WorldWideScience

Sample records for axial force measurement

  1. Axial force measurement for esophageal function testing

    DEFF Research Database (Denmark)

    Gravesen, Flemming Holbæk; Funch-Jensen, Peter; Gregersen, Hans

    2009-01-01

    force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure of esophageal transport function. The technique used to record axial force has developed from external...... force transducers over in-vivo strain gauges of various sizes to electrical impedance based measurements. The amplitude and duration of the axial force has been shown to be as reliable as manometry. Normal, as well as abnormal, manometric recordings occur with normal bolus transit, which have been...... documented using imaging modalities such as radiography and scintigraphy. This inconsistency using manometry has also been documented by axial force recordings. This underlines the lack of information when diagnostics are based on manometry alone. Increasing the volume of a bag mounted on a probe...

  2. Axial forces in centrifugal compressor couplings

    Science.gov (United States)

    Ivanov, A. N.; Ivanov, N. M.; Yun, V. K.

    2017-08-01

    The article presents the results of the theoretical and experimental investigation of axial forces arising in the toothed and plate couplings of centrifugal compressor shaft lines. Additional loads on the thrust bearing are considered that can develop in the toothed couplings as a result of coupled rotors misalignment. Design relationships to evaluate the level of axial forces and recommendations for their reduction in the operating conditions are given.

  3. Axial force in a superconductor magnet journal bearing

    Science.gov (United States)

    Postrekhin, E.; Chong, Wang; Ki Bui, Ma; Chen, Quark; Chu, Wei-Kan

    Using superconductors and magnets, a journal bearing could be made from a permanent magnet cylinder in a superconductor ring. We have assembled a prototype superconductor magnet journal bearing of this configuration, and investigated the behavior of the axial force that it can provide. We have put together a numerical model of the interaction between the permanent magnet and the superconductor that is capable of describing these experimental results semi-quantitatively. Combining direct experimental measurements and using the numerical models proposed, we have achieved a qualitative understanding of the behavior of the axial force and its relationship of to the dimensions of the magnet and material quality such as the homogeneity of the superconductor that constitute the bearing.

  4. Characterization of fluid forces exerted on a cylinder array oscillating laterally in axial flow

    International Nuclear Information System (INIS)

    Divaret, Lise

    2014-01-01

    This thesis presents an experimental and a numerical study of the fluid forces exerted on a cylinder or a cylinder array oscillating laterally in an axial flow. The parameters of the system are the amplitude, the oscillation frequency, the confinement and the length to diameter ratio of the cylinder. The objective is to determine the fluid damping created by the axial flow, i.e. the dissipative force. The industrial application of this thesis is the determination of the fluid damping of the fuel assemblies in the core of a nuclear power plant during an earthquake. The study focuses on the configurations where the oscillation velocity is small compared to the axial flow velocity. In a first part, we study the case of a cylinder with no confinement oscillating in axial flow. Two methods are used: a dynamical and a quasi-static approach. In dynamics, the damping rate is measured during free oscillations of the cylinder. In the quasi-static approach, the damping coefficient is calculated from the normal force measured on a yawed cylinder. The range of the small ratios between the oscillation and the axial flow velocities corresponds to a range of low yaw angle where the cylinder is in near-axial flow in statics. The case of a yawed cylinder has been studied both experimentally with experiments in a wind tunnel and numerically with CFD calculations. The analyses of the fluid forces shows that for yaw angles smaller than 5 degrees, a linear lift with the yaw angle creates the damping. The origin of the lift force is discussed from pressure and velocity measurements. The results of the quasi-static approach are compared to the results of the dynamical experiments. In a second part, an experimental study is performed on a rigid cylinder array made up of 40 cylinders oscillating in an axial flow. The normal force and the displacement of the cylinder array are measured simultaneously. The added mass and damping coefficient are calculated and their variation with the

  5. The development of an air injection system for the forced response testing of axial compressors

    CSIR Research Space (South Africa)

    Wegman, Erik J

    2013-06-01

    Full Text Available A phase-controllable, air injection exciter system was developed to enable measurement of the forced response properties of a transonic axial compressor blisk. The project was performed as part of the FP7 European framework program project FUTURE...

  6. Treatment of the axial friction forces in the transuranus code

    International Nuclear Information System (INIS)

    Lassmann, K.

    1991-01-01

    The problems of calculating axial friction forces are discussed. It is found that for the majority of failure analyses or safety related analyses under normal, off-normal and accident conditions a detailed model which takes all different modes of interaction between fuel and cladding into account is indispensable. The URFRIC model described in this paper is such a model. It is formulated in an extremely efficient numerical algorithm which saves computational costs. The URFRIC model has been applied successfully for 2 years in the TRANSURANUS code, and may in principle also be used in other quasi two-dimensional fuel performance codes. Results of this model are compared with results from a simple slip and a simple noslip model. Recommendations are given for the use of each of these models

  7. Evaluation of Electromagnetic Forces in an Axially-Magnetized MPD Arcjet Plasma

    International Nuclear Information System (INIS)

    Tobari, Hiroyuki; Yoshino, Kyohei; Hattori, Kunihiko; Ando, Akira; Inutake, Masaaki

    2003-01-01

    Characteristics of an axially-magnetized plasma flow has been investigated in the vicinity of a magneto-plasma-dynamic arcjet (MPDA) by use of spectroscopy, Mach probes and magnetic probes. Axial and rotational flow velocity and temperature of He ion and atom near the muzzle region of MPDA are measured by Doppler shift and broadening of the HeI (λ = 578.56 nm) and HeII (λ = 468.58 nm) lines. It has been observed that the plasma rotates with a rigid body and that ion temperature increases extraordinarily in a factor of 2-3 at several cm downstream from MPD outlet when a discharge current increases with a lower mass-flow-rate of He gas. Therefore, the ion acoustic Mach number saturates at near unity. To clarify mechanisms of ion heating and electromagnetic acceleration, spatial distribution of induced magnetic fields are measured in the vicinity of MPD outlet by magnetic probes. Spatial structure of magnetic field and plasma current density is clarified experimentally in the muzzle region of MPDA. Among three components of jxB force F, radial component Fr is dominant and axial component Fz is much smaller than Fr because of a generation of a drag force canceling an acceleration force

  8. Axial force imparted by a conical radiofrequency magneto-plasma thruster

    International Nuclear Information System (INIS)

    Charles, C.; Takahashi, K.; Boswell, R. W.

    2012-01-01

    Direct thrust measurements of a low pressure (∼0.133 Pa) conical radiofrequency (rf at 13.56 MHz) argon plasma source show a total axial force of about 5 mN for an effective rf power of 650 W and a maximum magnetic field of 0.018 T, of which a measured value of 2.5 mN is imparted by the magnetic nozzle. A simplified model of thrust including contributions from the electron pressure and from the magnetic field pressure is developed. The magnetic nozzle is modelled as a ''physical'' nozzle of increasing cross-sectional area.

  9. Measurement for cobalt target activity and its axial distribution

    International Nuclear Information System (INIS)

    Li Xingyuan; Chen Zigen.

    1985-01-01

    Cobalt target activity and its axial distribution are measured in process of producing radioactive isotopes 60 Co by irradiation in HFETR. Cobalt target activity is obtained with measured data at 3.60 m and 4.60 m, relative axial distribution of cobalt target activity is obtained with one at 30 cm, and axial distribution of cobalt target activity(or specific activity) is obtained with both of data. The difference between this specific activity and measured result for 60 Co teletherapy sources in the end is less than +- 5%

  10. Axial Force Analysis and Roll Contour Configuration of Four-High CVC Mill

    Directory of Open Access Journals (Sweden)

    Guang-ming Liu

    2018-01-01

    Full Text Available In order to analyze the influence of technical parameters on work roll axial force of four-high continuous variable crown (CVC mill, the deformation analyzing model with top roll system and strip was established based on influence function method. Then a CVC work roll curve designing scheme was proposed and it was carried out on some cold rolling mill considering the requirement of comprehensive work roll axial force minimization. The status of comprehensive work roll axial force is improved considering the rolling schedule that is beneficial to the roller bearing. Corresponding to the newly designed work roll contour, the backup roll end chamfer was designed considering comprehensive performance of interroll stress concentration, comprehensive work roll axial force, and strip shape control ability. The distribution of roll wear with newly designed backup roll contour is more even according to the field application data. The newly established roll configuration scheme is beneficial to four-high CVC mill.

  11. A free vibration of beams carrying a concentrated mass under distributed axial forces

    International Nuclear Information System (INIS)

    Nagai, Ken-ichi; Nagaya, Kosuke; Takeda, Sadahiko; Arai, Noriyuki.

    1988-01-01

    The free bending vibrations of beams with a concentrated mass subjected to axial forces caused by axial acceleration are analyzed by the Galerkin method, introducing the mode shape functions which are the sum of the products of the finite power series and the trigonometrical function. This analytical method makes it easy to construct the equations of motion in each boundary condition only by exchanging the coefficients of the finite power series. Numerical calculations are carried out under four sets of boundary conditions combined with simply supported and clamped edges. The natural frequencies and the corresponding modes of vibration are determined under both various locations of the concentrated mass and axial forces. it is found that the transverse inertia force and the axial force, due to the concentrated mass, have significant effects on the change of the natural frequencies for beams. Furthermore the distinction of boundary conditions gives predominant influence to the variation of natural frequencies. (author)

  12. The transverse force experienced by the radial head during axial loading of the forearm: A cadaveric study.

    Science.gov (United States)

    Orbay, Jorge L; Mijares, Michael R; Berriz, Cecilia G

    2016-01-01

    When designing a radial head replacement, the magnitude and direction of forces applied across the proximal radio-ulnar joint (PRUJ) and the radiocapitellar joint must be included. These designs often focus on axial loads transmitted to the radial head by the capitellum; however, the radial head also bears a significant transverse force at the PRUJ. Load transmission by the central band of the interosseous ligament induces a force component in a lateral direction perpendicular to the axis of the limb, which is borne by the articular surfaces of the proximal and distal radio-ulnar joints. The objective of this study is to establish the relationship between distally applied axial forces and proximal transverse reaction forces. Five cadaveric, human forearms with intact interosseous membranes were used to measure the magnitude of transversely-directed forces experienced by the radial head during axial loading of the forearm at the lunate fossa. A Mark-10 test stand applied a gradual and continuous axial load on the articular surface of the distal radius. A Mark-10 force gauge measured the resultant transverse force experienced by the radial head in the proximal radioulnar joint. Classical mechanics and static force analysis were applied in order to predict lateral force values that would occur when the interosseous ligament is treated as the major load transmitter between the radius and ulna. Acquired data show that the radial head bears a force in the transverse direction that averages 18% (SD 3.89%) in magnitude of the axial force applied at the wrist. This figure is in close accordance with the predicted value of 22% that was calculated by way of free-body plotting. Physiologic forearm loading results in a clinically significant transverse force component transmitted through the interosseous ligament complex. The existence of transverse forces in the human forearm may explain clinical problems seen after radial head resection and suggest that radial head implants

  13. Deflection and Supporting Force Analysis of a Slender Beam under Combined Transverse and Tensile Axial Loads

    Science.gov (United States)

    2016-05-01

    force at propped end of beam wall thickness of static pressure pipe applied axial tension force applied cable tension force (...as being encastre, while the opposite end where the cable tension force is being applied was restrained using a roller-type constraint, which...structural configuration shown in Figure 1, whereby the tension loads that exist in the multiple supporting cables have been resolved into a single

  14. Standard practice for verification of constant amplitude dynamic forces in an axial fatigue testing system

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This practice covers procedures for the dynamic verification of cyclic force amplitude control or measurement accuracy during constant amplitude testing in an axial fatigue testing system. It is based on the premise that force verification can be done with the use of a strain gaged elastic element. Use of this practice gives assurance that the accuracies of forces applied by the machine or dynamic force readings from the test machine, at the time of the test, after any user applied correction factors, fall within the limits recommended in Section 9. It does not address static accuracy which must first be addressed using Practices E 4 or equivalent. 1.2 Verification is specific to a particular test machine configuration and specimen. This standard is recommended to be used for each configuration of testing machine and specimen. Where dynamic correction factors are to be applied to test machine force readings in order to meet the accuracy recommended in Section 9, the verification is also specific to the c...

  15. Method to Measure Tone of Axial and Proximal Muscle

    Science.gov (United States)

    Gurfinkel, Victor S.; Cacciatore, Timothy W.; Cordo, Paul J.; Horak, Fay B.

    2011-01-01

    The control of tonic muscular activity remains poorly understood. While abnormal tone is commonly assessed clinically by measuring the passive resistance of relaxed limbs1, no systems are available to study tonic muscle control in a natural, active state of antigravity support. We have developed a device (Twister) to study tonic regulation of axial and proximal muscles during active postural maintenance (i.e. postural tone). Twister rotates axial body regions relative to each other about the vertical axis during stance, so as to twist the neck, trunk or hip regions. This twisting imposes length changes on axial muscles without changing the body's relationship to gravity. Because Twister does not provide postural support, tone must be regulated to counteract gravitational torques. We quantify this tonic regulation by the restive torque to twisting, which reflects the state of all muscles undergoing length changes, as well as by electromyography of relevant muscles. Because tone is characterized by long-lasting low-level muscle activity, tonic control is studied with slow movements that produce "tonic" changes in muscle length, without evoking fast "phasic" responses. Twister can be reconfigured to study various aspects of muscle tone, such as co-contraction, tonic modulation to postural changes, tonic interactions across body segments, as well as perceptual thresholds to slow axial rotation. Twister can also be used to provide a quantitative measurement of the effects of disease on axial and proximal postural tone and assess the efficacy of intervention. PMID:22214974

  16. Research on a novel axial-flux magnetic-field-modulated brushless double-rotor machine with low axial force and high efficiency

    Directory of Open Access Journals (Sweden)

    Chengde Tong

    2017-05-01

    Full Text Available The axial-flux magnetic-field-modulated brushless double-rotor machine (MFM-BDRM is a possible alternative as a power-split device for hybrid electric vehicles (HEVs. However, the existence of large axial force may lead to assembly problems and rich inner air-gap harmonics could result in high PM loss and low efficiency. This paper proposes a novel axial-flux MFM-BDRM with improved PM rotor structure. 2-D analytical method to predict the magnetic-field distribution of the proposed MFM-BDRM is developed and the design procedure of the proposed machine is illustrated. The impact of key geometrical parameters on axial force and torque is investigated. To evaluate the advantage of the proposed machine, a comparison is made with a conventional one with respect to electromagnetic performances. Results show that the proposed machine is effective in reducing PM eddy loss and axial force by 60% and 35%, respectively.

  17. Interfacial force measurements using atomic force microscopy

    NARCIS (Netherlands)

    Chu, L.

    2018-01-01

    Atomic Force Microscopy (AFM) can not only image the topography of surfaces at atomic resolution, but can also measure accurately the different interaction forces, like repulsive, adhesive and lateral existing between an AFM tip and the sample surface. Based on AFM, various extended techniques have

  18. Influence of foundation and axial force on the vibration of thin beam ...

    African Journals Online (AJOL)

    The influence of foundation and axial force on the vibration of a simply supported thin (Bernoulli Euler) beam, resting on a uniform foundation, under the action of a variable magnitude harmonic load moving with variable velocity is investigated in this paper. The governing equation is a fourth order partial differential ...

  19. Generalization of a global model for reinforced concrete beams under combined axial force and bending moments

    International Nuclear Information System (INIS)

    Bairrao, R.; Millard, A.; Barbe, B.

    1991-01-01

    A large set of numerical data was obtained using a program recently developed. From the various results achieved, new analytical expressions for the definition of damage and plasticity criteria are being derived. The importance of taking into account the presence of general bending was highlighted. The extension to 3D bending, of the previous global models for reinforced concrete beams under combined axial force and bending, is under development. (author)

  20. Flow measurements using noise signals of axially displaced thermocouples

    Energy Technology Data Exchange (ETDEWEB)

    Kozma, R.; Hoogenboom, J.E. (Interuniversitair Reactor Inst., Delft (Netherlands))

    1990-01-01

    Determination of the flow rate of the coolant in the cooling channels of nuclear reactors is an important aspect of core monitoring. It is usually impossible to measure the flow by flowmeters in the individual channels due to the lack of space and safety reasons. An alternative method is based on the analysis of noise signals of the available in-core detectors. In such a noise method, a transit time which characterises the propagation of thermohydraulic fluctuations (density or temperature fluctuations) in the coolant is determined from the correlation between the noise signals of axially displaced detectors. In this paper, the results of flow measurements using axially displaced thermocouples in the channel wall will be presented. The experiments have been performed in a simulated MRT-type fuel assembly located in the research reactor HOR of the Interfaculty Reactor Institute, Delft. It was found that the velocities obtained via temperature noise correlation methods are significantly larger than the area-averaged velocity in the single-phase coolant flow. Model calculations show that the observed phenomenon can be explained by effects due to the radial velocity distribution in the channel. (author).

  1. Effects of axial gap and nozzle distribution on aerodynamic forces of a supersonic partial-admission turbine

    Directory of Open Access Journals (Sweden)

    Jinpeng JIANG

    2017-12-01

    Full Text Available The turbine in an LH2/LOX rocket engine is designed as a two-stage supersonic partial-admission turbine. Three-dimensional steady and unsteady simulations were conducted to analyze turbine performance and aerodynamic forces on rotor blades. Different configurations were employed to investigate the effects of the axial gap and nozzle distribution on the predicted performance and aerodynamic forces. Rotor blades experience unsteady aerodynamic forces because of the partial admission. Aerodynamic forces show periodicity in the admission region, and are close to zero after leaving the admission region. The unsteady forces in frequency domain indicate that components exist in a wide frequency region, and the admission passing frequency is dominant. Those multiples of the rotational frequency which are multiples of the nozzle number in a full-admission turbine are notable components. Results show that the turbine efficiency decreases as the axial gap between nozzles and the 1st stage rotor (rotor 1 increases. Fluctuation of the circumferential aerodynamic force on rotor 1 blades decreases with the axial gap increasing. The turbine efficiency decreases as the circumferential spacing between nozzles increases. Fluctuations of the circumferential and axial aerodynamic forces increase as the circumferential spacing increases. As for the non-equidistant nozzle distribution, it produces similar turbine performance and amplitude-frequency characteristics of forces to those of the normal configuration, when the mean spacing is equal to that of the normal case. Keywords: Aerodynamic force, Axial gap, Computational fluid dynamics (CFD, Nozzle distribution, Partial admission, Turbine

  2. Improved axial position detection in optical tweezers measurements

    DEFF Research Database (Denmark)

    Dreyer, Jakob Kisbye; Berg-Sørensen, Kirstine; Oddershede, Lene

    2004-01-01

    We investigate the axial position detection of a trapped microsphere in an optical trap by using a quadrant photodiode. By replacing the photodiode with a CCD camera, we obtain detailed information on the light scattered by the microsphere. The correlation of the interference pattern with the axial...... position displays complex behavior with regions of positive and negative interference. By analyzing the scattered light intensity as a function of the axial position of the trapped sphere, we propose a simple method to increase the sensitivity and control the linear range of axial position detection....

  3. An analysis of the extension of a ZnO piezoelectric semiconductor nanofiber under an axial force

    Science.gov (United States)

    Zhang, Chunli; Wang, Xiaoyuan; Chen, Weiqiu; Yang, Jiashi

    2017-02-01

    This paper presents a theoretical analysis on the axial extension of an n-type ZnO piezoelectric semiconductor nanofiber under an axial force. The phenomenological theory of piezoelectric semiconductors consisting of Newton’s second law of motion, the charge equation of electrostatics and the conservation of charge was used. The equations were linearized for small axial force and hence small electron concentration perturbation, and were reduced to one-dimensional equations for thin fibers. Simple and analytical expressions for the electromechanical fields and electron concentration in the fiber were obtained. The fields are either totally or partially described by hyperbolic functions relatively large near the ends of the fiber and change rapidly there. The behavior of the fields is sensitive to the initial electron concentration and the applied axial force. For higher initial electron concentrations the fields are larger near the ends and change more rapidly there.

  4. Three-axial force sensor with capacitive read-out using a differential relaxation oscillator

    NARCIS (Netherlands)

    Brookhuis, Robert Anton; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.

    2013-01-01

    A silicon three-axis force sensor is designed and realized to be used for measurement of the interaction force between a human finger and the environment. To detect the force components, a capacitive read-out system using a novel relaxation oscillator has been developed with an output frequency

  5. Axial and Radial Forces of Cross-Bridges Depend on Lattice Spacing

    Science.gov (United States)

    Williams, C. David; Regnier, Michael; Daniel, Thomas L.

    2010-01-01

    Nearly all mechanochemical models of the cross-bridge treat myosin as a simple linear spring arranged parallel to the contractile filaments. These single-spring models cannot account for the radial force that muscle generates (orthogonal to the long axis of the myofilaments) or the effects of changes in filament lattice spacing. We describe a more complex myosin cross-bridge model that uses multiple springs to replicate myosin's force-generating power stroke and account for the effects of lattice spacing and radial force. The four springs which comprise this model (the 4sXB) correspond to the mechanically relevant portions of myosin's structure. As occurs in vivo, the 4sXB's state-transition kinetics and force-production dynamics vary with lattice spacing. Additionally, we describe a simpler two-spring cross-bridge (2sXB) model which produces results similar to those of the 4sXB model. Unlike the 4sXB model, the 2sXB model requires no iterative techniques, making it more computationally efficient. The rate at which both multi-spring cross-bridges bind and generate force decreases as lattice spacing grows. The axial force generated by each cross-bridge as it undergoes a power stroke increases as lattice spacing grows. The radial force that a cross-bridge produces as it undergoes a power stroke varies from expansive to compressive as lattice spacing increases. Importantly, these results mirror those for intact, contracting muscle force production. PMID:21152002

  6. Charge-exchange QRPA with the Gogny Force for Axially-symmetric Deformed Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Martini, M., E-mail: martini.marco@gmail.com [Institut d' Astronomie et d' Astrophysique, Université Libre de Bruxelles, CP-226, 1050 Brussels (Belgium); CEA, DAM, DIF, F-91297 Arpajon (France); Goriely, S. [Institut d' Astronomie et d' Astrophysique, Université Libre de Bruxelles, CP-226, 1050 Brussels (Belgium); Péru, S. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2014-06-15

    In recent years fully consistent quasiparticle random-phase approximation (QRPA) calculations using finite range Gogny force have been performed to study electromagnetic excitations of several axially-symmetric deformed nuclei up to the {sup 238}U. Here we present the extension of this approach to the charge-exchange nuclear excitations (pnQRPA). In particular we focus on the Isobaric Analog and Gamow-Teller resonances. A comparison of the predicted GT strength distribution with existing experimental data is presented. The role of nuclear deformation is shown. Special attention is paid to β-decay half-lives calculations for which experimental data exist and for specific isotone chains of relevance for the r-process nucleosynthesis.

  7. Automatic HTS force measurement instrument

    International Nuclear Information System (INIS)

    Sanders, S.T.; Niemann, R.C.

    1999-01-01

    A device is disclosed for measuring the levitation force of a high temperature superconductor sample with respect to a reference magnet includes a receptacle for holding several high temperature superconductor samples each cooled to superconducting temperature. A rotatable carousel successively locates a selected one of the high temperature superconductor samples in registry with the reference magnet. Mechanism varies the distance between one of the high temperature superconductor samples and the reference magnet, and a sensor measures levitation force of the sample as a function of the distance between the reference magnet and the sample. A method is also disclosed. 3 figs

  8. Finite element modelling of reinforced large-opening on the web of steel beam considering axial forces

    Science.gov (United States)

    Sukrawa, Made

    2017-11-01

    Experimental and analytical researches on the effect of web opening in steel beams have been repeatedly reported in literature because of the advantages gain from the many function of the opening. Most of the research on this area, however, did not consider deformation and stress in the beam due to axial force. In seismic design of steel structure, the axial force in the beam could be significantly high and therefore worth considering. In this study a beam extracted from a braced frame structure was analyzed using finite element models to investigate the effect of combined bending and axial forces on the deformation and stresses in the vicinity of the opening. Large size of square, rectangular, and circular openings of the same depth were reinforced and placed in pair, symmetrical to the concentrated load at mid span of the beam. Four types of reinforcement were used, all around (AA), short horizontal (SH), long horizontal (LH), and doubler plate (DP). The effect of axial load was also investigated using rigid frame model loaded vertically and laterally. Validation of the modelling technique was done prior to the parametric study. It was revealed that the axial force significantly contributes to the stress concentration near the hole. Stiffener of circular shape was effective to improve the stress distribution around the circular opening. For square and rectangular openings, however, the horizontal stiffener, extended beyond the edge of opening, performed better than the other type of stiffeners.

  9. Estimation of Tri-Axial Walking Ground Reaction Forces of Left and Right Foot from Total Forces in Real-Life Environments

    Directory of Open Access Journals (Sweden)

    Erfan Shahabpoor

    2018-06-01

    Full Text Available Continuous monitoring of natural human gait in real-life environments is essential in many applications including disease monitoring, rehabilitation, and professional sports. Wearable inertial measurement units are successfully used to measure body kinematics in real-life environments and to estimate total walking ground reaction forces GRF(t using equations of motion. However, for inverse dynamics and clinical gait analysis, the GRF(t of each foot is required separately. Using an experimental dataset of 1243 tri-axial separate-foot GRF(t time histories measured by the authors across eight years, this study proposes the ‘Twin Polynomial Method’ (TPM to estimate the tri-axial left and right foot GRF(t signals from the total GRF(t signals. For each gait cycle, TPM fits polynomials of degree five, eight, and nine to the known single-support part of the left and right foot vertical, anterior-posterior, and medial-lateral GRF(t signals, respectively, to extrapolate the unknown double-support parts of the corresponding GRF(t signals. Validation of the proposed method both with force plate measurements (gold standard in the laboratory, and in real-life environment showed a peak-to-peak normalized root mean square error of less than 2.5%, 6.5% and 7.5% for the estimated GRF(t signals in the vertical, anterior-posterior and medial-lateral directions, respectively. These values show considerable improvement compared with the currently available GRF(t decomposition methods in the literature.

  10. Fiber optic micro sensor for the measurement of tendon forces

    Directory of Open Access Journals (Sweden)

    Behrmann Gregory P

    2012-10-01

    Full Text Available Abstract A fiber optic sensor developed for the measurement of tendon forces was designed, numerically modeled, fabricated, and experimentally evaluated. The sensor incorporated fiber Bragg gratings and micro-fabricated stainless steel housings. A fiber Bragg grating is an optical device that is spectrally sensitive to axial strain. Stainless steel housings were designed to convert radial forces applied to the housing into axial forces that could be sensed by the fiber Bragg grating. The metal housings were fabricated by several methods including laser micromachining, swaging, and hydroforming. Designs are presented that allow for simultaneous temperature and force measurements as well as for simultaneous resolution of multi-axis forces. The sensor was experimentally evaluated by hydrostatic loading and in vitro testing. A commercial hydraulic burst tester was used to provide uniform pressures on the sensor in order to establish the linearity, repeatability, and accuracy characteristics of the sensor. The in vitro experiments were performed in excised tendon and in a dynamic gait simulator to simulate biological conditions. In both experimental conditions, the sensor was found to be a sensitive and reliable method for acquiring minimally invasive measurements of soft tissue forces. Our results suggest that this sensor will prove useful in a variety of biomechanical measurements.

  11. Fiber optic micro sensor for the measurement of tendon forces.

    Science.gov (United States)

    Behrmann, Gregory P; Hidler, Joseph; Mirotznik, Mark S

    2012-10-03

    A fiber optic sensor developed for the measurement of tendon forces was designed, numerically modeled, fabricated, and experimentally evaluated. The sensor incorporated fiber Bragg gratings and micro-fabricated stainless steel housings. A fiber Bragg grating is an optical device that is spectrally sensitive to axial strain. Stainless steel housings were designed to convert radial forces applied to the housing into axial forces that could be sensed by the fiber Bragg grating. The metal housings were fabricated by several methods including laser micromachining, swaging, and hydroforming. Designs are presented that allow for simultaneous temperature and force measurements as well as for simultaneous resolution of multi-axis forces.The sensor was experimentally evaluated by hydrostatic loading and in vitro testing. A commercial hydraulic burst tester was used to provide uniform pressures on the sensor in order to establish the linearity, repeatability, and accuracy characteristics of the sensor. The in vitro experiments were performed in excised tendon and in a dynamic gait simulator to simulate biological conditions. In both experimental conditions, the sensor was found to be a sensitive and reliable method for acquiring minimally invasive measurements of soft tissue forces. Our results suggest that this sensor will prove useful in a variety of biomechanical measurements.

  12. Automatic measurement of axial length of human eye using three-dimensional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Watanabe, Masaki; Kiryu, Tohru

    2011-01-01

    The measurement of axial length and the evaluation of three dimensional (3D) form of an eye are essential to evaluate the mechanism of myopia progression. We propose a method of automatic measurement of axial length including adjustment of the pulse sequence of short-term scan which could suppress influence of eyeblink, using a magnetic resonance imaging (MRI) which acquires 3D images noninvasively. Acquiring T 2 -weighted images with 3.0 tesla MRI device and eight-channel phased-array head coil, we extracted left and right eye ball images, and then reconstructed 3D volume. The surface coordinates were calculated from 3D volume, fitting the ellipsoid model coordinates with the surface coordinates, and measured the axial length automatically. Measuring twenty one subjects, we compared the automatically measured values of axial length with the manually measured ones, then confirmed significant elongation in the axial length of myopia compared with that of emmetropia. Furthermore, there were no significant differences (P<0.05) between the means of automatic measurements and the manual ones. Accordingly, the automatic measurement process of axial length could be a tool for the elucidation of the mechanism of myopia progression, which would be suitable for evaluating the axial length easily and noninvasively. (author)

  13. Multi-axial load application and DIC measurement of advanced composite beam deformation behavior

    Directory of Open Access Journals (Sweden)

    Berggreen C.

    2010-06-01

    Full Text Available For the validation of a new beam element formulation, a wide set of experimental data consisting of deformation patterns obtained for a number of specially designed composite beam elements, have been obtained. The composite materials applied in the beams consist of glass-fiber reinforced plastic with specially designed layup configurations promoting advanced coupling behavior. Furthermore, the beams are designed with different cross-section shapes. The data obtained from the experiments are also used in order to improve the general understanding related to practical implementation of mechanisms of elastic couplings due to anisotropic properties of composite materials. The knowledge gained from these experiments is therefore essential in order to facilitate an implementation of passive control in future large wind turbine blades. A test setup based on a four-column MTS servo-hydraulic testing machine with a maximum capacity of 100 kN was developed, see Figure 1. The setup allows installing and testing beams of different cross-sections applying load cases such as axial extension, shear force bending, pure bending in two principal directions as well as pure torsion, see Figure 2. In order to apply multi-axial loading, a load application system consisting of three hydraulic actuators were mounted in two planes using multi-axial servo-hydraulic control. The actuator setup consists of the main actuator on the servo-hydraulic test machine working in the vertical axis (depicted on Figure 1 placed at the testing machine crosshead and used for application of vertical forces to the specimens. Two extra actuators are placed in a horizontal plane on the T-slot table of the test machine in different positions in order to apply loading at the tip of the specimen in various configurations. In order to precisely characterize the global as well as surface deformations of the beam specimens tested, a combination of different measurement systems were used during

  14. Axial and transverse acoustic radiation forces on a fluid sphere placed arbitrarily in Bessel beam standing wave tweezers

    International Nuclear Information System (INIS)

    Mitri, F.G.

    2014-01-01

    The axial and transverse radiation forces on a fluid sphere placed arbitrarily in the acoustical field of Bessel beams of standing waves are evaluated. The three-dimensional components of the time-averaged force are expressed in terms of the beam-shape coefficients of the incident field and the scattering coefficients of the fluid sphere using a partial-wave expansion (PWE) method. Examples are chosen for which the standing wave field is composed of either a zero-order (non-vortex) Bessel beam, or a first-order Bessel vortex beam. It is shown here, that both transverse and axial forces can push or pull the fluid sphere to an equilibrium position depending on the chosen size parameter ka (where k is the wave-number and a the sphere’s radius). The corresponding results are of particular importance in biophysical applications for the design of lab-on-chip devices operating with Bessel beams standing wave tweezers. Moreover, potential investigations in acoustic levitation and related applications in particle rotation in a vortex beam may benefit from the results of this study. -- Highlights: •The axial and transverse forces on a fluid sphere in acoustical Bessel beams tweezers are evaluated. •The attraction or repulsion to an equilibrium position in the standing wave field is examined. •Potential applications are in particle manipulation using standing waves

  15. Axial and transverse acoustic radiation forces on a fluid sphere placed arbitrarily in Bessel beam standing wave tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F.G., E-mail: mitri@chevron.com

    2014-03-15

    The axial and transverse radiation forces on a fluid sphere placed arbitrarily in the acoustical field of Bessel beams of standing waves are evaluated. The three-dimensional components of the time-averaged force are expressed in terms of the beam-shape coefficients of the incident field and the scattering coefficients of the fluid sphere using a partial-wave expansion (PWE) method. Examples are chosen for which the standing wave field is composed of either a zero-order (non-vortex) Bessel beam, or a first-order Bessel vortex beam. It is shown here, that both transverse and axial forces can push or pull the fluid sphere to an equilibrium position depending on the chosen size parameter ka (where k is the wave-number and a the sphere’s radius). The corresponding results are of particular importance in biophysical applications for the design of lab-on-chip devices operating with Bessel beams standing wave tweezers. Moreover, potential investigations in acoustic levitation and related applications in particle rotation in a vortex beam may benefit from the results of this study. -- Highlights: •The axial and transverse forces on a fluid sphere in acoustical Bessel beams tweezers are evaluated. •The attraction or repulsion to an equilibrium position in the standing wave field is examined. •Potential applications are in particle manipulation using standing waves.

  16. STUDY OF STATIC AND DYNAMIC STABILITY OF THIN-WALLED BARS EXCITED BY PERIODICAL AXIAL EXTERNAL FORCES.

    Directory of Open Access Journals (Sweden)

    Minodora Maria PASĂRE

    2010-10-01

    Full Text Available In these paper, starting from the relations for the displacements and spinning the transversal section of a bar with thin walls of sections opened expressed by the corresponding influence functions and introducing the components of the exterior forces distributed and the moments of the exterior forces distributed due to the inertia forces, the exciting axial forces together with the following effect of these and of the reaction forces of the elastic environment for leaning it may reach to the system of the equations of parametric vibrations under the form of three integral equation These equations may serve for the study of vibrations of the bars, to study the static stability and to study the dynamic stability

  17. Influence of Diamondlike Carbon Coating of Screws on Axial Tightening Force and Stress Distribution on Overdenture Bar Frameworks with Different Fit Levels and Materials.

    Science.gov (United States)

    dos Santos, Mateus Bertolini Fernandes; Bacchi, Atais; Consani, Rafael Leonardo Xediek; Correr-Sobrinho, Lourenço

    2015-01-01

    The aim of this study was to evaluate the axial tightening force applied by conventional and diamondlike carbon (DLC)-coated screws and to verify, through three-dimensional finite element analysis (FEA), the stress distribution caused by different framework materials and prosthetic screws in overdenture frameworks with different misfit levels. The axial tightening force applied by the screw was evaluated by means of a titanium matrix connected to a load cell. Conventional titanium or DLC-coated screws were tightened with a digital torque wrench, and the load values were recorded. The values were applied in an FEA to a bar-clip attachment system connected to two 4.0 × 11-mm external-hexagon titanium implants placed in an anterior edentulous arch. DLC-coated and conventional screws were modeled with their respective axial forces obtained on the experimental evaluation for three bar framework materials (titanium, nickel-chromium, and cobalt-chromium) and three levels of misfit (100, 150, and 200 μm). Von Mises stresses for prosthetic components and maximum principal stress and microstrains (maximum principal strains) for bone tissue were measured. The mean force applied by the conventional screw was 25.55 N (± 1.78); the prosthetic screw coated with a DLC layer applied a mean force of 31.44 N (± 2.11), a statistically significant difference. In the FEA, the DLC screw led to higher stresses on the framework; however, the prosthetic screw suffered lower stress. No influence of screw type was seen in the bone tissue. Titanium frameworks reduced the stress transmitted to the bone tissue and the bar framework but had no influence on the screws. Higher misfit values resulted in an increased stress/strain in bone tissue and bar framework, which was not the case for retention screws.

  18. The accuracy of axial length measurements in cases of macula-off retinal detachment.

    Science.gov (United States)

    Abou-Shousha, Mohsen; Helaly, Hany Ahmed; Osman, Ihab Mohamed

    2016-04-01

    To assess the accuracy of axial length measurements in cases of macula-off retinal detachment using different methods (optical biometry, A-scan ultrasound, and combined applanation vector-A/B-scan biometry). This prospective clinical study included 100 eyes of 100 patients who underwent vitrectomy alone or phacovitrectomy for macula-off retinal detachment. All patients included signed an informed consent. Preoperative examination of the patients included recording the axial length measurements using optical biometry, A-scan ultrasound, and combined applanation vector-A/B-scan biometry. The mean postoperative IOLMaster axial length after macular reattachment was 26.11 ± 2.91 mm. The mean preoperative IOLMaster axial length with macula-off was 25.32 ± 2.72 mm. The mean preoperative A-scan axial length with macula-off was 25.29 ± 2.80 mm. The mean preoperative vector-A/B-scan axial length with macula-off was 26.03 ± 2.90 mm. The preoperative vector-A/B-scan mean absolute error was 0.59 ± 0.48 D (range, 0.10-2.25 D). Regular methods (optical biometry and A-scan biometry) of measuring the axial length in cases with a detached macula proved to be variable and less accurate. The vector-A/B-scan offered good measurements of the actual axial length in the patients. This was reflected on more accurate postoperative refractive outcome. Copyright © 2016 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  19. Nonlinear dynamics of a thin liquid film on an axially oscillating cylindrical surface subjected to double-frequency forcing.

    Science.gov (United States)

    Haimovich, Ory; Oron, Alexander

    2013-05-01

    The nonlinear dynamics of a thin axisymmetric liquid film on a horizontal cylindrical substrate subjected to an axial double-frequency forcing that consists of two components of different amplitudes and frequencies and a possible phase shift is considered in this paper. A nonlinear evolution equation governing the spatiotemporal dynamics of the film interface has been derived in the long-wave limit. Similar to the case of a single-frequency forcing considered in our earlier work, there exists a critical forcing amplitude below which the film undergoes a long-time capillary rupture typical for a static cylinder, whereas above it the film remains continuous. We find that it is possible to arrest the rupture even if the forcing parameters of each of the two components correspond separately to the domain where rupture takes place. It is shown that the critical forcing amplitude is easily determined via a single-frequency case when the two forcing frequencies are equal. In the case of different forcing amplitudes and frequencies, the variation of the critical forcing amplitude as a function of the frequency ratio exhibits a unique behavior displaying the emergence of spikes. A related case of an amplitude-modulated single-frequency forcing is also addressed here. For a sufficiently small frequency of the amplitude modulation, a significant increase of the pattern amplitude is observed. In the case of commensurate forcing frequencies, the flow is found to be quasiperiodic.

  20. Direct measurements of intermolecular forces by chemical force microscopy

    Science.gov (United States)

    Vezenov, Dmitri Vitalievich

    1999-12-01

    Detailed description of intermolecular forces is key to understanding a wide range of phenomena from molecular recognition to materials failure. The unique features of atomic force microscopy (AFM) to make point contact force measurements with ultra high sensitivity and to generate spatial maps of surface topography and forces have been extended to include measurements between well-defined organic molecular groups. Chemical modification of AFM probes with self-assembled monolayers (SAMs) was used to make them sensitive to specific molecular interactions. This novel chemical force microscopy (CFM) technique was used to probe forces between different molecular groups in a range of environments (vacuum, organic liquids and aqueous solutions); measure surface energetics on a nanometer scale; determine pK values of the surface acid and base groups; measure forces to stretch and unbind a short synthetic DNA duplex and map the spatial distribution of specific functional groups and their ionization state. Studies of adhesion forces demonstrated the important contribution of hydrogen bonding to interactions between simple organic functionalities. The chemical identity of the tip and substrate surfaces as well as the medium had a dramatic effect on adhesion between model monolayers. A direct correlation between surface free energy and adhesion forces was established. The adhesion between epoxy polymer and model mixed SAMs varied with the amount of hydrogen bonding component in the monolayers. A consistent interpretation of CFM measurements in polar solvents was provided by contact mechanics models and intermolecular force components theory. Forces between tips and surfaces functionalized with SAMs terminating in acid or base groups depended on their ionization state. A novel method of force titration was introduced for highly local characterization of the pK's of surface functional groups. The pH-dependent changes in friction forces were exploited to map spatially the

  1. Axial linear patellar displacement: a new measurement of patellofemoral congruence.

    Science.gov (United States)

    Urch, Scott E; Tritle, Benjamin A; Shelbourne, K Donald; Gray, Tinker

    2009-05-01

    The tools for measuring the congruence angle with digital radiography software can be difficult to use; therefore, the authors sought to develop a new, easy, and reliable method for measuring patellofemoral congruence. The abstract goes here and covers two columns. The abstract goes The linear displacement measurement will correlate well with the congruence angle measurement. here and covers two columns. Cohort study (diagnosis); Level of evidence, 2. On Merchant view radiographs obtained digitally, the authors measured the congruence angle and a new linear displacement measurement on preoperative and postoperative radiographs of 31 patients who suffered unilateral patellar dislocations and 100 uninjured subjects. The linear displacement measurement was obtained by drawing a reference line across the medial and lateral trochlear facets. Perpendicular lines were drawn from the depth of the sulcus through the reference line and from the apex of the posterior tip of the patella through the reference line. The distance between the perpendicular lines was the linear displacement measurement. The measurements were obtained twice at different sittings. The observer was blinded as to the previous measurements to establish reliability. Measurements were compared to determine whether the linear displacement measurement correlated with congruence angle. Intraobserver reliability was above r(2) = .90 for all measurements. In patients with patellar dislocations, the mean congruence angle preoperatively was 33.5 degrees , compared with 12.1 mm for linear displacement (r(2) = .92). The mean congruence angle postoperatively was 11.2 degrees, compared with 4.0 mm for linear displacement (r(2) = .89). For normal subjects, the mean congruence angle was -3 degrees and the mean linear displacement was 0.2 mm. The linear displacement measurement was found to correlate with congruence angle measurements and may be an easy and useful tool for clinicians to evaluate patellofemoral

  2. Self-referenced axial chromatic dispersion measurement in multiphoton microscopy through 2-color THG imaging.

    Science.gov (United States)

    Du, Yu; Zhuang, Ziwei; He, Jiexing; Liu, Hongji; Qiu, Ping; Wang, Ke

    2018-05-16

    With tunable excitation light, multiphoton microscopy (MPM) is widely used for imaging biological structures at subcellular resolution. Axial chromatic dispersion, present in virtually every transmissive optical system including the multiphoton microscope, leads to focal (and the resultant image) plane separation. Here we demonstrate experimentally a technique to measure the axial chromatic dispersion in a multiphoton microscope, using simultaneous 2-color third-harmonic generation (THG) imaging excited by a 2-color soliton source with tunable wavelength separation. Our technique is self-referenced, eliminating potential measurement error when 1-color tunable excitation light is used which necessitates reciprocating motion of the mechanical translation stage. Using this technique, we demonstrate measured axial chromatic dispersion with 2 different objective lenses in a multiphoton microscope. Further measurement in a biological sample also indicates that this axial chromatic dispersion, in combination with 2-color imaging, may open up opportunity for simultaneous imaging of two different axial planes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Measuring Forces between Oxide Surfaces Using the Atomic Force Microscope

    DEFF Research Database (Denmark)

    Pedersen, Henrik Guldberg; Høj, Jakob Weiland

    1996-01-01

    The interactions between colloidal particles play a major role in processing of ceramics, especially in casting processes. With the Atomic Force Microscope (AFM) it is possible to measure the inter-action force between a small oxide particle (a few micron) and a surface as function of surface...

