presence in HPFRCC limited the lateral deformations which resulted with reduced strain efficiency with respect to conventional concrete. After presenting the experimental work, performance and accuracy of several available models proposed for predicting the axial behavior of FRP jacketed concrete were evaluated in a comparative manner.

  16. PWR AXIAL BURNUP PROFILE ANALYSIS

    International Nuclear Information System (INIS)

    J.M. Acaglione

    2003-01-01

    The purpose of this activity is to develop a representative ''limiting'' axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the ''end-effect''. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package. The scope of this calculation covers an initial enrichment range of 3.0 through 5.0 wt% U-235 and a burnup range of 10 through 50 GWd/MTU. This activity supports the validation of the process for ensuring conservative generation of spent fuel isotopics with respect to criticality safety applications, and the use of burnup credit for commercial spent nuclear fuel. The intended use of these results will be in the development of PWR waste package loading curves, and applications involving burnup credit. Limitations of this evaluation are that the limiting profiles are only confirmed for use with the B andW 15 x 15 fuel assembly design. However, this assembly design is considered bounding of all other typical commercial PWR fuel assembly designs. This calculation is subject to the Quality Assurance Requirements and Description (QARD) because this activity supports investigations of items or barriers on the Q-list (YMP 2001)

  17. Symmetric nuclear matter with Skyrme interaction

    International Nuclear Information System (INIS)

    Manisa, K.; Bicer, A.; Atav, U.

    2010-01-01

    The equation of state (EOS) and some properties of symmetric nuclear matter, such as the saturation density, saturation energy and incompressibility, are obtained by using Skyrme's density-dependent effective nucleon-nucleon interaction.

  18. Performance limitations of translationally symmetric nonimaging devices

    Science.gov (United States)

    Bortz, John C.; Shatz, Narkis E.; Winston, Roland

    2001-11-01

    The component of the optical direction vector along the symmetry axis is conserved for all rays propagated through a translationally symmetric optical device. This quality, referred to herein as the translational skew invariant, is analogous to the conventional skew invariant, which is conserved in rotationally symmetric optical systems. The invariance of both of these quantities is a consequence of Noether's theorem. We show how performance limits for translationally symmetric nonimaging optical devices can be derived from the distributions of the translational skew invariant for the optical source and for the target to which flux is to be transferred. Examples of computed performance limits are provided. In addition, we show that a numerically optimized non-tracking solar concentrator utilizing symmetry-breaking surface microstructure can overcome the performance limits associated with translational symmetry. The optimized design provides a 47.4% increase in efficiency and concentration relative to an ideal translationally symmetric concentrator.

  19. Symmetrical parahiliar infiltrated, cough and dyspnoea

    International Nuclear Information System (INIS)

    Giraldo Estrada, Horacio; Escalante, Hector

    2004-01-01

    It is the case a patient to who is diagnosed symmetrical parahiliar infiltrated; initially she is diagnosed lymphoma Hodgkin, treaty with radiotherapy and chemotherapy, but the X rays of the thorax demonstrated parahiliars and paramediastinals infiltrated

  20. Introduction to left-right symmetric models

    International Nuclear Information System (INIS)

    Grimus, W.

    1993-01-01

    We motivate left-right symmetric models by the possibility of spontaneous parity breaking. Then we describe the multiplets and the Lagrangian of such models. Finally we discuss lower bounds on the right-handed scale. (author)

  1. A cosmological problem for maximally symmetric supergravity

    International Nuclear Information System (INIS)

    German, G.; Ross, G.G.

    1986-01-01

    Under very general considerations it is shown that inflationary models of the universe based on maximally symmetric supergravity with flat potentials are unable to resolve the cosmological energy density (Polonyi) problem. (orig.)

  2. Symmetric Imidazolium-Based Paramagnetic Ionic Liquids

    Science.gov (United States)

    2017-11-29

    Charts N/A Unclassified Unclassified Unclassified SAR 14 Kamran Ghiassi N/A 1 Symmetric Imidazolium-Based Paramagnetic Ionic Liquids Kevin T. Greeson...NUMBER (Include area code) 29 November 2017 Briefing Charts 01 November 2017 - 30 November 2017 Symmetric Imidazolium-Based Paramagnetic Ionic ... Liquids K. Greeson, K. Ghiassi, J. Alston, N. Redeker, J. Marcischak, L. Gilmore, A. Guenthner Air Force Research Laboratory (AFMC) AFRL/RQRP 9 Antares

  3. The Symmetric Rudin-Shapiro Transform

    DEFF Research Database (Denmark)

    Harbo, Anders La-Cour

    2003-01-01

    A method for constructing spread spectrum sequences is presented. The method is based on a linear, orthogonal, and symmetric transform given as the Rudin-Shapiro transform (RST), which is in many respects quite similar to the Haar wavelet packet transform. The RST provides the means for generatin...... large sets of spread spectrum signals. This presentation provides a simple definition of the symmetric RST that leads to a fast N log(N) and numerically stable implementation of the transform....

  4. The Symmetric Rudin-Shapiro Transform

    DEFF Research Database (Denmark)

    Harbo, Anders La-Cour

    2003-01-01

    A method for constructing spread spectrum sequences is presented. The method is based on a linear, orthogonal, symmetric transform, the Rudin-Shapiro transform (RST), which is in many respects quite similar to the Haar wavelet packet transform. The RST provides the means for generating large sets...... of spread spectrum signals. This presentation provides a simple definition of the symmetric RST that leads to a fast N log(N) and numerically stable implementation of the transform....

  5. Pion condensation in symmetric nuclear matter

    International Nuclear Information System (INIS)

    Kabir, K.; Saha, S.; Nath, L.M.

    1987-09-01

    Using a model which is based essentially on the chiral SU(2)xSU(2) symmetry of the pion-nucleon interaction, we examine the possibility of pion condensation in symmetric nucleon matter. We find that the pion condensation is not likely to occur in symmetric nuclear matter for any finite value of the nuclear density. Consequently, no critical opalescence phenomenon is expected to be seen in the pion-nucleus interaction. (author). 20 refs

  6. Pion condensation in symmetric nuclear matter

    Science.gov (United States)

    Kabir, K.; Saha, S.; Nath, L. M.

    1988-01-01

    Using a model which is based essentially on the chiral SU(2)×SU(2) symmetry of the pion-nucleon interaction, we examine the possibility of pion condensation in symmetric nucleon matter. We find that the pion condensation is not likely to occur in symmetric nuclear matter for any finite value of the nuclear density. Consequently, no critical opalescence phenomenom is expected to be seen in the pion-nucleus interaction.

  7. Relativistic extension of the complex scaled Green's function method for resonances in deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Min [Anhui University, School of Physics and Materials Science, Hefei (China); RIKEN Nishina Center, Wako (Japan); Shi, Xin-Xing; Guo, Jian-You [Anhui University, School of Physics and Materials Science, Hefei (China); Niu, Zhong-Ming [Anhui University, School of Physics and Materials Science, Hefei (China); Interdisciplinary Theoretical Science Research Group, RIKEN, Wako (Japan); Sun, Ting-Ting [Zhengzhou University, School of Physics and Engineering, Zhengzhou (China)

    2017-03-15

    We have extended the complex scaled Green's function method to the relativistic framework describing deformed nuclei with the theoretical formalism presented in detail. We have checked the applicability and validity of the present formalism for exploration of the resonances in deformed nuclei. Furthermore, we have studied the dependences of resonances on nuclear deformations and the shape of potential, which are helpful to recognize the evolution of resonant levels from stable nuclei to exotic nuclei with axially quadruple deformations. (orig.)

  8. Mid-space-independent deformable image registration.

    Science.gov (United States)

    Aganj, Iman; Iglesias, Juan Eugenio; Reuter, Martin; Sabuncu, Mert Rory; Fischl, Bruce

    2017-05-15

    Aligning images in a mid-space is a common approach to ensuring that deformable image registration is symmetric - that it does not depend on the arbitrary ordering of the input images. The results are, however, generally dependent on the mathematical definition of the mid-space. In particular, the set of possible solutions is typically restricted by the constraints that are enforced on the transformations to prevent the mid-space from drifting too far from the native image spaces. The use of an implicit atlas has been proposed as an approach to mid-space image registration. In this work, we show that when the atlas is aligned to each image in the native image space, the data term of implicit-atlas-based deformable registration is inherently independent of the mid-space. In addition, we show that the regularization term can be reformulated independently of the mid-space as well. We derive a new symmetric cost function that only depends on the transformation morphing the images to each other, rather than to the atlas. This eliminates the need for anti-drift constraints, thereby expanding the space of allowable deformations. We provide an implementation scheme for the proposed framework, and validate it through diffeomorphic registration experiments on brain magnetic resonance images. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Renormalization of the axial-vector current in QCD

    International Nuclear Information System (INIS)

    Chiu, C.B.; Pasupathy, J.; Wilson, S.L.

    1985-01-01

    Following the method of Ioffe and Smilga, the propagation of the baryon current in an external constant axial-vector field is considered. The close similarity of the operator-product expansion with and without an external field is shown to arise from the chiral invariance of gauge interactions in perturbation theory. Several sum rules corresponding to various invariants both for the nucleon and the hyperons are derived. The analysis of the sum rules is carried out by two independent methods, one called the ratio method and the other called the continuum method, paying special attention to the nondiagonal transitions induced by the external field between the ground state and excited states. Up to operators of dimension six, two new external-field-induced vacuum expectation values enter the calculations. Previous work determining these expectation values from PCAC (partial conservation of axial-vector current) are utilized. Our determination from the sum rules of the nucleon axial-vector renormalization constant G/sub A/, as well as the Cabibbo coupling constants in the SU 3 -symmetric limit (m/sub s/ = 0), is in reasonable accord with the experimental values. Uncertainties in the analysis are pointed out. The case of broken flavor SU 3 symmetry is also considered. While in the ratio method, the results are stable for variation of the fiducial interval of the Borel mass parameter over which the left-hand side and the right-hand side of the sum rules are matched, in the continuum method the results are less stable. Another set of sum rules determines the value of the linear combination 7F-5D to be roughly-equal0, or D/(F+D)roughly-equal(7/12). .AE

  10. The internal vertebral venous plexus prevents compression of the dural sac during atlanto-axial rotation

    Energy Technology Data Exchange (ETDEWEB)

    Reesink, E.M.; Lataster, L.M.A.; Mameren, H. van [Dept. of Anatomy/Embryology, Maastricht Univ. (Netherlands); Wilmink, J.T. [Dept. of Radiology, University Hospital Maastricht (Netherlands); Kingma, H. [Dept. of ENT, University Hospital Maastricht (Netherlands)

    2001-10-01

    Deformation of the extradural space and the possibility of impression upon the dural sac during atlanto-axial rotation are investigated. Atlanto-axial rotation leads to a reduction in the cross-sectional area of the bony spinal canal of approximately 40 %. Atlanto-axial rotation was recorded by endocanalar views from a video camera fixed inside the skull of six unembalmed cadavers. Axial thin-section T1-weighted MRI slice sets were acquired from three volunteers (mid-position and maximal left and right rotation of the head and cervical spine). The axial cross-sectional areas of the bony spinal canal, dural sac and spinal cord were measured. In two other persons post-gadolinium contrast-enhanced T1-weighted MRI volume scans with fat-suppression prepulse were acquired (mid-position and rotation) to determine venous contents of the extradural space. The 50:50 ratio between left and right extradural halves in mid-position changed to an ipsilateral:contralateral ratio of 20:80 in maximum rotation at the level just above the lateral C1-C2 joints. Directly below these joints the opposite occurred. The post-contrast studies showed an enhancing internal vertebral venous plexus (IVVP), which almost completely occupied the extradural space at the atlanto-axial level. This could not be shown in the cadaver experiments, because of absence of blood and cerebrospinal fluid (CSF) pressure. During atlanto-axial rotation blood displacement in the IVVP allows major deformations of the extradural space. This prevents dural sac impression. (orig.)

  11. Deformation During Friction Stir Welding

    Science.gov (United States)

    White, Henry J.

    2002-01-01

    Friction Stir Welding (FSW) is a solid state welding process that exhibits characteristics similar to traditional metal cutting processes. The plastic deformation that occurs during friction stir welding is due to the superposition of three flow fields: a primary rotation of a radially symmetric solid plug of metal surrounding the pin tool, a secondary uniform translation, and a tertiary ring vortex flow (smoke rings) surrounding the tool. If the metal sticks to the tool, the plug surface extends down into the metal from the outer edge of the tool shoulder, decreases in diameter like a funnel, and closes up beneath the pin. Since its invention, ten years have gone by and still very little is known about the physics of the friction stir welding process. In this experiment, an H13 steel weld tool (shoulder diameter, 0.797 in; pin diameter, 0.312 in; and pin length, 0.2506 in) was used to weld three 0.255 in thick plates. The deformation behavior during friction stir welding was investigated by metallographically preparing a plan view sections of the weldment and taking Vickers hardness test in the key-hole region.

  12. Control of Precambrian basement deformation zones on emplacement of the Laramide Boulder batholith and Butte mining district, Montana, United States

    Science.gov (United States)

    Berger, Byron R.; Hildenbrand, Thomas G.; O'Neill, J. Michael

    2011-01-01

    What are the roles of deep Precambrian basement deformation zones in the localization of subsequent shallow-crustal deformation zones and magmas? The Paleoproterozoic Great Falls tectonic zone and its included Boulder batholith (Montana, United States) provide an opportunity to examine the importance of inherited deformation fabrics in batholith emplacement and the localization of magmatic-hydrothermal mineral deposits. Northeast-trending deformation fabrics predominate in the Great Falls tectonic zone, which formed during the suturing of Paleoproterozoic and Archean cratonic masses approximately 1,800 mega-annum (Ma). Subsequent Mesoproterozoic to Neoproterozoic deformation fabrics trend northwest. Following Paleozoic through Early Cretaceous sedimentation, a Late Cretaceous fold-and-thrust belt with associated strike-slip faulting developed across the region, wherein some Proterozoic faults localized thrust faulting, while others were reactivated as strike-slip faults. The 81- to 76-Ma Boulder batholith was emplaced along the reactivated central Paleoproterozoic suture in the Great Falls tectonic zone. Early-stage Boulder batholith plutons were emplaced concurrent with east-directed thrust faulting and localized primarily by northwest-trending strike-slip and related faults. The late-stage Butte Quartz Monzonite pluton was localized in a northeast-trending pull-apart structure that formed behind the active thrust front and is axially symmetric across the underlying northeast-striking Paleoproterozoic fault zone, interpreted as a crustal suture. The modeling of potential-field geophysical data indicates that pull-apart?stage magmas fed into the structure through two funnel-shaped zones beneath the batholith. Renewed magmatic activity in the southern feeder from 66 to 64 Ma led to the formation of two small porphyry-style copper-molybdenum deposits and ensuing world-class polymetallic copper- and silver-bearing veins in the Butte mining district. Vein orientations

  13. Non-coaxial-based microwave ablation antennas for creating symmetric and asymmetric coagulation zones

    Science.gov (United States)

    Mohtashami, Yahya; Luyen, Hung; Hagness, Susan C.; Behdad, Nader

    2018-06-01

    We present an investigation of a new class of microwave ablation (MWA) antennas capable of producing axially symmetric or asymmetric heating patterns. The antenna design is based on a dipole fed by a balanced parallel-wire transmission line. The angle and direction of the deployed dipole arms are used to control the heating pattern. We analyzed the specific absorption rate and temperature profiles using electromagnetic and thermal simulations. Two prototypes were fabricated and tested in ex vivo ablation experiments: one was designed to produce symmetric heating patterns and the other was designed to generate asymmetric heating patterns. Both fabricated prototypes exhibited good impedance matching and produced localized coagulation zones as predicted by the simulations. The prototype operating in porcine muscle created an ˜10 cm3 symmetric ablation zone after 10 min of ablation with a power level of 18 W. The prototype operating in egg white created an ˜4 cm3 asymmetric ablation zone with a directionality ratio of 40% after 5 min of ablation with a power level of 25 W. The proposed MWA antenna design shows promise for minimally invasive treatment of tumors in various clinical scenarios where, depending on the situation, a symmetric or an asymmetric heating pattern may be needed.

  14. Modelling of the deformation of shot peened cylindrical specimens of 42 CrMo4 in uniaxial tension and deformation and of the resulting macro residual stresses

    International Nuclear Information System (INIS)

    Schulze, V.; Voehringer, O.; Macherauch, E.

    1998-01-01

    Tensile and compressive stress-strain-curves of shot peened and unpeened specimens of quenched and tempered 42 CrMo 4 (AISI 4140) with a diameter of 5 mm only differ in the yield strengths and in the Lueders-deformation. In comparison to the core the regions close to the surface of shot peened cylindrical specimens bear relatively large axial and tangential residual stresses and show different deformation properties. A multi-layer-model was developed to describe both the tensile as well as the compressive deformation behaviour of shot peened cylindrical specimens quantitatively. The calculated transitions from the elastic to the elastic-plastic deformation state during tensile and compressive loading agree quite well with the experimental observations. Also the changes of axial and tangential macro residual stresses after distinct tensile or compressive deformations are in best agreement with the measurements. (orig.)

  15. Axial vector mass spectrum and mixing angles

    International Nuclear Information System (INIS)

    Caffarelli, R.V.; Kang, K.

    1976-01-01

    Spectral sum rules of the axial-vector current and axial-vector current-pseudoscalar field are used to study the axial-vector mass spectrum and mixing angles, as well as the decay constants and mixing angles of the pseudoscalar mesons. In general, the result is quite persuasive for the existence of the Jsup(PC) = 1 ++ multiplet in which one has a canonical D-E mixing. (Auth.)

  16. Electric machines with axial magnetic flux

    Science.gov (United States)

    Nuca, I.; Ambros, T.; Burduniuc, M.; Deaconu, S. I.; Turcanu, A.

    2018-01-01

    The paper contains information on the performance of axial machines compared to cylindrical ones. At the same time, various constructive schemes of synchronous electromechanical converters with permanent magnets and asynchronous with short-circuited rotor are presented. In the developed constructions, the aim is to maximize the usage of the material of the stator windings. The design elements of the axial machine magnetic system are presented. The FEMM application depicted the array of the magnetic field of an axial machine.

  17. Centrifugal and axial compressor control

    CERN Document Server

    McMillan, Gregory K

    2009-01-01

    Control engineers, mechanical engineers and mechanical technicians will learn how to select the proper control systems for axial and centrifugal compressors for proper throughput and surge control, with a particular emphasis on surge control. Readers will learn to understand the importance of transmitter speed, digital controller sample time, and control valve stroking time in helping to prevent surge. Engineers and technicians will find this book to be a highly valuable guide on compressor control schemes and the importance of mitigating costly and sometimes catastrophic surge problems. It can be used as a self-tutorial guide or in the classroom with the book's helpful end-of-chapter questions and exercises and sections for keeping notes.

  18. Axial channeling in electron diffraction

    International Nuclear Information System (INIS)

    Ichimiya, A.; Lehmpfuhl, G.

    1978-01-01

    Kossel patterns from Silicon and Niobium were obtained with a convergent electron beam. An intensity maximum in the direction of the zone axes [001] and [111] of Nb was interpreted as axial channeling. The intensity distribution in Kossel patterns was calculated by means of the Bloch wave picture of the dynamical theory of electron diffraction. Particularly zone axis patterns were calculated for different substance-energy combinations and they were compared with experimental observations. The intensity distribution in the calculated Kossel patterns was very sensitive to the model of absorption and it was found that a treatment of the absorption close to the model of Humphreys and Hirsch [Phil. Mag. 18, 115 (1968)] gave the best agreement with the experimental observations. Furthermore it is shown which Bloch waves are important for the intensity distribution in the Kossel patterns, how they are absorbed and how they change with energy. (orig.) [de

  19. Axial channeling of uttrarelativistic electrons

    Energy Technology Data Exchange (ETDEWEB)

    Telegin, V.I.; Khokonov, M.Kh. (Moskovskij Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Inst. Yadernoj Fiziki)

    1982-07-01

    The dynamics of motion of ultrarelativistic electrons under axial channeling conditions is investigated. The analysis is based on the solution of the kinetic equation obtained recently by Beloshitsky and Kumakhov. The particle dechanneling function is investigated as depending on the type of a crystal, particle energy and angle of entrance into the single crystal. It is found that for most of the beam the major diffusion mechanism is scattering by electrons. It is shown that an optimal depth range exists for which the fraction of channeled particles sharply increases at the expense of the quasi-channeled particles. In a number of cases the dechanneling length for crystals with high atomic numbers may be greater than that of light elements.

