WorldWideScience

Sample records for axial force measurement

  1. Axial force measurement for esophageal function testing

    DEFF Research Database (Denmark)

    Gravesen, Flemming Holbæk; Funch-Jensen, Peter; Gregersen, Hans;

    2009-01-01

    force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure of esophageal transport function. The technique used to record axial force has developed from external...... force transducers over in-vivo strain gauges of various sizes to electrical impedance based measurements. The amplitude and duration of the axial force has been shown to be as reliable as manometry. Normal, as well as abnormal, manometric recordings occur with normal bolus transit, which have been...... documented using imaging modalities such as radiography and scintigraphy. This inconsistency using manometry has also been documented by axial force recordings. This underlines the lack of information when diagnostics are based on manometry alone. Increasing the volume of a bag mounted on a probe...

  2. Axial force measurement for esophageal function testing

    Institute of Scientific and Technical Information of China (English)

    Flemming H Gravesen; Peter Funch-Jensen; Hans Gregersen; Asbjφrn Mohr Drewes

    2009-01-01

    The esophagus serves to transport food and fluid from the pharynx to the stomach. Manometry has been the "golden standard" for the diagnosis of esophageal motility diseases for many decades. Hence, esophageal function is normally evaluated by means of manometry even though it reflects the squeeze force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure of esophageal transport function. The technique used to record axial force has developed from external force transducers over in-vivo strain gauges of various sizes to electrical impedance based measurements. The amplitude and duration of the axial force has been shown to be as reliable as manometry. Normal, as well as abnormal, manometric recordings occur with normal bolus transit, which have been documented using imaging modalities such as radiography and scintigraphy. This inconsistency using manometry has also been documented by axial force recordings. This underlines the lack of information when diagnostics are based on manometry alone. Increasing the volume of a bag mounted on a probe with combined axial force and manometry recordings showed that axial force amplitude increased by 130% in contrast to an increase of 30% using manometry. Using axial force in combination with manometry provides a more complete picture of esophageal motility, and the current paper outlines the advantages of using this method.

  3. Axial force measurement for esophageal function testing.

    Science.gov (United States)

    Gravesen, Flemming H; Funch-Jensen, Peter; Gregersen, Hans; Drewes, Asbjørn Mohr

    2009-01-14

    The esophagus serves to transport food and fluid from the pharynx to the stomach. Manometry has been the "golden standard" for the diagnosis of esophageal motility diseases for many decades. Hence, esophageal function is normally evaluated by means of manometry even though it reflects the squeeze force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure of esophageal transport function. The technique used to record axial force has developed from external force transducers over in-vivo strain gauges of various sizes to electrical impedance based measurements. The amplitude and duration of the axial force has been shown to be as reliable as manometry. Normal, as well as abnormal, manometric recordings occur with normal bolus transit, which have been documented using imaging modalities such as radiography and scintigraphy. This inconsistency using manometry has also been documented by axial force recordings. This underlines the lack of information when diagnostics are based on manometry alone. Increasing the volume of a bag mounted on a probe with combined axial force and manometry recordings showed that axial force amplitude increased by 130% in contrast to an increase of 30% using manometry. Using axial force in combination with manometry provides a more complete picture of esophageal motility, and the current paper outlines the advantages of using this method. PMID:19132762

  4. Axial force measurement for esophageal function testing

    OpenAIRE

    Gravesen, Flemming H; Funch-Jensen, Peter; Gregersen, Hans; Drewes, Asbjørn Mohr

    2009-01-01

    The esophagus serves to transport food and fluid from the pharynx to the stomach. Manometry has been the “golden standard” for the diagnosis of esophageal motility diseases for many decades. Hence, esophageal function is normally evaluated by means of manometry even though it reflects the squeeze force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure o...

  5. A non-integral, axial-force measuring element

    Science.gov (United States)

    Ringel, M.; Levin, D.; Seginer, A.

    1989-10-01

    A new approach to the measurement of the axial force is presented. A nonintegral axial-force measuring element, housed within the wind-tunnel model, avoids the interactions that are caused by nonlinear elastic phenomena characteristic of integral balances. The new design overcomes other problems, such as friction, misalignment and relative motion between metric elements, that plagued previous attempts at separate measurement of the axial force. Calibration and test results prove the ability of the new approach to duplicate and even surpass the results of much more complicated and expensive integral balances. The advantages of the new design make it the best known solution for particular measurement problems.

  6. Polymer-based flexible capacitive sensor for three-axial force measurements

    Science.gov (United States)

    Dobrzynska, J. A.; Gijs, M. A. M.

    2013-01-01

    We have developed a flexible-substrate-based three-axial force sensor, composed of finger-shaped electrode capacitors, whose operation is based on the measurement of a capacitance change induced upon applying a three-axial load. The electrode design supports high sensitivity to shear forces. An overall flexibility of the sensor and elasticity of the capacitor's dielectric is obtained by integrating three polymers in the sensor's technology process, namely polyimide, parylene-C, and polydimethylsiloxane, combined with standard metallization processes. We have theoretically modeled the sensor's capacitance and its three-axial force sensitivity. The unit capacitors have static capacitances in the range of 20 pF. The electro-mechanical characterization of the capacitors reveals in the normal direction a sensitivity Sz = 0.024 kPa-1 for pressures <10 kPa, whereas for higher pressures the measured sensitivity Sz = 6.6 × 10-4 kPa-1. Typical measured shear force sensitivity Sx = 2.8 × 10-4 kPa-1. These values give our transducer high potential for use in skin-like sensing applications.

  7. Polymer-based flexible capacitive sensor for three-axial force measurements

    International Nuclear Information System (INIS)

    We have developed a flexible-substrate-based three-axial force sensor, composed of finger-shaped electrode capacitors, whose operation is based on the measurement of a capacitance change induced upon applying a three-axial load. The electrode design supports high sensitivity to shear forces. An overall flexibility of the sensor and elasticity of the capacitor's dielectric is obtained by integrating three polymers in the sensor's technology process, namely polyimide, parylene-C, and polydimethylsiloxane, combined with standard metallization processes. We have theoretically modeled the sensor's capacitance and its three-axial force sensitivity. The unit capacitors have static capacitances in the range of 20 pF. The electro-mechanical characterization of the capacitors reveals in the normal direction a sensitivity Sz = 0.024 kPa−1 for pressures <10 kPa, whereas for higher pressures the measured sensitivity Sz = 6.6 × 10−4 kPa−1. Typical measured shear force sensitivity Sx = 2.8 × 10−4 kPa−1. These values give our transducer high potential for use in skin-like sensing applications. (paper)

  8. Measurement of the axial force during primary peristalsis in the oesophagus using a novel electrical impedance technology.

    Science.gov (United States)

    Gravesen, F H; McMahon, B P; Drewes, A M; Gregersen, H

    2008-03-01

    The oesophagus serves to transport food and fluid from the pharynx to the stomach. Oesophageal function is usually evaluated by means of manometry which is a proxy of the force in the radial direction. However, force measurements in the axial direction will provide a better measure of oesophageal transport function. The aim of this study was to develop a probe based on electrical impedance measurements to quantify the axial force generated by oesophageal contractions, i.e. probe elongation was associated with the axial force. Calibration with weights up to 200 g was done. The dispersion, creep, temperature and bending dependence were studied at the bench. Subsequently, the probe was tested in vivo in a healthy human volunteer. The probe showed good reproducibility and the dispersion was measurements (P = 0.038) but not with manometric measurements. In conclusion, the new technique measures axial force in the oesophagus and may in the future provide valuable information about oesophageal function. PMID:18367813

  9. Measurement of the axial force during primary peristalsis in the oesophagus using a novel electrical impedance technology

    International Nuclear Information System (INIS)

    The oesophagus serves to transport food and fluid from the pharynx to the stomach. Oesophageal function is usually evaluated by means of manometry which is a proxy of the force in the radial direction. However, force measurements in the axial direction will provide a better measure of oesophageal transport function. The aim of this study was to develop a probe based on electrical impedance measurements to quantify the axial force generated by oesophageal contractions, i.e. probe elongation was associated with the axial force. Calibration with weights up to 200 g was done. The dispersion, creep, temperature and bending dependence were studied at the bench. Subsequently, the probe was tested in vivo in a healthy human volunteer. The probe showed good reproducibility and the dispersion was <0.04. Some dependence on temperature, creep and bending was found. Interpolation of the calibration curves made it possible to compensate for temperature fluctuations. The maximum deviation was 6.1 ± 3.7% at loads of 50 g. The influence of creep showed a maximum net creep of 6.1 g after 8 s. The swallowed bolus size correlated with the axial force measurements (P = 0.038) but not with manometric measurements. In conclusion, the new technique measures axial force in the oesophagus and may in the future provide valuable information about oesophageal function

  10. Measurement of synchronous forces and flow non-uniformity in an axial compressor

    OpenAIRE

    Cuellar, Alvaro F

    1997-01-01

    Approved for public release; distribution is unlimited. Time resolved pressure measurements on a compressor case were acquired for several uniform and non-uniform tip clearances. High frequency response pressure transducers were placed at several axial locations near the second stage axial rotor on the outer casing of an Allison C-250 compressor. Data were acquired at several fixed time intervals. The amplitude of the blade to blade variations and once per revolution static pressure distri...

  11. Axial Force at the Vessel Bottom Induced by Axial Impellers

    OpenAIRE

    I. Fořt; P. Hasal; A. Paglianti; F. Magelli

    2008-01-01

    This paper deals with the axial force affecting the flat bottom of a cylindrical stirred vessel. The vessel is equipped with four radial baffles and is stirred with a four 45° pitched blade impeller pumping downwards. The set of pressure transducers is located along the whole radius of the flat bottom between two radial baffles. The radial distribution of the dynamic pressures indicated by the transducers is measured in dependence on the impeller off-bottom clearance and impeller speed.It fol...

  12. AXIAL DEFFLECTION STUDIES OF RING SHAPED FORCE TRANSDUCER: A REVIEW

    Directory of Open Access Journals (Sweden)

    SUDHIR KUMAR,

    2011-01-01

    Full Text Available The ring shaped force transducers are widely used in practice and are available in varying capacities from few hundred newtons to mega newtons. The present paper discusses the deflection studies of thering shaped force transducers under action of axial forces. Various methods leading to the measurement of deflection have been discussed and compared here.

  13. Dynamic Analysis of Axial Magnetic Forces for DVD Spindle Motors

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The axial magnetic force, induced by the complicated flux linkage distribution from rotor magnet and stator slotted, is constructed by different relative heights and calculated by 3D finite element method (FEM) to analyze the dynamic characteristics for a DVD spindle motor. The axial magnetic force is designed to provide an axial stiffness and govern the natural frequency of the dynamic performance. According to the simulation results and experimental measurements, the dynamic behaviors are significantly improved with a variation of relative height of rotor magnet and stator slotted on a DVD spindle motor.

  14. Forced axial segregation in axially inhomogeneous rotating systems

    Science.gov (United States)

    González, S.; Windows-Yule, C. R. K.; Luding, S.; Parker, D. J.; Thornton, A. R.

    2015-08-01

    Controlling segregation is both a practical and a theoretical challenge. Using a novel drum design comprising concave and convex geometry, we explore, through the application of both discrete particle simulations and positron emission particle tracking, a means by which radial size segregation may be used to drive axial segregation, resulting in an order of magnitude increase in the rate of separation. The inhomogeneous drum geometry explored also allows the direction of axial segregation within a binary granular bed to be controlled, with a stable, two-band segregation pattern being reliably and reproducibly imposed on the bed for a variety of differing system parameters. This strong banding is observed to persist even in systems that are highly constrained in the axial direction, where such segregation would not normally occur. These findings, and the explanations provided of their underlying mechanisms, could lead to radical new designs for a broad range of particle processing applications but also may potentially prove useful for medical and microflow applications.

  15. Detection of Forces and Displacements along the Axial Direction in an Optical Trap

    OpenAIRE

    Deufel, Christopher; Wang, Michelle D.

    2005-01-01

    We present measurements of the forces on, and displacements of, an optically trapped bead along the propagation direction of the trapping laser beam (the axial direction). In a typical experimental configuration, the bead is trapped in an aqueous solution using an oil-immersion, high-numerical-aperture objective. This refractive index mismatch complicates axial calibrations due to both a shift of the trap center along the axial direction and spherical aberrations. In this work, a known DNA te...

  16. Axial forces and bending moments in the loaded rabbit tibia in vivo

    Directory of Open Access Journals (Sweden)

    Reifenrath Janin

    2012-03-01

    Full Text Available Abstract Background Different animal models are used as fracture models in orthopaedic research prior to implant use in humans, although biomechanical forces can differ to a great extend between species due to variable anatomic conditions, particularly with regard to the gait. The rabbit is an often used fracture model, but biomechanical data are very rare. The objective of the present study was to measure axial forces, bending moments, and bending axis directly in the rabbit tibia in vivo. The following hypothesis was tested: Axial forces and bending moments in the mid-diaphysis of rabbit tibia differ from other experimental animals or indirectly calculated data. Methods A minifixateur system with 4 force sensors was developed and attached to rabbit tibia (n = 4, which were subsequently ostectomised. Axial forces, bending moments and bending angles were calculated telemetrically during weight bearing in motion between 6 and 42 days post operation. Results Highest single values were 201% body weight [% bw] for axial forces and 409% bw cm for bending moments. Whereas there was a continous decrease in axial forces over time after day 10 (P = 0.03 on day 15, a decrease in bending moments was inconsistent (P = 0.03 on day 27. High values for bending moments were frequently, but not consistently, associated with high values for axial forces. Conclusion Axial forces in rabbit tibia exceeded axial forces in sheep, and differed from indirectly calculated data. The rabbit is an appropriate fracture model because axial loads and bending moments in rabbit tibia were more closely to human conditions than in sheep tibia as an animal model.

  17. Calculus of axial force in a mechanism using Lagrange equations

    Directory of Open Access Journals (Sweden)

    Thien Van NGUYEN

    2016-06-01

    Full Text Available Lagrange equations are used to study the motion of a system under the action of known external forces. Besides, based on these equations we can determine the internal force in an arbitrary element of the mechanism acting by active force. If an internal force has to be found, a supplementary mobility related to it is considered in the system. The corresponding internal force for new mobility is found for null values of mobility and of its first and second derivatives. Also the determination of the axial force in the connecting rod of the slider-crank mechanism is presented in this paper as an illustration of this method.

  18. Balance Analysis and Elimination Measures of Axial Force of Centrifugal Compressors%离心式压缩机轴向力分析及平衡与消除措施

    Institute of Scientific and Technical Information of China (English)

    李荣荣

    2013-01-01

      轴向力的存在严重影响了离心式压缩机的正常工作,同时也严重影响压缩机的使用寿命,通过对离心式压缩机高速运转时所受轴向力的分析,提出了合理的平衡和消除轴向力的处理措施,保证离心式压缩机在生产中的安全运行。%  The axial force's existence influences the centrifugal compressor's normal work seriously, and influences service life seriously, too. In this article, the axial force of centrifugal compressors during high-speed operation was analyzed,the reasonable measures to ensure the safe running of the centrifugal compressor were put forward.

  19. Light Weakly Coupled Axial Forces: Models, Constraints, and Projections

    CERN Document Server

    Kahn, Yonatan; Mishra-Sharma, Siddharth; Tait, Tim M P

    2016-01-01

    We investigate the landscape of constraints on MeV-GeV scale, hidden U(1) forces with nonzero axial-vector couplings to Standard Model fermions. While the purely vector-coupled dark photon, which may arise from kinetic mixing, is a well-motivated scenario, several MeV-scale anomalies motivate a theory with axial couplings which can be UV-completed consistent with Standard Model gauge invariance. Moreover, existing constraints on dark photons depend on products of various combinations of axial and vector couplings, making it difficult to isolate the effects of axial couplings for particular flavors of SM fermions. We present a representative renormalizable, UV-complete model of a dark photon with adjustable axial and vector couplings, discuss its general features, and show how some UV constraints may be relaxed in a model with nonrenormalizable Yukawa couplings at the expense of fine-tuning. We survey the existing parameter space and the projected reach of planned experiments, briefly commenting on the relevan...

  20. Characterization of fluid forces exerted on a cylinder array oscillating laterally in axial flow

    International Nuclear Information System (INIS)

    This thesis presents an experimental and a numerical study of the fluid forces exerted on a cylinder or a cylinder array oscillating laterally in an axial flow. The parameters of the system are the amplitude, the oscillation frequency, the confinement and the length to diameter ratio of the cylinder. The objective is to determine the fluid damping created by the axial flow, i.e. the dissipative force. The industrial application of this thesis is the determination of the fluid damping of the fuel assemblies in the core of a nuclear power plant during an earthquake. The study focuses on the configurations where the oscillation velocity is small compared to the axial flow velocity. In a first part, we study the case of a cylinder with no confinement oscillating in axial flow. Two methods are used: a dynamical and a quasi-static approach. In dynamics, the damping rate is measured during free oscillations of the cylinder. In the quasi-static approach, the damping coefficient is calculated from the normal force measured on a yawed cylinder. The range of the small ratios between the oscillation and the axial flow velocities corresponds to a range of low yaw angle where the cylinder is in near-axial flow in statics. The case of a yawed cylinder has been studied both experimentally with experiments in a wind tunnel and numerically with CFD calculations. The analyses of the fluid forces shows that for yaw angles smaller than 5 degrees, a linear lift with the yaw angle creates the damping. The origin of the lift force is discussed from pressure and velocity measurements. The results of the quasi-static approach are compared to the results of the dynamical experiments. In a second part, an experimental study is performed on a rigid cylinder array made up of 40 cylinders oscillating in an axial flow. The normal force and the displacement of the cylinder array are measured simultaneously. The added mass and damping coefficient are calculated and their variation with the

  1. Comprehensive modeling approach of axial ultrasonic vibration grinding force

    Institute of Scientific and Technical Information of China (English)

    HE Yu-hui; ZHOU Qun; ZHOU Jian-jie; LANG Xian-jun

    2016-01-01

    The theoretical model of axial ultrasonic vibration grinding force is built on the basis of a mathematical model of cutting deforming force deduced from the assumptions of thickness of the undeformed debris under Rayleigh distribution and a mathematical model of friction based on the theoretical analysis of relative sliding velocity of abrasive and workpiece. Then, the coefficients of the ultrasonic vibration grinding force model are calculated through analysis of nonlinear regression of the theoretical model by using MATLAB, and the law of influence of grinding depth, workpiece speed, frequency and amplitude of the mill on the grinding force is summarized after applying the model to analyze the ultrasonic grinding force. The result of the above-mentioned law shows that the grinding force decreases as frequency and amplitude increase, while increases as grinding depth and workpiece speed increase; the maximum relative error of prediction and experimental values of the normal grinding force is 11.47% and its average relative error is 5.41%; the maximum relative error of the tangential grinding force is 10.14% and its average relative error is 4.29%. The result of employing regression equation to predict ultrasonic grinding force approximates to the experimental data, therefore the accuracy and reliability of the model is verified.

  2. Effect of Axial Force on the Performance of Micromachined Vibratory Rate Gyroscopes

    Directory of Open Access Journals (Sweden)

    Zhengyi Niu

    2010-12-01

    Full Text Available It is reported in the published literature that the resonant frequency of a silicon micromachined gyroscope decreases linearly with increasing temperature. However, when the axial force is considerable, the resonant frequency might increase as the temperature increases. The axial force is mainly induced by thermal stress due to the mismatch between the thermal expansion coefficients of the structure and substrate. In this paper, two types of micromachined suspended vibratory gyroscopes with slanted beams were proposed to evaluate the effect of the axial force. One type was suspended with a clamped-free (C-F beam and the other one was suspended with a clamped-clamped (C-C beam. Their drive modes are the bending of the slanted beam, and their sense modes are the torsion of the slanted beam. The relationships between the resonant frequencies of the two types were developed. The prototypes were packaged by vacuum under 0.1 mbar and an analytical solution for the axial force effect on the resonant frequency was obtained. The temperature dependent performances of the operated mode responses of the micromachined gyroscopes were measured. The experimental values of the temperature coefficients of resonant frequencies (TCF due to axial force were 101.5 ppm/°C for the drive mode and 21.6 ppm/°C for the sense mode. The axial force has a great influence on the modal frequency of the micromachined gyroscopes suspended with a C-C beam, especially for the flexure mode. The quality factors of the operated modes decreased with increasing temperature, and changed drastically when the micromachined gyroscopes worked at higher temperatures.

  3. 四分量片式铰链力矩天平技术及风洞实验应用研究%Hinge moment balance technique with axial force measurement and its application in wind tunnel test

    Institute of Scientific and Technical Information of China (English)

    刘喜贺; 王天昊; 邱俊文; 李盛文; 冯昕华

    2011-01-01

    For resolve the non-axial force measurement limitations of three-component hinge moment balance on wind tunnel control flap test, a operable design plan of four-component hinge moment balance is put forward in this paper, then a physical prototype was application in the elevator experiment. The result shows that the experiment result and theoretical analysis have good consistency when elevator angle is 21 degree, normal force coefficient relative error is 14.7% and control flap's pressure center position relative error is 20 %, which ignore the axial force measurement.%针对目前风洞铰链力矩实验中的一种三分量片式结构铰链力矩天平没有轴向力测量元件的不足,提出一种切实可行的四分量片式结构铰链力矩天平设计方案,进行了物理样机的研制,应用于某模型升降舵风洞铰链力矩实验中.实验结果与理论分析获得了良好的一致性,在舵面偏角为21°时,由忽略轴向力测量带来的舵面法向力系数相对误差百分比为14.7%,舵面弦向压心位置相对误差百分比为17.2%.

  4. NON-LINEAR FORCED VIBRATION OF AXIALLY MOVING VISCOELASTIC BEAMS

    Institute of Scientific and Technical Information of China (English)

    Yang Xiaodong; Chen Li-Qun

    2006-01-01

    The non-linear forced vibration of axially moving viscoelastic beams excited by the vibration of the supporting foundation is investigated. A non-linear partial-differential equation governing the transverse motion is derived from the dynamical, constitutive equations and geometrical relations. By referring to the quasi-static stretch assumption, the partial-differential non-linearity is reduced to an integro-partial-differential one. The method of multiple scales is directly applied to the governing equations with the two types of non-linearity, respectively. The amplitude of near- and exact-resonant steady state is analyzed by use of the solvability condition of eliminating secular terms. Numerical results are presented to show the contributions of foundation vibration amplitude, viscoelastic damping, and nonlinearity to the response amplitude for the first and the second mode.

  5. Análisis de la fuerza axial en un transportador de sinfín // Analysis of axial force in a screw conveyor.

    Directory of Open Access Journals (Sweden)

    F. Aguilar Parés

    1999-01-01

    Full Text Available Durante el movimiento de un material en un transportador de sinfín surge una fuerza en dirección axial que influye en laselección de uno de los cojinetes de apoyo del equipo. En el artículo aparecen algunas soluciones constructivas que tienen encuentan la fuerza axial. Por otro lado se establece la relación entre la fuerza axial y el empuje axial y se precisa de quiendepende el sentido del empuje axial. Por último se propone un modelo matemático que relaciona la fuerza axial con la potenciarequerida por el equipo.Palabras claves: Transportador de sinf in, fuerza axial , empuje axial ._________________________________________________________________________AbstractDuring the movement of material in a screw conveyor surge a force in axial direction that influence in the selection of one ofthe equipment support bearings. Some constructive solutions appear in the article for considering the axial force. In the otherhand it is established the relation between axial force and axial thurst and it is precised whose direction thurst axial depend of.Finally it is proposed a mathematic model that relates the axial force with the power required by the equipment.Key words: Screw conveyor, axial force, axial thurst .

  6. Shear Behavior of Reinforced Concrete Shear Walls under Tensile Axial Force with Eccentricity

    OpenAIRE

    MIZOGUCHI, Mitsuo; ARAI, Yasuyuki; KUCHIJI, Hideki

    2000-01-01

    A lateral loading test of six reinforced concrete shear walls subjected to an eccentric tensile axial force was carried out to examine their shear behavior. Next facts ware confirmed on the shear strength of the walls subjected to an eccentric tensile axial force. The test results can be evaluat by the shear strength equation [2] considering axial tensile stress. The calculated values given by the (AIJ "Design Guidelines for Earthquake Resistant Reinforced Concrete Buildings Based on Inelasti...

  7. Shear Strength of Reinforced Concrete Shear Walls under Eccentric Tensile Axial Force

    OpenAIRE

    MIZOGUCHI, Mitsuo; ARAI, Yasuyuki; Hosoya, Koji

    2002-01-01

    Six reinforced concrete shear wall models were built and tested to investigate effects of cyclic lateral loading and an eccentric tensile axial force on their shear strength behavior. The following are confirmed from this test result. When the elongation at the bottom of the boundary column on the compression side for a lateral force is small, the shear strength of shear walls subjected to a tensile axial force at the boundary column can be evaluated by conventional shear strenght equations, ...

  8. Experimental study for the compensation of axial flow force in a spool value

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Kazuo; Watanabe, Haruo; Guo, Mao-ying

    1987-09-15

    A method was developed to decrease flow force by compensation buckets, and the effect of the geometric parameters of the bucket on the flow force was studied. Experimental spools and sleeves in a variety of shapes were made to compare their effects on the compensation of the flow force, and the differences in their effects were studied using the trially made visualization experimental equipment. The axial flow force measuring device was made of spool valves and a micrometer head capable of adjusting the position of the spool. The values obtained from the experiment where no compensation bucket was provided were used as the base for the verification. It became clear that the compensation effect was maximum when all corners of the bucket were rounded. The compensation effect of the sleeve showed little difference in the angle range of 69/sup 0/ to 90/sup 0/. The compensation effect was maximum with the outlet angle of 50/sup 0/ and inlet angle of 69/sup 0/ of the sleeve in the bucket area. The effects of the axial width and the depth of the bucket were also reported. (13 figs, 1 tab, 7 refs)

  9. Tri-Axial MRI Compatible Fiber-optic Force Sensor

    Science.gov (United States)

    Tan, U-Xuan; Yang, Bo; Gullapalli, Rao; Desai, Jaydev P.

    2011-01-01

    Magnetic resonance imaging (MRI) has been gaining popularity over standard imaging modalities like ultrasound and CT because of its ability to provide excellent soft-tissue contrast. However, due to the working principle of MRI, a number of conventional force sensors are not compatible. One popular solution is to develop a fiber-optic force sensor. However, the measurements along the principal axes of a number of these force sensors are highly cross-coupled. One of the objectives of this paper is to minimize this coupling effect. In addition, this paper describes the design of elastic frame structures that are obtained systematically using topology optimization techniques for maximizing sensor resolution and sensor bandwidth. Through the topology optimization approach, we ensure that the frames are linked from the input to output. The elastic frame structures are then fabricated using polymers materials, such as ABS and Delrin®, as they are ideal materials for use in MRI environment. However, the hysteresis effect seen in the displacement-load graph of plastic materials is known to affect the accuracy. Hence, this paper also proposes modeling and addressing this hysteretic effect using Prandtl-Ishlinskii play operators. Finally, experiments are conducted to evaluate the sensor’s performance, as well as its compatibility in MRI under continuous imaging. PMID:21666783

  10. Detection of Rotor Forced Response Vibrations Using Stationary Pressure Transducers in a Multistage Axial Compressor

    Directory of Open Access Journals (Sweden)

    William L. Murray

    2015-01-01

    Full Text Available Blade row interactions in turbomachinery can lead to blade vibrations and even high cycle fatigue. Forced response conditions occur when a forcing function (such as impingement of stator wakes occurs at a frequency that matches the natural frequency of a blade. The objective of this research is to develop the data processing techniques needed to detect rotor blade vibration in a forced response condition from stationary fast-response pressure transducers to allow for detection of rotor vibration from transient data and lead to techniques for vibration monitoring in gas turbines. This paper marks the first time in the open literature that engine-order resonant response of an embedded bladed disk in a 3-stage intermediate-speed axial compressor was detected using stationary pressure transducers. Experiments were performed in a stage axial research compressor focusing on the embedded rotor of blisk construction. Fourier waterfall graphs from a laser tip timing system were used to detect the vibrations after applying signal processing methods to uncover these pressure waves associated with blade vibration. Individual blade response was investigated using cross covariance to compare blade passage pressure signatures through resonance. Both methods agree with NSMS data that provide a measure of the exact compressor speeds at which individual blades enter resonance.

  11. INVESTIGATION OF THE DYNAMIC BUCKLING OF DOUBLEWALLED CARBON NANOTUBE SUBJECTED TO AXIAL PERIODIC DISTURBING FORCES

    Institute of Scientific and Technical Information of China (English)

    SHA Feng-huan; ZHAO Long-mao; YANG Gui-tong

    2005-01-01

    The dynamic response of a double-walled carbon nanotube embedded in elastic medium subjected to periodic disturbing forces is investigated. Investigation of the dynamic buckling of a double-walled carbon nanotube develops continuum model. The effect of the van der Waals forces between two tubes and the surrounding elastic medium for axial dynamic buckling are considered. The buckling model subjected to periodic disturbing forces and the critical axial strain and the critical frequencies are given. It is found that the critical axial strain of the embedded multi-walled carbon nanotube due to the intertube van der Waals forces is lower than that of an embedded single-walled carbon nanotube. The van der Waals forces and the surrounding elastic medium affect region of dynamic instability. The van der Waals forces increase the critical frequencies of a double-walled carbon nanotube. The effect of the surrounding elastic medium for the critical frequencies is small.

  12. Forced convection in a circular duct with periodic boundary conditions and axial heat conduction

    Energy Technology Data Exchange (ETDEWEB)

    Barletta, A.; Rossi di Schio, E. [Bologna Univ., Bologna (Italy). Dipt. di Ingegneria Energetica, Nucleare e del Controllo Ambientale

    2000-07-01

    An investigation of the effect of axial heat conduction in the fluid on laminar forced convection is performed in a cylindrical duct with circular cross section. Two different kinds of boundary conditions are analysed: 1, a wall temperature distribution which undergoes a sinusoidal axial variation; 2, a wall heat flux distribution which undergoes a sinusoidal axial variation and such that its mean value is equal to the modulus of the amplitude. Reference is made to the hydrodynamical and thermally developed region, where the temperature distribution is given in case 1 by an axially periodic function and in case 2 by the sum of an axially periodic function and a linear function of the axial coordinate. The temperature distribution within the fluid and the local and mean Nusselt have been evaluated analytically.

  13. Force measurement in a nanomachining instrument

    Science.gov (United States)

    Gao, Wei; Hocken, Robert J.; Patten, John A.; Lovingood, John

    2000-11-01

    Two miniature, high sensitivity force transducers were employed to measure the thrust force along the in-feed direction and the cutting force along the cross-feed direction in a nanomachining instrument. The instrument was developed for conducting fundamental experiments of nanocutting especially on brittle materials. The force transducers of piezoelectric quartz type can measure machining forces ranging from 0.2 mN to 10 N. The submillinewton resolution makes it possible to measure the machining forces in the cutting experiments with depths of cut as small as the nanometer level. The stiffness and resonant frequency of the force transducers are 400 mN/nm and 300 kHz, respectively, which meet the specification of the instrument. A force transducer assembly is designed to provide a mechanism to adjust the preload on the force transducer and to decouple the measurement of forces. The assembly consists of three dual-axis circular flexures and a subframe. The axial stiffness of the flexures is designed to be greater than 6×107 N/m and the lateral stiffness of the flexures is designed to be 1×106 N/m to provide proper decoupling of forces.

  14. Axial flux data for fuel measurement

    Energy Technology Data Exchange (ETDEWEB)

    Popovich, R.P.

    1964-02-11

    A survey of the PITA-18 nonpoisonous spline program was conducted in conjunction with a study to determine the best method of eliminating the variability of axial flux on the fuel performance parameter, q. The results of this survey and the conclusions reached in the rupture coefficient study were found to be inter-dependent such that both are presented in this report. The data from the PITA-18 nonpoisonous spline program, as received, is the output of the NOLA-2 computer program. One quantity of interest is the rupture potential relative to a cosine, commonly referred to as the relative rupture potential. As programmed, the relative rupture potential, which was derived by applying the rupture model to individual fuel elements, might be expected to vary linearly with the rupture rate. The use of the relative rupture potential was studied over the period of July 1962 through December 1963. The results of this study are presented.

  15. Standard practice for verification of constant amplitude dynamic forces in an axial fatigue testing system

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This practice covers procedures for the dynamic verification of cyclic force amplitude control or measurement accuracy during constant amplitude testing in an axial fatigue testing system. It is based on the premise that force verification can be done with the use of a strain gaged elastic element. Use of this practice gives assurance that the accuracies of forces applied by the machine or dynamic force readings from the test machine, at the time of the test, after any user applied correction factors, fall within the limits recommended in Section 9. It does not address static accuracy which must first be addressed using Practices E 4 or equivalent. 1.2 Verification is specific to a particular test machine configuration and specimen. This standard is recommended to be used for each configuration of testing machine and specimen. Where dynamic correction factors are to be applied to test machine force readings in order to meet the accuracy recommended in Section 9, the verification is also specific to the c...

  16. Nanonet Force Microscopy for Measuring Cell Forces.

    Science.gov (United States)

    Sheets, Kevin; Wang, Ji; Zhao, Wei; Kapania, Rakesh; Nain, Amrinder S

    2016-07-12

    The influence of physical forces exerted by or felt by cells on cell shape, migration, and cytoskeleton arrangement is now widely acknowledged and hypothesized to occur due to modulation of cellular inside-out forces in response to changes in the external fibrous environment (outside-in). Our previous work using the non-electrospinning Spinneret-based Tunable Engineered Parameters' suspended fibers has revealed that cells are able to sense and respond to changes in fiber curvature and structural stiffness as evidenced by alterations to focal adhesion cluster lengths. Here, we present the development and application of a suspended nanonet platform for measuring C2C12 mouse myoblast forces attached to fibers of three diameters (250, 400, and 800 nm) representing a wide range of structural stiffness (3-50 nN/μm). The nanonet force microscopy platform measures cell adhesion forces in response to symmetric and asymmetric external perturbation in single and cyclic modes. We find that contractility-based, inside-out forces are evenly distributed at the edges of the cell, and that forces are dependent on fiber structural stiffness. Additionally, external perturbation in symmetric and asymmetric modes biases cell-fiber failure location without affecting the outside-in forces of cell-fiber adhesion. We then extend the platform to measure forces of (1) cell-cell junctions, (2) single cells undergoing cyclic perturbation in the presence of drugs, and (3) cancerous single-cells transitioning from a blebbing to a pseudopodial morphology. PMID:27410747

  17. Off-axial acoustic radiation force of repulsor and tractor bessel beams on a sphere.

    Science.gov (United States)

    Silva, Glauber T; Lopes, J Henrique; Mitri, Farid G

    2013-06-01

    Acoustic Bessel beams are known to produce an axial radiation force on a sphere centered on the beam axis (on-axial configuration) that exhibits both repulsor and tractor behaviors. The repulsor and the tractor forces are oriented along the beam's direction of propagation and opposite to it, respectively. The behavior of the acoustic radiation force generated by Bessel beams when the sphere lies outside the beam's axis (off-axial configuration) is unknown. Using the 3-D radiation force formulas given in terms of the partial wave expansion coefficients for the incident and scattered waves, both axial and transverse components of the force exerted on a silicone- oil sphere are obtained for a zero- and a first-order Bessel vortex beam. As the sphere departs from the beam's axis, the tractor force becomes weaker. Moreover, the behavior of the transverse radiation force field may vary with the sphere's size factor ka (where k is the wavenumber and a is the sphere radius). Both stable and unstable equilibrium regions around the beam's axis are found, depending on ka values. These results are particularly important for the design of acoustical tractor beam devices operating with Bessel beams. PMID:25004483

  18. Off-axial acoustic radiation force of pressor and tractor Bessel beams on a sphere

    CERN Document Server

    Silva, Glauber T; Lobo, Tiago P; Mitri, Farid G

    2012-01-01

    Acoustic Bessel beams are known to produce an axial radiation force on a sphere centered on the beam axis (on-axial configuration) that exhibits both "pressor" and "tractor" behaviors. The pressor and the tractor forces are oriented along the beam's direction of propagation and opposite to it, respectively. The behavior of the acoustic radiation force generated by Bessel beams when the sphere lies outside the beam's axis (off-axial configuration) is unknown. Using the 3D radiation force formulas given in terms of the partial wave expansion coefficients for the incident and scattered waves, both axial and transverse components of the force exerted on a silicone-oil sphere are obtained for a zero- and a first-order Bessel vortex beam. As the sphere departs from the beam's axis, the tractor force becomes weaker. Moreover, the behavior of the transverse radiation force field may vary with the sphere's size factor $ka$ (where $k$ is the wavenumber and $a$ is the sphere radius). Both stable and unstable equilibrium...

  19. Toroidal linear force-free magnetic fields with axial symmetry

    Science.gov (United States)

    Vandas, M.; Romashets, E.

    2016-01-01

    Aims: Interplanetary magnetic flux ropes are often described as linear force-free fields. To account for their curvature, toroidal configurations must be used. The aim is to find an analytic description of a linear force-free magnetic field of the toroidal geometry in which the cross section of flux ropes can be controlled. Methods: The solution is found as a superposition of fields given by linear force-free cylinders tangential to a generating toroid. The cylindrical field is expressed in a series of terms that are not all cylindrically symmetric. Results: We found the general form of a toroidal linear force-free magnetic field. The field is azimuthally symmetric with respect to the torus axis. It depends on a set of coefficients that enables controlling the flux rope shape (cross section) to some extent. By varying the coefficients, flux ropes with circular and elliptic cross sections were constructed. Numerical comparison suggests that the simple analytic formula for calculating the helicity in toroidal flux ropes of the circular cross section can be used for flux ropes with elliptic cross sections if the minor radius in the formula is set to the geometric mean of the semi-axes of the elliptic cross section.

  20. Standard practice for conducting force controlled constant amplitude axial fatigue tests of metallic materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This practice covers the procedure for the performance of axial force controlled fatigue tests to obtain the fatigue strength of metallic materials in the fatigue regime where the strains are predominately elastic, both upon initial loading and throughout the test. This practice is limited to the fatigue testing of axial unnotched and notched specimens subjected to a constant amplitude, periodic forcing function in air at room temperature. This practice is not intended for application in axial fatigue tests of components or parts. Note 1-The following documents, although not directly referenced in the text, are considered important enough to be listed in this practice: E 739 Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (-N) Fatigue Data STP 566 Handbook of Fatigue Testing STP 588 Manual on Statistical Planning and Analysis for Fatigue Experiments STP 731 Tables for Estimating Median Fatigue Limits

  1. Effect of impeller reflux balance holes on pressure and axial force of centrifugal pump

    Institute of Scientific and Technical Information of China (English)

    CAO Wei-dong; DAI Xun; HU Qi-xiang

    2015-01-01

    The size of impeller reflux holes for centrifugal pump has influence on the pressure distribution of front and rear shrouds and rear pump chamber, as well as energy characteristics of whole pump and axial force. Low specific-speed centrifugal pump with Q=12.5 m3/h,H=60 m,n=2950 r/min was selected to be designed with eight axial reflux balance holes with 4.5 mm in diameter. The simulated Q-H curve and net positive suction head (NPSH) were in good agreement with experimental results, which illustrated that centrifugal pump with axial reflux balance holes was superior in the cavitation characteristic; however, it showed to little superiority in head and efficiency. The pressure in rear pump chamber at 0.6 times rate flow is 29.36% of pressure difference between outlet and inlet, which reduces to 29.10% at rate flow and 28.33% at 1.4 times rate flow. As the whole, the pressure distribution on front and rear shrouds from simulation results is not a standard parabola, and axial force decreases as flow rate increases. Radical reflux balance holes chosen to be 5.2 mm and 5.9 mm in diameter were further designed with other hydraulic parts unchanged. With structural grids adopted for total flow field, contrast numerical simulation on internal flow characteristics was conducted based on momentum equations and standard turbulence model (κ-ε). It is found that axial force of pump with radical reflux balance holes of 5.2 mm and 5.9 mm in diameter is significantly less than that with radical reflux balance holes of 4.5 mm in diameter. Better axial force balance is obtained as the ratio of area of reflux balance holes and area of sealing ring exceeds 6.

  2. One dimensional calculations for axial pullback force distribution in pipes during directional drilling installations

    Energy Technology Data Exchange (ETDEWEB)

    Chehab, A.G.; Moore, I.D. [Queen' s Univ., Kingston, ON (Canada). Dept. of Civil Engineering, Geoengineering Centre

    2007-07-01

    Underground pipes and utility lines can be installed using a a horizontal directional drilling (HDD) technique that makes use of a surface-monitored drilling rig that launches a drill string at shallow angle to the surface. The operation involves pilot bore excavation, back-reaming, and pullback. During the pullback operation, the pipe is subjected to loading from the drill string. It is also subjected to shear stresses between the outer surface of the pipe and the surrounding environment. These loads create complex axial stress distributions that vary along the pipe and with time. Since the axial stresses may influence the performance of the pipe, a one dimensional model was created to estimate tensile forces and stresses within pipes during pullback. The pipe was divided into elements, simulating the movement of the pulling head. Gravity forces, pipe-soil interaction forces and viscous drag forces applied on each element were then calculated based on its location along the borehole. The pipe-soil interaction used a simple model that considered adhesion, friction and soil stiffness. The elemental forces over the pipe length were integrated to estimate the axial force history along the pipe through the insertion process. The procedure was used to investigate the axial force distributions and cyclic response of pipes during pulling operations where the time history of movement of the pulling head was predetermined. The model accounted for nonlinear, time dependent polymer behaviour. It can be used to calculate the short and long term behaviour of high density polyethylene pipes during HDD installations. 10 refs., 1 tab., 10 figs.

  3. Experimental tests of slender reinforced concrete columns under combined axial load and lateral force

    OpenAIRE

    BARRERA PUERTO, ANGELA; Bonet Senach, José Luís; Romero, Manuel L.; Miguel Sosa, Pedro

    2011-01-01

    The use of high strength concrete (HSC) in columns has become more frequent since a substantial reduction of the cross-section is obtained, meaning that slenderness increases for the same axial load and length, producing higher second order effects. However, the experimental tests in the literature of reinforced concrete columns subjected to axial load and lateral force focus on shear span ratios, according to Eurocode 2 (2004), clause 5.6.3., (M/(V·h)) lower than 6.5. This gap in the literat...

  4. Design and characterization of a silicon piezoresistive three-axial force sensor for micro-flapping wing MAV applications

    Science.gov (United States)

    Zhang, Wei; Truong, Van T.; Lua, Kim B.; Kumar, A. S.; Lim, Tee Tai; Yeo, Khoon Seng; Zhou, Guangya

    2015-03-01

    This paper describes the design and electro-mechanical characterizations of a three-axial micro piezoresistive force sensor fabricated by microelectromechanical systems (MEMS) technologies. This is the first three-axial MEMS micro force sensor applied to the study of Micro Aerial Vehicle (MAV) aerodynamics. A standard dry etching fabrication process using Silicon On Insulator (SOI) wafer is employed to fabricate the multi-axis sensors. Conventional cross-beam structure is employed. There are eight piezoresistors on the beams, and each of the silicon strain gauge size is 15 μm in width, and between 400 and 500 μm in length. The Finite Element Method (FEM) analysis for confirming the piezoresistors attachment locations is performed. The miniaturized force sensor (11×11 mm2) is attached at the wing base of a micro flapping wing system (MAV, 70×30 mm2 ) by a short pillar. The sensor is designed to detect the dynamic drag force and lift force generated by a single wing under a moderate flapping frequency (5~10Hz) simultaneously. The characterizations are experimentally investigated. The sensor should be stiff enough to withstand the high inertial force (200 millinewton) and also has high resolution to detect the minimal force correctly. Measurements show that the resolution is on the order of a millinewton. High linearity and low hysteresis under normal forces and tangential forces are demonstrated by applying forces from 0 to 0.1 N. The micro flapping wing mechanism and the assembly of wing and sensor are also discussed in this paper.

  5. Silicon nanowire-based ring-shaped tri-axial force sensor for smart integration on guidewire

    Science.gov (United States)

    Han, Beibei; Yoon, Yong-Jin; Hamidullah, Muhammad; Tsu-Hui Lin, Angel; Park, Woo-Tae

    2014-06-01

    A ring-shaped tri-axial force sensor with a 200 µm × 200 µm sensor area using silicon nanowires (SiNWs) as piezoresistive sensing elements is developed and characterized. The sensor comprises a suspended ring structure located at the center of four suspended beams that can be integrated on the distal tip of a guidewire by passing through the hollow core of the sensor. SiNWs with a length of 6 µm and a cross section of 90 nm × 90 nm are embedded at the anchor of each silicon bridge along direction as the piezoresistive sensing element. Finite element analysis has been used to determine the location of maximum stress and the simulation results are verified with the experimental measurements. Taking advantage of the high sensitivity of SiNWs, the fabricated ring-shaped sensor is capable of detecting small displacement in nanometer ranges with a sensitivity of 13.4 × 10-3 µm-1 in the z-direction. This tri-axial force sensor also shows high linearity (>99.9%) to the applied load and no obvious hysteresis is observed. The developed SiNW-based tri-axial force sensor provides new opportunities to implement sensing capability on medical instruments such as guidewires and robotic surgical grippers, where ultra-miniaturization and high sensitivity are essential.

  6. Measurement of axial injection displacement with trim coil current unbalance

    Science.gov (United States)

    Covo, Michel Kireeff

    2014-08-01

    The Dee probe used for measuring internal radial beam intensity shows large losses inside the radius of 20 cm of the 88 in. cyclotron. The current of the top and bottom innermost trim coil 1 is unbalanced to study effects of the axial injection displacement. A beam profile monitor images the ion beam bunches, turn by turn. The experimental bunch center of mass position is compared with calculations of the magnetic mirror effect displacement and shows good agreement.

  7. Limit of axial force ratio and requirement for stirrups of RC columns with special shape

    Institute of Scientific and Technical Information of China (English)

    WANG Yiqun; XU Yidong; ZHAO Yanjing; CHEN Yunxia

    2007-01-01

    Thousands of columns with special shape are analyzed by nonlinear numerical methods. The ductility is calculated to investigate the limit of the axial force ratio and circumstantial requirement for stirrups of an reinforced concrete (RC) column with special shape, in the point of view of the characteristic value for providing stirrup. The limit of the axial force ratio of columns with special shape in relation to the characteristic value of the stirrup is obtained. Then, the effect of stirrup arrangement on the ductility of the RC column is discussed in case of buckling of the longitudinal reinforcement and constraint concrete columns. The complete requirement for stirrups of RC column with special shape is given.

  8. Axial dependence of optical weak measurements in the critical region

    CERN Document Server

    Araujo, Manoel P; Maia, Gabriel G

    2015-01-01

    The interference between optical beams of different polarizations plays a fundamental role in reproducing the optical analog of the electron spin weak measurement. The extraordinary point in optical weak measurements is represented by the possibility to estimate with great accuracy the Goos-Haenchen (GH) shift by measuring the distance between the peak of the outgoing beams for two opposite rotation angles of the polarizers located before and after the dielectric block. Starting from the numerical calculation of the GH shift, which clearly shows a frequency crossover for incidence near to the critical angle, we present a detailed study of the interference between s and p polarized waves in the critical region. This allows to determine in which conditions it is possible to avoid axial deformations and reproduce the GH curves. In view of a possible experimental implementation, we give the expected weak measurement curves for Gaussian lasers of different beam waist sizes propagating through borosilicate (BK7) an...

  9. Rotor whirl forces induced by the tip clearance effect in axial flow compressors

    Science.gov (United States)

    Ehrich, F.

    1993-10-01

    It is now widely recognized that destabilizing forces, tending to generate forward rotor whirl, are generated in axial flow turbines as a result of the nonuniform torque induced by the nonuniform tip-clearance in a deflected rotor-the so called Thomas/Alford force (Thomas, 1958, and Alford, 1965). It is also recognized that there will be a similar effect in axial flow compressors, but qualitative considerations cannot definitively establish the magnitude or even the direction of the induced whirling forces-that is, if they will tend to forward or backward whirl. Applying a 'parallel compressor' model to simulate the operation of a compressor rotor deflected radially in its clearance, it is possible to derive a quantitative estimate of the proportionality factor which relates the Thomas/Alford force in axial flow compressors (i.e., the tangential force generated by a radial deflection of the rotor) to the torque level in the compressor. The analysis makes use of experimental data from the GE Aircraft Engines Low Speed Research Compressor facility comparing the performance of three different axial flow compressors, each with four stages (typical of a mid-block of an aircraft gas turbine compressor) at two different clearances (expressed as a percent of blade length) - CL/L = 1.4 percent and CL/L = 2.8 percent. It is found that the value of Beta is in the range of + 0.27 to - 0.71 in the vicinity of the stages' nominal operating line and + 0.08 to - 1.25 in the vicinity of the stages' operation at peak efficiency. The value of Beta reaches a level of between - 1.16 and - 3.36 as the compressor is operated near its stalled condition. The final result bears a very strong resemblance to the correlation obtained by improvising a normalization of the experimental data of Vance and Laudadio (1984) and a generic relationship to the analytic results of Colding-Jorgensen (1990).

  10. Silicon nanowire-based ring-shaped tri-axial force sensor for smart integration on guidewire

    International Nuclear Information System (INIS)

    A ring-shaped tri-axial force sensor with a 200 µm × 200 µm sensor area using silicon nanowires (SiNWs) as piezoresistive sensing elements is developed and characterized. The sensor comprises a suspended ring structure located at the center of four suspended beams that can be integrated on the distal tip of a guidewire by passing through the hollow core of the sensor. SiNWs with a length of 6 µm and a cross section of 90 nm × 90 nm are embedded at the anchor of each silicon bridge along 〈1 1 0〉 direction as the piezoresistive sensing element. Finite element analysis has been used to determine the location of maximum stress and the simulation results are verified with the experimental measurements. Taking advantage of the high sensitivity of SiNWs, the fabricated ring-shaped sensor is capable of detecting small displacement in nanometer ranges with a sensitivity of 13.4 × 10−3 µm−1 in the z-direction. This tri-axial force sensor also shows high linearity (>99.9%) to the applied load and no obvious hysteresis is observed. The developed SiNW-based tri-axial force sensor provides new opportunities to implement sensing capability on medical instruments such as guidewires and robotic surgical grippers, where ultra-miniaturization and high sensitivity are essential. (paper)

  11. Comparison of rotordynamic fluid forces in axial inducers and centrifugal turbopump impellers

    Science.gov (United States)

    d'Agostino, Luca

    2016-05-01

    The paper illustrates and compares the results of the experimental campaigns carried out in the Cavitating Pump Rotordynamic Test Facility (CPRTF) at Alta, Italy, under ESA funding for the characterization of the lateral rotordynamic fluid forces acting on high-head axial inducers and centrifugal turbopump impellers for space propulsion applications. The configurations presented here refer to a three-bladed tapered-hub, variable-pitch, inducer (DAPROT3) and a single-stage centrifugal pump (VAMPIRE) with vaneless diffuser and single spiral volute. Both the centrifugal pump and the inducer have been designed by means of reduced order models specifically developed by the author and his collaborators for the geometric definition and performance prediction of this kind of hydraulic turbomachinery. Continuous spectra of the rotordynamic forces acting on the impellers as functions of the whirl frequency have been obtained by means of the novel technique recently developed and demonstrated at Alta. The influence of the rotor whirl motion, flow rate, cavitating conditions, and liquid temperature (thermal cavitation effects) on the rotordynamic fluid forces is illustrated and the observed differences in their behavior in axial inducers and centrifugal turbpumps are discussed and interpreted in the light of the outcome of recent cavitation visualization experiments carried out by the Chemical Propulsion Team at Alta.

  12. An AFM-based methodology for measuring axial and radial error motions of spindles

    International Nuclear Information System (INIS)

    This paper presents a novel atomic force microscopy (AFM)-based methodology for measurement of axial and radial error motions of a high precision spindle. Based on a modified commercial AFM system, the AFM tip is employed as a cutting tool by which nano-grooves are scratched on a flat surface with the rotation of the spindle. By extracting the radial motion data of the spindle from the scratched nano-grooves, the radial error motion of the spindle can be calculated after subtracting the tilting errors from the original measurement data. Through recording the variation of the PZT displacement in the Z direction in AFM tapping mode during the spindle rotation, the axial error motion of the spindle can be obtained. Moreover the effects of the nano-scratching parameters on the scratched grooves, the tilting error removal method for both conditions and the method of data extraction from the scratched groove depth are studied in detail. The axial error motion of 124 nm and the radial error motion of 279 nm of a commercial high precision air bearing spindle are achieved by this novel method, which are comparable with the values provided by the manufacturer, verifying this method. This approach does not need an expensive standard part as in most conventional measurement approaches. Moreover, the axial and radial error motions of the spindle can both be obtained, indicating that this is a potential means of measuring the error motions of the high precision moving parts of ultra-precision machine tools in the future. (paper)

  13. Dynamic stability of parametrically-excited linear resonant beams under periodic axial force

    Institute of Scientific and Technical Information of China (English)

    Li Jing; Fan Shang-Chun; Li Yan; Guo Zhan-She

    2012-01-01

    The parametric dynamic stability of resonant beams with various parameters under periodic axial force is studied.It is assumed that the theoretical formulations are based on Euler Bernoulli beam theory.The governing equationsof motion are derived by using the Rayleigh Ritz method and transformed into Mathieu equations,which are formedto determine the stability criterion and stability regions for parametricallyexcited linear resonant beams.An improved stability criterion is obtained using periodic Lyapunov functions.The boundary points on the stable regions are determined by using a small parameter perturbation method.Numerical results and discussion are presented to highlight the effects of beam length,axial force and damped coefficient on the stability criterion and stability regions.While some stability rules are easy to anticipate,we draw some conclusions: with the increase of damped coefficient,stable regions arise;with the decrease of beam length,the conditions of the damped coefficient arise instead.These conclusions can provide a reference for the robust design of parametricallyexcited linear resonant sensors.

  14. Improved axial position detection in optical tweezers measurements

    DEFF Research Database (Denmark)

    Dreyer, Jakob Kisbye; Berg-Sørensen, Kirstine; Oddershede, Lene

    2004-01-01

    We investigate the axial position detection of a trapped microsphere in an optical trap by using a quadrant photodiode. By replacing the photodiode with a CCD camera, we obtain detailed information on the light scattered by the microsphere. The correlation of the interference pattern with the axial...

  15. A Simple Method for Measuring Tensile Force with Piezoelectric Patch

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-Wen; JIANG Zhong-Wei; Testuya Morisaki

    2007-01-01

    @@ We propose a simple method for monitoring the axial tensile and compressive force in a structure by using a piezoelectric patch with the piezoelectric impedance based measurement. A simple approximate equation for estimating the tensile force in two different conditions, which can be calculated easily if the natural frequencies in two different states are measured, is explained in detail. On another front, the natural frequency can be very easily measured by a piezoelectric element by bonding it on the measuring subject structure, because its electric impedance of piezoelement is related to the structural mechanical impedance. Furthermore, an experiment for measuring a tensile force in a simple supported beam is carried out for validating the proposed method. The results show a good accuracy in estimating the tensile force variation by the natural frequency change measured from the piezoelement.

  16. Fiber optic micro sensor for the measurement of tendon forces

    Science.gov (United States)

    2012-01-01

    A fiber optic sensor developed for the measurement of tendon forces was designed, numerically modeled, fabricated, and experimentally evaluated. The sensor incorporated fiber Bragg gratings and micro-fabricated stainless steel housings. A fiber Bragg grating is an optical device that is spectrally sensitive to axial strain. Stainless steel housings were designed to convert radial forces applied to the housing into axial forces that could be sensed by the fiber Bragg grating. The metal housings were fabricated by several methods including laser micromachining, swaging, and hydroforming. Designs are presented that allow for simultaneous temperature and force measurements as well as for simultaneous resolution of multi-axis forces. The sensor was experimentally evaluated by hydrostatic loading and in vitro testing. A commercial hydraulic burst tester was used to provide uniform pressures on the sensor in order to establish the linearity, repeatability, and accuracy characteristics of the sensor. The in vitro experiments were performed in excised tendon and in a dynamic gait simulator to simulate biological conditions. In both experimental conditions, the sensor was found to be a sensitive and reliable method for acquiring minimally invasive measurements of soft tissue forces. Our results suggest that this sensor will prove useful in a variety of biomechanical measurements. PMID:23033868

  17. Fiber optic micro sensor for the measurement of tendon forces

    Directory of Open Access Journals (Sweden)

    Behrmann Gregory P

    2012-10-01

    Full Text Available Abstract A fiber optic sensor developed for the measurement of tendon forces was designed, numerically modeled, fabricated, and experimentally evaluated. The sensor incorporated fiber Bragg gratings and micro-fabricated stainless steel housings. A fiber Bragg grating is an optical device that is spectrally sensitive to axial strain. Stainless steel housings were designed to convert radial forces applied to the housing into axial forces that could be sensed by the fiber Bragg grating. The metal housings were fabricated by several methods including laser micromachining, swaging, and hydroforming. Designs are presented that allow for simultaneous temperature and force measurements as well as for simultaneous resolution of multi-axis forces. The sensor was experimentally evaluated by hydrostatic loading and in vitro testing. A commercial hydraulic burst tester was used to provide uniform pressures on the sensor in order to establish the linearity, repeatability, and accuracy characteristics of the sensor. The in vitro experiments were performed in excised tendon and in a dynamic gait simulator to simulate biological conditions. In both experimental conditions, the sensor was found to be a sensitive and reliable method for acquiring minimally invasive measurements of soft tissue forces. Our results suggest that this sensor will prove useful in a variety of biomechanical measurements.

  18. Dynamic stability of functionally graded cantilever cylindrical shells under distributed axial follower forces

    Science.gov (United States)

    Torki, Mohammad Ebrahim; Kazemi, Mohammad Taghi; Reddy, Junuthula N.; Haddadpoud, Hassan; Mahmoudkhani, Saeid

    2014-02-01

    In this paper, flutter of functionally graded material (FGM) cylindrical shells under distributed axial follower forces is addressed. The first-order shear deformation theory is used to model the shell, and the material properties are assumed to be graded in the thickness direction according to a power law distribution using the properties of two base material phases. The solution is obtained by using the extended Galerkin's method, which accounts for the natural boundary conditions that are not satisfied by the assumed displacement functions. The effect of changing the concentrated (Beck's) follower force into the uniform (Leipholz's) and linear (Hauger's) distributed follower loads on the critical circumferential mode number and the minimum flutter load is investigated. As expected, the flutter load increases as the follower force changes from the so-called Beck's load into the so-called Leipholz's and Hauger's loadings. The increased flutter load was calculated for homogeneous shell with different mechanical properties, and it was found that the difference in elasticity moduli bears the most significant effect on the flutter load increase in short, thick shells. Also, for an FGM shell, the increase in the flutter load was calculated directly, and it was found that it can be derived from the simple power law when the corresponding increase for the two base phases are known.

  19. 磁力泵轴向力测试方法%Axial Force Test Methods for Magnetic Driving Pump

    Institute of Scientific and Technical Information of China (English)

    左占库

    2015-01-01

    This paper presents a test method of axial force. Special tooling is used to test axial force of the produced magnetic pump, and judge whether the pump should be accepted or adjusted according the test results. The test method can improve controllability of the magnetic shaft axial force, so the working life of magnetic pump is improved.%提出一种磁力泵轴向力的测试方法,通过专用工装,对已生产完成的成品磁力泵进行轴向力测试,并通过测试结果来判断是进行调整还是可以接受,提高了磁力泵轴向力的可控性,从而延长磁力泵运行寿命。

  20. The Definition and Measurement of Axial Psoriatic Arthritis.

    Science.gov (United States)

    Lubrano, Ennio; Parsons, Wendy Joanne; Marchesoni, Antonio; Olivieri, Ignazio; D'Angelo, Salvatore; Cauli, Alberto; Caso, Francesco; Costa, Luisa; Scarpa, Raffaele; Brunese, Luca

    2015-11-01

    This review seeks to update the state of the art of axial psoriatic arthritis (axPsA). The definition and assessment of axPsA can be problematic because no agreement and no definitive data on this topic have been published, resulting in uncertainty as to the best approach to deal with these patients. A few recent scientific reports show new data on the possible coincidence of diffuse idiopathic skeletal hyperostosis and axPsA, as well as on the radiological assessment as measured with the validated instruments for axPsA. Moreover, the role of magnetic resonance imaging has also been evaluated for this intriguing subset. All data confirmed that radiological assessment is a useful tool to detect typical findings of axPsA, while other imaging techniques remain to be validated. Finally, there is no evidence to support treatment of axPsA with traditional disease-modifying antirheumatic drugs, while a "leap" to biologic agents is the only treatment after failure with nonsteroidal antiinflammatory drugs.

  1. Computed tomographic method of axial length measurement of emmetropic Indian eye a new technique

    Directory of Open Access Journals (Sweden)

    Misra Madhumati

    1987-01-01

    Full Text Available This is a study of 50 orbital CT Scans in emmetropic adults in ′the neuro ocular plane. A technique is involved to measure the axial length of the eye using CT Scan. It was also tried in 20 new born infants. The measurements are compared with other techniques of axial length measurement.

  2. Impact of walking speed and slope of the ground on axial force of poles in Nordic walking

    Directory of Open Access Journals (Sweden)

    Martin Pšurný

    2013-09-01

    Full Text Available BACKGROUND: Nordic walking (NW, due to its attractiveness and convenience of equipment, is becoming more popular and utilised in the areas of sports, recreation and physiotherapy. Some of its impacts on load to the body have not yet been sufficiently explored. OBJECTIVE: The objective of the study was to determine the impact of walking speed and slope of the ground on the magnitude of axial forces, transferred to the poles by upper extremities during NW. METHODS: The study was participated in by 17 healthy subjects, aged 25.9 ± 3.6 years, who went through 12 independent measurements on a treadmill in various speeds (6.0; 6.6; 7.2 and 7.8 km • h–1 and slopes (0; 5 and 7.5%. These measurements provided us with values of basic spatiotemporal variables, characterizing NW performance and force variables, acting on the poles. RESULTS: Increased walking speed led to increase in cycle frequency (p < .001 and increase in peak poling force and average poling force (p < .001. Poling time reduced with increasing speed (p < .001. Increase in slope of ground had no significant impact on the magnitude of time and dynamic variables. CONCLUSIONS: Increased walking speed during NW increases the force, generated by the upper extremities on the poles. During NW it is possible to prefer walking speed rather than to change the slope of the ground for those patients, who are indicated to strengthen upper extremities.