  4. Research on the effect of wear-ring clearances to the axial and radial force of a centrifugal pump

    International Nuclear Information System (INIS)

    Zhao, W G; Qi, C X; Li, Y B; He, M Y

    2013-01-01

    Varying of the wear-ring clearance not only has a distinct effect on the volumetric loss of the centrifugal pump, but also on the performance of the centrifugal pump including the axial and radial forces. Comparing with the experimental studies, numerical simulation methods have some special advantages, such as the low cost, fast and high efficiency, and convenient to get the detailed structure of the internal flow characteristics, so it has been widely used in the fluid machinery study in recent years. In order to study the effect of wear-ring clearance on the force performance of the centrifugal pump, based on the Reynolds Time-Averaged N-S equations and RNG k-ε turbulence model, a centrifugal pump with three variable styles of the wear-rings was simulated: Only the clearance of the front wear-ring was changed, only the clearance of the back wear-ring was changed and both were changed. Comparing with the experiment, numerical results show a good agreement. In the three changing styles of the clearance, the variable of the clearance of front wear-ring has the most influence on the axial force of the centrifugal pump, while has tiny effect on the radial force for all the conditions

  5. Force measurements for levitated bulk superconductors

    International Nuclear Information System (INIS)

    Tachi, Y.; Sawa, K.; Iwasa, Y.; Nagashima, K.; Otani, T.; Miyamoto, T.; Tomita, M.; Murakami, M.

    2000-01-01

    We have developed a force measurement system which enables us to directly measure the levitation force of levitated bulk superconductors. Experimental data of the levitation forces were compared with the results of numerical simulation based on the levitation model that we deduced in our previous paper. They were in fairly good agreement, which confirms that our levitation model can be applied to the force analyses for levitated bulk superconductors. (author)

  6. Force measurements for levitated bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tachi, Y. [Department of Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama (Japan); ISTEC, Superconductivity Research Laboratory, 1-16-25 Shibaura, Minato-ku, Tokyo (Japan). E-mail: tachi at istec.or.jp; Uemura, N. [Department of Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama (Japan); ISTEC, Superconductivity Research Laboratory, 1-16-25 Shibaura, Minato-ku, Tokyo (Japan); Sawa, K. [Department of Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama (Japan); Iwasa, Y. [Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA (United States); Nagashima, K. [Railway Technical Research Institute, Hikari-cho, Kokubunji-shi, Tokyo (Japan); Otani, T.; Miyamoto, T.; Tomita, M.; Murakami, M. [ISTEC, Superconductivity Research Laboratory, 1-16-25 Shibaura, Minato-ku, Tokyo (Japan)

    2000-06-01

    We have developed a force measurement system which enables us to directly measure the levitation force of levitated bulk superconductors. Experimental data of the levitation forces were compared with the results of numerical simulation based on the levitation model that we deduced in our previous paper. They were in fairly good agreement, which confirms that our levitation model can be applied to the force analyses for levitated bulk superconductors. (author)

  7. Micro-/nanosized cantilever beams and mass sensors under applied axial tensile/compressive force vibrating in vacuum and viscous fluid

    Directory of Open Access Journals (Sweden)

    Ivo Stachiv

    2015-11-01

    Full Text Available Vibrating micro-/nanosized cantilever beams under an applied axial force are the key components of various devices used in nanotechnology. In this study, we perform a complete theoretical investigation of the cantilever beams under an arbitrary value of the axial force vibrating in a specific environment such as vacuum, air or viscous fluid. Based on the results easy accessible expressions enabling one the fast and highly accurate estimations of changes in the Q-factor and resonant frequencies of beam oscillating in viscous fluid caused by the applied axial force are derived and analyzed. It has been also shown that for beam-to-string and string vibrational regimes the mode shape starts to significantly deviate from the one known for a beam without axial force. Moreover, a linear dependency of the vibrational amplitude in resonance on the dimensionless tension parameter has been found. We revealed that only a large axial force, i.e. the string vibrational regime, significantly improves the Q-factor of beams submerged in fluid, while an increase of the axial force in beam and beam-to-string transition regimes has a negligibly small impact on the Q-factor enhancement. Experiments carried out on the carbon nanotubes and nanowires are in a good agreement with present theoretical predictions.

  8. Numerical research on the effects of impeller pump-out vanes on axial force in a solid-liquid screw centrifugal pump

    International Nuclear Information System (INIS)

    Cheng, X R; Li, R N; Gao, Y; Guo, W L

    2013-01-01

    A commercial CFD code has been used to predict the performance of a screw centrifugal pump with pump-out vanes, especially when changing regularity of impeller axial force based on the solid-liquid two-phase flow. The Unsteady Reynolds Averaged Navier-Stokes (URANS) approach has been applied to solve the unsteady, incompressible, three-dimensional turbulent. The SIMPLEC algorithm, standard wall functions and mix two-phase flow model were applied. The RNG k ε-model was used to account the turbulence effects. By changing the number of impeller pump-out vanes and width, six different screw centrifugal pump numerical simulation projects were given, and each scheme in the different solid volume fraction were calculated respectively. The change rules of axial force, velocity and pressure distribution of flow field were obtained on the different condition and different volume fraction. The results showed that the axial forces values based solid-fluid two-phase greater than based single-phase clear water, but both changing regularity of the axial force were consistent; as same condition, the same solid-phase volume concentration, with the increase of pump-out vanes number or width, the impeller axial force increased as well. Meanwhile the number of the pump-out vanes and the width of pump-out vanes in balancing the impeller axial force, there are the most optimal value

  9. Torque and Axial Loading Physics for Measuring Atmospheric Icing Load and Icing Rate

    OpenAIRE

    Mughal, Umair Najeeb; Virk, Muhammad Shakeel

    2015-01-01

    Measuring icing load and icing rate are important parameters for an atmospheric icing sensor. A new icing sensor has recently been designed and developed at Narvik University College for measuring atmospheric icing rate, icing load and icing type. Unlike the existing atmospheric icing sensors commercially available in market, which uses the axial loading for measuring icing load and icing rate, this new sensory system measures icing load and icing rate using the torque loading physics. The pe...

  10. Dose profile measurement in computerized axial tomography equipment using thermoluminescent dosemeters

    International Nuclear Information System (INIS)

    Azorin V, J.C.; Falcony, C.; Azorin N, J.

    2000-01-01

    In this work are presented the results about measuring the radiation dose profile in two equipment of computerized axial tomography (Tac). Thermoluminescent dosemeters (Dtl) of LiF, Mg, Cu, P + Ptfe in form of disks were used which were developed and made in Mexico. The results showed that Dtl are appropriated for these type of studies. (Author)

  11. Axial segregation in high intensity discharge lamps measured by laser absorption spectroscopy

    NARCIS (Netherlands)

    Stoffels, W.W.; Flikweert, A.J.; Nimalasuriya, T.; Groothuis, C.H.J.M.; Haverlag, M.; Kroesen, G.M.W.

    2005-01-01

    HID lamps containing rare earth additives (in our case dysprosium) show color separation because of axial segregation, caused by diffusion and convection. Two-dimensional atomic Dy density profiles are measured by means of laser absorption spectroscopy. The radially resolved atomic density

  12. Ambulatory Measurement of Ground Reaction Forces

    NARCIS (Netherlands)

    Veltink, Peter H.; Liedtke, Christian; Droog, Ed

    2004-01-01

    The measurement of ground reaction forces is important in the biomechanical analysis of gait and other motor activities. It is the purpose of this study to show the feasibility of ambulatory measurement of ground reaction forces using two six degrees of freedom sensors mounted under the shoe. One

  13. Measuring Air Force Contracting Customer Satisfaction

    Science.gov (United States)

    2015-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT MEASURING AIR FORCE CONTRACTING CUSTOMER SATISFACTION ...... satisfaction elements should be included in a standardized tool that measures the level of customer satisfaction for AF Contracting’s external and

  14. Measuring retinal blood flow in rats using Doppler optical coherence tomography without knowing eyeball axial length

    International Nuclear Information System (INIS)

    Liu, Wenzhong; Yi, Ji; Chen, Siyu; Jiao, Shuliang; Zhang, Hao F.

    2015-01-01

    Purpose: Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. Methods: The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. Results: In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as −0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31μl/min among four wild-type rats. The authors’ measured flow rates were consistent with results in the literature. Conclusions: By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length

  15. Measuring retinal blood flow in rats using Doppler optical coherence tomography without knowing eyeball axial length.

    Science.gov (United States)

    Liu, Wenzhong; Yi, Ji; Chen, Siyu; Jiao, Shuliang; Zhang, Hao F

    2015-09-01

    Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as -0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31 μl/min among four wild-type rats. The authors' measured flow rates were consistent with results in the literature. By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length.

  16. Measuring retinal blood flow in rats using Doppler optical coherence tomography without knowing eyeball axial length

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenzhong; Yi, Ji; Chen, Siyu [Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Jiao, Shuliang [Department of Biomedical Engineering, Florida International University, Miami, Florida 33174 (United States); Zhang, Hao F., E-mail: hfzhang@northwestern.edu [Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208 and Department of Ophthalmology, Northwestern University, Chicago, Illinois 60611 (United States)

    2015-09-15

    Purpose: Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. Methods: The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. Results: In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as −0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31μl/min among four wild-type rats. The authors’ measured flow rates were consistent with results in the literature. Conclusions: By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length.

  17. Concordance and interchangeability of biometric measurements of ocular axial length in patients awaiting cataract surgery.

    Science.gov (United States)

    Martín-Serrano, María José; Roman-Ortiz, Carmen; Villa-Sáez, M Luz; Labrador-Castellanos, M Purificación; Blanco-Carrasco, Rosario; Lozano-Ballesteros, Felicidad; Pedraza-Martín, Carmen; José-Herrero, M Teresa San; López-Ropero, Ana M; Tenías Burillo, José María

    2014-01-01

    To estimate in patients awaiting cataract surgery the concordance and interchangeability of axial eye length measurements performed with the aid of various biometric methods (optical or ultrasonic) by different operators (nurses) at different times during the period prior to surgery. We selected 182 consecutive eyes from 91 patients.Ocular axial length was measured with the aid of 2 methods (IOLMaster® and Ocuscan®) by 9 randomly allocated technicians at 2 different times during the waiting period. The concordance between measurements was evaluated by means of the intraclass correlation coefficient (ICC); the interchangeability of the results was assessed with Bland Altman plots and Passing and Bablok regression. The measurements were consistent between biometric methods (ICC 0.975, 95% confidence interval [CI] 0.968 to 0.980) and measurement dates (ICC 0.996, 95% CI 0.995 to 0.997). Interobserver agreement was more heterogeneous (ICC range 0.844 to 0.998). No systematic errors were observed among the various biometric methods and measurement dates. Because measurement of axial length in phakic patients may be technician-dependent, the technician's experience should be noted in the protocols of ophthalmology services.

  18. ZZ PWR-AXBUPRO-GKN, Measured Axial Burnup Profiles, NPP Neckarewstheim

    International Nuclear Information System (INIS)

    Neuber, Jens-Christian; Lamprecht, Thomas

    1999-01-01

    -GKN2K contains a sample of 850 Axial Burnup Shapes released by Nuclear Power Plant Neckarwestheim II, Germany, on May 03, 2000 through Siemens AG Power Generation. All of these shapes belong to one and the same fuel assembly type, namely the Siemens Konvoi fuel assembly type FOCUS (TM). For this fuel assembly type the shapes were gathered from the cycles 5 through 12 of NPP Neckarwestheim II. All the shapes refer to EOCs. The shapes are derived from in-core 3D power density distribution measurements based on flux measurements. At 28 fuel assembly positions the flux data are monitored at 32 equidistant axial nodes. Thus, one has a total of 896 measuring points These measurements are performed every fourteenth day. The measurements are performed with the aid of the Siemens/KWU's Aeroball System which has the advantage of monitoring simultaneously all the axial nodes. The high spatial resolution and the high frequency of the measurement campaigns as well as the accuracy of the measurement result in shapes of outstanding quality. For instance, the spatial resolution suffices to discriminate the flux dips caused by the presence of the spacer grids. What regards the end effect, the presence of spacer grids in the ends of the fuel zone should attract one's attention. The fuel assemblies to which the axial shapes under examination refer have had initial enrichments of 3.8 wt.-% and 4.0 wt.-% U-235. For the benchmark the initial enrichment is assumed to be 4.0 wt.-%

  19. Direct measurement of the beam deflection angle using the axial B-dot field

    Directory of Open Access Journals (Sweden)

    Xiaozhong He

    2011-05-01

    Full Text Available Beam position monitors are an important diagnostics tool for particle accelerator operation and related beam dynamics research. The measurement of the beam deflection angle, or moving direction of a charged particle beam with respect to the beam pipe axis, can provide useful additional information. Beam monitors sensitive to the beam’s azimuthal B-dot field (sometimes referred as B dots are used to measure the displacement (position of the beam centroid, as the beam generates a dipole term of the azimuthal magnetic field. Similarly, a dipole term of the axial magnetic field will be generated by the beam moving in a direction not parallel to the axis of the beam pipe. In this paper, a new method using the axial B-dot field is presented to measure the beam deflection angle directly, including the theoretical background. Simulations using the MAFIA numerical code have been performed, demonstrating a good agreement to the new established analytical model.

  20. Diameter and axial position measurement of micrometric particles by in-line digital holography using wavelet transform

    International Nuclear Information System (INIS)

    Torres, Y M; Amezquita, R; Monroy, F

    2011-01-01

    In this paper, the size and axial position of micrometric particles is obtained for an in-line Fraunhofer holography setup. The hologram reconstruction was realized using the wavelet transform. By digital image processing tools, the size distribution histogram for the particles in the sample was obtained. The contrast measurement in the amplitude reconstruction presents a peak when the axial coordinate and the register distance are equal. This fact lets the axial position in the sample be determined.

  1. Detecting chameleons through Casimir force measurements

    International Nuclear Information System (INIS)

    Brax, Philippe; Bruck, Carsten van de; Davis, Anne-Christine; Shaw, Douglas; Mota, David F.

    2007-01-01

    The best laboratory constraints on strongly coupled chameleon fields come not from tests of gravity per se but from precision measurements of the Casimir force. The chameleonic force between two nearby bodies is more akin to a Casimir-like force than a gravitational one: The chameleon force behaves as an inverse power of the distance of separation between the surfaces of two bodies, just as the Casimir force does. Additionally, experimental tests of gravity often employ a thin metallic sheet to shield electrostatic forces; however, this sheet masks any detectable signal due to the presence of a strongly coupled chameleon field. As a result of this shielding, experiments that are designed to specifically test the behavior of gravity are often unable to place any constraint on chameleon fields with a strong coupling to matter. Casimir force measurements do not employ a physical electrostatic shield and as such are able to put tighter constraints on the properties of chameleons fields with a strong matter coupling than tests of gravity. Motivated by this, we perform a full investigation on the possibility of testing chameleon models with both present and future Casimir experiments. We find that present-day measurements are not able to detect the chameleon. However, future experiments have a strong possibility of detecting or rule out a whole class of chameleon models

  2. Measurement of tool forces in diamond turning

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, J.; Dow, T.A.

    1988-12-01

    A dynamometer has been designed and built to measure forces in diamond turning. The design includes a 3-component, piezoelectric transducer. Initial experiments with this dynamometer system included verification of its predicted dynamic characteristics as well as a detailed study of cutting parameters. Many cutting experiments have been conducted on OFHC Copper and 6061-T6 Aluminum. Tests have involved investigation of velocity effects, and the effects of depth and feedrate on tool forces. Velocity has been determined to have negligible effects between 4 and 21 m/s. Forces generally increase with increasing depth of cut. Increasing feedrate does not necessarily lead to higher forces. Results suggest that a simple model may not be sufficient to describe the forces produced in the diamond turning process.

  3. Microscopic Measurements of Axial Accumulation of Red Blood Cells in Capillary Flows Effects of Deformability

    Science.gov (United States)

    Sasaki, Takahiro; Seki, Junji; Itano, Tomoaki; Sugihara-Seki, Masako

    2017-11-01

    In the microcirculation, red blood cells (RBCs) are known to accumulate in the region near the central axis of microvessels, which is called the ``axial accumulation''. Although this behavior of RBCs is considered to originate from high deformability of RBCs, there have been few experimental studies on the mechanism. In order to elucidate the effect of RBC deformability on the axial accumulation, we measured the cross-sectional distributions of RBCs flowing through capillary tubes with a high spatial resolution by a newly devised observation system for intact and softened RBCs as well as hardened RBCs to various degrees. It was found that the intact and softened RBCs are concentrated in the small area centered on the tube axis, whereas the hardened RBCs are dispersed widely over the tube cross section dependent on the degree of hardness. These results demonstrate clearly the essential role of the deformability of RBCs in the ``axial accumulation'' of RBCs. JSPS KAKENHI Grant Number 17H03176, Kansai University ORDIST group funds.

  4. Analysis of Forced Convection Heat Transfer for Axial Annular Flow of Giesekus Viscoelastic Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Mohseni, Mehdi Moayed; Rashidi, Fariborz; Movagar, Mohammad Reza Khorsand [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2015-02-15

    Analytical solutions for the forced convection heat transfer of viscoelastic fluids obeying the Giesekus model are obtained in a concentric annulus under laminar flow for both thermal and hydrodynamic fully developed conditions. Boundary conditions are assumed to be (a) constant fluxes at the walls and (b) constant temperature at the walls. Temperature profiles and Nusselt numbers are derived from dimensionless energy equation. Subsequently, effects of elasticity, mobility parameter and viscous dissipation are discussed. Results show that by increasing elasticity, Nusselt number increases. However, this trend is reversed for constant wall temperature when viscous dissipation is weak. By increasing viscous dissipation, the Nusselt number decreases for the constant flux and increases for the constant wall temperature. For the wall cooling case, when the viscous dissipation exceeds a critical value, the generated heat overcomes the heat which is removed at the walls, and fluid heats up longitudinally.

  5. Measurement of liquid holdup and axial dispersion in trickle bed reactors using radiotracer technique

    International Nuclear Information System (INIS)

    Pant, H.J.; Saroha, A.K.; Nikam, K.D.P.

    2000-01-01

    The holdup and axial dispersion of aqueous phase has been measured in trickle bed reactors as a function of liquid and gas flow rates using radioisotope tracer technique. Experiments were carried out in the glass column of inner diameter of 15.2x10 -2 m column for air-water system using three different types of packings i.e. non-porous glass beads, porous catalyst of tablet and extrudate shape. The range of liquid and gas flow rates used were 8.3x10 -5 - 3.3x1- -4 m 3 /s and 0 - 6.67x10 -4 m 3 /s, respectively. Residence time distributions of liquid phase and gas phase were measured and mean residence times were determined. The values of liquid holdup were calculated from the measured mean residence times. It was observed that the liquid holdup increases with increase in liquid flow rates and was independent of increase in gas flow rates used in the study. Two-parameter axial dispersion model was used to simulate measured residence time distribution data and values of mean residence time and Peclet number were obtained. It was observed that the values of Peclet number increases with increase in liquid flow rate for glass beads and tablets and remains almost constant for extrudates. The values of mean residence time obtained from model simulation were found to be in good agreement with the values measured experimentally. (author)

  6. Free and Forced Vibrations of an Axially-Loaded Timoshenko Multi-Span Beam Carrying a Number of Various Concentrated Elements

    Directory of Open Access Journals (Sweden)

    Yusuf Yesilce

    2012-01-01

    Full Text Available In the existing reports regarding free and forced vibrations of the beams, most of them studied a uniform beam carrying various concentrated elements using Bernoulli-Euler Beam Theory (BET but without axial force. The purpose of this paper is to utilize the numerical assembly technique to determine the exact frequency-response amplitudes of the axially-loaded Timoshenko multi-span beam carrying a number of various concentrated elements (including point masses, rotary inertias, linear springs and rotational springs and subjected to a harmonic concentrated force and the exact natural frequencies and mode shapes of the beam for the free vibration analysis. The model allows analyzing the influence of the shear and axial force and harmonic concentrated force effects and intermediate concentrated elements on the dynamic behavior of the beams by using Timoshenko Beam Theory (TBT. At first, the coefficient matrices for the intermediate concentrated elements, an intermediate pinned support, applied harmonic force, left-end support and right-end support of Timoshenko beam are derived. After the derivation of the coefficient matrices, the numerical assembly technique is used to establish the overall coefficient matrix for the whole vibrating system. Finally, solving the equations associated with the last overall coefficient matrix one determines the exact dynamic response amplitudes of the forced vibrating system corresponding to each specified exciting frequency of the harmonic force. Equating the determinant of the overall coefficient matrix to zero one determines the natural frequencies of the free vibrating system (the case of zero harmonic force and substituting the corresponding values of integration constants into the related eigenfunctions one determines the associated mode shapes. The calculated vibration amplitudes of the forced vibrating systems and the natural frequencies of the free vibrating systems are given in tables for different values of

  7. Measurement of velocity deficit at the downstream of a 1:10 axial hydrokinetic turbine model

    Energy Technology Data Exchange (ETDEWEB)

    Gunawan, Budi [ORNL; Neary, Vincent S [ORNL; Hill, Craig [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414; Chamorro, Leonardo [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414

    2012-01-01

    Wake recovery constrains the downstream spacing and density of turbines that can be deployed in turbine farms and limits the amount of energy that can be produced at a hydrokinetic energy site. This study investigates the wake recovery at the downstream of a 1:10 axial flow turbine model using a pulse-to-pulse coherent Acoustic Doppler Profiler (ADP). In addition, turbine inflow and outflow velocities were measured for calculating the thrust on the turbine. The result shows that the depth-averaged longitudinal velocity recovers to 97% of the inflow velocity at 35 turbine diameter (D) downstream of the turbine.

  8. Measuring pulsatile forces on the human cranium.

    Science.gov (United States)

    Goldberg, Cory S; Antonyshyn, Oleh; Midha, Rajiv; Fialkov, Jeffrey A

    2005-01-01

    The cyclic stresses in the cranium caused by pulsation of the brain play an important role in the design of materials for cranioplasty, as well as craniofacial development. However, these stresses have never been quantified. In this study, the force in the epidural space against the cranium was measured intraoperatively in 10 patients using a miniature force probe. Heart and ventilatory rates computed from the force tracing correlated closely with the corresponding measured values in the patients, confirming that the forces measured were indeed a result of brain pulsation. The mean outward systolic normal and tangential stresses were 54.2 kilo-Pascals (kPa) and 345.4 kPa, respectively. The systolic shear stress was 199.8 kPa. Through mechanotransduction, these stresses play a role in cranial development. The calculated yield stress of a cranioplasty repair was 0.4 MPa, which is within one order of magnitude of the known strength of common calcium-phosphate cements. This indicates a possible relation of these pulsatile forces and occult failure of calcium-phosphate cement cranioplasties through material fatigue.

  9. Measuring Density Profiles of Electrons and Heavy Particles in a Stable Axially Blown Arc

    Science.gov (United States)

    Carstensen, J.; Stoller, P.; Galletti, B.; Doiron, C. B.; Sokolov, A.

    2017-08-01

    Two-color spatial carrier wave interferometry employing pulsed 532- and 671-nm lasers is used to measure the electron-density and heavy-particle-density profiles in the stagnation point of a stable, axially blown arc in argon for currents of 50 to 200 A and stagnation point pressures of 0.2 to 16 bar. This technique takes advantage of the fact that the free-electron contribution to the refractive index depends strongly on the wavelength, while that of the heavy particles does not. The high spatial resolution achieved allows the hot core of the arc to be readily distinguished from the surrounding boundary layer. A custom-built test device is used to ensure flow conditions that lead to a stable, axisymmetric arc; this permits the reconstruction of the density and temperature profiles using a single projection (interferometric image) of the refractive-index distribution through the arc (at two wavelengths). The arc radius determined from the heavy-particle density decreases with increasing stagnation pressure and increases with the current. These measurements are in good agreement with a simple axially blown arc model taking into account Ohmic heating, radiation losses, and enthalpy flow for core temperatures of approximately 16 500 K. The measured electron density at the center of the arc agrees well with a prediction based on local thermodynamic equilibrium.

  10. Aeroacoustic measurements for an axial fan in a non-anechoic environment

    International Nuclear Information System (INIS)

    Davoudi, Behdad; Foss, John F; Morris, Scott C

    2016-01-01

    Determination of the aeroacoustic emission from an axial fan in a non-anechoic environment is a challenging experimental task given ambient noise and acoustic reflections from surrounding objects. Successful strategies to address this task for a representative nine and three blade fan are presented. An array consisting of ten microphones was constructed and placed in the upstream region of the axial fans to measure the fan acoustic signature at ten distinct locations. A novel delay and sum (DS) beamforming technique (that allows precise time delays to be established by the use of cross correlation techniques) was applied to the microphone outputs in order to separate the fans’ acoustic emissions from the ambient noise and reflections from the facility walls. A numerical simulation was developed to represent the experimental facility and the measurements. The numerical simulation indicated that the extraneous noise can be satisfactorily separated from the fan noise using the array measurements and post processing the acoustic data with the present DS beamforming technique. (paper)

  11. Unsteady Aerodynamic Force Sensing from Measured Strain

    Science.gov (United States)

    Pak, Chan-Gi

    2016-01-01

    A simple approach for computing unsteady aerodynamic forces from simulated measured strain data is proposed in this study. First, the deflection and slope of the structure are computed from the unsteady strain using the two-step approach. Velocities and accelerations of the structure are computed using the autoregressive moving average model, on-line parameter estimator, low-pass filter, and a least-squares curve fitting method together with analytical derivatives with respect to time. Finally, aerodynamic forces over the wing are computed using modal aerodynamic influence coefficient matrices, a rational function approximation, and a time-marching algorithm. A cantilevered rectangular wing built and tested at the NASA Langley Research Center (Hampton, Virginia, USA) in 1959 is used to validate the simple approach. Unsteady aerodynamic forces as well as wing deflections, velocities, accelerations, and strains are computed using the CFL3D computational fluid dynamics (CFD) code and an MSC/NASTRAN code (MSC Software Corporation, Newport Beach, California, USA), and these CFL3D-based results are assumed as measured quantities. Based on the measured strains, wing deflections, velocities, accelerations, and aerodynamic forces are computed using the proposed approach. These computed deflections, velocities, accelerations, and unsteady aerodynamic forces are compared with the CFL3D/NASTRAN-based results. In general, computed aerodynamic forces based on the lifting surface theory in subsonic speeds are in good agreement with the target aerodynamic forces generated using CFL3D code with the Euler equation. Excellent aeroelastic responses are obtained even with unsteady strain data under the signal to noise ratio of -9.8dB. The deflections, velocities, and accelerations at each sensor location are independent of structural and aerodynamic models. Therefore, the distributed strain data together with the current proposed approaches can be used as distributed deflection

  12. Measurement of ac electrical conductivity of molten glass by impedance measurement using co-axial cylinder electrode

    International Nuclear Information System (INIS)

    Shah, J.G.; Yalmali, V.S.; Tawde, Manisha; Mishra, R.

    2006-01-01

    The need of nuclear power as an energy source requires the solution of many problems. One of the most important is fixation of high level radioactive waste (HLW) in suitable borosilicate glass formulation. The major issue with this process is maximum waste loading in the final vitrified product without compromising on long term product characteristics. The electrical resistivity measurement at high temperature could not be measured with good precision using standard parallel plate electrode configuration due to error in cell constant measurement. Hence a high accuracy, calibration free technique consisting of co-axial electrodes was employed

  13. A MEMS sensor for microscale force measurements

    International Nuclear Information System (INIS)

    Majcherek, S; Aman, A; Fochtmann, J

    2016-01-01

    This paper describes the development and testing of a new MEMS-based sensor device for microscale contact force measurements. A special MEMS cell was developed to reach higher lateral resolution than common steel-based load cells with foil-type strain gauges as mechanical-electrical converters. The design provided more than one normal force measurement point with spatial resolution in submillimeter range. Specific geometric adaption of the MEMS-device allowed adjustability of its measurement range between 0.5 and 5 N. The thin film nickel-chromium piezo resistors were used to achieve a mechanical-electrical conversion. The production process was realized by established silicon processing technologies such as deep reactive ion etching and vapor deposition (sputtering). The sensor was tested in two steps. Firstly, the sensor characteristics were carried out by application of defined loads at the measurement points by a push-pull tester. As a result, the sensor showed linear behavior. A measurement system analysis (MSA1) was performed to define the reliability of the measurement system. The measured force values had the maximal relative deviation of 1% to average value of 1.97 N. Secondly, the sensor was tested under near-industrial conditions. In this context, the thermal induced relaxation behavior of the electrical connector contact springs was investigated. The handling of emerging problems during the characterization process of the sensor is also described. (paper)

  14. Propellant Slosh Force and Mass Measurement

    Directory of Open Access Journals (Sweden)

    Andrew Hunt

    2018-01-01

    Full Text Available We have used electrical capacitance tomography (ECT to instrument a demonstration tank containing kerosene and have successfully demonstrated that ECT can, in real time, (i measure propellant mass to better than 1% of total in a range of gravity fields, (ii image propellant distribution, and (iii accurately track propellant centre of mass (CoM. We have shown that the ability to track CoM enables the determination of slosh forces, and we argue that this will result in disruptive changes in a propellant tank design and use in a spacecraft. Ground testing together with real-time slosh force data will allow an improved tank design to minimize and mitigate slosh forces, while at the same time keeping the tank mass to a minimum. Fully instrumented Smart Tanks will be able to provide force vector inputs to a spacecraft inertial navigation system; this in turn will (i eliminate or reduce navigational errors, (ii reduce wait time for uncertain slosh settling, since actual slosh forces will be known, and (iii simplify slosh control hardware, hence reducing overall mass. ECT may be well suited to space borne liquid measurement applications. Measurements are independent of and unaffected by orientation or levels of g. The electronics and sensor arrays can be low in mass, and critically, the technique does not dissipate heat into the propellant, which makes it intrinsically safe and suitable for cryogenic liquids. Because of the limitations of operating in earth-bound gravity, it has not been possible to check the exact numerical accuracy of the slosh force acting on the vessel. We are therefore in the process of undertaking a further project to (i build a prototype integrated “Smart Tank for Space”, (ii undertake slosh tests in zero or microgravity, (iii develop the system for commercial ground testing, and (iv qualify ECT for use in space.

  15. Equipment to take up the axial forces occuring on fuel elements in the operation of a nuclear reactor

    International Nuclear Information System (INIS)

    Sankovich, M.

    1977-01-01

    A constructive solution for the spring support of fuel elements between a lower and upper grid is given which prevents vibrations from the influence of axial forces due to thermal expansion and/or coolant flow with the least possible resistance to the coolant flow. As plate or screw springs usually allow certain vibrations or even encourage these, and to compensate for the flow resistance thus caused nominal increase of the total cooling power is necessary, i.e. the total efficiency of the plants is lowered; therefore a combined torsion and spring was constructed. 4 each of these springs surround in an approximately horizontal plane the head of a fuel element containing the usual number of fuel rods. Each spring forms a U seen from above and surrounds the fuel element head on one side completely and about half the length of the two adjacent sides. The three sides of the spring are inbedded in the openings of the fuel element end pieces so as not to cause any nominal resistance for the coolant flow rising from the fuel elements. (HP) [de

  16. Crash worthy capacity of a hybridized epoxy-glass fiber aluminum columnar tube using repeated axial resistive force

    Energy Technology Data Exchange (ETDEWEB)

    Paruka, Perowansa [Jalan Politeknik, Kota Kinabalu (Malaysia); Siswanto, Waluyo Adi [Universiti Tun Hussein Onn Malaysia, Parit Raja (Malaysia); Maleque, Md Abdul [Universiti Islam Antarabangsa Malaysia, Kuala Lumpur (Malaysia); Shah, Mohd Kamal Mohd [Universiti Malaysia Sabah, Kota Kinabalu (Malaysia)

    2015-05-15

    A combination of aluminum columnar member with composite laminate to form a hybrid structure can be used as collapsible energy absorbers especially in automotive vehicular structures to protect occupants and cargo. A key advantage of aluminum member in composite is that it provides ductile and stable plastic collapse mechanisms with progressive deformation in a stable manner by increasing energy absorption during collision. This paper presents an experimental investigation on the influence of the number of hybrid epoxy glass layers in overwrap composite columnar tubes. Three columnar tube specimens were used and fabricated by hand lay-up method. Aluminum square hollow shape was combined with externally wrapped by using an isophthalic epoxy resin reinforced with glass fiber skin with an orientation angle of 0 .deg. /90 .deg. The aluminum columnar tube was used as reference material. Crushed hybrid-composite columnar tubes were prepared using one, two, and three layers to determine the crash worthy capacity. Quasi-static crush test was conducted using INSTRON machine with an axial loading. Results showed that crush force and the number of layers were related to the enhancement of energy absorption before the collapse of columnar tubes. The energy absorption properties of the crushed hybrid-composite columnar tubes improved significantly with the addition of layers in the overwrap. Microscopic analysis on the modes of epoxy-glass fiber laminate failure was conducted by using scanning electron microscopy.

  17. Crash worthy capacity of a hybridized epoxy-glass fiber aluminum columnar tube using repeated axial resistive force

    International Nuclear Information System (INIS)

    Paruka, Perowansa; Siswanto, Waluyo Adi; Maleque, Md Abdul; Shah, Mohd Kamal Mohd

    2015-01-01

    A combination of aluminum columnar member with composite laminate to form a hybrid structure can be used as collapsible energy absorbers especially in automotive vehicular structures to protect occupants and cargo. A key advantage of aluminum member in composite is that it provides ductile and stable plastic collapse mechanisms with progressive deformation in a stable manner by increasing energy absorption during collision. This paper presents an experimental investigation on the influence of the number of hybrid epoxy glass layers in overwrap composite columnar tubes. Three columnar tube specimens were used and fabricated by hand lay-up method. Aluminum square hollow shape was combined with externally wrapped by using an isophthalic epoxy resin reinforced with glass fiber skin with an orientation angle of 0 .deg. /90 .deg. The aluminum columnar tube was used as reference material. Crushed hybrid-composite columnar tubes were prepared using one, two, and three layers to determine the crash worthy capacity. Quasi-static crush test was conducted using INSTRON machine with an axial loading. Results showed that crush force and the number of layers were related to the enhancement of energy absorption before the collapse of columnar tubes. The energy absorption properties of the crushed hybrid-composite columnar tubes improved significantly with the addition of layers in the overwrap. Microscopic analysis on the modes of epoxy-glass fiber laminate failure was conducted by using scanning electron microscopy.

  18. Measurements and calculations of neutron fluxes through a simulation of the CRBR upper axial shielding

    International Nuclear Information System (INIS)

    Maerker, R.E.; Muckenthaler, F.J.

    1976-01-01

    Measurements, using a 4-in. Bonner Ball, have been made of the neutron fluxes penetrating a simulation of CRBR upper axial biological shielding at the Tower Shielding Facility. The simulation consisted of a 45.7 cm thick slab of SS-304 followed by a series of sodium tanks having a total thickness of 457 cm followed by slabs of carbon steel up to 61.0 cm thick. Measurements were made behind the stainless steel, behind intermediate thicknesses of 152 cm, 305 cm, and 457 cm of sodium (with the stainless steel in place), and behind various thicknesses of the carbon steel following both 305 cm and 457 cm of sodium (also with the stainless steel in place). Calculated and measured data are presented and compared

  19. Memory effect o force measurements at nanoscales

    International Nuclear Information System (INIS)

    Lisy, V.; Tothova, J.

    2011-01-01

    we have obtained an exact solution for the drift velocity of a Brownian particle in an incompressible fluid under the action of a constant force, taking into account the hydrodynamic memory in the particle motion. This velocity is proportional to the applied force but depends in a complicated manner on the time of observation t. At short times it is proportional to t and at long times it contains algebraic tails, the longest-lived of which being ∼ t -1/ 2. Due to this the velocity very slowly approaches the limiting value F/γ. As a consequence, the force F can significantly differ from the value that would be extracted from the drift measurements neglecting the inertial effects, which is a standard assumption in the interpretation of such experiments. The presented method can be equally applicable in the case of force linearly depending on the particle position. For nonlinear forces, first the open question about the choice of convention to be used in stochastic calculus should be resolved. (authors)

  20. Measurements of plasma rotation in an axially magnetized MPD arc-jet

    Energy Technology Data Exchange (ETDEWEB)

    Tobari, Hiroyuki; Ashino, Masashi; Yoshino, Kyohei; Sagi, Yukiko; Yoshinuma, Mikirou; Hattori, Kunihiko; Ando, Akira; Inutake, Masaaki [Department of Electrical Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi (Japan)

    2001-01-24

    Characteristics of an axially magnetized MPD (magneto-plasma-dynamic) arcjet plasma are investigated by spectroscopy on the HITOP (High density of Tohoku Plasma) device in Tohoku University. Plasma flow and rotational velocity and temperature of He ion and atom near the muzzle region of MPD arcjet are measured by Doppler shift and broadening of the HeI ({lambda}=578.56 nm) and HeII ({lambda}=468.58 nm) lines. From the measured radial profile of rotational velocity and temperature of He ion, the radial profiles of electrical field and space potential are calculated and it has been found that the potential profile in the core region is parabolic, which shows the plasma rotates as a rigid body. (author)

  1. Measurement-only topological quantum computation without forced measurements

    International Nuclear Information System (INIS)

    Zheng, Huaixiu; Dua, Arpit; Jiang, Liang

    2016-01-01

    We investigate the measurement-only topological quantum computation (MOTQC) approach proposed by Bonderson et al (2008 Phys. Rev. Lett. 101 010501) where the braiding operation is shown to be equivalent to a series of topological charge ‘forced measurements’ of anyons. In a forced measurement, the charge measurement is forced to yield the desired outcome (e.g. charge 0) via repeatedly measuring charges in different bases. This is a probabilistic process with a certain success probability for each trial. In practice, the number of measurements needed will vary from run to run. We show that such an uncertainty associated with forced measurements can be removed by simulating the braiding operation using a fixed number of three measurements supplemented by a correction operator. Furthermore, we demonstrate that in practice we can avoid applying the correction operator in hardware by implementing it in software. Our findings greatly simplify the MOTQC proposal and only require the capability of performing charge measurements to implement topologically protected transformations generated by braiding exchanges without physically moving anyons. (paper)

  2. Fully automatic measurements of axial vertebral rotation for assessment of spinal deformity in idiopathic scoliosis

    International Nuclear Information System (INIS)

    Forsberg, Daniel; Andersson, Mats; Knutsson, Hans; Lundström, Claes; Vavruch, Ludvig; Tropp, Hans

    2013-01-01

    Reliable measurements of spinal deformities in idiopathic scoliosis are vital, since they are used for assessing the degree of scoliosis, deciding upon treatment and monitoring the progression of the disease. However, commonly used two dimensional methods (e.g. the Cobb angle) do not fully capture the three dimensional deformity at hand in scoliosis, of which axial vertebral rotation (AVR) is considered to be of great importance. There are manual methods for measuring the AVR, but they are often time-consuming and related with a high intra- and inter-observer variability. In this paper, we present a fully automatic method for estimating the AVR in images from computed tomography. The proposed method is evaluated on four scoliotic patients with 17 vertebrae each and compared with manual measurements performed by three observers using the standard method by Aaro–Dahlborn. The comparison shows that the difference in measured AVR between automatic and manual measurements are on the same level as the inter-observer difference. This is further supported by a high intraclass correlation coefficient (0.971–0.979), obtained when comparing the automatic measurements with the manual measurements of each observer. Hence, the provided results and the computational performance, only requiring approximately 10 to 15 s for processing an entire volume, demonstrate the potential clinical value of the proposed method. (paper)

  3. Tyre contact length on dry and wet road surfaces measured by three-axial accelerometer

    Science.gov (United States)

    Matilainen, Mika; Tuononen, Ari

    2015-02-01

    We determined the tyre contact length on dry and wet roads by measuring the accelerations of the inner liner with a three-axial accelerometer. The influence of the tyre pressure, driving velocity, and tread depth on the contact length was studied in both types of road surface conditions. On dry asphalt the contact length was almost constant, regardless of the driving velocity. On wet asphalt the presence of water could be detected even at low driving velocities (e.g. 20 km/h for a worn tyre) as the contact length began to decrease from that found in the dry asphalt situation. In addition to improving the performance of active safety systems and driver warning systems, the contact length information could be beneficial for classifying and studying the aquaplaning behaviour of tyres.

  4. Fluid force predictions and experimental measurements for a magnetically levitated pediatric ventricular assist device.

