WorldWideScience

Sample records for axial force measurement

  1. Axial force measurement for esophageal function testing

    DEFF Research Database (Denmark)

    Gravesen, Flemming Holbæk; Funch-Jensen, Peter; Gregersen, Hans

    2009-01-01

    force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure of esophageal transport function. The technique used to record axial force has developed from external...... documented using imaging modalities such as radiography and scintigraphy. This inconsistency using manometry has also been documented by axial force recordings. This underlines the lack of information when diagnostics are based on manometry alone. Increasing the volume of a bag mounted on a probe...

  2. A new bi-axial cantilever beam design for biomechanics force measurements.

    Science.gov (United States)

    Lin, Huai-Ti; Trimmer, Barry A

    2012-08-31

    The demand for measuring forces exerted by animals during locomotion has increased dramatically as biomechanists strive to understand and implement biomechanical control strategies. In particular, multi-axial force transducers are often required to capture animal limb coordination patterns. Most existing force transducers employ strain gages arranged in a Wheatstone bridge on a cantilever beam. Bi-axial measurements require duplicating this arrangement in the transverse direction. In this paper, we reveal a method to embed a Wheatstone bridge inside another to allow bi-axial measurements without additional strain gages or additional second beams. This hybrid configuration resolves two force components from a single bridge circuit and simplifies fabrication for the simultaneous assessment of normal and transverse loads. This design can be implemented with two-dimensional fabrication techniques and can even be used to modify a common full bridge cantilever force transducer. As a demonstration of the new design, we built a simple beam which achieved bi-axial sensing capability that outperformed a conventional half-bridge-per-axis bi-axial strain gage design. We have used this design to measure the ground reaction forces of a crawling caterpillar and a caterpillar-mimicking soft robot. The simplicity and increased sensitivity of this method could facilitate bi-axial force measurements for experimental biologists. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Measurement of the axial force during primary peristalsis in the oesophagus using a novel electrical impedance technology

    International Nuclear Information System (INIS)

    Gravesen, F H; McMahon, B P; Drewes, A M; Gregersen, H

    2008-01-01

    The oesophagus serves to transport food and fluid from the pharynx to the stomach. Oesophageal function is usually evaluated by means of manometry which is a proxy of the force in the radial direction. However, force measurements in the axial direction will provide a better measure of oesophageal transport function. The aim of this study was to develop a probe based on electrical impedance measurements to quantify the axial force generated by oesophageal contractions, i.e. probe elongation was associated with the axial force. Calibration with weights up to 200 g was done. The dispersion, creep, temperature and bending dependence were studied at the bench. Subsequently, the probe was tested in vivo in a healthy human volunteer. The probe showed good reproducibility and the dispersion was <0.04. Some dependence on temperature, creep and bending was found. Interpolation of the calibration curves made it possible to compensate for temperature fluctuations. The maximum deviation was 6.1 ± 3.7% at loads of 50 g. The influence of creep showed a maximum net creep of 6.1 g after 8 s. The swallowed bolus size correlated with the axial force measurements (P = 0.038) but not with manometric measurements. In conclusion, the new technique measures axial force in the oesophagus and may in the future provide valuable information about oesophageal function

  4. Measurement of the axial force during primary peristalsis in the oesophagus using a novel electrical impedance technology.

    Science.gov (United States)

    Gravesen, F H; McMahon, B P; Drewes, A M; Gregersen, H

    2008-03-01

    The oesophagus serves to transport food and fluid from the pharynx to the stomach. Oesophageal function is usually evaluated by means of manometry which is a proxy of the force in the radial direction. However, force measurements in the axial direction will provide a better measure of oesophageal transport function. The aim of this study was to develop a probe based on electrical impedance measurements to quantify the axial force generated by oesophageal contractions, i.e. probe elongation was associated with the axial force. Calibration with weights up to 200 g was done. The dispersion, creep, temperature and bending dependence were studied at the bench. Subsequently, the probe was tested in vivo in a healthy human volunteer. The probe showed good reproducibility and the dispersion was <0.04. Some dependence on temperature, creep and bending was found. Interpolation of the calibration curves made it possible to compensate for temperature fluctuations. The maximum deviation was 6.1 +/- 3.7% at loads of 50 g. The influence of creep showed a maximum net creep of 6.1 g after 8 s. The swallowed bolus size correlated with the axial force measurements (P = 0.038) but not with manometric measurements. In conclusion, the new technique measures axial force in the oesophagus and may in the future provide valuable information about oesophageal function.

  5. Axial forces in centrifugal compressor couplings

    Science.gov (United States)

    Ivanov, A. N.; Ivanov, N. M.; Yun, V. K.

    2017-08-01

    The article presents the results of the theoretical and experimental investigation of axial forces arising in the toothed and plate couplings of centrifugal compressor shaft lines. Additional loads on the thrust bearing are considered that can develop in the toothed couplings as a result of coupled rotors misalignment. Design relationships to evaluate the level of axial forces and recommendations for their reduction in the operating conditions are given.

  6. Dynamic Stability of Euler Beams under Axial Unsteady Wind Force

    Directory of Open Access Journals (Sweden)

    You-Qin Huang

    2014-01-01

    Full Text Available Dynamic instability of beams in complex structures caused by unsteady wind load has occurred more frequently. However, studies on the parametric resonance of beams are generally limited to harmonic loads, while arbitrary dynamic load is rarely involved. The critical frequency equation for simply supported Euler beams with uniform section under arbitrary axial dynamic forces is firstly derived in this paper based on the Mathieu-Hill equation. Dynamic instability regions with high precision are then calculated by a presented eigenvalue method. Further, the dynamically unstable state of beams under the wind force with any mean or fluctuating component is determined by load normalization, and the wind-induced parametric resonant response is computed by the Runge-Kutta approach. Finally, a measured wind load time-history is input into the dynamic system to indicate that the proposed methods are effective. This study presents a new method to determine the wind-induced dynamic stability of Euler beams. The beam would become dynamically unstable provided that the parametric point, denoting the relation between load properties and structural frequency, is located in the instability region, no matter whether the wind load component is large or not.

  7. Analysis of Mechanical Failure of Polymer Microneedles by Axial Force

    Science.gov (United States)

    Park, Jung-Hwan; Prausnitz, Mark R.

    2010-01-01

    A polymeric microneedle has been developed for drug delivery applications. The ultimate goal of the polymeric microneedle is insertion into the specified region without failure for effective transdermal drug delivery. Mechanical failure of various geometries of microneedles by axial load was modeled using the Euler formula and the Johnson formula to predict the failure force of tapered-column microneedles. These formulas were compared with measured data to identify the mechanical behavior of microneedles by determining the critical factors including the actual length and end-fixed factor. The comparison of the two formulas with the data showed good agreement at the end-fixity (K) of 0.7. This value means that a microneedle column has one fixed end and one pinned end, and that part of the microneedle was overloaded by axial load. When the aspect ratio of length to equivalent diameter is 12:1 at 3 GPa of Young’s modulus, there is a transition from the Euler region to the Johnson region by the decreased length and increased base diameter of the microneedle. A polymer having less than 3 GPa of stiffness would follow the Euler formula. A 12:1 aspect ratio of length to equivalent diameter of the microneedle was the mechanical indicator determining the failure mode between elastic buckling and inelastic buckling at less than 3 GPa of Young’s modulus of polymer. Microneedles with below a 12:1 aspect ratio of length-to-equivalent diameter and more than 3 GPa of Young’s were recommended for reducing sudden failure by buckling and for successfully inserting the microneedle into the skin. PMID:21218133

  8. Characterization of fluid forces exerted on a cylinder array oscillating laterally in axial flow

    International Nuclear Information System (INIS)

    Divaret, Lise

    2014-01-01

    This thesis presents an experimental and a numerical study of the fluid forces exerted on a cylinder or a cylinder array oscillating laterally in an axial flow. The parameters of the system are the amplitude, the oscillation frequency, the confinement and the length to diameter ratio of the cylinder. The objective is to determine the fluid damping created by the axial flow, i.e. the dissipative force. The industrial application of this thesis is the determination of the fluid damping of the fuel assemblies in the core of a nuclear power plant during an earthquake. The study focuses on the configurations where the oscillation velocity is small compared to the axial flow velocity. In a first part, we study the case of a cylinder with no confinement oscillating in axial flow. Two methods are used: a dynamical and a quasi-static approach. In dynamics, the damping rate is measured during free oscillations of the cylinder. In the quasi-static approach, the damping coefficient is calculated from the normal force measured on a yawed cylinder. The range of the small ratios between the oscillation and the axial flow velocities corresponds to a range of low yaw angle where the cylinder is in near-axial flow in statics. The case of a yawed cylinder has been studied both experimentally with experiments in a wind tunnel and numerically with CFD calculations. The analyses of the fluid forces shows that for yaw angles smaller than 5 degrees, a linear lift with the yaw angle creates the damping. The origin of the lift force is discussed from pressure and velocity measurements. The results of the quasi-static approach are compared to the results of the dynamical experiments. In a second part, an experimental study is performed on a rigid cylinder array made up of 40 cylinders oscillating in an axial flow. The normal force and the displacement of the cylinder array are measured simultaneously. The added mass and damping coefficient are calculated and their variation with the

  9. Axial acoustic radiation force on a sphere in Gaussian field

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Rongrong; Liu, Xiaozhou, E-mail: xzliu@nju.edu.cn; Gong, Xiufen [Key Laboratory of Modern Acoustics, Institute of Acoustics and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2015-10-28

    Based on the finite series method, the acoustical radiation force resulting from a Gaussian beam incident on a spherical object is investigated analytically. When the position of the particles deviating from the center of the beam, the Gaussian beam is expanded as a spherical function at the center of the particles and the expanded coefficients of the Gaussian beam is calculated. The analytical expression of the acoustic radiation force on spherical particles deviating from the Gaussian beam center is deduced. The acoustic radiation force affected by the acoustic frequency and the offset distance from the Gaussian beam center is investigated. Results have been presented for Gaussian beams with different wavelengths and it has been shown that the interaction of a Gaussian beam with a sphere can result in attractive axial force under specific operational conditions. Results indicate the capability of manipulating and separating spherical spheres based on their mechanical and acoustical properties, the results provided here may provide a theoretical basis for development of single-beam acoustical tweezers.

  10. Analysis of Forced Spatial Vibrations of a Centrifugal Pump Impeller with Axial Forces Balancing Device

    Science.gov (United States)

    Zhulyov, A.; Martsinkovsky, V.; Kundera, C.

    2016-08-01

    In this paper, a model of a pump impeller with annular seals and a balancing device, used as a combined support-seal assembly, is considered. The forced coupled radial, angular and axial vibrations of the rotor are determined with consideration of linearized inertial, damping, gyroscopic, positional and circulating forces and moments acting on the impeller from the side of the fluid flow in annular seals. The theoretical analysis is supplemented with a numerical example, the amplitude frequency characteristics are shown.

  11. Measurement for cobalt target activity and its axial distribution

    International Nuclear Information System (INIS)

    Li Xingyuan; Chen Zigen.

    1985-01-01

    Cobalt target activity and its axial distribution are measured in process of producing radioactive isotopes 60 Co by irradiation in HFETR. Cobalt target activity is obtained with measured data at 3.60 m and 4.60 m, relative axial distribution of cobalt target activity is obtained with one at 30 cm, and axial distribution of cobalt target activity(or specific activity) is obtained with both of data. The difference between this specific activity and measured result for 60 Co teletherapy sources in the end is less than +- 5%

  12. Axial flux data for fuel measurement

    Energy Technology Data Exchange (ETDEWEB)

    Popovich, R.P.

    1964-02-11

    A survey of the PITA-18 nonpoisonous spline program was conducted in conjunction with a study to determine the best method of eliminating the variability of axial flux on the fuel performance parameter, q. The results of this survey and the conclusions reached in the rupture coefficient study were found to be inter-dependent such that both are presented in this report. The data from the PITA-18 nonpoisonous spline program, as received, is the output of the NOLA-2 computer program. One quantity of interest is the rupture potential relative to a cosine, commonly referred to as the relative rupture potential. As programmed, the relative rupture potential, which was derived by applying the rupture model to individual fuel elements, might be expected to vary linearly with the rupture rate. The use of the relative rupture potential was studied over the period of July 1962 through December 1963. The results of this study are presented.

  13. Jump distance of dance landings influencing internal joint forces: I. Axial forces.

    Science.gov (United States)

    Simpson, K J; Kanter, L

    1997-07-01

    Knowledge of the magnitude and rate of applying axial forces (AF) during actual dance movements is necessary for understanding the etiology of chronic injuries and osteoarthritis. The purpose of this study was to investigate the effect of jumping distance on component ankle and knee joint AFs generated during the landing phase of traveling jumps. Six female dancers performed 10 jumps each at 30, 60, and 90% maximum jump distance (JD) and 15 jumps ranging from 35 to 100% JD. A sagittal view of the right leg landing onto a force platform was filmed. Greater ground reaction force maxima, knee flexion, knee and ankle flexion velocity, tibial landing angle, net ankle and knee joint moment maxima, ankle and knee joint reaction AFs, and quadriceps AFs (QuadAF) peak magnitudes and rates of AF application (dFmax/dt) were observed (P JD. The QuadAF was a more important determinant of knee AF than joint reaction AF. Increased quadriceps force was useful for accommodating impact forces but served to increase its contribution to Knee AF, particularly during the later portion of the impact phase. High impact situations create significant magnitudes (e.g., 14 BW) and dFmax/dt of muscle AFs which could contribute to excessive joint wear.

  14. A free vibration of beams carrying a concentrated mass under distributed axial forces

    International Nuclear Information System (INIS)

    Nagai, Ken-ichi; Nagaya, Kosuke; Takeda, Sadahiko; Arai, Noriyuki.

    1988-01-01

    The free bending vibrations of beams with a concentrated mass subjected to axial forces caused by axial acceleration are analyzed by the Galerkin method, introducing the mode shape functions which are the sum of the products of the finite power series and the trigonometrical function. This analytical method makes it easy to construct the equations of motion in each boundary condition only by exchanging the coefficients of the finite power series. Numerical calculations are carried out under four sets of boundary conditions combined with simply supported and clamped edges. The natural frequencies and the corresponding modes of vibration are determined under both various locations of the concentrated mass and axial forces. it is found that the transverse inertia force and the axial force, due to the concentrated mass, have significant effects on the change of the natural frequencies for beams. Furthermore the distinction of boundary conditions gives predominant influence to the variation of natural frequencies. (author)

  15. Standard practice for verification of constant amplitude dynamic forces in an axial fatigue testing system

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This practice covers procedures for the dynamic verification of cyclic force amplitude control or measurement accuracy during constant amplitude testing in an axial fatigue testing system. It is based on the premise that force verification can be done with the use of a strain gaged elastic element. Use of this practice gives assurance that the accuracies of forces applied by the machine or dynamic force readings from the test machine, at the time of the test, after any user applied correction factors, fall within the limits recommended in Section 9. It does not address static accuracy which must first be addressed using Practices E 4 or equivalent. 1.2 Verification is specific to a particular test machine configuration and specimen. This standard is recommended to be used for each configuration of testing machine and specimen. Where dynamic correction factors are to be applied to test machine force readings in order to meet the accuracy recommended in Section 9, the verification is also specific to the c...

  16. Research on a novel axial-flux magnetic-field-modulated brushless double-rotor machine with low axial force and high efficiency

    Directory of Open Access Journals (Sweden)

    Chengde Tong

    2017-05-01

    Full Text Available The axial-flux magnetic-field-modulated brushless double-rotor machine (MFM-BDRM is a possible alternative as a power-split device for hybrid electric vehicles (HEVs. However, the existence of large axial force may lead to assembly problems and rich inner air-gap harmonics could result in high PM loss and low efficiency. This paper proposes a novel axial-flux MFM-BDRM with improved PM rotor structure. 2-D analytical method to predict the magnetic-field distribution of the proposed MFM-BDRM is developed and the design procedure of the proposed machine is illustrated. The impact of key geometrical parameters on axial force and torque is investigated. To evaluate the advantage of the proposed machine, a comparison is made with a conventional one with respect to electromagnetic performances. Results show that the proposed machine is effective in reducing PM eddy loss and axial force by 60% and 35%, respectively.

  17. Interfacial force measurements using atomic force microscopy

    NARCIS (Netherlands)

    Chu, L.

    2018-01-01

    Atomic Force Microscopy (AFM) can not only image the topography of surfaces at atomic resolution, but can also measure accurately the different interaction forces, like repulsive, adhesive and lateral existing between an AFM tip and the sample surface. Based on AFM, various extended techniques have

  18. Standard practice for conducting force controlled constant amplitude axial fatigue tests of metallic materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This practice covers the procedure for the performance of axial force controlled fatigue tests to obtain the fatigue strength of metallic materials in the fatigue regime where the strains are predominately elastic, both upon initial loading and throughout the test. This practice is limited to the fatigue testing of axial unnotched and notched specimens subjected to a constant amplitude, periodic forcing function in air at room temperature. This practice is not intended for application in axial fatigue tests of components or parts. Note 1-The following documents, although not directly referenced in the text, are considered important enough to be listed in this practice: E 739 Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (-N) Fatigue Data STP 566 Handbook of Fatigue Testing STP 588 Manual on Statistical Planning and Analysis for Fatigue Experiments STP 731 Tables for Estimating Median Fatigue Limits

  19. The development of an air injection system for the forced response testing of axial compressors

    CSIR Research Space (South Africa)

    Wegman, Erik J

    2013-06-01

    Full Text Available of ASME Turbo Expo 2013: Power for Land, Sea and Air: GT2013, San Antonio, Texas, USA, 3-7 June 2013 THE DEVELOPMENT OF AN AIR INJECTION SYSTEM FOR THE FORCED RESPONSE TESTING OF AXIAL COMPRESSORS E Wegman and G Snedden CSIR, Pretoria, South...

  20. Influence of foundation and axial force on the vibration of thin beam ...

    African Journals Online (AJOL)

    The influence of foundation and axial force on the vibration of a simply supported thin (Bernoulli Euler) beam, resting on a uniform foundation, under the action of a variable magnitude harmonic load moving with variable velocity is investigated in this paper. The governing equation is a fourth order partial differential ...

  1. Effects of axial gap and nozzle distribution on aerodynamic forces of a supersonic partial-admission turbine

    Directory of Open Access Journals (Sweden)

    Jinpeng JIANG

    2017-12-01

    Full Text Available The turbine in an LH2/LOX rocket engine is designed as a two-stage supersonic partial-admission turbine. Three-dimensional steady and unsteady simulations were conducted to analyze turbine performance and aerodynamic forces on rotor blades. Different configurations were employed to investigate the effects of the axial gap and nozzle distribution on the predicted performance and aerodynamic forces. Rotor blades experience unsteady aerodynamic forces because of the partial admission. Aerodynamic forces show periodicity in the admission region, and are close to zero after leaving the admission region. The unsteady forces in frequency domain indicate that components exist in a wide frequency region, and the admission passing frequency is dominant. Those multiples of the rotational frequency which are multiples of the nozzle number in a full-admission turbine are notable components. Results show that the turbine efficiency decreases as the axial gap between nozzles and the 1st stage rotor (rotor 1 increases. Fluctuation of the circumferential aerodynamic force on rotor 1 blades decreases with the axial gap increasing. The turbine efficiency decreases as the circumferential spacing between nozzles increases. Fluctuations of the circumferential and axial aerodynamic forces increase as the circumferential spacing increases. As for the non-equidistant nozzle distribution, it produces similar turbine performance and amplitude-frequency characteristics of forces to those of the normal configuration, when the mean spacing is equal to that of the normal case. Keywords: Aerodynamic force, Axial gap, Computational fluid dynamics (CFD, Nozzle distribution, Partial admission, Turbine

  2. Measurement technique of calcaneal varus from axial view radiograph

    Directory of Open Access Journals (Sweden)

    Thossart Harnroongroj

    2015-01-01

    Full Text Available Background: Medial displaced posterior calcaneal tubercle creates varus deformity of an intraarticular calcaneal fracture. The fracture involves posterior calcaneal facet and the calcaneal body so we developed a measurement technique representing the angle between posterior facet and long axis of calcaneus using lateral malleolus and longitudinal bone trabeculae of posterior calcaneal tubercle as references to obtain calcaneal varus angle. Materials and Methods: 52 axial view calcaneal radiographs of 26 volunteers were studied. Angles between posterior facet and long axis of calcaneus were measured using the measurements 1 and 2. Angle of measurement 1, as gold standard, was obtained from long axis and posterior facet of calcaneus whereas measurement 2 was obtained from a line, perpendicular to apex curve of lateral cortex of the lateral malleolus and a line parallel to the longitudinal bone trabeculae of posterior calcaneal tubercle. No more than 3° of difference in the angle of both measurements was accepted. Reliability of the measurement 2 was statistically tested. Results: Angles of measurement 1 and 2 were 90.04° ± 4.00° and 90.58° ± 3.78°. Mean of different degrees of both measurements was 0.54° ± 2.31° with 95% of confidence interval: 0.10°-1.88°. The statistical analysis of measurement 1 and 2 showed more than 0.75 of ICC and 0.826 of Pearson correlation coefficient. Conclusion: Technique of measurement 2 using lateral malleolus and longitudinal bone trabeculae of posterior calcaneal tubercle as references has strong reliability for representing the angle between long axis and posterior facet of calcaneus to achieve calcaneal varus angle.

  3. Measurement technique of calcaneal varus from axial view radiograph.

    Science.gov (United States)

    Harnroongroj, Thossart; Tangmanasakul, Akegapon; Choursamran, Nattapol; Sudjai, Narumol; Harnroongroj, Thos

    2015-01-01

    Medial displaced posterior calcaneal tubercle creates varus deformity of an intraarticular calcaneal fracture. The fracture involves posterior calcaneal facet and the calcaneal body so we developed a measurement technique representing the angle between posterior facet and long axis of calcaneus using lateral malleolus and longitudinal bone trabeculae of posterior calcaneal tubercle as references to obtain calcaneal varus angle. 52 axial view calcaneal radiographs of 26 volunteers were studied. Angles between posterior facet and long axis of calcaneus were measured using the measurements 1 and 2. Angle of measurement 1, as gold standard, was obtained from long axis and posterior facet of calcaneus whereas measurement 2 was obtained from a line, perpendicular to apex curve of lateral cortex of the lateral malleolus and a line parallel to the longitudinal bone trabeculae of posterior calcaneal tubercle. No more than 3° of difference in the angle of both measurements was accepted. Reliability of the measurement 2 was statistically tested. Angles of measurement 1 and 2 were 90.04° ± 4.00° and 90.58° ± 3.78°. Mean of different degrees of both measurements was 0.54° ± 2.31° with 95% of confidence interval: 0.10°-1.88°. The statistical analysis of measurement 1 and 2 showed more than 0.75 of ICC and 0.826 of Pearson correlation coefficient. Technique of measurement 2 using lateral malleolus and longitudinal bone trabeculae of posterior calcaneal tubercle as references has strong reliability for representing the angle between long axis and posterior facet of calcaneus to achieve calcaneal varus angle.

  4. Ferrule material dependence of axial force sensitivity of a tunable optical frequency filter made of fiber fabry-perot etalon

    Science.gov (United States)

    Tateda, Mitsuhiro; Dong, Mohan

    2011-01-01

    Fiber Fabry-Perot etalon (FFPE) is a device designed as an optical frequency filter, and its transmission characteristics change depending on force and temperature. In this paper, axial force sensitivity of three types of FFPE is investigated, whose ferrule materials have different Young's modulus. Force sensitivity of an FFPE whose ferrule material is borosilicate glass was found to be 2.7 GHz/N, while those of FFPEs with glass ceramics and zirconium oxide ferrules were 1.7 and 0.8 GHz/N, respectively. Thus, the theoretical expectation is confirmed experimentally that the axial force sensitivity of FFPE is inversely proportional to Young's modulus of the ferrule material.

  5. Influence of axial feed in hobbing with minimal quantity lubrication (MQL on wear of the hob and cutting forces

    Directory of Open Access Journals (Sweden)

    Wojciech STACHURSKI

    2015-12-01

    Full Text Available In the paper evaluation of the influence of axial feed on the hob wear in hobbing with minimal quantity lubrication technique has been done. As a work material C45 carbon steel has been investigated. Wear resistance of the hob made from high speed steel HS6-5-2 without coating has been investigated. For comparison tests with conventional fluid supply method have been carried out. Gears have been generated with full depth of cut and with two axial feed with constant cutting speed value. During hobbing cutting forces have been measured by experimental stand. Tool wear has been measured directly as a width of flank wear land of the hob cutter teeth. During investigation any significant wear changes on the rake faces haven’t been detected, so those results haven’t been taken into consideration. A constant length of cut parameter has been established as a criteria value. Results of investigation have been presented in the form of graphs describing changes of wear land width parameter in comparison to the most loaded tooth wear land parameter. Also changes of cutting forces in time are presented too. On the base of obtained results conclusion has been formulated that MQL technique might be used as an alternative solution for supplying cutting fluid into the cutting zone during hobbing process.

  6. An analysis of the extension of a ZnO piezoelectric semiconductor nanofiber under an axial force

    Science.gov (United States)

    Zhang, Chunli; Wang, Xiaoyuan; Chen, Weiqiu; Yang, Jiashi

    2017-02-01

    This paper presents a theoretical analysis on the axial extension of an n-type ZnO piezoelectric semiconductor nanofiber under an axial force. The phenomenological theory of piezoelectric semiconductors consisting of Newton’s second law of motion, the charge equation of electrostatics and the conservation of charge was used. The equations were linearized for small axial force and hence small electron concentration perturbation, and were reduced to one-dimensional equations for thin fibers. Simple and analytical expressions for the electromechanical fields and electron concentration in the fiber were obtained. The fields are either totally or partially described by hyperbolic functions relatively large near the ends of the fiber and change rapidly there. The behavior of the fields is sensitive to the initial electron concentration and the applied axial force. For higher initial electron concentrations the fields are larger near the ends and change more rapidly there.

  7. Axial and Radial Forces of Cross-Bridges Depend on Lattice Spacing

    Science.gov (United States)

    Williams, C. David; Regnier, Michael; Daniel, Thomas L.

    2010-01-01

    Nearly all mechanochemical models of the cross-bridge treat myosin as a simple linear spring arranged parallel to the contractile filaments. These single-spring models cannot account for the radial force that muscle generates (orthogonal to the long axis of the myofilaments) or the effects of changes in filament lattice spacing. We describe a more complex myosin cross-bridge model that uses multiple springs to replicate myosin's force-generating power stroke and account for the effects of lattice spacing and radial force. The four springs which comprise this model (the 4sXB) correspond to the mechanically relevant portions of myosin's structure. As occurs in vivo, the 4sXB's state-transition kinetics and force-production dynamics vary with lattice spacing. Additionally, we describe a simpler two-spring cross-bridge (2sXB) model which produces results similar to those of the 4sXB model. Unlike the 4sXB model, the 2sXB model requires no iterative techniques, making it more computationally efficient. The rate at which both multi-spring cross-bridges bind and generate force decreases as lattice spacing grows. The axial force generated by each cross-bridge as it undergoes a power stroke increases as lattice spacing grows. The radial force that a cross-bridge produces as it undergoes a power stroke varies from expansive to compressive as lattice spacing increases. Importantly, these results mirror those for intact, contracting muscle force production. PMID:21152002

  8. A unified approach for determining the ultimate strength of RC members subjected to combined axial force, bending, shear and torsion

    OpenAIRE

    Wang, Pu; Huang, Zhen

    2017-01-01

    This paper uses experimental investigation and theoretical derivation to study the unified failure mechanism and ultimate capacity model of reinforced concrete (RC) members under combined axial, bending, shear and torsion loading. Fifteen RC members are tested under different combinations of compressive axial force, bending, shear and torsion using experimental equipment designed by the authors. The failure mechanism and ultimate strength data for the four groups of tested RC members under di...

  9. 3D deformation field in growing plant roots reveals both mechanical and biological responses to axial mechanical forces.

    Science.gov (United States)

    Bizet, François; Bengough, A Glyn; Hummel, Irène; Bogeat-Triboulot, Marie-Béatrice; Dupuy, Lionel X

    2016-10-01

    Strong regions and physical barriers in soils may slow root elongation, leading to reduced water and nutrient uptake and decreased yield. In this study, the biomechanical responses of roots to axial mechanical forces were assessed by combining 3D live imaging, kinematics and a novel mechanical sensor. This system quantified Young's elastic modulus of intact poplar roots (32MPa), a rapid 3D. Measured critical elongation force was accurately predicted from an Euler buckling model, indicating that no biologically mediated accommodation to mechanical forces influenced bending during this short period of time. Force applied by growing roots increased more than 15-fold when buckling was prevented by lateral bracing of the root. The junction between the growing and the mature zones was identified as a zone of mechanical weakness that seemed critical to the bending process. This work identified key limiting factors for root growth and buckling under mechanical constraints. The findings are relevant to crop and soil sciences, and advance our understanding of root growth in heterogeneous structured soils. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. Self-consistent separable random-phase approximation for Skyrme forces: Giant resonances in axial nuclei

    International Nuclear Information System (INIS)

    Nesterenko, V. O.; Dolci, D. S.; Kleinig, W.; Kvasil, J.; Vesely, P.; Reinhard, P.-G.

    2006-01-01

    We formulate the self-consistent separable random phase approximation (SRPA) method and specify it for Skyrme forces with pairing for the case of axially symmetric deformed nuclei. The factorization of the residual interaction allows diagonalization of high-ranking RPA matrices to be avoided, which dramatically reduces the computational expense. This advantage is crucial for the systems with a huge configuration space, first of all for deformed nuclei. SRPA self-consistently takes into account the contributions of both time-even and time-odd Skyrme terms as well as of the Coulomb force and pairing. The method is implemented to describe isovector E1 and isoscalar E2 giant resonances in a representative set of deformed nuclei: 154 Sm, 238 U, and 254 No. Four different Skyrme parameterizations (SkT6, SkM*, SLy6, and SkI3) are employed to explore the dependence of the strength distributions on some basic characteristics of the Skyrme functional and nuclear matter. In particular, we discuss the role of isoscalar and isovector effective masses and their relation to time-odd contributions. The high sensitivity of the right flank of E1 resonance to different Skyrme forces and the related artificial structure effects are analyzed

  11. Automatic HTS force measurement instrument

    Science.gov (United States)

    Sanders, S.T.; Niemann, R.C.

    1999-03-30

    A device is disclosed for measuring the levitation force of a high temperature superconductor sample with respect to a reference magnet includes a receptacle for holding several high temperature superconductor samples each cooled to superconducting temperature. A rotatable carousel successively locates a selected one of the high temperature superconductor samples in registry with the reference magnet. Mechanism varies the distance between one of the high temperature superconductor samples and the reference magnet, and a sensor measures levitation force of the sample as a function of the distance between the reference magnet and the sample. A method is also disclosed. 3 figs.

  12. Ocular Axial Length Measurement Among Normal Adults Using ...

    African Journals Online (AJOL)

    2017-07-26

    Jul 26, 2017 ... Background/Introduction: Macrophthalmia and microphthalmia are cardinal signs of many orbito-ocular and systemic diseases which are seen in northern Nigeria. Some cases of refractive error may also be directly related to the ocular axial length (AL). The need for an imaging parameter that will aid their ...

  13. Significance of axial length monitoring in children with congenital cataract and update of measurement methods.

    Science.gov (United States)

    Zhan, Jiao; Lin, Haotian; Zhang, Xinyu; Chen, Weirong; Liu, Yizhi

    2013-06-01

    Congenital cataract is the main cause of blindness in children, with significantly varying treatment effects. The development of axial length is an important factor that affects the prognosis of these children. However, when compared with the eyes of normal children, the mechanism of growth of the axial length is so complicated that the reported findings differ significantly in terms of the measuring apparatus, assessment methods, and statistical outcome, making the rule of axial length development still unclear. In this paper, we first review the process of axial length development in normal healthy children and compare different hypotheses about certain factors that could affect the development of axial length. The results of some current research about the characteristics of axial length development in congenital cataract children are then reviewed. Lastly, the advantages and disadvantages of current axial length measurements methods are compared and analyzed. The purpose of this review is to improve our understanding of the complexity and importance of axial length development and to suggest better use of axial length monitoring measurements in congenital cataract children for pediatric ophthalmologists, with the hope of offering assistance that will enhance long-term therapeutic effects for these children.

  14. Fiber optic micro sensor for the measurement of tendon forces.

    Science.gov (United States)

    Behrmann, Gregory P; Hidler, Joseph; Mirotznik, Mark S

    2012-10-03

    A fiber optic sensor developed for the measurement of tendon forces was designed, numerically modeled, fabricated, and experimentally evaluated. The sensor incorporated fiber Bragg gratings and micro-fabricated stainless steel housings. A fiber Bragg grating is an optical device that is spectrally sensitive to axial strain. Stainless steel housings were designed to convert radial forces applied to the housing into axial forces that could be sensed by the fiber Bragg grating. The metal housings were fabricated by several methods including laser micromachining, swaging, and hydroforming. Designs are presented that allow for simultaneous temperature and force measurements as well as for simultaneous resolution of multi-axis forces.The sensor was experimentally evaluated by hydrostatic loading and in vitro testing. A commercial hydraulic burst tester was used to provide uniform pressures on the sensor in order to establish the linearity, repeatability, and accuracy characteristics of the sensor. The in vitro experiments were performed in excised tendon and in a dynamic gait simulator to simulate biological conditions. In both experimental conditions, the sensor was found to be a sensitive and reliable method for acquiring minimally invasive measurements of soft tissue forces. Our results suggest that this sensor will prove useful in a variety of biomechanical measurements.

  15. Fiber optic micro sensor for the measurement of tendon forces

    Directory of Open Access Journals (Sweden)

    Behrmann Gregory P

    2012-10-01

    Full Text Available Abstract A fiber optic sensor developed for the measurement of tendon forces was designed, numerically modeled, fabricated, and experimentally evaluated. The sensor incorporated fiber Bragg gratings and micro-fabricated stainless steel housings. A fiber Bragg grating is an optical device that is spectrally sensitive to axial strain. Stainless steel housings were designed to convert radial forces applied to the housing into axial forces that could be sensed by the fiber Bragg grating. The metal housings were fabricated by several methods including laser micromachining, swaging, and hydroforming. Designs are presented that allow for simultaneous temperature and force measurements as well as for simultaneous resolution of multi-axis forces. The sensor was experimentally evaluated by hydrostatic loading and in vitro testing. A commercial hydraulic burst tester was used to provide uniform pressures on the sensor in order to establish the linearity, repeatability, and accuracy characteristics of the sensor. The in vitro experiments were performed in excised tendon and in a dynamic gait simulator to simulate biological conditions. In both experimental conditions, the sensor was found to be a sensitive and reliable method for acquiring minimally invasive measurements of soft tissue forces. Our results suggest that this sensor will prove useful in a variety of biomechanical measurements.

  16. Automatic measurement of axial length of human eye using three-dimensional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Watanabe, Masaki; Kiryu, Tohru

    2011-01-01

    The measurement of axial length and the evaluation of three dimensional (3D) form of an eye are essential to evaluate the mechanism of myopia progression. We propose a method of automatic measurement of axial length including adjustment of the pulse sequence of short-term scan which could suppress influence of eyeblink, using a magnetic resonance imaging (MRI) which acquires 3D images noninvasively. Acquiring T 2 -weighted images with 3.0 tesla MRI device and eight-channel phased-array head coil, we extracted left and right eye ball images, and then reconstructed 3D volume. The surface coordinates were calculated from 3D volume, fitting the ellipsoid model coordinates with the surface coordinates, and measured the axial length automatically. Measuring twenty one subjects, we compared the automatically measured values of axial length with the manually measured ones, then confirmed significant elongation in the axial length of myopia compared with that of emmetropia. Furthermore, there were no significant differences (P<0.05) between the means of automatic measurements and the manual ones. Accordingly, the automatic measurement process of axial length could be a tool for the elucidation of the mechanism of myopia progression, which would be suitable for evaluating the axial length easily and noninvasively. (author)

  17. Fracture strength, failure type and Weibull characteristics of lithium disilicate and multiphase resin composite endocrowns under axial and lateral forces

    NARCIS (Netherlands)

    Gresnigt, Marco M M; Özcan, Mutlu; van den Houten, Mieke L A; Schipper, Laura; Cune, Marco S

    OBJECTIVE: Multiphase resin composite materials have been advocated as an alternative to reinforced ceramics but limited information is available to date on their stability. This in vitro study evaluated the effect of axial and lateral forces on the strength of endocrowns made of Li2Si2O5 and

  18. Detailed measurement of the flow field in an axial transonic compressor; Mesure detaillee des ecoulements dans un compresseur axial transsonique

    Energy Technology Data Exchange (ETDEWEB)

    Fradin, C.

    1998-07-01

    The prediction of flow structure and performances of an axial transonic compressor requires accurate solvers. Taking into account the complex flow patterns, it is important to validate codes by comparing it with experimental results. It is well understood that the availability of experimental data is fundamentally important for the improvement of the solvers. An axial transonic compressor has been fitted in the ERECA test facility of ONERA. The rotor of this compressor is isolated from stators. This experimental configuration allows to obtain a steady flow into the relative frame linked to the rotor. Due to this fact, experimental tests became easier because the basic phenomena are not hidden by mutual interactions rotor-stator. Measurements have been made in a test section far upstream the rotor, to provide the inlet conditions in the computation domain. Non intrusive and fast response measurement techniques allow to obtain the detailed flow structure in several test sections located in the rotor and far downstream it. All tests were carried out at four operating conditions of the compressor. Results provide good test cases for numerical prediction methods using three-dimensional Navier-Stokes solvers. (author)

  19. The accuracy of axial length measurements in cases of macula-off retinal detachment.

    Science.gov (United States)

    Abou-Shousha, Mohsen; Helaly, Hany Ahmed; Osman, Ihab Mohamed

    2016-04-01

    To assess the accuracy of axial length measurements in cases of macula-off retinal detachment using different methods (optical biometry, A-scan ultrasound, and combined applanation vector-A/B-scan biometry). This prospective clinical study included 100 eyes of 100 patients who underwent vitrectomy alone or phacovitrectomy for macula-off retinal detachment. All patients included signed an informed consent. Preoperative examination of the patients included recording the axial length measurements using optical biometry, A-scan ultrasound, and combined applanation vector-A/B-scan biometry. The mean postoperative IOLMaster axial length after macular reattachment was 26.11 ± 2.91 mm. The mean preoperative IOLMaster axial length with macula-off was 25.32 ± 2.72 mm. The mean preoperative A-scan axial length with macula-off was 25.29 ± 2.80 mm. The mean preoperative vector-A/B-scan axial length with macula-off was 26.03 ± 2.90 mm. The preoperative vector-A/B-scan mean absolute error was 0.59 ± 0.48 D (range, 0.10-2.25 D). Regular methods (optical biometry and A-scan biometry) of measuring the axial length in cases with a detached macula proved to be variable and less accurate. The vector-A/B-scan offered good measurements of the actual axial length in the patients. This was reflected on more accurate postoperative refractive outcome. Copyright © 2016 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  20. STUDY OF STATIC AND DYNAMIC STABILITY OF THIN-WALLED BARS EXCITED BY PERIODICAL AXIAL EXTERNAL FORCES.

    Directory of Open Access Journals (Sweden)

    Minodora Maria PASĂRE

    2010-10-01

    Full Text Available In these paper, starting from the relations for the displacements and spinning the transversal section of a bar with thin walls of sections opened expressed by the corresponding influence functions and introducing the components of the exterior forces distributed and the moments of the exterior forces distributed due to the inertia forces, the exciting axial forces together with the following effect of these and of the reaction forces of the elastic environment for leaning it may reach to the system of the equations of parametric vibrations under the form of three integral equation These equations may serve for the study of vibrations of the bars, to study the static stability and to study the dynamic stability

  1. Dual-channel phase-contrast spectral optical coherence tomography for simultaneously measuring axial and normal to B-scan off-axial displacements

    Science.gov (United States)

    Dong, Bo; Zhang, Yun; Ye, Shuangli; Zhou, Yanzhou; He, Zhaoshui; Xie, Shengli

    2017-09-01

    A dual-channel phase-contrast spectral optical coherence tomography (DPC-SOCT) method is proposed for measuring axial and normal to B-scan off-axial displacements inside weakly scattering translucent materials. By employing a dual-channel observation structure with depth multiplexing, only one shot before and one shot after the object deformation are required for simultaneously measuring the displacements. To validate the method, a DPC-SOCT system was built and axial and normal to B-scan off-axial displacements inside polymer films were measured at 20 frames per second. The results suggest that the method can be used for investigating inner mechanical properties of materials under different loads. In the future, a method for all orthogonal measurement of displacement components will be developed.

  2. Influence of Diamondlike Carbon Coating of Screws on Axial Tightening Force and Stress Distribution on Overdenture Bar Frameworks with Different Fit Levels and Materials.

    Science.gov (United States)

    dos Santos, Mateus Bertolini Fernandes; Bacchi, Atais; Consani, Rafael Leonardo Xediek; Correr-Sobrinho, Lourenço

    2015-01-01

    The aim of this study was to evaluate the axial tightening force applied by conventional and diamondlike carbon (DLC)-coated screws and to verify, through three-dimensional finite element analysis (FEA), the stress distribution caused by different framework materials and prosthetic screws in overdenture frameworks with different misfit levels. The axial tightening force applied by the screw was evaluated by means of a titanium matrix connected to a load cell. Conventional titanium or DLC-coated screws were tightened with a digital torque wrench, and the load values were recorded. The values were applied in an FEA to a bar-clip attachment system connected to two 4.0 × 11-mm external-hexagon titanium implants placed in an anterior edentulous arch. DLC-coated and conventional screws were modeled with their respective axial forces obtained on the experimental evaluation for three bar framework materials (titanium, nickel-chromium, and cobalt-chromium) and three levels of misfit (100, 150, and 200 μm). Von Mises stresses for prosthetic components and maximum principal stress and microstrains (maximum principal strains) for bone tissue were measured. The mean force applied by the conventional screw was 25.55 N (± 1.78); the prosthetic screw coated with a DLC layer applied a mean force of 31.44 N (± 2.11), a statistically significant difference. In the FEA, the DLC screw led to higher stresses on the framework; however, the prosthetic screw suffered lower stress. No influence of screw type was seen in the bone tissue. Titanium frameworks reduced the stress transmitted to the bone tissue and the bar framework but had no influence on the screws. Higher misfit values resulted in an increased stress/strain in bone tissue and bar framework, which was not the case for retention screws.

  3. Direct measurements of intermolecular forces by chemical force microscopy

    Science.gov (United States)

    Vezenov, Dmitri Vitalievich

    1999-12-01

    Detailed description of intermolecular forces is key to understanding a wide range of phenomena from molecular recognition to materials failure. The unique features of atomic force microscopy (AFM) to make point contact force measurements with ultra high sensitivity and to generate spatial maps of surface topography and forces have been extended to include measurements between well-defined organic molecular groups. Chemical modification of AFM probes with self-assembled monolayers (SAMs) was used to make them sensitive to specific molecular interactions. This novel chemical force microscopy (CFM) technique was used to probe forces between different molecular groups in a range of environments (vacuum, organic liquids and aqueous solutions); measure surface energetics on a nanometer scale; determine pK values of the surface acid and base groups; measure forces to stretch and unbind a short synthetic DNA duplex and map the spatial distribution of specific functional groups and their ionization state. Studies of adhesion forces demonstrated the important contribution of hydrogen bonding to interactions between simple organic functionalities. The chemical identity of the tip and substrate surfaces as well as the medium had a dramatic effect on adhesion between model monolayers. A direct correlation between surface free energy and adhesion forces was established. The adhesion between epoxy polymer and model mixed SAMs varied with the amount of hydrogen bonding component in the monolayers. A consistent interpretation of CFM measurements in polar solvents was provided by contact mechanics models and intermolecular force components theory. Forces between tips and surfaces functionalized with SAMs terminating in acid or base groups depended on their ionization state. A novel method of force titration was introduced for highly local characterization of the pK's of surface functional groups. The pH-dependent changes in friction forces were exploited to map spatially the

  4. Measurement of hemodynamic changes with the axial flow blood pump installed in descending aorta.

    Science.gov (United States)

    Okamoto, Eiji; Yano, Tetsuya; Miura, Hidekazu; Shiraishi, Yasuyuki; Yambe, Tomoyuki; Mitamura, Yoshinori

    2017-12-01

    We have developed various axial flow blood pumps to realize the concept of the Valvo pump, and we have studied hemodynamic changes under cardiac assistance using an axial flow blood pump in series with the natural heart. In this study, we measured hemodynamic changes of not only systemic circulation but also cerebral circulation and coronary circulation under cardiac support using our latest axial flow blood pump placed in the descending aorta in an acute animal experiment. The axial flow blood pump was installed at the thoracic descending aorta through a left thoracotomy of a goat (43.8 kg, female). When the pump was on, the aortic pressure and aortic flow downstream of the pump increased with preservation of pulsatilities. The pressure drop upstream of the pump caused reduction of afterload pressure, and it may lead to reduction of left ventricular wall stress. However, cerebral blood flow and coronary blood flow were decreased when the pump was on. The axial flow blood pump enables more effective blood perfusion into systemic circulation, but it has the potential risk of blood perfusion disturbance into cerebral circulation and coronary circulation. The results indicate that the position before the coronary ostia might be suitable for implantation of the axial flow blood pump in series with the natural heart to avoid blood perfusion disturbances.

  5. Research on the effect of wear-ring clearances to the axial and radial force of a centrifugal pump

    International Nuclear Information System (INIS)

    Zhao, W G; Qi, C X; Li, Y B; He, M Y

    2013-01-01

    Varying of the wear-ring clearance not only has a distinct effect on the volumetric loss of the centrifugal pump, but also on the performance of the centrifugal pump including the axial and radial forces. Comparing with the experimental studies, numerical simulation methods have some special advantages, such as the low cost, fast and high efficiency, and convenient to get the detailed structure of the internal flow characteristics, so it has been widely used in the fluid machinery study in recent years. In order to study the effect of wear-ring clearance on the force performance of the centrifugal pump, based on the Reynolds Time-Averaged N-S equations and RNG k-ε turbulence model, a centrifugal pump with three variable styles of the wear-rings was simulated: Only the clearance of the front wear-ring was changed, only the clearance of the back wear-ring was changed and both were changed. Comparing with the experiment, numerical results show a good agreement. In the three changing styles of the clearance, the variable of the clearance of front wear-ring has the most influence on the axial force of the centrifugal pump, while has tiny effect on the radial force for all the conditions

  6. Measuring Forces between Oxide Surfaces Using the Atomic Force Microscope

    DEFF Research Database (Denmark)

    Pedersen, Henrik Guldberg; Høj, Jakob Weiland

    1996-01-01

    The interactions between colloidal particles play a major role in processing of ceramics, especially in casting processes. With the Atomic Force Microscope (AFM) it is possible to measure the inter-action force between a small oxide particle (a few micron) and a surface as function of surface...

  7. 3D Laboratory Measurements of Forces, Flows, and Collimation in Arched Flux Tubes

    Science.gov (United States)

    Haw, Magnus; Bellan, Paul

    2016-10-01

    Fully 3D, vector MHD force measurements from an arched, current carrying flux tube (flux rope) are presented. The experiment consists of two arched plasma-filled flux ropes each powered by a capacitor bank. The two loops are partially overlapped, as in a Venn diagram, and collide and reconnect during their evolution. B-field data is taken on the lower plasma arch using a 54 channel B-dot probe. 3D volumetric data is acquired by placing the probe at 2700 locations and taking 5 plasma shots at each location. The resulting data set gives high resolution (2cm, 10ns) volumetric B-field data with high reproducibility (deviation of 3% between shots). Taking the curl of the measured 3D B-field gives current densities (J) in good agreement with measured capacitor bank current. The JxB forces calculated from the data have a strong axial component at the base of the current channel and are shown to scale linearly with axial gradients in current density. Assuming force balance in the flux tube minor radius direction, we infer near-Alfvenic axial flows from the footpoint regions which are consistent with the measured axial forces. Flux tube collimation is observed in conjunction with these axial flows. These dynamic processes are relevant to the stability and dynamics of coronal loops. Supported provided by NSF, AFOSR.

  8. Axial offset as measure of stability of light water nuclear reactor during capacity maneuvering

    Directory of Open Access Journals (Sweden)

    Mark V. Nikolsky

    2015-03-01

    Full Text Available High reliability and security of power unit are required during operation of power unit while maneuvering. They depend on the stability of reactor when transition from one power level to another. The axial offset is a quantitative measure of the reactor stability. It is shown that change of the active core inlet coolant temperature yields an uncontrollable disturbance affecting the axial offset and therefore the reactor stability. To insure the reactor stability the compromise-combined power control method is proposed. Analysis of the influence of temperature of coolant at the magnitude of the axial offset for different regulatory programs is carried out. The change in the depth of immersion of regulators in the active zone for different regulatory programs when the reactor plant daily capacity maneuver is studied.

  9. Models of Restoring Force Characteristics for Anchor-Bolt-Yield-Type Exposed Column-Base under Bi-Axial-Bending

    OpenAIRE

    高松,隆夫; 玉井,宏章; 山西,央朗; 松村,高良; 山石,健司

    2009-01-01

    An experimental study of slip-type and non-slip-type exposed column bases subjected to cyclic bi-axial bending moment was made to investigate restoring force characteristics. Based on the test results the following conclusions were drawn: 1) Non-slip-type column bases showed non-slip-type multi-linear cyclic curves, linear from the origin at each loading cycle. 2) Slip-type column bases showed complicated slip-type cyclic curves, especially in 45-degrees cyclic loading because of plastic elon...

  10. Measurements of Combined Axial Mass and Heat Transport in He II.

    Science.gov (United States)

    Johnson, Warren W.; Jones, Michael C.

    An experiment was performed that allowed measurements of both axial mass and heat transport of He-II (the superfluid phase of helium 4) in a long tube. The apparatus allowed the pressure difference and the temperature difference across the flow tube to each be independently adjusted, and the resulting steady-state values of net fluid velocity and…

  11. Dose profile measurement in computerized axial tomography equipment using thermoluminescent dosemeters

    International Nuclear Information System (INIS)

    Azorin V, J.C.; Falcony, C.; Azorin N, J.

    2000-01-01

    In this work are presented the results about measuring the radiation dose profile in two equipment of computerized axial tomography (Tac). Thermoluminescent dosemeters (Dtl) of LiF, Mg, Cu, P + Ptfe in form of disks were used which were developed and made in Mexico. The results showed that Dtl are appropriated for these type of studies. (Author)

  12. Measuring hindfoot alignment radiographically: the long axial view is more reliable than the hindfoot alignment view

    Energy Technology Data Exchange (ETDEWEB)

    Reilingh, Mikel L.; Beimers, Lijkele; Tuijthof, Gabrielle J.M.; Stufkens, Sjoerd A.S.; Dijk, C.N. van [Academic Medical Center, Department of Orthopaedic Surgery, Amsterdam (Netherlands); Maas, Mario [Academic Medical Center, Department of Radiology, Amsterdam (Netherlands)

    2010-11-15

    Hindfoot malalignment is a recognized cause of foot and ankle disability. For preoperative planning and clinical follow-up, reliable radiographic assessment of hindfoot alignment is important. The long axial radiographic view and the hindfoot alignment view are commonly used for this purpose. However, their comparative reliabilities are unknown. As hindfoot varus or valgus malalignment is most pronounced during mid-stance of gait, a unilateral weight-bearing stance, in comparison with a bilateral stance, could increase measurement reliability. The purpose of this study was to compare the intra- and interobserver reliability of hindfoot alignment measurements of both radiographic views in bilateral and unilateral stance. A hindfoot alignment view and a long axial view were acquired from 18 healthy volunteers in bilateral and unilateral weight-bearing stances. Hindfoot alignment was defined as the angular deviation between the tibial anatomical axis and the calcaneus longitudinal axis from the radiographs. Repeat measurements of hindfoot alignment were performed by nine orthopaedic examiners. Measurements from the hindfoot alignment view gave intra- and interclass correlation coefficients (CCs) of 0.72 and 0.58, respectively, for bilateral stance and 0.91 and 0.49, respectively, for unilateral stance. The long axial view showed, respectively, intra- and interclass CCs of 0.93 and 0.79 for bilateral stance and 0.91 and 0.58 for unilateral stance. The long axial view is more reliable than the hindfoot alignment view or the angular measurement of hindfoot alignment. Although intra-observer reliability is good/excellent for both methods, only the long axial view leads to good interobserver reliability. A unilateral weight-bearing stance does not lead to greater reliability of measurement. (orig.)

  13. Measuring retinal blood flow in rats using Doppler optical coherence tomography without knowing eyeball axial length

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenzhong; Yi, Ji; Chen, Siyu [Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Jiao, Shuliang [Department of Biomedical Engineering, Florida International University, Miami, Florida 33174 (United States); Zhang, Hao F., E-mail: hfzhang@northwestern.edu [Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208 and Department of Ophthalmology, Northwestern University, Chicago, Illinois 60611 (United States)

    2015-09-15

    Purpose: Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. Methods: The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. Results: In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as −0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31μl/min among four wild-type rats. The authors’ measured flow rates were consistent with results in the literature. Conclusions: By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length.

  14. Condition monitoring of squirrel-cage motors by axial magnetic flux measurements

    OpenAIRE

    Kokko, V. (Voitto)

    2003-01-01

    Abstract The aim of this research work is to develop a tool for condition monitoring of squirrel-cage motors using axial magnetic flux measurements, and to design a diagnostics system for electrical motors. The basic theory of the measurements and systems was found through literature reviews and was further developed from the experimental results of this research work. Fluxgate magnetometers and Hall effect sensors are not reliable enough for condition monitoring purposes, but measurem...

  15. Dose profile measurement in computerized axial tomography equipment using thermoluminescent dosemeters; Medicion del perfil de dosis en equipos de tomografia axial computarizada usando dosimetros termoluminiscentes

    Energy Technology Data Exchange (ETDEWEB)

    Azorin V, J.C.; Falcony, C.; Azorin N, J. [Centro de Investigacion en Ciencia y Tecnologia Avanzada, IPN, 07000 Mexico D.F. (Mexico)

    2000-07-01

    In this work are presented the results about measuring the radiation dose profile in two equipment of computerized axial tomography (Tac). Thermoluminescent dosemeters (Dtl) of LiF, Mg, Cu, P + Ptfe in form of disks were used which were developed and made in Mexico. The results showed that Dtl are appropriated for these type of studies. (Author)

  16. ZZ PWR-AXBUPRO-GKN, Measured Axial Burnup Profiles, NPP Neckarewstheim

    International Nuclear Information System (INIS)

    Neuber, Jens-Christian; Lamprecht, Thomas

    1999-01-01

    -GKN2K contains a sample of 850 Axial Burnup Shapes released by Nuclear Power Plant Neckarwestheim II, Germany, on May 03, 2000 through Siemens AG Power Generation. All of these shapes belong to one and the same fuel assembly type, namely the Siemens Konvoi fuel assembly type FOCUS (TM). For this fuel assembly type the shapes were gathered from the cycles 5 through 12 of NPP Neckarwestheim II. All the shapes refer to EOCs. The shapes are derived from in-core 3D power density distribution measurements based on flux measurements. At 28 fuel assembly positions the flux data are monitored at 32 equidistant axial nodes. Thus, one has a total of 896 measuring points These measurements are performed every fourteenth day. The measurements are performed with the aid of the Siemens/KWU's Aeroball System which has the advantage of monitoring simultaneously all the axial nodes. The high spatial resolution and the high frequency of the measurement campaigns as well as the accuracy of the measurement result in shapes of outstanding quality. For instance, the spatial resolution suffices to discriminate the flux dips caused by the presence of the spacer grids. What regards the end effect, the presence of spacer grids in the ends of the fuel zone should attract one's attention. The fuel assemblies to which the axial shapes under examination refer have had initial enrichments of 3.8 wt.-% and 4.0 wt.-% U-235. For the benchmark the initial enrichment is assumed to be 4.0 wt.-%

  17. Direct measurement of the beam deflection angle using the axial B-dot field

    Directory of Open Access Journals (Sweden)

    Xiaozhong He

    2011-05-01

    Full Text Available Beam position monitors are an important diagnostics tool for particle accelerator operation and related beam dynamics research. The measurement of the beam deflection angle, or moving direction of a charged particle beam with respect to the beam pipe axis, can provide useful additional information. Beam monitors sensitive to the beam’s azimuthal B-dot field (sometimes referred as B dots are used to measure the displacement (position of the beam centroid, as the beam generates a dipole term of the azimuthal magnetic field. Similarly, a dipole term of the axial magnetic field will be generated by the beam moving in a direction not parallel to the axis of the beam pipe. In this paper, a new method using the axial B-dot field is presented to measure the beam deflection angle directly, including the theoretical background. Simulations using the MAFIA numerical code have been performed, demonstrating a good agreement to the new established analytical model.

  18. A unified approach for determining the ultimate strength of RC members subjected to combined axial force, bending, shear and torsion.

    Science.gov (United States)

    Wang, Pu; Huang, Zhen

    2017-01-01

    This paper uses experimental investigation and theoretical derivation to study the unified failure mechanism and ultimate capacity model of reinforced concrete (RC) members under combined axial, bending, shear and torsion loading. Fifteen RC members are tested under different combinations of compressive axial force, bending, shear and torsion using experimental equipment designed by the authors. The failure mechanism and ultimate strength data for the four groups of tested RC members under different combined loading conditions are investigated and discussed in detail. The experimental research seeks to determine how the ultimate strength of RC members changes with changing combined loads. According to the experimental research, a unified theoretical model is established by determining the shape of the warped failure surface, assuming an appropriate stress distribution on the failure surface, and considering the equilibrium conditions. This unified failure model can be reasonably and systematically changed into well-known failure theories of concrete members under single or combined loading. The unified calculation model could be easily used in design applications with some assumptions and simplifications. Finally, the accuracy of this theoretical unified model is verified by comparisons with experimental results.

  19. A unified approach for determining the ultimate strength of RC members subjected to combined axial force, bending, shear and torsion.

    Directory of Open Access Journals (Sweden)

    Pu Wang

    Full Text Available This paper uses experimental investigation and theoretical derivation to study the unified failure mechanism and ultimate capacity model of reinforced concrete (RC members under combined axial, bending, shear and torsion loading. Fifteen RC members are tested under different combinations of compressive axial force, bending, shear and torsion using experimental equipment designed by the authors. The failure mechanism and ultimate strength data for the four groups of tested RC members under different combined loading conditions are investigated and discussed in detail. The experimental research seeks to determine how the ultimate strength of RC members changes with changing combined loads. According to the experimental research, a unified theoretical model is established by determining the shape of the warped failure surface, assuming an appropriate stress distribution on the failure surface, and considering the equilibrium conditions. This unified failure model can be reasonably and systematically changed into well-known failure theories of concrete members under single or combined loading. The unified calculation model could be easily used in design applications with some assumptions and simplifications. Finally, the accuracy of this theoretical unified model is verified by comparisons with experimental results.

  20. Deflection and Supporting Force Analysis of a Slender Beam under Combined Transverse and Tensile Axial Loads

    Science.gov (United States)

    2016-05-01

    testing, digital filtering of flight test data , nonlinear optimisation, and spectral analysis. His recent work has been in the areas of structural shape...formula [2]: = 4 8 (26) 3.3 Nonlinear FEA solution for tension force T ≥ 0 case The Abaqus 6.14-2 finite element analysis code...accurately determine the peak deflection and its location along the span of the beam. The Abaqus beam element type B23 was used, which corresponds to a 2

  1. The Effect of Amplitude Modulation on the Axial Resolution of Doppler-Based Ultrasonic Topography Measurement

    DEFF Research Database (Denmark)

    RezaNejad Gatabi, Javad; Das, Sayantan; Forouzbakhsh, Farshid

    2016-01-01

    Ultrasonic Doppler-based systems for surface topography measurements are attractive alternatives to the transit-time-based methods. Sensors used in Doppler systems are less dependent on the speed of the sound in air, although contemporary Doppler measurement systems are sensitive to the amplitude...... variation of the received signal. Amplitude variation significantly affects the measurement accuracy when the surface axial displacement range is comparable with the ultrasonic wavelength. This paper presents a theoretical and experimental study of the effect of amplitude modulation on the performance...... of the Doppler measurement techniques. A modified Doppler measurement system that significantly improves the measurement accuracy is also presented. The fabricated sensor has 72-μm measurement accuracy using 40-kHz transducers. This technique can also be employed in cost-effective displacement measurement...

  2. Detecting chameleons through Casimir force measurements

    International Nuclear Information System (INIS)

    Brax, Philippe; Bruck, Carsten van de; Davis, Anne-Christine; Shaw, Douglas; Mota, David F.

    2007-01-01

    The best laboratory constraints on strongly coupled chameleon fields come not from tests of gravity per se but from precision measurements of the Casimir force. The chameleonic force between two nearby bodies is more akin to a Casimir-like force than a gravitational one: The chameleon force behaves as an inverse power of the distance of separation between the surfaces of two bodies, just as the Casimir force does. Additionally, experimental tests of gravity often employ a thin metallic sheet to shield electrostatic forces; however, this sheet masks any detectable signal due to the presence of a strongly coupled chameleon field. As a result of this shielding, experiments that are designed to specifically test the behavior of gravity are often unable to place any constraint on chameleon fields with a strong coupling to matter. Casimir force measurements do not employ a physical electrostatic shield and as such are able to put tighter constraints on the properties of chameleons fields with a strong matter coupling than tests of gravity. Motivated by this, we perform a full investigation on the possibility of testing chameleon models with both present and future Casimir experiments. We find that present-day measurements are not able to detect the chameleon. However, future experiments have a strong possibility of detecting or rule out a whole class of chameleon models

  3. Measurement of tool forces in diamond turning

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, J.; Dow, T.A.

    1988-12-01

    A dynamometer has been designed and built to measure forces in diamond turning. The design includes a 3-component, piezoelectric transducer. Initial experiments with this dynamometer system included verification of its predicted dynamic characteristics as well as a detailed study of cutting parameters. Many cutting experiments have been conducted on OFHC Copper and 6061-T6 Aluminum. Tests have involved investigation of velocity effects, and the effects of depth and feedrate on tool forces. Velocity has been determined to have negligible effects between 4 and 21 m/s. Forces generally increase with increasing depth of cut. Increasing feedrate does not necessarily lead to higher forces. Results suggest that a simple model may not be sufficient to describe the forces produced in the diamond turning process.

  4. Microscopic Measurements of Axial Accumulation of Red Blood Cells in Capillary Flows Effects of Deformability

    Science.gov (United States)

    Sasaki, Takahiro; Seki, Junji; Itano, Tomoaki; Sugihara-Seki, Masako

    2017-11-01

    In the microcirculation, red blood cells (RBCs) are known to accumulate in the region near the central axis of microvessels, which is called the ``axial accumulation''. Although this behavior of RBCs is considered to originate from high deformability of RBCs, there have been few experimental studies on the mechanism. In order to elucidate the effect of RBC deformability on the axial accumulation, we measured the cross-sectional distributions of RBCs flowing through capillary tubes with a high spatial resolution by a newly devised observation system for intact and softened RBCs as well as hardened RBCs to various degrees. It was found that the intact and softened RBCs are concentrated in the small area centered on the tube axis, whereas the hardened RBCs are dispersed widely over the tube cross section dependent on the degree of hardness. These results demonstrate clearly the essential role of the deformability of RBCs in the ``axial accumulation'' of RBCs. JSPS KAKENHI Grant Number 17H03176, Kansai University ORDIST group funds.

  5. Axial-scanning low-coherence interferometer method for noncontact thickness measurement of biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do-Hyun; Song, Chul-Gyu; Ilev, Ilko K.; Kang, Jin U.

    2011-02-20

    We investigated a high-precision optical method for measuring the thickness of biological samples regardless of their transparency. The method is based on the precise measurement of optical path length difference of the end surfaces of objects, using a dual-arm axial-scanning low-coherence interferometer. This removes any consideration of the shape, thickness, or transparency of testing objects when performing the measurement. Scanning the reference simplifies the measurement setup, resulting in unambiguous measurement. Using a 1310 nm wavelength superluminescent diode, with a 65 nm bandwidth, the measurement accuracy was as high as 11.6 {mu}m. We tested the method by measuring the thickness of both transparent samples and nontransparent soft biological tissues.

  6. Co-axial Electrospun Polyacrylonitrile-Poly(methylmethacrylate) Nanofibers: Atomic Force Microscopy and Compositional Characterization

    Science.gov (United States)

    Zander, N.E.; Strawhecker, K.E.; Orlicki, J.A.; Rawlett, A.M.; Beebe, T.P.

    2011-01-01

    Poly(methylmethacrylate) (PMMA)- Polyacrylonitrile (PAN) fibers were prepared using a conventional single-nozzle electrospinning technique. The as-spun fibers exhibited core-shell morphology as verified by transmission electron microscopy (TEM) and atomic force microscopy (AFM). AFM-phase and modulus mapping images of the fiber cross-section and x-ray photoelectron spectroscopy (XPS) analysis indicated PAN formed the shell and PMMA the core material. XPS, thermal gravimetric analysis (TGA), and elemental analysis were used to determine fiber compositional information. Soaking the fibers in solvent demonstrated removal of the core material, generating hollow PAN fibers. PMID:21928836

  7. Analysis of Forced Convection Heat Transfer for Axial Annular Flow of Giesekus Viscoelastic Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Mohseni, Mehdi Moayed; Rashidi, Fariborz; Movagar, Mohammad Reza Khorsand [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2015-02-15

    Analytical solutions for the forced convection heat transfer of viscoelastic fluids obeying the Giesekus model are obtained in a concentric annulus under laminar flow for both thermal and hydrodynamic fully developed conditions. Boundary conditions are assumed to be (a) constant fluxes at the walls and (b) constant temperature at the walls. Temperature profiles and Nusselt numbers are derived from dimensionless energy equation. Subsequently, effects of elasticity, mobility parameter and viscous dissipation are discussed. Results show that by increasing elasticity, Nusselt number increases. However, this trend is reversed for constant wall temperature when viscous dissipation is weak. By increasing viscous dissipation, the Nusselt number decreases for the constant flux and increases for the constant wall temperature. For the wall cooling case, when the viscous dissipation exceeds a critical value, the generated heat overcomes the heat which is removed at the walls, and fluid heats up longitudinally.