  3. Modification of the surface plasmon enhanced optical forces on metal nanorod pairs by axial rotation and by dielectric intralayer

    OpenAIRE

    Yalçın, Aybike Ural; Müstecaplıoğlu, Özgür E.; Güven, Kaan

    2014-01-01

    Modification of the surface plasmon enhanced optical forces on metal nanorod pairs by axial rotation and by dielectric intralayer Aybike Ural Yalc¸ın, O¨ zgu¨r E. Mu¨stecaplıog˘lu and Kaan Gu¨ven Department of Physics, Ko¸c University, Sarıyer, Istanbul, Turkey, 34450 Abstract We investigate numerically the e ect of axial rotation and the presence of a dielectric intralayer on the spectral behavior of the optical force on a gold nanorod pair. The frequency spectrum of the...

  4. Interfacial forces between silica surfaces measured by atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    DUAN Jinming

    2009-01-01

    Colloidal particle stability and some other interfacial phenomena are governed by interfacial force interactions. The two well known forces are van der Waals force and electrostatic force, as documented by the classical Derjaguin, Landau, Verwey and Overbeek (DLVO) theory. Moreover, advances in modern instrumentation and colloid science suggested that some short-ranged forces or structure forces are important for relevant colloidal systems. The interfacial and/or molecular forces can be measured as a resultant force as function of separation distance by atomic force microscopy (AFM) colloid probe. This article presents a discussion on AFM colloid probe measurement of silica particle and silica wafer surfaces in solutions with some technical notifications in measurement and data convolution mechanisms. The measured forces are then analyzed and discussed based on the 'constant charge' and 'constant potential' models of DLVO theory. The difference between the prediction of DLVO theory and the measured results indicates that there is a strong short-range structure force between the two hydrophilic surfaces, even at extremely low ionic concentration, such as Milli-Q water purity solution.

  5. Fracture strength, failure type and Weibull characteristics of lithium disilicate and multiphase resin composite endocrowns under axial and lateral forces

    NARCIS (Netherlands)

    Gresnigt, Marco M M; Özcan, Mutlu; van den Houten, Mieke L A; Schipper, Laura; Cune, Marco S

    2016-01-01

    OBJECTIVE: Multiphase resin composite materials have been advocated as an alternative to reinforced ceramics but limited information is available to date on their stability. This in vitro study evaluated the effect of axial and lateral forces on the strength of endocrowns made of Li2Si2O5 and multip

  6. A Numerical Analysis of the Forced Convection Condensation of Saturated Vapor Flowing Axially Outside a Horizontal Tube

    Institute of Scientific and Technical Information of China (English)

    WeizhongLi; WeichengWang; 等

    1995-01-01

    Physical and mathematical models are developed to describe the forced convection condensation heat transfer of saturated vapor flowing axially outside a horizontal tube.The numerical solution of the models indicates the effects of vapor velocity on the liquid film thickness.The result verifies the enhancement of condensation heat transfer caused by such flow.

  7. Multi-axial load application and DIC measurement of advanced composite beam deformation behavior

    Directory of Open Access Journals (Sweden)

    Berggreen C.

    2010-06-01

    Full Text Available For the validation of a new beam element formulation, a wide set of experimental data consisting of deformation patterns obtained for a number of specially designed composite beam elements, have been obtained. The composite materials applied in the beams consist of glass-fiber reinforced plastic with specially designed layup configurations promoting advanced coupling behavior. Furthermore, the beams are designed with different cross-section shapes. The data obtained from the experiments are also used in order to improve the general understanding related to practical implementation of mechanisms of elastic couplings due to anisotropic properties of composite materials. The knowledge gained from these experiments is therefore essential in order to facilitate an implementation of passive control in future large wind turbine blades. A test setup based on a four-column MTS servo-hydraulic testing machine with a maximum capacity of 100 kN was developed, see Figure 1. The setup allows installing and testing beams of different cross-sections applying load cases such as axial extension, shear force bending, pure bending in two principal directions as well as pure torsion, see Figure 2. In order to apply multi-axial loading, a load application system consisting of three hydraulic actuators were mounted in two planes using multi-axial servo-hydraulic control. The actuator setup consists of the main actuator on the servo-hydraulic test machine working in the vertical axis (depicted on Figure 1 placed at the testing machine crosshead and used for application of vertical forces to the specimens. Two extra actuators are placed in a horizontal plane on the T-slot table of the test machine in different positions in order to apply loading at the tip of the specimen in various configurations. In order to precisely characterize the global as well as surface deformations of the beam specimens tested, a combination of different measurement systems were used during

  8. Characterization of the tensile properties of friction stir welded aluminum alloy joints based on axial force, traverse speed, and rotational speed

    Science.gov (United States)

    Panda, Biranchi; Garg, A.; Jian, Zhang; Heidarzadeh, Akbar; Gao, Liang

    2016-06-01

    Friction stir welding (FSW) process has gained attention in recent years because of its advantages over the conventional fusion welding process. These advantages include the absence of heat formation in the affected zone and the absence of large distortion, porosity, oxidation, and cracking. Experimental investigations are necessary to understand the physical behavior that causes the high tensile strength of welded joints of different metals and alloys. Existing literature indicates that tensile properties exhibit strong dependence on the rotational speed, traverse speed, and axial force of the tool that was used. Therefore, this study introduces the experimental procedure for measuring tensile properties, namely, ultimate tensile strength (UTS) and tensile elongation of the welded AA 7020 Al alloy. Experimental findings suggest that a welded part with high UTS can be achieved at a lower heat input compared with the high heat input condition. A numerical approach based on genetic programming is employed to produce the functional relationships between tensile properties and the three inputs (rotational speed, traverse speed, and axial force) of the FSW process. The formulated models were validated based on the experimental data, using the statistical metrics. The effect of the three inputs on the tensile properties was investigated using 2D and 3D analyses. A high UTS was achieved, including a rotational speed of 1050 r/min and traverse speed of 95 mm/min. The results also indicate that 8 kN axial force should be set prior to the FSW process.

  9. Characterization of the tensile properties of friction stir welded aluminum alloy joints based on axial force, traverse speed, and rotational speed

    Science.gov (United States)

    Panda, Biranchi; Garg, A.; Jian, Zhang; Heidarzadeh, Akbar; Gao, Liang

    2016-09-01

    Friction stir welding (FSW) process has gained attention in recent years because of its advantages over the conventional fusion welding process. These advantages include the absence of heat formation in the affected zone and the absence of large distortion, porosity, oxidation, and cracking. Experimental investigations are necessary to understand the physical behavior that causes the high tensile strength of welded joints of different metals and alloys. Existing literature indicates that tensile properties exhibit strong dependence on the rotational speed, traverse speed, and axial force of the tool that was used. Therefore, this study introduces the experimental procedure for measuring tensile properties, namely, ultimate tensile strength (UTS) and tensile elongation of the welded AA 7020 Al alloy. Experimental findings suggest that a welded part with high UTS can be achieved at a lower heat input compared with the high heat input condition. A numerical approach based on genetic programming is employed to produce the functional relationships between tensile properties and the three inputs (rotational speed, traverse speed, and axial force) of the FSW process. The formulated models were validated based on the experimental data, using the statistical metrics. The effect of the three inputs on the tensile properties was investigated using 2D and 3D analyses. A high UTS was achieved, including a rotational speed of 1050 r/min and traverse speed of 95 mm/min. The results also indicate that 8 kN axial force should be set prior to the FSW process.

  10. Axial and transverse acoustic radiation forces on a fluid sphere placed arbitrarily in Bessel beam standing wave tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F.G., E-mail: mitri@chevron.com

    2014-03-15

    The axial and transverse radiation forces on a fluid sphere placed arbitrarily in the acoustical field of Bessel beams of standing waves are evaluated. The three-dimensional components of the time-averaged force are expressed in terms of the beam-shape coefficients of the incident field and the scattering coefficients of the fluid sphere using a partial-wave expansion (PWE) method. Examples are chosen for which the standing wave field is composed of either a zero-order (non-vortex) Bessel beam, or a first-order Bessel vortex beam. It is shown here, that both transverse and axial forces can push or pull the fluid sphere to an equilibrium position depending on the chosen size parameter ka (where k is the wave-number and a the sphere’s radius). The corresponding results are of particular importance in biophysical applications for the design of lab-on-chip devices operating with Bessel beams standing wave tweezers. Moreover, potential investigations in acoustic levitation and related applications in particle rotation in a vortex beam may benefit from the results of this study. -- Highlights: •The axial and transverse forces on a fluid sphere in acoustical Bessel beams tweezers are evaluated. •The attraction or repulsion to an equilibrium position in the standing wave field is examined. •Potential applications are in particle manipulation using standing waves.

  11. Metrological characterization of a 2 kN · m torque standard machine for superposition with axial forces up to 1 MN

    Science.gov (United States)

    Baumgarten, Sebastian; Kahmann, H.; Röske, D.

    2016-10-01

    A torque-generating measuring device in the 1 MN force standard machine of Physikalisch-Technische Bundesanstalt allows combined load conditions to be generated. Superposition is possible in measuring ranges from 20 kN to 1 MN for axial load and from 20 N · m to 2 kN · m for torque. The measurement facility is unique in the world and offers the opportunity to characterize multi-component sensors specifically with regard to their signal crosstalk. The expanded relative measurement uncertainty (k  =  2) of the axial force is 2 · 10‑5. In the following, the technical details of the torque measuring device and the metrological characterization from the modelling to the measurement uncertainty budget will be described. The model provides an expanded relative measurement uncertainty (k  =  2)  <  3.9 · 10‑4. The results of comparison measurements will be discussed.

  12. Measuring Forces between Oxide Surfaces Using the Atomic Force Microscope

    DEFF Research Database (Denmark)

    Pedersen, Henrik Guldberg; Høj, Jakob Weiland

    1996-01-01

    The interactions between colloidal particles play a major role in processing of ceramics, especially in casting processes. With the Atomic Force Microscope (AFM) it is possible to measure the inter-action force between a small oxide particle (a few micron) and a surface as function of surface...

  13. Dynamic Force Measurement with Strain Gauges

    Science.gov (United States)

    Lee, Bruce E.

    1974-01-01

    Discusses the use of four strain gauges, a Wheatstone bridge, and an oscilloscope to measure forces dynamically. Included is an example of determining the centripetal force of a pendulum in a general physics laboratory. (CC)

  14. STUDY OF STATIC AND DYNAMIC STABILITY OF THIN-WALLED BARS EXCITED BY PERIODICAL AXIAL EXTERNAL FORCES.

    Directory of Open Access Journals (Sweden)

    Minodora Maria PASĂRE

    2010-10-01

    Full Text Available In these paper, starting from the relations for the displacements and spinning the transversal section of a bar with thin walls of sections opened expressed by the corresponding influence functions and introducing the components of the exterior forces distributed and the moments of the exterior forces distributed due to the inertia forces, the exciting axial forces together with the following effect of these and of the reaction forces of the elastic environment for leaning it may reach to the system of the equations of parametric vibrations under the form of three integral equation These equations may serve for the study of vibrations of the bars, to study the static stability and to study the dynamic stability

  15. Development of a Tri-Axial Cutting Force Sensor for the Milling Process

    Science.gov (United States)

    Li, Yingxue; Zhao, Yulong; Fei, Jiyou; Zhao, You; Li, Xiuyuan; Gao, Yunxiang

    2016-01-01

    This paper presents a three-component fixed dynamometer based on a strain gauge, which reduces output errors produced by the cutting force imposed on different milling positions of the workpiece. A reformative structure of tri-layer cross beams is proposed, sensitive areas were selected, and corresponding measuring circuits were arranged to decrease the inaccuracy brought about by positional variation. To simulate the situation with a milling cutter moving on the workpiece and validate the function of reducing the output errors when the milling position changes, both static calibration and dynamic milling tests were implemented on different parts of the workpiece. Static experiment results indicate that with standard loads imposed, the maximal deviation between the measured forces and the standard inputs is 4.87%. The results of the dynamic milling test illustrate that with identical machining parameters, the differences in output variation between the developed sensor and standard dynamometer are no larger than 6.61%. Both static and dynamic experimental results demonstrate that the developed dynamometer is suitable for measuring milling force imposed on different positions of the workpiece, which shows potential applicability in machining a monitoring system. PMID:27007374

  16. Development of a Tri-Axial Cutting Force Sensor for the Milling Process

    Directory of Open Access Journals (Sweden)

    Yingxue Li

    2016-03-01

    Full Text Available This paper presents a three-component fixed dynamometer based on a strain gauge, which reduces output errors produced by the cutting force imposed on different milling positions of the workpiece. A reformative structure of tri-layer cross beams is proposed, sensitive areas were selected, and corresponding measuring circuits were arranged to decrease the inaccuracy brought about by positional variation. To simulate the situation with a milling cutter moving on the workpiece and validate the function of reducing the output errors when the milling position changes, both static calibration and dynamic milling tests were implemented on different parts of the workpiece. Static experiment results indicate that with standard loads imposed, the maximal deviation between the measured forces and the standard inputs is 4.87%. The results of the dynamic milling test illustrate that with identical machining parameters, the differences in output variation between the developed sensor and standard dynamometer are no larger than 6.61%. Both static and dynamic experimental results demonstrate that the developed dynamometer is suitable for measuring milling force imposed on different positions of the workpiece, which shows potential applicability in machining a monitoring system.

  17. Thin film sensors for measuring small forces

    OpenAIRE

    F. Schmaljohann; Hagedorn, D.; LÖffler, F.

    2015-01-01

    Especially in the case of measuring small forces, the use of conventional foil strain gauges is limited. The measurement uncertainty rises by force shunts and is due to the polymer foils used, as they are susceptible to moisture. Strain gauges in thin film technology present a potential solution to overcome these effects because of their direct and atomic contact with the measuring body, omitting an adhesive layer and the polymer foil. For force measurements up to 1 N, a...

  18. The effect of axial force and contact angle on the welded area of plastic tube welded by ultrasonic welding

    Science.gov (United States)

    Thinvongpituk, C.; Bootwong, A.; Watanabe, Y.

    2010-03-01

    This study was aimed to apply the use of ultrasonic welding to weld round plastic tubes. The ultrasonic welding machine was designed to be able to work with a normal ultrasonic welding transducer by rotating the tube while it is being welded. The specimens used in this study were round plastic tubes (PMMA) with diameter of 35 mm and 2 mm thickness. End of each tube was machined to have angle of 2.8, 3.8 and 5.7 degree in order to create contact angle at the interface. The specimens were welded with frequency of 28 kHz and tube rotational speeds of 25 rpm, 45 rpm and 100 rpm. The axial force was applied to the tube in order to enhance the quality of joint. The experimental result revealed that the modified ultrasonic welding machine can generate the welded area around the circumference of tube. It was found that the axial force and contact angle have some effect to the quality of joint. The contact angle of 2.8/2.8 provided highest welded area compared to 3.8/3.8 and 5.7/5.7 degree of contact angle. In addition, the axial force between 80 N - 120 N provided high value of welded area. The pattern of welded area is also presented and discussed in the paper.

  19. Biomolecular Interactions Measured by Atomic Force Microscopy

    NARCIS (Netherlands)

    Willemsen, Oscar H.; Snel, Margot M.E.; Cambi, Alessandra; Greve, Jan; Grooth, de Bart G.; Figdor, Carl G.

    2000-01-01

    Atomic force microscopy (AFM) is nowadays frequently applied to determine interaction forces between biological molecules. Starting with the detection of the first discrete unbinding forces between ligands and receptors by AFM only several years ago, measurements have become more and more quantitati

  20. Research on axial force test of large diameter piles%大直径灌注桩桩身轴力试验研究

    Institute of Scientific and Technical Information of China (English)

    袁海超; 唐立刚; 张向辉

    2013-01-01

    结合单桩载荷试验,通过在桩身中分层、均匀埋设钢筋计,将试桩沿深度分成多个截面,推算桩身不同深度的轴力大小,并测量桩在各级荷载作用下的桩顶沉降,详细分析了单桩的Q-S曲线特征、桩身轴力的分布规律等.结果表明,在竖向荷载作用下,桩身轴力沿桩的深度逐渐衰减,随着荷载等级的加大,轴力沿桩身衰减的速率也在加大,且桩的深度越深变化速率也就越大.%Based on the test of the single pile load,axial force from different depth can be measured in the way which dividing the depth of the pile into several sections by stratifying the pile and burying reinforcement meter into it evenly.Settlement of the top of pile under various levels load is also measured in the same way.Under the vertical load,Q-S curve characteristics of the single pile as well as distribution of the axial force are precisely analyzed in this article.Pile axial force along the pile gradually decays with the increase of the load level; the rate of the decay is getting bigger at the same time.It changes severely with the change of the depth of the pile.

  1. Research on the effect of wear-ring clearances to the axial and radial force of a centrifugal pump

    Science.gov (United States)

    Zhao, W. G.; Y He, M.; Qi, C. X.; Li, Y. B.

    2013-12-01

    Varying of the wear-ring clearance not only has a distinct effect on the volumetric loss of the centrifugal pump, but also on the performance of the centrifugal pump including the axial and radial forces. Comparing with the experimental studies, numerical simulation methods have some special advantages, such as the low cost, fast and high efficiency, and convenient to get the detailed structure of the internal flow characteristics, so it has been widely used in the fluid machinery study in recent years. In order to study the effect of wear-ring clearance on the force performance of the centrifugal pump, based on the Reynolds Time-Averaged N-S equations and RNG k-ε turbulence model, a centrifugal pump with three variable styles of the wear-rings was simulated: Only the clearance of the front wear-ring was changed, only the clearance of the back wear-ring was changed and both were changed. Comparing with the experiment, numerical results show a good agreement. In the three changing styles of the clearance, the variable of the clearance of front wear-ring has the most influence on the axial force of the centrifugal pump, while has tiny effect on the radial force for all the conditions.

  2. Dynamic Stability of a Cylindrical Shell Reinforced by Longitudinal Ribs and a Hollow Cylinder Under the Action of Axial Forces

    Science.gov (United States)

    Bakulin, V. N.; Volkov, E. N.; Nedbai, A. Ya.

    2016-05-01

    The dynamic stability of a cylindrical orthotropic shell reinforced by longitudinal ribs and a hollow cylinder under the action of axial forces changing harmonically with time was investigated with regard for the axial contact interaction of the shell with the ribs. A solution of the differential equations defining this process has been obtained in the form of trigonometric series in the angular and time coordinates. A two-term approximation of the Mathieu-Hill equations of motion was used for construction of the main region of instability of the shell. As a result, the problem was reduced to a system of algebraic equations for components of displacements of the shell at the locations of the ribs. The problem for uniformly spaced ribs was solved in the explicit form. A numerical example of this solution is presented.

  3. Ambulatory Measurement of Ground Reaction Forces

    NARCIS (Netherlands)

    Veltink, Peter H.; Liedtke, Christian; Droog, Ed

    2004-01-01

    The measurement of ground reaction forces is important in the biomechanical analysis of gait and other motor activities. It is the purpose of this study to show the feasibility of ambulatory measurement of ground reaction forces using two six degrees of freedom sensors mounted under the shoe. One se

  4. Constraining Anomalous Forces with Pseudoscalar and Axial Couplings Employing a Spin-Independent Analysis

    CERN Document Server

    Aldaihan, S; Krause, D E; Long, J C; Fischbach, E

    2016-01-01

    Present laboratory limits on the coupling strength of anomalous pseudoscalar and axial interactions are many orders of magnitude weaker than their scalar and vector analogs. Here we investigate two mechanisms which can circumvent this suppression and thereby lead to improved limits.

  5. Free and Forced Vibrations of an Axially-Loaded Timoshenko Multi-Span Beam Carrying a Number of Various Concentrated Elements

    OpenAIRE

    Yusuf Yesilce

    2012-01-01

    In the existing reports regarding free and forced vibrations of the beams, most of them studied a uniform beam carrying various concentrated elements using Bernoulli-Euler Beam Theory (BET) but without axial force. The purpose of this paper is to utilize the numerical assembly technique to determine the exact frequency-response amplitudes of the axially-loaded Timoshenko multi-span beam carrying a number of various concentrated elements (including point masses, rotary inertias, linear springs...

  6. Axial and transverse acoustic radiation forces on a fluid sphere placed arbitrarily in Bessel beam standing wave tweezers

    Science.gov (United States)

    Mitri, F. G.

    2014-03-01

    The axial and transverse radiation forces on a fluid sphere placed arbitrarily in the acoustical field of Bessel beams of standing waves are evaluated. The three-dimensional components of the time-averaged force are expressed in terms of the beam-shape coefficients of the incident field and the scattering coefficients of the fluid sphere using a partial-wave expansion (PWE) method. Examples are chosen for which the standing wave field is composed of either a zero-order (non-vortex) Bessel beam, or a first-order Bessel vortex beam. It is shown here, that both transverse and axial forces can push or pull the fluid sphere to an equilibrium position depending on the chosen size parameter ka (where k is the wave-number and a the sphere's radius). The corresponding results are of particular importance in biophysical applications for the design of lab-on-chip devices operating with Bessel beams standing wave tweezers. Moreover, potential investigations in acoustic levitation and related applications in particle rotation in a vortex beam may benefit from the results of this study.

  7. Micro-/nanosized cantilever beams and mass sensors under applied axial tensile/compressive force vibrating in vacuum and viscous fluid

    Energy Technology Data Exchange (ETDEWEB)

    Stachiv, Ivo, E-mail: stachiv@fzu.cz [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan (China); Institute of Physics, Czech Academy of Sciences, Prague (Czech Republic); Fang, Te-Hua; Chen, Tao-Hsing [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan (China)

    2015-11-15

    Vibrating micro-/nanosized cantilever beams under an applied axial force are the key components of various devices used in nanotechnology. In this study, we perform a complete theoretical investigation of the cantilever beams under an arbitrary value of the axial force vibrating in a specific environment such as vacuum, air or viscous fluid. Based on the results easy accessible expressions enabling one the fast and highly accurate estimations of changes in the Q-factor and resonant frequencies of beam oscillating in viscous fluid caused by the applied axial force are derived and analyzed. It has been also shown that for beam-to-string and string vibrational regimes the mode shape starts to significantly deviate from the one known for a beam without axial force. Moreover, a linear dependency of the vibrational amplitude in resonance on the dimensionless tension parameter has been found. We revealed that only a large axial force, i.e. the string vibrational regime, significantly improves the Q-factor of beams submerged in fluid, while an increase of the axial force in beam and beam-to-string transition regimes has a negligibly small impact on the Q-factor enhancement. Experiments carried out on the carbon nanotubes and nanowires are in a good agreement with present theoretical predictions.

  8. Micro-/nanosized cantilever beams and mass sensors under applied axial tensile/compressive force vibrating in vacuum and viscous fluid

    International Nuclear Information System (INIS)

    Vibrating micro-/nanosized cantilever beams under an applied axial force are the key components of various devices used in nanotechnology. In this study, we perform a complete theoretical investigation of the cantilever beams under an arbitrary value of the axial force vibrating in a specific environment such as vacuum, air or viscous fluid. Based on the results easy accessible expressions enabling one the fast and highly accurate estimations of changes in the Q-factor and resonant frequencies of beam oscillating in viscous fluid caused by the applied axial force are derived and analyzed. It has been also shown that for beam-to-string and string vibrational regimes the mode shape starts to significantly deviate from the one known for a beam without axial force. Moreover, a linear dependency of the vibrational amplitude in resonance on the dimensionless tension parameter has been found. We revealed that only a large axial force, i.e. the string vibrational regime, significantly improves the Q-factor of beams submerged in fluid, while an increase of the axial force in beam and beam-to-string transition regimes has a negligibly small impact on the Q-factor enhancement. Experiments carried out on the carbon nanotubes and nanowires are in a good agreement with present theoretical predictions

  9. Numerical research on the effects of impeller pump-out vanes on axial force in a solid-liquid screw centrifugal pump

    International Nuclear Information System (INIS)

    A commercial CFD code has been used to predict the performance of a screw centrifugal pump with pump-out vanes, especially when changing regularity of impeller axial force based on the solid-liquid two-phase flow. The Unsteady Reynolds Averaged Navier-Stokes (URANS) approach has been applied to solve the unsteady, incompressible, three-dimensional turbulent. The SIMPLEC algorithm, standard wall functions and mix two-phase flow model were applied. The RNG k ε-model was used to account the turbulence effects. By changing the number of impeller pump-out vanes and width, six different screw centrifugal pump numerical simulation projects were given, and each scheme in the different solid volume fraction were calculated respectively. The change rules of axial force, velocity and pressure distribution of flow field were obtained on the different condition and different volume fraction. The results showed that the axial forces values based solid-fluid two-phase greater than based single-phase clear water, but both changing regularity of the axial force were consistent; as same condition, the same solid-phase volume concentration, with the increase of pump-out vanes number or width, the impeller axial force increased as well. Meanwhile the number of the pump-out vanes and the width of pump-out vanes in balancing the impeller axial force, there are the most optimal value

  10. Numerical research on the effects of impeller pump-out vanes on axial force in a solid-liquid screw centrifugal pump

    Science.gov (United States)

    Cheng, X. R.; Li, R. N.; Gao, Y.; Guo, W. L.

    2013-12-01

    A commercial CFD code has been used to predict the performance of a screw centrifugal pump with pump-out vanes, especially when changing regularity of impeller axial force based on the solid-liquid two-phase flow. The Unsteady Reynolds Averaged Navier-Stokes (URANS) approach has been applied to solve the unsteady, incompressible, three-dimensional turbulent. The SIMPLEC algorithm, standard wall functions and mix two-phase flow model were applied. The RNG k ε-model was used to account the turbulence effects. By changing the number of impeller pump-out vanes and width, six different screw centrifugal pump numerical simulation projects were given, and each scheme in the different solid volume fraction were calculated respectively. The change rules of axial force, velocity and pressure distribution of flow field were obtained on the different condition and different volume fraction. The results showed that the axial forces values based solid-fluid two-phase greater than based single-phase clear water, but both changing regularity of the axial force were consistent; as same condition, the same solid-phase volume concentration, with the increase of pump-out vanes number or width, the impeller axial force increased as well. Meanwhile the number of the pump-out vanes and the width of pump-out vanes in balancing the impeller axial force, there are the most optimal value.

  11. Nonlinear Models for Transverse Forced Vibration of Axially Moving Viscoelastic Beams

    Directory of Open Access Journals (Sweden)

    Hu Ding

    2011-01-01

    Full Text Available Nonlinear models of transverse vibration of axially moving viscoelastic beams subjected external transverse loads via steady-state periodical response are numerically investigated. An integro-partial-differential equation and a partial-differential equation of transverse motion can be derived respectively from a model of the coupled planar vibration for an axially moving beam. The finite difference scheme is developed to calculate steady-state response for the model of coupled planar and the two models of transverse motion under the simple support boundary. Numerical results indicate that the amplitude of the steady-state response for the model of coupled vibration and two models of transverse vibration predict qualitatively the same tendencies with the changing parameters and the integro-partial-differential equation gives results more closely to the coupled planar vibration.

  12. Approximate and numerical analysis of nonlinear forced vibration of axially moving viscoelastic beams

    Institute of Scientific and Technical Information of China (English)

    Hu Ding; Li-Qun Chen

    2011-01-01

    Steady-state periodical response is investigated for an axially moving viscoelastic beam with hybrid supports via approximate analysis with numerical confirmation.It is assumed that the excitation is spatially uniform and temporally harmonic. The transverse motion of axially moving beams is governed by a nonlinear partial-differential equation and a nonlinear integro-partial-differential equation. The material time derivative is used in the viscoelastic constitutive relation. The method of multiple scales is applied to the governing equations to investigate primary resonances under general boundary conditions. It is demonstrated that the mode uninvolved in the resonance has no effect on the steady-state response. Numerical examples are presented to demonstrate the effects of the boundary constraint stiffness on the amplitude and the stability of the steady-state response. The results derived for two governing equations are qualitatively the same, but quantitatively different. The differential quadrature schemes are developed to verify those results via the method of multiple scales.

  13. Casimir force measurements from silicon carbide surfaces

    NARCIS (Netherlands)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.

    2016-01-01

    Using an atomic force microscope we performed measurements of the Casimir force between a gold-coated (Au) microsphere and doped silicon carbide (SiC) samples. The last of these is a promising material for devices operating under severe environments. The roughness of the interacting surfaces was mea

  14. Effective flexural stiffness of slender reinforced concrete columns under axial forces and biaxial bending

    OpenAIRE

    Bonet Senach, José Luís; Romero, Manuel L.; Miguel Sosa, Pedro

    2011-01-01

    Most of the design codes (ACI-318-2008 and Euro Code-2-2004) propose the moment magnifier method in order to take into account the second order effect to design slender reinforced concrete columns. The accuracy of this method depends on the effective flexural stiffness of the column. This paper proposes a new equation to obtain the effective stiffness EI of slender reinforced concrete columns. The expression is valid for any shape of cross-section, subjected to combined axial loads and biaxia...

  15. Strength and signature of force networks in axially compacted sphere and non-sphere granular media: micromechanical investigations

    International Nuclear Information System (INIS)

    Compaction characteristics of granular materials subjected to axial loading are investigated for both sphere and non-sphere granular assemblies. The computational study is based on the discrete element method (DEM). The compressive stress-strain relation obtained from three-dimensional DEM simulations is compared with that of an idealized two-dimensional plane-strain compression test and physical experiments using a bronze sphere assembly. We observed good agreement between the experimental and three-dimensional DEM simulation results, while two-dimensional simulations significantly underestimate the stiffness of particulate bed, particularly at large strains. This demonstrates that two-dimensional analysis is generally inadequate to model the compaction characteristics of granular systems. We performed a detailed analysis on the force-transmission characteristics of granular materials at microscopic level and present a connection between the directional orientation of force-networks and the invariants of the macroscopic stress tensor: the non-sphere systems were able to build up a strongly anisotropic network of heavily loaded contacts. Several complex phenomena, both geometric and kinematic, that are operative in sphere and non-sphere assemblies due to inter-particle interactions during compression are presented here. It is often assumed that the ratio of invariants of the stress tensor is uniform and constant in uni-axial compression tests. Our results show that the ratio of invariants of the stress tensor is non-uniform and non-constant even when the granular assemblies are subjected to the so-called uni-axial compressive loading, which is in agreement with other recent studies (e.g. Gu et al 2001 Int. J. Plasticity 17 147) performed using the finite element method. The non-homogeneous characteristics that are reported at the particulate scale need to be accounted in considering possible continuum models for the granular systems

  16. Correlation Force Spectroscopy for Single Molecule Measurements

    OpenAIRE

    Radiom, Milad

    2014-01-01

    This thesis addresses development of a new force spectroscopy tool, correlation force spectroscopy (CFS), for the measurement of the mechanical properties of very small volumes of material (molecular to �[BULLET]m3) at kHz-MHz time-scales. CFS is based on atomic force microscopy (AFM) and the principles of CFS resemble those of dual-trap optical tweezers. CFS consists of two closely-spaced micro-cantilevers that undergo thermal fluctuations. Measurement of the correlation in thermal fluctu...

  17. LDA measurements on the turbulent flow characteristics of a small-sized axial fan

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jang Kweon [Kunsan National Univ., Kunsan (Korea, Republic of)

    2001-07-01

    The operating point of a small-sized axial fan for refrigerator is strongly dependent upon the system resistance. Therefore, the turbulent flow characteristics around a small-sized axial fan may change significantly according to the operating point. This study represents three-dimensional turbulent flow characteristics around a small-sized axial fan measured at the four operating points such as {phi}=0.1, 0.18, 0.25 and 0.32 by using fiber-optic type LDA system. This LDA system is composed of a 5 W Argon-ion laser, two optics in back-scatter mode, three BSA's, a PC, and a three-dimensional automatic traversing system. A kind of paraffin fluid is utilized for supplying particles by means of fog generator. Mean velocity profiles downstream of a small--sized axial fan along the radial distance show that both the streamwise and the tangential components exist predominantly in downstream except {phi}=0.1 and have a maximum value at the radial distance ratio of about 0.8, but the radial component, which its velocity is relatively small, is acting role that only turns flow direction to the outside or the central part of axial fan. Moreover, all of the velocity components downstream at {phi}=0.1 show much smaller than those upstream due to the static pressure rise at the low-flowrate region.

  18. Average incore axial power distribution measurement by a multi excore detector

    International Nuclear Information System (INIS)

    French 1300 MWe reactors Protection System against DNB and excessive linear power is based on the average incore axial power distribution continuous measurement by multi-excore detectors. This paper describes the main results obtained during the first power escalation of PALUEL Unit 1 and 2, first units of 1300 MWe reactors and shows some INCORE/EXCORE power distribution comparisons. (author)

  19. Axial offset as measure of stability of light water nuclear reactor during capacity maneuvering

    Directory of Open Access Journals (Sweden)

    Mark V. Nikolsky

    2015-03-01

    Full Text Available High reliability and security of power unit are required during operation of power unit while maneuvering. They depend on the stability of reactor when transition from one power level to another. The axial offset is a quantitative measure of the reactor stability. It is shown that change of the active core inlet coolant temperature yields an uncontrollable disturbance affecting the axial offset and therefore the reactor stability. To insure the reactor stability the compromise-combined power control method is proposed. Analysis of the influence of temperature of coolant at the magnitude of the axial offset for different regulatory programs is carried out. The change in the depth of immersion of regulators in the active zone for different regulatory programs when the reactor plant daily capacity maneuver is studied.

  20. Measurement of tool forces in diamond turning

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, J.; Dow, T.A.

    1988-12-01

    A dynamometer has been designed and built to measure forces in diamond turning. The design includes a 3-component, piezoelectric transducer. Initial experiments with this dynamometer system included verification of its predicted dynamic characteristics as well as a detailed study of cutting parameters. Many cutting experiments have been conducted on OFHC Copper and 6061-T6 Aluminum. Tests have involved investigation of velocity effects, and the effects of depth and feedrate on tool forces. Velocity has been determined to have negligible effects between 4 and 21 m/s. Forces generally increase with increasing depth of cut. Increasing feedrate does not necessarily lead to higher forces. Results suggest that a simple model may not be sufficient to describe the forces produced in the diamond turning process.

  1. Exact dynamic stiffness matrix of non-symmetric thin-walled curved beams subjected to initial axial force

    Science.gov (United States)

    Nam-Il, Kim; Moon-Young, Kim

    2005-06-01

    An improved numerical method to exactly evaluate the dynamic element stiffness matrix is proposed for the spatially coupled free vibration analysis of non-symmetric thin-walled curved beams subjected to uniform axial force. For this purpose, firstly equations of motion, boundary conditions and force-deformation relations are rigorously derived from the total potential energy for a curved beam element. Next systems of linear algebraic equations with non-symmetric matrices are constructed by introducing 14 displacement parameters and transforming the fourth-order simultaneous differential equations into the first-order simultaneous equations. And then explicit expressions for displacement parameters are numerically evaluated via eigensolutions and the exact 14×14 element stiffness matrix is determined using force-deformation relations. In order to demonstrate the validity and the accuracy of this study, the spatially coupled natural frequencies of non-symmetric thin-walled curved beams subjected to uniform compressive and tensile forces are evaluated and compared with analytical and finite element solutions using Hermitian curved beam elements or ABAQUS's shell element. In addition, some results by the parametric study are reported.

  2. Casimir force measurements from silicon carbide surfaces

    Science.gov (United States)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.

    2016-02-01

    Using an atomic force microscope we performed measurements of the Casimir force between a gold- coated (Au) microsphere and doped silicon carbide (SiC) samples. The last of these is a promising material for devices operating under severe environments. The roughness of the interacting surfaces was measured to obtain information for the minimum separation distance upon contact. Ellipsometry data for both systems were used to extract optical properties needed for the calculation of the Casimir force via the Lifshitz theory and for comparison to the experiment. Special attention is devoted to the separation of the electrostatic contribution to the measured total force. Our measurements demonstrate large contact potential V0(≈0.67 V ) , and a relatively small density of charges trapped in SiC. Knowledge of both Casimir and electrostatic forces between interacting materials is not only important from the fundamental point of view, but also for device applications involving actuating components at separations of less than 200 nm where surface forces play dominant role.

  3. Magnetic Field, Force, and Inductance Computations for an Axially Symmetric Solenoid

    Science.gov (United States)

    Lane, John E.; Youngquist, Robert C.; Immer, Christopher D.; Simpson, James C.

    2001-01-01

    The pumping of liquid oxygen (LOX) by magnetic fields (B field), using an array of electromagnets, is a current topic of research and development at Kennedy Space Center, FL. Oxygen is paramagnetic so that LOX, like a ferrofluid, can be forced in the direction of a B field gradient. It is well known that liquid oxygen has a sufficient magnetic susceptibility that a strong magnetic gradient can lift it in the earth's gravitational field. It has been proposed that this phenomenon can be utilized in transporting (i.e., pumping) LOX not only on earth, but on Mars and in the weightlessness of space. In order to design and evaluate such a magnetic pumping system, it is essential to compute the magnetic and force fields, as well as inductance, of various types of electromagnets (solenoids). In this application, it is assumed that the solenoids are air wrapped, and that the current is essentially time independent.

  4. Knitting Force Measurement on Flat Knitting Machines

    Directory of Open Access Journals (Sweden)

    A. Fouda

    2014-01-01

    Full Text Available Knittability can be defined as the ability of yarns to run on knitting machines without problems. Knittability can be achieved when less stress is applied on the knitting machine parts by the knitting yarns. This paper presents a novel measuring system for the knitting force needed to perform knitting yarns on flat knitting machine based on data acquisition system (DAS. The proposed system is used to measure the knitting force at different machine settings and different properties of the knitting yarns to determine the optimal production conditions. For this reason, three types of knitted fabric structures (single jersey, Rib 1 × 1, and full cardigan with three different loop lengths and five different twists of ply yarn were produced. The obtained results showed the optimal yarn ply twist factor (αe which gave minimum knitting force (less stress on needles or knitting yarns at different loop lengths for each structure.

  5. Pressure Measurement on Casing Wall and Blade Rows Interaction of Contra-Rotating Axial Flow Pump

    Institute of Scientific and Technical Information of China (English)

    Toru SHIGEMITSU; Tomoya TAKANO; Akinori FURUKAWA; Kusuo OKUMA; Satoshi WATANABE

    2005-01-01

    @@ An application of contra-rotating rotors has been proposed against a demand for developing higher specific speed axial flow pump. The blade rows interaction between front and rear rotors should be clarified for its stable operation and reduction of unsteady losses. In this paper, the static pressure distributions on casing wall are provided by measuring with the phase locked sampling method. The measurements are carried out for two types of the rear rotors with different blade number and chord length, and it is found that, for both types of rotors, the unsteady pressure fluctuations are more remarkable in the front rotor than in the rear rotor and they are caused by the rear rotor pressure field. The effects of pressure fluctuations will be discussed in more details toward understanding the blade rows interaction in the contra-rotating axial flow pump.

  6. The Effect of Age, Gender, Refractive Status and Axial Length on the Measurements of Hertel Exophthalmometry

    OpenAIRE

    Karti, Omer; Selver, Ozlem B; Karahan, Eyyup; Zengin, Mehmet O; Uyar, Murat

    2015-01-01

    Purpose : To evaluate the normal distribution of exophthalmometric values in Turkish adult population and the effect of age, gender, refractive status and axial length on globe position. Methods : One hundred and twenty-two males and 114 healthy females with age ranging from 18 to 87 years were included in the study. The study population was recruited from patients presenting to our institution for routine refractive examination. Hertel exophthalmometer was used to measure the degree of ocula...

  7. A MEMS sensor for microscale force measurements

    Science.gov (United States)

    Majcherek, S.; Aman, A.; Fochtmann, J.

    2016-02-01

    This paper describes the development and testing of a new MEMS-based sensor device for microscale contact force measurements. A special MEMS cell was developed to reach higher lateral resolution than common steel-based load cells with foil-type strain gauges as mechanical-electrical converters. The design provided more than one normal force measurement point with spatial resolution in submillimeter range. Specific geometric adaption of the MEMS-device allowed adjustability of its measurement range between 0.5 and 5 N. The thin film nickel-chromium piezo resistors were used to achieve a mechanical-electrical conversion. The production process was realized by established silicon processing technologies such as deep reactive ion etching and vapor deposition (sputtering). The sensor was tested in two steps. Firstly, the sensor characteristics were carried out by application of defined loads at the measurement points by a push-pull tester. As a result, the sensor showed linear behavior. A measurement system analysis (MSA1) was performed to define the reliability of the measurement system. The measured force values had the maximal relative deviation of 1% to average value of 1.97 N. Secondly, the sensor was tested under near-industrial conditions. In this context, the thermal induced relaxation behavior of the electrical connector contact springs was investigated. The handling of emerging problems during the characterization process of the sensor is also described.

  8. A MEMS sensor for microscale force measurements

    International Nuclear Information System (INIS)

    This paper describes the development and testing of a new MEMS-based sensor device for microscale contact force measurements. A special MEMS cell was developed to reach higher lateral resolution than common steel-based load cells with foil-type strain gauges as mechanical-electrical converters. The design provided more than one normal force measurement point with spatial resolution in submillimeter range. Specific geometric adaption of the MEMS-device allowed adjustability of its measurement range between 0.5 and 5 N. The thin film nickel-chromium piezo resistors were used to achieve a mechanical-electrical conversion. The production process was realized by established silicon processing technologies such as deep reactive ion etching and vapor deposition (sputtering). The sensor was tested in two steps. Firstly, the sensor characteristics were carried out by application of defined loads at the measurement points by a push-pull tester. As a result, the sensor showed linear behavior. A measurement system analysis (MSA1) was performed to define the reliability of the measurement system. The measured force values had the maximal relative deviation of 1% to average value of 1.97 N. Secondly, the sensor was tested under near-industrial conditions. In this context, the thermal induced relaxation behavior of the electrical connector contact springs was investigated. The handling of emerging problems during the characterization process of the sensor is also described. (paper)

  9. Co-axial Electrospun Polyacrylonitrile-Poly(methylmethacrylate) Nanofibers: Atomic Force Microscopy and Compositional Characterization

    Science.gov (United States)

    Zander, N.E.; Strawhecker, K.E.; Orlicki, J.A.; Rawlett, A.M.; Beebe, T.P.

    2011-01-01

    Poly(methylmethacrylate) (PMMA)- Polyacrylonitrile (PAN) fibers were prepared using a conventional single-nozzle electrospinning technique. The as-spun fibers exhibited core-shell morphology as verified by transmission electron microscopy (TEM) and atomic force microscopy (AFM). AFM-phase and modulus mapping images of the fiber cross-section and x-ray photoelectron spectroscopy (XPS) analysis indicated PAN formed the shell and PMMA the core material. XPS, thermal gravimetric analysis (TGA), and elemental analysis were used to determine fiber compositional information. Soaking the fibers in solvent demonstrated removal of the core material, generating hollow PAN fibers. PMID:21928836

  10. Simplified fundamental force and mass measurements

    Science.gov (United States)

    Robinson, I. A.

    2016-08-01

    The watt balance relates force or mass to the Planck constant h, the metre and the second. It enables the forthcoming redefinition of the unit of mass within the SI by measuring the Planck constant in terms of mass, length and time with an uncertainty of better than 2 parts in 108. To achieve this, existing watt balances require complex and time-consuming alignment adjustments limiting their use to a few national metrology laboratories. This paper describes a simplified construction and operating principle for a watt balance which eliminates the need for the majority of these adjustments and is readily scalable using either electromagnetic or electrostatic actuators. It is hoped that this will encourage the more widespread use of the technique for a wide range of measurements of force or mass. For example: thrust measurements for space applications which would require only measurements of electrical quantities and velocity/displacement.

  11. Optomechanical Measurement of the Abraham Force in an Adiabatic Liquid Core Optical Fiber Waveguide

    CERN Document Server

    Choi, H; Elliott, D S; Oh, K

    2016-01-01

    We report quantitative experimental measurements of the Abraham force associated with a propagating optical wave. We isolate this force using a guided light wave undergoing an adiabatic mode transformation (AMT) along a liquid-filled hollow optical fiber (HOF). Utilizing this light intensity distribution within the liquid, we were able to generate a time-averaged non-vanishing Abraham force density, while simultaneously suppressing the Abraham-Minkowski force density. The incident laser field induced a linear axial displacement of the air-liquid interface inside the HOF, which provided a direct experimental measure of the Abraham force density. We find good agreement between the experimental results and theoretical determinations of the Abraham force density

  12. APPROXIMATE EXPRESSION FOR ELASTO-PLASTIC CURVE OF AXIAL FORCE AND AXIAL DISPLACEMENT OF COMPRESSED BAR%压杆轴力与轴向位移全过程曲线的近似表达式

    Institute of Scientific and Technical Information of China (English)

    杨洋; 童根树; 张磊

    2012-01-01

    考虑了几何缺陷、残余应力和材料塑性,采用大变形理论自编程序3D-Steel-Struct对工字形压杆屈曲前后的变形曲线进行了研究。对非完善双轴对称工字形截面压杆进行了二阶弹性和二阶刚塑性的理论分析,推导了相应阶段的轴压力与变形之间的关系,构造了轴压力与跨中挠度和轴压力与轴向位移之间的解析表达式,并与数值解非常吻合。研究了压杆轴压延性随长细比的变化规律,提出了一个延性与长细比的近似表达式,并具有良好的精度。%This paper investigates the deformation of compressed bars with I-section. A finite-element program of 3D-Steel-Struct developed by authors is used in the analysis. Initial geometric crookedness, residual stress and material inelasticity are considered in the investigation. Second order elastic and second order rigid-plastic analysis are carried out for imperfect members, and relations between axially compressive force and deformation are deduced. Analytical expression for axially compressive force and deflection at mid-span are presented, as well as that for axially compressive force and axial shortening. A comparison shows the excellent agreement between the proposed explicit expressions and the numerical results. The axial ductility of compressed member is also studied in the paper. A formula relating the ductility to the slenderness is proposed.

  13. Elastic Critical Axial Force for the Torsional-Flexural Buckling of Thin-Walled Metal Members: An Approximate Method

    Directory of Open Access Journals (Sweden)

    Kováč Michal

    2015-03-01

    Full Text Available Thin-walled centrically compressed members with non-symmetrical or mono-symmetrical cross-sections can buckle in a torsional-flexural buckling mode. Vlasov developed a system of governing differential equations of the stability of such member cases. Solving these coupled equations in an analytic way is only possible in simple cases. Therefore, Goľdenvejzer introduced an approximate method for the solution of this system to calculate the critical axial force of torsional-flexural buckling. Moreover, this can also be used in cases of members with various boundary conditions in bending and torsion. This approximate method for the calculation of critical force has been adopted into norms. Nowadays, we can also solve governing differential equations by numerical methods, such as the finite element method (FEM. Therefore, in this paper, the results of the approximate method and the FEM were compared to each other, while considering the FEM as a reference method. This comparison shows any discrepancies of the approximate method. Attention was also paid to when and why discrepancies occur. The approximate method can be used in practice by considering some simplifications, which ensure safe results.

  14. Calibration of lateral force measurements in atomic force microscopy with a piezoresistive force sensor

    International Nuclear Information System (INIS)

    We present here a method to calibrate the lateral force in the atomic force microscope. This method makes use of an accurately calibrated force sensor composed of a tipless piezoresistive cantilever and corresponding signal amplifying and processing electronics. Two ways of force loading with different loading points were compared by scanning the top and side edges of the piezoresistive cantilever. Conversion factors between the lateral force and photodiode signal using three types of atomic force microscope cantilevers with rectangular geometries (normal spring constants from 0.092 to 1.24 N/m and lateral stiffness from 10.34 to 101.06 N/m) were measured in experiments using the proposed method. When used properly, this method calibrates the conversion factors that are accurate to ±12.4% or better. This standard has less error than the commonly used method based on the cantilever's beam mechanics. Methods such of this allow accurate and direct conversion between lateral forces and photodiode signals without any knowledge of the cantilevers and the laser measuring system

  15. Comparison of the Accuracy of Canon KU-1 IOL Measurer and VPLUS A/B Scanner in Axial Length Measurement

    Institute of Scientific and Technical Information of China (English)

    Chuyin Chen; Zhende Lin; Bo Feng; Yonghua Li

    2003-01-01

    Purpose: To evaluate the accuracy of Canon KU-1 IOL measurer (Japanese Canon Company) and VPLUS A/B scanner (French Quantel Company) in axial length (AL)measurement.Methods:Canon KU-1 IOL measurer and VPLUS A/B scanner were used to measure axial length of human cataractous eyes before cataract surgery. Two hundred and twentytwo cases (433 eyes) were involved. The results were compared and the postoperative visual acuity, refractive results were recorded during the follow-ups to evaluate the accuracy of the two instruments.Results:In the 222 cases (433 eyes), the absolute value of the measurement differences was 0.4 mm or above in 35 eyes, 0.8 mm or above in 17 eyes, 1.2 mm or above in 12 eyes,2.0mm or above in 5 eyes. The refractive error was less than 2.0D in all patients. The mean values of ocular axial length by the two methods were 23.82 mm and 23.83 mm respectively and the difference had no statistic significance with compared t test ( P=0.902, two tail, or=0.01).Conclusion:The accurate AL measurements can be obtained with the two instruments and the measurement results should be analyzed comprehensively to obtain accurate values in the complicated cases.

  16. The Effect of Amplitude Modulation on the Axial Resolution of Doppler-Based Ultrasonic Topography Measurement

    DEFF Research Database (Denmark)

    RezaNejad Gatabi, Javad; Das, Sayantan; Forouzbakhsh, Farshid

    2016-01-01

    of the Doppler measurement techniques. A modified Doppler measurement system that significantly improves the measurement accuracy is also presented. The fabricated sensor has 72-μm measurement accuracy using 40-kHz transducers. This technique can also be employed in cost-effective displacement measurement......Ultrasonic Doppler-based systems for surface topography measurements are attractive alternatives to the transit-time-based methods. Sensors used in Doppler systems are less dependent on the speed of the sound in air, although contemporary Doppler measurement systems are sensitive to the amplitude...... variation of the received signal. Amplitude variation significantly affects the measurement accuracy when the surface axial displacement range is comparable with the ultrasonic wavelength. This paper presents a theoretical and experimental study of the effect of amplitude modulation on the performance...

  17. Development of a shear measurement sensor for measuring forces at human-machine interfaces.

    Science.gov (United States)

    Cho, Young Kuen; Kim, Seong Guk; Kim, Donghyun; Kim, Hyung Joo; Ryu, Jeicheong; Lim, Dohyung; Ko, Chang-Yong; Kim, Han Sung

    2014-12-01

    Measuring shear force is crucial for investigating the pathology and treatment of pressure ulcers. In this study, we introduced a bi-axial shear transducer based on strain gauges as a new shear sensor. The sensor consisted of aluminum and polyvinyl chloride plates placed between quadrangular aluminum plates. On the middle plate, two strain gauges were placed orthogonal to one another. The shear sensor (54 mm × 54 mm × 4.1 mm), which was validated by using standard weights, displayed high accuracy and precision (measurement range, -50 to 50 N; sensitivity, 0.3N; linear relationship, R(2)=0.9625; crosstalk error, 0.635% ± 0.031%; equipment variation, 4.183). The shear force on the interface between the human body and a stand-up wheelchair was measured during sitting or standing movements, using two mats (44.8 cm × 44.8 cm per mat) that consisted of 24 shear sensors. Shear forces on the sacrum and ischium were almost five times higher (15.5 N at last posture) than those on other sites (3.5 N on average) during experiments periods. In conclusion, the proposed shear sensor may be reliable and useful for measuring the shear force on human-machine interfaces. PMID:25445984

  18. Free and Forced Vibrations of an Axially-Loaded Timoshenko Multi-Span Beam Carrying a Number of Various Concentrated Elements

    Directory of Open Access Journals (Sweden)

    Yusuf Yesilce

    2012-01-01

    Full Text Available In the existing reports regarding free and forced vibrations of the beams, most of them studied a uniform beam carrying various concentrated elements using Bernoulli-Euler Beam Theory (BET but without axial force. The purpose of this paper is to utilize the numerical assembly technique to determine the exact frequency-response amplitudes of the axially-loaded Timoshenko multi-span beam carrying a number of various concentrated elements (including point masses, rotary inertias, linear springs and rotational springs and subjected to a harmonic concentrated force and the exact natural frequencies and mode shapes of the beam for the free vibration analysis. The model allows analyzing the influence of the shear and axial force and harmonic concentrated force effects and intermediate concentrated elements on the dynamic behavior of the beams by using Timoshenko Beam Theory (TBT. At first, the coefficient matrices for the intermediate concentrated elements, an intermediate pinned support, applied harmonic force, left-end support and right-end support of Timoshenko beam are derived. After the derivation of the coefficient matrices, the numerical assembly technique is used to establish the overall coefficient matrix for the whole vibrating system. Finally, solving the equations associated with the last overall coefficient matrix one determines the exact dynamic response amplitudes of the forced vibrating system corresponding to each specified exciting frequency of the harmonic force. Equating the determinant of the overall coefficient matrix to zero one determines the natural frequencies of the free vibrating system (the case of zero harmonic force and substituting the corresponding values of integration constants into the related eigenfunctions one determines the associated mode shapes. The calculated vibration amplitudes of the forced vibrating systems and the natural frequencies of the free vibrating systems are given in tables for different values of

  19. Dynamics of gecko locomotion: a force-measuring array to measure 3D reaction forces.

    Science.gov (United States)

    Dai, Zhendong; Wang, Zhouyi; Ji, Aihong

    2011-03-01

    Measuring the interaction between each foot of an animal and the substrate is one of the most effective ways to understand the dynamics of legged locomotion. Here, a new facility - the force-measuring array (FMA) - was developed and applied to measure 3D reaction forces of geckos on different slope surfaces. The FMA consists of 16 3D sensors with resolution to the mN level. At the same time the locomotion behaviour of geckos freely moving on the FMA was recorded by high speed camera. The reaction forces acting on the gecko's individual feet measured by the FMA and correlated with locomotion behaviour provided enough information to reveal the mechanical and dynamic secrets of gecko locomotion. Moreover, dynamic forces were also measured by a force platform and correlated with locomotion behaviour. The difference between the forces measured by the two methods is discussed. From the results we conclude that FMA is the best way to obtain true reaction forces acting on the gecko's individual feet.

  20. Measurement adhesion force between fine particle and effect of humidity: An study with Atomic Force Microscopy

    International Nuclear Information System (INIS)

    Adhesion force is interaction between particle- particle and particle surface. First Hertz in 1882 calculated adhesion force between spherical particle and planar surface. Adhesion force in interested for scientist and different industries such as paint, foot, pharmaceutical, etc. In this study we measured adhesion force between fine particle such as silica and silicon and mica surface, with Atomic Force Microscopy. The adhesion force measured between particle-planar surfaces with Atomic Force Microscopy on different humidity and simulated results.

  1. Measurement of liquid holdup and axial dispersion in trickle bed reactors using radiotracer technique

    International Nuclear Information System (INIS)

    The holdup and axial dispersion of aqueous phase has been measured in trickle bed reactors as a function of liquid and gas flow rates using radioisotope tracer technique. Experiments were carried out in the glass column of inner diameter of 15.2x10-2 m column for air-water system using three different types of packings i.e. non-porous glass beads, porous catalyst of tablet and extrudate shape. The range of liquid and gas flow rates used were 8.3x10-5 - 3.3x1--4 m3/s and 0 - 6.67x10-4 m3/s, respectively. Residence time distributions of liquid phase and gas phase were measured and mean residence times were determined. The values of liquid holdup were calculated from the measured mean residence times. It was observed that the liquid holdup increases with increase in liquid flow rates and was independent of increase in gas flow rates used in the study. Two-parameter axial dispersion model was used to simulate measured residence time distribution data and values of mean residence time and Peclet number were obtained. It was observed that the values of Peclet number increases with increase in liquid flow rate for glass beads and tablets and remains almost constant for extrudates. The values of mean residence time obtained from model simulation were found to be in good agreement with the values measured experimentally. (author)

  2. Measurement of velocity deficit at the downstream of a 1:10 axial hydrokinetic turbine model

    Energy Technology Data Exchange (ETDEWEB)

    Gunawan, Budi [ORNL; Neary, Vincent S [ORNL; Hill, Craig [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414; Chamorro, Leonardo [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414

    2012-01-01

    Wake recovery constrains the downstream spacing and density of turbines that can be deployed in turbine farms and limits the amount of energy that can be produced at a hydrokinetic energy site. This study investigates the wake recovery at the downstream of a 1:10 axial flow turbine model using a pulse-to-pulse coherent Acoustic Doppler Profiler (ADP). In addition, turbine inflow and outflow velocities were measured for calculating the thrust on the turbine. The result shows that the depth-averaged longitudinal velocity recovers to 97% of the inflow velocity at 35 turbine diameter (D) downstream of the turbine.

  3. Calculation of Axial Force of Trapezoidal Toothed Synchronous Belt Drive%梯形齿同步带传动压轴力的计算

    Institute of Scientific and Technical Information of China (English)

    孙传琼; 刘雍德; 任爱华

    2009-01-01

    The calculation formula of axial force of trapezoidal toothed synchronous belt drive in literatures is introduced. All forces in the belt drive are analyzed, and the original tensile force is classified into three types according to the degree of tension. The universal formula which can exactly determine the magnitude and direction of axial force is put forward, and the formulae of axial force on different working conditions are developed, the application example is given.%介绍了有关文献中关于梯形齿同步带传动压轴力的计算公式.对同步带中的各种力进行了分析,并按不同张紧程度将带中的初拉力区分为3种情况.推导出能精确确定同步带传动压轴力大小和方向的通用计算公式,进而得出同步带传动不同工况下的压轴力计算式,并给出计算示例.

  4. Force measurement of low forces in combination with high dead loads by the use of electromagnetic force compensation

    Science.gov (United States)

    Diethold, Christian; Hilbrunner, Falko

    2012-07-01

    This paper discusses the force measurement of small forces in combination with high dead loads. The measurement force acts perpendicular to gravity, while the dead load is orientated in the direction of gravity. Furthermore, the influence of the dead load on the metrological properties is described. The application is the flow rate measurement of conducting fluids by Lorentz force (Thess et al 2006 Phys. Rev. Lett. 96 164501). The aim is to measure forces with a resolution of FM = 10-6 N. The dead load is mainly due to the mass of the magnet system. It is of the order of magnitude of FG = 10 N. The force measurement system works with the principle of electromagnetic force compensation. The applied force is compensated by a Lorentz force induced by a current in a voice coil and a magnetic field of a permanent magnet. The current is proportional to the applied force.

  5. Force measurement of low forces in combination with high dead loads by the use of electromagnetic force compensation

    International Nuclear Information System (INIS)

    This paper discusses the force measurement of small forces in combination with high dead loads. The measurement force acts perpendicular to gravity, while the dead load is orientated in the direction of gravity. Furthermore, the influence of the dead load on the metrological properties is described. The application is the flow rate measurement of conducting fluids by Lorentz force (Thess et al 2006 Phys. Rev. Lett. 96 164501). The aim is to measure forces with a resolution of FM = 10−6 N. The dead load is mainly due to the mass of the magnet system. It is of the order of magnitude of FG = 10 N. The force measurement system works with the principle of electromagnetic force compensation. The applied force is compensated by a Lorentz force induced by a current in a voice coil and a magnetic field of a permanent magnet. The current is proportional to the applied force. (paper)

  6. Determing Degradation Of Fiberboard In The 9975 Shipping Package By Measuring Axial Gap

    Energy Technology Data Exchange (ETDEWEB)

    Hackney, E. R.; Dougherty, W. L.; Dunn, K. A.; Stefek, T. M

    2013-08-01

    Currently, thousands of model 9975 transportation packages are in use by the US Department of Energy (DOE); the design of which has been certified by DOE for shipment of Type B radioactive and fissile materials in accordance with Part 71, Title 10 Code of Federal Regulations (CFR), or 10 CFR 71, Packaging and Transportation of Radioactive Material. These transportation packages are also approved for the storage of DOE-STD-3013 containers at the Savannah River Site (SRS). As such, the 9975 has been continuously exposed to the service environment for a period of time greater than the approved transportation service life. In order to ensure the material integrity as specified in the safety basis, an extensive surveillance program is in place in K-Area Complex (KAC) to monitor the structural and thermal properties of the fiberboard of the 9975 shipping packages. The surveillance approach uses a combination of Non-Destructive Examination (NDE) field surveillance and Destructive Examination (DE) lab testing to validate the 9975 performance assumptions. The fiberboard in the 9975 is credited with thermal insulation, criticality control and resistance to crushing. During surveillance monitoring in KAC, an increased axial gap of the fiberboard was discovered on selected items packaged at Rocky Flats Environmental Technology Site (RFETS). Many of these packages were later found to contain excess moisture. Savannah River National Laboratory (SRNL) testing has resulted in a better understanding of the relationship between the fiberboard moisture level and compaction of the fiberboard under storage conditions and during transport. In laboratory testing, the higher moisture content has been shown to correspond to higher total compaction of fiberboard material and compaction rate. The fiberboard height is reduced by compression of the layers. This change is observed directly in the axial gap between the flange and the air shield. The axial gap measurement is made during the pre

  7. Atomic force microscopy and direct surface force measurements

    NARCIS (Netherlands)

    Ralston, J.; Larson, I.; Rutland, M.; Feiler, A.; Kleijn, J.M.

    2005-01-01

    The atomic force microscope (AFM) is designed to provide high-resolution (in the ideal case, atomic) topographical analysis, applicable to both conducting and nonconducting surfaces. The basic imaging principle is very simple: a sample attached to a piezoelectric positioner is rastered beneath a sha

  8. Correction of axial chromatic aberrations in confocal Raman microspectroscopic measurements of a single microbial spore.

    Science.gov (United States)

    Lasch, Peter; Hermelink, Antje; Naumann, Dieter

    2009-06-01

    Herein we describe a strategy for correcting the longitudinal or axial component of chromatic aberration in confocal Raman microspectroscopy. The method is based on measuring a vertical series of confocal Raman sections of samples by a high numerical aperture Raman microscope. Using the known characteristics of the wavelength-dependent focal shift of the optical system, the Raman intensities can be corrected to allow the rearrangement of Raman data from different focal planes. In the present study the computational correction routine was applied to an experimental data set of 4-dimensional (xyz spatial and the spectral dimension) confocal Raman spectra collected from single spores of Bacillus cereus. After correcting the axial component of the chromatic aberration, univariate and multivariate spectral parameters were obtained and used in the following for 3D segmentation and volume rendering on the basis of the structural and compositional information contained in the Raman spectra of the spore. Using univariate Raman intensities from defined functional group frequencies or k-means cluster membership values as a multivariate parameter for volume rendering, we demonstrate a high degree of correlation between confocal Raman microspectroscopy and the spores' morphology. In this paper we will also present cluster mean spectra which will be discussed in light of the presence of proteins and Ca-DPA, a calcium chelate of dipicolinic acid in the spore. PMID:19475143

  9. Measurement of Flow Pattern Within a Rotating Stall Cell in an Axial Compressor

    Science.gov (United States)

    Lepicovsky, Jan; Braunscheidel, Edward P.