  20. Axial channeling of uttrarelativistic electrons

    International Nuclear Information System (INIS)

    Telegin, V.I.; Khokonov, M.Kh.

    1982-01-01

    The dynamics of motion of ultrarelativistic electrons under axial channeling conditions is investigated. The analysis is based on the solution of the kinetic equation obtained recently by Beloshitsky and Kumakhov. The particle dechanneling function is investigated as depending on the type of a crystal, particle energy and angle of entrance into the single crystal. It is found that for most of the beam the major diffusion mechanism is scattering by electrons. It is shown that an optimal depth range exists for which the fraction of channeled particles sharply increases at the expense of the quasi-channeled particles. In a number of cases the dechanneling length for crystals with high atomic numbers may be greater than that of light elements

  1. Bone Disease in Axial Spondyloarthritis.

    Science.gov (United States)

    Van Mechelen, Margot; Gulino, Giulia Rossana; de Vlam, Kurt; Lories, Rik

    2018-05-01

    Axial spondyloarthritis is a chronic inflammatory skeletal disorder with an important burden of disease, affecting the spine and sacroiliac joints and typically presenting in young adults. Ankylosing spondylitis, diagnosed by the presence of structural changes to the skeleton, is the prototype of this disease group. Bone disease in axial spondyloarthritis is a complex phenomenon with the coexistence of bone loss and new bone formation, both contributing to the morbidity of the disease, in addition to pain caused by inflammation. The skeletal structural changes respectively lead to increased fracture risk and to permanent disability caused by ankylosis of the sacroiliac joints and the spine. The mechanism of this new bone formation leading to ankylosis is insufficiently known. The process appears to originate from entheses, specialized structures that provide a transition zone in which tendon and ligaments insert into the underlying bone. Growth factor signaling pathways such as bone morphogenetic proteins, Wnts, and Hedgehogs have been identified as molecular drivers of new bone formation, but the relationship between inflammation and activation of these pathways remains debated. Long-standing control of inflammation appears necessary to avoid ankylosis. Recent evidence and concepts suggest an important role for biomechanical factors in both the onset and progression of the disease. With regard to new bone formation, these processes can be understood as ectopic repair responses secondary to inflammation-induced bone loss and instability. In this review, we discuss the clinical implications of the skeletal changes as well as the underlying molecular mechanisms, the relation between inflammation and new bone formation, and the potential role of biomechanical stress.

  2. Resolution of axial shear strain elastography

    International Nuclear Information System (INIS)

    Thitaikumar, Arun; Righetti, Raffaella; Krouskop, Thomas A; Ophir, Jonathan

    2006-01-01

    The technique of mapping the local axial component of the shear strain due to quasi-static axial compression is defined as axial shear strain elastography. In this paper, the spatial resolution of axial shear strain elastography is investigated through simulations, using an elastically stiff cylindrical lesion embedded in a homogeneously softer background. Resolution was defined as the smallest size of the inclusion for which the strain value at the inclusion/background interface was greater than the average of the axial shear strain values at the interface and inside the inclusion. The resolution was measured from the axial shear strain profile oriented at 45 0 to the axis of beam propagation, due to the absence of axial shear strain along the normal directions. The effects of the ultrasound system parameters such as bandwidth, beamwidth and transducer element pitch along with signal processing parameters such as correlation window length (W) and axial shift (ΔW) on the estimated resolution were investigated. The results show that the resolution (at 45 0 orientation) is determined by the bandwidth and the beamwidth. However, the upper bound on the resolution is limited by the larger of the beamwidth and the window length, which is scaled inversely to the bandwidth. The results also show that the resolution is proportional to the pitch and not significantly affected by the axial window shift

  3. Origin of axial current in scyllac

    International Nuclear Information System (INIS)

    Sugisaki, K.

    1975-12-01

    The origin of the axial current observed in Scyllac (a high beta stellarator experiment) is discussed. A shaped coil and/or helical winding produce rotational transform which links magnetic lines of force to the plasma column and the axial current is induced electromagnetically. This phenomenon is inherent in a pulsed high-beta stellarator. The rotational transform produced by the induced axial current is much smaller than that associated with the l = 1, 0 equilibrium fields. The effect of the axial current on the equilibrium and stability of the plasma column is thus small. It is also shown that the magnetic field shear near a plasma surface is very strong

  4. Radial and axial compression of pure electron

    International Nuclear Information System (INIS)

    Park, Y.; Soga, Y.; Mihara, Y.; Takeda, M.; Kamada, K.

    2013-01-01

    Experimental studies are carried out on compression of the density distribution of a pure electron plasma confined in a Malmberg-Penning Trap in Kanazawa University. More than six times increase of the on-axis density is observed under application of an external rotating electric field that couples to low-order Trivelpiece-Gould modes. Axial compression of the density distribution with the axial length of a factor of two is achieved by controlling the confining potential at both ends of the plasma. Substantial increase of the axial kinetic energy is observed during the axial compression. (author)

  5. Effects of Wavenumber and Chirality on the Axial Compressive Behavior of Wavy Carbon Nanotubes: A Molecular Mechanics Study

    Directory of Open Access Journals (Sweden)

    Masaki Kawachi

    2014-01-01

    Full Text Available The effects of wavenumber and chirality on the axial compressive behavior and properties of wavy carbon nanotubes (CNTs with multiple Stone-Wales defects are investigated using molecular mechanics simulations with the adaptive intermolecular reactive empirical bond-order potential. The wavy CNTs are assumed to be point-symmetric with respect to their axial centers. It is found that the wavy CNT models, respectively, exhibit a buckling point and long wavelength buckling mode regardless of the wavenumbers and chiralities examined. It is also found that the wavy CNTs have nearly the same buckling stresses as their pristine straight counterparts.

  6. On quantum deformation of the Schwarzschild solution

    International Nuclear Information System (INIS)

    Kazakov, D.I.; Solodukhin, S.N.

    1993-01-01

    We consider the deformation of the Schwarzschild solution in general relativity due to spherically symmetric quantum fluctuations of the metric and the matter fields. In this case, the 4 D theory of gravity with Einstein action reduces to the effective two-dimensional dilaton gravity. We have found that the Schwarzschild singularity at r=0 is shifted to the finite radius r min ∼ r PL , where the scalar curvature is finite, so that the space-time looks regular and consists of two asymptotically flat sheets glued at the hypersurface of constant radius. (author). 17 refs.; 4 figs

  7. Research on the rolling moment in the symmetrical and asymmetrical rolling process

    Science.gov (United States)

    Alexa, V.; Raţiu, S. A.; Kiss, I.; Cioată, C. G.

    2017-01-01

    Research distribution the rolling moments symmetrical and asymmetrical report presents great importance both in theory and to introduce clarifications to the calculation of rolling resistance line assemblies. Clarifying individuals of metallic material deformation between the rolls single cylinder diameters act of any difference of work and analysis of advance and delay phenomena. Torque drive value for each of the rolling cylinders was done by reducing the thickness of the laminate samples, an experimental facility located in the laboratory of plastic deformation of the Faculty of Engineering Hunedoara. The analysis of research results show that in terms of power consumption for deformation and safety equipment in operation is rational for mills which require such a difference between the work rolls to execute about one cylinder operated.

  8. Stochastic quantization for the axial model

    International Nuclear Information System (INIS)

    Farina, C.; Montani, H.; Albuquerque, L.C.

    1991-01-01

    We use bosonization ideas to solve the axial model in the stochastic quantization framework. We obtain the fermion propagator of the theory decoupling directly the Langevin equation, instead of the Fokker-Planck equation. In the Appendix we calculate explicitly the anomalous divergence of the axial-vector current by using a regularization that does not break the Markovian character of the stochastic process

  9. Health and imaging outcomes in axial spondyloarthritis

    NARCIS (Netherlands)

    Machado, P.M.

    2016-01-01

    This thesis focuses on the assessment and monitoring of health and imaging outcomes in axial spondyloarthritis (SpA) and the relationship between these outcomes. Four major contributions to the understanding and management of axial SpA were made: 1) the improvement and facilitation of the assessment

  10. Crossing-symmetric solutions to low equations

    International Nuclear Information System (INIS)

    McLeod, R.J.; Ernst, D.J.

    1985-01-01

    Crossing symmetric models of the pion-nucleon interaction in which crossing symmetry is kept to lowest order in msub(π)/msub(N) are investigated. Two iterative techniques are developed to solve the crossing-symmetric Low equation. The techniques are used to solve the original Chew-Low equations and their generalizations to include the coupling to the pion-production channels. Small changes are found in comparison with earlier results which used an iterative technique proposed by Chew and Low and which did not produce crossing-symmetric results. The iterative technique of Chew and Low is shown to fail because of its inability to produce zeroes in the amplitude at complex energies while physical solutions to the model require such zeroes. We also prove that, within the class of solutions such that phase shifts approach zero for infinite energy, the solution to the Low equation is unique. (orig.)

  11. Revisiting the Optical PT-Symmetric Dimer

    Directory of Open Access Journals (Sweden)

    José Delfino Huerta Morales

    2016-08-01

    Full Text Available Optics has proved a fertile ground for the experimental simulation of quantum mechanics. Most recently, optical realizations of PT -symmetric quantum mechanics have been shown, both theoretically and experimentally, opening the door to international efforts aiming at the design of practical optical devices exploiting this symmetry. Here, we focus on the optical PT -symmetric dimer, a two-waveguide coupler where the materials show symmetric effective gain and loss, and provide a review of the linear and nonlinear optical realizations from a symmetry-based point of view. We go beyond a simple review of the literature and show that the dimer is just the smallest of a class of planar N-waveguide couplers that are the optical realization of the Lorentz group in 2 + 1 dimensions. Furthermore, we provide a formulation to describe light propagation through waveguide couplers described by non-Hermitian mode coupling matrices based on a non-Hermitian generalization of the Ehrenfest theorem.

  12. PT symmetric Aubry–Andre model

    International Nuclear Information System (INIS)

    Yuce, C.

    2014-01-01

    PT symmetric Aubry–Andre model describes an array of N coupled optical waveguides with position-dependent gain and loss. We show that the reality of the spectrum depends sensitively on the degree of quasi-periodicity for small number of lattice sites. We obtain the Hofstadter butterfly spectrum and discuss the existence of the phase transition from extended to localized states. We show that rapidly changing periodical gain/loss materials almost conserve the total intensity. - Highlights: • We show that PT symmetric Aubry–Andre model may have real spectrum. • We show that the reality of the spectrum depends sensitively on the degree of disorder. • We obtain the Hofstadter butterfly spectrum for PT symmetric Aubry–Andre model. • We discuss that phase transition from extended to localized states exists

  13. PT symmetric Aubry–Andre model

    Energy Technology Data Exchange (ETDEWEB)

    Yuce, C., E-mail: cyuce@anadolu.edu.tr

    2014-06-13

    PT symmetric Aubry–Andre model describes an array of N coupled optical waveguides with position-dependent gain and loss. We show that the reality of the spectrum depends sensitively on the degree of quasi-periodicity for small number of lattice sites. We obtain the Hofstadter butterfly spectrum and discuss the existence of the phase transition from extended to localized states. We show that rapidly changing periodical gain/loss materials almost conserve the total intensity. - Highlights: • We show that PT symmetric Aubry–Andre model may have real spectrum. • We show that the reality of the spectrum depends sensitively on the degree of disorder. • We obtain the Hofstadter butterfly spectrum for PT symmetric Aubry–Andre model. • We discuss that phase transition from extended to localized states exists.

  14. Experimental Characterization of the Energy Absorption of Functionally Graded Foam Filled Tubes Under Axial Crushing Loads

    Science.gov (United States)

    Ebrahimi, Saeed; Vahdatazad, Nader; Liaghat, Gholamhossein

    2018-03-01

    This paper deals with the energy absorption characterization of functionally graded foam (FGF) filled tubes under axial crushing loads by experimental method. The FGF tubes are filled axially by gradient layers of polyurethane foams with different densities. The mechanical properties of the polyurethane foams are firstly obtained from axial compressive tests. Then, the quasi-static compressive tests are carried out for empty tubes, uniform foam filled tubes and FGF filled tubes. Before to present the experimental test results, a nonlinear FEM simulation of the FGF filled tube is carried out in ABAQUS software to gain more insight into the crush deformation patterns, as well as the energy absorption capability of the FGF filled tube. A good agreement between the experimental and simulation results is observed. Finally, the results of experimental test show that an FGF filled tube has excellent energy absorption capacity compared to the ordinary uniform foam-filled tube with the same weight.

  15. All-optical symmetric ternary logic gate

    Science.gov (United States)

    Chattopadhyay, Tanay

    2010-09-01

    Symmetric ternary number (radix=3) has three logical states (1¯, 0, 1). It is very much useful in carry free arithmetical operation. Beside this, the logical operation using this type of number system is also effective in high speed computation and communication in multi-valued logic. In this literature all-optical circuits for three basic symmetrical ternary logical operations (inversion, MIN and MAX) are proposed and described. Numerical simulation verifies the theoretical model. In this present scheme the different ternary logical states are represented by different polarized state of light. Terahertz optical asymmetric demultiplexer (TOAD) based interferometric switch has been used categorically in this manuscript.

  16. Symmetry theorems via the continuous steiner symmetrization

    Directory of Open Access Journals (Sweden)

    L. Ragoub

    2000-06-01

    Full Text Available Using a new approach due to F. Brock called the Steiner symmetrization, we show first that if $u$ is a solution of an overdetermined problem in the divergence form satisfying the Neumann and non-constant Dirichlet boundary conditions, then $Omega$ is an N-ball. In addition, we show that we can relax the condition on the value of the Dirichlet boundary condition in the case of superharmonicity. Finally, we give an application to positive solutions of some semilinear elliptic problems in symmetric domains for the divergence case.

  17. Symmetric splitting of very light systems

    International Nuclear Information System (INIS)

    Grotowski, K.; Majka, Z.; Planeta, R.

    1984-01-01

    Inclusive and coincidence measurements have been performed to study symmetric products from the reactions 74--186 MeV 12 C+ 40 Ca, 141 MeV 9 Be+ 40 Ca, and 153 MeV 6 Li+ 40 Ca. The binary decay of the composite system has been verified. Energy spectra, angular distributions, and fragment correlations are presented. The total kinetic energies for the symmetric products from these very light composite systems are compared to liquid drop model calculations and fission systematics

  18. Axial anomalies of Lifshitz fermions

    CERN Document Server

    Bakas, Ioannis

    2011-01-01

    We compute the axial anomaly of a Lifshitz fermion theory with anisotropic scaling z=3 which is minimally coupled to geometry in 3+1 space-time dimensions. We find that the result is identical to the relativistic case using path integral methods. An independent verification is provided by showing with spectral methods that the eta-invariant of the Dirac and Lifshitz fermion operators in three dimensions are equal. Thus, by the integrated form of the anomaly, the index of the Dirac operator still accounts for the possible breakdown of chiral symmetry in non-relativistic theories of gravity. We apply this framework to the recently constructed gravitational instanton backgrounds of Horava-Lifshitz theory and find that the index is non-zero provided that the space-time foliation admits leaves with harmonic spinors. Using Hitchin's construction of harmonic spinors on Berger spheres, we obtain explicit results for the index of the fermion operator on all such gravitational instanton backgrounds with SU(2)xU(1) isom...

  19. The effect of multi-axiality on damage with alternating stress

    International Nuclear Information System (INIS)

    Hug, J.; Zenner, H.; Schram, A.

    1992-01-01

    The aim of this project is a better understanding of the development of damage with multi-axial alternating stress. Hollow samples of the materials X6 CrNiTi 18 0 and Ck 15 are submitted to equal phase, phase displaced and consecutively alternating normal and thrust stresses. The amplitude ratio τ/σ is 1/2. Apart from the service life, the cyclic alternating deformation behaviour and the initiation and prapagation of microcracks are examined. (orig./MM) [de

  20. Effect of finited pressure on plasma stability and particle motion i axial-assymetrical open traps

    International Nuclear Information System (INIS)

    Kotel'nikov, I.A.

    1984-01-01

    Hydrodynamic equilibrium confiqurations of plasma are investigated as well as the processes of cross-section transfer in axial-asymmetrical open traps. It is shown that drift surfaces are essentially deformed allowing for the final β, and, as a rule, the property of local injection is disturbed. But non-injection of particle drift surfaces with different energies and a magnetic moment in a paraxial trap turns out to be small by the perimeter of paraxiallity even at βapproximately1

  1. Flexible solid-state symmetric supercapacitors based on MnO2 nanofilms with high rate capability and long cyclability

    Science.gov (United States)

    Wu, Lingxia; Li, Ruizhi; Guo, Junling; Zhou, Cheng; Zhang, Wenpei; Wang, Chong; Huang, Yu; Li, Yuanyuan; Liu, Jinping

    2013-08-01

    Flexible solid-state symmetric supercapacitor was fabricated using MnO2 nanofilms growing directly on carbon cloth as the electrodes and PVA/H3PO4 gel as the electrolyte/separator. The device can be operated at a stable cell-voltage up to 1.4 V, obviously larger than that of conventional solid-state symmetric supercapacitors (≤1 V). It exhibited excellent rate capability with a scan rate as high as 20 V s-1 and a long cyclability (˜60000 cycles) even under severe mechanical deformation. The charge storage mechanism at different scan rates was also quantitatively analyzed.

  2. Flexible solid-state symmetric supercapacitors based on MnO2 nanofilms with high rate capability and long cyclability

    Directory of Open Access Journals (Sweden)

    Lingxia Wu

    2013-08-01

    Full Text Available Flexible solid-state symmetric supercapacitor was fabricated using MnO2 nanofilms growing directly on carbon cloth as the electrodes and PVA/H3PO4 gel as the electrolyte/separator. The device can be operated at a stable cell-voltage up to 1.4 V, obviously larger than that of conventional solid-state symmetric supercapacitors (≤1 V. It exhibited excellent rate capability with a scan rate as high as 20 V s−1 and a long cyclability (∼60000 cycles even under severe mechanical deformation. The charge storage mechanism at different scan rates was also quantitatively analyzed.

  3. Understanding how axial loads on the spine influence segmental biomechanics for idiopathic scoliosis patients: A magnetic resonance imaging study.

    Science.gov (United States)

    Little, J P; Pearcy, M J; Izatt, M T; Boom, K; Labrom, R D; Askin, G N; Adam, C J

    2016-02-01

    Segmental biomechanics of the scoliotic spine are important since the overall spinal deformity is comprised of the cumulative coronal and axial rotations of individual joints. This study investigates the coronal plane segmental biomechanics for adolescent idiopathic scoliosis patients in response to physiologically relevant axial compression. Individual spinal joint compliance in the coronal plane was measured for a series of 15 idiopathic scoliosis patients using axially loaded magnetic resonance imaging. Each patient was first imaged in the supine position with no axial load, and then again following application of an axial compressive load. Coronal plane disc wedge angles in the unloaded and loaded configurations were measured. Joint moments exerted by the axial compressive load were used to derive estimates of individual joint compliance. The mean standing major Cobb angle for this patient series was 46°. Mean intra-observer measurement error for endplate inclination was 1.6°. Following loading, initially highly wedged discs demonstrated a smaller change in wedge angle, than less wedged discs for certain spinal levels (+2,+1,-2 relative to the apex, (pbiomechanical data on in vivo spinal biomechanics of the scoliotic spine, for analysis of deformity progression and surgical planning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Performance of a Low Speed Axial Compressor Rotor Blade Row under Different Inlet Distortions

    Directory of Open Access Journals (Sweden)

    R. Taghavi Zenouz

    2017-05-01

    Full Text Available Responses of an axial compressor isolated rotor blade row to various inlet distortions have been investigated utilizing computational fluid dynamic technique. Distortions have been imposed by five screens of different geometries, but with the same blockage ratio. These screens were embedded upstream of the rotor blade row. Flow fields are simulated in detail for compressor design point and near stall conditions. Performance curves for distorted cases are extracted and compared to the undisturbed case. Flow simulations and consequent performance characteristics show that the worst cases belong to non-symmetric blockages, i.e., those of partial circumferential configurations. These cases produce the largest wakes which can disturb the flow, considerably. Superior performances correspond to the inner and outer continuous circumferential distortion screens. Since, they produce no significant disturbances to the main flow in comparison to the non-symmetric screens.

  5. Small diameter symmetric networks from linear groups

    Science.gov (United States)

    Campbell, Lowell; Carlsson, Gunnar E.; Dinneen, Michael J.; Faber, Vance; Fellows, Michael R.; Langston, Michael A.; Moore, James W.; Multihaupt, Andrew P.; Sexton, Harlan B.