  8. Free and Forced Vibrations of an Axially-Loaded Timoshenko Multi-Span Beam Carrying a Number of Various Concentrated Elements

    Directory of Open Access Journals (Sweden)

    Yusuf Yesilce

    2012-01-01

    Full Text Available In the existing reports regarding free and forced vibrations of the beams, most of them studied a uniform beam carrying various concentrated elements using Bernoulli-Euler Beam Theory (BET but without axial force. The purpose of this paper is to utilize the numerical assembly technique to determine the exact frequency-response amplitudes of the axially-loaded Timoshenko multi-span beam carrying a number of various concentrated elements (including point masses, rotary inertias, linear springs and rotational springs and subjected to a harmonic concentrated force and the exact natural frequencies and mode shapes of the beam for the free vibration analysis. The model allows analyzing the influence of the shear and axial force and harmonic concentrated force effects and intermediate concentrated elements on the dynamic behavior of the beams by using Timoshenko Beam Theory (TBT. At first, the coefficient matrices for the intermediate concentrated elements, an intermediate pinned support, applied harmonic force, left-end support and right-end support of Timoshenko beam are derived. After the derivation of the coefficient matrices, the numerical assembly technique is used to establish the overall coefficient matrix for the whole vibrating system. Finally, solving the equations associated with the last overall coefficient matrix one determines the exact dynamic response amplitudes of the forced vibrating system corresponding to each specified exciting frequency of the harmonic force. Equating the determinant of the overall coefficient matrix to zero one determines the natural frequencies of the free vibrating system (the case of zero harmonic force and substituting the corresponding values of integration constants into the related eigenfunctions one determines the associated mode shapes. The calculated vibration amplitudes of the forced vibrating systems and the natural frequencies of the free vibrating systems are given in tables for different values of

  9. Measurement of velocity deficit at the downstream of a 1:10 axial hydrokinetic turbine model

    Energy Technology Data Exchange (ETDEWEB)

    Gunawan, Budi [ORNL; Neary, Vincent S [ORNL; Hill, Craig [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414; Chamorro, Leonardo [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414

    2012-01-01

    Wake recovery constrains the downstream spacing and density of turbines that can be deployed in turbine farms and limits the amount of energy that can be produced at a hydrokinetic energy site. This study investigates the wake recovery at the downstream of a 1:10 axial flow turbine model using a pulse-to-pulse coherent Acoustic Doppler Profiler (ADP). In addition, turbine inflow and outflow velocities were measured for calculating the thrust on the turbine. The result shows that the depth-averaged longitudinal velocity recovers to 97% of the inflow velocity at 35 turbine diameter (D) downstream of the turbine.

  10. New methods for measuring atlanto-axial vertical subluxation in rheumatoid arthritis by MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Ju; Ishibashi, Tadashi; Saito, Haruo [Tohoku Univ., Sendai (Japan). School of Medicine] [and others

    1998-02-01

    We proposed two new methods of measuring atlanto-axial vertical dislocation in rheumatoid arthritis by MR imaging. One is the distance from the subdental synchondrosis of the axis to the diameter of the ring of the atlas. The other is the distance from the midpoint of the anteroposterior ends of the inferior margin of the axis to the diameter of the ring of the atlas. Values were also determined by the Ranawat method and the Redlund-Johnell method. There was good correlation between values determined by the new methods and those determined by the Ranawat method and Redlund-Johnell method. (author)

  11. Aeroacoustic measurements for an axial fan in a non-anechoic environment

    International Nuclear Information System (INIS)

    Davoudi, Behdad; Foss, John F; Morris, Scott C

    2016-01-01

    Determination of the aeroacoustic emission from an axial fan in a non-anechoic environment is a challenging experimental task given ambient noise and acoustic reflections from surrounding objects. Successful strategies to address this task for a representative nine and three blade fan are presented. An array consisting of ten microphones was constructed and placed in the upstream region of the axial fans to measure the fan acoustic signature at ten distinct locations. A novel delay and sum (DS) beamforming technique (that allows precise time delays to be established by the use of cross correlation techniques) was applied to the microphone outputs in order to separate the fans’ acoustic emissions from the ambient noise and reflections from the facility walls. A numerical simulation was developed to represent the experimental facility and the measurements. The numerical simulation indicated that the extraneous noise can be satisfactorily separated from the fan noise using the array measurements and post processing the acoustic data with the present DS beamforming technique. (paper)

  12. Measuring Density Profiles of Electrons and Heavy Particles in a Stable Axially Blown Arc

    Science.gov (United States)

    Carstensen, J.; Stoller, P.; Galletti, B.; Doiron, C. B.; Sokolov, A.

    2017-08-01

    Two-color spatial carrier wave interferometry employing pulsed 532- and 671-nm lasers is used to measure the electron-density and heavy-particle-density profiles in the stagnation point of a stable, axially blown arc in argon for currents of 50 to 200 A and stagnation point pressures of 0.2 to 16 bar. This technique takes advantage of the fact that the free-electron contribution to the refractive index depends strongly on the wavelength, while that of the heavy particles does not. The high spatial resolution achieved allows the hot core of the arc to be readily distinguished from the surrounding boundary layer. A custom-built test device is used to ensure flow conditions that lead to a stable, axisymmetric arc; this permits the reconstruction of the density and temperature profiles using a single projection (interferometric image) of the refractive-index distribution through the arc (at two wavelengths). The arc radius determined from the heavy-particle density decreases with increasing stagnation pressure and increases with the current. These measurements are in good agreement with a simple axially blown arc model taking into account Ohmic heating, radiation losses, and enthalpy flow for core temperatures of approximately 16 500 K. The measured electron density at the center of the arc agrees well with a prediction based on local thermodynamic equilibrium.

  13. Axial spondyloarthritis.

    Science.gov (United States)

    Sieper, Joachim; Braun, Jürgen; Dougados, Maxime; Baeten, Dominique

    2015-07-09

    The term axial spondyloarthritis covers both non-radiographic disease and radiographic disease (also known as ankylosing spondylitis). Some studies have been performed to investigate the prevalence of axial spondyloarthritis, although most are limited to patients with radiographic disease. A strong genetic association has been shown between axial spondyloarthritis and human leukocyte antigen-B27 (HLA-B27), but the pathogenetic role of HLA-B27 has not yet been clarified. Tumour necrosis factor (TNF), IL-17, IL-23 and downstream pathways also seem to be important - based on the good results of therapies directed against these molecules - but their exact role in the inflammatory process is also not yet clear. Elucidating the interaction between osteoproliferation and inflammation will be crucial for the prevention of long-term structural damage of the bone. The development of new criteria for classification, diagnosis and screening of patients with axial spondyloarthritis will enable earlier intervention for this chronic inflammatory disease. MRI has become an important tool for the early detection of axial spondyloarthritis. NSAIDs and TNF blockers are effective therapies, including in the early non-radiographic stage. Therapeutic blockade of IL-17 or IL-23 seems to be a promising new treatment option. Tools for measuring quality of life in axial spondyloarthritis have become relevant to assess the impact that the disease has on patients. These diagnostic and therapeutic advances will continue to change the management of axial spondyloarthritis, and new insights into the disease pathogenesis will hopefully accelerate this process. For an illustrated summary of this Primer, visit: http://go.nature.com/51b1af.

  14. Knitting Force Measurement on Flat Knitting Machines

    Directory of Open Access Journals (Sweden)

    A. Fouda

    2014-01-01

    Full Text Available Knittability can be defined as the ability of yarns to run on knitting machines without problems. Knittability can be achieved when less stress is applied on the knitting machine parts by the knitting yarns. This paper presents a novel measuring system for the knitting force needed to perform knitting yarns on flat knitting machine based on data acquisition system (DAS. The proposed system is used to measure the knitting force at different machine settings and different properties of the knitting yarns to determine the optimal production conditions. For this reason, three types of knitted fabric structures (single jersey, Rib 1 × 1, and full cardigan with three different loop lengths and five different twists of ply yarn were produced. The obtained results showed the optimal yarn ply twist factor (αe which gave minimum knitting force (less stress on needles or knitting yarns at different loop lengths for each structure.

  15. Unsteady Aerodynamic Force Sensing from Measured Strain

    Science.gov (United States)

    Pak, Chan-Gi

    2016-01-01

    A simple approach for computing unsteady aerodynamic forces from simulated measured strain data is proposed in this study. First, the deflection and slope of the structure are computed from the unsteady strain using the two-step approach. Velocities and accelerations of the structure are computed using the autoregressive moving average model, on-line parameter estimator, low-pass filter, and a least-squares curve fitting method together with analytical derivatives with respect to time. Finally, aerodynamic forces over the wing are computed using modal aerodynamic influence coefficient matrices, a rational function approximation, and a time-marching algorithm. A cantilevered rectangular wing built and tested at the NASA Langley Research Center (Hampton, Virginia, USA) in 1959 is used to validate the simple approach. Unsteady aerodynamic forces as well as wing deflections, velocities, accelerations, and strains are computed using the CFL3D computational fluid dynamics (CFD) code and an MSC/NASTRAN code (MSC Software Corporation, Newport Beach, California, USA), and these CFL3D-based results are assumed as measured quantities. Based on the measured strains, wing deflections, velocities, accelerations, and aerodynamic forces are computed using the proposed approach. These computed deflections, velocities, accelerations, and unsteady aerodynamic forces are compared with the CFL3D/NASTRAN-based results. In general, computed aerodynamic forces based on the lifting surface theory in subsonic speeds are in good agreement with the target aerodynamic forces generated using CFL3D code with the Euler equation. Excellent aeroelastic responses are obtained even with unsteady strain data under the signal to noise ratio of -9.8dB. The deflections, velocities, and accelerations at each sensor location are independent of structural and aerodynamic models. Therefore, the distributed strain data together with the current proposed approaches can be used as distributed deflection

  16. Nanoindentation and atomic force microscopy measurements on ...

    Indian Academy of Sciences (India)

    Unknown

    substrate temperature to ~ 130°C during the deposition. The growth rate for TiN coatings was ~ 0⋅82 µm/h. The nanoindentation measurements were performed with an instrument consisting of a nanohardness tester. (CSEM Instruments) and an integrated optical (Nikon)/ atomic force microscope (surface imaging systems).

  17. Equipment to take up the axial forces occuring on fuel elements in the operation of a nuclear reactor

    International Nuclear Information System (INIS)

    Sankovich, M.

    1977-01-01

    A constructive solution for the spring support of fuel elements between a lower and upper grid is given which prevents vibrations from the influence of axial forces due to thermal expansion and/or coolant flow with the least possible resistance to the coolant flow. As plate or screw springs usually allow certain vibrations or even encourage these, and to compensate for the flow resistance thus caused nominal increase of the total cooling power is necessary, i.e. the total efficiency of the plants is lowered; therefore a combined torsion and spring was constructed. 4 each of these springs surround in an approximately horizontal plane the head of a fuel element containing the usual number of fuel rods. Each spring forms a U seen from above and surrounds the fuel element head on one side completely and about half the length of the two adjacent sides. The three sides of the spring are inbedded in the openings of the fuel element end pieces so as not to cause any nominal resistance for the coolant flow rising from the fuel elements. (HP) [de

  18. Metallic stent with high axial force as a risk factor for cholecystitis in distal malignant biliary obstruction.

    Science.gov (United States)

    Nakai, Yousuke; Isayama, Hiroyuki; Kawakubo, Kazumichi; Kogure, Hirofumi; Hamada, Tsuyoshi; Togawa, Osamu; Ito, Yukiko; Matsubara, Saburo; Arizumi, Toshihiko; Yagioka, Hiroshi; Takahara, Naminatsu; Uchino, Rie; Mizuno, Suguru; Miyabayashi, Koji; Yamamoto, Keisuke; Sasaki, Takashi; Yamamoto, Natsuyo; Hirano, Kenji; Tada, Minoru; Koike, Kazuhiko

    2014-01-01

    Tumor involvement to the orifice of cystic duct (OCD) is a risk factor for cholecystitis after self-expandable metallic stent (SEMS) placement, but its prevention is still difficult. We conducted this multicenter analysis to clarify a type of SEMS or a method to place SEMS which would decrease the incidence of cholecystitis after SEMS placement. The incidence of cholecystitis was studied in consecutive patients receiving SEMS for distal malignant biliary obstruction in five tertiary care centers. Multiple logistic regression analysis was performed to evaluate risk factors for cholecystitis. A total of 376 patients who received SEMS placement for distal malignant biliary obstruction were analyzed. Tumor involvement to OCD was diagnosed in 25.3%. Overall incidence of cholecystitis was 6.9%. Cholecystitis was observed in 8.0% of 300 patients with covered SEMS, 16.8% of 95 patients with tumor involvement to OCD, 10.8% of 234 patients with SEMS of high axial force (AF), and 12.0% of 158 patients with SEMS length ≤ 60 mm. In the multivariate analysis, tumor involvement to OCD (odds ratio [OR] 5.40, P cholecystitis in SEMS with high and low AF was 25.0% and 5.0%, respectively. This study with an expanded cohort reconfirmed tumor involvement to OCD as a risk factor for cholecystitis after SEMS placement. SEMS with low AF might decrease cholecystitis. © 2014 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  19. Crash worthy capacity of a hybridized epoxy-glass fiber aluminum columnar tube using repeated axial resistive force

    Energy Technology Data Exchange (ETDEWEB)

    Paruka, Perowansa [Jalan Politeknik, Kota Kinabalu (Malaysia); Siswanto, Waluyo Adi [Universiti Tun Hussein Onn Malaysia, Parit Raja (Malaysia); Maleque, Md Abdul [Universiti Islam Antarabangsa Malaysia, Kuala Lumpur (Malaysia); Shah, Mohd Kamal Mohd [Universiti Malaysia Sabah, Kota Kinabalu (Malaysia)

    2015-05-15

    A combination of aluminum columnar member with composite laminate to form a hybrid structure can be used as collapsible energy absorbers especially in automotive vehicular structures to protect occupants and cargo. A key advantage of aluminum member in composite is that it provides ductile and stable plastic collapse mechanisms with progressive deformation in a stable manner by increasing energy absorption during collision. This paper presents an experimental investigation on the influence of the number of hybrid epoxy glass layers in overwrap composite columnar tubes. Three columnar tube specimens were used and fabricated by hand lay-up method. Aluminum square hollow shape was combined with externally wrapped by using an isophthalic epoxy resin reinforced with glass fiber skin with an orientation angle of 0 .deg. /90 .deg. The aluminum columnar tube was used as reference material. Crushed hybrid-composite columnar tubes were prepared using one, two, and three layers to determine the crash worthy capacity. Quasi-static crush test was conducted using INSTRON machine with an axial loading. Results showed that crush force and the number of layers were related to the enhancement of energy absorption before the collapse of columnar tubes. The energy absorption properties of the crushed hybrid-composite columnar tubes improved significantly with the addition of layers in the overwrap. Microscopic analysis on the modes of epoxy-glass fiber laminate failure was conducted by using scanning electron microscopy.

  20. Accurate acoustic power measurement for low-intensity focused ultrasound using focal axial vibration velocity

    Science.gov (United States)

    Tao, Chenyang; Guo, Gepu; Ma, Qingyu; Tu, Juan; Zhang, Dong; Hu, Jimin

    2017-07-01

    Low-intensity focused ultrasound is a form of therapy that can have reversible acoustothermal effects on biological tissue, depending on the exposure parameters. The acoustic power (AP) should be chosen with caution for the sake of safety. To recover the energy of counteracted radial vibrations at the focal point, an accurate AP measurement method using the focal axial vibration velocity (FAVV) is proposed in explicit formulae and is demonstrated experimentally using a laser vibrometer. The experimental APs for two transducers agree well with theoretical calculations and numerical simulations, showing that AP is proportional to the square of the FAVV, with a fixed power gain determined by the physical parameters of the transducers. The favorable results suggest that the FAVV can be used as a valuable parameter for non-contact AP measurement, providing a new strategy for accurate power control for low-intensity focused ultrasound in biomedical engineering.

  1. Memory effect o force measurements at nanoscales

    International Nuclear Information System (INIS)

    Lisy, V.; Tothova, J.

    2011-01-01

    we have obtained an exact solution for the drift velocity of a Brownian particle in an incompressible fluid under the action of a constant force, taking into account the hydrodynamic memory in the particle motion. This velocity is proportional to the applied force but depends in a complicated manner on the time of observation t. At short times it is proportional to t and at long times it contains algebraic tails, the longest-lived of which being ∼ t -1/ 2. Due to this the velocity very slowly approaches the limiting value F/γ. As a consequence, the force F can significantly differ from the value that would be extracted from the drift measurements neglecting the inertial effects, which is a standard assumption in the interpretation of such experiments. The presented method can be equally applicable in the case of force linearly depending on the particle position. For nonlinear forces, first the open question about the choice of convention to be used in stochastic calculus should be resolved. (authors)

  2. Fully automatic measurements of axial vertebral rotation for assessment of spinal deformity in idiopathic scoliosis

    Science.gov (United States)

    Forsberg, Daniel; Lundström, Claes; Andersson, Mats; Vavruch, Ludvig; Tropp, Hans; Knutsson, Hans

    2013-03-01

    Reliable measurements of spinal deformities in idiopathic scoliosis are vital, since they are used for assessing the degree of scoliosis, deciding upon treatment and monitoring the progression of the disease. However, commonly used two dimensional methods (e.g. the Cobb angle) do not fully capture the three dimensional deformity at hand in scoliosis, of which axial vertebral rotation (AVR) is considered to be of great importance. There are manual methods for measuring the AVR, but they are often time-consuming and related with a high intra- and inter-observer variability. In this paper, we present a fully automatic method for estimating the AVR in images from computed tomography. The proposed method is evaluated on four scoliotic patients with 17 vertebrae each and compared with manual measurements performed by three observers using the standard method by Aaro-Dahlborn. The comparison shows that the difference in measured AVR between automatic and manual measurements are on the same level as the inter-observer difference. This is further supported by a high intraclass correlation coefficient (0.971-0.979), obtained when comparing the automatic measurements with the manual measurements of each observer. Hence, the provided results and the computational performance, only requiring approximately 10 to 15 s for processing an entire volume, demonstrate the potential clinical value of the proposed method.

  3. Support-Free Measurements of Aerodynamic Characteristics of Axial Circular Cylinders with Fineness Ratio from 0.50 to 0.75

    Science.gov (United States)

    Nagaike, Hayato; Okuizumi, Hiroyuki; Konishi, Yasufumi; Sawada, Hideo; Nonomura, Taku; Asai, Keisuke

    2017-11-01

    In this study, aerodynamic characteristics of axial circular cylinders having the fineness ratio (length to diameter, L / D) of 0.50, 0.67 and 0.75 were measured using the 1-m Magnetic Suspension and Balance System (MSBS) in the Low-Turbulence Wind Tunnel at Tohoku Univ. The MSBS supports and controls the model using magnetic forces. All the tests were conducted at Re = 100,000 and the models were aligned with the free stream. The results of force measurements show that the drag decreases gradually in the L / D range from 0.50 to 0.75 and connects continuously to the data for higher fineness ratios. This indicates that a local maximum of the drag does not exist in this range. The previous studies show that, for axial circular cylinders having L / D from 1.0 to 2.0, the drag measured using a MSBS differs substantially from the value measured with sting support, however this study shows that a circular cylinder of L / D = 0.50 has a drag close to that measured with sting support. This suggests that the influence of support interference is significant when a shear layer separated from the leading edge reattaches on the body or interacts near the base, but is insignificant when a separated shear layer is away from the base area.

  4. Tyre contact length on dry and wet road surfaces measured by three-axial accelerometer

    Science.gov (United States)

    Matilainen, Mika; Tuononen, Ari

    2015-02-01

    We determined the tyre contact length on dry and wet roads by measuring the accelerations of the inner liner with a three-axial accelerometer. The influence of the tyre pressure, driving velocity, and tread depth on the contact length was studied in both types of road surface conditions. On dry asphalt the contact length was almost constant, regardless of the driving velocity. On wet asphalt the presence of water could be detected even at low driving velocities (e.g. 20 km/h for a worn tyre) as the contact length began to decrease from that found in the dry asphalt situation. In addition to improving the performance of active safety systems and driver warning systems, the contact length information could be beneficial for classifying and studying the aquaplaning behaviour of tyres.

  5. Laser anemometer measurements in a transonic axial-flow fan rotor

    Science.gov (United States)

    Strazisar, Anthony J.; Wood, Jerry R.; Hathaway, Michael D.; Suder, Kenneth L.

    1989-01-01

    Laser anemometer surveys were made of the 3-D flow field in NASA rotor 67, a low aspect ratio transonic axial-flow fan rotor. The test rotor has a tip relative Mach number of 1.38. The flowfield was surveyed at design speed at near peak efficiency and near stall operating conditions. Data is presented in the form of relative Mach number and relative flow angle distributions on surfaces of revolution at nine spanwise locations evenly spaced from hub to tip. At each spanwise location, data was acquired upstream, within, and downstream of the rotor. Aerodynamic performance measurements and detailed rotor blade and annulus geometry are also presented so that the experimental results can be used as a test case for 3-D turbomachinery flow analysis codes.

  6. Fluid force predictions and experimental measurements for a magnetically levitated pediatric ventricular assist device.

    Science.gov (United States)

    Throckmorton, Amy L; Untaroiu, Alexandrina; Lim, D Scott; Wood, Houston G; Allaire, Paul E

    2007-05-01

    The latest generation of artificial blood pumps incorporates the use of magnetic bearings to levitate the rotating component of the pump, the impeller. A magnetic suspension prevents the rotating impeller from contacting the internal surfaces of the pump and reduces regions of stagnant and high shear flow that surround fluid or mechanical bearings. Applying this third-generation technology, the Virginia Artificial Heart Institute has developed a ventricular assist device (VAD) to support infants and children. In consideration of the suspension design, the axial and radial fluid forces exerted on the rotor of the pediatric VAD were estimated using computational fluid dynamics (CFD) such that fluid perturbations would be counterbalanced. In addition, a prototype was built for experimental measurements of the axial fluid forces and estimations of the radial fluid forces during operation using a blood analog mixture. The axial fluid forces for a centered impeller position were found to range from 0.5 +/- 0.01 to 1 +/- 0.02 N in magnitude for 0.5 +/- 0.095 to 3.5 +/- 0.164 Lpm over rotational speeds of 6110 +/- 0.39 to 8030 +/- 0.57% rpm. The CFD predictions for the axial forces deviated from the experimental data by approximately 8.5% with a maximum difference of 18% at higher flow rates. Similarly for the off-centered impeller conditions, the maximum radial fluid force along the y-axis was found to be -0.57 +/- 0.17 N. The maximum cross-coupling force in the x direction was found to be larger with a maximum value of 0.74 +/- 0.22 N. This resulted in a 25-35% overestimate of the radial fluid force as compared to the CFD predictions; this overestimation will lead to a far more robust magnetic suspension design. The axial and radial forces estimated from the computational results are well within a range over which a compact magnetic suspension can compensate for flow perturbations. This study also serves as an effective and novel design methodology for blood pump

  7. Output factor determination for dose measurements in axial and perpendicular planes using a silicon strip detector

    Science.gov (United States)

    Abou-Haïdar, Z.; Bocci, A.; Alvarez, M. A. G.; Espino, J. M.; Gallardo, M. I.; Cortés-Giraldo, M. A.; Ovejero, M. C.; Quesada, J. M.; Arráns, R.; Prieto, M. Ruiz; Vega-Leal, A. Pérez; Nieto, F. J. Pérez

    2012-04-01

    In this work we present the output factor measurements of a clinical linear accelerator using a silicon strip detector coupled to a new system for complex radiation therapy treatment verification. The objective of these measurements is to validate the system we built for treatment verification. The measurements were performed at the Virgin Macarena University Hospital in Seville. Irradiations were carried out with a Siemens ONCOR™ linac used to deliver radiotherapy treatment for cancer patients. The linac was operating in 6 MV photon mode; the different sizes of the fields were defined with the collimation system provided within the accelerator head. The output factor was measured with the silicon strip detector in two different layouts using two phantoms. In the first, the active area of the detector was placed perpendicular to the beam axis. In the second, the innovation consisted of a cylindrical phantom where the detector was placed in an axial plane with respect to the beam. The measured data were compared with data given by a commercial treatment planning system. Results were shown to be in a very good agreement between the compared set of data.

  8. Axial Length Measurement Failure Rates with the IOLMaster and Lenstar LS 900 in Eyes with Cataract.

    Science.gov (United States)

    McAlinden, Colm; Wang, Qinmei; Pesudovs, Konrad; Yang, Xin; Bao, Fangjun; Yu, Ayong; Lin, Shishi; Feng, Yifan; Huang, Jinhai

    2015-01-01

    To evaluate axial length (AL) measurement failure rate with the IOLMaster (Carl Zeiss AG, Germany) and Lenstar LS 900 (Haag-Streit AG, Switzerland) in eyes with cataract. Two hundred and ninety-six eyes of 170 patients with cataract were enrolled. Cataract type and severity were graded using the Lens Opacities Classification System III (LOCS III) and AL measurements were attempted with IOLMaster (version 5.4) and Lenstar LS 900 (version 1.1). Chi-squared analysis was used to assess if the difference in AL measurement acquisition rate was statistically significant between the two devices. The association of the different cataract types and severity with the AL measurement acquisition rate was evaluated with logistic regression analysis. AL measurements were obtained in 184 eyes (62.16%) using the IOLMaster and 191 eyes (64.53%) using the Lenstar, which corresponds to a failure rate of 37.84% and 35.47% respectively. Chi-square analysis indicated no significant difference between the Lenstar and IOLMaster for AL measurement failure rate (x2 = 0.356, P = 0.550). Logistic regression analysis indicated no association between acquisition rates and cortical or nuclear cataracts with either device. There was a statistically significant association between acquisition rates and increasing severity of posterior subcapsular cataracts with the IOLMaster (β = -1.491, PLS 900 (β = -1.507, PLS 900 have similar AL measurement failure rates (35-38%) for Chinese public hospital cataract patients. Increasing severity of posterior subcapsular cataracts was problematic for both devices.

  9. Impact of attenuation on guided mode wavenumber measurement in axial transmission on bone mimicking plates.

    Science.gov (United States)

    Minonzio, Jean-Gabriel; Foiret, Josquin; Talmant, Maryline; Laugier, Pascal

    2011-12-01

    Robust signal processing methods adapted to clinical measurements of guided modes are required to assess bone properties such as cortical thickness and porosity. Recently, an approach based on the singular value decomposition (SVD) of multidimensional signals recorded with an axial transmission array of emitters and receivers has been proposed for materials with negligible absorption, see Minonzio et al. [J. Acoust. Soc. Am. 127, 2913-2919 (2010)]. In presence of absorption, the ability to extract guided mode degrades. The objective of the present study is to extend the method to the case of absorbing media, considering attenuated plane waves (complex wavenumber). The guided mode wavenumber extraction is enhanced and the order of magnitude of the attenuation of the guided mode is estimated. Experiments have been carried out on 2 mm thick plates in the 0.2-2 MHz bandwidth. Two materials are inspected: polymethylacrylate (PMMA) (isotropic with absorption) and artificial composite bones (Sawbones, Pacific Research Laboratory Inc, Vashon, WA) which is a transverse isotropic absorbing medium. Bulk wave velocities and bulk attenuation have been evaluated from transmission measurements. These values were used to compute theoretical Lamb mode wavenumbers which are consistent with the experimental ones obtained with the SVD-based approach. © 2011 Acoustical Society of America

  10. Thermal stress in a bi-material assembly with a 'piecewise-continuous' bonding layer: theorem of three axial forces

    International Nuclear Information System (INIS)

    Suhir, E

    2009-01-01

    We consider a bi-material assembly with a 'piecewise-continuous' bonding layer. The layer is characterized by different elastic constants of its 'pieces' (segments) and is assumed to be thin. Young's moduli of all the 'pieces' of the bonding layer are significantly lower than the moduli of the adherend materials. In such a situation the coefficient of thermal expansion (CTE) of the bonding material need not be accounted for. Only the interfacial compliance of the bonding layer is important. This is indeed the case for the majority of electronic, opto-electronic or photonic assemblies. We consider the situation when the assembly is manufactured at an elevated temperature and is subsequently cooled down to a low (say, room) temperature. The objective of the analysis is to develop a simple, easy-to-use and physically meaningful analytical ('mathematical') predictive model for the evaluation of the interfacial shearing stresses that arise at the boundaries of the 'pieces' (segments) of the bonding layer and at the assembly edge. The basic equation is obtained for the thermally induced forces acting in the adherends' cross-sections that correspond to the boundaries between the dissimilar portions of the bonding layer. This equation has the form of the theorem of three (bending) moments in the theory of multi-span beams lying on separate simple supports and could therefore be called the 'theorem of three axial forces'. We show, as an illustration, how this equation could be employed to design a bi-material assembly with an inhomogeneous bonding layer and with low interfacial shearing stresses. Low shearing stresses will certainly result in lower peeling stresses as well. The numerical example is carried out for an assembly with a relatively high-modulus bonding material in its mid-portion (aimed primarily at providing good adhesion and, if necessary, good heat transfer as well) and a low-modulus material in its peripheral portions (aimed primarily at bringing down the

  11. Force chains in monodisperse spherical particle assemblies: Three-dimensional measurements using neutrons

    Science.gov (United States)

    Wensrich, C. M.; Kisi, E. H.; Luzin, V.; Garbe, U.; Kirstein, O.; Smith, A. L.; Zhang, J. F.

    2014-10-01

    The full triaxial stress state within individual particles in a monodisperse spherical granular assembly has been measured. This was made possible by neutron imaging and computed tomography combined with neutron diffraction strain measurement techniques and associated stress reconstruction. The assembly in question consists of 549 precision steel ball bearings under an applied axial load of 85 MPa in a cylindrical die. Clear evidence of force chains was observed in terms of both the shape of the probability distribution function for normal stresses and the network formed by highly loaded particles. An extensive analysis of the source and magnitude of uncertainty in these measurements is also presented.

  12. Influence of patient head positioning on measured axial tooth inclination in panoramic radiography.

    Science.gov (United States)

    Hardy, Timothy C; Suri, Lokesh; Stark, Paul

    2009-06-01

    Panoramic radiographs are routinely used to assess the mesiodistal axial inclination of teeth (MDAI) in orthodontic treatment. These radiographs are sensitive to minor deviations from standard head position that result in image distortions. The aim of this study is to measure and quantify the changes in MDAI on panoramic radiograph resulting from changes in patient head position. The testing devise was a human skull with guide wires placed on the facial surface of the teeth and alveolar process along the long axis of each tooth. Panoramic radiographs were captured digitally with the orientation of the skull in Frankfurt horizontal plane parallel to the floor and with 1 degrees , 2 degrees , 5 degrees , 7 degrees , and 10 degrees both superior and inferior rotations. The mesiodistal tooth angulations were determined using MIPAC software (DentalEye and LEAD Technologies, Inc. 2005). The more distal the position of the tooth in the arch the greater the change in MDAI with a change in vertical head position. A maximum change of approximately 10 degrees was observed in MDAI of both the maxillary and mandibular molars with a corresponding superior head tilt of 10 degrees. The Mandibular anteriors displayed significant inconsistencies in MDAI with both superior and inferior head tilt. A superior head tilt produced a greater change in mesiodistal angulation than did an inferior head tilt. Accurately taken panoramic radiographs can serve as a convenient tool for evaluating the MDAI before, during and after orthodontic treatment. Additional radiographs are recommended for the mandibular anteriors.

  13. Forced Transverse Vibration of a Closed Double Single-Walled Carbon Nanotube System Containing a Fluid with Effect of Compressive Axial Load

    Directory of Open Access Journals (Sweden)

    Mehrdad Nasirshoaibi

    2015-01-01

    Full Text Available Based on the Rayleigh beam theory, the forced transverse vibrations of a closed double single-walled carbon nanotube (SWCNT system containing a fluid with a Pasternak layer in-between are investigated. It is assumed that the two single-walled carbon nanotubes of the system are continuously joined by a Pasternak layer and both sides of SWCNTs containing a fluid are closed. The dynamic responses of the system caused by arbitrarily distributed continuous loads are obtained. The effect of compressive axial load on the forced vibrations of the double single-walled carbon nanotube system is discussed for one case of particular excitation loading. The properties of the forced transverse vibrations of the system are found to be significantly dependent on the compressive axial load. The steady-state vibration amplitudes of the SWCNT decrease with increasing of length of SWCNT. Vibrations caused by the harmonic exciting forces are discussed, and conditions of resonance and dynamic vibration absorption are formulated. The SWCNT-type dynamic absorber is a new concept of a dynamic vibration absorber (DVA, which can be applied to suppress excessive vibrations of corresponding SWCNT systems.

  14. Squeezed noise in precision force measurements

    International Nuclear Information System (INIS)

    Bocko, M.F.; Bordoni, F.; Fuligni, F.; Johnson, W.W.

    1986-01-01

    The effort to build gravitational radiation antennae with sensitivity sufficient to detect bursts of radiation from supernovae in the Virgo cluster of galaxies has caused a consideration of the fundamental limits for the detection of weak forces. The existing Weber bar detectors will be eventually limited, by the phase insensitive transducers now used, to noise temperatures no better than that of the first amplifier which follows the transducer. Even for a quantum limited amplifier this may not give the sensitivity required to definitively detect gravitational radiation. In a 'back action evasion' measurement a specific phase sensitive transducer would be used. It is believed that by the technique of measuring one of the two antenna phases it is possible to reach an effective noise temperature for the measured phase which is far below the amplifier noise temperature. This is at the expense of an infinite noise temperature in the unmeasured antenna phase and is thus described as squeezing the noise. The authors outline the theoretical model for the behavior of such systems and present data from several experiments which demonstrate the main features of a back action evasion measurement. (Auth.)

  15. Maximum Diameter Measurements of Aortic Aneurysms on Axial CT Images After Endovascular Aneurysm Repair: Sufficient for Follow-up?

    International Nuclear Information System (INIS)

    Baumueller, Stephan; Nguyen, Thi Dan Linh; Goetti, Robert Paul; Lachat, Mario; Seifert, Burkhardt; Pfammatter, Thomas; Frauenfelder, Thomas

    2011-01-01

    Purpose: To assess the accuracy of maximum diameter measurements of aortic aneurysms after endovascular aneurysm repair (EVAR) on axial computed tomographic (CT) images in comparison to maximum diameter measurements perpendicular to the intravascular centerline for follow-up by using three-dimensional (3D) volume measurements as the reference standard. Materials and Methods: Forty-nine consecutive patients (73 ± 7.5 years, range 51–88 years), who underwent EVAR of an infrarenal aortic aneurysm were retrospectively included. Two blinded readers twice independently measured the maximum aneurysm diameter on axial CT images performed at discharge, and at 1 and 2 years after intervention. The maximum diameter perpendicular to the centerline was automatically measured. Volumes of the aortic aneurysms were calculated by dedicated semiautomated 3D segmentation software (3surgery, 3mensio, the Netherlands). Changes in diameter of 0.5 cm and in volume of 10% were considered clinically significant. Intra- and interobserver agreements were calculated by intraclass correlations (ICC) in a random effects analysis of variance. The two unidimensional measurement methods were correlated to the reference standard. Results: Intra- and interobserver agreements for maximum aneurysm diameter measurements were excellent (ICC = 0.98 and ICC = 0.96, respectively). There was an excellent correlation between maximum aneurysm diameters measured on axial CT images and 3D volume measurements (r = 0.93, P < 0.001) as well as between maximum diameter measurements perpendicular to the centerline and 3D volume measurements (r = 0.93, P < 0.001). Conclusion: Measurements of maximum aneurysm diameters on axial CT images are an accurate, reliable, and robust method for follow-up after EVAR and can be used in daily routine.

  16. Estimation of clamping force in high-tension bolts through ultrasonic velocity measurement.

    Science.gov (United States)

    Jhang, Kyung-Young; Quan, Hai-Hua; Ha, Job; Kim, Noh-Yu

    2006-12-22

    The estimation of clamping force has been regarded as the main issue in the maintenance of high-tension bolts. This paper proposes a method which uses the dependency of ultrasonic velocity on stress based on the nonlinear elastic effect. The variation of ultrasonic velocity in the range of actual stress acting in the bolt is very small so that the precise measurement of ultrasonic velocity is needed. In this paper, we adopt a method to measure ultrasonic velocity, where the TOF (time of flight) of a tone-burst ultrasonic wave is precisely measured by using the phase detection technique. In order to verify the usefulness of the proposed method, two kinds of experiments are carried out. The first one measures ultrasonic velocity when the bolt is stressed by the tension tester, and from this, the exact axial force acting in the bolt can be determined. The results show good agreement with the expected linear relationship between ultrasonic velocity and axial stress. The second experiment measures ultrasonic velocity when the bolt is stressed by the torque wrench. The results show that ultrasonic velocity decreased as the torque increased, which is identical to the theoretically expected tendency. From these results, it can be said that the proposed method is adequate in evaluating clamping force in high-tension bolts.

  17. A Modernized UDM-600 Dynamometer-Based Setup for the Cutting Force Measurement

    Directory of Open Access Journals (Sweden)

    Ya. I. Shuliak

    2016-01-01

    Full Text Available The article considers development of a modernized UDM-600 dynamometer-based setup for measuring the cutting force components. Modernization of existing equipment to improve the method of recording the cutting force components in the automated mode is of relevance. The measuring setup allows recording the cutting force components in turning and milling, as well as the axial force and the torque in the drilling and milling operations.The article presents a block diagram and a schematic diagram of the setup to measure the cutting force components, and describes a basic principle of measuring units within the modernized setup. The developed setup uses a half-bridge strain gauge measuring circuit to record the cutting forces. To enhance the measuring circuit output voltage is used a 16-channel amplifier of LA-UN16 model with a discretely adjustable gain. To record and process electrical signals is used a data acquisition device of NI USB-6009 model, which enables transmitting the received data to a PC via USB-interface. The data acquisition device has a built-in stabilized DC power supply that is used to power the strain gauge bridges. A developed schematic diagram of the measuring setup allows us to realize this measuring device and implement its modernization.Final processing of recorded data is provided through the software developed in visual programming environment LabVIEW 9.0. The program allows us to show the real-time measuring values of the cutting force components graphically and to record the taken data to a text file.The measuring setup modernization enabled increasing measurement accuracy and reducing time for processing and analysis of experimental data obtained when measuring the cutting force components. The MT2 Department of BMSTU uses it in education and research activities and in experimental efforts and laboratory classes.

  18. Investigation of Axial Electric Field Measurements with Grounded-Wire TEM Surveys

    Science.gov (United States)

    Zhou, Nan-nan; Xue, Guo-qiang; Li, Hai; Hou, Dong-yang

    2018-01-01

    The grounded-wire transient electromagnetic (TEM) surveying is often performed along the equatorial direction with its observation lines paralleling to the transmitting wire with a certain transmitter-receiver distance. However, such method takes into account only the equatorial component of the electromagnetic field, and a little effort has been made on incorporating the other major component along the transmitting wire, here denoted as axial field. To obtain a comprehensive understanding of its fundamental characteristics and guide the designing of the corresponding observation system for reliable anomaly detection, this study for the first time investigates the axial electric field from three crucial aspects, including its decay curve, plane distribution, and anomaly sensitivity, through both synthetic modeling and real application to one major coal field in China. The results demonstrate a higher sensitivity to both high- and low-resistivity anomalies by the electric field in axial direction and confirm its great potentials for robust anomaly detection in the subsurface.

  19. Design and analysis of a toroidal tester for the measurement of core losses under axial compressive stress

    Energy Technology Data Exchange (ETDEWEB)

    Alatawneh, Natheer, E-mail: natheer80@yahoo.com [Department of Mining and Materials Engineering, McGill University, QC H3A 0G4 (Canada); Rahman, Tanvir; Lowther, David A. [Department of Electrical and Computer Engineering, McGill University, QC H3A 0E9 (Canada); Chromik, Richard [Department of Mining and Materials Engineering, McGill University, QC H3A 0G4 (Canada)

    2017-06-15

    Highlights: • Develop a toroidal tester for magnetic measurements under compressive axial stress. • The shape of the toroidal ring has been verified using 3D stress analysis. • The developed design has been prototyped, and measurements were carried out. • Physical explanations for the core loss trend due to stress are provided. - Abstract: Electric machine cores are subjected to mechanical stresses due to manufacturing processes. These stresses include radial, circumferential and axial components that may have significant influences on the magnetic properties of the electrical steel and hence, on the output and efficiencies of electrical machines. Previously, most studies of iron losses due to mechanical stress have considered only radial and circumferential components. In this work, an improved toroidal tester has been designed and developed to measure the core losses and the magnetic properties of electrical steel under a compressive axial stress. The shape of the toroidal ring has been verified using 3D stress analysis. Also, 3D electromagnetic simulations show a uniform flux density distribution in the specimen with a variation of 0.03 T and a maximum average induction level of 1.5 T. The developed design has been prototyped, and measurements were carried out using a steel sample of grade 35WW300. Measurements show that applying small mechanical stresses normal to the sample thickness rises the delivered core losses, then the losses decrease continuously as the stress increases. However, the drop in core losses at high stresses does not go lower than the free-stress condition. Physical explanations for the observed trend of core losses as a function of stress are provided based on core loss separation to the hysteresis and eddy current loss components. The experimental results show that the effect of axial compressive stress on magnetic properties of electrical steel at high level of inductions becomes less pronounced.

  20. Nanoindentation and atomic force microscopy measurements on ...

    Indian Academy of Sciences (India)

    Unknown

    CSEM Instruments) and an integrated optical (Nikon)/ atomic force microscope ... The results reported herein represent averages of the group. For each loading/ unloading cycle, the load was plotted against the dis- placement of the indenter.

  1. Theoretical Models for Surface Forces and Adhesion and Their Measurement Using Atomic Force Microscopy

    Science.gov (United States)

    Leite, Fabio L.; Bueno, Carolina C.; Da Róz, Alessandra L.; Ziemath, Ervino C.; Oliveira, Osvaldo N.

    2012-01-01

    The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS), it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion. This review provides the theoretical and experimental background of AFS, adhesion forces, intermolecular interactions and surface forces in air, vacuum and in solution. PMID:23202925

  2. Theoretical models for surface forces and adhesion and their measurement using atomic force microscopy.

    Science.gov (United States)

    Leite, Fabio L; Bueno, Carolina C; Da Róz, Alessandra L; Ziemath, Ervino C; Oliveira, Osvaldo N

    2012-10-08

    The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS), it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion. This review provides the theoretical and experimental background of afs, adhesion forces, intermolecular interactions and surface forces in air, vacuum and in solution.

  3. Axially perpendicular offset Raman scheme for reproducible measurement of housed samples in a noncircular container under variation of container orientation.

    Science.gov (United States)

    Duy, Pham K; Chang, Kyeol; Sriphong, Lawan; Chung, Hoeil

    2015-03-17

    An axially perpendicular offset (APO) scheme that is able to directly acquire reproducible Raman spectra of samples contained in an oval container under variation of container orientation has been demonstrated. This scheme utilized an axially perpendicular geometry between the laser illumination and the Raman photon detection, namely, irradiation through a sidewall of the container and gathering of the Raman photon just beneath the container. In the case of either backscattering or transmission measurements, Raman sampling volumes for an internal sample vary when the orientation of an oval container changes; therefore, the Raman intensities of acquired spectra are inconsistent. The generated Raman photons traverse the same bottom of the container in the APO scheme; the Raman sampling volumes can be relatively more consistent under the same situation. For evaluation, the backscattering, transmission, and APO schemes were simultaneously employed to measure alcohol gel samples contained in an oval polypropylene container at five different orientations and then the accuracies of the determination of the alcohol concentrations were compared. The APO scheme provided the most reproducible spectra, yielding the best accuracy when the axial offset distance was 10 mm. Monte Carlo simulations were performed to study the characteristics of photon propagation in the APO scheme and to explain the origin of the optimal offset distance that was observed. In addition, the utility of the APO scheme was further demonstrated by analyzing samples in a circular glass container.

  4. The effect of patch potentials in Casimir force measurements determined by heterodyne Kelvin probe force microscopy.

    Science.gov (United States)

    Garrett, Joseph L; Somers, David; Munday, Jeremy N

    2015-06-03

    Measurements of the Casimir force require the elimination of the electrostatic force between the surfaces. However, due to electrostatic patch potentials, the voltage required to minimize the total force may not be sufficient to completely nullify the electrostatic interaction. Thus, these surface potential variations cause an additional force, which can obscure the Casimir force signal. In this paper, we inspect the spatially varying surface potential of e-beamed, sputtered, sputtered and annealed, and template stripped gold surfaces with Heterodyne amplitude modulated Kelvin probe force microscopy (HAM-KPFM). It is demonstrated that HAM-KPFM improves the spatial resolution of surface potential measurements compared to amplitude modulated Kelvin probe force microscopy. We find that patch potentials vary depending on sample preparation, and that the calculated pressure can be similar to the pressure difference between Casimir force calculations employing the plasma and Drude models.

  5. Static and dynamic force/moment measurements in the Eidetics water tunnel

    Science.gov (United States)

    Suarez, Carlos J.; Malcolm, Gerald N.

    1994-01-01

    Water tunnels have been utilized in one form or another to explore fluid mechanics and aerodynamics phenomena since the days of Leonardo da Vinci. Water tunnel testing is attractive because of the relatively low cost and quick turn-around time to perform flow visualization experiments and evaluate the results. The principal limitation of a water tunnel is that the low flow speed, which provides for detailed visualization, also results in very small hydrodynamic (aerodynamic) forces on the model, which, in the past, have proven to be difficult to measure accurately. However, the advent of semi-conductor strain gage technology and devices associated with data acquisition such as low-noise amplifiers, electronic filters, and digital recording have made accurate measurements of very low strain levels feasible. The principal objective of this research effort was to develop a multi-component strain gage balance to measure forces and moments on models tested in flow visualization water tunnels. A balance was designed that allows measuring normal and side forces, and pitching, yawing and rolling moments (no axial force). The balance mounts internally in the model and is used in a manner typical of wind tunnel balances. The key differences between a water tunnel balance and a wind tunnel balance are the requirement for very high sensitivity since the loads are very low (typical normal force is 0.2 lbs), the need for water proofing the gage elements, and the small size required to fit into typical water tunnel models.

  6. Intraobserver and interobserver reproducibility in linear measurements on axial images obtained by cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    De Silva, Nathalia Cristine; Junqueira, Jose Luiz Cinta; Panzarella, Francine Keuhi; Raitz, Ricardo [Sao Leopoldo Mandic Research Center, Dept. of Oral Radiology, College of Dentistry, Sao Paulo (Brazil); Brriviera, Mauricio [Dept. of Oral Radiology, College of Dentistry, Catholic University of Brasilia, Sao Paulo (Brazil)

    2017-03-15

    This study was performed to investigate the intra- and inter-observer variability in linear measurements with axial images obtained by PreXion (PreXion Inc., San Mateo, USA) and i-CAT (Imaging Sciences International, Xoran Technologies Inc., Hatfield, USA) CBCT scanners, with different voxel sizes. A cylindrical object made from nylon with radiopaque markers (phantom) was scanned by i-CAT and PreXion 3D devices. For each axial image, measurements were taken twice in the horizontal (distance A-B) and vertical (distance C-D) directions, randomly, with a one-week interval between measurements, by four oral radiologists with five years or more experience in the use of these measuring tools. All of the obtained linear measurements had lower values than those of the phantom. The statistical analysis showed high intra- and inter-observer reliability (p=0.297). Compared to the real measurements, the measurements obtained using the i-CAT device and PreXion tomography, on average, revealed absolute errors ranging from 0.22 to 0.59 mm and from 0.23 to 0.63 mm, respectively. It can be concluded that both scanners are accurate, although the linear measurements are underestimations, with no significant differences between the evaluators.

  7. Roughness in Surface Force Measurements: Extension of DLVO Theory To Describe the Forces between Hafnia Surfaces.

    Science.gov (United States)

    Eom, Namsoon; Parsons, Drew F; Craig, Vincent S J

    2017-07-06

    The interaction between colloidal particles is commonly viewed through the lens of DLVO theory, whereby the interaction is described as the sum of the electrostatic and dispersion forces. For similar materials acting across a medium at pH values remote from the isoelectric point the theory typically involves an electrostatic repulsion that is overcome by dispersion forces at very small separations. However, the dominance of the dispersion forces at short separations is generally not seen in force measurements, with the exception of the interaction between mica surfaces. The discrepancy for silica surfaces has been attributed to hydration forces, but this does not explain the situation for titania surfaces where the dispersion forces are very much larger. Here, the interaction forces between very smooth hafnia surfaces have been measured using the colloid probe technique and the forces evaluated within the DLVO framework, including both hydration forces and the influence of roughness. The measured forces across a wide range of pH at different salt concentrations are well described with a single parameter for the surface roughness. These findings show that even small degrees of surface roughness significantly alter the form of the interaction force and therefore indicate that surface roughness needs to be included in the evaluation of surface forces between all surfaces that are not ideally smooth.

  8. Standard practice for verification of testing frame and specimen alignment under tensile and compressive axial force application

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 Included in this practice are methods covering the determination of the amount of bending that occurs during the application of tensile and compressive forces to notched and unnotched test specimens in the elastic range and to plastic strains less than 0.002. These methods are particularly applicable to the force application rates normally used for tension testing, creep testing, and uniaxial fatigue testing.

  9. Measuring Agglomeration Forces in a Financial Center

    OpenAIRE

    Bourgain, Arnaud; Pieretti, Patrice

    2006-01-01

    Basing on Scitovsky's (1954) definition of external economies and applying the method of Caballero and Lyons (1990) to macro data of Luxembourg services industry, we find significant agglomeration forces between financial intermediaries (downstream industry) on the one hand and business services and computer industry (upstream industries) on the other.

  10. Nanoindentation and atomic force microscopy measurements on ...

    Indian Academy of Sciences (India)

    The films were deposited on silicon (111) substrates at various process conditions, e.g. substrate bias voltage (B) and nitrogen partial pressure. Mechanical properties of the coatings were investigated by a nanoindentation technique. Force vs displacement curves generated during loading and unloading of a Berkovich ...

  11. Density measurements with computed tomography in patients with extra-axial hematoma can quantitatively estimate a degree of brain compression.

    Science.gov (United States)

    Nguyen, Ha Son; Li, Luyuan; Patel, Mohit; Mueller, Wade

    2016-10-01

    Extra-axial hematoma can cause significant brain compression. Guidelines for surgical evacuation include imaging findings (midline shift and hematoma thickness/volume) in conjunction with Glasgow Coma Scale (GCS) scores and/or intracranial pressure (ICP) monitoring. Physiologically, overall brain density should also change with compression. In our observational study, we explored whether overall brain density, defined using computed tomography Hounsfield Units (CT HU), changes after surgical evacuation of extra-axial hematoma. Only patients with a surgical acute epidural hematoma or subacute/chronic subdural hematoma were considered. Other exclusion criteria were concurrent intraparenchymal pathology, bilateral pathology, or incomplete follow-up imaging. Between fall 2012 and spring 2015, 22 patients were included in the study. CT head imaging (preoperative, postoperative, and at ∼1- to 2-month clinic visit) were loaded into OsiriX (Pixmeo, Switzerland). All the intracranial regions were selected and all extra-axial features were removed; subsequently, software was used to calculate a global CT HU value. A repeated-measures ANOVA found significant time effect, p brain, can cause an elevation in global CT HU value; moreover, surgical decompression is associated with lower global CT HU values. The use of global CT HU values in selected populations may serve as an adjunct for the evaluation of surgical lesions. © The Author(s) 2016.

  12. A wearable force plate system for the continuous measurement of triaxial ground reaction force in biomechanical applications

    International Nuclear Information System (INIS)

    Liu, Tao; Inoue, Yoshio; Shibata, Kyoko

    2010-01-01

    The ambulatory measurement of ground reaction force (GRF) and human motion under free-living conditions is convenient, inexpensive and never restricted to gait analysis in a laboratory environment and is therefore much desired by researchers and clinical doctors in biomedical applications. A wearable force plate system was developed by integrating small triaxial force sensors and three-dimensional (3D) inertial sensors for estimating dynamic triaxial GRF in biomechanical applications. The system, in comparison to existent systems, is characterized by being lightweight, thin and easy-to-wear. A six-axial force sensor (Nitta Co., Japan) was used as a verification measurement device to validate the static accuracy of the developed force plate. To evaluate the precision during dynamic gait measurements, we compared the measurements of the triaxial GRF and the center of pressure (CoP) by using the developed system with the reference measurements made using a stationary force plate and an optical motion analysis system. The root mean square (RMS) differences of the two transverse components (x- and y-axes) and the vertical component (z-axis) of the GRF were 4.3 ± 0.9 N, 6.0 ± 1.3 N and 12.1 ± 1.1 N, respectively, corresponding to 5.1 ± 1.1% and 6.5 ± 1% of the maximum of each transverse component and 1.3 ± 0.2% of the maximum vertical component of GRF. The RMS distance between the two systems' CoP traces was 3.2 ± 0.8 mm, corresponding to 1.2 ± 0.3% of the length of the shoe. Moreover, based on the results of the assessment of the influence of the system on natural gait, we found that gait was almost never affected. Therefore, the wearable system as an alternative device can be a potential solution for measuring CoP and triaxial GRF in non-laboratory environments

  13. A Novel Device for Measuring Forces in Endoluminal Procedures

    Directory of Open Access Journals (Sweden)

    Tommaso Ranzani

    2015-08-01

    Full Text Available In this paper a simple but effective measuring system for endoluminal procedures is presented. The device allows measuring forces during the endoluminal manipulation of tissues with a standard surgical instrument for laparoscopic procedures. The force measurement is performed by recording both the forces applied directly by the surgeon at the instrument handle and the reaction forces on the access port. The measuring system was used to measure the forces necessary for appropriate surgical manipulation of tissues during transanal endoscopic microsurgery (TEM. Ex-vivo and in-vivo measurements were performed, reported and discussed. The obtained data can be used for developing and appropriately dimensioning novel dedicated instrumentation for TEM procedures.

  14. Development of a Stereo Vision Measurement System for a 3D Three-Axial Pneumatic Parallel Mechanism Robot Arm

    Directory of Open Access Journals (Sweden)

    Chien-Lun Hou

    2011-02-01

    Full Text Available In this paper, a stereo vision 3D position measurement system for a three-axial pneumatic parallel mechanism robot arm is presented. The stereo vision 3D position measurement system aims to measure the 3D trajectories of the end-effector of the robot arm. To track the end-effector of the robot arm, the circle detection algorithm is used to detect the desired target and the SAD algorithm is used to track the moving target and to search the corresponding target location along the conjugate epipolar line in the stereo pair. After camera calibration, both intrinsic and extrinsic parameters of the stereo rig can be obtained, so images can be rectified according to the camera parameters. Thus, through the epipolar rectification, the stereo matching process is reduced to a horizontal search along the conjugate epipolar line. Finally, 3D trajectories of the end-effector are computed by stereo triangulation. The experimental results show that the stereo vision 3D position measurement system proposed in this paper can successfully track and measure the fifth-order polynomial trajectory and sinusoidal trajectory of the end-effector of the three- axial pneumatic parallel mechanism robot arm.

  15. Bite Forces and Their Measurement in Dogs and Cats

    Directory of Open Access Journals (Sweden)

    Se Eun Kim

    2018-04-01

    Full Text Available Bite force is generated by the interaction of the masticatory muscles, the mandibles and maxillae, the temporomandibular joints (TMJs, and the teeth. Several methods to measure bite forces in dogs and cats have been described. Direct in vivo measurement of a bite in dogs has been done; however, bite forces were highly variable due to animal volition, situation, or specific measurement technique. Bite force has been measured in vivo from anesthetized dogs by electrical stimulation of jaw adductor muscles, but this may not be reflective of volitional bite force during natural activity. In vitro bite forces have been estimated by calculation of the force produced using mechanical equations representing the jaw adductor muscles and of the mandible and skull structure Bite force can be estimated in silico using finite element analysis (FEA of the computed model of the anatomical structures. FEA can estimate bite force in extinct species; however, estimates may be lower than the measurements in live animals and would have to be validated specifically in domestic dogs and cats to be reliable. The main factors affecting the bite forces in dogs and cats are body weight and the skull’s morphology and size. Other factors such as oral pain, TMJ disorders, masticatory muscle atrophy, and malocclusion may also affect bite force. Knowledge of bite forces in dogs and cats is essential for various clinical and research fields such as the development of implants, materials, and surgical techniques as well as for forensic medicine. This paper is a summary of current knowledge of bite forces in dogs and cats, including the effect of measurement methods and of other factors.

  16. Measurement of dynamic and static radiation force on a sphere.

    Science.gov (United States)

    Chen, Shigao; Silva, Glauber T; Kinnick, Randall R; Greenleaf, James F; Fatemi, Mostafa

    2005-05-01

    Dynamic radiation force from ultrasound has found increasing applications in elasticity imaging methods such as vibro-acoustography. Radiation force that has both static and dynamic components can be produced by interfering two ultrasound beams of slightly different frequencies. This paper presents a method to measure both static and dynamic components of the radiation force on a sphere suspended by thin threads in water. Due to ultrasound radiation force, the sphere deflects to an equilibrant position and vibrates around it. The static radiation force is estimated from the deflection of the sphere. The dynamic radiation force is estimated from the calculated radiation impedance of the sphere and its vibration speed measured by a laser vibrometer. Experimental results on spheres of different size, vibrated at various frequencies, confirm the theoretical prediction that the dynamic and static radiation force on a sphere have approximately equal magnitudes [G. T. Silva, Phys. Rev. E 71, 056617 (2005)].

  17. Axial myopathy

    DEFF Research Database (Denmark)

    Witting, Nanna; Andersen, Linda K; Vissing, John

    2016-01-01

    Classically, myopathies are categorized according to limb or cranial nerve muscle affection, but with the growing use of magnetic resonance imaging it has become evident that many well-known myopathies have significant involvement of the axial musculature. New disease entities with selective axial...

  18. an extended octagonal ring dynamometer for measurement of forces

    African Journals Online (AJOL)

    NIJOTECH

    ABSTRACT. The analysis, design, construction, evaluation and use of an extended octagonal ring dynamometer for measurement of draught, vertical force and moment on a simple tillage tool are presented. The dynamometer was used to measure tool forces as functions of depth, rake angle and speed, for a wide plane ...

  19. Novel universal system for 3-dimensional orthodontic force-moment measurements and its clinical use.

    Science.gov (United States)

    Mencattelli, Margherita; Donati, Elisa; Cultrone, Massimo; Stefanini, Cesare

    2015-07-01

    Orthodontic treatment is an important part of dental health care in Europe: the percentages of the population undergoing therapy vary from 10% to 55%. Therefore, quantifying effective orthodontic loads is a challenging topic with regard to the predictability of tooth movements and the reduction of traumatic side effects. A customized measuring platform was developed and used for detecting orthodontic forces in a range between 0.1 and 2 N. The system consists of 6 load cells, each equipped with 6 strain gauges. The tests were conducted on a 3-dimensional printed malocclused mouth model and on a plaster cast. Four types of superelastic ligation and 2 types of invisible aligners were tested to analyze, respectively, a malocclusion with a high maxillary canine, and the effects on the axial rotation of a maxillary central incisor with and without a divot in the invisible aligners. Optimal treatment forces are exerted by low-friction wires, especially if they are partially engaged. Moreover, by reducing the treatment force, there is less necessity of anchoring to surrounding teeth, thus decreasing the side effects. The efficacy of using invisible aligners with a divot was validated. This platform allowed measurement, at the radicular level, of the resultant forces of orthodontic treatments performed with different orthodontic appliances. In addition to customizing and calibrating the therapy for each patient, this platform could be used to develop new specific instruments able to exert lower treatment forces, thus preventing irreversible damages. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  20. Three-dimensional reconstruction and measurements of zebrafish larvae from high-throughput axial-viewin vivoimaging.

    Science.gov (United States)

    Guo, Yuanhao; Veneman, Wouter J; Spaink, Herman P; Verbeek, Fons J

    2017-05-01

    High-throughput imaging is applied to provide observations for accurate statements on phenomena in biology and this has been successfully applied in the domain of cells, i.e. cytomics. In the domain of whole organisms, we need to take the hurdles to ensure that the imaging can be accomplished with a sufficient throughput and reproducibility. For vertebrate biology, zebrafish is a popular model system for High-throughput applications. The development of the Vertebrate Automated Screening Technology (VAST BioImager), a microscope mounted system, enables the application of zebrafish high-throughput screening. The VAST BioImager contains a capillary that holds a zebrafish for imaging. Through the rotation of the capillary, multiple axial-views of a specimen can be acquired. For the VAST BioImager, fluorescence and/or confocal microscopes are used. Quantitation of a specific signal as derived from a label in one fluorescent channel requires insight in the zebrafish volume to be able to normalize quantitation to volume units. However, from the setup of the VAST BioImager, a specimen volume cannot be straightforwardly derived. We present a high-throughput axial-view imaging architecture based on the VAST BioImager. We propose profile-based 3D reconstruction to produce 3D volumetric representations for zebrafish larvae using the axial-views. Volume and surface area can then be derived from the 3D reconstruction to obtain the shape characteristics in high-throughput measurements. In addition, we develop a calibration and a validation of our methodology. From our measurements we show that with a limited amount of views, accurate measurements of volume and surface area for zebrafish larvae can be obtained. We have applied the proposed method on a range of developmental stages in zebrafish and produced metrical references for the volume and surface area for each stage.

  1. Computational evaluation of the compositional factors in fracture healing affecting ultrasound axial transmission measurements.

    Science.gov (United States)

    Machado, Christiano Bittencourt; de Albuquerque Pereira, Wagner Coelho; Talmant, Maryline; Padilla, Frédéric; Laugier, Pascal

    2010-08-01

    This work aimed at computationally evaluating the compositional factors in fracture healing affecting ultrasound axial transmission (UAT), using four numerical daily-changing healing models, representing more realistic clinical conditions. Using two-dimensional (2-D) simulations, a 1-MHz source and a receiver were positioned parallel to the bone surface to detect the first arriving signal (FAS). The time-of-flight of the FAS (TOF(FAS)) was found to be sensitive only to superficial modifications in the propagation path. It was also shown that callus mature bone better explained alone the variation in TOF(FAS) (R(2) >or= 0.70, p consolidation delays and nonunions. Copyright 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  2. 3D-modeling for determination of axial forces acting in elements of the end zone of power turbogenerators

    Directory of Open Access Journals (Sweden)

    Y.A.Haydenko

    2013-12-01

    Full Text Available A field mathematical model of the end zone of a powerful generator type TVV-1000-2U3 in the 3D-setting is developed. Modelling of the nominal mode of turbogenerator operation is done. The distribution of the electromagnetic field, eddy currents, and the Ampere force appearing in such elements of the end zone of turbogenerator as the pressure plate, push pins and electrically conductive screen.

  3. An ABS control logic based on wheel force measurement

    Science.gov (United States)

    Capra, D.; Galvagno, E.; Ondrak, V.; van Leeuwen, B.; Vigliani, A.

    2012-12-01

    The paper presents an anti-lock braking system (ABS) control logic based on the measurement of the longitudinal forces at the hub bearings. The availability of force information allows to design a logic that does not rely on the estimation of the tyre-road friction coefficient, since it continuously tries to exploit the maximum longitudinal tyre force. The logic is designed by means of computer simulation and then tested on a specific hardware in the loop test bench: the experimental results confirm that measured wheel force can lead to a significant improvement of the ABS performances in terms of stopping distance also in the presence of road with variable friction coefficient.

  4. Axial Length Variation Impacts on Superficial Retinal Vessel Density and Foveal Avascular Zone Area Measurements Using Optical Coherence Tomography Angiography.

    Science.gov (United States)

    Sampson, Danuta M; Gong, Peijun; An, Di; Menghini, Moreno; Hansen, Alex; Mackey, David A; Sampson, David D; Chen, Fred K

    2017-06-01

    To evaluate the impact of image magnification correction on superficial retinal vessel density (SRVD) and foveal avascular zone area (FAZA) measurements using optical coherence tomography angiography (OCTA). Participants with healthy retinas were recruited for ocular biometry, refraction, and RTVue XR Avanti OCTA imaging with the 3 × 3-mm protocol. The foveal and parafoveal SRVD and FAZA were quantified with custom software before and after correction for magnification error using the Littman and the modified Bennett formulae. Relative changes between corrected and uncorrected SRVD and FAZA were calculated. Forty subjects were enrolled and the median (range) age of the participants was 30 (18-74) years. The mean (range) spherical equivalent refractive error was -1.65 (-8.00 to +4.88) diopters and mean (range) axial length was 24.42 mm (21.27-28.85). Images from 13 eyes were excluded due to poor image quality leaving 67 for analysis. Relative changes in foveal and parafoveal SRVD and FAZA after correction ranged from -20% to +10%, -3% to +2%, and -20% to +51%, respectively. Image size correction in measurements of foveal SRVD and FAZA was greater than 5% in 51% and 74% of eyes, respectively. In contrast, 100% of eyes had less than 5% correction in measurements of parafoveal SRVD. Ocular biometry should be performed with OCTA to correct image magnification error induced by axial length variation. We advise caution when interpreting interocular and interindividual comparisons of SRVD and FAZA derived from OCTA without image size correction.

  5. Micromechanical cohesion force measurements to determine cyclopentane hydrate interfacial properties.

    Science.gov (United States)

    Aman, Zachary M; Joshi, Sanjeev E; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A

    2012-06-15

    Hydrate aggregation and deposition are critical factors in determining where and when hydrates may plug a deepwater flowline. We present the first direct measurement of structure II (cyclopentane) hydrate cohesive forces in the water, liquid hydrocarbon and gas bulk phases. For fully annealed hydrate particles, gas phase cohesive forces were approximately twice that obtained in a liquid hydrocarbon phase, and approximately six times that obtained in the water phase. Direct measurements show that hydrate cohesion force in a water-continuous bulk may be only the product of solid-solid cohesion. When excess water was present on the hydrate surface, gas phase cohesive forces increased by a factor of three, suggesting the importance of the liquid or quasi-liquid layer (QLL) in determining cohesive force. Hydrate-steel adhesion force measurements show that, when the steel surface is coated with hydrophobic wax, forces decrease up to 96%. As the micromechanical force technique is uniquely capable of measuring hydrate-surface forces with variable contact time, the present work contains significant implications for hydrate applications in flow assurance. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. The definition of necessary axial force for extension of initial borehole for soft soil compaction process design

    Directory of Open Access Journals (Sweden)

    Ter-Martirosyan Zaven

    2016-01-01

    Full Text Available The article provides an analytical solution of the soil pile and surrounding soil cylinder interaction problem, with the possibility of extension of the pile shaft in its construction. Presents a closed solution for determination of radial and tangential stresses in the process of expansion of the pile shaft, as well as the minimum vertical force sufficient for the crushing of the pile material and move it in radial direction to the specified value. The problem is most actual for compacted soil bases with use of piles-drains of sand and sand-gravel mixture.

  7. Bite force measurement based on fiber Bragg grating sensor

    Science.gov (United States)

    Padma, Srivani; Umesh, Sharath; Asokan, Sundarrajan; Srinivas, Talabattula

    2017-10-01

    The maximum level of voluntary bite force, which results from the combined action of muscle of mastication, joints, and teeth, i.e., craniomandibular structure, is considered as one of the major indicators for the functional state of the masticatory system. Measurement of voluntary bite force provides useful data for the jaw muscle function and activity along with assessment of prosthetics. This study proposes an in vivo methodology for the dynamic measurement of bite force employing a fiber Bragg grating (FBG) sensor known as bite force measurement device (BFMD). The BFMD developed is a noninvasive intraoral device, which transduces the bite force exerted at the occlusal surface into strain variations on a metal plate. These strain variations are acquired by the FBG sensor bonded over it. The BFMD developed facilitates adjustment of the distance between the biting platform, which is essential to capture the maximum voluntary bite force at three different positions of teeth, namely incisor, premolar, and molar sites. The clinically relevant bite forces are measured at incisor, molar, and premolar position and have been compared against each other. Furthermore, the bite forces measured with all subjects are segregated according to gender and also compared against each other.