    Science.gov (United States)

    Throckmorton, Amy L; Untaroiu, Alexandrina; Lim, D Scott; Wood, Houston G; Allaire, Paul E

    2007-05-01

    The latest generation of artificial blood pumps incorporates the use of magnetic bearings to levitate the rotating component of the pump, the impeller. A magnetic suspension prevents the rotating impeller from contacting the internal surfaces of the pump and reduces regions of stagnant and high shear flow that surround fluid or mechanical bearings. Applying this third-generation technology, the Virginia Artificial Heart Institute has developed a ventricular assist device (VAD) to support infants and children. In consideration of the suspension design, the axial and radial fluid forces exerted on the rotor of the pediatric VAD were estimated using computational fluid dynamics (CFD) such that fluid perturbations would be counterbalanced. In addition, a prototype was built for experimental measurements of the axial fluid forces and estimations of the radial fluid forces during operation using a blood analog mixture. The axial fluid forces for a centered impeller position were found to range from 0.5 +/- 0.01 to 1 +/- 0.02 N in magnitude for 0.5 +/- 0.095 to 3.5 +/- 0.164 Lpm over rotational speeds of 6110 +/- 0.39 to 8030 +/- 0.57% rpm. The CFD predictions for the axial forces deviated from the experimental data by approximately 8.5% with a maximum difference of 18% at higher flow rates. Similarly for the off-centered impeller conditions, the maximum radial fluid force along the y-axis was found to be -0.57 +/- 0.17 N. The maximum cross-coupling force in the x direction was found to be larger with a maximum value of 0.74 +/- 0.22 N. This resulted in a 25-35% overestimate of the radial fluid force as compared to the CFD predictions; this overestimation will lead to a far more robust magnetic suspension design. The axial and radial forces estimated from the computational results are well within a range over which a compact magnetic suspension can compensate for flow perturbations. This study also serves as an effective and novel design methodology for blood pump

  5. Output factor determination for dose measurements in axial and perpendicular planes using a silicon strip detector

    Science.gov (United States)

    Abou-Haïdar, Z.; Bocci, A.; Alvarez, M. A. G.; Espino, J. M.; Gallardo, M. I.; Cortés-Giraldo, M. A.; Ovejero, M. C.; Quesada, J. M.; Arráns, R.; Prieto, M. Ruiz; Vega-Leal, A. Pérez; Nieto, F. J. Pérez

    2012-04-01

    In this work we present the output factor measurements of a clinical linear accelerator using a silicon strip detector coupled to a new system for complex radiation therapy treatment verification. The objective of these measurements is to validate the system we built for treatment verification. The measurements were performed at the Virgin Macarena University Hospital in Seville. Irradiations were carried out with a Siemens ONCOR™ linac used to deliver radiotherapy treatment for cancer patients. The linac was operating in 6 MV photon mode; the different sizes of the fields were defined with the collimation system provided within the accelerator head. The output factor was measured with the silicon strip detector in two different layouts using two phantoms. In the first, the active area of the detector was placed perpendicular to the beam axis. In the second, the innovation consisted of a cylindrical phantom where the detector was placed in an axial plane with respect to the beam. The measured data were compared with data given by a commercial treatment planning system. Results were shown to be in a very good agreement between the compared set of data.

  6. Near DC force measurement using PVDF sensors

    Science.gov (United States)

    Ramanathan, Arun Kumar; Headings, Leon M.; Dapino, Marcelo J.

    2018-03-01

    There is a need for high-performance force sensors capable of operating at frequencies near DC while producing a minimal mass penalty. Example application areas include steering wheel sensors, powertrain torque sensors, robotic arms, and minimally invasive surgery. The beta crystallographic phase polyvinylidene fluoride (PVDF) films are suitable for this purpose owing to their large piezoelectric constant. Unlike conventional capacitive sensors, beta crystallographic phase PVDF films exhibit a broad linear range and can potentially be designed to operate without complex electronics or signal processing. A fundamental challenge that prevents the implementation of PVDF in certain high-performance applications is their inability to measure static signals, which results from their first-order electrical impedance. Charge readout algorithms have been implemented which address this issue only partially, as they often require integration of the output signal to obtain the applied force profile, resulting in signal drift and signal processing complexities. In this paper, we propose a straightforward real time drift compensation strategy that is applicable to high output impedance PVDF films. This strategy makes it possible to utilize long sample times with a minimal loss of accuracy; our measurements show that the static output remains within 5% of the original value during half-hour measurements. The sensitivity and full-scale range are shown to be determined by the feedback capacitance of the charge amplifier. A linear model of the PVDF sensor system is developed and validated against experimental measurements, along with benchmark tests against a commercial load cell.

  7. Assessing the attractive/repulsive force balance in axial cyclohexane C-Hax ···Yax contacts: A combined computational analysis in monosubstituted cyclohexanes.

    Science.gov (United States)

    Silva Lopez, Carlos; Nieto Faza, Olalla; De Proft, Frank; Kolocouris, Antonios

    2016-11-15

    The interactions of axial substituents in monosubstituted cyclohexane rings are studied in this work using an array of different computational techniques. Additionally, the anomalous axial preference for some bulky substituents is related to stabilizing dispersion interactions. We find that the C-H ax ···Y ax contacts for various substituents with distances ranging from 2 to ∼5 Å may include attractive dispersion forces that can affect the conformational equilibrium; these forces co-exist with Pauli repulsive forces effected by Y ax group due to van der Waals sphere penetration. At distances between 2 and 3 Å stabilizing electron transfer interactions were calculated and the combination of natural bond orbital and QTAIM analysis showed that, in certain cases, Y ax  =  t Bu, C ax -O or C ax  = O or S ax  = O or C ax  = S this interaction can be characterized as an improper H-bond. DFT-D3 and non-covalent interactions calculations (NCIs) in cyclohexane derivatives with Y ax  = SiOR 3 including H Yax ···H cy surfaces at distances ranging between 4 and 6 Å suggest that dispersion has a clear effect on the experimentally observed stabilization of the axial conformer. NCIs computed from the reduced density gradient help to visually identify and analyze these interactions. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Guided wave propagation as a measure of axial loads in rails

    CSIR Research Space (South Africa)

    Loveday, PW

    2010-03-01

    Full Text Available Guided wave propagation has been proposed as a means to monitor the axial loads in continuously welded railway rails although no practical system has been developed. In this paper, the influence of axial load on the guided wave propagation...

  9. Mechanism of the quasi-zero axial acoustic radiation force experienced by elastic and viscoelastic spheres in the field of a quasi-Gaussian beam and particle tweezing.

    Science.gov (United States)

    Mitri, F G; Fellah, Z E A

    2014-01-01

    The present analysis investigates the (axial) acoustic radiation force induced by a quasi-Gaussian beam centered on an elastic and a viscoelastic (polymer-type) sphere in a nonviscous fluid. The quasi-Gaussian beam is an exact solution of the source free Helmholtz wave equation and is characterized by an arbitrary waist w₀ and a diffraction convergence length known as the Rayleigh range z(R). Examples are found where the radiation force unexpectedly approaches closely to zero at some of the elastic sphere's resonance frequencies for kw₀≤1 (where this range is of particular interest in describing strongly focused or divergent beams), which may produce particle immobilization along the axial direction. Moreover, the (quasi)vanishing behavior of the radiation force is found to be correlated with conditions giving extinction of the backscattering by the quasi-Gaussian beam. Furthermore, the mechanism for the quasi-zero force is studied theoretically by analyzing the contributions of the kinetic, potential and momentum flux energy densities and their density functions. It is found that all the components vanish simultaneously at the selected ka values for the nulls. However, for a viscoelastic sphere, acoustic absorption degrades the quasi-zero radiation force. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Measuring Fractional Anisotropy of the Corpus Callosum Using Diffusion Tensor Imaging: Mid-Sagittal versus Axial Imaging Planes

    International Nuclear Information System (INIS)

    Kim, Eung Yeop; Park, Hae Jeong; Kim, Dong Hyun; Lee, Seung Koo; Kim, Jin Na

    2008-01-01

    Many diffusion tensor imaging (DTI) studies of the corpus callosum (CC) have been performed with a relatively thick slice thickness in the axial plane, which may result in underestimating the fractional anisotropy (FA) of the CC due to a partial volume effect. We hypothesized that the FA of the CC can be more accurately measured by using mid-sagittal DTI. We compared the FA values of the CC between the axial and mid-sagittal DTI. Fourteen healthy volunteers underwent MRI at 3.0 T. DTI was performed in both the mid-sagittal and axial planes. One 5-mm mid-sagittal image and twenty-five 2-mm axial images were obtained for the CC. The five regions of interest (ROIs) that included the prefrontal (I), premotor and supplementary motor (II), motor (III), sensory (IV) and parietal, temporal and occipital regions (V) were drawn along the border of the CC on each sagittal FA map. The FA values obtained from each region were compared between the two sagittal maps. The FA values of all the regions, except for region V, were significantly increased on the mid-sagittal imaging. The FA values in region IV were significantly underestimated on the mid-sagittal image from the axial imaging, compared with those in the regions I and V (p = 0.037 and p = 0.001, respectively). The FA values of the CC were significantly higher on the midsagittal DTI than those on the axial DTI in regions I-IV, and particularly in the region IV. Mid-sagittal DTI may provide more accurate FA values of the CC than can the axial DTI, and mid-sagittal DTI may be more desirable for studies that compare between patients and healthy subjects

  11. Thermal stress in a bi-material assembly with a 'piecewise-continuous' bonding layer: theorem of three axial forces

    International Nuclear Information System (INIS)

    Suhir, E

    2009-01-01

    We consider a bi-material assembly with a 'piecewise-continuous' bonding layer. The layer is characterized by different elastic constants of its 'pieces' (segments) and is assumed to be thin. Young's moduli of all the 'pieces' of the bonding layer are significantly lower than the moduli of the adherend materials. In such a situation the coefficient of thermal expansion (CTE) of the bonding material need not be accounted for. Only the interfacial compliance of the bonding layer is important. This is indeed the case for the majority of electronic, opto-electronic or photonic assemblies. We consider the situation when the assembly is manufactured at an elevated temperature and is subsequently cooled down to a low (say, room) temperature. The objective of the analysis is to develop a simple, easy-to-use and physically meaningful analytical ('mathematical') predictive model for the evaluation of the interfacial shearing stresses that arise at the boundaries of the 'pieces' (segments) of the bonding layer and at the assembly edge. The basic equation is obtained for the thermally induced forces acting in the adherends' cross-sections that correspond to the boundaries between the dissimilar portions of the bonding layer. This equation has the form of the theorem of three (bending) moments in the theory of multi-span beams lying on separate simple supports and could therefore be called the 'theorem of three axial forces'. We show, as an illustration, how this equation could be employed to design a bi-material assembly with an inhomogeneous bonding layer and with low interfacial shearing stresses. Low shearing stresses will certainly result in lower peeling stresses as well. The numerical example is carried out for an assembly with a relatively high-modulus bonding material in its mid-portion (aimed primarily at providing good adhesion and, if necessary, good heat transfer as well) and a low-modulus material in its peripheral portions (aimed primarily at bringing down the

  12. Energy distribution measurements of 300 keV transmitted protons at the axial-to-planar channeling transition in silicon

    International Nuclear Information System (INIS)

    Bulgakov, Yu.V.; Lenkeit, K.; Stolle, R.

    1983-01-01

    The energy distribution of protons with initial energy of 300 keV which passed through a 0.76 μm thick Si monocrystal film was measured under the conditions of transition from the axial to planar (110) channeling. The experimental angular dependences of the transparency coefficient and of the first three moments of the energy distributions (energy loss, straggling, and skewness) for 300 keV protons are shown. The shape of curves are discussed explaining the resonance dechanneling effect and the non-monotonic behaviour of transparency in the case of the axial-to-planar channeling transition

  13. Squeezed noise in precision force measurements

    International Nuclear Information System (INIS)

    Bocko, M.F.; Bordoni, F.; Fuligni, F.; Johnson, W.W.

    1986-01-01

    The effort to build gravitational radiation antennae with sensitivity sufficient to detect bursts of radiation from supernovae in the Virgo cluster of galaxies has caused a consideration of the fundamental limits for the detection of weak forces. The existing Weber bar detectors will be eventually limited, by the phase insensitive transducers now used, to noise temperatures no better than that of the first amplifier which follows the transducer. Even for a quantum limited amplifier this may not give the sensitivity required to definitively detect gravitational radiation. In a 'back action evasion' measurement a specific phase sensitive transducer would be used. It is believed that by the technique of measuring one of the two antenna phases it is possible to reach an effective noise temperature for the measured phase which is far below the amplifier noise temperature. This is at the expense of an infinite noise temperature in the unmeasured antenna phase and is thus described as squeezing the noise. The authors outline the theoretical model for the behavior of such systems and present data from several experiments which demonstrate the main features of a back action evasion measurement. (Auth.)

  14. Force chains in monodisperse spherical particle assemblies: Three-dimensional measurements using neutrons

    Science.gov (United States)

    Wensrich, C. M.; Kisi, E. H.; Luzin, V.; Garbe, U.; Kirstein, O.; Smith, A. L.; Zhang, J. F.

    2014-10-01

    The full triaxial stress state within individual particles in a monodisperse spherical granular assembly has been measured. This was made possible by neutron imaging and computed tomography combined with neutron diffraction strain measurement techniques and associated stress reconstruction. The assembly in question consists of 549 precision steel ball bearings under an applied axial load of 85 MPa in a cylindrical die. Clear evidence of force chains was observed in terms of both the shape of the probability distribution function for normal stresses and the network formed by highly loaded particles. An extensive analysis of the source and magnitude of uncertainty in these measurements is also presented.

  15. Two color interferometric electron density measurement in an axially blown arc

    Science.gov (United States)

    Stoller, Patrick; Carstensen, Jan; Galletti, Bernardo; Doiron, Charles; Sokolov, Alexey; Salzmann, René; Simon, Sandor; Jabs, Philipp

    2016-09-01

    High voltage circuit breakers protect the power grid by interrupting the current in case of a short circuit. To do so an arc is ignited between two contacts as they separate; transonic gas flow is used to cool and ultimately extinguish the arc at a current-zero crossing of the alternating current. A detailed understanding of the arc interruption process is needed to improve circuit breaker design. The conductivity of the partially ionized gas remaining after the current-zero crossing, a key parameter in determining whether the arc will be interrupted or not, is a function of the electron density. The electron density, in turn, is a function of the detailed dynamics of the arc cooling process, which does not necessarily occur under local thermodynamic equilibrium (LTE) conditions. In this work, we measure the spatially resolved line-integrated index of refraction in a near-current-zero arc stabilized in an axial flow of synthetic air with two nanosecond pulsed lasers at wavelengths of 532 nm and 671 nm. Generating a stable, cylindrically symmetric arc enables us to determine the three-dimensional index of refraction distribution using Abel inversion. Due to the wavelength dependence of the component of the index of refraction related to the free electrons, the information at two different wavelengths can be used to determine the electron density. This information allows us to determine how important it is to take into account non-equilibrium effects for accurate modeling of the physics of decaying arcs.

  16. Maximum Diameter Measurements of Aortic Aneurysms on Axial CT Images After Endovascular Aneurysm Repair: Sufficient for Follow-up?

    International Nuclear Information System (INIS)

    Baumueller, Stephan; Nguyen, Thi Dan Linh; Goetti, Robert Paul; Lachat, Mario; Seifert, Burkhardt; Pfammatter, Thomas; Frauenfelder, Thomas

    2011-01-01

    Purpose: To assess the accuracy of maximum diameter measurements of aortic aneurysms after endovascular aneurysm repair (EVAR) on axial computed tomographic (CT) images in comparison to maximum diameter measurements perpendicular to the intravascular centerline for follow-up by using three-dimensional (3D) volume measurements as the reference standard. Materials and Methods: Forty-nine consecutive patients (73 ± 7.5 years, range 51–88 years), who underwent EVAR of an infrarenal aortic aneurysm were retrospectively included. Two blinded readers twice independently measured the maximum aneurysm diameter on axial CT images performed at discharge, and at 1 and 2 years after intervention. The maximum diameter perpendicular to the centerline was automatically measured. Volumes of the aortic aneurysms were calculated by dedicated semiautomated 3D segmentation software (3surgery, 3mensio, the Netherlands). Changes in diameter of 0.5 cm and in volume of 10% were considered clinically significant. Intra- and interobserver agreements were calculated by intraclass correlations (ICC) in a random effects analysis of variance. The two unidimensional measurement methods were correlated to the reference standard. Results: Intra- and interobserver agreements for maximum aneurysm diameter measurements were excellent (ICC = 0.98 and ICC = 0.96, respectively). There was an excellent correlation between maximum aneurysm diameters measured on axial CT images and 3D volume measurements (r = 0.93, P < 0.001) as well as between maximum diameter measurements perpendicular to the centerline and 3D volume measurements (r = 0.93, P < 0.001). Conclusion: Measurements of maximum aneurysm diameters on axial CT images are an accurate, reliable, and robust method for follow-up after EVAR and can be used in daily routine.

  17. A Modernized UDM-600 Dynamometer-Based Setup for the Cutting Force Measurement

    Directory of Open Access Journals (Sweden)

    Ya. I. Shuliak

    2016-01-01

    Full Text Available The article considers development of a modernized UDM-600 dynamometer-based setup for measuring the cutting force components. Modernization of existing equipment to improve the method of recording the cutting force components in the automated mode is of relevance. The measuring setup allows recording the cutting force components in turning and milling, as well as the axial force and the torque in the drilling and milling operations.The article presents a block diagram and a schematic diagram of the setup to measure the cutting force components, and describes a basic principle of measuring units within the modernized setup. The developed setup uses a half-bridge strain gauge measuring circuit to record the cutting forces. To enhance the measuring circuit output voltage is used a 16-channel amplifier of LA-UN16 model with a discretely adjustable gain. To record and process electrical signals is used a data acquisition device of NI USB-6009 model, which enables transmitting the received data to a PC via USB-interface. The data acquisition device has a built-in stabilized DC power supply that is used to power the strain gauge bridges. A developed schematic diagram of the measuring setup allows us to realize this measuring device and implement its modernization.Final processing of recorded data is provided through the software developed in visual programming environment LabVIEW 9.0. The program allows us to show the real-time measuring values of the cutting force components graphically and to record the taken data to a text file.The measuring setup modernization enabled increasing measurement accuracy and reducing time for processing and analysis of experimental data obtained when measuring the cutting force components. The MT2 Department of BMSTU uses it in education and research activities and in experimental efforts and laboratory classes.

  18. Reproducibility of Abdominal Aortic Aneurysm Diameter Measurement and Growth Evaluation on Axial and Multiplanar Computed Tomography Reformations

    International Nuclear Information System (INIS)

    Dugas, Alexandre; Therasse, Éric; Kauffmann, Claude; Tang, An; Elkouri, Stephane; Nozza, Anna; Giroux, Marie-France; Oliva, Vincent L.; Soulez, Gilles

    2012-01-01

    Purpose: To compare different methods measuring abdominal aortic aneurysm (AAA) maximal diameter (Dmax) and its progression on multidetector computed tomography (MDCT) scan. Materials and Methods: Forty AAA patients with two MDCT scans acquired at different times (baseline and follow-up) were included. Three observers measured AAA diameters by seven different methods: on axial images (anteroposterior, transverse, maximal, and short-axis views) and on multiplanar reformation (MPR) images (coronal, sagittal, and orthogonal views). Diameter measurement and progression were compared over time for the seven methods. Reproducibility of measurement methods was assessed by intraclass correlation coefficient (ICC) and Bland–Altman analysis. Results: Dmax, as measured on axial slices at baseline and follow-up (FU) MDCTs, was greater than that measured using the orthogonal method (p = 0.046 for baseline and 0.028 for FU), whereas Dmax measured with the orthogonal method was greater those using all other measurement methods (p-value range: <0.0001–0.03) but anteroposterior diameter (p = 0.18 baseline and 0.10 FU). The greatest interobserver ICCs were obtained for the orthogonal and transverse methods (0.972) at baseline and for the orthogonal and sagittal MPR images at FU (0.973 and 0.977). Interobserver ICC of the orthogonal method to document AAA progression was greater (ICC = 0.833) than measurements taken on axial images (ICC = 0.662–0.780) and single-plane MPR images (0.772–0.817). Conclusion: AAA Dmax measured on MDCT axial slices overestimates aneurysm size. Diameter as measured by the orthogonal method is more reproducible, especially to document AAA progression.

  19. Axially symmetrical stresses measurement in the cylindrical tube using DIC with hole-drilling

    Science.gov (United States)

    Ma, Yinji; Yao, Xuefeng; Zhang, Danwen

    2015-03-01

    In this paper, a new method combining the digital image correlation (DIC) with the hole-drilling technology to characterize the axially symmetrical stresses of the cylindrical tube is developed. First, the theoretical expressions of the axially symmetrical stresses in the cylindrical tube are derived based on the displacement or strain fields before and after hole-drilling. Second, the release of the axially symmetrical stresses for the cylindrical tube caused by hole-drilling is simulated by the finite element method (FEM), which indicates that the axially symmetrical stresses of the cylindrical tube calculated by the cylindrical solution is more accuracy than that for traditionally planar solution. Finally, both the speckle image information and the displacement field of the cylindrical tube before and after hole-drilling are extracted by combining the DIC with the hole-drilling technology, then the axially symmetrical loading induced stresses of the cylindrical tube are obtained, which agree well with the results from the strain gauge method.

  20. Development of a commercially viable piezoelectric force sensor system for static force measurement

    Science.gov (United States)

    Liu, Jun; Luo, Xinwei; Liu, Jingcheng; Li, Min; Qin, Lan

    2017-09-01

    A compensation method for measuring static force with a commercial piezoelectric force sensor is proposed to disprove the theory that piezoelectric sensors and generators can only operate under dynamic force. After studying the model of the piezoelectric force sensor measurement system, the principle of static force measurement using a piezoelectric material or piezoelectric force sensor is analyzed. Then, the distribution law of the decay time constant of the measurement system and the variation law of the measurement system’s output are studied, and a compensation method based on the time interval threshold Δ t and attenuation threshold Δ {{u}th} is proposed. By calibrating the system and considering the influences of the environment and the hardware, a suitable Δ {{u}th} value is determined, and the system’s output attenuation is compensated based on the Δ {{u}th} value to realize the measurement. Finally, a static force measurement system with a piezoelectric force sensor is developed based on the compensation method. The experimental results confirm the successful development of a simple compensation method for static force measurement with a commercial piezoelectric force sensor. In addition, it is established that, contrary to the current perception, a piezoelectric force sensor system can be used to measure static force through further calibration.

  1. Axial Force Analysis and Balance for Semi-open Centrifugal Pump Impeller%半开式离心泵轴向力分析及平衡

    Institute of Scientific and Technical Information of China (English)

    陶晓

    2016-01-01

    When pump working, an axial force will be generated, affecting reliability and life time of pump.Using computational fluid dynamics method, the performance parameters of the pump at different speeds were obtained.The calculation results were very close to test results.It was proved that the simulation mode and computational method are relatively reliable.On the pump, balance holes with different diameter were cut to reduce axial force.The results show that the balance hole can effectively reduce axial force, at the same time it has little effect on the other properties of pump.At last, for the balance hole the optimum diameter is 2 mm.%泵在工作过程中存在着轴向力,影响泵的可靠性及使用寿命。利用计算流体力学方法,计算泵在不同转速下的性能参数,与试验结果相近,证明该计算模型、计算方法相对可信。进而对该模型开不同直径的平衡孔以泄压平衡轴向力。结果表明:平衡孔能够有效降低轴向力,同时对其他性能的影响较小。并选取直径2 mm平衡孔作为优选方案。

  2. Measurement of dynamic bite force during mastication.

    Science.gov (United States)

    Shimada, A; Yamabe, Y; Torisu, T; Baad-Hansen, L; Murata, H; Svensson, P

    2012-05-01

    Efficient mastication of different types and size of food depends on fast integration of sensory information from mechanoreceptors and central control mechanisms of jaw movements and applied bite force. The neural basis underlying mastication has been studied for decades but little progress in understanding the dynamics of bite force has been made mainly due to technical limitations of bite force recorders. The aims of this study were to develop a new intraoral bite force recorder which would allow the study of natural mastication without an increase in the occlusal vertical dimension and subsequently to analyze the relation between electromyographic (EMG) activity of jaw-closing muscles, jaw movements and bite force during mastication of five different types of food. Customized force recorders based on strain gauge sensors were fitted to the upper and lower molar teeth on the preferred chewing side in fourteen healthy and dentate subjects (21-39 years), and recordings were carried out during voluntary mastication of five different kinds of food. Intraoral force recordings were successively obtained from all subjects. anova showed that impulse of bite force as well as integrated EMG was significantly influenced by food (Pmastication with direct implications for oral rehabilitation. We also propose that the control of bite force during mastication is achieved by anticipatory adjustment and encoding of bolus characteristics. © 2012 Blackwell Publishing Ltd.

  3. Measurements of computed tomography dose index for axial and spiral CT scanners

    International Nuclear Information System (INIS)

    Breiki, G; Abbas, Y.; Diab, H.M.; Gomaa, M

    2007-01-01

    The energy deposited in the patient by the rotating x-ray beam in computed tomography produces more uniform absorbed dose values within the section of imaged tissue than those produced in conventional radiological procedures. The dose values within a specific section are determined by factors such as voltage, current, scan field, rotation angle, filtration, collimation, and section thickness and spacing. This study is a part of extensive project, aiming to investigate practice of computed tomography at various hospitals and to implement a Reference Dose Levels (RDLs) to routine CT examinations in Egypt. The dosimetric quantities proposed in the European Guidelines (EG) for CT are weighted computed tomography dose index (CTDI w ) for a single slice and dose-length product (DLP) for a complete examination. Patient-related data as well as technical parameters for head, chest, abdomen and pelvis examinations were collected for seven CT scanners in public and private hospitals.Dose measurements were performed for both axial and spiral models for a range of CT examinations using CT dosimetry head and body phantoms, and ion chamber designed for CT dosimetry. The determined CTDI w and DLP values were compared with the European Commission reference dose levels (ECRDLs) and also with some international survey results. Mean values of CTDI w had a range of 36-69 m Gy with average 55 m Gy for head, and 11-35 mGy with average 23 mGy for chest, abdomen and pelvis examinations. The current reference CTDI w values are 60 m Gy for adult head and 25 m Gy for adult Abdomen

  4. Cantilevers orthodontics forces measured by fiber sensors

    Science.gov (United States)

    Schneider, Neblyssa; Milczewski, Maura S.; de Oliveira, Valmir; Guariza Filho, Odilon; Lopes, Stephani C. P. S.; Kalinowski, Hypolito J.

    2015-09-01

    Fibers Bragg Gratings were used to evaluate the transmission of the forces generates by orthodontic mechanic based one and two cantilevers used to move molars to the upright position. The results showed levels forces of approximately 0,14N near to the root of the molar with one and two cantilevers.

  5. Rigid two-axis MEMS force plate for measuring cellular traction force

    International Nuclear Information System (INIS)

    Takahashi, Hidetoshi; Jung, Uijin G; Shimoyama, Isao; Kan, Tetsuo; Tsukagoshi, Takuya; Matsumoto, Kiyoshi

    2016-01-01

    Cellular traction force is one of the important factors for understanding cell behaviors, such as spreading, migration and differentiation. Cells are known to change their behavior according to the mechanical stiffness of the environment. However, the measurement of cell traction forces on a rigid environment has remained difficult. This paper reports a micro-electromechanical systems (MEMS) force plate that provides a cellular traction force measurement on a rigid substrate. Both the high force sensitivity and high stiffness of the substrate were obtained using piezoresistive sensing elements. The proposed force plate consists of a 70 µ m  ×  15 µ m  ×  5 µ m base as the substrate for cultivating a bovine aortic smooth muscle cell, and the supporting beams with piezoresistors on the sidewall and the surface were used to measure the forces in both the horizontal and vertical directions. The spring constant and force resolution of the fabricated force plate in the horizontal direction were 0.2 N m −1 and less than 0.05 µ N, respectively. The cell traction force was measured, and the traction force increased by approximately 1 µ N over 30 min. These results demonstrate that the proposed force plate is applicable as an effective traction force measurement. (paper)

  6. Axial segregation in high intensity discharge lamps measured by laser absorption spectroscopy

    NARCIS (Netherlands)

    Flikweert, A.J.; Nimalasuriya, T.; Groothuis, C.H.J.M.; Kroesen, G.M.W.; Stoffels, W.W.

    2005-01-01

    High intensity discharge lamps have a high efficiency. These lamps contain rare-earth additives (in our case dysprosium iodide) which radiate very efficiently. A problem is color separation in the lamp because of axial segregation of the rare-earth additives, caused by diffusion and convection. Here

  7. Design and analysis of a toroidal tester for the measurement of core losses under axial compressive stress

    Energy Technology Data Exchange (ETDEWEB)

    Alatawneh, Natheer, E-mail: natheer80@yahoo.com [Department of Mining and Materials Engineering, McGill University, QC H3A 0G4 (Canada); Rahman, Tanvir; Lowther, David A. [Department of Electrical and Computer Engineering, McGill University, QC H3A 0E9 (Canada); Chromik, Richard [Department of Mining and Materials Engineering, McGill University, QC H3A 0G4 (Canada)

    2017-06-15

    Highlights: • Develop a toroidal tester for magnetic measurements under compressive axial stress. • The shape of the toroidal ring has been verified using 3D stress analysis. • The developed design has been prototyped, and measurements were carried out. • Physical explanations for the core loss trend due to stress are provided. - Abstract: Electric machine cores are subjected to mechanical stresses due to manufacturing processes. These stresses include radial, circumferential and axial components that may have significant influences on the magnetic properties of the electrical steel and hence, on the output and efficiencies of electrical machines. Previously, most studies of iron losses due to mechanical stress have considered only radial and circumferential components. In this work, an improved toroidal tester has been designed and developed to measure the core losses and the magnetic properties of electrical steel under a compressive axial stress. The shape of the toroidal ring has been verified using 3D stress analysis. Also, 3D electromagnetic simulations show a uniform flux density distribution in the specimen with a variation of 0.03 T and a maximum average induction level of 1.5 T. The developed design has been prototyped, and measurements were carried out using a steel sample of grade 35WW300. Measurements show that applying small mechanical stresses normal to the sample thickness rises the delivered core losses, then the losses decrease continuously as the stress increases. However, the drop in core losses at high stresses does not go lower than the free-stress condition. Physical explanations for the observed trend of core losses as a function of stress are provided based on core loss separation to the hysteresis and eddy current loss components. The experimental results show that the effect of axial compressive stress on magnetic properties of electrical steel at high level of inductions becomes less pronounced.

  8. 3D micro-particle image modeling and its application in measurement resolution investigation for visual sensing based axial localization in an optical microscope

    International Nuclear Information System (INIS)

    Wang, Yuliang; Li, Xiaolai; Bi, Shusheng; Zhu, Xiaofeng; Liu, Jinhua

    2017-01-01

    Visual sensing based three dimensional (3D) particle localization in an optical microscope is important for both fundamental studies and practical applications. Compared with the lateral ( X and Y ) localization, it is more challenging to achieve a high resolution measurement of axial particle location. In this study, we aim to investigate the effect of different factors on axial measurement resolution through an analytical approach. Analytical models were developed to simulate 3D particle imaging in an optical microscope. A radius vector projection method was applied to convert the simulated particle images into radius vectors. With the obtained radius vectors, a term of axial changing rate was proposed to evaluate the measurement resolution of axial particle localization. Experiments were also conducted for comparison with that obtained through simulation. Moreover, with the proposed method, the effects of particle size on measurement resolution were discussed. The results show that the method provides an efficient approach to investigate the resolution of axial particle localization. (paper)

  9. Signatures for axial chromodynamics

    International Nuclear Information System (INIS)

    Pati, J.C.

    1978-07-01

    Within the context of basic left-right symmetry and the hypothesis of unification of weak, electromagnetic and strong forces at a mass level approximately equal to 10 4 -10 6 GeV, relatively light ''mass'' axial gluons, confined or liberated, must be postulated. The authors remark that the existence of such ''light'' axial gluons supplementing the familiar vector octet preserves the successes of QCD, both for deep inelastic processes and charmonium physics. Through the characteristic spin-spin force, generated by their exchange, they may even help resolve some of the discrepancies between vector QCD predictions and charmonium physics. The main remark of this note is that if colour is liberated, not only vector but also axial-vector gluons are produced in high-energy e - e + experiments, e.g. at PETRA and PEP, with fairly large cross-section. Distinctive decay modes of such liberated axial gluons are noted

  10. Design and analysis of a toroidal tester for the measurement of core losses under axial compressive stress

    Science.gov (United States)

    Alatawneh, Natheer; Rahman, Tanvir; Lowther, David A.; Chromik, Richard

    2017-06-01

    Electric machine cores are subjected to mechanical stresses due to manufacturing processes. These stresses include radial, circumferential and axial components that may have significant influences on the magnetic properties of the electrical steel and hence, on the output and efficiencies of electrical machines. Previously, most studies of iron losses due to mechanical stress have considered only radial and circumferential components. In this work, an improved toroidal tester has been designed and developed to measure the core losses and the magnetic properties of electrical steel under a compressive axial stress. The shape of the toroidal ring has been verified using 3D stress analysis. Also, 3D electromagnetic simulations show a uniform flux density distribution in the specimen with a variation of 0.03 T and a maximum average induction level of 1.5 T. The developed design has been prototyped, and measurements were carried out using a steel sample of grade 35WW300. Measurements show that applying small mechanical stresses normal to the sample thickness rises the delivered core losses, then the losses decrease continuously as the stress increases. However, the drop in core losses at high stresses does not go lower than the free-stress condition. Physical explanations for the observed trend of core losses as a function of stress are provided based on core loss separation to the hysteresis and eddy current loss components. The experimental results show that the effect of axial compressive stress on magnetic properties of electrical steel at high level of inductions becomes less pronounced.

  11. Axially perpendicular offset Raman scheme for reproducible measurement of housed samples in a noncircular container under variation of container orientation.

    Science.gov (United States)

    Duy, Pham K; Chang, Kyeol; Sriphong, Lawan; Chung, Hoeil

    2015-03-17

    An axially perpendicular offset (APO) scheme that is able to directly acquire reproducible Raman spectra of samples contained in an oval container under variation of container orientation has been demonstrated. This scheme utilized an axially perpendicular geometry between the laser illumination and the Raman photon detection, namely, irradiation through a sidewall of the container and gathering of the Raman photon just beneath the container. In the case of either backscattering or transmission measurements, Raman sampling volumes for an internal sample vary when the orientation of an oval container changes; therefore, the Raman intensities of acquired spectra are inconsistent. The generated Raman photons traverse the same bottom of the container in the APO scheme; the Raman sampling volumes can be relatively more consistent under the same situation. For evaluation, the backscattering, transmission, and APO schemes were simultaneously employed to measure alcohol gel samples contained in an oval polypropylene container at five different orientations and then the accuracies of the determination of the alcohol concentrations were compared. The APO scheme provided the most reproducible spectra, yielding the best accuracy when the axial offset distance was 10 mm. Monte Carlo simulations were performed to study the characteristics of photon propagation in the APO scheme and to explain the origin of the optimal offset distance that was observed. In addition, the utility of the APO scheme was further demonstrated by analyzing samples in a circular glass container.

  12. Standard practice for verification of testing frame and specimen alignment under tensile and compressive axial force application

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 Included in this practice are methods covering the determination of the amount of bending that occurs during the application of tensile and compressive forces to notched and unnotched test specimens in the elastic range and to plastic strains less than 0.002. These methods are particularly applicable to the force application rates normally used for tension testing, creep testing, and uniaxial fatigue testing.

  13. Standard practice for verification of testing frame and specimen alignment under tensile and compressive axial force application

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2014-01-01

    1.1 Included in this practice are methods covering the determination of the amount of bending that occurs during the application of tensile and compressive forces to notched and unnotched test specimens in the elastic range and to plastic strains less than 0.002. These methods are particularly applicable to the force application rates normally used for tension testing, creep testing, and uniaxial fatigue testing.

  14. Measuring Agglomeration Forces in a Financial Center

    OpenAIRE

    Bourgain, Arnaud; Pieretti, Patrice

    2006-01-01

    Basing on Scitovsky's (1954) definition of external economies and applying the method of Caballero and Lyons (1990) to macro data of Luxembourg services industry, we find significant agglomeration forces between financial intermediaries (downstream industry) on the one hand and business services and computer industry (upstream industries) on the other.

  15. Intraobserver and interobserver reproducibility in linear measurements on axial images obtained by cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    De Silva, Nathalia Cristine; Junqueira, Jose Luiz Cinta; Panzarella, Francine Keuhi; Raitz, Ricardo [Sao Leopoldo Mandic Research Center, Dept. of Oral Radiology, College of Dentistry, Sao Paulo (Brazil); Brriviera, Mauricio [Dept. of Oral Radiology, College of Dentistry, Catholic University of Brasilia, Sao Paulo (Brazil)

    2017-03-15

    This study was performed to investigate the intra- and inter-observer variability in linear measurements with axial images obtained by PreXion (PreXion Inc., San Mateo, USA) and i-CAT (Imaging Sciences International, Xoran Technologies Inc., Hatfield, USA) CBCT scanners, with different voxel sizes. A cylindrical object made from nylon with radiopaque markers (phantom) was scanned by i-CAT and PreXion 3D devices. For each axial image, measurements were taken twice in the horizontal (distance A-B) and vertical (distance C-D) directions, randomly, with a one-week interval between measurements, by four oral radiologists with five years or more experience in the use of these measuring tools. All of the obtained linear measurements had lower values than those of the phantom. The statistical analysis showed high intra- and inter-observer reliability (p=0.297). Compared to the real measurements, the measurements obtained using the i-CAT device and PreXion tomography, on average, revealed absolute errors ranging from 0.22 to 0.59 mm and from 0.23 to 0.63 mm, respectively. It can be concluded that both scanners are accurate, although the linear measurements are underestimations, with no significant differences between the evaluators.

  16. Instantaneous axial force of a high-order Bessel vortex beam of acoustic waves incident upon a rigid movable sphere.

    Science.gov (United States)

    Mitri, F G; Fellah, Z E A

    2011-08-01

    The present investigation examines the instantaneous force resulting from the interaction of an acoustical high-order Bessel vortex beam (HOBVB) with a rigid sphere. The rigid sphere case is important in fluid dynamics applications because it perfectly simulates the interaction of instantaneous sound waves in a reduced gravity environment with a levitated spherical liquid soft drop in air. Here, a closed-form solution for the instantaneous force involving the total pressure field as well as the Bessel beam parameters is obtained for the case of progressive, stationary and quasi-stationary waves. Instantaneous force examples for progressive waves are computed for both a fixed and a movable rigid sphere. The results show how the instantaneous force per unit cross-sectional surface and unit pressure varies versus the dimensionless frequency ka (k is the wave number in the fluid medium and a is the sphere's radius), the half-cone angle β and the order m of the HOBVB. It is demonstrated here that the instantaneous force is determined only for (m,n) = (0,1) (where n is the partial-wave number), and vanishes for m>0 because of symmetry. In addition, the instantaneous force and normalized amplitude velocity results are computed and compared with those of a rigid immovable (fixed) sphere. It is shown that they differ significantly for ka values below 5. The proposed analysis may be of interest in the analysis of instantaneous forces on spherical particles for particle manipulation, filtering, trapping and drug delivery. The presented solutions may also serve as a method for comparison to other solutions obtained by strictly numerical or asymptotic approaches. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. A wearable force plate system for the continuous measurement of triaxial ground reaction force in biomechanical applications

    International Nuclear Information System (INIS)

    Liu, Tao; Inoue, Yoshio; Shibata, Kyoko

    2010-01-01

    The ambulatory measurement of ground reaction force (GRF) and human motion under free-living conditions is convenient, inexpensive and never restricted to gait analysis in a laboratory environment and is therefore much desired by researchers and clinical doctors in biomedical applications. A wearable force plate system was developed by integrating small triaxial force sensors and three-dimensional (3D) inertial sensors for estimating dynamic triaxial GRF in biomechanical applications. The system, in comparison to existent systems, is characterized by being lightweight, thin and easy-to-wear. A six-axial force sensor (Nitta Co., Japan) was used as a verification measurement device to validate the static accuracy of the developed force plate. To evaluate the precision during dynamic gait measurements, we compared the measurements of the triaxial GRF and the center of pressure (CoP) by using the developed system with the reference measurements made using a stationary force plate and an optical motion analysis system. The root mean square (RMS) differences of the two transverse components (x- and y-axes) and the vertical component (z-axis) of the GRF were 4.3 ± 0.9 N, 6.0 ± 1.3 N and 12.1 ± 1.1 N, respectively, corresponding to 5.1 ± 1.1% and 6.5 ± 1% of the maximum of each transverse component and 1.3 ± 0.2% of the maximum vertical component of GRF. The RMS distance between the two systems' CoP traces was 3.2 ± 0.8 mm, corresponding to 1.2 ± 0.3% of the length of the shoe. Moreover, based on the results of the assessment of the influence of the system on natural gait, we found that gait was almost never affected. Therefore, the wearable system as an alternative device can be a potential solution for measuring CoP and triaxial GRF in non-laboratory environments

  18. Bite Forces and Their Measurement in Dogs and Cats

    Directory of Open Access Journals (Sweden)

    Se Eun Kim

    2018-04-01

    Full Text Available Bite force is generated by the interaction of the masticatory muscles, the mandibles and maxillae, the temporomandibular joints (TMJs, and the teeth. Several methods to measure bite forces in dogs and cats have been described. Direct in vivo measurement of a bite in dogs has been done; however, bite forces were highly variable due to animal volition, situation, or specific measurement technique. Bite force has been measured in vivo from anesthetized dogs by electrical stimulation of jaw adductor muscles, but this may not be reflective of volitional bite force during natural activity. In vitro bite forces have been estimated by calculation of the force produced using mechanical equations representing the jaw adductor muscles and of the mandible and skull structure Bite force can be estimated in silico using finite element analysis (FEA of the computed model of the anatomical structures. FEA can estimate bite force in extinct species; however, estimates may be lower than the measurements in live animals and would have to be validated specifically in domestic dogs and cats to be reliable. The main factors affecting the bite forces in dogs and cats are body weight and the skull’s morphology and size. Other factors such as oral pain, TMJ disorders, masticatory muscle atrophy, and malocclusion may also affect bite force. Knowledge of bite forces in dogs and cats is essential for various clinical and research fields such as the development of implants, materials, and surgical techniques as well as for forensic medicine. This paper is a summary of current knowledge of bite forces in dogs and cats, including the effect of measurement methods and of other factors.