    1992-01-01

    In this note is reported a collection of constructions of symmetric networks that provide the largest known values for the number of nodes that can be placed in a network of a given degree and diameter. Some of the constructions are in the range of current potential engineering significance. The constructions are Cayley graphs of linear groups obtained by experimental computation.

  6. Sobolev spaces on bounded symmetric domains

    Czech Academy of Sciences Publication Activity Database

    Engliš, Miroslav

    Roč. 60, č. 12 ( 2015 ), s. 1712-1726 ISSN 1747-6933 Institutional support: RVO:67985840 Keywords : bounded symmetric domain * Sobolev space * Bergman space Subject RIV: BA - General Mathematics Impact factor: 0.466, year: 2015 http://www.tandfonline.com/doi/abs/10.1080/17476933. 2015 .1043910

  7. Cuspidal discrete series for semisimple symmetric spaces

    DEFF Research Database (Denmark)

    Andersen, Nils Byrial; Flensted-Jensen, Mogens; Schlichtkrull, Henrik

    2012-01-01

    We propose a notion of cusp forms on semisimple symmetric spaces. We then study the real hyperbolic spaces in detail, and show that there exists both cuspidal and non-cuspidal discrete series. In particular, we show that all the spherical discrete series are non-cuspidal. (C) 2012 Elsevier Inc. All...

  8. Exact solutions of the spherically symmetric multidimensional ...

    African Journals Online (AJOL)

    The complete orthonormalised energy eigenfunctions and the energy eigenvalues of the spherically symmetric isotropic harmonic oscillator in N dimensions, are obtained through the methods of separation of variables. Also, the degeneracy of the energy levels are examined. KEY WORDS: - Schrödinger Equation, Isotropic ...

  9. Super-symmetric informationally complete measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Huangjun, E-mail: hzhu@pitp.ca

    2015-11-15

    Symmetric informationally complete measurements (SICs in short) are highly symmetric structures in the Hilbert space. They possess many nice properties which render them an ideal candidate for fiducial measurements. The symmetry of SICs is intimately connected with the geometry of the quantum state space and also has profound implications for foundational studies. Here we explore those SICs that are most symmetric according to a natural criterion and show that all of them are covariant with respect to the Heisenberg–Weyl groups, which are characterized by the discrete analog of the canonical commutation relation. Moreover, their symmetry groups are subgroups of the Clifford groups. In particular, we prove that the SIC in dimension 2, the Hesse SIC in dimension 3, and the set of Hoggar lines in dimension 8 are the only three SICs up to unitary equivalence whose symmetry groups act transitively on pairs of SIC projectors. Our work not only provides valuable insight about SICs, Heisenberg–Weyl groups, and Clifford groups, but also offers a new approach and perspective for studying many other discrete symmetric structures behind finite state quantum mechanics, such as mutually unbiased bases and discrete Wigner functions.

  10. Harmonic maps of the bounded symmetric domains

    International Nuclear Information System (INIS)

    Xin, Y.L.

    1994-06-01

    A shrinking property of harmonic maps into R IV (2) is proved which is used to classify complete spacelike surfaces of the parallel mean curvature in R 4 2 with a reasonable condition on the Gauss image. Liouville-type theorems of harmonic maps from the higher dimensional bounded symmetric domains are also established. (author). 25 refs

  11. The Mathematics of Symmetrical Factorial Designs

    Indian Academy of Sciences (India)

    The Mathematics of Symmetrical Factorial Designs. Mausumi Bose (nee Sen) obtained her MSc degree in. Statistics from the Calcutta. University and PhD degree from the Indian Statistical. Institute. She is on the faculty of the Indian. Statistical Institute. Her main field of research interest is design and analysis of experiments.

  12. Symmetric intersections of Rauzy fractals | Sellami | Quaestiones ...

    African Journals Online (AJOL)

    In this article we study symmetric subsets of Rauzy fractals of unimodular irreducible Pisot substitutions. The symmetry considered is re ection through the origin. Given an unimodular irreducible Pisot substitution, we consider the intersection of its Rauzy fractal with the Rauzy fractal of the reverse substitution. This set is ...

  13. Fourier inversion on a reductive symmetric space

    NARCIS (Netherlands)

    Ban, E.P. van den

    1999-01-01

    Let X be a semisimple symmetric space. In previous papers, [8] and [9], we have dened an explicit Fourier transform for X and shown that this transform is injective on the space C 1 c (X) ofcompactly supported smooth functions on X. In the present paper, which is a continuation of these papers, we

  14. A viewpoint on nearly conformally symmetric manifold

    International Nuclear Information System (INIS)

    Rahman, M.S.

    1990-06-01

    Some observations, with definition, on Nearly Conformally Symmetric (NCS) manifold are made. A number of theorems concerning conformal change of metric and parallel tensors on NCS manifolds are presented. It is illustrated that a manifold M = R n-1 x R + 1 , endowed with a special metric, is NCS but not of harmonic curvature. (author). 8 refs

  15. Harmonic analysis on reductive symmetric spaces

    NARCIS (Netherlands)

    Ban, E.P. van den; Schlichtkrull, H.

    2000-01-01

    We give a relatively non-technical survey of some recent advances in the Fourier theory for semisimple symmetric spaces. There are three major results: An inversion formula for the Fourier transform, a Palley-Wiener theorem, which describes the Fourier image of the space of completely supported

  16. Fourier transforms on a semisimple symmetric space

    NARCIS (Netherlands)

    Ban, E.P. van den; Schlichtkrull, H.

    1994-01-01

    Let G=H be a semisimple symmetric space, that is, G is a connected semisimple real Lie group with an involution ?, and H is an open subgroup of the group of xed points for ? in G. The main purpose of this paper is to study an explicit Fourier transform on G=H. In terms of general representation

  17. Fourier transforms on a semisimple symmetric space

    NARCIS (Netherlands)

    Ban, E.P. van den; Carmona, J.; Delorme, P.

    1997-01-01

    Let G=H be a semisimple symmetric space, that is, G is a connected semisimple real Lie group with an involution ?, and H is an open subgroup of the group of xed points for ? in G. The main purpose of this paper is to study an explicit Fourier transform on G=H. In terms of general representation

  18. Experimental study on uniaxial ratcheting deformation and failure behavior of 304 stainless steel

    International Nuclear Information System (INIS)

    Yang Xianjie; Gao Qing; Cai Lixun; Liu Yujie

    2004-01-01

    In the paper, the tests of cyclic strain ratcheting and low cycle fatigue for 304 stainless steel under uniaxial cyclic straining were carried out to systematically explore the deformation and failure behavior of the material. The experimental study shows that the cyclic strain ratcheting deformation behavior of the material is different from either the uniaxial monotonic tensile one or the cyclic deformation one under the symmetrical cyclic straining with the same strain amplitude, and the strain ratcheting deformation and failure behaviors depend on both the plastic strain amplitude and the strain increment at the cyclic maximum strain. Some significant results were observed

  19. Modernity: A new axial (era culture?

    Directory of Open Access Journals (Sweden)

    Wolfgang Schluchter

    2017-10-01

    Full Text Available The proposition of an axial age, lasting roughly from 800 to 200 B.C. and occurring in major civilizations (China, India, Near East independent of each other, first introduced by Alfred Weber and Karl Jaspers, then further developed by Robert Bellah and S. N. Eisenstadt among others, implied from the outset the question whether there has been a second axial age, leading to modernity, and if so, whether this second axial age consists in a secularization of the achievements of the first axial age. In this article it is argued that the notion of a second axial age is meaningful, but that the emergence of modernity can›t be accounted for in terms of secularization of the achievements of the first axial age. Rather, a new axial principle was institutionalized which separates the modern from the premodern world. This new principle is spelled out with reference to Hans Blumenberg, Charles Taylor and especially Max Weber. The emphasis is on the dialectics of disenchantment and the place of religion in a secular age

  20. Dai Omega, a large solid angle axial focusing superconducting surface muon channel

    International Nuclear Information System (INIS)

    Miyadera, H.; Nagamine, K.; Shimomura, K.; Nishiyama, K.; Tanaka, H.; Fukuchi, K.; Makimura, S.; Ishida, K.

    2003-01-01

    An axial focusing surface muon channel, Dai Omega, was installed at KEK-MSL in the summer of 2001. Large aperture superconducting coils are utilized instead of quadrupole magnets. Dai Omega adopts an axial focusing beam path using symmetric magnetic fields from four coils. Computer simulations were performed on constructing Dai Omega, and the calculated solid angle acceptance of Dai Omega was larger than 1 sr at the optimum momentum. The momentum acceptance of Dai Omega was 6% FWHM. Dai Omega improved the solid angle acceptance by almost 20 times, in comparison with conventional muon channels. Beam tuning tests of Dai Omega have been carried out, and a beam intensity of 10 6 μ + /s was achieved at KEK-NML (500 MeV, 5 μA), which was almost comparable with that of RAL (800 MeV, 200 μA)

  1. Development of submersible axial pump for wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Jeong Eui [Kangwon Nat' l Univ., Chuncheon (Korea, Republic of)

    2013-02-15

    This study was performed to develop a high efficiency submersible axial pump for concentration wastewater treatment. To do this, we simulated the effect of some parameters such as the axial twist angle of a blade({beta}), the radial twist angle of a blade({alpha}) and the length of a blade ({iota}) on pump efficiency using commercial code, ANSYS CFX and BladeGen. The results showed that the axial twist angle of a blade({beta}) was the most sensible parameter on the pump efficiency. And the pump efficiency had a maximum at {beta}=20.deg, {alpha}=110.deg and {iota}=240mm.

  2. Metamorphosis of helical magnetorotational instability in the presence of axial electric current.

    Science.gov (United States)

    Priede, Jānis

    2015-03-01

    This paper presents numerical linear stability analysis of a cylindrical Taylor-Couette flow of liquid metal carrying axial electric current in a generally helical external magnetic field. Axially symmetric disturbances are considered in the inductionless approximation corresponding to zero magnetic Prandtl number. Axial symmetry allows us to reveal an entirely new electromagnetic instability. First, we show that the electric current passing through the liquid can extend the range of helical magnetorotational instability (HMRI) indefinitely by transforming it into a purely electromagnetic instability. Two different electromagnetic instability mechanisms are identified. The first is an internal pinch-type instability, which is due to the interaction of the electric current with its own magnetic field. Axisymmetric mode of this instability requires a free-space component of the azimuthal magnetic field. When the azimuthal component of the magnetic field is purely rotational and the axial component is nonzero, a new kind of electromagnetic instability emerges. The latter, driven by the interaction of electric current with a weak collinear magnetic field in a quiescent fluid, gives rise to a steady meridional circulation coupled with azimuthal rotation.

  3. Canny edge-based deformable image registration.

    Science.gov (United States)

    Kearney, Vasant; Huang, Yihui; Mao, Weihua; Yuan, Baohong; Tang, Liping

    2017-02-07

    This work focuses on developing a 2D Canny edge-based deformable image registration (Canny DIR) algorithm to register in vivo white light images taken at various time points. This method uses a sparse interpolation deformation algorithm to sparsely register regions of the image with strong edge information. A stability criterion is enforced which removes regions of edges that do not deform in a smooth uniform manner. Using a synthetic mouse surface ground truth model, the accuracy of the Canny DIR algorithm was evaluated under axial rotation in the presence of deformation. The accuracy was also tested using fluorescent dye injections, which were then used for gamma analysis to establish a second ground truth. The results indicate that the Canny DIR algorithm performs better than rigid registration, intensity corrected Demons, and distinctive features for all evaluation matrices and ground truth scenarios. In conclusion Canny DIR performs well in the presence of the unique lighting and shading variations associated with white-light-based image registration.

  4. sizing of wind powered axial flux permanent magnet alternator using

    African Journals Online (AJOL)

    user

    2016-10-04

    Oct 4, 2016 ... Keywords: Wind-Power, Axial flux, Axial Flux Permanent Machines (AFPM), Axial Flux Permanent Magnet ... energy for power generation, a high constraint is the .... arrangements as Single-Rotor Single-Stator Structure.

  5. A Novel Geometry for Shear Test Using Axial Tensile Setup

    Directory of Open Access Journals (Sweden)

    Sibo Yuan

    2018-05-01

    Full Text Available This paper studies a novel geometry for the in-plane shear test performed with an axial electromechanical testing machine. In order to investigate the influence of the triaxiality rate on the mechanical behavior, different tests will be performed on the studied material: simple tensile tests, large tensile tests and shear tests. For the whole campaign, a common equipment should be employed to minimize the impact of the testing device. As a consequence, for the shear tests, the geometry of the specimen must be carefully designed in order to adapt the force value and make it comparable to the one obtained for the tensile tests. Like most of the existing shear-included tensile test specimens, the axial loading is converted to shear loading at a particular region through the effect of geometry. A symmetric shape is generally preferred, since it can restrict the in-plane rotation of the shear section, keep shear increasing in a more monotonic path and double the force level thanks to the two shear zones. Due to the specific experimental conditions, such as dimensions of the furnace and the clamping system, the position of the extensometer or the restriction of sheet thickness (related to the further studies of size effect at mesoscale and hot temperature, several geometries were brought up and evaluated in an iterative procedure via finite element simulations. Both the numerical and experimental results reveal that the final geometry ensures some advantages. For instance, a relatively low triaxiality in the shear zone, limited in-plane rotation and no necking are observed. Moreover, it also prevents any out-of-plane displacement of the specimen which seems to be highly sensitive to the geometry, and presents a very limited influence of the material and the thickness.

  6. Weakly Interacting Symmetric and Anti-Symmetric States in the Bilayer Systems

    Science.gov (United States)

    Marchewka, M.; Sheregii, E. M.; Tralle, I.; Tomaka, G.; Ploch, D.

    We have studied the parallel magneto-transport in DQW-structures of two different potential shapes: quasi-rectangular and quasi-triangular. The quantum beats effect was observed in Shubnikov-de Haas (SdH) oscillations for both types of the DQW structures in perpendicular magnetic filed arrangement. We developed a special scheme for the Landau levels energies calculation by means of which we carried out the necessary simulations of beating effect. In order to obtain the agreement between our experimental data and the results of simulations, we introduced two different quasi-Fermi levels which characterize symmetric and anti-symmetric states in DQWs. The existence of two different quasi Fermi-Levels simply means, that one can treat two sub-systems (charge carriers characterized by symmetric and anti-symmetric wave functions) as weakly interacting and having their own rate of establishing the equilibrium state.

  7. Historical overview of spinal deformities in ancient Greece

    Science.gov (United States)

    Vasiliadis, Elias S; Grivas, Theodoros B; Kaspiris, Angelos

    2009-01-01

    Little is known about the history of spinal deformities in ancient Greece. The present study summarizes what we know today for diagnosis and management of spinal deformities in ancient Greece, mainly from the medical treatises of Hippocrates and Galen. Hippocrates, through accurate observation and logical reasoning was led to accurate conclusions firstly for the structure of the spine and secondly for its diseases. He introduced the terms kyphosis and scoliosis and wrote in depth about diagnosis and treatment of kyphosis and less about scoliosis. The innovation of the board, the application of axial traction and even the principle of trans-abdominal correction for correction of spinal deformities have their origin in Hippocrates. Galen, who lived nearly five centuries later impressively described scoliosis, lordosis and kyphosis, provided aetiologic implications and used the same principles with Hippocrates for their management, while his studies influenced medical practice on spinal deformities for more than 1500 years. PMID:19243609

  8. Historical overview of spinal deformities in ancient Greece

    Directory of Open Access Journals (Sweden)

    Kaspiris Angelos

    2009-02-01

    Full Text Available Abstract Little is known about the history of spinal deformities in ancient Greece. The present study summarizes what we know today for diagnosis and management of spinal deformities in ancient Greece, mainly from the medical treatises of Hippocrates and Galen. Hippocrates, through accurate observation and logical reasoning was led to accurate conclusions firstly for the structure of the spine and secondly for its diseases. He introduced the terms kyphosis and scoliosis and wrote in depth about diagnosis and treatment of kyphosis and less about scoliosis. The innovation of the board, the application of axial traction and even the principle of trans-abdominal correction for correction of spinal deformities have their origin in Hippocrates. Galen, who lived nearly five centuries later impressively described scoliosis, lordosis and kyphosis, provided aetiologic implications and used the same principles with Hippocrates for their management, while his studies influenced medical practice on spinal deformities for more than 1500 years.

  9. NUMERICAL PREDICTION OF COMPOSITE BEAM SUBJECTED TO COMBINED NEGATIVE BENDING AND AXIAL TENSION

    Directory of Open Access Journals (Sweden)

    MAHESAN BAVAN

    2013-08-01

    Full Text Available The present study has investigated the finite element method (FEM techniques of composite beam subjected to combined axial tension and negative bending. The negative bending regions of composite beams are influenced by worsen failures due to various levels of axial tensile loads on steel section especially in the regions near internal supports. Three dimensional solid FEM model was developed to accurately predict the unfavourable phenomenon of cracking of concrete and compression of steel in the negative bending regions of composite beam due to axial tensile loads. The prediction of quasi-static solution was extensively analysed with various deformation speeds and energy stabilities. The FEM model was then validated with existing experimental data. Reasonable agreements were observed between the results of FEM model and experimental analysis in the combination of vertical-axial forces and failure modes on ultimate limit state behaviour. The local failure modes known as shear studs failure, excess yielding on steel beam and crushing on concrete were completely verified by extensive similarity between the numerical and experimental results. Finally, a proper way of modelling techniques for large FEM models by considering uncertainties of material behaviour due to biaxial loadings and complex contact interactions is discussed. Further, the model is suggested for the limit state prediction of composite beam with calibrating necessary degree of the combined axial loads.

  10. Growth-induced axial buckling of a slender elastic filament embedded in an isotropic elastic matrix

    KAUST Repository

    O'Keeffe, Stephen G.

    2013-11-01

    We investigate the problem of an axially loaded, isotropic, slender cylinder embedded in a soft, isotropic, outer elastic matrix. The cylinder undergoes uniform axial growth, whilst both the cylinder and the surrounding elastic matrix are confined between two rigid plates, so that this growth results in axial compression of the cylinder. We use two different modelling approaches to estimate the critical axial growth (that is, the amount of axial growth the cylinder is able to sustain before it buckles) and buckling wavelength of the cylinder. The first approach treats the filament and surrounding matrix as a single 3-dimensional elastic body undergoing large deformations, whilst the second approach treats the filament as a planar, elastic rod embedded in an infinite elastic foundation. By comparing the results of these two approaches, we obtain an estimate of the foundation modulus parameter, which characterises the strength of the foundation, in terms of the geometric and material properties of the system. © 2013 Elsevier Ltd. All rights reserved.

  11. Disordered long-range internal stresses in deformed copper and the mechanisms underlying plastic deformation

    International Nuclear Information System (INIS)

    Levine, Lyle E.; Geantil, Peter; Larson, Bennett C.; Tischler, Jonathan Z.; Kassner, Michael E.; Liu, Wenjun; Stoudt, Mark R.; Tavazza, Francesca

    2011-01-01

    Highlights: → Axial elastic strains were measured from numerous individual, contiguous dislocation cell walls and cell interiors. → The mean stresses for the cell walls and cell interiors were of opposite sign, in agreement with theoretical predictions. → The separation between the mean cell wall and cell interior stresses was about 20% of the flow stress. → Broad distributions of dipolar stresses were observed that are consistent with a simple size-scaling model. - Abstract: The strength of wavy glide metals increases dramatically during deformation as dislocations multiply and entangle, forming dense dislocation wall structures. Numerous competing models have been proposed for this process but experimental validation and guidance for further model development require new experimental approaches capable of resolving local stresses within the dislocation microstructure. We use three-dimensional X-ray microscopy combining submicrometer spatial resolution with diffracted-beam masking to make direct measurements of axial elastic strain (and thus stress) in individual dislocation cell walls and their adjacent cell interiors in heavily deformed copper. These spatially resolved measurements show broad, asymmetric distributions of dipolar stresses that directly discriminate between long-standing deformation models and demonstrate that the distribution of local stresses is statistically connected to the global behavior through simple rules.

  12. Simulation of quasistatic deformations using discrete rod models

    OpenAIRE

    Linn, J.; Stephan, T.

    2008-01-01

    Recently we developed a discrete model of elastic rods with symmetric cross section suitable for a fast simulation of quasistatic deformations [33]. The model is based on Kirchhoff’s geometrically exact theory of rods. Unlike simple models of “mass & spring” type typically used in VR applications, our model provides a proper coupling of bending and torsion. The computational approach comprises a variational formulation combined with a finite difference discretization of the continuum model. A...