    2006-01-01

    Effective active control of rotating stall in axial compressors requires detailed understanding of flow instabilities associated with this compressor regime. Newly designed miniature high frequency response total and static pressure probes as well as commercial thermoanemometric probes are suitable tools for this task. However, during the rotating stall cycle the probes are subjected to flow direction changes that are far larger than the range of probe incidence acceptance, and therefore probe data without a proper correction would misrepresent unsteady variations of flow parameters. A methodology, based on ensemble averaging, is proposed to circumvent this problem. In this approach the ensemble averaged signals acquired for various probe setting angles are segmented, and only the sections for probe setting angles close to the actual flow angle are used for signal recombination. The methodology was verified by excellent agreement between velocity distributions obtained from pressure probe data, and data measured with thermoanemometric probes. Vector plots of unsteady flow behavior during the rotating stall regime indicate reversed flow within the rotating stall cell that spreads over to adjacent rotor blade channels. Results of this study confirmed that the NASA Low Speed Axial Compressor (LSAC) while in a rotating stall regime at rotor design speed exhibits one stall cell that rotates at a speed equal to 50.6 percent of the rotor shaft speed.

  10. 轴向分裂变压器的短路电动力特点%Characteristic of Short Circuit Electrodynamic Force in Axial Split Transformer

    Institute of Scientific and Technical Information of China (English)

    李英; 武力

    2001-01-01

    This paper calculates and analyzes the winding leakage magnetic field and short circuit electrodynamic force in a three-phase axial double split transformer passed the short circuit test in half crossing situation. Some suggestions on increasing short circuit mechanical force withstand capability in an axial split transformer are offered.%以一台在半穿越状态下通过短路试验的三相轴向双分裂变压器为例,对半穿越运行的绕组漏磁场和短路电动力进行了计算分析,提出了增强轴向分裂变压器抗短路机械强度几点建议。

  11. Fully automatic measurements of axial vertebral rotation for assessment of spinal deformity in idiopathic scoliosis

    Science.gov (United States)

    Forsberg, Daniel; Lundström, Claes; Andersson, Mats; Vavruch, Ludvig; Tropp, Hans; Knutsson, Hans

    2013-03-01

    Reliable measurements of spinal deformities in idiopathic scoliosis are vital, since they are used for assessing the degree of scoliosis, deciding upon treatment and monitoring the progression of the disease. However, commonly used two dimensional methods (e.g. the Cobb angle) do not fully capture the three dimensional deformity at hand in scoliosis, of which axial vertebral rotation (AVR) is considered to be of great importance. There are manual methods for measuring the AVR, but they are often time-consuming and related with a high intra- and inter-observer variability. In this paper, we present a fully automatic method for estimating the AVR in images from computed tomography. The proposed method is evaluated on four scoliotic patients with 17 vertebrae each and compared with manual measurements performed by three observers using the standard method by Aaro-Dahlborn. The comparison shows that the difference in measured AVR between automatic and manual measurements are on the same level as the inter-observer difference. This is further supported by a high intraclass correlation coefficient (0.971-0.979), obtained when comparing the automatic measurements with the manual measurements of each observer. Hence, the provided results and the computational performance, only requiring approximately 10 to 15 s for processing an entire volume, demonstrate the potential clinical value of the proposed method.

  12. Discrepancies in determination of abdominal aortic aneurysms maximum diameter and growth rate, using axial and orhtogonal computed tomography measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kontopodis, Nikolaos, E-mail: kontopodisn@yahoo.gr [Department of Vascular Surgery, University of Crete Medical School, Heraklion (Greece); Metaxa, Eleni, E-mail: emmetaxa@gmail.com [Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Heraklion, Crete (Greece); Gionis, Michalis, E-mail: gkionismichalis@yahoo.gr [Department of Vascular Surgery, University of Crete Medical School, Heraklion (Greece); Papaharilaou, Yannis, E-mail: yannisp@iacm.forth.gr [Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Heraklion, Crete (Greece); Ioannou, Christos V., E-mail: ioannou@med.uoc.gr [Department of Vascular Surgery, University of Crete Medical School, Heraklion (Greece)

    2013-09-15

    Purpose: Maximum diameter and growth rate of abdominal aortic aneurysms (AAAs) which are currently used as the only variables to set the indication for elective repair are recorded through computed tomography (CT) measurements on an axial plane or on an orthogonal plane that is perpendicular to vessel centerline, interchangeably. We will attempt to record possible discrepancies between the two methods, identify whether such differences could influence therapeutic decisions and determine in which cases this should be expected. Materials and methods: We retrospectively reviewed sixty CT-scans performed in thirty-nine patients. Three-dimensional reconstruction of AAAs has been performed and differences in maximum diameter measured on axial and orthogonal planes were recorded. A measure for asymmetry was introduced termed ShapeIndex defined as the value of section minor over major axis and was related with differences in maximum diameter recordings. Growth rates were also determined using both axial and orthogonal measurements. Results: Axial measurements overestimate maximum diameter by 2 ± 2.7 mm (P < 0.001) with a range of 0–12.3 mm. Overall, 20% of the CTs had an axial maximum diameter >5.5 cm indicating the need for intervention whereas, orthogonal diameter was below that threshold. Asymmetry of the axial sections with ShapeIndex ≤ 0.8 was found to be related to an overestimation of maximum diameter by >5 mm. There were no significant differences in growth rates when determined using orthogonal or axial measurements in both examinations (median growth rate: 2.3 mm and 3.3 mm respectively P = 0.2). However there were significant differences when orthogonal measurements were used at initial and axial measurements used at follow-up examination or vice versa (median growth rate: 4.9 mm and 0.9 mm respectively P < 0.001). Conclusions: Although the mean difference between measurements is low there is a wide range among cases, mainly observed in asymmetrical AAAs

  13. A Simple Apparatus for Electrostatic Force Measurement.

    Science.gov (United States)

    Hale, D. P.

    1981-01-01

    Describes the construction of an apparatus that demonstrates that electrostatic forces can be large and also gives some idea of dependence of electrostatic forces between charged parallel discs on potential differences and separation. (CS)

  14. Tyre contact length on dry and wet road surfaces measured by three-axial accelerometer

    Science.gov (United States)

    Matilainen, Mika; Tuononen, Ari

    2015-02-01

    We determined the tyre contact length on dry and wet roads by measuring the accelerations of the inner liner with a three-axial accelerometer. The influence of the tyre pressure, driving velocity, and tread depth on the contact length was studied in both types of road surface conditions. On dry asphalt the contact length was almost constant, regardless of the driving velocity. On wet asphalt the presence of water could be detected even at low driving velocities (e.g. 20 km/h for a worn tyre) as the contact length began to decrease from that found in the dry asphalt situation. In addition to improving the performance of active safety systems and driver warning systems, the contact length information could be beneficial for classifying and studying the aquaplaning behaviour of tyres.

  15. Measurements for the rotordynamic shroud forces for centrifugal pumps

    OpenAIRE

    Guinzburg, A.; Brennen, C. E.; Acosta, A.J; Caughey, T. K.

    1990-01-01

    An experiment was designed to measure the rotordynamic shroud forces on a centrigual pump impeller. The measurements were doen for various whirl/impeller ratios and for different flow rates. A destabilising tangential force was measured for small positive whirl ratios and this force decreased with increasing flow rate.

  16. Measurements of the rotordynamic shroud forces for centrifugal pumps

    Science.gov (United States)

    Guinzburg, A.; Brennen, C. E.; Acosta, A. J.; Caughey, T. K.

    1990-01-01

    An experiment was designed to measure the rotordynamic shroud forces on a centrifugal pump impeller. The measurements were done for various whirl/impeller speed ratios and for different flow rates. A destabilizing tangential force was measured for small positive whirl ratios and this force decreased with increasing flow rate.

  17. Thermal stress in a bi-material assembly with a 'piecewise-continuous' bonding layer: theorem of three axial forces

    Science.gov (United States)

    Suhir, E.

    2009-02-01

    We consider a bi-material assembly with a 'piecewise-continuous' bonding layer. The layer is characterized by different elastic constants of its 'pieces' (segments) and is assumed to be thin. Young's moduli of all the 'pieces' of the bonding layer are significantly lower than the moduli of the adherend materials. In such a situation the coefficient of thermal expansion (CTE) of the bonding material need not be accounted for. Only the interfacial compliance of the bonding layer is important. This is indeed the case for the majority of electronic, opto-electronic or photonic assemblies. We consider the situation when the assembly is manufactured at an elevated temperature and is subsequently cooled down to a low (say, room) temperature. The objective of the analysis is to develop a simple, easy-to-use and physically meaningful analytical ('mathematical') predictive model for the evaluation of the interfacial shearing stresses that arise at the boundaries of the 'pieces' (segments) of the bonding layer and at the assembly edge. The basic equation is obtained for the thermally induced forces acting in the adherends' cross-sections that correspond to the boundaries between the dissimilar portions of the bonding layer. This equation has the form of the theorem of three (bending) moments in the theory of multi-span beams lying on separate simple supports and could therefore be called the 'theorem of three axial forces'. We show, as an illustration, how this equation could be employed to design a bi-material assembly with an inhomogeneous bonding layer and with low interfacial shearing stresses. Low shearing stresses will certainly result in lower peeling stresses as well. The numerical example is carried out for an assembly with a relatively high-modulus bonding material in its mid-portion (aimed primarily at providing good adhesion and, if necessary, good heat transfer as well) and a low-modulus material in its peripheral portions (aimed primarily at bringing down the

  18. Cantilevers orthodontics forces measured by fiber sensors

    Science.gov (United States)

    Schneider, Neblyssa; Milczewski, Maura S.; de Oliveira, Valmir; Guariza Filho, Odilon; Lopes, Stephani C. P. S.; Kalinowski, Hypolito J.

    2015-09-01

    Fibers Bragg Gratings were used to evaluate the transmission of the forces generates by orthodontic mechanic based one and two cantilevers used to move molars to the upright position. The results showed levels forces of approximately 0,14N near to the root of the molar with one and two cantilevers.

  19. Rigid two-axis MEMS force plate for measuring cellular traction force

    Science.gov (United States)

    Takahashi, Hidetoshi; Jung, Uijin G.; Kan, Tetsuo; Tsukagoshi, Takuya; Matsumoto, Kiyoshi; Shimoyama, Isao

    2016-10-01

    Cellular traction force is one of the important factors for understanding cell behaviors, such as spreading, migration and differentiation. Cells are known to change their behavior according to the mechanical stiffness of the environment. However, the measurement of cell traction forces on a rigid environment has remained difficult. This paper reports a micro-electromechanical systems (MEMS) force plate that provides a cellular traction force measurement on a rigid substrate. Both the high force sensitivity and high stiffness of the substrate were obtained using piezoresistive sensing elements. The proposed force plate consists of a 70 µm  ×  15 µm  ×  5 µm base as the substrate for cultivating a bovine aortic smooth muscle cell, and the supporting beams with piezoresistors on the sidewall and the surface were used to measure the forces in both the horizontal and vertical directions. The spring constant and force resolution of the fabricated force plate in the horizontal direction were 0.2 N m-1 and less than 0.05 µN, respectively. The cell traction force was measured, and the traction force increased by approximately 1 µN over 30 min. These results demonstrate that the proposed force plate is applicable as an effective traction force measurement.

  20. Capillary-force measurement on SiC surfaces

    NARCIS (Netherlands)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.

    2016-01-01

    Capillary forces have been measured by atomic force microscopy in the sphere-plate geometry, in a controlled humidity environment, between smooth silicon carbide and borosilicate glass spheres. The force measurements were performed as a function of the rms surface roughness similar to 4-14 nm mainly

  1. Forced Transverse Vibration of a Closed Double Single-Walled Carbon Nanotube System Containing a Fluid with Effect of Compressive Axial Load

    Directory of Open Access Journals (Sweden)

    Mehrdad Nasirshoaibi

    2015-01-01

    Full Text Available Based on the Rayleigh beam theory, the forced transverse vibrations of a closed double single-walled carbon nanotube (SWCNT system containing a fluid with a Pasternak layer in-between are investigated. It is assumed that the two single-walled carbon nanotubes of the system are continuously joined by a Pasternak layer and both sides of SWCNTs containing a fluid are closed. The dynamic responses of the system caused by arbitrarily distributed continuous loads are obtained. The effect of compressive axial load on the forced vibrations of the double single-walled carbon nanotube system is discussed for one case of particular excitation loading. The properties of the forced transverse vibrations of the system are found to be significantly dependent on the compressive axial load. The steady-state vibration amplitudes of the SWCNT decrease with increasing of length of SWCNT. Vibrations caused by the harmonic exciting forces are discussed, and conditions of resonance and dynamic vibration absorption are formulated. The SWCNT-type dynamic absorber is a new concept of a dynamic vibration absorber (DVA, which can be applied to suppress excessive vibrations of corresponding SWCNT systems.

  2. MEASUREMENT OF ADHESION FORCES IN AIR WITH THE VIBRATION METHOD

    Institute of Scientific and Technical Information of China (English)

    Siegfried; Ripperger; Konrad; Hein

    2005-01-01

    The vibration method represents a practical method for the measurement of adhesion forces and adhesion force distributions. This method causes sinusoidally altemating stresses and yields detachment and contact forces between particles and substrate of the same order of magnitude. Alternating contact forces of the vibration method can cause an adhesion force intensification through flattening of asperities. The measuring principle of the vibration method and the analysis of experimental results are described in the article. Normal adhesion forces (pull-off forces) are measured using the vibration method and the colloidal probe technique. The results of both methods show good agreement for small particle sizes. The influence of the detachment force direction is shown by comparing tangential and normal adhesion forces measured using particle reentrainment in a turbulent air flow and the vibration method, respectively. The surface roughness of the substrate and the relative humidity are shown to significantly influence the measured adhesion forces. For the calculation of the adhesion forces, an approach by Rabinovich was combined with approximations of plastic micro asperity flattening. The Rabinovich approach accounts for roughness effects on the van der Waals force by incorporating the rms roughness of the interacting surfaces. rms-values of the particles and substrates were measured with atomic force microscopy at different scanning areas.

  3. Measuring Fractional Anisotropy of the Corpus Callosum Using Diffusion Tensor Imaging: Mid-Sagittal versus Axial Imaging Planes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eung Yeop; Park, Hae Jeong; Kim, Dong Hyun; Lee, Seung Koo; Kim, Jin Na [Yonsei University, Seoul (Korea, Republic of)

    2008-10-15

    Many diffusion tensor imaging (DTI) studies of the corpus callosum (CC) have been performed with a relatively thick slice thickness in the axial plane, which may result in underestimating the fractional anisotropy (FA) of the CC due to a partial volume effect. We hypothesized that the FA of the CC can be more accurately measured by using mid-sagittal DTI. We compared the FA values of the CC between the axial and mid-sagittal DTI. Fourteen healthy volunteers underwent MRI at 3.0 T. DTI was performed in both the mid-sagittal and axial planes. One 5-mm mid-sagittal image and twenty-five 2-mm axial images were obtained for the CC. The five regions of interest (ROIs) that included the prefrontal (I), premotor and supplementary motor (II), motor (III), sensory (IV) and parietal, temporal and occipital regions (V) were drawn along the border of the CC on each sagittal FA map. The FA values obtained from each region were compared between the two sagittal maps. The FA values of all the regions, except for region V, were significantly increased on the mid-sagittal imaging. The FA values in region IV were significantly underestimated on the mid-sagittal image from the axial imaging, compared with those in the regions I and V (p = 0.037 and p = 0.001, respectively). The FA values of the CC were significantly higher on the midsagittal DTI than those on the axial DTI in regions I-IV, and particularly in the region IV. Mid-sagittal DTI may provide more accurate FA values of the CC than can the axial DTI, and mid-sagittal DTI may be more desirable for studies that compare between patients and healthy subjects

  4. Theoretical Models for Surface Forces and Adhesion and Their Measurement Using Atomic Force Microscopy

    Directory of Open Access Journals (Sweden)

    Osvaldo N. Oliveira

    2012-10-01

    Full Text Available The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS, it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion. This review provides the theoretical and experimental background of afs, adhesion forces, intermolecular interactions and surface forces in air, vacuum and in solution.

  5. Quantitative measurement of tip sample forces by dynamic force spectroscopy in ambient conditions

    Science.gov (United States)

    Hölscher, H.; Anczykowski, B.

    2005-03-01

    We introduce a dynamic force spectroscopy technique enabling the quantitative measurement of conservative and dissipative tip-sample forces in ambient conditions. In difference to the commonly detected force-vs-distance curves dynamic force microscopy allows to measure the full range of tip-sample forces without hysteresis effects caused by a jump-to-contact. The approach is based on the specific behavior of a self-driven cantilever (frequency-modulation technique). Experimental applications on different samples (Fischer-sample, silicon wafer) are presented.

  6. Forced Axial and Torsional Vibrations of a Shaft Line Using the Transfer Matrix Method Related to Solution Coefficients

    Institute of Scientific and Technical Information of China (English)

    Kandouci Chahr-Eddine; Adjal Yassine

    2014-01-01

    This present paper deals with a mathematical description of linear axial and torsional vibrations. The normal and tangential stress tensor components produced by axial-torsional deformations and vibrations in the propeller and intermediate shafts, under the influence of propeller-induced static and variable hydrodynamic excitations are also studied. The transfer matrix method related to the constant coefficients of differential equation solutions is used. The advantage of the latter as compared with a well-known method of transfer matrix associated with state vector is the possibility of reducing the number of multiplied matrices when adjacent shaft segments have the same material properties and diameters. The results show that there is no risk of buckling and confirm that the strength of the shaft line depends on the value of the static tangential stresses which is the most important component of the stress tensor.

  7. Reproducibility of Abdominal Aortic Aneurysm Diameter Measurement and Growth Evaluation on Axial and Multiplanar Computed Tomography Reformations

    Energy Technology Data Exchange (ETDEWEB)

    Dugas, Alexandre; Therasse, Eric; Kauffmann, Claude; Tang, An [University of Montreal, Department of Radiology, Centre Hospitalier de l' Universite de Montreal (CHUM) and CHUM Research Center (CRCHUM) (Canada); Elkouri, Stephane [University of Montreal, Department of Surgery, Centre Hospitalier de l' Universite de Montreal (CHUM) (Canada); Nozza, Anna [Institut de Cardiologie de Montreal, Montreal Heart Institute Coordinating Centre (Canada); Giroux, Marie-France; Oliva, Vincent L.; Soulez, Gilles, E-mail: gilles.soulez.chum@ssss.gouv.qc.ca [University of Montreal, Department of Radiology, Centre Hospitalier de l' Universite de Montreal (CHUM) and CHUM Research Center (CRCHUM) (Canada)

    2012-08-15

    Purpose: To compare different methods measuring abdominal aortic aneurysm (AAA) maximal diameter (Dmax) and its progression on multidetector computed tomography (MDCT) scan. Materials and Methods: Forty AAA patients with two MDCT scans acquired at different times (baseline and follow-up) were included. Three observers measured AAA diameters by seven different methods: on axial images (anteroposterior, transverse, maximal, and short-axis views) and on multiplanar reformation (MPR) images (coronal, sagittal, and orthogonal views). Diameter measurement and progression were compared over time for the seven methods. Reproducibility of measurement methods was assessed by intraclass correlation coefficient (ICC) and Bland-Altman analysis. Results: Dmax, as measured on axial slices at baseline and follow-up (FU) MDCTs, was greater than that measured using the orthogonal method (p = 0.046 for baseline and 0.028 for FU), whereas Dmax measured with the orthogonal method was greater those using all other measurement methods (p-value range: <0.0001-0.03) but anteroposterior diameter (p = 0.18 baseline and 0.10 FU). The greatest interobserver ICCs were obtained for the orthogonal and transverse methods (0.972) at baseline and for the orthogonal and sagittal MPR images at FU (0.973 and 0.977). Interobserver ICC of the orthogonal method to document AAA progression was greater (ICC = 0.833) than measurements taken on axial images (ICC = 0.662-0.780) and single-plane MPR images (0.772-0.817). Conclusion: AAA Dmax measured on MDCT axial slices overestimates aneurysm size. Diameter as measured by the orthogonal method is more reproducible, especially to document AAA progression.

  8. Towards a Casimir force measurement between micromachined parallel plate structures

    NARCIS (Netherlands)

    Syed Nawazuddin, M.B.; Lammerink, Theo S.J.; Berenschot, Erwin; Boer, de Meint; Ma, Ke-Chun; Elwenspoek, Miko C.; Wiegerink, Remco J.

    2012-01-01

    Ever since its prediction, experimental investigation of the Casimir force has been of great scientific interest. Many research groups have successfully attempted quantifying the force with different device geometries; however, measurement of the Casimir force between parallel plates with sub-micron

  9. Interaction of an acoustical quasi-Gaussian beam with a rigid sphere: linear axial scattering, instantaneous and time-averaged radiation force

    CERN Document Server

    Mitri, F G

    2012-01-01

    This work focuses on the interaction of an acoustical quasi-Gaussian beam centered on a rigid immovable sphere, during which at least three physical phenomena arise, namely, the (axial) acoustic scattering, the instantaneous force, and the time-average radiation force which are investigated here. The quasi-Gaussian beam is an exact solution of the source free Helmholtz wave equation and is characterized by an arbitrary waist w0 and a diffraction convergence length known as the Rayleigh range z_R. Specialized formulations for the scattering and the instantaneous force function as well as the (time-averaged) radiation force function are provided. Numerical computations illustrate the variations of the backscattering form-function, the instantaneous force function and the (time-averaged) radiation force function versus the dimensionless frequency ka (where k is the wave number and a is the radius of the sphere), and the results show significant differences from the plane wave limit when the dimensionless beam wa...

  10. Measuring Agglomeration Forces in a Financial Center

    OpenAIRE

    Bourgain, Arnaud; Pieretti, Patrice

    2006-01-01

    Basing on Scitovsky's (1954) definition of external economies and applying the method of Caballero and Lyons (1990) to macro data of Luxembourg services industry, we find significant agglomeration forces between financial intermediaries (downstream industry) on the one hand and business services and computer industry (upstream industries) on the other.

  11. Measuring the Forces between Magnetic Dipoles

    Science.gov (United States)

    Gayetsky, Lisa E.; Caylor, Craig L.

    2007-01-01

    We describe a simple undergraduate lab in which students determine how the force between two magnetic dipoles depends on their separation. We consider the case where both dipoles are permanent and the case where one of the dipoles is induced by the field of the other (permanent) dipole. Agreement with theoretically expected results is quite good.

  12. Static and dynamic force/moment measurements in the Eidetics water tunnel

    Science.gov (United States)

    Suarez, Carlos J.; Malcolm, Gerald N.

    1994-01-01

    Water tunnels have been utilized in one form or another to explore fluid mechanics and aerodynamics phenomena since the days of Leonardo da Vinci. Water tunnel testing is attractive because of the relatively low cost and quick turn-around time to perform flow visualization experiments and evaluate the results. The principal limitation of a water tunnel is that the low flow speed, which provides for detailed visualization, also results in very small hydrodynamic (aerodynamic) forces on the model, which, in the past, have proven to be difficult to measure accurately. However, the advent of semi-conductor strain gage technology and devices associated with data acquisition such as low-noise amplifiers, electronic filters, and digital recording have made accurate measurements of very low strain levels feasible. The principal objective of this research effort was to develop a multi-component strain gage balance to measure forces and moments on models tested in flow visualization water tunnels. A balance was designed that allows measuring normal and side forces, and pitching, yawing and rolling moments (no axial force). The balance mounts internally in the model and is used in a manner typical of wind tunnel balances. The key differences between a water tunnel balance and a wind tunnel balance are the requirement for very high sensitivity since the loads are very low (typical normal force is 0.2 lbs), the need for water proofing the gage elements, and the small size required to fit into typical water tunnel models.

  13. Measurement of Laterally Induced Optical Forces at the Nanoscale

    CERN Document Server

    Huang, Fei; Wickramasinghe, Hemanta Kumar

    2016-01-01

    We demonstrate the measurement of laterally induced optical forces using an Atomic Force Microscope (AFM). The lateral electric field distribution between a gold coated AFM probe and a nano-aperture in a gold film is mapped by measuring the lateral optical force between the apex of the AFM probe and the nano-aperture. Torsional eigenmodes of an AFM cantilever probe were used to detect the laterally induced optical forces. We engineered the cantilever shape using a focused ion beam to enhance the torsional eigenmode resonance. The measured lateral optical force agrees well with simulations. This technique can be extended to simultaneously detect both lateral and longitudinal optical forces at the nanoscale by using an AFM cantilever as a multichannel detector. This will enable simultaneous Photon Induced Force Microscopy (PIFM) detection of molecular responses with different incident field polarizations. The technique can be implemented on both cantilever and tuning fork based AFMs.

  14. A wearable force plate system for the continuous measurement of triaxial ground reaction force in biomechanical applications

    Science.gov (United States)

    Liu, Tao; Inoue, Yoshio; Shibata, Kyoko

    2010-08-01

    The ambulatory measurement of ground reaction force (GRF) and human motion under free-living conditions is convenient, inexpensive and never restricted to gait analysis in a laboratory environment and is therefore much desired by researchers and clinical doctors in biomedical applications. A wearable force plate system was developed by integrating small triaxial force sensors and three-dimensional (3D) inertial sensors for estimating dynamic triaxial GRF in biomechanical applications. The system, in comparison to existent systems, is characterized by being lightweight, thin and easy-to-wear. A six-axial force sensor (Nitta Co., Japan) was used as a verification measurement device to validate the static accuracy of the developed force plate. To evaluate the precision during dynamic gait measurements, we compared the measurements of the triaxial GRF and the center of pressure (CoP) by using the developed system with the reference measurements made using a stationary force plate and an optical motion analysis system. The root mean square (RMS) differences of the two transverse components (x- and y-axes) and the vertical component (z-axis) of the GRF were 4.3 ± 0.9 N, 6.0 ± 1.3 N and 12.1 ± 1.1 N, respectively, corresponding to 5.1 ± 1.1% and 6.5 ± 1% of the maximum of each transverse component and 1.3 ± 0.2% of the maximum vertical component of GRF. The RMS distance between the two systems' CoP traces was 3.2 ± 0.8 mm, corresponding to 1.2 ± 0.3% of the length of the shoe. Moreover, based on the results of the assessment of the influence of the system on natural gait, we found that gait was almost never affected. Therefore, the wearable system as an alternative device can be a potential solution for measuring CoP and triaxial GRF in non-laboratory environments.

  15. A Novel Device for Measuring Forces in Endoluminal Procedures

    Directory of Open Access Journals (Sweden)

    Tommaso Ranzani

    2015-08-01

    Full Text Available In this paper a simple but effective measuring system for endoluminal procedures is presented. The device allows measuring forces during the endoluminal manipulation of tissues with a standard surgical instrument for laparoscopic procedures. The force measurement is performed by recording both the forces applied directly by the surgeon at the instrument handle and the reaction forces on the access port. The measuring system was used to measure the forces necessary for appropriate surgical manipulation of tissues during transanal endoscopic microsurgery (TEM. Ex-vivo and in-vivo measurements were performed, reported and discussed. The obtained data can be used for developing and appropriately dimensioning novel dedicated instrumentation for TEM procedures.

  16. Vehicle Lateral State Estimation Based on Measured Tyre Forces

    OpenAIRE

    Tuononen, Ari J.

    2009-01-01

    Future active safety systems need more accurate information about the state of vehicles. This article proposes a method to evaluate the lateral state of a vehicle based on measured tyre forces. The tyre forces of two tyres are estimated from optically measured tyre carcass deflections and transmitted wirelessly to the vehicle body. The two remaining tyres are so-called virtual tyre sensors, the forces of which are calculated from the real tyre sensor estimates. The Kalman filter estimator for...

  17. Displacement and Force Measurements with Quadrant Photodetector in Optical Tweezers

    Institute of Scientific and Technical Information of China (English)

    郭红莲; 刘春香; 李兆霖; 段建发; 韩学海; 程丙英; 张道中

    2003-01-01

    A technique of displacement and force measurements with a photodiode quadrant detector in an optical tweezers system is presented. The stiffness of optical trap is calibrated and the leukemia cell membrane tension is measured.The results show that the optical tweezers combined with the quadrant detector is a very useful tool for detecting the displacement and force with a millisecond-order response.

  18. Force Measurement on the GLAST Delta II Flight

    Science.gov (United States)

    Gordon, Scott; Kaufman, Daniel

    2009-01-01

    This viewgraph presentation reviews the interface force measurement at spacecraft separation of GLAST Delta II. The contents include: 1) Flight Force Measurement (FFM) Background; 2) Team Members; 3) GLAST Mission Overview; 4) Methodology Development; 5) Ground Test Validation; 6) Flight Data; 7) Coupled Loads Simulation (VCLA & Reconstruction); 8) Basedrive Simulation; 9) Findings; and 10) Summary and Conclusions.

  19. Determination of Axial Length Requiring Adjustment of Measured Circumpapillary Retinal Nerve Fiber Layer Thickness for Ocular Magnification

    Science.gov (United States)

    Hirasawa, Kazunori; Shoji, Nobuyuki; Yoshii, Yukako; Haraguchi, Shota

    2014-01-01

    Purpose To determine the axial length requiring adjustment of measured circumpapillary retinal nerve fiber layer (cpRNFL) thickness to account for ocular magnification during spectral-domain optical coherence tomography (SD-OCT). Methods In this prospective study, 148 eyes of 148 healthy student volunteers were imaged by two examiners using three-dimensional SD-OCT. In 54 randomly selected eyes, total cpRNFL thickness was measured with and without adjustment for ocular magnification to establish intra-examiner and inter-examiner measurement error. The 148 eyes were then divided into three groups according to the error values: control group (difference in the corrected and uncorrected total cpRNFL thickness was within the measurement error range), thinner group (the corrected total cpRNFL thickness was less than the uncorrected one), and thicker group (the corrected total cpRNFL thickness was more than the uncorrected one). The cutoff values of axial length between the control and the other groups were calculated by receiver operating characteristic analysis. Results Measurement error ranged from 4.2 to 5.3 µm; the threshold value was defined as 5.3 µm. The cutoff values of axial length between the thinner and the control groups and between the control and the thicker groups were 23.60 (area under the curve [AUC] = 0.959) and 25.55 (AUC = 0.944) mm, respectively. Conclusions Axial lengths shorter than 23.60 mm and longer than 25.55 mm require adjustment of measured cpRNFL thickness to account for ocular magnification during SD-OCT. Clinical Trial Registration UMIN Clinical Trials Registry (http://www.umin.ac.jp/) under unique trial number UMIN000013248 (date of registration: 02/24/2014) PMID:25215521

  20. Analysis of acetabular version in the native hip: comparison between 2D axial CT and 3D CT measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dandachli, Wael [Department of Orthopaedic Surgery, Imperial College London Hospitals, London (United Kingdom); Ul Islam, Saif; Tippett, Richard; Hall-Craggs, Margaret A.; Witt, Johan D. [University College London Hospitals, London (United Kingdom)

    2011-07-15

    To compare two-dimensional (2D) axial with three-dimensional (3D) computerized tomography (CT) measurements of acetabular version in native hips. CT scans of 34 hips in 17 consecutive patients being investigated for femoroacetabular impingement were analyzed. Acetabular version was measured using 2D CT at two different axial levels, one cranial (slice 2) and the other at the equator (slice 3). The measurements were repeated after correction for pelvic tilt. The results were compared to the measurements of anatomical version obtained using a 3D CT method that automatically corrects for pelvic tilt. The mean acetabular version using the 3D CT method was 15.7 (SD 6.9 ). The mean version using slice 2 was 9.3 (SD 6.5 ) before correction for pelvic tilt and 15.7 (SD 8.0 ) after the correction. The mean version using slice 3 was 16.4 (SD 4.2 ) before tilt correction and 19.0 (SD 5.0 ) after the correction. In relation to the 3D method, the intraclass correlation coefficient (ICC) was 0.58 for the uncorrected and 0.93 for the corrected slice 2 method. For the uncorrected and corrected slice 3 methods, the ICC was 0.64 and 0.89, respectively. The 2D axial methods produced variable results. The results that correlated best with the 3D method were those of the cranial slice (slice 2) after correction for pelvic tilt. Interpretation of 2D axial CT measurements of acetabular version should be done with caution. The level at which the measurement is done and the presence of pelvic tilt appear to be significant factors. (orig.)

  1. Recent Investments by NASA's National Force Measurement Technology Capability

    Science.gov (United States)

    Commo, Sean A.; Ponder, Jonathan D.

    2016-01-01

    The National Force Measurement Technology Capability (NFMTC) is a nationwide partnership established in 2008 and sponsored by NASA's Aeronautics Evaluation and Test Capabilities (AETC) project to maintain and further develop force measurement capabilities. The NFMTC focuses on force measurement in wind tunnels and provides operational support in addition to conducting balance research. Based on force measurement capability challenges, strategic investments into research tasks are designed to meet the experimental requirements of current and future aerospace research programs and projects. This paper highlights recent and force measurement investments into several areas including recapitalizing the strain-gage balance inventory, developing balance best practices, improving calibration and facility capabilities, and researching potential technologies to advance balance capabilities.

  2. Adhesion Force Measurements of Polymer Particles by Detachment Field Method

    Institute of Scientific and Technical Information of China (English)

    Masashi Nagayama; Nobuyasu Sakurai; Tatsuaki Wada; Manabu Takeuchi

    2004-01-01

    The adhesion force distributions of polymer particles to aluminum substrates were measured by the detachment field method. Polymer particles with conducting surface treatment were used for the measurements.Further the conventional detachment field method was modified to be applicable to the adhesion force measurements of a single particle. The adhesion force of the polymer particles increased with an increase in relative humidity. The surface roughness of the substrate influenced the adhesion forces of particles significantly. The influence of the CF4 plasma treatment of the polymer particles and thin layer coating of the substrate surface on the adhesion forces of the polymer particles was also studied, and factors affecting adhesion forces of polymer particles are discussed.

  3. Measurement of inter-particle forces by an interfacial force microscope

    Institute of Scientific and Technical Information of China (English)

    Qing Huang; Asghar Mesbah-Nejad; Seyed M. Tadayyon; Peter Norton; Hui Zhang; Jesse Zhu

    2010-01-01

    An inteffacial force microscope (IFM) was employed to measure the inter-particle forces between two individual glass beads with diameters varying from 8 to 20 μm. With the feedback function of IFM turned off, attractive forces were obtained. The forces varied in the range of 0.1-0.34 μN, and their validity was confirmed by a theoretical analysis of the van der Waals force between the same glass beads. With the feedback function switched on, no attractive forces between particles were detected by the IFM when the probe approached the sample substrate. This may be attributed to the dramatic change of the attractive forces within a very short separation distance and/or the relatively poor signal-to-noise ratio of the IFM.

  4. Friction measurements using force versus distance friction loops in force microscopy

    Science.gov (United States)

    Watson, G. S.; Dinte, B. P.; Blach-Watson, J. A.; Myhra, S.

    2004-07-01

    The atomic force microscope (AFM) allows investigation of the properties of surfaces and interfaces at atomic scale resolution. However, several different operational modes (imaging, force versus distance and lateral force), need to be deployed in order to gain insight into the structure, tribiological and mechanical properties. A new method, based on a variation of the force versus distance mode, has been developed. In essence, a coupling of the deformational modes of the probe is exploited whereby the tip is induced to undergo lateral travel in response to application of an out-of-plane force (and thus normal bending of the force-sensing lever). The lateral travel induces in-plane forces that are then measurable as a consequence of stimulation of the 'buckling' deformational mode of the lever. Outcomes will be demonstrated for atomically flat surfaces of WTe 2 and highly oriented pyrolytic graphite.

  5. Standard practice for verification of testing frame and specimen alignment under tensile and compressive axial force application

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2014-01-01

    1.1 Included in this practice are methods covering the determination of the amount of bending that occurs during the application of tensile and compressive forces to notched and unnotched test specimens in the elastic range and to plastic strains less than 0.002. These methods are particularly applicable to the force application rates normally used for tension testing, creep testing, and uniaxial fatigue testing.

  6. Standard practice for verification of testing frame and specimen alignment under tensile and compressive axial force application

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 Included in this practice are methods covering the determination of the amount of bending that occurs during the application of tensile and compressive forces to notched and unnotched test specimens in the elastic range and to plastic strains less than 0.002. These methods are particularly applicable to the force application rates normally used for tension testing, creep testing, and uniaxial fatigue testing.

  7. The Influence of Central Corneal Thickness and Corneal Curvature and Axial Length on the Measurement of Intraocular Pressure

    Institute of Scientific and Technical Information of China (English)

    Qing Li; Minru Li; Zhigang Fan; Ningli Wang

    2002-01-01

    Purpose: To examine the influence of central corneal thickness (CCT), corneal curvature (CC), and axial length (AL) on intraocular pressure (IOP).Methods: Eighty-one clinically normal eyes were included in our study. The IOP, CCT, CC, AL were measured using a Goldmann applanation tonometer, optical pachymeter, keratometer and A-scan ultrasound biometer respectively in all subjects.Results: A highly significant positive correlation was identified between IOP and CCT. Linear regression analysis suggests that an increase in CCT of 0. 010 mm is associated with a 4. 946 mmHg increment in IOP. No significant positive correlation was identified between IOP and CC. P values are 0. 724 and 0.414 respectively for vertical and horizontal readings. A paradoxically reversed correlation was present between IOP and axial length.Conclusion: Corneal thickness is a very important confounding factor in the measurement of intraocular pressure, which warrants further attention in our clinical practice.

  8. Micromechanical cohesion force measurements to determine cyclopentane hydrate interfacial properties.

    Science.gov (United States)

    Aman, Zachary M; Joshi, Sanjeev E; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A

    2012-06-15

    Hydrate aggregation and deposition are critical factors in determining where and when hydrates may plug a deepwater flowline. We present the first direct measurement of structure II (cyclopentane) hydrate cohesive forces in the water, liquid hydrocarbon and gas bulk phases. For fully annealed hydrate particles, gas phase cohesive forces were approximately twice that obtained in a liquid hydrocarbon phase, and approximately six times that obtained in the water phase. Direct measurements show that hydrate cohesion force in a water-continuous bulk may be only the product of solid-solid cohesion. When excess water was present on the hydrate surface, gas phase cohesive forces increased by a factor of three, suggesting the importance of the liquid or quasi-liquid layer (QLL) in determining cohesive force. Hydrate-steel adhesion force measurements show that, when the steel surface is coated with hydrophobic wax, forces decrease up to 96%. As the micromechanical force technique is uniquely capable of measuring hydrate-surface forces with variable contact time, the present work contains significant implications for hydrate applications in flow assurance. PMID:22484169

  9. Validity of Using Tri-Axial Accelerometers to Measure Human Movement - Part I: Posture and Movement Detection

    OpenAIRE

    Lugade, Vipul; Fortune, Emma; Morrow, Melissa; Kaufman, Kenton

    2013-01-01

    A robust method for identifying movement in the free-living environment is needed to objectively measure physical activity. The purpose of this study was to validate the identification of postural orientation and movement from acceleration data against visual inspection from video recordings. Using tri-axial accelerometers placed on the waist and thigh, static orientations of standing, sitting, and lying down, as well as dynamic movements of walking, jogging and transitions between postures w...

  10. SU-8 force sensing pillar arrays for biological measurements.

    Science.gov (United States)

    Doll, Joseph C; Harjee, Nahid; Klejwa, Nathan; Kwon, Ronald; Coulthard, Sarah M; Petzold, Bryan; Goodman, Miriam B; Pruitt, Beth L

    2009-05-21

    The generation and sensation of mechanical force plays a role in many dynamic biological processes, including touch sensation. This paper presents a two-axis micro strain gauge force sensor constructed from multiple layers of SU-8 and metal on quartz substrates. The sensor was designed to meet requirements for measuring tactile sensitivity and interaction forces exerted during locomotion by small organisms such as the nematode Caenorhabditis elegans. The device is transparent and compatible with light microscopes, allowing behavioral experiments to be combined with quantitative force measurements. For the first time, we have characterized the scale of interaction forces generated in wild-type C. elegans in probing and responding to their environment during locomotion. The device features sub-microN force resolution from 1 Hz to 1 kHz, >25 microN range, kHz acquisition rates and biocompatibility. PMID:19417913

  11. Emissivity measurements with an Atomic Force Microscope

    OpenAIRE

    van Zwol, Pieter Jan; Ranno, Laurent; Chevrier, Joel

    2011-01-01

    We show that functionalized micromechanical bilayer levers can be used as sensitive probes to accurately measure radiative heat flux in vacuum between two materials at the micro scale. By means of calibration to one material these measurements can be made quantitative for radiative heat flux or for either temperature or material emissivity. We discuss issues and opportunities for our method and provide ample technical details regarding its implementation and demonstrate good correspondence wi...

  12. Uncertainties in forces extracted from non-contact atomic force microscopy measurements by fitting of long-range background forces

    Directory of Open Access Journals (Sweden)

    Adam Sweetman

    2014-04-01

    Full Text Available In principle, non-contact atomic force microscopy (NC-AFM now readily allows for the measurement of forces with sub-nanonewton precision on the atomic scale. In practice, however, the extraction of the often desired ‘short-range’ force from the experimental observable (frequency shift is often far from trivial. In most cases there is a significant contribution to the total tip–sample force due to non-site-specific van der Waals and electrostatic forces. Typically, the contribution from these forces must be removed before the results of the experiment can be successfully interpreted, often by comparison to density functional theory calculations. In this paper we compare the ‘on-minus-off’ method for extracting site-specific forces to a commonly used extrapolation method modelling the long-range forces using a simple power law. By examining the behaviour of the fitting method in the case of two radically different interaction potentials we show that significant uncertainties in the final extracted forces may result from use of the extrapolation method.

  13. Improvement of the axial trapping effect using azimuthally polarised trapping beam

    Institute of Scientific and Technical Information of China (English)

    Li Xue-Cong; Sun Xiu-Dong

    2010-01-01

    A dual optical tweezers system, which consists of a doughnut mode optical tweezer (DMOT) with the azimuthally polarised trapping beam and a solid mode optical tweezer (SMOT) with the Gauss trapping beam was constructed to compare the axial trapping effect of DMOT and SMOT. The long-distance axial trapping of ST68 microbubbles (MBs) achieved by DMOT was more stable than that of SMOT. Moreover the axial trapping force measured using the viscous drag method, was depended on the diameter of the particle, the laser power, and the numerical aperture (NA) of the objective lens. The measurement of the axial trapping force and the acquisition of CCD images of trapping effect confirmed that the DMOT showed excellent axial trapping ability than SMOT. A simple and effective method is developed to improve axial trapping effect using the azimuthally polarized beam as trapping beam. This is helpful for the long-distance manipulating of particles especially polarised biological objects in axial direction.

  14. Probing Anisotropic Surface Properties of Molybdenite by Direct Force Measurements.

    Science.gov (United States)

    Lu, Zhenzhen; Liu, Qingxia; Xu, Zhenghe; Zeng, Hongbo

    2015-10-27

    Probing anisotropic surface properties of layer-type mineral is fundamentally important in understanding its surface charge and wettability for a variety of applications. In this study, the surface properties of the face and the edge surfaces of natural molybdenite (MoS2) were investigated by direct surface force measurements using atomic force microscope (AFM). The interaction forces between the AFM tip (Si3N4) and face or edge surface of molybdenite were measured in 10 mM NaCl solutions at various pHs. The force profiles were well-fitted with classical DLVO (Derjaguin-Landau-Verwey-Overbeek) theory to determine the surface potentials of the face and the edge surfaces of molybdenite. The surface potentials of both the face and edge surfaces become more negative with increasing pH. At neutral and alkaline conditions, the edge surface exhibits more negative surface potential than the face surface, which is possibly due to molybdate and hydromolybdate ions on the edge surface. The point of zero charge (PZC) of the edge surface was determined around pH 3 while PZC of the face surface was not observed in the range of pH 3-11. The interaction forces between octadecyltrichlorosilane-treated AFM tip (OTS-tip) and face or edge surface of molybdenite were also measured at various pHs to study the wettability of molybdenite surfaces. An attractive force between the OTS-tip and the face surface was detected. The force profiles were well-fitted by considering DLVO forces and additional hydrophobic force. Our results suggest the hydrophobic feature of the face surface of molybdenite. In contrast, no attractive force between the OTS-tip and the edge surface was detected. This is the first study in directly measuring surface charge and wettability of the pristine face and edge surfaces of molybdenite through surface force measurements. PMID:26434695

  15. Development of a Stereo Vision Measurement System for a 3D Three-Axial Pneumatic Parallel Mechanism Robot Arm

    OpenAIRE

    Chien-Lun Hou; Hao-Ting Lin; Mao-Hsiung Chiang

    2011-01-01

    In this paper, a stereo vision 3D position measurement system for a three-axial pneumatic parallel mechanism robot arm is presented. The stereo vision 3D position measurement system aims to measure the 3D trajectories of the end-effector of the robot arm. To track the end-effector of the robot arm, the circle detection algorithm is used to detect the desired target and the SAD algorithm is used to track the moving target and to search the corresponding target location along the conjugate epip...

  16. Measurement of the quasi-elastic axial vector mass in neutrino-oxygen interactions

    CERN Document Server

    Gran, R; Bóna, M; Boutigny, D; Couderc, F; Karyotakis, Yu; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Graugès-Pous, E; Palano, A; Pappagallo, M; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schröder, T; Steinke, M; Boyd, J T; Burke, J P; Cottingham, W N; Walker, D; Çuhadar-Dönszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, Yu K; Best, D S; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M A; Mommsen, R K; Röthel, W; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Hadavand, H K; Hill, E J; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Andreassen, R; Mancinelli, G; Meadows, B T; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nauenberg, U; Olivas, A; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Spaan, B; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Petzold, A; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Grenier, P; Latour, E; Thiebaux, C; Verderi, M; Bard, D J; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; De Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Gaillard, J R; Nash, J A; Nikolich, M B; Panduro-Vazquez, W; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gritsan, A V; Fritsch, M; Schott, G; Arnaud, N; Davier, M; Grosdidier, G; Höcker, A; Le Diberder, F R; Lepeltier, V; Lutz, A M; Oyanguren, A; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wang, W F; Wormser, G; Cheng, C H; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; Di Lodovico, F; Menges, W; Sacco, R; Brown, C L; Cowan, G; Flächer, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Kelly, M P; Lafferty, G D; Naisbit, M T; Williams, J C; Yi, J I; Chen, C; Hulsbergen, W D; Jawahery, A; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Saremi, S; Stängle, H; Willocq, S Y; Cowan, R; Koeneke, K; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; Patel, P M; Potter, C T; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; Cavallo, N; De Nardo, Gallieno; Del Re, D; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Snoek, H L; Jessop, C P; LoSecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonian, R; Wong, Q K; Blount, N L; Brau, J E; Frey, R; Igonkina, O; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Galeazzi, F; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Chauveau, J; David, P; Del Buono, L; La Vaissière, C de; Hamon, O; Hartfiel, B L; John, M J J; Leruste, P; Malcles, J; Ocariz, J; Roos, L; Therin, G; Behera, P K; Gladney, L; Panetta, J; Biasini, M; Covarelli, R; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Cenci, R; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J; Haire, M; Judd, D; Wagoner, D E; Biesiada, J; Danielson, N; Elmer, P; Lau, Y P; Lü, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Safai-Tehrani, F; Voena, C; Ebert, M; Schröder, H; Waldi, R; Adye, T; De Groot, N; Franek, B; Olaiya, E O; Wilson, F F; Emery, S; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, Witold; Legendre, M; Mayer, B; Vasseur, G; Yéche, C; Zito, M; Park, W; Purohit, M V; Weidemann, A W; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Boyarski, A M; Claus, R; Coleman, J P; Convery, M R; Cristinziani, M; Dingfelder, J C; Dong, D; Dorfan, J; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W M; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Halyo, V; Hast, C; Hrynóva, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Libby, J; Luitz, S; Lüth, V; Lynch, H L; MacFarlane, D B; Marsiske, H; Messner, R; Müller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Vavra, J; Van Bakel, N; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Satpathy, A; Schilling, C J; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Vitale, L; Azzolini, V; Martínez-Vidal, F; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Kowalewski, R V; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Eichenbaum, A M; Flood, K T; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Mellado, B; Mihályi, A; Mohapatra, A K; Pan, Y; Pierini, M; Prepost, R; Tan, P; Wu, S L; Yu, Z; Neal, H; Back, B B

    2006-01-01

    The weak nucleon axial-vector form factor for quasi-elastic interactions is determined using neutrino interaction data from the K2K Scintillating Fiber detector in the neutrino beam at KEK. More than 12,000 events are analyzed, of which half are charged-current quasi-elastic interactions nu-mu n to mu- p occurring primarily in oxygen nuclei. We use a relativistic Fermi gas model for oxygen and assume the form factor is approximately a dipole with one parameter, the axial vector mass M_A, and fit to the shape of the distribution of the square of the momentum transfer from the nucleon to the nucleus. Our best fit result for M_A = 1.20 \\pm 0.12 GeV. Furthermore, this analysis includes updated vector form factors from recent electron scattering experiments and a discussion of the effects of the nucleon momentum on the shape of the fitted distributions.

  17. Direct measurement of the forces generated by an undulatory microswimmer

    Science.gov (United States)

    Schulman, Rafael; Backholm, Matilda; Ryu, William; Dalnoki-Veress, Kari

    2014-11-01

    C. elegans is a millimeter-sized nematode which has served as a model organism in biology for several decades, primarily due to its simple anatomy. Employing an undulatory form of locomotion, this worm is capable of propelling itself through various media. Using a micropipette deflection technique, in conjunction with high speed imaging, we directly measure the time-varying forces generated by C. elegans. We observe excellent agreement between our measured forces and the predictions of resistive force theory, through which we determine the drag coefficients of the worm. We also perform the direct force measurements at controlled distances from a single solid boundary as well as between two solid boundaries. We extract the drag coefficients of the worm to quantify the influence of the boundary on the swimming and the hydrodynamic forces involved.

  18. THE DETERMINATION OF THE OPTIMAL DIAMETER OF THE BLANK PART AND THE FRICTION FORCE WHEN THE AXIALLY SYMMETRIC DETAILS STRETCHING

    Directory of Open Access Journals (Sweden)

    N. N. Moroz

    2009-12-01

    Full Text Available The algorithm of calculation of stressed-and-strained state for determination of the optimum friction forces and the diameter of round sheet blank is developed. The theoretical results are compared with the experimental research data. The optimum values of quantity of layers and length of elementary segments, into which accordingly thickness and radius of blank are divided, are determined. The equation for determination of friction force, in addition taking into account the viscosity of lubricant and thickening the flange, is offered.

  19. Force Measurements in Magnetic Suspension and Balance System

    Science.gov (United States)

    Kuzin, Alexander; Shapovalov, George; Prohorov, Nikolay

    1996-01-01

    The description of an infrared telemetry system for measurement of drag forces in Magnetic Suspension and Balance Systems (MSBS) is presented. This system includes a drag force sensor, electronic pack and transmitter placed in the model which is of special construction, and receiver with a microprocessor-based measuring device, placed outside of the test section. Piezosensitive resonators as sensitive elements and non-magnetic steel as the material for the force sensor are used. The main features of the proposed system for load measurements are discussed and the main characteristics are presented.

  20. Vehicle Lateral State Estimation Based on Measured Tyre Forces

    Directory of Open Access Journals (Sweden)

    Ari J. Tuononen

    2009-10-01

    Full Text Available Future active safety systems need more accurate information about the state of vehicles. This article proposes a method to evaluate the lateral state of a vehicle based on measured tyre forces. The tyre forces of two tyres are estimated from optically measured tyre carcass deflections and transmitted wirelessly to the vehicle body. The two remaining tyres are so-called virtual tyre sensors, the forces of which are calculated from the real tyre sensor estimates. The Kalman filter estimator for lateral vehicle state based on measured tyre forces is presented, together with a simple method to define adaptive measurement error covariance depending on the driving condition of the vehicle. The estimated yaw rate and lateral velocity are compared with the validation sensor measurements.

  1. Thigh-calf contact force measurements in deep knee flexion.

    NARCIS (Netherlands)

    Zelle, J.G.; Barink, M.; Loeffen, R.; Waal Malefijt, M.C. de; Verdonschot, N.J.J.

    2007-01-01

    BACKGROUND: Knee models often do not contain thigh-calf contact which occurs in deep knee flexion. Thigh-calf contact is expected to reduce muscle forces and thereby affects internal stresses in the knee joint. The purpose of this study was to measure thigh-calf contact forces. Two deep knee flexion

  2. Reduction of Liquid Bridge Force for 3D Microstructure Measurements

    Directory of Open Access Journals (Sweden)

    Hiroshi Murakami

    2016-05-01

    Full Text Available Recent years have witnessed an increased demand for a method for precise measurement of the microstructures of mechanical microparts, microelectromechanical systems, micromolds, optical devices, microholes, etc. This paper presents a measurement system for three-dimensional (3D microstructures that use an optical fiber probe. This probe consists of a stylus shaft with a diameter of 2.5 µm and a glass ball with a diameter of 5 µm attached to the stylus tip. In this study, the measurement system, placed in a vacuum vessel, is constructed suitably to prevent adhesion of the stylus tip to the measured surface caused by the surface force resulting from the van der Waals force, electrostatic force, and liquid bridge force. First, these surface forces are analyzed with the aim of investigating the causes of adhesion. Subsequently, the effects of pressure inside the vacuum vessel on surface forces are evaluated. As a result, it is found that the surface force is 0.13 µN when the pressure inside the vacuum vessel is 350 Pa. This effect is equivalent to a 60% reduction in the surface force in the atmosphere.

  3. Measuring Air Force Contracting customer satisfaction

    OpenAIRE

    Davis, Jamie

    2015-01-01

    Approved for public release; distribution is unlimited This research gathers background information to identify which customer satisfaction elements should be included in a standardized tool that measures the level of customer satisfaction for AF Contracting’s external and internal customers. This research conducts a comprehensive literature review of the prominent customer satisfaction trends, while exploring the idiosyncrasies of customer satisfaction that are unique to AF Contracting. F...

  4. Testing the retention of attachments for implant overdentures - validation of an original force measurement system.

    Science.gov (United States)

    Fromentin, O; Lassauzay, C; Abi Nader, S; Feine, J; de Albuquerque Junior, R F

    2010-01-01

    The aim of this study was to validate an original portable device to measure attachment retention of implant overdentures both in the lab and in clinical settings. The device was built with a digital force measurement gauge (Imada) secured to a vertical wheel stand associated with a customized support to hold and position the denture in adjustable angulations. Sixteen matrix and patrix cylindrical stud attachments (Locator) were randomly assigned as in vitro test specimens. Attachment abutments were secured in an implant analogue hung to the digital force gauge or to the load cell of a traction machine used as the gold standard (Instron Universal Testing Machine). Matrices were secured in a denture duplicate attached to the customized support, permitting reproducibility of their position on both pulling devices. Attachment retention in the axial direction was evaluated by measuring maximum dislodging force or peak load during five consecutive linear dislodgments of each attachment on both devices. After a wear simulation, retention was measured again at several time periods. The peak load measurements with the customized Imada device were similar to those obtained with the gold standard Instron machine. These findings suggest that the proposed portable device can provide accurate information on the retentive properties of attachment systems for removable dental prostheses. PMID:19912482

  5. Testing the retention of attachments for implant overdentures - validation of an original force measurement system.

    Science.gov (United States)

    Fromentin, O; Lassauzay, C; Abi Nader, S; Feine, J; de Albuquerque Junior, R F

    2010-01-01

    The aim of this study was to validate an original portable device to measure attachment retention of implant overdentures both in the lab and in clinical settings. The device was built with a digital force measurement gauge (Imada) secured to a vertical wheel stand associated with a customized support to hold and position the denture in adjustable angulations. Sixteen matrix and patrix cylindrical stud attachments (Locator) were randomly assigned as in vitro test specimens. Attachment abutments were secured in an implant analogue hung to the digital force gauge or to the load cell of a traction machine used as the gold standard (Instron Universal Testing Machine). Matrices were secured in a denture duplicate attached to the customized support, permitting reproducibility of their position on both pulling devices. Attachment retention in the axial direction was evaluated by measuring maximum dislodging force or peak load during five consecutive linear dislodgments of each attachment on both devices. After a wear simulation, retention was measured again at several time periods. The peak load measurements with the customized Imada device were similar to those obtained with the gold standard Instron machine. These findings suggest that the proposed portable device can provide accurate information on the retentive properties of attachment systems for removable dental prostheses.

  6. The application of thwart Ⅱ beam to axial force structure of wind tunnel strain gauge balance%横Ⅱ型梁在风洞应变天平阻力结构上的应用

    Institute of Scientific and Technical Information of China (English)

    史玉杰; 陈竹; 田正波

    2012-01-01

    In this paper, the measurement beam of axial force of wind tunnel strain gauge balance was analyzed by contrasting the traditional T beam and thwart II beam. Based on the analysis, we put forward the improvement on thwart II beam, and the improved beam is optimized by using the FEA soft . The beam reduces the Y-interaction on X availably, benefiting the stability improvement of axial force. A balance on the high speed wind tunnel force test of an airplane model applies the thwart II beam. The static calibration accords with the results of the analysis, and the balance is in order and stable during the wind tunnel test.%主要通过对比传统T型梁和横Ⅱ型梁,对风洞应变天平的阻力测量梁进行了分析,根据分析结果提出了传统的横Ⅱ型阻力测量梁的改进方式,并通过有限元分析软件进行了优化分析,改进后的横Ⅱ型阻力测量梁降低了升力对阻力的干扰,并有利于提高天平阻力分量的稳定性.该测量梁结构应用到了某型飞机高速风洞试验测力天平上,天平静态校准结果与理论分析结果吻合,风洞试验时天平状态良好、性能稳定.

  7. Measurement of Elastic Properties of Tissue by Shear Wave Propagation Generated by Acoustic Radiation Force

    Science.gov (United States)

    Tabaru, Marie; Azuma, Takashi; Hashiba, Kunio

    2010-07-01

    Acoustic radiation force (ARF) imaging has been developed as a novel elastography technology to diagnose hepatic disease and breast cancer. The accuracy of shear wave speed estimation, which is one of the applications of ARF elastography, is studied. The Young's moduli of pig liver and foie gras samples estimated from the shear wave speed were compared with those measured the static Young's modulus measurement. The difference in the two methods was 8%. Distance attenuation characteristics of the shear wave were also studied using finite element method (FEM) analysis. We found that the differences in the axial and lateral beam widths in pressure and ARF are 16 and 9% at F-number=0.9. We studied the relationship between two branch points in distance attenuation characteristics and the shape of ARF. We found that the maximum measurable length to estimate shear wave speed for one ARF excitation was 8 mm.

  8. Topological and geometric measurements of force chain structure

    CERN Document Server

    Giusti, Chad; Owens, Eli T; Daniels, Karen E; Bassett, Danielle S

    2016-01-01

    Developing quantitative methods for characterizing structural properties of force chains in densely packed granular media is an important step toward understanding or predicting large-scale physical properties of a packing. A promising framework in which to develop such methods is network science, which can be used to translate particle locations and force contacts to a graph in which particles are represented by nodes and forces between particles are represented by weighted edges. Applying network-based community-detection techniques to extract force chains opens the door to developing statistics of force chain structure, with the goal of identifying shape differences across packings, and providing a foundation on which to build predictions of bulk material properties from mesoscale network features. Here, we discuss a trio of related but fundamentally distinct measurements of mesoscale structure of force chains in arbitrary 2D packings, including a novel statistic derived using tools from algebraic topology...

  9. Quantum metrology. Optically measuring force near the standard quantum limit.

    Science.gov (United States)

    Schreppler, Sydney; Spethmann, Nicolas; Brahms, Nathan; Botter, Thierry; Barrios, Maryrose; Stamper-Kurn, Dan M

    2014-06-27

    The Heisenberg uncertainty principle sets a lower bound on the noise in a force measurement based on continuously detecting a mechanical oscillator's position. This bound, the standard quantum limit, can be reached when the oscillator subjected to the force is unperturbed by its environment and when measurement imprecision from photon shot noise is balanced against disturbance from measurement back-action. We applied an external force to the center-of-mass motion of an ultracold atom cloud in a high-finesse optical cavity and measured the resulting motion optically. When the driving force is resonant with the cloud's oscillation frequency, we achieve a sensitivity that is a factor of 4 above the standard quantum limit and consistent with theoretical predictions given the atoms' residual thermal disturbance and the photodetection quantum efficiency.

  10. Surface force measurement of ultraviolet nanoimprint lithography materials

    Science.gov (United States)

    Taniguchi, Jun; Hasegawa, Masayuki; Amemiya, Hironao; Kobayashi, Hayato

    2016-02-01

    Ultraviolet nanoimprint lithography (UV-NIL) has advantages such as room-temperature operation, high through-put, and high resolution. In the UV-NIL process, the mold needs a release coating material to prevent adhesion of the transfer resin. Usually, fluorinated silane coupling agents are used as release coating materials. To evaluate the release property, surface force analyzer equipment was used. This equipment can measure the surface forces between release-coated or noncoated mold material surfaces and UV-cured resin surfaces in the solid state. Lower surface forces were measured when a release coating was used on the mold material surface.

  11. Application of Lorentz force techniques for flow rate measurement

    Science.gov (United States)

    Ebert, Reschad Johann; Resagk, Christian

    2014-11-01

    We report on the progress of the Lorentz force velocimetry (LFV): a contactless non-invasive flow velocity measurement technique. This method has been developed and demonstrated for various applications in our institute and in industry. At applications for weakly conducting fluids such as electrolytes with conductivities in the range of 1 - 10 S/m the challenging bottleneck is the detection of the tiny Lorentz forces in the noisy environment of the test channel. For the force measurement a state-of-the-art electromagnetic force compensation balance is used. Due to this device the mass of the Lorentz force generating magnets is limited. For enabling larger magnet systems and for higher force signals we have developed and tested a buoyancy based weight force compensation method which will be presented here. Additionally, results of LFV measurements at non-symmetric fluid profiles will be shown. By that an evaluation of the feasibility of this measurement principle for disturbed fluid profiles that are relevant for developing the LFV for weakly conducting fluids towards industrial applications can be made. Additionally a prospective setup for using the LFV for molten salt flows will be explained.