  8. Direct measurements of the frequency-dependent dielectrophoresis force.

    Science.gov (United States)

    Wei, Ming-Tzo; Junio, Joseph; Ou-Yang, H Daniel

    2009-01-02

    Dielectrophoresis (DEP), the phenomenon of directed motion of electrically polarizable particles in a nonuniform electric field, is promising for applications in biochemical separation and filtration. For colloidal particles in suspension, the relaxation of the ionic species in the shear layer gives rise to a frequency-dependent, bidirectional DEP force in the radio frequency range. However, quantification methods of the DEP force on individual particles with the pico-Newton resolution required for the development of theories and design of device applications are lacking. We report the use of optical tweezers as a force sensor and a lock-in phase-sensitive technique for analysis of the particle motion in an amplitude modulated DEP force. The coherent detection and sensing scheme yielded not only unprecedented sensitivity for DEP force measurements, but also provided a selectivity that clearly distinguishes the pure DEP force from all the other forces in the system, including electrophoresis, electro-osmosis, heat-induced convection, and Brownian forces, all of which can hamper accurate measurements through other existing methods. Using optical tweezers-based force transducers already developed in our laboratory, we have results that quantify the frequency-dependent DEP force and the crossover frequency of individual particles with this new experimental method.

  9. Molecular force sensors to measure stress in cells

    International Nuclear Information System (INIS)

    Prabhune, Meenakshi; Rehfeldt, Florian; Schmidt, Christoph F

    2017-01-01

    Molecularly generated forces are essential for most activities of biological cells, but also for the maintenance of steady state or homeostasis. To quantitatively understand cellular dynamics in migration, division, or mechanically guided differentiation, it will be important to exactly measure stress fields within the cell and the extracellular matrix. Traction force microscopy and related techniques have been established to determine the stress transmitted from adherent cells to their substrates. However, different approaches are needed to directly assess the stress generated inside the cell. This has recently led to the development of novel molecular force sensors. In this topical review, we briefly mention methods used to measure cell-external forces, and then summarize and explain different designs for the measurement of cell-internal forces with their respective advantages and disadvantages. (topical review)

  10. Molecular force sensors to measure stress in cells

    Science.gov (United States)

    Prabhune, Meenakshi; Rehfeldt, Florian; Schmidt, Christoph F.

    2017-06-01

    Molecularly generated forces are essential for most activities of biological cells, but also for the maintenance of steady state or homeostasis. To quantitatively understand cellular dynamics in migration, division, or mechanically guided differentiation, it will be important to exactly measure stress fields within the cell and the extracellular matrix. Traction force microscopy and related techniques have been established to determine the stress transmitted from adherent cells to their substrates. However, different approaches are needed to directly assess the stress generated inside the cell. This has recently led to the development of novel molecular force sensors. In this topical review, we briefly mention methods used to measure cell-external forces, and then summarize and explain different designs for the measurement of cell-internal forces with their respective advantages and disadvantages.

  11. Uncertainties in forces extracted from non-contact atomic force microscopy measurements by fitting of long-range background forces

    Directory of Open Access Journals (Sweden)

    Adam Sweetman

    2014-04-01

    Full Text Available In principle, non-contact atomic force microscopy (NC-AFM now readily allows for the measurement of forces with sub-nanonewton precision on the atomic scale. In practice, however, the extraction of the often desired ‘short-range’ force from the experimental observable (frequency shift is often far from trivial. In most cases there is a significant contribution to the total tip–sample force due to non-site-specific van der Waals and electrostatic forces. Typically, the contribution from these forces must be removed before the results of the experiment can be successfully interpreted, often by comparison to density functional theory calculations. In this paper we compare the ‘on-minus-off’ method for extracting site-specific forces to a commonly used extrapolation method modelling the long-range forces using a simple power law. By examining the behaviour of the fitting method in the case of two radically different interaction potentials we show that significant uncertainties in the final extracted forces may result from use of the extrapolation method.

  12. Measurement of guided mode wavenumbers in soft tissue-bone mimicking phantoms using ultrasonic axial transmission.

    Science.gov (United States)

    Chen, Jiangang; Foiret, Josquin; Minonzio, Jean-Gabriel; Talmant, Maryline; Su, Zhongqing; Cheng, Li; Laugier, Pascal

    2012-05-21

    Human soft tissue is an important factor that influences the assessment of human long bones using quantitative ultrasound techniques. To investigate such influence, a series of soft tissue-bone phantoms (a bone-mimicking plate coated with a layer of water, glycerol or silicon rubber) were ultrasonically investigated using a probe with multi-emitter and multi-receiver arrays in an axial transmission configuration. A singular value decomposition signal processing technique was applied to extract the frequency-dependent wavenumbers of several guided modes. The results indicate that the presence of a soft tissue-mimicking layer introduces additional guided modes predicted by a fluid waveguide model. The modes propagating in the bone-mimicking plate covered by the soft-tissue phantom are only slightly modified compared to their counterparts in the free bone-mimicking plate, and they are still predicted by an elastic transverse isotropic two-dimensional waveguide. Altogether these observations suggest that the soft tissue-bone phantoms can be modeled as two independent waveguides. Even in the presence of the overlying soft tissue-mimicking layer, the modes propagating in the bone-mimicking plate can still be extracted and identified. These results suggest that our approach can be applied for the purpose of the characterization of the material and structural properties of cortical bone.

  13. From static to animated: Measuring mechanical forces in tissues.

    Science.gov (United States)

    Nelson, Celeste M

    2017-01-02

    Cells are physical objects that exert mechanical forces on their surroundings as they migrate and take their places within tissues. New techniques are now poised to enable the measurement of cell-generated mechanical forces in intact tissues in vivo, which will illuminate the secret dynamic lives of cells and change our current perception of cell biology. © 2017 Nelson.

  14. Reduction of Liquid Bridge Force for 3D Microstructure Measurements

    Directory of Open Access Journals (Sweden)

    Hiroshi Murakami

    2016-05-01

    Full Text Available Recent years have witnessed an increased demand for a method for precise measurement of the microstructures of mechanical microparts, microelectromechanical systems, micromolds, optical devices, microholes, etc. This paper presents a measurement system for three-dimensional (3D microstructures that use an optical fiber probe. This probe consists of a stylus shaft with a diameter of 2.5 µm and a glass ball with a diameter of 5 µm attached to the stylus tip. In this study, the measurement system, placed in a vacuum vessel, is constructed suitably to prevent adhesion of the stylus tip to the measured surface caused by the surface force resulting from the van der Waals force, electrostatic force, and liquid bridge force. First, these surface forces are analyzed with the aim of investigating the causes of adhesion. Subsequently, the effects of pressure inside the vacuum vessel on surface forces are evaluated. As a result, it is found that the surface force is 0.13 µN when the pressure inside the vacuum vessel is 350 Pa. This effect is equivalent to a 60% reduction in the surface force in the atmosphere.

  15. Vehicle lateral state estimation based on measured tyre forces.

    Science.gov (United States)

    Tuononen, Ari J

    2009-01-01

    Future active safety systems need more accurate information about the state of vehicles. This article proposes a method to evaluate the lateral state of a vehicle based on measured tyre forces. The tyre forces of two tyres are estimated from optically measured tyre carcass deflections and transmitted wirelessly to the vehicle body. The two remaining tyres are so-called virtual tyre sensors, the forces of which are calculated from the real tyre sensor estimates. The Kalman filter estimator for lateral vehicle state based on measured tyre forces is presented, together with a simple method to define adaptive measurement error covariance depending on the driving condition of the vehicle. The estimated yaw rate and lateral velocity are compared with the validation sensor measurements.

  16. Vehicle Lateral State Estimation Based on Measured Tyre Forces

    Directory of Open Access Journals (Sweden)

    Ari J. Tuononen

    2009-10-01

    Full Text Available Future active safety systems need more accurate information about the state of vehicles. This article proposes a method to evaluate the lateral state of a vehicle based on measured tyre forces. The tyre forces of two tyres are estimated from optically measured tyre carcass deflections and transmitted wirelessly to the vehicle body. The two remaining tyres are so-called virtual tyre sensors, the forces of which are calculated from the real tyre sensor estimates. The Kalman filter estimator for lateral vehicle state based on measured tyre forces is presented, together with a simple method to define adaptive measurement error covariance depending on the driving condition of the vehicle. The estimated yaw rate and lateral velocity are compared with the validation sensor measurements.

  17. Measuring Air Force Contracting Customer Satisfaction

    Science.gov (United States)

    2015-12-01

    customer satisfaction is through the use of the EDP model , and then assesses the value and importance of measuring customer satisfaction through the lens...companies’ business models . Their companies’ business models dictated the frequency for collecting customer satisfaction data by encouraging regular...pursuit of satisfying their organizations’ business models , the participants aligned the frequency for collecting customer satisfaction

  18. Distribution of axial length and ocular biometry measured using partial coherence laser interferometry (IOL Master) in an older white population.

    Science.gov (United States)

    Fotedar, Reena; Wang, Jie Jin; Burlutsky, George; Morgan, Ian G; Rose, Kathryn; Wong, Tien Y; Mitchell, Paul

    2010-03-01

    We aimed to describe norms for the distribution of axial length (AL) and other ocular biometric parameters in an older Caucasian population, measured using partial coherence laser interferometry (Zeiss IOL Master; Carl Zeiss AG, Oberkochen, Germany), a technique now routinely used in measuring AL before cataract surgery. We also aimed to assess age and gender relationships with these parameters and their correlations with spherical equivalent refraction (SER). Cross-sectional analysis of the Blue Mountains Eye Study (BMES) cohort at the examinations (10-year follow-up examination). From 2002 to 2004, 1952 persons (76% of surviving baseline BMES participants) aged 59 years or older had ocular biometry measured at the 10-year examinations. Spherical equivalent refraction was calculated as the sum of sphere +0.5 cylinder power, after protocol refraction. Measurements of AL, corneal curvature (K1), anterior chamber depth (ACD), and corneal diameter (WTW) were performed using the IOL Master. Only right phakic eyes (n = 1335) with biometry data were included. Axial length distribution. Mean AL was 23.44 mm (95% confidence interval [CI], 23.38-23.50) and was greater in men, 23.76 mm (CI, 23.68-23.84), than in women, 23.19 mm (CI, 23.11-23.27). The mean K1, ACD, and WTW were 43.42 diopters (D), 3.10 mm, and 12.06 mm, respectively. The AL and ACD distributions were both positively skewed and peaked, whereas the WTW and K1 distributions were near normal. From age 59 years or older, a mean reduction in AL with age was observed (P for trend = 0.005), 0.12 mm per decade (P = 0.0176) in women but only 0.02 mm per decade (P = 0.6319) in men. Mean SER was 0.58 D, and the distribution was peaked with a negative skew. The SER was negatively correlated with both AL (beta coefficient -0.688) and ACD (beta coefficient -0.222), but not with K1 or WTW. These data provide normative values in the older general population for AL measured using the IOL Master. Axial length distribution was

  19. Standardized voluntary force measurement in a lower extremity rehabilitation robot

    OpenAIRE

    Bolliger, M; Banz, R; Dietz, V; Lünenburger, L

    2008-01-01

    Abstract Background Isometric force measurements in the lower extremity are widely used in rehabilitation of subjects with neurological movement disorders (NMD) because walking ability has been shown to be related to muscle strength. Therefore muscle strength measurements can be used to monitor and control the effects of training programs. A new method to assess isometric muscle force was implemented in the driven gait orthosis (DGO) Lokomat. To evaluate the capabilities of this new measureme...

  20. Quantitative measurements of shear displacement using atomic force microscopy

    International Nuclear Information System (INIS)

    Wang, Wenbo; Wu, Weida; Sun, Ying; Zhao, Yonggang

    2016-01-01

    We report a method to quantitatively measure local shear deformation with high sensitivity using atomic force microscopy. The key point is to simultaneously detect both torsional and buckling motions of atomic force microscopy (AFM) cantilevers induced by the lateral piezoelectric response of the sample. This requires the quantitative calibration of torsional and buckling response of AFM. This method is validated by measuring the angular dependence of the in-plane piezoelectric response of a piece of piezoelectric α-quartz. The accurate determination of the amplitude and orientation of the in-plane piezoelectric response, without rotation, would greatly enhance the efficiency of lateral piezoelectric force microscopy.

  1. Nanonet force microscopy for measuring forces in single smooth muscle cells of the human aorta.

    Science.gov (United States)

    Hall, Alexander; Chan, Patrick; Sheets, Kevin; Apperson, Matthew; Delaughter, Christopher; Gleason, Thomas G; Phillippi, Julie A; Nain, Amrinder

    2017-07-07

    A number of innovative methods exist to measure cell-matrix adhesive forces, but they have yet to accurately describe and quantify the intricate interplay of a cell and its fibrous extracellular matrix (ECM). In cardiovascular pathologies, such as aortic aneurysm, new knowledge on the involvement of cell-matrix forces could lead to elucidation of disease mechanisms. To better understand this dynamics, we measured primary human aortic single smooth muscle cell (SMC) forces using nanonet force microscopy in both inside-out (I-O intrinsic contractility) and outside-in (O-I external perturbation) modes. For SMC populations, we measured the I-O and O-I forces to be 12.9 ± 1.0 and 57.9 ± 2.5 nN, respectively. Exposure of cells to oxidative stress conditions caused a force decrease of 57 and 48% in I-O and O-I modes, respectively, and an increase in migration rate by 2.5-fold. Finally, in O-I mode, we cyclically perturbed cells at constant strain of varying duration to simulate in vivo conditions of the cardiac cycle and found that I-O forces decrease with increasing duration and O-I forces decreased by half at shorter cycle times. Thus our findings highlight the need to study forces exerted and felt by cells simultaneously to comprehensively understand force modulation in cardiovascular disease. © 2017 Hall et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  2. Sub-Angstrom oscillation amplitude non-contact atomic force microscopy for lateral force gradient measurement

    International Nuclear Information System (INIS)

    Atabak, Mehrdad; Unverdi, Ozhan; Ozer, H. Ozguer; Oral, Ahmet

    2009-01-01

    We report the first results from novel sub-Angstrom oscillation amplitude non-contact atomic force microscopy developed for lateral force gradient measurements. Quantitative lateral force gradients between a tungsten tip and Si(1 1 1)-(7 x 7) surface can be measured using this microscope. Simultaneous lateral force gradient and scanning tunnelling microscope images of single and multi atomic steps are obtained. In our measurement, tunnel current is used as feedback. The lateral stiffness contrast has been observed to be 2.5 N/m at single atomic step, in contrast to 13 N/m at multi atomic step on Si(1 1 1) surface. We also carried out a series of lateral stiffness-distance spectroscopy. We observed lateral stiffness-distance curves exhibit sharp increase in the stiffness as the sample is approached towards the surface. We usually observed positive stiffness and sometimes going into slightly negative region.

  3. Does an instrumented treadmill correctly measure the ground reaction forces?

    Directory of Open Access Journals (Sweden)

    Patrick A. Willems

    2013-11-01

    Since the 1990s, treadmills have been equipped with multi-axis force transducers to measure the three components of the ground reaction forces during walking and running. These measurements are correctly performed if the whole treadmill (including the motor is mounted on the transducers. In this case, the acceleration of the treadmill centre of mass relative to the reference frame of the laboratory is nil. The external forces exerted on one side of the treadmill are thus equal in magnitude and opposite in direction to the external forces exerted on the other side. However, uncertainty exists about the accuracy of these measures: due to friction between the belt and the tread-surface, due to the motor pulling the belt, some believe that it is not possible to correctly measure the horizontal components of the forces exerted by the feet on the belt. Here, we propose a simple model of an instrumented treadmill and we demonstrate (1 that the forces exerted by the subject moving on the upper part of the treadmill are accurately transmitted to the transducers placed under it and (2 that all internal forces – including friction – between the parts of the treadmill are cancelling each other.

  4. Uncertainty quantification in nanomechanical measurements using the atomic force microscope

    Science.gov (United States)

    Ryan Wagner; Robert Moon; Jon Pratt; Gordon Shaw; Arvind Raman

    2011-01-01

    Quantifying uncertainty in measured properties of nanomaterials is a prerequisite for the manufacture of reliable nanoengineered materials and products. Yet, rigorous uncertainty quantification (UQ) is rarely applied for material property measurements with the atomic force microscope (AFM), a widely used instrument that can measure properties at nanometer scale...

  5. Variations of OCT measurements corrected for the magnification effect according to axial length and refractive error in children

    Directory of Open Access Journals (Sweden)

    Inmaculada Bueno-Gimeno

    2018-01-01

    Full Text Available Purpose: The aim of this paper was to examine the distribution of macular, retinal nerve fiber layer (RNFL thickness and optic disc parameters of myopic and hyperopic eyes in comparison with emmetropic control eyes and to investigate their variation according to axial length (AL and spherical equivalent (SE in healthy children. Methods: This study included 293 pairs of eyes of 293 children (145 boys and 148 girls, ranging in age from 6 to 17 years. Subjects were divided according to SE in control (emmetropia, 99 children, myopia (100 children and hyperopia (94 children groups and according to axial AL in 68 short (25.00mm, 36. Macular parameters, RNFL thickness and optic disc morphology were assessed by the CirrusTM HD-OCT. AL was measured using the IOL-Master system. Littmann’s formula was used for calculating the corrected AL-related ocular magnification. Results: Mean age (±SD was 10.84±3.05 years; mean (±SD SE was +0.14±0.51 D (range from −8.75 to +8.25 D and mean AL (±SD was 23.12±1.49. Average RNFL thickness, average macular thickness and macular volume decreased as AL and myopia increased. No correlations between AL/SE and optic disc parameters were found after correcting for magnification effect. Conclusions: AL and refractive error affect measurements of macular and RNFL thickness in healthy children. To make a correct interpretation of OCT measurements, ocular magnification effect should be taken into account by clinicians or OCT manufacturers.

  6. Friction force measurements relevant to de-inking by means of atomic force microscope.

    Science.gov (United States)

    Theander, Katarina; Pugh, Robert J; Rutland, Mark W

    2005-11-15

    In the pulping step of the de-inking process, the ink detaches from the fibers due to shear and physical chemical interaction. In order to get a better understanding of the forces involved between cellulose and ink, the atomic force microscope and the colloidal probe technique have been used in the presence of a model chemical dispersant (hexa-ethyleneglycol mono n-dodecyl ether, C12E6). A cellulose bead was used as the colloidal probe and three different lower surfaces have been used, an alkyd resin, mica and a cellulose sphere. The normal and lateral forces have been measured at a range of nonionic concentrations. It was found that the lateral sliding friction forces deceased with increasing surfactant concentration for both the alkyd resin and mica while no differences were observed for the cellulose surface. In addition, only a very small change in normal force could be detected for the alkyd surface as the concentration changed.

  7. Towards a Casimir Force Measurement between Micromachined Parallel Plate Structures

    Directory of Open Access Journals (Sweden)

    Remco J. Wiegerink

    2012-11-01

    Full Text Available Ever since its prediction, experimental investigation of the Casimir force has been of great scientific interest. Many research groups have successfully attempted quantifying the force with different device geometries; however, measurement of the Casimir force between parallel plates with sub-micron separation distance is still a challenging task, since it becomes extremely difficult to maintain sufficient parallelism between the plates. The Casimir force can significantly influence the operation of micro devices and to realize reliable and reproducible devices it is necessary to understand and experimentally verify the influence of the Casimir force at sub-micron scale. In this paper, we present the design principle, fabrication and characterization of micromachined parallel plate structures that could allow the measurement of the Casimir force with tunable separation distance in the range of 100 to 1000 nm. Initially, a gold coated parallel plate structure is explored to measure the Casimir force, but also other material combinations could be investigated. Using gold-silicon eutectic bonding, a reliable approach to bond chips with integrated suspended plates together with a well-defined separation distance in the order of 1–2 μm is developed.

  8. MD1405: Demonstration of forced dynamic aperture measurements at injection

    CERN Document Server

    Carlier, Felix Simon; Persson, Tobias Hakan Bjorn; Tomas Garcia, Rogelio; CERN. Geneva. ATS Department

    2017-01-01

    Accurate measurements of dynamic aperture become more important for the LHC as it advances into increasingly nonlinear regimes of operations, as well as for the High Luminosity LHC where machine nonlinearities will have a significantly larger impact. Direct dynamic aperture measurements at top energy in the LHC are challenging, and conventional single kick methods are not viable. Dynamic aperture measurements under forced oscillation of AC dipoles have been proposed as s possible alternative observable. A first demonstration of forced DA measurements at injections energy is presented.

  9. Designing an experiment to measure cellular interaction forces

    Science.gov (United States)

    McAlinden, Niall; Glass, David G.; Millington, Owain R.; Wright, Amanda J.

    2013-09-01

    Optical trapping is a powerful tool in Life Science research and is becoming common place in many microscopy laboratories and facilities. The force applied by the laser beam on the trapped object can be accurately determined allowing any external forces acting on the trapped object to be deduced. We aim to design a series of experiments that use an optical trap to measure and quantify the interaction force between immune cells. In order to cause minimum perturbation to the sample we plan to directly trap T cells and remove the need to introduce exogenous beads to the sample. This poses a series of challenges and raises questions that need to be answered in order to design a set of effect end-point experiments. A typical cell is large compared to the beads normally trapped and highly non-uniform - can we reliably trap such objects and prevent them from rolling and re-orientating? In this paper we show how a spatial light modulator can produce a triple-spot trap, as opposed to a single-spot trap, giving complete control over the object's orientation and preventing it from rolling due, for example, to Brownian motion. To use an optical trap as a force transducer to measure an external force you must first have a reliably calibrated system. The optical trapping force is typically measured using either the theory of equipartition and observing the Brownian motion of the trapped object or using an escape force method, e.g. the viscous drag force method. In this paper we examine the relationship between force and displacement, as well as measuring the maximum displacement from equilibrium position before an object falls out of the trap, hence determining the conditions under which the different calibration methods should be applied.

  10. Isoelectric point of fluorite by direct force measurements using atomic force microscopy.

    Science.gov (United States)

    Assemi, Shoeleh; Nalaskowski, Jakub; Miller, Jan D; Johnson, William P

    2006-02-14

    Interaction forces between a fluorite (CaF2) surface and colloidal silica were measured by atomic force microscopy (AFM) in 1 x 10(-3) M NaNO3 at different pH values. Forces between the silica colloid and fluorite flat were measured at a range of pH values above the isoelectric point (IEP) of silica so that the forces were mainly controlled by the fluorite surface charge. In this way, the IEP of the fluorite surface was deduced from AFM force curves at pH approximately 9.2. Experimental force versus separation distance curves were in good agreement with theoretical predictions based on long-range electrostatic interactions, allowing the potential of the fluorite surface to be estimated from the experimental force curves. AFM-deduced surface potentials were generally lower than the published zeta potentials obtained from electrokinetic methods for powdered samples. Differences in methodology, orientation of the fluorite, surface carbonation, and equilibration time all could have contributed to this difference.

  11. Support force measures of midsized men in seated positions.

    Science.gov (United States)

    Bush, Tamara Reid; Hubbard, Robert P

    2007-02-01

    Two areas not well researched in the field of seating mechanics are the distribution of normal and shear forces, and how those forces change with seat position. The availability of these data would be beneficial for the design and development of office, automotive and medical seats. To increase our knowledge in the area of seating mechanics, this study sought to measure the normal and shear loads applied to segmental supports in 12 seated positions, utilizing three inclination angles and four levels of seat back articulation that were associated with automotive driving positions. Force data from six regions, including the thorax, sacral region, buttocks, thighs, feet, and hand support were gathered using multi-axis load cells. The sample contained 23 midsized subjects with an average weight of 76.7 kg and a standard deviation of 4.2 kg, and an average height of 1745 mm with a standard deviation of 19 mm. Results were examined in terms of seat back inclination and in terms of torso articulation for relationships between seat positions and support forces. Using a repeated measures analysis, significant differences (p<0.05) were identified for normal forces relative to all inclination angles except for forces occurring at the hand support. Other significant differences were observed between normal forces behind the buttocks, pelvis, and feet for torso articulations. Significant differences in the shear forces occurred under the buttocks and posterior pelvis during changes in seat back inclination. Significant differences in shear forces were also identified for torso articulations. These data suggest that as seat back inclination or torso articulation change, significant shifts in force distribution occur.

  12. Extending Bell's model: how force transducer stiffness alters measured unbinding forces and kinetics of molecular complexes.

    Science.gov (United States)

    Walton, Emily B; Lee, Sunyoung; Van Vliet, Krystyn J

    2008-04-01

    Forced unbinding of complementary macromolecules such as ligand-receptor complexes can reveal energetic and kinetic details governing physiological processes ranging from cellular adhesion to drug metabolism. Although molecular-level experiments have enabled sampling of individual ligand-receptor complex dissociation events, disparities in measured unbinding force F(R) among these methods lead to marked variation in inferred binding energetics and kinetics at equilibrium. These discrepancies are documented for even the ubiquitous ligand-receptor pair, biotin-streptavidin. We investigated these disparities and examined atomic-level unbinding trajectories via steered molecular dynamics simulations, as well as via molecular force spectroscopy experiments on biotin-streptavidin. In addition to the well-known loading rate dependence of F(R) predicted by Bell's model, we find that experimentally accessible parameters such as the effective stiffness of the force transducer k can significantly perturb the energy landscape and the apparent unbinding force of the complex for sufficiently stiff force transducers. Additionally, at least 20% variation in unbinding force can be attributed to minute differences in initial atomic positions among energetically and structurally comparable complexes. For force transducers typical of molecular force spectroscopy experiments and atomistic simulations, this energy barrier perturbation results in extrapolated energetic and kinetic parameters of the complex that depend strongly on k. We present a model that explicitly includes the effect of k on apparent unbinding force of the ligand-receptor complex, and demonstrate that this correction enables prediction of unbinding distances and dissociation rates that are decoupled from the stiffness of actual or simulated molecular linkers.

  13. Magnetic moment measurement of magnetic nanoparticles using atomic force microscopy

    International Nuclear Information System (INIS)

    Park, J-W; Lee, E-C; Ju, H; Yoo, I S; Chang, W-S; Chung, B H; Kim, B S

    2008-01-01

    Magnetic moment per unit mass of magnetic nanoparticles was found by using the atomic force microscope (AFM). The mass of the nanoparticles was acquired from the resonance frequency shift of the particle-attached AFM probe and magnetic force measurement was also carried out with the AFM. Combining with magnetic field strength, the magnetic moment per unit mass of the nanoparticles was determined as a function of magnetic field strength. (technical design note)

  14. Field measurement of basal forces generated by erosive debris flows

    Science.gov (United States)

    McCoy, S.W.; Tucker, G.E.; Kean, J.W.; Coe, J.A.

    2013-01-01

    It has been proposed that debris flows cut bedrock valleys in steeplands worldwide, but field measurements needed to constrain mechanistic models of this process remain sparse due to the difficulty of instrumenting natural flows. Here we present and analyze measurements made using an automated sensor network, erosion bolts, and a 15.24 cm by 15.24 cm force plate installed in the bedrock channel floor of a steep catchment. These measurements allow us to quantify the distribution of basal forces from natural debris‒flow events that incised bedrock. Over the 4 year monitoring period, 11 debris‒flow events scoured the bedrock channel floor. No clear water flows were observed. Measurements of erosion bolts at the beginning and end of the study indicated that the bedrock channel floor was lowered by 36 to 64 mm. The basal force during these erosive debris‒flow events had a large‒magnitude (up to 21 kN, which was approximately 50 times larger than the concurrent time‒averaged mean force), high‒frequency (greater than 1 Hz) fluctuating component. We interpret these fluctuations as flow particles impacting the bed. The resulting variability in force magnitude increased linearly with the time‒averaged mean basal force. Probability density functions of basal normal forces were consistent with a generalized Pareto distribution, rather than the exponential distribution that is commonly found in experimental and simulated monodispersed granular flows and which has a lower probability of large forces. When the bed sediment thickness covering the force plate was greater than ~ 20 times the median bed sediment grain size, no significant fluctuations about the time‒averaged mean force were measured, indicating that a thin layer of sediment (~ 5 cm in the monitored cases) can effectively shield the subjacent bed from erosive impacts. Coarse‒grained granular surges and water‒rich, intersurge flow had very similar basal force distributions despite

  15. Cantilever contribution to the total electrostatic force measured with the atomic force microscope

    International Nuclear Information System (INIS)

    Guriyanova, Svetlana; Golovko, Dmytro S; Bonaccurso, Elmar

    2010-01-01

    The atomic force microscope (AFM) is a powerful tool for surface imaging at the nanometer scale and surface force measurements in the piconewton range. Among long-range surface forces, the electrostatic forces play a predominant role. They originate if the electric potentials of the substrate and of the tip of the AFM cantilever are different. A quantitative interpretation of the AFM signal is often difficult because it depends in a complicated fashion on the cantilever–tip–surface geometry. Since the electrostatic interaction is a long-range interaction, the cantilever, which is many microns from the surface, contributes to the total electrostatic force along with the tip. Here we present results of the electrostatic interaction between a conducting flat surface and horizontal or tilted cantilevers, with and without tips, at various distances from the surface. As addressed in a previous work, we show that the contribution of the cantilever to the overall force cannot be neglected. Based on a predictive model and on 3D confocal measurements, we discuss the influence of the tilting angle of the cantilever

  16. Viscosity overshoot followed by steady state measured in uni-axial elongation of LDPE. Ole Hassager, Henrik Koblitz Rasmussen, Anders Bach and Jens Kromann Nielsen

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole; Bach, Anders

    2004-01-01

    The transient (e.g. start up of) elongational viscosity of three low-density polyethylene (LDPE) melts (BASF Lupolen 1810H, 1840D and 3020D) was measured using a filament stretching rheometer (FSR) capable of measuring at elevated temperatures. The transient uni-axial elongational viscosity showe...

  17. Accurate fluid force measurement based on control surface integration

    Science.gov (United States)

    Lentink, David

    2018-01-01

    Nonintrusive 3D fluid force measurements are still challenging to conduct accurately for freely moving animals, vehicles, and deforming objects. Two techniques, 3D particle image velocimetry (PIV) and a new technique, the aerodynamic force platform (AFP), address this. Both rely on the control volume integral for momentum; whereas PIV requires numerical integration of flow fields, the AFP performs the integration mechanically based on rigid walls that form the control surface. The accuracy of both PIV and AFP measurements based on the control surface integration is thought to hinge on determining the unsteady body force associated with the acceleration of the volume of displaced fluid. Here, I introduce a set of non-dimensional error ratios to show which fluid and body parameters make the error negligible. The unsteady body force is insignificant in all conditions where the average density of the body is much greater than the density of the fluid, e.g., in gas. Whenever a strongly deforming body experiences significant buoyancy and acceleration, the error is significant. Remarkably, this error can be entirely corrected for with an exact factor provided that the body has a sufficiently homogenous density or acceleration distribution, which is common in liquids. The correction factor for omitting the unsteady body force, {{{ {ρ f}} {1 - {ρ f} ( {{ρ b}+{ρ f}} )}.{( {{{{ρ }}b}+{ρ f}} )}}} , depends only on the fluid, {ρ f}, and body, {{ρ }}b, density. Whereas these straightforward solutions work even at the liquid-gas interface in a significant number of cases, they do not work for generalized bodies undergoing buoyancy in combination with appreciable body density inhomogeneity, volume change (PIV), or volume rate-of-change (PIV and AFP). In these less common cases, the 3D body shape needs to be measured and resolved in time and space to estimate the unsteady body force. The analysis shows that accounting for the unsteady body force is straightforward to non

  18. Global estimate of aerosol direct radiative forcing from satellite measurements.

    Science.gov (United States)

    Bellouin, Nicolas; Boucher, Olivier; Haywood, Jim; Reddy, M Shekar

    2005-12-22

    Atmospheric aerosols cause scattering and absorption of incoming solar radiation. Additional anthropogenic aerosols released into the atmosphere thus exert a direct radiative forcing on the climate system. The degree of present-day aerosol forcing is estimated from global models that incorporate a representation of the aerosol cycles. Although the models are compared and validated against observations, these estimates remain uncertain. Previous satellite measurements of the direct effect of aerosols contained limited information about aerosol type, and were confined to oceans only. Here we use state-of-the-art satellite-based measurements of aerosols and surface wind speed to estimate the clear-sky direct radiative forcing for 2002, incorporating measurements over land and ocean. We use a Monte Carlo approach to account for uncertainties in aerosol measurements and in the algorithm used. Probability density functions obtained for the direct radiative forcing at the top of the atmosphere give a clear-sky, global, annual average of -1.9 W m(-2) with standard deviation, +/- 0.3 W m(-2). These results suggest that present-day direct radiative forcing is stronger than present model estimates, implying future atmospheric warming greater than is presently predicted, as aerosol emissions continue to decline.

  19. EBR-II axial temperature distributions measured during in-vessel natural circulation experiments

    International Nuclear Information System (INIS)

    Ragland, W.A.; Feldman, E.E.

    1994-01-01

    The Experimental Breeder Reactor II is located in a cylindrical pool of liquid sodium which is part of the cold-leg of the primary flow circuit. A vertical string of 32 thermocouples spans the 8 m tank height, at each of two diametrically opposed locations in the primary tank. Local temperatures were measured with these 64 thermocouples during dynamic tests. The instantaneous spacial temperature distribution obtained from a string of thermocouples can be viewed on a personal computer. The animation which results from displaying successive spacial distributions provides a very effective way to quickly obtain physical insights. The design of the two strings of thermocouples, the software used to create the animation, measured data from three different types of tests -- two unprotected reactor transients, and one with the reactor at decay power levels and the reactor cover lifted, are discussed

  20. Design and evaluation of an aeroacoustic wind tunnel for measurement of axial flow fans.

    Science.gov (United States)

    Bilka, M; Anthoine, J; Schram, C

    2011-12-01

    An anechoic wind tunnel dedicated to fan self-noise studies has been designed and constructed at the von Karman Institute The multi-chamber, mass flow driven design allows for all fan performance characteristics, aerodynamic quantities (e.g., wake turbulence measurements), and acoustic properties to be assessed in the same facility with the same conditions. The acoustic chamber performance is assessed using the optimum reference method and found to be within the ISO 3745 standards down to 150 Hz for pure tone and broadband source mechanisms. The additional influence of installation effects of an aerodynamic inlet was found to create a scattered sound field only near the source location, while still providing good anechoic results at more distant sound pressure measurement positions. It was found to have inflow properties, span-wise uniformity, and low turbulence intensity, consistent with those desired for fan self-noise studies. © 2011 Acoustical Society of America

  1. The application of force-sensing resistor sensors for measuring forces developed by the human hand.

    Science.gov (United States)

    Nikonovas, A; Harrison, A J L; Hoult, S; Sammut, D

    2004-01-01

    Most attempts to measure forces developed by the human hand have been implemented by placing force sensors on the object of interaction. Other researchers have placed sensors just on the subject's fingertips. In this paper, a system is described that measures forces over the entire hand using thin-film sensors and associated electronics. This system was developed by the authors and is able to obtain force readings from up to 60 thin-film sensors at rates of up to 400 samples/s per sensor. The sensors can be placed anywhere on the palm and/or fingers of the hand. The sensor readings, together with a video stream containing information about hand posture, are logged into a portable computer using a multiplexer, analogue-to-digital converter and software developed for the purpose. The system has been successfully used to measure forces involved in a range of everyday tasks such as driving a vehicle, lifting saucepans and hitting a golf ball. In the latter case, results are compared with those from an instrumented golf club. Future applications include the assessment of hand strength following disease, trauma or surgery, and to enable quantitative ergonomic investigations.

  2. Design of a devoted γ spectrometry device for axial and azimuthal activity measurements on JHR-type curved fuel plates

    International Nuclear Information System (INIS)

    Gruel, A.; Di Salvo, J.; Roche, A.; Blaise, P.; Ledoux, J.F.; Morel, C.; Foucras, A.; Lecluze, A.; Vaglio-Gaudard, C.; Colombier, A.C.

    2014-01-01

    The AMMON experimental program in the Cadarache EOLE zero power reactor is devoted to the experimental validation of the HORUS-3D neutron and photon calculation scheme for the future Jules Horowitz Material Testing Reactor. Several experimental core configurations have been investigated, based on the same lattice global geometry: a central hexagonal aluminum box, with 7 JHR fuel elements, surrounded by a driver zone composed of standard PWR- fuel pins. For experimental purposes, one assembly can be fully disassembled to enable precise measurements of local fission rates in the plates. Within this framework, a dedicated -spectrometry device has been designed to precisely measure axial and azimuthal fission rate distributions on these special fuel elements. The present paper details design studies on this bench; experimental results are given for three studied configurations: - 'Reference' configuration; - 'Beryllium periphery' configuration, where a beryllium cylinder is placed on the outer ring of the central experimental zone; - '1/2 hafnium' configuration, with a hafnium rod partially inserted in the central assembly. Fission rates in the 'Reference' and perturbed configurations are finely described and in good agreement with the preliminary calculations. Measurements show good repeatability, with overall uncertainties around 1%. (authors)

  3. Reducing detrimental electrostatic effects in Casimir-force measurements and Casimir-force-based microdevices

    Science.gov (United States)

    Xu, Jun; Klimchitskaya, G. L.; Mostepanenko, V. M.; Mohideen, U.

    2018-03-01

    It is well known that residual electrostatic forces create significant difficulties in precise measurements of the Casimir force and the wide use of Casimir-operated microdevices. We experimentally demonstrate that, with the help of Ar-ion cleaning of the surfaces, it is possible to make electrostatic effects negligibly small compared to the Casimir interaction. Our experimental setup consists of a dynamic atomic force microscope supplemented with an Ar-ion gun and argon reservoir. The residual potential difference between the Au-coated surfaces of a sphere and those of a plate was measured both before and after in situ Ar-ion cleaning. It is shown that this cleaning decreases the magnitude of the residual potential by up to an order of magnitude and makes it almost independent of the separation. The gradient of the Casimir force was measured using ordinary samples subjected to Ar-ion cleaning. The obtained results are shown to be in good agreement both with previous precision measurements using specially selected samples and with theoretical predictions of the Lifshitz theory. The conclusion is made that the suggested method of in situ Ar-ion cleaning is effective in reducing the electrostatic effects and therefore is a great resource for experiments on measuring the Casimir interaction and for Casimir-operated microdevices.

  4. Measuring of beat up force on weaving machines

    Directory of Open Access Journals (Sweden)

    Bílek Martin

    2017-01-01

    Full Text Available The textile material (warp is stressed cyclically at a relative high frequency during the weaving process. Therefore, the special measuring device for analysis of beat up force in the textile material during the weaving process, has been devised in the Weaving Laboratory of the TUL. This paper includes a description of this measuring device. The experimental part includes measurements results for various materials (PES and VS and various warp thread densities of the produced fabric.

  5. A laboratory apparatus to measure clast-bed contact forces

    Science.gov (United States)

    Cohen, D.

    2007-12-01

    Glacier dynamics, sediment transport, and erosion are controlled in part by processes occurring at the interface between basal ice and bedrock. One critical parameter is the contact force between a clast and the bedrock. This force affects many processes such as basal friction which regulates sliding speed, slip resistance which influences basal shear stress and may cause micro-seismic events associated with slip instabilities, abrasion which controls rates of erosion, landscape evolution, and production of sediments. Despite field and laboratory evidences indicating that contact forces may be up to one order of magnitude higher than estimated from leading theories, no studies have yet measured with precision the magnitude of contact forces and how contact forces vary as a function of key glaciological variables such as basal melt rate and effective pressure. An apparatus was designed to make two independent measurements: (1) the contact force between a clast and a hard bed as a function of melt rate and effective pressure; (2) the drag force on an identical clast away from the bed as a function of the ice speed. The contact force differs from the drag force because of the presence of the bed which modifies the ice flow field. Measurement (2) is necessary to estimate the rheological properties of the ice and to quantify wall- (bed) effects on the drag force. The apparatus consists of a hydraulic press that pressurizes an ice cylinder, 24~cm high and 20~cm in diameter, to 1.0 - 1.5~MPa. The ice cylinder is contained inside a polycarbonate vessel. Above and below the ice cylinder are three disks: an aluminum disk sandwiched between two Delrin disks. The aluminum disks are hollow and used to circulate a fluid at a controlled temperature. The Delrin disks are used to isolate the ice from the cold room and to control the flow of heat to the ice block. The ice is kept at the melting temperature by circulating a fluid in channels inside the polycarbonate vessel and in the

  6. Standardized voluntary force measurement in a lower extremity rehabilitation robot.

    Science.gov (United States)

    Bolliger, Marc; Banz, Raphael; Dietz, Volker; Lünenburger, Lars

    2008-10-28

    Isometric force measurements in the lower extremity are widely used in rehabilitation of subjects with neurological movement disorders (NMD) because walking ability has been shown to be related to muscle strength. Therefore muscle strength measurements can be used to monitor and control the effects of training programs. A new method to assess isometric muscle force was implemented in the driven gait orthosis (DGO) Lokomat. To evaluate the capabilities of this new measurement method, inter- and intra-rater reliability were assessed. Reliability was assessed in subjects with and without NMD. Subjects were tested twice on the same day by two different therapists to test inter-rater reliability and on two separate days by the same therapist to test intra-rater reliability. Results showed fair to good reliability for the new measurement method to assess isometric muscle force of lower extremities. In subjects without NMD, intraclass correlation coefficients (ICC) for inter-rater reliability ranged from 0.72 to 0.97 and intra-rater reliability from 0.71 to 0.90. In subjects with NMD, ICC ranged from 0.66 to 0.97 for inter-rater and from 0.50 to 0.96 for intra-rater reliability. Inter- and intra- rater reliability of an assessment method for measuring maximal voluntary isometric muscle force of lower extremities was demonstrated. We suggest that this method is a valuable tool for documentation and controlling of the rehabilitation process in patients using a DGO.

  7. Concurrent validity of accelerations measured using a tri-axial inertial measurement unit while walking on firm, compliant and uneven surfaces.

    Directory of Open Access Journals (Sweden)

    Michael H Cole

    Full Text Available Although accelerometers are extensively used for assessing gait, limited research has evaluated the concurrent validity of these devices on less predictable walking surfaces or the comparability of different methods used for gravitational acceleration compensation. This study evaluated the concurrent validity of trunk accelerations derived from a tri-axial inertial measurement unit while walking on firm, compliant and uneven surfaces and contrasted two methods used to remove gravitational accelerations; i subtraction of the best linear fit from the data (detrending; and ii use of orientation information (quaternions from the inertial measurement unit. Twelve older and twelve younger adults walked at their preferred speed along firm, compliant and uneven walkways. Accelerations were evaluated for the thoracic spine (T12 using a tri-axial inertial measurement unit and an eleven-camera Vicon system. The findings demonstrated excellent agreement between accelerations derived from the inertial measurement unit and motion analysis system, including while walking on uneven surfaces that better approximate a real-world setting (all differences <0.16 m.s(-2. Detrending produced slightly better agreement between the inertial measurement unit and Vicon system on firm surfaces (delta range: -0.05 to 0.06 vs. 0.00 to 0.14 m.s(-2, whereas the quaternion method performed better when walking on compliant and uneven walkways (delta range: -0.16 to -0.02 vs. -0.07 to 0.07 m.s(-2. The technique used to compensate for gravitational accelerations requires consideration in future research, particularly when walking on compliant and uneven surfaces. These findings demonstrate trunk accelerations can be accurately measured using a wireless inertial measurement unit and are appropriate for research that evaluates healthy populations in complex environments.

  8. Dynamic measurement of axial vertebral rotation and rotational flexibility in scoliosis by flouroscopic method.

    Science.gov (United States)

    Lim, H H; Ong, C H

    2001-06-01

    The Pedriolle torsion meter is an established method of vertebral rotation assessment in scoliosis. However, the assessment of scoliosis by this method is static and indirect. The objective of this study is to compare the accuracy of a direct method of assessing scoliosis rotation by fluoroscopy compared to the Pedriolle torsion meter. Secondly, to determine that vertebral body rotation changes with supine posture compared to erect position. Eight volunteers with idiopathic scoliosis were assessed for the apical vertebral rotation with this method and the Pedriolle torsion meter. These patients were also assessed in the supine and erect position with the fluoroscopic method to determine if the apical vertebral rotation would change with posture. The mean Cobb angle of the curves was 62.8 degrees (range 45 degrees to 86 degrees). The mean apical vertebral rotation in a standing position was assessed to be 21.5 degrees by Pedriolle torsion meter and 29 degrees by the fluoroscopic method. This difference was not statistically significant by the student t-test. In most patient, the rotation of vertebrae improved by a varying degree ranging from none to 24 degrees in the supine position. In conclusion, the fluoroscopic method is an alternate mean of measuring vertebrae rotation in idiopathic scoliosis, with comparable accuracy to the Pedriolle torsion meter method. The amount of vertebral rotation changes with posture of the patient.

  9. Direct Measurement of Interparticle Forces of Titan Aerosol Analogs ("Tholin") Using Atomic Force Microscopy

    Science.gov (United States)

    Yu, Xinting; Hörst, Sarah M.; He, Chao; McGuiggan, Patricia; Bridges, Nathan T.

    2017-12-01

    To understand the origin of the dunes on Titan, it is important to investigate the material properties of Titan's organic sand particles on Titan. The organic sand may behave distinctively compared to the quartz/basaltic sand on terrestrial planets (Earth, Venus, and Mars) due to differences in interparticle forces. We measured the surface energy (through contact angle measurements) and elastic modulus (through Atomic Force Microscopy) of the Titan aerosol analog (tholin). We find that the surface energy of a tholin thin film is about 70.9 mN/m, and its elastic modulus is about 3.0 GPa (similar to hard polymers like PMMA and polystyrene). For two 20 μm diameter particles, the theoretical cohesion force is therefore 3.3 μN. We directly measured interparticle forces for relevant materials: tholin particles are 0.8 ± 0.6 μN, while the interparticle cohesion between walnut shell particles (a typical model materials for the Titan Wind Tunnel, TWT) is only 0.4 ± 0.1 μN. The interparticle cohesion forces are much larger for tholins and presumably Titan sand particles than materials used in the TWT. This suggests that we should increase the interparticle force in both analog experiments (TWT) and threshold models to correctly translate the results to real Titan conditions. The strong cohesion of tholins may also inform us how the small aerosol particles (˜1 μm) in Titan's atmosphere are transformed into large sand particles (˜200 μm). It may also support the cohesive sand formation mechanism suggested by Rubin and Hesp (2009), where only unidirectional wind is needed to form linear dunes on Titan.

  10. Performance measures for combat-ready forces in the military

    CSIR Research Space (South Africa)

    Engelbrecht, GN

    2009-09-01

    Full Text Available The development of performance indicators in the military is dependent on the measurability of its associated strategies. Von Clausewitz (1976) argues that nations are either at war or preparing for war. It follows that military forces should have a...

  11. Model Engine Performance Measurement From Force Balance Instrumentation

    Science.gov (United States)

    Jeracki, Robert J.

    1998-01-01

    A large scale model representative of a low-noise, high bypass ratio turbofan engine was tested for acoustics and performance in the NASA Lewis 9- by 15-Foot Low-Speed Wind Tunnel. This test was part of NASA's continuing Advanced Subsonic Technology Noise Reduction Program. The low tip speed fan, nacelle, and an un-powered core passage (with core inlet guide vanes) were simulated. The fan blades and hub are mounted on a rotating thrust and torque balance. The nacelle, bypass duct stators, and core passage are attached to a six component force balance. The two balance forces, when corrected for internal pressure tares, measure the total thrust-minus-drag of the engine simulator. Corrected for scaling and other effects, it is basically the same force that the engine supports would feel, operating at similar conditions. A control volume is shown and discussed, identifying the various force components of the engine simulator thrust and definitions of net thrust. Several wind tunnel runs with nearly the same hardware installed are compared, to identify the repeatability of the measured thrust-minus-drag. Other wind tunnel runs, with hardware changes that affected fan performance, are compared to the baseline configuration, and the thrust and torque effects are shown. Finally, a thrust comparison between the force balance and nozzle gross thrust methods is shown, and both yield very similar results.

  12. Enclosed Electronic System for Force Measurements in Knee Implants

    Directory of Open Access Journals (Sweden)

    David Forchelet

    2014-08-01

    Full Text Available Total knee arthroplasty is a widely performed surgical technique. Soft tissue force balancing during the operation relies strongly on the experience of the surgeon in equilibrating tension in the collateral ligaments. Little information on the forces in the implanted prosthesis is available during surgery and post-operative treatment. This paper presents the design, fabrication and testing of an instrumented insert performing force measurements in a knee prosthesis. The insert contains a closed structure composed of printed circuit boards and incorporates a microfabricated polyimide thin-film piezoresistive strain sensor for each condylar compartment. The sensor is tested in a mechanical knee simulator that mimics in-vivo conditions. For characterization purposes, static and dynamic load patterns are applied to the instrumented insert. Results show that the sensors are able to measure forces up to 1.5 times body weight with a sensitivity fitting the requirements for the proposed use. Dynamic testing of the insert shows a good tracking of slow and fast changing forces in the knee prosthesis by the sensors.

  13. Measuring Industry Coagglomeration and Identifying the Driving Forces

    DEFF Research Database (Denmark)

    Howard, Emma; Newman, Carol; Tarp, Finn

    2015-01-01

    Understanding industry agglomeration and its driving forces is critical for the formulation of industrial policy in developing countries. Crucial to this process is the definition and measurement of agglomeration. We construct a new coagglomeration index based purely on the location of firms. We...... examine what this index reveals about the importance of transport costs, labour market pooling and technology transfer for agglomeration processes, controlling for overall industry agglomeration. We compare the results based on our new measure to existing measures in the literature and find very different...... underlying stories at work. We conclude that in conducting analyses of this kind giving consideration to the source of agglomeration economies, employees or entrepreneurs, and finding an appropriate measure for agglomeration, are both crucial to the process of identifying agglomerative forces....

  14. A submillimetric 3-DOF force sensing instrument with integrated fiber Bragg grating for retinal microsurgery.

    Science.gov (United States)

    He, Xingchi; Handa, James; Gehlbach, Peter; Taylor, Russell; Iordachita, Iulian

    2014-02-01

    Vitreoretinal surgery requires very fine motor control to perform precise manipulation of the delicate tissue in the interior of the eye. Besides physiological hand tremor, fatigue, poor kinesthetic feedback, and patient movement, the absence of force sensing is one of the main technical challenges. Previous two degrees of freedom (DOF) force sensing instruments have demonstrated robust force measuring performance. The main design challenge is to incorporate high sensitivity axial force sensing. This paper reports the development of a submillimetric 3-DOF force sensing pick instrument based on fiber Bragg grating (FBG) sensors. The configuration of the four FBG sensors is arranged to maximize the decoupling between axial and transverse force sensing. A superelastic nitinol flexure is designed to achieve high axial force sensitivity. An automated calibration system was developed for repeatability testing, calibration, and validation. Experimental results demonstrate a FBG sensor repeatability of 1.3 pm. The linear model for calculating the transverse forces provides an accurate global estimate. While the linear model for axial force is only locally accurate within a conical region with a 30° vertex angle, a second-order polynomial model can provide a useful global estimate for axial force. Combining the linear model for transverse forces and nonlinear model for axial force, the 3-DOF force sensing instrument can provide sub-millinewton resolution for axial force and a quarter millinewton for transverse forces. Validation with random samples show the force sensor can provide consistent and accurate measurement of 3-D forces.

  15. Effect of permanent-magnet irregularities in levitation force measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. [Energy Technology Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2000-06-01

    In the measurement of the levitation force between a vertically magnetized permanent magnet (PM) and a bulk high-temperature superconductor (HTS), PM domains with horizontal components of magnetization are shown to produce a non-negligible contribution to the levitation force in most systems. Such domains are typically found in all PMs, even in those that exhibit zero net horizontal magnetic moment. Extension of this analysis leads to an HTS analogue of Earnshaw's theorem, in which the vertical stiffness is equal to the sum of the horizontal stiffness at the field-cooling position, independent of the angular distribution of magnetic moments within the PM. (author)

  16. Friction of ice measured using lateral force microscopy

    International Nuclear Information System (INIS)

    Bluhm, Hendrik; Inoue, Takahito; Salmeron, Miquel

    2000-01-01

    The friction of nanometer thin ice films grown on mica substrates is investigated using atomic force microscopy (AFM). Friction was found to be of similar magnitude as the static friction of ice reported in macroscopic experiments. The possible existence of a lubricating film of water due to pressure melting, frictional heating, and surface premelting is discussed based on the experimental results using noncontact, contact, and lateral force microscopy. We conclude that AFM measures the dry friction of ice due to the low scan speed and the squeezing out of the water layer between the sharp AFM tip and the ice surface. (c) 2000 The American Physical Society

  17. WP/084 Measuring Industry Agglomeration and Identifying the Driving Forces

    DEFF Research Database (Denmark)

    Howard, Emma; Tarp, Finn; Newman, Carol

    Understanding industry agglomeration and its driving forces is critical for the formulation of industrial policy in developing countries. Crucial to this process is the definition and measurement of agglomeration. We propose a new measure and examine what it reveals about the importance...... of transport costs, labour market pooling, and technology transfer for agglomeration processes. We contrast this analysis with insights from existing measures in the literature and find very different underlying stories at work. An exceptionally rich set of data from Vietnam makes us confident that our measure...

  18. FEATURES OF MEASURING IN LIQUID MEDIA BY ATOMIC FORCE MICROSCOPY

    Directory of Open Access Journals (Sweden)

    Mikhail V. Zhukov

    2016-11-01

    Full Text Available Subject of Research.The paper presents results of experimental study of measurement features in liquids by atomic force microscope to identify the best modes and buffered media as well as to find possible image artifacts and ways of their elimination. Method. The atomic force microscope Ntegra Aura (NT-MDT, Russia with standard prism probe holder and liquid cell was used to carry out measurements in liquids. The calibration lattice TGQ1 (NT-MDT, Russia was chosen as investigated structure with a fixed shape and height. Main Results. The research of probe functioning in specific pH liquids (distilled water, PBS - sodium phosphate buffer, Na2HPO4 - borate buffer, NaOH 0.1 M, NaOH 0.5 M was carried out in contact and semi-contact modes. The optimal operating conditions and the best media for the liquid measurements were found. Comparison of atomic force microscopy data with the results of lattice study by scanning electron microscopy was performed. The features of the feedback system response in the «probe-surface» interaction were considered by the approach/retraction curves in the different environments. An artifact of image inversion was analyzed and recommendation for its elimination was provided. Practical Relevance. These studies reveal the possibility of fine alignment of research method for objects of organic and inorganic nature by atomic force microscopy in liquid media.

  19. Microfluidic tactile sensors for three-dimensional contact force measurements.

    Science.gov (United States)

    Nie, Baoqing; Li, Ruya; Brandt, James D; Pan, Tingrui

    2014-11-21

    A microfluidic tactile sensing device has been first reported for three-dimensional contact force measurement utilizing the microfluidic interfacial capacitive sensing (MICS) principle. Consisting of common and differential microfluidic sensing elements and topologically micro-textured surfaces, the microfluidic sensing devices are intended not only to resolve normal mechanical loads but also to measure forces tangent to the surface upon contact. In response to normal or shear loads, the membrane surface deforms the underlying sensing elements uniformly or differentially. The corresponding variation in interfacial capacitance can be detected from each sensing unit, from which the direction and magnitude of the original load can be determined. Benefiting from the highly sensitive and adaptive MICS principle, the microfluidic sensor is capable of detecting normal forces with a device sensitivity of 29.8 nF N(-1) in a 7 mm × 7 mm × 0.52 mm package, which is at least a thousand times higher than its solid-state counterparts to our best knowledge. In addition, the microfluidic sensing elements enable facilitated relaxation response/time in the millisecond range (up to 12 ms). To demonstrate the utility and flexibility of the three-dimensional microfluidic sensor, it has been successfully configured into a fingertip-amounted setting for continuous tracing of the fingertip movement and contact force measurement.

  20. Optical tweezers force measurements to study parasites chemotaxis

    Science.gov (United States)

    de Thomaz, A. A.; Pozzo, L. Y.; Fontes, A.; Almeida, D. B.; Stahl, C. V.; Santos-Mallet, J. R.; Gomes, S. A. O.; Feder, D.; Ayres, D. C.; Giorgio, S.; Cesar, C. L.

    2009-07-01

    In this work, we propose a methodology to study microorganisms chemotaxis in real time using an Optical Tweezers system. Optical Tweezers allowed real time measurements of the force vectors, strength and direction, of living parasites under chemical or other kinds of gradients. This seems to be the ideal tool to perform observations of taxis response of cells and microorganisms with high sensitivity to capture instantaneous responses to a given stimulus. Forces involved in the movement of unicellular parasites are very small, in the femto-pico-Newton range, about the same order of magnitude of the forces generated in an Optical Tweezers. We applied this methodology to investigate the Leishmania amazonensis (L. amazonensis) and Trypanossoma cruzi (T. cruzi) under distinct situations.

  1. Comparison of automated 4-chamber cardiac views versus axial views for measuring right ventricular enlargement in patients with suspected pulmonary embolism

    International Nuclear Information System (INIS)

    Wittenberg, R.; Vliet, J.W. van; Ghaye, B.; Peters, J.F.; Schaefer-Prokop, C.M.; Coche, E.

    2012-01-01

    Purpose: Compare the right ventricle to left ventricle (RV/LV) diameter ratio obtained from axial pulmonary CT angiograms (CTPA) with those derived from automatically generated 4-chamber (4-CH) reformats in patients with suspected pulmonary embolism (PE). Methods: In this institutional review board-approved study we included 120 consecutive non ECG-gated CTPA from 3 institutions (mean age 60 ± 16 years; 71 women). Twenty 64-slice CTPA with PE and 20 without PE were selected per institution. For each patient the RV/LV diameter ratio was obtained from both axial CTPA images and automatically generated 4-CH reformats. Measurements were performed twice in two separated sessions by 2 experienced radiologists and 2 residents. The differences between the measurements on both views were evaluated. Results: The 4-CH view was successfully obtained in 113 patients. The mean axial and 4-CH diameter ratios were comparable for three of the four readers (p = 0.56, p = 0.13, p = 0.08). Although the mean diameters (1.0 and 1.03 respectively) for one resident were significantly different (p = 0.013), the difference of 0.03 seems negligible in clinical routine. Three readers achieved equally high intra-reader agreements with both measurements (ICCs of 0.94, 0.95 and 0.96), while one reader showed a different variability with ICCs of 0.96 for the axial view and 0.91 for the 4-CH view. The inter-reader agreement was equally high for both measurement types with ICCs of 0.95 and 0.94, respectively. Conclusion: In patients with suspected PE, RV/LV diameters ratio can be measured with the same reproducibility and accuracy using an automatically generated 4-CH view compared to the axial view.

  2. Breast Cancer EDGE Task Force Outcomes: Clinical Measures of Pain

    Science.gov (United States)

    Harrington, Shana; Gilchrist, Laura; Sander, Antoinette

    2014-01-01

    Background Pain is one of the most commonly reported impairments after breast cancer treatment affecting anywhere from 16-73% of breast cancer survivors Despite the high reported incidence of pain from cancer and its treatments, the ability to evaluate cancer pain continues to be difficult due to the complexity of the disease and the subjective experience of pain. The Oncology Section Breast Cancer EDGE Task Force was created to evaluate the evidence behind clinical outcome measures of pain in women diagnosed with breast cancer. Methods The authors systematically reviewed the literature for pain outcome measures published in the research involving women diagnosed with breast cancer. The goal was to examine the reported psychometric properties that are reported in the literature in order to determine clinical utility. Results Visual Analog Scale, Numeric Rating Scale, Pressure Pain Threshold, McGill Pain Questionnaire, McGill Pain Questionnaire – Short Form, Brief Pain Inventory and Brief Pain Inventory – Short Form were highly recommended by the Task Force. The Task Force was unable to recommend two measures for use in the breast cancer population at the present time. Conclusions A variety of outcome measures were used to measure pain in women diagnosed with breast cancer. When assessing pain in women with breast cancer, researchers and clinicians need to determine whether a unidimensional or multidimensional tool is most appropriate as well as whether the tool has strong psychometric properties. PMID:25346950

  3. Development of a shear force measurement dummy for seat comfort.

    Directory of Open Access Journals (Sweden)

    Seong Guk Kim

    Full Text Available Seat comfort is one of the main factors that consumers consider when purchasing a car. In this study, we develop a dummy with a shear-force sensor to evaluate seat comfort. The sensor has dimensions of 25 mm × 25 mm × 26 mm and is made of S45C. Electroless nickel plating is employed to coat its surface in order to prevent corrosion and oxidation. The proposed sensor is validated using a qualified load cell and shows high accuracy and precision (measurement range: -30-30 N; sensitivity: 0.1 N; linear relationship: R = 0.999; transverse sensitivity: <1%. The dummy is manufactured in compliance with the SAE standards (SAE J826 and incorporates shear sensors into its design. We measure the shear force under four driving conditions and at five different speeds using a sedan; results showed that the shear force increases with speed under all driving conditions. In the case of acceleration and deceleration, shear force significantly changes in the lower body of the dummy. During right and left turns, it significantly changes in the upper body of the dummy.

  4. Development of a shear force measurement dummy for seat comfort.

    Science.gov (United States)

    Kim, Seong Guk; Ko, Chang-Yong; Kim, Dong Hyun; Song, Ye Eun; Kang, Tae Uk; Ahn, Sungwoo; Lim, Dohyung; Kim, Han Sung

    2017-01-01

    Seat comfort is one of the main factors that consumers consider when purchasing a car. In this study, we develop a dummy with a shear-force sensor to evaluate seat comfort. The sensor has dimensions of 25 mm × 25 mm × 26 mm and is made of S45C. Electroless nickel plating is employed to coat its surface in order to prevent corrosion and oxidation. The proposed sensor is validated using a qualified load cell and shows high accuracy and precision (measurement range: -30-30 N; sensitivity: 0.1 N; linear relationship: R = 0.999; transverse sensitivity: <1%). The dummy is manufactured in compliance with the SAE standards (SAE J826) and incorporates shear sensors into its design. We measure the shear force under four driving conditions and at five different speeds using a sedan; results showed that the shear force increases with speed under all driving conditions. In the case of acceleration and deceleration, shear force significantly changes in the lower body of the dummy. During right and left turns, it significantly changes in the upper body of the dummy.

  5. Novel parallel plate condenser for single particle electrostatic force measurements in atomic force microscope

    KAUST Repository

    Kwek, Jin Wang

    2011-07-01

    A combination of small parallel plate condenser with Indium Tin Oxide (ITO) glass slides as electrodes and an atomic force microscope (AFM) is used to characterize the electrostatic behavior of single glass bead microparticles (105-150 μm) glued to the AFM cantilever. This novel setup allows measurements of the electrostatic forces acting on a particle in an applied electrical field to be performed in ambient air conditions. By varying the position of the microparticle between the electrodes and the strength of the applied electric field, the relative contributions of the particle net charge, induced and image charges were investigated. When the microparticle is positioned in the middle of the electrodes, the force acting on the microparticle was linear with the applied electric field and proportional to the microparticle net charge. At distances close to the bottom electrode, the force follows a parabolic relationship with the applied electric field reflecting the contributions of induced and image charges. The method can be used for the rapid evaluation of the charging and polarizability properties of the microparticle as well as an alternative to the conventional Faraday\\'s pail technique. © 2011 Elsevier B.V.

  6. What Effect Did General Order Number 1 and the Force Protection Measures Have on Task Force Eagle Operations in Bosnia During Implementation Force?

    National Research Council Canada - National Science Library

    Yates, William

    2002-01-01

    This thesis is a historical study to determine the effect General Order Number 1 and the Force Protection Measures had on Task Force Eagle operations during the deployment of the NATO Implementation...

  7. Axial Globe Position Measurement: A Prospective Multi-center Study by the International Thyroid Eye Disease Society

    Science.gov (United States)

    Bingham, Chad M.; Sivak-Callcott, Jennifer A.; Gurka, Matthew J.; Nguyen, John; Hogg, Jeffery P.; Feldon, Steve E.; Fay, Aaron; Seah, Lay-Leng; Strianese, Diego; Durairaj, Vikram D.; Uddin, Jimmy; Devoto, Martin H.; Harris, Matheson; Saunders, Justin; Osaki, Tammy H.; Looi, Audrey; Teo, Livia; Davies, Brett W.; Elefante, Andrea; Shen, Sunny; Realini, Tony; Fischer, William; Kazim, Michael

    2015-01-01

    Purpose Identify a reproducible measure of axial globe position (AGP) for multicenter studies of patients with thyroid eye disease (TED). Methods This is a prospective, international, multicenter, observational study in which 3 types of AGP evaluation were examined: radiologic, clinical, and photographic. In this study, computed tomography (CT) was the modality to which all other methods were compared. CT AGP was measured from an orthogonal line between the anterior lateral orbital rims to the cornea. All CT measurements were made at a single institution by 3 individual clinicians. Clinical evaluation was performed with exophthalmometry. Three clinicians from each clinical site assessed AGP with 3 different exophthalmometers and horizontal palpebral width using a ruler. Each physician made 3 separate measurements with each type of exophthalmometer, not in succession. All photographic measurements were made at a single institution. AGP was measured from lateral photographs in which a standard marker was placed at the anterior lateral orbital rim. Horizontal and vertical palpebral fissure were measured from frontal photographs. Three trained readers measured 3 separate times, not in succession. Exophthalmometry and photography method validity was assessed by agreement with CT (mean differences calculation, ICC’s, Bland-Altman figures). Correlation between palpebral fissure and CT AGP was assessed with Pearson correlation. Intraclinician and interclinician reliability was evaluated using intraclass correlation coefficients (ICC). Results Sixty-eight patients from 7 centers participated. CT mean AGP was 21.37mm (15.96 – 28.90mm) right, 21.22mm (15.87 – 28.70mm) left (ICC 0.996 and 0.995). Exophthalmometry AGP fell between 18mm and 25mm. Intraclinician agreement across exophthalmometers was ideal (ICC 0.948 – 0.983). Agreement between clinicians was greater than 0.85 for all upright exophthalmometry measurements. Photographic mean AGP was 20.47mm (10.92 – 30

  8. Axial magnetic field produced by axially and radially magnetized permanent rings

    International Nuclear Information System (INIS)

    Peng, Q.L.; McMurry, S.M.; Coey, J.M.D.

    2004-01-01

    Axial magnetic fields produced by axially and radially magnetized permanent magnet rings were studied. First, the axial magnetic field produced by a current loop is introduced, from which the axial field generated by an infinitely thin solenoid and by an infinitely thin current disk can be derived. Then the axial fields produced by axially and by radially magnetized permanent magnet rings can be obtained. An analytic formula for the axial fields produced by two axially magnetized rings is given. A permanent magnet with a high axial gradient field is fabricated, the measured results agree with the theoretical calculation very well. As an example, the axial periodic field produced by an arrangement of alternating axially and radially magnetized rings has been discussed

  9. Diameter measurements of polystyrene particles with atomic force microscopy

    Science.gov (United States)

    Garnaes, J.

    2011-09-01

    The size of (nano) particles is a key parameter used in controlling their function. The particle size is also important in order to understand their physical and chemical properties and regulate their number in health and safety issues. In this work, the geometric diameters of polystyrene spheres of nominal diameter 100 nm are measured using atomic force microscopy. The measurements are based on the apex height and on the average distance between neighbouring spheres when they form a close-packed monolayer on a flat mica substrate. The most important influence parameters for the determination of the geometric diameter are the lateral air gaps and deformation of the spheres. The lateral air gaps are caused by significant size variations of the individual spheres, and a correction is calculated based on the simulation of packing of spheres. The deformation of the spheres is caused mainly by capillary forces acting when they are in contact with each other or with the mica substrate. Based on calculated capillary forces and the literature values of the elastic properties of the polystyrene and mica, the deformation is estimated to be 2 nm with a standard uncertainty of 2 nm. The geometric diameter of the polystyrene spheres was measured with a combined standard uncertainty of ≈3 nm. The measured vertical diameter of 92.3 nm and the certified mobility equivalent diameter measured by differential mobility analysis (DMA) are marginally consistent at a confidence level of 95%. However, the measured lateral geometric diameter was 98.9 nm and is in good agreement with DMA.