  13. VERY SLOW SPEED AXIAL MOTION RELUCTANCE MOTOR

    African Journals Online (AJOL)

    Dr Obe

    1984-09-01

    Sep 1, 1984 ... VERY SLOW SPEED AXIAL MOTION RELUCTANCE MOTOR by. L. A. Agu ... order as that of the screw-thread motor can be obtained. LIST OF .... The n stator have equal non- magnetic spacers .... induction motor. An.

  14. Precision axial translator with high stability.

    Science.gov (United States)

    Bösch, M A

    1979-08-01

    We describe a new type of translator which is inherently stable against torsion and twisting. This concentric translator is also ideally suited for precise axial motion with clearance of the center line.

  15. Axial force measurement for esophageal function testing

    DEFF Research Database (Denmark)

    Gravesen, Flemming Holbæk; Funch-Jensen, Peter; Gregersen, Hans

    2009-01-01

    force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure of esophageal transport function. The technique used to record axial force has developed from external...... force transducers over in-vivo strain gauges of various sizes to electrical impedance based measurements. The amplitude and duration of the axial force has been shown to be as reliable as manometry. Normal, as well as abnormal, manometric recordings occur with normal bolus transit, which have been...... documented using imaging modalities such as radiography and scintigraphy. This inconsistency using manometry has also been documented by axial force recordings. This underlines the lack of information when diagnostics are based on manometry alone. Increasing the volume of a bag mounted on a probe...

  16. Deformations of superconformal theories

    Energy Technology Data Exchange (ETDEWEB)

    Córdova, Clay [School of Natural Sciences, Institute for Advanced Study,1 Einstein Drive, Princeton, NJ 08540 (United States); Dumitrescu, Thomas T. [Department of Physics, Harvard University,17 Oxford Street, Cambridge, MA 02138 (United States); Intriligator, Kenneth [Department of Physics, University of California,9500 Gilman Drive, San Diego, La Jolla, CA 92093 (United States)

    2016-11-22

    We classify possible supersymmetry-preserving relevant, marginal, and irrelevant deformations of unitary superconformal theories in d≥3 dimensions. Our method only relies on symmetries and unitarity. Hence, the results are model independent and do not require a Lagrangian description. Two unifying themes emerge: first, many theories admit deformations that reside in multiplets together with conserved currents. Such deformations can lead to modifications of the supersymmetry algebra by central and non-central charges. Second, many theories with a sufficient amount of supersymmetry do not admit relevant or marginal deformations, and some admit neither. The classification is complicated by the fact that short superconformal multiplets display a rich variety of sporadic phenomena, including supersymmetric deformations that reside in the middle of a multiplet. We illustrate our results with examples in diverse dimensions. In particular, we explain how the classification of irrelevant supersymmetric deformations can be used to derive known and new constraints on moduli-space effective actions.

  17. Buoyant Helical Twin-Axial Wire Antenna

    Science.gov (United States)

    2016-11-15

    February 2017 The below identified patent application is available for licensing. Requests for information should be addressed to...300169 1 of 9 BUOYANT HELICAL TWIN-AXIAL WIRE ANTENNA CROSS REFERENCE TO OTHER PATENT APPLICATIONS [0001] This application is a divisional...application and claims the benefit of the filing date of United States Patent Application No. 14/280,889; filed on May 19, 2014; and entitled “Twin-Axial

  18. Nonperturbative Aspects of Axial Vector Vertex

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; CHEN Xiang-Song; WANG Fan; CHANG Chao-Hsi; ZHAO En-Guang

    2002-01-01

    It is shown how the axial vector current of current quarks is related to that of constituent quarks within the framework of the global color symmetry model.Gluon dressing of the axial vector vertex and the quark self-energy functions are described by the inhomogeneous Bethe-Salpeter equation in the ladder approximation and the Schwinger Dyson equation in the rainbow approximation,respectively.

  19. High temperature co-axial winding transformers

    Science.gov (United States)

    Divan, Deepakraj M.; Novotny, Donald W.

    1993-01-01

    The analysis and design of co-axial winding transformers is presented. The design equations are derived and the different design approaches are discussed. One of the most important features of co-axial winding transformers is the fact that the leakage inductance is well controlled and can be made low. This is not the case in conventional winding transformers. In addition, the power density of co-axial winding transformers is higher than conventional ones. Hence, using co-axial winding transformers in a certain converter topology improves the power density of the converter. The design methodology used in meeting the proposed specifications of the co-axial winding transformer specifications are presented and discussed. The final transformer design was constructed in the lab. Co-axial winding transformers proved to be a good choice for high power density and high frequency applications. They have a more predictable performance compared with conventional transformers. In addition, the leakage inductance of the transformer can be controlled easily to suit a specific application. For space applications, one major concern is the extraction of heat from power apparatus to prevent excessive heating and hence damaging of these units. Because of the vacuum environment, the only way to extract heat is by using a cold plate. One advantage of co-axial winding transformers is that the surface area available to extract heat from is very large compared to conventional transformers. This stems from the unique structure of the co-axial transformer where the whole core surface area is exposed and can be utilized for cooling effectively. This is a crucial issue here since most of the losses are core losses.

  20. Dechanneling function for relativistic axially channeled electrons

    International Nuclear Information System (INIS)

    Muralev, V.A.; Telegin, V.I.

    1981-01-01

    Behaviour of the x(t) dechanneling function depending on the depth is theoretically studied. Theoretical consideration of x(t) for axial channeled relativistic electrons in anisotropic medium results in two-dimensional kinetic equation with mixed derivatives of the parabolic type. The kinetic equation in the approximation of the continuous Lindchard model for relativistic axial channeled electrons is numerically solved. The depth dependence of the x(t) dechanneling function is obtained [ru

  1. Axial forces in centrifugal compressor couplings

    Science.gov (United States)

    Ivanov, A. N.; Ivanov, N. M.; Yun, V. K.

    2017-08-01

    The article presents the results of the theoretical and experimental investigation of axial forces arising in the toothed and plate couplings of centrifugal compressor shaft lines. Additional loads on the thrust bearing are considered that can develop in the toothed couplings as a result of coupled rotors misalignment. Design relationships to evaluate the level of axial forces and recommendations for their reduction in the operating conditions are given.

  2. Singlet axial constant from QCD sum rules

    International Nuclear Information System (INIS)

    Belitskij, A.V.; Teryaev, O.V.

    1995-01-01

    We analyze the singlet axial form factor of the proton for small momentum transferred in the framework of QCD sum rules using the interpolating nucleon current which explicitly accounts for the gluonic degrees of freedom. As the result we come to the quantitative prediction of the singlet axial constant. It is shown that the bilocal power corrections play the most important role in the analysis. 21 refs., 3 figs

  3. Computer axial tomography in geosciences

    International Nuclear Information System (INIS)

    Duliu, Octavian G.

    2002-01-01

    Computer Axial Tomography (CAT) is one of the most adequate non-invasive techniques for the investigation of the internal structure of a large category of objects. Initially designed for medical investigations, this technique, based on the attenuation of X- or gamma-ray (and in some cases neutrons), generates digital images which map the numerical values of the linear attenuation coefficient of a section or of the entire volume of the investigated sample. Shortly after its application in medicine, CAT has been successfully used in archaeology, life sciences, and geosciences as well as for the industrial materials non-destructive testing. Depending on the energy of the utilized radiation as well as on the effective atomic number of the sample, CAT can provide with a spatial resolution of 0.01 - 0.5 mm, quantitative as well as qualitative information concerning local density, porosity or chemical composition of the sample. At present two types of axial Computer Tomographs (CT) are in use. One category, consisting of medical as well as industrial CT is equipped with X-ray tubes while the other uses isotopic gamma-ray sources. CT provided with intense X-ray sources (equivalent to 12-15 kCi or 450-550 TBq) has the advantage of an extremely short running time (a few seconds and even less) but presents some disadvantages known as beam hardening and absorption edge effects. These effects, intrinsically related to the polychromatic nature of the X-rays generated by classical tubes, need special mathematical or physical corrections. A polychromatic X-ray beam can be made almost monochromatic by means of crystal diffraction or by using adequate multicomponent filters, but these devices are costly and considerably diminish the output of X-ray generators. In the case of CT of the second type, monochromatic gamma-rays generated by radioisotopic sources, such as 169 Yb (50.4 keV), 241 Am (59 keV), 192 Ir (310.5 and 469.1 keV ) or 137 Cs (662.7 keV), are used in combination with

  4. Quantum deformed magnon kinematics

    OpenAIRE

    Gómez, César; Hernández Redondo, Rafael

    2007-01-01

    The dispersion relation for planar N=4 supersymmetric Yang-Mills is identified with the Casimir of a quantum deformed two-dimensional kinematical symmetry, E_q(1,1). The quantum deformed symmetry algebra is generated by the momentum, energy and boost, with deformation parameter q=e^{2\\pi i/\\lambda}. Representing the boost as the infinitesimal generator for translations on the rapidity space leads to an elliptic uniformization with crossing transformations implemented through translations by t...

  5. Mechanics of deformable bodies

    CERN Document Server

    Sommerfeld, Arnold Johannes Wilhelm

    1950-01-01

    Mechanics of Deformable Bodies: Lectures on Theoretical Physics, Volume II covers topics on the mechanics of deformable bodies. The book discusses the kinematics, statics, and dynamics of deformable bodies; the vortex theory; as well as the theory of waves. The text also describes the flow with given boundaries. Supplementary notes on selected hydrodynamic problems and supplements to the theory of elasticity are provided. Physicists, mathematicians, and students taking related courses will find the book useful.

  6. Scattering of particles by deformed non-rotating black holes

    International Nuclear Information System (INIS)

    Pei, Guancheng; Bambi, Cosimo

    2015-01-01

    We study the excitation of axial quasi-normal modes of deformed non-rotating black holes by test particles and we compare the associated gravitational wave signal with that expected in general relativity from a Schwarzschild black hole. Deviations from standard predictions are quantified by an effective deformation parameter, which takes into account deviations from both the Schwarzschild metric and the Einstein equations. We show that, at least in the case of non-rotating black holes, it is possible to test the metric around the compact object, in the sense that the measurement of the gravitational wave spectrum can constrain possible deviations from the Schwarzschild solution. (orig.)

  7. Nuclear deformation in the configuration-interaction shell model

    Science.gov (United States)

    Alhassid, Y.; Bertsch, G. F.; Gilbreth, C. N.; Mustonen, M. T.

    2018-02-01

    We review a method that we recently introduced to calculate the finite-temperature distribution of the axial quadrupole operator in the laboratory frame using the auxiliary-field Monte Carlo technique in the framework of the configuration-interaction shell model. We also discuss recent work to determine the probability distribution of the quadrupole shape tensor as a function of intrinsic deformation β,γ by expanding its logarithm in quadrupole invariants. We demonstrate our method for an isotope chain of samarium nuclei whose ground states describe a crossover from spherical to deformed shapes.

  8. Even-Odd Differences and Shape Deformation of Metal Clusters

    OpenAIRE

    Hidetoshi, Nishioka; Yoshio, Takahashi; Department of Physics, Konan University; Faculty of General Education, Yamagata University

    1994-01-01

    The relation between even-odd difference of metal cluster and the deformation of equilibrium shape is studied in terms of two different models; (i) tri-axially deformed harmonic oscillator model, (ii) rectangular box model. Having assumed the matter density ρ kept constant for different shapes of a cluster, we can determine the equilibrium shape both for the two models. The enhancement of HOMO-LUMO gap is obtained and it is ascribed to Jahn-Teller effect. Good agreement of the calculated resu...

  9. Representations of the infinite symmetric group

    CERN Document Server

    Borodin, Alexei

    2016-01-01

    Representation theory of big groups is an important and quickly developing part of modern mathematics, giving rise to a variety of important applications in probability and mathematical physics. This book provides the first concise and self-contained introduction to the theory on the simplest yet very nontrivial example of the infinite symmetric group, focusing on its deep connections to probability, mathematical physics, and algebraic combinatorics. Following a discussion of the classical Thoma's theorem which describes the characters of the infinite symmetric group, the authors describe explicit constructions of an important class of representations, including both the irreducible and generalized ones. Complete with detailed proofs, as well as numerous examples and exercises which help to summarize recent developments in the field, this book will enable graduates to enhance their understanding of the topic, while also aiding lecturers and researchers in related areas.

  10. Symmetric, discrete fractional splines and Gabor systems

    DEFF Research Database (Denmark)

    Søndergaard, Peter Lempel

    2006-01-01

    In this paper we consider fractional splines as windows for Gabor frames. We introduce two new types of symmetric, fractional splines in addition to one found by Unser and Blu. For the finite, discrete case we present two families of splines: One is created by sampling and periodizing the continu......In this paper we consider fractional splines as windows for Gabor frames. We introduce two new types of symmetric, fractional splines in addition to one found by Unser and Blu. For the finite, discrete case we present two families of splines: One is created by sampling and periodizing...... the continuous splines, and one is a truly finite, discrete construction. We discuss the properties of these splines and their usefulness as windows for Gabor frames and Wilson bases....

  11. Symmetric configurations highlighted by collective quantum coherence

    Energy Technology Data Exchange (ETDEWEB)

    Obster, Dennis [Radboud University, Institute for Mathematics, Astrophysics and Particle Physics, Nijmegen (Netherlands); Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Sasakura, Naoki [Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan)

    2017-11-15

    Recent developments in quantum gravity have shown the Lorentzian treatment to be a fruitful approach towards the emergence of macroscopic space-times. In this paper, we discuss another related aspect of the Lorentzian treatment: we argue that collective quantum coherence may provide a simple mechanism for highlighting symmetric configurations over generic non-symmetric ones. After presenting the general framework of the mechanism, we show the phenomenon in some concrete simple examples in the randomly connected tensor network, which is tightly related to a certain model of quantum gravity, i.e., the canonical tensor model. We find large peaks at configurations invariant under Lie-group symmetries as well as a preference for charge quantization, even in the Abelian case. In future study, this simple mechanism may provide a way to analyze the emergence of macroscopic space-times with global symmetries as well as various other symmetries existing in nature, which are usually postulated. (orig.)

  12. Overlap-free symmetric D 0 Lwords

    Directory of Open Access Journals (Sweden)

    Anna Frid

    2001-12-01

    Full Text Available A D0L word on an alphabet Σ={0,1,…,q-1} is called symmetric if it is a fixed point w=φ(w of a morphism φ:Σ * → Σ * defined by φ(i= t 1 + i t 2 + i … t m + i for some word t 1 t 2 … t m (equal to φ(0 and every i ∈ Σ; here a means a mod q. We prove a result conjectured by J. Shallit: if all the symbols in φ(0 are distinct (i.e., if t i ≠ t j for i ≠ j, then the symmetric D0L word w is overlap-free, i.e., contains no factor of the form axaxa for any x ∈ Σ * and a ∈ Σ.

  13. Young—Capelli symmetrizers in superalgebras†

    Science.gov (United States)

    Brini, Andrea; Teolis, Antonio G. B.

    1989-01-01

    Let Supern[U [unk] V] be the nth homogeneous subspace of the supersymmetric algebra of U [unk] V, where U and V are Z2-graded vector spaces over a field K of characteristic zero. The actions of the general linear Lie superalgebras pl(U) and pl(V) span two finite-dimensional K-subalgebras B and [unk] of EndK(Supern[U [unk] V]) that are the centralizers of each other. Young—Capelli symmetrizers and Young—Capelli *-symmetrizers give rise to K-linear bases of B and [unk] containing orthogonal systems of idempotents; thus they yield complete decompositions of B and [unk] into minimal left and right ideals, respectively. PMID:16594014

  14. Factored Facade Acquisition using Symmetric Line Arrangements

    KAUST Repository

    Ceylan, Duygu

    2012-05-01

    We introduce a novel framework for image-based 3D reconstruction of urban buildings based on symmetry priors. Starting from image-level edges, we generate a sparse and approximate set of consistent 3D lines. These lines are then used to simultaneously detect symmetric line arrangements while refining the estimated 3D model. Operating both on 2D image data and intermediate 3D feature representations, we perform iterative feature consolidation and effective outlier pruning, thus eliminating reconstruction artifacts arising from ambiguous or wrong stereo matches. We exploit non-local coherence of symmetric elements to generate precise model reconstructions, even in the presence of a significant amount of outlier image-edges arising from reflections, shadows, outlier objects, etc. We evaluate our algorithm on several challenging test scenarios, both synthetic and real. Beyond reconstruction, the extracted symmetry patterns are useful towards interactive and intuitive model manipulations.

  15. Commutative curvature operators over four-dimensional generalized symmetric

    Directory of Open Access Journals (Sweden)

    Ali Haji-Badali

    2014-12-01

    Full Text Available Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.

  16. Irreducible complexity of iterated symmetric bimodal maps

    Directory of Open Access Journals (Sweden)

    J. P. Lampreia

    2005-01-01

    Full Text Available We introduce a tree structure for the iterates of symmetric bimodal maps and identify a subset which we prove to be isomorphic to the family of unimodal maps. This subset is used as a second factor for a ∗-product that we define in the space of bimodal kneading sequences. Finally, we give some properties for this product and study the ∗-product induced on the associated Markov shifts.

  17. A symmetric Roos bound for linear codes

    NARCIS (Netherlands)

    Duursma, I.M.; Pellikaan, G.R.

    2006-01-01

    The van Lint–Wilson AB-method yields a short proof of the Roos bound for the minimum distance of a cyclic code. We use the AB-method to obtain a different bound for the weights of a linear code. In contrast to the Roos bound, the role of the codes A and B in our bound is symmetric. We use the bound

  18. Symmetric voltage-controlled variable resistance

    Science.gov (United States)

    Vanelli, J. C.

    1978-01-01

    Feedback network makes resistance of field-effect transistor (FET) same for current flowing in either direction. It combines control voltage with source and load voltages to give symmetric current/voltage characteristics. Since circuit produces same magnitude output voltage for current flowing in either direction, it introduces no offset in presense of altering polarity signals. It is therefore ideal for sensor and effector circuits in servocontrol systems.

  19. Resistor Networks based on Symmetrical Polytopes

    Directory of Open Access Journals (Sweden)

    Jeremy Moody

    2015-03-01

    Full Text Available This paper shows how a method developed by Van Steenwijk can be generalized to calculate the resistance between any two vertices of a symmetrical polytope all of whose edges are identical resistors. The method is applied to a number of cases that have not been studied earlier such as the Archimedean polyhedra and their duals in three dimensions, the regular polytopes in four dimensions and the hypercube in any number of dimensions.

  20. Symmetric vs. asymmetric punishment regimes for bribery

    OpenAIRE

    Engel, Christoph; Goerg, Sebastian J.; Yu, Gaoneng

    2012-01-01

    In major legal orders such as UK, the U.S., Germany, and France, bribers and recipients face equally severe criminal sanctions. In contrast, countries like China, Russia, and Japan treat the briber more mildly. Given these differences between symmetric and asymmetric punishment regimes for bribery, one may wonder which punishment strategy is more effective in curbing corruption. For this purpose, we designed and ran a lab experiment in Bonn (Germany) and Shanghai (China) with exactly the same...

  1. Hyperquenched hyaloclastites from Axial Seamount

    Science.gov (United States)

    Zezin, D.; Helo, C.; Richard, D.; Clague, D. A.; Dingwell, D. B.; Stix, J.

    2009-12-01

    We determined apparent cooling rates for basaltic hyaloclastites from Axial caldera, Juan de Fuca Ridge. Samples originate from different stratigraphic layers within the unconsolidated volcaniclastic sequences, on flanks of the volcanic edifice. Water depth is ~1400 m below sea level. The hyaloclastite glass fragments comprise two principal morphologies: (1) angular fragments, and (2) thin glassy melt films interpreted as bubble walls, called deep-sea limu o Pele. A natural cooling rate was estimated for each sample of ~50 carefully selected glass shards. The heat capacity was first measured with a differential scanning calorimeter in two heating scans with heating rates of 20 K/min, and a matching cooling rate between those scans. The fictive temperatures Tf were then determined from both heating cycles, and the natural cooling rate derived by the non-Arrhenian relationship between Tf and cooling rate. All samples display hyperquenched states, manifested in a strong exothermic energy release during the initial heating cycle before reaching the glass transition. Cooling rates range from 10 6.73 K/s to 10 3.94 K/s for the limu, and 10 4.92 K/s to 10 2.34 K/s for the angular fragments. Almost all samples of limu shards show elevated cooling rates compared to their angular counterparts of comparable grain mass. In addition, the exothermic part of the enthalpy curves reveal two superimposed relaxation domains, the main broad exothermal peak, ranging from ~350 K to the onset of the glass transition, and a small subordinate peak/shoulder occurring between 550 K and 700 K. The magnitude of the latter varies from clearly identifiable to nearly absent, and tends to be more pronounced in curves obtained from angular fragments. The main exothermal peak is related to the frozen-in structure of the glass and consequently to its thermal history when passing through the glass transition. The subordinate peak may represent strain rate-induced and tensile stress accumulation

  2. A Toroidally Symmetric Plasma Simulation code for design of position and shape control on tokamak plasmas

    International Nuclear Information System (INIS)

    Takase, Haruhiko; Senda, Ikuo

    1999-01-01

    A Toroidally Symmetric Plasma Simulation (TSPS) code has been developed for investigating the position and shape control on tokamak plasmas. The analyses of three-dimensional eddy currents on the conducting components around the plasma and the two-dimensional magneto-hydrodynamic (MHD) equilibrium are taken into account in this code. The code can analyze the plasma position and shape control during the minor disruption in which the deformation of plasma is not negligible. Using the ITER (International Thermonuclear Experimental Reactor) parameters, some examples of calculations are shown in this paper. (author)

  3. Symmetric scrolled packings of multilayered carbon nanoribbons

    Science.gov (United States)

    Savin, A. V.; Korznikova, E. A.; Lobzenko, I. P.; Baimova, Yu. A.; Dmitriev, S. V.