  12. Does an instrumented treadmill correctly measure the ground reaction forces?

    Directory of Open Access Journals (Sweden)

    Patrick A. Willems

    2013-11-01

    Since the 1990s, treadmills have been equipped with multi-axis force transducers to measure the three components of the ground reaction forces during walking and running. These measurements are correctly performed if the whole treadmill (including the motor is mounted on the transducers. In this case, the acceleration of the treadmill centre of mass relative to the reference frame of the laboratory is nil. The external forces exerted on one side of the treadmill are thus equal in magnitude and opposite in direction to the external forces exerted on the other side. However, uncertainty exists about the accuracy of these measures: due to friction between the belt and the tread-surface, due to the motor pulling the belt, some believe that it is not possible to correctly measure the horizontal components of the forces exerted by the feet on the belt. Here, we propose a simple model of an instrumented treadmill and we demonstrate (1 that the forces exerted by the subject moving on the upper part of the treadmill are accurately transmitted to the transducers placed under it and (2 that all internal forces – including friction – between the parts of the treadmill are cancelling each other.

  13. Flight Force Measurements on a Spacecraft to Launch Vehicle Interface

    Science.gov (United States)

    Kaufman, Daniel S.; Gordon, Scott A.

    2012-07-01

    For several years we had wanted to measure interface forces between a launch vehicle and the Payload. Finally in July 2006 a proposal was made and funded to evaluate the use of flight force measurements (FFM) to improve the loads process of a Spacecraft in its design and test cycle. A NASA/Industry team was formed, the core Team consisted of 20 people. The proposal identified two questions that this assessment would attempt to address by obtaining the flight forces. These questions were: 1) Is flight correlation and reconstruction with acceleration methods sufficient? 2) How much can the loads and therefore the design and qualification be reduced by having force measurements? The objective was to predict the six interface driving forces between the Spacecraft and the Launch Vehicle throughout the boost phase. Then these forces would be compared with reconstructed loads analyses for evaluation in an attempt to answer them. The paper will present the development of a strain based force measurement system and also an acceleration method, actual flight results, post flight evaluations and lessons learned.

  14. Movement, resting, and attack behaviors of wild pumas are revealed by tri-axial accelerometer measurements

    OpenAIRE

    Wang, Yiwei; Nickel, Barry; Rutishauser, Matthew; Bryce, Caleb M; Williams, Terrie M; Elkaim, Gabriel; Wilmers, Christopher C.

    2015-01-01

    Background Accelerometers are useful tools for biologists seeking to gain a deeper understanding of the daily behavior of cryptic species. We describe how we used GPS and tri-axial accelerometer (sampling at 64 Hz) collars to monitor behaviors of free-ranging pumas (Puma concolor), which are difficult or impossible to observe in the wild. We attached collars to twelve pumas in the Santa Cruz Mountains, CA from 2010-2012. By implementing Random Forest models, we classified behaviors in wild pu...

  15. Measurement of the forming limit stress curve using a multi-axial tube expansion test with a digital image correlation system

    International Nuclear Information System (INIS)

    A servo-controlled tension-internal pressure testing machine with an optical 3D deformation analysis system (ARAMIS) was used to measure the multi-axial plastic deformation behavior of a high-strength steel sheet for a range of strain from initial yield to fracture. The testing machine is capable of applying arbitrary principal stress or strain paths to a tubular specimen using an electrical, closed-loop servo-control system for axial force and internal pressure. Tubular specimens with an inner diameter of 44.6 mm were fabricated from a high-strength steel sheet with a tensile strength of 590 MPa and a thickness of 1.2 mm by roller bending and laser welding. Several linear and non-linear stress paths in the first quadrant of the stress space were applied to the tubular specimens in order to measure the forming limit curve (FLC) and forming limit stress curve (FLSC) of the as-received test material, in addition to the contours of plastic work and the directions of plastic strain rates. The contours of plastic work and the directions of plastic strain rates measured for the linear stress path experiments were compared with those calculated using selected yield functions in order to identify the most appropriate yield function for the test material. Moreover, a Marciniak-Kuczyński type (M-K) forming limit analysis was performed using the most appropriate yield function. The calculated and measured FLC and FLSC were compared in order to validate the M-K approach. The path-dependence of the FLC and FLSC was also investigated

  16. Measurement of the forming limit stress curve using a multi-axial tube expansion test with a digital image correlation system

    Science.gov (United States)

    Hakoyama, Tomoyuki; Kuwabara, Toshihiko

    2013-12-01

    A servo-controlled tension-internal pressure testing machine with an optical 3D deformation analysis system (ARAMIS) was used to measure the multi-axial plastic deformation behavior of a high-strength steel sheet for a range of strain from initial yield to fracture. The testing machine is capable of applying arbitrary principal stress or strain paths to a tubular specimen using an electrical, closed-loop servo-control system for axial force and internal pressure. Tubular specimens with an inner diameter of 44.6 mm were fabricated from a high-strength steel sheet with a tensile strength of 590 MPa and a thickness of 1.2 mm by roller bending and laser welding. Several linear and non-linear stress paths in the first quadrant of the stress space were applied to the tubular specimens in order to measure the forming limit curve (FLC) and forming limit stress curve (FLSC) of the as-received test material, in addition to the contours of plastic work and the directions of plastic strain rates. The contours of plastic work and the directions of plastic strain rates measured for the linear stress path experiments were compared with those calculated using selected yield functions in order to identify the most appropriate yield function for the test material. Moreover, a Marciniak-Kuczyński type (M-K) forming limit analysis was performed using the most appropriate yield function. The calculated and measured FLC and FLSC were compared in order to validate the M-K approach. The path-dependence of the FLC and FLSC was also investigated.

  17. Measurement of the forming limit stress curve using a multi-axial tube expansion test with a digital image correlation system

    Energy Technology Data Exchange (ETDEWEB)

    Hakoyama, Tomoyuki [Department of Mechanical Systems Engineering, Graduate school of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei-shi, Tokyo, 184-8588 (Japan); Kuwabara, Toshihiko [Division of Advanced Mechanical Systems Engineering, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei-shi, Tokyo, 184-8588 (Japan)

    2013-12-16

    A servo-controlled tension-internal pressure testing machine with an optical 3D deformation analysis system (ARAMIS) was used to measure the multi-axial plastic deformation behavior of a high-strength steel sheet for a range of strain from initial yield to fracture. The testing machine is capable of applying arbitrary principal stress or strain paths to a tubular specimen using an electrical, closed-loop servo-control system for axial force and internal pressure. Tubular specimens with an inner diameter of 44.6 mm were fabricated from a high-strength steel sheet with a tensile strength of 590 MPa and a thickness of 1.2 mm by roller bending and laser welding. Several linear and non-linear stress paths in the first quadrant of the stress space were applied to the tubular specimens in order to measure the forming limit curve (FLC) and forming limit stress curve (FLSC) of the as-received test material, in addition to the contours of plastic work and the directions of plastic strain rates. The contours of plastic work and the directions of plastic strain rates measured for the linear stress path experiments were compared with those calculated using selected yield functions in order to identify the most appropriate yield function for the test material. Moreover, a Marciniak-Kuczyński type (M-K) forming limit analysis was performed using the most appropriate yield function. The calculated and measured FLC and FLSC were compared in order to validate the M-K approach. The path-dependence of the FLC and FLSC was also investigated.

  18. The Kilogram and Measurements of Mass and Force.

    Science.gov (United States)

    Jabbour, Z J; Yaniv, S L

    2001-01-01

    This paper describes the facilities, measurement capabilities, and ongoing research activities in the areas of mass and force at the National Institute of Standards and Technology (NIST). The first section of the paper is devoted to mass metrology and starts with a brief historical perspective on the developments that led to the current definition of the kilogram. An overview of mass measurement procedures is given with a brief discussion of current research on alternative materials for mass standards and surface profiles of the U.S. national prototype kilograms. A brief outlook into the future possible redefinition of the unit of mass based on fundamental principles is included. The second part of this paper focuses on the unit of force and describes the realization of the unit, measurement procedures, uncertainty in the realized force, facilities, and current efforts aimed at the realization of small forces.

  19. Novel Low-Cost Sensor for Human Bite Force Measurement

    Directory of Open Access Journals (Sweden)

    Jarred Fastier-Wooller

    2016-08-01

    Full Text Available This paper presents the design and development of a low cost and reliable maximal voluntary bite force sensor which can be manufactured in-house by using an acrylic laser cutting machine. The sensor has been designed for ease of fabrication, assembly, calibration, and safe use. The sensor is capable of use within an hour of commencing production, allowing for rapid prototyping/modifications and practical implementation. The measured data shows a good linear relationship between the applied force and the electrical resistance of the sensor. The output signal has low drift, excellent repeatability, and a large measurable range of 0 to 700 N. A high signal-to-noise response to human bite forces was observed, indicating the high potential of the proposed sensor for human bite force measurement.

  20. Video measurements of instantaneous forces of flapping wing vehicles

    Science.gov (United States)

    Jennings, Alan; Mayhew, Michael; Black, Jonathan

    2015-12-01

    Flapping wings for small aerial vehicles have revolutionary potential for maneuverability and endurance. Ornithopters fail to achieve the performance of their biological equivalents, despite extensive research on how animals fly. Flapping wings produce peak forces due to the stroke reversal of the wing. This research demonstrates in-flight measurements of an ornithopter through the use of image processing, specifically measuring instantaneous forces. Results show that the oscillation about the flight path is significant, being about 20% of the mean velocity and up to 10 g's. Results match forces with deformations of the wing to contrast the timing and wing shape of the upstroke and the downstroke. Holding the vehicle fixed (e.g. wind tunnel testing or simulations) structural resonance is affected along with peak forces, also affecting lift. Non-contact, in-flight measurements are proposed as the best method for matching the flight conditions of flapping wing vehicles.

  1. NASA ATP Force Measurement Technology Capability Strategic Plan

    Science.gov (United States)

    Rhew, Ray D.

    2008-01-01

    The Aeronautics Test Program (ATP) within the National Aeronautics and Space Administration (NASA) Aeronautics Research Mission Directorate (ARMD) initiated a strategic planning effort to re-vitalize the force measurement capability within NASA. The team responsible for developing the plan included members from three NASA Centers (Langley, Ames and Glenn) as well as members from the Air Force s Arnold Engineering and Development Center (AEDC). After visiting and discussing force measurement needs and current capabilities at each participating facility as well as selected force measurement companies, a strategic plan was developed to guide future NASA investments. This paper will provide the details of the strategic plan and include asset management, organization and technology research and development investment priorities as well as efforts to date.

  2. 深基坑工程钢支撑轴力实测分析与预测%Analysis and Prediction to Steel Support Axial Force in Deep Excavation

    Institute of Scientific and Technical Information of China (English)

    刘斌

    2013-01-01

      随着地下空间的开发利用,各种深基坑工程不断涌现,钢支撑技术因施工方便在深基坑设计中广泛应用。目前,对钢支撑系统的研究多采用传统理论和数值模拟技术,这些方法对模型的基本参数有严格要求,通常情况下很难取得。人工神经网络具有很强的学习、联想和抗干扰能力,在预测分析等方面表现出极大的优势。本文以青岛地铁火车北站深基坑工程为背景,通过钢支撑轴力现场监测得到轴力变化规律。研究深基坑支撑轴力变化影响因素,将各因素根据一定规律进行划分,建立了钢支撑轴力影响因素的评价指标体系。并基于人工神经网络对钢支撑轴力进行预测,预测数据和实测数据吻合较好。%  With the development and utilization of underground space, a variety of deep foundation pits are constantly emerging. The steel support technology is widely used in deep foundation design because of its simple and convenient construction. At present, the research on steel support system has been by using the traditional theory and numerical simulation technology;however, these methods have a higher demand for the basic parameters of the model. Under normal circumstances, it is difficult to obtain these parameters. The artificial neural network has a strong learning, Lenovo and anti-jamming capability, and has shown great advantage in the prediction analysis. Based on a deep excavation of Qingdao subway station, through analyzing the monitoring data of steel strut axial forces, it gets influencing factors of the change of the axial force. At last, evaluation index system is established. Through predicting steel strut axial forces based on artificial neural network, the result shows that the forecast data has a good agreement with the measured data.

  3. Development of a Stereo Vision Measurement System for a 3D Three-Axial Pneumatic Parallel Mechanism Robot Arm

    Directory of Open Access Journals (Sweden)

    Chien-Lun Hou

    2011-02-01

    Full Text Available In this paper, a stereo vision 3D position measurement system for a three-axial pneumatic parallel mechanism robot arm is presented. The stereo vision 3D position measurement system aims to measure the 3D trajectories of the end-effector of the robot arm. To track the end-effector of the robot arm, the circle detection algorithm is used to detect the desired target and the SAD algorithm is used to track the moving target and to search the corresponding target location along the conjugate epipolar line in the stereo pair. After camera calibration, both intrinsic and extrinsic parameters of the stereo rig can be obtained, so images can be rectified according to the camera parameters. Thus, through the epipolar rectification, the stereo matching process is reduced to a horizontal search along the conjugate epipolar line. Finally, 3D trajectories of the end-effector are computed by stereo triangulation. The experimental results show that the stereo vision 3D position measurement system proposed in this paper can successfully track and measure the fifth-order polynomial trajectory and sinusoidal trajectory of the end-effector of the three- axial pneumatic parallel mechanism robot arm.

  4. Development of a stereo vision measurement system for a 3D three-axial pneumatic parallel mechanism robot arm.

    Science.gov (United States)

    Chiang, Mao-Hsiung; Lin, Hao-Ting; Hou, Chien-Lun

    2011-01-01

    In this paper, a stereo vision 3D position measurement system for a three-axial pneumatic parallel mechanism robot arm is presented. The stereo vision 3D position measurement system aims to measure the 3D trajectories of the end-effector of the robot arm. To track the end-effector of the robot arm, the circle detection algorithm is used to detect the desired target and the SAD algorithm is used to track the moving target and to search the corresponding target location along the conjugate epipolar line in the stereo pair. After camera calibration, both intrinsic and extrinsic parameters of the stereo rig can be obtained, so images can be rectified according to the camera parameters. Thus, through the epipolar rectification, the stereo matching process is reduced to a horizontal search along the conjugate epipolar line. Finally, 3D trajectories of the end-effector are computed by stereo triangulation. The experimental results show that the stereo vision 3D position measurement system proposed in this paper can successfully track and measure the fifth-order polynomial trajectory and sinusoidal trajectory of the end-effector of the three- axial pneumatic parallel mechanism robot arm.

  5. Towards a Casimir Force Measurement between Micromachined Parallel Plate Structures

    Directory of Open Access Journals (Sweden)

    Remco J. Wiegerink

    2012-11-01

    Full Text Available Ever since its prediction, experimental investigation of the Casimir force has been of great scientific interest. Many research groups have successfully attempted quantifying the force with different device geometries; however, measurement of the Casimir force between parallel plates with sub-micron separation distance is still a challenging task, since it becomes extremely difficult to maintain sufficient parallelism between the plates. The Casimir force can significantly influence the operation of micro devices and to realize reliable and reproducible devices it is necessary to understand and experimentally verify the influence of the Casimir force at sub-micron scale. In this paper, we present the design principle, fabrication and characterization of micromachined parallel plate structures that could allow the measurement of the Casimir force with tunable separation distance in the range of 100 to 1000 nm. Initially, a gold coated parallel plate structure is explored to measure the Casimir force, but also other material combinations could be investigated. Using gold-silicon eutectic bonding, a reliable approach to bond chips with integrated suspended plates together with a well-defined separation distance in the order of 1–2 μm is developed.

  6. Performance Test and Flow Measurement of Contra-Rotating Axial Flow Pump

    Institute of Scientific and Technical Information of China (English)

    Akinori Furukawa; Toru Shigemitsu; Satoshi Watanabe

    2007-01-01

    An application of contra-rotating rotors has been proposed against a demand for developing higher specific speed axial flow pump. In the present paper, the advantage and disadvantage of using contra-rotating rotors are described in comparison with conventional type of rotor-stator, based on theoretical and experimental investigations. The advantages are as follows: (1) The pump is inherently designed as smaller sized and at lower rotational speed. (2) A stable head-characteristic curve for flow rate with negative slope appears. (3)As the rear rotor rotational speed is varied as independent control of front rotor, the wider range of high performance operation is obtained by rear rotor speed control in addition to front rotor speed control. The disadvantages are as follows: (1) The structure of double shaft system becomes complex. (2) The pump performance is inferior at over flow rate as the rear rotor loading is weakened. (3) The blade rows interaction from rear rotor to front rotor more strongly appears. Then the rear rotor design is a key to achieve higher pump performance. Some methods to overcome these disadvantages will be discussed in more details toward wider usage of contra-rotating axial flow pump in various industrial fields.

  7. Designing an experiment to measure cellular interaction forces

    Science.gov (United States)

    McAlinden, Niall; Glass, David G.; Millington, Owain R.; Wright, Amanda J.

    2013-09-01

    Optical trapping is a powerful tool in Life Science research and is becoming common place in many microscopy laboratories and facilities. The force applied by the laser beam on the trapped object can be accurately determined allowing any external forces acting on the trapped object to be deduced. We aim to design a series of experiments that use an optical trap to measure and quantify the interaction force between immune cells. In order to cause minimum perturbation to the sample we plan to directly trap T cells and remove the need to introduce exogenous beads to the sample. This poses a series of challenges and raises questions that need to be answered in order to design a set of effect end-point experiments. A typical cell is large compared to the beads normally trapped and highly non-uniform - can we reliably trap such objects and prevent them from rolling and re-orientating? In this paper we show how a spatial light modulator can produce a triple-spot trap, as opposed to a single-spot trap, giving complete control over the object's orientation and preventing it from rolling due, for example, to Brownian motion. To use an optical trap as a force transducer to measure an external force you must first have a reliably calibrated system. The optical trapping force is typically measured using either the theory of equipartition and observing the Brownian motion of the trapped object or using an escape force method, e.g. the viscous drag force method. In this paper we examine the relationship between force and displacement, as well as measuring the maximum displacement from equilibrium position before an object falls out of the trap, hence determining the conditions under which the different calibration methods should be applied.

  8. Deconvolution Kalman filtering for force measurements of revolving wings

    Science.gov (United States)

    Vester, R.; Percin, M.; van Oudheusden, B.

    2016-09-01

    The applicability of a deconvolution Kalman filtering approach is assessed for the force measurements on a flat plate undergoing a revolving motion, as an alternative procedure to correct for test setup vibrations. The system identification process required for the correct implementation of the deconvolution Kalman filter is explained in detail. It is found that in the presence of a relatively complex forcing history, the DK filter is better suited to filter out structural test rig vibrations than conventional filtering techniques that are based on, for example, low-pass or moving-average filtering. The improvement is especially found in the characterization of the generated force peaks. Consequently, more reliable force data is obtained, which is vital to validate semi-empirical estimation models, but is also relevant to correlate identified flow phenomena to the force production.

  9. Dynamic steering beams for efficient force measurement in optical manipulation

    Institute of Scientific and Technical Information of China (English)

    Xiaocong Yuan; Yuquan Zhang; Rui Cao; Xing Zhao; Jing Bu; Siwei Zhu

    2011-01-01

    @@ An efficient and inexpensive method that uses a glass plate mounted onto a motorized rotating stage as a beam-steering device for the generation of dynamic optical traps is reported.Force analysis reveals that there are drag and trapping forces imposed on the bead in the opposite directions, respectively, in a viscous medium.The trapped bead will be rotated following the beam's motion before it reaches the critical escape velocity when the drag force is equal to the optical trapping force.The equilibrium condition facilitates the experimental measurement of the drag force with potential extensions to the determination of the viscosity of the medium or the refractive index of the bead.The proposed technique can easily be integrated into conventional optical microscopic systems with minimum modifications.%An efficient and inexpensive method that uses a glass plate mounted onto a motorized rotating stage as a beam-steering device for the generation of dynamic optical traps is reported. Force analysis reveals that there are drag and trapping forces imposed on the bead in the opposite directions, respectively, in a viscous medium. The trapped bead will be rotated following the beam's motion before it reaches the critical escape velocity when the drag force is equal to the optical trapping force. The equilibrium condition facilitates the experimental measurement of the drag force with potential extensions to the determination of the viscosity of the medium or the refractive index of the bead. The proposed technique can easily be integrated into conventional optical microscopic systems with minimum modifications.

  10. A measurement of the hysteresis loop in force-spectroscopy curves using a tuning-fork atomic force microscope

    OpenAIRE

    Manfred Lange; Dennis van Vörden; Rolf Möller

    2012-01-01

    Measurements of the frequency shift versus distance in noncontact atomic force microscopy (NC-AFM) allow measurements of the force gradient between the oscillating tip and a surface (force-spectroscopy measurements). When nonconservative forces act between the tip apex and the surface the oscillation amplitude is damped. The dissipation is caused by bistabilities in the potential energy surface of the tip–sample system, and the process can be understood as a hysteresis of forces between...

  11. Laser induced fluorescence measurements of axial velocity, velocity shear, and parallel ion temperature profiles during the route to plasma turbulence in a linear magnetized plasma device

    Science.gov (United States)

    Chakraborty Thakur, S.; Adriany, K.; Gosselin, J. J.; McKee, J.; Scime, E. E.; Sears, S. H.; Tynan, G. R.

    2016-11-01

    We report experimental measurements of the axial plasma flow and the parallel ion temperature in a magnetized linear plasma device. We used laser induced fluorescence to measure Doppler resolved ion velocity distribution functions in argon plasma to obtain spatially resolved axial velocities and parallel ion temperatures. We also show changes in the parallel velocity profiles during the transition from resistive drift wave dominated plasma to a state of weak turbulence driven by multiple plasma instabilities.

  12. Optically Measuring Force near the Standard Quantum Limit

    CERN Document Server

    Schreppler, Sydney; Brahms, Nathan; Botter, Thierry; Barrios, Maryrose; Stamper-Kurn, Dan M

    2013-01-01

    The Heisenberg uncertainty principle sets a lower bound on the sensitivity of continuous optical measurements of force. This bound, the standard quantum limit, can only be reached when a mechanical oscillator subjected to the force is unperturbed by its environment, and when measurement imprecision from photon shot-noise is balanced against disturbance from measurement backaction. We apply an external force to the center-of-mass motion of an ultracold atom cloud in a high-finesse optical cavity. The optomechanically transduced response clearly demonstrates the trade-off between measurement imprecision and back-action noise. We achieve a sensitivity that is consistent with theoretical predictions for the quantum limit given the atoms' slight residual thermal disturbance and the photodetection quantum efficiency, and is a factor of 4 above the absolute standard quantum limit.

  13. WP/084 Measuring Industry Agglomeration and Identifying the Driving Forces

    DEFF Research Database (Denmark)

    Howard, Emma; Tarp, Finn; Newman, Carol

    Understanding industry agglomeration and its driving forces is critical for the formulation of industrial policy in developing countries. Crucial to this process is the definition and measurement of agglomeration. We propose a new measure and examine what it reveals about the importance of transp...

  14. Capillary-force measurement on SiC surfaces

    Science.gov (United States)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.

    2016-06-01

    Capillary forces have been measured by atomic force microscopy in the sphere-plate geometry, in a controlled humidity environment, between smooth silicon carbide and borosilicate glass spheres. The force measurements were performed as a function of the rms surface roughness ˜4-14 nm mainly due to sphere morphology, the relative humidity (RH) ˜0%-40%, the applied load on the cantilever, and the contact time. The pull-off force was found to decrease by nearly two orders of magnitude with increasing rms roughness from 8 to 14 nm due to formation of a few capillary menisci for the roughest surfaces, while it remained unchanged for rms roughness <8 nm implying fully wetted surface features leading to a single meniscus. The latter reached a steady state in less than 5 s for the smoothest surfaces, as force measurements versus contact time indicated for increased RH˜40%. Finally, the pull-off force increases and reaches a maximum with applied load, which is associated with plastic deformation of surface asperities, and decreases at higher loads.

  15. Capillary-force measurement on SiC surfaces.

    Science.gov (United States)

    Sedighi, M; Svetovoy, V B; Palasantzas, G

    2016-06-01

    Capillary forces have been measured by atomic force microscopy in the sphere-plate geometry, in a controlled humidity environment, between smooth silicon carbide and borosilicate glass spheres. The force measurements were performed as a function of the rms surface roughness ∼4-14 nm mainly due to sphere morphology, the relative humidity (RH) ∼0%-40%, the applied load on the cantilever, and the contact time. The pull-off force was found to decrease by nearly two orders of magnitude with increasing rms roughness from 8 to 14 nm due to formation of a few capillary menisci for the roughest surfaces, while it remained unchanged for rms roughness <8 nm implying fully wetted surface features leading to a single meniscus. The latter reached a steady state in less than 5 s for the smoothest surfaces, as force measurements versus contact time indicated for increased RH∼40%. Finally, the pull-off force increases and reaches a maximum with applied load, which is associated with plastic deformation of surface asperities, and decreases at higher loads. PMID:27415337

  16. Combined atomic force microscopy and voltage pulse technique to accurately measure electrostatic force

    Science.gov (United States)

    Inami, Eiichi; Sugimoto, Yoshiaki

    2016-08-01

    We propose a new method of extracting electrostatic force. The technique is based on frequency modulation atomic force microscopy (FM-AFM) combined with a voltage pulse. In this method, the work that the electrostatic field does on the oscillating tip is measured through the cantilever energy dissipation. This allows us to directly extract capacitive forces including the longer range part, to which the conventional FM-AFM is insensitive. The distance-dependent contact potential difference, which is modulated by local charges distributed on the surfaces of the tip and/or sample, could also be correctly obtained. In the absence of local charges, our method can perfectly reproduce the electrostatic force as a function of the distance and the bias voltage. Furthermore, we demonstrate that the system serves as a sensitive sensor enabling us to check the existence of the local charges such as trapped charges and patch charges.

  17. Optical Fiber Grating Sensor for Force Measurement of Anchor Cable

    Institute of Scientific and Technical Information of China (English)

    JIANG Desheng; FU Jinghua; LIU Shengchun; SUI Lingfeng; FU Rong

    2006-01-01

    The development of the sensor suitable for measuring large load stress to the anchor cable becomes an important task in bridge construction and maintenance. Therefore, a new type of optical fiber sensor was developed in the laboratory - optical fiber grating sensor for force measurement of anchor cable (OFBFMAC). No similar report about this kind of sensor has been found up to now in China and other countries. This sensor is proved to be an effective way of monitoring in processes of anchor cable installation, cable cutting, cable force regulation, etc, with the accurate and repeatable measuring results. Its successful application in the tie bar cable force safety monitoring for Wuhan Qingchuan bridge is a new exploration of optical fiber grating sensing technology in bridge tie bar monitoring system.

  18. Direct thrust force measurement of pulse detonation engine

    Science.gov (United States)

    Wahid, Mazlan Abdul; Faiz, M. Z. Ahmad; Saqr, Khalid M.

    2012-06-01

    In this paper we present the result of High-Speed Reacting Flow Laboratory (HiREF) pulse detonation engine (PDE) experimental study on direct thrust measurement. The thrust force generated by the repetitive detonation from a 50 mm inner diameter and 600 mm length tube was directly measured using load cell. Shchelkin spiral was used as an accelerator for the Deflagration to Detonation Transition (DDT) phenomenon. Propane-oxygen at stoichiometric condition was used as the combustible fuel-air mixture for the PDE. The PDE was operated at the operation frequency of 3Hz during the test. The amount of thrust force that was measured during the test reaching up to 70N. These values of thrust force were found to be fluctuating and its combustion phenomenon has been analyzed and discussed.

  19. Measurement by load cells of impact force which a human body receives by external force

    Directory of Open Access Journals (Sweden)

    Y. Ito

    2008-05-01

    Full Text Available Purpose: By development of a robotics technique, the assisted living instruments which have intelligent functions are being developed. As a result, there is a possibility that the accident to which the assisted living instrument under actuation contacts a human body may occur. The purpose of this research is for the impact force measurement system which with load cells to build, and to evaluate performance.Design/methodology/approach: The impact force measurement system was built by load cells and a data logger. Evaluation of the performance of the system was carried out to static loads and dynamic loads.Findings: By covering the sensor part of load cells with shock absorbing material, it turned out that it is possible to measure impact load simple. Moreover, as a result of comparing the characteristic of shock absorbing material, it became clear that the impact-absorbing characteristic of cell sponge and organism soft tissue is in agreement.Research limitations/implications: This research estimated the impact-absorbing characteristic of organism soft tissue for the skin, fat, muscles, etc. as a complex.Practical implications: This paper cleared that the load which a bone receives by dynamic external force can be easily measured by load cells.Originality/value: The objective of this research project was to develop the system by which impact force is measured and evaluated based on the damage which a human body receives. And we were able to complete the prototype.

  20. Phoretic Force Measurement for Microparticles Under Microgravity Conditions

    Science.gov (United States)

    Davis, E. J.; Zheng, R.

    1999-01-01

    This theoretical and experimental investigation of the collisional interactions between gas molecules and solid and liquid surfaces of microparticles involves fundamental studies of the transfer of energy, mass and momentum between gas molecules and surfaces. The numerous applications include particle deposition on semiconductor surfaces and on surfaces in combustion processes, containerless processing, the production of nanophase materials, pigments and ceramic precursors, and pollution abatement technologies such as desulfurization of gaseous effluents from combustion processes. Of particular emphasis are the forces exerted on microparticles present in a nonuniform gas, that is, in gaseous surroundings involving temperature and concentration gradients. These so-called phoretic forces become the dominant forces when the gravitational force is diminished, and they are strongly dependent on the momentum transfer between gas molecules and the surface. The momentum transfer, in turn, depends on the gas and particle properties and the mean free path and kinetic energy of the gas molecules. The experimental program involves the particle levitation system shown. A micrometer size particle is held between two heat exchangers enclosed in a vacuum chamber by means of ac and dc electric fields. The ac field keeps the particle centered on the vertical axis of the chamber, and the dc field balances the gravitational force and the thermophoretic force. Some measurements of the thermophoretic force are presented in this paper.

  1. A Load Cell for the Measurement of Slack Mooring Forces

    Science.gov (United States)

    Balaji, R.; Sannasiraj, S. A.; Sundar, V.

    2014-07-01

    A load cell for the measurement of mooring forces is designed using the load-strain principles and the same is verified for its efficiency by structural modeling. A model load cell is fabricated and calibrated through laboratory experiments using three axes loading as well as mooring chain catenary principles. Experiments are also conducted in the physical wave tank to measure the mooring forces exerted on a disc shaped data buoy by using the designed load cell. The details of the design concepts, structural modeling, instrumentation, calibration, wave tank experiments and the results are discussed in this paper.

  2. Identification of GMS friction model without friction force measurement

    International Nuclear Information System (INIS)

    This paper deals with an online identification of the Generalized Maxwell Slip (GMS) friction model for both presliding and sliding regime at the same time. This identification is based on robust adaptive observer without friction force measurement. To apply the observer, a new approach of calculating the filtered friction force from the measurable signals is introduced. Moreover, two approximations are proposed to get the friction model linear over the unknown parameters and an approach of suitable filtering is introduced to guarantee the continuity of the model. Simulation results are presented to prove the efficiency of the approach of identification.

  3. Measurement of guided mode wavenumbers in soft tissue–bone mimicking phantoms using ultrasonic axial transmission

    International Nuclear Information System (INIS)

    Human soft tissue is an important factor that influences the assessment of human long bones using quantitative ultrasound techniques. To investigate such influence, a series of soft tissue–bone phantoms (a bone-mimicking plate coated with a layer of water, glycerol or silicon rubber) were ultrasonically investigated using a probe with multi-emitter and multi-receiver arrays in an axial transmission configuration. A singular value decomposition signal processing technique was applied to extract the frequency-dependent wavenumbers of several guided modes. The results indicate that the presence of a soft tissue-mimicking layer introduces additional guided modes predicted by a fluid waveguide model. The modes propagating in the bone-mimicking plate covered by the soft-tissue phantom are only slightly modified compared to their counterparts in the free bone-mimicking plate, and they are still predicted by an elastic transverse isotropic two-dimensional waveguide. Altogether these observations suggest that the soft tissue–bone phantoms can be modeled as two independent waveguides. Even in the presence of the overlying soft tissue-mimicking layer, the modes propagating in the bone-mimicking plate can still be extracted and identified. These results suggest that our approach can be applied for the purpose of the characterization of the material and structural properties of cortical bone. (paper)

  4. Influence of Nanoscale Surface Roughness on Colloidal Force Measurements.

    Science.gov (United States)

    Zou, Yi; Jayasuriya, Sunil; Manke, Charles W; Mao, Guangzhao

    2015-09-29

    Forces between colloidal particles determine the performances of many industrial processes and products. Colloidal force measurements conducted between a colloidal particle AFM probe and particles immobilized on a flat substrate are valuable in selecting appropriate surfactants for colloidal stabilization. One of the features of inorganic fillers and extenders is the prevalence of rough surfaces-even the polymer latex particles, often used as model colloidal systems including the current study, have rough surfaces albeit at a much smaller scale. Surface roughness is frequently cited as the reason for disparity between experimental observations and theoretical treatment but seldom verified by direct evidence. This work reports the effect of nanoscale surface roughness on colloidal force measurements carried out in the presence of surfactants. We applied a heating method to reduce the mean surface roughness of commercial latex particles from 30 to 1 nm. We conducted force measurements using the two types of particles at various salt and surfactant concentrations. The surfactants used were pentaethylene glycol monododecyl ether, Pluronic F108, and a styrene/acrylic copolymer, Joncryl 60. In the absence of the surfactant, nanometer surface roughness affects colloidal forces only in high salt conditions when the Debye length becomes smaller than the surface roughness. The adhesion is stronger between colloids with higher surface roughness and requires a higher surfactant concentration to be eliminated. The effect of surface roughness on colloidal forces was also investigated as a function of the adsorbed surfactant layer structure characterized by AFM indentation and dynamic light scattering. We found that when the layer thickness exceeds the surface roughness, the colloidal adhesion is less influenced by surfactant concentration variation. This study demonstrates that surface roughness at the nanoscale can influence colloidal forces significantly and should be taken

  5. Systematic review of ground reaction force measurements in cats.

    Science.gov (United States)

    Schnabl, E; Bockstahler, B

    2015-10-01

    Although orthopaedic abnormalities in cats are frequently observed radiographically, they remain clinically underdiagnosed, and kinetic motion analysis, a fundamental aspect of orthopaedic research in dogs and horses, is not commonly performed. More information obtained with non-invasive measurement techniques to assess normal and abnormal gait in cats would provide a greater insight into their locomotion and biomechanics and improve the objective measurement of disease alterations and treatment modalities. In this systematic review, 12 previously performed studies that investigated ground reaction force measurements in cats during locomotion were evaluated. The aims of these studies, the measurement methods and equipment used, and the outcomes of parameters used to assess both sound and diseased cats are summarised and discussed. All reviewed studies used pressure sensitive walkways to gain data and all provided an acclimatisation period as a prerequisite for measurements. In sound cats during walking, the forelimb peak vertical force was greater than in the hindlimb and the peak vertical force in the hindlimb was greater in cats than in dogs. This review confirms that ground reaction forces can be used to evaluate lameness and treatment effects in the cat. PMID:26118478

  6. Force-Velocity Measurements of a Few Growing Actin Filaments

    Science.gov (United States)

    Brangbour, Coraline; du Roure, Olivia; Helfer, Emmanuèle; Démoulin, Damien; Mazurier, Alexis; Fermigier, Marc; Carlier, Marie-France; Bibette, Jérôme; Baudry, Jean

    2011-01-01

    The polymerization of actin in filaments generates forces that play a pivotal role in many cellular processes. We introduce a novel technique to determine the force-velocity relation when a few independent anchored filaments grow between magnetic colloidal particles. When a magnetic field is applied, the colloidal particles assemble into chains under controlled loading or spacing. As the filaments elongate, the beads separate, allowing the force-velocity curve to be precisely measured. In the widely accepted Brownian ratchet model, the transduced force is associated with the slowing down of the on-rate polymerization. Unexpectedly, in our experiments, filaments are shown to grow at the same rate as when they are free in solution. However, as they elongate, filaments are more confined in the interspace between beads. Higher repulsive forces result from this higher confinement, which is associated with a lower entropy. In this mechanism, the production of force is not controlled by the polymerization rate, but is a consequence of the restriction of filaments' orientational fluctuations at their attachment point. PMID:21541364

  7. Force-velocity measurements of a few growing actin filaments.

    Directory of Open Access Journals (Sweden)

    Coraline Brangbour

    2011-04-01

    Full Text Available The polymerization of actin in filaments generates forces that play a pivotal role in many cellular processes. We introduce a novel technique to determine the force-velocity relation when a few independent anchored filaments grow between magnetic colloidal particles. When a magnetic field is applied, the colloidal particles assemble into chains under controlled loading or spacing. As the filaments elongate, the beads separate, allowing the force-velocity curve to be precisely measured. In the widely accepted Brownian ratchet model, the transduced force is associated with the slowing down of the on-rate polymerization. Unexpectedly, in our experiments, filaments are shown to grow at the same rate as when they are free in solution. However, as they elongate, filaments are more confined in the interspace between beads. Higher repulsive forces result from this higher confinement, which is associated with a lower entropy. In this mechanism, the production of force is not controlled by the polymerization rate, but is a consequence of the restriction of filaments' orientational fluctuations at their attachment point.

  8. Enclosed Electronic System for Force Measurements in Knee Implants

    Directory of Open Access Journals (Sweden)

    David Forchelet

    2014-08-01

    Full Text Available Total knee arthroplasty is a widely performed surgical technique. Soft tissue force balancing during the operation relies strongly on the experience of the surgeon in equilibrating tension in the collateral ligaments. Little information on the forces in the implanted prosthesis is available during surgery and post-operative treatment. This paper presents the design, fabrication and testing of an instrumented insert performing force measurements in a knee prosthesis. The insert contains a closed structure composed of printed circuit boards and incorporates a microfabricated polyimide thin-film piezoresistive strain sensor for each condylar compartment. The sensor is tested in a mechanical knee simulator that mimics in-vivo conditions. For characterization purposes, static and dynamic load patterns are applied to the instrumented insert. Results show that the sensors are able to measure forces up to 1.5 times body weight with a sensitivity fitting the requirements for the proposed use. Dynamic testing of the insert shows a good tracking of slow and fast changing forces in the knee prosthesis by the sensors.

  9. Measurement of Large Forces and Deflections in Microstructures

    CERN Document Server

    Hals, Kai Axel; Chen, Xuyuan

    2008-01-01

    Properties of typical MEMS materials have been widely investigated. Mechanical properties of MEMS structures depend not only on the bulk material properties, but also structural factors. A measurement system has been made to measure force/deflection on microstructures to examine some of the structural properties. This is a stylus setup integrated with a load cell and a linear actuator. First, the requirements for the measurement system were established. Then the system was built up and characterized. We have successfully made measurements on a typical micromechanical structure, a cantilever accelerometer design. The stylus placement accuracy, the spring constant along the proof mass, analysis of the force/deflection curve shape and destructive tests on the cantilever have been investigated in our experiment and will be presented in this paper.

  10. Laser measurement method of forced vibration in optical systems

    International Nuclear Information System (INIS)

    A forced vibration measurement method by laser combining the laser signal and high frequency CCD in optical systems is introduced. The method solves the conversion problem between the vibration signal and laser signal in optical systems, which can not only measure the impact of vibration on the beam stability, but also acquire the frequency characteristics of vibration signals. Forced vibration in an optical system is measured when the frequencies of vibration signals are 150 Hz and 200 Hz by using the method and the attributes of the vibration signals obtained fits those of the input signals. Test and analysis results demonstrate that the method has a time amplitude uncertainty of 6.25 μm and frequency resolution of 2 Hz. The handy and efficient method, whose measurement is precise, has been applied to the beam pointing stability study of the multiplexing excimer MOPA laser targeting test platform accordingly. (authors)

  11. Effect of permanent-magnet irregularities in levitation force measurements.

    Energy Technology Data Exchange (ETDEWEB)

    Hull, J. R.

    1999-10-14

    In the measurement of the levitation force between a vertically magnetized permanent magnet (PM) and a bulk high-temperature superconductor (HTS), PM domains with horizontal components of magnetization are shown to produce a nonnegligible contribution to the levitation force in most systems. Such domains are typically found in all PMs, even in those that exhibit zero net horizontal magnetic moment. Extension of this analysis leads to an HTS analog of Earnshaw's theorem, in which at the field-cooling position the vertical stiffness is equal to the sum of the horizontal stiffnesses, independent of angular distribution of magnetic moments within the PM.

  12. Aerodynamics of Dragonfly in Hover: Force measurements and PIV results

    Science.gov (United States)

    Deng, Xinyan; Hu, Zheng

    2009-11-01

    We useda pair of dynamically scaled robotic dragonfly model wings to investigate the aerodynamic effects of wing-wing interaction in dragonflies. We follow the wing kinematics of real dragonflies in hover, while systematically varied the phase difference between the forewing and hindwing. Instantaneous aerodynamic forces and torques were measured on both wings, while flow visualization and PIV results were obtained. The results show that, in hovering flight, wing-wing interaction causes force reduction for both wings at most of the phase angle differences except around 0 degree (when the wings are beating in-phase).

  13. An appraisal of techniques and equipment for cutting force measurement

    Institute of Scientific and Technical Information of China (English)

    AUDY J.

    2006-01-01

    Current research focussed on the assessment of metal machining process parameters and on the development of adaptive control, shows that machine performance, work-piece and tool material selections, tool life, quality of machined surfaces,the geometry of cutting tool edges, and cutting conditions are closely related to the cutting forces. This information is of great interest to cutting tool manufactures and users alike. Over the years there have been significant developments and improvements in the equipment used to monitor such forces. In 1930 mechanical gauges were replaced by resistance strain gauges, and some 30 years later compact air gauge dynamometers were invented. Since this time intensive research has continued being directed towards developing new approaches to cutting force measurement. The Kistler Company, well-known manufacturer of acceleration and piezoelectrical dynamometers, has worked in this field for more than three decades, and developed very sensitive devices.While leading manufacturing research laboratories are often equipped with this technology, classical electrical strain gauges and other dynamometers of individual designs are still commonly used in industry. The present paper presents data obtained using different techniques of force measurement in metal machining processes. In particular, areas of uncertainties, illustrated through results concerning the turning process, are analysed, leading to an appraisal of the current status of these measurements and their significance.

  14. Concurrent validity of accelerations measured using a tri-axial inertial measurement unit while walking on firm, compliant and uneven surfaces.

    Science.gov (United States)

    Cole, Michael H; van den Hoorn, Wolbert; Kavanagh, Justin K; Morrison, Steven; Hodges, Paul W; Smeathers, James E; Kerr, Graham K

    2014-01-01

    Although accelerometers are extensively used for assessing gait, limited research has evaluated the concurrent validity of these devices on less predictable walking surfaces or the comparability of different methods used for gravitational acceleration compensation. This study evaluated the concurrent validity of trunk accelerations derived from a tri-axial inertial measurement unit while walking on firm, compliant and uneven surfaces and contrasted two methods used to remove gravitational accelerations; i) subtraction of the best linear fit from the data (detrending); and ii) use of orientation information (quaternions) from the inertial measurement unit. Twelve older and twelve younger adults walked at their preferred speed along firm, compliant and uneven walkways. Accelerations were evaluated for the thoracic spine (T12) using a tri-axial inertial measurement unit and an eleven-camera Vicon system. The findings demonstrated excellent agreement between accelerations derived from the inertial measurement unit and motion analysis system, including while walking on uneven surfaces that better approximate a real-world setting (all differences accelerations requires consideration in future research, particularly when walking on compliant and uneven surfaces. These findings demonstrate trunk accelerations can be accurately measured using a wireless inertial measurement unit and are appropriate for research that evaluates healthy populations in complex environments.

  15. Measurement of the absolute separation for atomic force microscopy measurements in the presence of adsorbed polymer

    OpenAIRE

    McKee, C. T.; Mosse, W. K. J.; Ducker, W. A.

    2006-01-01

    We demonstrate that the absolute separation between an atomic force microscope (AFM) tip and a solid substrate can be measured in the presence of an irreversibly adsorbed polymer film. The separation is obtained from the analysis of a scattered evanescent wave that is generated at the surface of the solid. By comparing our scattering measurements to conventional AFM measurements, we also show an example where a conventional AFM measurement gives the incorrect force-distance profile. We valida...

  16. Photothermally excited force modulation microscopy for broadband nanomechanical property measurements

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Ryan, E-mail: ryan.wagner@nist.gov; Killgore, Jason P. [Material Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)

    2015-11-16

    We demonstrate photothermally excited force modulation microscopy (PTE FMM) for mechanical property characterization across a broad frequency range with an atomic force microscope (AFM). Photothermal excitation allows for an AFM cantilever driving force that varies smoothly as a function of drive frequency, thus avoiding the problem of spurious resonant vibrations that hinder piezoelectric excitation schemes. A complication of PTE FMM is that the sub-resonance cantilever vibration shape is fundamentally different compared to piezoelectric excitation. By directly measuring the vibrational shape of the cantilever, we show that PTE FMM is an accurate nanomechanical characterization method. PTE FMM is a pathway towards the characterization of frequency sensitive specimens such as polymers and biomaterials with frequency range limited only by the resonance frequency of the cantilever and the low frequency limit of the AFM.

  17. Measurement of the Axial-Vector Coupling Constant $g_A$ in Neutron Beta Decay

    CERN Document Server

    Maerkisch, Bastian

    2014-01-01

    The matrix element \\Vud of the CKM matrix can be determined by two independent measurements in neutron decay: the neutron lifetime $\\tau_n$ and the ratio of coupling constants $\\lambda=g_A/g_V$, which is most precisely determined by measurements of the beta asymmetry angular correlation coefficient~$A$. We present recent progress on the determination of these coupling constants.

  18. Concurrent validity of accelerations measured using a tri-axial inertial measurement unit while walking on firm, compliant and uneven surfaces.

    Science.gov (United States)

    Cole, Michael H; van den Hoorn, Wolbert; Kavanagh, Justin K; Morrison, Steven; Hodges, Paul W; Smeathers, James E; Kerr, Graham K

    2014-01-01

    Although accelerometers are extensively used for assessing gait, limited research has evaluated the concurrent validity of these devices on less predictable walking surfaces or the comparability of different methods used for gravitational acceleration compensation. This study evaluated the concurrent validity of trunk accelerations derived from a tri-axial inertial measurement unit while walking on firm, compliant and uneven surfaces and contrasted two methods used to remove gravitational accelerations; i) subtraction of the best linear fit from the data (detrending); and ii) use of orientation information (quaternions) from the inertial measurement unit. Twelve older and twelve younger adults walked at their preferred speed along firm, compliant and uneven walkways. Accelerations were evaluated for the thoracic spine (T12) using a tri-axial inertial measurement unit and an eleven-camera Vicon system. The findings demonstrated excellent agreement between accelerations derived from the inertial measurement unit and motion analysis system, including while walking on uneven surfaces that better approximate a real-world setting (all differences wireless inertial measurement unit and are appropriate for research that evaluates healthy populations in complex environments. PMID:24866262

  19. Measuring Industry Coagglomeration and Identifying the Driving Forces

    DEFF Research Database (Denmark)

    Howard, Emma; Newman, Carol; Tarp, Finn

    2015-01-01

    examine what this index reveals about the importance of transport costs, labour market pooling and technology transfer for agglomeration processes, controlling for overall industry agglomeration. We compare the results based on our new measure to existing measures in the literature and find very different......Understanding industry agglomeration and its driving forces is critical for the formulation of industrial policy in developing countries. Crucial to this process is the definition and measurement of agglomeration. We construct a new coagglomeration index based purely on the location of firms. We...

  20. Axial Force-Stiffness Interaction in Seismic Analysis of RC Double-Column Bridges%双柱墩地震反应的轴力-刚度耦合作用

    Institute of Scientific and Technical Information of China (English)

    魏斌; 李建中

    2012-01-01

    地震作用下钢筋混凝土双柱桥墩产生的动轴力不仅会改变桥墩的屈服强度,而且也会相应地改变桥墩的刚度,但目前广泛使用的集中塑性模型一般并未考虑这种轴力-刚度的耦合作用.以自动计入轴力-强度及轴力-刚度耦合作用的纤维模型分析结果为基准,研究了轴力-刚度耦合作用对钢筋混凝土双柱桥墩地震反应的影响.结果表明,轴力-刚度耦合作用对双柱墩弹性阶段的反应有较大影响,但不改变结构的极限承载力;由于拉压桥墩的刚度互为消长,等高双柱墩的地震位移响应在不计轴力-刚度的耦合作用时与实际情况只略有差异,但墩柱弹性内力响应则会被较大地低估;不等高双柱墩的刚度受较矮侧桥墩控制,因此轴力-刚度的耦合作用对结构的地震位移响应和弹性内力响应都有明显影响,桥梁不规则性越大影响越显著,在进行结构分析时不能忽视这一因素的影响.%Earthquake induced dynamic axial force in reinforced concrete (RC) bridge bent columns will not only change the yield strength of the columns but also change their stiffness, which is seldom considered by the common lumped-plasticity line model. Based on the fiber element model results that taking into account the influence of dynamic axial force on strength and stiffness simultaneously, the axial force-stiffness interaction effect on the seismic responses of RC double-column bridges was analyzed. The results show that, axial force-stiffness interaction has a large effect on the seismic responses of the double-column bridge in the elastic range, and it does not alter the ultimate capacity of the columns. Since the stiffness of the columns under compression and tension dynamic axial forces offset each other, the global displacement of bridge bent with equal columns is relatively unaffected by the axial force-stiffness interaction, however, the differences of the column member forces are

  1. Bounds on fifth forces from precision measurements on molecules

    CERN Document Server

    Salumbides, E J; Komasa, J; Pachucki, K; Eikema, K S E; Ubachs, W

    2013-01-01

    Highly accurate results from frequency measurements on neutral hydrogen molecules H_2, HD and D_2 as well as the HD^+ ion can be interpreted in terms of constraints on possible fifth-force interactions. Where the hydrogen atom is a probe for yet unknown lepton-hadron interactions, and the helium atom is sensitive for lepton-lepton interactions, molecules open the domain to search for additional long-range hadron-hadron forces. First principles calculations in the framework of quantum electrodynamics have now advanced to the level that hydrogen molecules and hydrogen molecular ions have become calculable systems, making them a search-ground for fifth forces. Following a phenomenological treatment of unknown hadron-hadron interactions written in terms of a Yukawa potential of the form V_5(r)=\\beta exp(-r/\\lambda)/r current precision measurements on hydrogenic molecules yield a constraint \\beta < 1 \\times 10^{-7} eV\\AA for long-range hadron-hadron interactions at typical force ranges commensurate with separat...

  2. Novel parallel plate condenser for single particle electrostatic force measurements in atomic force microscope

    KAUST Repository

    Kwek, Jin Wang

    2011-07-01

    A combination of small parallel plate condenser with Indium Tin Oxide (ITO) glass slides as electrodes and an atomic force microscope (AFM) is used to characterize the electrostatic behavior of single glass bead microparticles (105-150 μm) glued to the AFM cantilever. This novel setup allows measurements of the electrostatic forces acting on a particle in an applied electrical field to be performed in ambient air conditions. By varying the position of the microparticle between the electrodes and the strength of the applied electric field, the relative contributions of the particle net charge, induced and image charges were investigated. When the microparticle is positioned in the middle of the electrodes, the force acting on the microparticle was linear with the applied electric field and proportional to the microparticle net charge. At distances close to the bottom electrode, the force follows a parabolic relationship with the applied electric field reflecting the contributions of induced and image charges. The method can be used for the rapid evaluation of the charging and polarizability properties of the microparticle as well as an alternative to the conventional Faraday\\'s pail technique. © 2011 Elsevier B.V.

  3. Direct force measurement of single DNA-peptide interactions using atomic force microscopy.

    Science.gov (United States)

    Chung, Ji W; Shin, Dongjin; Kwak, June M; Seog, Joonil

    2013-06-01

    The selective interactions between DNA and miniature (39 residues) engineered peptide were directly measured at the single-molecule level by using atomic force microscopy. This peptide (p007) contains an α-helical recognition site similar to leucine zipper GCN4 and specifically recognizes the ATGAC sequence in the DNA with nanomolar affinity. The average rupture force was 42.1 pN, which is similar to the unbinding forces of the digoxigenin-antidigoxigenin complex, one of the strongest interactions in biological systems. The single linear fit of the rupture forces versus the logarithm of pulling rates showed a single energy barrier with a transition state located at 0.74 nm from the bound state. The smaller koff compared with that of other similar systems was presumably due to the increased stability of the helical structure by putative folding residues in p007. This strong sequence-specific DNA-peptide interaction has a potential to be utilized to prepare well-defined mechanically stable DNA-protein hybrid nanostructures.

  4. New strain measurement method at axial tensile test of thin films through direct imaging

    International Nuclear Information System (INIS)

    This paper proposes a new method for measuring strain during a tensile test of the specimen with micrometre size through direct imaging. A specimen was newly designed for adoption of direct imaging which was the main contribution of the proposed system. The structure of the specimen has eight indicators that make it possible to adopt direct imaging and it is fabricated using the same process of microelectromechanical system (MEMS) devices to guarantee the feasibility of the tensile test. We implemented a system for non-contact in situ measurement of strain with the specimen, the image-based displacement measurement system. Extension of the gauge length in the specimen could be found robustly by computing the positions of the eight rectangular-shape indicators on the image. Also, for an easy setup procedure, the region of interest was found automatically through the analysis of the edge projection profile along the horizontal direction. To gain confidence in the reliability of the system, the tensile test for the Al-3%Ti thin film was performed, which is widely used as a material in MEMS devices. Tensile tests were performed and displacements were measured using the proposed method and also the capacitance type displacement sensor for comparison. It is demonstrated that the new strain measurement system can be effectively used in the tensile test of the specimen at microscale with easy setup and better accuracy

  5. Diamagnetic Levitation Cantilever System for the Calibration of Normal Force Atomic Force Microscopy Measurements

    Science.gov (United States)

    Torres, Jahn; Yi, Jin-Woo; Murphy, Colin; Kim, Kyung-Suk

    2011-03-01

    In this presentation we report a novel technique for normal force calibration for Atomic Force Microcopy (AFM) adhesion measurements known as the diamagnetic normal force calibration (D-NFC) system. The levitation produced by the repulsion between a diamagnetic graphite sheet and a set of rare-earth magnets is used in order to produce an oscillation due to an unstable mechanical moment produced by a silicon cantilever supported on the graphite. The measurement of the natural frequency of this oscillation allows for the calculation of the stiffness of the system to three-digit accuracy. The D-NFC response was proven to have a high sensitivity for the structure of water molecules collected on its surface. This in turns allows for the study of the effects of coatings on the structure of surface water. This work was supported by the Coatings/Biofouling Program and the Maritime Sensing Program of the Office of Naval Research as well as the ILIR Program of the Naval Undersea Warfare Center DIVNPT.

  6. 基于磁路分析的轴向混合磁轴承径向承载力解析计算%Calculation of Radial Electromagnetic Force of Axial Hybrid Magnetic Bearing Based on Magnetic Circuit Analysis

    Institute of Scientific and Technical Information of China (English)

    张云鹏; 刘淑琴; 李红伟; 范友鹏

    2012-01-01

    研究轴向混合磁轴承实现五自由度悬浮时,需要计算径向承载力与磁轴承结构参数以及永磁体参数之间的关系。为了解决轴向混合磁轴承缺乏径向承载力解析数学模型的问题,该文在分析轴向混合磁轴承磁路以及各部分磁导的基础上,结合稀土永磁体的工作特性,用虚位移法得出了轴向混合磁轴承的径向承载力解析数学模型。模型表明,在小径向位移时,该型的混合磁轴承径向承载力随着径向位移增加而增加,近似线性关系,径向承载力和刚度随轴向气隙增大而减小;磁轴承径向承载力随永磁体的有效长度增加呈现先增大后趋近饱和。利用有限元方法对径向承载力进行仿真计算,仿真结果与模型计算结果基本吻合。%In studying axial hybrid magnetic bearing (HMB) for suspension in five degree of freedom (DOF), the relationship between radial electromagnetic force and magnetic bearing structural parameters and permanent magnet parameters should be calculated. In order to overcome the lack of analytical calculation model for radial electromagnet force of axial HMB, based on magnetic circuit analysis and calculation of magnetic conductance for each parts, the analytical calculation model for radial electromagnet force of axial HMB is proposed in this paper. The analytical formulation of radial electromagnetic force is derived by using virtual displacement method and demagnetization characteristics of the rare earth permanent magnet. It is found that the radial electromagnetic force increases with the radial displacement increasing approximately in linear relationship, and the radial force and stiffness decreases with the axial gap increasing. The radial electromagnetic force increased and then saturated with increasing permanent magnet effective length. The model of axial HMB is simulated by finite-element method software and the simulation results are basically in

  7. Measurements of planing forces and cavity shapes on cylindrical afterbodies

    Science.gov (United States)

    Hellum, Aren; Belden, Jesse; Beal, David; Huyer, Stephen; Henoch, Charles; Hrubes, Dana

    2015-11-01

    Supercavitation is a drag reduction technique by which an underwater body is enclosed over a significant portion of its length in a bubble of gas. Hydrodynamic forces act on the body only through contact with the nose and a planing section at the rear. Models of the planing forces typically assume that the body is placed into a cavity which is unchanged by the presence of the body, and the present study was designed to test the validity of this assumption. Measurements were taken of the planing forces for five afterbody lengths over a range of angles concurrently with photographs showing the size and shape of the cavity produced. These observations reveal that the cavity form and growth rate are significantly affected by both the length and angle of attack of the body; the length of the cavity shrinks at the same angle of attack as the body length is reduced past a critical threshold, suggesting a hydrodynamic interaction between the afterbody trailing edge and the cavity. Additionally, the planing forces demonstrate a non-monotonic dependence on attack angle that is not readily explained by existing models, specifically a ``lift crisis'' for short bodies in which the planing lift goes to zero over a range from -1 to -3 degrees.

  8. EXPERIMENTAL RESEARCH ON STABILITY PARAMETERS FOR I-SECTION ALUMINIUM ALLOY BARS LOADED BY AXIAL COMPRESSIVE FORCE%工字形铝合金轴心压杆稳定系数的试验研究

    Institute of Scientific and Technical Information of China (English)

    李明; 陈扬骥; 钱若军; 姚念亮

    2001-01-01

    Stability for I-Section aluminium alloy bars of disparate slenderness,loaded by axial compressive force,is studied by experiments in this paper.Stability parameters are calculated from experimental data and compared with the results of several formulas by other researchers.Practical formula for engineering utilization is derived for the stability parameters of I-Section aluminium alloy bars loaded by axial compressive force.%通过对不同长细比铝合金工字形轴心压杆稳定性的试验研究,计算得出了相应的稳定系数,并与几种公式的计算结果对比,得出了可用于我国铝合金轴心压杆设计的稳定系数计算公式。

  9. Thermophoretic force measurements of spherical and non-spherical particles

    Science.gov (United States)

    Zheng, Feng

    An electrodynamic balance (EDB) with three-dimensional force compensation and measurement ability was developed for single particle thermophoretic force measurements. The new EDB had an octopole double-ring electrode. Each electrode ring was split into four equal segments. Different voltages were applied to each segment so that three independent and orthogonal dc fields were superimposed on another ac electric field. The balance constants of the new EDB were determined by both numerical calculations and measurements. Among the various particle size measurement techniques, the oscillation offset method was found to be an accurate and universal method for particle size determination with an EDB. The technique involved partially balancing the gravitational force on a particle to let it oscillate stably in the ac electric field. The oscillation trajectory was recorded using a linescan camera, and the data were fitted to the solution for the particle equation of motion to obtain its size. For aggregate particles of single, two and three polystyrene latex (PSL) spheres (nominal diameter 19.7 mum), the equivalent volume diameters were determined by the oscillation offset method within 3%. The thermophoretic force on these PSL sphere aggregates, with their plane of centers parallel to the temperature gradient, was measured using the octopole double-ring EDB. Thermophoretic force (TF) shape factor kT was defined as the ratio of the TF on a particle of interest to that on a sphere of equal volume. For PSL doublets kT is 1.13 +/- 0.08 at Kn = 0.98 in nitrogen and 1.04 +/- 0.03 at Kn = 0.65 in helium. For PSL triangular triplets kT is 1.20 +/- 0.12 at Kn = 0.98 in nitrogen, and 1.06 +/- 0.06 at Kn = 0.65 in helium. The TF shape factors compare fairly well with the continuum limits predicted by the existing theories. It was found that the TF shape factor only depends on the Knudsen number weakly in the transition regime. The TF shape factor was found to increase with the number

  10. Measurements of relative power distributions in the axially simulated heterogeneous FBR cores by γ-scanning method

    International Nuclear Information System (INIS)

    Measurements of relative power distributions were made using the γ-scanning method in the partially simulated cores of the axially heterogeneous FBR in order to study power flattening by introducing the inner blanket at core midplane and power distortion by insertion of simulated B4C control rod in the core. Power peaking factor was decreased by about 12 % in FCA XII-1 assembly in comparison with FCA XI-1 assembly, and the value was 1.11 +- 1.4 %. Distortion in power distribution caused by introducing the simulated B4C control rod in the FCA XII-1 assembly was obtained from the measured power distributions and propagation distance of the distortion was examined. It was observed that the inner blanket played a role to cease the propagation of distortion from the upper to lower half assembly. Calculations were made for all cores. Calculated results predict the measured results fairly well in the core region and inner blanket. A large descripancy remains in the outer blanket. (author)

  11. A measurement of the weak axial couplings of the b- and c-quark

    Energy Technology Data Exchange (ETDEWEB)

    Elsen, E.; Ambrus, K.; Bethke, S.; Dieckmann, A.; Eckerlin, G.; Heintze, J.; Hellenbrand, K.H.; Komamiya, S.; Krogh, J. von; Rieseberg, H.; Schmitt, H. von der; Smolik, L.; Spitzer, J.; Wagner, A.; Zimmer, M. (Heidelberg Univ. (Germany, F.R.). Physikalisches Inst.); Allison, J.; Barlow, R.J.; Chrin, J.; Duerdoth, I.P.; Loebinger, F.K.; Macbeth, A.A.; Murphy, P.G.; Stephens, K. (Manchester Univ. (UK)); Bartel, W.; Felst, R.; Haidt, D.; Kado, H.; Knies, G.; Krehbiel, H.; Magnussen, N.; Meinke, R.; Naroska, B.; Olsson, J.; Ramcke, R.; Schmidt, D.; Steffen, P. (Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany, F.R.)); Bowdery, C.K.; Finch, A.J.; Foster, F.; Hughes, G.; Nye, J.M.; Walker, I.W. (Lancaster Univ. (UK)); Cartwright, S.L.; Clarke, D.; Marshall, R.; Middleton, R.P. (Rutherford Appleton Lab., Chilton (UK)); Greenshaw, T.; Hagemann, J.; Heinzelmann, G.; Kleinwort, C.; Kuhlen, M.; Ould-Saada, F.; Schneekloth, U.; Weber, G. (Hamburg Univ. (Germany, F.R.). 2. Inst. fuer; JADE Collaboration

    1990-04-01

    The forward backward charge asymmetries of the b and c quarks are measured with the JADE detector at PETRA at {radical}s=35 GeV and 44 GeV using both electrons and muons to tag the heavy quarks. At {radical}s=35 GeV, a simultaneous fit for the two asymmetries yields the result A{sub b}=-9.3{plus minus}5.2% (stat.) and A{sub c}=-9.6{plus minus}4.0% (stat.). A fit for the b-asymmetry alone gives A{sub b}=-11.6{plus minus}4.8% (stat.). The systematic errors are comparable with the statistical uncertainties. Combining the measurements at both energies and alternately constraining the weak coupling of the c and b quark to their Standard Model values (a{sub c}=1, a{sub b}=-1) increases the precision of the measurement of coupling constant of the other quark. Using this procedure a{sub b}=-0.72{plus minus}0.34 and a{sub c}=0.79{plus minus}0.40, where the numbers are corrected for Banti B-mixing and the errors include both statistical and systematic contributions. The mixing parameter for continuum banti b-production is determined to be {chi}=0.24{plus minus}0.12 if both heavy quark coupling constants are constrained to their values in the Standard Model. (orig.).