  19. Bite Forces and Their Measurement in Dogs and Cats.

    Science.gov (United States)

    Kim, Se Eun; Arzi, Boaz; Garcia, Tanya C; Verstraete, Frank J M

    2018-01-01

    Bite force is generated by the interaction of the masticatory muscles, the mandibles and maxillae, the temporomandibular joints (TMJs), and the teeth. Several methods to measure bite forces in dogs and cats have been described. Direct in vivo measurement of a bite in dogs has been done; however, bite forces were highly variable due to animal volition, situation, or specific measurement technique. Bite force has been measured in vivo from anesthetized dogs by electrical stimulation of jaw adductor muscles, but this may not be reflective of volitional bite force during natural activity. In vitro bite forces have been estimated by calculation of the force produced using mechanical equations representing the jaw adductor muscles and of the mandible and skull structure Bite force can be estimated in silico using finite element analysis (FEA) of the computed model of the anatomical structures. FEA can estimate bite force in extinct species; however, estimates may be lower than the measurements in live animals and would have to be validated specifically in domestic dogs and cats to be reliable. The main factors affecting the bite forces in dogs and cats are body weight and the skull's morphology and size. Other factors such as oral pain, TMJ disorders, masticatory muscle atrophy, and malocclusion may also affect bite force. Knowledge of bite forces in dogs and cats is essential for various clinical and research fields such as the development of implants, materials, and surgical techniques as well as for forensic medicine. This paper is a summary of current knowledge of bite forces in dogs and cats, including the effect of measurement methods and of other factors.

  20. Optical 'dampening' of the refractive error to axial length ratio: implications for outcome measures in myopia control studies.

    Science.gov (United States)

    Cruickshank, Fiona E; Logan, Nicola S

    2018-05-01

    To gauge the extent to which differences in the refractive error axial length relationship predicted by geometrical optics are observed in actual refractive/biometric data. This study is a retrospective analysis of existing data. Right eye refractive error [RX] and axial length [AXL] data were collected on 343 6-to-7-year-old children [mean 7.18 years (S.D. 0.35)], 294 12-to-13-year-old children [mean 13.12 years (S.D. 0.32)] and 123 young adults aged 18-to-25-years [mean 20.56 years (S.D. 1.91)]. Distance RX was measured with the Shin-Nippon NVision-K 5001 infrared open-field autorefractor. Child participants were cyclopleged prior to data collection (1% Cyclopentolate Hydrochloride). Myopia was defined as a mean spherical equivalent [MSE] ≤-0.50 D. Axial length was measured using the Zeiss IOLMaster 500. Optical modelling was based on ray tracing and manipulation of parameters of a Gullstrand reduced model eye. There was a myopic shift in mean MSE with age (6-7 years +0.87 D, 12-13 years -0.06 D and 18-25 years -1.41 D), associated with an increase in mean AXL (6-7 years 22.70 mm, 12-13 years 23.49 mm and 18-25 years 23.98 mm). There was a significant negative correlation between MSE and AXL for all age groups (all p theory predicts that there will be a reduction in the RX: AXL ratio with longer eyes. The participant data although adhering to this theory show a reduced effect, with eyes with longer axial lengths having a lower refractive error to axial length ratio than predicted by model eye calculations. We propose that in myopia control intervention studies when comparing efficacy, consideration should be given to the dampening effect seen with a longer eye. © 2018 The Authors. Ophthalmic and Physiological Optics published by John Wiley & Sons Ltd on behalf of College of Optometrists.

  1. Analysis of the tractive force pattern on a knot by force measurement during laparoscopic knot tying.

    Science.gov (United States)

    Takayasu, Kenta; Yoshida, Kenji; Kinoshita, Hidefumi; Yoshimoto, Syunsuke; Oshiro, Osamu; Matsuda, Tadashi

    2017-07-19

    Quantifying surgical skills assists novice surgeons when learning operative techniques. We measured the interaction force at a ligation point and clarified the features of the force pattern among surgeons with different skill levels during laparoscopic knot tying. Forty-four surgeons were divided into three groups based on experience: 13 novice (0-5 years), 16 intermediate (6-15 years), and 15 expert (16-30 years). To assess the tractive force direction and volume during knot tying, we used a sensor that measures six force-torque values (x-axis: Fx, y-axis: Fy, z-axis: Fz, and xy-axis: Fxy) attached to a slit Penrose drain. All participants completed one double knot and five single knot sequences. We recorded completion time, force volume (FV), maximum force (MF), time over 1.5 N, duration of non-zero force, and percentage time when vertical force exceeded horizontal force (PTz). There was a significant difference between groups for completion time (p = 0.007); FV (total: p = 0.002; Fx: p = 0.004, Fy: p = 0.007, Fxy: p = 0.004, Fz: p force (p = 0.029); and PTz (p force pattern at the ligation point during suturing by surgeons with three levels of experience using a force measurement system. We revealed that both force volume and force direction differed depending on surgeons' skill level during knot tying. Copyright © 2017. Published by Elsevier Inc.

  2. Technology on precision measurement of torque and force

    International Nuclear Information System (INIS)

    2005-12-01

    This book gives a descriptions on force standards system about movement of object, direction and structure. Next, it deals with torque standards, torque measuring instrument and torque wrench with how to use, explanations, unit and test. This book written by Korea Association of standards and testing organizations is for exact measurement and test of force and torque.

  3. Axial myopathy

    DEFF Research Database (Denmark)

    Witting, Nanna; Andersen, Linda K; Vissing, John

    2016-01-01

    Classically, myopathies are categorized according to limb or cranial nerve muscle affection, but with the growing use of magnetic resonance imaging it has become evident that many well-known myopathies have significant involvement of the axial musculature. New disease entities with selective axial...

  4. Development of a Stereo Vision Measurement System for a 3D Three-Axial Pneumatic Parallel Mechanism Robot Arm

    Directory of Open Access Journals (Sweden)

    Chien-Lun Hou

    2011-02-01

    Full Text Available In this paper, a stereo vision 3D position measurement system for a three-axial pneumatic parallel mechanism robot arm is presented. The stereo vision 3D position measurement system aims to measure the 3D trajectories of the end-effector of the robot arm. To track the end-effector of the robot arm, the circle detection algorithm is used to detect the desired target and the SAD algorithm is used to track the moving target and to search the corresponding target location along the conjugate epipolar line in the stereo pair. After camera calibration, both intrinsic and extrinsic parameters of the stereo rig can be obtained, so images can be rectified according to the camera parameters. Thus, through the epipolar rectification, the stereo matching process is reduced to a horizontal search along the conjugate epipolar line. Finally, 3D trajectories of the end-effector are computed by stereo triangulation. The experimental results show that the stereo vision 3D position measurement system proposed in this paper can successfully track and measure the fifth-order polynomial trajectory and sinusoidal trajectory of the end-effector of the three- axial pneumatic parallel mechanism robot arm.

  5. Heterodyne laser Doppler distance sensor with phase coding measuring stationary as well as laterally and axially moving objects

    International Nuclear Information System (INIS)

    Pfister, T; Günther, P; Nöthen, M; Czarske, J

    2010-01-01

    Both in production engineering and process control, multidirectional displacements, deformations and vibrations of moving or rotating components have to be measured dynamically, contactlessly and with high precision. Optical sensors would be predestined for this task, but their measurement rate is often fundamentally limited. Furthermore, almost all conventional sensors measure only one measurand, i.e. either out-of-plane or in-plane distance or velocity. To solve this problem, we present a novel phase coded heterodyne laser Doppler distance sensor (PH-LDDS), which is able to determine out-of-plane (axial) position and in-plane (lateral) velocity of rough solid-state objects simultaneously and independently with a single sensor. Due to the applied heterodyne technique, stationary or purely axially moving objects can also be measured. In addition, it is shown theoretically as well as experimentally that this sensor offers concurrently high temporal resolution and high position resolution since its position uncertainty is in principle independent of the lateral object velocity in contrast to conventional distance sensors. This is a unique feature of the PH-LDDS enabling precise and dynamic position and shape measurements also of fast moving objects. With an optimized sensor setup, an average position resolution of 240 nm was obtained

  6. Measurement of the forming limit stress curve using a multi-axial tube expansion test with a digital image correlation system

    Energy Technology Data Exchange (ETDEWEB)

    Hakoyama, Tomoyuki [Department of Mechanical Systems Engineering, Graduate school of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei-shi, Tokyo, 184-8588 (Japan); Kuwabara, Toshihiko [Division of Advanced Mechanical Systems Engineering, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei-shi, Tokyo, 184-8588 (Japan)

    2013-12-16

    A servo-controlled tension-internal pressure testing machine with an optical 3D deformation analysis system (ARAMIS) was used to measure the multi-axial plastic deformation behavior of a high-strength steel sheet for a range of strain from initial yield to fracture. The testing machine is capable of applying arbitrary principal stress or strain paths to a tubular specimen using an electrical, closed-loop servo-control system for axial force and internal pressure. Tubular specimens with an inner diameter of 44.6 mm were fabricated from a high-strength steel sheet with a tensile strength of 590 MPa and a thickness of 1.2 mm by roller bending and laser welding. Several linear and non-linear stress paths in the first quadrant of the stress space were applied to the tubular specimens in order to measure the forming limit curve (FLC) and forming limit stress curve (FLSC) of the as-received test material, in addition to the contours of plastic work and the directions of plastic strain rates. The contours of plastic work and the directions of plastic strain rates measured for the linear stress path experiments were compared with those calculated using selected yield functions in order to identify the most appropriate yield function for the test material. Moreover, a Marciniak-Kuczyński type (M-K) forming limit analysis was performed using the most appropriate yield function. The calculated and measured FLC and FLSC were compared in order to validate the M-K approach. The path-dependence of the FLC and FLSC was also investigated.

  7. Recent Investments by NASA's National Force Measurement Technology Capability

    Science.gov (United States)

    Commo, Sean A.; Ponder, Jonathan D.

    2016-01-01

    The National Force Measurement Technology Capability (NFMTC) is a nationwide partnership established in 2008 and sponsored by NASA's Aeronautics Evaluation and Test Capabilities (AETC) project to maintain and further develop force measurement capabilities. The NFMTC focuses on force measurement in wind tunnels and provides operational support in addition to conducting balance research. Based on force measurement capability challenges, strategic investments into research tasks are designed to meet the experimental requirements of current and future aerospace research programs and projects. This paper highlights recent and force measurement investments into several areas including recapitalizing the strain-gage balance inventory, developing balance best practices, improving calibration and facility capabilities, and researching potential technologies to advance balance capabilities.

  8. Air Force Maintenance Technician Performance Measurement.

    Science.gov (United States)

    1979-12-28

    aMbr) ATTACHED DD , . - , .147-3 ",, EDITIoN o Fo NOV 66 IS O SOLETE 8,C) 9iCLAS S I r! ABSTRA CT Title: AIR FORCE MAINTENANCE T-,-NIIAN PERFCRMANCZ M...directions have 43 been edited to c’-nf:rm to Uhrbrock’s (1961) rules for a-zraisai forms, i.e., thoup-hts are expressed clearly and si-z!y, staze- ments...Yillarl, -Iheed 19 ,4., F. 1-ut .h ..s, ar .L . ’I’t-.man- -...." , e 3reakthrough for ?erfcrmance .- aisa !." 3usiness Horizons, 1076, 1, 66-73. Yiner, J

  9. Axial Length Variation Impacts on Superficial Retinal Vessel Density and Foveal Avascular Zone Area Measurements Using Optical Coherence Tomography Angiography.

    Science.gov (United States)

    Sampson, Danuta M; Gong, Peijun; An, Di; Menghini, Moreno; Hansen, Alex; Mackey, David A; Sampson, David D; Chen, Fred K

    2017-06-01

    To evaluate the impact of image magnification correction on superficial retinal vessel density (SRVD) and foveal avascular zone area (FAZA) measurements using optical coherence tomography angiography (OCTA). Participants with healthy retinas were recruited for ocular biometry, refraction, and RTVue XR Avanti OCTA imaging with the 3 × 3-mm protocol. The foveal and parafoveal SRVD and FAZA were quantified with custom software before and after correction for magnification error using the Littman and the modified Bennett formulae. Relative changes between corrected and uncorrected SRVD and FAZA were calculated. Forty subjects were enrolled and the median (range) age of the participants was 30 (18-74) years. The mean (range) spherical equivalent refractive error was -1.65 (-8.00 to +4.88) diopters and mean (range) axial length was 24.42 mm (21.27-28.85). Images from 13 eyes were excluded due to poor image quality leaving 67 for analysis. Relative changes in foveal and parafoveal SRVD and FAZA after correction ranged from -20% to +10%, -3% to +2%, and -20% to +51%, respectively. Image size correction in measurements of foveal SRVD and FAZA was greater than 5% in 51% and 74% of eyes, respectively. In contrast, 100% of eyes had less than 5% correction in measurements of parafoveal SRVD. Ocular biometry should be performed with OCTA to correct image magnification error induced by axial length variation. We advise caution when interpreting interocular and interindividual comparisons of SRVD and FAZA derived from OCTA without image size correction.

  10. The definition of necessary axial force for extension of initial borehole for soft soil compaction process design

    Directory of Open Access Journals (Sweden)

    Ter-Martirosyan Zaven

    2016-01-01

    Full Text Available The article provides an analytical solution of the soil pile and surrounding soil cylinder interaction problem, with the possibility of extension of the pile shaft in its construction. Presents a closed solution for determination of radial and tangential stresses in the process of expansion of the pile shaft, as well as the minimum vertical force sufficient for the crushing of the pile material and move it in radial direction to the specified value. The problem is most actual for compacted soil bases with use of piles-drains of sand and sand-gravel mixture.

  11. Bite force measurement based on fiber Bragg grating sensor

    Science.gov (United States)

    Padma, Srivani; Umesh, Sharath; Asokan, Sundarrajan; Srinivas, Talabattula

    2017-10-01

    The maximum level of voluntary bite force, which results from the combined action of muscle of mastication, joints, and teeth, i.e., craniomandibular structure, is considered as one of the major indicators for the functional state of the masticatory system. Measurement of voluntary bite force provides useful data for the jaw muscle function and activity along with assessment of prosthetics. This study proposes an in vivo methodology for the dynamic measurement of bite force employing a fiber Bragg grating (FBG) sensor known as bite force measurement device (BFMD). The BFMD developed is a noninvasive intraoral device, which transduces the bite force exerted at the occlusal surface into strain variations on a metal plate. These strain variations are acquired by the FBG sensor bonded over it. The BFMD developed facilitates adjustment of the distance between the biting platform, which is essential to capture the maximum voluntary bite force at three different positions of teeth, namely incisor, premolar, and molar sites. The clinically relevant bite forces are measured at incisor, molar, and premolar position and have been compared against each other. Furthermore, the bite forces measured with all subjects are segregated according to gender and also compared against each other.

  12. Uncertainties in forces extracted from non-contact atomic force microscopy measurements by fitting of long-range background forces

    Directory of Open Access Journals (Sweden)

    Adam Sweetman

    2014-04-01

    Full Text Available In principle, non-contact atomic force microscopy (NC-AFM now readily allows for the measurement of forces with sub-nanonewton precision on the atomic scale. In practice, however, the extraction of the often desired ‘short-range’ force from the experimental observable (frequency shift is often far from trivial. In most cases there is a significant contribution to the total tip–sample force due to non-site-specific van der Waals and electrostatic forces. Typically, the contribution from these forces must be removed before the results of the experiment can be successfully interpreted, often by comparison to density functional theory calculations. In this paper we compare the ‘on-minus-off’ method for extracting site-specific forces to a commonly used extrapolation method modelling the long-range forces using a simple power law. By examining the behaviour of the fitting method in the case of two radically different interaction potentials we show that significant uncertainties in the final extracted forces may result from use of the extrapolation method.

  13. Probing Anisotropic Surface Properties of Molybdenite by Direct Force Measurements.

    Science.gov (United States)

    Lu, Zhenzhen; Liu, Qingxia; Xu, Zhenghe; Zeng, Hongbo

    2015-10-27

    Probing anisotropic surface properties of layer-type mineral is fundamentally important in understanding its surface charge and wettability for a variety of applications. In this study, the surface properties of the face and the edge surfaces of natural molybdenite (MoS2) were investigated by direct surface force measurements using atomic force microscope (AFM). The interaction forces between the AFM tip (Si3N4) and face or edge surface of molybdenite were measured in 10 mM NaCl solutions at various pHs. The force profiles were well-fitted with classical DLVO (Derjaguin-Landau-Verwey-Overbeek) theory to determine the surface potentials of the face and the edge surfaces of molybdenite. The surface potentials of both the face and edge surfaces become more negative with increasing pH. At neutral and alkaline conditions, the edge surface exhibits more negative surface potential than the face surface, which is possibly due to molybdate and hydromolybdate ions on the edge surface. The point of zero charge (PZC) of the edge surface was determined around pH 3 while PZC of the face surface was not observed in the range of pH 3-11. The interaction forces between octadecyltrichlorosilane-treated AFM tip (OTS-tip) and face or edge surface of molybdenite were also measured at various pHs to study the wettability of molybdenite surfaces. An attractive force between the OTS-tip and the face surface was detected. The force profiles were well-fitted by considering DLVO forces and additional hydrophobic force. Our results suggest the hydrophobic feature of the face surface of molybdenite. In contrast, no attractive force between the OTS-tip and the edge surface was detected. This is the first study in directly measuring surface charge and wettability of the pristine face and edge surfaces of molybdenite through surface force measurements.

  14. Nanonewton force measurement using a modified Michelson interferometer

    International Nuclear Information System (INIS)

    Tahviliyan, Masoud; Charsooghi, Mohammad A; Akhlaghi, Ehsan A; Taghi Tavassoly, Mohammad

    2017-01-01

    In this paper, we introduce a new method to measure forces in the nanonewton range. The method is based on modification of a Michelson interferometer in which the rigid mirrors are replaced with two thin rod-like mirrors. One of the rod-like mirrors is fixed at both ends and the other has one free end. As the mirror with free end deflects in response to an applied force the spatial interference pattern is changed. Analysis of the interference fringes provides a readout of the rod deflection and thereby the applied force. The device is calibrated by applying known forces to the mirror with a free end and measuring the resulting displacement. Two different methods, mechanical and electrostatic, are used for calibration. The precision of the measurements and the propagation of the calibration uncertainty are investigated. The results show that this optical method is a good candidate for detecting small forces in the nanonewton range. (paper)

  15. Molecular force sensors to measure stress in cells

    International Nuclear Information System (INIS)

    Prabhune, Meenakshi; Rehfeldt, Florian; Schmidt, Christoph F

    2017-01-01

    Molecularly generated forces are essential for most activities of biological cells, but also for the maintenance of steady state or homeostasis. To quantitatively understand cellular dynamics in migration, division, or mechanically guided differentiation, it will be important to exactly measure stress fields within the cell and the extracellular matrix. Traction force microscopy and related techniques have been established to determine the stress transmitted from adherent cells to their substrates. However, different approaches are needed to directly assess the stress generated inside the cell. This has recently led to the development of novel molecular force sensors. In this topical review, we briefly mention methods used to measure cell-external forces, and then summarize and explain different designs for the measurement of cell-internal forces with their respective advantages and disadvantages. (topical review)

  16. Global limit load solutions for thick-walled cylinders with circumferential cracks under combined internal pressure, axial force and bending moment − Part II: Finite element validation

    International Nuclear Information System (INIS)

    Li, Yuebing; Lei, Yuebao; Gao, Zengliang

    2014-01-01

    Global limit load solutions for thick-walled cylinders with circumferential internal/external surface and through-wall defects under combined positive/negative axial force, positive/negative global bending moment and internal pressure have been developed in Part I of this paper. In this Part II, elastic-perfectly plastic 3-D finite element (FE) analyses are performed for selected cases, covering a wide range of geometries and load combinations, to validate the developed limit load solutions. The results show that these limit load solutions can predict the FE data very well for the cases with shallow or deep and short cracks and are conservative. For the cases with very long and deep cracks, the predictions are reasonably accurate and more conservative. -- Highlights: • Elastic-perfectly plastic 3D finite element limiting analyses of cylinders. • Thin/thick-walled cylinders with circumferential surface defects. • Combined loading for pressure, end-force and global bending moment. • Totally 1458 cases analysed and tabulated normalised results provided. • Results used to validate the developed limit load solutions in Part I of this paper

  17. Force measurements on a shielded coreless linear permanent magnet motor

    NARCIS (Netherlands)

    Pluk, K.J.W.; Jansen, J.W.; Lomonova, E.A.

    2014-01-01

    This paper compares force measurements on a shielded coreless linear permanent magnet motor with 2-D models. A 2-D semianalytical modeling method is applied, which is based on Fourier modeling and includes force calculations. The semianalytical modeling correctly predicts the behavior found in the

  18. Reduction of Liquid Bridge Force for 3D Microstructure Measurements

    Directory of Open Access Journals (Sweden)

    Hiroshi Murakami

    2016-05-01

    Full Text Available Recent years have witnessed an increased demand for a method for precise measurement of the microstructures of mechanical microparts, microelectromechanical systems, micromolds, optical devices, microholes, etc. This paper presents a measurement system for three-dimensional (3D microstructures that use an optical fiber probe. This probe consists of a stylus shaft with a diameter of 2.5 µm and a glass ball with a diameter of 5 µm attached to the stylus tip. In this study, the measurement system, placed in a vacuum vessel, is constructed suitably to prevent adhesion of the stylus tip to the measured surface caused by the surface force resulting from the van der Waals force, electrostatic force, and liquid bridge force. First, these surface forces are analyzed with the aim of investigating the causes of adhesion. Subsequently, the effects of pressure inside the vacuum vessel on surface forces are evaluated. As a result, it is found that the surface force is 0.13 µN when the pressure inside the vacuum vessel is 350 Pa. This effect is equivalent to a 60% reduction in the surface force in the atmosphere.

  19. Measurement of guided mode wavenumbers in soft tissue–bone mimicking phantoms using ultrasonic axial transmission

    International Nuclear Information System (INIS)

    Chen Jiangang; Su Zhongqing; Cheng Li; Foiret, Josquin; Minonzio, Jean-Gabriel; Talmant, Maryline; Laugier, Pascal

    2012-01-01

    Human soft tissue is an important factor that influences the assessment of human long bones using quantitative ultrasound techniques. To investigate such influence, a series of soft tissue–bone phantoms (a bone-mimicking plate coated with a layer of water, glycerol or silicon rubber) were ultrasonically investigated using a probe with multi-emitter and multi-receiver arrays in an axial transmission configuration. A singular value decomposition signal processing technique was applied to extract the frequency-dependent wavenumbers of several guided modes. The results indicate that the presence of a soft tissue-mimicking layer introduces additional guided modes predicted by a fluid waveguide model. The modes propagating in the bone-mimicking plate covered by the soft-tissue phantom are only slightly modified compared to their counterparts in the free bone-mimicking plate, and they are still predicted by an elastic transverse isotropic two-dimensional waveguide. Altogether these observations suggest that the soft tissue–bone phantoms can be modeled as two independent waveguides. Even in the presence of the overlying soft tissue-mimicking layer, the modes propagating in the bone-mimicking plate can still be extracted and identified. These results suggest that our approach can be applied for the purpose of the characterization of the material and structural properties of cortical bone. (paper)

  20. Force Measurements on a VAWT Blade in Parked Conditions

    Directory of Open Access Journals (Sweden)

    Anders Goude

    2017-11-01

    Full Text Available The forces on a turbine at extreme wind conditions when the turbine is parked is one of the most important design cases for the survivability of a turbine. In this work, the forces on a blade and its support arms have been measured on a 12 kW straight-bladed vertical axis wind turbine at an open site. Two cases are tested: one during electrical braking of the turbine, which allows it to rotate slowly, and one with the turbine mechanically fixed with the leading edge of the blade facing the main wind direction. The force variations with respect to wind direction are investigated, and it is seen that significant variations in forces depend on the wind direction. The measurements show that for the fixed case, when subjected to the same wind speed, the forces are lower when the blade faces the wind direction. The results also show that due to the lower forces at this particular wind direction, the average forces for the fixed blade are notably lower. Hence, it is possible to reduce the forces on a turbine blade, simply by taking the dominating wind direction into account when the turbine is parked. The measurements also show that a positive torque is generated from the blade for most wind directions, which causes the turbine to rotate in the electrically-braked case. These rotations will cause increased fatigue loads on the turbine blade.

  1. Cutting force measurement of electrical jigsaw by strain gauges

    International Nuclear Information System (INIS)

    Kazup, L; Varadine Szarka, A

    2016-01-01

    This paper describes a measuring method based on strain gauges for accurate specification of electric jigsaw's cutting force. The goal of the measurement is to provide an overall perspective about generated forces in a jigsaw's gearbox during a cutting period. The lifetime of the tool is affected by these forces primarily. This analysis is part of the research and development project aiming to develop a special linear magnetic brake for realizing automatic lifetime tests of electric jigsaws or similar handheld tools. The accurate specification of cutting force facilitates to define realistic test cycles during the automatic lifetime test. The accuracy and precision resulted by the well described cutting force characteristic and the possibility of automation provide new dimension for lifetime testing of the handheld tools with alternating movement. (paper)

  2. Sub-Angstrom oscillation amplitude non-contact atomic force microscopy for lateral force gradient measurement

    International Nuclear Information System (INIS)

    Atabak, Mehrdad; Unverdi, Ozhan; Ozer, H. Ozguer; Oral, Ahmet

    2009-01-01

    We report the first results from novel sub-Angstrom oscillation amplitude non-contact atomic force microscopy developed for lateral force gradient measurements. Quantitative lateral force gradients between a tungsten tip and Si(1 1 1)-(7 x 7) surface can be measured using this microscope. Simultaneous lateral force gradient and scanning tunnelling microscope images of single and multi atomic steps are obtained. In our measurement, tunnel current is used as feedback. The lateral stiffness contrast has been observed to be 2.5 N/m at single atomic step, in contrast to 13 N/m at multi atomic step on Si(1 1 1) surface. We also carried out a series of lateral stiffness-distance spectroscopy. We observed lateral stiffness-distance curves exhibit sharp increase in the stiffness as the sample is approached towards the surface. We usually observed positive stiffness and sometimes going into slightly negative region.

  3. Measurement of fluid film thickness on the valve plate in oil hydraulic axial piston pumps (I): bearing pad effects

    International Nuclear Information System (INIS)

    Kim, Jong Ki; Jung, Jae Youn

    2003-01-01

    The tribological mechanism between the valve plate and the cylinder block in oil hydraulic axial piston pumps plays an important role on high power density. In this study, the fluid film thickness between the valve plate and the cylinder block was measured with discharge pressure and rotational speed by use of a gap sensor, and a slip ring system in the operating period. To investigate the effect of the valve plate shapes, we designed two valve plates with different shapes: the first valve plate was without a bearing pad, while the second valve plate had a bearing pad. It was found that both valve plates behaved differently with respect to the fluid film thickness characteristics. The leakage flow rates and the shaft torque were also experimented in order to clarify the performance difference between the valve plate without a bearing pad and the valve plate with a bearing pad. From the results of this study, we found out that in the oil hydraulic axial piston pumps, the valve plate with a bearing pad showed better film thickness contours than the valve plate without a bearing pad

  4. Quantitative measurements of shear displacement using atomic force microscopy

    International Nuclear Information System (INIS)

    Wang, Wenbo; Wu, Weida; Sun, Ying; Zhao, Yonggang

    2016-01-01

    We report a method to quantitatively measure local shear deformation with high sensitivity using atomic force microscopy. The key point is to simultaneously detect both torsional and buckling motions of atomic force microscopy (AFM) cantilevers induced by the lateral piezoelectric response of the sample. This requires the quantitative calibration of torsional and buckling response of AFM. This method is validated by measuring the angular dependence of the in-plane piezoelectric response of a piece of piezoelectric α-quartz. The accurate determination of the amplitude and orientation of the in-plane piezoelectric response, without rotation, would greatly enhance the efficiency of lateral piezoelectric force microscopy.

  5. Uncertainty quantification in nanomechanical measurements using the atomic force microscope

    Science.gov (United States)

    Ryan Wagner; Robert Moon; Jon Pratt; Gordon Shaw; Arvind Raman

    2011-01-01

    Quantifying uncertainty in measured properties of nanomaterials is a prerequisite for the manufacture of reliable nanoengineered materials and products. Yet, rigorous uncertainty quantification (UQ) is rarely applied for material property measurements with the atomic force microscope (AFM), a widely used instrument that can measure properties at nanometer scale...

  6. MD1405: Demonstration of forced dynamic aperture measurements at injection

    CERN Document Server

    Carlier, Felix Simon; Persson, Tobias Hakan Bjorn; Tomas Garcia, Rogelio; CERN. Geneva. ATS Department

    2017-01-01

    Accurate measurements of dynamic aperture become more important for the LHC as it advances into increasingly nonlinear regimes of operations, as well as for the High Luminosity LHC where machine nonlinearities will have a significantly larger impact. Direct dynamic aperture measurements at top energy in the LHC are challenging, and conventional single kick methods are not viable. Dynamic aperture measurements under forced oscillation of AC dipoles have been proposed as s possible alternative observable. A first demonstration of forced DA measurements at injections energy is presented.

  7. Designing an experiment to measure cellular interaction forces

    Science.gov (United States)

    McAlinden, Niall; Glass, David G.; Millington, Owain R.; Wright, Amanda J.

    2013-09-01

    Optical trapping is a powerful tool in Life Science research and is becoming common place in many microscopy laboratories and facilities. The force applied by the laser beam on the trapped object can be accurately determined allowing any external forces acting on the trapped object to be deduced. We aim to design a series of experiments that use an optical trap to measure and quantify the interaction force between immune cells. In order to cause minimum perturbation to the sample we plan to directly trap T cells and remove the need to introduce exogenous beads to the sample. This poses a series of challenges and raises questions that need to be answered in order to design a set of effect end-point experiments. A typical cell is large compared to the beads normally trapped and highly non-uniform - can we reliably trap such objects and prevent them from rolling and re-orientating? In this paper we show how a spatial light modulator can produce a triple-spot trap, as opposed to a single-spot trap, giving complete control over the object's orientation and preventing it from rolling due, for example, to Brownian motion. To use an optical trap as a force transducer to measure an external force you must first have a reliably calibrated system. The optical trapping force is typically measured using either the theory of equipartition and observing the Brownian motion of the trapped object or using an escape force method, e.g. the viscous drag force method. In this paper we examine the relationship between force and displacement, as well as measuring the maximum displacement from equilibrium position before an object falls out of the trap, hence determining the conditions under which the different calibration methods should be applied.

  8. Dynamic steering beams for efficient force measurement in optical manipulation

    Institute of Scientific and Technical Information of China (English)

    Xiaocong Yuan; Yuquan Zhang; Rui Cao; Xing Zhao; Jing Bu; Siwei Zhu

    2011-01-01

    @@ An efficient and inexpensive method that uses a glass plate mounted onto a motorized rotating stage as a beam-steering device for the generation of dynamic optical traps is reported.Force analysis reveals that there are drag and trapping forces imposed on the bead in the opposite directions, respectively, in a viscous medium.The trapped bead will be rotated following the beam's motion before it reaches the critical escape velocity when the drag force is equal to the optical trapping force.The equilibrium condition facilitates the experimental measurement of the drag force with potential extensions to the determination of the viscosity of the medium or the refractive index of the bead.The proposed technique can easily be integrated into conventional optical microscopic systems with minimum modifications.%An efficient and inexpensive method that uses a glass plate mounted onto a motorized rotating stage as a beam-steering device for the generation of dynamic optical traps is reported. Force analysis reveals that there are drag and trapping forces imposed on the bead in the opposite directions, respectively, in a viscous medium. The trapped bead will be rotated following the beam's motion before it reaches the critical escape velocity when the drag force is equal to the optical trapping force. The equilibrium condition facilitates the experimental measurement of the drag force with potential extensions to the determination of the viscosity of the medium or the refractive index of the bead. The proposed technique can easily be integrated into conventional optical microscopic systems with minimum modifications.

  9. Support force measures of midsized men in seated positions.

    Science.gov (United States)

    Bush, Tamara Reid; Hubbard, Robert P

    2007-02-01

    Two areas not well researched in the field of seating mechanics are the distribution of normal and shear forces, and how those forces change with seat position. The availability of these data would be beneficial for the design and development of office, automotive and medical seats. To increase our knowledge in the area of seating mechanics, this study sought to measure the normal and shear loads applied to segmental supports in 12 seated positions, utilizing three inclination angles and four levels of seat back articulation that were associated with automotive driving positions. Force data from six regions, including the thorax, sacral region, buttocks, thighs, feet, and hand support were gathered using multi-axis load cells. The sample contained 23 midsized subjects with an average weight of 76.7 kg and a standard deviation of 4.2 kg, and an average height of 1745 mm with a standard deviation of 19 mm. Results were examined in terms of seat back inclination and in terms of torso articulation for relationships between seat positions and support forces. Using a repeated measures analysis, significant differences (p<0.05) were identified for normal forces relative to all inclination angles except for forces occurring at the hand support. Other significant differences were observed between normal forces behind the buttocks, pelvis, and feet for torso articulations. Significant differences in the shear forces occurred under the buttocks and posterior pelvis during changes in seat back inclination. Significant differences in shear forces were also identified for torso articulations. These data suggest that as seat back inclination or torso articulation change, significant shifts in force distribution occur.

  10. An analytical model for the prediction of fluid-elastic forces in a rod bundle subjected to axial flow: theory, experimental validation and application to PWR fuel assemblies

    International Nuclear Information System (INIS)

    Beaud, F.

    1997-01-01

    A model predicting the fluid-elastic forces in a bundle of circular cylinders subjected to axial flow is presented in this paper. Whereas previously published models were limited to circular flow channel, the present one allows to take a rectangular flow external boundary into account. For that purpose, an original approach is derived from the standard method of images. This model will eventually be used to predict the fluid-structure coupling between the flow of primary coolant and a fuel assemblies in PWR nuclear reactors. It is indeed of major importance since the flow is shown to induce quite high damping and could therefore mitigate the incidence of an external load like a seismic excitation on the dynamics of the assemblies. The proposed model is validated on two cases from the literature but still needs further comparisons with the experiments being currently carried out on the EDF set-up. The flow has been shown to induce an approximate 12% damping on a PWR fuel assembly, at nominal reactor conditions. The possible grid effect on the fluid-structure coupling has been neglected so far but will soon be investigated at EDF. (author)

  11. Magnetic moment measurement of magnetic nanoparticles using atomic force microscopy

    International Nuclear Information System (INIS)

    Park, J-W; Lee, E-C; Ju, H; Yoo, I S; Chang, W-S; Chung, B H; Kim, B S

    2008-01-01

    Magnetic moment per unit mass of magnetic nanoparticles was found by using the atomic force microscope (AFM). The mass of the nanoparticles was acquired from the resonance frequency shift of the particle-attached AFM probe and magnetic force measurement was also carried out with the AFM. Combining with magnetic field strength, the magnetic moment per unit mass of the nanoparticles was determined as a function of magnetic field strength. (technical design note)

  12. Field measurement of basal forces generated by erosive debris flows

    Science.gov (United States)

    McCoy, S.W.; Tucker, G.E.; Kean, J.W.; Coe, J.A.

    2013-01-01

    It has been proposed that debris flows cut bedrock valleys in steeplands worldwide, but field measurements needed to constrain mechanistic models of this process remain sparse due to the difficulty of instrumenting natural flows. Here we present and analyze measurements made using an automated sensor network, erosion bolts, and a 15.24 cm by 15.24 cm force plate installed in the bedrock channel floor of a steep catchment. These measurements allow us to quantify the distribution of basal forces from natural debris‒flow events that incised bedrock. Over the 4 year monitoring period, 11 debris‒flow events scoured the bedrock channel floor. No clear water flows were observed. Measurements of erosion bolts at the beginning and end of the study indicated that the bedrock channel floor was lowered by 36 to 64 mm. The basal force during these erosive debris‒flow events had a large‒magnitude (up to 21 kN, which was approximately 50 times larger than the concurrent time‒averaged mean force), high‒frequency (greater than 1 Hz) fluctuating component. We interpret these fluctuations as flow particles impacting the bed. The resulting variability in force magnitude increased linearly with the time‒averaged mean basal force. Probability density functions of basal normal forces were consistent with a generalized Pareto distribution, rather than the exponential distribution that is commonly found in experimental and simulated monodispersed granular flows and which has a lower probability of large forces. When the bed sediment thickness covering the force plate was greater than ~ 20 times the median bed sediment grain size, no significant fluctuations about the time‒averaged mean force were measured, indicating that a thin layer of sediment (~ 5 cm in the monitored cases) can effectively shield the subjacent bed from erosive impacts. Coarse‒grained granular surges and water‒rich, intersurge flow had very similar basal force distributions despite

  13. Cantilever contribution to the total electrostatic force measured with the atomic force microscope

    International Nuclear Information System (INIS)

    Guriyanova, Svetlana; Golovko, Dmytro S; Bonaccurso, Elmar

    2010-01-01

    The atomic force microscope (AFM) is a powerful tool for surface imaging at the nanometer scale and surface force measurements in the piconewton range. Among long-range surface forces, the electrostatic forces play a predominant role. They originate if the electric potentials of the substrate and of the tip of the AFM cantilever are different. A quantitative interpretation of the AFM signal is often difficult because it depends in a complicated fashion on the cantilever–tip–surface geometry. Since the electrostatic interaction is a long-range interaction, the cantilever, which is many microns from the surface, contributes to the total electrostatic force along with the tip. Here we present results of the electrostatic interaction between a conducting flat surface and horizontal or tilted cantilevers, with and without tips, at various distances from the surface. As addressed in a previous work, we show that the contribution of the cantilever to the overall force cannot be neglected. Based on a predictive model and on 3D confocal measurements, we discuss the influence of the tilting angle of the cantilever

  14. Accurate fluid force measurement based on control surface integration

    Science.gov (United States)

    Lentink, David

    2018-01-01

    Nonintrusive 3D fluid force measurements are still challenging to conduct accurately for freely moving animals, vehicles, and deforming objects. Two techniques, 3D particle image velocimetry (PIV) and a new technique, the aerodynamic force platform (AFP), address this. Both rely on the control volume integral for momentum; whereas PIV requires numerical integration of flow fields, the AFP performs the integration mechanically based on rigid walls that form the control surface. The accuracy of both PIV and AFP measurements based on the control surface integration is thought to hinge on determining the unsteady body force associated with the acceleration of the volume of displaced fluid. Here, I introduce a set of non-dimensional error ratios to show which fluid and body parameters make the error negligible. The unsteady body force is insignificant in all conditions where the average density of the body is much greater than the density of the fluid, e.g., in gas. Whenever a strongly deforming body experiences significant buoyancy and acceleration, the error is significant. Remarkably, this error can be entirely corrected for with an exact factor provided that the body has a sufficiently homogenous density or acceleration distribution, which is common in liquids. The correction factor for omitting the unsteady body force, {{{ {ρ f}} {1 - {ρ f} ( {{ρ b}+{ρ f}} )}.{( {{{{ρ }}b}+{ρ f}} )}}} , depends only on the fluid, {ρ f}, and body, {{ρ }}b, density. Whereas these straightforward solutions work even at the liquid-gas interface in a significant number of cases, they do not work for generalized bodies undergoing buoyancy in combination with appreciable body density inhomogeneity, volume change (PIV), or volume rate-of-change (PIV and AFP). In these less common cases, the 3D body shape needs to be measured and resolved in time and space to estimate the unsteady body force. The analysis shows that accounting for the unsteady body force is straightforward to non

  15. New strain measurement method at axial tensile test of thin films through direct imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jong-Eun [Department of Automotive Engineering, Seoul National Uinversity of Technolgy, 172 Gongneung-2 Dong, Nowon-Gu, Seoul (Korea, Republic of); Park, Jun-Hyub [Department of Mechatronics Engineering, College of Engineering, Tongmyong University, 535, Yongdang-Dong, Nam-Gu, Busan 608-711 (Korea, Republic of); Kang, Dong-Joong [School of Mechanical Eng., Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of)], E-mail: jhyubpark@korea.com

    2008-09-07

    This paper proposes a new method for measuring strain during a tensile test of the specimen with micrometre size through direct imaging. A specimen was newly designed for adoption of direct imaging which was the main contribution of the proposed system. The structure of the specimen has eight indicators that make it possible to adopt direct imaging and it is fabricated using the same process of microelectromechanical system (MEMS) devices to guarantee the feasibility of the tensile test. We implemented a system for non-contact in situ measurement of strain with the specimen, the image-based displacement measurement system. Extension of the gauge length in the specimen could be found robustly by computing the positions of the eight rectangular-shape indicators on the image. Also, for an easy setup procedure, the region of interest was found automatically through the analysis of the edge projection profile along the horizontal direction. To gain confidence in the reliability of the system, the tensile test for the Al-3%Ti thin film was performed, which is widely used as a material in MEMS devices. Tensile tests were performed and displacements were measured using the proposed method and also the capacitance type displacement sensor for comparison. It is demonstrated that the new strain measurement system can be effectively used in the tensile test of the specimen at microscale with easy setup and better accuracy.

  16. The application of force-sensing resistor sensors for measuring forces developed by the human hand.

    Science.gov (United States)

    Nikonovas, A; Harrison, A J L; Hoult, S; Sammut, D

    2004-01-01

    Most attempts to measure forces developed by the human hand have been implemented by placing force sensors on the object of interaction. Other researchers have placed sensors just on the subject's fingertips. In this paper, a system is described that measures forces over the entire hand using thin-film sensors and associated electronics. This system was developed by the authors and is able to obtain force readings from up to 60 thin-film sensors at rates of up to 400 samples/s per sensor. The sensors can be placed anywhere on the palm and/or fingers of the hand. The sensor readings, together with a video stream containing information about hand posture, are logged into a portable computer using a multiplexer, analogue-to-digital converter and software developed for the purpose. The system has been successfully used to measure forces involved in a range of everyday tasks such as driving a vehicle, lifting saucepans and hitting a golf ball. In the latter case, results are compared with those from an instrumented golf club. Future applications include the assessment of hand strength following disease, trauma or surgery, and to enable quantitative ergonomic investigations.