    2016-06-01

    Scrolled packings of single-layer and multilayer graphene can be used for the creation of supercapacitors, nanopumps, nanofilters, and other nanodevices. The full atomistic simulation of graphene scrolls is restricted to consideration of relatively small systems in small time intervals. To overcome this difficulty, a two-dimensional chain model making possible an efficient calculation of static and dynamic characteristics of nanoribbon scrolls with allowance for the longitudinal and bending stiffness of nanoribbons is proposed. The model is extended to the case of scrolls of multilayer graphene. Possible equilibrium states of symmetric scrolls of multilayer carbon nanotribbons rolled up so that all nanoribbons in the scroll are equivalent are found. Dependences of the number of coils, the inner and outer radii, lowest vibrational eigenfrequencies of rolled packages on the length L of nanoribbons are obtained. It is shown that the lowest vibrational eigenfrequency of a symmetric scroll decreases with a nanoribbon length proportionally to L -1. It is energetically unfavorable for too short nanoribbons to roll up, and their ground state is a stack of plane nanoribbons. With an increasing number k of layers, the nanoribbon length L necessary for creation of symmetric scrolls increases. For a sufficiently small number of layers k and a sufficiently large nanoribbon length L, the scrolled packing has the lowest energy as compared to that of stack of plane nanoribbons and folded structures. The results can be used for development of nanomaterials and nanodevices on the basis of graphene scrolled packings.

  4. Is the Universe matter-antimatter symmetric

    International Nuclear Information System (INIS)

    Alfven, H.

    1976-09-01

    According to the symmetric cosmology there should be antimatter regions in space which are equally as large as the matter regions. The regions of different kind are separated by Leidenfrost layers, which may be very thin and not observable from a distance. This view has met resistance which in part is based on the old view that the dilute interstellar and intergalactic medium is more or less homogeneous. However, through space research in the magnetosphere and interplanetary space we know that thin layers, dividing space into regions of different magnetisation, exist and based on this it is concluded that space in general has a cellular structure. This result may break down the psychological resistance to the symmetric theory. The possibility that every second star in our galaxy consists of antimatter is discussed, and it is shown that this view is not in conflict with any observations. As most stars are likely to be surrounded by solar systems of a structure like our own, it is concluded that collisions between comets and antistars (or anticomets and stars) would be rather frequent. Such collisions would result in phenomena of the same type as the observed cosmic γ-ray bursts. Another support for the symmetric cosmology is the continuous X-ray background radiation. Also many of the observed large energy releases in cosmos are likely to be due to annihilation

  5. High-resolution adaptive optics scanning laser ophthalmoscope with multiple deformable mirrors

    Science.gov (United States)

    Chen, Diana C.; Olivier, Scot S.; Jones; Steven M.

    2010-02-23

    An adaptive optics scanning laser ophthalmoscopes is introduced to produce non-invasive views of the human retina. The use of dual deformable mirrors improved the dynamic range for correction of the wavefront aberrations compared with the use of the MEMS mirror alone, and improved the quality of the wavefront correction compared with the use of the bimorph mirror alone. The large-stroke bimorph deformable mirror improved the capability for axial sectioning with the confocal imaging system by providing an easier way to move the focus axially through different layers of the retina.

  6. Axial focusing of energy from a hypervelocity impact on earth

    International Nuclear Information System (INIS)

    Boslough, M.B.; Chael, E.P.; Trucano, T.G.; Crawford, D.A.

    1994-01-01

    We have performed computational simulations to determine how energy from a large hypervelocity impact on the Earth's surface would couple to its interior. Because of the first-order axial symmetry of both the impact energy source and the stress-wave velocity structure of the Earth, a disproportionate amount of energy is dissipated along the axis defined by the impact point and its antipode (point opposite the impact). For a symmetric and homogeneous Earth model, all the impact energy that is radiated as seismic waves into the Earth at a given takeoff angle (ray parameter), independent of azimuthal direction, is refocused (minus attenuation) on the axis of symmetry, regardless of the number of reflections and refractions it has experienced. Material on or near the axis of symmetry experiences more strain cycles with much greater amplitude than elsewhere, and therefore experiences more irreversible heating. The focusing is most intense in the upper mantle, within the asthenosphere, where seismic energy is most effectively converted to heat. For a sufficiently energetic impact, this mechanism might generate enough local heating to create an isostatic instability leading to uplift, possibly resulting in rifting, volcanism, or other rearrangement of the interior dynamics of the planet. These simulations demonstrate how hypervelocity impact energy can be transported to the Earth's interior, supporting the possibility of a causal link between large impacts on Earth and major internally-driven geophysical processes

  7. Axial focusing of energy from a hypervelocity impact on earth

    Energy Technology Data Exchange (ETDEWEB)

    Boslough, M.B.; Chael, E.P.; Trucano, T.G.; Crawford, D.A.

    1994-12-01

    We have performed computational simulations to determine how energy from a large hypervelocity impact on the Earth`s surface would couple to its interior. Because of the first-order axial symmetry of both the impact energy source and the stress-wave velocity structure of the Earth, a disproportionate amount of energy is dissipated along the axis defined by the impact point and its antipode (point opposite the impact). For a symmetric and homogeneous Earth model, all the impact energy that is radiated as seismic waves into the Earth at a given takeoff angle (ray parameter), independent of azimuthal direction, is refocused (minus attenuation) on the axis of symmetry, regardless of the number of reflections and refractions it has experienced. Material on or near the axis of symmetry experiences more strain cycles with much greater amplitude than elsewhere, and therefore experiences more irreversible heating. The focusing is most intense in the upper mantle, within the asthenosphere, where seismic energy is most effectively converted to heat. For a sufficiently energetic impact, this mechanism might generate enough local heating to create an isostatic instability leading to uplift, possibly resulting in rifting, volcanism, or other rearrangement of the interior dynamics of the planet. These simulations demonstrate how hypervelocity impact energy can be transported to the Earth`s interior, supporting the possibility of a causal link between large impacts on Earth and major internally-driven geophysical processes.

  8. Numerical optimisation of an axial turbine; Numerische Optimierung einer Axialturbine

    Energy Technology Data Exchange (ETDEWEB)

    Welzel, B.

    1998-12-31

    The author presents a method for automatic shape optimisation of components with internal or external flow. The method combines a program for numerical calculation of frictional turbulent flow with an optimisation algorithm. Algorithms are a simplex search strategy and an evolution strategy. The shape of the component to be optimized is variable due to shape parameters modified by the algorithm. For each shape, a flow calculation is carried out on whose basis a functional value like performance, loss, lift or resistivity is calculated. For validation, the optimisation method is used in simple examples with known solutions. It is applied. It is applied to the components of a slow-running axial turbine. Components with accelerated and delayed rotationally symmetric flow and 2D blade profiles are optimized. [Deutsch] Es wird eine Methode zur automatischen Formoptimierung durchstroemter oder umstroemter Bauteile vorgestellt. Diese koppelt ein Programm zur numerischen Berechnung reibungsbehafteter turbulenter Stroemungen mit einem Optimierungsalgorithmus. Dabei kommen als Algorithmen eine Simplex-Suchstrategie und eine Evolutionsstrategie zum Einsatz. Die Form des zu optimierenden Koerpers ist durch Formparameter, die vom Algorithmus veraendert werden, variabel. Fuer jede Form wird eine Stroemungsberechnung durchgefuehrt und mit dieser ein Funktionswert wie Wirkungsgrad, Verlust, Auftrieb oder Widerstandskraft berechnet. Die Optimierungsmethode wird zur Validierung in einfachen Beispielen mit bekannter Loesung eingesetzt. Zur Anwendung kommt sie in den einzelnen Komponenten einer langsamlaeufigen Axialturbine. Es werden Bauteile mit beschleunigter und verzoegerter rotationssymmetrischer Stroemung und 2D-Schaufelprofile optimiert. (orig.)

  9. On the harmonic starlike functions with respect to symmetric ...

    African Journals Online (AJOL)

    In the present paper, we introduce the notions of functions harmonic starlike with respect to symmetric, conjugate and symmetric conjugate points. Such results as coefficient inequalities and structural formulae for these function classes are proved. Keywords: Harmonic functions, harmonic starlike functions, symmetric points, ...

  10. Intracrystalline deformation of calcite

    NARCIS (Netherlands)

    Bresser, J.H.P. de

    1991-01-01

    It is well established from observations on natural calcite tectonites that intracrystalline plastic mechanisms are important during the deformation of calcite rocks in nature. In this thesis, new data are presented on fundamental aspects of deformation behaviour of calcite under conditions where

  11. The Spherical Deformation Model

    DEFF Research Database (Denmark)

    Hobolth, Asgar

    2003-01-01

    Miller et al. (1994) describe a model for representing spatial objects with no obvious landmarks. Each object is represented by a global translation and a normal deformation of a sphere. The normal deformation is defined via the orthonormal spherical-harmonic basis. In this paper we analyse the s...

  12. Dual formulation of covariant nonlinear duality-symmetric action of kappa-symmetric D3-brane

    Science.gov (United States)

    Vanichchapongjaroen, Pichet

    2018-02-01

    We study the construction of covariant nonlinear duality-symmetric actions in dual formulation. Essentially, the construction is the PST-covariantisation and nonlinearisation of Zwanziger action. The covariantisation made use of three auxiliary scalar fields. Apart from these, the construction proceed in a similar way to that of the standard formulation. For example, the theories can be extended to include interactions with external fields, and that the theories possess two local PST symmetries. We then explicitly demonstrate the construction of covariant nonlinear duality-symmetric actions in dual formulation of DBI theory, and D3-brane. For each of these theories, the twisted selfduality condition obtained from duality-symmetric actions are explicitly shown to match with the duality relation between field strength and its dual from the one-potential actions. Their on-shell actions between the duality-symmetric and the one-potential versions are also shown to match. We also explicitly prove kappa-symmetry of the covariant nonlinear duality-symmetric D3-brane action in dual formulation.

  13. Vector and axial constants of the baryon decuplet

    International Nuclear Information System (INIS)

    Belyaev, V.M.; Blok, B.Y.; Kogan, Y.I.

    1985-01-01

    On the basis of the QCD sum rules for the polarization operator in external axial and vector fields we determine the vector and axial transition constants in the 3/2 + baryon decuplet. We show that the renormalization of the axial constant is due to the interaction of the external axial field with the quark condensate

  14. Δ(1232) Axial Charge and Form Factors from Lattice QCD

    International Nuclear Information System (INIS)

    Alexandrou, Constantia; Gregory, Eric B.; Korzec, Tomasz; Koutsou, Giannis; Negele, John W.; Sato, Toru; Tsapalis, Antonios

    2011-01-01

    We present the first calculation on the Δ axial vector and pseudoscalar form factors using lattice QCD. Two Goldberger-Treiman relations are derived and examined. A combined chiral fit is performed to the nucleon axial charge, N to Δ axial transition coupling constant and Δ axial charge.

  15. Using axial magnetized permanent rings to build axial gradient magnetic field

    International Nuclear Information System (INIS)

    Peng Quanling

    2003-01-01

    Axial field produced by an axially magnetized permanent ring was studied. For two permanent magnet rings, if they are magnetized in the same direction, a nearly uniform axial field can be produced; if they are magnetized in opposite direction, an axial gradient field can be produced in the region between the two permanent rings, with the field strength changing from -B 0 to B 0 . A high gradient axial magnetic field has been built by using two axially magnetized permanent rings, the measured field results agree with the PANDIRA calculation very well. It is desirable that the field gradient can be varied to match various requirements. A method to produce the variable gradient field is presented. Axial gradient field can also be used as a beam focusing facility for linear accelerator if axial periodic field can be produced. Its magnetic field is similar to that of a solenoid, in which, large stray field will leak to the outside environment. A method for shielding the outside stray field is discussed

  16. Optimization of residual heat removal pump axial thrust and axial bearing

    International Nuclear Information System (INIS)

    Schubert, F.

    1996-01-01

    The residual heat removal (RHR) pumps of German 1300 megawatt pressurized-water reactor (PWR) power plants are of the single stage end suction type with volute casing or with diffuser and forged circular casing. Due to the service conditions the pumps have to cover the full capacity range as well as a big variation in suction static pressure. This results in a big difference in the axial thrust that has to be borne by the axial bearing. Because these pumps are designed to operate without auxiliary systems (things that do not exist can not fail), they are equipped with antifriction bearings and sump oil lubrication. To minimize the heat production within the bearing casing, a number of PWR plants have pumps with combined axial/radial bearings of the ball type. Due to the fact that the maximum axial thrust caused by static pressure and hydrodynamic forces on the impeller is too big to be borne by that type of axial bearing, the impellers were designed to produce a hydrodynamic axial force that counteracts the static axial force. Thus, the resulting axial thrust may change direction when the static pressure varies

  17. Optimization of residual heat removal pump axial thrust and axial bearing

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, F.

    1996-12-01

    The residual heat removal (RHR) pumps of German 1300 megawatt pressurized-water reactor (PWR) power plants are of the single stage end suction type with volute casing or with diffuser and forged circular casing. Due to the service conditions the pumps have to cover the full capacity range as well as a big variation in suction static pressure. This results in a big difference in the axial thrust that has to be borne by the axial bearing. Because these pumps are designed to operate without auxiliary systems (things that do not exist can not fail), they are equipped with antifriction bearings and sump oil lubrication. To minimize the heat production within the bearing casing, a number of PWR plants have pumps with combined axial/radial bearings of the ball type. Due to the fact that the maximum axial thrust caused by static pressure and hydrodynamic forces on the impeller is too big to be borne by that type of axial bearing, the impellers were designed to produce a hydrodynamic axial force that counteracts the static axial force. Thus, the resulting axial thrust may change direction when the static pressure varies.

  18. Limb flexion-induced axial compression and bending in human femoropopliteal artery segments.

    Science.gov (United States)

    Poulson, William; Kamenskiy, Alexey; Seas, Andreas; Deegan, Paul; Lomneth, Carol; MacTaggart, Jason

    2018-02-01

    High failure rates of femoropopliteal artery (FPA) interventions are often attributed in part to severe mechanical deformations that occur with limb movement. Axial compression and bending of the FPA likely play significant roles in FPA disease development and reconstruction failure, but these deformations are poorly characterized. The goal of this study was to quantify axial compression and bending of human FPAs that are placed in positions commonly assumed during the normal course of daily activities. Retrievable nitinol markers were deployed using a custom-made catheter system into 28 in situ FPAs of 14 human cadavers. Contrast-enhanced, thin-section computed tomography images were acquired with each limb in the standing (180 degrees), walking (110 degrees), sitting (90 degrees), and gardening (60 degrees) postures. Image segmentation and analysis allowed relative comparison of spatial locations of each intra-arterial marker to determine axial compression and bending using the arterial centerlines. Axial compression in the popliteal artery (PA) was greater than in the proximal superficial femoral artery (SFA) or the adductor hiatus (AH) segments in all postures (P = .02). Average compression in the SFA, AH, and PA ranged from 9% to 15%, 11% to 19%, and 13% to 25%, respectively. The FPA experienced significantly more acute bending in the AH and PA segments compared with the proximal SFA (P < .05) in all postures. In the walking, sitting, and gardening postures, average sphere radii in the SFA, AH, and PA ranged from 21 to 27 mm, 10 to 18 mm, and 8 to 19 mm, whereas bending angles ranged from 150 to 157 degrees, 136 to 147 degrees, and 137 to 148 degrees, respectively. The FPA experiences significant axial compression and bending during limb flexion that occur at even modest limb angles. Moreover, different segments of the FPA appear to undergo significantly different degrees of deformation. Understanding the effects of limb flexion on axial compression and

  19. Strain reduced critical current in Bi-2223/Ag superconductors under axial tension and compression

    International Nuclear Information System (INIS)

    Haken, B. ten; Godeke, A.; Kate, H.H.J. ten

    1997-01-01

    The critical current of Ag sheathed Bi(Pb)SrCaCuO-2223 tape conductors is investigated as a function of various strain components. A reduction of the critical current occurs due to both tensile or a compressive strain. The critical current reduction is qualitatively similar with the results as observed in Bi-2212 conductors. An axial compression leads to an immediate critical current reduction. The critical current in an axially elongated sample remains nearly constant up to a certain limit typically close to 0.3% strain. For a larger elongation the critical current reduces rapidly. A transverse pressure acting on the tape surface leads also to an irreversible critical current reduction. This behavior is compared with the influence of an axial compression with an effective Young's modulus. The deformation induced critical current reductions in Bi-2223 conductors can be described by a model that is already proposed for Bi-2212 conductors. This model is based on the irreversible nature of the critical current reduction due to a certain deformation

  20. Partitioning of elastic energy in open-cell foams under finite deformations

    International Nuclear Information System (INIS)

    Harb, Rani; Taciroglu, Ertugrul; Ghoniem, Nasr

    2013-01-01

    The challenges associated with the computational modeling and simulation of solid foams are threefold—namely, the proper representation of an intricate geometry, the capability to accurately describe large deformations, and the extremely arduous numerical detection and enforcement of self-contact during crushing. The focus of this study is to assess and accurately quantify the effects of geometric nonlinearities (i.e. finite deformations, work produced under buckling-type motions) on the predicted mechanical response of open-cell foams of aluminum and polyurethane prior to the onset of plasticity and contact. Beam elements endowed with three-dimensional finite deformation kinematics are used to represent the foam ligaments. Ligament cross-sections are discretized through a fiber-based formulation that provides accurate information regarding the onset of plasticity, given the uniaxial yield stress–strain data for the bulk material. It is shown that the (hyper-) elastic energy partition within ligaments is significantly influenced by kinematic nonlinearities, which frequently cause strong coupling between the axial, bending, shear and torsional deformation modes. This deformation mode-coupling is uniquely obtained as a result of evaluating equilibrium in the deformed configuration, and is undetectable when small deformations are assumed. The relationship between the foam topology and energy partitioning at various stages of moderate deformation is also investigated. Coupled deformation modes are shown to play an important role, especially in perturbed Kelvin structures where over 70% of the energy is stored in coupled axial-shear and axial-bending modes. The results from this study indicate that it may not always be possible to accurately simulate the onset of plasticity (and the response beyond this regime) if finite deformation kinematics are neglected

  1. Improving the lattice axial vector current

    International Nuclear Information System (INIS)

    Horsley, R.; Perlt, H.; Schiller, A.; Zanotti, J.M.

    2015-11-01

    For Wilson and clover fermions traditional formulations of the axial vector current do not respect the continuum Ward identity which relates the divergence of that current to the pseudoscalar density. Here we propose to use a point-split or one-link axial vector current whose divergence exactly satisfies a lattice Ward identity, involving the pseudoscalar density and a number of irrelevant operators. We check in one-loop lattice perturbation theory with SLiNC fermion and gauge plaquette action that this is indeed the case including order O(a) effects. Including these operators the axial Ward identity remains renormalisation invariant. First preliminary results of a nonperturbative check of the Ward identity are also presented.