  12. 配电变压器绕组轴向短路电磁力分析%Analysis of Axial Short Circuit Electromagnetic Force in Winding of Distribution Transformer

    Institute of Scientific and Technical Information of China (English)

    李朝生; 郭健; 李先允; 陈小虎

    2011-01-01

    建立了计算短路电流的三维暂态场路耦合模型,对短路电流和轴向短路电磁力进行了比较分析.%The 3D transient field circuit coupled model to calculate short circuit current is established. The short circuit current and the axial short circuit electromagnetic force are comparied and analyzed.

  13. On alternative methods for measuring the radius and propagation ratio of axially symmetric laser beams

    International Nuclear Information System (INIS)

    Based on the developed efficient numerical methods for calculating the propagation of light beams, the alternative methods for measuring the beam radius and propagation ratio proposed in the international standard ISO 11146 are analysed. The specific calculations of the alternative beam propagation ratios Mi2 performed for a number of test beams with a complicated spatial structure showed that the correlation coefficients ci used in the international standard do not establish the universal one-to-one relation between the alternative propagation ratios Mi2 and invariant propagation ratios Mσ2 found by the method of moments. (laser beams)

  14. Single Molecule Force Measurement for Protein Synthesis on the Ribosome

    Science.gov (United States)

    Uemura, Sotaro

    2008-04-01

    The ribosome is a molecular machine that translates the genetic code described on the messenger RNA (mRNA) into an amino acid sequence through repetitive cycles of transfer RNA (tRNA) selection, peptide bond formation and translocation. Although the detailed interactions between the translation components have been revealed by extensive structural and biochemical studies, it is not known how the precise regulation of macromolecular movements required at each stage of translation is achieved. Here we demonstrate an optical tweezer assay to measure the rupture force between a single ribosome complex and mRNA. The rupture force was compared between ribosome complexes assembled on an mRNA with and without a strong Shine-Dalgarno (SD) sequence. The removal of the SD sequence significantly reduced the rupture force, indicating that the SD interactions contribute significantly to the stability of the ribosomal complex on the mRNA in a pre-peptidyl transfer state. In contrast, the post-peptidyl transfer state weakened the rupture force as compared to the complex in a pre-peptidyl transfer state and it was the same for both the SD-containing and SD-deficient mRNAs. The results suggest that formation of the first peptide bond destabilizes the SD interaction, resulting in the weakening of the force with which the ribosome grips an mRNA. This might be an important requirement to facilitate movement of the ribosome along mRNA during the first translocation step. In this article, we discuss about the above new results including the introduction of the ribosome translation mechanism and the optical tweezer method.

  15. Concurrent Validity of Accelerations Measured Using a Tri-Axial Inertial Measurement Unit while Walking on Firm, Compliant and Uneven Surfaces

    Science.gov (United States)

    Cole, Michael H.; van den Hoorn, Wolbert; Kavanagh, Justin K.; Morrison, Steven; Hodges, Paul W.; Smeathers, James E.; Kerr, Graham K.

    2014-01-01

    Although accelerometers are extensively used for assessing gait, limited research has evaluated the concurrent validity of these devices on less predictable walking surfaces or the comparability of different methods used for gravitational acceleration compensation. This study evaluated the concurrent validity of trunk accelerations derived from a tri-axial inertial measurement unit while walking on firm, compliant and uneven surfaces and contrasted two methods used to remove gravitational accelerations; i) subtraction of the best linear fit from the data (detrending); and ii) use of orientation information (quaternions) from the inertial measurement unit. Twelve older and twelve younger adults walked at their preferred speed along firm, compliant and uneven walkways. Accelerations were evaluated for the thoracic spine (T12) using a tri-axial inertial measurement unit and an eleven-camera Vicon system. The findings demonstrated excellent agreement between accelerations derived from the inertial measurement unit and motion analysis system, including while walking on uneven surfaces that better approximate a real-world setting (all differences <0.16 m.s−2). Detrending produced slightly better agreement between the inertial measurement unit and Vicon system on firm surfaces (delta range: −0.05 to 0.06 vs. 0.00 to 0.14 m.s−2), whereas the quaternion method performed better when walking on compliant and uneven walkways (delta range: −0.16 to −0.02 vs. −0.07 to 0.07 m.s−2). The technique used to compensate for gravitational accelerations requires consideration in future research, particularly when walking on compliant and uneven surfaces. These findings demonstrate trunk accelerations can be accurately measured using a wireless inertial measurement unit and are appropriate for research that evaluates healthy populations in complex environments. PMID:24866262

  16. Concurrent validity of accelerations measured using a tri-axial inertial measurement unit while walking on firm, compliant and uneven surfaces.

    Directory of Open Access Journals (Sweden)

    Michael H Cole

    Full Text Available Although accelerometers are extensively used for assessing gait, limited research has evaluated the concurrent validity of these devices on less predictable walking surfaces or the comparability of different methods used for gravitational acceleration compensation. This study evaluated the concurrent validity of trunk accelerations derived from a tri-axial inertial measurement unit while walking on firm, compliant and uneven surfaces and contrasted two methods used to remove gravitational accelerations; i subtraction of the best linear fit from the data (detrending; and ii use of orientation information (quaternions from the inertial measurement unit. Twelve older and twelve younger adults walked at their preferred speed along firm, compliant and uneven walkways. Accelerations were evaluated for the thoracic spine (T12 using a tri-axial inertial measurement unit and an eleven-camera Vicon system. The findings demonstrated excellent agreement between accelerations derived from the inertial measurement unit and motion analysis system, including while walking on uneven surfaces that better approximate a real-world setting (all differences <0.16 m.s(-2. Detrending produced slightly better agreement between the inertial measurement unit and Vicon system on firm surfaces (delta range: -0.05 to 0.06 vs. 0.00 to 0.14 m.s(-2, whereas the quaternion method performed better when walking on compliant and uneven walkways (delta range: -0.16 to -0.02 vs. -0.07 to 0.07 m.s(-2. The technique used to compensate for gravitational accelerations requires consideration in future research, particularly when walking on compliant and uneven surfaces. These findings demonstrate trunk accelerations can be accurately measured using a wireless inertial measurement unit and are appropriate for research that evaluates healthy populations in complex environments.

  17. Precision Measurement of the 6He Half-Life and the Weak Axial Current in Nuclei

    CERN Document Server

    Knecht, A; Zumwalt, D W; Delbridge, B G; Garcia, A; Mueller, P; Swanson, H E; Towner, I S; Utsuno, S; Williams, W; Wrede, C

    2011-01-01

    Studies of 6He beta decay along with tritium can play an important role in testing ab-initio nuclear wave-function calculations and may allow for fixing low-energy constants in effective field theories. Here, we present an improved determination of the 6He half-life to a relative precision of 3x10^(-4). Our value of 806.89 \\pm 0.11(stat)^{+0.23}_{-0.19}(syst) ms resolves a major discrepancy between previous measurements. Calculating the statistical rate function we determined the ft-value to be 803.04 ^{+0.26}_{-0.23} s. The extracted Gamow-Teller matrix element agrees within a few percent with ab-initio calculations.

  18. DIRECT MEASUREMENT OF WEAK DEPLETION FORCE BETWEEN TWO SURFACES*

    Institute of Scientific and Technical Information of China (English)

    Xiang-jun Gong; Xiao-chen Xing; Xiao-ling Wei; To Ngai

    2011-01-01

    In a mixture of colloidal particles and polymer molecules, the particles may experience an attractive “depletion force” if the size of the polymer molecule is larger than the interparticle separation. This is because individual polymer molecules experience less conformational entropy if they stay between the particles than they escape the inter-particle space,which results in an osmotic pressure imbalance inside and outside the gap and leads to interparticle attraction. This depletion force has been the subject of several studies since the 1980s, but the direct measurement of this force is still experimentally challenging as it requires the detection of energy variations of the order of kBT and beyond. We present here our results for applying total internal reflection microscopy (TIRM) to directly measure the interaction between a free-moving particle and a flat surface in solutions consisting of small water-soluble organic molecules or polymeric surfactants. Our results indicate that stable nanobubbles (ca. 150 nm) exist free in the above aqueous solutions. More importantly, the existence of such nanobubbles induces an attraction between the spherical particle and flat surface. Using TIRM, we are able to directly measure such weak interaction with a range up to 100 nm. Furthermore, we demonstrate that by employing thermo-sensitive microgel particles as a depleting agent, we are able to quantitatively measure and reversibly control kBT-scale depletion attraction as function of solution pH.

  19. Interlaboratory comparison of traceable atomic force microscope pitch measurements

    Science.gov (United States)

    Dixson, Ronald; Chernoff, Donald A.; Wang, Shihua; Vorburger, Theodore V.; Tan, Siew Leng; Orji, Ndubuisi G.; Fu, Joseph

    2010-06-01

    The National Institute of Standards and Technology (NIST), Advanced Surface Microscopy (ASM), and the National Metrology Centre (NMC) of the Agency for Science, Technology, and Research (A*STAR) in Singapore have completed a three-way interlaboratory comparison of traceable pitch measurements using atomic force microscopy (AFM). The specimen being used for this comparison is provided by ASM and consists of SiO2 lines having a 70 nm pitch patterned on a silicon substrate. NIST has a multifaceted program in atomic force microscope (AFM) dimensional metrology. One component of this effort is a custom in-house metrology AFM, called the calibrated AFM (C-AFM). The NIST C-AFM has displacement metrology for all three axes traceable to the 633 nm wavelength of the iodine-stabilized He-Ne laser - a recommended wavelength for realization of the SI (Système International d'Unités, or International System of Units) meter. NIST used the C-AFM to participate in this comparison. ASM used a commercially available AFM with an open-loop scanner, calibrated by a 144 nm pitch transfer standard. In a prior collaboration with Physikalisch-Technische Bundesanstalt (PTB), the German national metrology institute, ASM's transfer standard was calibrated using PTB's traceable optical diffractometry instrument. Thus, ASM's measurements are also traceable to the SI meter. NMC/A*STAR used a large scanning range metrological atomic force microscope (LRM-AFM). The LRM-AFM integrates an AFM scanning head into a nano-stage equipped with three built-in He-Ne laser interferometers so that its measurement related to the motion on all three axes is directly traceable to the SI meter. The measurements for this interlaboratory comparison have been completed and the results are in agreement within their expanded uncertainties and at the level of a few parts in 104.

  20. Validity of using tri-axial accelerometers to measure human movement - Part I: Posture and movement detection.

    Science.gov (United States)

    Lugade, Vipul; Fortune, Emma; Morrow, Melissa; Kaufman, Kenton

    2014-02-01

    A robust method for identifying movement in the free-living environment is needed to objectively measure physical activity. The purpose of this study was to validate the identification of postural orientation and movement from acceleration data against visual inspection from video recordings. Using tri-axial accelerometers placed on the waist and thigh, static orientations of standing, sitting, and lying down, as well as dynamic movements of walking, jogging and transitions between postures were identified. Additionally, subjects walked and jogged at self-selected slow, comfortable, and fast speeds. Identification of tasks was performed using a combination of the signal magnitude area, continuous wavelet transforms and accelerometer orientations. Twelve healthy adults were studied in the laboratory, with two investigators identifying tasks during each second of video observation. The intraclass correlation coefficients for inter-rater reliability were greater than 0.95 for all activities except for transitions. Results demonstrated high validity, with sensitivity and positive predictive values of greater than 85% for sitting and lying, with walking and jogging identified at greater than 90%. The greatest disagreement in identification accuracy between the algorithm and video occurred when subjects were asked to fidget while standing or sitting. During variable speed tasks, gait was correctly identified for speeds between 0.1m/s and 4.8m/s. This study included a range of walking speeds and natural movements such as fidgeting during static postures, demonstrating that accelerometer data can be used to identify orientation and movement among the general population.

  1. Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy

    Science.gov (United States)

    Black, Jennifer M.; Zhu, Mengyang; Zhang, Pengfei; Unocic, Raymond R.; Guo, Daqiang; Okatan, M. Baris; Dai, Sheng; Cummings, Peter T.; Kalinin, Sergei V.; Feng, Guang; Balke, Nina

    2016-09-01

    Atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements are sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. The comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained.

  2. Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy

    Science.gov (United States)

    Black, Jennifer M.; Zhu, Mengyang; Zhang, Pengfei; Unocic, Raymond R.; Guo, Daqiang; Okatan, M. Baris; Dai, Sheng; Cummings, Peter T.; Kalinin, Sergei V.; Feng, Guang; Balke, Nina

    2016-01-01

    Atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements are sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. The comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained. PMID:27587276

  3. A voice coil motor based measuring force control system for tactile scanning profiler

    Science.gov (United States)

    Feng, Shengdong; Liu, Xiaojun; Chen, Liangzhou; Zhou, Liping; Lu, Wenlong

    2015-02-01

    In tactile scanning profiler, the measuring force would change in a wide range when it was used for profile measurement in a large range, which could possibly destroy the measured surface. To solve the problem, measuring force control system for tactile scanning profiler was needed. In the paper, a voice coil motor-based measuring force control system for tactile scanning profiler was designed. In the design, a low stiffness coefficient spring was used to provide contact force, while a voice coil motor (VCM) to balance the spring force so that the contact force could be kept for constant measuring force. A VCM was designed specially, and for active measuring force control, a precision current source circuit under the control of a DSP unit was designed to drive the VCM. The performance of voice coil motor based measuring force control system had been tested, and its good characteristics were verified.

  4. New facets of nuclear forces. Three-nucleon forces and precise measurements

    International Nuclear Information System (INIS)

    One of the main interests in nuclear physics is understanding the forces acting nuclear constituents. In the past decade substantial progress was made in descriptions of various phenomena of nuclei, by explicitly taking into account nucleon-nucleon forces. The results of comparison to the experimental data for binding energies of nuclei, equation of state of nuclear matter and three-nucleon scattering, strongly indicate the importance of 3NFs acting in systems with more than two nucleons. Nucleon-deuteron scattering, for which a rigorous formulation in terms of Faddeev equations exists and exact solutions of these equations for any dynamical input can be obtained, offers a good opportunity to study the dynamical aspects of 3NFs, such as momentum, spin, and/or iso-spin dependences. Since the first indication of 3NF effects in Nd elastic scattering around 100 MeV/nucleon precise measurements of proton-deuteron/neutron-deuteron elastic scattering have been extensively performed at 65-400 MeV/nucleon. Direct comparison between the data and the Faddeev calculations draws the following conclusions, (1) the 3NF is definitely needed in Nd elastic scattering, (2) the spin dependent parts of the 3NF are deficient, (3) the short-range components of the 3NF are probably required for high momentum transfer region. (author)

  5. An analytical model for the prediction of fluid-elastic forces in a rod bundle subjected to axial flow: theory, experimental validation and application to PWR fuel assemblies; Calcul des forces fluidelastiques dans les faisceaux de tubes sous ecoulement axial: theorie, validation, application aux assemblages combustibles des REP

    Energy Technology Data Exchange (ETDEWEB)

    Beaud, F. [Electricite de France (EDF), 78 - Chatou (France)

    1997-12-31

    A model predicting the fluid-elastic forces in a bundle of circular cylinders subjected to axial flow is presented in this paper. Whereas previously published models were limited to circular flow channel, the present one allows to take a rectangular flow external boundary into account. For that purpose, an original approach is derived from the standard method of images. This model will eventually be used to predict the fluid-structure coupling between the flow of primary coolant and a fuel assemblies in PWR nuclear reactors. It is indeed of major importance since the flow is shown to induce quite high damping and could therefore mitigate the incidence of an external load like a seismic excitation on the dynamics of the assemblies. The proposed model is validated on two cases from the literature but still needs further comparisons with the experiments being currently carried out on the EDF set-up. The flow has been shown to induce an approximate 12% damping on a PWR fuel assembly, at nominal reactor conditions. The possible grid effect on the fluid-structure coupling has been neglected so far but will soon be investigated at EDF. (author). 16 refs.

  6. A verification of quantum field theory – measurement of Casimir force

    Indian Academy of Sciences (India)

    Anushree Roy; U Mohideen

    2001-02-01

    Here we review our work on measurement of the Casimir force between a large aluminum coated a sphere and flat plate using an atomic force microscope. The average statistical precision is 1% of the force measured at the closest separation. We have also shown nontrival boundary dependence of the Casimir force.

  7. Kelvin probe force microscopy of metallic surfaces used in Casimir force measurements

    Science.gov (United States)

    Behunin, R. O.; Dalvit, D. A. R.; Decca, R. S.; Genet, C.; Jung, I. W.; Lambrecht, A.; Liscio, A.; López, D.; Reynaud, S.; Schnoering, G.; Voisin, G.; Zeng, Y.

    2014-12-01

    Kelvin probe force microscopy at normal pressure was performed by two different groups on the same Au-coated planar sample used to measure the Casimir interaction in a sphere-plane geometry. The obtained voltage distribution was used to calculate the separation dependence of the electrostatic pressure Pres(D ) in the configuration of the Casimir experiments. In the calculation it was assumed that the potential distribution in the sphere has the same statistical properties as the measured one, and that there are no correlation effects on the potential distributions due to the presence of the other surface. The result of this calculation, using the currently available knowledge, is that Pres(D ) does not explain the magnitude or the separation dependence of the difference Δ P (D ) between the measured Casimir pressure and the one calculated using a Drude model for the electromagnetic response of Au. We discuss in the conclusions the points which have to be checked out by future work, including the influence of pressure and a more accurate determination of the patch distribution, in order to confirm these results.

  8. Investigation on Improving Life of Vertical Motor Thrust Bearing by Axial Magnetic Force%用轴向磁拉力延长立式电机推力轴承寿命的研究

    Institute of Scientific and Technical Information of China (English)

    张劲松; 张达立

    2012-01-01

    为解决立式电机轴向负荷长期超载导致轴承严重磨损导致寿命缩短的问题,提出了一种利用异步电机转子被磁化后产生的轴向电磁拉力来抵消轴向载荷的方法,从而达到保护电机轴承、延长电机使用寿命的目的.以200 MW火电机组中凝聚水泵的立式电机为例,分析计算了其在轴向电磁力辅助承担部分轴向负载,推力轴承的寿命变化情况;并进行了实验研究.理论分析和实验结果表明,该方法可以有效地降低轴承磨损,延长其使用寿命.%To solve the heavy wear and poor life of thrust bearing in vertical motor because of its axial load long-term overload, the paper proposes a method that the axial load is offset by axial electromagnetic tension generated after the asynchronous motor rotor magnetized. Taking the vertical motor of condensed water pump in a 200 MW thermal power unit as example, the life of thrust bearing is calculated in the case of a part of axial loads on the axial magnetic force auxiliary. Experiment result shows that the method can lower the wear of thrust bearing and improve its life.

  9. Force measuring optical tweezers system for long time measurements of P pili stability

    Science.gov (United States)

    Andersson, Magnus; Fällman, Erik; Uhlin, Bernt Eric; Axner, Ove

    2006-02-01

    A force-measuring optical tweezers instrumentation and long time measurements of the elongation and retraction of bacterial fimbriae from Uropathogenic E. coli (UPEC) under strain are presented. The instrumentation is presented in some detail. Special emphasis is given to measures taken to reduce the influence of noise and drifts in the system and from the surrounding, which makes long term force measurements possible. Individual P pili from UPEC bacteria were used as a biological model system for repetitive unfolding and refolding cycles of bacterial fimbriae under equilibrium conditions. P pili have evolved into a three-dimensional helix-like structure, the PapA rod, that can be successively and significantly elongated and/or unfolded when exposed to external forces. The instrumentation is used for characterization of the force-vs.-elongation response of the PapA rod of individual P pili, with emphasis on the long time stability of the forced unfolding and refolding of the helical structure of the PapA rod. The results show that the PapA rod is capable of withstanding extensive strain, leading to a complete unfolding of the helical structure, repetitive times during the life cycle of a bacterium without any noticeable alteration of the mechanical properties of the P pili. This function is believed to be importance for UPEC bacteria in vivo since it provides a close contact to a host cell (which is an initial step of invasion) despite urine cleaning attempts.

  10. Influence of scanning force microscope loading force on measurement of ion—track diameter

    Institute of Scientific and Technical Information of China (English)

    WangYu-Gang; AckermannJ; 等

    1997-01-01

    Scanning force microscope(SFM) was operated in the lateral-force mode with different loading forces.The mica samples were irradiated by Se ions with a kinetic energy of 11.4MeV/u.The"full-height width" and the "half-height width" of track profiles were used to evaluate the ion-track diameter,For the former method,the average track diameter increases slowly with increasing loading force between SFM tip and sample.For the later method,the average diameters of ion track nearly keep a common value as the SFM loading force increases.

  11. Influence of atomic force microscope (AFM) probe shape on adhesion force measured in humidity environment

    Institute of Scientific and Technical Information of China (English)

    阳丽; 涂育松; 谭惠丽

    2014-01-01

    In micro-manipulation, the adhesion force has very important influence on behaviors of micro-objects. Here, a theoretical study on the effects of humidity on the adhesion force is presented between atomic force microscope (AFM) tips and substrate. The analysis shows that the precise tip geometry plays a critical role on humidity depen-dence of the adhesion force, which is the dominant factor in manipulating micro-objects in AFM experiments. For a blunt (paraboloid) tip, the adhesion force versus humidity curves tends to the apparent contrast (peak-to-valley corrugation) with a broad range. This paper demonstrates that the abrupt change of the adhesion force has high correla-tion with probe curvatures, which is mediated by coordinates of solid-liquid-vapor contact lines (triple point) on the probe profiles. The study provides insights for further under-standing nanoscale adhesion forces and the way to choose probe shapes in manipulating micro-objects in AFM experiments.

  12. Directly measuring single molecule heterogeneity using force spectroscopy

    CERN Document Server

    Hinczewski, Michael; Thirumalai, D

    2016-01-01

    One of the most intriguing results of single molecule experiments on proteins and nucleic acids is the discovery of functional heterogeneity: the observation that complex cellular machines exhibit multiple, biologically active conformations. The structural differences between these conformations may be subtle, but each distinct state can be remarkably long-lived, with random interconversions between states occurring only at macroscopic timescales, fractions of a second or longer. Though we now have proof of functional heterogeneity in a handful of systems---enzymes, motors, adhesion complexes---identifying and measuring it remains a formidable challenge. Here we show that evidence of this phenomenon is more widespread than previously known, encoded in data collected from some of the most well-established single molecule techniques: AFM or optical tweezer pulling experiments. We present a theoretical procedure for analyzing distributions of rupture/unfolding forces recorded at different pulling speeds. This re...

  13. Validity of using tri-axial accelerometers to measure human movement - Part I: Posture and movement detection.

    Science.gov (United States)

    Lugade, Vipul; Fortune, Emma; Morrow, Melissa; Kaufman, Kenton

    2014-02-01

    A robust method for identifying movement in the free-living environment is needed to objectively measure physical activity. The purpose of this study was to validate the identification of postural orientation and movement from acceleration data against visual inspection from video recordings. Using tri-axial accelerometers placed on the waist and thigh, static orientations of standing, sitting, and lying down, as well as dynamic movements of walking, jogging and transitions between postures were identified. Additionally, subjects walked and jogged at self-selected slow, comfortable, and fast speeds. Identification of tasks was performed using a combination of the signal magnitude area, continuous wavelet transforms and accelerometer orientations. Twelve healthy adults were studied in the laboratory, with two investigators identifying tasks during each second of video observation. The intraclass correlation coefficients for inter-rater reliability were greater than 0.95 for all activities except for transitions. Results demonstrated high validity, with sensitivity and positive predictive values of greater than 85% for sitting and lying, with walking and jogging identified at greater than 90%. The greatest disagreement in identification accuracy between the algorithm and video occurred when subjects were asked to fidget while standing or sitting. During variable speed tasks, gait was correctly identified for speeds between 0.1m/s and 4.8m/s. This study included a range of walking speeds and natural movements such as fidgeting during static postures, demonstrating that accelerometer data can be used to identify orientation and movement among the general population. PMID:23899533

  14. Sensitivity assessment of wide Axial Field of View PET systems via Monte Carlo simulations of NEMA-like measurements

    International Nuclear Information System (INIS)

    The sensitivity characteristics of Positron Emission Tomography (PET) systems with wide Axial Field of View (AFOV) was studied by MonteCarlo simulations complemented by an approximate analytical model, aiming at full-body human PET systems with AFOV in the order of 200 cm. Simulations were based on the GEANT4 package and followed closely the NEMA NU-2 1994 norm. The sensitivity, dominated by the solid angle, grows strongly with the AFOV and with the axial acceptance angle, while the scatter fraction is almost independent from the geometry

  15. Sensor Prototype to Evaluate the Contact Force in Measuring with Coordinate Measuring Arms

    Directory of Open Access Journals (Sweden)

    Eduardo Cuesta

    2015-06-01

    Full Text Available This paper describes the design, development and evaluation tests of an integrated force sensor prototype for portable Coordinate Measuring Arms (CMAs or AACMMs. The development is based on the use of strain gauges located on the surface of the CMAs’ hard probe. The strain gauges as well as their cables and connectors have been protected with a custom case, made by Additive Manufacturing techniques (Polyjet 3D. The same method has been selected to manufacture an ergonomic handle that includes trigger mechanics and the electronic components required for synchronizing the trigger signal when probing occurs. The paper also describes the monitoring software that reads the signals in real time, the calibration procedure of the prototype and the validation tests oriented towards increasing knowledge of the forces employed in manual probing. Several experiments read and record the force in real time comparing different ways of probing (discontinuous and continuous contact and measuring different types of geometric features, from single planes to exterior cylinders, cones, or spheres, through interior features. The probing force is separated into two components allowing the influence of these strategies in probe deformation to be known. The final goal of this research is to improve the probing technique, for example by using an operator training programme, allowing extra-force peaks and bad contacts to be minimized or just to avoid bad measurements.

  16. Measurement of the elastic modulus of spider mite silk fibers using atomic force microscopy

    Science.gov (United States)

    Hudson, Stephen D.; Zhurov, Vladimir; Grbić, Vojislava; Grbić, Miodrag; Hutter, Jeffrey L.

    2013-04-01

    Bio-nanomaterials are one of the fastest developing sectors of industry and technology. Spider silk, a highly attractive light-weight biomaterial, has high tensile strength and elasticity and is compatible with human tissues, allowing for many areas of application. In comparison to spider silk fibers with diameters of several micrometers, spider mite silk fibers have much smaller diameters of tens of nanometers, making conventional tensile testing methods impractical. To determine the mechanical properties of adult and larval Tetranychus urticae silk fibers, we have performed three-point bending tests with an atomic force microscope. We found that because of the small diameters of these fibers, axial tension—due to both the applied force and a pre-existing strain—has a significant effect on the fiber response, even in the small-deformation limit. As a result, the typical Euler-Bernoulli-Timoshenko theory cannot be applied. We therefore follow the approach of Heidelberg et al. to develop a mechanical model of the fiber response that accounts for bending, an initial tension in the fibers, and a tension due to elongation during testing. This model provides self-consistent results, allowing us to determine that adult and larval fibers have Young's moduli of 24±3 GPa and 15±3 GPa, respectively. Both adult and larval fibers have an estimated ultimate strength of 200-300 MPa and a toughness of order 9 MJ/m3. We note that with increasing interest in the mechanical properties of very high aspect ratio nanomaterials, the influence of pre-existing tension must be considered in any measurements involving a bending test.

  17. A technique for conditioning and calibrating force-sensing resistors for repeatable and reliable measurement of compressive force.

    Science.gov (United States)

    Hall, Rick S; Desmoulin, Geoffrey T; Milner, Theodore E

    2008-12-01

    Miniature sensors that could measure forces applied by the fingers and hand without interfering with manual dexterity or range of motion would have considerable practical value in ergonomics and rehabilitation. In this study, techniques have been developed to use inexpensive pressure-sensing resistors (FSRs) to accurately measure compression force. The FSRs are converted from pressure-sensing to force-sensing devices. The effects of nonlinear response properties and dependence on loading history are compensated by signal conditioning and calibration. A fourth-order polynomial relating the applied force to the current voltage output and a linearly weighted sum of prior outputs corrects for sensor hysteresis and drift. It was found that prolonged (>20h) shear force loading caused sensor gain to change by approximately 100%. Shear loading also had the effect of eliminating shear force effects on sensor output, albeit only in the direction of shear loading. By applying prolonged shear loading in two orthogonal directions, the sensors were converted into pure compression sensors. Such preloading of the sensor is, therefore, required prior to calibration. The error in compression force after prolonged shear loading and calibration was consistently industrial design applications where measurements of finger and hand force are needed.

  18. Measurements of the unsteady flow field within the stator row of a transonic axial-flow fan. I - Measurement and analysis technique

    Science.gov (United States)

    Suder, K. L.; Strazisar, A. J.; Adamczyk, J. J.; Hathaway, M. D.; Okiishi, T. H.

    1987-01-01

    This two-part paper presents laser anemometer measurements of the unsteady velocity field within the stator row of a transonic axial-flow fan. The objective is to provide additional insight into unsteady blade-row interactions within highspeed compressors which affect stage efficiency, energy transfer, and other design considerations. Part 1 describes the measurement and analysis techniques used for resolving the unsteady flow field features. The ensemble-average and variance of the measured velocities are used to identify the rotor wake generated and unresolved unsteadiness, respectively. (Rotor wake generated unsteadiness refers to the unsteadiness generated by the rotor wake velocity deficit and the term unresolved unsteadiness refers to all remaining contributions to unsteadiness such as vortex shedding, turbulence, mass flow fluctutions, etc.). A procedure for calculating auto and cross correlations of the rotor wake generated and unresolved unsteady velocity fluctuations is described. These unsteady-velocity correlations have significance since they also result from a decomposition of the Navier-Stokes equations. This decomposition of the Navier-Stokes equations resulting in the velocity correlations used to describe the unsteady velocity field will also be outlined in this paper.

  19. Forces from highly focused laser beams: modeling, measurement and application to refractive index measurements

    CERN Document Server

    Knoener, G; Nieminen, T A; Heckenberg, N R; Rubinsztein-Dunlop, H

    2007-01-01

    The optical forces in optical tweezers can be robustly modeled over a broad range of parameters using generalsed Lorenz-Mie theory. We describe the procedure, and show how the combination of experimental measurement of properties of the trap coupled with computational modeling, can allow unknown parameters of the particle - in this case, the refractive index - to be determined.

  20. A measurement of the hysteresis loop in force-spectroscopy curves using a tuning-fork atomic force microscope.

    Science.gov (United States)

    Lange, Manfred; van Vörden, Dennis; Möller, Rolf

    2012-01-01

    Measurements of the frequency shift versus distance in noncontact atomic force microscopy (NC-AFM) allow measurements of the force gradient between the oscillating tip and a surface (force-spectroscopy measurements). When nonconservative forces act between the tip apex and the surface the oscillation amplitude is damped. The dissipation is caused by bistabilities in the potential energy surface of the tip-sample system, and the process can be understood as a hysteresis of forces between approach and retraction of the tip. In this paper, we present the direct measurement of the whole hysteresis loop in force-spectroscopy curves at 77 K on the PTCDA/Ag/Si(111) √3 × √3 surface by means of a tuning-fork-based NC-AFM with an oscillation amplitude smaller than the distance range of the hysteresis loop. The hysteresis effect is caused by the making and breaking of a bond between PTCDA molecules on the surface and a PTCDA molecule at the tip. The corresponding energy loss was determined to be 0.57 eV by evaluation of the force-distance curves upon approach and retraction. Furthermore, a second dissipation process was identified through the damping of the oscillation while the molecule on the tip is in contact with the surface. This dissipation process occurs mainly during the retraction of the tip. It reaches a maximum value of about 0.22 eV/cycle. PMID:22496993

  1. Measurement of the complete interaction force curve at the nanoscale

    OpenAIRE

    Rodrigues, Mario S.; Costa, Luca; Chevrier, Joel; Comin, Fabio

    2012-01-01

    The force between two interacting particles as a function of distance is one of the most fundamental curves in science. In this regard, Atomic Force Microscopy (AFM) represents the most powerful tool in nanoscience but with severe limits when it is to probe attractive interactions with high sensitivity. The Force Feedback Microscope (FFM) described here, removes from AFM the well known jump to contact problem that precludes the complete exploration of the interaction curve and the study of as...

  2. Determination of the axial stiffness of an optical trap with information entropy signals

    Science.gov (United States)

    Zhong, Mincheng; Zhou, Jinhua; Wu, Jianguang; Li, Yinmei

    2009-11-01

    Optical tweezers has been used to manipulate micro-sized particles for many years, and has been widely used in various applications. The axial trapping stiffness is one of the most important parameters to evaluate the trapping ability of an optical tweezers. In this paper, we calibrated the axial optical stiffnesses for micro-sized polystyrene spheres. When an external force was applied to particle held by an optical trap, the particle was displaced from the trap center by an amount proportional to the applied force. We displaced the particle from the trap center by applying triangular waves of varying velocity, and the varying velocity was obtained by altering the frequency of the triangular waves. In this case the particle has two balance position distributed at two-side of the trap center. The calibration of the axial position was critical to the measurement of axial optical stiffness. In this paper, the axial displacement between the balance position and the trap center was calibrated with image information entropy signals. According to Stokes Law, when the axial displacement of the particle relative to the external force was known, the axial optical stiffness can be measured, and this method was known as viscous drag method. The stiffnesses for a 2μm-diameter at different trapped depth were measured. Typical values for axial optical stiffness of our optical tweezers were between 4.0 and 7.5 pN/μm when the laser power was 35mW. Dependence of axial optical trapping stiffness on the diameter of the particles was measured with viscous drag method. At last, the origin of the measurement error was discussed.

  3. A measurement of the hysteresis loop in force-spectroscopy curves using a tuning-fork atomic force microscope

    Directory of Open Access Journals (Sweden)

    Manfred Lange

    2012-03-01

    Full Text Available Measurements of the frequency shift versus distance in noncontact atomic force microscopy (NC-AFM allow measurements of the force gradient between the oscillating tip and a surface (force-spectroscopy measurements. When nonconservative forces act between the tip apex and the surface the oscillation amplitude is damped. The dissipation is caused by bistabilities in the potential energy surface of the tip–sample system, and the process can be understood as a hysteresis of forces between approach and retraction of the tip. In this paper, we present the direct measurement of the whole hysteresis loop in force-spectroscopy curves at 77 K on the PTCDA/Ag/Si(111 √3 × √3 surface by means of a tuning-fork-based NC-AFM with an oscillation amplitude smaller than the distance range of the hysteresis loop. The hysteresis effect is caused by the making and breaking of a bond between PTCDA molecules on the surface and a PTCDA molecule at the tip. The corresponding energy loss was determined to be 0.57 eV by evaluation of the force–distance curves upon approach and retraction. Furthermore, a second dissipation process was identified through the damping of the oscillation while the molecule on the tip is in contact with the surface. This dissipation process occurs mainly during the retraction of the tip. It reaches a maximum value of about 0.22 eV/cycle.

  4. Magnetic Pump Axial Force Balance Method based on the Magnetic Bearing%基于永磁悬推力轴承的磁力泵轴向力平衡方法

    Institute of Scientific and Technical Information of China (English)

    周龙德; 杨国来

    2013-01-01

    针对磁力泵在运行过程中产生的轴向力平衡问题,通过对磁力泵轴向力的分析,提出了采用永磁悬浮推力轴承来替代普通推力轴承的方法,彻底解决了磁力泵工作现场推力轴承磨损与破裂的问题,实现了磁力泵无接触传动,降低了噪声和功率损失,提高了磁力泵的工作效率和使用寿命.%Focused on the problem of the axial force balance in the operation process of the magnetic pump and based on the magnetic pump axial force analysis,the way that using the permanent magnetic suspension thrust bearing to replace the traditional thrust bearing was proposed,which completely solves the problem that thrust bearing wear and fracture in the magnetic pump working site,realizing the magnetic pump non-contact transmission,noise reducing,power loss,and improves the pump efficiency and service life.

  5. Force measuring valve assemblies, systems including such valve assemblies and related methods

    Science.gov (United States)

    DeWall, Kevin George; Garcia, Humberto Enrique; McKellar, Michael George

    2012-04-17

    Methods of evaluating a fluid condition may include stroking a valve member and measuring a force acting on the valve member during the stroke. Methods of evaluating a fluid condition may include measuring a force acting on a valve member in the presence of fluid flow over a period of time and evaluating at least one of the frequency of changes in the measured force over the period of time and the magnitude of the changes in the measured force over the period of time to identify the presence of an anomaly in a fluid flow and, optionally, its estimated location. Methods of evaluating a valve condition may include directing a fluid flow through a valve while stroking a valve member, measuring a force acting on the valve member during the stroke, and comparing the measured force to a reference force. Valve assemblies and related systems are also disclosed.

  6. A test program to measure fluid mechanical whirl-excitation forces in centrifugal pumps

    Science.gov (United States)

    Brennen, C. E.; Acosta, A. J.; Caughey, T. K.

    1980-01-01

    The details of a test program for the measurement of the unsteady forces on centrifugal impellers are discussed. Various hydrodynamic flows are identified as possible contributors to these destabilizing forces.

  7. Lorentz force electrical impedance tomography using magnetic field measurements

    Science.gov (United States)

    Zengin, Reyhan; Güneri Gençer, Nevzat

    2016-08-01

    In this study, magnetic field measurement technique is investigated to image the electrical conductivity properties of biological tissues using Lorentz forces. This technique is based on electrical current induction using ultrasound together with an applied static magnetic field. The magnetic field intensity generated due to induced currents is measured using two coil configurations, namely, a rectangular loop coil and a novel xy coil pair. A time-varying voltage is picked-up and recorded while the acoustic wave propagates along its path. The forward problem of this imaging modality is defined as calculation of the pick-up voltages due to a given acoustic excitation and known body properties. Firstly, the feasibility of the proposed technique is investigated analytically. The basic field equations governing the behaviour of time-varying electromagnetic fields are presented. Secondly, the general formulation of the partial differential equations for the scalar and magnetic vector potentials are derived. To investigate the feasibility of this technique, numerical studies are conducted using a finite element method based software. To sense the pick-up voltages a novel coil configuration (xy coil pairs) is proposed. Two-dimensional numerical geometry with a 16-element linear phased array (LPA) ultrasonic transducer (1 MHz) and a conductive body (breast fat) with five tumorous tissues is modeled. The static magnetic field is assumed to be 4 Tesla. To understand the performance of the imaging system, the sensitivity matrix is analyzed. The sensitivity matrix is obtained for two different locations of LPA transducer with eleven steering angles from -{{25}\\circ} to {{25}\\circ} at intervals of {{5}\\circ} . The characteristics of the imaging system are shown with the singular value decomposition (SVD) of the sensitivity matrix. The images are reconstructed with the truncated SVD algorithm. The signal-to-noise ratio in measurements is assumed 80 dB. Simulation studies

  8. Lorentz force electrical impedance tomography using magnetic field measurements.

    Science.gov (United States)

    Zengin, Reyhan; Gençer, Nevzat Güneri

    2016-08-21

    In this study, magnetic field measurement technique is investigated to image the electrical conductivity properties of biological tissues using Lorentz forces. This technique is based on electrical current induction using ultrasound together with an applied static magnetic field. The magnetic field intensity generated due to induced currents is measured using two coil configurations, namely, a rectangular loop coil and a novel xy coil pair. A time-varying voltage is picked-up and recorded while the acoustic wave propagates along its path. The forward problem of this imaging modality is defined as calculation of the pick-up voltages due to a given acoustic excitation and known body properties. Firstly, the feasibility of the proposed technique is investigated analytically. The basic field equations governing the behaviour of time-varying electromagnetic fields are presented. Secondly, the general formulation of the partial differential equations for the scalar and magnetic vector potentials are derived. To investigate the feasibility of this technique, numerical studies are conducted using a finite element method based software. To sense the pick-up voltages a novel coil configuration (xy coil pairs) is proposed. Two-dimensional numerical geometry with a 16-element linear phased array (LPA) ultrasonic transducer (1 MHz) and a conductive body (breast fat) with five tumorous tissues is modeled. The static magnetic field is assumed to be 4 Tesla. To understand the performance of the imaging system, the sensitivity matrix is analyzed. The sensitivity matrix is obtained for two different locations of LPA transducer with eleven steering angles from [Formula: see text] to [Formula: see text] at intervals of [Formula: see text]. The characteristics of the imaging system are shown with the singular value decomposition (SVD) of the sensitivity matrix. The images are reconstructed with the truncated SVD algorithm. The signal-to-noise ratio in measurements is assumed 80 d

  9. Resolution of Forces and Strain Measurements from an Acoustic Ground Test

    Science.gov (United States)

    Smith, Andrew M.; LaVerde, Bruce T.; Hunt, Ronald; Waldon, James M.

    2013-01-01

    The Conservatism in Typical Vibration Tests was Demonstrated: Vibration test at component level produced conservative force reactions by approximately a factor of 4 (approx.12 dB) as compared to the integrated acoustic test in 2 out of 3 axes. Reaction Forces Estimated at the Base of Equipment Using a Finite Element Based Method were Validated: FEM based estimate of interface forces may be adequate to guide development of vibration test criteria with less conservatism. Element Forces Estimated in Secondary Structure Struts were Validated: Finite element approach provided best estimate of axial strut forces in frequency range below 200 Hz where a rigid lumped mass assumption for the entire electronics box was valid. Models with enough fidelity to represent diminishing apparent mass of equipment are better suited for estimating force reactions across the frequency range. Forward Work: Demonstrate the reduction in conservatism provided by; Current force limited approach and an FEM guided approach. Validate proposed CMS approach to estimate coupled response from uncoupled system characteristics for vibroacoustics.

  10. Depletion interaction measured by colloidal probe atomic force microscopy

    NARCIS (Netherlands)

    Wijting, W.K.; Knoben, W.; Besseling, N.A.M.; Leermakers, F.A.M.; Cohen Stuart, M.A.

    2004-01-01

    We investigated the depletion interaction between stearylated silica surfaces in cyclohexane in the presence of dissolved polydimethylsiloxane by means of colloidal probe atomic force microscopy. We found that the range of the depletion interaction decreases with increasing concentration. Furthermor

  11. CFD Simulation of Casing Treatment of Axial Flow Compressors

    Science.gov (United States)

    DeWitt, Kenneth

    2005-01-01

    A computational study is carried out to understand the physical mechanism responsible for the improvement in stall margin of an axial flow rotor due to the circumferential casing grooves. It is shown that the computational tool used predicts an increase in operating range of the rotor when casing grooves are present. A budget of the axial momentum equation is carried out at the rotor casing in the tip gap in order to uncover the physical process behind this stall margin improvement. It is shown that for the smooth casing the net axial pressure force . However in the presence of casing grooves the net axial shear stress force acting at the casing is augmented by the axial force due to the radial transport of axial momentum, which occurs across the grooves and power stream interface. This additional force adds to the net axial viscous sheer force and thus leads to an increase in the stall margin of the rotor.

  12. Flow velocimetry for weakly conducting electrolytes based on high resolution Lorentz force measurement.

    Science.gov (United States)

    Resagk, Christian; Ebert, Reschad; Vasilyan, Suren; Wiederhold, Andreas

    2013-11-01

    We demonstrate that a flow velocity measurement can be transformed into a non-invasive force measurement by metering the drag force acting on a system of magnets around a flow channel. This method is called Lorentz force velocimetry and has been developed in the last years in our institute. It is a feasible principle for materials with large conductivity like liquid metals. To evolve this method for weakly conducting fluids like salt water or molten glass the drag force measurement is the challenging bottleneck. Here forces of 10-8 and less of the weight force of the magnet system have to be resolved. In this paper different force measurement techniques get tested and compared. For the current setup the magnet system is attached to a state of the art electromagnetic force compensation balance. Different ways of getting the correct force signal out of the two measurement setups will be presented and discussed. For generalization of the measurement principle the Lorentz force is determined for different fluid profiles. In addition to that we have developed new systematic noise reduction methods to increase the resolution of the force measurement techniques by a factor of ten or larger which we will present here.

  13. In situ synchrotron-radiation measurements of axial strain in laminated Bi2223 superconducting composite tapes at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, H. [International Innovation Center, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan)]. E-mail: okuda@iic.kyoto-u.ac.jp; Rokkaku, H. [Graduate School of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan); Morishita, K. [Graduate School of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan); Shin, J.K. [Graduate School of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan); Iwamoto, S. [Graduate School of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan); Ochiai, S. [International Innovation Center, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Sato, M. [Japan Synchrotron-Radiation Research Institute (JASRI), Kohto, Sayo 679-5198 (Japan); Osamura, K. [Graduate School of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan); Otto, A. [American Superconductor Co. Ltd., 2 Technology Drive, Westborough, MA 01581 (United States); Harley, E.J. [American Superconductor Co. Ltd., 2 Technology Drive, Westborough, MA 01581 (United States); Malozemoff, A. [American Superconductor Co. Ltd., 2 Technology Drive, Westborough, MA 01581 (United States)

    2006-10-15

    Axial strain of Bi2223 superconducting filaments in Ag-sheathed superconducting composites reinforced by stainless steel lamination has been evaluated by in situ synchrotron-radiation diffraction. The Bi2223 filaments in the laminated composites were under 0.11% of compressive residual strain, whereas the residual strain of filaments in the composite after removing stainless steel layers was only 0.02% in compression. Under large tensile load, the composite showed a clear multiple fracture with an almost constant filament strain of about 0.11% in tension.

  14. High-precision horizontally directed force measurements for high dead loads based on a differential electromagnetic force compensation system

    Science.gov (United States)

    Vasilyan, Suren; Rivero, Michel; Schleichert, Jan; Halbedel, Bernd; Fröhlich, Thomas

    2016-04-01

    In this paper, we present an application for realizing high-precision horizontally directed force measurements in the order of several tens of nN in combination with high dead loads of about 10 N. The set-up is developed on the basis of two identical state-of-the-art electromagnetic force compensation (EMFC) high precision balances. The measurement resolution of horizontally directed single-axis quasi-dynamic forces is 20 nN over the working range of  ±100 μN. The set-up operates in two different measurement modes: in the open-loop mode the mechanical deflection of the proportional lever is an indication of the acting force, whereas in the closed-loop mode it is the applied electric current to the coil inside the EMFC balance that compensates deflection of the lever to the offset zero position. The estimated loading frequency (cutoff frequency) of the set-up in the open-loop mode is about 0.18 Hz, in the closed-loop mode it is 0.7 Hz. One of the practical applications that the set-up is suitable for is the flow rate measurements of low electrically conducting electrolytes by applying the contactless technique of Lorentz force velocimetry. Based on a previously developed set-up which uses a single EMFC balance, experimental, theoretical and numerical analyses of the thermo-mechanical properties of the supporting structure are presented.

  15. Parametric study on uniplanar K-joints made of RHS regarding axial force, in-plane bending and out-of-plane bending moments

    Energy Technology Data Exchange (ETDEWEB)

    Mang, F.; Herion, S.; Bucak, O. [Univ. of Karlsruhe (Germany)

    1994-12-31

    This paper presents first results of calculations according to the finite element method for uniplanar K-joints with gap. The investigations cover thin-walled rectangular hollow sections of commonly used dimensions and manufacture. The employed finite element model has been optimized and checked carefully in a research program sponsored by the Deutsche Forschungsgemeinschaft DFG (Research foundation of German government) dealing with multiplanar K-joints with gap. Compared to previous investigations, the influence of axial load, in-plane bending moments (IPB) and out-of-plane bending moments (OPB) are considered separately. With these models, parametric studies have been carried out to make statements on the strain concentration factors SNCF in terms of the geometric parameters {beta} = b{sub 1}/b{sub 0}; {tau} = t{sub 1}/t{sub 0} and gap g. As far as possible, graphs are given.

  16. Parametric study on multiplanar K-joints made of RHS regarding axial force, in-plane bending and out-of-plane bending moments

    Energy Technology Data Exchange (ETDEWEB)

    Herion, S.; Mang, F. [Univ. of Karlsruhe (Germany)

    1994-12-31

    This paper presents the most significant results of a comprehensive parametric study on multiplanar K-joints. In this study, which is part of a pH. D. work, the influence of axial load, in-plane bending moments (IPB) and out-of-plane bending moments (OPB) are considered separately. For each type of loading, symmetric load vectors have been assumed and the most unfavorable assumption has been investigated. On this basis and in dependence of the geometric parameters {beta} = b{sub 1}/b{sub 0}, {tau} = t{sub 1}/t{sub 0}, 2{gamma} = b{sub 1}/t{sub 0}, SNCF diagrams and formulae for the design of multiplanar K-joints with gap made of RHS are given.

  17. Forced excitation and active control for the measurement of fluid-elastic forces

    International Nuclear Information System (INIS)

    The action of a fluid flow on a tubes bundle is commonly decomposed into a random turbulent excitation and a fluid-elastic excitation. The fluid-elastic forces which are coupled to the tubes movement can be experimentally determined from an analysis of the vibratory response of the structure excited by turbulent forces. For low flow velocities, the turbulent excitation can be insufficient to make the tube significantly vibrate and to permit a correct vibratory analysis. On the opposite side, the structure can become unstable for high flow velocities: the fluid-elastic forces make the fluid-structure damping system fall towards zero. Two experimental methods are proposed in order to extend the considered flow rate. An additional excitation force allows to increase the tube vibration level for improving the signal-noise ratio at low velocities. When the tube is submitted to fluid-elastic instability, an artificial damping contribution by active control allows to stabilize it. Methods are implemented on a flexible tube inserted into rigid tubes bundle water and water-air transverse flows. Two actuator technologies are used: an electromagnetic exciter and piezoelectric actuators. The additional excitation method shows that the fluid-elastic forces remain insignificant at low velocity single phase flow. With the active control method, it is possible to carry out tests beyond the fluid-elastic instability. In two-phase flow, the stabilization of the structure is observed for low vacuum rates. The obtained new results are analyzed with the literature expected results in terms of fluid-elastic coupling and turbulent excitation. (author)

  18. Build Axial Gradient Field by Using Axial Magnetized Permanent Rings

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Axial magnetic field produced by an axial magnetized permanent ring was studied. For two permanent rings, if they are magnetized in the same directions, a nearly uniform axial field can be produced. If they are magnetized in opposite direction,an axial gradient magnetic field can be generated, with the field range changing from -B0 to B0. A permanent magnet with a high axial gradient field was fabricated, the measured results agree with the PANDIRA calculation very well. For wider usage,it is desirable for the field gradient to be changed. Some methods to produce the variable gradient field are presented. These kinds of axial gradient magnetic field can also be used as a beam focusing for linear accelerator if the periodic field can be produced along the beam trajectory. The axial magnetic field is something like a solenoid, large stray field will leak to the outside environment if no method is taken to control them. In this paper, one method is illustrated to shield off the outside leakage field.

  19. Transducer for Tension Force Measuring of Strip Materials

    Directory of Open Access Journals (Sweden)

    Emad S. Addasi

    2005-01-01

    Full Text Available In winding-up motor drive systems, such as that used in textile industry, it is very important to get a constant tension force for the winding strip material (thread and to reduce its oscillations. This study recommends a transducer with a special design to be used in the mentioned motor drive systems. By using a piston damper, spring, levers, slider and other simple components the suggested sensor (transducer can be used to control the motor speed for getting the required thread tension force. Also the suggested transducer avoids the disadvantage of other used conventional transducer: the parasitic (detrimental oscillations of the thread tension force, which affect the quality of the produced strip material.

  20. Precise force measurement method by a Y-shaped cavity dual-frequency laser

    Institute of Scientific and Technical Information of China (English)

    Guangzong Xiao; Xingwu Long; Bin Zhang; Geng Li

    2011-01-01

    A novel precise force measurement based on a Y-shaped cavity dual-frequency laser is proposed. The principle of force measurement with this method is analyzed, and the analytic relation expression between the input force and the change in the output beat frequency is derived. Experiments using a 632.8-nm Y-shaped cavity He-Ne dual-frequency laser are then performed; they demonstrate that the force measurement is proportional to a high degree over almost five decades of input signal range. The maximum scale factor is observed as 5.02×109 Hz/N, with beat frequency instability equivalent resolution of 10-5 N. By optimizing the optical and geometrical parameters of the laser sensor, a force measurement resolution of 10-6i N could be expected.%A novel precise force measurement based on a Y-shaped cavity dual-frequency laser is proposed.The principle of force measurement with this method is analyzed,and the analytic relation expression between the input force and the change in the output beat frequency is derived.Experiments using a 632.8-nm Y-shaped cavity He-Ne dual-frequency laser are then performed;they demonstrate that the force measurement is proportional to a high degree over almost five decades of input signal range.The maximum scale factor is observed as 5.02× 109 Hz/N,with beat frequency instability equivalent resolution of 10-5 N.By optimizing the optical and geometrical parameters of the laser sensor,a force measurement resolution of 10 -6 N could be expected.Precise measurement of force and force-related nagnitudes,such as acceleration,pressure,and mass,is an often demanded task in modern engineering and science[1-3].In recent decades,some research efforts have been intensified to utilize optical measnrement procedures for obtaining precise force measurement.

  1. Origin of axial current in scyllac

    International Nuclear Information System (INIS)

    The origin of the axial current observed in Scyllac (a high beta stellarator experiment) is discussed. A shaped coil and/or helical winding produce rotational transform which links magnetic lines of force to the plasma column and the axial current is induced electromagnetically. This phenomenon is inherent in a pulsed high-beta stellarator. The rotational transform produced by the induced axial current is much smaller than that associated with the l = 1, 0 equilibrium fields. The effect of the axial current on the equilibrium and stability of the plasma column is thus small. It is also shown that the magnetic field shear near a plasma surface is very strong

  2. Improvement of strain gauges micro-forces measurement using Kalman optimal filtering.

    OpenAIRE

    Haddab, Yassine; Chen, Qiao; Lutz, Philippe

    2009-01-01

    International audience Manipulation of small components and assembly of Microsystems require force measurement. In the microworld (the world of very small components), signal/noise ratio is very low due to the weak amplitude of the signals. To be used in feedback control or in a micromanipulation system, a force sensor must allow static and dynamic measurements. In this paper, we present a micro-force measurement system based on the use of strain gauges and a Kalman optimal filter. Using a...

  3. Data on force-dependent structural changes of chromatin fibers measured with magnetic tweezers

    Directory of Open Access Journals (Sweden)

    Fan-Tso Chien

    2014-12-01

    Full Text Available The compaction of chromatin fibers regulates the accessibility of embedded DNA, highly associated with transcriptional activities [1]. Single molecule force spectroscopy has revealed the great details of the structural changes of chromatin fibers in the presence of external exerted force [2–7]. However, most of the studies focus on a specific force regime [2,3,8,9]. The data here show force-extension (FE traces of chromatin fibers as measured with magnetic tweezers, covering the force regime from 0 pN to 27 pN. Those traces provide information for further studies at varied force regimes.

  4. 水压力和轴力联合作用下常态混凝土的断裂试验研究%Experimental Investigation into Fracture of Normal Concrete under Combined Effects of Water Pressure and Axial Force

    Institute of Scientific and Technical Information of China (English)

    孔祥清; 王学志; 肖克见; 刘华新; 邹浩飞

    2014-01-01

    针对常态混凝土高坝在蓄水状态下可能出现的水力劈裂现象,采用恒定水压力加轴向拉力和恒定轴向拉力加水压力两种不同的加载方式,进行了水压力和外力联合作用下的常态混凝土试件轴拉试验。对试验结果进行了分析,得到了常态混凝土断裂的荷载-应变变化规律。结合试验条件计算了裂缝尖端的应力强度因子,得到了两种不同加载条件下的失稳断裂韧度,并进行了对比分析。%For the normal concrete dam that is under reservoir condition may appear the phenomenon of hydraulic fracturing, the uniaxial tensile experiments were made on crack of normal concrete under the combined effects of water pressure and axial force. Two modes of loading control for test including the constant water pressure with variable axial tension load and the constant axial load with variable water pressure were adopted. The load-strain curves were obtained by analyzing the experimental results. The unstable fracture toughness under the two different loading modes are also obtained and the contrastive analyses are made, with the stress intensity factors on the crack tip calculated.

  5. The big shift: measuring the forces of change

    DEFF Research Database (Denmark)

    Hagel, John; Brown, John Seely; Davison, Lang

    2009-01-01

    Traditional metrics don't capture many of the challenges and opportunities in store for U.S. companies and the national economy. The authors, from Deloitte, present a framework for understanding the forces that have transformed business over the past 40 years--and an index for gauging their impac...

  6. Weibull analyses of bacterial interaction forces measured using AFM

    NARCIS (Netherlands)

    van der Mei, Henderina; de Vries, Jacob; Busscher, Hendrik

    2010-01-01

    Statistically significant conclusions from interaction forces obtained by AFM are difficult to draw because of large data spreads. Weibull analysis, common in macroscopic bond-strength analyses, takes advantage of this spread to derive a Weibull distribution, yielding the probability of occurrence o

  7. The big shift: measuring the forces of change

    DEFF Research Database (Denmark)

    Hagel, John; Brown, John Seely; Davison, Lang

    2009-01-01

    Traditional metrics don't capture many of the challenges and opportunities in store for U.S. companies and the national economy. The authors, from Deloitte, present a framework for understanding the forces that have transformed business over the past 40 years--and an index for gauging their impact...

  8. Force measurement platform for training and assessment of laparoscopic skills

    NARCIS (Netherlands)

    Horeman, T.; Rodrigues, S.P.; Jansen, F.W.; Dankelman, J.; Van den Dobbelsteen, J.J.

    2010-01-01

    Background - To improve endoscopic surgical skills, an increasing number of surgical residents practice on box or virtual-reality (VR) trainers. Current training is mainly focused on hand–eye coordination. Training methods that focus on applying the right amount of force are not yet available. Metho

  9. Statistical Analysis of Long- and Short-Range Forces Involved in Bacterial Adhesion to Substratum Surfaces as Measured Using Atomic Force Microscopy ▿

    OpenAIRE

    CHEN, YUN; Henk J Busscher; van der Mei, Henny C.; Norde, Willem

    2011-01-01

    Surface thermodynamic analyses of microbial adhesion using measured contact angles on solid substrata and microbial cell surfaces are widely employed to determine the nature of the adhesion forces, i.e., the interplay between Lifshitz-van der Waals and acid-base forces. While surface thermodynamic analyses are often viewed critically, atomic force microscopy (AFM) can also provide information on the nature of the adhesion forces by means of Poisson analysis of the measured forces. This review...

  10. Force-free measurements of the conformations of DNA molecules tethered to a wall

    Science.gov (United States)

    Lindner, Moshe; Nir, Guy; Medalion, Shlomi; Dietrich, Heidelinde R. C.; Rabin, Yitzhak; Garini, Yuval

    2011-01-01

    Using an optimized combination of tethered particle motion method, total internal reflection, and a gold nanobead, we measured the three-dimensional distribution of the free end of a tethered DNA molecule. The distribution along the axial z direction (perpendicular to the surface) is found to be Rayleigh-like, in agreement with wormlike chain and freely jointed chain simulations. Using these simulations, we show that the presence of the wall increases the correlations between the orientations of neighboring chain segments compared to free DNA. While the measured and the simulated planar (xy) distributions always agree with that of a Gaussian-random-walk (GRW) model, for short DNA lengths (1 μm) studied in our experiment, the corresponding axial (z) distributions deviate from those predicted for a GRW confined to half-space.

  11. 网壳屋面杆件轴力在地震波下的动力响应分析%On Axial Force Distribution of Squsre Pyrsmid Grids Roof Attacked

    Institute of Scientific and Technical Information of China (English)

    袁光英

    2012-01-01

    Through project case, this paper discusses on axial force distribution of square pyramid space grids roof attacked by El-Centro seismic wave by dynamic response analysis, so as to be reference for design of square pyramid space grids structure and seismic research.%通过工程实例,采用线性动力时程分析法对网壳结构进行在El-centro地震波下的动力响应分析,得到了网壳屋面的轴力分布规律,为网壳结构的设计以及地震研究提供参考。

  12. Biophysical characterization of DNA binding from single molecule force measurements

    OpenAIRE

    Chaurasiya, Kathy R.; Paramanathan, Thayaparan; McCauley, Micah J.; Williams, Mark C.

    2010-01-01

    Single molecule force spectroscopy is a powerful method that uses the mechanical properties of DNA to explore DNA interactions. Here we describe how DNA stretching experiments quantitatively characterize the DNA binding of small molecules and proteins. Small molecules exhibit diverse DNA binding modes, including binding into the major and minor grooves and intercalation between base pairs of double-stranded DNA (dsDNA). Histones bind and package dsDNA, while other nuclear proteins such as hig...