  17. Capillary force on a tilted cylinder: Atomic Force Microscope (AFM) measurements.

    Science.gov (United States)

    Kosgodagan Acharige, Sébastien; Laurent, Justine; Steinberger, Audrey

    2017-11-01

    The capillary force in situations where the liquid meniscus is asymmetric, such as the one around a tilted object, has been hitherto barely investigated even though these situations are very common in practice. In particular, the capillary force exerted on a tilted object may depend on the dipping angle i. We investigate experimentally the capillary force that applies on a tilted cylinder as a function of its dipping angle i, using a home-built tilting Atomic Force Microscope (AFM) with custom made probes. A micrometric-size rod is glued at the end of an AFM cantilever of known stiffness, whose deflection is measured when the cylindrical probe is dipped in and retracted from reference liquids. We show that a torque correction is necessary to understand the measured deflection. We give the explicit expression of this correction as a function of the probes' geometrical parameters, so that its magnitude can be readily evaluated. The results are compatible with a vertical capillary force varying as 1/cosi, in agreement with a recent theoretical prediction. Finally, we discuss the accuracy of the method for measuring the surface tension times the cosine of the contact angle of the liquid on the probe. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Measured long-range repulsive Casimir–Lifshitz forces

    Science.gov (United States)

    Munday, J. N.; Capasso, Federico; Parsegian, V. Adrian

    2014-01-01

    Quantum fluctuations create intermolecular forces that pervade macroscopic bodies1–3. At molecular separations of a few nanometres or less, these interactions are the familiar van der Waals forces4. However, as recognized in the theories of Casimir, Polder and Lifshitz5–7, at larger distances and between macroscopic condensed media they reveal retardation effects associated with the finite speed of light. Although these long-range forces exist within all matter, only attractive interactions have so far been measured between material bodies8–11. Here we show experimentally that, in accord with theoretical prediction12, the sign of the force can be changed from attractive to repulsive by suitable choice of interacting materials immersed in a fluid. The measured repulsive interaction is found to be weaker than the attractive. However, in both cases the magnitude of the force increases with decreasing surface separation. Repulsive Casimir–Lifshitz forces could allow quantum levitation of objects in a fluid and lead to a new class of switchable nanoscale devices with ultra-low static friction13–15. PMID:19129843

  19. Measured long-range repulsive Casimir-Lifshitz forces.

    Science.gov (United States)

    Munday, J N; Capasso, Federico; Parsegian, V Adrian

    2009-01-08

    Quantum fluctuations create intermolecular forces that pervade macroscopic bodies. At molecular separations of a few nanometres or less, these interactions are the familiar van der Waals forces. However, as recognized in the theories of Casimir, Polder and Lifshitz, at larger distances and between macroscopic condensed media they reveal retardation effects associated with the finite speed of light. Although these long-range forces exist within all matter, only attractive interactions have so far been measured between material bodies. Here we show experimentally that, in accord with theoretical prediction, the sign of the force can be changed from attractive to repulsive by suitable choice of interacting materials immersed in a fluid. The measured repulsive interaction is found to be weaker than the attractive. However, in both cases the magnitude of the force increases with decreasing surface separation. Repulsive Casimir-Lifshitz forces could allow quantum levitation of objects in a fluid and lead to a new class of switchable nanoscale devices with ultra-low static friction.

  20. Viscosity overshoot followed by steady state measured in uni-axial elongation of LDPE. Ole Hassager, Henrik Koblitz Rasmussen, Anders Bach and Jens Kromann Nielsen

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole; Bach, Anders

    2004-01-01

    The transient (e.g. start up of) elongational viscosity of three low-density polyethylene (LDPE) melts (BASF Lupolen 1810H, 1840D and 3020D) was measured using a filament stretching rheometer (FSR) capable of measuring at elevated temperatures. The transient uni-axial elongational viscosity showe...

  1. WP/084 Measuring Industry Agglomeration and Identifying the Driving Forces

    DEFF Research Database (Denmark)

    Howard, Emma; Tarp, Finn; Newman, Carol

    Understanding industry agglomeration and its driving forces is critical for the formulation of industrial policy in developing countries. Crucial to this process is the definition and measurement of agglomeration. We propose a new measure and examine what it reveals about the importance of transp......Understanding industry agglomeration and its driving forces is critical for the formulation of industrial policy in developing countries. Crucial to this process is the definition and measurement of agglomeration. We propose a new measure and examine what it reveals about the importance...... of transport costs, labour market pooling, and technology transfer for agglomeration processes. We contrast this analysis with insights from existing measures in the literature and find very different underlying stories at work. An exceptionally rich set of data from Vietnam makes us confident that our measure...

  2. Design rules for biomolecular adhesion: lessons from force measurements.

    Science.gov (United States)

    Leckband, Deborah

    2010-01-01

    Cell adhesion to matrix, other cells, or pathogens plays a pivotal role in many processes in biomolecular engineering. Early macroscopic methods of quantifying adhesion led to the development of quantitative models of cell adhesion and migration. The more recent use of sensitive probes to quantify the forces that alter or manipulate adhesion proteins has revealed much greater functional diversity than was apparent from population average measurements of cell adhesion. This review highlights theoretical and experimental methods that identified force-dependent molecular properties that are central to the biological activity of adhesion proteins. Experimental and theoretical methods emphasized in this review include the surface force apparatus, atomic force microscopy, and vesicle-based probes. Specific examples given illustrate how these tools have revealed unique properties of adhesion proteins and their structural origins.

  3. Reducing detrimental electrostatic effects in Casimir-force measurements and Casimir-force-based microdevices

    Science.gov (United States)

    Xu, Jun; Klimchitskaya, G. L.; Mostepanenko, V. M.; Mohideen, U.

    2018-03-01

    It is well known that residual electrostatic forces create significant difficulties in precise measurements of the Casimir force and the wide use of Casimir-operated microdevices. We experimentally demonstrate that, with the help of Ar-ion cleaning of the surfaces, it is possible to make electrostatic effects negligibly small compared to the Casimir interaction. Our experimental setup consists of a dynamic atomic force microscope supplemented with an Ar-ion gun and argon reservoir. The residual potential difference between the Au-coated surfaces of a sphere and those of a plate was measured both before and after in situ Ar-ion cleaning. It is shown that this cleaning decreases the magnitude of the residual potential by up to an order of magnitude and makes it almost independent of the separation. The gradient of the Casimir force was measured using ordinary samples subjected to Ar-ion cleaning. The obtained results are shown to be in good agreement both with previous precision measurements using specially selected samples and with theoretical predictions of the Lifshitz theory. The conclusion is made that the suggested method of in situ Ar-ion cleaning is effective in reducing the electrostatic effects and therefore is a great resource for experiments on measuring the Casimir interaction and for Casimir-operated microdevices.

  4. Measuring Industry Coagglomeration and Identifying the Driving Forces

    DEFF Research Database (Denmark)

    Howard, Emma; Newman, Carol; Tarp, Finn

    2015-01-01

    Understanding industry agglomeration and its driving forces is critical for the formulation of industrial policy in developing countries. Crucial to this process is the definition and measurement of agglomeration. We construct a new coagglomeration index based purely on the location of firms. We...... underlying stories at work. We conclude that in conducting analyses of this kind giving consideration to the source of agglomeration economies, employees or entrepreneurs, and finding an appropriate measure for agglomeration, are both crucial to the process of identifying agglomerative forces....

  5. Identification of GMS friction model without friction force measurement

    International Nuclear Information System (INIS)

    Grami, Said; Aissaoui, Hicham

    2011-01-01

    This paper deals with an online identification of the Generalized Maxwell Slip (GMS) friction model for both presliding and sliding regime at the same time. This identification is based on robust adaptive observer without friction force measurement. To apply the observer, a new approach of calculating the filtered friction force from the measurable signals is introduced. Moreover, two approximations are proposed to get the friction model linear over the unknown parameters and an approach of suitable filtering is introduced to guarantee the continuity of the model. Simulation results are presented to prove the efficiency of the approach of identification.

  6. Design and evaluation of an aeroacoustic wind tunnel for measurement of axial flow fans.

    Science.gov (United States)

    Bilka, M; Anthoine, J; Schram, C

    2011-12-01

    An anechoic wind tunnel dedicated to fan self-noise studies has been designed and constructed at the von Karman Institute The multi-chamber, mass flow driven design allows for all fan performance characteristics, aerodynamic quantities (e.g., wake turbulence measurements), and acoustic properties to be assessed in the same facility with the same conditions. The acoustic chamber performance is assessed using the optimum reference method and found to be within the ISO 3745 standards down to 150 Hz for pure tone and broadband source mechanisms. The additional influence of installation effects of an aerodynamic inlet was found to create a scattered sound field only near the source location, while still providing good anechoic results at more distant sound pressure measurement positions. It was found to have inflow properties, span-wise uniformity, and low turbulence intensity, consistent with those desired for fan self-noise studies. © 2011 Acoustical Society of America

  7. Measuring of beat up force on weaving machines

    Directory of Open Access Journals (Sweden)

    Bílek Martin

    2017-01-01

    Full Text Available The textile material (warp is stressed cyclically at a relative high frequency during the weaving process. Therefore, the special measuring device for analysis of beat up force in the textile material during the weaving process, has been devised in the Weaving Laboratory of the TUL. This paper includes a description of this measuring device. The experimental part includes measurements results for various materials (PES and VS and various warp thread densities of the produced fabric.

  8. Force and Compliance Measurements on Living Cells Using Atomic Force Microscopy (AFM

    Directory of Open Access Journals (Sweden)

    Wojcikiewicz Ewa P.

    2004-01-01

    Full Text Available We describe the use of atomic force microscopy (AFM in studies of cell adhesion and cell compliance. Our studies use the interaction between leukocyte function associated antigen-1 (LFA-1/intercellular adhesion molecule-1 (ICAM-1 as a model system. The forces required to unbind a single LFA-1/ICAM-1 bond were measured at different loading rates. This data was used to determine the dynamic strength of the LFA-1/ICAM-1 complex and characterize the activation potential that this complex overcomes during its breakage. Force measurements acquired at the multiple- bond level provided insight about the mechanism of cell adhesion. In addition, the AFM was used as a microindenter to determine the mechanical properties of cells. The applications of these methods are described using data from a previous study.

  9. Force-velocity measurements of a few growing actin filaments.

    Directory of Open Access Journals (Sweden)

    Coraline Brangbour

    2011-04-01

    Full Text Available The polymerization of actin in filaments generates forces that play a pivotal role in many cellular processes. We introduce a novel technique to determine the force-velocity relation when a few independent anchored filaments grow between magnetic colloidal particles. When a magnetic field is applied, the colloidal particles assemble into chains under controlled loading or spacing. As the filaments elongate, the beads separate, allowing the force-velocity curve to be precisely measured. In the widely accepted Brownian ratchet model, the transduced force is associated with the slowing down of the on-rate polymerization. Unexpectedly, in our experiments, filaments are shown to grow at the same rate as when they are free in solution. However, as they elongate, filaments are more confined in the interspace between beads. Higher repulsive forces result from this higher confinement, which is associated with a lower entropy. In this mechanism, the production of force is not controlled by the polymerization rate, but is a consequence of the restriction of filaments' orientational fluctuations at their attachment point.

  10. Spin motive forces, 'measurements', and spin-valves

    International Nuclear Information System (INIS)

    Barnes, S.E.

    2007-01-01

    Discussed is the spin motive force (smf) produced by a spin valve, this reflecting its dynamics. Relaxation implies an implicit measurement of the magnetization of the free layer of a valve. It is shown this has implications for the angular dependence of the torque transfer. Some discussion of recent experiments is included

  11. Model Engine Performance Measurement From Force Balance Instrumentation

    Science.gov (United States)

    Jeracki, Robert J.

    1998-01-01

    A large scale model representative of a low-noise, high bypass ratio turbofan engine was tested for acoustics and performance in the NASA Lewis 9- by 15-Foot Low-Speed Wind Tunnel. This test was part of NASA's continuing Advanced Subsonic Technology Noise Reduction Program. The low tip speed fan, nacelle, and an un-powered core passage (with core inlet guide vanes) were simulated. The fan blades and hub are mounted on a rotating thrust and torque balance. The nacelle, bypass duct stators, and core passage are attached to a six component force balance. The two balance forces, when corrected for internal pressure tares, measure the total thrust-minus-drag of the engine simulator. Corrected for scaling and other effects, it is basically the same force that the engine supports would feel, operating at similar conditions. A control volume is shown and discussed, identifying the various force components of the engine simulator thrust and definitions of net thrust. Several wind tunnel runs with nearly the same hardware installed are compared, to identify the repeatability of the measured thrust-minus-drag. Other wind tunnel runs, with hardware changes that affected fan performance, are compared to the baseline configuration, and the thrust and torque effects are shown. Finally, a thrust comparison between the force balance and nozzle gross thrust methods is shown, and both yield very similar results.

  12. Enclosed Electronic System for Force Measurements in Knee Implants

    Directory of Open Access Journals (Sweden)

    David Forchelet

    2014-08-01

    Full Text Available Total knee arthroplasty is a widely performed surgical technique. Soft tissue force balancing during the operation relies strongly on the experience of the surgeon in equilibrating tension in the collateral ligaments. Little information on the forces in the implanted prosthesis is available during surgery and post-operative treatment. This paper presents the design, fabrication and testing of an instrumented insert performing force measurements in a knee prosthesis. The insert contains a closed structure composed of printed circuit boards and incorporates a microfabricated polyimide thin-film piezoresistive strain sensor for each condylar compartment. The sensor is tested in a mechanical knee simulator that mimics in-vivo conditions. For characterization purposes, static and dynamic load patterns are applied to the instrumented insert. Results show that the sensors are able to measure forces up to 1.5 times body weight with a sensitivity fitting the requirements for the proposed use. Dynamic testing of the insert shows a good tracking of slow and fast changing forces in the knee prosthesis by the sensors.

  13. Surface contact potential patches and Casimir force measurements

    International Nuclear Information System (INIS)

    Kim, W. J.; Sushkov, A. O.; Lamoreaux, S. K.; Dalvit, D. A. R.

    2010-01-01

    We present calculations of contact potential surface patch effects that simplify previous treatments. It is shown that, because of the linearity of Laplace's equation, the presence of patch potentials does not affect an electrostatic calibration of a two-plate Casimir measurement apparatus. Using models that include long-range variations in the contact potential across the plate surfaces, a number of experimental observations can be reproduced and explained. For these models, numerical calculations show that if a voltage is applied between the plates which minimizes the force, a residual electrostatic force persists, and that the minimizing potential varies with distance. The residual force can be described by a fit to a simple two-parameter function involving the minimizing potential and its variation with distance. We show the origin of this residual force by use of a simple parallel capacitor model. Finally, the implications of a residual force that varies in a manner different from 1/d on the accuracy of previous Casimir measurements is discussed.

  14. Concurrent validity of accelerations measured using a tri-axial inertial measurement unit while walking on firm, compliant and uneven surfaces.

    Science.gov (United States)

    Cole, Michael H; van den Hoorn, Wolbert; Kavanagh, Justin K; Morrison, Steven; Hodges, Paul W; Smeathers, James E; Kerr, Graham K

    2014-01-01

    Although accelerometers are extensively used for assessing gait, limited research has evaluated the concurrent validity of these devices on less predictable walking surfaces or the comparability of different methods used for gravitational acceleration compensation. This study evaluated the concurrent validity of trunk accelerations derived from a tri-axial inertial measurement unit while walking on firm, compliant and uneven surfaces and contrasted two methods used to remove gravitational accelerations; i) subtraction of the best linear fit from the data (detrending); and ii) use of orientation information (quaternions) from the inertial measurement unit. Twelve older and twelve younger adults walked at their preferred speed along firm, compliant and uneven walkways. Accelerations were evaluated for the thoracic spine (T12) using a tri-axial inertial measurement unit and an eleven-camera Vicon system. The findings demonstrated excellent agreement between accelerations derived from the inertial measurement unit and motion analysis system, including while walking on uneven surfaces that better approximate a real-world setting (all differences firm surfaces (delta range: -0.05 to 0.06 vs. 0.00 to 0.14 m.s(-2)), whereas the quaternion method performed better when walking on compliant and uneven walkways (delta range: -0.16 to -0.02 vs. -0.07 to 0.07 m.s(-2)). The technique used to compensate for gravitational accelerations requires consideration in future research, particularly when walking on compliant and uneven surfaces. These findings demonstrate trunk accelerations can be accurately measured using a wireless inertial measurement unit and are appropriate for research that evaluates healthy populations in complex environments.

  15. Friction of ice measured using lateral force microscopy

    International Nuclear Information System (INIS)

    Bluhm, Hendrik; Inoue, Takahito; Salmeron, Miquel

    2000-01-01

    The friction of nanometer thin ice films grown on mica substrates is investigated using atomic force microscopy (AFM). Friction was found to be of similar magnitude as the static friction of ice reported in macroscopic experiments. The possible existence of a lubricating film of water due to pressure melting, frictional heating, and surface premelting is discussed based on the experimental results using noncontact, contact, and lateral force microscopy. We conclude that AFM measures the dry friction of ice due to the low scan speed and the squeezing out of the water layer between the sharp AFM tip and the ice surface. (c) 2000 The American Physical Society

  16. FEATURES OF MEASURING IN LIQUID MEDIA BY ATOMIC FORCE MICROSCOPY

    Directory of Open Access Journals (Sweden)

    Mikhail V. Zhukov

    2016-11-01

    Full Text Available Subject of Research.The paper presents results of experimental study of measurement features in liquids by atomic force microscope to identify the best modes and buffered media as well as to find possible image artifacts and ways of their elimination. Method. The atomic force microscope Ntegra Aura (NT-MDT, Russia with standard prism probe holder and liquid cell was used to carry out measurements in liquids. The calibration lattice TGQ1 (NT-MDT, Russia was chosen as investigated structure with a fixed shape and height. Main Results. The research of probe functioning in specific pH liquids (distilled water, PBS - sodium phosphate buffer, Na2HPO4 - borate buffer, NaOH 0.1 M, NaOH 0.5 M was carried out in contact and semi-contact modes. The optimal operating conditions and the best media for the liquid measurements were found. Comparison of atomic force microscopy data with the results of lattice study by scanning electron microscopy was performed. The features of the feedback system response in the «probe-surface» interaction were considered by the approach/retraction curves in the different environments. An artifact of image inversion was analyzed and recommendation for its elimination was provided. Practical Relevance. These studies reveal the possibility of fine alignment of research method for objects of organic and inorganic nature by atomic force microscopy in liquid media.

  17. Optical tweezers force measurements to study parasites chemotaxis

    Science.gov (United States)

    de Thomaz, A. A.; Pozzo, L. Y.; Fontes, A.; Almeida, D. B.; Stahl, C. V.; Santos-Mallet, J. R.; Gomes, S. A. O.; Feder, D.; Ayres, D. C.; Giorgio, S.; Cesar, C. L.

    2009-07-01

    In this work, we propose a methodology to study microorganisms chemotaxis in real time using an Optical Tweezers system. Optical Tweezers allowed real time measurements of the force vectors, strength and direction, of living parasites under chemical or other kinds of gradients. This seems to be the ideal tool to perform observations of taxis response of cells and microorganisms with high sensitivity to capture instantaneous responses to a given stimulus. Forces involved in the movement of unicellular parasites are very small, in the femto-pico-Newton range, about the same order of magnitude of the forces generated in an Optical Tweezers. We applied this methodology to investigate the Leishmania amazonensis (L. amazonensis) and Trypanossoma cruzi (T. cruzi) under distinct situations.

  18. The formulation of a peer evaluation measure for special forces: operational forces operator traits and attitude questionnaire (SFO-TAQ)

    CSIR Research Space (South Africa)

    Van Heerden, A

    2016-11-01

    Full Text Available International Military Testing Association (IMTA) Conference, New Delhi, India, 7-11 November 2016 The formulation of a peer evaluation measure for special forces: operational forces operator traits and attitude questionnaire (SFO-TAQ) Van Heerden A...

  19. Correlation between interstitial flow and pore structure in packed bed. 1st Report. Axial velocity measurement using MRI and visualization of axial channel flow; Juten sonai ryudo to kugeki kozo no sokan. 1. MRI ni yoru jikuhoko ryusoku bunpu no keisoku to jikiuhoko channel ryu no kashika

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, K; Yokouchi, Y; Hirai, S [Tokyo Institute of Technology, Tokyo (Japan)

    2000-02-25

    Structure and velocity measurements using magnetic resonance imaging (MRI) have been performed experimentally to obtain a correlation between pore structure and interstitial flow through the packed bed of 5 mm diameter in the tube of 36 mm ID. To measure axial velocity maps of water flow through the packed bed, the phase method of using the phase difference of water spin magnetization between flowing and stagnant fluids by applying magnetic fields with bipolar gradients was employed. The spatial resolution of the obtained map in 0.2 mm x 0.2 mm x 0.5 mm. It was made clear from the obtained axial velocity maps that channel flows with higher axial velocity were induced not only near the wall but also in the internal region of the packed bed. Furthermore, pore structure of the packed bed was characterized from multi-slice images by partitioning of void space and combining of each pore section along the axial direction to analyze the structure-flow correlation. It was found from image analysis that axial channels with long and straight void space existed in the pore structure, and that most of the channel flows with higher axial velocity were induced in the axial channels. The flow rate through an axial channel depends on the square of the averaged cross section of the axial channel. (author)

  20. Comparison of automated 4-chamber cardiac views versus axial views for measuring right ventricular enlargement in patients with suspected pulmonary embolism

    International Nuclear Information System (INIS)

    Wittenberg, R.; Vliet, J.W. van; Ghaye, B.; Peters, J.F.; Schaefer-Prokop, C.M.; Coche, E.

    2012-01-01

    Purpose: Compare the right ventricle to left ventricle (RV/LV) diameter ratio obtained from axial pulmonary CT angiograms (CTPA) with those derived from automatically generated 4-chamber (4-CH) reformats in patients with suspected pulmonary embolism (PE). Methods: In this institutional review board-approved study we included 120 consecutive non ECG-gated CTPA from 3 institutions (mean age 60 ± 16 years; 71 women). Twenty 64-slice CTPA with PE and 20 without PE were selected per institution. For each patient the RV/LV diameter ratio was obtained from both axial CTPA images and automatically generated 4-CH reformats. Measurements were performed twice in two separated sessions by 2 experienced radiologists and 2 residents. The differences between the measurements on both views were evaluated. Results: The 4-CH view was successfully obtained in 113 patients. The mean axial and 4-CH diameter ratios were comparable for three of the four readers (p = 0.56, p = 0.13, p = 0.08). Although the mean diameters (1.0 and 1.03 respectively) for one resident were significantly different (p = 0.013), the difference of 0.03 seems negligible in clinical routine. Three readers achieved equally high intra-reader agreements with both measurements (ICCs of 0.94, 0.95 and 0.96), while one reader showed a different variability with ICCs of 0.96 for the axial view and 0.91 for the 4-CH view. The inter-reader agreement was equally high for both measurement types with ICCs of 0.95 and 0.94, respectively. Conclusion: In patients with suspected PE, RV/LV diameters ratio can be measured with the same reproducibility and accuracy using an automatically generated 4-CH view compared to the axial view.

  1. Development of a shear force measurement dummy for seat comfort.

    Directory of Open Access Journals (Sweden)

    Seong Guk Kim

    Full Text Available Seat comfort is one of the main factors that consumers consider when purchasing a car. In this study, we develop a dummy with a shear-force sensor to evaluate seat comfort. The sensor has dimensions of 25 mm × 25 mm × 26 mm and is made of S45C. Electroless nickel plating is employed to coat its surface in order to prevent corrosion and oxidation. The proposed sensor is validated using a qualified load cell and shows high accuracy and precision (measurement range: -30-30 N; sensitivity: 0.1 N; linear relationship: R = 0.999; transverse sensitivity: <1%. The dummy is manufactured in compliance with the SAE standards (SAE J826 and incorporates shear sensors into its design. We measure the shear force under four driving conditions and at five different speeds using a sedan; results showed that the shear force increases with speed under all driving conditions. In the case of acceleration and deceleration, shear force significantly changes in the lower body of the dummy. During right and left turns, it significantly changes in the upper body of the dummy.

  2. Development of a shear force measurement dummy for seat comfort.

    Science.gov (United States)

    Kim, Seong Guk; Ko, Chang-Yong; Kim, Dong Hyun; Song, Ye Eun; Kang, Tae Uk; Ahn, Sungwoo; Lim, Dohyung; Kim, Han Sung

    2017-01-01

    Seat comfort is one of the main factors that consumers consider when purchasing a car. In this study, we develop a dummy with a shear-force sensor to evaluate seat comfort. The sensor has dimensions of 25 mm × 25 mm × 26 mm and is made of S45C. Electroless nickel plating is employed to coat its surface in order to prevent corrosion and oxidation. The proposed sensor is validated using a qualified load cell and shows high accuracy and precision (measurement range: -30-30 N; sensitivity: 0.1 N; linear relationship: R = 0.999; transverse sensitivity: <1%). The dummy is manufactured in compliance with the SAE standards (SAE J826) and incorporates shear sensors into its design. We measure the shear force under four driving conditions and at five different speeds using a sedan; results showed that the shear force increases with speed under all driving conditions. In the case of acceleration and deceleration, shear force significantly changes in the lower body of the dummy. During right and left turns, it significantly changes in the upper body of the dummy.

  3. Standardized voluntary force measurement in a lower extremity rehabilitation robot

    Directory of Open Access Journals (Sweden)

    Bolliger Marc

    2008-10-01

    Full Text Available Abstract Background Isometric force measurements in the lower extremity are widely used in rehabilitation of subjects with neurological movement disorders (NMD because walking ability has been shown to be related to muscle strength. Therefore muscle strength measurements can be used to monitor and control the effects of training programs. A new method to assess isometric muscle force was implemented in the driven gait orthosis (DGO Lokomat. To evaluate the capabilities of this new measurement method, inter- and intra-rater reliability were assessed. Methods Reliability was assessed in subjects with and without NMD. Subjects were tested twice on the same day by two different therapists to test inter-rater reliability and on two separate days by the same therapist to test intra-rater reliability. Results Results showed fair to good reliability for the new measurement method to assess isometric muscle force of lower extremities. In subjects without NMD, intraclass correlation coefficients (ICC for inter-rater reliability ranged from 0.72 to 0.97 and intra-rater reliability from 0.71 to 0.90. In subjects with NMD, ICC ranged from 0.66 to 0.97 for inter-rater and from 0.50 to 0.96 for intra-rater reliability. Conclusion Inter- and intra- rater reliability of an assessment method for measuring maximal voluntary isometric muscle force of lower extremities was demonstrated. We suggest that this method is a valuable tool for documentation and controlling of the rehabilitation process in patients using a DGO.

  4. Novel parallel plate condenser for single particle electrostatic force measurements in atomic force microscope

    KAUST Repository

    Kwek, Jin Wang

    2011-07-01

    A combination of small parallel plate condenser with Indium Tin Oxide (ITO) glass slides as electrodes and an atomic force microscope (AFM) is used to characterize the electrostatic behavior of single glass bead microparticles (105-150 μm) glued to the AFM cantilever. This novel setup allows measurements of the electrostatic forces acting on a particle in an applied electrical field to be performed in ambient air conditions. By varying the position of the microparticle between the electrodes and the strength of the applied electric field, the relative contributions of the particle net charge, induced and image charges were investigated. When the microparticle is positioned in the middle of the electrodes, the force acting on the microparticle was linear with the applied electric field and proportional to the microparticle net charge. At distances close to the bottom electrode, the force follows a parabolic relationship with the applied electric field reflecting the contributions of induced and image charges. The method can be used for the rapid evaluation of the charging and polarizability properties of the microparticle as well as an alternative to the conventional Faraday\\'s pail technique. © 2011 Elsevier B.V.

  5. Axial Globe Position Measurement: A Prospective Multi-center Study by the International Thyroid Eye Disease Society

    Science.gov (United States)

    Bingham, Chad M.; Sivak-Callcott, Jennifer A.; Gurka, Matthew J.; Nguyen, John; Hogg, Jeffery P.; Feldon, Steve E.; Fay, Aaron; Seah, Lay-Leng; Strianese, Diego; Durairaj, Vikram D.; Uddin, Jimmy; Devoto, Martin H.; Harris, Matheson; Saunders, Justin; Osaki, Tammy H.; Looi, Audrey; Teo, Livia; Davies, Brett W.; Elefante, Andrea; Shen, Sunny; Realini, Tony; Fischer, William; Kazim, Michael

    2015-01-01

    Purpose Identify a reproducible measure of axial globe position (AGP) for multicenter studies of patients with thyroid eye disease (TED). Methods This is a prospective, international, multicenter, observational study in which 3 types of AGP evaluation were examined: radiologic, clinical, and photographic. In this study, computed tomography (CT) was the modality to which all other methods were compared. CT AGP was measured from an orthogonal line between the anterior lateral orbital rims to the cornea. All CT measurements were made at a single institution by 3 individual clinicians. Clinical evaluation was performed with exophthalmometry. Three clinicians from each clinical site assessed AGP with 3 different exophthalmometers and horizontal palpebral width using a ruler. Each physician made 3 separate measurements with each type of exophthalmometer, not in succession. All photographic measurements were made at a single institution. AGP was measured from lateral photographs in which a standard marker was placed at the anterior lateral orbital rim. Horizontal and vertical palpebral fissure were measured from frontal photographs. Three trained readers measured 3 separate times, not in succession. Exophthalmometry and photography method validity was assessed by agreement with CT (mean differences calculation, ICC’s, Bland-Altman figures). Correlation between palpebral fissure and CT AGP was assessed with Pearson correlation. Intraclinician and interclinician reliability was evaluated using intraclass correlation coefficients (ICC). Results Sixty-eight patients from 7 centers participated. CT mean AGP was 21.37mm (15.96 – 28.90mm) right, 21.22mm (15.87 – 28.70mm) left (ICC 0.996 and 0.995). Exophthalmometry AGP fell between 18mm and 25mm. Intraclinician agreement across exophthalmometers was ideal (ICC 0.948 – 0.983). Agreement between clinicians was greater than 0.85 for all upright exophthalmometry measurements. Photographic mean AGP was 20.47mm (10.92 – 30

  6. Diameter measurements of polystyrene particles with atomic force microscopy

    International Nuclear Information System (INIS)

    Garnaes, J

    2011-01-01

    The size of (nano) particles is a key parameter used in controlling their function. The particle size is also important in order to understand their physical and chemical properties and regulate their number in health and safety issues. In this work, the geometric diameters of polystyrene spheres of nominal diameter 100 nm are measured using atomic force microscopy. The measurements are based on the apex height and on the average distance between neighbouring spheres when they form a close-packed monolayer on a flat mica substrate. The most important influence parameters for the determination of the geometric diameter are the lateral air gaps and deformation of the spheres. The lateral air gaps are caused by significant size variations of the individual spheres, and a correction is calculated based on the simulation of packing of spheres. The deformation of the spheres is caused mainly by capillary forces acting when they are in contact with each other or with the mica substrate. Based on calculated capillary forces and the literature values of the elastic properties of the polystyrene and mica, the deformation is estimated to be 2 nm with a standard uncertainty of 2 nm. The geometric diameter of the polystyrene spheres was measured with a combined standard uncertainty of ≈3 nm. The measured vertical diameter of 92.3 nm and the certified mobility equivalent diameter measured by differential mobility analysis (DMA) are marginally consistent at a confidence level of 95%. However, the measured lateral geometric diameter was 98.9 nm and is in good agreement with DMA

  7. Use of piezoelectric multicomponent force measuring devices in fluid mechanics

    Science.gov (United States)

    Richter, A.; Stefan, K.

    1979-01-01

    The characterisitics of piezoelectric multicomponent transducers are discussed, giving attention to the advantages of quartz over other materials. The main advantage of piezoelectric devices in aerodynamic studies is their ability to indicate rapid changes in the values of physical parameters. Problems in the accuracy of measurments by piezoelectric devices can be overcome by suitable design approaches. A practical example is given of how such can be utilized to measure rapid fluctuations of fluid forces exerted on a circular cylinder mounted in a water channel.

  8. Axial magnetic field produced by axially and radially magnetized permanent rings

    International Nuclear Information System (INIS)

    Peng, Q.L.; McMurry, S.M.; Coey, J.M.D.

    2004-01-01

    Axial magnetic fields produced by axially and radially magnetized permanent magnet rings were studied. First, the axial magnetic field produced by a current loop is introduced, from which the axial field generated by an infinitely thin solenoid and by an infinitely thin current disk can be derived. Then the axial fields produced by axially and by radially magnetized permanent magnet rings can be obtained. An analytic formula for the axial fields produced by two axially magnetized rings is given. A permanent magnet with a high axial gradient field is fabricated, the measured results agree with the theoretical calculation very well. As an example, the axial periodic field produced by an arrangement of alternating axially and radially magnetized rings has been discussed

  9. Measurement of action forces and posture to determine the lumbar load of healthcare workers during care activities with patient transfers.

    Science.gov (United States)

    Theilmeier, Andreas; Jordan, Claus; Luttmann, Alwin; Jäger, Matthias

    2010-11-01

    Moving patients or other care activities with manual patient handling is characterized by high mechanical load on the lumbar spine of healthcare workers (HCWs). During the patient transfer activity, the caregivers exert lifting, pulling, and pushing forces varying over time with respect to amplitude and direction. Furthermore, the caregivers distinctly change their posture and frequently obtain postures asymmetrical to the median sagittal plane, including lateral bending and turning the trunk. This paper describes a procedure to determine lumbar load during patient transfer supported by measurement techniques and an exemplary application; this methodology represents the basis of a complex research project, the third 'Dortmund Lumbar Load Study (DOLLY 3)'. Lumbar load was determined by simulation calculations using a comprehensive biomechanical model ('The Dortmunder'). As the main influencing factors, the hand forces of the caregiver exerted during typical patient transfers and the posture and movements of the HCW were recorded in laboratory studies. The action forces were determined three-dimensionally with the help of a newly developed 'measuring bed', two different 'measuring chairs', a 'measuring bathtub', and a 'measuring floor'. To capture the forces during transfers in or at the bed, a common hospital bed was equipped with an additional framework, which is attached to the bedstead and connected to the bedspring frame via three-axial force sensors at the four corners. The other measuring systems were constructed similarly. Body movements were recorded using three-dimensional optoelectronic recording tools and video recordings. The posture and force data served as input data for the quantification of various lumbar-load indicators.

  10. Measuring the greenhouse effect and radiative forcing through the atmosphere

    Science.gov (United States)

    Philipona, Rolf; Kräuchi, Andreas; Brocard, Emmanuel

    2013-04-01

    In spite of a large body of existing measurements of incoming shortwave solar radiation and outgoing longwave terrestrial radiation at the Earth's surface and at the top of the atmosphere, there are few observations documenting how radiation profiles change through the atmosphere - information that is necessary to fully quantify the greenhouse effect of the Earth's atmosphere. Using weather balloons and specific radiometer equipped radiosondes, we continuously measured shortwave and longwave radiation fluxes from the surface of the Earth up to altitudes of 35 kilometers in the upper stratosphere. Comparing radiation profiles from night measurements with different amounts of water vapor, we show evidence of large greenhouse forcing. We show, that under cloud free conditions, water vapor increases with Clausius-Clapeyron ( 7% / K), and longwave downward radiation at the surface increases by 8 Watts per square meter per Kelvin. The longwave net radiation however, shows a positive increase (downward) of 2.4 Watts per square meter and Kelvin at the surface, which decreases with height and shows a similar but negative increase (upward) at the tropopause. Hence, increased tropospheric water vapor increases longwave net radiation towards the ground and towards space, and produces a heating of 0.42 Kelvin per Watt per square meter at the surface. References: Philipona et al., 2012: Solar and thermal radiation profiles and radiative forcing measured through the atmosphere. Geophys. Res. Lett., 39, L13806, doi: 10.1029/2012GL052087.

  11. Axial tomography

    International Nuclear Information System (INIS)

    Brueckner, K.A.; Lewis, J.H.

    1979-01-01

    The invention relates to axial tomography, sometimes referred to as cross-sectional x-ray. The apparatus described may utilize the conventional x-ray or ultrasonic source and detector and scanning mechanism for producing the plurality of sets of radiation detector output signals. It has the means for storing the detector output signals in analog form with the signals of one set overlying the signals of another set so that signals resulting from radiation through a zone of the object being examined are summed at a corresponding zone in the storage device, typically an electronic storage tube. The summed signals are read from the storage device with a radially inversely proportional reader producing a second signal for storage, again typically in an electronic storage tube. These signals stored in the second storage device are read with Laplacian relation, with the resultant sigal being a video signal that may be connected to a TV monitor for display of the sectional image. In alternative embodiments, optical film systems and electrostatic systems are utilized. (JTA)

  12. Interactions between Rotavirus and Suwannee River Organic Matter: Aggregation, Deposition, and Adhesion Force Measurement

    KAUST Repository

    Gutierrez, Leonardo; Nguyen, Thanh H.

    2012-01-01

    M, rotavirus suspension remained stable for over 4 h. Atomic force microscopy (AFM) measurement for interaction force decay length at different ionic strengths showed that nonelectrostatic repulsive forces were mainly responsible for eliminating aggregation

  13. Measuring microscopic forces and torques using optical tweezers

    CSIR Research Space (South Africa)

    Mc

    2009-07-01

    Full Text Available stream_source_info McLaren_2009.pdf.txt stream_content_type text/plain stream_size 2976 Content-Encoding UTF-8 stream_name McLaren_2009.pdf.txt Content-Type text/plain; charset=UTF-8 Measuring microscopic forces... and torques using optical tweezers M.G. McLaren1,2, A. Forbes2,3,4 and E. Sideras-Haddad2 1 CSIR National Laser Centre 2 School of Physics, University of Witwatersrand 3 School of Physics, University of KwaZulu-Natal 4 School of Physics, University...

  14. Uncertainty quantification in nanomechanical measurements using the atomic force microscope

    International Nuclear Information System (INIS)

    Wagner, Ryan; Raman, Arvind; Moon, Robert; Pratt, Jon; Shaw, Gordon

    2011-01-01

    Quantifying uncertainty in measured properties of nanomaterials is a prerequisite for the manufacture of reliable nanoengineered materials and products. Yet, rigorous uncertainty quantification (UQ) is rarely applied for material property measurements with the atomic force microscope (AFM), a widely used instrument that can measure properties at nanometer scale resolution of both inorganic and biological surfaces and nanomaterials. We present a framework to ascribe uncertainty to local nanomechanical properties of any nanoparticle or surface measured with the AFM by taking into account the main uncertainty sources inherent in such measurements. We demonstrate the framework by quantifying uncertainty in AFM-based measurements of the transverse elastic modulus of cellulose nanocrystals (CNCs), an abundant, plant-derived nanomaterial whose mechanical properties are comparable to Kevlar fibers. For a single, isolated CNC the transverse elastic modulus was found to have a mean of 8.1 GPa and a 95% confidence interval of 2.7–20 GPa. A key result is that multiple replicates of force–distance curves do not sample the important sources of uncertainty, which are systematic in nature. The dominant source of uncertainty is the nondimensional photodiode sensitivity calibration rather than the cantilever stiffness or Z-piezo calibrations. The results underscore the great need for, and open a path towards, quantifying and minimizing uncertainty in AFM-based material property measurements of nanoparticles, nanostructured surfaces, thin films, polymers and biomaterials.

  15. Force Measurement with a Piezoelectric Cantilever in a Scanning Force Microscope

    OpenAIRE

    Tansock, J.; Williams, C. C.

    1992-01-01

    Detection of surface forces between a tip and sample has been demonstrated with a piezoelectric cantilever in a scanning force microscope (SFM). The use of piezoelectric force sensing is particularly advantageous in semiconductor applications where stray light from conventional optical force-sensing methods can significantly modify the local carrier density. Additionally, the piezoelectric sensors are simple, provide good sensitivity to force, and can be batch fabricated. Our piezoelectric fo...

  16. New method for determining central axial orientation of flux rope embedded within current sheet using multipoint measurements

    Science.gov (United States)

    Li, ZhaoYu; Chen, Tao; Yan, GuangQing

    2016-10-01

    A new method for determining the central axial orientation of a two-dimensional coherent magnetic flux rope (MFR) via multipoint analysis of the magnetic-field structure is developed. The method is devised under the following geometrical assumptions: (1) on its cross section, the structure is left-right symmetric; (2) the projected structure velocity is vertical to the line of symmetry. The two conditions can be naturally satisfied for cylindrical MFRs and are expected to be satisfied for MFRs that are flattened within current sheets. The model test demonstrates that, for determining the axial orientation of such structures, the new method is more efficient and reliable than traditional techniques such as minimum-variance analysis of the magnetic field, Grad-Shafranov (GS) reconstruction, and the more recent method based on the cylindrically symmetric assumption. A total of five flux transfer events observed by Cluster are studied using the proposed approach, and the application results indicate that the observed structures, regardless of their actual physical properties, fit the assumed geometrical model well. For these events, the inferred axial orientations are all in excellent agreement with those obtained using the multi-GS reconstruction technique.