  2. Diagnostic value of axial CT scan

    International Nuclear Information System (INIS)

    Kiuchi, Sousuke

    1983-01-01

    Axial CT scan was used to investigate the radiological details of the temporal bone of 33 patients with chronic otitis media, secondary cholesteatoma, sensorineural hearing loss, Meniere disease, vertigo, facial spasm, and neoplasma. The axial scans showed anatomic details of the temporal bone, and at the same time clearly demonstrated the extent of the soft-tissue masses in the middle ears, as well as the destructions of the ossicles. Bone changes of the anterior walls of the epitympanum and external auditory meatus were more clearly demonstrated than by coronary CT scan. However, the axial scan had the disadvantages in demonstrating the stapes, crista transversa, and the mastoid portion of the facial canal. (author)

  3. Mean Stress Effect on the Axial Fatigue Strength of DIN 34CrNiMo6 Quenched and Tempered Steel

    Directory of Open Access Journals (Sweden)

    Luis Pallarés-Santasmartas

    2018-03-01

    Full Text Available The present study consists of a theoretical and experimental investigation of the effect of axial mean stresses on the high cycle fatigue behaviour of DIN 34CrNiMo6 high strength steel in quenched and tempered conditions. The axial S-N curves under 4 different stresses ratios were obtained. Experimental results show that increasing the value of the tension mean stresses gradually reduces the axial stress amplitude the material can withstand without failure. Moreover, the compressive mean stresses show a beneficial effect in terms of the axial fatigue strength, resulting in a non-symmetrical Haigh diagram. A historic review of the axial mean stress effect is presented, showing the shape of the Haigh diagrams for ductile metals and presenting the most-known empirical and physical theories. The results for this steel are compared with the physical theories of Findley based on the critical plane; the Froustey’s and Marin’s methods, based on energetic theories; and the Crossland invariants method based on the Gough’s theory of fatigue damage. Taking into account the experimental results, a physical fatigue function based on energetic considerations is proposed. Its application to the fatigue case with mean stresses can be interpreted in terms of a balance of elastic energies of distortion and volume change. Macro-analyses of specimen fracture appearance were conducted in order to obtain the fracture characteristics for different mean stress values.

  4. Large Deformation Dynamic Bending of Composite Beams

    Science.gov (United States)

    Derian, E. J.; Hyer, M. W.

    1986-01-01

    Studies were conducted on the large deformation response of composite beams subjected to a dynamic axial load. The beams were loaded with a moderate eccentricity to promote bending. The study was primarily experimental but some finite element results were obtained. Both the deformation and the failure of the beams were of interest. The static response of the beams was also studied to determine potential differences between the static and dynamic failure. Twelve different laminate types were tested. The beams were loaded dynamically with a gravity driven impactor traveling at 19.6 ft/sec and quasi-static tests were conducted on identical beams in a displacement controlled manner. For laminates of practical interest, the failure modes under static and dynamic loadings were identical. Failure in most of the laminate types occurred in a single event involving 40% to 50% of the plies. However, failure in laminates with 30 deg or 15 deg off-axis plies occured in several events. All laminates exhibited bimodular elastic properties. Using empirically determined flexural properties, a finite element analysis was reasonably accurate in predicting the static and dynamic deformation response.

  5. Spherically symmetric self-similar universe

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, C C [Toronto Univ., Ontario (Canada)

    1979-10-01

    A spherically symmetric self-similar dust-filled universe is considered as a simple model of a hierarchical universe. Observable differences between the model in parabolic expansion and the corresponding homogeneous Einstein-de Sitter model are considered in detail. It is found that an observer at the centre of the distribution has a maximum observable redshift and can in principle see arbitrarily large blueshifts. It is found to yield an observed density-distance law different from that suggested by the observations of de Vaucouleurs. The use of these solutions as central objects for Swiss-cheese vacuoles is discussed.

  6. Dijet rates with symmetric Et cuts

    International Nuclear Information System (INIS)

    Banfi, Andrea; Dasgupta, Mrinal

    2004-01-01

    We consider dijet production in the region where symmetric cuts on the transverse energy, E t , are applied to the jets. In this region next-to-leading order calculations are unreliable and an all-order resummation of soft gluon effects is needed, which we carry out. Although, for illustrative purposes, we choose dijets produced in deep inelastic scattering, our general ideas apply additionally to dijets produced in photoproduction or gamma-gamma processes and should be relevant also to the study of prompt di-photon E t spectra in association with a recoiling jet, in hadron-hadron processes. (author)

  7. Covariant, chirally symmetric, confining model of mesons

    International Nuclear Information System (INIS)

    Gross, F.; Milana, J.

    1991-01-01

    We introduce a new model of mesons as quark-antiquark bound states. The model is covariant, confining, and chirally symmetric. Our equations give an analytic solution for a zero-mass pseudoscalar bound state in the case of exact chiral symmetry, and also reduce to the familiar, highly successful nonrelativistic linear potential models in the limit of heavy-quark mass and lightly bound systems. In this fashion we are constructing a unified description of all the mesons from the π through the Υ. Numerical solutions for other cases are also presented

  8. Symmetric Logic Synthesis with Phase Assignment

    OpenAIRE

    Benschop, N. F.

    2001-01-01

    Decomposition of any Boolean Function BF_n of n binary inputs into an optimal inverter coupled network of Symmetric Boolean functions SF_k (k \\leq n) is described. Each SF component is implemented by Threshold Logic Cells, forming a complete and compact T-Cell Library. Optimal phase assignment of input polarities maximizes local symmetries. The "rank spectrum" is a new BF_n description independent of input ordering, obtained by mapping its minterms onto an othogonal n \\times n grid of (transi...

  9. Elastic energy for reflection-symmetric topologies

    International Nuclear Information System (INIS)

    Majumdar, A; Robbins, J M; Zyskin, M

    2006-01-01

    Nematic liquid crystals in a polyhedral domain, a prototype for bistable displays, may be described by a unit-vector field subject to tangent boundary conditions. Here we consider the case of a rectangular prism. For configurations with reflection-symmetric topologies, we derive a new lower bound for the one-constant elastic energy. For certain topologies, called conformal and anticonformal, the lower bound agrees with a previous result. For the remaining topologies, called nonconformal, the new bound is an improvement. For nonconformal topologies we derive an upper bound, which differs from the lower bound by a factor depending only on the aspect ratios of the prism

  10. Nanotribology of Symmetric and Asymmetric Liquid Lubricants

    Directory of Open Access Journals (Sweden)

    Shinji Yamada

    2010-03-01

    Full Text Available When liquid molecules are confined in a narrow gap between smooth surfaces, their dynamic properties are completely different from those of the bulk. The molecular motions are highly restricted and the system exhibits solid-like responses when sheared slowly. This solidification behavior is very dependent on the molecular geometry (shape of liquids because the solidification is induced by the packing of molecules into ordered structures in confinement. This paper reviews the measurements of confined structures and friction of symmetric and asymmetric liquid lubricants using the surface forces apparatus. The results show subtle and complex friction mechanisms at the molecular scale.

  11. Unary self-verifying symmetric difference automata

    CSIR Research Space (South Africa)

    Marais, Laurette

    2016-07-01

    Full Text Available stream_source_info Marais_2016_ABSTRACT.pdf.txt stream_content_type text/plain stream_size 796 Content-Encoding ISO-8859-1 stream_name Marais_2016_ABSTRACT.pdf.txt Content-Type text/plain; charset=ISO-8859-1 18th... International Workshop on Descriptional Complexity of Formal Systems, 5 - 8 July 2016, Bucharest, Romania Unary self-verifying symmetric difference automata Laurette Marais1,2 and Lynette van Zijl1(B) 1 Department of Computer Science, Stellenbosch...

  12. Characterisation of an AGATA symmetric prototype detector

    International Nuclear Information System (INIS)

    Nelson, L.; Dimmock, M.R.; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Nolan, P.J.; Lazarus, I.; Simpson, J.; Medina, P.; Santos, C.; Parisel, C.

    2007-01-01

    The Advanced GAmma Tracking Array (AGATA) symmetric prototype detector has been tested at University of Liverpool. A 137 Ce source, collimated to a 2 mm diameter, was scanned across the front face of the detector and data were acquired utilising digital electronics. Pulse shapes from a selection of well-defined photon interaction positions have been analysed to investigate the position sensitivity of the detector. Furthermore, the application of the electric field simulation software, Multi Geometry Simulation (MGS) to generate theoretical pulse shapes for AGATA detectors has been presented

  13. How Symmetrical Assumptions Advance Strategic Management Research

    DEFF Research Database (Denmark)

    Foss, Nicolai Juul; Hallberg, Hallberg

    2014-01-01

    We develop the case for symmetrical assumptions in strategic management theory. Assumptional symmetry obtains when assumptions made about certain actors and their interactions in one of the application domains of a theory are also made about this set of actors and their interactions in other...... application domains of the theory. We argue that assumptional symmetry leads to theoretical advancement by promoting the development of theory with greater falsifiability and stronger ontological grounding. Thus, strategic management theory may be advanced by systematically searching for asymmetrical...

  14. Characterisation of an AGATA symmetric prototype detector

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, L. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom)]. E-mail: ln@ns.ph.liv.ac.uk; Dimmock, M.R. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom)]. E-mail: mrd@ns.ph.liv.ac.uk; Boston, A.J. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom)]. E-mail: ajb@ns.ph.liv.ac.uk; Boston, H.C. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Cresswell, J.R. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Nolan, P.J. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Lazarus, I. [CCLRC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Simpson, J. [CCLRC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Medina, P. [Institut de Recherches Subatomiques, Strasbourg BP28 67037 (France); Santos, C. [Institut de Recherches Subatomiques, Strasbourg BP28 67037 (France); Parisel, C. [Institut de Recherches Subatomiques, Strasbourg BP28 67037 (France)

    2007-04-01

    The Advanced GAmma Tracking Array (AGATA) symmetric prototype detector has been tested at University of Liverpool. A {sup 137}Ce source, collimated to a 2 mm diameter, was scanned across the front face of the detector and data were acquired utilising digital electronics. Pulse shapes from a selection of well-defined photon interaction positions have been analysed to investigate the position sensitivity of the detector. Furthermore, the application of the electric field simulation software, Multi Geometry Simulation (MGS) to generate theoretical pulse shapes for AGATA detectors has been presented.

  15. Soft theorems for shift-symmetric cosmologies

    Science.gov (United States)

    Finelli, Bernardo; Goon, Garrett; Pajer, Enrico; Santoni, Luca

    2018-03-01

    We derive soft theorems for single-clock cosmologies that enjoy a shift symmetry. These so-called consistency conditions arise from a combination of a large diffeomorphism and the internal shift symmetry and fix the squeezed limit of all correlators with a soft scalar mode. As an application, we show that our results reproduce the squeezed bispectrum for ultra-slow-roll inflation, a particular shift-symmetric, nonattractor model which is known to violate Maldacena's consistency relation. Similar results have been previously obtained by Mooij and Palma using background-wave methods. Our results shed new light on the infrared structure of single-clock cosmological spacetimes.

  16. Pion condensation in symmetric nuclear matter

    International Nuclear Information System (INIS)

    Shamsunnahar, T.; Saha, S.; Kabir, K.; Nath, L.M.

    1991-01-01

    We have investigated the possibility of pion condensation in symmetric nuclear matter using a model of pion-nucleon interaction based essentially on chiral SU(2) x SU(2) symmetry. We have found that pion condensation is not possible for any finite value of the density. Consequently, no critical opalescence phenomenon is likely to be seen in pion-nucleus scattering nor is it likely to be possible to explain the EMC effect in terms of an increased number of pions in the nucleus. (author)

  17. Baryon symmetric big-bang cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Stecker, F.W.

    1978-04-01

    The framework of baryon-symmetric big-bang cosmology offers the greatest potential for deducing the evolution of the universe as a consequence of physical laws and processes with the minimum number of arbitrary assumptions as to initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the universe and how galaxies and galaxy clusters are formed, and also provides the only acceptable explanation at present for the origin of the cosmic gamma ray background radiation.

  18. Baryon symmetric big-bang cosmology

    International Nuclear Information System (INIS)

    Stecker, F.W.

    1978-04-01

    The framework of baryon-symmetric big-bang cosmology offers the greatest potential for deducing the evolution of the universe as a consequence of physical laws and processes with the minimum number of arbitrary assumptions as to initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the universe and how galaxies and galaxy clusters are formed, and also provides the only acceptable explanation at present for the origin of the cosmic gamma ray background radiation

  19. Geometrodynamics of spherically symmetric Lovelock gravity

    International Nuclear Information System (INIS)

    Kunstatter, Gabor; Taves, Tim; Maeda, Hideki

    2012-01-01

    We derive the Hamiltonian for spherically symmetric Lovelock gravity using the geometrodynamics approach pioneered by Kuchar (1994 Phys. Rev. D 50 3961) in the context of four-dimensional general relativity. When written in terms of the areal radius, the generalized Misner-Sharp mass and their conjugate momenta, the generic Lovelock action and Hamiltonian take on precisely the same simple forms as in general relativity. This result supports the interpretation of Lovelock gravity as the natural higher dimensional extension of general relativity. It also provides an important first step towards the study of the quantum mechanics, Hamiltonian thermodynamics and formation of generic Lovelock black holes. (fast track communication)

  20. Axial Vircator for Electronic Warfare Applications

    Directory of Open Access Journals (Sweden)

    L. Drazan

    2009-12-01

    Full Text Available This paper deals with a high power microwave generator with virtual cathode – vircator in axial release for electronic warfare applications. The classification of directed energy weapons microwave (DEWM is introduced together with basic block diagrams of a particular class of DEWM. In the paper, methods for designing vircator pulsed power supply, axial vircator structure, measurement methods and experimental results are presented. The vircator in electromagnetic ammunition is powered by magneto-cumulative generator and in weapons for defense of objects (WDO, it is powered by Marx generator. The possible applications of a vircator in the DEWM area are discussed.

  1. Axial loaded MRI of the lumbar spine

    Energy Technology Data Exchange (ETDEWEB)

    Saifuddin, A. E-mail: asaifuddin@aol.com; Blease, S.; MacSweeney, E

    2003-09-01

    Magnetic resonance imaging is established as the technique of choice for assessment of degenerative disorders of the lumbar spine. However, it is routinely performed with the patient supine and the hips and knees flexed. The absence of axial loading and lumbar extension results in a maximization of spinal canal dimensions, which may in some cases, result in failure to demonstrate nerve root compression. Attempts have been made to image the lumbar spine in a more physiological state, either by imaging with flexion-extension, in the erect position or by using axial loading. This article reviews the literature relating to the above techniques.

  2. Axial nucleon form factors from lattice QCD

    International Nuclear Information System (INIS)

    Alexandrou, C.; Brinet, M.; Carbonell, J.; Harraud, P. A.; Papinutto, M.; Constantinou, M.; Guichon, P.; Jansen, K.; Korzec, T.

    2011-01-01

    We present results on the nucleon axial form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length L=2.1 fm and L=2.8 fm. Cut-off effects are investigated using three different values of the lattice spacings, namely a=0.089 fm, a=0.070 fm and a=0.056 fm. The nucleon axial charge is obtained in the continuum limit and chirally extrapolated to the physical pion mass enabling comparison with experiment.

  3. Axial injection in Orsay superconducting cyclotron

    International Nuclear Information System (INIS)

    Depauw, J.; Kugler, M.F.; Legoff, A.; Potier, J.C.; Richomme, A.; Skowron, R.; Mandrillon, P.; Schapira, J.P.

    1983-01-01

    The compact superconducting cyclotron currently planned at IPN at Orsay is designed for light ion acceleration together with heavy ion acceleration. From the beginning, for this reason, a central geometry able to receive an inflector (to 90deg C) allowing the axial injection of low energy ion beams given by an outer source. The present study is aimed at showing the technical feasibility of theoretical results obtained on axial injection. First experimental study has been made of spatial repartition in three dimensions of electric potential developed by a central geometry of 3 electrodes. Then, the electric study of an electrostatic mirror has been made [fr

  4. «FLARES» IN AXIAL SPONDYLOARTHRITIS

    Directory of Open Access Journals (Sweden)

    Sh. F. Erdes

    2016-01-01

    Full Text Available The clear definition of the concept of «flare in axial spondyloarthritis» is of paramount importance for clinical trials and routine practice in particular. It will be able to unify the characteristics of outcomes over a particular period of time on the one hand and to standardize therapeutic approaches on the other. On 4 February 2016, the journal Annals of Rheumatic Diseases published the on-line paper «Preliminary definitions of 'flare' in axial spondyloarthritis, based on pain, BASDAI and ASDAS-CRP: an ASAS initiative» by L. Gossec et al., which was devoted to this topic.

  5. Black holes and gravitating axially symmetric non-abelian solitons in d 3+1 and d = 4+1

    International Nuclear Information System (INIS)

    Radu, Eugen; Shnir, Yasha; Tchrakian, D. H.

    2010-01-01

    We construct static, asymptotically flat solutions of SU(2) Einstein-Yang-Mills (EYM) theory in 4+1 dimensions, subject to bi-azimuthal symmetry. The results are compared with similar solutions of the SU(2) Yang--Mills--dilaton (YMd) model. Both particle-like and black hole solutions are considered.

  6. Computation of Propagation Speed and Reflection of Axially Symmetric Waves in Composite Cylinders, with Application to Impedance Tube and Calibrator.

    Science.gov (United States)

    1982-08-25

    hoth real and complex; and () compute the propagation speed in the acoustic cal Ibr:ator. (continued on reverse) DD IARM3 1473 EDITION OF I NOVSSIS...FORMAT (3F15.0) 0131 GO TO 230 0132 690 CONTINUE 0133 END 50 *> SUBROUTINES SUBROUTINE: DET C C SUBROUTINE DET C DECEMBER, 1980 C EDITED BY TINA RUGGIERO...33 AISA =AKDA/BAMS 0008 02A=AKA**’-AKDA**2 0009 S2A=AKA**2-AKSA**2 0010 IF (RHM) 65P65P40 0011 40 AKFA-AKDA/COCD 0012 OF2A-AKA**2-AKFA**2 0013 IF (OF2A

  7. Axially symmetric two-body problem in general relativity. III. Bondi mass loss and the failure of the quadrupole formula

    International Nuclear Information System (INIS)

    Cooperstock, F.I.; Hobill, D.W.

    1979-01-01

    Suggested difficulties and criticism regarding earlier work is addressed. It is demonstrated that the rate of gravitational energy loss from the authors' model free-fall system employing the widely accepted Bondi method agrees precisely with the results described in prior works. Origins of the breakdown of the quadrupole formalism for free fall, previously indicated, are now delineated in detail. The role of source structure in the energy loss rate re-emerges, bringing into question much of the earlier work of others. The iterative technique with flat-space wave operators is justified. A new approach to quasiperiodic systems such as binary stars is described. Ideally modeled upon the actual birth of such systems, it evolves from an initially stationary configuration, again avoiding the problems and ambiguities regarding incoming radiation

  8. Perturbation theory for nematic liquid crystals of axially symmetric molecules: Evaluation of fourth rank orientational order parameter

    International Nuclear Information System (INIS)

    Singh, K.

    1993-11-01

    Using a statistical mechanical perturbation theory for isotropic-nematic transition we report a calculation of second and fourth rank orientation order parameters and thermodynamic properties for a model system of prolate ellipsoids of revolution parameterized by its length-to-width ratio. The influence of attractive potential represented by dispersion interaction on a variety of thermodynamic properties is analysed. Inclusion of fourth rank orientational order parameter in calculation slightly changes the transition parameter. (author). 7 refs, 1 tab

  9. Gain-scheduled {{\\mathscr{H}}}_{\\infty } buckling control of a circular beam-column subject to time-varying axial loads

    Science.gov (United States)

    Schaeffner, Maximilian; Platz, Roland

    2018-06-01

    For slender beam-columns loaded by axial compressive forces, active buckling control provides a possibility to increase the maximum bearable axial load above that of a purely passive structure. In this paper, an approach for gain-scheduled {{\\mathscr{H}}}∞ buckling control of a slender beam-column with circular cross-section subject to time-varying axial loads is investigated experimentally. Piezo-elastic supports with integrated piezoelectric stack actuators at the beam-column ends allow an active stabilization in arbitrary lateral directions. The axial loads on the beam-column influence its lateral dynamic behavior and, eventually, cause the beam-column to buckle. A reduced modal model of the beam-column subject to axial loads including the dynamics of the electrical components is set up and calibrated with experimental data. Particularly, the linear parameter-varying open-loop plant is used to design a model-based gain-scheduled {{\\mathscr{H}}}∞ buckling control that is implemented in an experimental test setup. The beam-column is loaded by ramp- and step-shaped time-varying axial compressive loads that result in a lateral deformation of the beam-column due to imperfections, such as predeformation, eccentric loading or clamping moments. The lateral deformations and the maximum bearable loads of the beam-column are analyzed and compared for the beam-column with and without gain-scheduled {{\\mathscr{H}}}∞ buckling control or, respectively, active and passive configuration. With the proposed gain-scheduled {{\\mathscr{H}}}∞ buckling control it is possible to increase the maximum bearable load of the active beam-column by 19% for ramp-shaped axial loads and to significantly reduce the beam-column deformations for step-shaped axial loads compared to the passive structure.