  13. Vertical Magnetic Levitation Force Measurement on Single Crystal YBaCuO Bulk at Different Temperatures

    Science.gov (United States)

    Celik, Sukru; Guner, Sait Baris; Ozturk, Kemal; Ozturk, Ozgur

    Magnetic levitation force measurements of HTS samples are performed with the use of liquid nitrogen. It is both convenient and cheap. However, the temperature of the sample cannot be changed (77 K) and there is problem of frost. So, it is necessary to build another type of system to measure the levitation force high Tc superconductor at different temperatures. In this study, we fabricated YBaCuO superconducting by top-seeding-melting-growth (TSMG) technique and measured vertical forces of them at FC (Field Cooling) and ZFC (Zero Field Cooling) regimes by using our new designed magnetic levitation force measurement system. It was used to investigate the three-dimensional levitation force and lateral force in the levitation system consisting of a cylindrical magnet and a permanent cylindrical superconductor at different temperatures (37, 47, 57, 67 and 77 K).

  14. What is credible and what is incredible in the measurements of the Casimir force

    CERN Document Server

    Klimchitskaya, G L

    2010-01-01

    We comment on progress in measurements of the Casimir force and discuss what is the actual reliability of different experiments. In this connection a more rigorous approach to the usage of such concepts as accuracy, precision, and measure of agreement between experiment and theory, is presented. We demonstrate that all measurements of the Casimir force employing spherical lenses with centimeter-size curvature radii are fundamentally flawed due to the presence of bubbles and pits on their surfaces. The commonly used formulation of the proximity force approximation is shown to be inapplicable for centimeter-size lenses. New expressions for the Casimir force are derived taking into account surface imperfections. Uncontrollable deviations of the Casimir force from the values predicted using the assumption of perfect sphericity vary by a few tens of percent within the separation region from 1 to $3\\,\\mu$m. This makes impractical further use of centimeter-size lenses in experiments on measuring the Casimir force.

  15. Measurement of the gold–gold bond rupture force at 4 K in a single-atom chain using photon-momentum-based force calibration

    International Nuclear Information System (INIS)

    We present instrumentation and methodology for simultaneously measuring force and displacement at the atomic scale at 4 K. The technique, which uses a macroscopic cantilever as a force sensor and high-resolution, high-stability fiber-optic interferometers for displacement measurement, is particularly well-suited to making accurate, traceable measurements of force and displacement in nanometer- and atomic-scale mechanical deformation experiments. The technique emphasizes accurate co-location of force and displacement measurement and measures cantilever stiffness at the contact point in situ at 4 K using photon momentum. We present preliminary results of measurements made of the force required to rupture a single atomic bond in a gold single-atom chain formed between a gold flat and a gold tip. Finally, we discuss the possible use of the gold–gold bond rupture force as an intrinsic force calibration value for forces near 1 nN. (paper)

  16. Estimation of Cable Forces of a Guyed Mast from Dynamic Measurements

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Hansen, Lars Pilegaard

    This paper presents how the tension forces in the cables of a 200 m. high guyed mast have been estimated from natural frequencies obtained from acceleration measurements.The mast is guyed at five levels with three guys at 120 degree intervals at each level. The accelerations in three directions...... were measured in five cables. The relationship between frequencies and cable forces have been establish assuming the cables to behave in linear manner. The results show that estimated cables forces correspond very well to the expected. The results obtained showed that it was possible to obtain reliable...... estimates for cables forces based on measured natural frequencies....

  17. Axial acoustic radiation force on rigid oblate and prolate spheroids in Bessel vortex beams of progressive, standing and quasi-standing waves

    OpenAIRE

    Mitri, F. G.

    2016-01-01

    The analysis using the partial-wave series expansion (PWSE) method in spherical coordinates is extended to evaluate the acoustic radiation force experienced by rigid oblate and prolate spheroids centered on the axis of wave propagation of high-order Bessel vortex beams composed of progressive, standing and quasi-standing waves, respectively. A coupled system of linear equations is derived after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid, and solved...

  18. Towards a precision measurement of the Casimir force in a cylinder-plane geometry

    OpenAIRE

    Brown-Hayes, Michael; Dalvit, Diego A. R.; Mazzitelli, Francisco D.; Kim, Woo-Joong; Onofrio, Roberto

    2005-01-01

    We report on a proposal aimed at measuring the Casimir force in a cylinder-plane configuration. The Casimir force is evaluated including corrections due to finite parallelism, conductivity, and temperature. The range of validity of the proximity force approximation is also discussed. An apparatus to test the feasibility of a precision measurement in this configuration has been developed, and we describe both a procedure to control the parallelism and the results of the electrostatic calibrati...

  19. Colored polydimethylsiloxane micropillar arrays for high throughput measurements of forces applied by genetic model organisms

    OpenAIRE

    Khare, Siddharth M.; Awasthi, Anjali; V. Venkataraman; Sandhya P Koushika

    2015-01-01

    Measuring forces applied by multi-cellular organisms is valuable in investigating biomechanics of their locomotion. Several technologies have been developed to measure such forces, for example, strain gauges, micro-machined sensors, and calibrated cantilevers. We introduce an innovative combination of techniques as a high throughput screening tool to assess forces applied by multiple genetic model organisms. First, we fabricated colored Polydimethylsiloxane (PDMS) micropillars where the color...

  20. Temperature and force dependence of electron transport via the copper protein azurin: conductive probe atomic force microscopy measurements

    CERN Document Server

    Li, Wenjie; Amdursky, Nadav; Cohen, Sidney R; Pecht, Israel; Sheves, Mordechai; Cahen, David

    2012-01-01

    We report conducting probe atomic force microscopy (CP-AFM) measurements of electron transport (ETp), as a function of temperature and force, through monolayers of holo-azurin (holo-Az) and Cu-depleted Az (apo-Az) that retain only their tightly bound water, immobilized on gold surfaces. The changes in CP-AFM current-voltage (I-V) curves for holo-Az and apo-Az, measured between 250 - 370K, are strikingly different. While ETp across holo-Az at low force (6 nN) is temperature-independent over the whole examined range, ETp across apo-Az is thermally activated, with calculated activation energy of 600\\pm100 meV. These results confirm our results of macroscopic contact area ETp measurements via holo- and apo-Az, as a function of temperature, where the crucial role of the Cu redox centre has been observed. While increasing the applied tip force from 6 to 12 nN did not significantly change the temperature dependence of ETp via apo-Az, ETp via holo-Az changed qualitatively, namely from temperature-independent at 6 nN ...

  1. Axial acoustic radiation force on rigid oblate and prolate spheroids in Bessel vortex beams of progressive, standing and quasi-standing waves

    CERN Document Server

    Mitri, F G

    2016-01-01

    The analysis using the partial-wave series expansion (PWSE) method in spherical coordinates is extended to evaluate the acoustic radiation force experienced by rigid oblate and prolate spheroids centered on the axis of wave propagation of high-order Bessel vortex beams composed of progressive, standing and quasi-standing waves, respectively. A coupled system of linear equations is derived after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid, and solved numerically by matrix inversion after performing a single numerical integration procedure. The system of linear equations depends on the partial-wave index n and the order of the Bessel vortex beam m using truncated but converging PWSEs in the least-squares sense. Numerical results for the radiation force function, which is the radiation force per unit energy density and unit cross-sectional surface, are computed with particular emphasis on the amplitude ratio describing the transition from the progressive to the pure st...

  2. 火灾后型钢混凝土轴压柱剩余承载力试验%EXPERIMENTAL STUDY ON RESIDUAL LOAD BEARING CAPACITY OF SRC COLUMNS UNDER AXIAL FORCE AFTER EXPOSURE TO FIRE

    Institute of Scientific and Technical Information of China (English)

    李俊华; 赵银海; 唐跃锋; 刘明哲

    2012-01-01

    进行了5个火灾后型钢混凝土柱轴心压力作用下的试验,研究长细比、混凝土强度对构件破坏形态和剩余承载能力的影响.试验结果表明,火灾后型钢混凝土轴心受压柱在荷载作用下的破坏形态与常温下基本相同,试件破坏时其内部核心型钢依然完好,不会发生局部屈曲现象.混凝土强度和长细比是影响型钢混凝土轴心受压柱火灾后承载能力的两个重要因素,当长细比相差不太大的情况下,混凝土强度高的试件,其火灾后极限承载力相对较高;在混凝土强度大致相当的情况下,随着长细比的增大,火灾后试件的极限承载力降低.利用YB规程和JGJ规程方法,对所有试件常温下的极限承载力进行了计算,结果表明在该文的试验条件下得到的火灾后型钢混凝土轴心受压柱承载能力的试验值与常温下承载力计算结果的比值在62%~71%之间,经历火灾作用后型钢混凝土轴心受压柱承载能力显著降低,火灾后的剩余承载力水平平均为常温下承载力水平的67%.%This paper provided five test data pertaining to the residual load bearing capacity of steel reinforced concrete (SRC) columns after exposure to fire. Two parameters, that is, slenderness ratio and concrete strength are mainly taken into consideration. Test results show that the failure pattern of SRC columns under an axial pressure force after exposure to fire is basically the same with that at room temperature. When the specimens are destroyed, the internal core steels are still fine, having no local buckling phenomena. Concrete strength and the slendemess ratio are two important factors that affect the strength of SRC columns under an axial pressure force after exposure to fire. For the specimens of about the same slenderness ratios, the higher concrete strength they are, the higher ultimate bearing capacity they have. In the condition of roughly the same concrete strength, the ultimate

  3. Measuring anisotropic friction on WTe2 using atomic force microscopy in the force-distance and friction modes.

    Science.gov (United States)

    Watson, Gregory S; Myhra, Sverre; Watson, Jolanta A

    2010-04-01

    Layered materials which can be easily cleaved have proved to be excellent samples for the study of atomic scale friction. The layered transition metal dichalcogenides have been particularly popular. These materials exhibit a number of interesting properties ranging from superconductivity to low frictional coefficients. In this paper we have investigated the tribology of the dichalcogenide-WTe2. The coefficient of friction is less than 0.040 along the Te rows and increases to over 0.045 across the rows. The frictional forces almost doubled at normal loads of 5000 nN when scanning in the [010] direction in comparison to the [100] direction. The frictional responses of the AFM probe have been monitored in the frictional force and force-versus-distance (f-d) mode. A comparison between the outcomes using the two different modes demonstrates the factors which need to be considered for accurate measurements. PMID:20355449

  4. A protocol for variable-resolution first-order reversal curve (FORC) measurements

    Science.gov (United States)

    Heslop, David; Zhao, Xiang; Roberts, Andrew

    2016-04-01

    High-resolution first-order reversal curve (FORC) diagrams are being increasingly used in rock and environmental magnetism, including for detection of biomagnetic signals in sediments. Resolution can be a major barrier to obtaining high-quality FORC diagrams and timeconsuming measurements that employ small field steps are necessary to resolve the finest features of a FORC distribution. We present a new experimental protocol with irregularly spaced field steps that allow different parts of a FORC diagram to be measured at different resolutions. Larger numbers of measurements can, therefore, be made in key regions of a FORC distribution to resolve diagnostic features at higher resolution. Specification of the field steps in the irregular measurement grid is based on major hysteresis properties; no a priori knowledge concerning the underlying FORC distribution is required. FORC diagrams obtained with conventional measurements and with our new measurement protocol give consistent results. Because of its variable resolution, the irregular protocol provides a clear representation of finescale features produced by quasi-reversible superparamagnetic and non-interacting singledomain particles. Although the proposed irregular measurement protocol is not as efficient at suppressing noise as recently developed post-processing techniques (e.g., VARIFORC, Egli [2013]), it enables efficient high-resolution analysis for relatively strongly magnetized samples where measurement noise is not detrimental to FORC distribution estimation.

  5. A Measurement of the Force between Two Current-Carrying Wires

    Science.gov (United States)

    Straulino, S.; Cartacci, A.

    2014-01-01

    The measurement of the force acting between two parallel, current-carrying wires is known as Ampère's experiment. A mechanical balance was historically employed to measure that force. We report a simple experiment based on an electronic precision balance that is useful in clearly showing students the existence of this interaction and how to…

  6. Complex Squeezing and Force Measurement Beyond the Standard Quantum Limit

    CERN Document Server

    Buchmann, L F; Kohler, J; Spethmann, N; Stamper-Kurn, D M

    2016-01-01

    A continuous quantum field, such as a propagating beam of light, may be characterized by a squeezing spectrum that is inhomogeneous in frequency. We point out that homodyne detectors, which are commonly employed to detect quantum squeezing, are blind to squeezing spectra in which the correlation between amplitude and phase fluctuations is complex. We find theoretically that such complex squeezing is a component of ponderomotive squeezing of light through cavity optomechanics. We propose a detection scheme, called synodyne detection, which reveals complex squeezing and allows its use to improve force detection beyond the standard quantum limit.

  7. Measurement of cell adhesion force by vertical forcible detachment using an arrowhead nanoneedle and atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Seunghwan; Hashizume, Yui; Mishima, Mari [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Kawamura, Ryuzo [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562 (Japan); Tamura, Masato; Matsui, Hirofumi [Faculty of Medicine, University of Tsukuba, 1-1-1 Ten-nohdai, Tsukuba, Ibaraki 305-8573 (Japan); Matsusaki, Michiya; Akashi, Mitsuru [Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Nakamura, Chikashi, E-mail: chikashi-nakamura@aist.go.jp [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562 (Japan)

    2014-08-15

    Graphical abstract: - Highlights: • We developed a method to measure cell adhesion force by detaching cell using an arrowhead nanoneedle and AFM. • A nanofilm consisting of fibronectin and gelatin was formed on cell surface to reinforce the cell cortex. • By the nanofilm lamination, detachment efficiencies of strongly adherent cell lines were improved markedly. - Abstract: The properties of substrates and extracellular matrices (ECM) are important factors governing the functions and fates of mammalian adherent cells. For example, substrate stiffness often affects cell differentiation. At focal adhesions, clustered–integrin bindings link cells mechanically to the ECM. In order to quantitate the affinity between cell and substrate, the cell adhesion force must be measured for single cells. In this study, forcible detachment of a single cell in the vertical direction using AFM was carried out, allowing breakage of the integrin–substrate bindings. An AFM tip was fabricated into an arrowhead shape to detach the cell from the substrate. Peak force observed in the recorded force curve during probe retraction was defined as the adhesion force, and was analyzed for various types of cells. Some of the cell types adhered so strongly that they could not be picked up because of plasma membrane breakage by the arrowhead probe. To address this problem, a technique to reinforce the cellular membrane with layer-by-layer nanofilms composed of fibronectin and gelatin helped to improve insertion efficiency and to prevent cell membrane rupture during the detachment process, allowing successful detachment of the cells. This method for detaching cells, involving cellular membrane reinforcement, may be beneficial for evaluating true cell adhesion forces in various cell types.

  8. Forced axial segregation in axially inhomogeneous rotating systems

    NARCIS (Netherlands)

    Gonzalez, S.; Windows-Yule, C.R.; Luding, S.; Parker, D.J.; Thornton, A.R.

    2015-01-01

    Controlling segregation is both a practical and a theoretical challenge. Using a novel drum design comprising concave and convex geometry, we explore, through the application of both discrete particle simulations and positron emission particle tracking, a means by which radial size segregation may b

  9. Force Measurement Services at Kebs: AN Overview of Equipment, Procedures and Uncertainty

    Science.gov (United States)

    Bangi, J. O.; Maranga, S. M.; Nganga, S. P.; Mutuli, S. M.

    This paper describes the facilities, instrumentation and procedures currently used in the force laboratory at the Kenya Bureau of Standards (KEBS) for force measurement services. The laboratory uses the Force Calibration Machine (FCM) to calibrate force-measuring instruments. The FCM derives its traceability via comparisons using reference transfer force transducers calibrated by the Force Standard Machines (FSM) of a National Metrology Institute (NMI). The force laboratory is accredited to ISO/IEC 17025 by the Germany Accreditation Body (DAkkS). The accredited measurement scope of the laboratory is 1 MN to calibrate force transducers in both compression and tension modes. ISO 376 procedures are used while calibrating force transducers. The KEBS reference transfer standards have capacities of 10, 50, 300 and 1000 kN to cover the full range of the FCM. The uncertainty in the forces measured by the FCM were reviewed and determined in accordance to the new EURAMET calibration guide. The relative expanded uncertainty of force W realized by FCM was evaluated in a range from 10 kN-1 MN, and was found to be 5.0 × 10-4 with the coverage factor k being equal to 2. The overall normalized error (En) of the comparison results was also found to be less than 1. The accredited Calibration and Measurement Capability (CMC) of the KEBS force laboratory was based on the results of those intercomparisons. The FCM enables KEBS to provide traceability for the calibration of class ‘1’ force instruments as per the ISO 376.

  10. Instrument for spatially resolved simultaneous measurements of forces and currents in particle beams

    Science.gov (United States)

    Spethmann, A.; Trottenberg, T.; Kersten, H.

    2015-01-01

    The article presents a device for spatially resolved and simultaneous measurements of forces and currents in particle beams, especially in beams composed of ions and neutral atoms. The forces are exerted by the impinging beam particles on a plane circular conductive target plate of 20 mm diameter mounted on a pendulum with electromagnetic force compensation. The force measurement in the micronewton range is achieved by electromagnetic compensation by means of static Helmholtz coils and permanent magnets attached to the pendulum. Exemplary measurements are performed in the 1.2 keV beam of a broad beam ion source. The simultaneous measurements of forces and currents onto the same target are compared with each other and with Faraday cup measurements.

  11. Instrument for spatially resolved simultaneous measurements of forces and currents in particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Spethmann, A., E-mail: spethmann@physik.uni-kiel.de; Trottenberg, T., E-mail: trottenberg@physik.uni-kiel.de; Kersten, H., E-mail: kersten@physik.uni-kiel.de [Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel (Germany)

    2015-01-15

    The article presents a device for spatially resolved and simultaneous measurements of forces and currents in particle beams, especially in beams composed of ions and neutral atoms. The forces are exerted by the impinging beam particles on a plane circular conductive target plate of 20 mm diameter mounted on a pendulum with electromagnetic force compensation. The force measurement in the micronewton range is achieved by electromagnetic compensation by means of static Helmholtz coils and permanent magnets attached to the pendulum. Exemplary measurements are performed in the 1.2 keV beam of a broad beam ion source. The simultaneous measurements of forces and currents onto the same target are compared with each other and with Faraday cup measurements.

  12. Measurement of swimming force generation during flagella regeneration in Chlamydomonas reinhardtii

    Science.gov (United States)

    Yukich, John N.; Shaban, Mona; Clodfelter, Catherine; Bernd, Karen

    2007-11-01

    The green alga Chlamydomonas reinhardtii has been at the forefront of many studies investigating the establishment and function of flagella in facilitating cellular motility. Previously we reported an intriguing pattern during flagella regeneration in which increases in force do not always correspond with increase in flagella length. That work made direct measurement of maximum flagellar swimming force by measuring the cell's ability to escape from an optical trap (optical tweezers). Here, we report on optimization and automation of the force measurement using power spectral density calibration of the trap and distance of periodic displacement from the trap center. This process yields an average value for the swimming force. The intriguing pattern described for maximum swimming force is also evident in the average swimming force data, suggesting that the phenomenon reflects a change in flagella functionality during regeneration.

  13. Adhesion forces in interactive mixtures for dry powder inhalers--evaluation of a new measuring method.

    Science.gov (United States)

    Lohrmann, Maike; Kappl, Michael; Butt, Hans-Juergen; Urbanetz, Nora Anne; Lippold, Bernhard Christian

    2007-09-01

    Dry powder inhalers mostly contain carrier based formulations where micronized drug particles are adhered to coarse carrier particles. The performance of the dry powder inhaler depends on the inhaler device, the inhalation manoeuvre and the formulation. The most important factor influencing the behaviour of the formulation is the adhesion force acting between the active ingredient and the carrier particles, which can be measured using different methods, for example the centrifuge technique or atomic force microscopy. In this study the tensile strength method, usually applied to determine cohesion forces between powder particles of one material, is optimized for adhesion force measurements between powder particles of unlike materials. Adhesion force measurements between the carrier materials lactose or mannitol and the drug substance salbutamol sulphate using the tensile strength method and the atomic force microscopy show higher values with increasing relative humidity. Consequently, the fine particle fraction determined using the Next Generation Impactor decreases with increasing relative humidity as a result of the enhanced interparticle interactions.

  14. Reduction of Liquid Bridge Force for 3D Microstructure Measurements

    OpenAIRE

    Hiroshi Murakami; Akio Katsuki; Takao Sajima; Mitsuyoshi Fukuda

    2016-01-01

    Recent years have witnessed an increased demand for a method for precise measurement of the microstructures of mechanical microparts, microelectromechanical systems, micromolds, optical devices, microholes, etc. This paper presents a measurement system for three-dimensional (3D) microstructures that use an optical fiber probe. This probe consists of a stylus shaft with a diameter of 2.5 µm and a glass ball with a diameter of 5 µm attached to the stylus tip. In this study, the measurement syst...

  15. Evaluation of a Blade Force Measurement System for a Vertical Axis Wind Turbine Using Load Cells

    Directory of Open Access Journals (Sweden)

    Morgan Rossander

    2015-06-01

    Full Text Available Unique blade force measurements on an open site straight-bladed vertical axis wind turbine have been performed. This paper presents a method for measuring the tangential and normal forces on a 12-kW vertical axis wind turbine prototype with a three-bladed H-rotor. Four single-axis load cells were installed in-between the hub and the support arms on one of the blades. The experimental setup, the measurement principle, together with the necessary control and measurement system are described. The maximum errors of the forces and accompanying weather data that can be obtained with the system are carefully estimated. Measured forces from the four load cells are presented, as well as the normal and tangential forces derived from them and a comparison with theoretical data. The measured torque and bending moment are also provided. The influence of the load cells on the turbine dynamics has also been evaluated. For the aerodynamic normal force, the system provides periodic data in agreement with simulations. Unexpected mechanical oscillations are present in the tangential force, introduced by the turbine dynamics. The measurement errors are of an acceptable size and often depend on the measured variable. Equations are presented for the calculation of measurement errors.

  16. On the correct interpretation of measured force and calculation of material stress in biaxial tests.

    Science.gov (United States)

    Nolan, D R; McGarry, J P

    2016-01-01

    Biaxial tests are commonly used to investigate the mechanical behaviour of soft biological tissues and polymers. In the current paper we uncover a fundamental problem associated with the calculation of material stress from measured force in standard biaxial tests. In addition to measured forces, localised unmeasured shear forces also occur at the clamps and the inability to quantify such forces has significant implications for the calculation of material stress from simplified force-equilibrium relationships. Unmeasured shear forces are shown to arise due to two distinct competing contributions: (1) negative shear force due to stretching of the orthogonal clamp, and (2) positive shear force as a result of material Poisson-effect. The clamp shear force is highly dependent on the specimen geometry and the clamp displacement ratio, as consequently, is the measured force-stress relationship. Additionally in this study we demonstrate that commonly accepted formulae for the estimation of material stress in the central region of a cruciform specimen are highly inaccurate. A reliable empirical correction factor for the general case of isotropic materials must be a function of specimen geometry and the biaxial clamp displacement ratio. Finally we demonstrate that a correction factor for the general case of non-linear anisotropic materials is not feasible and we suggest the use of inverse finite element analysis as a practical means of interpreting experimental data for such complex materials. PMID:26327453

  17. A new 3D levitation force measuring device for REBCO bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.L. [School of Physics, Shaanxi Normal University, Xi’an 710062 (China); Yang, W.M., E-mail: yangwm@snnu.edu.cn [School of Physics, Shaanxi Normal University, Xi’an 710062 (China); Li, J.W.; Yuan, X.C. [School of Physics, Shaanxi Normal University, Xi’an 710062 (China); Ma, J. [School of Physics, Shaanxi Normal University, Xi’an 710062 (China); Department of Physics, Qinghai Normal University, Xining 810008 (China); Wang, M. [School of Physics, Shaanxi Normal University, Xi’an 710062 (China)

    2014-01-15

    Highlights: •A new 3D levitation force measuring device has been designed and constructed. •It can measure the 3D real-time interaction force simultaneously and directly. •Performance, accuracy and effectiveness has been demonstrate by tests. -- Abstract: A new 3D levitation force measuring device for ReBa{sub 2}Cu{sub 3}O{sub 7−x} (REBCO) bulk superconductors has been designed and constructed. Three pull pressure load cells are orthogonally set on a fixing bracket to test the interaction force between a bulk superconductor and a magnet in three dimensions. To realize the simple, rapid and accurate measurement of the levitation force, a non-magnetic hollow cylinder flange, three pull pressure load cells, a piece of iron plate, a NbFeB permanent magnet (PM) and some steel balls are elaborately constructed with the fixing bracket, thus the magnet or REBCO bulk superconductor can be well and rigidly connected with the load cells, and the mutual interference from the three pull pressure load cells can be effectively avoided during the levitation force measuring processes. This device can be used to measure the interaction (or levitation) force between a superconductor and a magnet, that between a magnet and a magnet, or the magnetic force among magnetic materials in three dimensions.

  18. Precision measurement of the Casimir-Lifshitz force in a fluid

    CERN Document Server

    Munday, Jeremy N

    2007-01-01

    The Casimir force, which results from the confinement of the quantum mechanical zero-point fluctuations of the electromagnetic fields, has received significant attention in recent years for its effect on micro- and nano-scale mechanical systems. With few exceptions, experimental observations have been limited to conductive bodies interacting separated by vacuum or air. However, interesting phenomena including repulsive forces are expected to exist in certain circumstances between metals and dielectrics when the intervening medium is not vacuum. In order to better understand the effect of the Casimir force in such situations and to test the robustness of the generalized Casimir-Lifshitz theory, we have performed the first precision measurements of the Casimir force between two metals immersed in a fluid. For this situation, the measured force is attractive and is approximately 80% smaller than the force predicted by Casimir for ideal metals in vacuum. We present experimental results and find them to be consist...

  19. Experimental Measurements of Hydrodynamic Radial Forces and Stiffness Matrices for a Centrifugal Pump-Impeller

    OpenAIRE

    Chamieh, Dmitri S.; Acosta, Allan J.; Brennen, Christopher E.; Caughey, Thomas K.

    1985-01-01

    The present work is an experimental investigation of the possible forces of fluid dynamic origin that can act on a turbomachine rotor particularly when it is situated off its normal center position. An experimental facility, the Rotor Force Test Facility, has been designed and contructed in order to measure these kinds of forces acting on a centrifugal pump impeller when the latter is made to whirl in a slightly eccentric circular orbit. The scope of the present experimental work consists o...

  20. Interrogating Biology with Force: Single Molecule High-Resolution Measurements with Optical Tweezers

    OpenAIRE

    Capitanio, Marco; Pavone, Francesco S.

    2013-01-01

    Single molecule force spectroscopy methods, such as optical and magnetic tweezers and atomic force microscopy, have opened up the possibility to study biological processes regulated by force, dynamics of structural conformations of proteins and nucleic acids, and load-dependent kinetics of molecular interactions. Among the various tools available today, optical tweezers have recently seen great progress in terms of spatial resolution, which now allows the measurement of atomic-scale conformat...

  1. A Noncontact Force Sensor Based on a Fiber Bragg Grating and Its Application for Corrosion Measurement

    OpenAIRE

    Antonio C. Bruno; Clara J. Pacheco

    2013-01-01

    A simple noncontact force sensor based on an optical fiber Bragg grating attached to a small magnet has been proposed and built. The sensor measures the force between the magnet and any ferromagnetic material placed within a few millimeters of the sensor. Maintaining the sensor at a constant standoff distance, material loss due to corrosion increases the distance between the magnet and the corroded surface, which decreases the magnetic force. This will decrease the strain in the optical fiber...

  2. Measurement of strut chordal forces of the tricuspid valve using miniature C ring transducers.

    Science.gov (United States)

    Troxler, Lauren G; Spinner, Erin M; Yoganathan, Ajit P

    2012-04-01

    Tricuspid valve (TV) leaflets, papillary muscles (PM), and tendinous chords must work together to ensure proper coaptation. Alterations in valvular mechanics, including chordal forces, may lead to improper coaptation resulting in tricuspid regurgitation. Little is known about TV mechanics as right-sided heart diseases have been overlooked. We sought to fill this gap by understanding the role of TV strut chords with the objective to understand how strut chordal force varies depending on papillary muscle (PM) origin and leaflet attachment in the normal state. Additionally we investigated how these forces are altered with abnormal geometry. Porcine TVs (n=18) were studied in a right-heart simulator capable of reproducing physiological and pathological conditions. Miniature force transducers were placed on strut chords to measure forces throughout the cardiac cycle. In the normal state, chordal force depended upon PM attachment in which chords branching from the septal PM (SPM) carried significantly less force compared to those branching from the anterior PM (APM) (p≤0.05). Annular dilatation resulted in significant increase in chordal force (p≤0.05) on all strut chords. Severe PM displacement led to increased chordal force in chords attaching the APM to the posterior leaflet as well as chords attaching the PPM to the septal leaflet. Elevated chordal force due to isolated annular dilatation was further increased only with addition of apical displacement of the APM. These results provide initial knowledge of TV chordal force mechanics and may be applied to future studies on TV repair techniques. PMID:22284427

  3. 硬措施到底有多硬?%Are Forceful Measures Effective Indeed?

    Institute of Scientific and Technical Information of China (English)

    杜燕鹏

    2003-01-01

    In the “Interconnection Year”, a series of forceful measures are promulgated, aiming at solving the interconnection problems and regulating telecom market. All those measures show that the government and MII are paying great attention to regulation in telecom industry. Those forceful measures are expected to promote telecom industry reform, the competition in telecom market and the development of telecom industry. Then some questions may come into our mind. Are forceful measures effective or not? How to make them effective?…… In order to have a clear answer to those questions, in this issue =New Telecom Salon" focuses on the fulfilling of forceful measures. The specialists in the industry are invited to discuss aU related things about this subject.

  4. Time, tire measurements forces and moments: a new standard for steady state cornering tyre testing

    NARCIS (Netherlands)

    Oosten, J.J.M. van; Savi, C.; Augustin, M.; Bouhet, O.; Sommer, J.; Colinot, J.P.

    1999-01-01

    In order to develop vehicles which have maximum active safety, car manufacturers need information about the so-called force and moment properties of tyres. Vehicle manufacturers, tyre suppliers and automotive research organisations have advanced test equipment to measure the forces between a tyre an

  5. The application of magnetic force differentiation for the measurement of the affinity of peptide libraries

    International Nuclear Information System (INIS)

    A new method has been developed for measuring the binding affinity of phage displayed peptides and a target protein using magnetic particles. The specific interaction between the phage displayed peptides and the target protein was subject to a force generated by the magnetic particle. The binding affinity was obtained by analyzing the force-bond lifetime

  6. For whom the cells pull: Hydrogel and micropost devices for measuring traction forces.

    Science.gov (United States)

    Ribeiro, Alexandre J S; Denisin, Aleksandra K; Wilson, Robin E; Pruitt, Beth L

    2016-02-01

    While performing several functions, adherent cells deform their surrounding substrate via stable adhesions that connect the intracellular cytoskeleton to the extracellular matrix. The traction forces that deform the substrate are studied in mechanotrasduction because they are affected by the mechanics of the extracellular milieu. We review the development and application of two methods widely used to measure traction forces generated by cells on 2D substrates: (i) traction force microscopy with polyacrylamide hydrogels and (ii) calculation of traction forces with arrays of deformable microposts. Measuring forces with these methods relies on measuring substrate displacements and converting them into forces. We describe approaches to determine force from displacements and elaborate on the necessary experimental conditions for this type of analysis. We emphasize device fabrication, mechanical calibration of substrates and covalent attachment of extracellular matrix proteins to substrates as key features in the design of experiments to measure cell traction forces with polyacrylamide hydrogels or microposts. We also report the challenges and achievements in integrating these methods with platforms for the mechanical stimulation of adherent cells. The approaches described here will enable new studies to understand cell mechanical outputs as a function of mechanical inputs and advance the understanding of mechanotransduction mechanisms.

  7. Measurements of normal and frictional forces in a rolling process

    DEFF Research Database (Denmark)

    Henningsen, Poul; Arentoft, Mogens; Wanheim, Tarras

    2006-01-01

    To improve the quality of frictional data and to validate the simulations in rolling, a load transducer for measuring normal and frictional stresses in the deformation zone has been developed. The transducer consists of a strain-gauge-equipped insert embedded in the surface of the roll. The length...... between the transducer and roll. The transducer is tested at laboratory conditions and is expected to be running in industrial conditions in 2004....

  8. Measurements of Normal and Friction Forces in a Rolling Process

    DEFF Research Database (Denmark)

    Henningsen, Poul; Arentoft, Mogens; Wanheim, Tarras

    2004-01-01

    To improve the quality of frictional data and to validate the simulations in rolling, a load transducer for measuring normal and friction stresses in the deformation zone has been developed. The transducer consists of a strain gauge equipped insert embedded in the surface of the roll. The length...... between transducer and roll. The transducer is tested at laboratory conditions and is expected to be running in industrial conditions in 2004....

  9. Optimization of residual heat removal pump axial thrust and axial bearing

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, F.

    1996-12-01

    The residual heat removal (RHR) pumps of German 1300 megawatt pressurized-water reactor (PWR) power plants are of the single stage end suction type with volute casing or with diffuser and forged circular casing. Due to the service conditions the pumps have to cover the full capacity range as well as a big variation in suction static pressure. This results in a big difference in the axial thrust that has to be borne by the axial bearing. Because these pumps are designed to operate without auxiliary systems (things that do not exist can not fail), they are equipped with antifriction bearings and sump oil lubrication. To minimize the heat production within the bearing casing, a number of PWR plants have pumps with combined axial/radial bearings of the ball type. Due to the fact that the maximum axial thrust caused by static pressure and hydrodynamic forces on the impeller is too big to be borne by that type of axial bearing, the impellers were designed to produce a hydrodynamic axial force that counteracts the static axial force. Thus, the resulting axial thrust may change direction when the static pressure varies.

  10. Micropipette suction for measuring piconewton forces of adhesion and tether formation from neutrophil membranes.

    OpenAIRE

    Shao, J Y; Hochmuth, R M

    1996-01-01

    A new method for measuring piconewton-scale forces that employs micropipette suction is presented here. Spherical cells or beads are used directly as force transducers, and forces as small as 10-20 pN can be imposed. When the transducer is stationary in the pipette, the force is simply the product of the suction pressure and the cross-sectional area of the pipette minus a small correction for the narrow gap that exists between the transducer and the pipette wall. When the transducer is moving...

  11. Design and Analysis of a Sensor System for Cutting Force Measurement in Machining Processes

    OpenAIRE

    Qiaokang Liang; Dan Zhang,; Gianmarc Coppola; Jianxu Mao; Wei Sun; Yaonan Wang; Yunjian Ge

    2016-01-01

    Multi-component force sensors have infiltrated a wide variety of automation products since the 1970s. However, one seldom finds full-component sensor systems available in the market for cutting force measurement in machine processes. In this paper, a new six-component sensor system with a compact monolithic elastic element (EE) is designed and developed to detect the tangential cutting forces Fx, Fy and Fz (i.e., forces along x-, y-, and z-axis) as well as the cutting moments Mx, My and Mz (i...

  12. Colored polydimethylsiloxane micropillar arrays for high throughput measurements of forces applied by genetic model organisms.

    Science.gov (United States)

    Khare, Siddharth M; Awasthi, Anjali; Venkataraman, V; Koushika, Sandhya P

    2015-01-01

    Measuring forces applied by multi-cellular organisms is valuable in investigating biomechanics of their locomotion. Several technologies have been developed to measure such forces, for example, strain gauges, micro-machined sensors, and calibrated cantilevers. We introduce an innovative combination of techniques as a high throughput screening tool to assess forces applied by multiple genetic model organisms. First, we fabricated colored Polydimethylsiloxane (PDMS) micropillars where the color enhances contrast making it easier to detect and track pillar displacement driven by the organism. Second, we developed a semi-automated graphical user interface to analyze the images for pillar displacement, thus reducing the analysis time for each animal to minutes. The addition of color reduced the Young's modulus of PDMS. Therefore, the dye-PDMS composite was characterized using Yeoh's hyperelastic model and the pillars were calibrated using a silicon based force sensor. We used our device to measure forces exerted by wild type and mutant Caenorhabditis elegans moving on an agarose surface. Wild type C. elegans exert an average force of ∼1 μN on an individual pillar and a total average force of ∼7.68 μN. We show that the middle of C. elegans exerts more force than its extremities. We find that C. elegans mutants with defective body wall muscles apply significantly lower force on individual pillars, while mutants defective in sensing externally applied mechanical forces still apply the same average force per pillar compared to wild type animals. Average forces applied per pillar are independent of the length, diameter, or cuticle stiffness of the animal. We also used the device to measure, for the first time, forces applied by Drosophila melanogaster larvae. Peristaltic waves occurred at 0.4 Hz applying an average force of ∼1.58 μN on a single pillar. Our colored microfluidic device along with its displacement tracking software allows us to measure forces

  13. Parity-violating asymmetry in d(vector e,e)np and measurement of the axial vector form factor at Q2= 0.23 (GeV/c)2

    International Nuclear Information System (INIS)

    The A4 collaboration at the MAMI facilities has measured the parity-violating asymmetry in the quasi-elastic scattering of longitudinally polarized electron on deuteron at backward angles and at a four momentum transfer of Q2=0.23 (GeV/c)2. This measurement is sensitive to a linear combination of the strange magnetic vector form factor GMs and the axial form factor GA. Combined with the measurement of the parity-violating asymmetry on proton at backwards and at the same four momentum transfer it allows the experimental determination of the axial form factor GA.

  14. Force measurement using strain-gauge balance in a shock tunnel with long test duration.

    Science.gov (United States)

    Wang, Yunpeng; Liu, Yunfeng; Luo, Changtong; Jiang, Zonglin

    2016-05-01

    Force tests were conducted at the long-duration-test shock tunnel JF12, which has been designed and built in the Institute of Mechanics, Chinese Academy of Sciences. The performance tests demonstrated that this facility is capable of reproducing a flow of dry air at Mach numbers from 5 to 9 at more than 100 ms test duration. Therefore, the traditional internal strain-gauge balance was considered for the force tests use in this large impulse facility. However, when the force tests are conducted in a shock tunnel, the inertial forces lead to low-frequency vibrations of the test model and its motion cannot be addressed through digital filtering because a sufficient number of cycles cannot be found during a shock tunnel run. The post-processing of the balance signal thus becomes extremely difficult when an averaging method is employed. Therefore, the force measurement encounters many problems in an impulse facility, particularly for large and heavy models. The objective of the present study is to develop pulse-type sting balance by using a strain-gauge sensor that can be applied in the force measurement of 100 ms test time, especially for the force test of the large-scale model. Different structures of the S-series (i.e., sting shaped balances) strain-gauge balance are proposed and designed, and the measuring elements are further optimized to overcome the difficulties encountered during the measurement of aerodynamic force in a shock tunnel. In addition, the force tests were conducted using two large-scale test models in JF12 and the S-series strain-gauge balances show good performance in the force measurements during the 100 ms test time. PMID:27250471

  15. The axial injury tolerance of the human foot/ankle complex and the effect of Achilles tension.

    Science.gov (United States)

    Funk, James R; Crandall, Jeff R; Tourret, Lisa J; MacMahon, Conor B; Bass, Cameron R; Patrie, James T; Khaewpong, Nopporn; Eppinger, Rolf H

    2002-12-01

    Axial loading of the foot/ankle complex is an important injury mechanism in vehicular trauma that is responsible for severe injuries such as calcaneal and tibial pilon fractures. Axial loading may be applied to the leg externally, by the toepan and/or pedals, as well as internally, by active muscle tension applied through the Achilles tendon during pre-impact bracing. The objectives of this study were to investigate the effect of Achilles tension on fracture mode and to empirically model the axial loading tolerance of the foot/ankle complex. Blunt axial impact tests were performed on forty-three (43) isolated lower extremities with and without experimentally simulated Achilles tension. The primary fracture mode was calcaneal fracture in both groups. However, fracture initiated at the distal tibia more frequently with the addition of Achilles tension (p sensors mounted to the bone demonstrated that fracture initiated at the time of peak local axial force. A survival analysis was performed on the injury data set using a Weibull regression model with specimen age, gender, body mass, and peak Achilles tension as predictor variables (R2 = 0.90). A closed-form survivor function was developed to predict the risk of fracture to the foot/ankle complex in terms of axial tibial force. The axial tibial force associated with a 50% risk of injury ranged from 3.7 kN for a 65 year-old 5th percentile female to 8.3 kN for a 45 year-old 50th percentile male, assuming no Achilles tension. The survivor function presented here may be used to estimate the risk of foot/ankle fracture that a blunt axial impact would pose to a human based on the peak tibial axial force measured by an anthropomorphic test device. PMID:12596644

  16. Oscillatory and ion-correlation forces observed in direct force measurements between silica surfaces in concentrated CaCl2 solutions

    NARCIS (Netherlands)

    Fielden, ML; Hayes, RA; Ralston, J

    2000-01-01

    The force between silica spheres and naturally oxidised silicon wafer has been measured in calcium chloride solutions at concentrations between 1 and 5 M using an atomic force microscope. An oscillatory force, consistent in periodicity with the expulsion of layers of ions, was found to overlay the e

  17. Linear servo-controlled pressure generator for forced oscillation measurements.

    Science.gov (United States)

    de Melo, P L; Werneck, M M; Giannella-Neto, A

    1998-01-01

    In respiratory input impedance measurements, the low-frequency range contains important clinical and physiological information. However, the patient's spontaneous ventilation can contaminate the data in this range, leading to unreliable results. Unbiased estimators are a good alternative to overcome this problem, provided that the generator is considered linear. This condition is not fulfilled by most existing generators as they are based on loudspeakers, which have strong nonlinearities. The present work aims to contribute to the solution of this problem, and describes a pressure generator that minimises the nonlinearities by an optical sensor placed in a position feedback loop. The static evaluation shows a high linearity for the optical system. The well known frequency response of pressure transducers is used in the dynamic evaluation of the instrument. The analysis of the generator shows that the use of position feedback improved the frequency response. The total harmonic distortion (THD) measurement shows that closed loop resulted in an effective decrease in the nonlinearities. The reduction of THD achieved by the servo-controlled generator can contribute to the practical implementation of the unbiased estimators, increasing the reliability of the impedance data, especially in the low-frequency range. This system is compared with conventional generators and with another servo-controlled system.

  18. Measurement of Normal and Friction Forces in a Rolling Process

    DEFF Research Database (Denmark)

    Henningsen, Poul; Arentoft, Mogens; Wanheim, Tarras

    2004-01-01

    For the rolling process, knowledge about interface conditions is important since it directly influences the maximum reduction ratio and thereby the num-ber of steps required for a given reduction. The mechanical properties of the produced sheet and the surface quality of it are also influenced...... by the fric-tion conditions. To achieve this important informa-tion, measurements of the normal pressure and friction stresses in the deformation zone are re-quested. The direction of the friction stresses is changing during the rolling gap. At the entrance of the de-formation zone, the peripherical velocity...... of the roll is higher than for the incoming material, which causes frictional stresses at the material acting in the rolling direction. At the outlet of the rolling gap, the velocity of the deformed material exceeds the velocity of the roll, generating frictional stresses contrary to the direction of rolling...

  19. Direct measurements of controlled aerodynamic forces on a wire-suspended axisymmetric body

    Science.gov (United States)

    Abramson, Philip; Vukasinovic, Bojan; Glezer, Ari

    2011-06-01

    A novel in-line miniature force transducer is developed for direct measurements of the net aerodynamic forces and moments on a bluff body. The force transducers are integrated into each of the eight mounting wires that are utilized for suspension of an axisymmetric model in a wind tunnel having minimal wake interference. The aerodynamic forces and moments on the model are altered by induced active local attachment of the separated base flow. Fluidic control is effected by an array of four integrated aft-facing synthetic jet actuators that emanate from narrow, azimuthally segmented slots, equally distributed around the perimeter of the circular tail end. The jet orifices are embedded within a small backward-facing step that extends into a Coanda surface. The altered flow dynamics associated with both quasi-steady and transitory asymmetric activation of the flow control effect is characterized by direct force and PIV measurements.

  20. Sensitive measurement of forces at the micron scale using Bloch oscillations of ultracold atoms.

    Science.gov (United States)

    Carusotto, I; Pitaevskii, L; Stringari, S; Modugno, G; Inguscio, M

    2005-08-26

    We show that Bloch oscillations of ultracold fermionic atoms in the periodic potential of an optical lattice can be used for a sensitive measurement of forces at the micrometer length scale, e.g., in the vicinity of a dielectric surface. In particular, the proposed approach allows us to perform a local and direct measurement of the Casimir-Polder force which is, for realistic experimental parameters, as large as 10(-4) gravity.

  1. Direct Measurement of Optical Force Induced by Near-Field Plasmonic Cavity Using Dynamic Mode AFM

    OpenAIRE

    Dongshi Guan; Zhi Hong Hang; Zsolt Marcet; Hui Liu; I. I. Kravchenko; Chan, C. T.; Chan, H. B.; Penger Tong

    2015-01-01

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optic...

  2. Possibility of non-invasive blood pressure estimation by measurements of force and arteries diameter

    OpenAIRE

    Veye, Florent; Mestre, Sandrine; Perez-Martin, Antonia; Triboulet, Jean

    2014-01-01

    International audience Ultrasound examination is the first line procedure for the diagnosis and follow-up of cardiovascular diseases. Instrumenting an ultrasound probe with a force sensor may improve the non-invasive measurement of arterial biomechanical parameters (diameter, pulsatility, intima-media thickness and flow-dependent dilation) by measuring and controlling the force exerted by the sonographer. We present here the results obtained with this approach coupled with image processing...

  3. Inter- and intraobserver reliability assessment of the axial trunk rotation: manual versus smartphone-aided measurement tools

    OpenAIRE

    Qiao, Jun; Xu, Leilei; Zhu, Zezhang; Zhu, Feng; Liu, Zhen; Qian, Bangping; Qiu, Yong

    2014-01-01

    Background Scoliogauge, has been developed for the measurement of ATR on iPhone smartphones. This study was to evaluate the reliability for the smartphone-aided ATR measurement method and to compare its reliability with that of the manual method. Methods Sixty-four AIS patients with single thoracic or lumbar curve participated in this study. Of these patients, thirty-two patients had main thoracic scoliosis while other thirty-two had main thoracolumbar/lumbar scoliosis. Two spine surgeons per...

  4. Design and testing of an innovative measurement device for tyre-road contact forces

    Science.gov (United States)

    Cheli, F.; Braghin, F.; Brusarosco, M.; Mancosu, F.; Sabbioni, E.

    2011-08-01

    The measurement of tyre-road contact forces is the first step towards the development of new control systems for improving vehicle safety and performances. Tyre-road contact forces measurement systems are very expensive and significantly modify the unsprung masses of the vehicle as well as the rotational inertia of the tyres. Thus, vehicle dynamics results are significantly affected. As a consequence, the measured contact forces do not correspond to the contact forces under real working conditions. A new low-cost tyre-road contact forces measurement system is proposed in this paper that can be applied to passenger cars. Its working principle is based on the measurement of three deformations of the wheel rim through strain gauges. The tyre-rim assembly is thus turned into a sensor for tyre-road contact forces. The influence of the strain gauges position onto the measurement results has been assessed through finite element simulations and experimental tests. It has been proven that, for a large variety of rims, the strain gauge position that leads to high signal-to-noise ratios is almost the same. A dynamic calibration procedure has been developed in order to allow the reconstruction of contact force and torque components once per wheel turn. The capability of the developed device to correctly estimate tyre-road contact forces has been assessed, in a first stage, through indoor laboratory experimental test on an MTS Flat-Trac ® testing machine. Results show that the implemented measuring system allows to reconstruct contact forces once per wheel turn with a precision that is comparable to that of existing high-cost measurement systems. Subsequently, outdoor tests with a vehicle having all four wheels equipped with the developed measuring device have also been performed. Reliability of the measurements provided by the developed sensor has been assessed by comparing the global measured longitudinal/lateral forces and the product of the measured longitudinal

  5. Development and validation of system for measuring poling forces during Nordic walking

    Directory of Open Access Journals (Sweden)

    Jakub Krejčí

    2013-09-01

    Full Text Available BACKGROUND: Recently, the popularity of Nordic walking (NW has been rising steadily. Many scientific studies researched the promising and beneficial effects of this form of physical activity. However, only a few studies provided data about the forces acting on the poles. We did not find a commercially available system that enables the measurement of the poling forces. OBJECTIVE: The objective of this paper was to develop and validate a system for measuring the poling forces during NW. METHODS: Strain gauge force tranducers were mounted below the grips of standard NW poles. The transducer signals were amplified and converted to digital form for transmitting to a personal computer. Special software was developed for processing the measured data and the calculation method of output variables was described. Validation of the system was performed using a Kistler force plate. Poling cycles with peak force of about 150 N were imitated by pressing the pole over a force plate. RESULTS: A function sample of the measurement system was constructed. Validation yielded the mean absolute error of 1.1 N in case of poling cycles without pole impacts or 3.0 N in case of poling cycles with impacts. CONCLUSIONS: The validation result of our system is comparable to the results of similar systems used for measurements during cross-country skiing. The system enables independent measurement of the poling forces on both poles and the duration of measurement can be up to one hour. The system provides a tool that can be used to answer a number of questions that researches raise about NW. Understanding of the biomechanical and physiological aspects of poling action can constitute a scientific basis for promoting, teaching and training of NW.

  6. Application of the HHT Method to the Non-contact Thickness Measurement of an Axially Moving Thin Plate

    Science.gov (United States)

    Wu, Yangfang; Lu, Qianqian; Xia, Chunlin; Ding, Fan

    2016-06-01

    Non-contact thickness measuring systems can be found in a wide spectrum of technologies. In this paper, Hilbert-Huang transform method is used to analyze the real time signals of a measuring system which includes two round conveyor strings carrying a thin plate, a solar wafer as a sample under test. The vibrations of moving strings and the plate, which are sensitive to moving speed and initial tension in the string, are introduced briefly; the relevant analyses should be helpful for the system design. Using EMD-based time-domain filtering and complementary method, thickness variations and error bands are estimated for different cases. The results show that HHT method as an adaptive time-frequency method, should be potential in measurement engineering applications.

  7. Measured and estimated ground reaction forces for multi-segment foot models.

    Science.gov (United States)

    Bruening, Dustin A; Cooney, Kevin M; Buczek, Frank L; Richards, James G

    2010-12-01

    Accurate measurement of ground reaction forces under discrete areas of the foot is important in the development of more advanced foot models, which can improve our understanding of foot and ankle function. To overcome current equipment limitations, a few investigators have proposed combining a pressure mat with a single force platform and using a proportionality assumption to estimate subarea shear forces and free moments. In this study, two adjacent force platforms were used to evaluate the accuracy of the proportionality assumption on a three segment foot model during normal gait. Seventeen right feet were tested using a targeted walking approach, isolating two separate joints: transverse tarsal and metatarsophalangeal. Root mean square (RMS) errors in shear forces up to 6% body weight (BW) were found using the proportionality assumption, with the highest errors (peak absolute errors up to 12% BW) occurring between the forefoot and toes in terminal stance. The hallux exerted a small braking force in opposition to the propulsive force of the forefoot, which was unaccounted for by the proportionality assumption. While the assumption may be suitable for specific applications (e.g. gait analysis models), it is important to understand that some information on foot function can be lost. The results help highlight possible limitations of the assumption. Measured ensemble average subarea shear forces during normal gait are also presented for the first time.

  8. 轴向运动三参数黏弹性梁弱受迫振动的渐近分析%Asymptotic Analysis on Weakly Forced Vibration of an Axially Moving Viscoelastic Beam Constituted by Standard Linear Solid Model

    Institute of Scientific and Technical Information of China (English)

    王波

    2012-01-01

    研究了轴向运动三参数黏弹性梁的弱受迫振动.建立了轴向运动三参数黏弹性梁受迫振动的控制方程.使用多尺度法渐近分析了运动梁的稳态响应,导出了解稳定性边界方程、稳态振幅的表达式以及稳态响应非零解的存在条件.依据Routh-Hurwitz定律决定了非线性稳态响应非零解的稳定性.%The weakly forced vibration of an axially moving viscoelastic beam was investigated.The viscoelastic material of beams was constituted by the standard linear solid model with the material time derivative involved.The nonlinear equations governing the transverse vibration were derived from dynamical,constitutive,and geometrical relations.The method of multiple scales was applied to determine the steady-state response.The modulation equation was derived from the solvability condition of eliminating secular terms.Closed-form expressions of the amplitude and existence condition of nontrivial steady-state response were derived from the modulation equation.The stability of nontrivial steady-state response was examined via Routh-Hurwitz criterion.

  9. Experimental measurements of hydrodynamic radial forces and stiffness matrices for a centrifugal pump-impeller

    Science.gov (United States)

    Chamieh, D. S.; Acosta, A. J.; Brennen, C. E.; Caughey, T. K.

    1985-01-01

    Measurements of the steady-state hydrodynamic forces on a centrifugal pump impeller are presented as a function of position within two geometrically different volutes. These correspond to the forces experienced by the impeller at zero whirl frequency. The hydrodynamic force matrices derived from these measurements exhibit both diagonal and off-diagonal terms of substantial magnitude. These terms are of the form which would tend to excite a whirl motion in a rotordynamic analysis of the pump; this may be the cause of 'rough running' reported in many pumps. Static pressure measurements in the impeller discharge flow show that the hydrodynamic force on the impeller contains a substantial component due to the nonisotropy of the net momentum flux leaving the impeller. A similar breakdown of the contributions to the stiffness matrices reveals that the major component of these matrices results from the nonisotropy of the momentum flux.

  10. Use of force-measuring transducers in manipulator control. I - Theory. II - Implementation

    Science.gov (United States)

    Jansen, John; Kress, Reid

    Two types of control structures for teleoperated manipulators are investigated using force-measuring transducers with each type targeting specific properties of the manipulator. One approach is to measure torque in the drive train of the manipulator to increase backdriveability, sensitivity, and stiffness. The second is to measure the forces and torques at the wrist of the manipulator. This force/torque vector is then employed in a stiffness control algorithm which resolves dissimilar kinematics and increases sensitivity. It is shown that torque feedback can be used to reduce the apparent friction in a manipulator drive train caused by gear boxes, bearings, and transmissions. For teleoperated systems, drive-train torque feedback yields improved backdriveability, better sensitivity, and improved stiffness. Cartesian stiffness control allows the operator to specify the relationship between force and displacement in any direction at the manipulator end effector.

  11. Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope

    DEFF Research Database (Denmark)

    Jensen, Carsten P.

    Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope......Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope...

  12. Evaluation of a Blade Force Measurement System for a Vertical Axis Wind Turbine Using Load Cells

    OpenAIRE

    Morgan Rossander; Eduard Dyachuk; Senad Apelfröjd; Kristian Trolin; Anders Goude; Hans Bernhoff; Sandra Eriksson

    2015-01-01

    Unique blade force measurements on an open site straight-bladed vertical axis wind turbine have been performed. This paper presents a method for measuring the tangential and normal forces on a 12-kW vertical axis wind turbine prototype with a three-bladed H-rotor. Four single-axis load cells were installed in-between the hub and the support arms on one of the blades. The experimental setup, the measurement principle, together with the necessary control and measurement system are described. Th...

  13. Note: Direct force and ionic-current measurements on DNA in a nanocapillary

    Science.gov (United States)

    Otto, O.; Steinbock, L. J.; Wong, D. W.; Gornall, J. L.; Keyser, U. F.

    2011-08-01

    We have developed optical tweezers, with force measurements based on fast video tracking, for analysis and control of DNA translocation through nanocapillaries. Nanocapillaries are single-molecule biosensors with very similar characteristics to solid-state nanopores. Our novel experimental setup allows for ionic-current measurements in which the nanocapillary is oriented perpendicular to the trapping laser. Using video-based particle tracking, we are able to measure the position of DNA coated colloids at sub-millisecond resolution and in real-time. We present the first electrophoretic force and simultaneous ionic-current measurements of a single DNA molecule inside the orifice of a nanocapillary.

  14. Prestress Force Identification for Externally Prestressed Concrete Beam Based on Frequency Equation and Measured Frequencies

    Directory of Open Access Journals (Sweden)

    Luning Shi

    2014-01-01

    Full Text Available A prestress force identification method for externally prestressed concrete uniform beam based on the frequency equation and the measured frequencies is developed. For the purpose of the prestress force identification accuracy, we first look for the appropriate method to solve the free vibration equation of externally prestressed concrete beam and then combine the measured frequencies with frequency equation to identify the prestress force. To obtain the exact solution of the free vibration equation of multispan externally prestressed concrete beam, an analytical model of externally prestressed concrete beam is set up based on the Bernoulli-Euler beam theory and the function relation between prestress variation and vibration displacement is built. The multispan externally prestressed concrete beam is taken as the multiple single-span beams which must meet the bending moment and rotation angle boundary conditions, the free vibration equation is solved using sublevel simultaneous method and the semi-analytical solution of the free vibration equation which considered the influence of prestress on section rigidity and beam length is obtained. Taking simply supported concrete beam and two-span concrete beam with external tendons as examples, frequency function curves are obtained with the measured frequencies into it and the prestress force can be identified using the abscissa of the crosspoint of frequency functions. Identification value of the prestress force is in good agreement with the test results. The method can accurately identify prestress force of externally prestressed concrete beam and trace the trend of effective prestress force.

  15. Progress in development of a technique to measure the axial thermal diffusivity of irradiated reactor fuel pellets

    Energy Technology Data Exchange (ETDEWEB)

    Hutcheon, R.; Mouris, J. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    1997-07-01

    A new technique, based on pulsed high-energy ({approx}12 MeV) electron-beam heating, is being developed for measuring the thermal diffusivity of irradiated reactor fuel. This paper reports on the continuing development work required to establish a practical technique for irradiated materials at high temperatures (1000 to 1500 deg C). This includes studies of the influence of thermocouple surface contact resistance, of the sheath and the pellet mounting system, of internal cracks in the pellet, and of the chamber atmosphere. Calibrations with a NIST standard and measurements on fresh UO{sub 2} were done. Progress during the past year in these various areas is reviewed, and initial experiments with a specimen of high-burnup CANDU fuel are discussed. (author)

  16. Whole-body MRI (WB-MRI) versus axial skeleton MRI (AS-MRI) to detect and measure bone metastases in prostate cancer (PCa)

    International Nuclear Information System (INIS)

    To compare whole-body MRI (WB-MRI) and axial skeleton MRI (AS-MRI) in detecting and measuring bone metastases in patients with prostate cancer (PCa). WB-MRI and AS-MRI examinations were performed in 60 patients with PCa at high risk of metastases. Two radiologists separately categorised the AS-MRI and WB-MRI as negative or positive for metastases, and measured focal metastases using the ''Response evaluation criteria in solid tumours'' (RECIST) criteria transposed to bone. One radiologist reviewed all examinations 2 months later. Inter- and intraobserver agreements in establishing the presence/absence of metastases were calculated. Bland-Altman plots were used to assess measurement agreement between AS-MRI and WB-MRI. Strong to perfect inter- and intraobserver agreements were found between AS-MRI and WB-MRI in defining the presence/absence of bone metastases. There were no patients with isolated ''peripheral'' metastases at WB-MRI, missed at AS-MRI. There was no difference in lesion count between the two radiologists. AS-MRI and WB-MRI provided statistically equivalent RECIST values for one radiologist and slightly lower values at AS-MRI for the other. In our series of PCa patients, AS-MRI and WB-MRI were equivalent in determining the presence/absence of bone metastases and provided similar evaluation of the metastatic burden. (orig.)

  17. Whole-body MRI (WB-MRI) versus axial skeleton MRI (AS-MRI) to detect and measure bone metastases in prostate cancer (PCa)

    Energy Technology Data Exchange (ETDEWEB)

    Lecouvet, F.E.; Simon, M.; Berg, B.C.V.; Simoni, P. [Universite Catholique de Louvain, Cliniques Universitaires St Luc, Department of Radiology and Medical Imaging, Brussels (Belgium); Tombal, B. [Universite Catholique de Louvain, Cliniques Universitaires St Luc, Department of Urology, Brussels (Belgium); Jamart, J. [Universite Catholique de Louvain, Clinique Universitaire de Mont-Godinne, Center of Biostatistics and Medical Documentation, Yvoir (Belgium)

    2010-12-15

    To compare whole-body MRI (WB-MRI) and axial skeleton MRI (AS-MRI) in detecting and measuring bone metastases in patients with prostate cancer (PCa). WB-MRI and AS-MRI examinations were performed in 60 patients with PCa at high risk of metastases. Two radiologists separately categorised the AS-MRI and WB-MRI as negative or positive for metastases, and measured focal metastases using the ''Response evaluation criteria in solid tumours'' (RECIST) criteria transposed to bone. One radiologist reviewed all examinations 2 months later. Inter- and intraobserver agreements in establishing the presence/absence of metastases were calculated. Bland-Altman plots were used to assess measurement agreement between AS-MRI and WB-MRI. Strong to perfect inter- and intraobserver agreements were found between AS-MRI and WB-MRI in defining the presence/absence of bone metastases. There were no patients with isolated ''peripheral'' metastases at WB-MRI, missed at AS-MRI. There was no difference in lesion count between the two radiologists. AS-MRI and WB-MRI provided statistically equivalent RECIST values for one radiologist and slightly lower values at AS-MRI for the other. In our series of PCa patients, AS-MRI and WB-MRI were equivalent in determining the presence/absence of bone metastases and provided similar evaluation of the metastatic burden. (orig.)

  18. Measurements of the unsteady flow field within the stator row of a transonic axial-flow fan. II - Results and discussion

    Science.gov (United States)

    Hathaway, M. D.; Suder, K. L.; Strazisar, A. J.; Adamczyk, J. J.; Okiishi, T. H.

    1987-01-01

    Unsteady velocity field measurements made within the stator row of a transonic axial-flow fan are presented. Measurements were obtained at midspan for two different stator blade rows using a laser anemometer. The first stator row consists of double circular-arc airfoils with a solidity of 1.68. The second features controlled-diffusion airfoils with a solidity of 0.85. Both were tested at design-speed peak efficiency conditions. In addition, the controlled-diffusion stator was also tested at near stall conditions. The procedures developed here are used to identify the rotor wake generated and unresolved unsteadiness from the velocity measurements (rotor wake generated unsteadiness refers to the unsteadiness generated by the rotor wake velocity deficit and unresolved unsteadiness refers to all remaining unsteadiness which contributes to the spread in the distribution of velocities such as vortex shedding, turbulence, etc.). Auto and cross correlations of these unsteady velocity fluctuations are presented to show their relative magnitude and spatial distributions. Amplification and attenuation of both rotor wake generated and unresolved unsteadiness are shown to occur within the stator blade passage.