  10. Measurement of action forces and posture to determine the lumbar load of healthcare workers during care activities with patient transfers.

    Science.gov (United States)

    Theilmeier, Andreas; Jordan, Claus; Luttmann, Alwin; Jäger, Matthias

    2010-11-01

    Moving patients or other care activities with manual patient handling is characterized by high mechanical load on the lumbar spine of healthcare workers (HCWs). During the patient transfer activity, the caregivers exert lifting, pulling, and pushing forces varying over time with respect to amplitude and direction. Furthermore, the caregivers distinctly change their posture and frequently obtain postures asymmetrical to the median sagittal plane, including lateral bending and turning the trunk. This paper describes a procedure to determine lumbar load during patient transfer supported by measurement techniques and an exemplary application; this methodology represents the basis of a complex research project, the third 'Dortmund Lumbar Load Study (DOLLY 3)'. Lumbar load was determined by simulation calculations using a comprehensive biomechanical model ('The Dortmunder'). As the main influencing factors, the hand forces of the caregiver exerted during typical patient transfers and the posture and movements of the HCW were recorded in laboratory studies. The action forces were determined three-dimensionally with the help of a newly developed 'measuring bed', two different 'measuring chairs', a 'measuring bathtub', and a 'measuring floor'. To capture the forces during transfers in or at the bed, a common hospital bed was equipped with an additional framework, which is attached to the bedstead and connected to the bedspring frame via three-axial force sensors at the four corners. The other measuring systems were constructed similarly. Body movements were recorded using three-dimensional optoelectronic recording tools and video recordings. The posture and force data served as input data for the quantification of various lumbar-load indicators.

  11. Measuring the greenhouse effect and radiative forcing through the atmosphere

    Science.gov (United States)

    Philipona, Rolf; Kräuchi, Andreas; Brocard, Emmanuel

    2013-04-01

    In spite of a large body of existing measurements of incoming shortwave solar radiation and outgoing longwave terrestrial radiation at the Earth's surface and at the top of the atmosphere, there are few observations documenting how radiation profiles change through the atmosphere - information that is necessary to fully quantify the greenhouse effect of the Earth's atmosphere. Using weather balloons and specific radiometer equipped radiosondes, we continuously measured shortwave and longwave radiation fluxes from the surface of the Earth up to altitudes of 35 kilometers in the upper stratosphere. Comparing radiation profiles from night measurements with different amounts of water vapor, we show evidence of large greenhouse forcing. We show, that under cloud free conditions, water vapor increases with Clausius-Clapeyron ( 7% / K), and longwave downward radiation at the surface increases by 8 Watts per square meter per Kelvin. The longwave net radiation however, shows a positive increase (downward) of 2.4 Watts per square meter and Kelvin at the surface, which decreases with height and shows a similar but negative increase (upward) at the tropopause. Hence, increased tropospheric water vapor increases longwave net radiation towards the ground and towards space, and produces a heating of 0.42 Kelvin per Watt per square meter at the surface. References: Philipona et al., 2012: Solar and thermal radiation profiles and radiative forcing measured through the atmosphere. Geophys. Res. Lett., 39, L13806, doi: 10.1029/2012GL052087.

  12. Using the VentCam and Optical Plume Velocimetry to Measure High-Temperature Hydrothermal Fluid Flow Rates in the ASHES Vent Field on Axial Volcano

    Science.gov (United States)

    Crone, T. J.; Mittelstaedt, E. L.; Fornari, D. J.

    2014-12-01

    Fluid flow rates through high-temperature mid-ocean ridge hydrothermal vents are likely quite sensitive to poroelastic forcing mechanisms such as tidal loading and tectonic activity. Because poroelastic deformation and flow perturbations are estimated to extend to considerable depths within young oceanic crust, observations of flow rate changes at seafloor vents have the potential to provide constraints on the flow geometry and permeability structure of the underlying hydrothermal systems, as well as the quantities of heat and chemicals they exchange with overlying ocean, and the potential biological productivity of ecosystems they host. To help provide flow rate measurements in these challenging environments, we have developed two new optical flow oriented technologies. The first is a new form of Optical Plume Velocimetry (OPV) which relies on single-frame temporal cross-correlation to obtain time-averaged image velocity fields from short video sequences. The second is the VentCam, a deep sea camera system that can collect high-frame-rate video sequences at focused hydrothermal vents suitable for analysis with OPV. During the July 2014 R/V Atlantis/Alvin expedition to Axial Seamount, we deployed the VentCam at the ~300C Phoenix vent within the ASHES vent field and positioned it with DSRV Alvin. We collected 24 seconds of video at 50 frames per second every half-hour for approximately 10 days beginning July 22nd. We are currently applying single-frame lag OPV to these videos to estimate relative and absolute fluid flow rates through this vent. To explore the relationship between focused and diffuse venting, we deployed a second optical flow camera, the Diffuse Effluent Measurement System (DEMS), adjacent to this vent at a fracture within the lava carapace where low-T (~30C) fluids were exiting. This system collected video sequences and diffuse flow measurements at overlapping time intervals. Here we present the preliminary results of our work with VentCam and OPV

  13. Preparation of stable silica surfaces for surface forces measurement

    Science.gov (United States)

    Ren, Huai-Yin; Mizukami, Masashi; Kurihara, Kazue

    2017-09-01

    A surface forces apparatus (SFA) measures the forces between two surfaces as a function of the surface separation distance. It is regarded as an essential tool for studying the interactions between two surfaces. However, sample surfaces used for the conventional SFA measurements have been mostly limited to thin (ca. 2-3 μm) micas, which are coated with silver layers (ca. 50 nm) on their back, due to the requirement of the distance determination by transmission mode optical interferometry called FECO (fringes of equal chromatic order). The FECO method has the advantage of determining the absolute distance, so it should be important to increase the availability of samples other than mica, which is chemically nonreactive and also requires significant efforts for cleaving. Recently, silica sheets have been occasionally used in place of mica, which increases the possibility of surface modification. However, in this case, the silver layer side of the sheet is glued on a cylindrical quartz disc using epoxy resin, which is not stable in organic solvents and can be easily swollen or dissolved. The preparation of substrates more stable under severe conditions, such as in organic solvents, is necessary for extending application of the measurement. In this study, we report an easy method for preparing stable silica layers of ca. 2 μm in thickness deposited on gold layers (41 nm)/silica discs by sputtering, then annealed to enhance the stability. The obtained silica layers were stable and showed no swelling in organic solvents such as ethanol and toluene.

  14. New method for determining central axial orientation of flux rope embedded within current sheet using multipoint measurements

    Science.gov (United States)

    Li, ZhaoYu; Chen, Tao; Yan, GuangQing

    2016-10-01

    A new method for determining the central axial orientation of a two-dimensional coherent magnetic flux rope (MFR) via multipoint analysis of the magnetic-field structure is developed. The method is devised under the following geometrical assumptions: (1) on its cross section, the structure is left-right symmetric; (2) the projected structure velocity is vertical to the line of symmetry. The two conditions can be naturally satisfied for cylindrical MFRs and are expected to be satisfied for MFRs that are flattened within current sheets. The model test demonstrates that, for determining the axial orientation of such structures, the new method is more efficient and reliable than traditional techniques such as minimum-variance analysis of the magnetic field, Grad-Shafranov (GS) reconstruction, and the more recent method based on the cylindrically symmetric assumption. A total of five flux transfer events observed by Cluster are studied using the proposed approach, and the application results indicate that the observed structures, regardless of their actual physical properties, fit the assumed geometrical model well. For these events, the inferred axial orientations are all in excellent agreement with those obtained using the multi-GS reconstruction technique.

  15. Measurements of electrostatic double layer potentials with atomic force microscopy

    Science.gov (United States)

    Giamberardino, Jason

    The aim of this thesis is to provide a thorough description of the development of theory and experiment pertaining to the electrostatic double layer (EDL) in aqueous electrolytic systems. The EDL is an important physical element of many systems and its behavior has been of interest to scientists for many decades. Because many areas of science and engineering move to test, build, and understand systems at smaller and smaller scales, this work focuses on nanoscopic experimental investigations of the EDL. In that vein, atomic force microscopy (AFM) will be introduced and discussed as a tool for making high spatial resolution measurements of the solid-liquid interface, culminating in a description of the development of a method for completely characterizing the EDL. This thesis first explores, in a semi-historical fashion, the development of the various models and theories that are used to describe the electrostatic double layer. Later, various experimental techniques and ideas are addressed as ways to make measurements of interesting characteristics of the EDL. Finally, a newly developed approach to measuring the EDL system with AFM is introduced. This approach relies on both implementation of existing theoretical models with slight modifications as well as a unique experimental measurement scheme. The model proposed clears up previous ambiguities in definitions of various parameters pertaining to measurements of the EDL and also can be used to fully characterize the system in a way not yet demonstrated.

  16. Force measuring optical tweezers system for long time measurements of P pili stability

    Science.gov (United States)

    Andersson, Magnus; Fällman, Erik; Uhlin, Bernt Eric; Axner, Ove

    2006-02-01

    A force-measuring optical tweezers instrumentation and long time measurements of the elongation and retraction of bacterial fimbriae from Uropathogenic E. coli (UPEC) under strain are presented. The instrumentation is presented in some detail. Special emphasis is given to measures taken to reduce the influence of noise and drifts in the system and from the surrounding, which makes long term force measurements possible. Individual P pili from UPEC bacteria were used as a biological model system for repetitive unfolding and refolding cycles of bacterial fimbriae under equilibrium conditions. P pili have evolved into a three-dimensional helix-like structure, the PapA rod, that can be successively and significantly elongated and/or unfolded when exposed to external forces. The instrumentation is used for characterization of the force-vs.-elongation response of the PapA rod of individual P pili, with emphasis on the long time stability of the forced unfolding and refolding of the helical structure of the PapA rod. The results show that the PapA rod is capable of withstanding extensive strain, leading to a complete unfolding of the helical structure, repetitive times during the life cycle of a bacterium without any noticeable alteration of the mechanical properties of the P pili. This function is believed to be importance for UPEC bacteria in vivo since it provides a close contact to a host cell (which is an initial step of invasion) despite urine cleaning attempts.

  17. Multilayer Steel Materials Deformation Resistance and Roll Force Measurement

    Directory of Open Access Journals (Sweden)

    A. G. Kolesnikov

    2014-01-01

    Full Text Available To create new types of cars, raise their reliability, gain operational life, and decrease in metal consumption of products it is necessary to improve mechanical, physical, and also special properties of the constructional materials applied in mechanical engineering. Presently, there are intensive researches and developments under way to create materials with ultrafine-grained structure (the sizes of grains in their crystal lattice make less than 1 micron in one of the measurements.BMSTU developed a manufacturing technology of multilayer steel sheets with steady ultrafine-grained structure based on the multiple hot rolling of billet as a composition consisting of the alternating metal sheets. A principled condition for implementation of such technology is existence of different crystallographic modifications in the adjoining sheets of the composition at specified temperature of rolling.Power parameters of rolling are important technical characteristics of the process. Usually, to determine a deformation resistance value when rolling the diverse multilayer materials, is used the actual resistance value averaging in relation to the components of the composition. The aim of this work is a comparative analysis of known calculated dependences with experimental data when rolling the 100-layer samples. Objects of research were the 100-layer compositions based on the alternating layers of steel 08H18N10 and U8.Experimental samples represented the vacuumized capsules with height, width, and length of 53 mm x 53 mm x 200 mm, respectively, in which there were the 100-layer packs from sheets, each of 0.5 mm, based on the composition of steels (U8+08H18N10. Rolling was made on the double-high mill with rolls of 160 mm in diameter during 19 passes to the thickness of 7 mm with the speed of 0,1 m/s. Relative sinking in each pass was accepted to be equal 10±2,5%. Rolling forces were measured by the strain-gauging method using the measuring cells, located under

  18. Prototype to measure bracket debonding force in vivo

    Directory of Open Access Journals (Sweden)

    Jéssika Lagni Tonus

    Full Text Available ABSTRACT Introduction: Material biodegradation that occurs in the mouth may interfere in the bonding strength between the bracket and the enamel, causing lower bond strength values in vivo, in comparison with in vitro studies. Objective: To develop a prototype to measure bracket debonding force in vivo and to evaluate, in vitro, the bond strength obtained with the prototype. Methods: A original plier (3M Unitek was modified by adding one strain gauge directly connected to its claw. An electronic circuit performed the reading of the strain gauge, and the software installed in a computer recorded the values of the bracket debonding force, in kgf. Orthodontic brackets were bonded to the facial surface of 30 bovine incisors with adhesive materials. In Group 1 (n = 15, debonding was carried out with the prototype, while tensile bond strength testing was performed in Group 2 (n = 15. A universal testing machine was used for the second group. The adhesive remnant index (ARI was recorded. Results: According to Student’s t test (α = 0.05, Group 1 (2.96 MPa and Group 2 (3.08 MPa were not significantly different. ARI score of 3 was predominant in the two groups. Conclusion: The prototype proved to be reliable for obtaining in vivo bond strength values for orthodontic brackets.

  19. 1980 Volvo award in biomechanics. Measurement of the distribution of axial stress on the end-plate of the vertebral body.

    Science.gov (United States)

    Horst, M; Brinckmann, P

    1981-01-01

    The distribution of axial stress on the end-plate of the vertebral body has been measured by the aid of miniature piezoelectric pressure transducers in specimens of motion segments of the human vertebral column. The results indicate that the stress distribution depends essentially on the state of degeneration of the intervertebral disc and on the relative position of the adjacent end-plates. Furthermore lumbar and thoracic motion segments show a different behaviour. The measured results relate to the problem of the stress dependent deformation of the growing vertebra, the codfish shape of the osteoporotic vertebra and to the mechanism of degeneration of the intervertebral disc.

  20. The validity of plantarflexor strength measures obtained through hand-held dynamometry measurements of force.

    Science.gov (United States)

    Marmon, Adam R; Pozzi, Federico; Alnahdi, Ali H; Zeni, Joseph A

    2013-12-01

    Hand-held dynamometers are commonly used to assess plantarflexor strength during rehabilitation. The purpose of this study was to determine the concurrent validity of measuring plantarflexion force using a hand-held dynamometer (HHD) as compared to an electromechanical dynamometer as the gold standard. The hypothesis was that plantarflexor forces obtained using a hand-held dynamometer would not show absolute agreement with a criterion standard. Concurrent validity assessment for a diagnostic strength testing device. Institutional clinic and research laboratory. Volunteer sample of healthy university students (N=20, 10 women, 10 men; 25.9±4.1 years). Maximal plantarflexion strength was measured using both a HHD and an electromechanical dynamometer (EMD) as a criterion measure. Plantarflexor force measures with the HHD were significantly different (p<0.01) and not correlated with plantarflexor forces measured using the EMD for either limb (R(2) ≤ 0.09). Plantarflexor strength measurements acquired using HHD are different from those acquired using an EMD and are likely influenced by the strength of the examiner. Prospective cohort study, level II.

  1. Force

    CERN Document Server

    Graybill, George

    2007-01-01

    Forces are at work all around us. Discover what a force is, and different kinds of forces that work on contact and at a distance. We use simple language and vocabulary to make this invisible world easy for students to ""see"" and understand. Examine how forces ""add up"" to create the total force on an object, and reinforce concepts and extend learning with sample problems.

  2. Measurement of the elastic modulus of spider mite silk fibers using atomic force microscopy

    Science.gov (United States)

    Hudson, Stephen D.; Zhurov, Vladimir; Grbić, Vojislava; Grbić, Miodrag; Hutter, Jeffrey L.

    2013-04-01

    Bio-nanomaterials are one of the fastest developing sectors of industry and technology. Spider silk, a highly attractive light-weight biomaterial, has high tensile strength and elasticity and is compatible with human tissues, allowing for many areas of application. In comparison to spider silk fibers with diameters of several micrometers, spider mite silk fibers have much smaller diameters of tens of nanometers, making conventional tensile testing methods impractical. To determine the mechanical properties of adult and larval Tetranychus urticae silk fibers, we have performed three-point bending tests with an atomic force microscope. We found that because of the small diameters of these fibers, axial tension—due to both the applied force and a pre-existing strain—has a significant effect on the fiber response, even in the small-deformation limit. As a result, the typical Euler-Bernoulli-Timoshenko theory cannot be applied. We therefore follow the approach of Heidelberg et al. to develop a mechanical model of the fiber response that accounts for bending, an initial tension in the fibers, and a tension due to elongation during testing. This model provides self-consistent results, allowing us to determine that adult and larval fibers have Young's moduli of 24±3 GPa and 15±3 GPa, respectively. Both adult and larval fibers have an estimated ultimate strength of 200-300 MPa and a toughness of order 9 MJ/m3. We note that with increasing interest in the mechanical properties of very high aspect ratio nanomaterials, the influence of pre-existing tension must be considered in any measurements involving a bending test.

  3. Sensor Prototype to Evaluate the Contact Force in Measuring with Coordinate Measuring Arms

    Directory of Open Access Journals (Sweden)

    Eduardo Cuesta

    2015-06-01

    Full Text Available This paper describes the design, development and evaluation tests of an integrated force sensor prototype for portable Coordinate Measuring Arms (CMAs or AACMMs. The development is based on the use of strain gauges located on the surface of the CMAs’ hard probe. The strain gauges as well as their cables and connectors have been protected with a custom case, made by Additive Manufacturing techniques (Polyjet 3D. The same method has been selected to manufacture an ergonomic handle that includes trigger mechanics and the electronic components required for synchronizing the trigger signal when probing occurs. The paper also describes the monitoring software that reads the signals in real time, the calibration procedure of the prototype and the validation tests oriented towards increasing knowledge of the forces employed in manual probing. Several experiments read and record the force in real time comparing different ways of probing (discontinuous and continuous contact and measuring different types of geometric features, from single planes to exterior cylinders, cones, or spheres, through interior features. The probing force is separated into two components allowing the influence of these strategies in probe deformation to be known. The final goal of this research is to improve the probing technique, for example by using an operator training programme, allowing extra-force peaks and bad contacts to be minimized or just to avoid bad measurements.

  4. Measurement of Forces and Moments Transmitted to the Residual Limb

    Science.gov (United States)

    2010-10-01

    the floor, but only changes the length of the heel and toe lever arms. Additional evidence statements and the associated levels of confidence...Interface Biomechanical Correlate Force X Anterior-Posterior Force Perpendicular to Pylon Anterior-Posterior Force on Limb Braking and Propulsion...heel lever arm. The other significant changes were all less than 10% of the absolute values of the forces and moments. Significant differences in

  5. Two pad axially grooved hydrostatic bearing

    Science.gov (United States)

    San Andres, Luis A. (Inventor)

    1995-01-01

    A hydrostatic bearing having two axial grooves on opposite sides of the bearing for breaking the rotational symmetry in the dynamic force coefficients thus reducing the whirl frequency ratio and increasing the damping and stiffness of the hydrostatic bearing.

  6. Forces due to surface water measured by force microscopy. Consequences for anchoring biological cells to surfaces

    International Nuclear Information System (INIS)

    Schilcher, K.

    1997-05-01

    Interaction forces in 'Scanning Force Microscopy' (SFM). Force curves revealed exponentially decaying, attractive forces between silicon tip and silicon sample in aqueous media. Replacing the silicon sample by a sheet of mica, the interaction forces had both, an attractive and a repulsive component. Addition of salts generally reduced the forces. At 500 mM salt concentration, the attractive force became quantized with a residual force value of 23 pN. The attractive force is attributed to the gain in energy of water molecules which are released from surface water into free water during tip-sample approach. This conclusion is supported by a statistical model. The repulsive force contribution in the case of mica, is caused by hydration forces due to the spatial organization of crystalline water on the mica surface. Anchoring of biological cells. Molecular resolution of cell surfaces by SFM requires cell anchoring without interference with cell physiology. For this a novel strategy, 'hydrophobic anchoring' was designed. It avoids strong attractive forces between cell and by using a flexible spacer molecule. It establishes anchoring by a lipid (bound to the spacer), which weakly interacts with the hydrophobic core of the cell membrane. The method was subjected to tests using RBL-2H3, CH0 αβ and HEK-293 cells. The strength of cell anchoring was assayed by shear forces. In all cases 'hydrophobic anchoring' via a spacer caused elective anchoring much beyond controls. Such cell anchoring was employed for the imaging of RBL-2H3 cells by SFM. Images showed considerable finer details than images of loosely adsorbed cells. With about 50 rim resolution, SFM succeeded in imaging microvilli, filopodia, single cytoskeletal fibers (microtubules, microfilaments) and vesicles. In addition, as a consequence of cell stimulation upon ionomycin treatment, lamellae formation and the appearance of secretory granules on top of them were observed which indicates the viability of anchored

  7. An inductive sensor for real-time measurement of plantar normal and shear forces distribution.

    Science.gov (United States)

    Du, Li; Zhu, Xiaoliang; Zhe, Jiang

    2015-05-01

    The objective of this paper is to demonstrate a multiplexed inductive force sensor for simultaneously measuring normal force and shear forces on a foot. The sensor measures the normal force and shear forces by monitoring the inductance changes of three planar sensing coils. Resonance frequency division multiplexing was applied to signals from the multiple sensing coils, making it feasible to simultaneously measure the three forces (normal force, shear forces in x- and y-axis) on a foot using only one set of measurement electronics with high sensitivity and resolution. The testing results of the prototype sensor have shown that the sensor is capable of measuring normal force ranging from 0 to 800 N and shear forces ranging from 0 to 130 N in real time. With its high resolution, high sensitivity, and the capability of monitoring forces at different positions of a foot simultaneously, this sensor can be potentially used for real-time measurement of plantar normal force and shear forces distribution on diabetes patient's foot. Real-time monitoring of the normal force and shear forces on diabetes patient's foot can provide useful information for physicians and diabetes patients to take actions in preventing foot ulceration.

  8. Aerosol Direct Radiative Forcing and Forcing Efficiencies at Surface from the shortwave Irradiance Measurements in Abu Dhabi, UAE

    Science.gov (United States)

    Beegum S, N.; Ben Romdhane, H.; Ghedira, H.

    2013-12-01

    Atmospheric aerosols are known to affect the radiation balance of the Earth-Atmospheric system directly by scattering and absorbing the solar and terrestrial radiation, and indirectly by affecting the lifetime and albedo of the clouds. Continuous and simultaneous measurements of short wave global irradiance in combination with synchronous spectral aerosol optical depth (AOD) measurements (from 340 nm to 1640 nm in 8 channels), for a period of 1 year from June 2012 to May 2013, were used for the determination of the surface direct aerosol radiative forcing and forcing efficiencies under cloud free conditions in Abu Dhabi (24.42°N, 54.61o E, 7m MSL), a coastal location in United Arab Emirates (UAE) in the Arabian Peninsula. The Rotating Shadow band Pyranometer (RSP, LI-COR) was used for the irradiance measurements (in the spectral region 400-1100 nm), whereas the AOD measurements were carried out using CIMEL Sunphotometer (CE 318-2, under AERONET program). The differential method, which is neither sensitive to calibration uncertainties nor model assumptions, has been employed for estimating forcing efficiencies from the changes in the measured fluxes. The forcing efficiency, which quantifies the net change in irradiance per unit change in AOD, is an appropriate parameter for the characterization of the aerosol radiative effects even if the microphysical and optical properties of the aerosols are not completely understood. The corresponding forcing values were estimated from the forcing efficiencies. The estimated radiative forcing and forcing efficiencies exhibited strong monthly variations. The forcing efficiencies (absolute magnitudes) were highest during March, and showed continuous decrease thereafter to reach the lowest value during September. In contrast, the forcing followed a slightly different pattern of variability, with the highest solar dimming during April ( -60 W m-2) and the minimum during February ( -20 W m-2). The results indicate that the aerosol

  9. Measuring Resilience to Operational Stress in Canadian Armed Forces Personnel.

    Science.gov (United States)

    Hellewell, Sarah C; Cernak, Ibolja

    2018-02-01

    Adaptability to stress is governed by innate resilience, comprised of complex neuroendocrine and immune mechanisms alongside inherited or learned behavioral traits. Based on their capacity to adapt, some people thrive in stressful situations, whereas others experience maladaptation. In our study, we used state-of-the-art tools to assess the resilience level in individuals, as well as their susceptibility to developing military stress-induced behavioral and cognitive deficits. To address this complex question, we tested Canadian Armed Forces (CAF) personnel in three distinct stress environments (baselines): during predeployment training, deployment in Afghanistan, and readjustment upon return to Canada. Our comprehensive outcome measures included psychometric tests, saliva biomarkers, and computerized cognitive tests that used the Cambridge Neuropsychological Automated Test Battery. Participants were categorized based on initial biomarker measurements as being at low-, moderate-, or high stress-maladaptation risk. Biomarkers showed significant changes (ds = 0.56 to 2.44) between baselines, calculated as "delta" changes. Participants at low stress-maladaptation risk demonstrated minimal changes, whereas those at high stress-maladaptation risk showed significant biomarker variations. The psychometric patterns and cognitive functions were likewise affected across baselines, suggesting that the panel of saliva stress biomarkers could be a useful tool for determining the risk of stress maladaptation that can cause psychological and cognitive decline. Copyright © 2018 International Society for Traumatic Stress Studies.

  10. A relationship between three-dimensional surface hydration structures and force distribution measured by atomic force microscopy

    Science.gov (United States)

    Miyazawa, Keisuke; Kobayashi, Naritaka; Watkins, Matthew; Shluger, Alexander L.; Amano, Ken-Ichi; Fukuma, Takeshi

    2016-03-01

    Hydration plays important roles in various solid-liquid interfacial phenomena. Very recently, three-dimensional scanning force microscopy (3D-SFM) has been proposed as a tool to visualise solvated surfaces and their hydration structures with lateral and vertical (sub) molecular resolution. However, the relationship between the 3D force map obtained and the equilibrium water density, ρ(r), distribution above the surface remains an open question. Here, we investigate this relationship at an interface of an inorganic mineral, fluorite, and water. The force maps measured in pure water are directly compared to force maps generated using the solvent tip approximation (STA) model and from explicit molecular dynamics simulations. The results show that the simulated STA force map describes the major features of the experimentally obtained force image. The agreement between the STA data and the experiment establishes the correspondence between the water density used as an input to the STA model and the experimental hydration structure and thus provides a tool to bridge the experimental force data and atomistic solvation structures. Further applications of this method should improve the accuracy and reliability of both interpretation of 3D-SFM force maps and atomistic simulations in a wide range of solid-liquid interfacial phenomena.Hydration plays important roles in various solid-liquid interfacial phenomena. Very recently, three-dimensional scanning force microscopy (3D-SFM) has been proposed as a tool to visualise solvated surfaces and their hydration structures with lateral and vertical (sub) molecular resolution. However, the relationship between the 3D force map obtained and the equilibrium water density, ρ(r), distribution above the surface remains an open question. Here, we investigate this relationship at an interface of an inorganic mineral, fluorite, and water. The force maps measured in pure water are directly compared to force maps generated using the solvent

  11. Dynamic and static measurement of interfacial capillary forces by a hybrid nanomechanical system.

    Science.gov (United States)

    Kwon, Soyoung; Stambaugh, Corey; Kim, Bongsu; An, Sangmin; Jhe, Wonho

    2014-05-21

    The forces resulting from the presence of interfacial liquids have mechanical importance under ambient conditions. For holistic understanding of the liquid-mediated interactions, we combine the force-gradient sensitivity of an atomic force microscope (AFM) with the force measuring capability of a micro-electromechanical force sensor. Simultaneous measurement of the viscoelasticity of the water nanomeniscus and the absolute capillary force shows excellent agreement in its entire length, which justifies the validity of the widely used AFM results. We apply the hybrid system to measure the stress and strain, whose hysteretic response provides the intrinsic quantities of the liquid nanocluster.

  12. Exploring Heat Stress Relief Measures among the Australian Labour Force.

    Science.gov (United States)

    Zander, Kerstin K; Mathew, Supriya; Garnett, Stephen T

    2018-02-26

    Australia experiences frequent heat waves and generally high average temperatures throughout the continent with substantial impacts on human health and the economy. People adapt to heat by adopting various relief measures in their daily lives including changing their behaviour. Many labour intensive outdoor industries implement standards for heat stress management for their workforce. However, little is known about how people cope with heat at their workplaces apart from studies targeting some specific industries where labourers are exposed to extreme heat. Here, we analysed responses from 1719 people in the Australian labour force to self-reported heat stress and associated coping mechanisms. Three quarters of respondents experienced heat stress at their workplace with fatigue and headache being the two most frequently stated symptoms. Almost all of those who were affected by heat would hydrate (88%), 67% would cool, and 44% would rest as a strategy for coping with heat. About 10% intended to change their jobs because of heat stress in the workplace. We found differences in heat relief measures across gender, education, health, level of physical intensity of job, and time spent working outside. People working in jobs that were not very demanding physically were more likely to choose cooling down as a relief measure, while those in labour intensive jobs and jobs that required considerable time outside were more likely to rest. This has potential consequences for their productivity and work schedules. Heat affects work in Australia in many types of industry with impact dependent on workforce acclimatisation, yet public awareness and work relief plans are often limited to outdoor and labour intensive industries. Industries and various levels of government in all sectors need to implement standards for heat management specific to climate zones to help people cope better with high temperatures as well as plan strategies in anticipation of projected temperature

  13. Exploring Heat Stress Relief Measures among the Australian Labour Force

    Directory of Open Access Journals (Sweden)

    Kerstin K. Zander

    2018-02-01

    Full Text Available Australia experiences frequent heat waves and generally high average temperatures throughout the continent with substantial impacts on human health and the economy. People adapt to heat by adopting various relief measures in their daily lives including changing their behaviour. Many labour intensive outdoor industries implement standards for heat stress management for their workforce. However, little is known about how people cope with heat at their workplaces apart from studies targeting some specific industries where labourers are exposed to extreme heat. Here, we analysed responses from 1719 people in the Australian labour force to self-reported heat stress and associated coping mechanisms. Three quarters of respondents experienced heat stress at their workplace with fatigue and headache being the two most frequently stated symptoms. Almost all of those who were affected by heat would hydrate (88%, 67% would cool, and 44% would rest as a strategy for coping with heat. About 10% intended to change their jobs because of heat stress in the workplace. We found differences in heat relief measures across gender, education, health, level of physical intensity of job, and time spent working outside. People working in jobs that were not very demanding physically were more likely to choose cooling down as a relief measure, while those in labour intensive jobs and jobs that required considerable time outside were more likely to rest. This has potential consequences for their productivity and work schedules. Heat affects work in Australia in many types of industry with impact dependent on workforce acclimatisation, yet public awareness and work relief plans are often limited to outdoor and labour intensive industries. Industries and various levels of government in all sectors need to implement standards for heat management specific to climate zones to help people cope better with high temperatures as well as plan strategies in anticipation of projected

  14. Experimental study of the large-scale axially heterogeneous liquid-metal fast breeder reactor at the fast critical assembly: Power distribution measurements and their analyses

    International Nuclear Information System (INIS)

    Iijima, S.; Obu, M.; Hayase, T.; Ohno, A.; Nemoto, T.; Okajima, S.

    1988-01-01

    Power distributions of the large-scale axially heterogeneous liquid-metal fast breeder reactor were studied by using the experiment results of fast critical assemblies XI, XII, and XIII and the results of their analyses. The power distributions were examined by the gamma-scanning method and fission rate measurements using /sup 239/Pu and /sup 238/U fission counters and the foil irradiation method. In addition to the measurements in the reference core, the power distributions were measured in the core with a control rod inserted and in a modified core where the shape of the internal blanket was determined by the radial boundary. The calculation was made by using JENDL-2 and the Japan Atomic Energy Research Institute's standard calculation system for fast reactor neutronics. The power flattening trend, caused by the decrease of the fast neutron flux, was observed in the axial and radial power distributions. The effect of the radial boundary shape of the internal blanket on the power distribution was determined in the core. The thickness of the internal blanket was reduced at its radial boundary. The influence of the internal blanket was observed in the power distributions in the core with a control rod inserted. The calculation predicted the neutron spectrum harder in the internal blanket. In the radial distributions of /sup 239/Pu fission rates, the space dependency of the calculated-to-experiment values was found at the active core close to the internal blanket

  15. An intra-bone axial load transducer: development and validation in an in-vitro radius model

    OpenAIRE

    Knowles, Nikolas K.; Gladwell, Michael; Ferreira, Louis M.

    2015-01-01

    Background Accurate measurement of forces through the proximal radius can assess the effects of some surgical procedures on radioulnar load sharing, but is difficult to achieve given the redundant loading nature of the musculoskeletal system. Previously reported devices have relied on indirect measurements that may alter articular joint location and function. An axial load transducer interposed in the diaphysis of the radius may accurately quantify unknown axial loads of the proximal radius, ...

  16. Large Scale Security Force Assistance: A Measured Approach

    Science.gov (United States)

    2011-02-17

    Military Assistance Training Advisory ( MATA ) course. The program of instruction (POI) for MATA evolved over time to reflect the ever changing environment...Force Assistance, v. 23 Ibid. 24 Robert D. Ramsey III, Advising Indigenous Forces: American Advisors in Korea, Vietnam, and El Salvador , (Fort

  17. Accurate measurement of microscopic forces and torques using optical tweezers

    Directory of Open Access Journals (Sweden)

    Andrew Forbes

    2011-09-01

    Full Text Available It is now well known that matter may be trapped by optical fields with high intensity gradients. Once trapped, it is then possible to manipulate microscopic particles using such optical fields, in so-called optical tweezers. Such optical trapping and tweezing systems have found widespread application across diverse fields in science, from applied biology to fundamental physics. In this article we outline the design and construction of an optical trapping and tweezing system, and show how the resulting interaction of the laser light with microscopic particles may be understood in terms of the transfer of linear and angular momentum of light. We demonstrate experimentally the use of our optical tweezing configuration for the measurement of microscopic forces and torques. In particular, we make use of digital holography to create so-called vortex laser beams, capable of transferring orbital angular momentum to particles. The use of such novel laser beams in an optical trapping and tweezing set-up allows for the control of biological species at the single-cell level.

  18. Resolution of Forces and Strain Measurements from an Acoustic Ground Test

    Science.gov (United States)

    Smith, Andrew M.; LaVerde, Bruce T.; Hunt, Ronald; Waldon, James M.

    2013-01-01

    The Conservatism in Typical Vibration Tests was Demonstrated: Vibration test at component level produced conservative force reactions by approximately a factor of 4 (approx.12 dB) as compared to the integrated acoustic test in 2 out of 3 axes. Reaction Forces Estimated at the Base of Equipment Using a Finite Element Based Method were Validated: FEM based estimate of interface forces may be adequate to guide development of vibration test criteria with less conservatism. Element Forces Estimated in Secondary Structure Struts were Validated: Finite element approach provided best estimate of axial strut forces in frequency range below 200 Hz where a rigid lumped mass assumption for the entire electronics box was valid. Models with enough fidelity to represent diminishing apparent mass of equipment are better suited for estimating force reactions across the frequency range. Forward Work: Demonstrate the reduction in conservatism provided by; Current force limited approach and an FEM guided approach. Validate proposed CMS approach to estimate coupled response from uncoupled system characteristics for vibroacoustics.

  19. A verification of quantum field theory – measurement of Casimir force

    Indian Academy of Sciences (India)

    Abstract. Here we review our work on measurement of the Casimir force between a large alu- minum coated a sphere and flat plate using an atomic force microscope. The average statistical pre- cision is 1% of the force measured at the closest separation. We have also shown nontrival boundary dependence of the Casimir ...

  20. Light axial vector mesons

    Science.gov (United States)

    Chen, Kan; Pang, Cheng-Qun; Liu, Xiang; Matsuki, Takayuki

    2015-04-01

    Inspired by the abundant experimental observation of axial-vector states, we study whether the observed axial-vector states can be categorized into the conventional axial-vector meson family. In this paper we carry out an analysis based on the mass spectra and two-body Okubo-Zweig-Iizuka-allowed decays. Besides testing the possible axial-vector meson assignments, we also predict abundant information for their decays and the properties of some missing axial-vector mesons, which are valuable for further experimental exploration of the observed and predicted axial-vector mesons.

  1. A verification of quantum field theory – measurement of Casimir force

    Indian Academy of Sciences (India)

    : F = &z where & is the force constant and z is the cantilever deflection. The cantilever is calibrated and the residual potential difference between the grounded sphere and plate is measured using the electrostatic force between them. The detail ...

  2. A measurement of the hysteresis loop in force-spectroscopy curves using a tuning-fork atomic force microscope

    Directory of Open Access Journals (Sweden)

    Manfred Lange

    2012-03-01

    Full Text Available Measurements of the frequency shift versus distance in noncontact atomic force microscopy (NC-AFM allow measurements of the force gradient between the oscillating tip and a surface (force-spectroscopy measurements. When nonconservative forces act between the tip apex and the surface the oscillation amplitude is damped. The dissipation is caused by bistabilities in the potential energy surface of the tip–sample system, and the process can be understood as a hysteresis of forces between approach and retraction of the tip. In this paper, we present the direct measurement of the whole hysteresis loop in force-spectroscopy curves at 77 K on the PTCDA/Ag/Si(111 √3 × √3 surface by means of a tuning-fork-based NC-AFM with an oscillation amplitude smaller than the distance range of the hysteresis loop. The hysteresis effect is caused by the making and breaking of a bond between PTCDA molecules on the surface and a PTCDA molecule at the tip. The corresponding energy loss was determined to be 0.57 eV by evaluation of the force–distance curves upon approach and retraction. Furthermore, a second dissipation process was identified through the damping of the oscillation while the molecule on the tip is in contact with the surface. This dissipation process occurs mainly during the retraction of the tip. It reaches a maximum value of about 0.22 eV/cycle.

  3. Thermophoretic forces on DNA measured with a single-molecule spring balance

    DEFF Research Database (Denmark)

    Pedersen, Jonas Nyvold; Lüscher, Christopher James; Marie, Rodolphe

    2014-01-01

    of the thermophoretic force in a static configuration finds forces up to 130 fN. This is eleven times stronger than the force experienced by the same molecule in the same thermal gradient in bulk, where the molecule shields itself. Our stronger forces stretch the middle of the molecule up to 80% of its contour length......We stretch a single DNA molecule with thermophoretic forces and measure these forces with a spring balance: the DNA molecule itself. It is an entropic spring which we calibrate, using as a benchmark its Brownian motion in the nanochannel that contains and prestretches it. This direct measurement...

  4. Three-axis micro-force sensor with sub-micro-Newton measurement uncertainty and tunable force range

    International Nuclear Information System (INIS)

    Muntwyler, S; Beyeler, F; Nelson, B J

    2010-01-01

    The first three-axis micro-force sensor with adjustable force range from ±20 µN to ±200 µN and sub-micro-Newton measurement uncertainty is presented. The sensor design, the readout electronics, the sensor characterization and an uncertainty analysis for the force predictions are described. A novel microfabrication process based on a double silicon-on-insulator (SOI) substrate has been developed enabling a major reduction in the fabrication complexity of multi-axis sensors and actuators.

  5. Standard practice of calibration of force-measuring instruments for verifying the force indication of testing machines

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 The purpose of this practice is to specify procedures for the calibration of force-measuring instruments. Procedures are included for the following types of instruments: 1.1.1 Elastic force-measuring instruments, and 1.1.2 Force-multiplying systems, such as balances and small platform scales. Note 1Verification by deadweight loading is also an acceptable method of verifying the force indication of a testing machine. Tolerances for weights for this purpose are given in Practices E 4; methods for calibration of the weights are given in NIST Technical Note 577, Methods of Calibrating Weights for Piston Gages. 1.2 The values stated in SI units are to be regarded as the standard. Other metric and inch-pound values are regarded as equivalent when required. 1.3 This practice is intended for the calibration of static force measuring instruments. It is not applicable for dynamic or high speed force calibrations, nor can the results of calibrations performed in accordance with this practice be assumed valid for...

  6. Micro-/nanosized cantilever beams and mass sensors under applied axial tensile/compressive force vibrating in vacuum and viscous fluid

    Czech Academy of Sciences Publication Activity Database

    Stachiv, Ivo; Fang, T.-H.; Chen, T.-H.

    2015-01-01

    Roč. 5, č. 11 (2015), s. 1-14, č. článku 117140. ISSN 2158-3226 R&D Projects: GA ČR GC15-13174J Institutional support: RVO:68378271 Keywords : nanomechanical resonators * carbon nanotubes * tensile force * real-time * frequency * spectrometry * liquid Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.444, year: 2015

  7. Comparison of anterior segment measurements using Sirius Topographer® and Nidek Axial Length-Scan® with assessing repeatability in patients with cataracts

    Directory of Open Access Journals (Sweden)

    Resat Duman

    2018-01-01

    Full Text Available Purpose: The purpose of this study is to evaluate anterior segment measurements obtained using CSO Sirius Topographer® (CSO, Firenze, Italy and Nidek Axial Length (AL-Scan® (Nidek CO., Gamagori, Japan. Methods: A total of 43 eyes of 43 patients were included in this prospective study. The central corneal thickness (CCT, anterior chamber depth (ACD, white-to-white distance (WTW, flat keratometry (K1, steep keratometry (K2, and mean keratometry (K values were randomly measured three times with each device by the same examiner. The intraclass correlation coefficient of repeatability was analyzed. The compatibility of both devices was evaluated using the 95% limits of the agreement proposed by Bland and Altman. Results: Examiner achieved high repeatability for all parameters on each device except the WTW measured by Sirius. All measurements except WTW and K1 taken with the Sirius were higher than that taken with the Nidek AL-Scan®. The difference in CCT, ACD, and WTW values was statistically significant. Conclusion: High repeatability of the measurements was achieved on both devices. Although Km, K1, and K2 measurements of the Sirius and the AL-Scan® showed good agreement, WTW, CCT, and ACD measurements significantly differed between two devices. Thus, anterior segment measurements except for Km, K1, and K2 cannot be used interchangeably between Sirius and Nidek AL-Scan® devices.

  8. Direct measurement of interaction forces between a platinum dichloride complex and DNA molecules.

    Science.gov (United States)

    Muramatsu, Hiroshi; Shimada, Shogo; Okada, Tomoko

    2017-09-01

    The interaction forces between a platinum dichloride complex and DNA molecules have been studied using atomic force microscopy (AFM). The platinum dichloride complex, di-dimethylsulfoxide-dichloroplatinum (II) (Pt(DMSO) 2 Cl 2 ), was immobilized on an AFM probe by coordinating the platinum to two amino groups to form a complex similar to Pt(en)Cl 2 , which is structurally similar to cisplatin. The retraction forces were measured between the platinum complex and DNA molecules immobilized on mica plates using force curve measurements. The histogram of the retraction force for λ-DNA showed several peaks; the unit retraction force was estimated to be 130 pN for a pulling rate of 60 nm/s. The retraction forces were also measured separately for four single-base DNA oligomers (adenine, guanine, thymine, and cytosine). Retraction forces were frequently observed in the force curves for the DNA oligomers of guanine and adenine. For the guanine DNA oligomer, the most frequent retraction force was slightly lower than but very similar to the retraction force for λ-DNA. A higher retraction force was obtained for the adenine DNA oligomer than for the guanine oligomer. This result is consistent with a higher retraction activation energy of adenine with the Pt complex being than that of guanine because the kinetic rate constant for retraction correlates to exp(FΔx - ΔE) where ΔE is an activation energy, F is an applied force, and Δx is a displacement of distance.

  9. Forced excitation and active control for the measurement of fluid-elastic forces

    International Nuclear Information System (INIS)

    Caillaud, Sebastien

    1999-01-01

    The action of a fluid flow on a tubes bundle is commonly decomposed into a random turbulent excitation and a fluid-elastic excitation. The fluid-elastic forces which are coupled to the tubes movement can be experimentally determined from an analysis of the vibratory response of the structure excited by turbulent forces. For low flow velocities, the turbulent excitation can be insufficient to make the tube significantly vibrate and to permit a correct vibratory analysis. On the opposite side, the structure can become unstable for high flow velocities: the fluid-elastic forces make the fluid-structure damping system fall towards zero. Two experimental methods are proposed in order to extend the considered flow rate. An additional excitation force allows to increase the tube vibration level for improving the signal-noise ratio at low velocities. When the tube is submitted to fluid-elastic instability, an artificial damping contribution by active control allows to stabilize it. Methods are implemented on a flexible tube inserted into rigid tubes bundle water and water-air transverse flows. Two actuator technologies are used: an electromagnetic exciter and piezoelectric actuators. The additional excitation method shows that the fluid-elastic forces remain insignificant at low velocity single phase flow. With the active control method, it is possible to carry out tests beyond the fluid-elastic instability. In two-phase flow, the stabilization of the structure is observed for low vacuum rates. The obtained new results are analyzed with the literature expected results in terms of fluid-elastic coupling and turbulent excitation. (author) [fr

  10. Spatially resolved frequency-dependent elasticity measured with pulsed force microscopy and nanoindentation

    NARCIS (Netherlands)

    Sweers, Kim K M; van der Werf, Kees O; Bennink, Martin L; Subramaniam, Vinod

    2012-01-01

    Recently several atomic force microscopy (AFM)-based surface property mapping techniques like pulsed force microscopy (PFM), harmonic force microscopy or Peakforce QNM® have been introduced to measure the nano- and micro-mechanical properties of materials. These modes all work at different operating

  11. Towards measurement of the Casimir force between parallel plates separated at sub-mircon distance

    NARCIS (Netherlands)

    Syed Nawazuddin, M.B.; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Berenschot, Johan W.; de Boer, Meint J.; Elwenspoek, Michael Curt

    2011-01-01

    Ever since its prediction, experimental investigation of the Casimir force has been of great scientific interest. Many research groups have successfully attempted quantifying the force with different device geometries; however measurement of the Casimir force between parallel plates with sub-micron

  12. Optimization of residual heat removal pump axial thrust and axial bearing

    International Nuclear Information System (INIS)

    Schubert, F.

    1996-01-01

    The residual heat removal (RHR) pumps of German 1300 megawatt pressurized-water reactor (PWR) power plants are of the single stage end suction type with volute casing or with diffuser and forged circular casing. Due to the service conditions the pumps have to cover the full capacity range as well as a big variation in suction static pressure. This results in a big difference in the axial thrust that has to be borne by the axial bearing. Because these pumps are designed to operate without auxiliary systems (things that do not exist can not fail), they are equipped with antifriction bearings and sump oil lubrication. To minimize the heat production within the bearing casing, a number of PWR plants have pumps with combined axial/radial bearings of the ball type. Due to the fact that the maximum axial thrust caused by static pressure and hydrodynamic forces on the impeller is too big to be borne by that type of axial bearing, the impellers were designed to produce a hydrodynamic axial force that counteracts the static axial force. Thus, the resulting axial thrust may change direction when the static pressure varies

  13. Optimization of residual heat removal pump axial thrust and axial bearing

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, F.

    1996-12-01

    The residual heat removal (RHR) pumps of German 1300 megawatt pressurized-water reactor (PWR) power plants are of the single stage end suction type with volute casing or with diffuser and forged circular casing. Due to the service conditions the pumps have to cover the full capacity range as well as a big variation in suction static pressure. This results in a big difference in the axial thrust that has to be borne by the axial bearing. Because these pumps are designed to operate without auxiliary systems (things that do not exist can not fail), they are equipped with antifriction bearings and sump oil lubrication. To minimize the heat production within the bearing casing, a number of PWR plants have pumps with combined axial/radial bearings of the ball type. Due to the fact that the maximum axial thrust caused by static pressure and hydrodynamic forces on the impeller is too big to be borne by that type of axial bearing, the impellers were designed to produce a hydrodynamic axial force that counteracts the static axial force. Thus, the resulting axial thrust may change direction when the static pressure varies.

  14. The big shift: measuring the forces of change

    DEFF Research Database (Denmark)

    Hagel, John; Brown, John Seely; Davison, Lang

    2009-01-01

    Traditional metrics don't capture many of the challenges and opportunities in store for U.S. companies and the national economy. The authors, from Deloitte, present a framework for understanding the forces that have transformed business over the past 40 years--and an index for gauging their impact...

  15. Femto-Newton light force measurement at the thermal noise limit.

    Science.gov (United States)

    Mueller, F; Heugel, S; Wang, L J

    2008-03-15

    The measurement of very small light forces has wide applications in many fields of physics. A common measurement method for small force detection is the determination of changes in the dynamic behavior of mechanical oscillators, either in amplitude or in frequency. The detection of slowly varying forces mostly requires long period oscillators, such as a torsion pendulum. We demonstrate the application of a macroscopic, low-noise, torsion balance oscillator for the detection of radiation pressure forces at the femto-Newton level. The system is "precooled" (removing excess seimic noise) to be only thermal noise limited. The demonstrated force sensitivity reaches the thermal limit.

  16. Compton backscattering axial spectrometer

    International Nuclear Information System (INIS)

    Rad'ko, V.E.; Mokrushin, A.D.; Razumovskaya, I.V.

    1981-01-01

    Compton gamma backscattering axial spectrometer of new design with the 200 time larger aperture as compared with the known spectrometers at the equal angular resolution (at E=159 keV) is described. Collimator unit, radiation source and gamma detector are located in the central part of the spectrometer. The investigated specimen (of cylindrical form) and the so called ''black body'' used for absorption of photons, passed through the specimen are placed in the peripheric part. Both these parts have an imaginary symmetry axis that is why the spectrometer is called axial. 57 Co is used as the gamma source. The 122 keV spectral line which corresponds to the 83 keV backscattered photon serves as working line. Germanium disk detector of 10 mm diameter and 4 mm height has energy resolution not worse than 900 eV. The analysis of results of test measurements of compton water profile and their comparison with data obtained earlier show that only finity of detector resolution can essentially affect the form of Compton profile. It is concluded that the suggested variant of the spectrometer would be useful for determination of Compton profiles of chemical compounds of heavy elements [ru

  17. Quantum limited force measurement in a cavityless optomechanical system

    International Nuclear Information System (INIS)

    Fermani, Rachele; Mancini, Stefano; Tombesi, Paolo

    2004-01-01

    We study the possibility of revealing a weak coherent force by using a pendular mirror as a probe, and coupling this to a radiation field, which acts as the meter, in a cavityless configuration. We determine the sensitivity of such a scheme and show that the use of an entangled meter state greatly improves the ultimate detection limit. We also compare this scheme with that involving an optical cavity

  18. Measuring forces in liver cutting: new equipment and experimental results.

    Science.gov (United States)

    Chanthasopeephan, Teeranoot; Desai, Jaydev P; Lau, Alan C W

    2003-12-01

    We are interested in modeling the liver cutting process as accurately as possible by determining the mechanical properties experimentally and developing a predictive model that is self-consistent with the experimentally determined properties. In this paper, we present the newly developed hardware and software to characterize the mechanical response of pig liver during (ex vivo) cutting. We describe the custom-made cutting apparatus, the data acquisition system, and the characteristics of the cutting force versus displacement plot. The force-displacement behavior appears to reveal that the cutting process consists of a sequence of intermittent localized crack extension in the tissue on the macroscopic scale. The macroscopic cutting force-displacement curve shows repeating self-similar units of localized linear loading followed by sudden unloading. The sudden unloading coincides with observed onset of localized crack growth. This experimental data were used to determine the self-consistent local effective Young's modulus for the specimens, to be used in finite element models. Results from finite element analyses models reveal that the magnitude of the self-consistent local effective Young's modulus determined by plane-stress and plane-strain varies within close bounds. Finally, we have also observed that the local effective Young's modulus determined by plane stress and plane strain analysis decreases with increasing cutting speed.

  19. Measurement strategy and analytic model to determine firing pin force

    Science.gov (United States)

    Lesenciuc, Ioan; Suciu, Cornel

    2016-12-01

    As illustrated in literature, ballistics is a branch of theoretical mechanics, which studies the construction and working principles of firearms and ammunition, their effects, as well as the motions of projectiles and bullets1. Criminalistics identification, as part of judiciary identification represents an activity aimed at finding common traits of different objects, objectives, phenomena and beings, but more importantly, traits that differentiate each of them from similar ones2-4. In judicial ballistics, in the case of rifled firearms it is relatively simple for experts to identify the used weapon from traces left on the projectile, as the rifling of the barrel leaves imprints on the bullet, which remain approximately identical even after the respective weapon is fired 100 times with the same barrel. However, in the case of smoothbore firearms, their identification becomes much more complicated. As the firing cap suffers alterations from being hit by the firing pin, determination of the force generated during impact creates the premises for determining the type of firearm used to shoot the respective cartridge. The present paper proposes a simple impact model that can be used to evaluate the force generated by the firing pin during its impact with the firing cap. The present research clearly showed that each rifle, by the combination of the three investigated parameters (impact force maximum value, its variation diagram, and impact time) leave a unique trace. Application of such a method in ballistics can create the perspectives for formulating clear conclusions that eliminate possible judicial errors in this field.

  20. Estimation of Cable Forces of a Guyed Mast from Dynamic Measurements

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Hansen, Lars Pilegaard

    This paper presents how the tension forces in the cables of a 200 m. high guyed mast have been estimated from natural frequencies obtained from acceleration measurements.The mast is guyed at five levels with three guys at 120 degree intervals at each level. The accelerations in three directions...... were measured in five cables. The relationship between frequencies and cable forces have been establish assuming the cables to behave in linear manner. The results show that estimated cables forces correspond very well to the expected. The results obtained showed that it was possible to obtain reliable...... estimates for cables forces based on measured natural frequencies....

  1. Measurement and calculation of forces in a magnetic journal bearing actuator

    Science.gov (United States)

    Knight, Josiah; Mccaul, Edward; Xia, Zule

    1991-01-01

    Numerical calculations and experimental measurements of forces from an actuator of the type used in active magnetic journal bearings are presented. The calculations are based on solution of the scalar magnetic potential field in and near the gap regions. The predicted forces from single magnet with steady current are compared with experimental measurements in the same geometry. The measured forces are smaller than calculated ones in the principal direction but are larger than calculated in the normal direction. This combination of results indicate that material and spatial effects other than saturation play roles in determining the force available from an actuator.

  2. Thermally activated state transition technique for femto-Newton-level force measurement.

    Science.gov (United States)

    Chen, Feng-Jung; Wong, Jhih-Sian; Hsu, Ken Y; Hsu, Long

    2012-05-01

    We develop and test a thermally activated state transition technique for ultraweak force measurement. As a force sensor, the technique was demonstrated on a classical Brownian bead immersed in water and restrained by a bistable optical trap. A femto-Newton-level flow force imposed on this sensor was measured by monitoring changes in the transition rates of the bead hopping between two energy states. The treatment of thermal disturbances as a requirement instead of a limiting factor is the major feature of the technique, and provides a new strategy by which to measure other ultraweak forces beyond the thermal noise limit.

  3. Validating Future Force Performance Measures (Army Class): Concluding Analyses

    Science.gov (United States)

    2016-06-01

    Opportunities Measures an individual’s preference for work that affords opportunities to lead others. Leisure Time Measures an individual’s preference...Orientation Measures an individual’s preference for working closely with others. Travel Measures an individual’s preference for work involving...frequent or regular travel . Variety Measures an individual’s preference for work involving having something different to do every day. B -1

  4. System for measurement of interaction forces between wheel and rail for railway vehicles

    Directory of Open Access Journals (Sweden)

    Manea Ion

    2017-01-01

    Full Text Available Determination of the interaction forces between wheel and rail of railway vehicles is essential for assessment of the vehicle dynamic characteristics from point of view of running safety and rail loading as well as for approval the vehicle and alignment them to the Technical Specification for Interoperability. The direct measurement of transverse and vertical interaction forces using the existing full-disk wheel is practical impossible due to the impossibility of separating the two types of forces. To avoid this impediment it was realized a measuring wheelset fitted with 12 spokes achieved as force transducers for measurement of the vertical forces and 12 spokes achieved as force transducers for measurement of the transverse forces. The measuring wheelset was calibrated as a force transducer and was used to determine the wheel and rail interaction forces for LE-MA 6000kW electric locomotive made by Softronic Craiova. The article presents the measuring wheelset, the calibration principle and the calibration characteristics as well as some time history of the main parameters which characterize the running safety and rail loading, determined in the on-track tests.

  5. Application of the HHT Method to the Non-contact Thickness Measurement of an Axially Moving Thin Plate

    Science.gov (United States)

    Wu, Yangfang; Lu, Qianqian; Xia, Chunlin; Ding, Fan

    2017-08-01

    Non-contact thickness measuring systems can be found in a wide spectrum of technologies. In this paper, Hilbert-Huang transform method is used to analyze the real time signals of a measuring system which includes two round conveyor strings carrying a thin plate, a solar wafer as a sample under test. The vibrations of moving strings and the plate, which are sensitive to moving speed and initial tension in the string, are introduced briefly; the relevant analyses should be helpful for the system design. Using EMD-based time-domain filtering and complementary method, thickness variations and error bands are estimated for different cases. The results show that HHT method as an adaptive time-frequency method, should be potential in measurement engineering applications.

  6. Force sensor for measuring power transfer between the human body and the environment

    NARCIS (Netherlands)

    Brookhuis, Robert Anton; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; de Boer, Meint J.; Elwenspoek, Michael Curt

    2011-01-01

    A force sensor with capacitive readout is designed and realized for the measurement of mechanical power transfer. The ultimate aim is to integrate this in a glove that determines the complete mechanical interaction between the human hand and the environment. The sensor measures the normal force and

  7. Direct Measurements of Surface Energy, Elastic Modulus and Interparticle Forces of Titan Aerosol Analog (`Tholin') Using Atomic Force Microscopy

    Science.gov (United States)

    Yu, X.; Horst, S. M.; He, C.; McGuiggan, P.; Bridges, N. T.

    2017-12-01

    To understand the origin of the dunes on Titan, it is important to investigate the material properties of the sand particles on Titan, which are mainly made of organics deposited from the atmosphere [1]. The organic sand may behave differently compared to the quartz/basaltic sand on terrestrial planets (Earth, Venus, Mars) in terms of interparticle forces. We measured the surface energy (through contact angle measurements) and elastic modulus (through Atomic Force Microscopy, AFM) of Titan aerosol analog (tholins) produced in our lab. Tholins may be compositionally similar to sand on Titan. We directly measured the interparticle forces between a tholin particle adhered to an AFM cantilver and tholin particles on a substrate. We also measured the properties of walnut shells, a typical material used in the Titan Wind Tunnel (TWT, [2, 3]). We find the surface energy of a tholin thin film is about 70.9 mN/m and its elastic modulus is about 3.5 GPa (similar to hard polymers like PMMA and polystyrene). We used the two measured material properties of tholin to calculate its interparticle cohesion assuming simple sphere-sphere geometry [4]. For two 20 µm particles, the theoretical cohesion force is about 6682 nN. Under dry nitrogen (RHmeasured interparticle forces using AFM was approximately 4000 nN, which is smaller than theoretical predictions but still relatively strong under dry conditions. The interparticle cohesion between walnut shell particles is only 200 nN, which is much lower than between tholin particles. The key finding of this study is that the interparticle cohesion forces are much larger for tholins and presumably Titan sand particles than for terrestrial sand and materials used in the wind tunnel. This suggests we should increase the interparticle force in both analog experiments (TWT) and threshold models (e.g. [5]) to correctly translate the results to real Titan conditions. The strong cohesion of tholins may also inform us how the small aerosol

  8. Fiber Bragg grating sensor for simultaneous measurement of temperature and force using polymer open loop

    Science.gov (United States)

    Huang, Yonglin; Zhang, Shiyan

    2014-07-01

    A fiber Bragg grating (FBG) sensor for simultaneous measurement of temperature and force is proposed and demonstrated. Where a part of uniform FBG (about one half length of an FBG) is attached on the polymer open loop, the FBG is divided into two parts which has an equal length. So the two parts can be regarded as two FBGs. Because of the difference of the Young's modulus and the thermal expansion coefficients for two parts of the FBG, the two Bragg reflection wavelengths are shift when the temperature and force are applied on the sensor. Simultaneous measurement of temperature and force is demonstrated experimentally. The experimental results show that the linear response to temperature and force are achieved. The value of applied temperature and force can be obtained from the two Bragg wavelength shift via the coefficient matrix. This study provides a simple and economical method to measure temperature and force simultaneously.

  9. Measurement of cell adhesion force by vertical forcible detachment using an arrowhead nanoneedle and atomic force microscopy

    International Nuclear Information System (INIS)

    Ryu, Seunghwan; Hashizume, Yui; Mishima, Mari; Kawamura, Ryuzo; Tamura, Masato; Matsui, Hirofumi; Matsusaki, Michiya; Akashi, Mitsuru; Nakamura, Chikashi

    2014-01-01

    Graphical abstract: - Highlights: • We developed a method to measure cell adhesion force by detaching cell using an arrowhead nanoneedle and AFM. • A nanofilm consisting of fibronectin and gelatin was formed on cell surface to reinforce the cell cortex. • By the nanofilm lamination, detachment efficiencies of strongly adherent cell lines were improved markedly. - Abstract: The properties of substrates and extracellular matrices (ECM) are important factors governing the functions and fates of mammalian adherent cells. For example, substrate stiffness often affects cell differentiation. At focal adhesions, clustered–integrin bindings link cells mechanically to the ECM. In order to quantitate the affinity between cell and substrate, the cell adhesion force must be measured for single cells. In this study, forcible detachment of a single cell in the vertical direction using AFM was carried out, allowing breakage of the integrin–substrate bindings. An AFM tip was fabricated into an arrowhead shape to detach the cell from the substrate. Peak force observed in the recorded force curve during probe retraction was defined as the adhesion force, and was analyzed for various types of cells. Some of the cell types adhered so strongly that they could not be picked up because of plasma membrane breakage by the arrowhead probe. To address this problem, a technique to reinforce the cellular membrane with layer-by-layer nanofilms composed of fibronectin and gelatin helped to improve insertion efficiency and to prevent cell membrane rupture during the detachment process, allowing successful detachment of the cells. This method for detaching cells, involving cellular membrane reinforcement, may be beneficial for evaluating true cell adhesion forces in various cell types

  10. Development and validation of a method to directly measure the cable force during the hammer throw.

    Science.gov (United States)

    Brice, Sara M; Ness, Kevin F; Rosemond, Doug; Lyons, Keith; Davis, Mark

    2008-05-01

    The development of cable force during hammer-throw turns is crucial to the throw distance. In this paper, we present a method that is capable of measuring cable force in real time and, as it does not interfere with technique, it is capable of providing immediate feedback to coaches and athletes during training. A strain gauge was mounted on the wires of three hammers to measure the tension in the wire and an elite male hammer thrower executed three throws with each hammer. The output from the gauges was recorded by a data logger positioned on the lower back of the thrower. The throws were captured by three high-speed video cameras and the three-dimensional position of the hammer's head was determined by digitizing the images manually. The five best throws were analysed. The force acting on the hammer's head was calculated from Newton's second law of motion and this was compared with the force measured via the strain gauge. Qualitatively the time dependence of the two forces was essentially the same, although the measured force showed more detail in the troughs of the force-time curves. Quantitatively the average difference between the measured and calculated forces over the five throws was 76 N, which corresponds to a difference of 3.8% for a cable force of 2000 N.

  11. Feasibility study on measuring axial and transverse stress/strain components in composite materials using Bragg sensors

    Science.gov (United States)

    Luyckx, G.; Degrieck, J.; De Waele, W.; Van Paepegem, W.; Van Roosbroeck, J.; Chah, K.; Vlekken, J.; McKenzie, I.; Obst, A.

    2017-11-01

    A fibre optic sensor design is proposed for simultaneously measuring the 3D stress (or strain) components and temperature inside thermo hardened composite materials. The sensor is based on two fibre Bragg gratings written in polarisation maintaining fibre. Based on calculations of the condition number, it will be shown that reasonable accuracies are to be expected. First tests on the bare sensors and on the sensors embedded in composite material, which confirm the expected behaviour, will be presented.

  12. Measurement of Giardia lamblia adhesion force using an integrated microfluidic assay.

    Science.gov (United States)

    Lu, Ling; Zheng, Guo-Xia; Yang, Yu-Suo; Feng, Cheng-Yu; Liu, Fang-Fang; Wang, Yun-Hua

    2017-02-01

    The mechanisms how Giardias attach to the intestinal epithelium remain unclear. None of the methods currently being used to measure the attachment force could provide a continuous nutrition supply and a micro-aerobic atmosphere to the Giardia. Besides, they are all labor-intensive. In the present research, a microfluidic method based on electric circuit analogy was developed. The input fluid flowed through the inlet channel with different lengths and was distributed in four assay chambers. Shear force gradients were generated in chambers, too. This allowed an easy control of fluids and the shear forces. Most importantly, the shear stress large enough to detach Giardia could be generated in laminar flow regime. Moreover, analysis could be accomplished in one single test. By applying inlet flow rates of 30, 60, and 120 μL ml -1 , shear force gradients ranging from 19.47 to 60.50 Pa were generated. The adhesion forces of trophozoites were analyzed and the EC 50 of the force that caused 50% trophozoites detachment was calculated as 36.60 Pa. This paper presents a novel method for measurement of Giardia adhesion force. Graphical Abstract Measurement of Giardia adhesion force. Various of flow rates were applied to generate different shear forces and Giardia trophozoites remaining attached were counted (a-c). The percentages of attachment vs shear stress were plotted and the EC 50 of adhesion force was calculated (d).

  13. Method to measure the force to pull and to break pin bones of fish.

    Science.gov (United States)

    Balaban, Murat O; Jie, Hubert; Yin Yee, Yin; Alçiçek, Zayde

    2015-02-01

    A texture measurement device was modified to measure the force required to pull pin bones from King salmon (Oncorhynchus tshawytscha), snapper (Pagrus auratus), and kahawai (Arripis trutta). Pulled bones were also subjected to tension to measure the breaking force. For all fish, the pulling force depended on the size of the fish, and on the length of the pin bone (P bones. For example, fresh small salmon (about 1500 g whole) required 600 g on average to pull pin bones, and large fish (about 3700 g whole) required 850 g. Longer bones required greater pulling force. The breaking force followed the same trend. In general, the breaking force was greater than the pulling force. This allows the removal of the bones without breaking them. There was no statistically significant (P > 0.05) difference between the forces (both pulling and breaking) from fresh and frozen/thawed samples, although in general frozen/thawed samples required less force to pull. With the quantification of pulling and breaking forces for pin bones, it is possible to design and build better, "more intelligent" pin bone removal equipment. © 2015 Institute of Food Technologists®

  14. Improving Dark Matter Searches by Measuring the Nucleon Axial Form Factor: Perspectives from MicroBooNE

    Energy Technology Data Exchange (ETDEWEB)

    Miceli, Tia [New Mexico State U.; Papavassiliou, Vassili [New Mexico State U.; Pate, Stephen [New Mexico State U.; Woodruff, Katherine [New Mexico State U.

    2015-11-01

    The MicroBooNE neutrino experiment at Fermilab is constructing a liquid-argon time-projection chamber for the Booster Neutrino Beam to study neutrino oscillations and interactions with nucleons and nuclei, starting in 2014. We describe the experiment and focus on its unique abilities to measure cross sections at low values of $Q^2$. In particular, the neutral-current elastic scattering cross section is especially interesting, as it is sensitive to the contribution of the strange sea quark spin to the angular-momentum of the nucleon, $\\Delta s$. Implications for dark-matter searches are discussed.