  10. Electroweak Baryogenesis in R-symmetric Supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Fok, R.; Kribs, Graham D.; Martin, Adam; Tsai, Yuhsin

    2013-03-01

    We demonstrate that electroweak baryogenesis can occur in a supersymmetric model with an exact R-symmetry. The minimal R-symmetric supersymmetric model contains chiral superfields in the adjoint representation, giving Dirac gaugino masses, and an additional set of "R-partner" Higgs superfields, giving R-symmetric \\mu-terms. New superpotential couplings between the adjoints and the Higgs fields can simultaneously increase the strength of the electroweak phase transition and provide additional tree-level contributions to the lightest Higgs mass. Notably, no light stop is present in this framework, and in fact, we require both stops to be above a few TeV to provide sufficient radiative corrections to the lightest Higgs mass to bring it up to 125 GeV. Large CP-violating phases in the gaugino/higgsino sector allow us to match the baryon asymmetry of the Universe with no constraints from electric dipole moments due to R-symmetry. We briefly discuss some of the more interesting phenomenology, particularly of the of the lightest CP-odd scalar.

  11. Nuclear reactor control method for maintaining an appreciably constant axial distribution of power with load variations

    International Nuclear Information System (INIS)

    Morita, Toshio.

    1975-01-01

    A nuclear reactor control method is described in which the power variations of the reactor are controlled partly by varying the concentration of the neutron absorbing element and partly by varying the positions of the control rods, in order to maintain the axial distribution of power appreciably symmetrical during the normal operation of the reactor. The control points are located in the upper and lower halves of the core. The controls are operated to maintain the output power difference between the upper and lower halves of the core, based on the total output power (axial deviation) significantly equal to a predetermined optimum figure during the entire running of the reactor, including when there are power variations. The optimum value is obtained by determining the axial deviation at full power with the xenon in balance and all the control rods withdrawn from the fuel area of the core. This optimum value is recalculated after a period appreciably equal to that of a month's operation at full power. This method applies in particular to PWR type reactors [fr

  12. Extremely deformable structures

    CERN Document Server

    2015-01-01

    Recently, a new research stimulus has derived from the observation that soft structures, such as biological systems, but also rubber and gel, may work in a post critical regime, where elastic elements are subject to extreme deformations, though still exhibiting excellent mechanical performances. This is the realm of ‘extreme mechanics’, to which this book is addressed. The possibility of exploiting highly deformable structures opens new and unexpected technological possibilities. In particular, the challenge is the design of deformable and bi-stable mechanisms which can reach superior mechanical performances and can have a strong impact on several high-tech applications, including stretchable electronics, nanotube serpentines, deployable structures for aerospace engineering, cable deployment in the ocean, but also sensors and flexible actuators and vibration absorbers. Readers are introduced to a variety of interrelated topics involving the mechanics of extremely deformable structures, with emphasis on ...

  13. Diffeomorphic Statistical Deformation Models

    DEFF Research Database (Denmark)

    Hansen, Michael Sass; Hansen, Mads/Fogtman; Larsen, Rasmus

    2007-01-01

    In this paper we present a new method for constructing diffeomorphic statistical deformation models in arbitrary dimensional images with a nonlinear generative model and a linear parameter space. Our deformation model is a modified version of the diffeomorphic model introduced by Cootes et al....... The modifications ensure that no boundary restriction has to be enforced on the parameter space to prevent folds or tears in the deformation field. For straightforward statistical analysis, principal component analysis and sparse methods, we assume that the parameters for a class of deformations lie on a linear...... with ground truth in form of manual expert annotations, and compared to Cootes's model. We anticipate applications in unconstrained diffeomorphic synthesis of images, e.g. for tracking, segmentation, registration or classification purposes....

  14. New method for determining central axial orientation of flux rope embedded within current sheet using multipoint measurements

    Science.gov (United States)

    Li, ZhaoYu; Chen, Tao; Yan, GuangQing

    2016-10-01

    A new method for determining the central axial orientation of a two-dimensional coherent magnetic flux rope (MFR) via multipoint analysis of the magnetic-field structure is developed. The method is devised under the following geometrical assumptions: (1) on its cross section, the structure is left-right symmetric; (2) the projected structure velocity is vertical to the line of symmetry. The two conditions can be naturally satisfied for cylindrical MFRs and are expected to be satisfied for MFRs that are flattened within current sheets. The model test demonstrates that, for determining the axial orientation of such structures, the new method is more efficient and reliable than traditional techniques such as minimum-variance analysis of the magnetic field, Grad-Shafranov (GS) reconstruction, and the more recent method based on the cylindrically symmetric assumption. A total of five flux transfer events observed by Cluster are studied using the proposed approach, and the application results indicate that the observed structures, regardless of their actual physical properties, fit the assumed geometrical model well. For these events, the inferred axial orientations are all in excellent agreement with those obtained using the multi-GS reconstruction technique.

  15. The Spherical Deformation Model

    DEFF Research Database (Denmark)

    Hobolth, Asgar

    2003-01-01

    Miller et al. (1994) describe a model for representing spatial objects with no obvious landmarks. Each object is represented by a global translation and a normal deformation of a sphere. The normal deformation is defined via the orthonormal spherical-harmonic basis. In this paper we analyse the s...... a single central section of the object. We use maximum-likelihood-based inference for this purpose and demonstrate the suggested methods on real data....

  16. BPHZL-subtraction scheme and axial gauges

    Energy Technology Data Exchange (ETDEWEB)

    Kreuzer, M.; Rebhan, A.; Schweda, M.; Piguet, O.

    1986-03-27

    The application of the BPHZL subtraction scheme to Yang-Mills theories in axial gauges is presented. In the auxillary mass formulation we show the validity of the convergence theorems for subtracted momentum space integrals, and we give the integral formulae necessary for one-loop calculations. (orig.).

  17. Accessory caudal axial and pelvic ribs

    International Nuclear Information System (INIS)

    Bohutova, J.; Kolar, J.; Vitovec, J.; Vyhnanek, L.

    1980-01-01

    Accessory caudal ribs are reported as an extremely curious anomaly in five patients. Once the fracture of this rib was a source of pains after injury. The different shapes of the ribs are documented in this clinical survey which is the most extensive in the present literature. Anomalous ribs arise due to inappropriate segmentation during the embryonal development of the axial skeleton. (orig.) [de

  18. Aryabha~ and Axial Rotation of Earth

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 4. Aryabhata and Axial Rotation of Earth - Naksatra Dina (the Sidereal Day). Amartya Kumar Dutta. General Article Volume 11 Issue 4 April 2006 pp 56-74. Fulltext. Click here to view fulltext PDF. Permanent link:

  19. Aryabhala and Axial Rotation of Earth

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 3. Aryabhata and Axial Rotation of Earth - Khagola (The Celestial Sphere). Amartya Kumar Dutta. General Article Volume 11 Issue 3 March 2006 pp 51-68. Fulltext. Click here to view fulltext PDF. Permanent link:

  20. Helical axial injection concept for cyclotrons

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, E.D.

    1981-01-01

    A concept for an external beam injection system using a helical beam path centered on the cyclotron axis is described. This system could be used to couple two accelerator stages, with or without intermediate stripping, in cases where conventional axial injection or radial injection are not practical.

  1. Helical axial injection concept for cyclotrons

    International Nuclear Information System (INIS)

    Hudson, E.D.

    1981-01-01

    A concept for an external beam injection system using a helical beam path centered on the cyclotron axis is described. This system could be used to couple two accelerator stages, with or without intermediate stripping, in cases where conventional axial injection or radial injection are not practical

  2. The axial polarizability of nucleons and nuclei

    International Nuclear Information System (INIS)

    Ericson, M.; Figureau, A.

    1981-02-01

    The part of the static nuclear axial polarizability arising from the nucleonic excitations is derived from the low energy expansion of the πN amplitude. It is shown that the contribution of the Δ intermediate state, though dominant, does not saturate the nucleonic response. A similar effect, though more pronounced, is known to occur for the magnetic susceptibility

  3. Optimisation of efficiency of axial fans

    NARCIS (Netherlands)

    Kruyt, Nicolaas P.; Pennings, P.C.; Faasen, R.

    2014-01-01

    A three-stage research project has been executed to develop ducted axial-fans with increased efficiency. In the first stage a design method has been developed in which various conflicting design criteria can be incorporated. Based on this design method, an optimised design has been determined

  4. Axial crystals macroscopic symmetry and tensor properties

    Czech Academy of Sciences Publication Activity Database

    Janovec, Václav

    2017-01-01

    Roč. 90, č. 1 (2017), s. 1-10 ISSN 0141-1594 Institutional support: RVO:68378271 Keywords : axial * polar * pseudopolar * chiral * enantiomorphism * optical activity Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.060, year: 2016

  5. Two-dimensional analysis of axial segregation in batchwise and continuous Czochralski process

    Science.gov (United States)

    Hoe Wang, Jong; Hyun Kim, Do; Yoo, Hak-Do

    1999-03-01

    Transient two-dimensional convection-diffusion model has been developed to simulate the segregation phenomena in batchwise and continuous Czochralski process. Numerical simulations have been performed using the finite element method and implicit Euler time integration. The mesh deformation due to the change of the melt depth in batchwise Czochralski process was considered. Experimental values of the growth and system parameters for Czochralski growth of boron-doped, 4-in silicon single crystal were used in the numerical calculations. The experimental axial segregation in batchwise Czochralski process can be described successfully using convection-diffusion model. It has been demonstrated with this model that silicon single crystal with uniform axial dopant concentration can be grown and radial segregation can be suppressed in the continuous Czochralski process.

  6. Molecular design for nonpolar chiral-axial quadratic nonlinear optics

    Science.gov (United States)

    Wiggers, Gregory A.

    In this thesis the hyperpolarizability of various multi-dimensional molecules is studied theoretically/computationally, with particular focus on the second-rank Kleinman-disallowed (KD) component of the hyperpolarizability. This component, which transforms as a second-rank traceless symmetric tensor, could be utilized in certain chiral-axial molecular alignment schemes to produce a bulk response. Nonpolar chiral-axial systems have been proposed in contrast to polar media, which utilize the vector component of the molecular hyperpolarizability and require parallel alignment of the molecular dipoles. Such parallel alignment of dipoles must be "frozen in" in order to overcome the natural tendency for dipoles to align anti-parallel. This limits the density of chromophores that can be loaded into a polar material. Nonpolar materials do not have such limits in theory. The two geometric classes of molecules that can most easily be incorporated into nonpolar chiral-uniaxial materials are propeller-shaped (C3 or D3 symmetry) and Λ-shaped (C2v symmetry). This work describes efforts to design molecules within these classes that would be suitable for bulk NLO materials. The sum-over-states (SOS) expression is used to model the molecular hyperpolarizability, and quantum chemical calculations, along with linear absorption data (when available) provide the necessary parameters to evaluate truncated forms of the SOS expression. A host of chemical and geometric modifications will be considered in order to elucidate important structure/function relationships. Also, the SOS model will be tested in some cases when experimental measurements (via Kleinman-disallowed hyper-Rayleigh scattering) are available. While a majority of this work focuses on multi-dimensional molecules, a small section deals with the question of optimizing the hyperpolarizability of a one-dimensional system. It is suggested that the recently-proposed idea of "modulated conjugation" as a means for improving

  7. Permanent deformation testing for a new South African mechanistic pavement design method

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2012-01-01

    Full Text Available is to develop test protocols for hot-mix asphalt materials. To date, no permanent deformation test is incorporated into South African pavement design guides. The objective of this paper is to present the development process of a repeated load axial permanent...

  8. Practical solution of plastic deformation problems in elastic-plastic range

    Science.gov (United States)

    Mendelson, A; Manson, S

    1957-01-01

    A practical method for solving plastic deformation problems in the elastic-plastic range is presented. The method is one of successive approximations and is illustrated by four examples which include a flat plate with temperature distribution across the width, a thin shell with axial temperature distribution, a solid cylinder with radial temperature distribution, and a rotating disk with radial temperature distribution.

  9. Crystalline cellulose elastic modulus predicted by atomistic models of uniform deformation and nanoscale indentation

    Science.gov (United States)

    Xiawa Wu; Robert J. Moon; Ashlie Martini

    2013-01-01

    The elastic modulus of cellulose Iß in the axial and transverse directions was obtained from atomistic simulations using both the standard uniform deformation approach and a complementary approach based on nanoscale indentation. This allowed comparisons between the methods and closer connectivity to experimental measurement techniques. A reactive...

  10. A Comparison Among Plastic Deformation Capacities of RC Members According to International Codes

    International Nuclear Information System (INIS)

    Tripepi, C.; Failla, G.; Santini, A.; Nucera, F.

    2008-01-01

    The aim is to compare plastic deformation capacities of flexure-controlled reinforced concrete members, as predicted by the Italian Seismic Code, Eurocode 8 and FEMA356. For completeness, recent studies in the literature are also referred to. The comparison is pursued in context with a nonlinear static analysis run on 2D frame structures. This allows to assess whether and to which extent plastic deformation capacities may be affected by variations in those quantities, such as shear span and/or axial load, depending on which plastic deformation capacities are generally given

  11. Exotic octupole deformation in proton-rich Z=N nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Takami, Satoshi; Yabana, K [Niigata Univ. (Japan); Matsuo, M

    1998-03-01

    We study static non-axial octupole deformations in proton-rich Z=N nuclei, {sup 64}Ge, {sup 68}Se, {sup 72}Kr, {sup 76}Sr, {sup 80}Zr and {sup 84}Mo, by using the Skyrme Hartree-Fock plus BCS method with no restrictions on the nuclear shape. The calculation predicts that the oblate ground state in {sup 68}Se is extremely soft for the Y{sub 33} triangular deformation, and that in {sup 80}Zr the low-lying local minimum state coexisting with the prolate ground state has the Y{sub 32} tetrahedral deformation. (author)

  12. A symmetric bipolar nebula around MWC 922.

    Science.gov (United States)

    Tuthill, P G; Lloyd, J P

    2007-04-13

    We report regular and symmetric structure around dust-enshrouded Be star MWC 922 obtained with infrared imaging. Biconical lobes that appear nearly square in aspect, forming this "Red Square" nebula, are crossed by a series of rungs that terminate in bright knots or "vortices," and an equatorial dark band crossing the core delimits twin hyperbolic arcs. The intricate yet cleanly constructed forms that comprise the skeleton of the object argue for minimal perturbation from global turbulent or chaotic effects. We also report the presence of a linear comb structure, which may arise from optically projected shadows of a periodic feature in the inner regions, such as corrugations in the rim of a circumstellar disk. The sequence of nested polar rings draws comparison with the triple-ring system seen around the only naked-eye supernova in recent history: SN1987A.

  13. Minimal Left-Right Symmetric Dark Matter.

    Science.gov (United States)

    Heeck, Julian; Patra, Sudhanwa

    2015-09-18

    We show that left-right symmetric models can easily accommodate stable TeV-scale dark matter particles without the need for an ad hoc stabilizing symmetry. The stability of a newly introduced multiplet either arises accidentally as in the minimal dark matter framework or comes courtesy of the remaining unbroken Z_{2} subgroup of B-L. Only one new parameter is introduced: the mass of the new multiplet. As minimal examples, we study left-right fermion triplets and quintuplets and show that they can form viable two-component dark matter. This approach is, in particular, valid for SU(2)×SU(2)×U(1) models that explain the recent diboson excess at ATLAS in terms of a new charged gauge boson of mass 2 TeV.

  14. Design and Analysis of Symmetric Primitives

    DEFF Research Database (Denmark)

    Lauridsen, Martin Mehl

    . In the second part, we delve into the matter of the various aspects of designing a symmetric cryptographic primitive. We start by considering generalizations of the widely acclaimed Advanced Encryption Standard (AES) block cipher. In particular, our focus is on a component operation in the cipher which permutes...... analyze and implement modes recommended by the National Institute of Standards and Technology (NIST), as well as authenticated encryption modes from the CAESAR competition, when instantiated with the AES. The data processed in our benchmarking has sizes representative to that of typical Internet traffic...... linear cryptanalysis. We apply this model to the standardized block cipher PRESENT. Finally, we present very generic attacks on two authenticated encryption schemes, AVALANCHE and RBS, by pointing out severe design flaws that can be leveraged to fully recover the secret key with very low complexity...

  15. Quasiaxially symmetric stellarators with three field periods

    International Nuclear Information System (INIS)

    Garabedian, P.; Ku, L.

    1999-01-01

    Compact hybrid configurations with two field periods have been studied recently as candidates for a proof of principle experiment at the Princeton Plasma Physics Laboratory. This project has led us to the discovery of a family of quasiaxially symmetric stellarators with three field periods that have significant advantages, although their aspect ratios are a little larger. They have reversed shear and perform better in a local analysis of ballooning modes. Nonlinear equilibrium and stability calculations predict that the average beta limit will be at least as high as 4% if the bootstrap current turns out to be as big as that expected in comparable tokamaks. The concept relies on a combination of helical fields and bootstrap current to achieve adequate rotational transform at low aspect ratio. copyright 1999 American Institute of Physics

  16. Primordial two-component maximally symmetric inflation

    Science.gov (United States)

    Enqvist, K.; Nanopoulos, D. V.; Quirós, M.; Kounnas, C.

    1985-12-01

    We propose a two-component inflation model, based on maximally symmetric supergravity, where the scales of reheating and the inflation potential at the origin are decoupled. This is possible because of the second-order phase transition from SU(5) to SU(3)×SU(2)×U(1) that takes place when φ≅φcinflation at the global minimum, and leads to a reheating temperature TR≅(1015-1016) GeV. This makes it possible to generate baryon asymmetry in the conventional way without any conflict with experimental data on proton lifetime. The mass of the gravitinos is m3/2≅1012 GeV, thus avoiding the gravitino problem. Monopoles are diluted by residual inflation in the broken phase below the cosmological bounds if φcUSA.

  17. Lovelock black holes with maximally symmetric horizons

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Hideki; Willison, Steven; Ray, Sourya, E-mail: hideki@cecs.cl, E-mail: willison@cecs.cl, E-mail: ray@cecs.cl [Centro de Estudios CientIficos (CECs), Casilla 1469, Valdivia (Chile)

    2011-08-21

    We investigate some properties of n( {>=} 4)-dimensional spacetimes having symmetries corresponding to the isometries of an (n - 2)-dimensional maximally symmetric space in Lovelock gravity under the null or dominant energy condition. The well-posedness of the generalized Misner-Sharp quasi-local mass proposed in the past study is shown. Using this quasi-local mass, we clarify the basic properties of the dynamical black holes defined by a future outer trapping horizon under certain assumptions on the Lovelock coupling constants. The C{sup 2} vacuum solutions are classified into four types: (i) Schwarzschild-Tangherlini-type solution; (ii) Nariai-type solution; (iii) special degenerate vacuum solution; and (iv) exceptional vacuum solution. The conditions for the realization of the last two solutions are clarified. The Schwarzschild-Tangherlini-type solution is studied in detail. We prove the first law of black-hole thermodynamics and present the expressions for the heat capacity and the free energy.

  18. Polyhomogeneous expansions from time symmetric initial data

    Science.gov (United States)

    Gasperín, E.; Valiente Kroon, J. A.

    2017-10-01

    We make use of Friedrich’s construction of the cylinder at spatial infinity to relate the logarithmic terms appearing in asymptotic expansions of components of the Weyl tensor to the freely specifiable parts of time symmetric initial data sets for the Einstein field equations. Our analysis is based on the assumption that a particular type of formal expansions near the cylinder at spatial infinity corresponds to the leading terms of actual solutions to the Einstein field equations. In particular, we show that if the Bach tensor of the initial conformal metric does not vanish at the point at infinity then the most singular component of the Weyl tensor decays near null infinity as O(\\tilde{r}-3\\ln \\tilde{r}) so that spacetime will not peel. We also provide necessary conditions on the initial data which should lead to a peeling spacetime. Finally, we show how to construct global spacetimes which are candidates for non-peeling (polyhomogeneous) asymptotics.

  19. From Symmetric Glycerol Derivatives to Dissymmetric Chlorohydrins

    Directory of Open Access Journals (Sweden)

    Gemma Villorbina

    2011-03-01

    Full Text Available The anticipated worldwide increase in biodiesel production will result in an accumulation of glycerol for which there are insufficient conventional uses. The surplus of this by-product has increased rapidly during the last decade, prompting a search for new glycerol applications. We describe here the synthesis of dissymmetric chlorohydrin esters from symmetric 1,3-dichloro-2-propyl esters obtained from glycerol. We studied the influence of two solvents: 1,4-dioxane and 1-butanol and two bases: sodium carbonate and 1-butylimidazole, on the synthesis of dissymmetric chlorohydrin esters. In addition, we studied the influence of other bases (potassium and lithium carbonates in the reaction using 1,4-dioxane as the solvent. The highest yield was obtained using 1,4-dioxane and sodium carbonate.