  19. Measurements of the unsteady flow field within the stator row of a transonic axial-flow fan. Part 2: Results and discussion

    Science.gov (United States)

    Hathaway, M. D.; Suder, K. L.; Okiishi, T. H.; Strazisar, A. J.; Adamczyk, J. J.

    1987-01-01

    Unsteady velocity field measurements made within the stator row of a transonic axial-flow fan are presented. Measurements were obtained at midspan for two different stator blade rows using a laser anemometer. The first stator row consists of double circular-arc airfoils with a solidity of 1.68. The second features controlled-diffusion airfoils with a solidity of 0.85. Both were tested at design-speed peak efficiency conditions. In addition, the controlled-diffusion stator was also tested at near stall conditions. The procedures developed here are used to identify the rotor wake generated and unresolved unsteadiness from the velocity measurements (rotor wake generated unsteadiness refers to the unsteadiness generated by the rotor wake velocity deficit and unresolved unsteadiness refers to all remaining unsteadiness which contributes to the spread in the distribution of velocities such as vortex shedding, turbulence, etc.). Auto and cross correlations of these unsteady velocity fluctuations are presented to show their relative magnitude and spatial distributions. Amplification and attenuation of both rotor wake generated and unresolved unsteadiness are shown to occur within the stator blade passage.

  20. Improving Dark Matter Searches by Measuring the Nucleon Axial Form Factor: Perspectives from MicroBooNE

    Energy Technology Data Exchange (ETDEWEB)

    Miceli, Tia [New Mexico State U.; Papavassiliou, Vassili [New Mexico State U.; Pate, Stephen [New Mexico State U.; Woodruff, Katherine [New Mexico State U.

    2015-11-01

    The MicroBooNE neutrino experiment at Fermilab is constructing a liquid-argon time-projection chamber for the Booster Neutrino Beam to study neutrino oscillations and interactions with nucleons and nuclei, starting in 2014. We describe the experiment and focus on its unique abilities to measure cross sections at low values of $Q^2$. In particular, the neutral-current elastic scattering cross section is especially interesting, as it is sensitive to the contribution of the strange sea quark spin to the angular-momentum of the nucleon, $\\Delta s$. Implications for dark-matter searches are discussed.

  1. Unexpected Up/Down asymmetry measured in axial radiation exiting high-temperature dynamic-hohlraum x-ray source

    Science.gov (United States)

    Sanford, T. W. L.; Lemke, R. W.; Mock, R. C.; Oliver, B. V.; Chandler, G. A.; Leeper, R. J.; Mehlhorn, T. A.; Nash, T. J.; Ruiz, C. L.; Waisman, E. M.; Peterson, D. L.; Chrien, R. E.; Idzorek, G. C.; Watt, R. G.; Roderick, N. F.; Haines, M. G.

    2002-11-01

    A 10 TW radiation source has been developed on the 20-MA Z facility that produces a high-temperature ( 215 eV) x-ray pulse. The pulse is generated in the positive z-direction through a REH (radiation exit hole), primarily from the interior of a collapsing dynamic-hohlraum (DH) centered within a z-pinch [1]. By adding an identical REH at the bottom of the hohlraum, radiation generated in the negative z direction through the bottom offers the possibility of doubling the utility of the hohlraum. Because of the up/down symmetry of the DH about the mid-plane of the z-axis (aside from the power feed), a radiation pulse similar to that exiting the top-REH (anode) is expected leaving the bottom-REH (cathode). Measurements indicate, however, that the peak radiated power exiting the top-REH is 2±0.2 times that exiting the bottom-REH. In contrast, the total energy radiated from either REH is about the same. Detailed measurements of this unexpected asymmetry, apparently dependent on polarity, together with potential origins of the asymmetry are discussed. [1] T. W. L. Sanford, et al, in press, Phys. Plasmas 9, (Aug. 2002). *Sandia is a multi-program laboratory operated by the Sandia Corporation, a Lockheed Martin Company, for the U.S. DOE under Contract No. DE-AC04-94AL85000.

  2. Contact-flatted measurement of eye stiffness based on force-displacement relationship

    Science.gov (United States)

    Zhang, Jin; Ma, Jianguo; Zhang, Xueyong

    2011-12-01

    This paper presents a noninvasive approach in vivo measurement of eye stiffness based on a force-displacement relationship, which is based on a new contact-probe method of simultaneously measuring the static force and displacement. First, a simple spherical eye model is introduced for deriving analytical eye stiffness when a static force is applied to an eye. Next, a measurement system for simultaneously measuring force and displacement when a probe is pressed onto the eye is presented. Static eye stiffness is defined which based on the measured force-displacement relationship. A photoelectric probe transducer acts as displacement detector. A 16-bit single-chip microprocessor with E2PROM in the electronic circuit played the role of a nucleus, which stored the program instructions and the interrelated data. Laboratory experiments were carried out on a simulated eyeball connected to a hydraulic manometer to obtain intraocular pressure at different levels. The experimental results show that the measured eye stiffness nicely matches the analytical result.

  3. Soft colloidal probes for AFM force measurements between water droplets in oil

    KAUST Repository

    Vakarelski, Ivan Uriev

    2014-11-01

    Here we introduce an extension of the atomic force microscopy (AFM) colloidal probe technique, as a simple and reliable experimental approach to measure the interaction forces between small water droplets (~80-160. μm) dispersed in oil. Small water droplets are formed by capillary breakup of a microscale water jet in air, which is forced out of a fine capillary nozzle, and deposited on a superhydrophobic substrate immersed in tetradecane oil medium. In these conditions the water droplets are very loosely attached to the superhydrophobic substrate and are easily picked up with a hydrophobic AFM cantilever to form a soft colloidal probe. Sample force measurements are conducted to demonstrate the capability of the technique.

  4. Construction of force measuring optical tweezers instrumentation and investigations of biophysical properties of bacterial adhesion organelles

    CERN Document Server

    Andersson, Magnus

    2015-01-01

    Optical tweezers are a technique in which microscopic-sized particles, including living cells and bacteria, can be non-intrusively trapped with high accuracy solely using focused light. The technique has therefore become a powerful tool in the field of biophysics. Optical tweezers thereby provide outstanding manipulation possibilities of cells as well as semi-transparent materials, both non-invasively and non-destructively, in biological systems. In addition, optical tweezers can measure minute forces (< 10-12 N), probe molecular interactions and their energy landscapes, and apply both static and dynamic forces in biological systems in a controlled manner. The assessment of intermolecular forces with force measuring optical tweezers, and thereby the biomechanical structure of biological objects, has therefore considerably facilitated our understanding of interactions and structures of biological systems. Adhesive bacterial organelles, so called pili, mediate adhesion to host cells and are therefore crucial...

  5. Interaction force measurement between E. coli cells and nanoparticles immobilized surfaces by using AFM.

    Science.gov (United States)

    Zhang, Wen; Stack, Andrew G; Chen, Yongsheng

    2011-02-01

    To better understand environmental behaviors of nanoparticles (NPs), we used the atomic force microscopy (AFM) to measure interaction forces between E. coli cells and NPs immobilized on surfaces in an aqueous environment. The results showed that adhesion force strength was significantly influenced by particle size for both hematite (α-Fe(2)O(3)) and corundum (α-Al(2)O(3)) NPs whereas the effect on the repulsive force was not observed. The adhesion force decreased from 6.3±0.7nN to 0.8±0.4nN as hematite NPs increased from 26nm to 98nm in diameter. Corundum NPs exhibited a similar dependence of adhesion force on particle size. The Johnson-Kendall-Roberts (JKR) model was employed to estimate the contact area between E. coli cells and NPs, and based on the JKR model a new model that considers local effective contact area was developed. The prediction of the new model matched the size dependence of adhesion force in experimental results. Size effects on adhesion forces may originate from the difference in local effective contact areas as supported by our model. These findings provide fundamental information for interpreting the environmental behaviors and biological interactions of NPs, which barely have been addressed. PMID:20932723

  6. Interaction force measurement between E. coli cells and nanoparticles immobilized surfaces by using AFM

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wen [Georgia Institute of Technology; Chen, Yongsheng [Georgia Institute of Technology

    2011-01-01

    To better understand environmental behaviors of nanoparticles (NPs), we used the atomic force microscopy (AFM) to measure interaction forces between E. coli cells and NPs immobilized on surfaces in an aqueous environment. The results showed that adhesion force strength was significantly influenced by particle size for both hematite ( -Fe2 O3 ) and corundum ( -Al2 O3 ) NPs whereas the effect on the repulsive force was not observed. The adhesion force decreased from 6.3 0.7 nN to 0.8 0.4 nN as hematite NPs increased from 26 nm to 98 nm in diameter. Corundum NPs exhibited a similar dependence of adhesion force on particle size. The Johnson Kendall Roberts (JKR) model was employed to estimate the contact area between E. coli cells and NPs, and based on the JKR model a new model that considers local effective contact area was developed. The prediction of the new model matched the size dependence of adhesion force in experimental results. Size effects on adhesion forces may originate from the difference in local effective contact areas as supported by our model. These findings provide fundamental information for interpreting the environmental behaviors and biological interactions of NPs, which barely have been addressed.

  7. Measurement of Breaking Force of Fluorescence Labelled Microtubules with Optical Tweezers

    Institute of Scientific and Technical Information of China (English)

    LIU Chun-Xiang; GUO Hong-Lian; XU Chun-Hua; YUAN Ming; LI Znao-Lin; CHENG Bing-Ying; ZHANG Dao-Zhong

    2005-01-01

    @@ Under illumination of excitation light, the force that can make fluorescent dye-labelled microtubules break up is measured by using dual-beam optical tweezers. It is found that this force is about several piconewtons, which is two orders of magnitude smaller than that without fluorescence label. Microtubules can be elongated about 20% and the increase of the tensile force is nonlinear with the microtubule elongation. Some qualitative explanations are given for the mechanisms about the breakup and elongation of microtubules exposed to excitation light.

  8. Aerodynamics of Dragonfly in Forward Flight: Force measurements and PIV results

    Science.gov (United States)

    Hu, Zheng; Deng, Xinyan

    2009-11-01

    We used a pair of dynamically scaled robotic dragonfly model wings to investigate the aerodynamic effects of wing-wing interaction in dragonflies. We follow the wing kinematics of real dragonflies in forward flight, while systematically varied the phase difference between the forewing and hindwing. Instantaneous aerodynamic forces and torques were measured on both wings, while flow visualization and PIV results were obtained. The results show that, in forward flight, wing-wing interaction always enhances the aerodynamic forces on the forewing through an upwash brought by the hindwing, while reduces the forces on the hindwing through a downwash brought by the forewing.

  9. Measurement of internal forces in superconducting accelerator magnets with strain gauge transducers

    International Nuclear Information System (INIS)

    An improved method has been developed for the measurement of internal forces in superconducting accelerator magnets, in particular the compressive stresses in coils and the end restraint forces on the coils. The transducers have been designed to provide improved sensitivity to purely mechanical strain by using bending mode deflections for sensing the applied loads. Strain gauge resistance measurements are made with a new system that eliminates sources of errors due to spurious resistance changes in interconnecting wiring and solder joints. The design of the transducers and their measurement system is presented along with a discussion of the method of compensation for thermal and magnetic effects, methods of calibration with typical calibration data, and measured effects in actual magnets of the thermal stress changes from cooldown and the Lorentz forces during magnet excitation

  10. Measurement of friction force between two mica surfaces with multiple beam interferometry

    Directory of Open Access Journals (Sweden)

    Jung J.C.

    2010-06-01

    Full Text Available Friction forces play a crucial role in the tribological behaviour of microcomponents and the application of MEMS products. It is necessary to develop a measurement system to understand and control the material characteristics. In this study, a microscopic measurement system based on multiple beam interferometry is developed to measure the friction force between two mica thin films. Some frictional behaviour between the two mica sheets in contact are reported. The evaluated shear strength of mica agrees well to the existing data. It is possible to use the developed system for micro-tribology study.

  11. Development of a Microforce Sensor and Its Array Platform for Robotic Cell Microinjection Force Measurement

    OpenAIRE

    Yu Xie; Yunlei Zhou; Yuzi Lin; Lingyun Wang,; Wenming Xi

    2016-01-01

    Robot-assisted cell microinjection, which is precise and can enable a high throughput, is attracting interest from researchers. Conventional probe-type cell microforce sensors have some real-time injection force measurement limitations, which prevent their integration in a cell microinjection robot. In this paper, a novel supported-beam based cell micro-force sensor with a piezoelectric polyvinylidine fluoride film used as the sensing element is described, which was designed to solve the real...

  12. Reply to Comment on "Influence of Noise on Force Measurements" [1012.5371

    OpenAIRE

    VOLPE, Giovanni; Helden, Laurent; Brettschneider, Thomas; Wehr, Jan; Bechinger, Clemens

    2011-01-01

    Having a priori knowledge of the force acting on a noisy system it is possible to solve the issue relative to the interpretation of multiplicative noise terms (aka Ito-Stratonovich dilemma). We experimentally show that for a Brownian particle the anti-Ito convention is correct. This permits us to reconcile force measurements based on the equilibrium distribution and on the drift velocity of a Brownian particle in a diffusion gradient.

  13. Spiral Defects in Motility Assays: A Measure of Motor Protein Force

    Science.gov (United States)

    Bourdieu, L.; Duke, T.; Elowitz, M. B.; Winkelmann, D. A.; Leibler, S.; Libchaber, A.

    1995-07-01

    In a commonly used motility assay, cytoskeletal filaments are observed as they glide over a surface coated with motor proteins. Defects in the motion frequently interrupt the flow of filaments. Examination of one such defect, in which a filament adopts a spiral form and rotates about a fixed point, provides a simple measure of the force exerted by the motor proteins. We demonstrate the universality of this approach by estimating the elementary forces of both myosin and kinesin.

  14. A Novel Integrated Multifunction Micro-Sensor for Three-Dimensional Micro-Force Measurements

    OpenAIRE

    Yafei Qin; Weizhong Wang; Yulong Zhao

    2012-01-01

    An integrated multifunction micro-sensor for three-dimensional micro-force precision measurement under different pressure and temperature conditions is introduced in this paper. The integrated sensor consists of three kinds of sensors: a three-dimensional micro-force sensor, an absolute pressure sensor and a temperature sensor. The integrated multifunction micro-sensor is fabricated on silicon wafers by micromachining technology. Different doping doses of boron ion, placement and structure of...

  15. Determination of critical current density in melt-processed HTS bulks from levitation force measurements

    OpenAIRE

    Kordyuk, A. A.; Nemoshkalenko, V.V.; Viznichenko, R. V.; Habisreuther, T.; Gawalek, W.

    1999-01-01

    A simple approach to describe the levitation force measurements on melt-processed HTS bulks was developed. A couple of methods to determine the critical current density $J_c$ were introduced. The averaged $ab$-plane $J_c$ values for the field parallel to this plane were determined. The first and second levitation force hysteresis loops calculated with these $J_c$ values coincide remarkably well with the experimental data.

  16. Measuring the Elasticity of Clathrin-Coated Vesicles via Atomic Force Microscopy

    OpenAIRE

    Jin, Albert J.; Prasad, Kondury; Smith, Paul D.; Lafer, Eileen M.; Nossal, Ralph

    2006-01-01

    Using a new scheme based on atomic force microscopy (AFM), we investigate mechanical properties of clathrin-coated vesicles (CCVs). CCVs are multicomponent protein and lipid complexes of ∼100 nm diameter that are implicated in many essential cell-trafficking processes. Our AFM imaging resolves clathrin lattice polygons and provides height deformation in quantitative response to AFM-substrate compression force. We model CCVs as multilayered elastic spherical shells and, from AFM measurements, ...

  17. Extraction of the Solvation Structure on a Solid Plate from a force curve measured by Surface Force Apparatus in a hard-sphere fluid

    CERN Document Server

    Amano, Ken-ich

    2013-01-01

    Surface force apparatus (SFA) has been utilized to measure the force between arbitrary two surfaces in a solvent. Since the measured force curve contains the solvation force between the two surfaces, there is the oscillation period which corresponds to the diameter of the solvent particle in the force curve. Although the force curve contains information about the intrinsic solvation structure on the one solid plate, a method for extracting the intrinsic solvation structure has not been elucidated for a long time. Thus, in the present paper, we propose the extracting method based on the statistical mechanics of liquids. As a first step, we derive an equation for the extraction in a hard-sphere fluid.

  18. Measurement of attractive forces between single aerogel powder particles and the correlation with powder flow

    Energy Technology Data Exchange (ETDEWEB)

    Weth, M.; Kuhn, J.; Fricke, J. [Bavarian Center for Applied Energy Research, ZAE Bayern, Am Hubland, 97074 Wuerzburg (Germany); Hofmann, M. [Experimentelle Zahnmedizin EZM, Universitaet Wuerzburg, Am Pleicherwall 2, 97070 Wuerzburg (Germany)

    2001-06-01

    An atomic force microscope (AFM), which allows the measurement of forces as low as one tenth of a nano-Newton, was used to determine the attractive forces between single silica aerogel powder particles (100{mu}m diameter) under two different atmospheric conditions. Forces on the order of 10 nN were found to depend mainly on the contact geometry and thus on the surface structure of the powder particles. In a second series of experiments, the surface structure of the silica aerogel powder particles was characterized using the AFM. Smooth surface areas, several micrometers in size, are separated by cliffs and cracks. For comparison, the same measurements were made with precipitated silica powder. Here larger forces and a different surface structure were found. The structure of precipitated silica particles is spheroidal with bumps on it, which are some hundred nanometers in size. In addition to the AFM measurements, powder flow rate from a hopper was measured. The flow of powders depends on the surface structure but also on the atmospheric conditions (e.g. moist atmosphere or vacuum). In contrast to precipitated silica powder, silica aerogel powder showed a significantly higher flow rate under vacuum than in moist air.

  19. Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Labuda, Aleksander; Proksch, Roger [Asylum Research an Oxford Instruments Company, Santa Barbara, California 93117 (United States)

    2015-06-22

    An ongoing challenge in atomic force microscope (AFM) experiments is the quantitative measurement of cantilever motion. The vast majority of AFMs use the optical beam deflection (OBD) method to infer the deflection of the cantilever. The OBD method is easy to implement, has impressive noise performance, and tends to be mechanically robust. However, it represents an indirect measurement of the cantilever displacement, since it is fundamentally an angular rather than a displacement measurement. Here, we demonstrate a metrological AFM that combines an OBD sensor with a laser Doppler vibrometer (LDV) to enable accurate measurements of the cantilever velocity and displacement. The OBD/LDV AFM allows a host of quantitative measurements to be performed, including in-situ measurements of cantilever oscillation modes in piezoresponse force microscopy. As an example application, we demonstrate how this instrument can be used for accurate quantification of piezoelectric sensitivity—a longstanding goal in the electromechanical community.

  20. 波形钢腹板连续箱梁剪滞效应引起的附加轴力分析%Additional Axial Force Analysis Caused by Shear lag Effect of Cintinuous Box-girder Bridge with Corrugated Steel Webs

    Institute of Scientific and Technical Information of China (English)

    吴焕庆; 张俊波; 刘世忠; 冀伟; 满自亭

    2013-01-01

    Under the condition of the plane section assumption and without considering the inertia moment of corrugated steel webs,this paper establishes the additional axial force formula for the two spans continuous box-girder bridge with corrugated steel webs based on a cubic parabola shear lag warping function.At the same time,it leads into the additional axial force stress ratio coefficient.Then it analyses the impact of additional axial stress to the influence degree of structural mechanical,which is based on the continuous box-girder bridge with corrugated steel webs under the full cross-uniformly distributed load and mid-span concentrated load.It shows that the value of additional axial stress can be ignored because the additional axial force stress ratio coefficient under the full cross-uniformly distributed load and the mid-span concentrated load is less than 1%.%基于平截面假定并不计波形钢腹板惯性矩,建立了波形钢腹板两跨连续箱梁在三次抛物线剪滞翘曲位移函数下的附加轴力计算式.引入附加轴向应力比系数,分析了波形钢腹板混凝土两跨连续梁在均布荷戢及跨中集中荷载作用下,附加轴向应力对结构受力性能的影响,分析表明:在两种荷栽工况下,附加轴向应力比系数均小于1%,可以忽略其效应.

  1. Measurement of the Strong Coupling Constant $\\alpha_s$ and the Vector and Axial-Vector Spectral Functions in Hadronic Tau Decays

    CERN Document Server

    Ackerstaff, K; Allison, J; Altekamp, N; Anderson, K J; Anderson, S; Arcelli, S; Asai, S; Ashby, S F; Axen, D A; Azuelos, Georges; Ball, A H; Barberio, E; Barlow, R J; Bartoldus, R; Batley, J Richard; Baumann, S; Bechtluft, J; Behnke, T; Bell, K W; Bella, G; Bentvelsen, Stanislaus Cornelius Maria; Bethke, Siegfried; Betts, S; Biebel, O; Biguzzi, A; Bird, S D; Blobel, Volker; Bloodworth, Ian J; Bobinski, M; Bock, P; Böhme, J; Boutemeur, M; Braibant, S; Bright-Thomas, P G; Brown, R M; Burckhart, Helfried J; Burgard, C; Bürgin, R; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Chrisman, D; Ciocca, C; Clarke, P E L; Clay, E; Cohen, I; Conboy, J E; Cooke, O C; Couyoumtzelis, C; Coxe, R L; Cuffiani, M; Dado, S; Dallavalle, G M; Davis, R; De Jong, S; del Pozo, L A; de Roeck, A; Desch, Klaus; Dienes, B; Dixit, M S; Doucet, M; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Eatough, D; Estabrooks, P G; Etzion, E; Evans, H G; Fabbri, Franco Luigi; Fanfani, A; Fanti, M; Faust, A A; Fiedler, F; Fierro, M; Fischer, H M; Fleck, I; Folman, R; Fürtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gascon, J; Gascon-Shotkin, S M; Geich-Gimbel, C; Geralis, T; Giacomelli, G; Giacomelli, P; Gibson, V; Gibson, W R; Gingrich, D M; Glenzinski, D A; Goldberg, J; Gorn, W; Grandi, C; Gross, E; Grunhaus, Jacob; Gruwé, M; Hanson, G G; Hansroul, M; Hapke, M; Hargrove, C K; Hartmann, C; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herndon, M; Herten, G; Heuer, R D; Hildreth, M D; Hill, J C; Hillier, S J; Hobson, P R; Höcker, Andreas; Homer, R James; Honma, A K; Horváth, D; Hossain, K R; Howard, R; Hüntemeyer, P; Igo-Kemenes, P; Imrie, D C; Ishii, K; Jacob, F R; Jawahery, A; Jeremie, H; Jimack, Martin Paul; Joly, A; Jones, C R; Jovanovic, P; Junk, T R; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Kayal, P I; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Koetke, D S; Kokott, T P; Kolrep, M; Komamiya, S; Kowalewski, R V; Kress, T; Krieger, P; Von Krogh, J; Kyberd, P; Lafferty, G D; Lanske, D; Lauber, J; Lautenschlager, S R; Lawson, I; Layter, J G; Lazic, D; Lee, A M; Lefebvre, E; Lellouch, Daniel; Letts, J; Levinson, L; Liebisch, R; List, B; Littlewood, C; Lloyd, A W; Lloyd, S L; Loebinger, F K; Long, G D; Losty, Michael J; Ludwig, J; Liu, D; Macchiolo, A; MacPherson, A L; Mannelli, M; Marcellini, S; Markopoulos, C; Martin, A J; Martin, J P; Martínez, G; Mashimo, T; Mättig, P; McDonald, W J; McKenna, J A; McKigney, E A; McMahon, T J; McPherson, R A; Meijers, F; Menke, S; Merritt, F S; Mes, H; Meyer, J; Michelini, Aldo; Mihara, S; Mikenberg, G; Miller, D J; Mir, R; Mohr, W; Montanari, A; Mori, T; Nagai, K; Nakamura, I; Neal, H A; Nellen, B; Nisius, R; O'Neale, S W; Oakham, F G; Odorici, F; Ögren, H O; Oreglia, M J; Orito, S; Pálinkás, J; Pásztor, G; Pater, J R; Patrick, G N; Patt, J; Pérez-Ochoa, R; Petzold, S; Pfeifenschneider, P; Pilcher, J E; Pinfold, James L; Plane, D E; Poffenberger, P R; Poli, B; Polok, J; Przybycien, M B; Rembser, C; Rick, Hartmut; Robertson, S; Robins, S A; Rodning, N L; Roney, J M; Roscoe, K; Rossi, A M; Rozen, Y; Runge, K; Runólfsson, O; Rust, D R; Sachs, K; Saeki, T; Sahr, O; Sang, W M; Sarkisyan-Grinbaum, E; Sbarra, C; Schaile, A D; Schaile, O; Scharf, F; Scharff-Hansen, P; Schieck, J; Schmitt, B; Schmitt, S; Schöning, A; Schörner-Sadenius, T; Schröder, M; Schumacher, M; Schwick, C; Scott, W G; Seuster, R; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Siroli, G P; Sittler, A; Skuja, A; Smith, A M; Snow, G A; Sobie, Randall J; Söldner-Rembold, S; Sproston, M; Stahl, A; Stephens, K; Steuerer, J; Stoll, K; Strom, D; Ströhmer, R; Tafirout, R; Talbot, S D; Tanaka, S; Taras, P; Tarem, S; Teuscher, R; Thiergen, M; Thomson, M A; Von Törne, E; Torrence, E; Towers, S; Trigger, I; Trócsányi, Z L; Tsur, E; Turcot, A S; Turner-Watson, M F; Van Kooten, R; Vannerem, P; Verzocchi, M; Vikas, P; Voss, H; Wäckerle, F; Wagner, A; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wermes, N; White, J S; Wilson, G W; Wilson, J A; Wyatt, T R; Yamashita, S; Yekutieli, G; Zacek, V; Zer-Zion, D

    1999-01-01

    The spectral functions of the vector current and the axial-vector current have been measured in hadronic tau decays using the OPAL detector at LEP. Within the framework of the Operator Product Expansion a simultaneous determination of the strong coupling constant alpha_s, the non-perturbative operators of dimension 6 and 8 and of the gluon condensate has been performed. Different perturbative descriptions have been compared to the data. The Contour Improved Fixed Order Perturbation Theory gives alpha_s(mtau**2) = 0.348 +- 0.009 +- 0.019 at the tau-mass scale and alpha_s(mz**2) = 0.1219 +- 0.0010 +- 0.0017 at the Z-mass scale. The values obtained for alpha_s(mz**2) using Fixed Order Perturbation Theory or Renormalon Chain Resummation are 2.3% and 4.1% smaller, respectively. The running of the strong coupling between s_0 ~1.3 GeV**2 and s_0 = mtau**2 has been tested from direct fits to the integrated differential hadronic decay rate R_tau. A test of the saturation of QCD sum rules at the tau-mass scale has been...

  2. Mechanostimulation, electrostimulation and force measurement in an in vitro model of the isolated rat diaphragm

    International Nuclear Information System (INIS)

    In an in vitro model of the entire rat diaphragm, diaphragmatic contraction forces at defined preload levels were investigated. A total of 24 excised rat diaphragms were electrically stimulated inside a two-chamber strain-applicator. The resulting contraction forces were determined on eight adjusted preload levels via measuring the elicited pressure in the chamber below the diaphragm. Subsequently, diaphragms were exposed for 6 h to one of four treatments: (1) control, (2) cyclic mechanical stretch, (3) intermittent electrical stimulation or (4) combination of cyclic mechanical stretch and electrical stimulation. Diaphragmatic contraction force increased from 116 ± 21 mN at the lowest preload level to 775 ± 85 mN at the maximal preload level. After 6 h maximal muscle contraction forces were smallest after non-electrostimulated treatment (control: 81 ± 15 mN, mechanical deflection: 94 ± 12 mN) and largest after electrostimulation treatment (mere electrostimulation: 165 ± 20 mN, combined mechano- and electro-stimulation: 164 ± 14 mN). We conclude that our model allows force measurements on isolated rat diaphragms. Furthermore, we conclude that by intermediate electrical stimulation diaphragmatic force generation was better preserved than by mechanical stimulation

  3. Radiation force on absorbing targets and power measurements of a high intensity focused ultrasound (HIFU) source

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Based on the analytic expressions for the radiated field of a circular concave piston given by Hasegawa et al.,an integral for calculation of the radiation force on a plane absorbing target in a spherically focused field is derived.A general relation between acoustic power P and normal radiation force Fn is obtained under the condition of kr 1.Numerical computation is carried out by using the symbolic computation program for practically focused sources and absorbing circular targets.The results show that,for a given source,there is a range of target positions where the radiation force is independent of the target’s position under the assumption that the contribution of the acoustic field behind the target to the radiation force can be neglected.The experiments are carried out and confirm that there is a range of target positions where the measured radiation force is basically independent of the target’s position even at high acoustic power (up to 700 W).It is believed that when the radiation force method is used to measure the acoustic power radiated from a focused source,the size of the target must be selected in such a way that no observable sound can be found in the region behind the target.

  4. Experimental validation of atomic force microscopy-based cell elasticity measurements

    Science.gov (United States)

    Harris, Andrew R.; Charras, G. T.

    2011-08-01

    Atomic force microscopy (AFM) is widely used for measuring the elasticity of living cells yielding values ranging from 100 Pa to 100 kPa, much larger than those obtained using bead-tracking microrheology or micropipette aspiration (100-500 Pa). AFM elasticity measurements appear dependent on tip geometry with pyramidal tips yielding elasticities 2-3 fold larger than spherical tips, an effect generally attributed to the larger contact area of spherical tips. In AFM elasticity measurements, experimental force-indentation curves are analyzed using contact mechanics models that infer the tip-cell contact area from the tip geometry and indentation depth. The validity of these assumptions has never been verified. Here we utilize combined AFM-confocal microscopy of epithelial cells expressing a GFP-tagged membrane marker to directly characterize the indentation geometry and measure the indentation depth. Comparison with data derived from AFM force-indentation curves showed that the experimentally measured contact area for spherical tips agrees well with predicted values, whereas for pyramidal tips, the contact area can be grossly underestimated at forces larger than ~ 0.2 nN leading to a greater than two-fold overestimation of elasticity. These data suggest that a re-examination of absolute cellular elasticities reported in the literature may be necessary and we suggest guidelines for avoiding elasticity measurement artefacts introduced by extraneous cantilever-cell contact.

  5. Experimental validation of atomic force microscopy-based cell elasticity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Andrew R; Charras, G T, E-mail: g.charras@ucl.ac.uk [London Centre for Nanotechnology, University College London, London WC1H 0AH (United Kingdom)

    2011-08-26

    Atomic force microscopy (AFM) is widely used for measuring the elasticity of living cells yielding values ranging from 100 Pa to 100 kPa, much larger than those obtained using bead-tracking microrheology or micropipette aspiration (100-500 Pa). AFM elasticity measurements appear dependent on tip geometry with pyramidal tips yielding elasticities 2-3 fold larger than spherical tips, an effect generally attributed to the larger contact area of spherical tips. In AFM elasticity measurements, experimental force-indentation curves are analyzed using contact mechanics models that infer the tip-cell contact area from the tip geometry and indentation depth. The validity of these assumptions has never been verified. Here we utilize combined AFM-confocal microscopy of epithelial cells expressing a GFP-tagged membrane marker to directly characterize the indentation geometry and measure the indentation depth. Comparison with data derived from AFM force-indentation curves showed that the experimentally measured contact area for spherical tips agrees well with predicted values, whereas for pyramidal tips, the contact area can be grossly underestimated at forces larger than {approx} 0.2 nN leading to a greater than two-fold overestimation of elasticity. These data suggest that a re-examination of absolute cellular elasticities reported in the literature may be necessary and we suggest guidelines for avoiding elasticity measurement artefacts introduced by extraneous cantilever-cell contact.

  6. The indirect measurement of biomechanical forces in the moving human body

    Science.gov (United States)

    Cluss, Melanie; Laws, Kenneth; Martin, Natalie; Nowicki, T. Scott; Mira, Allan

    2006-02-01

    Inexpensive experimental techniques now exist for indirectly measuring forces within the moving human body. These techniques involve nontrivial applications of basic physical principles, have practical uses, and are appropriate for undergraduate experimentation. A two-dimensional video motion analysis is used to find the accelerations of various parts of the body, and anatomical geometry is used to determine specific biomechanical forces and torques. The simple movement of a dancer landing from a vertical jump is analyzed through the use of a theoretical model of the leg to find the forces in the tendons attached to the knee. It is shown that these forces can be sufficiently large to lead to injury if jumps are performed repetitively.

  7. Measurements and analysis of force and moment of caudal fin model in C-start

    Institute of Scientific and Technical Information of China (English)

    ZHAO Liang; JING Jun; LU Xiyun; YIN Xiezhen

    2006-01-01

    The unsteady hydrodynamic forces and moments acting on caudal-fin models of fish with different shapes and different swing durations were experimentally measured to simulate the fish C-starts. The motion of models was characterized by rotating the model to a maximum deflection angle in an excursion time Tu and back to the initial position in a return time Td around its root-axis. Studies show that the caudal-fin plays an important role in fish C-starts and the caudal-fins with different shapes and different swing durations generate different forces and moments. In addition, the hydrodynamic forces and moments acting on the models with different shapes can be normalized by the 2nd and 3rd moments of area, respectively. The forces and moments acting on the models with different swing durations, but the same ratio of Tu to Td can also be scaled.

  8. Sliding mode-based lateral vehicle dynamics control using tyre force measurements

    Science.gov (United States)

    Kunnappillil Madhusudhanan, Anil; Corno, Matteo; Holweg, Edward

    2015-11-01

    In this work, a lateral vehicle dynamics control based on tyre force measurements is proposed. Most of the lateral vehicle dynamics control schemes are based on yaw rate whereas tyre forces are the most important variables in vehicle dynamics as tyres are the only contact points between the vehicle and road. In the proposed method, active front steering is employed to uniformly distribute the required lateral force among the front left and right tyres. The force distribution is quantified through the tyre utilisation coefficients. In order to address the nonlinearities and uncertainties of the vehicle model, a gain scheduling sliding-mode control technique is used. In addition to stabilising the lateral dynamics, the proposed controller is able to maintain maximum lateral acceleration. The proposed method is tested and validated on a multi-body vehicle simulator.

  9. Measurements on hydrophobic and hydrophilic surfaces using a porous gamma alumina nanoparticle aggregate mounted on Atomic Force Microscopy cantilevers

    NARCIS (Netherlands)

    Das, Theerthankar; Becker, Thomas; Nair, Balagopal N.

    2010-01-01

    Atomic Force Microscopy (AFM) measurements are extensively used for a detailed understanding of molecular and surface forces. In this study, we present a technique for measuring such forces, using an AFM cantilever attached with a porous gamma alumina nanoparticle aggregate. The modified cantilever

  10. Thermophoretic forces on DNA measured with a single-molecule spring balance

    DEFF Research Database (Denmark)

    Pedersen, Jonas Nyvold; Lüscher, Christopher James; Marie, Rodolphe;

    2014-01-01

    We stretch a single DNA molecule with thermophoretic forces and measure these forces with a spring balance: the DNA molecule itself. It is an entropic spring which we calibrate, using as a benchmark its Brownian motion in the nanochannel that contains and prestretches it. This direct measurement of...... contour length. We find the Soret coefficient per unit length of DNA at various ionic strengths. It agrees, with novel precision, with results obtained in bulk for DNA too short to shield itself and with the thermodynamic model of thermophoresis....

  11. A method to measure the nonlinear force caused emittance growth in a RF photoinjector

    Institute of Scientific and Technical Information of China (English)

    Li Zheng-Hong; Yang Zhen-Ping

    2006-01-01

    Based on the multi-slit method, a new method is introduced to measure the non linear force caused emittance growth in a RF photoinjector. It is possible to reconstruct the phase space of a beam under some conditions by the multi-slit method. Based on the reconstructed phase space, besides the emittance, the emittance growth from the distortion of the phase space can also be measured. The emittance growth results from the effects of nonlinear force acting on electron, which is very important for the high quality beam in a RF photoinjector.

  12. SU-E-I-15: Quantitative Evaluation of Dose Distributions From Axial, Helical and Cone-Beam CT Imaging by Measurement Using a Two-Dimensional Diode-Array Detector

    Energy Technology Data Exchange (ETDEWEB)

    Chacko, M; Aldoohan, S; Sonnad, J; Ahmad, S; Ali, I [University of Oklahoma Health Science Center, Oklahoma City, OK (United States)

    2015-06-15

    Purpose: To evaluate quantitatively dose distributions from helical, axial and cone-beam CT clinical imaging techniques by measurement using a two-dimensional (2D) diode-array detector. Methods: 2D-dose distributions from selected clinical protocols used for axial, helical and cone-beam CT imaging were measured using a diode-array detector (MapCheck2). The MapCheck2 is composed from solid state diode detectors that are arranged in horizontal and vertical lines with a spacing of 10 mm. A GE-Light-Speed CT-simulator was used to acquire axial and helical CT images and a kV on-board-imager integrated with a Varian TrueBeam-STx machine was used to acquire cone-beam CT (CBCT) images. Results: The dose distributions from axial, helical and cone-beam CT were non-uniform over the region-of-interest with strong spatial and angular dependence. In axial CT, a large dose gradient was measured that decreased from lateral sides to the middle of the phantom due to large superficial dose at the side of the phantom in comparison with larger beam attenuation at the center. The dose decreased at the superior and inferior regions in comparison to the center of the phantom in axial CT. An asymmetry was found between the right-left or superior-inferior sides of the phantom which possibly to angular dependence in the dose distributions. The dose level and distribution varied from one imaging technique into another. For the pelvis technique, axial CT deposited a mean dose of 3.67 cGy, helical CT deposited a mean dose of 1.59 cGy, and CBCT deposited a mean dose of 1.62 cGy. Conclusions: MapCheck2 provides a robust tool to measure directly 2D-dose distributions for CT imaging with high spatial resolution detectors in comparison with ionization chamber that provides a single point measurement or an average dose to the phantom. The dose distributions measured with MapCheck2 consider medium heterogeneity and can represent specific patient dose.

  13. Temperature-dependent intermolecular force measurement of poly(N-isopropylacrylamide) grafted surface with protein.

    Science.gov (United States)

    Cho, Eun Chul; Kim, Yong Deuk; Cho, Kilwon

    2005-06-15

    We have investigated the temperature dependence of the intermolecular force between poly(N-isopropylacrylamide) (PNiPAM) grafted surface and bovine serum albumin (BSA) in phosphate buffer (pH 7.4) using atomic force microscopy at the nanonewton scale. These observations show that the interaction force is nearly zero below the phase transition temperature of PNiPAM and that it increases steeply during the phase transition. Since the PNiPAM chains are grafted onto the aminosilane (gamma-aminopropyltriethoxysilane)-treated silicon wafer, we measured the force-distance curve of BSA-immobilized tips for the bare and the aminosilane-treated silicon wafer. These surfaces show no temperature dependence and their values are different from those of the PNiPAM-grafted surfaces at 30 degrees C. The results indicate that the measured adhesion force is between the PNiPAM-grafted surface and the BSA-immobilized tip. Our studies on the intermolecular force between other surfaces (CH(3)- and COOH-terminated self-assembled monolayers) and the BSA-immobilized tip indicate that the variation in the intermolecular force between the PNiPAM surface and BSA with temperature can be attributed to the changes in the properties of the PNiPAM chains. From consideration of the PNiPAM phase transition mechanism, it is speculated that the intermolecular force between the PNiPAM-grafted surface and BSA would be affected by changes in the arrangement of the bound water molecules around the PNiPAM chain and by changes in the conformation (i.e., in the chain mobility) of the PNiPAM chain during the phase transition. PMID:15897061

  14. Forces and moments on a slender, cavitating body

    Energy Technology Data Exchange (ETDEWEB)

    Hailey, C.E.; Clark, E.L.; Buffington, R.J.

    1988-01-01

    Recently a numerical code has been developed at Sandia National Laboratories to predict the pitching moment, normal force, and axial force of a slender, supercavitating shape. The potential flow about the body and cavity is calculated using an axial distribution of source/sink elements. The cavity surface is assumed to be a constant pressure streamline, extending beyond the base of the model. Slender body approximation is used to model the crossflow for small angles of attack. A significant extension of previous work in cavitation flow is the inclusion of laminar and turbulent boundary layer solutions on the body. Predictions with this code, for axial force at zero angle of attack, show good agreement with experiments. There are virtually no published data availble with which to benchmark the pitching moment and normal force predictions. An experiment was designed to measure forces and moments on a supercavitation shape. The primary reason for the test was to obtain much needed data to benchmark the hydrodynamic force and moment predictions. Since the numerical prediction is for super cavitating shapes at very small cavitation numbers, the experiment was designed to be a ventilated cavity test. This paper describes the experimental procedure used to measure the pitching moment, axial and normal forces, and base pressure on a slender body with a ventilated cavity. Limited results are presented for pitching moment and normal force. 5 refs., 7 figs.

  15. Statistical Analysis of Long- and Short-Range Forces Involved in Bacterial Adhesion to Substratum Surfaces as Measured Using Atomic Force Microscopy

    NARCIS (Netherlands)

    Chen, Yun; Busscher, Henk J.; van der Mei, Henny C.; Norde, Willem

    2011-01-01

    Surface thermodynamic analyses of microbial adhesion using measured contact angles on solid substrata and microbial cell surfaces are widely employed to determine the nature of the adhesion forces, i.e., the interplay between Lifshitz-van der Waals and acid-base forces. While surface thermodynamic a

  16. Investigating the adsorption of the gemini surfactant "12-2-12" onto mica using atomic force microscopy and surface force apparatus measurements

    NARCIS (Netherlands)

    Fielden, ML; Claesson, PM; Verrall, RE

    1999-01-01

    The adsorption of the cationic gemini surfactant 1,2-bis(n-dodecyldimethylammonium)ethane dibromide on mica was followed by measuring forces between mica surfaces and by atomic force microscopy (AFM) imaging. The surface charge was found to be neutralized at total surfactant concentrations between 8

  17. Statistical analysis of long- and short-range forces involved in bacterial adhesion to substratum surfaces as measured using atomic force microscopy.

    Science.gov (United States)

    Chen, Yun; Busscher, Henk J; van der Mei, Henny C; Norde, Willem

    2011-08-01

    Surface thermodynamic analyses of microbial adhesion using measured contact angles on solid substrata and microbial cell surfaces are widely employed to determine the nature of the adhesion forces, i.e., the interplay between Lifshitz-van der Waals and acid-base forces. While surface thermodynamic analyses are often viewed critically, atomic force microscopy (AFM) can also provide information on the nature of the adhesion forces by means of Poisson analysis of the measured forces. This review first presents a description of Poisson analysis and its underlying assumptions. The data available from the literature for different combinations of bacterial strains and substrata are then summarized, leading to the conclusion that bacterial adhesion to surfaces is generally dominated by short-range, attractive acid-base interactions, in combination with long-range, weaker Lifshitz-van der Waals forces. This is in line with the findings of surface thermodynamic analyses of bacterial adhesion. Comparison with single-molecule ligand-receptor forces from the literature suggests that the short-range-force contribution from Poisson analysis involves a discrete adhesive bacterial cell surface site rather than a single molecular force. The adhesion force arising from these cell surface sites and the number of sites available may differ from strain to strain. Force spectroscopy, however, involves the tedious task of identifying the minor peaks in the AFM retraction force-distance curve. This step can be avoided by carrying out Poisson analysis on the work of adhesion, which can also be derived from retraction force-distance curves. This newly proposed way of performing Poisson analysis confirms that multiple molecular bonds, rather than a single molecular bond, contribute to a discrete adhesive bacterial cell surface site. PMID:21642399

  18. Improved dynamic compensation for accurate cutting force measurements in milling applications

    Science.gov (United States)

    Scippa, A.; Sallese, L.; Grossi, N.; Campatelli, G.

    2015-03-01

    Accurate cutting-force measurements appear to be the key information in most of the machining related studies as they are fundamental in understanding the cutting processes, optimizing the cutting operations and evaluating the presence of instabilities that could affect the effectiveness of cutting processes. A variety of specifically designed transducers are commercially available nowadays and many different approaches in measuring cutting forces are presented in literature. The available transducers, though, express some limitations since they are conditioned by the vibration of the surrounding system and by the transducer's natural frequency. These parameters can drastically affect the measurement accuracy in some cases; hence an effective and accurate tool is required to compensate those dynamically induced errors in cutting force measurements. This work is aimed at developing and testing a compensation technique based on Kalman filter estimator. Two different approaches named "band-fitting" and "parallel elaboration" methods, have been developed to extend applications of this compensation technique, especially for milling purpose. The compensation filter has been designed upon the experimentally identified system's dynamic and its accuracy and effectiveness has been evaluated by numerical and experimental tests. Finally its specific application in cutting force measurements compensation is described.

  19. Lorentz force sigmometry: a novel technique for measuring the electrical conductivity of solid and liquid metals

    International Nuclear Information System (INIS)

    In this paper, a novel method to measure the electrical conductivity of solid and molten metals is described. We term the method ‘Lorentz force sigmometry’, where the term ‘sigmometry’ refers to the letter sigma σ, often used to denote the electrical conductivity. The Lorentz force sigmometry method is based on the phenomenon of eddy currents generation in a moving conductor exposed to a magnetic field. Based on Ampere’s law, the eddy currents in turn generate a secondary magnetic field; as a result, the Lorentz force acts to brake the conductor. Owing to Newton’s third law, a measurable force, which is equal to the Lorentz force and is directly proportional to the electrical conductivity of the conductive fluid or solid, acts on the magnet. We present the results of the measurements performed on solids along with the initial measurements on fluids with a eutectic alloy composition of Ga67In20.5Sn12.5; detailed measurements on molten metals are still in progress and will be published in the future. We conducted a series of experiments and measured the properties of known electrical conductive metals, including aluminum and copper, to compute the calibration factor of the device, and then used the same calibration factor to estimate the unknown electrical conductivity of a brass bar. The predicted electrical conductivity of the brass bar was compared with the conductivity measured with a commercial device called ‘SigmaTest’; the observed error was less than 0.5%. (paper)

  20. A new method for sudden mechanical perturbation with axial load, to assess postural control in sitting and standing.

    Science.gov (United States)

    Claus, Andrew P; Verrel, Julius; Pounds, Paul E I; Shaw, Renee C; Brady, Niamh; Chew, Min T; Dekkers, Thomas A; Hodges, Paul W

    2016-05-01

    Sudden application of load along a sagittal or coronal axis has been used to study trunk stiffness, but not axial (vertical) load. This study introduces a new method for sudden-release axial load perturbation. Prima facie validity was supported by comparison with standard mechanical systems. We report the response of the human body to axial perturbation in sitting and standing and within-day repeatability of measures. Load of 20% of body weight was released from light contact onto the shoulders of 22 healthy participants (10 males). Force input was measured via force transducers at shoulders, output via a force plate below the participant, and kinematics via 3-D motion capture. System identification was used to fit data from the time of load release to time of peak load-displacement, fitting with a 2nd-order mass-spring-damper system with a delay term. At peak load-displacement, the mean (SD) effective stiffness measured with this device for participants in sitting was 12.0(3.4)N/mm, and in standing was 13.3(4.2)N/mm. Peak force output exceeded input by 44.8 (10.0)% in sitting and by 30.4(7.9)% in standing. Intra-class correlation coefficients for within-day repeatability of axial stiffness were 0.58 (CI: -0.03 to 0.83) in sitting and 0.82(0.57-0.93) in standing. Despite greater degrees of freedom in standing than sitting, standing involved lesser time, downward displacement, peak output force and was more repeatable in defending upright postural control against the same axial loads. This method provides a foundation for future studies of neuromuscular control with axial perturbation. PMID:26968087

  1. A Noncontact Force Sensor Based on a Fiber Bragg Grating and Its Application for Corrosion Measurement

    Directory of Open Access Journals (Sweden)

    Antonio C. Bruno

    2013-08-01

    Full Text Available A simple noncontact force sensor based on an optical fiber Bragg grating attached to a small magnet has been proposed and built. The sensor measures the force between the magnet and any ferromagnetic material placed within a few millimeters of the sensor. Maintaining the sensor at a constant standoff distance, material loss due to corrosion increases the distance between the magnet and the corroded surface, which decreases the magnetic force. This will decrease the strain in the optical fiber shifting the reflected Bragg wavelength. The measured shift for the optical fiber used was 1.36 nm per Newton. Models were developed to optimize the magnet geometry for a specific sensor standoff distance and for particular corrosion pit depths. The sensor was able to detect corrosion pits on a fuel storage tank bottom with depths in the sub-millimeter range.

  2. Force sensing using 3D displacement measurements in linear elastic bodies

    Science.gov (United States)

    Feng, Xinzeng; Hui, Chung-Yuen

    2016-07-01

    In cell traction microscopy, the mechanical forces exerted by a cell on its environment is usually determined from experimentally measured displacement by solving an inverse problem in elasticity. In this paper, an innovative numerical method is proposed which finds the "optimal" traction to the inverse problem. When sufficient regularization is applied, we demonstrate that the proposed method significantly improves the widely used approach using Green's functions. Motivated by real cell experiments, the equilibrium condition of a slowly migrating cell is imposed as a set of equality constraints on the unknown traction. Our validation benchmarks demonstrate that the numeric solution to the constrained inverse problem well recovers the actual traction when the optimal regularization parameter is used. The proposed method can thus be applied to study general force sensing problems, which utilize displacement measurements to sense inaccessible forces in linear elastic bodies with a priori constraints.

  3. [Methodology and Implementation of Forced Oscillation Technique for Respiratory Mechanics Measurement].

    Science.gov (United States)

    Zhang, Zhengbo; Ni, Lu; Liu, Xiaoli; Li, Deyu; Wang, Weidong

    2015-11-01

    The forced oscillation technique (FOT) is a noninvasive method for respiratory mechanics measurement. For the FOT, external signals (e.g. forced oscillations around 4-40 Hz) are used to drive the respiratory system, and the mechanical characteristic of the respiratory system can be determined with the linear system identification theory. Thus, respiratory mechanical properties and components at different frequency and location of the airway can be explored by specifically developed forcing waveforms. In this paper, the theory, methodology and clinical application of the FOT is reviewed, including measure ment theory, driving signals, models of respiratory system, algorithm for impedance identification, and requirement on apparatus. Finally, the future development of this technique is also discussed.

  4. Comment on ``Precision measurement of the Casimir-Lifshitz force in a fluid''

    CERN Document Server

    Geyer, B; Mohideen, U; Mostepanenko, V M

    2007-01-01

    Recently J.N. Munday and F. Capasso [Phys. Rev. A {\\bf 75}, 060102(R) (2007); arXiv:0705.3793] claimed that they have performed a precision measurement of the Casimir force between a sphere and a plate coated with Au, both immersed in ethanol. The measurement results were claimed to be consistent with the Lifshitz theory. We demonstrate that in this paper the Casimir force between the smooth surfaces of the test bodies was computed inaccurately with an error of up to 25%. We show also that the attractive electrostatic force only due to the surface potential differences was underestimated by a factor of 590 and the charge double layer interaction was not taken into account. All this leads to the conclusion that the results of this experiment are in fact uncertain.

  5. Minimising the effect of nanoparticle deformation in intermittent contact amplitude modulation atomic force microscopy measurements

    Science.gov (United States)

    Babic, Bakir; Lawn, Malcolm A.; Coleman, Victoria A.; Jämting, Åsa K.; Herrmann, Jan

    2016-06-01

    The results of systematic height measurements of polystyrene (PS) nanoparticles using intermittent contact amplitude modulation atomic force microscopy (IC-AM-AFM) are presented. The experimental findings demonstrate that PS nanoparticles deform during AFM imaging, as indicated by a reduction in the measured particle height. This deformation depends on the IC-AM-AFM imaging parameters, material composition, and dimensional properties of the nanoparticles. A model for nanoparticle deformation occurring during IC-AM-AFM imaging is developed as a function of the peak force which can be calculated for a particular set of experimental conditions. The undeformed nanoparticle height can be estimated from the model by extrapolation to zero peak force. A procedure is proposed to quantify and minimise nanoparticle deformation during IC-AM-AFM imaging, based on appropriate adjustments of the experimental control parameters.

  6. Measurement of Effect of Chemical Reactions on the Hydrologic Properties of Fractured Glass Media Using a Tri-axial Flow and Transport Apparatus

    International Nuclear Information System (INIS)

    Understanding the effect of chemical reactions on the hydrologic properties of sub-surface media is critical to many natural and engineered sub-surface systems. Methods and information for such characterization of fractured media are severely lacking. Influence of glass corrosion (precipitation and dissolution) reactions on fractured glass blocks HAN28 and LAWBP1, two candidate waste glass forms for a proposed immobilized low-activity waste (ILAW) disposal facility at the Hanford, WA site, was investigated. Flow and tracer transport experiments were conducted in such randomly and multiply fractured ILAW glass blocks, before and after subjecting them to corrosion using Vapor Hydration Testing (VHT) at 200 C temperature and 200 psig (1379 KPa) pressure, causing the precipitation of alteration products. A tri-axial fractured media flow and transport experimental apparatus, which allows the simultaneous measurement of flow and transport properties and their anisotropy, has been designed and built for this purpose. Such apparatus for fractured media characterization are being reported in the literature only recently. Hydraulic properties of fractured blocks were measured in different orientations and along different cardinal directions, before and after glass corrosion reactions. Miscible displacement experiments using a non-reactive dye were also conducted, before and after glass corrosion reactions, to study the tracer transport behavior through such media. Initial efforts to analyze breakthrough curve (BTC) data using a 1D Advection Dispersion Equation (ADE) solution revealed that a different fractured media transport model may be necessary for such interpretation. It was found that glass reactions can have a significant influence on the hydrologic properties of fractured ILAW glass media. The methods and results are unique and useful to better understand the effect of chemical reactions on the hydrologic properties of fractured geomedia in general and glass media in

  7. Measurement of effect of chemical reactions on the hydrologic properties of fractured glass media using a tri-axial flow and transport apparatus

    Science.gov (United States)

    Saripalli, K. Prasad; Lindberg, Michael J.; Meyer, Philip D.

    2006-09-01

    SummaryUnderstanding the effect of chemical reactions on the hydrologic properties of sub-surface media is critical to many natural and engineered sub-surface systems. Methods and information for such characterization of fractured media are severely lacking. Influence of glass corrosion (precipitation and dissolution) reactions on fractured glass blocks HAN28 and LAWBP1, two candidate waste glass forms for a proposed immobilized low-activity waste (ILAW) disposal facility at the Hanford, WA site, was investigated. Flow and tracer transport experiments were conducted in such randomly and multiply fractured ILAW glass blocks, before and after subjecting them to corrosion using vapor hydration testing (VHT) at 200 °C temperature and 200 psig (1379 KPa) pressure, causing the precipitation of alteration products. A tri-axial fractured media flow and transport experimental apparatus, which allows the simultaneous measurement of flow and transport properties and their anisotropy, has been designed and built for this purpose. Such apparatus for fractured media characterization are being reported in the literature only recently. Hydraulic properties of fractured blocks were measured in different orientations and along different cardinal directions, before and after glass corrosion reactions. Miscible displacement experiments using a non-reactive dye were also conducted, before and after glass corrosion reactions, to study the tracer transport behavior through such media. Initial efforts to analyze breakthrough curve (BTC) data using a 1D advection dispersion equation (ADE) solution revealed that a different fractured media transport model, which accurately accounts for the heterogeneous transport behavior in 3D, may be necessary for such interpretation. It was found that glass reactions could have a significant influence on the hydrologic properties of fractured ILAW glass media. The methods and results are useful to better understand the effect of chemical reactions on

  8. Model tests on a semi-axial pump turbine

    Energy Technology Data Exchange (ETDEWEB)

    Strohmer, F.; Horacek, G.

    1984-03-01

    Due to their good hydraulic characteristic semi-axial pump turbines are used in the medium head range of pumped storage plants. This paper describes model tests performed on a semiaxial pump turbine model and shows the results of these tests. The aim of the model tests was the optimization of the hydraulic water passage, the measurement of the hydraulic characteristics over the whole operating range, the investigation of the cavitation behaviour, the investigation of the hydraulic forces and torques as well as the proof of the values guaranteed to the customer.

  9. Development of a quartz tuning-fork-based force sensor for measurements in the tens of nanoNewton force range during nanomanipulation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Oiko, V. T. A., E-mail: oiko@ifi.unicamp.br; Rodrigues, V.; Ugarte, D. [Instituto de Física “Gleb Wataghin,” Univ. Estadual de Campinas (UNICAMP), Campinas 13083-859 (Brazil); Martins, B. V. C. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada); Silva, P. C. [Laboratório Nacional de Nanotecnologia, CNPEM, Campinas 13083-970 (Brazil)

    2014-03-15

    Understanding the mechanical properties of nanoscale systems requires new experimental and theoretical tools. In particular, force sensors compatible with nanomechanical testing experiments and with sensitivity in the nN range are required. Here, we report the development and testing of a tuning-fork-based force sensor for in situ nanomanipulation experiments inside a scanning electron microscope. The sensor uses a very simple design for the electronics and it allows the direct and quantitative force measurement in the 1–100 nN force range. The sensor response is initially calibrated against a nN range force standard, as, for example, a calibrated Atomic Force Microscopy cantilever; subsequently, applied force values can be directly derived using only the electric signals generated by the tuning fork. Using a homemade nanomanipulator, the quantitative force sensor has been used to analyze the mechanical deformation of multi-walled carbon nanotube bundles, where we analyzed forces in the 5–40 nN range, measured with an error bar of a few nN.

  10. Harmonic Force Spectroscopy measures load-dependent kinetics of individual human β-cardiac myosin molecules

    DEFF Research Database (Denmark)

    Sung, Jongmin; Nag, Suman; Mortensen, Kim;

    2015-01-01

    Molecular motors are responsible for numerous cellular processes from cargo transport to heart contraction. Their interactions with other cellular components are often transient and exhibit kinetics that depend on load. Here, we measure such interactions using ‘harmonic force spectroscopy...

  11. Ultrasonic Measurement of Strain Distribution Inside Object Cyclically Compressed by Dual Acoustic Radiation Force

    Science.gov (United States)

    Odagiri, Yoshitaka; Hasegawa, Hideyuki; Kanai, Hiroshi

    2008-05-01

    One possible way to evaluate acupuncture therapy quantitatively is to measure the change in the elastic property of muscle after application of the therapy. Many studies have been conducted to measure mechanical properties of tissues using ultrasound-induced acoustic radiation force. To assess mechanical properties, strain must be generated in an object. However, a single radiation force is not effective because it mainly generates translational motion when the object is much harder than the surrounding medium. In this study, two cyclic radiation forces are simultaneously applied to a muscle phantom from two opposite horizontal directions so that the object is cyclically compressed in the horizontal direction. By the horizontal compression, the object is expanded vertically based on its incompressibility. The resultant vertical displacement is measured using another ultrasound pulse. Two ultrasonic transducers for actuation were both driven by the sum of two continuous sinusoidal signals at two slightly different frequencies [1 MHz and (1 M + 5) Hz]. The displacement of several micrometers in amplitude, which fluctuated at 5 Hz, was measured by the ultrasonic phased tracking method. Increase in thickness inside the object was observed just when acoustic radiation forces increased. Such changes in thickness correspond to vertical expansion due to horizontal compression.

  12. New Constraints on the Yukawa-Type Hypothetical Interaction From The Recent Casimir Force Measurement

    CERN Document Server

    Bordag, M; Mostepanenko, V M

    1997-01-01

    We calculate the constraints on the constants of hypothetical long-range interactions which follow from the recent measurement of the Casimir force. A comparison with previous constraints is given. The new constraints are up to a factor of 3000 stronger in some parameter regions .

  13. Method and system for measuring gate valve clearances and seating force

    Science.gov (United States)

    Casada, Donald A.; Haynes, Howard D.; Moyers, John C.; Stewart, Brian K.

    1996-01-01

    Valve clearances and seating force, as well as other valve operational parameters, are determined by measuring valve stem rotation during opening and closing operations of a translatable gate valve. The magnitude of the stem rotation, and the relative difference between the stem rotation on opening and closing provides valuable data on the valve internals in a non-intrusive manner.

  14. Modeling the effect of probe force on length measurements on polymer parts

    DEFF Research Database (Denmark)

    Mohammadi, Ali; Sonne, Mads Rostgaard; Dalla Costa, Giuseppe;

    2016-01-01

    work, Hertzian contact theory was applied to find the deformation analytically, where the measuring force was imposed to the part. Material properties of the polymer and radius of the probe tip were known parameters. The finite element software ABAQUS was then used to model the contact problem...

  15. Determination of Oxygen Transport Properties from Flux and Driving Force Measurements

    DEFF Research Database (Denmark)

    Dalslet, Bjarke Thomas; Søgaard, Martin; Hendriksen, Peter Vang

    2007-01-01

    We demonstrate that an electrolyte probe can be used to measure the difference in oxygen chemical potential across the surface, when an oxygen flux is forced through an oxygen permeable membrane disk. The oxygen flux as well as the total oxygen chemical potential difference is carefully controlle...

  16. The knee adduction moment measured with an instrumented force shoe in patients with knee osteoarthritis

    NARCIS (Netherlands)

    Noort, van den Josien C.; Esch, van der Martin; Steultjens, Martijn P.M.; Dekker, Joost; Schepers, H. Martin; Veltink, Peter H.; Harlaar, Jaap

    2012-01-01

    The external knee adduction moment (KAdM) during gait is an important parameter in patients with knee osteoarthritis (OA). KAdM measurement is currently restricted to instruments only available in gait laboratories. However, ambulatory movement analysis technology, including instrumented force shoes

  17. THE EFFECT OF SUBMAXIMAL INHALATION ON MEASURES DERIVED FROM FORCED EXPIRATORY SPIROMETRY

    Science.gov (United States)

    THE EFFECT OF SUBMAXIMAL INHALATION ON MEASURES DERIVED FROM FORCED EXPIRATORY SPIROMETRY. William F. McDonnell Human Studies Division, NHEERL, U.S. Environmental Protection Agency, RTP, NC 27711. Short-term exposure to ozone results in a neurally-mediated decrease in the ab...

  18. Measurement of Levitation Forces of High-"T[subscript c] Superconductors

    Science.gov (United States)

    Becker, M.; Koblischka, M. R.; Hartmann, U.