  17. Multilayer Steel Materials Deformation Resistance and Roll Force Measurement

    Directory of Open Access Journals (Sweden)

    A. G. Kolesnikov

    2014-01-01

    Full Text Available To create new types of cars, raise their reliability, gain operational life, and decrease in metal consumption of products it is necessary to improve mechanical, physical, and also special properties of the constructional materials applied in mechanical engineering. Presently, there are intensive researches and developments under way to create materials with ultrafine-grained structure (the sizes of grains in their crystal lattice make less than 1 micron in one of the measurements.BMSTU developed a manufacturing technology of multilayer steel sheets with steady ultrafine-grained structure based on the multiple hot rolling of billet as a composition consisting of the alternating metal sheets. A principled condition for implementation of such technology is existence of different crystallographic modifications in the adjoining sheets of the composition at specified temperature of rolling.Power parameters of rolling are important technical characteristics of the process. Usually, to determine a deformation resistance value when rolling the diverse multilayer materials, is used the actual resistance value averaging in relation to the components of the composition. The aim of this work is a comparative analysis of known calculated dependences with experimental data when rolling the 100-layer samples. Objects of research were the 100-layer compositions based on the alternating layers of steel 08H18N10 and U8.Experimental samples represented the vacuumized capsules with height, width, and length of 53 mm x 53 mm x 200 mm, respectively, in which there were the 100-layer packs from sheets, each of 0.5 mm, based on the composition of steels (U8+08H18N10. Rolling was made on the double-high mill with rolls of 160 mm in diameter during 19 passes to the thickness of 7 mm with the speed of 0,1 m/s. Relative sinking in each pass was accepted to be equal 10±2,5%. Rolling forces were measured by the strain-gauging method using the measuring cells, located under

  18. Prototype to measure bracket debonding force in vivo

    Directory of Open Access Journals (Sweden)

    Jéssika Lagni Tonus

    Full Text Available ABSTRACT Introduction: Material biodegradation that occurs in the mouth may interfere in the bonding strength between the bracket and the enamel, causing lower bond strength values in vivo, in comparison with in vitro studies. Objective: To develop a prototype to measure bracket debonding force in vivo and to evaluate, in vitro, the bond strength obtained with the prototype. Methods: A original plier (3M Unitek was modified by adding one strain gauge directly connected to its claw. An electronic circuit performed the reading of the strain gauge, and the software installed in a computer recorded the values of the bracket debonding force, in kgf. Orthodontic brackets were bonded to the facial surface of 30 bovine incisors with adhesive materials. In Group 1 (n = 15, debonding was carried out with the prototype, while tensile bond strength testing was performed in Group 2 (n = 15. A universal testing machine was used for the second group. The adhesive remnant index (ARI was recorded. Results: According to Student’s t test (α = 0.05, Group 1 (2.96 MPa and Group 2 (3.08 MPa were not significantly different. ARI score of 3 was predominant in the two groups. Conclusion: The prototype proved to be reliable for obtaining in vivo bond strength values for orthodontic brackets.

  19. Prototype to measure bracket debonding force in vivo

    Science.gov (United States)

    Tonus, Jéssika Lagni; Manfroi, Fernanda Borguetti; Borges, Gilberto Antonio; Grigolo, Eduardo Correa; Helegda, Sérgio; Spohr, Ana Maria

    2017-01-01

    ABSTRACT Introduction: Material biodegradation that occurs in the mouth may interfere in the bonding strength between the bracket and the enamel, causing lower bond strength values in vivo, in comparison with in vitro studies. Objective: To develop a prototype to measure bracket debonding force in vivo and to evaluate, in vitro, the bond strength obtained with the prototype. Methods: A original plier (3M Unitek) was modified by adding one strain gauge directly connected to its claw. An electronic circuit performed the reading of the strain gauge, and the software installed in a computer recorded the values of the bracket debonding force, in kgf. Orthodontic brackets were bonded to the facial surface of 30 bovine incisors with adhesive materials. In Group 1 (n = 15), debonding was carried out with the prototype, while tensile bond strength testing was performed in Group 2 (n = 15). A universal testing machine was used for the second group. The adhesive remnant index (ARI) was recorded. Results: According to Student’s t test (α = 0.05), Group 1 (2.96 MPa) and Group 2 (3.08 MPa) were not significantly different. ARI score of 3 was predominant in the two groups. Conclusion: The prototype proved to be reliable for obtaining in vivo bond strength values for orthodontic brackets. PMID:28444011

  20. Sensor Prototype to Evaluate the Contact Force in Measuring with Coordinate Measuring Arms

    Directory of Open Access Journals (Sweden)

    Eduardo Cuesta

    2015-06-01

    Full Text Available This paper describes the design, development and evaluation tests of an integrated force sensor prototype for portable Coordinate Measuring Arms (CMAs or AACMMs. The development is based on the use of strain gauges located on the surface of the CMAs’ hard probe. The strain gauges as well as their cables and connectors have been protected with a custom case, made by Additive Manufacturing techniques (Polyjet 3D. The same method has been selected to manufacture an ergonomic handle that includes trigger mechanics and the electronic components required for synchronizing the trigger signal when probing occurs. The paper also describes the monitoring software that reads the signals in real time, the calibration procedure of the prototype and the validation tests oriented towards increasing knowledge of the forces employed in manual probing. Several experiments read and record the force in real time comparing different ways of probing (discontinuous and continuous contact and measuring different types of geometric features, from single planes to exterior cylinders, cones, or spheres, through interior features. The probing force is separated into two components allowing the influence of these strategies in probe deformation to be known. The final goal of this research is to improve the probing technique, for example by using an operator training programme, allowing extra-force peaks and bad contacts to be minimized or just to avoid bad measurements.

  1. Development of a Force Measurement Device for Lower-Body Muscular Strength Measuring of Skaters

    Science.gov (United States)

    Kim, Dong Ki; Lee, Jeong Tae

    This paper presents a force measurement system that can measure a lower-body muscular strength of skaters. The precise measurement and analysis of the left and right lower-body strength of skaters is necessary, because a left/right lower-body strength balance is helpful to improve the athletes' performance and to protect them from injury. The system is constructed with a skate sliding board, a couple of sensor-units with load cell, indicator and control box, guard, force pad, and support bracket. The developed force measurement system is calibrated by the calibration setup, and the uncertainty of the force sensing unit on the left is within 0.087% and the uncertainty of the force sensing unit on the right is within 0.109%. In order to check the feasibility of the developed measurement device, a kinematic analysis is conducted with skater. As a result, the subject shows the deviation of left and right of 12.1 N with respect to average strength and 39.1 N with respect to the maximum strength. This evaluation results are reliable enough to make it possible to measure a lower-body muscular strength of skaters. The use of this measurement system will be expected to correct the posture of skaters and record the sports dynamics data for each athlete. It is believed that through the development of this equipment, skaters in elementary, middle, high schools, colleges, and the professional level have the systematic training to compete with world-class skaters.

  2. Origin of axial current in scyllac

    International Nuclear Information System (INIS)

    Sugisaki, K.

    1975-12-01

    The origin of the axial current observed in Scyllac (a high beta stellarator experiment) is discussed. A shaped coil and/or helical winding produce rotational transform which links magnetic lines of force to the plasma column and the axial current is induced electromagnetically. This phenomenon is inherent in a pulsed high-beta stellarator. The rotational transform produced by the induced axial current is much smaller than that associated with the l = 1, 0 equilibrium fields. The effect of the axial current on the equilibrium and stability of the plasma column is thus small. It is also shown that the magnetic field shear near a plasma surface is very strong

  3. Aerosol Direct Radiative Forcing and Forcing Efficiencies at Surface from the shortwave Irradiance Measurements in Abu Dhabi, UAE

    Science.gov (United States)

    Beegum S, N.; Ben Romdhane, H.; Ghedira, H.

    2013-12-01

    Atmospheric aerosols are known to affect the radiation balance of the Earth-Atmospheric system directly by scattering and absorbing the solar and terrestrial radiation, and indirectly by affecting the lifetime and albedo of the clouds. Continuous and simultaneous measurements of short wave global irradiance in combination with synchronous spectral aerosol optical depth (AOD) measurements (from 340 nm to 1640 nm in 8 channels), for a period of 1 year from June 2012 to May 2013, were used for the determination of the surface direct aerosol radiative forcing and forcing efficiencies under cloud free conditions in Abu Dhabi (24.42°N, 54.61o E, 7m MSL), a coastal location in United Arab Emirates (UAE) in the Arabian Peninsula. The Rotating Shadow band Pyranometer (RSP, LI-COR) was used for the irradiance measurements (in the spectral region 400-1100 nm), whereas the AOD measurements were carried out using CIMEL Sunphotometer (CE 318-2, under AERONET program). The differential method, which is neither sensitive to calibration uncertainties nor model assumptions, has been employed for estimating forcing efficiencies from the changes in the measured fluxes. The forcing efficiency, which quantifies the net change in irradiance per unit change in AOD, is an appropriate parameter for the characterization of the aerosol radiative effects even if the microphysical and optical properties of the aerosols are not completely understood. The corresponding forcing values were estimated from the forcing efficiencies. The estimated radiative forcing and forcing efficiencies exhibited strong monthly variations. The forcing efficiencies (absolute magnitudes) were highest during March, and showed continuous decrease thereafter to reach the lowest value during September. In contrast, the forcing followed a slightly different pattern of variability, with the highest solar dimming during April ( -60 W m-2) and the minimum during February ( -20 W m-2). The results indicate that the aerosol

  4. Measurements of the Casimir-Lifshitz force in fluids: The effect of electrostatic forces and Debye screening

    Science.gov (United States)

    Munday, J. N.; Capasso, Federico; Parsegian, V. Adrian; Bezrukov, Sergey M.

    2008-09-01

    We present detailed measurements of the Casimir-Lifshitz force between two gold surfaces (a sphere and a plate) immersed in ethanol and study the effect of residual electrostatic forces, which are dominated by static fields within the apparatus and can be reduced with proper shielding. Electrostatic forces are further reduced by Debye screening through the addition of salt ions to the liquid. Additionally, the salt leads to a reduction of the Casimir-Lifshitz force by screening the zero-frequency contribution to the force; however, the effect is small between gold surfaces at the measured separations and within experimental error. An improved calibration procedure is described and compared with previous methods. Finally, the experimental results are compared with Lifshitz’s theory and found to be consistent for the materials used in the experiment.

  5. Electromotive force measurement of lanthanides in Bi solution

    International Nuclear Information System (INIS)

    Sheng, Jiawei; Yamana, Hajimu; Moriyama, Hirotake

    2000-01-01

    The thermodynamic properties of Tb, Dy and Ho dissolved in liquid Bi were determined by the electromotive force (EMF) measurement method. The EMF of the following galvanic cell was measured in the range of 500-800degC over a wide range of solute concentration. Ln(solid)|KCl-LiCl|Ln-Bi (solution) There was observed a linear relationship between the EMFs and the lanthanide (Ln) concentrations in liquid Bi phase at a constant temperature, which agreed with the Nernst's equation. The obtained activity coefficients of lanthanides in liquid Bi solution were almost constant at a fixed temperature condition. Temperature effects on the activity coefficients could be expressed by the following equation: log γ=a+b/T, where a and b are experimental constants which correspond to the entropy and enthalpy of the formation of Ln-Bi compound in the melt, respectively. The thermodynamic quantities obtained were discussed in terms of their systematics along the 4f series. (author)

  6. Measurement of Forces and Moments Transmitted to the Residual Limb

    Science.gov (United States)

    2010-10-01

    Interface Biomechanical Correlate Force X Anterior-Posterior Force Perpendicular to Pylon Anterior-Posterior Force on Limb Braking and Propulsion...to produce noticeable pressure for level walking, going up stairs , up ramps, walking in a circle with the prosthetic foot inside and outside, and...0.3 Up Stairs Notch Throug hout 0.5 Notch Throug hout 0.3 Down Stairs Distal Tibia Popliteal Throughout Throughout 1 1 Distal Tibia Throughout

  7. Exploring Heat Stress Relief Measures among the Australian Labour Force.

    Science.gov (United States)

    Zander, Kerstin K; Mathew, Supriya; Garnett, Stephen T

    2018-02-26

    Australia experiences frequent heat waves and generally high average temperatures throughout the continent with substantial impacts on human health and the economy. People adapt to heat by adopting various relief measures in their daily lives including changing their behaviour. Many labour intensive outdoor industries implement standards for heat stress management for their workforce. However, little is known about how people cope with heat at their workplaces apart from studies targeting some specific industries where labourers are exposed to extreme heat. Here, we analysed responses from 1719 people in the Australian labour force to self-reported heat stress and associated coping mechanisms. Three quarters of respondents experienced heat stress at their workplace with fatigue and headache being the two most frequently stated symptoms. Almost all of those who were affected by heat would hydrate (88%), 67% would cool, and 44% would rest as a strategy for coping with heat. About 10% intended to change their jobs because of heat stress in the workplace. We found differences in heat relief measures across gender, education, health, level of physical intensity of job, and time spent working outside. People working in jobs that were not very demanding physically were more likely to choose cooling down as a relief measure, while those in labour intensive jobs and jobs that required considerable time outside were more likely to rest. This has potential consequences for their productivity and work schedules. Heat affects work in Australia in many types of industry with impact dependent on workforce acclimatisation, yet public awareness and work relief plans are often limited to outdoor and labour intensive industries. Industries and various levels of government in all sectors need to implement standards for heat management specific to climate zones to help people cope better with high temperatures as well as plan strategies in anticipation of projected temperature

  8. Exploring Heat Stress Relief Measures among the Australian Labour Force

    Directory of Open Access Journals (Sweden)

    Kerstin K. Zander

    2018-02-01

    Full Text Available Australia experiences frequent heat waves and generally high average temperatures throughout the continent with substantial impacts on human health and the economy. People adapt to heat by adopting various relief measures in their daily lives including changing their behaviour. Many labour intensive outdoor industries implement standards for heat stress management for their workforce. However, little is known about how people cope with heat at their workplaces apart from studies targeting some specific industries where labourers are exposed to extreme heat. Here, we analysed responses from 1719 people in the Australian labour force to self-reported heat stress and associated coping mechanisms. Three quarters of respondents experienced heat stress at their workplace with fatigue and headache being the two most frequently stated symptoms. Almost all of those who were affected by heat would hydrate (88%, 67% would cool, and 44% would rest as a strategy for coping with heat. About 10% intended to change their jobs because of heat stress in the workplace. We found differences in heat relief measures across gender, education, health, level of physical intensity of job, and time spent working outside. People working in jobs that were not very demanding physically were more likely to choose cooling down as a relief measure, while those in labour intensive jobs and jobs that required considerable time outside were more likely to rest. This has potential consequences for their productivity and work schedules. Heat affects work in Australia in many types of industry with impact dependent on workforce acclimatisation, yet public awareness and work relief plans are often limited to outdoor and labour intensive industries. Industries and various levels of government in all sectors need to implement standards for heat management specific to climate zones to help people cope better with high temperatures as well as plan strategies in anticipation of projected

  9. Experimental study of the large-scale axially heterogeneous liquid-metal fast breeder reactor at the fast critical assembly: Power distribution measurements and their analyses

    International Nuclear Information System (INIS)

    Iijima, S.; Obu, M.; Hayase, T.; Ohno, A.; Nemoto, T.; Okajima, S.

    1988-01-01

    Power distributions of the large-scale axially heterogeneous liquid-metal fast breeder reactor were studied by using the experiment results of fast critical assemblies XI, XII, and XIII and the results of their analyses. The power distributions were examined by the gamma-scanning method and fission rate measurements using /sup 239/Pu and /sup 238/U fission counters and the foil irradiation method. In addition to the measurements in the reference core, the power distributions were measured in the core with a control rod inserted and in a modified core where the shape of the internal blanket was determined by the radial boundary. The calculation was made by using JENDL-2 and the Japan Atomic Energy Research Institute's standard calculation system for fast reactor neutronics. The power flattening trend, caused by the decrease of the fast neutron flux, was observed in the axial and radial power distributions. The effect of the radial boundary shape of the internal blanket on the power distribution was determined in the core. The thickness of the internal blanket was reduced at its radial boundary. The influence of the internal blanket was observed in the power distributions in the core with a control rod inserted. The calculation predicted the neutron spectrum harder in the internal blanket. In the radial distributions of /sup 239/Pu fission rates, the space dependency of the calculated-to-experiment values was found at the active core close to the internal blanket

  10. Measurement of the tensile forces during bone lengthening.

    Science.gov (United States)

    Ohnishi, Isao; Kurokawa, Takahide; Sato, Wakyo; Nakamura, Kozo

    2005-05-01

    The purpose of this study was to investigate the effects of lengthening frequency on mechanical environment in limb lengthening. Tensile forces were continuously monitored using a load sensor attached to a unilateral external fixator. Twenty patients were monitored. Ten patients were with acquired femoral shortening, and five of them underwent quasi-continuous lengthening of 1440 steps per day, and the other five received step lengthening twice a day. The other 10 patients were with achondropalsia. Five of them underwent the same quasi-continuous lengthening, and the other five received the same step lengthening. The circadian change and the daily course of the tensile forces were assessed and compared between quasi-continuous lengthening and step lengthening. As for circadian change, an acute increase in the force took place simultaneously with each step of lengthening in the step-lengthening group, but very little change of the baseline force level was seen during quasi-continuous lengthening. As for daily course of the tensile force, it increased almost linearly in both lengthening frequency groups in the initial stage of lengthening. No significant difference of the average force increment rate in this phase was recognized between the quasi-continuous and step lengthening groups irrespective of the etiologies. The lengthening frequency greatly affected the circadian change of the tensile force, but did not affect the increment rate of the force in the linear phase.

  11. Use of a tibial accelerometer to measure ground reaction force in running: A reliability and validity comparison with force plates.

    Science.gov (United States)

    Raper, Damian P; Witchalls, Jeremy; Philips, Elissa J; Knight, Emma; Drew, Michael K; Waddington, Gordon

    2018-01-01

    The use of microsensor technologies to conduct research and implement interventions in sports and exercise medicine has increased recently. The objective of this paper was to determine the validity and reliability of the ViPerform as a measure of load compared to vertical ground reaction force (GRF) as measured by force plates. Absolute reliability assessment, with concurrent validity. 10 professional triathletes ran 10 trials over force plates with the ViPerform mounted on the mid portion of the medial tibia. Calculated vertical ground reaction force data from the ViPerform was matched to the same stride on the force plate. Bland-Altman (BA) plot of comparative measure of agreement was used to assess the relationship between the calculated load from the accelerometer and the force plates. Reliability was calculated by intra-class correlation coefficients (ICC) with 95% confidence intervals. BA plot indicates minimal agreement between the measures derived from the force plate and ViPerform, with variation at an individual participant plot level. Reliability was excellent (ICC=0.877; 95% CI=0.825-0.917) in calculating the same vertical GRF in a repeated trial. Standard error of measure (SEM) equalled 99.83 units (95% CI=82.10-119.09), which, in turn, gave a minimum detectable change (MDC) value of 276.72 units (95% CI=227.32-330.07). The ViPerform does not calculate absolute values of vertical GRF similar to those measured by a force plate. It does provide a valid and reliable calculation of an athlete's lower limb load at constant velocity. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  12. Force measuring valve assemblies, systems including such valve assemblies and related methods

    Science.gov (United States)

    DeWall, Kevin George [Pocatello, ID; Garcia, Humberto Enrique [Idaho Falls, ID; McKellar, Michael George [Idaho Falls, ID

    2012-04-17

    Methods of evaluating a fluid condition may include stroking a valve member and measuring a force acting on the valve member during the stroke. Methods of evaluating a fluid condition may include measuring a force acting on a valve member in the presence of fluid flow over a period of time and evaluating at least one of the frequency of changes in the measured force over the period of time and the magnitude of the changes in the measured force over the period of time to identify the presence of an anomaly in a fluid flow and, optionally, its estimated location. Methods of evaluating a valve condition may include directing a fluid flow through a valve while stroking a valve member, measuring a force acting on the valve member during the stroke, and comparing the measured force to a reference force. Valve assemblies and related systems are also disclosed.

  13. Depletion interaction measured by colloidal probe atomic force microscopy

    NARCIS (Netherlands)

    Wijting, W.K.; Knoben, W.; Besseling, N.A.M.; Leermakers, F.A.M.; Cohen Stuart, M.A.

    2004-01-01

    We investigated the depletion interaction between stearylated silica surfaces in cyclohexane in the presence of dissolved polydimethylsiloxane by means of colloidal probe atomic force microscopy. We found that the range of the depletion interaction decreases with increasing concentration.

  14. Standard practice of calibration of force-measuring instruments for verifying the force indication of testing machines

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 The purpose of this practice is to specify procedures for the calibration of force-measuring instruments. Procedures are included for the following types of instruments: 1.1.1 Elastic force-measuring instruments, and 1.1.2 Force-multiplying systems, such as balances and small platform scales. Note 1Verification by deadweight loading is also an acceptable method of verifying the force indication of a testing machine. Tolerances for weights for this purpose are given in Practices E 4; methods for calibration of the weights are given in NIST Technical Note 577, Methods of Calibrating Weights for Piston Gages. 1.2 The values stated in SI units are to be regarded as the standard. Other metric and inch-pound values are regarded as equivalent when required. 1.3 This practice is intended for the calibration of static force measuring instruments. It is not applicable for dynamic or high speed force calibrations, nor can the results of calibrations performed in accordance with this practice be assumed valid for...

  15. Stern potential and Debye length measurements in dilute ionic solutions with electrostatic force microscopy

    International Nuclear Information System (INIS)

    Kumar, Bharat; Crittenden, Scott R

    2013-01-01

    We demonstrate the ability to measure Stern potential and Debye length in dilute ionic solution with atomic force microscopy. We develop an analytic expression for the second harmonic force component of the capacitive force in an ionic solution from the linearized Poisson–Boltzmann equation. This allows us to calibrate the AFM tip potential and, further, obtain the Stern potential of sample surfaces. In addition, the measured capacitive force is independent of van der Waals and double layer forces, thus providing a more accurate measure of Debye length. (paper)

  16. Stern potential and Debye length measurements in dilute ionic solutions with electrostatic force microscopy.

    Science.gov (United States)

    Kumar, Bharat; Crittenden, Scott R

    2013-11-01

    We demonstrate the ability to measure Stern potential and Debye length in dilute ionic solution with atomic force microscopy. We develop an analytic expression for the second harmonic force component of the capacitive force in an ionic solution from the linearized Poisson-Boltzmann equation. This allows us to calibrate the AFM tip potential and, further, obtain the Stern potential of sample surfaces. In addition, the measured capacitive force is independent of van der Waals and double layer forces, thus providing a more accurate measure of Debye length.

  17. Micro-/nanosized cantilever beams and mass sensors under applied axial tensile/compressive force vibrating in vacuum and viscous fluid

    Czech Academy of Sciences Publication Activity Database

    Stachiv, Ivo; Fang, T.-H.; Chen, T.-H.

    2015-01-01

    Roč. 5, č. 11 (2015), s. 1-14, č. článku 117140. ISSN 2158-3226 R&D Projects: GA ČR GC15-13174J Institutional support: RVO:68378271 Keywords : nanomechanical resonators * carbon nanotubes * tensile force * real-time * frequency * spectrometry * liquid Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.444, year: 2015

  18. Axial acoustic radiation force on rigid oblate and prolate spheroids in Bessel vortex beams of progressive, standing and quasi-standing waves.

    Science.gov (United States)

    Mitri, F G

    2017-02-01

    The analysis using the partial-wave series expansion (PWSE) method in spherical coordinates is extended to evaluate the acoustic radiation force experienced by rigid oblate and prolate spheroids centered on the axis of wave propagation of high-order Bessel vortex beams composed of progressive, standing and quasi-standing waves, respectively. A coupled system of linear equations is derived after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid, and solved numerically by matrix inversion after performing a single numerical integration procedure. The system of linear equations depends on the partial-wave index n and the order of the Bessel vortex beam m using truncated but converging PWSEs in the least-squares sense. Numerical results for the radiation force function, which is the radiation force per unit energy density and unit cross-sectional surface, are computed with particular emphasis on the amplitude ratio describing the transition from the progressive to the pure standing waves cases, the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid), the half-cone angle and order of the Bessel vortex beam, as well as the dimensionless size parameter. A generalized expression for the radiation force function is derived for cases encompassing the progressive, standing and quasi-standing waves of Bessel vortex beams. This expression can be reduced to other types of beams/waves such as the zeroth-order Bessel non-vortex beam or the infinite plane wave case by appropriate selection of the beam parameters. The results for progressive waves reveal a tractor beam behavior, characterized by the emergence of an attractive pulling force acting in opposite direction of wave propagation. Moreover, the transition to the quasi-standing and pure standing wave cases shows the acoustical tweezers behavior in dual-beam Bessel vortex beams. Applications in acoustic levitation, particle manipulation and acousto

  19. Interrupted orthodontic force results in less root resorption than continuous force in human premolars as measured by microcomputed tomography.

    Science.gov (United States)

    Sawicka, Monika; Bedini, Rossella; Wierzbicki, Piotr M; Pameijer, Cornelis H

    2014-01-01

    Root resorption is an undesirable but very frequently occurring sequel of orthodontic treatment. The aim of this study was to compare root resorption caused by either continuous (CF) or interrupted (IF) orthodontic force. The study was performed on human subjects on 30 first upper and lower premolars scheduled for extraction for orthodontic reasons. During four weeks before extraction 12 teeth were subjected to either CF or IF. The force was generated by a segmental titanium-molybdenum alloy cantilever spring that was activated in buccal direction. Initially a force of 60 CentiNewton was used in both CF and IF groups, the force in the former, however, was reactivated every week for 4 weeks. There was no reactivation of force in the IF group after initial application. A morphometric analysis of root resorption was performed by microcomputed tomography and the extent of tooth movement was measured on stone casts. Furthermore, a Tartarate-Resistant Acidic Phosphatase activity (TRAP), the marker enzyme of osteoclasts and cementoclasts, was determined by histochemical method. The Mann-Whitney U test was used to compare the difference in measured parameters between treatment and control tooth groups. The number of resorption craters was significantly higher and their average volume almost twice as large in the CF compared to the IF group (p root structure as opposed to continuous force while the same tooth movement was achieved.

  20. Forced excitation and active control for the measurement of fluid-elastic forces

    International Nuclear Information System (INIS)

    Caillaud, Sebastien

    1999-01-01

    The action of a fluid flow on a tubes bundle is commonly decomposed into a random turbulent excitation and a fluid-elastic excitation. The fluid-elastic forces which are coupled to the tubes movement can be experimentally determined from an analysis of the vibratory response of the structure excited by turbulent forces. For low flow velocities, the turbulent excitation can be insufficient to make the tube significantly vibrate and to permit a correct vibratory analysis. On the opposite side, the structure can become unstable for high flow velocities: the fluid-elastic forces make the fluid-structure damping system fall towards zero. Two experimental methods are proposed in order to extend the considered flow rate. An additional excitation force allows to increase the tube vibration level for improving the signal-noise ratio at low velocities. When the tube is submitted to fluid-elastic instability, an artificial damping contribution by active control allows to stabilize it. Methods are implemented on a flexible tube inserted into rigid tubes bundle water and water-air transverse flows. Two actuator technologies are used: an electromagnetic exciter and piezoelectric actuators. The additional excitation method shows that the fluid-elastic forces remain insignificant at low velocity single phase flow. With the active control method, it is possible to carry out tests beyond the fluid-elastic instability. In two-phase flow, the stabilization of the structure is observed for low vacuum rates. The obtained new results are analyzed with the literature expected results in terms of fluid-elastic coupling and turbulent excitation. (author) [fr

  1. Randomly forced CGL equation stationary measures and the inviscid limit

    CERN Document Server

    Kuksin, S

    2003-01-01

    We study a complex Ginzburg-Landau (CGL) equation perturbed by a random force which is white in time and smooth in the space variable~$x$. Assuming that $\\dim x\\le4$, we prove that this equation has a unique solution and discuss its asymptotic in time properties. Next we consider the case when the random force is proportional to the square root of the viscosity and study the behaviour of stationary solutions as the viscosity goes to zero. We show that, under this limit, a subsequence of solutions in question converges to a nontrivial stationary process formed by global strong solutions of the nonlinear Schr\\"odinger equation.

  2. Comparison of anterior segment measurements using Sirius Topographer® and Nidek Axial Length-Scan® with assessing repeatability in patients with cataracts

    Directory of Open Access Journals (Sweden)

    Resat Duman

    2018-01-01

    Full Text Available Purpose: The purpose of this study is to evaluate anterior segment measurements obtained using CSO Sirius Topographer® (CSO, Firenze, Italy and Nidek Axial Length (AL-Scan® (Nidek CO., Gamagori, Japan. Methods: A total of 43 eyes of 43 patients were included in this prospective study. The central corneal thickness (CCT, anterior chamber depth (ACD, white-to-white distance (WTW, flat keratometry (K1, steep keratometry (K2, and mean keratometry (K values were randomly measured three times with each device by the same examiner. The intraclass correlation coefficient of repeatability was analyzed. The compatibility of both devices was evaluated using the 95% limits of the agreement proposed by Bland and Altman. Results: Examiner achieved high repeatability for all parameters on each device except the WTW measured by Sirius. All measurements except WTW and K1 taken with the Sirius were higher than that taken with the Nidek AL-Scan®. The difference in CCT, ACD, and WTW values was statistically significant. Conclusion: High repeatability of the measurements was achieved on both devices. Although Km, K1, and K2 measurements of the Sirius and the AL-Scan® showed good agreement, WTW, CCT, and ACD measurements significantly differed between two devices. Thus, anterior segment measurements except for Km, K1, and K2 cannot be used interchangeably between Sirius and Nidek AL-Scan® devices.

  3. Towards measurement of the Casimir force between parallel plates separated at sub-mircon distance

    NARCIS (Netherlands)

    Syed Nawazuddin, M.B.; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Berenschot, Johan W.; de Boer, Meint J.; Elwenspoek, Michael Curt

    2011-01-01

    Ever since its prediction, experimental investigation of the Casimir force has been of great scientific interest. Many research groups have successfully attempted quantifying the force with different device geometries; however measurement of the Casimir force between parallel plates with sub-micron

  4. Measurement properties of the ASAS Health Index: results of a global study in patients with axial and peripheral spondyloarthritis.

    Science.gov (United States)

    Kiltz, Uta; van der Heijde, Désirée; Boonen, Annelies; Akkoc, Nurullah; Bautista-Molano, Wilson; Burgos-Vargas, Ruben; Wei, James Cheng-Chung; Chiowchanwisawakit, Praveena; Dougados, Maxime; Duruoz, M Tuncay; Elzorkany, Bassel Kamal; Gaydukova, Inna; Gensler, Lianne S; Gilio, Michele; Grazio, Simeon; Gu, Jieruo; Inman, Robert D; Kim, Tae-Jong; Navarro-Compan, Victoria; Marzo-Ortega, Helena; Ozgocmen, Salih; Pimentel Dos Santos, Fernando; Schirmer, Michael; Stebbings, Simon; Van den Bosch, Filip E; van Tubergen, Astrid; Braun, Juergen

    2018-06-01

    To evaluate construct validity, interpretability, reliability and responsiveness as well as determination of cut-off points for good and poor health within the original English version and the 18 translations of the disease-specific Assessment of Spondyloarthritis international Society Health Index (ASAS HI) in 23 countries worldwide in patients with spondyloarthritis (SpA). A representative sample of patients with SpA fulfilling the ASAS classification criteria for axial (axSpA) or peripheral SpA was used. The construct validity of the ASAS HI was tested using Spearman correlation with several standard health outcomes for axSpA. Test-retest reliability was assessed by intraclass correlation coefficients (ICCs) in patients with stable disease (interval 4-7 days). In patients who required an escalation of therapy because of high disease activity, responsiveness was tested after 2-24weeks using standardised response mean (SRM). Among the 1548 patients, 64.9% were men, with a mean (SD) age 42.0 (13.4) years. Construct validity ranged from low (age: 0.10) to high (Bath AnkylosingSpondylitisFunctioning Index: 0.71). Internal consistency was high (Cronbach's α of 0.93). The reliability among 578 patients was good (ICC=0.87 (95% CI 0.84 to 0.89)). Responsiveness among 246 patients was moderate-large (SRM=-0.44 for non-steroidal anti-inflammatory drugs, -0.69 for conventional synthetic disease-modifying antirheumatic drug and -0.85 for tumour necrosis factor inhibitor). The smallest detectable change was 3.0. Values ≤5.0 have balanced specificity to distinguish good health as opposed to moderate health, and values ≥12.0 are specific to represent poor health as opposed to moderate health. The ASAS HI proved to be valid, reliable and responsive. It can be used to evaluate the impact of SpA and its treatment on functioning and health. Furthermore, comparison of disease impact between populations is possible. © Article author(s) (or their employer(s) unless otherwise

  5. The electrical double layer on gold probed by electrokinetic and surface force measurements

    NARCIS (Netherlands)

    Giesbers, M.; Kleijn, J.M.; Cohen Stuart, M.A.

    2002-01-01

    Gold surfaces, obtained by vacuum deposition of 15-nm gold films on glass and silica wafers, were studied in aqueous solutions by streaming potential measurements and colloidal-probe AFM force measurements. In the force measurements both a bare and a gold-coated silica particle (6 m in diameter)

  6. The big shift: measuring the forces of change

    DEFF Research Database (Denmark)

    Hagel, John; Brown, John Seely; Davison, Lang

    2009-01-01

    Traditional metrics don't capture many of the challenges and opportunities in store for U.S. companies and the national economy. The authors, from Deloitte, present a framework for understanding the forces that have transformed business over the past 40 years--and an index for gauging their impact...

  7. Optimization of residual heat removal pump axial thrust and axial bearing

    International Nuclear Information System (INIS)

    Schubert, F.

    1996-01-01

    The residual heat removal (RHR) pumps of German 1300 megawatt pressurized-water reactor (PWR) power plants are of the single stage end suction type with volute casing or with diffuser and forged circular casing. Due to the service conditions the pumps have to cover the full capacity range as well as a big variation in suction static pressure. This results in a big difference in the axial thrust that has to be borne by the axial bearing. Because these pumps are designed to operate without auxiliary systems (things that do not exist can not fail), they are equipped with antifriction bearings and sump oil lubrication. To minimize the heat production within the bearing casing, a number of PWR plants have pumps with combined axial/radial bearings of the ball type. Due to the fact that the maximum axial thrust caused by static pressure and hydrodynamic forces on the impeller is too big to be borne by that type of axial bearing, the impellers were designed to produce a hydrodynamic axial force that counteracts the static axial force. Thus, the resulting axial thrust may change direction when the static pressure varies

  8. Optimization of residual heat removal pump axial thrust and axial bearing

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, F.

    1996-12-01

    The residual heat removal (RHR) pumps of German 1300 megawatt pressurized-water reactor (PWR) power plants are of the single stage end suction type with volute casing or with diffuser and forged circular casing. Due to the service conditions the pumps have to cover the full capacity range as well as a big variation in suction static pressure. This results in a big difference in the axial thrust that has to be borne by the axial bearing. Because these pumps are designed to operate without auxiliary systems (things that do not exist can not fail), they are equipped with antifriction bearings and sump oil lubrication. To minimize the heat production within the bearing casing, a number of PWR plants have pumps with combined axial/radial bearings of the ball type. Due to the fact that the maximum axial thrust caused by static pressure and hydrodynamic forces on the impeller is too big to be borne by that type of axial bearing, the impellers were designed to produce a hydrodynamic axial force that counteracts the static axial force. Thus, the resulting axial thrust may change direction when the static pressure varies.

  9. Quantum limited force measurement in a cavityless optomechanical system

    International Nuclear Information System (INIS)

    Fermani, Rachele; Mancini, Stefano; Tombesi, Paolo

    2004-01-01

    We study the possibility of revealing a weak coherent force by using a pendular mirror as a probe, and coupling this to a radiation field, which acts as the meter, in a cavityless configuration. We determine the sensitivity of such a scheme and show that the use of an entangled meter state greatly improves the ultimate detection limit. We also compare this scheme with that involving an optical cavity

  10. Vertical Magnetic Levitation Force Measurement on Single Crystal YBaCuO Bulk at Different Temperatures

    Science.gov (United States)

    Celik, Sukru; Guner, Sait Baris; Ozturk, Kemal; Ozturk, Ozgur

    Magnetic levitation force measurements of HTS samples are performed with the use of liquid nitrogen. It is both convenient and cheap. However, the temperature of the sample cannot be changed (77 K) and there is problem of frost. So, it is necessary to build another type of system to measure the levitation force high Tc superconductor at different temperatures. In this study, we fabricated YBaCuO superconducting by top-seeding-melting-growth (TSMG) technique and measured vertical forces of them at FC (Field Cooling) and ZFC (Zero Field Cooling) regimes by using our new designed magnetic levitation force measurement system. It was used to investigate the three-dimensional levitation force and lateral force in the levitation system consisting of a cylindrical magnet and a permanent cylindrical superconductor at different temperatures (37, 47, 57, 67 and 77 K).

  11. Magnetic Levitation Force Measurement System at Any Low Temperatures From 20 K To 300 K

    Science.gov (United States)

    Celik, Sukru; Guner, S. Baris; Coskun, Elvan

    2015-03-01

    Most of the magnetic levitation force measurements in previous studies were performed at liquid nitrogen temperatures. For the levitation force of MgB2 and iron based superconducting samples, magnetic levitation force measurement system is needed. In this study, magnetic levitation force measurement system was designed. In this system, beside vertical force versus vertical motion, lateral and vertical force versus lateral motion measurements, the vertical force versus temperature at the fixed distance between permanent magnet PM - superconducting sample SS and the vertical force versus time measurements were performed at any temperatures from 20 K to 300 K. Thanks to these measurements, the temperature dependence, time dependence, and the distance (magnetic field) and temperature dependences of SS can be investigated. On the other hand, the magnetic stiffness MS measurements can be performed in this system. Using the measurement of MS at different temperature in the range, MS dependence on temperature can be investigated. These measurements at any temperatures in the range help to the superconductivity properties to be characterized. This work was supported by TUBTAK-the Scientific and technological research council of Turkey under project of MFAG - 110T622. This system was applied to the Turkish patent institute with the Application Number of 2013/13638 on 22/11/2013.

  12. Critical Steps in Data Analysis for Precision Casimir Force Measurements with Semiconducting Films

    Science.gov (United States)

    Banishev, A. A.; Chang, Chia-Cheng; Mohideen, U.

    2011-06-01

    Some experimental procedures and corresponding results of the precision measurement of the Casimir force between low doped Indium Tin Oxide (ITO) film and gold sphere are described. Measurements were performed using an Atomic Force Microscope in high vacuum. It is shown that the magnitude of the Casimir force decreases after prolonged UV treatment of the ITO film. Some critical data analysis steps such as the correction for the mechanical drift of the sphere-plate system and photodiodes are discussed.

  13. Force sensor for measuring power transfer between the human body and the environment

    NARCIS (Netherlands)

    Brookhuis, Robert Anton; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; de Boer, Meint J.; Elwenspoek, Michael Curt

    2011-01-01

    A force sensor with capacitive readout is designed and realized for the measurement of mechanical power transfer. The ultimate aim is to integrate this in a glove that determines the complete mechanical interaction between the human hand and the environment. The sensor measures the normal force and

  14. Interface bonding in silicon oxide nanocontacts: interaction potentials and force measurements

    Science.gov (United States)

    Wierez-Kien, M.; Craciun, A. D.; Pinon, A. V.; Le Roux, S.; Gallani, J. L.; Rastei, M. V.

    2018-04-01

    The interface bonding between two silicon-oxide nanoscale surfaces has been studied as a function of atomic nature and size of contacting asperities. The binding forces obtained using various interaction potentials are compared with experimental force curves measured in vacuum with an atomic force microscope. In the limit of small nanocontacts (typically contact area which is altered by stretching speeds. The mean unbinding force is found to decrease as the contact spends time in the attractive regime. This contact weakening is featured by a negative aging coefficient which broadens and shifts the thermal-induced force distribution at low stretching speeds.

  15. Measurement and characterization of lift forces on drops and bubbles in microchannels

    Science.gov (United States)

    Stan, Claudiu; Guglielmini, Laura; Ellerbee, Audrey; Caviezel, Daniel; Whitesides, George; Stone, Howard

    2013-11-01

    The transverse motion of drops and bubbles within liquids flowing in pipes and channels is determined by the combination of several types of hydrodynamic lift forces with external forces. In microfluidic channels, lift forces have been used to position and sort particles with high efficiency and high accuracy. We measured lift forces on drops and bubbles and discriminated between different lift mechanisms under conditions characterized by low particle capillary numbers (0.0003 bubbles. We will present new experimental data that supports a dynamic interfacial mechanism for the second type of lift force, and discuss possible avenues for creating an analytical model for it.

  16. Force Measurement Services at Kebs: AN Overview of Equipment, Procedures and Uncertainty

    Science.gov (United States)

    Bangi, J. O.; Maranga, S. M.; Nganga, S. P.; Mutuli, S. M.

    This paper describes the facilities, instrumentation and procedures currently used in the force laboratory at the Kenya Bureau of Standards (KEBS) for force measurement services. The laboratory uses the Force Calibration Machine (FCM) to calibrate force-measuring instruments. The FCM derives its traceability via comparisons using reference transfer force transducers calibrated by the Force Standard Machines (FSM) of a National Metrology Institute (NMI). The force laboratory is accredited to ISO/IEC 17025 by the Germany Accreditation Body (DAkkS). The accredited measurement scope of the laboratory is 1 MN to calibrate force transducers in both compression and tension modes. ISO 376 procedures are used while calibrating force transducers. The KEBS reference transfer standards have capacities of 10, 50, 300 and 1000 kN to cover the full range of the FCM. The uncertainty in the forces measured by the FCM were reviewed and determined in accordance to the new EURAMET calibration guide. The relative expanded uncertainty of force W realized by FCM was evaluated in a range from 10 kN-1 MN, and was found to be 5.0 × 10-4 with the coverage factor k being equal to 2. The overall normalized error (En) of the comparison results was also found to be less than 1. The accredited Calibration and Measurement Capability (CMC) of the KEBS force laboratory was based on the results of those intercomparisons. The FCM enables KEBS to provide traceability for the calibration of class ‘1’ force instruments as per the ISO 376.

  17. Fiber Bragg grating sensor for simultaneous measurement of temperature and force using polymer open loop

    Science.gov (United States)

    Huang, Yonglin; Zhang, Shiyan

    2014-07-01

    A fiber Bragg grating (FBG) sensor for simultaneous measurement of temperature and force is proposed and demonstrated. Where a part of uniform FBG (about one half length of an FBG) is attached on the polymer open loop, the FBG is divided into two parts which has an equal length. So the two parts can be regarded as two FBGs. Because of the difference of the Young's modulus and the thermal expansion coefficients for two parts of the FBG, the two Bragg reflection wavelengths are shift when the temperature and force are applied on the sensor. Simultaneous measurement of temperature and force is demonstrated experimentally. The experimental results show that the linear response to temperature and force are achieved. The value of applied temperature and force can be obtained from the two Bragg wavelength shift via the coefficient matrix. This study provides a simple and economical method to measure temperature and force simultaneously.