  15. AFM measurements of adhesive forces between carbonaceous particles and the substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tianqi [Institute of Nuclear and New Energy Technology of Tsinghua University, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Beijing 100084 (China); Peng, Wei, E-mail: pengwei@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology of Tsinghua University, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Beijing 100084 (China); Shen, Ke [Institute of Nuclear and New Energy Technology of Tsinghua University, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Beijing 100084 (China); Yu, Suyuan, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Educations, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)

    2015-11-15

    Highlights: • Adhesive force of spherical carbonaceous particle MCMBs and HTR-10 graphite matrix debris were measured for the first time. • The measured equivalent works of adhesion were much smaller than the ideal values. • The shape factor and the particle morphology reduce the adhesive force. • The adhesion effect does not change directly with the asperity size. - Abstract: Graphite dust is carbonaceous particles generated during operation of High Temperature Gas-Cooled Reactors (HTR). Graphite dust resuspension is the key behavior associated with HTR source term analyses and environmental safety assessment. The adhesive force is the key factor that determines the resuspension rate. The present study used an atomic force microscope (AFM) to measure the adhesive force between a single carbonaceous particle and the substrate. The measurements were performed on mica, graphite IG110 and Inconel 800H. The prepared “probe cantilevers” were mesocarbon microbeads (MCMB), fuel element debris from HTR-10 and graphite NBG18. The equivalent work of adhesion was derived from the measured adhesive force and calculated based on substrate profile approximation and the JKR theoretical model. The measured work was smaller than the ideal work of adhesion, most likely due to the rough particle morphology and the rough substrate surface. Additionally, a shape factor imposes a constraint on the lateral deformation of the particles. Furthermore, surface roughness could reduce the adhesive force some depending on the particle size. Once the particle was too small to be trapped into a trough, the adhesive force would not be further reduced.

  16. Detailed On-Water Measurements of Blade Forces and Stroke Efficiencies in Sprint Canoe

    Directory of Open Access Journals (Sweden)

    Stephen Tullis

    2018-03-01

    Full Text Available Measurements of blade forces are made using a load cell mounted between the blade and shaft of a modified paddle. All six force components and moments are measured simultaneously to give a full picture of blade hydrodynamic forces as the centre of pressure on the blade varies throughout the stroke. Blade orientation was also measured using inertial measurement units, one on the blade shaft, and the other on the canoe giving the relative position of blade with respect to the boat, as well as boat speed, acceleration and motion. Testing of the instrumented paddle was undertaken by one of the authors, an ex-national team athlete. The measured forces (and propulsive/vertical forces are analyzed in detail through the stroke and as stroke averages. Various measures of propulsive efficiency are proposed using either the input force and propulsive force, or using input force and boat speed, and can be used for stroke analysis, or as training tools/targets.

  17. Traceability of small force measurements and the future international system of units (SI

    Directory of Open Access Journals (Sweden)

    Khelifa Naceur-Eddine

    2016-01-01

    Full Text Available The unit of force is connected to the international prototype of the kilogramme, unit of mass in the international system of units (SI, via dead weight machines using calibrated masses. However, forces below 10 μN, ubiquitous in nature and in some devices cannot be measured with a traceability to the SI. The measurement, with the uncertainty of these forces has implications for both basic and applied science. Today, many emerging sectors in micro/nanotechnology and biotechnology have started producing and using systems to implement low forces that, for various reasons, require them to be traceable. Also, the revision of the SI, scheduled for 2018 year, of linking the definitions of the kilogramme, the ampere, the kelvin and the mole to fixed numerical values of fundamental constants, has aroused particular interest in the measurement and calibration of small forces. In this paper, we will give some indications of the state of the art on the small force with a focus on the development of a force sensor using a photoelastic crystal as a monolithic solid-state laser. Basically, the force to be measured is applied to the crystal induces a birefringence in the laser medium which in turn manifests itself by the appearance of a splitting between the frequencies associated with the two polarization components of the oscillating laser mode. This difference is then exploited because, within the elastic limit of the crystal, it is proportional to the force acting on the laser.

  18. Hydrophobic attraction as revealed by AFM force measurements and molecular dynamics simulation.

    Science.gov (United States)

    Fa, Keqing; Nguyen, Anh V; Miller, Jan D

    2005-07-14

    Spherical calcium dioleate particles ( approximately 10 mum in diameter) were used as AFM (atomic force microscope) probes to measure interaction forces of the collector colloid with calcite and fluorite surfaces. The attractive AFM force between the calcium dioleate sphere and the fluorite surface is strong and has a longer range than the DLVO (Derjaguin-Landau-Verwey-Overbeek) prediction. The AFM force between the calcium dioleate sphere and the mineral surfaces does not agree with the DLVO prediction. Consideration of non-DLVO forces, including the attractive hydrophobic force and the repulsive hydration force, was necessary to explain the experimental results. The non-DLVO interactions considered were justified by the different interfacial water structures at calcite- and fluorite-water interfaces as revealed by the numerical computation experiments with molecular dynamics simulation.

  19. PIV measurements of acoustic flow-induced vibration in a rectangular channel with co-axial side branches

    International Nuclear Information System (INIS)

    Li, Yanrong; Someya, Satoshi; Okamoto, Koji

    2010-01-01

    Systems with closed side-branches are liable to an excitation of sound, as called cavity tone. In this study, flow-induced acoustic resonances of piping systems containing closed side-branches were investigated experimentally. The present investigation on the coaxial closed side-branches is the first rudimentary study to measure the pressure at the downstream side opening of the cavity by microphone and to visualize the fluid flow in the cross-section by using PIV. High-time-resolved PIV has a possibility to analyze the velocity field and the relation between sound propagation and flow field. The fluid flows at different points in the cavity interact with some phase differences and the relation can be clarified. (author)

  20. Classifying Force Spectroscopy of DNA Pulling Measurements Using Supervised and Unsupervised Machine Learning Methods.

    Science.gov (United States)

    Karatay, Durmus U; Zhang, Jie; Harrison, Jeffrey S; Ginger, David S

    2016-04-25

    Dynamic force spectroscopy (DFS) measurements on biomolecules typically require classifying thousands of repeated force spectra prior to data analysis. Here, we study classification of atomic force microscope-based DFS measurements using machine-learning algorithms in order to automate selection of successful force curves. Notably, we collect a data set that has a testable positive signal using photoswitch-modified DNA before and after illumination with UV (365 nm) light. We generate a feature set consisting of six properties of force-distance curves to train supervised models and use principal component analysis (PCA) for an unsupervised model. For supervised classification, we train random forest models for binary and multiclass classification of force-distance curves. Random forest models predict successful pulls with an accuracy of 94% and classify them into five classes with an accuracy of 90%. The unsupervised method using Gaussian mixture models (GMM) reaches an accuracy of approximately 80% for binary classification.

  1. Evaluation of nondestructive evaluation size measurement for integrity assessment of axial outside diameter stress corrosion cracking in steam generator tubes

    International Nuclear Information System (INIS)

    Joo, Kyung Mun; Hong, Jun Hee

    2015-01-01

    Recently, the initiation of outside diameter stress corrosion cracking (ODSCC) at the tube support plate region of domestic steam generators (SG) with Alloy 600 HTMA tubes has been increasing. As a result, SGs with Alloy 600 HTMA tubes must be replaced early or are scheduled to be replaced prior to their designed lifetime. ODSCC is one of the biggest threats to the integrity of SG tubes. Therefore, the accurate evaluation of tube integrity to determine ODSCC is needed. Eddy current testing (ECT) is conducted periodically, and its results could be input as parameters for evaluating the integrity of SG tubes. The reliability of an ECT inspection system depends on the performance of the inspection technique and ability of the analyst. The detection probability and ECT sizing error of degradation are considered to be the performance indices of a nondestructive evaluation (NDE) system. This paper introduces an optimized evaluation method for ECT, as well as the sizing error, including the analyst performance. This study was based on the results of a round robin program in which 10 inspection analysts from 5 different companies participated. The analysis of ECT sizing results was performed using a linear regression model relating the true defect size data to the measured ECT size data.

  2. Using optical tweezers for measuring the interaction forces between human bone cells and implant surfaces: System design and force calibration

    International Nuclear Information System (INIS)

    Andersson, Martin; Madgavkar, Ashwin; Stjerndahl, Maria; Wu, Yanrong; Tan, Weihong; Duran, Randy; Niehren, Stefan; Mustafa, Kamal; Arvidson, Kristina; Wennerberg, Ann

    2007-01-01

    Optical tweezers were used to study the interaction and attachment of human bone cells to various types of medical implant materials. Ideally, the implant should facilitate cell attachment and promote migration of the progenitor cells in order to decrease the healing time. It is therefore of interest, in a controlled manner, to be able to monitor the cell adhesion process. Results from such studies would help foresee the clinical outcome of integrating medical implants. The interactions between two primary cell culture models, human gingival fibroblasts and bone forming human osteoblast cells, and three different implant materials, glass, titanium, and hydroxyapatite, were studied. A novel type of optical tweezers, which has a newly designed quadrant detector and a powerful 3 W laser was constructed and force calibrated using two different methods: one method in which the stiffness of the optical trap was obtained by monitoring the phase lag between the trap and the moved object when imposing a forced oscillation on the trapped object and another method in which the maximum trapping force was derived from the critical velocity at which the object escapes the trap. Polystyrene beads as well as cells were utilized for the calibrations. This is the first time that cells have been used directly for these types of force calibrations and, hence, direct measurements of forces exerted on cells can be performed, thus avoiding the difficulties often encountered when translating the results obtained from cell measurements to the calibrations obtained with reference materials. This more straightforward approach represents an advantage in comparison to established methods

  3. Measurement of Multiple Blade Rate Unsteady Propeller Forces

    Science.gov (United States)

    1990-05-01

    with PUF -2 prediction ...................................... 33 17. Total velocity measurement positions using LDV .................... 34 18...CRAW F OrIC TAB Q Propeller torque JU.tSw riced .,) Qn Amplitude of nth harmonic of torque By R Propeller tip radius Ot Itt:ic A.tdt 4Vt,.*, Cc#eS r...unsteady lifting surface theory code PUF -2, 3 and were compared with measured data. PUF -2 calculations were performed for both Propellers 4132 and

  4. Update: Partnership for the Revitalization of National Wind Tunnel Force Measurement Technology Capability

    Science.gov (United States)

    Rhew, Ray D.

    2010-01-01

    NASA's Aeronautics Test Program (ATP) chartered a team to examine the issues and risks associated with the lack of funding and focus on force measurement over the past several years, focusing specifically on strain-gage balances. NASA partnered with the U.S. Air Force's Arnold Engineering Development Center (AEDC) to exploit their combined capabilities and take a national level government view of the problem and established the National Force Measurement Technology Capability (NFMTC) project. This paper provides an update on the team's status for revitalizing the government's balance capability with respect to designing, fabricating, calibrating, and using the these critical measurement devices.

  5. Time, tire measurements forces and moments: a new standard for steady state cornering tyre testing

    NARCIS (Netherlands)

    Oosten, J.J.M. van; Savi, C.; Augustin, M.; Bouhet, O.; Sommer, J.; Colinot, J.P.

    1999-01-01

    In order to develop vehicles which have maximum active safety, car manufacturers need information about the so-called force and moment properties of tyres. Vehicle manufacturers, tyre suppliers and automotive research organisations have advanced test equipment to measure the forces between a tyre

  6. Ambulatory measurement of ground reaction force and estimation of ankle and foot dynamics

    NARCIS (Netherlands)

    Schepers, H. Martin; Koopman, Hubertus F.J.M.; Baten, Christian T.M.; Veltink, Petrus H.

    INTRODUCTION Traditionally, human body movement analysis is done in so-called ‘gait laboratories’. In these laboratories, body movement is measured by a camera system using optical markers, the ground reaction force by a force plate fixed in the floor, and the muscle activity by EMG. From the body

  7. Measurement of the spectral functions of axial-vector hadronic $\\tau$ decays and determination of $\\alpha_{s}(M^2_\\tau)$

    CERN Document Server

    Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Merle, E; Minard, M N; Nief, J Y; Pietrzyk, B; Alemany, R; Boix, G; Casado, M P; Chmeissani, M; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Graugès-Pous, E; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Becker, U; Bright-Thomas, P G; Casper, David William; Cattaneo, M; Ciulli, V; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Hansen, J B; Harvey, J; Janot, P; Jost, B; Lehraus, Ivan; Mato, P; Minten, Adolf G; Moneta, L; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rolandi, Luigi; Rousseau, D; Schlatter, W D; Schmitt, M; Schneider, O; Tejessy, W; Teubert, F; Tomalin, I R; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Badaud, F; Chazelle, G; Deschamps, O; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Focardi, E; Parrini, G; Zachariadou, K; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Cerutti, F; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Halley, A W; Lynch, J G; Negus, P; O'Shea, V; Raine, C; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Buchmüller, O L; Dhamotharan, S; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Marinelli, N; Moutoussi, A; Nash, J; Sedgbeer, J K; Spagnolo, P; Williams, M D; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Buck, P G; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Williams, M I; Giehl, I; Greene, A M; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Carr, J; Coyle, P; Etienne, F; Leroy, O; Motsch, F; Payre, P; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Antonelli, M; Ragusa, F; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Ganis, G; Kroha, H; Lütjens, G; Mannert, C; Männer, W; Moser, H G; Schael, S; Settles, Ronald; Seywerd, H C J; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Schune, M H; Tournefier, E; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Boccali, T; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sciabà, A; Tenchini, Roberto; Tonelli, G; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Konstantinidis, N P; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Brew, C A J; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Reeve, J; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Cowan, G D; Grupen, Claus; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Charles, E; Elmer, P; Ferguson, D P S; Gao, Y; González, S; Greening, T C; Hayes, O J; Hu, H; Jin, S; McNamara, P A; Nachtman, J M; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Zobernig, G

    1998-01-01

    An analysis based on 124000 selected tau pairs recorded by the ALEPH detector at LEP provides the vector (V) and axial-vector (A) spectral functions of hadronic tau decays together with their total widths. This allows the evaluation of finite energy chiral sum rules that are weighted integrals over the (V-A) spectral functions. In addition, a precise measurement of alpha_s along with a determination of nonperturbative contributions at the tau mass scale is performed. The experimentally and theoretically most robust determination of alpha_s(M_tau^2) is obtained from the (V+A) fit that yields alpha_s(M_tau^2) = 0.334 +/- 0.022 giving alpha_s(M_Z^2) = 0.1202 +/- 0.0027 after the extrapolation to the mass of the Z boson. The approach of the Operator Product Expansion (OPE) is tested experimentally studying the evolution of the tau hadronic widths to masses smaller than the tau mass.

  8. Intra-operative measurement of applied forces during anterior scoliosis correction.

    Science.gov (United States)

    Fairhurst, H; Little, J P; Adam, C J

    2016-12-01

    Spinal instrumentation and fusion for the treatment of scoliosis is primarily a mechanical intervention to correct the deformity and halt further progression. While implant-related complications remain a concern, little is known about the magnitudes of the forces applied to the spine during surgery, which may affect post-surgical outcomes. In this study, the compressive forces applied to each spinal segment during anterior instrumentation were measured in a series of patients with Adolescent Idiopathic Scoliosis. A force transducer was designed and retrofit to a routinely used surgical tool, and compressive forces applied to each segment during surgery were measured for 15 scoliosis patients. Cobb angle correction achieved by each force was measured on intra-operative fluoroscope images. Relative changes in orientation of the screw within the vertebra were also measured to detect intra-operative screw plough. Intra-operative forces were measured for a total of 95 spinal segments. The mean applied compressive force was 540N (SD 230N, range 88N-1019N). There was a clear trend for higher forces to be applied at segments toward the apex of the scoliosis. Fluoroscopic evidence of screw plough was detected at 10 segments (10.5%). The magnitude of forces applied during anterior scoliosis correction vary over a broad range. These forces do reach magnitudes capable of causing intra-operative vertebral body screw plough. Surgeons should be aware there is a risk for tissue overload during correction, however the clinical implications of intra-operative screw plough remain unclear. The dataset presented here is valuable for providing realistic input parameters for in silico surgical simulations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Measurements of Normal and Friction Forces in a Rolling Process

    DEFF Research Database (Denmark)

    Henningsen, Poul; Arentoft, Mogens; Wanheim, Tarras

    2004-01-01

    To improve the quality of frictional data and to validate the simulations in rolling, a load transducer for measuring normal and friction stresses in the deformation zone has been developed. The transducer consists of a strain gauge equipped insert embedded in the surface of the roll. The length...... of the insert exceeds the contact length. By analyzing the output from the insert, the friction stress and normal pressure in the contact zone can be determined. The new concept differs from existing pin designs by a lower disturbance of lubricant film and material flow and limited penetration of material...

  10. Measurement of Normal and Friction Forces in a Rolling Process

    DEFF Research Database (Denmark)

    Henningsen, Poul; Arentoft, Mogens; Wanheim, Tarras

    2004-01-01

    by the fric-tion conditions. To achieve this important informa-tion, measurements of the normal pressure and friction stresses in the deformation zone are re-quested. The direction of the friction stresses is changing during the rolling gap. At the entrance of the de-formation zone, the peripherical velocity...... of the roll is higher than for the incoming material, which causes frictional stresses at the material acting in the rolling direction. At the outlet of the rolling gap, the velocity of the deformed material exceeds the velocity of the roll, generating frictional stresses contrary to the direction of rolling...

  11. Measurements of normal and frictional forces in a rolling process

    DEFF Research Database (Denmark)

    Henningsen, Poul; Arentoft, Mogens; Wanheim, Tarras

    2006-01-01

    of the insert exceeds the contact length. By analysing the output from the insert, the frictional stress and normal pressure in the contact zone can be determined. The new concept differs from existing pin designs by less disturbance of lubricant film and material flow and limited penetration of material......To improve the quality of frictional data and to validate the simulations in rolling, a load transducer for measuring normal and frictional stresses in the deformation zone has been developed. The transducer consists of a strain-gauge-equipped insert embedded in the surface of the roll. The length...

  12. Measuring Relationships: A Model for Evaluating U.S. Air Force Public Affairs Programs

    National Research Council Canada - National Science Library

    Della Vedova, Joseph P

    2005-01-01

    The thesis advanced here is that Air Force Public Affairs should be responsible for managing the organization-public relationship and that the effectiveness of that management can be measured in terms...

  13. Spring constant measurement using a MEMS force and displacement sensor utilizing paralleled piezoresistive cantilevers

    Science.gov (United States)

    Kohyama, Sumihiro; Takahashi, Hidetoshi; Yoshida, Satoru; Onoe, Hiroaki; Hirayama-Shoji, Kayoko; Tsukagoshi, Takuya; Takahata, Tomoyuki; Shimoyama, Isao

    2018-04-01

    This paper reports on a method to measure a spring constant on site using a micro electro mechanical systems (MEMS) force and displacement sensor. The proposed sensor consists of a force-sensing cantilever and a displacement-sensing cantilever. Each cantilever is composed of two beams with a piezoresistor on the sidewall for measuring the in-plane lateral directional force and displacement. The force resolution and displacement resolution of the fabricated sensor were less than 0.8 µN and 0.1 µm, respectively. We measured the spring constants of two types of hydrogel microparticles to demonstrate the effectiveness of the proposed sensor, with values of approximately 4.3 N m-1 and 15.1 N m-1 obtained. The results indicated that the proposed sensor is effective for on-site spring constant measurement.

  14. Subsurface measurement of nanostructures on GaAs by electrostatic force microscopy

    International Nuclear Information System (INIS)

    Yamada, Fumihiko; Kamiya, Itaru

    2013-01-01

    The size of surface buried oxide nanostructures are measured by electrostatic force microscopy (EFM). In contrast to atomic force microscopy that cannot probe subsurface structures and thickness, we show that EFM data include information about the thickness of individual nanostructures, consequently allowing us to determine the thickness of buried nanostructures on semiconductor substrates. We further show that this measurement can be performed simultaneously with AFM using EFM modulation spectroscopy.

  15. Measurement of wisdom forging force using piezoelectric materials

    Directory of Open Access Journals (Sweden)

    Hsia Shao-Yi

    2017-01-01

    Full Text Available Aiming at forging machines for bolts and nuts with up to 61% market share, adding piezoelectric sensing units to the mold forging is discussed in this study. In the research process, it attempts to develop a sensing element with low cost, practicable limited space, acceptable performance stability, and real-time measurement of forging load by a five-stage forming system for special nuts matched with the theory of plastic forming, the CAD/CAE design and numerical analysis, and the installation of a piezoelectric unit. It aims to assist fastener businesses in the intelligentization, networking, and systemization of machines and further integrate into the Internet service manufacturing system to enhance the overall competitiveness of fastener industry.

  16. Oncology Section EDGE Task Force on Urogenital Cancer: A Systematic Review of Clinical Measures for Incontinence.

    Science.gov (United States)

    Jeffrey, Alicia; Harrington, Shana E; Hill, Alexandra; Roscow, Amanda; Alappattu, Meryl

    2017-07-01

    Compared to the general population, women and men with urogenital and colorectal cancer experience higher rates of urinary and fecal incontinence. Although a variety of measures exist to assess these areas, currently, there are no guidelines recommending which outcomes rehabilitation professionals should administer to examine these impairments in those with cancer. To identify outcome measures for assessing urinary and fecal incontinence and evaluate their psychometric data and applicability to the cancer population. Multiple electronic databases (CINAHL, Medline, PsycInfo) were reviewed using specific search terms to locate articles that identify outcome measures assessing urinary and fecal incontinence. As part of a larger effort to identify outcome measures for both incontinence and sexual dysfunction, 1118 articles were initially identified, 228 articles were reviewed, and 37 outcome measures were selected for analysis, 13 of which were related to urinary and fecal incontinence. Each incontinence outcome measure was independently reviewed and rated by two reviewers using the Cancer EDGE Task Force Outcome Measure Rating Form. Any discrepancies between reviewers were discussed and an overall recommendation for each outcome measure was made using the 4-point Cancer EDGE Task Force Rating Scale. The Task Force was able to highly recommend 1 measure addressing urinary incontinence (American Urological Association Symptom Index) and 2 measures assessing both urinary and fecal incontinence (Pelvic Floor Distress Inventory - Short Form, Pelvic Floor Impact Questionnaire - Short Form). The Task Force also recommended two measures of urinary incontinence that demonstrated strong psychometric properties, but had not yet been evaluated in the cancer population (Incontinence Quality of Life Questionnaire, International Consultation on Incontinence Questionnaire - Short Form). The Task Force was unable to recommend any measures that solely addressed fecal incontinence. Five

  17. Fabrication of oriented crystals as force measurement tips via focused ion beam and microlithography methods

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhigang [School of Science, North University of China, Shanxi 030051 China; Chun, Jaehun [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, WA USA; Chatterjee, Sayandev [Energy and Environment Directorate, Pacific Northwest National Laboratory, WA USA; Li, Dongsheng [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, WA USA

    2017-11-09

    Detailed knowledge of the forces between nanocrystals is very crucial for understanding many generic (e.g., random aggregation/assembly and rheology) and specific (e.g., oriented attachment) phenomena at macroscopic length scales, especially considering the additional complexities involved in nanocrystals such as crystal orientation and corresponding orientation-dependent physicochemical properties. Because there are a limited number of methods to directly measure the forces, little is known about the forces that drive the various emergent phenomena. Here we report on two methods of preparing crystals as force measurement tips used in an atomic force microscope (AFM): the focused ion beam method and microlithography method. The desired crystals are fabricated using these two methods and are fixed to the AFM probe using platinum deposition, ultraviolet epoxy, or resin, which allows for the orientation-dependent force measurements. These two methods can be used to attach virtually any solid particles (from the size of a few hundreds of nanometers to millimeters). We demonstrate the force measurements between aqueous media under different conditions such as pH.

  18. Digital design and fabrication of simulation model for measuring orthodontic force.

    Science.gov (United States)

    Liu, Yun-Feng; Zhang, Peng-Yuan; Zhang, Qiao-Fang; Zhang, Jian-Xing; Chen, Jie

    2014-01-01

    Three dimensional (3D) forces are the key factors for determining movement of teeth during orthodontic treatment. Designing precise forces and torques on tooth before treatment can result accurate tooth movements, but it is too difficult to realize. In orthodontic biomechanical systems, the periodontal tissues, including bones, teeth, and periodontal ligaments (PDL), are affected by braces, and measuring the forces applied on the teeth by braces should be based on a simulated model composed of these three types of tissues. This study explores the design and fabrication of a simulated oral model for 3D orthodontic force measurements. Based on medical image processing, tissue reconstruction, 3D printing, and PDL simulation and testing, a model for measuring force was designed and fabricated, which can potentially be used for force prediction, design of treatment plans, and precise clinical operation. The experiment illustrated that bi-component silicones with 2:8 ratios had similar mechanical properties to PDL, and with a positioning guide, the teeth were assembled in the mandible sockets accurately, and so a customized oral model for 3D orthodontic force measurement was created.

  19. Design and testing of an innovative measurement device for tyre-road contact forces

    Science.gov (United States)

    Cheli, F.; Braghin, F.; Brusarosco, M.; Mancosu, F.; Sabbioni, E.

    2011-08-01

    The measurement of tyre-road contact forces is the first step towards the development of new control systems for improving vehicle safety and performances. Tyre-road contact forces measurement systems are very expensive and significantly modify the unsprung masses of the vehicle as well as the rotational inertia of the tyres. Thus, vehicle dynamics results are significantly affected. As a consequence, the measured contact forces do not correspond to the contact forces under real working conditions. A new low-cost tyre-road contact forces measurement system is proposed in this paper that can be applied to passenger cars. Its working principle is based on the measurement of three deformations of the wheel rim through strain gauges. The tyre-rim assembly is thus turned into a sensor for tyre-road contact forces. The influence of the strain gauges position onto the measurement results has been assessed through finite element simulations and experimental tests. It has been proven that, for a large variety of rims, the strain gauge position that leads to high signal-to-noise ratios is almost the same. A dynamic calibration procedure has been developed in order to allow the reconstruction of contact force and torque components once per wheel turn. The capability of the developed device to correctly estimate tyre-road contact forces has been assessed, in a first stage, through indoor laboratory experimental test on an MTS Flat-Trac ® testing machine. Results show that the implemented measuring system allows to reconstruct contact forces once per wheel turn with a precision that is comparable to that of existing high-cost measurement systems. Subsequently, outdoor tests with a vehicle having all four wheels equipped with the developed measuring device have also been performed. Reliability of the measurements provided by the developed sensor has been assessed by comparing the global measured longitudinal/lateral forces and the product of the measured longitudinal

  20. Axial static mixer

    Science.gov (United States)

    Sandrock, H.E.

    1982-05-06

    Static axial mixing apparatus includes a plurality of channels, forming flow paths of different dimensions. The axial mixer includes a flow adjusting device for adjustable selective control of flow resistance of various flow paths in order to provide substantially identical flows through the various channels, thereby reducing nonuniform coating of interior surfaces of the channels. The flow adjusting device may include diaphragm valves, and may further include a pressure regulating system therefor.

  1. Accuracy of force and center of pressure measures of the Wii Balance Board.

    Science.gov (United States)

    Bartlett, Harrison L; Ting, Lena H; Bingham, Jeffrey T

    2014-01-01

    The Nintendo Wii Balance Board (WBB) is increasingly used as an inexpensive force plate for assessment of postural control; however, no documentation of force and COP accuracy and reliability is publicly available. Therefore, we performed a standard measurement uncertainty analysis on 3 lightly and 6 heavily used WBBs to provide future users with information about the repeatability and accuracy of the WBB force and COP measurements. Across WBBs, we found the total uncertainty of force measurements to be within ± 9.1N, and of COP location within ± 4.1mm. However, repeatability of a single measurement within a board was better (4.5 N, 1.5mm), suggesting that the WBB is best used for relative measures using the same device, rather than absolute measurement across devices. Internally stored calibration values were comparable to those determined experimentally. Further, heavy wear did not significantly degrade performance. In combination with prior evaluation of WBB performance and published standards for measuring human balance, our study provides necessary information to evaluate the use of the WBB for analysis of human balance control. We suggest the WBB may be useful for low-resolution measurements, but should not be considered as a replacement for laboratory-grade force plates. Published by Elsevier B.V.

  2. Experimental measurements of hydrodynamic radial forces and stiffness matrices for a centrifugal pump-impeller

    Science.gov (United States)

    Chamieh, D. S.; Acosta, A. J.; Brennen, C. E.; Caughey, T. K.

    1985-01-01

    Measurements of the steady-state hydrodynamic forces on a centrifugal pump impeller are presented as a function of position within two geometrically different volutes. These correspond to the forces experienced by the impeller at zero whirl frequency. The hydrodynamic force matrices derived from these measurements exhibit both diagonal and off-diagonal terms of substantial magnitude. These terms are of the form which would tend to excite a whirl motion in a rotordynamic analysis of the pump; this may be the cause of 'rough running' reported in many pumps. Static pressure measurements in the impeller discharge flow show that the hydrodynamic force on the impeller contains a substantial component due to the nonisotropy of the net momentum flux leaving the impeller. A similar breakdown of the contributions to the stiffness matrices reveals that the major component of these matrices results from the nonisotropy of the momentum flux.

  3. Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope

    DEFF Research Database (Denmark)

    Jensen, Carsten P.

    Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope......Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope...

  4. An in-fiber Bragg grating sensor for contact force and stress measurements in articular joints

    International Nuclear Information System (INIS)

    Dennison, Christopher R; Wild, Peter M; Wilson, David R; Gilbart, Michael K

    2010-01-01

    We present an in-fiber Bragg grating-based sensor (240 µm diameter) for contact force/stress measurements in articular joints. The contact force sensor and another Bragg grating-based pressure sensor (400 µm diameter) are used to conduct the first simultaneous measurements of contact force/stress and fluid pressure in intact cadaveric human hips. The contact force/stress sensor addresses limitations associated with stress-sensitive films, the current standard tools for contact measurements in joints, including cartilage modulus-dependent sensitivity of films and the necessity to remove biomechanically relevant anatomy to implant the films. Because stress-sensitive films require removal of anatomy, it has been impossible to validate the mechanical rationale underlying preventive or corrective surgeries, which repair these anatomies, by conducting simultaneous stress and pressure measurements in intact hips. Methods are presented to insert the Bragg grating-based sensors into the joint, while relevant anatomy is left largely intact. Sensor performance is predicted using numerical models and the predicted sensitivity is verified through experimental calibrations. Contact force/stress and pressure measurements in cadaveric joints exhibited repeatability. With further validation, the Bragg grating-based sensors could be used to study the currently unknown relationships between contact forces and pressures in both healthy and degenerated joints

  5. QCM-based rupture force measurement as a tool to study DNA dehybridization and duplex stability.

    Science.gov (United States)

    Dultsev, Fedor N; Kolosovsky, Eugeny A; Lomzov, Alexander A; Pyshnyi, Dmitrii V

    2017-02-01

    The stability of double-stranded DNA (dsDNA) was assessed on the basis of unwinding force measurement. Unwinding force was measured directly with a quartz crystal microbalance (QCM). The amplitude of its surface oscillations was controlled by supplying variable alternate voltage. Under smoothly increasing amplitude of QCM surface oscillations, dsDNA fixed on QCM surface through one of its ends got unwound. This procedure allows reliable measurement of rupture force as small as 5-10 pN. It was demonstrated that oscillations of the surface, with dsDNA bound through one of its ends to this surface, at a frequency of 14 MHz, cause helix unwinding to form two complementary parts due to viscous forces of the liquid medium. Unwinding starts at the upper end. This was proven using oligonucleotide duplexes containing mismatches in different positions. For duplexes containing complementary 20 base pairs, the helix unwinding force is equal to 30-40 pN, which is in agreement with the data obtained by means of atomic-force microscopy (AFM) for the case of unzipping mode. Graphical Abstract Rupture force depending on mismatch position in dsDNA.

  6. Prestress Force Identification for Externally Prestressed Concrete Beam Based on Frequency Equation and Measured Frequencies

    Directory of Open Access Journals (Sweden)

    Luning Shi

    2014-01-01

    Full Text Available A prestress force identification method for externally prestressed concrete uniform beam based on the frequency equation and the measured frequencies is developed. For the purpose of the prestress force identification accuracy, we first look for the appropriate method to solve the free vibration equation of externally prestressed concrete beam and then combine the measured frequencies with frequency equation to identify the prestress force. To obtain the exact solution of the free vibration equation of multispan externally prestressed concrete beam, an analytical model of externally prestressed concrete beam is set up based on the Bernoulli-Euler beam theory and the function relation between prestress variation and vibration displacement is built. The multispan externally prestressed concrete beam is taken as the multiple single-span beams which must meet the bending moment and rotation angle boundary conditions, the free vibration equation is solved using sublevel simultaneous method and the semi-analytical solution of the free vibration equation which considered the influence of prestress on section rigidity and beam length is obtained. Taking simply supported concrete beam and two-span concrete beam with external tendons as examples, frequency function curves are obtained with the measured frequencies into it and the prestress force can be identified using the abscissa of the crosspoint of frequency functions. Identification value of the prestress force is in good agreement with the test results. The method can accurately identify prestress force of externally prestressed concrete beam and trace the trend of effective prestress force.

  7. Predicting Diaphyseal Cortical Bone Status Using Measures of Muscle Force Capacity.

    Science.gov (United States)

    Higgins, Simon; Sokolowski, Chester M; Vishwanathan, Megha; Anderson, Jessica G; Schmidt, Michael D; Lewis, Richard D; Evans, Ellen M

    2018-02-16

    Muscle cross sectional area (MCSA) is often used as a surrogate for the forces applied to bones during physical activity. Though MCSA is a strong predictor of cortical bone status, its use makes assumptions about the relationship between muscle size and force that are inaccurate. Furthermore, to measure MCSA and other muscle force surrogates typically requires expensive and/or radiative laboratory equipment. Thus, this study aimed to determine whether clinical lab- and field-based methodologies for measuring muscular force capacity accounted for similar variance in diaphyseal cortical bone status as a commonly used muscular force surrogate; MCSA, at the mid-tibia in young men and women. Healthy young adults (n = 142, 19.7 ± 0.7 yo, 52.8% female) were assessed via peripheral quantitative computed tomography at the mid-tibia for cortical bone status and MCSA. Muscle force capacity was measured via Biodex dynamometer, Nottingham leg extensor power rig, and Vertec vertical jump. Regression analysis compared the independent variance predicted by each muscle force measure to that of MCSA, accounting for relevant confounders. MCSA, knee extension peak torque, and peak anaerobic power from vertical jump were independent predictors of select cortical structural outcomes (cortical thickness and area, periosteal and endosteal circumference, and estimated strength) accounting for up to 78.4% of the variance explained (all p<.05). However, cortical volumetric bone mineral density was unrelated to any measure or surrogate of muscle force capacity. MCSA is a strong independent predictor of cortical bone structure; however, both lab- and field-based measures of peak torque and/or peak anaerobic power are promising alternatives, explaining similar and sometimes greater variance than MCSA.

  8. Modeling the effect of probe force on length measurements on polymer parts

    DEFF Research Database (Denmark)

    Mohammadi, Ali; Sonne, Mads Rostgaard; Dalla Costa, Giuseppe

    2016-01-01

    Measurement uncertainty at micrometer level is in the future going to be very common in dimensional measurements on polymer parts. Accurate dimensional measurement of polymer parts is becoming a key and common practice in the industry, especially when micrometer tolerances are required. When...... numerically. Both analytical and numerical approaches were compared with the experimental results. The results showed that the numerical model was able to predict the deformation of the polymer part due to different probe forces. Furthermore it was shown, that the probe force should be taking into account...... when measurement with a few micrometer accuracy should be performed on thin walled polymer parts....

  9. The use of piezoelectric bimorph transducers to measure forces in colloidal systems

    International Nuclear Information System (INIS)

    Stewart, A.M.

    1996-01-01

    The Surface Force Apparatus developed in this Department has proved useful for the measurement of colloidal forces between transparent surfaces in liquids and gases at surface separations of 1 nm up to 500 nm. The distance between the surfaces is measured by the interferometry of white light, and the force is measured from the movement of one of the surfaces that is attached to a cantilever spring which deflects under the influence of the force. In the present work an analysis is made of the effect of the errors introduced at a longer time scale by bimorph drift and decay upon accuracy of measurement. For direct measurements the errors will be small provided that the time constant of the bimorph, given by the product of its capacitance and amplifier input impedance, is much larger than the total time of measurement. With the force-feedback technique the errors will be negligible provided that, in addition the integrator time constant is much smaller than the bimorph time constant, a condition easily satisfied. In is important to use an amplifier with a very high input impedance to buffer bimorphs used for this type of measurement

  10. A validation study of a new instrument for low cost bite force measurement.

    Science.gov (United States)

    Testa, Marco; Di Marco, Anna; Pertusio, Raffaele; Van Roy, Peter; Cattrysse, Erik; Roatta, Silvestro

    2016-10-01

    Quantitative assessment of force in masticatory muscles is not a routine clinical test, probably due to the lack of an "easy-to-use" device. Aim of this study is (1) to present a low cost bite force instrument located in a custom-made housing, designed to guarantee a comfortable and effective bite action, (2) to evaluate its mechanical characteristics, in order to implement it in clinical settings and in experimental setups. Linearity, repeatability and adaptation over time were assessed on a set of four different sensors in bare and housed condition. Application of the housing to the transducer may appreciably alter the transducer's response. Calibration of the housed transducer is thus necessary in order to correctly record real bite force. This solution may represent a low cost and reliable option for biting force measurement and objective assessment of individual force control in the scientific and clinical setting. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Transient Response of an Impacted Beam and Indirect Impact Force Identification Using Strain Measurements

    Directory of Open Access Journals (Sweden)

    Hyungsoon Park

    1994-01-01

    Full Text Available The impulse response functions (force-strain relations for Euler–Bernoulli and Timoshenko beams are considered. The response of a beam to a transverse impact force, including reflection at the boundary, is obtained with the convolution approach using the impulse response function obtained by a Laplace transform and a numerical scheme. Using this relation, the impact force history is determined in the time domain and results are compared with those of Hertz's contact law. In the case of an arbitrary impact, the location of the impact force and the time history of the impact force can be found. In order to verify the proposed algorithm, measurements were taken using an impact hammer and a drop test of a steel ball. These results are compared with simulated ones.

  12. Laboratory measurement verification of laser hazard analysis for miles weapon simulators used in force on force exercises.

    Energy Technology Data Exchange (ETDEWEB)

    Augustoni, Arnold L.

    2006-08-01

    Due to the change in the batteries used with the Small Arm Laser Transmitters (SALT) from 3-volts dc to 3.6-volts dc and changes to SNL MILES operating conditions, the associated laser hazards of these units required re-evaluation to ensure that the hazard classification of the laser emitters had not changed as well. The output laser emissions of the SNL MILES, weapon simulators and empire guns, used in Force-On-Force (FOF) training exercises, was measured in accordance to the ANSI Standard Z136.4-2005, ''Recommended Practice for Laser Safety Measurements for Hazard Evaluation''. The laser hazard class was evaluated in accordance with the ANSI Standard Z136.1-2000, ''Safe Use of Lasers'', using ''worst'' case conditions associated with these MILES units. Laser safety assessment was conducted in accordance with the ANSI Standard Z136.6-2005, ''Safe Use of Lasers Outdoors''. The laser hazard evaluation of these MILES laser emitters was compared to and supersedes SAND Report SAND2002-0246, ''Laser Safety Evaluation of the MILES and Mini MILES Laser Emitting Components'', which used ''actual'' operating conditions of the laser emitters at the time of its issuance.

  13. Development and testing of an integrated smart tool holder for four-component cutting force measurement

    Science.gov (United States)

    Xie, Zhengyou; Lu, Yong; Li, Jianguang

    2017-09-01

    Cutting force measurement is a significant requirement for monitoring and controlling the machining processes. Hence, various methods of measuring the cutting force have been proposed by many researchers. In this study, an innovative integrated smart tool holder system based on capacitive sensors is designed, constructed and tested, which is capable of measuring triaxial cutting force and a torque simultaneously in a wireless environment system. A standard commercial tool holder is modified to make itself be the force sensing element that has advantages of simple structure and easy machining. Deformable beams are created in the tool holder, and the tiny deformations of which used to calculate the four-component cutting force are detected by six high precision capacitive sensors. All the sensors and other electronics, like data acquisition and transmitting unit, and wireless power unit, are incorporated into the tool holder as a whole system. The device is intended to be used in a rotating spindle such as in milling and drilling processes. Eventually, the static and dynamic characteristics of the smart tool holder have been determined by a series of tests. Cutting tests have also been carried out and the results show it is stable and practical to measure the cutting force in milling and drilling processes.

  14. Pushing nanoparticles with light — A femtonewton resolved measurement of optical scattering forces

    Directory of Open Access Journals (Sweden)

    C. Zensen

    2016-05-01

    Full Text Available Optomechanical manipulation of plasmonic nanoparticles is an area of current interest, both fundamental and applied. However, no experimental method is available to determine the forward-directed scattering force that dominates for incident light of a wavelength close to the plasmon resonance. Here, we demonstrate how the scattering force acting on a single gold nanoparticle in solution can be measured. An optically trapped 80 nm particle was repetitively pushed from the side with laser light resonant to the particle plasmon frequency. A lock-in analysis of the particle movement provides a measured value for the scattering force. We obtain a resolution of less than 3 femtonewtons which is an order of magnitude smaller than any measurement of switchable forces performed on nanoparticles in solution with single beam optical tweezers to date. We compared the results of the force measurement with Mie simulations of the optical scattering force on a gold nanoparticle and found good agreement between experiment and theory within a few fN.

  15. A High Performance Sensor for Triaxial Cutting Force Measurement in Turning

    Directory of Open Access Journals (Sweden)

    You Zhao

    2015-04-01

    Full Text Available This paper presents a high performance triaxial cutting force sensor with excellent accuracy, favorable natural frequency and acceptable cross-interference for high speed turning process. Octagonal ring is selected as sensitive element of the designed sensor, which is drawn inspiration from ring theory. A novel structure of two mutual-perpendicular octagonal rings is proposed and three Wheatstone full bridge circuits are specially organized in order to obtain triaxial cutting force components and restrain cross-interference. Firstly, the newly developed sensor is tested in static calibration; test results indicate that the sensor possesses outstanding accuracy in the range of 0.38%–0.83%. Secondly, impacting modal tests are conducted to identify the natural frequencies of the sensor in triaxial directions (i.e., 1147 Hz, 1122 Hz and 2035 Hz, which implies that the devised sensor can be used for cutting force measurement in a high speed lathe when the spindle speed does not exceed 17,205 rev/min in continuous cutting condition. Finally, an application of the sensor in turning process is operated to show its performance for real-time cutting force measurement; the measured cutting forces demonstrate a good accordance with the variation of cutting parameters. Thus, the developed sensor possesses perfect properties and it gains great potential for real-time cutting force measurement in turning.

  16. Dynamic functional force measurements on an anterior bite plane during the night.

    Science.gov (United States)

    Wichelhaus, Andrea; Hüffmeier, Stefan; Sander, Franz-Günter

    2003-11-01

    Anterior bite planes are used in removable and fixed appliance treatment. In removable appliance treatment the question arising is whether the delivered forces can achieve active intrusion in terms of their amplitude and duration. In fixed appliance treatment, the force effect on the incisors and associated pathologic side effects, in particular under the application of intrusion mechanics, have to be considered. The aim of the present study was to investigate the effects of an anterior bite plane during the night. For this purpose ten subjects underwent nocturnal sleep investigations by means of a telemetric system. A silicon force sensor was integrated into an anterior bite plane for continuous measurement of bite forces and of the frequency of occlusal contact with the plate. The occlusal forces exerted on the anterior bite planes ranged between 3 and 80 N. The average forces were 5.5-24 N. The number of occlusal contacts varied between 39 and 558, with forces of between 7 and 9 N being registered in most cases. Major interindividual differences were detected in the magnitude of the force as well as in bite frequency. The intraindividual pattern of arising occlusal forces showed an intermittent force effect. No significant differences were found with regard to gender or growth pattern. In subjects with removable appliances, no active intrusion of teeth is possible during the night owing to the small number of occlusal contacts. Due to the partially very high forces in fixed appliance therapy, the integration of an anterior bite plane has to be assessed as critical in patients with unfavorable root geometry or bruxism.

  17. Assessment of masticatory function using bite force measurements in patients treated for mandibular fractures.

    Science.gov (United States)

    Sybil, Deborah; Gopalkrishnan, K

    2013-12-01

    Bite force measurements are excellent criteria for assessment of masticatory efficiency. The purpose of this study was to assess the effect of mandibular fractures on the bite forces of patients treated for such fractures. Patients who were surgically treated for isolated mandibular fractures in the Department of Oral and Maxillofacial Surgery from January 2006 to December 2007 were included in the study. Patients were asked to bite on a bite force transducer on the first, fourth, sixth, and ninth postoperative weeks. The bite force values were compared with those of age, sex, and weight-matched controls. A total of 60 patients were included in the study. It was found that maximum bite forces in patients were significantly less than in controls for several weeks after surgery. After the ninth postoperative week, the maximum bite force measured  80% the normal in patients with isolated parasymphysis fractures. The same values reduced to < 60% in patients with fractures of angle and parasymphysis and < 70% in patients with fractures of parasymphysis and condylar complex. An inverse relationship was found between the bite force values and the number of fractures of the mandible. We also found lower bite forces and longer period for normalization in patients who had fractures in those regions of the mandible which are more significantly associated with the masticatory apparatus for example angle or condyle of the mandible.

  18. Interaction force measurement between E. coli cells and nanoparticles immobilized surfaces by using AFM.

    Science.gov (United States)

    Zhang, Wen; Stack, Andrew G; Chen, Yongsheng

    2011-02-01

    To better understand environmental behaviors of nanoparticles (NPs), we used the atomic force microscopy (AFM) to measure interaction forces between E. coli cells and NPs immobilized on surfaces in an aqueous environment. The results showed that adhesion force strength was significantly influenced by particle size for both hematite (α-Fe(2)O(3)) and corundum (α-Al(2)O(3)) NPs whereas the effect on the repulsive force was not observed. The adhesion force decreased from 6.3±0.7nN to 0.8±0.4nN as hematite NPs increased from 26nm to 98nm in diameter. Corundum NPs exhibited a similar dependence of adhesion force on particle size. The Johnson-Kendall-Roberts (JKR) model was employed to estimate the contact area between E. coli cells and NPs, and based on the JKR model a new model that considers local effective contact area was developed. The prediction of the new model matched the size dependence of adhesion force in experimental results. Size effects on adhesion forces may originate from the difference in local effective contact areas as supported by our model. These findings provide fundamental information for interpreting the environmental behaviors and biological interactions of NPs, which barely have been addressed. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Identification of impact force acting on composite laminated plates using the radiated sound measured with microphones

    Science.gov (United States)

    Atobe, Satoshi; Nonami, Shunsuke; Hu, Ning; Fukunaga, Hisao

    2017-09-01

    Foreign object impact events are serious threats to composite laminates because impact damage leads to significant degradation of the mechanical properties of the structure. Identification of the location and force history of the impact that was applied to the structure can provide useful information for assessing the structural integrity. This study proposes a method for identifying impact forces acting on CFRP (carbon fiber reinforced plastic) laminated plates on the basis of the sound radiated from the impacted structure. Identification of the impact location and force history is performed using the sound pressure measured with microphones. To devise a method for identifying the impact location from the difference in the arrival times of the sound wave detected with the microphones, the propagation path of the sound wave from the impacted point to the sensor is examined. For the identification of the force history, an experimentally constructed transfer matrix is employed to relate the force history to the corresponding sound pressure. To verify the validity of the proposed method, impact tests are conducted by using a CFRP cross-ply laminate as the specimen, and an impulse hammer as the impactor. The experimental results confirm the validity of the present method for identifying the impact location from the arrival time of the sound wave detected with the microphones. Moreover, the results of force history identification show the feasibility of identifying the force history accurately from the measured sound pressure using the experimental transfer matrix.

  20. Soft colloidal probes for AFM force measurements between water droplets in oil

    KAUST Repository

    Vakarelski, Ivan Uriev

    2014-11-01

    Here we introduce an extension of the atomic force microscopy (AFM) colloidal probe technique, as a simple and reliable experimental approach to measure the interaction forces between small water droplets (~80-160. μm) dispersed in oil. Small water droplets are formed by capillary breakup of a microscale water jet in air, which is forced out of a fine capillary nozzle, and deposited on a superhydrophobic substrate immersed in tetradecane oil medium. In these conditions the water droplets are very loosely attached to the superhydrophobic substrate and are easily picked up with a hydrophobic AFM cantilever to form a soft colloidal probe. Sample force measurements are conducted to demonstrate the capability of the technique.

  1. High force measurement sensitivity with fiber Bragg gratings fabricated in uniform-waist fiber tapers

    International Nuclear Information System (INIS)

    Wieduwilt, Torsten; Brückner, Sven; Bartelt, Hartmut

    2011-01-01

    Fiber Bragg gratings inscribed in the waist of tapered photosensitive fibers offer specific attractive properties for sensing applications. A small-diameter fiber reduces structural influences for imbedded fiber sensing elements. In the case of application as a force-sensing element for tensile forces, sensitivity scales inversely with the fiber cross-sectional area. It is therefore possible to increase force sensitivity by several orders of magnitude compared to Bragg grating sensors in conventionally sized fibers. Special requirements for such Bragg grating arrangements are discussed and experimental measurements for different fiber taper diameters down to 4 µm are presented

  2. Aerodynamics of Dragonfly in Forward Flight: Force measurements and PIV results

    Science.gov (United States)

    Hu, Zheng; Deng, Xinyan

    2009-11-01

    We used a pair of dynamically scaled robotic dragonfly model wings to investigate the aerodynamic effects of wing-wing interaction in dragonflies. We follow the wing kinematics of real dragonflies in forward flight, while systematically varied the phase difference between the forewing and hindwing. Instantaneous aerodynamic forces and torques were measured on both wings, while flow visualization and PIV results were obtained. The results show that, in forward flight, wing-wing interaction always enhances the aerodynamic forces on the forewing through an upwash brought by the hindwing, while reduces the forces on the hindwing through a downwash brought by the forewing.

  3. A Hair Ribbon Deflection Model for Low-intrusiveness Measurement of Bow Force in Violin Performance

    OpenAIRE

    Marchini, Marco; Papiotis, Panos; Pérez, Alfonso; Maestre, Esteban

    2011-01-01

    This paper introduces and evaluates a novel methodologyfor the estimation of bow pressing force in violin performance, aiming at a reduced intrusiveness while maintaininghigh accuracy. The technique is based on using a simplifiedphysical model of the hair ribbon deflection, and feeding thismodel solely with position and orientation measurements ofthe bow and violin spatial coordinates. The physical modelis both calibrated and evaluated using real force data acquired by means of a load cell.

  4. Extended Measurements of Aerodynamic Stability and Limb Dislodgement Forces with the ACES-II Ejection Seat

    Science.gov (United States)

    1975-07-01

    HENNfl^ E. VON GIERKE ’ Director ;*■ Diodynamics and Bionics Division Aerospace Medical Research Laboratory <r U~ /ECcS^’O« (or HTIS ffliü...Investigator. The Air Force Technical Monitor was James W. Brinkley of the Impact Branch, Biodynamics and Bionics Division of the Aerospace Medical...ACES-II Side Arm Control Handles were Mounted on Strain-Gauged Cantilever Beams which Permit "In-Out" and "Forward-Back" Forces to be Measured 18

  5. Measurement of the traction force of biological cells by digital holography

    Science.gov (United States)

    Yu, Xiao; Cross, Michael; Liu, Changgeng; Clark, David C.; Haynie, Donald T.; Kim, Myung K.

    2011-01-01

    The traction force produced by biological cells has been visualized as distortions in flexible substrata. We have utilized quantitative phase microscopy by digital holography (DH-QPM) to study the wrinkling of a silicone rubber film by motile fibroblasts. Surface deformation and the cellular traction force have been measured from phase profiles in a direct and straightforward manner. DH-QPM is shown to provide highly efficient and versatile means for quantitatively analyzing cellular motility. PMID:22254175

  6. A novel AFM based method for force measurements between individual hair strands

    International Nuclear Information System (INIS)

    Max, Eva; Haefner, Wolfgang; Wilco Bartels, Frank; Sugiharto, Albert; Wood, Claudia; Fery, Andreas

    2010-01-01

    Interactions between hairs and other natural fibers are of broad interest for both applications and fundamental understanding of biological interfaces. We present a novel method, that allows force measurements between individual hair strands. Hair fragments can be laser-cut without altering their surface chemistry. Subsequently, they are glued onto Atomic force microscopy (AFM) cantilevers. This allows carrying out measurements between the hair fragment and surface immobilized hair in a well-defined crossed-cylinder geometry. Both force-distance and friction measurements are feasible. Measurements in air with controlled humidity and in aqueous environment show clear differences which can be explained by the dominating role of capillary interactions in air. Friction is found to be anisotropic, reflecting the fine structure of hair cuticula. While the investigations are focused on the particular example of human hair, we expect that the approach can be extended to other animal/plant fibers and thus offers perspectives for broad spectrum systems.

  7. Measurement of internal forces in superconducting accelerator magnets with strain gauge transducers

    International Nuclear Information System (INIS)

    Goodzeit, C.L.; Anerella, M.D.; Ganetis, G.L.

    1988-01-01

    An improved method has been developed for the measurement of internal forces in superconducting accelerator magnets, in particular the compressive stresses in coils and the end restraint forces on the coils. The transducers have been designed to provide improved sensitivity to purely mechanical strain by using bending mode deflections for sensing the applied loads. Strain gauge resistance measurements are made with a new system that eliminates sources of errors due to spurious resistance changes in interconnecting wiring and solder joints. The design of the transducers and their measurement system is presented along with a discussion of the method of compensation for thermal and magnetic effects, methods of calibration with typical calibration data, and measured effect in actual magnets of the thermal stress changes from cooldown and the Lorentz forces during magnet excitation. 13 figs., 1 tab

  8. A novel AFM based method for force measurements between individual hair strands

    Energy Technology Data Exchange (ETDEWEB)

    Max, Eva; Haefner, Wolfgang [Physical Chemistry II, University of Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth (Germany); Wilco Bartels, Frank [Polymer Physics, Global PU Specialties Research, BASF Polyurethanes GmbH, Elastogranstrasse 60, 49448 Lemfoerde (Germany); Sugiharto, Albert [Polymer Physics and Analytics, G201, 67056 Ludwigshafen (Germany); Wood, Claudia [Care Chemicals and Formulators, Personal Care Ingredients, New Business and Application Development, BASF SE, E-EMV/GP - H201, 67056 Ludwigshafen (Germany); Fery, Andreas, E-mail: andreas.fery@uni-bayreuth.de [Physical Chemistry II, University of Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth (Germany)

    2010-03-15

    Interactions between hairs and other natural fibers are of broad interest for both applications and fundamental understanding of biological interfaces. We present a novel method, that allows force measurements between individual hair strands. Hair fragments can be laser-cut without altering their surface chemistry. Subsequently, they are glued onto Atomic force microscopy (AFM) cantilevers. This allows carrying out measurements between the hair fragment and surface immobilized hair in a well-defined crossed-cylinder geometry. Both force-distance and friction measurements are feasible. Measurements in air with controlled humidity and in aqueous environment show clear differences which can be explained by the dominating role of capillary interactions in air. Friction is found to be anisotropic, reflecting the fine structure of hair cuticula. While the investigations are focused on the particular example of human hair, we expect that the approach can be extended to other animal/plant fibers and thus offers perspectives for broad spectrum systems.

  9. Measurement of friction force between two mica surfaces with multiple beam interferometry

    Directory of Open Access Journals (Sweden)

    Jung J.C.

    2010-06-01

    Full Text Available Friction forces play a crucial role in the tribological behaviour of microcomponents and the application of MEMS products. It is necessary to develop a measurement system to understand and control the material characteristics. In this study, a microscopic measurement system based on multiple beam interferometry is developed to measure the friction force between two mica thin films. Some frictional behaviour between the two mica sheets in contact are reported. The evaluated shear strength of mica agrees well to the existing data. It is possible to use the developed system for micro-tribology study.

  10. Cellular dynamics of bovine aortic smooth muscle cells measured using MEMS force sensors

    Science.gov (United States)

    Tsukagoshi, Takuya; Nguyen, Thanh-Vinh; Hirayama Shoji, Kayoko; Takahashi, Hidetoshi; Matsumoto, Kiyoshi; Shimoyama, Isao

    2018-04-01

    Adhesive cells perceive the mechanical properties of the substrates to which they adhere, adjusting their cellular mechanical forces according to their biological characteristics. This mechanical interaction subsequently affects the growth, locomotion, and differentiation of the cell. However, little is known about the detailed mechanism that underlies this interaction between adherent cells and substrates because dynamically measuring mechanical phenomena is difficult. Here, we utilize microelectromechamical systems force sensors that can measure cellular traction forces with high temporal resolution (~2.5 µs) over long periods (~3 h). We found that the cellular dynamics reflected physical phenomena with time scales from milliseconds to hours, which contradicts the idea that cellular motion is slow. A single focal adhesion (FA) generates an average force of 7 nN, which disappears in ms via the action of trypsin-ethylenediaminetetraacetic acid. The force-changing rate obtained from our measurements suggests that the time required for an FA to decompose was nearly proportional to the force acting on the FA.

  11. An implantable telemetry device to measure intra-articular tibial forces.

    Science.gov (United States)

    D'Lima, Darryl D; Townsend, Christopher P; Arms, Steven W; Morris, Beverly A; Colwell, Clifford W

    2005-02-01

    Tibial forces are important because they determine polyethylene wear, stress distribution in the implant, and stress transfer to underlying bone. Theoretic estimates of tibiofemoral forces have varied between three and six times the body weight depending on the mathematical models used and the type of activity analyzed. An implantable telemetry system was therefore developed to directly measure tibiofemoral compressive forces. This system was tested in a cadaver knee in a dynamic knee rig. A total knee tibial arthroplasty prosthesis was instrumented with four force transducers located at the four corners of the tibial tray. These transducers measured the total compressive forces on the tibial tray and the location of the center of pressure. A microprocessor performed analog-to-digital signal conversion and performed pulse code modulation of a surface acoustic wave radio frequency oscillator. This signal was then transmitted through a single pin hermetic feed-through tantalum wire antenna located at the tip of the stem. The radio frequency signal was received by an external antenna connected to a receiver and to a computer for data acquisition. The prosthesis was powered by external coil induction. The tibial transducer accurately measured both the magnitude and the location of precisely applied external loads. Successful transmission of the radio frequency signal up to a range of 3m was achieved through cadaveric bone, bone cement, and soft tissue. Reasonable accuracy was obtained in measuring loads applied through a polyethylene insert. The implant was also able to detect unicondylar loading with liftoff.

  12. Non-Newtonian Gravity and New Weak Forces: an Index of Measurements and Theory

    Science.gov (United States)

    Fischbach, E.; Gillies, G. T.; Krause, D. E.; Schwan, J. G.; Talmadge, C.

    1992-01-01

    The precise measurement of weak effects plays a pivotal role in metrology and in the determination of the fundamental constants. Hence, the possibility of new weak forces, and the related question of non-Newtonian behaviour of the gravitational force, have been of special interest to both measurement scientists and those involved in precise tests of physical laws. To date there is no compelling evidence for any deviations from the predictions of Newtonian gravity in the nonrelativistic weak-field regime. A significant literature on this question has developed over the past few years, and a host of experiments and theoretical scenarios have been discussed. Moreover, a very close relationship exists between the experimental methodologies used to determine the absolute value of the Newtonian gravitational constant G, and those employed in searches for new weak forces and for breakdowns in the inverse-square law of gravity. We have therefore prepared a new index of measurements of such effects, using the original bibliographic work of Gillies as a starting point, but also including citations to the appropriate theoretical papers in the field. The focus of the present version of the index is then studies of the "fifth force", measurements of gravitational effects on antimatter, searches for a spin-component in the gravitational force, and related phenomena.

  13. Hilbert phase dynamometry (HPD) for real-time measurement of cell generated forces (Conference Presentation)

    Science.gov (United States)

    Sridharan, Shamira; Li, Yanfen; Bhaduri, Basanta; Majeed, Hassaan; Dupenloup, Paul; Levine, Alex; Kilian, Kristopher A.; Popescu, Gabriel

    2016-03-01

    Traction force microscopy is the most widely used technique for studying the forces exerted by cells on deformable substrates. However, the method is computationally intense and cells have to be detached from the substrate prior to measuring the displacement map. We have developed a new method, referred to as Hilbert phase dynamometry (HPD), which yields real-time force fields and, simultaneously, cell dry mass and growth information. HPD operates by imaging cells on a deformable substrate that is patterned with a grid of fluorescent proteins. A Hilbert transform is used to extract the phase map associated with the grid deformation, which provides the displacement field. By combining this information with substrate stiffness, an elasticity model was developed to measure forces exerted by cells with high spatial resolution. In our study, we prepared 10kPa gels and them with a 2-D grid of FITC-conjugated fibrinogen/fibronectin mixture, an extracellular matrix protein to which cells adhere. We cultured undifferentiated mesenchymal stem cells (MSC), and MSCs that were in the process of undergoing adipogenesis and osteogenesis. The cells were measured over the course of 24 hours using Spatial Light Interference Microscopy (SLIM) and wide-field epi-fluorescence microscopy allowing us to simultaneously measure cell growth and the forces exerted by the cells on the substrate.

  14. Radial loads and axial thrusts on centrifugal pumps

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The proceedings of a seminar organised by the Power Industries Division of the IMechE are presented in this text. Complete contents: Review of parameters influencing hydraulic forces on centrifugal impellers; The effect of fluid forces at various operation conditions on the vibrations of vertical turbine pumps; A review of the pump rotor axial equilibrium problem - some case studies; Dynamic hydraulic loading on a centrifugal pump impeller; Experimental research on axial thrust loads of double suction centrifugal pumps; A comparison of pressure distribution and radial loads on centrifugal pumps; A theoretical and experimental investigation of axial thrusts within a multi-stage centrifugal pump

  15. Phase-resolved fluid dynamic forces of a flapping foil energy harvester based on PIV measurements

    Science.gov (United States)

    Liburdy, James

    2017-11-01

    Two-dimensional particle image velocimetry measurements are performed in a wind tunnel to evaluate the spatial and temporal fluid dynamic forces acting on a flapping foil operating in the energy harvesting regime. Experiments are conducted at reduced frequencies (k = fc/U) of 0.05 - 0.2, pitching angle of, and heaving amplitude of A / c = 0.6. The phase-averaged pressure field is obtained by integrating the pressure Poisson equation. Fluid dynamic forces are then obtained through the integral momentum equation. Results are compared with a simple force model based on the concept of flow impulse. These results help to show the detailed force distributions, their transient nature and aide in understanding the impact of the fluid flow structures that contribute to the power production.

  16. Measurements on hydrophobic and hydrophilic surfaces using a porous gamma alumina nanoparticle aggregate mounted on Atomic Force Microscopy cantilevers

    NARCIS (Netherlands)

    Das, Theerthankar; Becker, Thomas; Nair, Balagopal N.

    2010-01-01

    Atomic Force Microscopy (AFM) measurements are extensively used for a detailed understanding of molecular and surface forces. In this study, we present a technique for measuring such forces, using an AFM cantilever attached with a porous gamma alumina nanoparticle aggregate. The modified cantilever

  17. Harmonic Force Spectroscopy measures load-dependent kinetics of individual human β-cardiac myosin molecules

    DEFF Research Database (Denmark)

    Sung, Jongmin; Nag, Suman; Mortensen, Kim

    2015-01-01

    Molecular motors are responsible for numerous cellular processes from cargo transport to heart contraction. Their interactions with other cellular components are often transient and exhibit kinetics that depend on load. Here, we measure such interactions using ‘harmonic force spectroscopy....... The protocol accumulates statistics fast enough to deliver single-molecule results from single-molecule experiments. We demonstrate the method’s performance by measuring the force-dependent kinetics of individual human b-cardiac myosin molecules interacting with an actin filament at physiological ATP...

  18. Measurement of the axial and radial diffusivities of a 2D composite material between 500 deg. C and 1500 deg. C; Mesure des diffusivites axiale et radiale d`un composite 2D entre 500 deg. C et 1500 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Demange, D.; Beauchene, P.; Casulleras, R.; Bejet, M. [ONERA, 92 - Chatillon (France); Maillet, D.; Sanson, O. [Lemta (France)

    1996-12-31

    A new experimental method of simultaneous measurement of thermal diffusivity along the two main directions of thin composite materials with a ceramic-based matrix has been developed by the ONERA, the French national office of aerospace studies and research. The principle of this method, derived from the `flash` method consists in the heterogeneous insolation of one face of a cylindrical sample (central spot or ring) in order to analyze the thermal transfers along the axial and radial directions of the sample. Experimental development are in progress and will be integrated to a flash diffusion-meter in operation at the ONERA. (J.S.) 11 refs.

  19. In situ friction measurement on murine cartilage by atomic force microscopy.

    Science.gov (United States)

    Coles, Jeffrey M; Blum, Jason J; Jay, Gregory D; Darling, Eric M; Guilak, Farshid; Zauscher, Stefan

    2008-01-01

    Articular cartilage provides a low-friction, wear-resistant surface for the motion of diarthrodial joints. The objective of this study was to develop a method for in situ friction measurement of murine cartilage using a colloidal probe attached to the cantilever of an atomic force microscope. Sliding friction was measured between a chemically functionalized microsphere and the cartilage of the murine femoral head. Friction was measured at normal loads ranging incrementally from 20 to 100 nN with a sliding speed of 40 microm/s and sliding distance of 64 microm. Under these test conditions, hydrostatic pressurization and biphasic load support in the cartilage were minimized, providing frictional measurements that predominantly reflect boundary lubrication properties. Friction coefficients measured on murine tissue (0.25+/-0.11) were similar to those measured on porcine tissue (0.23+/-0.09) and were in general agreement with measurements of boundary friction on cartilage by other researchers. Using the colloidal probe as an indenter, the elastic mechanical properties and surface roughness were measured in the same configuration. Interfacial shear was found to be the principal mechanism of friction generation, with little to no friction resulting from plowing forces, collision forces, or energy losses due to normal deformation. This measurement technique can be applied to future studies of cartilage friction and mechanical properties on genetically altered mice or other small animals.