    2010-01-01

    We show the construction of a so-called levitation balance which is capable of measuring the levitation forces between a permanent magnet and a superconducting high-T[subscript c] thin film sample. The underlying theoretical basis is discussed in detail. The experiment is performed as an introductory physics experiment for school students as well…

  19. Flexible Piezoelectric Tactile Sensor Array for Dynamic Three-Axis Force Measurement

    Science.gov (United States)

    Yu, Ping; Liu, Weiting; Gu, Chunxin; Cheng, Xiaoying; Fu, Xin

    2016-01-01

    A new flexible piezoelectric tactile sensor array based on polyvinylidene fluoride (PVDF) film is proposed for measuring three-axis dynamic contact force distribution. The array consists of six tactile units arranged as a 3 × 2 matrix with spacing 8 mm between neighbor units. In each unit, a PVDF film is sandwiched between four square-shaped upper electrodes and one square-shaped lower electrode, forming four piezoelectric capacitors. A truncated pyramid bump is located above the four piezoelectric capacitors to improve force transmission. A three-axis contact force transmitted from the top of the bump will lead to the four piezoelectric capacitors underneath undergoing different charge changes, from which the normal and shear components of the force can be calculated. A series of dynamic tests have been carried out by exerting sinusoidal forces with amplitudes ranging from 0 to 0.5 N in the x-axis, 0 to 0.5 N in the y-axis, and 0 to 1.5 N in the z-axis, separately. The tactile units show good sensitivities with 14.93, 14.92, and 6.62 pC/N in the x-, y-, and z-axes, respectively. They can work with good linearity, relatively low coupling effect, high repeatability, and acceptable frequency response in the range of 5–400 Hz to both normal and shear load. In addition, dynamic three-axis force measurement has been conducted for all of the tactile units. The average errors between the applied and calculated forces are 10.68% ± 6.84%. Furthermore, the sensor array can be easily integrated onto a curved surface, such as robotic and prosthetic hands, due to its excellent flexibility. PMID:27271631

  20. Impact-force sparse reconstruction from highly incomplete and inaccurate measurements

    Science.gov (United States)

    Qiao, Baijie; Zhang, Xingwu; Gao, Jiawei; Chen, Xuefeng

    2016-08-01

    The classical l2-norm-based regularization methods applied for force reconstruction inverse problem require that the number of measurements should not be less than the number of unknown sources. Taking into account the sparse nature of impact-force in time domain, we develop a general sparse methodology based on minimizing l1-norm for solving the highly underdetermined model of impact-force reconstruction. A monotonic two-step iterative shrinkage/thresholding (MTWIST) algorithm is proposed to find the sparse solution to such an underdetermined model from highly incomplete and inaccurate measurements, which can be problematic with Tikhonov regularization. MTWIST is highly efficient for large-scale ill-posed problems since it mainly involves matrix-vector multiplies without matrix factorization. In sparsity frame, the proposed sparse regularization method can not only determine the actual impact location from many candidate sources but also simultaneously reconstruct the time history of impact-force. Simulation and experiment including single-source and two-source impact-force reconstruction are conducted on a simply supported rectangular plate and a shell structure to illustrate the effectiveness and applicability of MTWIST, respectively. Both the locations and force time histories of the single-source and two-source cases are accurately reconstructed from a single accelerometer, where the high noise level is considered in simulation and the primary noise in experiment is supposed to be colored noise. Meanwhile, the consecutive impact-forces reconstruction in a large-scale (greater than 104) sparse frame illustrates that MTWIST has advantages of computational efficiency and identification accuracy over Tikhonov regularization.

  1. Trial manufacture of rotary friction tester and frictional force measurement of metals

    CERN Document Server

    Abe, T; Kanari, M; Tanzawa, S

    2002-01-01

    In the plasma confinement type fusion reactor, in-vessel structures such as a blanket module slide at the joints each other when plasma disruption occurs, and then frictional heat is generated there. Therefore, for the selection of material and the use as the design data, it is important to understand the frictional characteristics of metals and ceramic films in the vacuum. In the present study, we have manufactured a prototype of rotary friction tester and examined the performances of the tester. The frictional characteristics of metals in the room air was measured using the friction tester, and the results obtained are as follows. A drifting friction force for a constant time and a friction force during the idling were 98 mN and 225 mN, respectively. These values were sufficiently small as compared to pressing load (9.8 - 57.8 N) used in the friction test. In a friction force measurement of stainless steel, dynamic friction force obeyed Amontons' law which indicated that dynamic friction force is not depend...

  2. Design and Analysis of a Sensor System for Cutting Force Measurement in Machining Processes.

    Science.gov (United States)

    Liang, Qiaokang; Zhang, Dan; Coppola, Gianmarc; Mao, Jianxu; Sun, Wei; Wang, Yaonan; Ge, Yunjian

    2016-01-07

    Multi-component force sensors have infiltrated a wide variety of automation products since the 1970s. However, one seldom finds full-component sensor systems available in the market for cutting force measurement in machine processes. In this paper, a new six-component sensor system with a compact monolithic elastic element (EE) is designed and developed to detect the tangential cutting forces Fx, Fy and Fz (i.e., forces along x-, y-, and z-axis) as well as the cutting moments Mx, My and Mz (i.e., moments about x-, y-, and z-axis) simultaneously. Optimal structural parameters of the EE are carefully designed via simulation-driven optimization. Moreover, a prototype sensor system is fabricated, which is applied to a 5-axis parallel kinematic machining center. Calibration experimental results demonstrate that the system is capable of measuring cutting forces and moments with good linearity while minimizing coupling error. Both the Finite Element Analysis (FEA) and calibration experimental studies validate the high performance of the proposed sensor system that is expected to be adopted into machining processes.

  3. Design and Analysis of a Sensor System for Cutting Force Measurement in Machining Processes

    Directory of Open Access Journals (Sweden)

    Qiaokang Liang

    2016-01-01

    Full Text Available Multi-component force sensors have infiltrated a wide variety of automation products since the 1970s. However, one seldom finds full-component sensor systems available in the market for cutting force measurement in machine processes. In this paper, a new six-component sensor system with a compact monolithic elastic element (EE is designed and developed to detect the tangential cutting forces Fx, Fy and Fz (i.e., forces along x-, y-, and z-axis as well as the cutting moments Mx, My and Mz (i.e., moments about x-, y-, and z-axis simultaneously. Optimal structural parameters of the EE are carefully designed via simulation-driven optimization. Moreover, a prototype sensor system is fabricated, which is applied to a 5-axis parallel kinematic machining center. Calibration experimental results demonstrate that the system is capable of measuring cutting forces and moments with good linearity while minimizing coupling error. Both the Finite Element Analysis (FEA and calibration experimental studies validate the high performance of the proposed sensor system that is expected to be adopted into machining processes.

  4. Design and Analysis of a Sensor System for Cutting Force Measurement in Machining Processes.

    Science.gov (United States)

    Liang, Qiaokang; Zhang, Dan; Coppola, Gianmarc; Mao, Jianxu; Sun, Wei; Wang, Yaonan; Ge, Yunjian

    2016-01-01

    Multi-component force sensors have infiltrated a wide variety of automation products since the 1970s. However, one seldom finds full-component sensor systems available in the market for cutting force measurement in machine processes. In this paper, a new six-component sensor system with a compact monolithic elastic element (EE) is designed and developed to detect the tangential cutting forces Fx, Fy and Fz (i.e., forces along x-, y-, and z-axis) as well as the cutting moments Mx, My and Mz (i.e., moments about x-, y-, and z-axis) simultaneously. Optimal structural parameters of the EE are carefully designed via simulation-driven optimization. Moreover, a prototype sensor system is fabricated, which is applied to a 5-axis parallel kinematic machining center. Calibration experimental results demonstrate that the system is capable of measuring cutting forces and moments with good linearity while minimizing coupling error. Both the Finite Element Analysis (FEA) and calibration experimental studies validate the high performance of the proposed sensor system that is expected to be adopted into machining processes. PMID:26751451

  5. Interactions between Rotavirus and Suwannee River Organic Matter: Aggregation, Deposition, and Adhesion Force Measurement

    KAUST Repository

    Gutierrez, Leonardo

    2012-08-21

    Interactions between rotavirus and Suwannee River natural organic matter (NOM) were studied by time-resolved dynamic light scattering, quartz crystal microbalance, and atomic force microscopy. In NOM-containing NaCl solutions of up to 600 mM, rotavirus suspension remained stable for over 4 h. Atomic force microscopy (AFM) measurement for interaction force decay length at different ionic strengths showed that nonelectrostatic repulsive forces were mainly responsible for eliminating aggregation in NaCl solutions. Aggregation rates of rotavirus in solutions containing 20 mg C/L increased with divalent cation concentration until reaching a critical coagulation concentration of 30 mM CaCl2 or 70 mM MgCl2. Deposition kinetics of rotavirus on NOM-coated silica surface was studied using quartz crystal microbalance. Experimental attachment efficiencies for rotavirus adsorption to NOM-coated surface in MgCl2 solution were lower than in CaCl2 solution at a given divalent cation concentration. Stronger adhesion force was measured for virus-virus and virus-NOM interactions in CaCl2 solution compared to those in MgCl2 or NaCl solutions at the same ionic strength. This study suggested that divalent cation complexation with carboxylate groups in NOM and on virus surface was an important mechanism in the deposition and aggregation kinetics of rotavirus. © 2012 American Chemical Society.

  6. Analyzing excitation forces acting on a plate based on measured acoustic pressure.

    Science.gov (United States)

    Wu, Sean F; Zhou, Pan

    2016-07-01

    This paper presents a theoretical study on "seeing" through an elastic structure to uncover the root cause of sound and vibration by using nearfield acoustical holography (NAH) and normal modes expansion. This approach is of generality because vibro-acoustic responses on the surface of a vibrating structure can always be reconstructed, exactly or approximately. With these vibro-acoustic responses, excitation forces acting on the structure can always be determined, analytically or numerically, given any set of boundary conditions. As an example, the explicit formulations for reconstructing time-harmonic excitation forces, including point, line and surface forces, and their arbitrary combinations acting on a rectangular thin plate in vacuum mounted on an infinite baffle are presented. The reason for choosing this example is that the analytic solutions to vibro-acoustic responses are available, and in-depth analyses of results are possible. Results demonstrate that this approach allows one to identify excitation forces based on measured acoustic pressures and reveal their characteristics such as locations, types and amplitudes, as if one could "see" excitation forces acting behind the plate based on acoustic pressure measured on the opposite side. This approach is extendable to general elastic structures, except that in such circumstance numerical results must be sought. PMID:27475174

  7. Axial loading verification method for small bones using carrier fringes in speckle pattern interferometry

    Science.gov (United States)

    Dávila, A.; Márquez, S.; Landgrave, E.; Vázquez, Z.; Vera, K.; Caudillo, C.

    2015-06-01

    A computerized system for real-time displacement visualization using carrier fringes in an electronic speckle in-plane sensitive interferometer allows force calibration for micro-displacement analysis of rat bones and verification of axial loading conditions. Once the force has been calibrated and the load is applied along the bone axis, the difference-of-phase method is used to obtain the phase map, which after phase unwrapping, allows the evaluation of the displacements produced by the bone deformation. The proposed method avoids common loading mistakes using first carrier fringes to assure that the loads are within the measuring capabilities of the in-plane interferometer and the Carré phase-stepping method to compensate for linear phase step miscalibration. The experimental results obtained with the calibration of loading forces and axial loading verification show the advantages of the system proposed here over a system which uses a cantilever configuration to make a similar bone deformation analysis.

  8. A method of comparison between a force curve measured on a solvated surface and the solvation structure

    CERN Document Server

    Amano, Ken-ichi

    2012-01-01

    Recent surface force apparatus (SFA) and atomic force microscopy (AFM) can measure force curves between a probe and a sample surface in solvent. The force curve is thought as the solvation structure in some articles, because its shape is generally oscilltive and pitch of the oscillation is about the same as diameter of the solvent. However, it is not the solvation structure. It is just only a mean force between the probe and the sample surface. Therefore, a relation between the mean force and the solvation structure must be elucidated theoretically to deepen understanding of the measured result (the mean force). In this letter, we briefly explain the relation and a method for comparing the measured mean force and the solvation structure (obtained by a simulation or a liquid theory) by using basic statistical mechanics of liquid.

  9. Axial Halbach Magnetic Bearings

    Science.gov (United States)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2008-01-01

    Axial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control.

  10. Axial static mixer

    Science.gov (United States)

    Sandrock, H.E.

    1982-05-06

    Static axial mixing apparatus includes a plurality of channels, forming flow paths of different dimensions. The axial mixer includes a flow adjusting device for adjustable selective control of flow resistance of various flow paths in order to provide substantially identical flows through the various channels, thereby reducing nonuniform coating of interior surfaces of the channels. The flow adjusting device may include diaphragm valves, and may further include a pressure regulating system therefor.

  11. Surface nanoscale axial photonics

    OpenAIRE

    Sumetsky, M.; Fini, J. M.

    2011-01-01

    Dense photonic integration promises to revolutionize optical computing and communications. However, efforts towards this goal face unacceptable attenuation of light caused by surface roughness in microscopic devices. Here we address this problem by introducing Surface Nanoscale Axial Photonics (SNAP). The SNAP platform is based on whispering gallery modes circulating around the optical fiber surface and undergoing slow axial propagation readily described by the one-dimensional Schr\\"odinger e...

  12. Sub-Kelvin Cooling of a Macroscopic Oscillator and femto-Newton Force Measurement

    OpenAIRE

    Mueller, F.; Heugel, S.; Wang, L. J.

    2007-01-01

    Measuring very small forces, particularly those of a gravitational nature, has always been of great interest, as fundamental tests of our understanding of the physical laws. Ultra-long period mechanical oscillators, typically used in such measurements, will have kT/2 of thermal energy associated with each degree of freedom, owing to the equal-partition of energy. Moreover, additional seismic fluctuations in the low frequency band can raise this equivalent temperature significantly to 10^5 K. ...

  13. Measurement of external forces and torques on a large pointing system

    Science.gov (United States)

    Morenus, R. C.

    1980-01-01

    Methods of measuring external forces and torques are discussed, in general and as applied to the Large Pointing System wind tunnel tests. The LPS tests were in two phases. The first test was a preliminary test of three models representing coelostat, heliostat, and on-gimbal telescope configurations. The second test explored the coelostat configuration in more detail. The second test used a different setup for measuring external loads. Some results are given from both tests.

  14. Axial Thermal Rotation of Slender Rods

    Science.gov (United States)

    Li, Dichuan; Fakhri, Nikta; Pasquali, Matteo; Biswal, Sibani Lisa

    2011-05-01

    Axial rotational diffusion of rodlike polymers is important in processes such as microtubule filament sliding and flagella beating. By imaging the motion of small kinks along the backbone of chains of DNA-linked colloids, we produce a direct and systematic measurement of axial rotational diffusivity of rods both in bulk solution and near a wall. The measured diffusivities decrease linearly with the chain length, irrespective of the distance from a wall, in agreement with slender-body hydrodynamics theory. Moreover, the presence of small kinks does not affect the chain’s axial diffusivity. Our system and measurements provide insights into fundamental axial diffusion processes of slender objects, which encompass a wide range of entities including biological filaments and linear polymer chains.

  15. Force measurements in positive unipolar wire-to-plane corona discharges in air

    CERN Document Server

    de Haan, V O

    2004-01-01

    Measurements of force generated by a positive unipolar wire-to-plane corona discharge in air are compared with numerical simulations. The generated force does not depend on the ion or electron mobilities, preventing the influence of uncertainty and variation of these parameters. A method is described to simulate the voltage and charge distribution for a wire-to-plane set-up. This method enables the determination of the transition between unipolar and bipolar discharges. In the experimental set-up breakdown electric field of air reduces with increasing discharge current.

  16. Sub-Kelvin Cooling of a Macroscopic Oscillator and femto-Newton Force Measurement

    CERN Document Server

    Müller, F; Wang, L J

    2007-01-01

    Measuring very small forces, particularly those of a gravitational nature, has always been of great interest, as fundamental tests of our understanding of the physical laws. Ultra-long period mechanical oscillators, typically used in such measurements, will have kT/2 of thermal energy associated with each degree of freedom, owing to the equal-partition of energy. Moreover, additional seismic fluctuations in the low frequency band can raise this equivalent temperature significantly to 10^5 K. Recently, various methods using opto-mechanical forces have been reported to decrease this thermal energy for MHz, micro-cantilever oscillators, effectively cooling them. Here we show the direct, dynamical cooling of a gram-size, macroscopic oscillator to 300 mK in equivalent temperature - noise reduction by a factor of 10^6. By precisely measuring the torsional oscillator's position, we dynamically provide an external 'viscous' damping force. Such an added, dissipative force is essentially free of noise, resulting in rap...

  17. Partnership for the Revitalization of National Wind Tunnel Force Measurement Capability

    Science.gov (United States)

    Rhew, Ray D.; Skelley, Marcus L.; Woike, Mark R.; Bader, Jon B.; Marshall, Timothy J.

    2009-01-01

    Lack of funding and lack of focus on research over the past several years, coupled with force measurement capabilities being decentralized and distributed across the National Aeronautics and Space Administration (NASA) research centers, has resulted in a significant erosion of (1) capability and infrastructure to produce and calibrate force measurement systems; (2) NASA s working knowledge of those systems; and (3) the quantity of high-quality, full-capability force measurement systems available for use in aeronautics testing. Simultaneously, and at proportional rates, the capability of industry to design, manufacture, and calibrate these test instruments has been eroding primarily because of a lack of investment by the aeronautics community. Technical expertise in this technology area is a core competency in aeronautics testing; it is highly specialized and experience-based, and it represents a niche market for only a few small precision instrument shops in the United States. With this backdrop, NASA s Aeronautics Test Program (ATP) chartered a team to examine the issues and risks associated with the problem, focusing specifically on strain- gage balances. The team partnered with the U.S. Air Force s Arnold Engineering Development Center (AEDC) to exploit their combined capabilities and take a national level government view of the problem. This paper describes the team s approach, its findings, and its recommendations, and the current status for revitalizing the government s balance capability with respect to designing, fabricating, calibrating, and using the instruments.

  18. Force measurements of TCR/pMHC recognition at T cell surface.

    Directory of Open Access Journals (Sweden)

    Pierre-Henri Puech

    Full Text Available The rupture forces and adhesion frequencies of single recognition complexes between an affinity selected peptide/MHC complex and a TCR at a murine hybridoma surface were measured using Atomic Force Microscopy. When the CD8 coreceptor is absent, the adhesion frequency depends on the nature of the peptide but the rupture force does not. When CD8 is present, no effect of the nature of the peptide is observed. CD8 is proposed to act as a time and distance lock, enabling the shorter TCR molecule to bridge the pMHC and have time to finely read the peptide. Ultimately, such experiments could help the dissection of the sequential steps by which the TCR reads the peptide/MHC complex in order to control T cell activation.

  19. Dynamic force measurement of rearrangements in a 2D network of droplets

    Science.gov (United States)

    Barkley, Solomon; Backholm, Matilda; Dalnoki-Veress, Kari

    2015-03-01

    The interaction between two liquid droplets in an immiscible liquid is well understood. However, the emulsions relevant to biological and industrial processes involve high concentrations of these droplets, and multi-body effects cannot be ignored. As droplets rearrange in response to a disturbance, the importance of individual pair-wise interactions between droplets changes with the geometry of neighbours. Here we report on an experimental setup consisting of a two- dimensional network of monodisperse droplets stabilized with a surfactant. The system is studied with micropipette deflection, which permits direct measurement of forces along with simultaneous imaging of the droplet network. One micropipette is used to apply a tensile or compressive force to the droplet cluster, while a second pipette acts as a force-transducing cantilever, deflecting in response to rearrangements of the droplets.

  20. A scheme for solving the plane-plane challenge in force measurements at the nanoscale.

    Science.gov (United States)

    Siria, Alessandro; Huant, Serge; Auvert, Geoffroy; Comin, Fabio; Chevrier, Joel

    2010-05-19

    Non-contact interaction between two parallel flat surfaces is a central paradigm in sciences. This situation is the starting point for a wealth of different models: the capacitor description in electrostatics, hydrodynamic flow, thermal exchange, the Casimir force, direct contact study, third body confinement such as liquids or films of soft condensed matter. The control of parallelism is so demanding that no versatile single force machine in this geometry has been proposed so far. Using a combination of nanopositioning based on inertial motors, of microcrystal shaping with a focused-ion beam (FIB) and of accurate in situ and real-time control of surface parallelism with X-ray diffraction, we propose here a "gedanken" surface-force machine that should enable one to measure interactions between movable surfaces separated by gaps in the micrometer and nanometer ranges.

  1. Force measurement and design of a torquing high-pull headgear.

    Science.gov (United States)

    Tabash, J W; Sandrik, J L; Bowman, D; Lang, R L; Klapper, L

    1984-07-01

    The dynamic extraoral force analyzer (DEFA) was found to be capable of measuring linear deflection as a function of force created by a headgear. Ten standard nontorqued face-bows with a cervical and a high-pull direction were tested to determine the reliability of the DEFA. Statistical analysis showed the DEFA to be reliable and accurate in differentiating various directions and deflections of maxillary molars. Doubled-over distal ends of the inner bow with 0 degree of torque and a parietal direction of pull were used as controls. The same face-bows with 9 degrees of buccal root torque were tested on the DEFA. These face-bows were tested to determine whether transverse translation without buccal crown tipping of the maxillary first molar will occur. Statistical analysis showed that transverse translation occurred at a force of 200 to 347 gm.

  2. A Scheme for Solving the Plane–Plane Challenge in Force Measurements at the Nanoscale

    Directory of Open Access Journals (Sweden)

    Comin Fabio

    2010-01-01

    Full Text Available Abstract Non-contact interaction between two parallel flat surfaces is a central paradigm in sciences. This situation is the starting point for a wealth of different models: the capacitor description in electrostatics, hydrodynamic flow, thermal exchange, the Casimir force, direct contact study, third body confinement such as liquids or films of soft condensed matter. The control of parallelism is so demanding that no versatile single force machine in this geometry has been proposed so far. Using a combination of nanopositioning based on inertial motors, of microcrystal shaping with a focused-ion beam (FIB and of accurate in situ and real-time control of surface parallelism with X-ray diffraction, we propose here a “gedanken” surface-force machine that should enable one to measure interactions between movable surfaces separated by gaps in the micrometer and nanometer ranges.

  3. Measurement of force sense reproduction in the knee joint: application of a new dynamometric device

    Science.gov (United States)

    Zavieh,, Minoo Khalkhali; Amirshakeri,, Bahram; Rezasoltani,, Asghar; Talebi,, Ghadam Ali; Kalantari,, Khosro Khademi; Nedaey,, Vahab; Baghban,, Alireza Akbarzadeh

    2016-01-01

    [Purpose] The aim of this study was to determine the reliability of a newly designed dynamometric device for use in frequent force producing/reproducing tasks on the knee joint. [Subjects and Methods] In this cross-sectional study (Development & Reliability), 30 young healthy males and females (age 23.4 ± 2.48 years) were selected among students of Tabriz University of Medical Sciences by simple randomized selection. The study instrument was designed to measure any isometric contraction force exerted by the knee joint flexor/extensor muscles, known as the ipsilateral and contralateral methods. Participant knees were fixed in 60° flexion, and each participant completed the entire set of measurements twice, 72 hours apart. [Results] The findings showed a good intraclass correlation coefficient of 0.73 to 0.81 for all muscle groups. The standard error of measurement and smallest detectable difference for flexor muscle groups were 0.37 and 1.02, respectively, while the values increased to standard error of measurement=0.38 and smallest detectable difference=1.05 for extensor muscle groups. [Conclusion] The device designed could quantify the forces producing/reproducing tasks on the knee joint with a high rate of reliability, and can probably be applied for outcome measurements in proprioceptive assessment of the knee joint.

  4. Measurements of elastic modulus for human anterior lens capsule with atomic force microscopy: the effect of loading force.

    Science.gov (United States)

    Tsaousis, Konstantinos T; Karagiannidis, Panagiotis G; Kopsachilis, Nikolaos; Symeonidis, Chrysanthos; Tsinopoulos, Ioannis T; Karagkiozaki, Varvara; Lamprogiannis, Lampros P; Logothetidis, Stergios

    2014-06-01

    The purpose of the study was to appraise the effect of loading force magnitude on the determination of the elastic modulus of the anterior lens capsule through atomic force microscopy. Four human anterior lens capsules taken during phacoemulsification cataract surgery were studied, free of epithelial cells, with atomic force microscopy. For the experiment, five different indentation loading forces were applied to near areas of the specimen. Experimental data was exported and analyzed according to the Hertz model to obtain the Young's modulus with regards to the elastic behavior of the material. Force-distance curves were acquired by applying a load of 2, 5, 10, 20 and 30 nN. When examining the results it was evident that determination of Young's modulus of the anterior lens capsule is dependent on the loading force concerning the examined range. Loading forces of 10 and 20 nN led to results without significant difference (p > 0.05) and more reproducible (coefficients of variation 12.4 and 11.7 %, respectively). PMID:24037592

  5. Nanoscale spatially resolved simultaneous measurement of in-plane and out-of-plane force components on surfaces: a novel operational mode in atomic force microscopy

    Science.gov (United States)

    Watson, Gregory S.; Dinte, Bradley P.; Blach, Jolanta A.; Myhra, Sverre

    2002-11-01

    The atomic force microscope (AFM) allows investigation of the properties of surfaces and interfaces at atomic scale resolution. However, several different operational modes, (imaging, force versus distance and lateral force modes), need to be deployed in order to gain insight into the structure, tribological and mechanical properties. A new method, based on a variation of the force versus distance mode, has been developed. In essence, a coupling of the deformational modes of the probe is exploited whereby the tip is induced to undergo lateral travel in response to application of an out-of-plane force (and thus normal bending of the force-sensing lever). The lateral travel induces in-plane forces that are then measurable as a consequence of stimulation of the 'buckling' deformational mode of the lever. Due to the lever geometry, the technique offers an increase in resolution of an order of magnitude over existing AFM methods for measurement of atomic scale stick-slip events. In addition, the method allows measurement of the lateral deformation of the sample as well as scanner calibration. Outcomes will be demonstrated for atomically flat surfaces such as WTe2 and highly oriented pyrolytic graphite.

  6. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles

    Science.gov (United States)

    Huang, Qiaoyun; Wu, Huayong; Cai, Peng; Fein, Jeremy B.; Chen, Wenli

    2015-11-01

    Bacterial adhesion onto mineral surfaces and subsequent biofilm formation play key roles in aggregate stability, mineral weathering, and the fate of contaminants in soils. However, the mechanisms of bacteria-mineral interactions are not fully understood. Atomic force microscopy (AFM) was used to determine the adhesion forces between bacteria and goethite in water and to gain insight into the nanoscale surface morphology of the bacteria-mineral aggregates and biofilms formed on clay-sized minerals. This study yields direct evidence of a range of different association mechanisms between bacteria and minerals. All strains studied adhered predominantly to the edge surfaces of kaolinite rather than to the basal surfaces. Bacteria rarely formed aggregates with montmorillonite, but were more tightly adsorbed onto goethite surfaces. This study reports the first measured interaction force between bacteria and a clay surface, and the approach curves exhibited jump-in events with attractive forces of 97 ± 34 pN between E. coli and goethite. Bond strengthening between them occurred within 4 s to the maximum adhesion forces and energies of -3.0 ± 0.4 nN and -330 ± 43 aJ (10-18 J), respectively. Under the conditions studied, bacteria tended to form more extensive biofilms on minerals under low rather than high nutrient conditions.

  7. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles.

    Science.gov (United States)

    Huang, Qiaoyun; Wu, Huayong; Cai, Peng; Fein, Jeremy B; Chen, Wenli

    2015-11-20

    Bacterial adhesion onto mineral surfaces and subsequent biofilm formation play key roles in aggregate stability, mineral weathering, and the fate of contaminants in soils. However, the mechanisms of bacteria-mineral interactions are not fully understood. Atomic force microscopy (AFM) was used to determine the adhesion forces between bacteria and goethite in water and to gain insight into the nanoscale surface morphology of the bacteria-mineral aggregates and biofilms formed on clay-sized minerals. This study yields direct evidence of a range of different association mechanisms between bacteria and minerals. All strains studied adhered predominantly to the edge surfaces of kaolinite rather than to the basal surfaces. Bacteria rarely formed aggregates with montmorillonite, but were more tightly adsorbed onto goethite surfaces. This study reports the first measured interaction force between bacteria and a clay surface, and the approach curves exhibited jump-in events with attractive forces of 97 ± 34 pN between E. coli and goethite. Bond strengthening between them occurred within 4 s to the maximum adhesion forces and energies of -3.0 ± 0.4 nN and -330 ± 43 aJ (10(-18) J), respectively. Under the conditions studied, bacteria tended to form more extensive biofilms on minerals under low rather than high nutrient conditions.

  8. Merging Psychophysical and Psychometric Theory to Estimate Global Visual State Measures from Forced-Choices

    Science.gov (United States)

    Massof, Robert W.; Schmidt, Karen M.; Laby, Daniel M.; Kirschen, David; Meadows, David

    2013-09-01

    Visual acuity, a forced-choice psychophysical measure of visual spatial resolution, is the sine qua non of clinical visual impairment testing in ophthalmology and optometry patients with visual system disorders ranging from refractive error to retinal, optic nerve, or central visual system pathology. Visual acuity measures are standardized against a norm, but it is well known that visual acuity depends on a variety of stimulus parameters, including contrast and exposure duration. This paper asks if it is possible to estimate a single global visual state measure from visual acuity measures as a function of stimulus parameters that can represent the patient's overall visual health state with a single variable. Psychophysical theory (at the sensory level) and psychometric theory (at the decision level) are merged to identify the conditions that must be satisfied to derive a global visual state measure from parameterised visual acuity measures. A global visual state measurement model is developed and tested with forced-choice visual acuity measures from 116 subjects with no visual impairments and 560 subjects with uncorrected refractive error. The results are in agreement with the expectations of the model.

  9. Measuring force transfers in the deep flexors of the musician's hand: theoretical analysis, clinical examples.

    Science.gov (United States)

    Leijnse, J N

    1997-09-01

    In the present paper the anatomical and functional interdependencies which regularly exist between the deep flexor tendons of the different fingers are modelled. The model results are validated by measurements on real hands. The results show that intertendinous force transfers may be caused by (i) coactivation of muscle fibres inserting in different tendons, and (ii) passive connections between tendons or muscle bellies. The coactivation is validated by the measuring results of a hand in which all intertendinous connections were surgically removed. The present models and measurements are currently used for diagnosis of hand problems in musicians at our hand clinic.

  10. Study on the AFM Force Spectroscopy method for elastic modulus measurement of living cells

    Science.gov (United States)

    Demichelis, A.; Pavarelli, S.; Mortati, L.; Sassi, G.; Sassi, M.

    2013-09-01

    The cell elasticity gives information about its pathological state and metastatic potential. The aim of this paper is to study the AFM Force Spectroscopy technique with the future goal of realizing a reference method for accurate elastic modulus measurement in the elasticity range of living cells. This biological range has not been yet explored with a metrological approach. Practical hints are given for the realization of a Sylgard elasticity scale. Systematic effects given by the sample curing thickness and nanoindenter geometry have been found with regards of the measured elastic modulus. AFM measurement reproducibility better than 20% is obtained in the entire investigated elastic modulus scale of 101 - 104 kPa.

  11. Inverse combustion force estimation based on response measurements outside the combustion chamber and signal processing

    Science.gov (United States)

    Hosseini Fouladi, Mohammad; Mohd. Nor, Mohd. Jailani; Kamal Ariffin, Ahmad; Abdullah, Shahrir

    2009-11-01

    Exposure to vibration has various physiological effects on vehicle passengers. Engine is one of the main sources of vehicle vibration. The major causes of engine vibration are combustion forces transmitted through the pistons and connection rods. Evaluation of sources is the first step to attenuate this vibration. Assessment of these sources is not an easy task because internal parts of machinery are not accessible. Often, instrumentation for such systems is costly, time consuming and some modifications would be necessary. Aim of the first part of this paper was to validate an inverse technique and carry out mobility analysis on a vehicle crankshaft to achieve matrix of Frequency Response Functions (FRFs). Outcomes were implemented to reconstruct the applied force for single and multiple-input systems. In the second part, the validated inverse technique and FRFs were used to estimate piston forces of an operating engine. Bearings of crankshaft were chosen as nearest accessible parts to piston connecting rods. Accelerometers were connected to the bearings for response measurement during an ideal engine operation. These responses together with FRFs, which were estimated in the previous part, were utilised in the inverse technique. Tikhonov regularization was used to solve the ill-conditioned inverse system. Two methods, namely L-curve criterion and Generalized Cross Validation (GCV), were employed to find the regularization parameter for the Tikhonov method. The inverse problem was solved and piston forces applied to crankpins were estimated. Results were validated by pressure measurement inside a cylinder and estimating the corresponding combustion force. This validation showed that inverse technique and measurement outcomes were roughly in agreement. In presence of various noise, L-curve criterion conduces to more robust results compared to the GCV method. But in the absence of high correlation between sources ( f>600 HzHz), the GCV technique leads to more accurate

  12. Force unfolding kinetics of RNA using optical tweezers. I. Effects of experimental variables on measured results

    CERN Document Server

    Wen, J -D; Li, P T X; Smith, S B; Bustamante, C; Ritort, F; Tinoco, I

    2007-01-01

    Experimental variables of optical tweezers instrumentation that affect RNA folding/unfolding kinetics were investigated. A model RNA hairpin, P5ab, was attached to two micron-sized beads through hybrid RNA/DNA handles; one bead was trapped by dual-beam lasers and the other was held by a micropipette. Several experimental variables were changed while measuring the unfolding/refolding kinetics, including handle lengths, trap stiffness, and modes of force applied to the molecule. In constant-force mode where the tension applied to the RNA was maintained through feedback control, the measured rate coefficients varied within 40% when the handle lengths were changed by 10 fold (1.1 to 10.2 Kbp); they increased by two- to three-fold when the trap stiffness was lowered to one third (from 0.1 to 0.035 pN/nm). In the passive mode, without feedback control and where the force applied to the RNA varied in response to the end-to-end distance change of the tether, the RNA hopped between a high-force folded-state and a low-...

  13. A new method of simultaneously measuring the applanation force and area as applied to tonometer prototype

    Science.gov (United States)

    Zhang, Xueyong; Ma, Jianguo

    2006-11-01

    A new method for simultaneous measuring the applanation force and area and a device based on this method are presented for intraocular pressure measurement. A photoelectric probe transducer acting as applalation area detector converted the diminished quantity of light returned from applanation surface of the cone prism into one electronic signal, and a micro strain gauge acting as applation force detector converted changing load related to the resilient force of the eye into another electronic signal. A 16-bit single-chip microprocessor with E2PROM in the electronic circuit played the role of a nucleus, which stored the program instructions and the interrelated data. Laboratory experiments were carried out on a stimulated cornea clamped in a Perspex chamber connected to a hydraulic manometer to obtain intraocular pressure at different levels. Preliminary trials were carried out comparing the values obtained with those of the Goldmann tonometer. Diminished quantity of the light is directly proportional to the applanation area of the cornea and the changing load detected by strain gauge is equated to the resilient force of the eye. A new kind of tonometer can be constructed based on this principle. Experimental results on a stimulated eyeball showed the present tonometer reading has good agreement with that of the Goldmann tonometer. Further study including clinical trials and application is required to evaluate the accuracy and usefulness of this method.

  14. Measurement of nonlinear normal modes using multi-harmonic stepped force appropriation and free decay

    Science.gov (United States)

    Ehrhardt, David A.; Allen, Matthew S.

    2016-08-01

    Nonlinear Normal Modes (NNMs) offer tremendous insight into the dynamic behavior of a nonlinear system, extending many concepts that are familiar in linear modal analysis. Hence there is interest in developing methods to experimentally and numerically determine a system's NNMs for model updating or simply to characterize its dynamic response. Previous experimental work has shown that a mono-harmonic excitation can be used to isolate a system's dynamic response in the neighborhood of a NNM along the main backbones of a system. This work shows that a multi-harmonic excitation is needed to isolate a NNM when well separated linear modes of a structure couple to produce an internal resonance. It is shown that one can tune the multiple harmonics of the input excitation using a plot of the input force versus the response velocity until the area enclosed by the force-velocity curve is minimized. Once an appropriated NNM is measured, one can increase the force level and retune the frequency to obtain a NNM at a higher amplitude or remove the excitation and measure the structure's decay down a NNM backbone. This work explores both methods using simulations and measurements of a nominally-flat clamped-clamped beam excited at a single point with a magnetic force. Numerical simulations are used to validate the method in a well defined environment and to provide comparison with the experimentally measured NNMs. The experimental results seem to produce a good estimate of two NNMs along their backbone and part of an internal resonance branch. Full-field measurements are then used to further explore the couplings between the underlying linear modes along the identified NNMs.

  15. Axial Vircator for Electronic Warfare Applications

    OpenAIRE

    L. Drazan; R. Vrana

    2009-01-01

    This paper deals with a high power microwave generator with virtual cathode – vircator in axial release for electronic warfare applications. The classification of directed energy weapons microwave (DEWM) is introduced together with basic block diagrams of a particular class of DEWM. In the paper, methods for designing vircator pulsed power supply, axial vircator structure, measurement methods and experimental results are presented. The vircator in electromagnetic ammunition is powered b...

  16. Validation of absolute axial neutron flux distribution calculations with MCNP with 197Au(n,γ)198Au reaction rate distribution measurements at the JSI TRIGA Mark II reactor.

    Science.gov (United States)

    Radulović, Vladimir; Štancar, Žiga; Snoj, Luka; Trkov, Andrej

    2014-02-01

    The calculation of axial neutron flux distributions with the MCNP code at the JSI TRIGA Mark II reactor has been validated with experimental measurements of the (197)Au(n,γ)(198)Au reaction rate. The calculated absolute reaction rate values, scaled according to the reactor power and corrected for the flux redistribution effect, are in good agreement with the experimental results. The effect of different cross-section libraries on the calculations has been investigated and shown to be minor. PMID:24316530

  17. Measuring the interaction force between a high temperature superconductor and a permanent magnet

    Science.gov (United States)

    Valenzuela, S. O.; Jorge, G. A.; Rodríguez, E.

    1999-11-01

    Repulsive and attractive forces are both possible between a superconducting sample and a permanent magnet, and they can give rise to magnetic levitation or free-suspension phenomena, respectively. We show experiments to quantify this magnetic interaction, which represents a promising field with regard to short-term technological applications of high temperature superconductors. The measuring technique employs an electronic balance and a rare-earth magnet that induces a magnetic moment in a melt-textured YBa2Cu3O7 superconductor immersed in liquid nitrogen. The simple design of the experiments allows a fast and easy implementation in the advanced physics laboratory with a minimum cost. Actual levitation and suspension demonstrations can be done simultaneously as a help to interpret magnetic force measurements.

  18. Intramolecular Force Contrast and Dynamic Current-Distance Measurements at Room Temperature

    Science.gov (United States)

    Huber, F.; Matencio, S.; Weymouth, A. J.; Ocal, C.; Barrena, E.; Giessibl, F. J.

    2015-08-01

    Scanning probe microscopy can be used to probe the internal atomic structure of flat organic molecules. This technique requires an unreactive tip and has, until now, been demonstrated only at liquid helium and liquid nitrogen temperatures. We demonstrate intramolecular and intermolecular force contrast at room temperature on PTCDA molecules adsorbed on a Ag /Si (111 )-(√{3 }×√{3 }) surface. The oscillating force sensor allows us to dynamically measure the vertical decay constant of the tunneling current. The precision of this method is increased by quantifying the transimpedance of the current to voltage converter and accounting for the tip oscillation. This measurement yields a clear contrast between neighboring molecules, which we attribute to the different charge states.

  19. Effect of cholesterol on the physical properties of pulmonary surfactant films: Atomic force measurements study

    International Nuclear Information System (INIS)

    Atomic force measurements were performed on supported pulmonary surfactant (PS) films to address the effect of cholesterol on the physical properties of lung surfactant films. We recently found that cholesterol in excess of a physiological proportion abolishes surfactant function, and is the reason that surfactant fails to lower the surface tension upon compression. In this study, we investigated how the loss of mechanical stability observed earlier is related to the local mechanical properties of the film by local force measurements. The presence of 20% of cholesterol in bovine lipid extract surfactant (BLES) resulted in a decrease of the observed adhesive interaction, and an increase in rigidity of the film. We discuss the implication the increased rigidity might have on the functional failure of PS

  20. Harmonic force spectroscopy measures load-dependent kinetics of individual human β-cardiac myosin molecules

    Science.gov (United States)

    Sung, Jongmin; Nag, Suman; Mortensen, Kim I.; Vestergaard, Christian L.; Sutton, Shirley; Ruppel, Kathleen; Flyvbjerg, Henrik; Spudich, James A.

    2015-08-01

    Molecular motors are responsible for numerous cellular processes from cargo transport to heart contraction. Their interactions with other cellular components are often transient and exhibit kinetics that depend on load. Here, we measure such interactions using `harmonic force spectroscopy'. In this method, harmonic oscillation of the sample stage of a laser trap immediately, automatically and randomly applies sinusoidally varying loads to a single motor molecule interacting with a single track along which it moves. The experimental protocol and the data analysis are simple, fast and efficient. The protocol accumulates statistics fast enough to deliver single-molecule results from single-molecule experiments. We demonstrate the method's performance by measuring the force-dependent kinetics of individual human β-cardiac myosin molecules interacting with an actin filament at physiological ATP concentration. We show that a molecule's ADP release rate depends exponentially on the applied load, in qualitative agreement with cardiac muscle, which contracts with a velocity inversely proportional to external load.

  1. MEASUREMENTS OF SHOCK WAVE FORCE IN SHOCK TUBE WITH INDIRECT METHODS

    Directory of Open Access Journals (Sweden)

    Mario Dobrilović

    2005-12-01

    Full Text Available Tests have been conducted at the “Laboratory for testing of civil explosives, detonators, electrical detonators and pyrotechnical materials”, Department for mining and geotechnics of the Faculty of mining, geology and petroleum engineering, University of Zagreb with the purpose of designing a detonator that would unite advantages of a non-electric system and the precision in regulation of time delay in electronic initiation system. Sum of energy released by the wave force in shock tube is a pre-condition for operation of the new detonator, and measurement of wave force is the first step in determining the sum of energy. The sum of energy is measured indirectly, based on two principles: movement sensors and strain.

  2. Measuring the interaction force between a high temperature superconductor and a permanent magnet

    OpenAIRE

    Valenzuela, S. O.; Jorge, G. A.; Rodriguez, E.

    1999-01-01

    Repulsive and attractive forces are both possible between a superconducting sample and a permanent magnet, and they can give place to magnetic levitation or free-suspension phenomena, respectively. We show experiments to quantify this magnetic interaction which represents a promising field regarding to short-term technological applications of high temperature superconductors. The measuring technique employs an electronic balance and a rare-earth magnet that induces a magnetic moment in a melt...

  3. Direct Measurement of Local Chromatin Fluidity Using Optical Trap Modulation Force Spectroscopy

    OpenAIRE

    Roopa, T.; Shivashankar, G. V.

    2006-01-01

    Chromatin assembly is condensed by histone tail-tail interactions and other nuclear proteins into a highly compact structure. Using an optical trap modulation force spectroscopy, we probe the effect of tail interactions on local chromatin fluidity. Chromatin fibers, purified from mammalian cells, are tethered between a microscope coverslip and a glass micropipette. Mechanical unzipping of tail interactions, using the micropipette, lead to the enhancement of local fluidity. This is measured us...

  4. Measurements of hydrodynamic forces on the impeller of the HPOTP of the SSME

    OpenAIRE

    Franz, Ron; Arndt, Norbert

    1986-01-01

    The references [1-4] provide a complete description of the facility. Briefly, the dynamometer, composed of two parallel plates connected by four strain gaged posts, is mounted between the impeller and the drive shaft. It measures the six components of a generalized hydrodynamic force vector {F} acting on the impeller. The impeller can be subject to whirling motion in an orbit eccentric to the volute center, in addition to the normal impeller rotation. Since the eccentric motion is in the late...

  5. Validity and reliability of pressure-measurement insoles for vertical ground reaction force assessment in field situations.

    Science.gov (United States)

    Koch, Markus; Lunde, Lars-Kristian; Ernst, Michael; Knardahl, Stein; Veiersted, Kaj Bo

    2016-03-01

    This study aimed to test the validity and reliability of pressure-measurement insoles (medilogic® insoles) when measuring vertical ground reaction forces in field situations. Various weights were applied to and removed from the insoles in static mechanical tests. The force values measured simultaneously by the insoles and force plates were compared for 15 subjects simulating work activities. Reliability testing during the static mechanical tests yielded an average interclass correlation coefficient of 0.998. Static loads led to a creeping pattern of the output force signal. An individual load response could be observed for each insole. The average root mean square error between the insoles and force plates ranged from 6.6% to 17.7% in standing, walking, lifting and catching trials and was 142.3% in kneeling trials. The results show that the use of insoles may be an acceptable method for measuring vertical ground reaction forces in field studies, except for kneeling positions.

  6. Force measurements of flexible tandem wings in hovering and forward flights

    International Nuclear Information System (INIS)

    Aerodynamic forces, power consumptions and efficiencies of flexible and rigid tandem wings undergoing combined plunging/pitching motion were measured in a hovering flight and two forward flights with Strouhal numbers of 0.6 and 0.3. Three flexible dragonfly-like tandem wing models termed Wing I, Wing II, and Wing III which are progressively less flexible, as well as a pair of rigid wings as the reference were operated at three phase differences of 0°, 90° and 180°. The results showed that both the flexibility and phase difference have significant effects on the aerodynamic performances. In both hovering and forward flights at a higher oscillation frequency of 1 Hz (St = 0.6), the Wing III model outperformed the other wing models with larger total horizontal force coefficient and efficiency. In forward flight at the lower frequency of 0.5 Hz (St = 0.3), Wing III, rigid wings and Wing II models performed best at 0°, 90° and 180° phase difference, respectively. From the time histories of force coefficients of fore- and hind-wings, different peak values, phase lags, and secondary peaks were found to be the important reasons to cause the differences in the average horizontal force coefficients. Particle image velocimetry and deformation measurements were performed to provide the insights into how the flexibility affects the aerodynamic performance of the tandem wings. The spanwise bending deformation was found to contribute to the horizontal force, by offering a more beneficial position to make LEV more attached to the wing model in both hovering and forward flights, and inducing a higher-velocity region in forward flight. (paper)

  7. Adhesion force measurements on the two wax layers of the waxy zone in Nepenthes alata pitchers.

    Science.gov (United States)

    Gorb, Elena V; Purtov, Julia; Gorb, Stanislav N

    2014-06-03

    The wax coverage of the waxy zone in Nepenthes alata pitchers consists of two clearly distinguishable layers, designated the upper and lower wax layers. Since these layers were reported to reduce insect attachment, they were considered to have anti-adhesive properties. However, no reliable adhesion tests have been performed with these wax layers. In this study, pull-off force measurements were carried out on both wax layers of the N. alata pitcher and on two reference polymer surfaces using deformable polydimethylsiloxane half-spheres as probes. To explain the results obtained, roughness measurements were performed on test surfaces. Micro-morphology of both surface samples and probes tested was examined before and after experiments. Pull-off forces measured on the upper wax layer were the lowest among surfaces tested. Here, contamination of probes by wax crystals detached from the pitcher surface was found. This suggests that low insect attachment on the upper wax layer is caused primarily by the breaking off of wax crystals from the upper wax layer, which acts as a separation layer between the insect pad and the pitcher surface. High adhesion forces obtained on the lower wax layer are explained by the high deformability of probes and the particular roughness of the substrate.

  8. Thin-film dielectric elastomer sensors to measure the contraction force of smooth muscle cells

    Science.gov (United States)

    Araromi, O.; Poulin, A.; Rosset, S.; Favre, M.; Giazzon, M.; Martin-Olmos, C.; Liley, M.; Shea, H.

    2015-04-01

    The development of thin-film dielectric elastomer strain sensors for the characterization of smooth muscle cell (SMC) contraction is presented here. Smooth muscle disorders are an integral part of diseases such as asthma and emphysema. Analytical tools enabling the characterization of SMC function i.e. contractile force and strain, in a low-cost and highly parallelized manner are necessary for toxicology screening and for the development of new and more effective drugs. The main challenge with the design of such tools is the accurate measurement of the extremely low contractile cell forces expected as a result of SMC monolayer contraction (as low as ~ 100 μN). Our approach utilizes ultrathin (~5 μm) and soft elastomer membranes patterned with elastomer-carbon composite electrodes, onto which the SMCs are cultured. The cell contraction induces an in-plane strain in the elastomer membrane, predicted to be in the order 1 %, which can be measured via the change in the membrane capacitance. The cell force can subsequently be deduced knowing the mechanical properties of the elastomer membrane. We discuss the materials and fabrication methods selected for our system and present preliminary results indicating their biocompatibility. We fabricate functional capacitive senor prototypes with good signal stability over the several hours (~ 0.5% variation). We succeed in measuring in-plane strains of 1 % with our fabricated devices with good repeatability and signal to noise ratio.

  9. Effects of non-Gaussian Brownian motion on direct force optical tweezers measurements of the electrostatic forces between pairs of colloidal particles.

    Science.gov (United States)

    Raudsepp, Allan; A K Williams, Martin; B Hall, Simon

    2016-07-01

    Measurements of the electrostatic force with separation between a fixed and an optically trapped colloidal particle are examined with experiment, simulation and analytical calculation. Non-Gaussian Brownian motion is observed in the position of the optically trapped particle when particles are close and traps weak. As a consequence of this motion, a simple least squares parameterization of direct force measurements, in which force is inferred from the displacement of an optically trapped particle as separation is gradually decreased, contains forces generated by the rectification of thermal fluctuations in addition to those originating directly from the electrostatic interaction between the particles. Thus, when particles are close and traps weak, simply fitting the measured direct force measurement to DLVO theory extracts parameters with modified meanings when compared to the original formulation. In such cases, however, physically meaningful DLVO parameters can be recovered by comparing the measured non-Gaussian statistics to those predicted by solutions to Smoluchowski's equation for diffusion in a potential. PMID:27439853

  10. Kinetic peak vertical force measurement in cats afflicted by coxarthritis: data management and acquisition protocols.

    Science.gov (United States)

    Moreau, Maxim; Guillot, Martin; Pelletier, Jean-Pierre; Martel-Pelletier, Johanne; Troncy, Eric

    2013-08-01

    The management of the peak vertical force (PVF) measurement needs to be determined in coxarthritis cats. Six privately-owned coxarthritis cats were conditioned to trot across a floor mat-based plantar force measurement system. Hind limbs PVF was measured on level ground at day one (D1), D8, D42, and D84. Measurements were repeated after 10 min treadmill exercise (D1), trotting on an inclined (13°) plane (D42) and after stair climbing exercise (D84). Test-retest reliability between D1 and D8 was good (intraclass coefficient of correlation of 0.8). Coefficients of dispersion (within-subject and between-subject) were <15% using the lowest hind limb PVF value. Only stair climbing exercise positively affected sample and effect size estimates. To limit the dispersion of data, the measurement of PVF should be managed using the lowest hind limb PVF value. In addition, PVF should be measured following stair climbing to optimise sample and effect sizes and to preserve statistical power.

  11. Measuring the loss tangent of polymer materials with atomic force microscopy based methods

    International Nuclear Information System (INIS)

    Atomic force microscopy (AFM) quantitatively maps viscoelastic parameters of polymers on the nanoscale by several methods. The loss tangent, the ratio between dissipated and stored energy, was measured on a blend of thermoplastic polymer materials by a dynamic contact method, contact resonance, and by a recently developed loss tangent measurement by amplitude modulation AFM. Contact resonance measurements were performed both with dual AC resonance tracking and band excitation (BE), allowing for a reference-free measurement of the loss tangent. Amplitude modulation AFM was performed where a recent interpretation of the phase signal under certain operating conditions allows for the loss tangent to be calculated. The loss tangent measurements were compared with values expected from time–temperature superposed frequency-dependent dynamical mechanical curves of materials and reveal that the loss tangents determined from the BE contact resonance method provide the most accurate values. (paper)

  12. Measurement of the axial and radial diffusivities of a 2D composite material between 500 deg. C and 1500 deg. C; Mesure des diffusivites axiale et radiale d`un composite 2D entre 500 deg. C et 1500 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Demange, D.; Beauchene, P.; Casulleras, R.; Bejet, M. [ONERA, 92 - Chatillon (France); Maillet, D.; Sanson, O. [Lemta (France)

    1996-12-31

    A new experimental method of simultaneous measurement of thermal diffusivity along the two main directions of thin composite materials with a ceramic-based matrix has been developed by the ONERA, the French national office of aerospace studies and research. The principle of this method, derived from the `flash` method consists in the heterogeneous insolation of one face of a cylindrical sample (central spot or ring) in order to analyze the thermal transfers along the axial and radial directions of the sample. Experimental development are in progress and will be integrated to a flash diffusion-meter in operation at the ONERA. (J.S.) 11 refs.

  13. Development of a Microforce Sensor and Its Array Platform for Robotic Cell Microinjection Force Measurement

    Science.gov (United States)

    Xie, Yu; Zhou, Yunlei; Lin, Yuzi; Wang, Lingyun; Xi, Wenming

    2016-01-01

    Robot-assisted cell microinjection, which is precise and can enable a high throughput, is attracting interest from researchers. Conventional probe-type cell microforce sensors have some real-time injection force measurement limitations, which prevent their integration in a cell microinjection robot. In this paper, a novel supported-beam based cell micro-force sensor with a piezoelectric polyvinylidine fluoride film used as the sensing element is described, which was designed to solve the real-time force-sensing problem during a robotic microinjection manipulation, and theoretical mechanical and electrical models of the sensor function are derived. Furthermore, an array based cell-holding device with a trapezoidal microstructure is micro-fabricated, which serves to improve the force sensing speed and cell manipulation rates. Tests confirmed that the sensor showed good repeatability and a linearity of 1.82%. Finally, robot-assisted zebrafish embryo microinjection experiments were conducted. These results demonstrated the effectiveness of the sensor working with the robotic cell manipulation system. Moreover, the sensing structure, theoretical model, and fabrication method established in this study are not scale dependent. Smaller cells, e.g., mouse oocytes, could also be manipulated with this approach. PMID:27058545

  14. Measurements of forces produced by the mitotic spindle using optical tweezers.

    Science.gov (United States)

    Ferraro-Gideon, Jessica; Sheykhani, Rozhan; Zhu, Qingyuan; Duquette, Michelle L; Berns, Michael W; Forer, Arthur

    2013-05-01

    We used a trapping laser to stop chromosome movements in Mesostoma and crane-fly spermatocytes and inward movements of spindle poles after laser cuts across Potorous tridactylus (rat kangaroo) kidney (PtK2) cell half-spindles. Mesostoma spermatocyte kinetochores execute oscillatory movements to and away from the spindle pole for 1-2 h, so we could trap kinetochores multiple times in the same spermatocyte. The trap was focused to a single point using a 63× oil immersion objective. Trap powers of 15-23 mW caused kinetochore oscillations to stop or decrease. Kinetochore oscillations resumed when the trap was released. In crane-fly spermatocytes trap powers of 56-85 mW stopped or slowed poleward chromosome movement. In PtK2 cells 8-mW trap power stopped the spindle pole from moving toward the equator. Forces in the traps were calculated using the equation F = Q'P/c, where P is the laser power and c is the speed of light. Use of appropriate Q' coefficients gave the forces for stopping pole movements as 0.3-2.3 pN and for stopping chromosome movements in Mesostoma spermatocytes and crane-fly spermatocytes as 2-3 and 6-10 pN, respectively. These forces are close to theoretical calculations of forces causing chromosome movements but 100 times lower than the 700 pN measured previously in grasshopper spermatocytes. PMID:23485565

  15. Preparation and friction force microscopy measurements of immiscible, opposing polymer brushes.

    Science.gov (United States)

    de Beer, Sissi; Kutnyanszky, Edit; Müser, Martin H; Vancso, G Julius

    2014-01-01

    Solvated polymer brushes are well known to lubricate high-pressure contacts, because they can sustain a positive normal load while maintaining low friction at the interface. Nevertheless, these systems can be sensitive to wear due to interdigitation of the opposing brushes. In a recent publication, we have shown via molecular dynamics simulations and atomic force microscopy experiments, that using an immiscible polymer brush system terminating the substrate and the slider surfaces, respectively, can eliminate such interdigitation. As a consequence, wear in the contacts is reduced. Moreover, the friction force is two orders of magnitude lower compared to traditional miscible polymer brush systems. This newly proposed system therefore holds great potential for application in industry. Here, the methodology to construct an immiscible polymer brush system of two different brushes each solvated by their own preferred solvent is presented. The procedure how to graft poly(N-isopropylacrylamide) (PNIPAM) from a flat surface and poly(methyl methacrylate) (PMMA) from an atomic force microscopy (AFM) colloidal probe is described. PNIPAM is solvated in water and PMMA in acetophenone. Via friction force AFM measurements, it is shown that the friction for this system is indeed reduced by two orders of magnitude compared to the miscible system of PMMA on PMMA solvated in acetophenone. PMID:25590429

  16. Development of a Microforce Sensor and Its Array Platform for Robotic Cell Microinjection Force Measurement.

    Science.gov (United States)

    Xie, Yu; Zhou, Yunlei; Lin, Yuzi; Wang, Lingyun; Xi, Wenming

    2016-01-01

    Robot-assisted cell microinjection, which is precise and can enable a high throughput, is attracting interest from researchers. Conventional probe-type cell microforce sensors have some real-time injection force measurement limitations, which prevent their integration in a cell microinjection robot. In this paper, a novel supported-beam based cell micro-force sensor with a piezoelectric polyvinylidine fluoride film used as the sensing element is described, which was designed to solve the real-time force-sensing problem during a robotic microinjection manipulation, and theoretical mechanical and electrical models of the sensor function are derived. Furthermore, an array based cell-holding device with a trapezoidal microstructure is micro-fabricated, which serves to improve the force sensing speed and cell manipulation rates. Tests confirmed that the sensor showed good repeatability and a linearity of 1.82%. Finally, robot-assisted zebrafish embryo microinjection experiments were conducted. These results demonstrated the effectiveness of the sensor working with the robotic cell manipulation system. Moreover, the sensing structure, theoretical model, and fabrication method established in this study are not scale dependent. Smaller cells, e.g., mouse oocytes, could also be manipulated with this approach. PMID:27058545

  17. Development of a Microforce Sensor and Its Array Platform for Robotic Cell Microinjection Force Measurement.

    Science.gov (United States)

    Xie, Yu; Zhou, Yunlei; Lin, Yuzi; Wang, Lingyun; Xi, Wenming

    2016-04-06

    Robot-assisted cell microinjection, which is precise and can enable a high throughput, is attracting interest from researchers. Conventional probe-type cell microforce sensors have some real-time injection force measurement limitations, which prevent their integration in a cell microinjection robot. In this paper, a novel supported-beam based cell micro-force sensor with a piezoelectric polyvinylidine fluoride film used as the sensing element is described, which was designed to solve the real-time force-sensing problem during a robotic microinjection manipulation, and theoretical mechanical and electrical models of the sensor function are derived. Furthermore, an array based cell-holding device with a trapezoidal microstructure is micro-fabricated, which serves to improve the force sensing speed and cell manipulation rates. Tests confirmed that the sensor showed good repeatability and a linearity of 1.82%. Finally, robot-assisted zebrafish embryo microinjection experiments were conducted. These results demonstrated the effectiveness of the sensor working with the robotic cell manipulation system. Moreover, the sensing structure, theoretical model, and fabrication method established in this study are not scale dependent. Smaller cells, e.g., mouse oocytes, could also be manipulated with this approach.

  18. Development of a Microforce Sensor and Its Array Platform for Robotic Cell Microinjection Force Measurement

    Directory of Open Access Journals (Sweden)

    Yu Xie

    2016-04-01

    Full Text Available Robot-assisted cell microinjection, which is precise and can enable a high throughput, is attracting interest from researchers. Conventional probe-type cell microforce sensors have some real-time injection force measurement limitations, which prevent their integration in a cell microinjection robot. In this paper, a novel supported-beam based cell micro-force sensor with a piezoelectric polyvinylidine fluoride film used as the sensing element is described, which was designed to solve the real-time force-sensing problem during a robotic microinjection manipulation, and theoretical mechanical and electrical models of the sensor function are derived. Furthermore, an array based cell-holding device with a trapezoidal microstructure is micro-fabricated, which serves to improve the force sensing speed and cell manipulation rates. Tests confirmed that the sensor showed good repeatability and a linearity of 1.82%. Finally, robot-assisted zebrafish embryo microinjection experiments were conducted. These results demonstrated the effectiveness of the sensor working with the robotic cell manipulation system. Moreover, the sensing structure, theoretical model, and fabrication method established in this study are not scale dependent. Smaller cells, e.g., mouse oocytes, could also be manipulated with this approach.

  19. Reconstruction of Energy Surfaces from Friction Force Microscopy Measurements with the Jarzynski Equality

    Science.gov (United States)

    Berkovich, Ronen; Klafter, Joseph; Urbakh, Michael

    Free energy is one of the most fundamental thermodynamic functions, determining relative phase stability and serving as a generating function for other thermodynamic quantities. The calculation of free energies is a challenging enterprise. In equilibrium statistical mechanics, the free energy is related to the canonical partition function. The partition function itself involves integrations over all degrees of freedom in the system and, in most cases, cannot be easily calculated directly. In 1997, Jarzynski proved a remarkable equality that allows computing the equilibrium free-energy difference between two states from the probability distribution of the nonequilibrium work done on the system to switch between the two states. The Jarzynski equality provides a powerful free-energy difference estimator from a set of irreversible experiments. This method is closely related to free-energy perturbation approach, which is also a computational technique for estimating free-energy differences. The ability to map potential profiles and topologies is of major significance to areas as diverse as biological recognition and nanoscale friction. This capability has been demonstrated for frictional studies where a force between the tip of the scanning force microscope and the surface is probed. The surface free-energy corrugation produces a detectable friction forces. Thus, friction force microscopy (FFM) should be able to discriminate between energetically different areas on the probed surface. Here, we apply the Jarzynski equality for the analysis of FFM measurements and thus obtain a variation of the free energy along a surface.

  20. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale.

    Science.gov (United States)

    Kawamura, Yoshiyuki

    2016-01-01

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO2) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO2 gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value. PMID:26827362