  18. Comparison of anterior segment parameters and axial length measurements performed on a Scheimpflug device with biometry function and a reference optical biometer.

    Science.gov (United States)

    Muzyka-Woźniak, Maria; Oleszko, Adam

    2018-04-26

    To compare measurements of axial length (AL), corneal curvature (K), anterior chamber depth (ACD) and white-to-white (WTW) distance on a new device combining Scheimpflug camera and partial coherence interferometry (Pentacam AXL) with a reference optical biometer (IOL Master 500). To evaluate differences between IOL power calculations based on the two biometers. Ninety-seven eyes of 97 consecutive cataract or refractive lens exchange patients were examined preoperatively on IOL Master 500 and Pentacam AXL units. Comparisons between two devices were performed for AL, K, ACD and WTW. Intraocular lens (IOL) power targeting emmetropia was calculated with SRK/T and Haigis formulas on both devices and compared. There were statistically significant differences between two devices for all measured parameters (P eyes for Haigis formula and in 62% of eyes for SRK/T formula, with a mean difference within ± 0.5 D for 72 and 86% of eyes, respectively. There were statistically significant differences between AL, K and WTW measurements obtained with the compared biometers. Flatter corneal curvature measurements on Pentacam AXL necessitate formulas optimisation for Pentacam AXL.

  19. Measurement of cell adhesion force by vertical forcible detachment using an arrowhead nanoneedle and atomic force microscopy

    International Nuclear Information System (INIS)

    Ryu, Seunghwan; Hashizume, Yui; Mishima, Mari; Kawamura, Ryuzo; Tamura, Masato; Matsui, Hirofumi; Matsusaki, Michiya; Akashi, Mitsuru; Nakamura, Chikashi

    2014-01-01

    Graphical abstract: - Highlights: • We developed a method to measure cell adhesion force by detaching cell using an arrowhead nanoneedle and AFM. • A nanofilm consisting of fibronectin and gelatin was formed on cell surface to reinforce the cell cortex. • By the nanofilm lamination, detachment efficiencies of strongly adherent cell lines were improved markedly. - Abstract: The properties of substrates and extracellular matrices (ECM) are important factors governing the functions and fates of mammalian adherent cells. For example, substrate stiffness often affects cell differentiation. At focal adhesions, clustered–integrin bindings link cells mechanically to the ECM. In order to quantitate the affinity between cell and substrate, the cell adhesion force must be measured for single cells. In this study, forcible detachment of a single cell in the vertical direction using AFM was carried out, allowing breakage of the integrin–substrate bindings. An AFM tip was fabricated into an arrowhead shape to detach the cell from the substrate. Peak force observed in the recorded force curve during probe retraction was defined as the adhesion force, and was analyzed for various types of cells. Some of the cell types adhered so strongly that they could not be picked up because of plasma membrane breakage by the arrowhead probe. To address this problem, a technique to reinforce the cellular membrane with layer-by-layer nanofilms composed of fibronectin and gelatin helped to improve insertion efficiency and to prevent cell membrane rupture during the detachment process, allowing successful detachment of the cells. This method for detaching cells, involving cellular membrane reinforcement, may be beneficial for evaluating true cell adhesion forces in various cell types

  20. Method to measure the force to pull and to break pin bones of fish.

    Science.gov (United States)

    Balaban, Murat O; Jie, Hubert; Yin Yee, Yin; Alçiçek, Zayde

    2015-02-01

    A texture measurement device was modified to measure the force required to pull pin bones from King salmon (Oncorhynchus tshawytscha), snapper (Pagrus auratus), and kahawai (Arripis trutta). Pulled bones were also subjected to tension to measure the breaking force. For all fish, the pulling force depended on the size of the fish, and on the length of the pin bone (P bones. For example, fresh small salmon (about 1500 g whole) required 600 g on average to pull pin bones, and large fish (about 3700 g whole) required 850 g. Longer bones required greater pulling force. The breaking force followed the same trend. In general, the breaking force was greater than the pulling force. This allows the removal of the bones without breaking them. There was no statistically significant (P > 0.05) difference between the forces (both pulling and breaking) from fresh and frozen/thawed samples, although in general frozen/thawed samples required less force to pull. With the quantification of pulling and breaking forces for pin bones, it is possible to design and build better, "more intelligent" pin bone removal equipment. © 2015 Institute of Food Technologists®

  1. A simple mechanism for measuring and adjusting distraction forces during maxillary advancement.

    Science.gov (United States)

    Suzuki, Eduardo Yugo; Suzuki, Boonsiva

    2009-10-01

    Direct measurement of distraction forces on the craniofacial skeleton has never been reported. The present report describes the development of a method of assessing and adjusting traction forces applied through maxillary distraction osteogenesis. A simple mechanism to measure and adjust tension force during maxillary distraction osteogenesis was developed and connected bilaterally to the traction screws of a rigid external distraction device. Measurements were carried out before and after activation using a Shimpo (Nidec-Shimpo America Corporation, Itasca, IL) force gauge in 4 patients (2 with unilateral cleft lip and/or palate, 1 with bilateral cleft lip and palate, and 1 with noncleft) during the distraction process. Activation was performed twice a day at a rate of 1 mm/day. The average maximum force applied throughout the distraction period was 42.5 N (range 16.4 to 65.3 N), with increments, after activation, averaging 10.5 N (range 7.9 to 15.7 N). In patients with unilateral cleft lip and/or palate, distraction forces on the larger segment were 65.1% higher than on the lesser segment. A differential pattern of forces was also observed in the patients with asymmetric noncleft. However, the differential forces between lateral segments were not observed in the patient with bilateral cleft lip and palate. During the activation period, distraction forces progressively increased, whereas the amount of maxillary movement decreased. Pain and discomfort were reported with high forces. Through this mechanism, direct measurement and adjustment of distraction forces during maxillary advancement was possible. The unbalanced pattern of forces observed in patients with cleft suggests the necessity of individual adjustments for controlling pain and clinical symptoms. Accordingly, assessment of distraction forces during maxillary distraction osteogenesis is extremely helpful in understanding the biomechanics of the distraction process.

  2. Feasibility study on measuring axial and transverse stress/strain components in composite materials using Bragg sensors

    Science.gov (United States)

    Luyckx, G.; Degrieck, J.; De Waele, W.; Van Paepegem, W.; Van Roosbroeck, J.; Chah, K.; Vlekken, J.; McKenzie, I.; Obst, A.

    2017-11-01

    A fibre optic sensor design is proposed for simultaneously measuring the 3D stress (or strain) components and temperature inside thermo hardened composite materials. The sensor is based on two fibre Bragg gratings written in polarisation maintaining fibre. Based on calculations of the condition number, it will be shown that reasonable accuracies are to be expected. First tests on the bare sensors and on the sensors embedded in composite material, which confirm the expected behaviour, will be presented.

  3. Heat capacity measurements of Sr{sub 2}RuO{sub 4} under uni-axial strain

    Energy Technology Data Exchange (ETDEWEB)

    Li, You-sheng; Mackenzie, Andrew [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); University of St. Andrews, School of Physics and Astronomy (United Kingdom); Gibbs, Alexandra [Max Planck Institute for Solid State Research, Stuttgart (Germany); Hicks, Clifford [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Nicklas, Michael [University of St. Andrews, School of Physics and Astronomy (United Kingdom)

    2016-07-01

    One of the most-discussed possible pairing symmetries of Sr{sub 2}RuO{sub 4} is p{sub x} ± ip{sub y}. By applying strain along left angle 100 right angle -direction, the degeneracy of the p{sub x} and p{sub y} components is lifted, and thus there should be two critical temperatures (T{sub c}). Hicks et al. have observed an increase of T{sub c} of Sr{sub 2}RuO{sub 4} under both compressive and tensile strains, by measuring the susceptibility, which is sensitive only to the first transition. Their results also indicate, indirectly, that any splitting of T{sub c}s might be small. For a direct test of possible splitting, we measure the heat capacity of Sr{sub 2}RuO{sub 4} under strain. To do so, we are developing an approach to measure heat capacity under non-adiabatic conditions. We have observed an increase of T{sub c} under compressive strain. This is the first thermodynamic evidence of the strain-induced increase in T{sub c} of Sr{sub 2}RuO{sub 4}.

  4. Measuring the elasticity of plant cells with atomic force microscopy.

    Science.gov (United States)

    Braybrook, Siobhan A

    2015-01-01

    The physical properties of biological materials impact their functions. This is most evident in plants where the cell wall contains each cell's contents and connects each cell to its neighbors irreversibly. Examining the physical properties of the plant cell wall is key to understanding how plant cells, tissues, and organs grow and gain the shapes important for their respective functions. Here, we present an atomic force microscopy-based nanoindentation method for examining the elasticity of plant cells at the subcellular, cellular, and tissue level. We describe the important areas of experimental design to be considered when planning and executing these types of experiments and provide example data as illustration. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. AFM measurements of adhesive forces between carbonaceous particles and the substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tianqi [Institute of Nuclear and New Energy Technology of Tsinghua University, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Beijing 100084 (China); Peng, Wei, E-mail: pengwei@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology of Tsinghua University, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Beijing 100084 (China); Shen, Ke [Institute of Nuclear and New Energy Technology of Tsinghua University, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Beijing 100084 (China); Yu, Suyuan, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Educations, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)

    2015-11-15

    Highlights: • Adhesive force of spherical carbonaceous particle MCMBs and HTR-10 graphite matrix debris were measured for the first time. • The measured equivalent works of adhesion were much smaller than the ideal values. • The shape factor and the particle morphology reduce the adhesive force. • The adhesion effect does not change directly with the asperity size. - Abstract: Graphite dust is carbonaceous particles generated during operation of High Temperature Gas-Cooled Reactors (HTR). Graphite dust resuspension is the key behavior associated with HTR source term analyses and environmental safety assessment. The adhesive force is the key factor that determines the resuspension rate. The present study used an atomic force microscope (AFM) to measure the adhesive force between a single carbonaceous particle and the substrate. The measurements were performed on mica, graphite IG110 and Inconel 800H. The prepared “probe cantilevers” were mesocarbon microbeads (MCMB), fuel element debris from HTR-10 and graphite NBG18. The equivalent work of adhesion was derived from the measured adhesive force and calculated based on substrate profile approximation and the JKR theoretical model. The measured work was smaller than the ideal work of adhesion, most likely due to the rough particle morphology and the rough substrate surface. Additionally, a shape factor imposes a constraint on the lateral deformation of the particles. Furthermore, surface roughness could reduce the adhesive force some depending on the particle size. Once the particle was too small to be trapped into a trough, the adhesive force would not be further reduced.

  6. AFM measurements of adhesive forces between carbonaceous particles and the substrates

    International Nuclear Information System (INIS)

    Zhang, Tianqi; Peng, Wei; Shen, Ke; Yu, Suyuan

    2015-01-01

    Highlights: • Adhesive force of spherical carbonaceous particle MCMBs and HTR-10 graphite matrix debris were measured for the first time. • The measured equivalent works of adhesion were much smaller than the ideal values. • The shape factor and the particle morphology reduce the adhesive force. • The adhesion effect does not change directly with the asperity size. - Abstract: Graphite dust is carbonaceous particles generated during operation of High Temperature Gas-Cooled Reactors (HTR). Graphite dust resuspension is the key behavior associated with HTR source term analyses and environmental safety assessment. The adhesive force is the key factor that determines the resuspension rate. The present study used an atomic force microscope (AFM) to measure the adhesive force between a single carbonaceous particle and the substrate. The measurements were performed on mica, graphite IG110 and Inconel 800H. The prepared “probe cantilevers” were mesocarbon microbeads (MCMB), fuel element debris from HTR-10 and graphite NBG18. The equivalent work of adhesion was derived from the measured adhesive force and calculated based on substrate profile approximation and the JKR theoretical model. The measured work was smaller than the ideal work of adhesion, most likely due to the rough particle morphology and the rough substrate surface. Additionally, a shape factor imposes a constraint on the lateral deformation of the particles. Furthermore, surface roughness could reduce the adhesive force some depending on the particle size. Once the particle was too small to be trapped into a trough, the adhesive force would not be further reduced.

  7. The design and implementation of a windowing interface pinch force measurement system

    Science.gov (United States)

    Ho, Tze-Yee; Chen, Yuanu-Joan; Chung, Chin-Teng; Hsiao, Ming-Heng

    2010-02-01

    This paper presents a novel windowing interface pinch force measurement system that is basically based on an USB (Universal Series Bus) microcontroller which mainly processes the sensing data from the force sensing resistance sensors mounted on five digits. It possesses several friendly functions, such as the value and curve trace of the applied force by a hand injured patient displayed in real time on a monitoring screen, consequently, not only the physician can easily evaluate the effect of hand injury rehabilitation, but also the patients get more progressive during the hand physical therapy by interacting with the screen of pinch force measurement. In order to facilitate the pinch force measurement system and make it friendly, the detail hardware design and software programming flowchart are described in this paper. Through a series of carefully and detailed experimental tests, first of all, the relationship between the applying force and the FSR sensors are measured and verified. Later, the different type of pinch force measurements are verified by the oscilloscope and compared with the corresponding values and waveform traces in the window interface display panel to obtain the consistency. Finally, a windowing interface pinch force measurement system based on the USB microcontroller is implemented and demonstrated. The experimental results show the verification and feasibility of the designed system.

  8. Comparisons of Force Measurement Methods for DBD Plasma Actuators in Quiescent Air

    Science.gov (United States)

    Hoskinson, Alan R.; Hershkowitz, Noah; Ashpis, David E.

    2009-01-01

    We have performed measurements of the force induced by both single (one electrode insulated) and double (both electrodes insulated) dielectric barrier discharge plasma actuators in quiescent air. We have shown that, for single barrier actuators with cylindrical exposed electrodes, as the electrode diameter decrease the force efficiencies increase much faster than a previously reported linear trend. This behavior has been experimentally verified using two different measurement techniques: stagnation probe measurements of the induced flow velocity and direct measurement of the force using an electronic balance. Actuators with rectangular cross-section exposed electrodes do not show the same rapid increase at small thicknesses. We have also shown that the induced force is independent of the material used for the exposed electrode. The same techniques have shown that the induced force of a double barrier actuator increases with decreasing narrow electrode diameter.

  9. Experiment to measure the gravitational force on the antiproton

    International Nuclear Information System (INIS)

    Brown, R.E.

    1985-01-01

    A collaboration has been formed to measure the acceleration of antiprotons in the earth's gravitational field. The technique is to produce, decelerate, and trap quantities of antiprotons, to cool them to untralow energy, and to measure their acceleration in a time-of-flight experiment. Present plans and the results of initial efforts toward this end are presented

  10. Resolution of axial shear strain elastography

    International Nuclear Information System (INIS)

    Thitaikumar, Arun; Righetti, Raffaella; Krouskop, Thomas A; Ophir, Jonathan

    2006-01-01

    The technique of mapping the local axial component of the shear strain due to quasi-static axial compression is defined as axial shear strain elastography. In this paper, the spatial resolution of axial shear strain elastography is investigated through simulations, using an elastically stiff cylindrical lesion embedded in a homogeneously softer background. Resolution was defined as the smallest size of the inclusion for which the strain value at the inclusion/background interface was greater than the average of the axial shear strain values at the interface and inside the inclusion. The resolution was measured from the axial shear strain profile oriented at 45 0 to the axis of beam propagation, due to the absence of axial shear strain along the normal directions. The effects of the ultrasound system parameters such as bandwidth, beamwidth and transducer element pitch along with signal processing parameters such as correlation window length (W) and axial shift (ΔW) on the estimated resolution were investigated. The results show that the resolution (at 45 0 orientation) is determined by the bandwidth and the beamwidth. However, the upper bound on the resolution is limited by the larger of the beamwidth and the window length, which is scaled inversely to the bandwidth. The results also show that the resolution is proportional to the pitch and not significantly affected by the axial window shift

  11. Unobstructed particle image velocimetry measurements within an axial turbo-pump using liquid and blades with matched refractive indices

    Science.gov (United States)

    Uzol, O.; Chow, Y.-C.; Katz, J.; Meneveau, C.

    2002-08-01

    Performing PIV measurements within complex turbomachinery with multiple blade rows is difficult due to the optical obstruction to the illuminating sheet and to the camera caused by the blades. This paper introduces a refractive index matched facility that overcomes this problem. The rotor and stator blades are made of transparent acrylic, and the working fluid has the same optical refractive index as the blades. A 64% by weight solution of sodium iodide in water is used for this purpose. This liquid has a kinematic viscosity of about 1.1×10-6 m2/s, which is almost the same as that of water enabling operation at high Reynolds numbers. Issues related to operating with this fluid such as chemical stability, variations in transmittance and solutions to these problems are discussed. This setup allows full optical access to the entire rotor and stator passages both to the laser sheet and the camera. The experiments are conducted at different streamwise locations covering the entire flow fields around the rotor, the stator, the gap between them, and the wakes behind. Vector maps of the instantaneous and phase-averaged flow fields as well as the distribution of turbulent kinetic energy are obtained. Measurements at different magnifications enable us to obtain an overview of the flow structure, as well as detailed velocity distributions in the boundary layers and in the wakes.

  12. Precision measurement of the Casimir-Lifshitz force in a fluid

    International Nuclear Information System (INIS)

    Munday, J. N.; Capasso, Federico

    2007-01-01

    The Casimir force, which results from the confinement of the quantum-mechanical zero-point fluctuations of electromagnetic fields, has received significant attention in recent years for its effect on micro- and nanoscale mechanical systems. With few exceptions, experimental observations have been limited to interacting conductive bodies separated by vacuum or air. However, interesting phenomena, including repulsive forces, are expected to exist in certain circumstances between metals and dielectrics when the intervening medium is not vacuum. In order to better understand the effect of the Casimir force in such situations and to test the robustness of the generalized Casimir-Lifshitz theory, we have performed precision measurements of the Casimir force between two metals immersed in a fluid. For this situation, the measured force is attractive and is approximately 80% smaller than the force predicted by Casimir for ideal metals in vacuum. We present experimental results and find them to be consistent with Lifshitz's theory

  13. PIV measurements of acoustic flow-induced vibration in a rectangular channel with co-axial side branches

    International Nuclear Information System (INIS)

    Li, Yanrong; Someya, Satoshi; Okamoto, Koji

    2010-01-01

    Systems with closed side-branches are liable to an excitation of sound, as called cavity tone. In this study, flow-induced acoustic resonances of piping systems containing closed side-branches were investigated experimentally. The present investigation on the coaxial closed side-branches is the first rudimentary study to measure the pressure at the downstream side opening of the cavity by microphone and to visualize the fluid flow in the cross-section by using PIV. High-time-resolved PIV has a possibility to analyze the velocity field and the relation between sound propagation and flow field. The fluid flows at different points in the cavity interact with some phase differences and the relation can be clarified. (author)

  14. Using optical tweezers for measuring the interaction forces between human bone cells and implant surfaces: System design and force calibration

    International Nuclear Information System (INIS)

    Andersson, Martin; Madgavkar, Ashwin; Stjerndahl, Maria; Wu, Yanrong; Tan, Weihong; Duran, Randy; Niehren, Stefan; Mustafa, Kamal; Arvidson, Kristina; Wennerberg, Ann

    2007-01-01

    Optical tweezers were used to study the interaction and attachment of human bone cells to various types of medical implant materials. Ideally, the implant should facilitate cell attachment and promote migration of the progenitor cells in order to decrease the healing time. It is therefore of interest, in a controlled manner, to be able to monitor the cell adhesion process. Results from such studies would help foresee the clinical outcome of integrating medical implants. The interactions between two primary cell culture models, human gingival fibroblasts and bone forming human osteoblast cells, and three different implant materials, glass, titanium, and hydroxyapatite, were studied. A novel type of optical tweezers, which has a newly designed quadrant detector and a powerful 3 W laser was constructed and force calibrated using two different methods: one method in which the stiffness of the optical trap was obtained by monitoring the phase lag between the trap and the moved object when imposing a forced oscillation on the trapped object and another method in which the maximum trapping force was derived from the critical velocity at which the object escapes the trap. Polystyrene beads as well as cells were utilized for the calibrations. This is the first time that cells have been used directly for these types of force calibrations and, hence, direct measurements of forces exerted on cells can be performed, thus avoiding the difficulties often encountered when translating the results obtained from cell measurements to the calibrations obtained with reference materials. This more straightforward approach represents an advantage in comparison to established methods

  15. an extended octagonal ring dynamometer for measurement of forces

    African Journals Online (AJOL)

    NIJOTECH

    The analysis, design, construction, evaluation and use of an extended octagonal ring dynamometer for ... For tillage applications, it has been used ..... confirmed that the dynamometer and the measurement system were capable of indicating.

  16. Finger-Shaped GelForce: Sensor for Measuring Surface Traction Fields for Robotic Hand.

    Science.gov (United States)

    Sato, K; Kamiyama, K; Kawakami, N; Tachi, S

    2010-01-01

    It is believed that the use of haptic sensors to measure the magnitude, direction, and distribution of a force will enable a robotic hand to perform dexterous operations. Therefore, we develop a new type of finger-shaped haptic sensor using GelForce technology. GelForce is a vision-based sensor that can be used to measure the distribution of force vectors, or surface traction fields. The simple structure of the GelForce enables us to develop a compact finger-shaped GelForce for the robotic hand. GelForce that is developed on the basis of an elastic theory can be used to calculate surface traction fields using a conversion equation. However, this conversion equation cannot be analytically solved when the elastic body of the sensor has a complicated shape such as the shape of a finger. Therefore, we propose an observational method and construct a prototype of the finger-shaped GelForce. By using this prototype, we evaluate the basic performance of the finger-shaped GelForce. Then, we conduct a field test by performing grasping operations using a robotic hand. The results of this test show that using the observational method, the finger-shaped GelForce can be successfully used in a robotic hand.

  17. Measurements of dispersion forces between colloidal latex particles with the atomic force microscope and comparison with Lifshitz theory

    Energy Technology Data Exchange (ETDEWEB)

    Elzbieciak-Wodka, Magdalena; Ruiz-Cabello, F. Javier Montes; Trefalt, Gregor; Maroni, Plinio; Borkovec, Michal, E-mail: michal.borkovec@unige.ch [Department of Inorganic and Analytical Chemistry, University of Geneva, Sciences II, 30, Quai Ernest-Ansermet, 1205 Geneva (Switzerland); Popescu, Mihail N. [Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2014-03-14

    Interaction forces between carboxylate colloidal latex particles of about 2 μm in diameter immersed in aqueous solutions of monovalent salts were measured with the colloidal probe technique, which is based on the atomic force microscope. We have systematically varied the ionic strength, the type of salt, and also the surface charge densities of the particles through changes in the solution pH. Based on these measurements, we have accurately measured the dispersion forces acting between the particles and estimated the apparent Hamaker constant to be (2.0 ± 0.5) × 10{sup −21} J at a separation distance of about 10 nm. This value is basically independent of the salt concentration and the type of salt. Good agreement with Lifshitz theory is found when roughness effects are taken into account. The combination of retardation and roughness effects reduces the value of the apparent Hamaker constant and its ionic strength dependence with respect to the case of ideally smooth surfaces.

  18. Evaluation of nondestructive evaluation size measurement for integrity assessment of axial outside diameter stress corrosion cracking in steam generator tubes

    International Nuclear Information System (INIS)

    Joo, Kyung Mun; Hong, Jun Hee

    2015-01-01

    Recently, the initiation of outside diameter stress corrosion cracking (ODSCC) at the tube support plate region of domestic steam generators (SG) with Alloy 600 HTMA tubes has been increasing. As a result, SGs with Alloy 600 HTMA tubes must be replaced early or are scheduled to be replaced prior to their designed lifetime. ODSCC is one of the biggest threats to the integrity of SG tubes. Therefore, the accurate evaluation of tube integrity to determine ODSCC is needed. Eddy current testing (ECT) is conducted periodically, and its results could be input as parameters for evaluating the integrity of SG tubes. The reliability of an ECT inspection system depends on the performance of the inspection technique and ability of the analyst. The detection probability and ECT sizing error of degradation are considered to be the performance indices of a nondestructive evaluation (NDE) system. This paper introduces an optimized evaluation method for ECT, as well as the sizing error, including the analyst performance. This study was based on the results of a round robin program in which 10 inspection analysts from 5 different companies participated. The analysis of ECT sizing results was performed using a linear regression model relating the true defect size data to the measured ECT size data.

  19. Evaluation of nondestructive evaluation size measurement for integrity assessment of axial outside diameter stress corrosion cracking in steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Kyung Mun [Korea Hydro and Nuclear Power Company Ltd., Central Research Institute, Daejeon (Korea, Republic of); Hong, Jun Hee [Dept. of mechanical Engineering, Chungnam National University, Daejeon (Korea, Republic of)

    2015-02-15

    Recently, the initiation of outside diameter stress corrosion cracking (ODSCC) at the tube support plate region of domestic steam generators (SG) with Alloy 600 HTMA tubes has been increasing. As a result, SGs with Alloy 600 HTMA tubes must be replaced early or are scheduled to be replaced prior to their designed lifetime. ODSCC is one of the biggest threats to the integrity of SG tubes. Therefore, the accurate evaluation of tube integrity to determine ODSCC is needed. Eddy current testing (ECT) is conducted periodically, and its results could be input as parameters for evaluating the integrity of SG tubes. The reliability of an ECT inspection system depends on the performance of the inspection technique and ability of the analyst. The detection probability and ECT sizing error of degradation are considered to be the performance indices of a nondestructive evaluation (NDE) system. This paper introduces an optimized evaluation method for ECT, as well as the sizing error, including the analyst performance. This study was based on the results of a round robin program in which 10 inspection analysts from 5 different companies participated. The analysis of ECT sizing results was performed using a linear regression model relating the true defect size data to the measured ECT size data.

  20. Update: Partnership for the Revitalization of National Wind Tunnel Force Measurement Technology Capability

    Science.gov (United States)

    Rhew, Ray D.

    2010-01-01

    NASA's Aeronautics Test Program (ATP) chartered a team to examine the issues and risks associated with the lack of funding and focus on force measurement over the past several years, focusing specifically on strain-gage balances. NASA partnered with the U.S. Air Force's Arnold Engineering Development Center (AEDC) to exploit their combined capabilities and take a national level government view of the problem and established the National Force Measurement Technology Capability (NFMTC) project. This paper provides an update on the team's status for revitalizing the government's balance capability with respect to designing, fabricating, calibrating, and using the these critical measurement devices.

  1. Techniques of Force and Pressure Measurement in the Small Joints of the Wrist.

    Science.gov (United States)

    Schreck, Michael J; Kelly, Meghan; Canham, Colin D; Elfar, John C

    2018-01-01

    The alteration of forces across joints can result in instability and subsequent disability. Previous methods of force measurements such as pressure-sensitive films, load cells, and pressure-sensing transducers have been utilized to estimate biomechanical forces across joints and more recent studies have utilized a nondestructive method that allows for assessment of joint forces under ligamentous restraints. A comprehensive review of the literature was performed to explore the numerous biomechanical methods utilized to estimate intra-articular forces. Methods of biomechanical force measurements in joints are reviewed. Methods such as pressure-sensitive films, load cells, and pressure-sensing transducers require significant intra-articular disruption and thus may result in inaccurate measurements, especially in small joints such as those within the wrist and hand. Non-destructive methods of joint force measurements either utilizing distraction-based joint reaction force methods or finite element analysis may offer a more accurate assessment; however, given their recent inception, further studies are needed to improve and validate their use.

  2. Ambulatory measurement of ground reaction force and estimation of ankle and foot dynamics

    NARCIS (Netherlands)

    Schepers, H. Martin; Koopman, Hubertus F.J.M.; Baten, Christian T.M.; Veltink, Petrus H.

    INTRODUCTION Traditionally, human body movement analysis is done in so-called ‘gait laboratories’. In these laboratories, body movement is measured by a camera system using optical markers, the ground reaction force by a force plate fixed in the floor, and the muscle activity by EMG. From the body

  3. Aspects of scanning force microscope probes and their effects on dimensional measurement

    Energy Technology Data Exchange (ETDEWEB)

    Yacoot, Andrew [National Physical Laboratory, Teddington, Middlesex TW11 0LW (United Kingdom); Koenders, Ludger [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany)], E-mail: andrew.yacoot@npl.co.uk

    2008-05-21

    The review will describe the various scanning probe microscopy tips and cantilevers used today for scanning force microscopy and magnetic force microscopy. Work undertaken to quantify the properties of cantilevers and tips, e.g. shape and radius, is reviewed together with an overview of the various tip-sample interactions that affect dimensional measurements. (topical review)

  4. TOPICAL REVIEW: Aspects of scanning force microscope probes and their effects on dimensional measurement

    Science.gov (United States)

    Yacoot, Andrew; Koenders, Ludger

    2008-05-01

    The review will describe the various scanning probe microscopy tips and cantilevers used today for scanning force microscopy and magnetic force microscopy. Work undertaken to quantify the properties of cantilevers and tips, e.g. shape and radius, is reviewed together with an overview of the various tip-sample interactions that affect dimensional measurements.

  5. Aspects of scanning force microscope probes and their effects on dimensional measurement

    International Nuclear Information System (INIS)

    Yacoot, Andrew; Koenders, Ludger

    2008-01-01

    The review will describe the various scanning probe microscopy tips and cantilevers used today for scanning force microscopy and magnetic force microscopy. Work undertaken to quantify the properties of cantilevers and tips, e.g. shape and radius, is reviewed together with an overview of the various tip-sample interactions that affect dimensional measurements. (topical review)

  6. Time, tire measurements forces and moments: a new standard for steady state cornering tyre testing

    NARCIS (Netherlands)

    Oosten, J.J.M. van; Savi, C.; Augustin, M.; Bouhet, O.; Sommer, J.; Colinot, J.P.

    1999-01-01

    In order to develop vehicles which have maximum active safety, car manufacturers need information about the so-called force and moment properties of tyres. Vehicle manufacturers, tyre suppliers and automotive research organisations have advanced test equipment to measure the forces between a tyre

  7. The application of magnetic force differentiation for the measurement of the affinity of peptide libraries

    International Nuclear Information System (INIS)

    Shang Hao; Kirkham, Perry M.; Myers, Tina M.; Cassell, Gail H.; Lee, Gil U.

    2005-01-01

    A new method has been developed for measuring the binding affinity of phage displayed peptides and a target protein using magnetic particles. The specific interaction between the phage displayed peptides and the target protein was subject to a force generated by the magnetic particle. The binding affinity was obtained by analyzing the force-bond lifetime

  8. Comparative analysis of internal friction and natural frequency measured by free decay and forced vibration

    International Nuclear Information System (INIS)

    Wang, Y. Z.; Ding, X. D.; Xiong, X. M.; Zhang, J. X.

    2007-01-01

    Relations between various values of the internal friction (tgδ, Q -1 , Q -1* , and Λ/π) measured by free decay and forced vibration are analyzed systemically based on a fundamental mechanical model in this paper. Additionally, relations between various natural frequencies, such as vibration frequency of free decay ω FD , displacement-resonant frequency of forced vibration ω d , and velocity-resonant frequency of forced vibration ω 0 are calculated. Moreover, measurement of natural frequencies of a copper specimen of 99.9% purity has been made to demonstrate the relation between the measured natural frequencies of the system by forced vibration and free decay. These results are of importance for not only more accurate measurement of the elastic modulus of materials but also the data conversion between different internal friction measurements

  9. Measurement of two-phase flow momentum with force transducers

    International Nuclear Information System (INIS)

    Hardy, J.E.; Smith, J.E.

    1990-01-01

    Two strain-gage-based drag transducers were developed to measure two-phase flow in simulated pressurized water reactor (PWR) test facilities. One transducer, a drag body (DB), was designed to measure the bidirectional average momentum flux passing through an end box. The second drag sensor, a break through detector (BTD), was designed to sense liquid downflow from the upper plenum to the core region. After prototype sensors passed numerous acceptance tests, transducers were fabricated and installed in two experimental test facilities, one in Japan and one in West Germany. High-quality data were extracted from both the DBs and BTDs for a variety of loss-of-coolant accident (LOCA) scenarios. The information collected from these sensors has added to the understanding of the thermohydraulic phenomena that occur during the refill/reflood stage of a LOCA in a PWR. 9 refs., 15 figs

  10. Measurement of Forces and Moments Transmitted to the Residual Limb

    Science.gov (United States)

    2009-08-01

    alignment of a prosthesis. Walking speed and cadence will be measured during the baseline conditions and a metronome will be used to help subjects...reproduced and you will be allowed to walk with your original alignment briefly to refresh your memory on how it feels. A metronome may be used to...speed and compare the maximum pressures to those in activity A (A metronome will be used to help you establish a cadence that is 10% - 15% faster than

  11. Measuring the nanomechanical properties of cancer cells by digital pulsed force mode imaging

    International Nuclear Information System (INIS)

    Marti, Othmar; Holzwarth, Michael; Beil, Michael

    2008-01-01

    In this paper, we demonstrate that the digital pulsed force mode data can distinguish two cancer cell lines (HeLa, Panc) by their mechanical properties. The live cells were imaged in buffer solution. The digital pulsed force mode measured 175 force-distance curves per second which, due to the speed of the measurement, were distorted by the viscous drag in the buffer. We show that this drag force causes a sinusoidal addition to the force-distance curves. By subtracting the viscous drag effect one obtains standard force-distance curves. The force-distance curves are then evaluated to extract key data on the curves, such as adhesion energies, local stiffness or the width of the hysteresis loop. These data are then correlated to classify the force-distance curves. We show examples based on the width of the hysteresis loop and the adhesion energies. Outliers in this classification scheme are points where, potentially, interesting new physics or different physics might happen. Based on classification schemes adapted to experimental settings, we propose that the digital pulsed force mode is a tool to evaluate the time evolution of the mechanical response of cells

  12. Measuring the nanomechanical properties of cancer cells by digital pulsed force mode imaging

    Energy Technology Data Exchange (ETDEWEB)

    Marti, Othmar; Holzwarth, Michael [Institute of Experimental Physics, Ulm University, D-89069 Ulm (Germany); Beil, Michael [Department of Internal Medicine, Ulm University, D-89069 Ulm (Germany)], E-mail: othmar.marti@uni-ulm.de, E-mail: michael.holzwarth@uni-ulm.de, E-mail: michael.beil@uni-ulm.de

    2008-09-24

    In this paper, we demonstrate that the digital pulsed force mode data can distinguish two cancer cell lines (HeLa, Panc) by their mechanical properties. The live cells were imaged in buffer solution. The digital pulsed force mode measured 175 force-distance curves per second which, due to the speed of the measurement, were distorted by the viscous drag in the buffer. We show that this drag force causes a sinusoidal addition to the force-distance curves. By subtracting the viscous drag effect one obtains standard force-distance curves. The force-distance curves are then evaluated to extract key data on the curves, such as adhesion energies, local stiffness or the width of the hysteresis loop. These data are then correlated to classify the force-distance curves. We show examples based on the width of the hysteresis loop and the adhesion energies. Outliers in this classification scheme are points where, potentially, interesting new physics or different physics might happen. Based on classification schemes adapted to experimental settings, we propose that the digital pulsed force mode is a tool to evaluate the time evolution of the mechanical response of cells.

  13. A nondestructive, reproducible method of measuring joint reaction force at the distal radioulnar joint.

    Science.gov (United States)

    Canham, Colin D; Schreck, Michael J; Maqsoodi, Noorullah; Doolittle, Madison; Olles, Mark; Elfar, John C

    2015-06-01

    To develop a nondestructive method of measuring distal radioulnar joint (DRUJ) joint reaction force (JRF) that preserves all periarticular soft tissues and more accurately reflects in vivo conditions. Eight fresh-frozen human cadaveric limbs were obtained. A threaded Steinmann pin was placed in the middle of the lateral side of the distal radius transverse to the DRUJ. A second pin was placed into the middle of the medial side of the distal ulna colinear to the distal radial pin. Specimens were mounted onto a tensile testing machine using a custom fixture. A uniaxial distracting force was applied across the DRUJ while force and displacement were simultaneously measured. Force-displacement curves were generated and a best-fit polynomial was solved to determine JRF. All force-displacement curves demonstrated an initial high slope where relatively large forces were required to distract the joint. This ended with an inflection point followed by a linear area with a low slope, where small increases in force generated larger amounts of distraction. Each sample was measured 3 times and there was high reproducibility between repeated measurements. The average baseline DRUJ JRF was 7.5 N (n = 8). This study describes a reproducible method of measuring DRUJ reaction forces that preserves all periarticular stabilizing structures. This technique of JRF measurement may also be suited for applications in the small joints of the wrist and hand. Changes in JRF can alter native joint mechanics and lead to pathology. Reliable methods of measuring these forces are important for determining how pathology and surgical interventions affect joint biomechanics. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  14. BWR AXIAL PROFILE

    International Nuclear Information System (INIS)

    Huffer, J.

    2004-01-01

    The purpose of this calculation is to develop axial profiles for estimating the axial variation in burnup of a boiling water reactor (BWR) assembly spent nuclear fuel (SNF) given the average burnup of an assembly. A discharged fuel assembly typically exhibits higher burnup in the center and lower burnup at the ends of the assembly. Criticality safety analyses taking credit for SNF burnup must account for axially varying burnup relative to calculations based on uniformly distributed assembly average burnup due to the under-burned tips. Thus, accounting for axially varying burnup in criticality analyses is also referred to as accounting for the ''end effect'' reactivity. The magnitude of the reactivity change due to ''end effect'' is dependent on the initial assembly enrichment, the assembly average burnup, and the particular axial profile characterizing the burnup distribution. The set of bounding axial profiles should incorporate multiple BWR core designs and provide statistical confidence (95 percent confidence that 95 percent of the population is bound by the profile) that end nodes are conservatively represented. The profiles should also conserve the overall burnup of the fuel assembly. More background on BWR axial profiles is provided in Attachment I

  15. Measurement of the Strong Coupling Constant $\\alpha_s$ and the Vector and Axial-Vector Spectral Functions in Hadronic Tau Decays

    CERN Document Server

    Ackerstaff, K; Allison, J; Altekamp, N; Anderson, K J; Anderson, S; Arcelli, S; Asai, S; Ashby, S F; Axen, D A; Azuelos, Georges; Ball, A H; Barberio, E; Barlow, R J; Bartoldus, R; Batley, J Richard; Baumann, S; Bechtluft, J; Behnke, T; Bell, K W; Bella, G; Bentvelsen, Stanislaus Cornelius Maria; Bethke, Siegfried; Betts, S; Biebel, O; Biguzzi, A; Bird, S D; Blobel, Volker; Bloodworth, Ian J; Bobinski, M; Bock, P; Böhme, J; Boutemeur, M; Braibant, S; Bright-Thomas, P G; Brown, R M; Burckhart, Helfried J; Burgard, C; Bürgin, R; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Chrisman, D; Ciocca, C; Clarke, P E L; Clay, E; Cohen, I; Conboy, J E; Cooke, O C; Couyoumtzelis, C; Coxe, R L; Cuffiani, M; Dado, S; Dallavalle, G M; Davis, R; De Jong, S; del Pozo, L A; de Roeck, A; Desch, Klaus; Dienes, B; Dixit, M S; Doucet, M; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Eatough, D; Estabrooks, P G; Etzion, E; Evans, H G; Fabbri, Franco Luigi; Fanfani, A; Fanti, M; Faust, A A; Fiedler, F; Fierro, M; Fischer, H M; Fleck, I; Folman, R; Fürtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gascon, J; Gascon-Shotkin, S M; Geich-Gimbel, C; Geralis, T; Giacomelli, G; Giacomelli, P; Gibson, V; Gibson, W R; Gingrich, D M; Glenzinski, D A; Goldberg, J; Gorn, W; Grandi, C; Gross, E; Grunhaus, Jacob; Gruwé, M; Hanson, G G; Hansroul, M; Hapke, M; Hargrove, C K; Hartmann, C; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herndon, M; Herten, G; Heuer, R D; Hildreth, M D; Hill, J C; Hillier, S J; Hobson, P R; Höcker, Andreas; Homer, R James; Honma, A K; Horváth, D; Hossain, K R; Howard, R; Hüntemeyer, P; Igo-Kemenes, P; Imrie, D C; Ishii, K; Jacob, F R; Jawahery, A; Jeremie, H; Jimack, Martin Paul; Joly, A; Jones, C R; Jovanovic, P; Junk, T R; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Kayal, P I; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Koetke, D S; Kokott, T P; Kolrep, M; Komamiya, S; Kowalewski, R V; Kress, T; Krieger, P; Von Krogh, J; Kyberd, P; Lafferty, G D; Lanske, D; Lauber, J; Lautenschlager, S R; Lawson, I; Layter, J G; Lazic, D; Lee, A M; Lefebvre, E; Lellouch, Daniel; Letts, J; Levinson, L; Liebisch, R; List, B; Littlewood, C; Lloyd, A W; Lloyd, S L; Loebinger, F K; Long, G D; Losty, Michael J; Ludwig, J; Liu, D; Macchiolo, A; MacPherson, A L; Mannelli, M; Marcellini, S; Markopoulos, C; Martin, A J; Martin, J P; Martínez, G; Mashimo, T; Mättig, P; McDonald, W J; McKenna, J A; McKigney, E A; McMahon, T J; McPherson, R A; Meijers, F; Menke, S; Merritt, F S; Mes, H; Meyer, J; Michelini, Aldo; Mihara, S; Mikenberg, G; Miller, D J; Mir, R; Mohr, W; Montanari, A; Mori, T; Nagai, K; Nakamura, I; Neal, H A; Nellen, B; Nisius, R; O'Neale, S W; Oakham, F G; Odorici, F; Ögren, H O; Oreglia, M J; Orito, S; Pálinkás, J; Pásztor, G; Pater, J R; Patrick, G N; Patt, J; Pérez-Ochoa, R; Petzold, S; Pfeifenschneider, P; Pilcher, J E; Pinfold, James L; Plane, D E; Poffenberger, P R; Poli, B; Polok, J; Przybycien, M B; Rembser, C; Rick, Hartmut; Robertson, S; Robins, S A; Rodning, N L; Roney, J M; Roscoe, K; Rossi, A M; Rozen, Y; Runge, K; Runólfsson, O; Rust, D R; Sachs, K; Saeki, T; Sahr, O; Sang, W M; Sarkisyan-Grinbaum, E; Sbarra, C; Schaile, A D; Schaile, O; Scharf, F; Scharff-Hansen, P; Schieck, J; Schmitt, B; Schmitt, S; Schöning, A; Schörner-Sadenius, T; Schröder, M; Schumacher, M; Schwick, C; Scott, W G; Seuster, R; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Siroli, G P; Sittler, A; Skuja, A; Smith, A M; Snow, G A; Sobie, Randall J; Söldner-Rembold, S; Sproston, M; Stahl, A; Stephens, K; Steuerer, J; Stoll, K; Strom, D; Ströhmer, R; Tafirout, R; Talbot, S D; Tanaka, S; Taras, P; Tarem, S; Teuscher, R; Thiergen, M; Thomson, M A; Von Törne, E; Torrence, E; Towers, S; Trigger, I; Trócsányi, Z L; Tsur, E; Turcot, A S; Turner-Watson, M F; Van Kooten, R; Vannerem, P; Verzocchi, M; Vikas, P; Voss, H; Wäckerle, F; Wagner, A; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wermes, N; White, J S; Wilson, G W; Wilson, J A; Wyatt, T R; Yamashita, S; Yekutieli, G; Zacek, V; Zer-Zion, D

    1999-01-01

    The spectral functions of the vector current and the axial-vector current have been measured in hadronic tau decays using the OPAL detector at LEP. Within the framework of the Operator Product Expansion a simultaneous determination of the strong coupling constant alpha_s, the non-perturbative operators of dimension 6 and 8 and of the gluon condensate has been performed. Different perturbative descriptions have been compared to the data. The Contour Improved Fixed Order Perturbation Theory gives alpha_s(mtau**2) = 0.348 +- 0.009 +- 0.019 at the tau-mass scale and alpha_s(mz**2) = 0.1219 +- 0.0010 +- 0.0017 at the Z-mass scale. The values obtained for alpha_s(mz**2) using Fixed Order Perturbation Theory or Renormalon Chain Resummation are 2.3% and 4.1% smaller, respectively. The running of the strong coupling between s_0 ~1.3 GeV**2 and s_0 = mtau**2 has been tested from direct fits to the integrated differential hadronic decay rate R_tau. A test of the saturation of QCD sum rules at the tau-mass scale has been...