  20. Biomechanical analysis of penile erections: penile buckling behaviour under axial loading and radial compression.

    Science.gov (United States)

    Timm, Gerald W; Elayaperumal, Santhi; Hegrenes, Jami

    2008-07-01

    To characterize the biomechanics of erectile function, as contrary reports have modelled the penis as an isotropic material and state that only axial buckling tests can effectively predict penile rigidity; that assumption is questioned and an alternative structure proposed and validated. Three experimental physical cylindrical models of diameters 1.9, 2.54 and 3.81 cm were fabricated and the relationship between axial loading and radial compression was measured for cylindrical pressures of 8-20 kPa. A finite element analysis (FEA) computer model of the penis was constructed to simulate the response of the corpora cavernosa to axial and radial loading for differing diameters and lengths of the penile shaft. The stresses developed in the tunica albuginea of the corporal bodies of the penis during buckling were assessed using a mathematical analysis. From the analysis of surface stresses under variable axial loading, as the angle of an applied load changes on an isotropic shaft, the magnitude of surface stresses varies up to 50 kPa, and for a pressure vessel the magnitude of surface stresses varies up to 100 kPa. The FEA model showed that nodal displacements were greatest around a ring under radial compression, and for the axially loaded model displacements were greatest at the vessel tip under the force gauge. All displacements were 0.1-1.0 mm. There was an exponential relationship between internal pressure and the axial force required to cause buckling in a thin-walled pressure vessel. There was a nearly constant relationship between circumferential displacement and internal pressure under uniform radial compression. The displacement values on the FEA analysis were approximately equal outside of the areas of high stress which were under the load of the external device (compressive ring or force gauge) in both cases. Physical modelling shows that when a pressurized vessel is under either axial or radial load the internal pressure increases. Vessels at high internal

  1. Investigating the adsorption of the gemini surfactant "12-2-12" onto mica using atomic force microscopy and surface force apparatus measurements

    NARCIS (Netherlands)

    Fielden, ML; Claesson, PM; Verrall, RE

    1999-01-01

    The adsorption of the cationic gemini surfactant 1,2-bis(n-dodecyldimethylammonium)ethane dibromide on mica was followed by measuring forces between mica surfaces and by atomic force microscopy (AFM) imaging. The surface charge was found to be neutralized at total surfactant concentrations between 8

  2. Direct measurement and modulation of single-molecule coordinative bonding forces in a transition metal complex

    DEFF Research Database (Denmark)

    Hao, Xian; Zhu, Nan; Gschneidtner, Tina

    2013-01-01

    remain a daunting challenge. Here we demonstrate an interdisciplinary and systematic approach that enables measurement and modulation of the coordinative bonding forces in a transition metal complex. Terpyridine is derived with a thiol linker, facilitating covalent attachment of this ligand on both gold...... substrate surfaces and gold-coated atomic force microscopy tips. The coordination and bond breaking between terpyridine and osmium are followed in situ by electrochemically controlled atomic force microscopy at the single-molecule level. The redox state of the central metal atom is found to have......Coordination chemistry has been a consistently active branch of chemistry since Werner's seminal theory of coordination compounds inaugurated in 1893, with the central focus on transition metal complexes. However, control and measurement of metal-ligand interactions at the single-molecule level...

  3. Measurement and prediction of cutting forces and vibrations on longwall shearers

    Energy Technology Data Exchange (ETDEWEB)

    Bulent Tiryaki [CRCMining (Australia)

    2006-12-15

    CRCMining has developed the Cutting Head Performance Analysis Software (CPAS) to predict cutter motor power, ranging arm reaction forces, and vibrations for different drum designs, coal seams, and shearer operational conditions. This project describes the work on THE DBT EL3000 shearer at Beltana to validate/update CPAS by measuring the cutter motor power, ranging arm vibrations, and reaction forces through an online data acquisition system called Cutting Head Performance Monitoring System (CPMS). This system records the outputs of six strain gauge bridges, six accelerometers, and two pressure transducers on ranging arms during underground coal production. CPAS2 has then been developed in order to eliminate the needs for performing coal cutting tests for the target coal seam. CPAS2 simulations for cutter motor power, vertical reaction force, and vibrations were also close to those measured in the trials. CRCMining will release the CPAS code including fully functioning software code on CD to Australian coal mining industry.

  4. Measurement of levitation force and critical current density of melt textured YBa2Cu3Ox

    International Nuclear Information System (INIS)

    Lehndorff, B.; Kuerschner, H.G.; Busch, D.; Fischer, B.; Piel, H.

    1993-01-01

    By various Melt Textured Growth (MTG) processes YBa 2 Cu 3 O x (Y-123) samples have been prepared with high critical current densities and high levitation forces. The best value of both have been reported by Murakami et al., who used the melt powder melt growth (MPMG) process with platinum addition. These melt textured samples are applicable to magnetic bearings (3). The goal of this work is to develop technical High Temperature Superconductors (HTSC) for bearings and magnet application. In order to optimize the HTSC material for this purpose, levitation force and critical current measurements were carried out. Within this work samples were prepared by the modified Salama method. Levitation force was measured as a function of the distance between the magnet and the superconductor. The critical current density was determined by an inductive method. (orig.)

  5. Minimising the effect of nanoparticle deformation in intermittent contact amplitude modulation atomic force microscopy measurements

    International Nuclear Information System (INIS)

    Babic, Bakir; Lawn, Malcolm A.; Coleman, Victoria A.; Jämting, Åsa K.; Herrmann, Jan

    2016-01-01

    The results of systematic height measurements of polystyrene (PS) nanoparticles using intermittent contact amplitude modulation atomic force microscopy (IC-AM-AFM) are presented. The experimental findings demonstrate that PS nanoparticles deform during AFM imaging, as indicated by a reduction in the measured particle height. This deformation depends on the IC-AM-AFM imaging parameters, material composition, and dimensional properties of the nanoparticles. A model for nanoparticle deformation occurring during IC-AM-AFM imaging is developed as a function of the peak force which can be calculated for a particular set of experimental conditions. The undeformed nanoparticle height can be estimated from the model by extrapolation to zero peak force. A procedure is proposed to quantify and minimise nanoparticle deformation during IC-AM-AFM imaging, based on appropriate adjustments of the experimental control parameters.

  6. A Noncontact Force Sensor Based on a Fiber Bragg Grating and Its Application for Corrosion Measurement

    Directory of Open Access Journals (Sweden)

    Antonio C. Bruno

    2013-08-01

    Full Text Available A simple noncontact force sensor based on an optical fiber Bragg grating attached to a small magnet has been proposed and built. The sensor measures the force between the magnet and any ferromagnetic material placed within a few millimeters of the sensor. Maintaining the sensor at a constant standoff distance, material loss due to corrosion increases the distance between the magnet and the corroded surface, which decreases the magnetic force. This will decrease the strain in the optical fiber shifting the reflected Bragg wavelength. The measured shift for the optical fiber used was 1.36 nm per Newton. Models were developed to optimize the magnet geometry for a specific sensor standoff distance and for particular corrosion pit depths. The sensor was able to detect corrosion pits on a fuel storage tank bottom with depths in the sub-millimeter range.

  7. Atomic force microscope adhesion measurements and atomistic molecular dynamics simulations at different humidities

    International Nuclear Information System (INIS)

    Seppä, Jeremias; Sairanen, Hannu; Korpelainen, Virpi; Husu, Hannu; Heinonen, Martti; Lassila, Antti; Reischl, Bernhard; Raiteri, Paolo; Rohl, Andrew L; Nordlund, Kai

    2017-01-01

    Due to their operation principle atomic force microscopes (AFMs) are sensitive to all factors affecting the detected force between the probe and the sample. Relative humidity is an important and often neglected—both in experiments and simulations—factor in the interaction force between AFM probe and sample in air. This paper describes the humidity control system designed and built for the interferometrically traceable metrology AFM (IT-MAFM) at VTT MIKES. The humidity control is based on circulating the air of the AFM enclosure via dryer and humidifier paths with adjustable flow and mixing ratio of dry and humid air. The design humidity range of the system is 20–60 %rh. Force–distance adhesion studies at humidity levels between 25 %rh and 53 %rh are presented and compared to an atomistic molecular dynamics (MD) simulation. The uncertainty level of the thermal noise method implementation used for force constant calibration of the AFM cantilevers is 10 %, being the dominant component of the interaction force measurement uncertainty. Comparing the simulation and the experiment, the primary uncertainties are related to the nominally 7 nm radius and shape of measurement probe apex, possible wear and contamination, and the atomistic simulation technique details. The interaction forces are of the same order of magnitude in simulation and measurement (5 nN). An elongation of a few nanometres of the water meniscus between probe tip and sample, before its rupture, is seen in simulation upon retraction of the tip in higher humidity. This behaviour is also supported by the presented experimental measurement data but the data is insufficient to conclusively verify the quantitative meniscus elongation. (paper)

  8. Three-Dimensional Force Measurements During Rapid Palatal Expansion in Sus scrofa

    Directory of Open Access Journals (Sweden)

    Kelly Goeckner

    2016-04-01

    Full Text Available Rapid palatal expansion is an orthodontic procedure widely used to correct the maxillary arch. However, its outcome is significantly influenced by factors that show a high degree of variability amongst patients. The traditional treatment methodology is based on an intuitive and heuristic treatment approach because the forces applied in the three dimensions are indeterminate. To enable optimal and individualized treatment, it is essential to measure the three-dimensional (3D forces and displacements created by the expander. This paper proposes a method for performing these 3D measurements using a single embedded strain sensor, combining experimental measurements of strain in the palatal expander with 3D finite element analysis (FEA. The method is demonstrated using the maxillary jaw from a freshly euthanized pig (Sus scrofa and a hyrax-design rapid palatal expander (RPE appliance with integrated strain gage. The strain gage measurements are recorded using a computer interface, following which the expansion forces and extent of expansion are estimated by FEA. A total activation of 2.0 mm results in peak total force of about 100 N—almost entirely along the direction of expansion. The results also indicate that more than 85% of the input activation is immediately transferred to the palate and/or teeth. These studies demonstrate a method for assessing and individualizing expansion magnitudes and forces during orthopedic expansion of the maxilla. This provides the basis for further development of smart orthodontic appliances that provide real-time readouts of forces and movements, which will allow personalized, optimal treatment.

  9. [Hip abduction force measured by a new method and its relation to EMG activity].

    Science.gov (United States)

    Murakami, K

    1989-11-01

    I measured hip abduction force using a new device of my own design and evaluated the correlation between hip abduction force and electromyographic (EMG) activity of the gluteus medius, gluteus maximus, rectus femoris and adductor longus in 20 normal adults. Hip abduction force showed a maximum value on starting and decreased during abduction of the hip joint. Durability, on the other hand, showed an increase. The attenuation curve was approximated to the exponential function A.e-Kt; A and l/k indicating maximum hip abduction force and durability, respectively. Maximum hip abduction force was about 20 kg and durability was about 160 seconds on starting hip abduction. The regression coefficient between hip abduction force and EMG activity of the gluteus medius, gluteus maximus, rectus femoris and adductor longus was 1.5, 06, 0.6 and 0.2 respectively. From these results, I concluded that although the gluteus medius plays the major role in hip abduction, the rectus femoris and gluteus maximus may act as stabilizers for maintaining the position of hip abduction.

  10. Numerical and experimental study on vorticity measurement in liquid metal using local Lorentz force velocimetry

    Science.gov (United States)

    Hernández, Daniel; Marangoni, Rafael; Schleichert, Jan; Karcher, Christian; Fröhlich, Thomas; Wondrak, Thomas

    2018-03-01

    Local Lorentz force velocimetry (local LFV) is a contactless velocity measurement technique for liquid metals. Due to the relative movement between an electrically conductive fluid and a static applied magnetic field, eddy currents and a flow-braking Lorentz force are generated inside the metal melt. This force is proportional to the flow rate or to the local velocity, depending on the volume subset of the flow spanned by the magnetic field. By using small-size magnets, a localized magnetic field distribution is achieved allowing a local velocity assessment in the region adjacent to the wall. In the present study, we describe a numerical model of our experiments at a continuous caster model where the working fluid is GaInSn in eutectic composition. Our main goal is to demonstrate that this electromagnetic technique can be applied to measure vorticity distributions, i.e. to resolve velocity gradients as well. Our results show that by using a cross-shaped magnet system, the magnitude of the torque perpendicular to the surface of the mold significantly increases improving its measurement in a liquid metal flow. According to our numerical model, this torque correlates with the vorticity of the velocity in this direction. Before validating our numerical predictions, an electromagnetic dry calibration of the measurement system composed of a multicomponent force and torque sensor and a cross-shaped magnet was done using a rotating disk made of aluminum. The sensor is able to measure simultaneously all three components of force and torque, respectively. This calibration step cannot be avoided and it is used for an accurate definition of the center of the magnet with respect to the sensor’s coordinate system for torque measurements. Finally, we present the results of the experiments at the mini-LIMMCAST facility showing a good agreement with the numerical model.

  11. Development of a quartz tuning-fork-based force sensor for measurements in the tens of nanoNewton force range during nanomanipulation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Oiko, V. T. A., E-mail: oiko@ifi.unicamp.br; Rodrigues, V.; Ugarte, D. [Instituto de Física “Gleb Wataghin,” Univ. Estadual de Campinas (UNICAMP), Campinas 13083-859 (Brazil); Martins, B. V. C. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada); Silva, P. C. [Laboratório Nacional de Nanotecnologia, CNPEM, Campinas 13083-970 (Brazil)

    2014-03-15

    Understanding the mechanical properties of nanoscale systems requires new experimental and theoretical tools. In particular, force sensors compatible with nanomechanical testing experiments and with sensitivity in the nN range are required. Here, we report the development and testing of a tuning-fork-based force sensor for in situ nanomanipulation experiments inside a scanning electron microscope. The sensor uses a very simple design for the electronics and it allows the direct and quantitative force measurement in the 1–100 nN force range. The sensor response is initially calibrated against a nN range force standard, as, for example, a calibrated Atomic Force Microscopy cantilever; subsequently, applied force values can be directly derived using only the electric signals generated by the tuning fork. Using a homemade nanomanipulator, the quantitative force sensor has been used to analyze the mechanical deformation of multi-walled carbon nanotube bundles, where we analyzed forces in the 5–40 nN range, measured with an error bar of a few nN.

  12. Flexible Piezoelectric Tactile Sensor Array for Dynamic Three-Axis Force Measurement.

    Science.gov (United States)

    Yu, Ping; Liu, Weiting; Gu, Chunxin; Cheng, Xiaoying; Fu, Xin

    2016-06-03

    A new flexible piezoelectric tactile sensor array based on polyvinylidene fluoride (PVDF) film is proposed for measuring three-axis dynamic contact force distribution. The array consists of six tactile units arranged as a 3 × 2 matrix with spacing 8 mm between neighbor units. In each unit, a PVDF film is sandwiched between four square-shaped upper electrodes and one square-shaped lower electrode, forming four piezoelectric capacitors. A truncated pyramid bump is located above the four piezoelectric capacitors to improve force transmission. A three-axis contact force transmitted from the top of the bump will lead to the four piezoelectric capacitors underneath undergoing different charge changes, from which the normal and shear components of the force can be calculated. A series of dynamic tests have been carried out by exerting sinusoidal forces with amplitudes ranging from 0 to 0.5 N in the x-axis, 0 to 0.5 N in the y-axis, and 0 to 1.5 N in the z-axis, separately. The tactile units show good sensitivities with 14.93, 14.92, and 6.62 pC/N in the x-, y-, and z-axes, respectively. They can work with good linearity, relatively low coupling effect, high repeatability, and acceptable frequency response in the range of 5-400 Hz to both normal and shear load. In addition, dynamic three-axis force measurement has been conducted for all of the tactile units. The average errors between the applied and calculated forces are 10.68% ± 6.84%. Furthermore, the sensor array can be easily integrated onto a curved surface, such as robotic and prosthetic hands, due to its excellent flexibility.

  13. Flexible Piezoelectric Tactile Sensor Array for Dynamic Three-Axis Force Measurement

    Directory of Open Access Journals (Sweden)

    Ping Yu

    2016-06-01

    Full Text Available A new flexible piezoelectric tactile sensor array based on polyvinylidene fluoride (PVDF film is proposed for measuring three-axis dynamic contact force distribution. The array consists of six tactile units arranged as a 3 × 2 matrix with spacing 8 mm between neighbor units. In each unit, a PVDF film is sandwiched between four square-shaped upper electrodes and one square-shaped lower electrode, forming four piezoelectric capacitors. A truncated pyramid bump is located above the four piezoelectric capacitors to improve force transmission. A three-axis contact force transmitted from the top of the bump will lead to the four piezoelectric capacitors underneath undergoing different charge changes, from which the normal and shear components of the force can be calculated. A series of dynamic tests have been carried out by exerting sinusoidal forces with amplitudes ranging from 0 to 0.5 N in the x-axis, 0 to 0.5 N in the y-axis, and 0 to 1.5 N in the z-axis, separately. The tactile units show good sensitivities with 14.93, 14.92, and 6.62 pC/N in the x-, y-, and z-axes, respectively. They can work with good linearity, relatively low coupling effect, high repeatability, and acceptable frequency response in the range of 5–400 Hz to both normal and shear load. In addition, dynamic three-axis force measurement has been conducted for all of the tactile units. The average errors between the applied and calculated forces are 10.68% ± 6.84%. Furthermore, the sensor array can be easily integrated onto a curved surface, such as robotic and prosthetic hands, due to its excellent flexibility.

  14. Measurement of Levitation Forces of High-"T[subscript c] Superconductors

    Science.gov (United States)

    Becker, M.; Koblischka, M. R.; Hartmann, U.

    2010-01-01

    We show the construction of a so-called levitation balance which is capable of measuring the levitation forces between a permanent magnet and a superconducting high-T[subscript c] thin film sample. The underlying theoretical basis is discussed in detail. The experiment is performed as an introductory physics experiment for school students as well…

  15. Validity and reliability of strain gauge measurement of volitional quadriceps force in patients with COPD.

    Science.gov (United States)

    Machado Rodrigues, Fernanda; Demeyer, Heleen; Hornikx, Miek; Camillo, Carlos Augusto; Calik-Kutukcu, Ebru; Burtin, Chris; Janssens, Wim; Troosters, Thierry; Osadnik, Christian

    2017-08-01

    This study investigated the validity and reliability of fixed strain gauge measurements of isometric quadriceps force in patients with chronic obstructive pulmonary disease (COPD). A total cohort of 138 patients with COPD were assessed. To determine validity, maximal volitional quadriceps force was evaluated during isometric maximal voluntary contraction (MVC) manoeuvre via a fixed strain gauge dynamometer and compared to (a) potentiated non-volitional quadriceps force obtained via magnetic stimulation of the femoral nerve (twitch (Tw); n = 92) and (b) volitional computerized dynamometry (Biodex; n = 46) and analysed via correlation coefficients. Test-retest and absolute reliability were determined via calculations of intra-class correlation coefficients (ICCs), smallest real differences (SRDs) and standard errors of measurement (SEMs). For this, MVC recordings in each device were performed across two test sessions separated by a period of 7 days ( n = 46). Strain gauge measures of MVC demonstrated very large correlation with Tw and Biodex results ( r = 0.86 and 0.88, respectively, both p gauge and Biodex devices (ICC = 0.96 vs. 0.93; SEM = 8.50 vs. 10.54 N·m and SRD = 23.59 vs. 29.22 N·m, respectively). The results support that strain gauge measures of quadriceps force are valid and reliable in patients with COPD.

  16. Force Measurements on a 1/40-scale Model of the U. S. Airship "Akron."

    Science.gov (United States)

    Freeman, Hugh B

    1933-01-01

    This report describes a series of tests made on a 1/40-scale model of the U. S. Airship "Akron" (ZRS-4) for the purpose of determining the drag, lift, and pitching moments of the bare hull and of the hull equipped with two different sets of fins. Measurements were also made of the elevator forces and hinge moments.

  17. THE EFFECT OF SUBMAXIMAL INHALATION ON MEASURES DERIVED FROM FORCED EXPIRATORY SPIROMETRY

    Science.gov (United States)

    THE EFFECT OF SUBMAXIMAL INHALATION ON MEASURES DERIVED FROM FORCED EXPIRATORY SPIROMETRY. William F. McDonnell Human Studies Division, NHEERL, U.S. Environmental Protection Agency, RTP, NC 27711. Short-term exposure to ozone results in a neurally-mediated decrease in the ab...

  18. The Measurement of Non-Linear Forces and Moments by Means of Free Flight Tests

    National Research Council Canada - National Science Library

    Murphy, Charles

    1956-01-01

    .... Excellent internal consistency has been observed in measuring non-linear normal and Magnus forces and their moments and, in all cases where wind tunnel results were available, they were in good agreement with range results. The application of this technique to the equally important problem of predicting yawing motion is described.

  19. Elastic-properties measurement at high temperatures through contact resonance atomic force microscopy

    DEFF Research Database (Denmark)

    Marinello, Francesco; Pezzuolo, Andrea; Carmignato, Simone

    2015-01-01

    fast direct and non-destructive measurement of Young's modulus and related surface parameters.In this work an instrument set up for Contact Resonance Atomic Force Microscopy is proposed, where the sample with is coupled to a heating stage and a piezoelectric transducer directly vibrate the cantilever...

  20. Variability in Measurement of Swimming Forces: A Meta-Analysis of Passive and Active Drag

    Science.gov (United States)

    Havriluk, Rod

    2007-01-01

    An analysis was conducted to identify sources of true and error variance in measuring swimming drag force to draw valid conclusions about performance factor effects. Passive drag studies were grouped according to methodological differences: tow line in pool, tow line in flume, and carriage in tow tank. Active drag studies were grouped according to…

  1. Force-displacement measurements of earlywood bordered pits using a mesomechanical tester

    Science.gov (United States)

    Samuel L. Zelinka; Keith J. Bourne; John C. Hermanson; Samuel V. Glass; Adriana Costa; Alex C. Wiedenhoeft

    2015-01-01

    The elastic properties of pit membranes are reported to have important implications in understanding air-seeding phenomena in gymnosperms, and pit aspiration plays a large role in wood technological applications such as wood drying and preservative treatment. Here we present force–displacement measurements for pit membranes of circular bordered pits, collected on a...

  2. Measuring q/m for Water Drops--An Introduction to the Effects of Electrical Forces

    Science.gov (United States)

    Hart, Francis X.

    1974-01-01

    Discusses an experiment which introduces students to the effects of electrical forces on the motion of macroscopic objects. Included are the proecedures of measuring the charge-to-mass ratio from deflections of charged water drops in horizontal fields and the overall charges delivered in a Faraday cup. (CC)

  3. Design and Analysis of a Sensor System for Cutting Force Measurement in Machining Processes

    Directory of Open Access Journals (Sweden)

    Qiaokang Liang

    2016-01-01

    Full Text Available Multi-component force sensors have infiltrated a wide variety of automation products since the 1970s. However, one seldom finds full-component sensor systems available in the market for cutting force measurement in machine processes. In this paper, a new six-component sensor system with a compact monolithic elastic element (EE is designed and developed to detect the tangential cutting forces Fx, Fy and Fz (i.e., forces along x-, y-, and z-axis as well as the cutting moments Mx, My and Mz (i.e., moments about x-, y-, and z-axis simultaneously. Optimal structural parameters of the EE are carefully designed via simulation-driven optimization. Moreover, a prototype sensor system is fabricated, which is applied to a 5-axis parallel kinematic machining center. Calibration experimental results demonstrate that the system is capable of measuring cutting forces and moments with good linearity while minimizing coupling error. Both the Finite Element Analysis (FEA and calibration experimental studies validate the high performance of the proposed sensor system that is expected to be adopted into machining processes.

  4. Trial manufacture of rotary friction tester and frictional force measurement of metals

    CERN Document Server

    Abe, T; Kanari, M; Tanzawa, S

    2002-01-01

    In the plasma confinement type fusion reactor, in-vessel structures such as a blanket module slide at the joints each other when plasma disruption occurs, and then frictional heat is generated there. Therefore, for the selection of material and the use as the design data, it is important to understand the frictional characteristics of metals and ceramic films in the vacuum. In the present study, we have manufactured a prototype of rotary friction tester and examined the performances of the tester. The frictional characteristics of metals in the room air was measured using the friction tester, and the results obtained are as follows. A drifting friction force for a constant time and a friction force during the idling were 98 mN and 225 mN, respectively. These values were sufficiently small as compared to pressing load (9.8 - 57.8 N) used in the friction test. In a friction force measurement of stainless steel, dynamic friction force obeyed Amontons' law which indicated that dynamic friction force is not depend...

  5. Interface bonding in silicon oxide nanocontacts: interaction potentials and force measurements

    Science.gov (United States)

    Wierez-Kien, M.; Craciun, A. D.; Pinon, A. V.; Le Roux, S.; Gallani, J. L.; Rastei, M. V.

    2018-04-01

    The interface bonding between two silicon-oxide nanoscale surfaces has been studied as a function of atomic nature and size of contacting asperities. The binding forces obtained using various interaction potentials are compared with experimental force curves measured in vacuum with an atomic force microscope. In the limit of small nanocontacts (typically measured with sensitive probes the bonding is found to be influenced by thermal-induced fluctuations. Using interface interactions described by Morse, embedded atom model, or Lennard-Jones potential within reaction rate theory, we investigate three bonding types of covalent and van der Waals nature. The comparison of numerical and experimental results reveals that a Lennard-Jones-like potential originating from van der Waals interactions captures the binding characteristics of dry silicon oxide nanocontacts, and likely of other nanoscale materials adsorbed on silicon oxide surfaces. The analyses reveal the importance of the dispersive surface energy and of the effective contact area which is altered by stretching speeds. The mean unbinding force is found to decrease as the contact spends time in the attractive regime. This contact weakening is featured by a negative aging coefficient which broadens and shifts the thermal-induced force distribution at low stretching speeds.

  6. Design and Analysis of a Sensor System for Cutting Force Measurement in Machining Processes.

    Science.gov (United States)

    Liang, Qiaokang; Zhang, Dan; Coppola, Gianmarc; Mao, Jianxu; Sun, Wei; Wang, Yaonan; Ge, Yunjian

    2016-01-07

    Multi-component force sensors have infiltrated a wide variety of automation products since the 1970s. However, one seldom finds full-component sensor systems available in the market for cutting force measurement in machine processes. In this paper, a new six-component sensor system with a compact monolithic elastic element (EE) is designed and developed to detect the tangential cutting forces Fx, Fy and Fz (i.e., forces along x-, y-, and z-axis) as well as the cutting moments Mx, My and Mz (i.e., moments about x-, y-, and z-axis) simultaneously. Optimal structural parameters of the EE are carefully designed via simulation-driven optimization. Moreover, a prototype sensor system is fabricated, which is applied to a 5-axis parallel kinematic machining center. Calibration experimental results demonstrate that the system is capable of measuring cutting forces and moments with good linearity while minimizing coupling error. Both the Finite Element Analysis (FEA) and calibration experimental studies validate the high performance of the proposed sensor system that is expected to be adopted into machining processes.

  7. A square-force cohesion model and its extraction from bulk measurements

    Science.gov (United States)

    Liu, Peiyuan; Lamarche, Casey; Kellogg, Kevin; Hrenya, Christine

    2017-11-01

    Cohesive particles remain poorly understood, with order of magnitude differences exhibited for prior, physical predictions of agglomerate size. A major obstacle lies in the absence of robust models of particle-particle cohesion, thereby precluding accurate prediction of the behavior of cohesive particles. Rigorous cohesion models commonly contain parameters related to surface roughness, to which cohesion shows extreme sensitivity. However, both roughness measurement and its distillation into these model parameters are challenging. Accordingly, we propose a ``square-force'' model, where cohesive force remains constant until a cut-off separation. Via DEM simulations, we demonstrate validity of the square-force model as surrogate of more rigorous models, when its two parameters are selected to match the two key quantities governing dense and dilute granular flows, namely maximum cohesive force and critical cohesive energy, respectively. Perhaps more importantly, we establish a method to extract the parameters in the square-force model via defluidization, due to its ability to isolate the effects of the two parameters. Thus, instead of relying on complicated scans of individual grains, determination of particle-particle cohesion from simple bulk measurements becomes feasible. Dow Corning Corporation.

  8. Extending calibration-free force measurements to optically-trapped rod-shaped samples

    Science.gov (United States)

    Català, Frederic; Marsà, Ferran; Montes-Usategui, Mario; Farré, Arnau; Martín-Badosa, Estela

    2017-02-01

    Optical trapping has become an optimal choice for biological research at the microscale due to its non-invasive performance and accessibility for quantitative studies, especially on the forces involved in biological processes. However, reliable force measurements depend on the calibration of the optical traps, which is different for each experiment and hence requires high control of the local variables, especially of the trapped object geometry. Many biological samples have an elongated, rod-like shape, such as chromosomes, intracellular organelles (e.g., peroxisomes), membrane tubules, certain microalgae, and a wide variety of bacteria and parasites. This type of samples often requires several optical traps to stabilize and orient them in the correct spatial direction, making it more difficult to determine the total force applied. Here, we manipulate glass microcylinders with holographic optical tweezers and show the accurate measurement of drag forces by calibration-free direct detection of beam momentum. The agreement between our results and slender-body hydrodynamic theoretical calculations indicates potential for this force-sensing method in studying protracted, rod-shaped specimens.

  9. Extending the limits of direct force measurements: colloidal probes from sub-micron particles.

    Science.gov (United States)

    Helfricht, Nicolas; Mark, Andreas; Dorwling-Carter, Livie; Zambelli, Tomaso; Papastavrou, Georg

    2017-07-13

    Direct force measurements by atomic force microscopy (AFM) in combination with the colloidal probe technique are widely used to determine interaction forces in colloidal systems. However, a number of limitations are still preventing a more universal applicability of this technique. Currently, one of the most significant limitations is that only particles with diameters of several micrometers can be used as probe particles. Here, we present a novel approach, based on the combination of nanofluidics and AFM (also referred to as FluidFM-technique), that allows to overcome this size limit and extend the size of suitable probe particles below diameters of 500 nanometers. Moreover, by aspiration of colloidal particles with a hollow AFM-cantilever, the immobilization process is independent of the particle's surface chemistry. Furthermore, the probe particles can be exchanged in situ. The applicability of the FluidFM-technique is demonstrated with silica particles, which are also the types of particles most often used for the preparation of colloidal probes. By comparing 'classical' colloidal probes, i.e. probes from particles irreversibly attached with glue, and various particle sizes aspirated by the FluidFM-technique, we can quantitatively evaluate the instrumental limits. Evaluation of the force profiles demonstrate that even for 500 nm silica particles the diffuse layer properties can be evaluated quantitatively. Therefore, direct force measurements on the level of particle sizes used in industrial formulations will become available in the future.

  10. Spot Surface Labeling of Magnetic Microbeads and Application in Biological Force Measurements

    Science.gov (United States)

    Estes, Ashley; O'Brien, E. Tim; Hill, David; Superfine, Richard

    2006-11-01

    Biological force measurements on single molecules and macromolecular structures often use microbeads for the application of force. These techniques are often complicated by multiple attachments and nonspecific binding. In one set of experiments, we are applying a magnetic force microscope that allows us to pull on magnetic beads attached to ciliated human bronchial epithelial cells. These experiments provide a means to measure the stall force of cilia and understand how cilia propel fluids. However, because we are using beads with diameters of one and 2.8 microns, and the diameter of human airway cilia is approximately 200 nm, we cannot be assured that the bead is bound to a single cilium. To address this, we have developed a sputter coating technique to block the biotin binding capability of the streptavidin labeled bead over its entire surface except for a small spot. These beads may also have applications in other biological experiments such as DNA force experiments in which binding of a single target to an individual bead is critical.

  11. Interactions between Rotavirus and Suwannee River Organic Matter: Aggregation, Deposition, and Adhesion Force Measurement

    KAUST Repository

    Gutierrez, Leonardo

    2012-08-21

    Interactions between rotavirus and Suwannee River natural organic matter (NOM) were studied by time-resolved dynamic light scattering, quartz crystal microbalance, and atomic force microscopy. In NOM-containing NaCl solutions of up to 600 mM, rotavirus suspension remained stable for over 4 h. Atomic force microscopy (AFM) measurement for interaction force decay length at different ionic strengths showed that nonelectrostatic repulsive forces were mainly responsible for eliminating aggregation in NaCl solutions. Aggregation rates of rotavirus in solutions containing 20 mg C/L increased with divalent cation concentration until reaching a critical coagulation concentration of 30 mM CaCl2 or 70 mM MgCl2. Deposition kinetics of rotavirus on NOM-coated silica surface was studied using quartz crystal microbalance. Experimental attachment efficiencies for rotavirus adsorption to NOM-coated surface in MgCl2 solution were lower than in CaCl2 solution at a given divalent cation concentration. Stronger adhesion force was measured for virus-virus and virus-NOM interactions in CaCl2 solution compared to those in MgCl2 or NaCl solutions at the same ionic strength. This study suggested that divalent cation complexation with carboxylate groups in NOM and on virus surface was an important mechanism in the deposition and aggregation kinetics of rotavirus. © 2012 American Chemical Society.

  12. Measuring Single-Bond Rupture Forces Using High Electric Fields in Microfluidic Channels and DNA Oligomers as Force Tags

    OpenAIRE

    Breisch, Stefanie; Gonska, Julian; Deissler, Helmut; Stelzle, Martin

    2005-01-01

    The disruption force of specific biotin-streptavidin bonds was determined using DNA oligomers as force tags. Forces were generated by an electric field acting on a biotinylated fluorescently labeled DNA oligomer. DNA oligomers were immobilized via biotin-streptavidin bonds on the walls of microfluidic channels. Channel layout and fluid-based deposition process were designed to enable well-defined localized deposition of the oligomers in a narrow gap of the microchannel. Electric fields of up ...

  13. The reliability of linear position transducer and force plate measurement of explosive force-time variables during a loaded jump squat in elite athletes.

    Science.gov (United States)

    Hansen, Keir T; Cronin, John B; Newton, Michael J

    2011-05-01

    The best method of assessing muscular force qualities during isoinertial stretch shorten cycle lower body movements remains a subject of much debate. This study had 2 purposes: Firstly, to calculate the interday reliability of peak force (PF) measurement and a variety of force-time measures, and, secondly, to compare the reliability of the 2 most common technologies for measuring force during loaded jump squats, the linear position transducer (PT), and the force plate (FP). Twenty-five male elite level rugby union players performed 3 rebound jump squats with a 40-kg external load on 2 occasions 1 week apart. Vertical ground reaction forces (GRFs) were directly measured via an FP, and force was differentiated from position data collected using a PT. From these data, a number of force-time variables were calculated for both the FP and PT. Intraclass correlation coefficient (ICC), coefficient of variation (CV), and percent change in the mean were used as measures of between-session reliability. Additionally, Pearson's product moment correlation coefficients were used to investigate intercorrelations between variables and technologies. Both FP and PT were found to be a reliable means of measuring PF (ICC = 0.88-0.96, CV = 2.3-4.8%), and the relationship between the 2 technologies was very high and high for days 1 and 2, respectively (r = 0.67-0.88). Force-time variables calculated from FP data tended to have greater relative and absolute consistency (ICC = 0.70-0.96, CV = 5.1-51.8%) than those calculated from differentiated PT data (ICC = 0.18-0.95, CV = 7.7-93.6%). Intercorrelations between variables ranged from trivial to practically perfect (r = 0.00-1.00). It was concluded that PF can be measured reliably with both FP and PT technologies, and these measurements are related. A number of force-time values can also be reliably calculated via the use of GRF data. Although some of these force-time variables can be reliably calculated using position data, variation of

  14. Simultaneous atomic force microscopy measurement of topography and contact resistance of metal films and carbon nanotubes

    International Nuclear Information System (INIS)

    Stadermann, M.; Grube, H.; Boland, J.J.; Papadakis, S.J.; Falvo, M.R.; Superfine, R.; Washburn, S.

    2003-01-01

    We present a quartz tuning-fork-based atomic force microscopy (AFM) setup that is capable of mapping the surface contact resistance while scanning topography. The tuning-fork setup allows us to use etched Pt/Ir tips, which have higher durability and better conductivity than probes used in earlier AFM conductance measurements. The performance of the method is demonstrated with contact resistance measurements of gold lines on silicon dioxide and carbon nanotubes on graphite

  15. Reliability of the Q Force; a mobile instrument for measuring isometric quadriceps muscle strength

    OpenAIRE

    Schans, van der, C.P.; Zijlstra, W.; Regterschot, G.R.H.; Krijnen, W.P.; Douma, K.W.; Slager, G.E.C.

    2016-01-01

    BACKGROUND: The ability to generate muscle strength is a pre-requisite for all human movement. Decreased quadriceps muscle strength is frequently observed in older adults and is associated with a decreased performance and activity limitations. To quantify the quadriceps muscle strength and to monitor changes over time, instruments and procedures with a sufficient reliability are needed. The Q Force is an innovative mobile muscle strength measurement instrument suitable to measure in various d...

  16. Measuring system and method of determining the Adaptive Force

    Directory of Open Access Journals (Sweden)

    Laura Schaefer

    2017-07-01

    Full Text Available The term Adaptive Force (AF describes the capability of adaptation of the nerve-muscle-system to externally applied forces during isometric and eccentric muscle action. This ability plays an important role in real life motions as well as in sports. The focus of this paper is on the specific measurement method of this neuromuscular action, which can be seen as innovative. A measuring system based on the use of compressed air was constructed and evaluated for this neuromuscular function. It depends on the physical conditions of the subject, at which force level it deviates from the quasi isometric position and merges into eccentric muscle action. The device enables – in contrast to the isokinetic systems – a measure of strength without forced motion. Evaluation of the scientific quality criteria of the devices was done by measurements regarding the intra- and interrater-, the test-retest-reliability and fatiguing measurements. Comparisons of the pneumatic device with a dynamometer were also done. Looking at the mechanical evaluation, the results show a high level of consistency (r²=0.94 to 0.96. The parallel test reliability delivers a very high and significant correlation (ρ=0.976; p=0.000. Including the biological system, the concordance of three different raters is very high (p=0.001, Cronbachs alpha α=0.987. The test retest with 4 subjects over five weeks speaks for the reliability of the device in showing no statistically significant differences. These evaluations indicate that the scientific evaluation criteria are fulfilled. The specific feature of this system is that an isometric position can be maintained while the externally impacting force rises. Moreover, the device can capture concentric, static and eccentric strength values. Fields of application are performance diagnostics in sports and medicine.

  17. Measurement of the Young’s modulus using micro-cantilevered beam actuated by electrostatic force

    Science.gov (United States)

    Wang, Zhichong; Zhang, Qichang; Wang, Chen

    2018-02-01

    Determining the Young’s modulus accurately is important in micro-electro-mechanical systems (MEMS) design. Generally, the Young’s modulus of a micro-component is measured by the resonance method, of which the actuation is electrostatic force. However, this method does not take the effect of the electrostatic force on the resonant frequency into consideration. Thus, the test error becomes more obvious as the DC voltage increases. In this paper, an improved resonance method, determining the Young’s modulus of a micro-cantilever beam, is proposed, which takes the nonlinearity of the electrostatic force into consideration. This method has three obvious advantages: only one simple micro-cantilevered beam sample is needed; it is unnecessary to find the initial thickness of the gas film between the beam and the substrate; the accuracy of the measurement result of the Young’s modulus is improved. In order to obtain the resonant frequency of a cantilevered beam actuated by a DC voltage, the dynamic equations of the micro-cantilevered beam in multi-field coupled situations are established, and the effect of the electrostatic force on the resonant frequency of the micro-beam is investigated. Results show that, the Young’s modulus can be found by measuring the resonant frequency and DC voltage. The dynamics performances of the micro-structure are influenced by the nonlinearity of the electrostatic force, and the electrostatic effect should be observed especially when the beam becomes smaller, through general studies. Finally, the experimental principle of measuring the Young’s modulus is designed and conducted to verify these theories. The Young’s modulus of brass is measured exactly.

  18. Reliability of the Q Force; a mobile instrument for measuring isometric quadriceps muscle strength.

    Science.gov (United States)

    Douma, K W; Regterschot, G R H; Krijnen, W P; Slager, G E C; van der Schans, C P; Zijlstra, W

    2016-01-01

    The ability to generate muscle strength is a pre-requisite for all human movement. Decreased quadriceps muscle strength is frequently observed in older adults and is associated with a decreased performance and activity limitations. To quantify the quadriceps muscle strength and to monitor changes over time, instruments and procedures with a sufficient reliability are needed. The Q Force is an innovative mobile muscle strength measurement instrument suitable to measure in various degrees of extension. Measurements between 110 and 130° extension present the highest values and the most significant increase after training. The objective of this study is to determine the test-retest reliability of muscle strength measurements by the Q Force in older adults in 110° extension. Forty-one healthy older adults, 13 males and 28 females were included in the study. Mean (SD) age was 81.9 (4.89) years. Isometric muscle strength of the Quadriceps muscle was assessed with the Q Force at 110° of knee extension. Participants were measured at two sessions with a three to eight day interval between sessions. To determine relative reliability, the intraclass correlation coefficient (ICC) was calculated. To determine absolute reliability, Bland and Altman Limits of Agreement (LOA) were calculated and t-tests were performed. Relative reliability of the Q Force is good to excellent as all ICC coefficients are higher than 0.75. Generally a large 95 % LOA, reflecting only moderate absolute reliability, is found as exemplified for the peak torque left leg of -18.6 N to 33.8 N and the right leg of -9.2 N to 26.4 N was between 15.7 and 23.6 Newton representing 25.2 % to 39.9 % of the size of the mean. Small systematic differences in mean were found between measurement session 1 and 2. The present study shows that the Q Force has excellent relative test-retest reliability, but limited absolute test-retest reliability. Since the Q Force is relatively cheap and mobile it is suitable for

  19. Midinfrared absorption measured at a lambda/400 resolution with an atomic force microscope.

    Science.gov (United States)

    Houel, Julien; Homeyer, Estelle; Sauvage, Sébastien; Boucaud, Philippe; Dazzi, Alexandre; Prazeres, Rui; Ortéga, Jean-Michel

    2009-06-22

    Midinfrared absorption can be locally measured using a detection combining an atomic force microscope and a pulsed excitation. This is illustrated for the midinfrared bulk GaAs phonon absorption and for the midinfrared absorption of thin SiO(2) microdisks. We show that the signal given by the cantilever oscillation amplitude of the atomic force microscope follows the spectral dependence of the bulk material absorption. The absorption spatial resolution achieved with microdisks is around 50 nanometer for an optical excitation around 22 micrometer wavelength.

  20. Axial tomographic scanner

    International Nuclear Information System (INIS)

    1976-01-01

    An axial tomographic system is described comprising axial tomographic means for collecting sets of data corresponding to the transmission or absorption of a number of beams of penetrating radiation through a planar slice of an object. It includes means to locate an object to be analyzed, a source and detector for directing one or more beams of penetrating radiation through the object from the source to the detector, and means to rotate (and optionally translate) the source as well as means to process the collected sets of data. Data collection, data processing, and data display can each be conducted independently of each other. An additional advantage of the system described is that the raw data (i.e., the originally collected data) are not destroyed by the data processing but instead are retained intact for further reference or use, if needed

  1. Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy

    Science.gov (United States)

    Cuenot, Stéphane; Frétigny, Christian; Demoustier-Champagne, Sophie; Nysten, Bernard

    2004-04-01

    The effect of reduced size on the elastic properties measured on silver and lead nanowires and on polypyrrole nanotubes with an outer diameter ranging between 30 and 250 nm is presented and discussed. Resonant-contact atomic force microscopy (AFM) is used to measure their apparent elastic modulus. The measured modulus of the nanomaterials with smaller diameters is significantly higher than that of the larger ones. The latter is comparable to the macroscopic modulus of the materials. The increase of the apparent elastic modulus for the smaller diameters is attributed to surface tension effects. The surface tension of the probed material may be experimentally determined from these AFM measurements.

  2. Surface force measurements at the basal planes of ordered kaolinite particles.

    Science.gov (United States)

    Gupta, Vishal; Miller, Jan D

    2010-04-15

    An experimental procedure is presented to order kaolinite particles on substrates for interrogation of the two basal plane surfaces by atomic force microscopy. Surface force measurements were performed between a silicon nitride tip and each of the two faces (silica tetrahedral face and alumina octahedral face) of kaolinite in 1 mM KCl solution at pH 4, 5, 6, 8 and 10, using atomic force microscopy. The colloidal force measurements reveal that the silica tetrahedral face of kaolinite is negatively charged at pH>4, whereas the alumina octahedral face of kaolinite is positively charged at pH8. Such measurements have not been reported previously and the results suggest that the iso-electric point of the silica tetrahedral face is at pHkaolinite carry a permanent negative charge due to minor substitution of Al(3+) for Si(4+) in the silica tetrahedral layer, and suggest some surface charge dependency of the two faces with respect to solution pH. With this new information it may be possible to further explain the electrokinetic behavior of kaolinite particles, and their interactions in aqueous suspensions. 2010 Elsevier Inc. All rights reserved.

  3. On electrostatic and Casimir force measurements between conducting surfaces in a sphere-plane configuration

    International Nuclear Information System (INIS)

    Kim, W J; Brown-Hayes, M; Brownell, J H; Dalvit, D A R; Onofrio, R

    2009-01-01

    We report on measurements of forces acting between two conducting surfaces in a spherical-plane configuration in the 35 nm-1 μm separation range. The measurements are obtained by performing electrostatic calibrations followed by a residuals analysis after subtracting the electrostatic-dependent component. We find in all runs optimal fitting of the calibrations for exponents smaller than the one predicted by electrostatics for an ideal sphere-plane geometry. We also find that the external bias potential necessary to minimize the electrostatic contribution depends on the sphere-plane distance. In spite of these anomalies, by implementing a parametrization-dependent subtraction of the electrostatic contribution we have found evidence for short-distance attractive forces of magnitude comparable to the expected Casimir-Lifshitz force. We finally discuss the relevance of our findings in the more general context of Casimir-Lifshitz force measurements, with particular regard to the critical issues of the electrical and geometrical characterization of the involved surfaces.

  4. Partnership for the Revitalization of National Wind Tunnel Force Measurement Capability

    Science.gov (United States)

    Rhew, Ray D.; Skelley, Marcus L.; Woike, Mark R.; Bader, Jon B.; Marshall, Timothy J.

    2009-01-01

    Lack of funding and lack of focus on research over the past several years, coupled with force measurement capabilities being decentralized and distributed across the National Aeronautics and Space Administration (NASA) research centers, has resulted in a significant erosion of (1) capability and infrastructure to produce and calibrate force measurement systems; (2) NASA s working knowledge of those systems; and (3) the quantity of high-quality, full-capability force measurement systems available for use in aeronautics testing. Simultaneously, and at proportional rates, the capability of industry to design, manufacture, and calibrate these test instruments has been eroding primarily because of a lack of investment by the aeronautics community. Technical expertise in this technology area is a core competency in aeronautics testing; it is highly specialized and experience-based, and it represents a niche market for only a few small precision instrument shops in the United States. With this backdrop, NASA s Aeronautics Test Program (ATP) chartered a team to examine the issues and risks associated with the problem, focusing specifically on strain- gage balances. The team partnered with the U.S. Air Force s Arnold Engineering Development Center (AEDC) to exploit their combined capabilities and take a national level government view of the problem. This paper describes the team s approach, its findings, and its recommendations, and the current status for revitalizing the government s balance capability with respect to designing, fabricating, calibrating, and using the instruments.

  5. Stress-strain relationship of PDMS micropillar for force measurement application

    Science.gov (United States)

    Johari, Shazlina; Shyan, L. Y.

    2017-11-01

    There is an increasing interest to use polydimethylsiloxane (PDMS) based materials as bio-transducers for force measurements in the order of micro to nano Newton. The accuracy of these devices relies on appropriate material characterization of PDMS and modelling to convert the micropillar deformations into the corresponding forces. Previously, we have reported on fabricated PDMS micropillar that acts as a cylindrical cantilever and was experimentally used to measure the force of the nematode C. elegans. In this research, similar PDMS micropillars are designed and simulated using ANSYS software. The simulation involves investigating two main factors that is expected to affect the force measurement performance; pillar height and diameter. Results show that the deformation increases when pillar height is increased and the deformation is inversely proportional to the pillar diameter. The maximum deformation obtained is 713 um with pillar diameter of 20 um and pillar height of 100 um. Results of stress and strain show similar pattern, where their values decreases as pillar diameter and height is increased. The simulated results are also compared with the calculated displacement. The trend for both calculated and simulated values are similar with 13% average difference.

  6. Stress-strain relationship of PDMS micropillar for force measurement application

    Directory of Open Access Journals (Sweden)

    Johari Shazlina

    2017-01-01

    Full Text Available There is an increasing interest to use polydimethylsiloxane (PDMS based materials as bio-transducers for force measurements in the order of micro to nano Newton. The accuracy of these devices relies on appropriate material characterization of PDMS and modelling to convert the micropillar deformations into the corresponding forces. Previously, we have reported on fabricated PDMS micropillar that acts as a cylindrical cantilever and was experimentally used to measure the force of the nematode C. elegans. In this research, similar PDMS micropillars are designed and simulated using ANSYS software. The simulation involves investigating two main factors that is expected to affect the force measurement performance; pillar height and diameter. Results show that the deformation increases when pillar height is increased and the deformation is inversely proportional to the pillar diameter. The maximum deformation obtained is 713 um with pillar diameter of 20 um and pillar height of 100 um. Results of stress and strain show similar pattern, where their values decreases as pillar diameter and height is increased. The simulated results are also compared with the calculated displacement. The trend for both calculated and simulated values are similar with 13% average difference.

  7. Measuring graphene adhesion using atomic force microscopy with a microsphere tip

    Science.gov (United States)

    Jiang, Tao; Zhu, Yong

    2015-06-01

    Van der Waals adhesion between graphene and various substrates has an important impact on the physical properties, device applications and nanomanufacturing processes of graphene. Here we report a general, high-throughput and reliable method that can measure adhesion energies between ultraflat graphene and a broad range of materials using atomic force microscopy with a microsphere tip. In our experiments, only van der Waals force between the tip and a graphene flake is measured. The Maugis-Dugdale theory is employed to convert the measured adhesion force using AFM to the adhesion energy. The ultraflatness of monolayer graphene on mica eliminates the effect of graphene surface roughness on the adhesion, while roughness of the microsphere tip is addressed by the modified Rumpf model. Adhesion energies of monolayer graphene to SiO2 and Cu are obtained as 0.46 and 0.75 J m-2, respectively. This work provides valuable insight into the mechanism of graphene adhesion and can readily extend to the adhesion measurement for other 2D nanomaterials.Van der Waals adhesion between graphene and various substrates has an important impact on the physical properties, device applications and nanomanufacturing processes of graphene. Here we report a general, high-throughput and reliable method that can measure adhesion energies between ultraflat graphene and a broad range of materials using atomic force microscopy with a microsphere tip. In our experiments, only van der Waals force between the tip and a graphene flake is measured. The Maugis-Dugdale theory is employed to convert the measured adhesion force using AFM to the adhesion energy. The ultraflatness of monolayer graphene on mica eliminates the effect of graphene surface roughness on the adhesion, while roughness of the microsphere tip is addressed by the modified Rumpf model. Adhesion energies of monolayer graphene to SiO2 and Cu are obtained as 0.46 and 0.75 J m-2, respectively. This work provides valuable insight into the

  8. A Scheme for Solving the Plane–Plane Challenge in Force Measurements at the Nanoscale

    Directory of Open Access Journals (Sweden)

    Comin Fabio

    2010-01-01

    Full Text Available Abstract Non-contact interaction between two parallel flat surfaces is a central paradigm in sciences. This situation is the starting point for a wealth of different models: the capacitor description in electrostatics, hydrodynamic flow, thermal exchange, the Casimir force, direct contact study, third body confinement such as liquids or films of soft condensed matter. The control of parallelism is so demanding that no versatile single force machine in this geometry has been proposed so far. Using a combination of nanopositioning based on inertial motors, of microcrystal shaping with a focused-ion beam (FIB and of accurate in situ and real-time control of surface parallelism with X-ray diffraction, we propose here a “gedanken” surface-force machine that should enable one to measure interactions between movable surfaces separated by gaps in the micrometer and nanometer ranges.

  9. A scheme for solving the plane-plane challenge in force measurements at the nanoscale.

    Science.gov (United States)

    Siria, Alessandro; Huant, Serge; Auvert, Geoffroy; Comin, Fabio; Chevrier, Joel

    2010-05-19

    Non-contact interaction between two parallel flat surfaces is a central paradigm in sciences. This situation is the starting point for a wealth of different models: the capacitor description in electrostatics, hydrodynamic flow, thermal exchange, the Casimir force, direct contact study, third body confinement such as liquids or films of soft condensed matter. The control of parallelism is so demanding that no versatile single force machine in this geometry has been proposed so far. Using a combination of nanopositioning based on inertial motors, of microcrystal shaping with a focused-ion beam (FIB) and of accurate in situ and real-time control of surface parallelism with X-ray diffraction, we propose here a "gedanken" surface-force machine that should enable one to measure interactions between movable surfaces separated by gaps in the micrometer and nanometer ranges.

  10. Aerodynamic Characterization of ‘DelFly Micro’ in Forward Flight Configuration by Force Measurements and Flow Field Visualization

    OpenAIRE

    Deng, Shuanghou; Percin, Mustafa; van Oudheusden, Bas

    2015-01-01

    This study explores the flow structures and unsteady force generation mechanisms of a flapping-wing micro air vehicle ‘DelFly Micro’ in forward flight configuration. Stereoscopic Particle Image Velocimetry (Stereo-PIV) measurements were performed to acquire three dimensional flow fields in the wake. Six components of forces and moments were captured simultaneously by use of a miniature force sensor.

  11. A force measurement system based on an electrostatic sensing and actuating technique for calibrating force in a micronewton range with a resolution of nanonewton scale

    International Nuclear Information System (INIS)

    Chen, Sheng-Jui; Pan, Sheau-Shi

    2011-01-01

    This paper introduces a force measurement system recently established at the Center for Measurement Standards, Industrial Technology Research Institute for calibrating forces in a micronewton range with a resolution of a few nanonewtons. The force balance consists of a monolithic flexure stage and a specially made capacitor for electrostatic sensing and actuating. The capacitor is formed by three electrodes which can be utilized as a capacitive position sensor and an electrostatic force actuator at the same time. Force balance control is implemented with a digital controller by which the signal of the stage deflection is acquired, filtered and fed back to the electrostatic force driver to bring the flexure stage to the null position. The detailed description of the apparatus including the design of a monolithic flexure stage, principle of capacitive position sensing/electrostatic actuation and the force balance control is given in the paper. Finally, we present the results of electrostatic force calibration and the weighing of a 1 mg wire weight

  12. Real-time measurement of needle forces and acute pressure changes during intravitreal injections.

    Science.gov (United States)

    Christensen, Logan; Cerda, Ashlee; Olson, Jeffrey L

    2017-11-01

    The purpose of this study was to use a physiological pressure transducer to measure real-time, continuous pressure changes in an ex vivo study model of porcine eyes to record the amount of force needed for scleral penetration and to measure acute intraocular pressure rise during intravitreal injections. A pressure transducer was inserted into the anterior chamber of 30 fresh porcine eyes, and intraocular pressure was measured 2 s prior to intravitreal injection until 2 s after. A force transducer plate was used to insert various gauge needles into the vitreous cavity and the amount of force in Newtons (N) required for scleral penetration was recorded. For scleral perforation, 32- and 30-gauge needles required 0.44 N and 0.45 N, significantly less than larger gauge needles (P time continuous recordings of pressure reveal that an instantaneous intraocular pressure spike occurs during intravitreal injection and appears to be separate from the intraocular pressure spike that occurs during needle insertion. This pressure spike is transient and has not been captured by previous methods of intraocular pressure measurement, which rely on single time point measurements. The clinical significance of this brief intraocular pressure spike is unclear and warrants further investigation. © 2017 Royal Australian and New Zealand College of Ophthalmologists.

  13. Kinetic analysis of ski turns based on measured ground reaction forces.

    Science.gov (United States)

    Vaverka, Frantisek; Vodickova, Sona; Elfmark, Milan

    2012-02-01

    The objective of this study was to devise a method of kinetic analysis of the ground reaction force that enables the durations and magnitudes of forces acting during the individual phases of ski turns to be described exactly. The method is based on a theoretical analysis of physical forces acting during the ski turn. Two elementary phases were defined: (1) preparing to turn (initiation) and (2) actual turning, during which the center of gravity of the skier-ski system moves along a curvilinear trajectory (steering). The starting point of the turn analysis is a dynamometric record of the resultant acting ground reaction force applied perpendicularly on the ski surface. The method was applied to six expert skiers. They completed a slalom course comprising five gates arranged on the fall line of a 26° slope at a competition speed using symmetrical carving turns (30 evaluated turns). A dynamometric measurement system was placed on the carving skis (168 cm long, radius 16 m, data were recorded at 100 Hz). MATLAB procedures were used to evaluate eight variables during each turn: five time variables and three force variables. Comparison of the turn analysis results between individuals showed that the method is useful for answering various research questions associated with ski turns.

  14. Preliminarily measurement and analysis of sawing forces in fresh cadaver mandible using reciprocating saw for reality-based haptic feedback.

    Science.gov (United States)

    Yua, Dedong; Zhengb, Xiaohu; Chenc, Ming; Shend, Steve G F

    2012-05-01

    The aim of the study was to preliminarily measure and analyze the cutting forces in fresh Chinese cadaver mandible using a clinically widely used reciprocating saw for reality-based haptic feedback. Eight mandibles were taken from fresh Chinese cadavers, 4 females and 4 males, aged between 59 and 95 years. A set of sawing experiments, using a surgery Stryker micro-reciprocating saw and Kistler piezoelectric dynamometer, was carried out by a CNC machining center. Under different vibration frequencies of saw and feeding rates measured from orthognathic surgery, sawing forces were recorded by a signal acquisition system. Remarkably different sawing forces were measured from different cadavers. Feed and vibration frequency of the reciprocating saw could determine the cutting forces only on 1 body. To reduce the impact of bone thickness changes on the cutting force measurements, all the cutting force data should be converted to the force of unit cutting length. The vibration frequency of haptic feedback system is determined by main cutting forces. Fast Fourier transform method can be used to calculate the frequency of this system. To simulate surgery in higher fidelity, all the sawing forces from the experiment should be amended by experienced surgeons before use in virtual reality surgery simulator. Sawing force signals of different ages for force feedback were measured successfully, and more factors related to the bone mechanical properties, such as bone density, should be concerned in the future.

  15. Acquisition and deconvolution of seismic signals by different methods to perform direct ground-force measurements

    Science.gov (United States)

    Poletto, Flavio; Schleifer, Andrea; Zgauc, Franco; Meneghini, Fabio; Petronio, Lorenzo

    2016-12-01

    We present the results of a novel borehole-seismic experiment in which we used different types of onshore-transient-impulsive and non-impulsive-surface sources together with direct ground-force recordings. The ground-force signals were obtained by baseplate load cells located beneath the sources, and by buried soil-stress sensors installed in the very shallow-subsurface together with accelerometers. The aim was to characterize the source's emission by its complex impedance, function of the near-field vibrations and soil stress components, and above all to obtain appropriate deconvolution operators to remove the signature of the sources in the far-field seismic signals. The data analysis shows the differences in the reference measurements utilized to deconvolve the source signature. As downgoing waves, we process the signals of vertical seismic profiles (VSP) recorded in the far-field approximation by an array of permanent geophones cemented at shallow-medium depth outside the casing of an instrumented well. We obtain a significant improvement in the waveform of the radiated seismic-vibrator signals deconvolved by ground force, similar to that of the seismograms generated by the impulsive sources, and demonstrates that the results obtained by different sources present low values in their repeatability norm. The comparison evidences the potentiality of the direct ground-force measurement approach to effectively remove the far-field source signature in VSP onshore data, and to increase the performance of permanent acquisition installations for time-lapse application purposes.

  16. Non-additivity of molecule-surface van der Waals potentials from force measurements

    Science.gov (United States)

    Wagner, Christian; Fournier, Norman; Ruiz, Victor G.; Li, Chen; Müllen, Klaus; Rohlfing, Michael; Tkatchenko, Alexandre; Temirov, Ruslan; Tautz, F. Stefan

    2014-11-01

    Van der Waals (vdW) forces act ubiquitously in condensed matter. Despite being weak on an atomic level, they substantially influence molecular and biological systems due to their long range and system-size scaling. The difficulty to isolate and measure vdW forces on a single-molecule level causes our present understanding to be strongly theory based. Here we show measurements of the attractive potential between differently sized organic molecules and a metal surface using an atomic force microscope. Our choice of molecules and the large molecule-surface separation cause this attraction to be purely of vdW type. The experiment allows testing the asymptotic vdW force law and its validity range. We find a superlinear growth of the vdW attraction with molecular size, originating from the increased deconfinement of electrons in the molecules. Because such non-additive vdW contributions are not accounted for in most first-principles or empirical calculations, we suggest further development in that direction.

  17. Non-additivity of molecule-surface van der Waals potentials from force measurements.

    Science.gov (United States)

    Wagner, Christian; Fournier, Norman; Ruiz, Victor G; Li, Chen; Müllen, Klaus; Rohlfing, Michael; Tkatchenko, Alexandre; Temirov, Ruslan; Tautz, F Stefan

    2014-11-26

    Van der Waals (vdW) forces act ubiquitously in condensed matter. Despite being weak on an atomic level, they substantially influence molecular and biological systems due to their long range and system-size scaling. The difficulty to isolate and measure vdW forces on a single-molecule level causes our present understanding to be strongly theory based. Here we show measurements of the attractive potential between differently sized organic molecules and a metal surface using an atomic force microscope. Our choice of molecules and the large molecule-surface separation cause this attraction to be purely of vdW type. The experiment allows testing the asymptotic vdW force law and its validity range. We find a superlinear growth of the vdW attraction with molecular size, originating from the increased deconfinement of electrons in the molecules. Because such non-additive vdW contributions are not accounted for in most first-principles or empirical calculations, we suggest further development in that direction.

  18. Merging Psychophysical and Psychometric Theory to Estimate Global Visual State Measures from Forced-Choices

    International Nuclear Information System (INIS)

    Massof, Robert W; Schmidt, Karen M; Laby, Daniel M; Kirschen, David; Meadows, David

    2013-01-01

    Visual acuity, a forced-choice psychophysical measure of visual spatial resolution, is the sine qua non of clinical visual impairment testing in ophthalmology and optometry patients with visual system disorders ranging from refractive error to retinal, optic nerve, or central visual system pathology. Visual acuity measures are standardized against a norm, but it is well known that visual acuity depends on a variety of stimulus parameters, including contrast and exposure duration. This paper asks if it is possible to estimate a single global visual state measure from visual acuity measures as a function of stimulus parameters that can represent the patient's overall visual health state with a single variable. Psychophysical theory (at the sensory level) and psychometric theory (at the decision level) are merged to identify the conditions that must be satisfied to derive a global visual state measure from parameterised visual acuity measures. A global visual state measurement model is developed and tested with forced-choice visual acuity measures from 116 subjects with no visual impairments and 560 subjects with uncorrected refractive error. The results are in agreement with the expectations of the model

  19. Merging Psychophysical and Psychometric Theory to Estimate Global Visual State Measures from Forced-Choices

    Science.gov (United States)

    Massof, Robert W.; Schmidt, Karen M.; Laby, Daniel M.; Kirschen, David; Meadows, David

    2013-09-01

    Visual acuity, a forced-choice psychophysical measure of visual spatial resolution, is the sine qua non of clinical visual impairment testing in ophthalmology and optometry patients with visual system disorders ranging from refractive error to retinal, optic nerve, or central visual system pathology. Visual acuity measures are standardized against a norm, but it is well known that visual acuity depends on a variety of stimulus parameters, including contrast and exposure duration. This paper asks if it is possible to estimate a single global visual state measure from visual acuity measures as a function of stimulus parameters that can represent the patient's overall visual health state with a single variable. Psychophysical theory (at the sensory level) and psychometric theory (at the decision level) are merged to identify the conditions that must be satisfied to derive a global visual state measure from parameterised visual acuity measures. A global visual state measurement model is developed and tested with forced-choice visual acuity measures from 116 subjects with no visual impairments and 560 subjects with uncorrected refractive error. The results are in agreement with the expectations of the model.

  20. The role of the cantilever in Kelvin probe force microscopy measurements

    Directory of Open Access Journals (Sweden)

    George Elias

    2011-05-01

    Full Text Available The role of the cantilever in quantitative Kelvin probe force microscopy (KPFM is rigorously analyzed. We use the boundary element method to calculate the point spread function of the measuring probe: Tip and cantilever. The calculations show that the cantilever has a very strong effect on the absolute value of the measured contact potential difference even under ultra-high vacuum conditions, and we demonstrate a good agreement between our model and KPFM measurements in ultra-high vacuum of NaCl monolayers grown on Cu(111. The effect of the oscillating cantilever shape on the KPFM resolution and sensitivity has been calculated and found to be relatively small.

  1. A Polymer-Based Capacitive Sensing Array for Normal and Shear Force Measurement

    Science.gov (United States)

    Cheng, Ming-Yuan; Lin, Chun-Liang; Lai, Yu-Tse; Yang, Yao-Joe

    2010-01-01

    In this work, we present the development of a polymer-based capacitive sensing array. The proposed device is capable of measuring normal and shear forces, and can be easily realized by using micromachining techniques and flexible printed circuit board (FPCB) technologies. The sensing array consists of a polydimethlysiloxane (PDMS) structure and a FPCB. Each shear sensing element comprises four capacitive sensing cells arranged in a 2 × 2 array, and each capacitive sensing cell has two sensing electrodes and a common floating electrode. The sensing electrodes as well as the metal interconnect for signal scanning are implemented on the FPCB, while the floating electrodes are patterned on the PDMS structure. This design can effectively reduce the complexity of the capacitive structures, and thus makes the device highly manufacturable. The characteristics of the devices with different dimensions were measured and discussed. A scanning circuit was also designed and implemented. The measured maximum sensitivity is 1.67%/mN. The minimum resolvable force is 26 mN measured by the scanning circuit. The capacitance distributions induced by normal and shear forces were also successfully captured by the sensing array. PMID:22163466

  2. A Polymer-Based Capacitive Sensing Array for Normal and Shear Force Measurement

    Directory of Open Access Journals (Sweden)

    Ming-Yuan Cheng

    2010-11-01

    Full Text Available In this work, we present the development of a polymer-based capacitive sensing array. The proposed device is capable of measuring normal and shear forces, and can be easily realized by using micromachining techniques and flexible printed circuit board (FPCB technologies. The sensing array consists of a polydimethlysiloxane (PDMS structure and a FPCB. Each shear sensing element comprises four capacitive sensing cells arranged in a 2 × 2 array, and each capacitive sensing cell has two sensing electrodes and a common floating electrode. The sensing electrodes as well as the metal interconnect for signal scanning are implemented on the FPCB, while the floating electrodes are patterned on the PDMS structure. This design can effectively reduce the complexity of the capacitive structures, and thus makes the device highly manufacturable. The characteristics of the devices with different dimensions were measured and discussed. A scanning circuit was also designed and implemented. The measured maximum sensitivity is 1.67%/mN. The minimum resolvable force is 26 mN measured by the scanning circuit. The capacitance distributions induced by normal and shear forces were also successfully captured by the sensing array.

  3. How to Measure Load-Dependent Kinetics of Individual Motor Molecules Without a Force-Clamp

    DEFF Research Database (Denmark)

    Sung, Jongmin; Mortensen, Kim; Spudich, James A.

    Molecular motors are responsible for numerous cellular processes from cargo transport to heart contraction. Their interactions with other cellular components are often transient and exhibit kinetics that depend on load. Here, we measure such interactions using a new method, Harmonic Force...... and efficient. The protocol accumulates statistics fast enough to deliver single-molecule results from single-molecule experiments. We demonstrate the method's performance by measuring the force-dependent kinetics of individual human beta-cardiac myosin molecules interacting with an actin filament...... at physiological ATP concentration. We show that a molecule's ADP release rate depends exponentially on the applied load. This points to Kramer's Brownian diffusion model of chemical reactions as explanation why muscle contracts with a velocity inversely proportional to external load....