  20. Bidding behavior in a symmetric Chinese auction

    Directory of Open Access Journals (Sweden)

    Mauricio Benegas

    2015-01-01

    Full Text Available This paper purposes a symmetric all-pay auction where the bidders compete neither for an object nor the object itself but for a lottery on receive. That lottery is determined endogenously through the bids. This auction is known as chance auction or more popularly as Chinese auction. The model considers the possibility that for some bidders the optimal strategy is to bid zero and to rely on luck. It showed that bidders become less aggressive when the lottery satisfies a variational condition. It was also shown that luck factor is decisive to determine if the expected payoff in Chinese auction is bigger or smaller than expected payoff in standard all-pay auction.

  1. Canonical quantization of static spherically symmetric geometries

    International Nuclear Information System (INIS)

    Christodoulakis, T; Dimakis, N; Terzis, P A; Doulis, G; Grammenos, Th; Melas, E; Spanou, A

    2013-01-01

    The conditional symmetries of the reduced Einstein–Hilbert action emerging from a static, spherically symmetric geometry are used as supplementary conditions on the wave function. Based on their integrability conditions, only one of the three existing symmetries can be consistently imposed, while the unique Casimir invariant, being the product of the remaining two symmetries, is calculated as the only possible second condition on the wave function. This quadratic integral of motion is identified with the reparametrization generator, as an implication of the uniqueness of the dynamical evolution, by fixing a suitable parametrization of the r-lapse function. In this parametrization, the determinant of the supermetric plays the role of the mesure. The combined Wheeler – DeWitt and linear conditional symmetry equations are analytically solved. The solutions obtained depend on the product of the two ''scale factors''

  2. Cryptanalysis of Some Lightweight Symmetric Ciphers

    DEFF Research Database (Denmark)

    Abdelraheem, Mohamed Ahmed Awadelkareem Mohamed Ahmed

    In recent years, the need for lightweight encryption systems has been increasing as many applications use RFID and sensor networks which have a very low computational power and thus incapable of performing standard cryptographic operations. In response to this problem, the cryptographic community...... on a variant of PRESENT with identical round keys. We propose a new attack named the Invariant Subspace Attack that was specifically mounted against the lightweight block cipher PRINTcipher. Furthermore, we mount several attacks on a recently proposed stream cipher called A2U2....... of the international standards in lightweight cryptography. This thesis aims at analyzing and evaluating the security of some the recently proposed lightweight symmetric ciphers with a focus on PRESENT-like ciphers, namely, the block cipher PRESENT and the block cipher PRINTcipher. We provide an approach to estimate...

  3. Cosmic ray antimatter and baryon symmetric cosmology

    Science.gov (United States)

    Stecker, F. W.; Protheroe, R. J.; Kazanas, D.

    1982-01-01

    The relative merits and difficulties of the primary and secondary origin hypotheses for the observed cosmic-ray antiprotons, including the new low-energy measurement of Buffington, et al. We conclude that the cosmic-ray antiproton data may be evidence for antimatter galaxies and baryon symmetric cosmology. The present bar P data are consistent with a primary extragalactic component having /p=/equiv 1+/- 3.2/0.7x10 = to the -4 independent of energy. We propose that the primary extragalactic cosmic ray antiprotons are most likely from active galaxies and that expected disintegration of bar alpha/alpha ban alpha/alpha. We further predict a value for ban alpha/alpha =/equiv 10 to the -5, within range of future cosmic ray detectors.

  4. Symmetric Topological Phases and Tensor Network States

    Science.gov (United States)

    Jiang, Shenghan

    Classification and simulation of quantum phases are one of main themes in condensed matter physics. Quantum phases can be distinguished by their symmetrical and topological properties. The interplay between symmetry and topology in condensed matter physics often leads to exotic quantum phases and rich phase diagrams. Famous examples include quantum Hall phases, spin liquids and topological insulators. In this thesis, I present our works toward a more systematically understanding of symmetric topological quantum phases in bosonic systems. In the absence of global symmetries, gapped quantum phases are characterized by topological orders. Topological orders in 2+1D are well studied, while a systematically understanding of topological orders in 3+1D is still lacking. By studying a family of exact solvable models, we find at least some topological orders in 3+1D can be distinguished by braiding phases of loop excitations. In the presence of both global symmetries and topological orders, the interplay between them leads to new phases termed as symmetry enriched topological (SET) phases. We develop a framework to classify a large class of SET phases using tensor networks. For each tensor class, we can write down generic variational wavefunctions. We apply our method to study gapped spin liquids on the kagome lattice, which can be viewed as SET phases of on-site symmetries as well as lattice symmetries. In the absence of topological order, symmetry could protect different topological phases, which are often referred to as symmetry protected topological (SPT) phases. We present systematic constructions of tensor network wavefunctions for bosonic symmetry protected topological (SPT) phases respecting both onsite and spatial symmetries.

  5. The radiation chemistry of symmetric aliphatic polyesters

    International Nuclear Information System (INIS)

    Babanalbandi, A.; Hill, D.J.T.; Pomery, P.J.; Whittaker, A.K.

    1996-01-01

    Full text: Naturally occurring, symmetric polyesters, including polyglycolic acid, polylactic acid and polyhydroxybutyrate, have found biomedical applications in areas as diverse as the controlled release of pharmaceuticals and the manufacture of surgical sutures. As biomedical products, the materials require sterilization by high energy radiation. This has provided the motivation for the present work. D'Alelio et al. have reported that linear, asymmetric polyesters undergo scission on irradiation, but that branched polyesters containing a methyl group in the diol segments undergo crosslinking. However, for the symmetric polyhydroxybutyrate, Carswell-Pomerantz et al. have reported that only scission occurs on radiolysis, with the evolution of CO and CO 2 as a result of the loss of ester linkages. These workers also found that G(CO + CO 2 ) was approximately equal to G(S) for this polyester. By contrast, Collett et al. have reported that G(S) = 1.26 and G(X) = 0.53 for polylactic acid, which indicates that the polymer undergoes nett crosslinking on radiolysis to form a gel. They have also reported that poly(lactic-co-glycolic acid) should form a gel on radiolysis, since G(S) = 1.66 and G(X) = 0.65 for a 1:1 copolymer composition. In the present work the radiolysis of polylactic acid and poly(lactic-co-glycolic acid) have been reinvestigated in order to resolve the differences between the work of Collett et al. and that of Carswell-Pomerantz et al. In these studies, ESR has been used to study the radicals formed, GPC has been used to investigate scission and crosslinking, GC has been used to study the small molecule volatile products and NMR spectroscopy has been used to identify and measure the new chemical structures formed in the polymers

  6. FFLP problem with symmetric trapezoidal fuzzy numbers

    Directory of Open Access Journals (Sweden)

    Reza Daneshrad

    2015-04-01

    Full Text Available The most popular approach for solving fully fuzzy linear programming (FFLP problems is to convert them into the corresponding deterministic linear programs. Khan et al. (2013 [Khan, I. U., Ahmad, T., & Maan, N. (2013. A simplified novel technique for solving fully fuzzy linear programming problems. Journal of Optimization Theory and Applications, 159(2, 536-546.] claimed that there had been no method in the literature to find the fuzzy optimal solution of a FFLP problem without converting it into crisp linear programming problem, and proposed a technique for the same. Others showed that the fuzzy arithmetic operation used by Khan et al. (2013 had some problems in subtraction and division operations, which could lead to misleading results. Recently, Ezzati et al. (2014 [Ezzati, R., Khorram, E., & Enayati, R. (2014. A particular simplex algorithm to solve fuzzy lexicographic multi-objective linear programming problems and their sensitivity analysis on the priority of the fuzzy objective functions. Journal of Intelligent and Fuzzy Systems, 26(5, 2333-2358.] defined a new operation on symmetric trapezoidal fuzzy numbers and proposed a new algorithm to find directly a lexicographic/preemptive fuzzy optimal solution of a fuzzy lexicographic multi-objective linear programming problem by using new fuzzy arithmetic operations, but their model was not fully fuzzy optimization. In this paper, a new method, by using Ezzati et al. (2014’s fuzzy arithmetic operation and a fuzzy version of simplex algorithm, is proposed for solving FFLP problem whose parameters are represented by symmetric trapezoidal fuzzy number without converting the given problem into crisp equivalent problem. By using the proposed method, the fuzzy optimal solution of FFLP problem can be easily obtained. A numerical example is provided to illustrate the proposed method.

  7. Oxidation-induced deformation of zircaloy-4 tubing in steam in the temperature range 600-1000 degree C

    International Nuclear Information System (INIS)

    Aly, A.E.; Hussein, A.G.; EL-Raghy, S.M.; EL-Sayed, A.A.; EL-Banna, O.A.

    1992-01-01

    The oxidation-induced deformation of zircaloy-4 (zry-4) tubing in steam has been studied in the temperature range 600 to 1000 degree C. The induced deformation has been measured in both radial and axial directions of the tube. The effect of hydrogen addition to steam was also investigated. The oxidation-induced deformation has been characterized by uniform and non-uniform (distortion) strain period. During the uniform strain period the radial strain kinetics were found in general, to be parallel to the oxidation kinetics. The axial strain (δA) induced by oxidation was found to be always lower than the radial strain (εR). The addition of 5% by volume hydrogen to steam leads to an increase in the oxidation rate and to a decrease in the degree of anisotropy between radial and axial strains

  8. Interaction domains in die-upset NdFeB magnets in dependence on the degree of deformation

    International Nuclear Information System (INIS)

    Khlopkov, K.; Gutfleisch, O.; Schaefer, R.; Hinz, D.; Mueller, K.-H.; Schultz, L.

    2004-01-01

    The magnetic domain structure of NdFeB magnets has been studied using high resolution, digitally enhanced Kerr-microscopy. Melt-spun NdFeB powder (MQU-F TM ) was hot pressed into fully dense samples and then hot deformed to axially textured magnets. Various degrees of deformation (height reduction) up to 76% have been realized. Pronounced interaction domains have been observed only in magnets, which were deformed to a degree of deformation of at least 52%. With increasing alignment of the grains the interaction domains become more and more visible and their size increases

  9. Bending and tensile deformation of metallic nanowires

    International Nuclear Information System (INIS)

    McDowell, Matthew T; Leach, Austin M; Gall, Ken

    2008-01-01

    Using molecular statics simulations and the embedded atom method, a technique for bending silver nanowires and calculating Young's modulus via continuum mechanics has been developed. The measured Young's modulus values extracted from bending simulations were compared with modulus values calculated from uniaxial tension simulations for a range of nanowire sizes, orientations and geometries. Depending on axial orientation, the nanowires exhibit stiffening or softening under tension and bending as size decreases. Bending simulations typically result in a greater variation of Young's modulus values with nanowire size compared with tensile deformation, which indicates a loading-method-dependent size effect on elastic properties at sub-5 nm wire diameters. Since the axial stress is maximized at the lateral surfaces in bending, the loading-method-dependent size effect is postulated to be primarily a result of differences in nanowire surface and core elastic modulus. The divergence of Young's modulus from the bulk modulus in these simulations occurs at sizes below the range in which experiments have demonstrated a size scale effect on elastic properties of metallic nanowires. This difference indicates that other factors beyond native metallic surface properties play a role in experimentally observed nanowire elastic modulus size effects

  10. Numerical analysis of concrete-filled tubes with stiffening plates under large deformation axial loading

    OpenAIRE

    Albareda Valls, Albert

    2013-01-01

    Concrete-filled tubes have been increasingly used these recent decades thanks to their improved structural behavior, especially under compression.Concrete filling in these sections improves ¡ts compressive strength thanks to lateral pressure coming from confinement effect provided by the steel tube. At elevated percentages of loading,concrete suffers an important volumetric expansion, which is clearly restricted by the tube. Therefore, the core is subjected to a severe lateral pressure tha...

  11. Exotic nuclear shapes - Axial and nonaxial octupoles at normal and at super-deformation

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, J [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland); [Universite Libre de Bruxelles (Belgium); Heenen, P [Universite Libre de Bruxelles (Belgium); Bonche, P [CEA Centre d` Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Centre d` Application et de Promotion des Rayonnements Ionisants; Flocard, H [Paris-11 Univ., 91 - Orsay (France); Meyer, J [Lyon-1 Univ., 69 - Villeurbanne (France)

    1992-08-01

    We have studied collective octupole dynamics including nonaxial components of the octupole mean field, mainly at superdeformed shape in the Hg-Pb region. Both the Strutinsky method combined with cranking and the generator coordinate method within the self-consistent Hartree-Fock basis suggest the existence of collective octupole excitations at the superdeformed minima. GCM calculations point out to the E1 transitions as their most prominent experimental manifestation. We also comment on the nonaxial octupole components influence on octupole dynamics in traditional octupole region of Ra-Th nuclei. (author). 38 refs., 6 figs.

  12. Electron states in quantum rings with structural distortions under axial or in-plane magnetic fields

    International Nuclear Information System (INIS)

    Planelles, J; Rajadell, F; Climente, J I

    2007-01-01

    A comprehensive study of anisotropic quantum rings, QRs, subject to axial and in-plane magnetic field, both aligned and transverse to the anisotropy direction, is carried out. Elliptical QRs for a wide range of eccentricity values and also perfectly circular QRs including one or more barriers disturbing the QR current are considered. These models mimic anisotropic geometry deformations and mass diffusion occurring in the QR fabrication process. Symmetry considerations and simplified analytical models supply physical insight into the obtained numerical results. Our study demonstrates that, except for unusual extremely large eccentricities, QR geometry deformations only appreciably influence a few low-lying states, while the effect of barriers disturbing the QR current is stronger and affects all studied states to a similar extent. We also show that the response of the electron states to in-plane magnetic fields provides accurate information on the structural anisotropy

  13. Structure and properties of copper after large strain deformation

    Energy Technology Data Exchange (ETDEWEB)

    Rodak, Kinga; Molak, Rafal M.; Pakiela, Zbigniew

    2010-05-15

    Structure and properties of Cu in dependence on strain (from {epsilon}{proportional_to} 0.9 to {epsilon}{proportional_to} 15) during multi-axial compression processing at room temperature was investigated. The evolution of dislocation structure, misorientation distribution and crystallite size were observed by using transmission electron microscopy (TEM) and scanning electron microscopy (SEM) equipment with electron back scattered diffraction (EBSD) facility. The mechanical properties of yield strength (YS), ultimate tensile strength (UTS) and uniform elongation was performed on MTS QTest/10 machine equipped with digital image correlation method (DIC). The structure-flow stress relationship of multi-axial compression processing material at strains {epsilon}{proportional_to} 3.5 and {epsilon}{proportional_to} 5.5 is discussed. It is found that processing does not produce any drastic changes in deformation structure and the microstructural refinement is slow. These results indicate that dynamic recrystallization plays an important role during multi-axial compression process in this range of deformation (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Review of Axial Burnup Distribution Considerations for Burnup Credit Calculations

    International Nuclear Information System (INIS)

    Wagner, J.C.; DeHart, M.D.

    2000-01-01

    This report attempts to summarize and consolidate the existing knowledge on axial burnup distribution issues that are important to burnup credit criticality safety calculations. Recently released Nuclear Regulatory Commission (NRC) staff guidance permits limited burnup credit, and thus, has prompted resolution of the axial burnup distribution issue. The reactivity difference between the neutron multiplication factor (keff) calculated with explicit representation of the axial burnup distribution and keff calculated assuming a uniform axial burnup is referred to as the ''end effect.'' This end effect is shown to be dependent on many factors, including the axial-burnup profile, total accumulated burnup, cooling time, initial enrichment, assembly design, and the isotopics considered (i.e., actinide-only or actinides plus fission products). Axial modeling studies, efforts related to the development of axial-profile databases, and the determination of bounding axial profiles are also discussed. Finally, areas that could benefit from further efforts are identified

  15. On the problem of axial anomaly in supersymmetric gauge theories

    International Nuclear Information System (INIS)

    Kazakov, D.I.

    1984-01-01

    The explicit relation is found between the axial current obeying the Adler-Bardeen theorem and the supersymmetric one belonging to a supermultiplet. It is shown that the axial and superconformal anomalies are consistent in all orders of perturbation theory

  16. Magnetospectroscopy of symmetric and anti-symmetric states in double quantum wells

    Science.gov (United States)

    Marchewka, M.; Sheregii, E. M.; Tralle, I.; Ploch, D.; Tomaka, G.; Furdak, M.; Kolek, A.; Stadler, A.; Mleczko, K.; Zak, D.; Strupinski, W.; Jasik, A.; Jakiela, R.

    2008-02-01

    The experimental results obtained for magnetotransport in the InGaAs/InAlAs double quantum well (DQW) structures of two different shapes of wells are reported. A beating effect occurring in the Shubnikov-de Haas (SdH) oscillations was observed for both types of structures at low temperatures in the parallel transport when the magnetic field was perpendicular to the layers. An approach for the calculation of the Landau level energies for DQW structures was developed and then applied to the analysis and interpretation of the experimental data related to the beating effect. We also argue that in order to account for the observed magnetotransport phenomena (SdH and integer quantum Hall effect), one should introduce two different quasi-Fermi levels characterizing two electron subsystems regarding the symmetry properties of their states, symmetric and anti-symmetric ones, which are not mixed by electron-electron interaction.

  17. Autogenous Deformation of Concrete

    DEFF Research Database (Denmark)

    Autogenous deformation of concrete can be defined as the free deformation of sealed concrete at a constant temperature. A number of observed problems with early age cracking of high-performance concretes can be attributed to this phenomenon. During the last 10 years , this has led to an increased...... focus on autogenous deformation both within concrete practice and concrete research. Since 1996 the interest has been significant enough to hold international, yearly conferences entirely devoted to this subject. The papers in this publication were presented at two consecutive half-day sessions...... at the American Concrete Institute’s Fall Convention in Phoenix, Arizona, October 29, 2002. All papers have been reviewed according to ACI rules. This publication, as well as the sessions, was sponsored by ACI committee 236, Material Science of Concrete. The 12 presentations from 8 different countries indicate...

  18. Interfacial Bubble Deformations

    Science.gov (United States)

    Seymour, Brian; Shabane, Parvis; Cypull, Olivia; Cheng, Shengfeng; Feitosa, Klebert

    Soap bubbles floating at an air-water experience deformations as a result of surface tension and hydrostatic forces. In this experiment, we investigate the nature of such deformations by taking cross-sectional images of bubbles of different volumes. The results show that as their volume increases, bubbles transition from spherical to hemispherical shape. The deformation of the interface also changes with bubble volume with the capillary rise converging to the capillary length as volume increases. The profile of the top and bottom of the bubble and the capillary rise are completely determined by the volume and pressure differences. James Madison University Department of Physics and Astronomy, 4VA Consortium, Research Corporation for Advancement of Science.

  19. Cross-flow filtration and axial filtration

    International Nuclear Information System (INIS)

    Kraus, K.A.

    1974-01-01

    Two relatively novel alternative solid-liquid-separation techniques of filtration are discussed. In cross-flow filtration, the feed is pumped past the filtering surface. While in axial filtration the filter, mounted on a rotor, is moved with respect to the feed. While large-scale application of the axial filter is still in doubt, it permits with little expenditure of time and money, duplication of many hydrodynamic aspects of cross-flow filtration for fine-particle handling problems. The technique has been applied to municipal wastes, low-level radioactive waste treatment plant, lead removal from industrial wastes, removal of pulp-mill contaminants, textile-mill wastes, and pretreatment of saline waters by lime-soda process in preparation for hyperfiltration. Economics and energy requirements are also discussed

  20. Computerized axial tomography in traumatic cervical lesions

    International Nuclear Information System (INIS)

    Koyama, Tsunemaro

    1982-01-01

    Although plain computerized axial tomography cannot routinely demonstrate the spinal cord, it does provide excellent visualization of the bony outline of the spinal canal and vertebral column. So it should be reasonable to use this technique in cases of cervical traumatic disorders. In this paper we presented 10 cases of cervical traumatic lesions; 3 atlanto-axial dislocation, 2 cervical canal stenosis, 3 OPLL, 1 intramedullary hematoma and 1 C 2 -neurinoma. In some patients neurologic deficits were induced by cervical trauma. Bony lesions appeared more adequately deliniated than intraspinal lesions, however, in some cases intramedullary changes could also be demonstrated. The use of metrizamide with high resolution CT-scanner could improve the usefullness of this technique. (author)