  4. MEASUREMENTS OF SHOCK WAVE FORCE IN SHOCK TUBE WITH INDIRECT METHODS

    Directory of Open Access Journals (Sweden)

    Mario Dobrilović

    2005-12-01

    Full Text Available Tests have been conducted at the “Laboratory for testing of civil explosives, detonators, electrical detonators and pyrotechnical materials”, Department for mining and geotechnics of the Faculty of mining, geology and petroleum engineering, University of Zagreb with the purpose of designing a detonator that would unite advantages of a non-electric system and the precision in regulation of time delay in electronic initiation system. Sum of energy released by the wave force in shock tube is a pre-condition for operation of the new detonator, and measurement of wave force is the first step in determining the sum of energy. The sum of energy is measured indirectly, based on two principles: movement sensors and strain.

  5. Force measurements of flexible tandem wings in hovering and forward flights

    International Nuclear Information System (INIS)

    Zheng, Yingying; Wu, Yanhua; Tang, Hui

    2015-01-01

    Aerodynamic forces, power consumptions and efficiencies of flexible and rigid tandem wings undergoing combined plunging/pitching motion were measured in a hovering flight and two forward flights with Strouhal numbers of 0.6 and 0.3. Three flexible dragonfly-like tandem wing models termed Wing I, Wing II, and Wing III which are progressively less flexible, as well as a pair of rigid wings as the reference were operated at three phase differences of 0°, 90° and 180°. The results showed that both the flexibility and phase difference have significant effects on the aerodynamic performances. In both hovering and forward flights at a higher oscillation frequency of 1 Hz (St = 0.6), the Wing III model outperformed the other wing models with larger total horizontal force coefficient and efficiency. In forward flight at the lower frequency of 0.5 Hz (St = 0.3), Wing III, rigid wings and Wing II models performed best at 0°, 90° and 180° phase difference, respectively. From the time histories of force coefficients of fore- and hind-wings, different peak values, phase lags, and secondary peaks were found to be the important reasons to cause the differences in the average horizontal force coefficients. Particle image velocimetry and deformation measurements were performed to provide the insights into how the flexibility affects the aerodynamic performance of the tandem wings. The spanwise bending deformation was found to contribute to the horizontal force, by offering a more beneficial position to make LEV more attached to the wing model in both hovering and forward flights, and inducing a higher-velocity region in forward flight. (paper)

  6. Measurement-based aerosol forcing calculations: The influence of model complexity

    Directory of Open Access Journals (Sweden)

    Manfred Wendisch

    2001-03-01

    Full Text Available On the basis of ground-based microphysical and chemical aerosol measurements a simple 'two-layer-single-wavelength' and a complex 'multiple-layer-multiple-wavelength' radiative transfer model are used to calculate the local solar radiative forcing of black carbon (BC and (NH42SO4 (ammonium sulfate particles and mixtures (external and internal of both materials. The focal points of our approach are (a that the radiative forcing calculations are based on detailed aerosol measurements with special emphasis of particle absorption, and (b the results of the radiative forcing calculations with two different types of models (with regards to model complexity are compared using identical input data. The sensitivity of the radiative forcing due to key input parameters (type of particle mixture, particle growth due to humidity, surface albedo, solar zenith angle, boundary layer height is investigated. It is shown that the model results for external particle mixtures (wet and dry only slightly differ from those of the corresponding internal mixture. This conclusion is valid for the results of both model types and for both surface albedo scenarios considered (grass and snow. Furthermore, it is concluded that the results of the two model types approximately agree if it is assumed that the aerosol particles are composed of pure BC. As soon as a mainly scattering substance is included alone or in (internal or external mixture with BC, the differences between the radiative forcings of both models become significant. This discrepancy results from neglecting multiple scattering effects in the simple radiative transfer model.

  7. Adhesion force measurements on the two wax layers of the waxy zone in Nepenthes alata pitchers.

    Science.gov (United States)

    Gorb, Elena V; Purtov, Julia; Gorb, Stanislav N

    2014-06-03

    The wax coverage of the waxy zone in Nepenthes alata pitchers consists of two clearly distinguishable layers, designated the upper and lower wax layers. Since these layers were reported to reduce insect attachment, they were considered to have anti-adhesive properties. However, no reliable adhesion tests have been performed with these wax layers. In this study, pull-off force measurements were carried out on both wax layers of the N. alata pitcher and on two reference polymer surfaces using deformable polydimethylsiloxane half-spheres as probes. To explain the results obtained, roughness measurements were performed on test surfaces. Micro-morphology of both surface samples and probes tested was examined before and after experiments. Pull-off forces measured on the upper wax layer were the lowest among surfaces tested. Here, contamination of probes by wax crystals detached from the pitcher surface was found. This suggests that low insect attachment on the upper wax layer is caused primarily by the breaking off of wax crystals from the upper wax layer, which acts as a separation layer between the insect pad and the pitcher surface. High adhesion forces obtained on the lower wax layer are explained by the high deformability of probes and the particular roughness of the substrate.

  8. Constraints on axionlike particles and non-Newtonian gravity from measuring the difference of Casimir forces

    Science.gov (United States)

    Klimchitskaya, G. L.; Mostepanenko, V. M.

    2017-06-01

    We derive constraints on the coupling constants of axionlike particles to nucleons and on the Yukawa-type corrections to Newton's gravitational law from the results of recent experiment on measuring the difference of Casimir forces between a Ni-coated sphere and Au and Ni sectors of a structured disc. Over the wide range of axion masses from 2.61 meV to 0.9 eV the obtained constraints on the axion-to-nucleon coupling are up to a factor of 14.6 stronger than all previously known constraints following from experiments on measuring the Casimir interaction. The constraints on non-Newtonian gravity found here are also stronger than all that following from the Casimir- and Cavendish-type experiments over the interaction range from 30 nm to 5.4 μ m . They are up to a factor of 177 stronger than the constraints derived recently from measuring the difference of lateral forces. Our constraints confirm previous somewhat stronger limits obtained from the isoelectronic experiment, where the contribution of the Casimir force was nullified.

  9. Measurement of circulation around wing-tip vortices and estimation of lift forces using stereo PIV

    Science.gov (United States)

    Asano, Shinichiro; Sato, Haru; Sakakibara, Jun

    2017-11-01

    Applying the flapping flight to the development of an aircraft as Mars space probe and a small aircraft called MAV (Micro Air Vehicle) is considered. This is because Reynolds number assumed as the condition of these aircrafts is low and similar to of insects and small birds flapping on the earth. However, it is difficult to measure the flow around the airfoil in flapping flight directly because of its three-dimensional and unsteady characteristics. Hence, there is an attempt to estimate the flow field and aerodynamics by measuring the wake of the airfoil using PIV, for example the lift estimation method based on a wing-tip vortex. In this study, at the angle of attack including the angle after stall, we measured the wing-tip vortex of a NACA 0015 cross-sectional and rectangular planform airfoil using stereo PIV. The circulation of the wing-tip vortex was calculated from the obtained velocity field, and the lift force was estimated based on Kutta-Joukowski theorem. Then, the validity of this estimation method was examined by comparing the estimated lift force and the force balance data at various angles of attack. The experiment results are going to be presented in the conference.

  10. Validation of absolute axial neutron flux distribution calculations with MCNP with 197Au(n,γ)198Au reaction rate distribution measurements at the JSI TRIGA Mark II reactor.

    Science.gov (United States)

    Radulović, Vladimir; Štancar, Žiga; Snoj, Luka; Trkov, Andrej

    2014-02-01

    The calculation of axial neutron flux distributions with the MCNP code at the JSI TRIGA Mark II reactor has been validated with experimental measurements of the (197)Au(n,γ)(198)Au reaction rate. The calculated absolute reaction rate values, scaled according to the reactor power and corrected for the flux redistribution effect, are in good agreement with the experimental results. The effect of different cross-section libraries on the calculations has been investigated and shown to be minor. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Measurement correction method for force sensor used in dynamic pressure calibration based on artificial neural network optimized by genetic algorithm

    Science.gov (United States)

    Gu, Tingwei; Kong, Deren; Shang, Fei; Chen, Jing

    2017-12-01

    We present an optimization algorithm to obtain low-uncertainty dynamic pressure measurements from a force-transducer-based device. In this paper, the advantages and disadvantages of the methods that are commonly used to measure the propellant powder gas pressure, the applicable scope of dynamic pressure calibration devices, and the shortcomings of the traditional comparison calibration method based on the drop-weight device are firstly analysed in detail. Then, a dynamic calibration method for measuring pressure using a force sensor based on a drop-weight device is introduced. This method can effectively save time when many pressure sensors are calibrated simultaneously and extend the life of expensive reference sensors. However, the force sensor is installed between the drop-weight and the hammerhead by transition pieces through the connection mode of bolt fastening, which causes adverse effects such as additional pretightening and inertia forces. To solve these effects, the influence mechanisms of the pretightening force, the inertia force and other influence factors on the force measurement are theoretically analysed. Then a measurement correction method for the force measurement is proposed based on an artificial neural network optimized by a genetic algorithm. The training and testing data sets are obtained from calibration tests, and the selection criteria for the key parameters of the correction model is discussed. The evaluation results for the test data show that the correction model can effectively improve the force measurement accuracy of the force sensor. Compared with the traditional high-accuracy comparison calibration method, the percentage difference of the impact-force-based measurement is less than 0.6% and the relative uncertainty of the corrected force value is 1.95%, which can meet the requirements of engineering applications.

  12. Measuring the force of single protein molecule detachment from surfaces with AFM.

    Science.gov (United States)

    Tsapikouni, Theodora S; Missirlis, Yannis F

    2010-01-01

    Atomic force microscopy (AFM) was used to measure the non-specific detachment force of single fibrinogen molecules from glass surfaces. The identification of single unbinding events was based on the characteristics of the parabolic curves, recorded during the stretching of protein molecules. Fibrinogen molecules were covalently bound to Si(3)N(4) AFM tips, previously modified with 3-aminopropyl-dimethyl-ethoxysilane, through a homobifunctional poly(ethylene glycol) linker bearing two hydroxysulfosuccinimide esters. The most probable detachment force was found to be 210 pN, when the tip was retracting with a velocity of 1400 nm/s, while the distribution of the detachment distances indicated that the fibrinogen chain can be elongated beyond the length of the physical conformation before detachment. The dependence of the most probable detachment force on the loading rate was examined and the dynamics of fibrinogen binding to the surface were found amenable to the simple expression of the Bell-Evans theory. The theory's expansion, however, by incorporating the concept of the rupture of parallel residue-surface bonds could only describe the detachment of fibrinogen for a small number of such bonds. Finally, the mathematical expression of the Worm-Like Chain model was used to fit the stretching curves before rupture and two interpretations are suggested for the description of the AFM curves with multiple detachment events.

  13. On the tip calibration for accurate modulus measurement by contact resonance atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Passeri, D., E-mail: daniele.passeri@uniroma1.it [Department of Basic and Applied Sciences for Engineering, University of Rome Sapienza, Via A. Scarpa 16, 00161 Rome (Italy); Rossi, M. [Department of Basic and Applied Sciences for Engineering, University of Rome Sapienza, Via A. Scarpa 16, 00161 Rome (Italy); Centro di Ricerca per le Nanotecnologie Applicate all' Ingegneria della Sapienza (CNIS), University of Rome Sapienza, Piazzale A. Moro 5, 00185 Rome (Italy); Vlassak, J.J. [School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138 (United States)

    2013-05-15

    Accurate quantitative elastic modulus measurements using contact resonance atomic force microscopy require the calibration of geometrical and mechanical properties of the tip as well as the choice of a suitable model for describing the cantilever-tip-sample system. In this work, we demonstrate with both simulations and experiments that the choice of the model influences the results of the calibration. Neglecting lateral force results in the underestimation of the tip indentation modulus and in the overestimation of the tip-sample contact radius. We propose a new approach to the calibration and data analysis, where lateral forces and cantilever inclination are neglected (which simplifies the calculations) and the tip parameters are assumed as fictitious. - Highlights: ► A calibration procedure is proposed for quantitative contact resonance AFM. ► It allows the use of simple analytical model that neglects lateral forces. ► Tip parameters are used as fictitious parameters. ► The approach is demonstrated with simulations and experiments.

  14. Measuring the loss tangent of polymer materials with atomic force microscopy based methods

    International Nuclear Information System (INIS)

    Yablon, Dalia G; Grabowski, Jean; Chakraborty, Ishita

    2014-01-01

    Atomic force microscopy (AFM) quantitatively maps viscoelastic parameters of polymers on the nanoscale by several methods. The loss tangent, the ratio between dissipated and stored energy, was measured on a blend of thermoplastic polymer materials by a dynamic contact method, contact resonance, and by a recently developed loss tangent measurement by amplitude modulation AFM. Contact resonance measurements were performed both with dual AC resonance tracking and band excitation (BE), allowing for a reference-free measurement of the loss tangent. Amplitude modulation AFM was performed where a recent interpretation of the phase signal under certain operating conditions allows for the loss tangent to be calculated. The loss tangent measurements were compared with values expected from time–temperature superposed frequency-dependent dynamical mechanical curves of materials and reveal that the loss tangents determined from the BE contact resonance method provide the most accurate values. (paper)

  15. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale.

    Science.gov (United States)

    Kawamura, Yoshiyuki

    2016-01-01

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO2) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO2 gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value.

  16. Surface topography characterization using an atomic force microscope mounted on a coordinate measuring machine

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Hansen, H.N; Kofod, N

    1999-01-01

    The paper describes the construction, testing and use of an integrated system for topographic characterization of fine surfaces on parts having relatively big dimensions. An atomic force microscope (AFM) was mounted on a manual three-coordinate measuring machine (CMM) achieving free positioning...... of the AFM probe in space. This means that the limited measuring range of the AFM (40 mu m x 40 mu m x 2.7 um) can be extended by positioning the AFM probe using the movements of the CMM axes (400 mm x 100 mm x 75 mm). Evaluation of the background noise by determining the Sa value of an optical fiat gave...

  17. Reliable measurement of elastic modulus of cells by nanoindentation in an atomic force microscope

    KAUST Repository

    Zhou, Zhoulong

    2012-04-01

    The elastic modulus of an oral cancer cell line UM1 is investigated by nanoindentation in an atomic force microscope with a flat-ended tip. The commonly used Hertzian method gives apparent elastic modulus which increases with the loading rate, indicating strong effects of viscoelasticity. On the contrary, a rate-jump method developed for viscoelastic materials gives elastic modulus values which are independent of the rate-jump magnitude. The results show that the rate-jump method can be used as a standard protocol for measuring elastic stiffness of living cells, since the measured values are intrinsic properties of the cells. © 2011 Elsevier Ltd.

  18. Visualized Multiprobe Electrical Impedance Measurements with STM Tips Using Shear Force Feedback Control

    Directory of Open Access Journals (Sweden)

    Luis Botaya

    2016-05-01

    Full Text Available Here we devise a multiprobe electrical measurement system based on quartz tuning forks (QTFs and metallic tips capable of having full 3D control over the position of the probes. The system is based on the use of bent tungsten tips that are placed in mechanical contact (glue-free solution with a QTF sensor. Shear forces acting in the probe are measured to control the tip-sample distance in the Z direction. Moreover, the tilting of the tip allows the visualization of the experiment under the optical microscope, allowing the coordination of the probes in X and Y directions. Meanwhile, the metallic tips are connected to a current–voltage amplifier circuit to measure the currents and thus the impedance of the studied samples. We discuss here the different aspects that must be addressed when conducting these multiprobe experiments, such as the amplitude of oscillation, shear force distance control, and wire tilting. Different results obtained in the measurement of calibration samples and microparticles are presented. They demonstrate the feasibility of the system to measure the impedance of the samples with a full 3D control on the position of the nanotips.

  19. Axial pico turbine - construction and experimental research

    Science.gov (United States)

    Peczkis, G.; Goryca, Z.; Korczak, A.

    2017-08-01

    The paper concerns axial water turbine of power equal to 1 kW. The example of axial water turbine constructional calculations was provided, as well as turbine rotor construction with NACA profile blades. The laboratory test rig designed and built to perform measurements on pico turbine was described. The turbine drove three-phase electrical generator. On the basis of highest efficiency parameters, pico turbine basic characteristics were elaborated. The experimental research results indicated that pico turbine can achieve maximum efficiency close to the values of larger water turbines.

  20. Axial Vircator for Electronic Warfare Applications

    Directory of Open Access Journals (Sweden)

    L. Drazan

    2009-12-01

    Full Text Available This paper deals with a high power microwave generator with virtual cathode – vircator in axial release for electronic warfare applications. The classification of directed energy weapons microwave (DEWM is introduced together with basic block diagrams of a particular class of DEWM. In the paper, methods for designing vircator pulsed power supply, axial vircator structure, measurement methods and experimental results are presented. The vircator in electromagnetic ammunition is powered by magneto-cumulative generator and in weapons for defense of objects (WDO, it is powered by Marx generator. The possible applications of a vircator in the DEWM area are discussed.

  1. A precision measurement of the neutron2. Probing the color force

    Energy Technology Data Exchange (ETDEWEB)

    Posik, Matthew R. [Temple Univ., Philadelphia, PA (United States)

    2014-01-01

    The g2 nucleon spin-dependent structure function measured in electron deep inelastic scattering contains information beyond the simple parton model description of the nucleon. It provides insight into quark-gluon correlations and a path to access the confining local color force a struck quark experiences just as it is hit by the virtual photon due to the remnant di-quark. The quantity d2, a measure of this local color force, has its information encoded in an x2 weighted integral of a linear combination of spin structure functions g1 and g2 and thus is dominated by the valence-quark region at large momentum fraction x. To date, theoretical calculations and experimental measurements of the neutron d2 differ by about two standard deviations. Therefore, JLab experiment E06-014, performed in Hall A, made a precision measurement of this quantity at two mean four momentum transfers values of 3.21 and 4.32 GeV2. Double spin asymmetries and absolute cross-sections were measured in both DIS and resonance regions by scattering longitudinally polarized electrons at beam energies of 4.74 and 5.89 GeV from a longitudinally and transversely polarized 3He target. Results for the absolute cross-sections and spin structure functions on 3He will be presented in the dissertation, as well as results for the neutron d2 and extracted color forces.

  2. Reliability and Validity of Force Platform Measures of Balance Impairment in Individuals With Parkinson Disease.

    Science.gov (United States)

    Harro, Cathy C; Marquis, Alicia; Piper, Natasha; Burdis, Chris

    2016-12-01

    Complex movement and balance impairments in people with Parkinson disease (PD) contribute to high fall risk. Comprehensive balance assessment is warranted to identify intrinsic fall risk factors and direct interventions. The purpose of this study was to examine the psychometric properties of 3 balance measures of a force platform (FP) system in people with PD. Forty-two community-dwelling individuals with idiopathic PD completed the testing protocol. Test-retest reliability was assessed for the Limits of Stability Test (LOS), Motor Control Test (MCT), and Sensory Organization Test (SOT). Intraclass correlation coefficients (ICC [2,1]) were calculated to determine test-retest reliability and minimal detectable change. Validity was assessed by comparing the FP measures with criterion gait and balance measures using Pearson product moment correlations. Multiple regression analyses examined the contribution of PD characteristics to FP measures. All primary FP variables demonstrated excellent test-retest reliability (ICC=.78-.92). The SOT and LOS demonstrated fair to good correlations with criterion measures, whereas the MCT had fair correlations to balance measures only. Both SOT composite equilibrium and MCT average latency were moderately associated with disease severity. This study's sample had a relatively small number of participants with a positive fall history, which may limit the generalizability of the findings. This study's findings provide support that FP measures are reliable and valid tests of balance impairment in people with PD. Disease severity was significantly associated with SOT and MCT measures, perhaps reflecting that these tests are meaningful indicators of decline in postural control with disease progression. Force platform measures may provide valuable quantitative information about underlying balance impairments in people with PD to guide therapeutic interventions for fall risk reduction. © 2016 American Physical Therapy Association.

  3. Cellular Force Microscopy for in Vivo Measurements of Plant Tissue Mechanics1[W][OA

    Science.gov (United States)

    Routier-Kierzkowska, Anne-Lise; Weber, Alain; Kochova, Petra; Felekis, Dimitris; Nelson, Bradley J.; Kuhlemeier, Cris; Smith, Richard S.

    2012-01-01

    Although growth and morphogenesis are controlled by genetics, physical shape change in plant tissue results from a balance between cell wall loosening and intracellular pressure. Despite recent work demonstrating a role for mechanical signals in morphogenesis, precise measurement of mechanical properties at the individual cell level remains a technical challenge. To address this challenge, we have developed cellular force microscopy (CFM), which combines the versatility of classical microindentation techniques with the high automation and resolution approaching that of atomic force microscopy. CFM’s large range of forces provides the possibility to map the apparent stiffness of both plasmolyzed and turgid tissue as well as to perform micropuncture of cells using very high stresses. CFM experiments reveal that, within a tissue, local stiffness measurements can vary with the level of turgor pressure in an unexpected way. Altogether, our results highlight the importance of detailed physically based simulations for the interpretation of microindentation results. CFM’s ability to be used both to assess and manipulate tissue mechanics makes it a method of choice to unravel the feedbacks between mechanics, genetics, and morphogenesis. PMID:22353572

  4. Critical-Dimension Measurement using Multi-Angle-Scanning Method in Atomic Force Microscope

    Science.gov (United States)

    Murayama, Ken; Gonda, Satoshi; Koyanagi, Hajime; Terasawa, Tsuneo; Hosaka, Sumio

    2006-07-01

    We have developed a new critical dimension (CD) measurement technique using atomic force microscope (AFM) which can measure width-dimensions and examine sidewall-shapes of fine patterns on a wafer. The technique employs a flared-type tip in combination with digital probing and multi-angle scanning mechanism that allows the tip to trace the sidewalls on both sides of a feature (or trench) by making physical contacts with the sidewall surface. First, by using finite element method (FEM) we analyzed deformation of the tip and cantilever to compensate errors caused by the deformation. To verify our compensation method we measured quartz reference patterns either with perpendicular sidewalls or undercuts. In this paper we will describe the applications and usefulness of this multi-angle operation and show some measurement results of ArF resist patterns with 200 nm width and 400 nm depth that were obtained with a flared tip of 120 nm diameter.

  5. A Study of the Confinement Induced Sponge to Lamellar Phase Transformation by Direct Force Measurement

    International Nuclear Information System (INIS)

    Antelmi, David

    1996-10-01

    The interactions between two macroscopic walls immersed in an isotropic symmetric sponge phase (L 3 ) at different volume fractions, Φ, were studied with a surface force apparatus. The purpose of these experiments was to investigate the behaviour of the sponge phase when confined between two smooth rigid surfaces. Particular attention was given to investigating this behaviour as the bulk transition to the lamellar phase (L α ) was approached. At temperatures far from the L 3 /L α bulk transition temperature, the force-distance profile showed weak oscillations with a periodicity approximately equal to twice the characteristic length, ξ, measured for the sponge phase from small angle x-ray scattering. Furthermore, the oscillations were superimposed on an exponential attractive background that decayed with an order parameter correlation length of 2-3 times ξ The attractive background was explained by the enhancement of the sponge order in the vicinity of the rigid walls. The structural oscillations observed in the force-distance profile, although not completely understood, were discussed in terms of the packing of sponge cells (cell size ξ). The significance of the observed periodicity (2ξ) may indicate the importance of the symmetric nature of the sponge phase. By moving pairs of cells in response to an applied strain, the symmetry of the sponge structure is protected. As the temperature increased towards the L 3 /L α bulk transition temperature, an abrupt change in the force-distance profile was observed at a threshold separation labelled D* in . A different force regime was observed for separations below D* in which oscillated with a periodicity that was twice the reticular spacing, d, for a L α phase of similar Φ. The force oscillations were superimposed on an attractive background that was almost linear. These observations were consistent with a first order phase transition from the sponge phase to the lamellar phase, induced by the confinement, where

  6. Ultrasound power measurements of HITU transducer with a more stable radiation force balance

    International Nuclear Information System (INIS)

    Karaboece, B; Sadiko'lu, E; Bilgic, E

    2011-01-01

    A new radiation force balance (RFB) system was established at Turkish National Metrology Institute (UME) Ultrasonics Laboratory for High intensity therapeutic ultrasound (HITU) power measurements. The new system is highly stable at high power levels up to 500 Watts. The measurement system consists of a Plexiglas cylindrical balance arm, target mounting scale disks, conical reflecting and absorbing targets, adjustment nuts, and a hanging wire. Both of the two sides of balance were mounted similar size and weight targets. The equilibrium of the balance arm can be adjusted with nuts on screws located at both sides of the balance arm. Transducer was mounted to bottom of water tank. Absorbers in the bottom and the near walls of the tank were used for reflecting target case. Ultrasound power was applied to one scale of the balance where the reflecting/absorbing target was mounted and corresponding force was measured on the other scale of balance where was connected to a balance with a thin wire while the thin rest standing on a support. Ultrasound power of two HITU transducers at frequencies 0.93 MHz, 1.1 MHz and 3.3 MHz were measured with conventional and new system, the values were compared and uncertainty components were assessed in this paper.

  7. Comparison of optical and electrical measurements of the pantograph-catenary contact force

    Science.gov (United States)

    Bocciolone, Marco; Bucca, Giuseppe; Collina, Andrea; Comolli, Lorenzo

    2010-09-01

    In railway engineering the monitoring of contact force between pantograph and catenary gives information about the interaction between the two systems and it is useful to check the status of the overhead line. Indeed the failure of the catenary is one of the main causes of out of order problems. This study was conducted in a test campaign on an underground train instrumented with sensors able to monitor the line status. One of the more important measured quantities is the pantograph contact force, and two measurement systems were implemented: one optical and another electrical. The optical one was based on FBG sensors applied on the pantograph collector strip; the electrical one was based on two load cells positioned at the sides of the collector strip. The in-line measurements show that the optical solution is very promising, providing very reliable results that can be successfully used in the monitoring application, allowing the determination of the critical point in the line. The thermal compensation of any FBG sensors is a known problem and here is no exception: a thermal compensator was used to get also mean value measurements and the results are discussed.

  8. Ultrasound power measurements of HITU transducer with a more stable radiation force balance

    Energy Technology Data Exchange (ETDEWEB)

    Karaboece, B; Sadiko' lu, E; Bilgic, E, E-mail: baki.karaboce@ume.tubitak.gov.t [Tuebitak Ulusal Metroloji Enstituesue (UME), P.K. 54 41470 Gebze-Kocaeli (Turkey)

    2011-02-01

    A new radiation force balance (RFB) system was established at Turkish National Metrology Institute (UME) Ultrasonics Laboratory for High intensity therapeutic ultrasound (HITU) power measurements. The new system is highly stable at high power levels up to 500 Watts. The measurement system consists of a Plexiglas cylindrical balance arm, target mounting scale disks, conical reflecting and absorbing targets, adjustment nuts, and a hanging wire. Both of the two sides of balance were mounted similar size and weight targets. The equilibrium of the balance arm can be adjusted with nuts on screws located at both sides of the balance arm. Transducer was mounted to bottom of water tank. Absorbers in the bottom and the near walls of the tank were used for reflecting target case. Ultrasound power was applied to one scale of the balance where the reflecting/absorbing target was mounted and corresponding force was measured on the other scale of balance where was connected to a balance with a thin wire while the thin rest standing on a support. Ultrasound power of two HITU transducers at frequencies 0.93 MHz, 1.1 MHz and 3.3 MHz were measured with conventional and new system, the values were compared and uncertainty components were assessed in this paper.

  9. Influence of Halide Solutions on Collagen Networks: Measurements of Physical Properties by Atomic Force Microscopy

    Science.gov (United States)

    Kempe, André; Lackner, Maximilian

    2016-01-01

    The influence of aqueous halide solutions on collagen coatings was tested. The effects on resistance against indentation/penetration on adhesion forces were measured by atomic force microscopy (AFM) and the change of Young's modulus of the coating was derived. Comparative measurements over time were conducted with halide solutions of various concentrations. Physical properties of the mesh-like coating generally showed large variability. Starting with a compact set of physical properties, data disperse after minutes. A trend of increase in elasticity and permeability was found for all halide solutions. These changes were largest in NaI, displaying a logical trend with ion size. However a correlation with concentration was not measured. Adhesion properties were found to be independent of mechanical properties. The paper also presents practical experience for AFM measurements of soft tissue under liquids, particularly related to data evaluation. The weakening in physical strength found after exposure to halide solutions may be interpreted as widening of the network structure or change in the chemical properties in part of the collagen fibres (swelling). In order to design customized surface coatings at optimized conditions also for medical applications, halide solutions might be used as agents with little impact on the safety of patients. PMID:27721994

  10. Development of a Hybrid Atomic Force Microscopic Measurement System Combined with White Light Scanning Interferometry

    Directory of Open Access Journals (Sweden)

    Xiaotang Hu

    2011-12-01

    Full Text Available A hybrid atomic force microscopic (AFM measurement system combined with white light scanning interferometry for micro/nanometer dimensional measurement is developed. The system is based on a high precision large-range positioning platform with nanometer accuracy on which a white light scanning interferometric module and an AFM head are built. A compact AFM head is developed using a self-sensing tuning fork probe. The head need no external optical sensors to detect the deflection of the cantilever, which saves room on the head, and it can be directly fixed under an optical microscopic interferometric system. To enhance the system’s dynamic response, the frequency modulation (FM mode is adopted for the AFM head. The measuring data can be traceable through three laser interferometers in the system. The lateral scanning range can reach 25 mm × 25 mm by using a large-range positioning platform. A hybrid method combining AFM and white light scanning interferometry is proposed to improve the AFM measurement efficiency. In this method, the sample is measured firstly by white light scanning interferometry to get an overall coarse morphology, and then, further measured with higher resolution by AFM. Several measuring experiments on standard samples demonstrate the system’s good measurement performance and feasibility of the hybrid measurement method.

  11. Axial skeletal CT densitometry

    International Nuclear Information System (INIS)

    Lampmann, L.E.H.

    1982-01-01

    Since the discovery of the Roentgen ray a precise and accurate assessment of bone mineral content has been a challenge to many investigators. A number of methods have been developed but no one satisfied. Considering its technical possibilities computed tomography is very promising in determination of bone mineral content (BMC). The new modality enables BMC estimations in the axial skeletal trabecular bone. CT densitometry can be performed on a normal commercially available third generation whole body CT scanner. No dedicated device in a special clinical set-up is necessary. In this study 106 patients, most of them clinically suspected of osteoporosis, were examined. The new method CT densitometry has been evaluated. The results have been correlated to alternative BMC determination methods. (Auth.)

  12. Validity of using tri-axial accelerometers to measure human movement - Part II: Step counts at a wide range of gait velocities.

    Science.gov (United States)

    Fortune, Emma; Lugade, Vipul; Morrow, Melissa; Kaufman, Kenton

    2014-06-01

    A subject-specific step counting method with a high accuracy level at all walking speeds is needed to assess the functional level of impaired patients. The study aim was to validate step counts and cadence calculations from acceleration data by comparison to video data during dynamic activity. Custom-built activity monitors, each containing one tri-axial accelerometer, were placed on the ankles, thigh, and waist of 11 healthy adults. ICC values were greater than 0.98 for video inter-rater reliability of all step counts. The activity monitoring system (AMS) algorithm demonstrated a median (interquartile range; IQR) agreement of 92% (8%) with visual observations during walking/jogging trials at gait velocities ranging from 0.1 to 4.8m/s, while FitBits (ankle and waist), and a Nike Fuelband (wrist) demonstrated agreements of 92% (36%), 93% (22%), and 33% (35%), respectively. The algorithm results demonstrated high median (IQR) step detection sensitivity (95% (2%)), positive predictive value (PPV) (99% (1%)), and agreement (97% (3%)) during a laboratory-based simulated free-living protocol. The algorithm also showed high median (IQR) sensitivity, PPV, and agreement identifying walking steps (91% (5%), 98% (4%), and 96% (5%)), jogging steps (97% (6%), 100% (1%), and 95% (6%)), and less than 3% mean error in cadence calculations. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. Measuring Pushing and Braking Forces Generated by Ensembles of Kinesin-5 Crosslinking Two Microtubules.

    Science.gov (United States)

    Shimamoto, Yuta; Forth, Scott; Kapoor, Tarun M

    2015-09-28

    The proper organization of the microtubule-based mitotic spindle is proposed to depend on nanometer-sized motor proteins generating forces that scale with a micron-sized geometric feature, such as microtubule overlap length. However, it is unclear whether such regulation can be achieved by any mitotic motor protein. Here, we employ an optical-trap- and total internal reflection fluorescence (TIRF)-based assay to show that ensembles of kinesin-5, a conserved mitotic motor protein, can push apart overlapping antiparallel microtubules to generate a force whose magnitude scales with filament overlap length. We also find that kinesin-5 can produce overlap-length-dependent "brake-like" resistance against relative microtubule sliding in both parallel and antiparallel geometries, an activity that has been suggested by cell biological studies but had not been directly measured. Together, these findings, along with numerical simulations, reveal how a motor protein can function as an analog converter, "reading" simple geometric and dynamic features in cytoskeletal networks to produce regulated force outputs. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Near-equilibrium measurement of quantum size effects using Kelvin probe force microscopy.

    Science.gov (United States)

    Späth, Thomas; Popp, Matthias; Pérez León, Carmen; Marz, Michael; Hoffmann-Vogel, Regina

    2017-06-14

    In nano-structures such as thin films electron confinement results in the quantization of energy levels in the direction perpendicular to the film. The discretization of the energy levels leads to the oscillatory dependence of many properties on the film thickness due to quantum size effects. Pb on Si(111) is a specially interesting system because a particular relationship between the Pb atomic layer thickness and its Fermi wavelength leads to a periodicity of the oscillation of two atomic layers. Here, we demonstrate how the combination of scanning force microscopy (SFM) and Kelvin probe force microscopy (KPFM) provides a reliable method to monitor the quantum oscillations in the work function of Pb ultra-thin film nano-structures on Si(111). Unlike other techniques, with SFM/KPFM we directly address single Pb islands, determine their height while suppressing the influence of electrostatic forces, and, in addition, simultaneously evaluate their local work function by measurements close to equilibrium, without current-dependent and non-equilibrium effects. Our results evidence even-odd oscillations in the work function as a function of the film thickness that decay linearly with the film thickness, proving that this method provides direct and precise information on the quantum states.

  15. Force measurements of postural sway and rapid arm lift in seated children with and without MMC.

    Science.gov (United States)

    Norrlin, Simone; Karlsson, Annica; Ahlsten, Gunnar; Lanshammar, Håkan; Silander, Hans C; Dahl, Margareta

    2002-03-01

    The aim was to investigate the horizontal ground reaction forces of seated postural sway and rapid arm lift in children with and without myelomeningocele. BACKGROUND; It is unclear whether children with myelomeningocele have limited control of body posture entirely caused by the impairment in the legs or also by other dysfunction. 11 children with myelomeningocele, 10-13 years, and 20 children without physical impairment were investigated. Data were collected by force plate measurements during quiet sitting and during rapid arm lift. The forces were expressed as the corresponding acceleration of the centre of mass. The amplitude and the frequency of the centre of mass acceleration quantified the sway. Movement time, onset and anteroposterior peak acceleration were analysed during arm lift. The children with myelomeningocele had a low sway frequency under both conditions: eyes open and eyes closed. The movement time was longer for these children compared to the controls. The onset of initial anteroposterior centre of mass acceleration preceded the arm lift and was directed forward in both groups. The peak centre of mass acceleration was usually directed backward. The control of postural sway was different in children with myelomeningocele compared to children without disabilities and this could not be explained by the cele level. The children with myelomeningocele had a slow motor performance of the seated sway and during arm lift. Slow motor performance involves functional limitations in the individual child and is important for the therapy program.

  16. Application of magnetic resonance force microscopy cyclic adiabatic inversion for a single-spin measurement

    CERN Document Server

    Berman, G P; Chapline, G; Gurvitz, S A; Hammel, P C; Pelekhov, D V; Suter, A; Tsifrinovich, V I

    2003-01-01

    We consider the process of a single-spin measurement using magnetic resonance force microscopy (MRFM) with a cyclic adiabatic inversion (CAI). This technique is also important for different applications, including a measurement of a qubit state in quantum computation. The measurement takes place through the interaction of a single spin with a cantilever modelled by a quantum oscillator in a coherent state in a quasi-classical range of parameters. The entire system is treated rigorously within the framework of the Schroedinger equation. For a many-spin system our equations accurately describe conventional MRFM experiments involving CAI of the spin system. Our computer simulations of the quantum spin-cantilever dynamics show that the probability distribution for the cantilever position develops two asymmetric peaks with the total relative probabilities mainly dependent on the initial angle between the directions of the average spin and the effective magnetic field, in the rotating frame. We show that each of th...

  17. A review of measurement-based assessments of the aerosol direct radiative effect and forcing

    Directory of Open Access Journals (Sweden)

    H. Yu

    2006-01-01

    Full Text Available Aerosols affect the Earth's energy budget directly by scattering and absorbing radiation and indirectly by acting as cloud condensation nuclei and, thereby, affecting cloud properties. However, large uncertainties exist in current estimates of aerosol forcing because of incomplete knowledge concerning the distribution and the physical and chemical properties of aerosols as well as aerosol-cloud interactions. In recent years, a great deal of effort has gone into improving measurements and datasets. It is thus feasible to shift the estimates of aerosol forcing from largely model-based to increasingly measurement-based. Our goal is to assess current observational capabilities and identify uncertainties in the aerosol direct forcing through comparisons of different methods with independent sources of uncertainties. Here we assess the aerosol optical depth (τ, direct radiative effect (DRE by natural and anthropogenic aerosols, and direct climate forcing (DCF by anthropogenic aerosols, focusing on satellite and ground-based measurements supplemented by global chemical transport model (CTM simulations. The multi-spectral MODIS measures global distributions of aerosol optical depth (τ on a daily scale, with a high accuracy of ±0.03±0.05τ over ocean. The annual average τ is about 0.14 over global ocean, of which about 21%±7% is contributed by human activities, as estimated by MODIS fine-mode fraction. The multi-angle MISR derives an annual average AOD of 0.23 over global land with an uncertainty of ~20% or ±0.05. These high-accuracy aerosol products and broadband flux measurements from CERES make it feasible to obtain observational constraints for the aerosol direct effect, especially over global the ocean. A number of measurement-based approaches estimate the clear-sky DRE (on solar radiation at the top-of-atmosphere (TOA to be about -5.5±0.2 Wm-2 (median ± standard error from various methods over the global ocean. Accounting for thin cirrus

  18. An Overview on Gripping Force Measurement at the Micro and Nano-Scales Using Two-Fingered Microrobotic Systems

    Directory of Open Access Journals (Sweden)

    Mokrane Boudaoud

    2014-03-01

    Full Text Available Two-fingered micromanipulation systems with an integrated force sensor are widely used in robotics to sense and control gripping forces at the micro and nano-scales. They became of primary importance for an efficient manipulation and characterization of highly deformable biomaterials and nanostructures. This paper presents a chronological overview of gripping force measurement using two-fingered micromanipulation systems. The work summarizes the major achievements in this field from the early 90s to the present, focusing in particular on the evolution of measurement technologies regarding the requirements of microrobotic applications. Measuring forces below the microNewton for the manipulation of highly deformable materials, embedding force sensors within microgrippers to increase their dexterity, and reducing the influence of noise to improve the measurement resolution are among the addressed challenges. The paper shows different examples of how these challenges have been addressed. Resolution, operating range and signal/noise ratio of gripping force sensors are reported and compared. A discussion about force measurement technologies and gripping force control is performed and future trends are highlighted.

  19. Hypersonic force measurements using internal balance based on optical micromachined Fabry-Perot interferometry

    Science.gov (United States)

    Qiu, Huacheng; Min, Fu; Zhong, Shaolong; Song, Xin; Yang, Yanguang

    2018-03-01

    Force measurements using wind tunnel balance are necessary for determining a variety of aerodynamic performance parameters, while the harsh environment in hypersonic flows requires that the measurement instrument should be reliable and robust, in against strong electromagnetic interference, high vacuum, or metal (oxide) dusts. In this paper, we demonstrated a three-component internal balance for hypersonic aerodynamic force measurements, using novel optical micromachined Fabry-Perot interferometric (FPI) strain gauges as sensing elements. The FPI gauges were fabricated using Micro-Opto-Electro-Mechanical Systems (MOEMS) surface and bulk fabrication techniques. High-reflectivity coatings are used to form a high-finesse Fabry-Perot cavity, which benefits a high resolution. Antireflective and passivation coatings are used to reduce unwanted interferences. The FPI strain gauge based balance has been calibrated and evaluated in a Mach 5 hypersonic flow. The results are compared with the traditional technique using the foil resistive strain gauge balance, indicating that the proposed balance based on the MOEMS FPI strain gauge is reliable and robust and is potentially suitable for the hypersonic wind tunnel harsh environment.

  20. Bifurcation and chaos analysis of nonlinear rotor system with axial-grooved gas-lubricated journal bearing support

    Science.gov (United States)

    Zhang, Yongfang; Hei, Di; Lü, Yanjun; Wang, Quandai; Müller, Norbert

    2014-03-01

    Axial-grooved gas-lubricated journal bearings have been widely applied to precision instrument due to their high accuracy, low friction, low noise and high stability. The rotor system with axial-grooved gas-lubricated journal bearing support is a typical nonlinear dynamic system. The nonlinear analysis measures have to be adopted to analyze the behaviors of the axial-grooved gas-lubricated journal bearing-rotor nonlinear system as the linear analysis measures fail. The bifurcation and chaos of nonlinear rotor system with three axial-grooved gas-lubricated journal bearing support are investigated by nonlinear dynamics theory. A time-dependent mathematical model is established to describe the pressure distribution in the axial-grooved compressible gas-lubricated journal bearing. The time-dependent compressible gas-lubricated Reynolds equation is solved by the differential transformation method. The gyroscopic effect of the rotor supported by gas-lubricated journal bearing with three axial grooves is taken into consideration in the model of the system, and the dynamic equation of motion is calculated by the modified Wilson- θ-based method. To analyze the unbalanced responses of the rotor system supported by finite length gas-lubricated journal bearings, such as bifurcation and chaos, the bifurcation diagram, the orbit diagram, the Poincaré map, the time series and the frequency spectrum are employed. The numerical results reveal that the nonlinear gas film forces have a significant influence on the stability of rotor system and there are the rich nonlinear phenomena, such as the periodic, period-doubling, quasi-periodic, period-4 and chaotic motion, and so on. The proposed models and numerical results can provide a theoretical direction to the design of axial-grooved gas-lubricated journal bearing-rotor system.

  1. Out-of-Plane Electromechanical Response of Monolayer Molybdenum Disulfide Measured by Piezoresponse Force Microscopy.

    Science.gov (United States)

    Brennan, Christopher J; Ghosh, Rudresh; Koul, Kalhan; Banerjee, Sanjay K; Lu, Nanshu; Yu, Edward T

    2017-09-13

    Two-dimensional (2D) materials have recently been theoretically predicted and experimentally confirmed to exhibit electromechanical coupling. Specifically, monolayer and few-layer molybdenum disulfide (MoS 2 ) have been measured to be piezoelectric within the plane of their atoms. This work demonstrates and quantifies a nonzero out-of-plane electromechanical response of monolayer MoS 2 and discusses its possible origins. A piezoresponse force microscope was used to measure the out-of-plane deformation of monolayer MoS 2 on Au/Si and Al 2 O 3 /Si substrates. Using a vectorial background subtraction technique, we estimate the effective out-of-plane piezoelectric coefficient, d 33 eff , for monolayer MoS 2 to be 1.03 ± 0.22 pm/V when measured on the Au/Si substrate and 1.35 ± 0.24 pm/V when measured on Al 2 O 3 /Si. This is on the same order as the in-plane coefficient d 11 reported for monolayer MoS 2 . Interpreting the out-of-plane response as a flexoelectric response, the effective flexoelectric coefficient, μ eff * , is estimated to be 0.10 nC/m. Analysis has ruled out the possibility of elastic and electrostatic forces contributing to the measured electromechanical response. X-ray photoelectron spectroscopy detected some contaminants on both MoS 2 and its substrate, but the background subtraction technique is expected to remove major contributions from the unwanted contaminants. These measurements provide evidence that monolayer MoS 2 exhibits an out-of-plane electromechanical response and our analysis offers estimates of the effective piezoelectric and flexoelectric coefficients.

  2. Derivation of Inter-Atomic Force Constants of Cu2O from Diffuse Neutron Scattering Measurement

    Directory of Open Access Journals (Sweden)

    T. Makhsun

    2013-04-01

    Full Text Available Neutron scattering intensity from Cu2O compound has been measured at 10 K and 295 K with High Resolution Powder Diffractometer at JRR-3 JAEA. The oscillatory diffuse scattering related to correlations among thermal displacements of atoms was observed at 295 K. The correlation parameters were determined from the observed diffuse scattering intensity at 10 and 295 K. The force constants between the neighboring atoms in Cu2O were estimated from the correlation parameters and compared to those of Ag2O

  3. Simultaneous atomic force microscope and quartz crystal microbalance measurements: Investigation of human plasma fibrinogen adsorption

    International Nuclear Information System (INIS)

    Choi, K.-H.; Friedt, J.-M.; Frederix, F.; Campitelli, A.; Borghs, G.

    2002-01-01

    We have combined the tapping-mode atomic force microscope (AFM) and quartz crystal microbalance (QCM) for simultaneous investigation of human plasma fibrinogen adsorption on a metallic surface using these two instruments. The AFM images show the surface changes with molecular resolution while the corresponding resonance frequency shift of the QCM provides quantitative adsorbed mass estimates over the whole sensing area. The combination of AFM with QCM allowing the simultaneous measurements with two techniques working at very different scales and probing different properties of the adsorbed layer provides quantitative and qualitative information that can distinguish different protein adsorption mechanisms

  4. Frequency, amplitude, and phase measurements in contact resonance atomic force microscopies

    Directory of Open Access Journals (Sweden)

    Gheorghe Stan

    2014-03-01

    Full Text Available The resonance frequency, amplitude, and phase response of the first two eigenmodes of two contact-resonance atomic force microscopy (CR-AFM configurations, which differ in the method used to excite the system (cantilever base vs sample excitation, are analyzed in this work. Similarities and differences in the observables of the cantilever dynamics, as well as the different effect of the tip–sample contact properties on those observables in each configuration are discussed. Finally, the expected accuracy of CR-AFM using phase-locked loop detection is investigated and quantification of the typical errors incurred during measurements is provided.

  5. Bayesian inverse problems in measure spaces with application to Burgers and Hamilton–Jacobi equations with white noise forcing

    International Nuclear Information System (INIS)

    Hoang, Viet Ha

    2012-01-01

    This paper formulates Bayesian inverse problems for inference in a topological measure space given noisy observations. Conditions for the validity of the Bayes’ formula and the well posedness of the posterior measure are studied. The abstract theory is then applied to Burgers and Hamilton–Jacobi equations on a semi-infinite time interval with forcing functions which are white noise in time. Inference is made on the white noise forcing, assuming the Wiener measure as the prior. (paper)

  6. New analysis procedure for fast and reliable size measurement of nanoparticles from atomic force microscopy images

    International Nuclear Information System (INIS)

    Boyd, Robert D.; Cuenat, Alexandre

    2011-01-01

    Accurate size measurement during nanoparticle production is essential for the continuing innovation, quality and safety of nano-enabled products. Size measurement by analysing a number of separate particles individually has particular advantages over ensemble methods. In the latter case nanoparticles have to be well dispersed in a fluid and changes that may occur during analysis, such as agglomeration and degradation, will not be detected which could lead to misleading results. Atomic force microscopy (AFM) allows imaging of particles both in air and liquid, however, the strong interactions between the probe and the particle will cause the broadening of the lateral dimension in the final image. In this paper a new procedure to measure the size of spherical nanoparticles from AFM images via vertical height measurement is described. This procedure will quickly analyse hundred of particles simultaneously and reproduce the measurements obtained from electron microscopy (EM). Nanoparticles samples that were difficult, if not impossible, to analyse with EM were successfully measured using this method. The combination of this procedure with the use of a metrological AFM moves closer to true traceable measurements of nanoparticle dispersions.

  7. Jet Exit Rig Six Component Force Balance

    Science.gov (United States)

    Castner, Raymond; Wolter, John; Woike, Mark; Booth, Dennis

    2012-01-01

    A new six axis air balance was delivered to the NASA Glenn Research Center. This air balance has an axial force capability of 800 pounds, primary airflow of 10 pounds per second, and a secondary airflow of 3 pounds per second. Its primary use was for the NASA Glenn Jet Exit Rig, a wind tunnel model used to test both low-speed, and high-speed nozzle concepts in a wind tunnel. This report outlines the installation of the balance in the Jet Exit Rig, and the results from an ASME calibration nozzle with an exit area of 8 square-inches. The results demonstrated the stability of the force balance for axial measurements and the repeatability of measurements better than 0.20 percent.

  8. Axial and coronal orientation of subaxial cervical zygapophysial joints and their effect on axial rotation and lateral bending.

    Science.gov (United States)

    Hsu, Wen-Hsing; Benzel, Edward C; Chen, Tzu-Yung; Chen, Yao-Liang

    2008-10-15

    Computerized tomography and image processing methodologies were used to analyze the axial and coronal orientation of cervical zygapophysial joints in asymptomatic adults. Surface motions of axial rotation and lateral bending were simulated. The study was designed to obtain the normal distribution and variation of facet orientation (FO) in axial and coronal planes to investigate factors affecting FO and to study the effects of FO on axial rotation and lateral bending. The FO of the subaxial cervical spine is usually evaluated in the sagittal plane. Cervical spine axial and coronal FO is usually considered to be horizontal. The literature reveals no statistical data for axial or coronal FO. Serial thin-sliced computed tomography scans of the cervical spine in asymptomatic adults were input into Image J, National Institutes of Health, image processing software. Bilateral zygapophysial joint angles from C2-C3 to C6-C7 were measured in the axial and coronal planes and collected from 100 subjects. The effect of gender, age, and correlation was analyzed. The surface motions of axial rotation and lateral bending were simulated in Abaqus CAE 6.5. Mathematical facet contact and range of motion were computed. The FO was widely distributed at each level. Gender had no significant association with FO. Age affected FO at most levels. Axial and coronal FO were significantly correlated. The zygapophysial joint of internally rotated/inverted FO contacted more perpendicularly to each other, and mathematical range of motion was smaller. The axial or coronal FO of the subaxial cervical spine was found with more variability. Age was significantly related to FO. Geometrically, internally rotated/inverted FO of axial rotation/lateral bending was morerestricted. The extent of axial rotation and lateral bending was correlated with each other.

  9. Force Measurement Improvements to the National Transonic Facility Sidewall Model Support System

    Science.gov (United States)

    Goodliff, Scott L.; Balakrishna, Sundareswara; Butler, David; Cagle, C. Mark; Chan, David; Jones, Gregory S.; Milholen, William E., II

    2016-01-01

    The National Transonic Facility is a transonic pressurized cryogenic facility. The development of the high Reynolds number semi-span capability has advanced over the years to include transonic active flow control and powered testing using the sidewall model support system. While this system can be used in total temperatures down to -250Â F for conventional unpowered configurations, it is limited to temperatures above -60Â F when used with powered models that require the use of the high-pressure air delivery system. Thermal instabilities and non-repeatable mechanical arrangements revealed several data quality shortfalls by the force and moment measurement system. Recent modifications to the balance cavity recirculation system have improved the temperature stability of the balance and metric model-to-balance hardware. Changes to the mechanical assembly of the high-pressure air delivery system, particularly hardware that interfaces directly with the model and balance, have improved the repeatability of the force and moment measurement system. Drag comparisons with the high-pressure air system removed will also be presented in this paper.

  10. Progressing single biomolecule force spectroscopy measurements for the screening of DNA binding agents

    Science.gov (United States)

    Zhang, Wenke; Barbagallo, Romina; Madden, Claire; Roberts, Clive J.; Woolford, Alison; Allen, Stephanie

    2005-10-01

    Recent studies have indicated that the force-extension properties of single molecules of double stranded (ds) DNA are sensitive to the presence of small molecule DNA binding agents, and also to their mode of binding. These observations raise the possibility of using this approach as a highly sensitive tool for the screening of such agents. However, particularly for studies employing the atomic force microscope (AFM), several non-trivial barriers hinder the progress of this approach to the non-specialist arena and hence also the full realization of this possibility. In this paper, we therefore address a series of key reproducibility and metrological issues associated with this type of measurement. Specifically, we present an improved immobilization method that covalently anchors one end (5' end) of a dual labelled (5'-thiol, 3'-biotin) p53 DNA molecule onto a gold substrate via gold-thiol chemistry, whilst the biotinylated 3' end is available for 'pick-up' using a streptavidin modified AFM tip. We also show that co-surface immobilization of DNA with 6-mercapto-1-hexanol (MCH) can also lead to a further increase the measured contour length. We demonstrate the impact of these improved protocols through the observation of the cooperative transition plateau in a DNA fragment of approximately 118 bp, a significantly smaller fragment than previously investigated. The results of a comparative study of the effects of a model minor groove binder (Hoechst 33258) and an intercalating drug (proflavine), alone, as a mixture and under different buffer conditions, are also presented.

  11. QCM-based measurement of bond rupture forces in DNA double helices for complementarity sensing.

    Science.gov (United States)

    Dultsev, Fedor N; Kolosovsky, Eugeny A; Mik, Ivan A; Lomzov, Alexander A; Pyshnyi, Dmitrii V

    2014-04-08

    After fixing the DNA molecule in the form of a double helix on the surface of a thickness shear mode resonator (QCM), mechanical oscillations at increasing amplitude cause detorsion of the helix. The force necessary for detorsion can be determined from the voltage applied to the QCM at the rupture moment. The high sensitivity of this method is due to the fact that measurements are carried out in the frequency region around the QCM resonance, where any (even very weak) distortions of the consistent oscillating system cause noticeable distortions of the amplitude-frequency dependence, and these distortions are used to fix the rupture moment. The measured rupture forces were within 30-40 pN, and the sensitivity was 10(8) molecules. It was demonstrated that the proposed procedure allows one to determine the factors that affect the stability of the DNA double helix. This procedure can be the basis for the development of a new method of rapid DNA analysis. Experiments performed with model DNA showed that it is possible to reveal complementarity between two DNA samples.

  12. Reliability and Validity of Computerized Force Platform Measures of Balance Function in Healthy Older Adults.

    Science.gov (United States)

    Harro, Cathy C; Garascia, Chelsea

    2018-01-10

    Postural control declines with aging and is an independent risk factor for falls in older adults. Objective examination of balance function is warranted to direct fall prevention strategies. Force platform (FP) systems provide quantitative measures of postural control and analysis of different aspects of balance. The purpose of this study was to examine the reliability and validity of FP measures in healthy older adults. This study enrolled 46 healthy elderly adults, mean age 67.67 (5.1) years, who had no history of falls. They were assessed on 3 standardized tests on the NeuroCom Equitest FP system: limits of stability (LOS), motor control test (MCT), and sensory organization test (SOT). The test battery was administered twice within a 10-day period for test-retest reliability; intraclass correlation coefficients (ICCs), standard error of measurement (SEM), and minimal detectable change based on a 95% confidence interval (MDC95) were calculated. FP measures were compared with criterion clinical balance (Mini-BESTest and Functional Gait Assessment) and gait (10-m walk and 6-minute walk) measures to examine concurrent validity using Pearson correlation coefficients. Multiple linear regression analysis examined whether age and activity level were associated with FP performance. The α level was set at P Fair correlations were found between LOS end point excursion and clinical balance and gait measures (r = 0.31-0.49), and between MCT average latency and gait measures only (r = -0.32). No correlations were found between SOT measures and clinical balance and gait measures. Age was only marginally significantly (P = .055) associated with LOS end point excursion but was not associated with SOT or MCT measures, and activity level was not associated with any of the FP measures. FP measures provided reliable information on balance function in healthy older adults; however, small learning effects were evident, particularly for the SOT. The SEM and MDC95 for the LOS and SOT

  13. Design and construction of a strain gage compression load cell to measure rolling forces

    International Nuclear Information System (INIS)

    Schoeffer, L.; Borchardt, I.G.; Carvalho, L.F.A.

    1978-05-01

    A complete detailed mechanical desion of a strain gauge compression load cell is presented. This cell was specialy designed to measure rolling forces at conventional duo or trio industrial roughing stands. The stands, in general, have little space (height) to adjust to the cells. Moreover the contact stands surfaces are very rough. Do to this facts, load cells of elastic cilindrical geometries are not recommended for accuracies better than 8%. This work describes the complete design and the construction of a circular (membrane) steel plate load cell. A prototype of 300 KN (approximately 30t) capacity, with 2% accuracies and with a height of 6 cm was constructed and tested. The design proposed is a general one and permits the construction of small load cells to measure any compression load [pt

  14. Atomic force microscope caliper for critical dimension measurements of micro and nanostructures through sidewall scanning.

    Science.gov (United States)

    Xie, Hui; Hussain, Danish; Yang, Feng; Sun, Lining

    2015-11-01

    A novel atomic force microscope (AFM) dual-probe caliper for critical dimension (CD) metrology has been developed. The caliper is equipped with two facing tilted optical fiber probes (OFPs) wherein each can be used independently to scan either sidewall of micro and nanostructures. The OFP tip with length up to 500 μm (aspect ratio 10:1, apex diameter ⩾10 nm) has unique features of scanning deep trenches and imaging sidewalls of relatively high steps with exclusive profiling possibilities. The caliper arms-OFPs can be accurately aligned with a well calibrated opening distance. The line width, line edge roughness, line width roughness, groove width and CD angles can be measured through serial scan of adjacent or opposite sidewalls with each probe. Capabilities of the presented AFM caliper have been validated through experimental CD measurement results of comb microstructures and AFM calibration grating TGZ3. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Fabrication of birefringent nanocylinders for single-molecule force and torque measurement

    International Nuclear Information System (INIS)

    Li, Ping-Chun; T Yu, Edward; Chang, Jen-Chien; La Porta, Arthur

    2014-01-01

    Optically anisotropic subwavelength scale dielectric particles have been shown to enable studies of the mechanical properties of bio-molecules via optical trapping and manipulation. However, techniques emphasized to date for fabrication of such particles generally suffer from limited uniformity and control over particle dimensions, or low throughput and high cost. Here, an approach for rapid, low-cost, fabrication of large quantities of birefringent quartz nanocylinders with dimensions optimized for optical torque wrench experiments is described. For a typical process, 10 8 or more quartz cylinders with diameters of 500 nm and heights of 800 nm, with uniformity of ±5% in each dimension, can be fabricated over ∼10 cm 2 areas, for binding to a single bio-molecule, and harvested for use in optical trapping experiments. Use of these structures to measure extensional and torsional dynamics of single DNA molecules is demonstrated with measured forces and torques shown to be in very good agreement with previously reported results. (papers)

  16. A brute-force spectral approach for wave estimation using measured vessel motions

    DEFF Research Database (Denmark)

    Nielsen, Ulrik D.; Brodtkorb, Astrid H.; Sørensen, Asgeir J.

    2018-01-01

    , and the procedure is simple in its mathematical formulation. The actual formulation is extending another recent work by including vessel advance speed and short-crested seas. Due to its simplicity, the procedure is computationally efficient, providing wave spectrum estimates in the order of a few seconds......The article introduces a spectral procedure for sea state estimation based on measurements of motion responses of a ship in a short-crested seaway. The procedure relies fundamentally on the wave buoy analogy, but the wave spectrum estimate is obtained in a direct - brute-force - approach......, and the estimation procedure will therefore be appealing to applications related to realtime, onboard control and decision support systems for safe and efficient marine operations. The procedure's performance is evaluated by use of numerical simulation of motion measurements, and it is shown that accurate wave...

  17. Dissipative Axial Inflation

    CERN Document Server

    Notari, Alessio

    2016-12-22

    We analyze in detail the background cosmological evolution of a scalar field coupled to a massless abelian gauge field through an axial term $\\frac{\\phi}{f_\\gamma} F \\tilde{F}$, such as in the case of an axion. Gauge fields in this case are known to experience tachyonic growth and therefore can backreact on the background as an effective dissipation into radiation energy density $\\rho_R$, which which can lead to inflation without the need of a flat potential. We analyze the system, for momenta $k$ smaller than the cutoff $f_\\gamma$, including numerically the backreaction. We consider the evolution from a given static initial condition and explicitly show that, if $f_\\gamma$ is smaller than the field excursion $\\phi_0$ by about a factor of at least ${\\cal O} (20)$, there is a friction effect which turns on before that the field can fall down and which can then lead to a very long stage of inflation with a generic potential. In addition we find superimposed oscillations, which would get imprinted on any kind of...

  18. Automated quality control of forced oscillation measurements: respiratory artifact detection with advanced feature extraction.

    Science.gov (United States)

    Pham, Thuy T; Leong, Philip H W; Robinson, Paul D; Gutzler, Thomas; Jee, Adelle S; King, Gregory G; Thamrin, Cindy

    2017-10-01

    The forced oscillation technique (FOT) can provide unique and clinically relevant lung function information with little cooperation with subjects. However, FOT has higher variability than spirometry, possibly because strategies for quality control and reducing artifacts in FOT measurements have yet to be standardized or validated. Many quality control procedures rely on either simple statistical filters or subjective evaluation by a human operator. In this study, we propose an automated artifact removal approach based on the resistance against flow profile, applied to complete breaths. We report results obtained from data recorded from children and adults, with and without asthma. Our proposed method has 76% agreement with a human operator for the adult data set and 79% for the pediatric data set. Furthermore, we assessed the variability of respiratory resistance measured by FOT using within-session variation (wCV) and between-session variation (bCV). In the asthmatic adults test data set, our method was again similar to that of the manual operator for wCV (6.5 vs. 6.9%) and significantly improved bCV (8.2 vs. 8.9%). Our combined automated breath removal approach based on advanced feature extraction offers better or equivalent quality control of FOT measurements compared with an expert operator and computationally more intensive methods in terms of accuracy and reducing intrasubject variability. NEW & NOTEWORTHY The forced oscillation technique (FOT) is gaining wider acceptance for clinical testing; however, strategies for quality control are still highly variable and require a high level of subjectivity. We propose an automated, complete breath approach for removal of respiratory artifacts from FOT measurements, using feature extraction and an interquartile range filter. Our approach offers better or equivalent performance compared with an expert operator, in terms of accuracy and reducing intrasubject variability. Copyright © 2017 the American Physiological

  19. Development of an axial suspended AMB experimental bench for load and disturbance tests

    Directory of Open Access Journals (Sweden)

    R. Gouws

    2015-06-01

    Full Text Available This paper provides the development of an axial suspended active magnetic bearing (AMB experimental bench for load and disturbance tests. This test bench must be capable of levitating a 2 kg steel disc at a stable working distance of 3 mm and a maximum attraction distance of 6 mm. The suspension is accomplished by two electromagnets producing upward and downward attraction forces to support the steel disc. An inductive sensor measures the position of the steel disc and relays this to a PC based controller board (dSPACE® controller. The control system uses this information to regulate the electromagnetic force on the steel disc. The intent is to construct this system using relatively low-cost, low-precision components, and still be able to stably levitate the 2 kg steel disc with high precision. The dSPACE® software (ControlDesk® was used for data acquisition. In this paper, an overview of the system design is presented, followed by the axial AMB model design, inductive sensor design, actuating unit design and controller development and implementation. The paper concludes with results obtained from the dSPACE® controller and evaluation of the axial suspended AMB experimental bench with load and disturbance tests.

  20. An improved visualization-based force-measurement technique for short-duration hypersonic facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laurence, Stuart J.; Karl, Sebastian [Institute of Aerodynamics and Flow Technology, Spacecraft Section, German Aerospace Center (DLR), Goettingen (Germany)

    2010-06-15

    This article is concerned with describing and exploring the limitations of an improved version of a recently proposed visualization-based technique for the measurement of forces and moments in short-duration hypersonic wind tunnels. The technique is based on tracking the motion of a free-flying body over a sequence of high-speed visualizations; while this idea is not new in itself, the use of high-speed digital cinematography combined with a highly accurate least-squares tracking algorithm allows improved results over what have been previously possible with such techniques. The technique precision is estimated through the analysis of artificially constructed and experimental test images, and the resulting error in acceleration measurements is characterized. For wind-tunnel scale models, position measurements to within a few microns are shown to be readily attainable. Image data from two previous experimental studies in the T5 hypervelocity shock tunnel are then reanalyzed with the improved technique: the uncertainty in the mean drag acceleration is shown to be reduced to the order of the flow unsteadiness, 2-3%, and time-resolved acceleration measurements are also shown to be possible. The response time of the technique for the configurations studied is estimated to be {proportional_to}0.5 ms. Comparisons with computations using the DLR TAU code also yield agreement to within the overall experimental uncertainty. Measurement of the pitching moment for blunt geometries still appears challenging, however. (orig.)

  1. The effect of the endothelial cell cortex on atomic force microscopy measurements.

    Science.gov (United States)

    Vargas-Pinto, R; Gong, H; Vahabikashi, A; Johnson, M

    2013-07-16

    We examined whether the presence of the cell cortex might explain, in part, why previous studies using atomic force microscopy (AFM) to measure cell modulus (E) gave higher values with sharp tips than for larger spherical tips. We confirmed these AFM findings in human umbilical vein endothelial cells (HUVEC) and Schlemm's canal (SC) endothelial cells with AFM indentation ≤ 400 nm, two cell types with prominent cortices (312 ± 65 nm in HUVEC and 371 ± 91 nm in SC cells). With spherical tips, E (kPa) was 0.71 ± 0.16 in HUVEC and 0.94 ± 0.06 in SC cells. Much higher values of E were measured using sharp tips: 3.23 ± 0.54 in HUVEC and 6.67 ± 1.07 in SC cells. Previous explanations for this difference such as strain hardening or a substrate effect were shown to be inconsistent with our measurements. Finite element modeling studies showed that a stiff cell cortex could explain the results. In both cell types, Latrunculin-A greatly reduced E for sharp and rounded tips, and also reduced the ratio of the values measured with a sharp tip as compared to a rounded tip. Our results suggest that the cell cortex increases the apparent endothelial cell modulus considerably when measured using a sharp AFM tip. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Imaging and size measurement of nanoparticles in aqueous medium by use of atomic force microscopy.

    Science.gov (United States)

    Takechi-Haraya, Yuki; Goda, Yukihiro; Sakai-Kato, Kumiko

    2018-02-01

    Size control of nanoparticles in nanotechnology-based drug products is crucial for their successful development, since the in vivo pharmacokinetics of nanoparticles are size-dependent. In this study, we evaluated the use of atomic force microscopy (AFM) for imaging and size measurement of nanoparticles in aqueous medium. The height sizes of rigid polystyrene nanoparticles and soft liposomes were measured by AFM and were compared with the hydrodynamic sizes measured by dynamic light scattering (DLS). The lipid compositions of the studied liposomes were similar to those of commercial products. AFM proved to be a viable method for obtaining images of both polystyrene nanoparticles and liposomes in aqueous medium. For the polystyrene nanoparticles, the average height size observed by AFM was similar to the average number-weighted diameter obtained by DLS, indicating the usefulness of AFM for measuring the sizes of nanoparticles in aqueous medium. For the liposomes, the height sizes obtained by AFM differed depending upon the procedures of immobilizing the liposomes onto a solid substrate. In addition, the resultant average height sizes of the liposomes were smaller than those obtained by DLS. This knowledge will help the correct use of AFM as a powerful tool for imaging and size measurement of nanotechnology-based drug products for clinical use.

  3. Nanoscale characterization of dynamic cellular viscoelasticity by atomic force microscopy with varying measurement parameters.

    Science.gov (United States)

    Li, Mi; Liu, Lianqing; Xu, Xinning; Xing, Xiaojing; Dang, Dan; Xi, Ning; Wang, Yuechao

    2018-03-27

    Cell mechanics plays an important role in regulating the physiological activities of cells. The advent of atomic force microscopy (AFM) provides a novel powerful instrument for quantifying the mechanics of single cells at the nanoscale. The applications of AFM in single-cell mechanical assays in the past decade have significantly contributed to the field of cell and molecular biology. However, current AFM-based cellular mechanical studies are commonly carried out with fixed measurement parameters, which provides limited information about the dynamic cellular mechanical behaviors in response to the variable external stimuli. In this work, we utilized AFM to investigate cellular viscoelasticity (portrayed as relaxation time) with varying measurement parameters, including ramp rate and surface dwell time, on both cell lines and primary cells. The experimental results show that the obtained cellular relaxation times are remarkably dependent on the parameter surface dwell time and ramp rate during measurements. Besides, the dependencies to the measurement parameters are variable for different types of cells, which can be potentially used to indicate cell states. The research improves our understanding of single-cell dynamic rheology and provides a novel idea for discriminating different types of cells by AFM-based cellular viscoelastic assays with varying measurement parameters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. A nanobiosensing method based on force measurement of antibody-antigen interaction for direct detection of enterovirus 71 by the chemically modified atomic force microscopic probe.

    Science.gov (United States)

    Hong, Chung-Hung; Hsieh, Chung-Fan; Tseng, Chi-Shin; Huang, Wei-Chih; Guo, Cheng-Yan; Lin, Shiming; Lee, Si-Chen

    2017-10-01

    Hand, Foot and mouth disease (HFMD) is a common disease with high infectivity for children, and enterovirus 71 (EV71) is one of the main pathogens to cause the type of illness. Therefore, the aim of this study was to propose a rapid and effective technique for detecting EV71 directly based on the mechanism of biological intermolecular force by using atomic force microscopy (AFM). At first, we coated EV71 particles on the mica surface and made the EV71 antibodies (anti-EV71) fixed on the AFM tip by means of several chemical procedures. Then, AFM chemically modified tip was applied to measure the unbinding forces between EV71 and anti-EV71 by contact mode. Finally, by using AFM imaging calculating software, the EV71 particle size (mean±SD) was 31.36±3.87 nm (n = 200) and this result was concordance with previous literature. Besides, the force (mean±SD) between EV71 antigen and antibody complex was 336.9±64.7 pN. The force (mean±SD) between anti-EV71 and non-specific specimens was 47.1±15.1 pN and was significantly smaller (P measuring the force magnitude and observing the occurrence of EV71/anti-EV71 unbinding events. Therefore, the combination of AFM system and the chemically modified tip has the potential to be a rapid and effective method for detecting EV71 directly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Association between respiratory impedance measured by forced oscillation technique and exacerbations in patients with COPD

    Directory of Open Access Journals (Sweden)

    Yamagami H

    2017-12-01

    Full Text Available Hitomi Yamagami, Akihiko Tanaka, Yasunari Kishino, Hatsuko Mikuni, Tomoko Kawahara, Shin Ohta, Mayumi Yamamoto, Shintaro Suzuki, Tsukasa Ohnishi, Hironori Sagara Division of Respiratory Medicine and Allergology, Department of Medicine, School of Medicine, Showa University, Tokyo, Japan Background: It is well known that increased airflow limitation as measured by spirometry is associated with the risk of exacerbation in patients with COPD. The forced oscillation technique (FOT is a noninvasive method used to assess respiratory impedance (resistance and reactance with minimal patient cooperation required. The clinical utility of the FOT in assessing the risk of exacerbations of COPD is yet to be determined. We examined the relationship between respiratory impedance as measured by FOT and exacerbations in patients with COPD. Materials and methods: Among 310 patients with COPD (Global Initiative for Chronic Obstructive Lung Disease stages I–IV who presented at the outpatient clinic of the Showa University Hospital from September 2014 through January 2015, 119 were collected and assigned into 2 groups according to their history of exacerbation: exacerbators and nonexacerbators. Respiratory resistance components and respiratory reactance components, as measured by FOT, were compared between the two groups. Results: Exacerbators were significantly older and had a higher white blood cell count than nonexacerbators. Resistance at 20 Hz, reactance at 5 Hz (X5, resonant frequency (Fres, and area of low reactance (ALX differed significantly between the two groups. In addition, among patients with stage II COPD, there were significant differences in X5, Fres, and ALX between the two groups despite no significant differences in respiratory function as assessed by spirometry. Finally, receiver operating characteristic curve analysis revealed that the reactance components rather than the resistance components were associated with the risk of exacerbation

  6. Research on a new fiber-optic axial pressure sensor of transformer winding based on fiber Bragg grating

    Science.gov (United States)

    Liu, Yuan; Li, Lianqing; Zhao, Lin; Wang, Jiqiang; Liu, Tongyu

    2017-12-01

    Based on the principle of the fiber Bragg grating, a new type of fiber-optic pressure sensor for axial force measurement of transformer winding is designed, which is designed with the structure of bending plate beam, the optimization of the packaging process, and material of the sensor. Through the calibration experiment to calibrate the sensor, the field test results of the Taikai transformer factory show that the sensitivity of the sensor is 0.133 pm/kPa and the repeatability error is 2.7% FS. The data of the fiber-optic pressure sensor in different positions maintain consistent and repeatable, which can meet the requirement of the real-time monitoring of the axial force of transformer winding.

  7. Measurement model and calibration experiment of over-constrained parallel six-dimensional force sensor based on stiffness characteristics analysis

    International Nuclear Information System (INIS)

    Niu, Zhi; Zhao, Yanzhi; Zhao, Tieshi; Cao, Yachao; Liu, Menghua

    2017-01-01

    An over-constrained, parallel six-dimensional force sensor has various advantages, including its ability to bear heavy loads and provide redundant force measurement information. These advantages render the sensor valuable in important applications in the field of aerospace (space docking tests, etc). The stiffness of each component in the over-constrained structure has a considerable influence on the internal force distribution of the structure. Thus, the measurement model changes when the measurement branches of the sensor are under tensile or compressive force. This study establishes a general measurement model for an over-constrained parallel six-dimensional force sensor considering the different branch tensions and compression stiffness values. Numerical calculations and analyses are performed using practical examples. Based on the parallel mechanism, an over-constrained, orthogonal structure is proposed for a six-dimensional force sensor. Hence, a prototype is designed and developed, and a calibration experiment is conducted. The measurement accuracy of the sensor is improved based on the measurement model under different branch tensions and compression stiffness values. Moreover, the largest class I error is reduced from 5.81 to 2.23% full scale (FS), and the largest class II error is reduced from 3.425 to 1.871% FS. (paper)

  8. The FORCE Fitness Profile--Adding a Measure of Health-Related Fitness to the Canadian Armed Forces Operational Fitness Evaluation.

    Science.gov (United States)

    Gagnon, Patrick; Spivock, Michael; Reilly, Tara; Mattie, Paige; Stockbrugger, Barry

    2015-11-01

    In 2013, the Canadian Armed Forces (CAF) implemented the Fitness for Operational Requirements of Canadian Armed Forces Employment (FORCE), a field expedient fitness test designed to predict the physical requirements of completing common military tasks. Given that attaining this minimal physical fitness standard may not represent a challenge to some personnel, a fitness incentive program was requested by the chain of command to recognize and reward fitness over and above the minimal standard. At the same time, it was determined that the CAF would benefit from a measure of general health-related fitness, in addition to this measure of operational fitness. The resulting incentive program structure is based on gender and 8 age categories. The results on the 4 elements of the FORCE evaluation were converted to a point scale from which normative scores were derived, where the median score corresponds to the bronze level, and silver, gold, and platinum correspond to a score which is 1, 2, and 3 SDs above this median, respectively. A suite of rewards including merit board point toward promotions and recognition on the uniform and material rewards was developed. A separate group rewards program was also tabled, to recognize achievements in fitness at the unit level. For general fitness, oxygen capacity was derived from FORCE evaluation results and combined with a measure of abdominal circumference. Fitness categories were determined based on relative risks of mortality and morbidity for each age and gender group. Pilot testing of this entire program was performed with 624 participants to assess participants' reactions to the enhanced test, and also to verify logistical aspects of the electronic data capture, calculation, and transfer system. The newly dubbed fitness profile program was subsequently approved by the senior leadership of the CAF and is scheduled to begin a phased implementation in June 2015.

  9. Ball Screw Actuator Including an Axial Soft Stop

    Science.gov (United States)

    Wingett, Paul T. (Inventor); Forrest, Steven Talbert (Inventor); Abel, Steve (Inventor); Woessner, George (Inventor); Hanlon, Casey (Inventor)

    2016-01-01

    An actuator includes an actuator housing, a ball screw, and an axial soft stop assembly. The ball screw extends through the actuator housing and has a first end and a second end. The ball screw is coupled to receive a drive force and is configured, upon receipt of the drive force, to selectively move in a retract direction and an extend direction. The axial soft stop assembly is disposed within the actuator housing. The axial soft stop assembly is configured to be selectively engaged by the ball screw and, upon being engaged thereby, to translate, with compliance, a predetermined distance in the extend direction, and to prevent further movement of the ball screw upon translating the predetermined distance.

  10. The temperature dependence of cell mechanics measured by atomic force microscopy

    International Nuclear Information System (INIS)

    Sunyer, R; Trepat, X; Farré, R; Navajas, D; Fredberg, J J

    2009-01-01

    The cytoskeleton is a complex polymer network that regulates the structural stability of living cells. Although the cytoskeleton plays a key role in many important cell functions, the mechanisms that regulate its mechanical behaviour are poorly understood. Potential mechanisms include the entropic elasticity of cytoskeletal filaments, glassy-like inelastic rearrangements of cross-linking proteins and the activity of contractile molecular motors that sets the tensional stress (prestress) borne by the cytoskeleton filaments. The contribution of these mechanisms can be assessed by studying how cell mechanics depends on temperature. The aim of this work was to elucidate the effect of temperature on cell mechanics using atomic force microscopy. We measured the complex shear modulus (G*) of human alveolar epithelial cells over a wide frequency range (0.1–25.6 Hz) at different temperatures (13–37 °C). In addition, we probed cell prestress by mapping the contractile forces that cells exert on the substrate by means of traction microscopy. To assess the role of actomyosin contraction in the temperature-induced changes in G* and cell prestress, we inhibited the Rho kinase pathway of the myosin light chain phosphorylation with Y-27632. Our results show that with increasing temperature, cells become stiffer and more solid-like. Cell prestress also increases with temperature. Inhibiting actomyosin contraction attenuated the temperature dependence of G* and prestress. We conclude that the dependence of cell mechanics with temperature is dominated by the contractile activity of molecular motors

  11. Field Measurements of Heating Efficiency of Electric Forced-Air Furnaces in Six Manufactured Homes.

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Bob; Palmiter, Larry S.; Siegel, Jeff

    1994-07-26

    This report presents the results of field measurements of heating efficiency for six manufactured homes in the Pacific Northwest heated with electric forced-air systems. This is the first in a series of regional and national efforts to measure in detail the heating efficiency of manufactured homes. Only six homes were included in this study because of budgetary constraints; therefore this is not a representative sample. These investigations do provide some useful information on the heating efficiency of these homes. Useful comparisons can be drawn between these study homes and site-built heating efficiencies measured with a similar protocol. The protocol used to test these homes is very similar to another Ecotope protocol used in the study conducted in 1992 and 1993 for the Bonneville Power Administration to test the heating efficiency of 24 homes. This protocol combined real-time power measurements of furnace energy usage with energy usage during co-heat periods. Accessory data such as house and duct tightness measurements and tracer gas measurements were used to describe these homes and their heating system efficiency. Ensuring that manufactured housing is constructed in an energy and resource efficient manner is of increasing concern to manufactured home builders and consumers. No comparable work has been done to measure the heating system efficiency of MCS manufactured homes, although some co-heat tests have been performed on manufactured homes heated with natural gas to validate HUD thermal standards. It is expected that later in 1994 more research of this kind will be conducted, and perhaps a less costly and less time-consuming method for testing efficiencies will be develops.

  12. Measurement of hydrodynamic force generation by swimming dolphins using bubble DPIV.

    Science.gov (United States)

    Fish, Frank E; Legac, Paul; Williams, Terrie M; Wei, Timothy

    2014-01-15

    Attempts to measure the propulsive forces produced by swimming dolphins have been limited. Previous uses of computational hydrodynamic models and gliding experiments have provided estimates of thrust production by dolphins, but these were indirect tests that relied on various assumptions. The thrust produced by two actively swimming bottlenose dolphins (Tursiops truncatus) was directly measured using digital particle image velocimetry (DPIV). For dolphins swimming in a large outdoor pool, the DPIV method used illuminated microbubbles that were generated in a narrow sheet from a finely porous hose and a compressed air source. The movement of the bubbles was tracked with a high-speed video camera. Dolphins swam at speeds of 0.7 to 3.4 m s(-1) within the bubble sheet oriented along the midsagittal plane of the animal. The wake of the dolphin was visualized as the microbubbles were displaced because of the action of the propulsive flukes and jet flow. The oscillations of the dolphin flukes were shown to generate strong vortices in the wake. Thrust production was measured from the vortex strength through the Kutta-Joukowski theorem of aerodynamics. The dolphins generated up to 700 N during small amplitude swimming and up to 1468 N during large amplitude starts. The results of this study demonstrated that bubble DPIV can be used effectively to measure the thrust produced by large-bodied dolphins.

  13. Elastic-properties measurement at high temperatures through contact resonance atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Marinello, Francesco, E-mail: francesco.marinello@unipd.it; Pezzuolo, Andrea; Sartori, Luigi; Cavalli, Raffaele [University of Padova, Department of Land, Environment, Agriculture and Forestry, Viale dell’Università 16, 35020 Legnaro, Padova (Italy); Carmignato, Simone [University of Padova, Department of Management and Engineering, Stradella San Nicola 3, 36100 Vicenza (Italy); Savio, Enrico [University of Padova, Department of Industrial Engineering, Via Venezia 1, 35131 Padova (Italy); De Chiffre, Leonardo [Technical University of Denmark, Department of Mechanical Engineering, Produktionstorvet 425, 2800 Kgs. Lyngby (Denmark)

    2015-06-23

    Miniaturization of products and need for further improvement of machines performance introduce new serious challenges in materials characterization. In particular non-destructive mechanical testing in the sub-micrometer scale is needed to better understand and improve micro-manufacturing operations. To this regard, some open issues are of particular interest: low depth of penetration, high lateral resolution and measurements at elevated temperatures. An interesting solution is given by acoustic microscopy techniques, which can be successfully implemented for advanced research in surface elasticity, allowing fast direct and non-destructive measurement of Young’s modulus and related surface parameters. In this work an instrument set up for Contact Resonance Atomic Force Microscopy is proposed, where the sample with is coupled to a heating stage and a piezoelectric transducer directly vibrate the cantilever during scanning, in order to allow exploitation of high resolution measurements at relatively high temperatures. Such instrument set up was undergone a set of calibration experiments in order to allow not only qualitative but also quantitative characterization of surfaces. The work was completed with a feasibility study with mechanical and topography measurements at temperatures as high as 150°C, with lateral resolution lower than 100 nm.

  14. Characterization of Multiflux Axial Compressors

    International Nuclear Information System (INIS)

    Brasnarof, Daniel; Kyung Kyu-Hyung; Rivarola, Martin; Gonzalez Jose; Florido, Pablo; Orellano, Pablo; Bergallo, Juan

    2003-01-01

    In the present work the results of analytical models of performance are compared with experimental data acquired in the multi flux axial compressor test facility, built in The Pilcaniyeu Technological Complex for the SIGMA project.We describe the experimental circuit and the data of the dispersion inside the axial compressor obtained using a tracer gas through one of the annular inlets.The attained results can be used to validate the design code for the multi flux axial compressors and SIGMA industrial plant

  15. Wind-Tunnel Investigations on a Changed Mustang Profile with Nose Flap Force and Pressure-Distribution Measurements

    Science.gov (United States)

    Krueger, W.

    1947-01-01

    Measurements are described which were taken in the large wind tunnel of the AVA on a rectangular wing "Mustang 2" with nose flap of a chord of 10 percent. Besides force measurements the results of pressure-distribution measurements are given and compared with those on the same profile "without" nose flap.

  16. How to measure load-dependent kinetics of individual motor molecules without a force clamp

    DEFF Research Database (Denmark)

    Sung, J.; Mortensen, Kim; Spudich, J.A.

    2017-01-01

    Single-molecule force spectroscopy techniques, including optical trapping, magnetic trapping, and atomic force microscopy, have provided unprecedented opportunities to understand biological processes at the smallest biological length scales. For example, they have been used to elucidate the molec...

  17. Measuring lung function using sound waves: role of the forced oscillation technique and impulse oscillometry system.

    Science.gov (United States)

    Brashier, Bill; Salvi, Sundeep

    2015-03-01

    Measuring lung function is an important component in the decision making process for patients with obstructive airways disease (OAD). Not only does it help in arriving at a specific diagnosis, but it also helps in evaluating severity so that appropriate pharmacotherapy can be instituted, it helps determine prognosis and it helps evaluate response to therapy. Spirometry is currently the most commonly performed lung function test in clinical practice and is considered to be the gold standard diagnostic test for asthma and COPD. However, spirometry is not an easy test to perform because the forceful expiratory and inspiratory manoeuvres require good patient co-operation. Children aged <5 years, elderly people and those with physical and cognitive limitations cannot perform spirometry easily.

  18. Relationships between sensory evaluations of beef tenderness, shear force measurements and consumer characteristics.

    Science.gov (United States)

    Van Wezemael, Lynn; De Smet, Stefaan; Ueland, Øydis; Verbeke, Wim

    2014-07-01

    The supply of tender beef is an important challenge for the beef industry. Knowledge about the profile of consumers who are more optimistic or more accurate in their tenderness evaluations is important for product development and beef marketing purposes. Central location tests of beef steaks were performed in Norway and Belgium (n=218). Instrumental and sensorial tenderness of three muscles from Belgian Blue and Norwegian Red cattle was reported. Consumers who are optimistically evaluating tenderness were found to be more often male, less food neophobic, more positive towards beef healthiness, and showed fewer concerns about beef safety. No clear profile emerged for consumers who assessed tenderness similar to shear force measurements, which suggests that tenderness is mainly evaluated subjectively. The results imply a window of opportunities in tenderness improvements, and allow targeting a market segment which is less critical towards beef tenderness. © 2013 Elsevier Ltd. All rights reserved.

  19. Optimal sample preparation for nanoparticle metrology (statistical size measurements) using atomic force microscopy

    International Nuclear Information System (INIS)

    Hoo, Christopher M.; Doan, Trang; Starostin, Natasha; West, Paul E.; Mecartney, Martha L.

    2010-01-01

    Optimal deposition procedures are determined for nanoparticle size characterization by atomic force microscopy (AFM). Accurate nanoparticle size distribution analysis with AFM requires non-agglomerated nanoparticles on a flat substrate. The deposition of polystyrene (100 nm), silica (300 and 100 nm), gold (100 nm), and CdSe quantum dot (2-5 nm) nanoparticles by spin coating was optimized for size distribution measurements by AFM. Factors influencing deposition include spin speed, concentration, solvent, and pH. A comparison using spin coating, static evaporation, and a new fluid cell deposition method for depositing nanoparticles is also made. The fluid cell allows for a more uniform and higher density deposition of nanoparticles on a substrate at laminar flow rates, making nanoparticle size analysis via AFM more efficient and also offers the potential for nanoparticle analysis in liquid environments.

  20. Application of magnetic resonance force microscopy cyclic adiabatic inversion for a single-spin measurement

    International Nuclear Information System (INIS)

    Berman, G P; Borgonovi, F; Chapline, G; Gurvitz, S A; Hammel, P C; Pelekhov, D V; Suter, A; Tsifrinovich, V I

    2003-01-01

    We consider the process of a single-spin measurement using magnetic resonance force microscopy (MRFM) with a cyclic adiabatic inversion (CAI). This technique is also important for different applications, including a measurement of a qubit state in quantum computation. The measurement takes place through the interaction of a single spin with a cantilever modelled by a quantum oscillator in a coherent state in a quasi-classical range of parameters. The entire system is treated rigorously within the framework of the Schroedinger equation. For a many-spin system our equations accurately describe conventional MRFM experiments involving CAI of the spin system. Our computer simulations of the quantum spin-cantilever dynamics show that the probability distribution for the cantilever position develops two asymmetric peaks with the total relative probabilities mainly dependent on the initial angle between the directions of the average spin and the effective magnetic field, in the rotating frame. We show that each of the peaks is correlated with the direction of the average spin (being along or opposite to the direction of the effective magnetic field). This generates two possible outcomes of a single-spin measurement, similar to the Stern-Gerlach effect. We demonstrate that the generation of the second peak can be significantly suppressed by turning on adiabatically the amplitude of the rf magnetic field. We also show that MRFM CAI can be used both for detecting a signal from a single spin, and for measuring the single-spin state by measuring the phase of the cantilever driving oscillations

  1. Measurement duration impacts variability but not impedance measured by the forced oscillation technique in healthy, asthma and COPD subjects

    Directory of Open Access Journals (Sweden)

    Joanna C. Watts

    2016-04-01

    Full Text Available The forced oscillation technique (FOT is gaining clinical acceptance, facilitated by more commercial devices and clinical data. However, the effects of variations in testing protocols used in FOT data acquisition are unknown. We describe the effect of duration of data acquisition on FOT results in subjects with asthma, chronic obstructive pulmonary disease (COPD and healthy controls. FOT data were acquired from 20 healthy, 22 asthmatic and 18 COPD subjects for 60 s in triplicate. The first 16, 30 and 60 s of each measurement were analysed to obtain total, inspiratory and expiratory resistance of respiratory system (Rrs and respiratory system reactance (Xrs at 5 and 19 Hz. With increasing duration, there was a decrease in total and expiratory Rrs for healthy controls, total and inspiratory Rrs for asthmatic subjects and magnitude of total and inspiratory Xrs for COPD subjects at 5 Hz. These decreases were small compared to the differences between clinical groups. Measuring for 16, 30 and 60 s provided ≥3 acceptable breaths in at least 90, 95 and 100% of subjects, respectively. The coefficient of variation for total Rrs and Xrs also decreased with duration. Similar results were found for Rrs and Xrs at 19 Hz. FOT results are statistically, but likely minimally, impacted by acquisition duration in healthy, asthmatic or COPD subjects.

  2. Minimal detectable change of knee extension force measurements obtained by handheld dynamometry from older patients in 2 settings.

    Science.gov (United States)

    Bohannon, Richard W

    2012-01-01

    The measurement properties of handheld dynamometry (HHD) have been studied extensively, but information about the responsiveness of the procedure is scant. The purpose of this study, therefore, was to determine the responsiveness (minimal detectable change [MDC]) for measurements of knee extension force obtained by HHD from older adult patients in 2 different settings. This study involved the retrospective retrieval of knee extension force data of the left and right sides from 2 sources (acute rehabilitation [n = 53] and home care [n = 46]). The standard deviation of the forces and the weighted mean intraclass correlation coefficient (ICC) from 3 previous studies (ICC = 0.90) were then used to calculate the MDC95%. The MDC95% ranged from 46.0 to 79.0 N. It was lower for patients measured in a home care setting than for those measured in an acute rehabilitation setting. By describing the MDC for knee extension force obtained by HHD from older adults in 2 settings, this study provides an indication of the changes in force that would have to be surpassed to conclude that a real change in knee extension strength was observed. The MDCs reported have a role in the interpretation of repeated measurements and in setting goals for changes in knee extension force.

  3. Diabetes increases stiffness of live cardiomyocytes measured by atomic force microscopy nanoindentation.

    Science.gov (United States)

    Benech, Juan C; Benech, Nicolás; Zambrana, Ana I; Rauschert, Inés; Bervejillo, Verónica; Oddone, Natalia; Damián, Juan P

    2014-11-15

    Stiffness of live cardiomyocytes isolated from control and diabetic mice was measured using the atomic force microscopy nanoindentation method. Type 1 diabetes was induced in mice by streptozotocin administration. Histological images of myocardium from mice that were diabetic for 3 mo showed disorderly lineup of myocardial cells, irregularly sized cell nuclei, and fragmented and disordered myocardial fibers with interstitial collagen accumulation. Phalloidin-stained cardiomyocytes isolated from diabetic mice showed altered (i.e., more irregular and diffuse) actin filament organization compared with cardiomyocytes from control mice. Sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA2a) pump expression was reduced in homogenates obtained from the left ventricle of diabetic animals compared with age-matched controls. The apparent elastic modulus (AEM) for live control or diabetic isolated cardiomyocytes was measured using the atomic force microscopy nanoindentation method in Tyrode buffer solution containing 1.8 mM Ca(2+) and 5.4 mM KCl (physiological condition), 100 nM Ca(2+) and 5.4 mM KCl (low extracellular Ca(2+) condition), or 1.8 mM Ca(2+) and 140 mM KCl (contraction condition). In the physiological condition, the mean AEM was 112% higher for live diabetic than control isolated cardiomyocytes (91 ± 14 vs. 43 ± 7 kPa). The AEM was also significantly higher in diabetic than control cardiomyocytes in the low extracellular Ca(2+) and contraction conditions. These findings suggest that the material properties of live cardiomyocytes were affected by diabetes, resulting in stiffer cells, which very likely contribute to high diastolic LV stiffness, which has been observed in vivo in some diabetes mellitus patients. Copyright © 2014 the American Physiological Society.

  4. Reliability of performance measurements derived from ground reaction force data during countermovement jump and the influence of sampling frequency.

    Science.gov (United States)

    Hori, Naruhiro; Newton, Robert U; Kawamori, Naoki; McGuigan, Michael R; Kraemer, William J; Nosaka, Kazunori

    2009-05-01

    Force platforms are used extensively to measure force and power output during countermovement jump (CMJ). The purpose of this study was to examine measurement reliability and validity of commonly used performance measurements derived from ground reaction force (GRF)-time data during CMJ and the influence of sampling at different frequencies. Twenty-four men performed 2 trials of CMJ on a force platform, and GRF-time data were sampled at a rate of 500 Hz. Data obtained at 500 Hz were considered as the reference, and then data were resampled at 400, 250, 200, 100, 50, and 25 Hz, using interpolation. Commonly used power, force, and velocity performance measures were obtained from GRF-time data. Reliability was assessed by intraclass correlation coefficient (ICC) and coefficient of variation (CV) between the 2 trials within the session. Peak power, peak force, and peak velocity were highly reliable across all sampling frequencies (ICC = 0.92-0.98, CV = 1.3-4.1). Percentage differences from 500-Hz reference values ranged from -0.85 to 0.20% at 400 Hz, -1.88 to 0.89% at 250 Hz, -1.80 to 1.31% at 200 Hz, -3.63 to 3.34% at 100 Hz, -11.37 to 6.51% at 50 Hz, and -13.17 to 9.03% at 25 Hz. In conclusion, peak power, force, and velocity measurements derived from GRF to assess leg extensor capabilities are reliable within a test session except for peak rate of force development and time to peak power. With regard to sampling frequency, scientists and practitioners may consider sampling as low as 200 Hz, depending on the purpose of measurement, because the percentage difference is not markedly enlarged until the frequency is 100 Hz or lower.

  5. Axial elongation following prolonged near work in myopes and emmetropes.

    Science.gov (United States)

    Woodman, Emily C; Read, Scott A; Collins, Michael J; Hegarty, Katherine J; Priddle, Scott B; Smith, Josephine M; Perro, Judd V

    2011-05-01

    To investigate the influence of a period of sustained near work upon axial length in groups of emmetropes (EMM) and myopes. Forty young adult subjects (20 myopes and 20 emmetropes) were recruited for the study. Myopes were further classified as early onset (EOM), late onset (LOM), stable (SM) or progressing (PM) subgroups. Axial length was measured with the IOLMaster instrument before, immediately after and then again 10 min after a continuous 30 min near task of 5 D accommodation demand. Measures of distance objective refraction were also collected. Significant changes in axial length were observed immediately following the near task. EOM axial length elongated on average by 0.027±0.021 mm, LOM by 0.014±0.020 mm, EMM by 0.010±0.015 mm, PM by 0.031±0.022 mm and SM by 0.014±0.018 mm. At the conclusion of the 10 min regression period, axial length measures were not significantly different from baseline values. Axial elongation was observed following a prolonged near task. Both EOM and PM groups showed increases in axial length that were significantly greater than emmetropes.

  6. Talking and learning physics: Predicting future grades from network measures and Force Concept Inventory pretest scores

    Directory of Open Access Journals (Sweden)

    Jesper Bruun

    2013-07-01

    Full Text Available The role of student interactions in learning situations is a foundation of sociocultural learning theory, and social network analysis can be used to quantify student relations. We discuss how self-reported student interactions can be viewed as processes of meaning making and use this to understand how quantitative measures that describe the position in a network, called centrality measures, can be understood in terms of interactions that happen in the context of a university physics course. We apply this discussion to an empirical data set of self-reported student interactions. In a weekly administered survey, first year university students enrolled in an introductory physics course at a Danish university indicated with whom they remembered having communicated within different interaction categories. For three categories pertaining to (1 communication about how to solve physics problems in the course (called the PS category, (2 communications about the nature of physics concepts (called the CD category, and (3 social interactions that are not strictly related to the content of the physics classes (called the ICS category in the introductory mechanics course, we use the survey data to create networks of student interaction. For each of these networks, we calculate centrality measures for each student and correlate these measures with grades from the introductory course, grades from two subsequent courses, and the pretest Force Concept Inventory (FCI scores. We find highly significant correlations (p<0.001 between network centrality measures and grades in all networks. We find the highest correlations between network centrality measures and future grades. In the network composed of interactions regarding problem solving (the PS network, the centrality measures hide and PageRank show the highest correlations (r=-0.32 and r=0.33, respectively with future grades. In the CD network, the network measure target entropy shows the highest correlation

  7. Talking and learning physics: Predicting future grades from network measures and Force Concept Inventory pretest scores

    Science.gov (United States)

    Bruun, Jesper; Brewe, Eric

    2013-12-01

    The role of student interactions in learning situations is a foundation of sociocultural learning theory, and social network analysis can be used to quantify student relations. We discuss how self-reported student interactions can be viewed as processes of meaning making and use this to understand how quantitative measures that describe the position in a network, called centrality measures, can be understood in terms of interactions that happen in the context of a university physics course. We apply this discussion to an empirical data set of self-reported student interactions. In a weekly administered survey, first year university students enrolled in an introductory physics course at a Danish university indicated with whom they remembered having communicated within different interaction categories. For three categories pertaining to (1) communication about how to solve physics problems in the course (called the PS category), (2) communications about the nature of physics concepts (called the CD category), and (3) social interactions that are not strictly related to the content of the physics classes (called the ICS category) in the introductory mechanics course, we use the survey data to create networks of student interaction. For each of these networks, we calculate centrality measures for each student and correlate these measures with grades from the introductory course, grades from two subsequent courses, and the pretest Force Concept Inventory (FCI) scores. We find highly significant correlations (pnetwork centrality measures and grades in all networks. We find the highest correlations between network centrality measures and future grades. In the network composed of interactions regarding problem solving (the PS network), the centrality measures hide and PageRank show the highest correlations (r=-0.32 and r=0.33, respectively) with future grades. In the CD network, the network measure target entropy shows the highest correlation (r=0.45) with future grades

  8. Axial resolution of confocal Raman microscopes : Gaussian beam theory and practice

    NARCIS (Netherlands)

    Grauw, C J De; Sijtsema, N M; Otto, C; Greve, J

    1997-01-01

    A straightforward and transparent model, based on Gaussian beam optics, for the axial ro resolution of a confocal microscope is presented, A confocal Raman microscope was used to determine the axial confocality in practice. The axial response of a thin planar object was measured for three different

  9. Axial Resolution of Confocal Raman Microscopes: Gaussian Beam Theory and Practice

    NARCIS (Netherlands)

    de Grauw, C.J.; de Grauw, C.J.; Sijtsema, N.M.; Otto, Cornelis; Greve, Jan

    1997-01-01

    A straightforward and transparent model, based on Gaussian beam optics, for the axial r0 resolution of a confocal microscope is presented. A confocal Raman microscope was used to determine the axial confocality in practice. The axial response of a thin planar object was measured for three different

  10. Respiratory mechanics measured by forced oscillations during mechanical ventilation through a tracheal tube.

    Science.gov (United States)

    Scholz, Alexander-Wigbert; Weiler, Norbert; David, Matthias; Markstaller, Klaus

    2011-05-01

    The forced oscillation technique (FOT) allows the measurement of respiratory mechanics in the intensive care setting. The aim of this study was to compare the FOT with a reference method during mechanical ventilation through a tracheal tube. The respiratory impedance spectra were measured by FOT in nine anaesthetized pigs, and resistance and compliance were estimated on the basis of a linear resistance-compliance inertance model. In comparison, resistance and compliance were quantified by the multiple linear regression analysis (LSF) of conventional ventilator waveforms to the equation of motion. The resistance of the sample was found to range from 6 to 21 cmH(2)O s l(-1) and the compliance from 12 to 32 ml cmH(2)O(-1). A Bland-Altman analysis of the resistance resulted in a sufficient agreement (bias -0.4 cmH(2)O s l(-1); standard deviation of differences 1.4 cmH(2)O s l(-1); correlation coefficient 0.93) and test-retest reliability (coefficient of variation of repeated measurements: FOT 2.1%; LSF 1.9%). The compliance, however, was poor in agreement (bias -8 ml cmH(2)O(-1), standard deviation of differences 7 ml cmH(2)O(-1), correlation coefficient 0.74) and repeatability (coefficient of variation: FOT 23%; LSF 1.7%). In conclusion, FOT provides an alternative for monitoring resistance, but not compliance, in tracheally intubated and ventilated subjects.

  11. Research on Hydrodynamic Force Enhancement and Water Environment Protection Measures of Dachan Bay, Shenzhen

    Directory of Open Access Journals (Sweden)

    Lv Wenbin

    2015-01-01

    Full Text Available With the research purpose of protection of water environmental quality in Dachan Bay Area in Shenzhen City, especially in National Development Zone in Qianhai Area, this paper establishes a horizontal two-dimensional water quality model of Dachan Bay and its branches by the use of WQ Module of Delft 3D. And this paper respectively simulates distribution of water quality in full high flow year, normal flow year and low flow year before and after the implementation of protection measures, predicts the effect of the water environment protection measures and focuses on the analysis of two kinds of hydrodynamic force enhancement pat-terns, that is, “water replenishing in dead zones” and “pollution discharge at back doors”, and finally recommends water environment protection measures with the core of “pollution discharge at back gates” by taking full advantage of natural dynamic, thus obtaining a better effect than that of the traditional “water replenishing in dead zones”.

  12. Elastic stiffness and damping measurements in titanium alloys using atomic force acoustic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Phani, M. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102 Tamil Nadu (India); Kumar, Anish, E-mail: anish@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102 Tamil Nadu (India); Arnold, W. [Department of Materials and Materials Technology, Saarland University, Campus D 2.2, D-66123 Saarbrücken (Germany); 1. Physikalisches Institut, Georg-August-Universität, Friedrich Hund Platz 1, D-37077 Göttingen (Germany); Samwer, K. [1. Physikalisches Institut, Georg-August-Universität, Friedrich Hund Platz 1, D-37077 Göttingen (Germany)

    2016-08-15

    Atomic force acoustic microscopy (AFAM) has been used to study the distribution of elastic stiffness and damping properties across different phases, such as α &β phases in a β titanium alloy (Ti−10V−4.5Fe−1.5Al) and α, β and α′ phases in an α + β alloy (Ti−6Al−4V). Contact-resonance spectra were obtained with a 100 nm spatial resolution in various specimens of the two titanium alloys heat-treated at different temperatures. The study indicates that the metastable β phase has the minimum modulus and maximum damping followed by α′ and α-phases. Employing the rule of mixtures, the average modulus measured by AFAM was then compared with the modulus obtained by ultrasonic velocity measurements. The error in the average modulus values obtained by both techniques is discussed. - Highlights: • Mapping of elastic stiffness and damping across various phases in titanium alloys. • Influence of alloy chemistry and crystal orientation on the results are discussed. • β phase has the minimum modulus and maximum damping followed by α′ and α-phases. • Average modulus of sample calculated from AFAM measurements on individual phases.

  13. Measurement of nanoscale molten polymer droplet spreading using atomic force microscopy

    Science.gov (United States)

    Soleymaniha, Mohammadreza; Felts, Jonathan R.

    2018-03-01

    We present a technique for measuring molten polymer spreading dynamics with nanometer scale spatial resolution at elevated temperatures using atomic force microscopy (AFM). The experimental setup is used to measure the spreading dynamics of polystyrene droplets with 2 μm diameters at 115-175 °C on sapphire, silicon oxide, and mica. Custom image processing algorithms determine the droplet height, radius, volume, and contact angle of each AFM image over time to calculate the droplet spreading dynamics. The contact angle evolution follows a power law with time with experimentally determined values of -0.29 ± 0.01, -0.08 ± 0.02, and -0.21 ± 0.01 for sapphire, silicon oxide, and mica, respectively. The non-zero steady state contact angles result in a slower evolution of contact angle with time consistent with theories combining molecular kinetic and hydrodynamic models. Monitoring the cantilever phase provides additional information about the local mechanics of the droplet surface. We observe local crystallinity on the molten droplet surface, where crystalline structures appear to nucleate at the contact line and migrate toward the top of the droplet. Increasing the temperature from 115 °C to 175 °C reduced surface crystallinity from 35% to 12%, consistent with increasingly energetically favorable amorphous phase as the temperature approaches the melting temperature. This platform provides a way to measure spreading dynamics of extremely small volumes of heterogeneously complex fluids not possible through other means.

  14. Fluorescence axial nanotomography with plasmonics.

    Science.gov (United States)

    Cade, Nicholas I; Fruhwirth, Gilbert O; Krasavin, Alexey V; Ng, Tony; Richards, David

    2015-01-01

    We present a novel imaging technique with super-resolution axial sensitivity, exploiting the changes in fluorescence lifetime above a plasmonic substrate. Using conventional confocal fluorescence lifetime imaging, we show that it is possible to deliver down to 6 nm axial position sensitivity of fluorophores in whole biological cell imaging. We employ this technique to map the topography of the cellular membrane, and demonstrate its application in an investigation of receptor-mediated endocytosis in carcinoma cells.

  15. What Effect Did General Order Number 1 and the Force Protection Measures Have on Task Force Eagle Operations in Bosnia During Implementation Force?

    Science.gov (United States)

    2002-06-06

    the original order and initial amendments. Whilst soldiers were still prevented from drinking, 26 personnel during SFOR now have the ability to work...counter terrorism. Improved Base Camp Measures FP measures for base camps were originally not within the scope of this thesis. However the relationship...soldiers in twos and threes, on PT runs in town, dressed in spiffy Adidas gear, was he confident that the area really was secure. As an aside, this is a

  16. The effect of blood inflow and B(1)-field inhomogeneity on measurement of the arterial input function in axial 3D spoiled gradient echo dynamic contrast-enhanced MRI.

    Science.gov (United States)

    Roberts, Caleb; Little, Ross; Watson, Yvonne; Zhao, Sha; Buckley, David L; Parker, Geoff J M

    2011-01-01

    A major potential confound in axial 3D dynamic contrast-enhanced magnetic resonance imaging studies is the blood inflow effect; therefore, the choice of slice location for arterial input function measurement within the imaging volume must be considered carefully. The objective of this study was to use computer simulations, flow phantom, and in vivo studies to describe and understand the effect of blood inflow on the measurement of the arterial input function. All experiments were done at 1.5 T using a typical 3D dynamic contrast-enhanced magnetic resonance imaging sequence, and arterial input functions were extracted for each slice in the imaging volume. We simulated a set of arterial input functions based on the same imaging parameters and accounted for blood inflow and radiofrequency field inhomogeneities. Measured arterial input functions along the vessel length from both in vivo and the flow phantom agreed with simulated arterial input functions and show large overestimations in the arterial input function in the first 30 mm of the vessel, whereas arterial input functions measured more centrally achieve accurate contrast agent concentrations. Use of inflow-affected arterial input functions in tracer kinetic modeling shows potential errors of up to 80% in tissue microvascular parameters. These errors emphasize the importance of careful placement of the arterial input function definition location to avoid the effects of blood inflow. © 2010 Wiley-Liss, Inc.

  17. A benchmark study of procedures for analysis of axial crushing of bulbous bows

    DEFF Research Database (Denmark)

    Yamada, Yasuhira; Pedersen, Preben Terndrup

    2008-01-01

    Simplified methods to estimate mean axial crushing forces of plated structures are reviewed and applied to a series of experimental results for axial crushing of large-scale bulbous bow models. Methods based on intersection unit elements such as L-, T- and X-type elements as well as methods based...

  18. Axial loading cross screw fixation for the Austin bunionectomy.

    Science.gov (United States)

    Rigby, Ryan B; Fallat, Lawrence M; Kish, John P

    2011-01-01

    The Austin procedure has become a common method of osteotomy for the correction of hallux abductovalgus when indicated. The V-type configuration is intrinsically stable but not without complications. One complication encountered is rotation and/or displacement of the capital fragment. We present the use of an axial loading screw in conjunction with a dorsally placed compression screw. The benefit to this technique lies in the orientation of the axial loading screw, because it is directed to resist the ground reactive forces while also providing a second point of fixation in a crossing screw design. In a head-to-head biomechanical comparison, we tested single dorsal screw fixation versus double screw fixation, including both the dorsal and the axial loading screws in 10 metatarsal Sawbones(®) (Pacific Research Laboratories Inc, Vashon, WA). Five metatarsals received single dorsal screw fixation and five received the dorsal screw and the additional axial loading screw. The metatarsals were analyzed on an Instron compression device for comparison; 100% of the single screw fixation osteotomies failed with compression at an average peak load of 205 N. Four of five axial loading double screw fixation osteotomies did not fail. This finding suggests that the addition of an axial loading screw providing cross screw orientation significantly increases the stability of the Austin osteotomy, ultimately decreasing the likelihood of displacement encountered in the surgical repair of hallux abductovalgus. Copyright © 2011 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Measuring impairments of functioning and health in patients with axial spondyloarthritis by using the ASAS Health Index and the Environmental Item Set

    DEFF Research Database (Denmark)

    Kiltz, U; van der Heijde, D; Boonen, A

    2016-01-01

    INTRODUCTION: The Assessments of SpondyloArthritis international society Health Index (ASAS HI) measures functioning and health in patients with spondyloarthritis (SpA) across 17 aspects of health and 9 environmental factors (EF). The objective was to translate and adapt the original English vers...

  20. Handbook of force transducers. Principles and components

    Energy Technology Data Exchange (ETDEWEB)

    Stefanescu, Dan Mihai [Romanian Measurement Society, Bucharest (Romania)

    2011-07-01

    Part I introduces the basic ''Principles and Methods of Force Measurement'' according to a classification into a dozen of force transducers types: resistive, inductive, capacitive, piezoelectric, electromagnetic, electrodynamic, magnetoelastic, galvanomagnetic (Hall-effect), vibrating wires, (micro)resonators, acoustic and gyroscopic. Two special chapters refer to force balance techniques and to combined methods in force measurement. Part II discusses the ''(Strain Gauge) Force Transducers Components'', evolving from the classical force transducer to the digital / intelligent one, with the incorporation of three subsystems (sensors, electromechanics and informatics). The elastic element (EE) is the ''heart'' of the force transducer and basically determines its performance. A 12-type elastic element classification is proposed (stretched / compressed column or tube, bending beam, bending and/or torsion shaft, middle bent bar with fixed ends, shear beam, bending ring, yoke or frame, diaphragm, axial-stressed torus, axisymmetrical and voluminous EE), with emphasis on the optimum location of the strain gauges. The main properties of the associated Wheatstone bridge, best suited for the parametrical transducers, are examined, together with the appropriate electronic circuits for SGFTs. The handbook fills a gap in the field of Force Measurement, both experts and newcomers, no matter of their particular interest, finding a lot of useful and valuable subjects in the area of Force Transducers; in fact, it is the first specialized monograph in this inter- and multidisciplinary field. (orig.)

  1. Surface EMG and intra-socket force measurement to control a prosthetic device

    Science.gov (United States)

    Sanford, Joe; Patterson, Rita; Popa, Dan

    2015-06-01

    Surface electromyography (SEMG) has been shown to be a robust and reliable interaction method allowing for basic control of powered prosthetic devices. Research has shown a marked decrease in EMG-classification efficiency throughout activities of daily life due to socket shift and movement and fatigue as well as changes in degree of fit of the socket throughout the subject's lifetime. Users with the most severe levels of amputation require the most complex devices with the greatest number of degrees of freedom. Controlling complex dexterous devices with limited available inputs requires the addition of sensing and interaction modalities. However, the larger the amputation severity, the fewer viable SEMG sites are available as control inputs. Previous work reported the use of intra-socket pressure, as measured during wrist flexion and extension, and has shown that it is possible to control a powered prosthetic device with pressure sensors. In this paper, we present data correlations of SEMG data with intra-socket pressure data. Surface EMG sensors and force sensors were housed within a simulated prosthetic cuff fit to a healthy-limbed subject. EMG and intra-socket force data was collected from inside the cuff as a subject performed pre-defined grip motions with their dominant hand. Data fusion algorithms were explored and allowed a subject to use both intra-socket pressure and SEMG data as control inputs for a powered prosthetic device. This additional input modality allows for an improvement in input classification as well as information regarding socket fit through out activities of daily life.

  2. Photon Pressure Force on Space Debris TOPEX/Poseidon Measured by Satellite Laser Ranging

    Science.gov (United States)

    Kucharski, D.; Kirchner, G.; Bennett, J. C.; Lachut, M.; Sośnica, K.; Koshkin, N.; Shakun, L.; Koidl, F.; Steindorfer, M.; Wang, P.; Fan, C.; Han, X.; Grunwaldt, L.; Wilkinson, M.; Rodríguez, J.; Bianco, G.; Vespe, F.; Catalán, M.; Salmins, K.; del Pino, J. R.; Lim, H.-C.; Park, E.; Moore, C.; Lejba, P.; Suchodolski, T.

    2017-10-01

    The (TOPography EXperiment) TOPEX/Poseidon (T/P) altimetry mission operated for 13 years before the satellite was decommissioned in January 2006, becoming a large space debris object at an altitude of 1,340 km. Since the end of the mission, the interaction of T/P with the space environment has driven the satellite's spin dynamics. Satellite laser ranging (SLR) measurements collected from June 2014 to October 2016 allow for the satellite spin axis orientation to be determined with an accuracy of 1.7°. The spin axis coincides with the platform yaw axis (formerly pointing in the nadir direction) about which the body rotates in a counterclockwise direction. The combined photometric and SLR data collected over the 11 year time span indicates that T/P has continuously gained rotational energy at an average rate of 2.87 J/d and spins with a period of 10.73 s as of 19 October 2016. The satellite attitude model shows a variation of the cross-sectional area in the Sun direction between 8.2 m2 and 34 m2. The direct solar radiation pressure is the main factor responsible for the spin-up of the body, and the exerted photon force varies from 65 μN to 228 μN around the mean value of 138.6 μN. Including realistic surface force modeling in orbit propagation algorithms will improve the prediction accuracy, giving better conjunction warnings for scenarios like the recent close approach reported by the ILRS Space Debris Study Group—an approximate 400 m flyby between T/P and Jason-2 on 20 June 2017.

  3. Vacuum-assisted vaginal delivery simulation--quantitation of subjective measures of traction and detachment forces.

    Science.gov (United States)

    Eskander, Ramy; Beall, Marie; Ross, Michael G

    2012-10-01

    Excessive traction has been alleged as the cause of newborn complications associated with vacuum delivery. We sought to quantify subjective levels of physician vacuum traction in a simulated obstetric delivery model, dependent upon level of training. Three groups of physicians, based on training level applied traction (minimal, average, maximal) on a pre-applied vacuum model and forces were continually recorded. Detachment force was recorded with traction in both the pelvic axis and at an oblique angle. Quantified traction force increased from subjective minimal to average to maximal pulls. Within each level, there were no differences between the groups in the average traction force. Detachment force was significantly less when traction was applied at an oblique angle as opposed to the pelvic axis (11.1 ± 0.3 vs 12.2 ± 0.3 kg). Providers appear to be good judges of the force being applied, as a clear escalation in force is noted with minimal, average and maximal force pulls. There appears to be a relatively short learning curve for use of the vacuum, as junior residents' applied force was not different from those of more experienced practitioners. Using the KIWI device, detachment force is lower when traction is applied at an oblique angle.

  4. Loudness control in pianists as exemplified in keystroke force measurements on different touches.

    Science.gov (United States)

    Kinoshita, Hiroshi; Furuya, Shinichi; Aoki, Tomoko; Altenmüller, Eckart

    2007-05-01

    The relationship between the key depression force on an upright piano and the level of loudness of a generated tone was examined when pianists hit a force-sensor built-in key with "struck" or "pressed" type of touch. The vertical displacement of the key, and the radiated piano sounds were also recorded. It was found that for both types of touch, simple exponential functions could adequately describe the relation of the force amplitude with the level of the piano tone as well as that of the impulse of the force with the piano tone. The impulse of the force generated before the maximum key depression moment commonly amounted to above 80% of the total impulse produced at the tone below mezzo-forte. It, however, decreased to around 60% at fortissimo, indicating a decrease in the efficiency of the force application for sound production. The two types of touch differed in their force profiles. The struck touch was characterized by a steeper initial force increase with greater fluctuations in the subsequent period than the pressed touch. The struck touch also demonstrated lower maximum force and less impulse at fortissimo. The inter-pianist variation in the force and impulse, and the "finger-noise" are also herein examined.

  5. A flexible tactile sensor calibration method based on an air-bearing six-dimensional force measurement platform

    Science.gov (United States)

    Huang, Bin

    2015-07-01

    A number of common issues related to the process of flexible tactile sensor calibration are discussed in this paper, and an estimate of the accuracy of classical calibration methods, as represented by a weight-pulley device, is presented. A flexible tactile sensor calibration method that is based on a six-dimensional force measurement is proposed on the basis of a theoretical analysis. A high-accuracy flexible tactile sensor calibration bench based on the air-bearing six-dimensional force measurement principle was developed to achieve a technically challenging measurement accuracy of 2% full scale (FS) for three-dimensional (3D) flexible tactile sensor calibration. The experimental results demonstrate that the accuracy of the air-bearing six-dimensional force measurement platform can reach 0.2% FS. Thus, the system satisfies the 3D flexible tactile sensor calibration requirement of 2% FS.

  6. Modelling and experimental verification of tip-induced polarization in Kelvin probe force microscopy measurements on dielectric surfaces

    DEFF Research Database (Denmark)

    Nielsen, Dennis Achton; Popok, Vladimir; Pedersen, Kjeld

    2015-01-01

    Kelvin probe force microscopy is a widely used technique for measuring surface potential distributions on the micro- and nanometer scale. The data are, however, often analyzed qualitatively, especially for dielectrics. In many cases, the phenomenon of polarization and its influence on the measured...... signals is disregarded leading to misinterpretation of the results. In this work, we present a model that allows prediction of the surface potential on a metal/polymer heterostructure as measured by Kelvin probe force microscopy by including the tip-induced polarization of the dielectric that arises...

  7. A Protocol for Using Förster Resonance Energy Transfer (FRET)-force Biosensors to Measure Mechanical Forces across the Nuclear LINC Complex.

    Science.gov (United States)

    Arsenovic, Paul T; Bathula, Kranthidhar; Conway, Daniel E

    2017-04-11

    The LINC complex has been hypothesized to be the critical structure that mediates the transfer of mechanical forces from the cytoskeleton to the nucleus. Nesprin-2G is a key component of the LINC complex that connects the actin cytoskeleton to membrane proteins (SUN domain proteins) in the perinuclear space. These membrane proteins connect to lamins inside the nucleus. Recently, a Förster Resonance Energy Transfer (FRET)-force probe was cloned into mini-Nesprin-2G (Nesprin-TS (tension sensor)) and used to measure tension across Nesprin-2G in live NIH3T3 fibroblasts. This paper describes the process of using Nesprin-TS to measure LINC complex forces in NIH3T3 fibroblasts. To extract FRET information from Nesprin-TS, an outline of how to spectrally unmix raw spectral images into acceptor and donor fluorescent channels is also presented. Using open-source software (ImageJ), images are pre-processed and transformed into ratiometric images. Finally, FRET data of Nesprin-TS is presented, along with strategies for how to compare data across different experimental groups.

  8. Experimental Investigation of Axial and Beam-Riding Propulsive Physics with TEA CO2 laser

    Science.gov (United States)

    Kenoyer, D. A.; Salvador, I.; Myrabo, L. N.; Notaro, S. N.; Bragulla, P. W.

    2010-10-01

    A twin Lumonics K922M pulsed TEA CO2 laser system (pulse duration of approximately 100 ns FWHM spike, with optional 1 μs tail, depending upon laser gas mix) was employed to experimentally measure both axial thrust and beam-riding behavior of Type ♯200 lightcraft engines, using a ballistic pendulum and Angular Impulse Measurement Device (AIMD, respectively. Beam-riding forces and moments were examined along with engine thrust-vectoring behavior, as a function of: a) laser beam lateral offset from the vehicle axis of symmetry; b) laser pulse energy (˜12 to 40 joules); c) pulse duration (100 ns, and 1 μs); and d) engine size (97.7 mm to 161.2 mm). Maximum lateral momentum coupling coefficients (CM) of 75 N-s/MJ were achieved with the K922M laser whereas previous PLVTS laser (420 J, 18 μs duration) results reached only 15 N-s/MJ—an improvement of 5x. Maximum axial CM performance with the K922M reached 225 N-s/MJ, or about ˜3x larger than the lateral CM values. These axial CM results are sharply higher than the 120 N/MW previously reported for long pulse (e.g., 10-18 μs) CO2 electric discharge lasers.

  9. An Analysis of Performance Measurements Systems in the Air Force Logistics Command’s Aircraft Repair Depots

    Science.gov (United States)

    1992-01-01

    Indicator Management (KIM) system involved using organizational goals to establish target values for various functional measures. Groover (1983) examined...Air Force Magazine, 12(8), 30-34. Groover , S. L. (1983). Logistics strategy: statistical performance measurement in supply support. Service Parts

  10. Multiple degree-of-freedom force and moment measurement for static propulsion testing using magnetic suspension technology

    Science.gov (United States)

    Stuart, Keith; Bartosh, Blake

    1993-01-01

    Innovative Information Systems (IIS), Inc. is in the process of designing and fabricating a high bandwidth force and moment measuring device (i.e. the Magnetic Thruster Test Stand). This device will use active magnetic suspension to allow direct measurements of the forces and torques generated by the rocket engines of the missile under test. The principle of operation of the Magnetic Thruster Test Stand (MTTS) is based on the ability to perform very precise, high bandwidth force and position measurements on an object suspended in a magnetic field. This ability exists due to the fact that the digital servo control mechanism that performs the magnetic suspension uses high bandwidth (10 kHz) position data (via an eddy-current proximity sensor) to determine the amount of force required to maintain stable suspension at a particular point. This force is converted into required electromagnet coil current, which is then output to a current amplifier driving the coils. A discussion of how the coil current and magnetic gap distance (the distance between the electromagnet and the object being suspended) is used to determine the forces being applied from the suspended assembly is presented.

  11. Quantitative measurement of changes in adhesion force involving focal adhesion kinase during cell attachment, spread, and migration

    International Nuclear Information System (INIS)

    Wu, C.-C.; Su, H.-W.; Lee, C.-C.; Tang, M.-J.; Su, F.-C.

    2005-01-01

    Focal adhesion kinase (FAK) is a critical protein for the regulation of integrin-mediated cellular functions and it can enhance cell motility in Madin-Darby canine kidney (MDCK) cells by hepatocyte growth factor (HGF) induction. We utilized optical trapping and cytodetachment techniques to measure the adhesion force between pico-Newton and nano-Newton (nN) for quantitatively investigating the effects of FAK on adhesion force during initial binding (5 s), beginning of spreading (30 min), spreadout (12 h), and migration (induced by HGF) in MDCK cells with overexpressed FAK (FAK-WT), FAK-related non-kinase (FRNK), as well as normal control cells. Optical tweezers was used to measure the initial binding force between a trapped cell and glass coverslide or between a trapped bead and a seeded cell. In cytodetachment, the commercial atomic force microscope probe with an appropriate spring constant was used as a cyto-detacher to evaluate the change of adhesion force between different FAK expression levels of cells in spreading, spreadout, and migrating status. The results demonstrated that FAK-WT significantly increased the adhesion forces as compared to FRNK cells throughout all the different stages of cell adhesion. For cells in HGF-induced migration, the adhesion force decreased to almost the same level (∼600 nN) regardless of FAK levels indicating that FAK facilitates cells to undergo migration by reducing the adhesion force. Our results suggest FAK plays a role of enhancing cell adhesive ability in the binding and spreading, but an appropriate level of adhesion force is required for HGF-induced cell migration

  12. Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices

    Directory of Open Access Journals (Sweden)

    Urs Gysin

    2015-12-01

    Full Text Available Background: The resolution in electrostatic force microscopy (EFM, a descendant of atomic force microscopy (AFM, has reached nanometre dimensions, necessary to investigate integrated circuits in modern electronic devices. However, the characterization of conducting or semiconducting power devices with EFM methods requires an accurate and reliable technique from the nanometre up to the micrometre scale. For high force sensitivity it is indispensable to operate the microscope under high to ultra-high vacuum (UHV conditions to suppress viscous damping of the sensor. Furthermore, UHV environment allows for the analysis of clean surfaces under controlled environmental conditions. Because of these requirements we built a large area scanning probe microscope operating under UHV conditions at room temperature allowing to perform various electrical measurements, such as Kelvin probe force microscopy, scanning capacitance force microscopy, scanning spreading resistance microscopy, and also electrostatic force microscopy at higher harmonics. The instrument incorporates beside a standard beam deflection detection system a closed loop scanner with a scan range of 100 μm in lateral and 25 μm in vertical direction as well as an additional fibre optics. This enables the illumination of the tip–sample interface for optically excited measurements such as local surface photo voltage detection.Results: We present Kelvin probe force microscopy (KPFM measurements before and after sputtering of a copper alloy with chromium grains used as electrical contact surface in ultra-high power switches. In addition, we discuss KPFM measurements on cross sections of cleaved silicon carbide structures: a calibration layer sample and a power rectifier. To demonstrate the benefit of surface photo voltage measurements, we analysed the contact potential difference of a silicon carbide p/n-junction under illumination.

  13. Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices.

    Science.gov (United States)

    Gysin, Urs; Glatzel, Thilo; Schmölzer, Thomas; Schöner, Adolf; Reshanov, Sergey; Bartolf, Holger; Meyer, Ernst

    2015-01-01

    The resolution in electrostatic force microscopy (EFM), a descendant of atomic force microscopy (AFM), has reached nanometre dimensions, necessary to investigate integrated circuits in modern electronic devices. However, the characterization of conducting or semiconducting power devices with EFM methods requires an accurate and reliable technique from the nanometre up to the micrometre scale. For high force sensitivity it is indispensable to operate the microscope under high to ultra-high vacuum (UHV) conditions to suppress viscous damping of the sensor. Furthermore, UHV environment allows for the analysis of clean surfaces under controlled environmental conditions. Because of these requirements we built a large area scanning probe microscope operating under UHV conditions at room temperature allowing to perform various electrical measurements, such as Kelvin probe force microscopy, scanning capacitance force microscopy, scanning spreading resistance microscopy, and also electrostatic force microscopy at higher harmonics. The instrument incorporates beside a standard beam deflection detection system a closed loop scanner with a scan range of 100 μm in lateral and 25 μm in vertical direction as well as an additional fibre optics. This enables the illumination of the tip-sample interface for optically excited measurements such as local surface photo voltage detection. We present Kelvin probe force microscopy (KPFM) measurements before and after sputtering of a copper alloy with chromium grains used as electrical contact surface in ultra-high power switches. In addition, we discuss KPFM measurements on cross sections of cleaved silicon carbide structures: a calibration layer sample and a power rectifier. To demonstrate the benefit of surface photo voltage measurements, we analysed the contact potential difference of a silicon carbide p/n-junction under illumination.

  14. Respiratory mechanics measured by forced oscillations during mechanical ventilation through a tracheal tube

    International Nuclear Information System (INIS)

    Scholz, Alexander-Wigbert; Weiler, Norbert; David, Matthias; Markstaller, Klaus

    2011-01-01

    The forced oscillation technique (FOT) allows the measurement of respiratory mechanics in the intensive care setting. The aim of this study was to compare the FOT with a reference method during mechanical ventilation through a tracheal tube. The respiratory impedance spectra were measured by FOT in nine anaesthetized pigs, and resistance and compliance were estimated on the basis of a linear resistance–compliance inertance model. In comparison, resistance and compliance were quantified by the multiple linear regression analysis (LSF) of conventional ventilator waveforms to the equation of motion. The resistance of the sample was found to range from 6 to 21 cmH 2 O s l −1 and the compliance from 12 to 32 ml cmH 2 O −1 . A Bland–Altman analysis of the resistance resulted in a sufficient agreement (bias −0.4 cmH 2 O s l −1 ; standard deviation of differences 1.4 cmH 2 O s l −1 ; correlation coefficient 0.93) and test–retest reliability (coefficient of variation of repeated measurements: FOT 2.1%; LSF 1.9%). The compliance, however, was poor in agreement (bias −8 ml cmH 2 O −1 , standard deviation of differences 7 ml cmH 2 O −1 , correlation coefficient 0.74) and repeatability (coefficient of variation: FOT 23%; LSF 1.7%). In conclusion, FOT provides an alternative for monitoring resistance, but not compliance, in tracheally intubated and ventilated subjects

  15. Human movement onset detection from isometric force and torque measurements: a supervised pattern recognition approach.

    Science.gov (United States)

    Soda, Paolo; Mazzoleni, Stefano; Cavallo, Giuseppe; Guglielmelli, Eugenio; Iannello, Giulio

    2010-09-01

    Recent research has successfully introduced the application of robotics and mechatronics to functional assessment and motor therapy. Measurements of movement initiation in isometric conditions are widely used in clinical rehabilitation and their importance in functional assessment has been demonstrated for specific parts of the human body. The determination of the voluntary movement initiation time, also referred to as onset time, represents a challenging issue since the time window characterizing the movement onset is of particular relevance for the understanding of recovery mechanisms after a neurological damage. Establishing it manually as well as a troublesome task may also introduce oversight errors and loss of information. The most commonly used methods for automatic onset time detection compare the raw signal, or some extracted measures such as its derivatives (i.e., velocity and acceleration) with a chosen threshold. However, they suffer from high variability and systematic errors because of the weakness of the signal, the abnormality of response profiles as well as the variability of movement initiation times among patients. In this paper, we introduce a technique to optimise onset detection according to each input signal. It is based on a classification system that enables us to establish which deterministic method provides the most accurate onset time on the basis of information directly derived from the raw signal. The approach was tested on annotated force and torque datasets. Each dataset is constituted by 768 signals acquired from eight anatomical districts in 96 patients who carried out six tasks related to common daily activities. The results show that the proposed technique improves not only on the performance achieved by each of the deterministic methods, but also on that attained by a group of clinical experts. The paper describes a classification system detecting the voluntary movement initiation time and adaptable to different signals. By

  16. Development of a Knee-gap Force Measurement Device to Evaluate Quantitative Lower Limb Muscular Strength of the Elderly

    Science.gov (United States)

    Yamashita, Kazuhiko; Imaizumi, Kazuya; Iwakami, Yumi; Sato, Mitsuru; Nakajima, Sawako; Ino, Shuichi; Koyama, Hironori; Kawasumi, Masashi; Ifukube, Toru

    Falling is one of the most serious problems for the elderly. It is thought that lower limb muscular strength greatly affects falls of the elderly. The aim of this study is to develop a safe, easy-to-use and quantitative device of knee-gap force measurement for evaluation of the lower limb muscular strength, and additionally, we examined it for efficiency. We examined from the three viewpoints. In the results, 1. the knee-gap force is clearly associated with the strength of muscle contraction estimated by electromyogram in each muscle for the hip joint adductors. Therefore, the proposed device for the measurement of knee-gap force correctly estimates the activity of the hip joint adductors, which is closely related with the activities of daily living. 2.The results of knee-gap force measured from 170 people aging from middle age to elderly, including some persons who are suffering from physical frailness on a clinical estimation. In the group of healthy elderly knee-gap force was decreased by 16%, while that of the physically frail elderly was decreased by 34% in comparison to middle age.3. Furthermore, the correlation coefficient between the knee-gap force and 10m obstacle walking time was found to be -0.57 (negative correlation). It means that the ambulatory ability is decreased along with the knee-gap force being decreased. This indicates a possibility easily to estimate risk of falling by the knee-gap force, because the decrease of lower limb muscular strength and ambulatory ability is a factor of increased falling risk.

  17. Validity and reliability of the abdominal test and evaluation systems tool (ABTEST) to accurately measure abdominal force.

    Science.gov (United States)

    Glenn, Jordan M; Galey, Madeline; Edwards, Abigail; Rickert, Bradley; Washington, Tyrone A

    2015-07-01

    Ability to generate force from the core musculature is a critical factor for sports and general activities with insufficiencies predisposing individuals to injury. This study evaluated isometric force production as a valid and reliable method of assessing abdominal force using the abdominal test and evaluation systems tool (ABTEST). Secondary analysis estimated 1-repetition maximum on commercially available abdominal machine compared to maximum force and average power on ABTEST system. This study utilized test-retest reliability and comparative analysis for validity. Reliability was measured using test-retest design on ABTEST. Validity was measured via comparison to estimated 1-repetition maximum on a commercially available abdominal device. Participants applied isometric, abdominal force against a transducer and muscular activation was evaluated measuring normalized electromyographic activity at the rectus-abdominus, rectus-femoris, and erector-spinae. Test, re-test force production on ABTEST was significantly correlated (r=0.84; pactivity for the rectus-abdominus (72.93% and 75.66%), rectus-femoris (6.59% and 6.51%), and erector-spinae (6.82% and 5.48%) were observed for trial-1 and trial-2, respectively. Significant correlations for the estimated 1-repetition maximum were found for average power (r=0.70, p=0.002) and maximum force (r=0.72, pactivation of erector-spinae substantiates little subjective effort among participants in the lower back. Results suggest ABTEST is a valid and reliable method of evaluating abdominal force. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  18. Enhancing the examiner's resisting force improves the validity of manual muscle strength measurements: application to knee extensors and flexors.

    Science.gov (United States)

    Lu, Tung-Wu; Chien, Hui-Lien; Chang, Ling-Ying; Hsu, Horng-Chaung

    2012-09-01

    The purposes of this study were to test whether an examiner's strength may affect the validity of the knee muscle strength measurements using a hand-held dynamometer (HHD) and whether enhancing the forces applied by an examiner using a resistance-enhanced dynamometer (RED) would improve measurement validity. Twenty-five young male volunteers (mean [±SD] age: 22.5 ± 1.7 years) without a history of injury to the test l