  16. Impact of Different H/D Ratio on Axial Gas Holdup Measured by Four-Tips Optical Fiber Probe in Slurry Bubble Column

    Directory of Open Access Journals (Sweden)

    Yasser Imad Abdulaziz

    2016-02-01

    Full Text Available In wide range of chemical, petrochemical and energy processes, it is not possible to manage without slurry bubble column reactors. In this investigation, time average local gas holdup was recorded for three different height to diameter (H/D ratios 3, 4 and 5 in 18" diameter slurry bubble column. Air-water-glass beads system was used with superficial velocity up to 0.24 m/s. the gas holdup was measured using 4-tips optical fiber probe technique. The results show that the axial gas holdup increases almost linearly with the superficial gas velocity in 0.08 m/s and levels off with a further increase of velocity. A comparison of the present data with those reported for other slurry bubble column having diameters larger than 18" and H/D higher than 5 indicated that there is little effect of diameter on gas holdup. Also, local section-average gas holdups increase with increasing superficial gas velocity, while the effect of solid loading are less significant than that of superficial gas velocity.

  17. Spring constant measurement using a MEMS force and displacement sensor utilizing paralleled piezoresistive cantilevers

    Science.gov (United States)

    Kohyama, Sumihiro; Takahashi, Hidetoshi; Yoshida, Satoru; Onoe, Hiroaki; Hirayama-Shoji, Kayoko; Tsukagoshi, Takuya; Takahata, Tomoyuki; Shimoyama, Isao

    2018-04-01

    This paper reports on a method to measure a spring constant on site using a micro electro mechanical systems (MEMS) force and displacement sensor. The proposed sensor consists of a force-sensing cantilever and a displacement-sensing cantilever. Each cantilever is composed of two beams with a piezoresistor on the sidewall for measuring the in-plane lateral directional force and displacement. The force resolution and displacement resolution of the fabricated sensor were less than 0.8 µN and 0.1 µm, respectively. We measured the spring constants of two types of hydrogel microparticles to demonstrate the effectiveness of the proposed sensor, with values of approximately 4.3 N m-1 and 15.1 N m-1 obtained. The results indicated that the proposed sensor is effective for on-site spring constant measurement.

  18. Thermophoretic forces on DNA measured with a single-molecule spring balance

    DEFF Research Database (Denmark)

    Pedersen, Jonas Nyvold; Lüscher, Christopher James; Marie, Rodolphe

    2014-01-01

    We stretch a single DNA molecule with thermophoretic forces and measure these forces with a spring balance: the DNA molecule itself. It is an entropic spring which we calibrate, using as a benchmark its Brownian motion in the nanochannel that contains and prestretches it. This direct measurement ....... We find the Soret coefficient per unit length of DNA at various ionic strengths. It agrees, with novel precision, with results obtained in bulk for DNA too short to shield itself and with the thermodynamic model of thermophoresis.......We stretch a single DNA molecule with thermophoretic forces and measure these forces with a spring balance: the DNA molecule itself. It is an entropic spring which we calibrate, using as a benchmark its Brownian motion in the nanochannel that contains and prestretches it. This direct measurement...

  19. Measuring Relationships: A Model for Evaluating U.S. Air Force Public Affairs Programs

    National Research Council Canada - National Science Library

    Della Vedova, Joseph P

    2005-01-01

    The thesis advanced here is that Air Force Public Affairs should be responsible for managing the organization-public relationship and that the effectiveness of that management can be measured in terms...

  20. A levitation force and magnetic field distribution measurement system in three dimensions

    International Nuclear Information System (INIS)

    Yang, W.M.; Chao, X.X.; Shu, Z.B.; Zhu, S.H.; Wu, X.L.; Bian, X.B.; Liu, P.

    2006-01-01

    A levitation force and magnetic field distribution measurement system in three dimension has been designed and constructed, which can be used for the levitation force measurement between a superconductor and a magnet, or magnet to magnet in three dimensions; and for the measurement of magnetic field distribution in three dimensions according to your need in space. It can also give out the dynamical changing result of magnetic field density with time during levitation force measurement. If we change the sensor of the detector of the measurement system, it also can be used for other kinds of measurement of physical properties. It is a good device for the measurement of magnetic properties of materials. In addition the device can also be used to work at carving in three dimensions

  1. Computerised Axial Tomography (CAT)

    Science.gov (United States)

    1990-06-01

    Ministry of’ Defence, Defence Research Information Centre, UK. Computerised Axial Tomography ( CAT ) Report Secufty C"uMiauion tide Onadtiicadon (U. R, Cor S...DRIC T 8485 COMPUTERISED AXIAL TOMOGRAPHY ( CAT ) F.P. GENTILE, F. SABETTA, V. TRO1* ISS R 78/4.Rome, 1.5 Mlarch 1978 (from Italian) B Distribution(f...dello Radiazioni ISSN 0390--6477 F.P. GENTILE, F. SABETTA. V. TROI Computerised Axial Tomography ( CAT ) March 15, 1978). This paper is a review of

  2. Measurement of Normal and Friction Forces in a Rolling Process

    DEFF Research Database (Denmark)

    Henningsen, Poul; Arentoft, Mogens; Wanheim, Tarras

    2004-01-01

    by the fric-tion conditions. To achieve this important informa-tion, measurements of the normal pressure and friction stresses in the deformation zone are re-quested. The direction of the friction stresses is changing during the rolling gap. At the entrance of the de-formation zone, the peripherical velocity...... of the roll is higher than for the incoming material, which causes frictional stresses at the material acting in the rolling direction. At the outlet of the rolling gap, the velocity of the deformed material exceeds the velocity of the roll, generating frictional stresses contrary to the direction of rolling....... In a narrow area in the deformation zone, the velocity of the de-formed material is equal to the velocity of the rolls. This area or line is named “neutral line”. The posi-tion of the neutral line depends on friction, reduc-tion ratio, diameter of the rolls, and width of the sheet....

  3. Subsurface measurement of nanostructures on GaAs by electrostatic force microscopy

    International Nuclear Information System (INIS)

    Yamada, Fumihiko; Kamiya, Itaru

    2013-01-01

    The size of surface buried oxide nanostructures are measured by electrostatic force microscopy (EFM). In contrast to atomic force microscopy that cannot probe subsurface structures and thickness, we show that EFM data include information about the thickness of individual nanostructures, consequently allowing us to determine the thickness of buried nanostructures on semiconductor substrates. We further show that this measurement can be performed simultaneously with AFM using EFM modulation spectroscopy.

  4. Digital design and fabrication of simulation model for measuring orthodontic force.

    Science.gov (United States)

    Liu, Yun-Feng; Zhang, Peng-Yuan; Zhang, Qiao-Fang; Zhang, Jian-Xing; Chen, Jie

    2014-01-01

    Three dimensional (3D) forces are the key factors for determining movement of teeth during orthodontic treatment. Designing precise forces and torques on tooth before treatment can result accurate tooth movements, but it is too difficult to realize. In orthodontic biomechanical systems, the periodontal tissues, including bones, teeth, and periodontal ligaments (PDL), are affected by braces, and measuring the forces applied on the teeth by braces should be based on a simulated model composed of these three types of tissues. This study explores the design and fabrication of a simulated oral model for 3D orthodontic force measurements. Based on medical image processing, tissue reconstruction, 3D printing, and PDL simulation and testing, a model for measuring force was designed and fabricated, which can potentially be used for force prediction, design of treatment plans, and precise clinical operation. The experiment illustrated that bi-component silicones with 2:8 ratios had similar mechanical properties to PDL, and with a positioning guide, the teeth were assembled in the mandible sockets accurately, and so a customized oral model for 3D orthodontic force measurement was created.

  5. Design and testing of an innovative measurement device for tyre-road contact forces

    Science.gov (United States)

    Cheli, F.; Braghin, F.; Brusarosco, M.; Mancosu, F.; Sabbioni, E.

    2011-08-01

    The measurement of tyre-road contact forces is the first step towards the development of new control systems for improving vehicle safety and performances. Tyre-road contact forces measurement systems are very expensive and significantly modify the unsprung masses of the vehicle as well as the rotational inertia of the tyres. Thus, vehicle dynamics results are significantly affected. As a consequence, the measured contact forces do not correspond to the contact forces under real working conditions. A new low-cost tyre-road contact forces measurement system is proposed in this paper that can be applied to passenger cars. Its working principle is based on the measurement of three deformations of the wheel rim through strain gauges. The tyre-rim assembly is thus turned into a sensor for tyre-road contact forces. The influence of the strain gauges position onto the measurement results has been assessed through finite element simulations and experimental tests. It has been proven that, for a large variety of rims, the strain gauge position that leads to high signal-to-noise ratios is almost the same. A dynamic calibration procedure has been developed in order to allow the reconstruction of contact force and torque components once per wheel turn. The capability of the developed device to correctly estimate tyre-road contact forces has been assessed, in a first stage, through indoor laboratory experimental test on an MTS Flat-Trac ® testing machine. Results show that the implemented measuring system allows to reconstruct contact forces once per wheel turn with a precision that is comparable to that of existing high-cost measurement systems. Subsequently, outdoor tests with a vehicle having all four wheels equipped with the developed measuring device have also been performed. Reliability of the measurements provided by the developed sensor has been assessed by comparing the global measured longitudinal/lateral forces and the product of the measured longitudinal

  6. Accuracy of right and left ventricular functional assessment by short-axis vs axial cine steady-state free-precession magnetic resonance imaging: intrapatient correlation with main pulmonary artery and ascending aorta phase-contrast flow measurements.

    Science.gov (United States)

    James, Susan H; Wald, Rachel; Wintersperger, Bernd J; Jimenez-Juan, Laura; Deva, Djeven; Crean, Andrew M; Nguyen, Elsie; Paul, Narinder S; Ley, Sebastian

    2013-08-01

    The left ventricle (LV) is routinely assessed with cardiac magnetic resonance imaging (MRI) by using short-axis orientation; it remains unclear whether the right ventricle (RV) can also be adequately assessed in this orientation or whether dedicated axial orientation is required. We used phase-contrast (PC) flow measurements in the main pulmonary artery (MPA) and the ascending aorta (Aorta) as nonvolumetric standard of reference and compared RV and LV volumes in short-axis and axial orientations. A retrospective analysis identified 30 patients with cardiac MRI data sets. Patients underwent MRI (1.5 T or 3 T), with retrospectively gated cine steady-state free-precession in axial and short-axis orientations. PC flow analyses of MPA and Aorta were used as the reference measure of RV and LV output. There was a high linear correlation between MPA-PC flow and RV-stroke volume (SV) short axis (r = 0.9) and RV-SV axial (r = 0.9). Bland-Altman analysis revealed a mean offset of 1.4 mL for RV axial and -2.3 mL for RV-short-axis vs MPA-PC flow. There was a high linear correlation between Aorta-PC flow and LV-SV short-axis (r = 0.9) and LV-SV axial (r = 0.9). Bland-Altman analysis revealed a mean offset of 4.8 m for LV short axis and 7.0 mL for LV axial vs Aorta-PC flow. There was no significant difference (P = .6) between short-axis-LV SV and short-axis-RV SV. No significant impact of the slice acquisition orientation for determination of RV and LV stroke volumes was found. Therefore, cardiac magnetic resonance workflow does not need to be extended by an axial data set for patients without complex cardiac disease for assessment of biventricular function and volumes. Copyright © 2013 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  7. Axially alignable nuclear fuel pellets

    International Nuclear Information System (INIS)

    Johansson, E.B.; Klahn, D.H.; Marlowe, M.O.

    1978-01-01

    An axially alignable nuclear fuel pellet of the type stacked in end-to-end relationship within a tubular cladding is described. Fuel cladding failures can occur at pellet interface locations due to mechanical interaction between misaligned fuel pellets and the cladding. Mechanical interaction between the cladding and the fuel pellets loads the cladding and causes increased cladding stresses. Nuclear fuel pellets are provided with an end structure that increases plastic deformation of the pellets at the interface between pellets so that lower alignment forces are required to straighten axially misaligned pellets. Plastic deformation of the pellet ends results in less interactions beween the cladding and the fuel pellets and significantly lowers cladding stresses. The geometry of pellets constructed according to the invention also reduces alignment forces required to straighten fuel pellets that are tilted within the cladding. Plastic deformation of the pellets at the pellet interfaces is increased by providing pellets with at least one end face having a centrally-disposed raised area of convex shape so that the mean temperature and shear stress of the contact area is higher than that of prior art pellets

  8. Quantitative measurement of solvation shells using frequency modulated atomic force microscopy

    Science.gov (United States)

    Uchihashi, T.; Higgins, M.; Nakayama, Y.; Sader, J. E.; Jarvis, S. P.

    2005-03-01

    The nanoscale specificity of interaction measurements and additional imaging capability of the atomic force microscope make it an ideal technique for measuring solvation shells in a variety of liquids next to a range of materials. Unfortunately, the widespread use of atomic force microscopy for the measurement of solvation shells has been limited by uncertainties over the dimensions, composition and durability of the tip during the measurements, and problems associated with quantitative force calibration of the most sensitive dynamic measurement techniques. We address both these issues by the combined use of carbon nanotube high aspect ratio probes and quantifying the highly sensitive frequency modulation (FM) detection technique using a recently developed analytical method. Due to the excellent reproducibility of the measurement technique, additional information regarding solvation shell size as a function of proximity to the surface has been obtained for two very different liquids. Further, it has been possible to identify differences between chemical and geometrical effects in the chosen systems.

  9. A novel integrated multifunction micro-sensor for three-dimensional micro-force measurements.

    Science.gov (United States)

    Wang, Weizhong; Zhao, Yulong; Qin, Yafei

    2012-01-01

    An integrated multifunction micro-sensor for three-dimensional micro-force precision measurement under different pressure and temperature conditions is introduced in this paper. The integrated sensor consists of three kinds of sensors: a three-dimensional micro-force sensor, an absolute pressure sensor and a temperature sensor. The integrated multifunction micro-sensor is fabricated on silicon wafers by micromachining technology. Different doping doses of boron ion, placement and structure of resistors are tested for the force sensor, pressure sensor and temperature sensor to minimize the cross interference and optimize the properties. A glass optical fiber, with a ladder structure and sharp tip etched by buffer oxide etch solution, is glued on the micro-force sensor chip as the tactile probe. Experimental results show that the minimum force that can be detected by the force sensor is 300 nN; the lateral sensitivity of the force sensor is 0.4582 mV/μN; the probe length is linearly proportional to sensitivity of the micro-force sensor in lateral; the sensitivity of the pressure sensor is 0.11 mv/KPa; the sensitivity of the temperature sensor is 5.836 × 10(-3) KΩ/°C. Thus it is a cost-effective method to fabricate integrated multifunction micro-sensors with different measurement ranges that could be used in many fields.

  10. A Novel Integrated Multifunction Micro-Sensor for Three-Dimensional Micro-Force Measurements

    Directory of Open Access Journals (Sweden)

    Yafei Qin

    2012-03-01

    Full Text Available An integrated multifunction micro-sensor for three-dimensional micro-force precision measurement under different pressure and temperature conditions is introduced in this paper. The integrated sensor consists of three kinds of sensors: a three-dimensional micro-force sensor, an absolute pressure sensor and a temperature sensor. The integrated multifunction micro-sensor is fabricated on silicon wafers by micromachining technology. Different doping doses of boron ion, placement and structure of resistors are tested for the force sensor, pressure sensor and temperature sensor to minimize the cross interference and optimize the properties. A glass optical fiber, with a ladder structure and sharp tip etched by buffer oxide etch solution, is glued on the micro-force sensor chip as the tactile probe. Experimental results show that the minimum force that can be detected by the force sensor is 300 nN; the lateral sensitivity of the force sensor is 0.4582 mV/μN; the probe length is linearly proportional to sensitivity of the micro-force sensor in lateral; the sensitivity of the pressure sensor is 0.11 mv/KPa; the sensitivity of the temperature sensor is 5.836 × 10−3 KΩ/°C. Thus it is a cost-effective method to fabricate integrated multifunction micro-sensors with different measurement ranges that could be used in many fields.

  11. Accuracy of force and center of pressure measures of the Wii Balance Board.

    Science.gov (United States)

    Bartlett, Harrison L; Ting, Lena H; Bingham, Jeffrey T

    2014-01-01

    The Nintendo Wii Balance Board (WBB) is increasingly used as an inexpensive force plate for assessment of postural control; however, no documentation of force and COP accuracy and reliability is publicly available. Therefore, we performed a standard measurement uncertainty analysis on 3 lightly and 6 heavily used WBBs to provide future users with information about the repeatability and accuracy of the WBB force and COP measurements. Across WBBs, we found the total uncertainty of force measurements to be within ± 9.1N, and of COP location within ± 4.1mm. However, repeatability of a single measurement within a board was better (4.5 N, 1.5mm), suggesting that the WBB is best used for relative measures using the same device, rather than absolute measurement across devices. Internally stored calibration values were comparable to those determined experimentally. Further, heavy wear did not significantly degrade performance. In combination with prior evaluation of WBB performance and published standards for measuring human balance, our study provides necessary information to evaluate the use of the WBB for analysis of human balance control. We suggest the WBB may be useful for low-resolution measurements, but should not be considered as a replacement for laboratory-grade force plates. Published by Elsevier B.V.

  12. Measurement of Effect of Chemical Reactions on the Hydrologic Properties of Fractured Glass Media Using a Tri-axial Flow and Transport Apparatus

    International Nuclear Information System (INIS)

    Saripalli, Prasad; Lindberg, Michael J.; Meyer, P. D.

    2006-01-01

    Understanding the effect of chemical reactions on the hydrologic properties of sub-surface media is critical to many natural and engineered sub-surface systems. Methods and information for such characterization of fractured media are severely lacking. Influence of glass corrosion (precipitation and dissolution) reactions on fractured glass blocks HAN28 and LAWBP1, two candidate waste glass forms for a proposed immobilized low-activity waste (ILAW) disposal facility at the Hanford, WA site, was investigated. Flow and tracer transport experiments were conducted in such randomly and multiply fractured ILAW glass blocks, before and after subjecting them to corrosion using Vapor Hydration Testing (VHT) at 200 C temperature and 200 psig (1379 KPa) pressure, causing the precipitation of alteration products. A tri-axial fractured media flow and transport experimental apparatus, which allows the simultaneous measurement of flow and transport properties and their anisotropy, has been designed and built for this purpose. Such apparatus for fractured media characterization are being reported in the literature only recently. Hydraulic properties of fractured blocks were measured in different orientations and along different cardinal directions, before and after glass corrosion reactions. Miscible displacement experiments using a non-reactive dye were also conducted, before and after glass corrosion reactions, to study the tracer transport behavior through such media. Initial efforts to analyze breakthrough curve (BTC) data using a 1D Advection Dispersion Equation (ADE) solution revealed that a different fractured media transport model may be necessary for such interpretation. It was found that glass reactions can have a significant influence on the hydrologic properties of fractured ILAW glass media. The methods and results are unique and useful to better understand the effect of chemical reactions on the hydrologic properties of fractured geomedia in general and glass media in

  13. Measuring adhesion on rough surfaces using atomic force microscopy with a liquid probe

    Directory of Open Access Journals (Sweden)

    Juan V. Escobar

    2017-04-01

    Full Text Available We present a procedure to perform and interpret pull-off force measurements during the jump-off-contact process between a liquid drop and rough surfaces using a conventional atomic force microscope. In this method, a micrometric liquid mercury drop is attached to an AFM tipless cantilever to measure the force required to pull this drop off a rough surface. We test the method with two surfaces: a square array of nanometer-sized peaks commonly used for the determination of AFM tip sharpness and a multi-scaled rough diamond surface containing sub-micrometer protrusions. Measurements are carried out in a nitrogen atmosphere to avoid water capillary interactions. We obtain information about the average force of adhesion between a single peak or protrusion and the liquid drop. This procedure could provide useful microscopic information to improve our understanding of wetting phenomena on rough surfaces.

  14. Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope

    DEFF Research Database (Denmark)

    Jensen, Carsten P.

    Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope......Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope...

  15. An in-fiber Bragg grating sensor for contact force and stress measurements in articular joints

    International Nuclear Information System (INIS)

    Dennison, Christopher R; Wild, Peter M; Wilson, David R; Gilbart, Michael K

    2010-01-01

    We present an in-fiber Bragg grating-based sensor (240 µm diameter) for contact force/stress measurements in articular joints. The contact force sensor and another Bragg grating-based pressure sensor (400 µm diameter) are used to conduct the first simultaneous measurements of contact force/stress and fluid pressure in intact cadaveric human hips. The contact force/stress sensor addresses limitations associated with stress-sensitive films, the current standard tools for contact measurements in joints, including cartilage modulus-dependent sensitivity of films and the necessity to remove biomechanically relevant anatomy to implant the films. Because stress-sensitive films require removal of anatomy, it has been impossible to validate the mechanical rationale underlying preventive or corrective surgeries, which repair these anatomies, by conducting simultaneous stress and pressure measurements in intact hips. Methods are presented to insert the Bragg grating-based sensors into the joint, while relevant anatomy is left largely intact. Sensor performance is predicted using numerical models and the predicted sensitivity is verified through experimental calibrations. Contact force/stress and pressure measurements in cadaveric joints exhibited repeatability. With further validation, the Bragg grating-based sensors could be used to study the currently unknown relationships between contact forces and pressures in both healthy and degenerated joints

  16. Instrumented figure skating blade for measuring on-ice skating forces

    Science.gov (United States)

    Acuña, S. A.; Smith, D. M.; Robinson, J. M.; Hawks, J. C.; Starbuck, P.; King, D. L.; Ridge, S. T.; Charles, S. K.

    2014-12-01

    Competitive figure skaters experience substantial, repeated impact loading during jumps and landings. Although these loads, which are thought to be as high as six times body weight, can lead to overuse injuries, it is not currently possible to measure these forces on-ice. Consequently, efforts to improve safety for skaters are significantly limited. Here we present the development of an instrumented figure skating blade for measuring forces on-ice. The measurement system consists of strain gauges attached to the blade, Wheatstone bridge circuit boards, and a data acquisition device. The system is capable of measuring forces in the vertical and horizontal directions (inferior-superior and anterior-posterior directions, respectively) in each stanchion with a sampling rate of at least 1000 Hz and a resolution of approximately one-tenth of body weight. The entire system weighs 142 g and fits in the space under the boot. Calibration between applied and measured force showed excellent agreement (R > 0.99), and a preliminary validation against a force plate showed good predictive ability overall (R ≥ 0.81 in vertical direction). The system overestimated the magnitude of the first and second impact peaks but detected their timing with high accuracy compared to the force plate.

  17. Prestress Force Identification for Externally Prestressed Concrete Beam Based on Frequency Equation and Measured Frequencies

    Directory of Open Access Journals (Sweden)

    Luning Shi

    2014-01-01

    Full Text Available A prestress force identification method for externally prestressed concrete uniform beam based on the frequency equation and the measured frequencies is developed. For the purpose of the prestress force identification accuracy, we first look for the appropriate method to solve the free vibration equation of externally prestressed concrete beam and then combine the measured frequencies with frequency equation to identify the prestress force. To obtain the exact solution of the free vibration equation of multispan externally prestressed concrete beam, an analytical model of externally prestressed concrete beam is set up based on the Bernoulli-Euler beam theory and the function relation between prestress variation and vibration displacement is built. The multispan externally prestressed concrete beam is taken as the multiple single-span beams which must meet the bending moment and rotation angle boundary conditions, the free vibration equation is solved using sublevel simultaneous method and the semi-analytical solution of the free vibration equation which considered the influence of prestress on section rigidity and beam length is obtained. Taking simply supported concrete beam and two-span concrete beam with external tendons as examples, frequency function curves are obtained with the measured frequencies into it and the prestress force can be identified using the abscissa of the crosspoint of frequency functions. Identification value of the prestress force is in good agreement with the test results. The method can accurately identify prestress force of externally prestressed concrete beam and trace the trend of effective prestress force.

  18. Measuring lip force by oral screens. Part 1: Importance of screen size and individual variability.

    Science.gov (United States)

    Wertsén, Madeleine; Stenberg, Manne

    2017-06-01

    To reduce drooling and facilitate food transport in rehabilitation of patients with oral motor dysfunction, lip force can be trained using an oral screen. Longitudinal studies evaluating the effect of training require objective methods. The aim of this study was to evaluate a method for measuring lip strength, to investigate normal values and fluctuation of lip force in healthy adults on 1 occasion and over time, to study how the size of the screen affects the force, to evaluate the most appropriate measure of reliability, and to identify force performed in relation to gender. Three different sizes of oral screens were used to measure the lip force for 24 healthy adults on 3 different occasions, during a period of 6 months, using an apparatus based on strain gauge. The maximum lip force as evaluated with this method depends on the area of the screen size. By calculating the projected area of the screen, the lip force could be normalized to an oral screen pressure quantity expressed in kPa, which can be used for comparing measurements from screens with different sizes. Both the mean value and standard deviation were shown to vary between individuals. The study showed no differences regarding gender and only small variation with age. Normal variation over time (months) may be up to 3 times greater than the standard error of measurement at a certain occasion. The lip force increases in relation to the projected area of the screen. No general standard deviation can be assigned to the method and all measurements should be analyzed individually based on oral screen pressure to compensate for different screen sizes.

  19. Surface Forces Apparatus measurements of interactions between rough and reactive calcite surfaces.

    Science.gov (United States)

    Dziadkowiec, Joanna; Javadi, Shaghayegh; Bratvold, Jon Einar; Nilsen, Ola; Røyne, Anja

    2018-05-28

    Nm-range forces acting between calcite surfaces in water affect macroscopic properties of carbonate rocks and calcite-based granular materials, and are significantly influenced by calcite surface recrystallization. We suggest that the repulsive mechanical effects related to nm-scale surface recrystallization of calcite in water could be partially responsible for the observed decrease of cohesion in calcitic rocks saturated with water. Using the Surface Forces Apparatus (SFA), we simultaneously followed the calcite reactivity and measured the forces in water in two surface configurations: between two rough calcite surfaces (CC), or between rough calcite and a smooth mica surface (CM). We used nm-scale rough, polycrystalline calcite films prepared by Atomic Layer Deposition (ALD). We measured only repulsive forces in CC in CaCO 3 -saturated water, which was related to roughness and possibly to repulsive hydration effects. Adhesive or repulsive forces were measured in CM in CaCO 3 -saturated water depending on calcite roughness, and the adhesion was likely enhanced by electrostatic effects. The pull-off adhesive force in CM became stronger with time and this increase was correlated with a decrease of roughness at contacts, which parameter could be estimated from the measured force-distance curves. That suggested a progressive increase of real contact areas between the surfaces, caused by gradual pressure-driven deformation of calcite surface asperities during repeated loading-unloading cycles. Reactivity of calcite was affected by mass transport across nm to µm-thick gaps between the surfaces. Major roughening was observed only for the smoothest calcite films, where gaps between two opposing surfaces were nm-thick over µm-sized areas, and led to force of crystallization that could overcome confining pressures of the order of MPa. Any substantial roughening of calcite caused a significant increase of the repulsive mechanical force contribution.

  20. Experimental Verification of Oil Whirl of Piston in Axial Piston Pmmp and Motor

    OpenAIRE

    田中, 嘉津彦; 中原, 綱光; 京極, 啓史

    1999-01-01

    Piston motion which interacts with lubrication characteristics including friction force between the piston and cylinder has been measured in order to prove the oil whirl phenomena in an axial piston pump and motor which had been found theoretically in the previous paper. The piston motion has been measured by means of eddy current displacement sensors, comparing with calculated results. It has been verified that the piston has whirled in the cylinder under certain operating conditions and spe...

  1. The use of piezoelectric bimorph transducers to measure forces in colloidal systems

    International Nuclear Information System (INIS)

    Stewart, A.M.

    1996-01-01

    The Surface Force Apparatus developed in this Department has proved useful for the measurement of colloidal forces between transparent surfaces in liquids and gases at surface separations of 1 nm up to 500 nm. The distance between the surfaces is measured by the interferometry of white light, and the force is measured from the movement of one of the surfaces that is attached to a cantilever spring which deflects under the influence of the force. In the present work an analysis is made of the effect of the errors introduced at a longer time scale by bimorph drift and decay upon accuracy of measurement. For direct measurements the errors will be small provided that the time constant of the bimorph, given by the product of its capacitance and amplifier input impedance, is much larger than the total time of measurement. With the force-feedback technique the errors will be negligible provided that, in addition the integrator time constant is much smaller than the bimorph time constant, a condition easily satisfied. In is important to use an amplifier with a very high input impedance to buffer bimorphs used for this type of measurement

  2. Measurement of the force on microparticles in a beam of energetic ions and neutral atoms

    International Nuclear Information System (INIS)

    Trottenberg, Thomas; Schneider, Viktor; Kersten, Holger

    2010-01-01

    The force on microparticles in an energetic ion beam is investigated experimentally. Hollow glass microspheres are injected into the vertically upward directed beam and their trajectories are recorded with a charge-coupled device camera. The net force on the particles is determined by means of the measured vertical acceleration. The resulting beam pressures are compared with Faraday cup measurements of the ion current density and calorimetric measurements of the beam power density. Due to the neutral gas background, the beam consists, besides the ions, of energetic neutral atoms produced by charge-exchange collisions. It is found that the measured composition of the drag force by an ion and a neutral atom component agrees with a beam model that takes charge-exchange collisions into account. Special attention is paid to the momentum contribution from sputtered atoms, which is shown to be negligible in this experiment, but should become measurable in case of materials with high sputtering yields.

  3. Measurements of cutter forces and cutter temperature of boring machine in Aespoe Hard Rock Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.X.; Kou, S.Q.; Lindqvist, P.-A. [Luleaa Univ. of Technology (Sweden)

    2001-04-01

    This report presents both the testing methods used and the testing results obtained for cutter forces and cutter temperature during field boring in Aespoe Hard Rock Laboratory. In order to estimate the strains induced by cutter forces in the cutter shaft and choose proper transducers, first a numerical simulation was performed. The simulation results indicated that the cutter forces should be measurable by ordinary strain gauges. Furthermore, an independent three-direction loading system for laboratory calibration was set up to solve force-coupling problems appearing in field measurements. By means of the established measuring system, which was proved successfully in the laboratory, the normal forces, tangential forces, and side forces of two button cutters in the boring machine were measured in the field. In addition, the temperature in the shaft of the front cutter was measured. After the measurements of the cutter forces and cutter temperature, rock core samples were taken from the bottom and the wall of the testing borehole. Then the samples were cut, polished, and examined by means of the Scanning Electron Microscope (SEM). After that, the lengths of major cracks induced by the cutters in the rock samples were measured, and an approximate relationship between the length of the medium cracks and the relevant cutter forces was obtained. This relationship was compared with the theoretical relationship established before. Finally, according to the measured results, the cracked zones around the borehole were described. The results show that: (1) there are two kinds of cracked zones: one in the borehole wall and the other in the bottom of the borehole. The depth of the cracked zone in the borehole bottom is much larger than that in the borehole wall because the maximum normal force of the front cutter is always much larger than that of the gauge cutter. (2) Each cracked zone includes a densely cracked zone and all the longest medium cracks caused by mechanical

  4. A High Performance Sensor for Triaxial Cutting Force Measurement in Turning

    Directory of Open Access Journals (Sweden)

    You Zhao

    2015-04-01

    Full Text Available This paper presents a high performance triaxial cutting force sensor with excellent accuracy, favorable natural frequency and acceptable cross-interference for high speed turning process. Octagonal ring is selected as sensitive element of the designed sensor, which is drawn inspiration from ring theory. A novel structure of two mutual-perpendicular octagonal rings is proposed and three Wheatstone full bridge circuits are specially organized in order to obtain triaxial cutting force components and restrain cross-interference. Firstly, the newly developed sensor is tested in static calibration; test results indicate that the sensor possesses outstanding accuracy in the range of 0.38%–0.83%. Secondly, impacting modal tests are conducted to identify the natural frequencies of the sensor in triaxial directions (i.e., 1147 Hz, 1122 Hz and 2035 Hz, which implies that the devised sensor can be used for cutting force measurement in a high speed lathe when the spindle speed does not exceed 17,205 rev/min in continuous cutting condition. Finally, an application of the sensor in turning process is operated to show its performance for real-time cutting force measurement; the measured cutting forces demonstrate a good accordance with the variation of cutting parameters. Thus, the developed sensor possesses perfect properties and it gains great potential for real-time cutting force measurement in turning.

  5. Pushing nanoparticles with light — A femtonewton resolved measurement of optical scattering forces

    Directory of Open Access Journals (Sweden)

    C. Zensen

    2016-05-01

    Full Text Available Optomechanical manipulation of plasmonic nanoparticles is an area of current interest, both fundamental and applied. However, no experimental method is available to determine the forward-directed scattering force that dominates for incident light of a wavelength close to the plasmon resonance. Here, we demonstrate how the scattering force acting on a single gold nanoparticle in solution can be measured. An optically trapped 80 nm particle was repetitively pushed from the side with laser light resonant to the particle plasmon frequency. A lock-in analysis of the particle movement provides a measured value for the scattering force. We obtain a resolution of less than 3 femtonewtons which is an order of magnitude smaller than any measurement of switchable forces performed on nanoparticles in solution with single beam optical tweezers to date. We compared the results of the force measurement with Mie simulations of the optical scattering force on a gold nanoparticle and found good agreement between experiment and theory within a few fN.

  6. Stability enhancement of an atomic force microscope for long-term force measurement including cantilever modification for whole cell deformation

    Science.gov (United States)

    Weafer, P. P.; McGarry, J. P.; van Es, M. H.; Kilpatrick, J. I.; Ronan, W.; Nolan, D. R.; Jarvis, S. P.

    2012-09-01

    Atomic force microscopy (AFM) is widely used in the study of both morphology and mechanical properties of living cells under physiologically relevant conditions. However, quantitative experiments on timescales of minutes to hours are generally limited by thermal drift in the instrument, particularly in the vertical (z) direction. In addition, we demonstrate the necessity to remove all air-liquid interfaces within the system for measurements in liquid environments, which may otherwise result in perturbations in the measured deflection. These effects severely limit the use of AFM as a practical tool for the study of long-term cell behavior, where precise knowledge of the tip-sample distance is a crucial requirement. Here we present a readily implementable, cost effective method of minimizing z-drift and liquid instabilities by utilizing active temperature control combined with a customized fluid cell system. Long-term whole cell mechanical measurements were performed using this stabilized AFM by attaching a large sphere to a cantilever in order to approximate a parallel plate system. An extensive examination of the effects of sphere attachment on AFM data is presented. Profiling of cantilever bending during substrate indentation revealed that the optical lever assumption of free ended cantilevering is inappropriate when sphere constraining occurs, which applies an additional torque to the cantilevers "free" end. Here we present the steps required to accurately determine force-indentation measurements for such a scenario. Combining these readily implementable modifications, we demonstrate the ability to investigate long-term whole cell mechanics by performing strain controlled cyclic deformation of single osteoblasts.

  7. Interaction force measurement between E. coli cells and nanoparticles immobilized surfaces by using AFM.

    Science.gov (United States)

    Zhang, Wen; Stack, Andrew G; Chen, Yongsheng

    2011-02-01

    To better understand environmental behaviors of nanoparticles (NPs), we used the atomic force microscopy (AFM) to measure interaction forces between E. coli cells and NPs immobilized on surfaces in an aqueous environment. The results showed that adhesion force strength was significantly influenced by particle size for both hematite (α-Fe(2)O(3)) and corundum (α-Al(2)O(3)) NPs whereas the effect on the repulsive force was not observed. The adhesion force decreased from 6.3±0.7nN to 0.8±0.4nN as hematite NPs increased from 26nm to 98nm in diameter. Corundum NPs exhibited a similar dependence of adhesion force on particle size. The Johnson-Kendall-Roberts (JKR) model was employed to estimate the contact area between E. coli cells and NPs, and based on the JKR model a new model that considers local effective contact area was developed. The prediction of the new model matched the size dependence of adhesion force in experimental results. Size effects on adhesion forces may originate from the difference in local effective contact areas as supported by our model. These findings provide fundamental information for interpreting the environmental behaviors and biological interactions of NPs, which barely have been addressed. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Measurement of unsteady flow forces in inline and staggered tube bundles with fixed and vibrating tubes

    International Nuclear Information System (INIS)

    Michel, A.; Heinecke, E.; Decken, C.B. von der.

    1986-01-01

    Unsteady flow forces arising in heat exchangers with cross-flow may lead to serious vibrations of the tubes. These vibrations can destroy the tubes in the end supports or in the baffles, which would require expensive repairs. The flow forces reach unexpectedly by high values if the vibration of the tube intensifies these forces. To clear up this coupling mechanism the flow forces and the vibration amplitude were measured simultaneously in a staggered and in an inline tube bundle. Considering the tube as a one-mass oscillator excited by the flow force, the main parameters can be derived, i.e. dynamic pressure, reduced mass, eigenfrequency and damping. These parameters form a dimensionless model number describing the coherence of the vibration amplitude and the force coefficient. The validity of this number has been confirmed by varying the test conditions. With the aid of this model number, the expected force coefficient can be calculated and then using a finite-element program information can be obtained about mechanical tensions and the lifetime of the heat exchanger tubes. With this model number the results of other authors, who measured the vibration amplitude only, could be confirmed in good agreement. The experiments were carried out in air with Reynolds numbers 10 4 5 . (orig.) [de

  9. Identification of impact force acting on composite laminated plates using the radiated sound measured with microphones

    Science.gov (United States)

    Atobe, Satoshi; Nonami, Shunsuke; Hu, Ning; Fukunaga, Hisao

    2017-09-01

    Foreign object impact events are serious threats to composite laminates because impact damage leads to significant degradation of the mechanical properties of the structure. Identification of the location and force history of the impact that was applied to the structure can provide useful information for assessing the structural integrity. This study proposes a method for identifying impact forces acting on CFRP (carbon fiber reinforced plastic) laminated plates on the basis of the sound radiated from the impacted structure. Identification of the impact location and force history is performed using the sound pressure measured with microphones. To devise a method for identifying the impact location from the difference in the arrival times of the sound wave detected with the microphones, the propagation path of the sound wave from the impacted point to the sensor is examined. For the identification of the force history, an experimentally constructed transfer matrix is employed to relate the force history to the corresponding sound pressure. To verify the validity of the proposed method, impact tests are conducted by using a CFRP cross-ply laminate as the specimen, and an impulse hammer as the impactor. The experimental results confirm the validity of the present method for identifying the impact location from the arrival time of the sound wave detected with the microphones. Moreover, the results of force history identification show the feasibility of identifying the force history accurately from the measured sound pressure using the experimental transfer matrix.

  10. Soft colloidal probes for AFM force measurements between water droplets in oil

    KAUST Repository

    Vakarelski, Ivan Uriev; Li, Erqiang; Thoroddsen, Sigurdur T

    2014-01-01

    Here we introduce an extension of the atomic force microscopy (AFM) colloidal probe technique, as a simple and reliable experimental approach to measure the interaction forces between small water droplets (~80-160. μm) dispersed in oil. Small water droplets are formed by capillary breakup of a microscale water jet in air, which is forced out of a fine capillary nozzle, and deposited on a superhydrophobic substrate immersed in tetradecane oil medium. In these conditions the water droplets are very loosely attached to the superhydrophobic substrate and are easily picked up with a hydrophobic AFM cantilever to form a soft colloidal probe. Sample force measurements are conducted to demonstrate the capability of the technique.

  11. Soft colloidal probes for AFM force measurements between water droplets in oil

    KAUST Repository

    Vakarelski, Ivan Uriev

    2014-11-01

    Here we introduce an extension of the atomic force microscopy (AFM) colloidal probe technique, as a simple and reliable experimental approach to measure the interaction forces between small water droplets (~80-160. μm) dispersed in oil. Small water droplets are formed by capillary breakup of a microscale water jet in air, which is forced out of a fine capillary nozzle, and deposited on a superhydrophobic substrate immersed in tetradecane oil medium. In these conditions the water droplets are very loosely attached to the superhydrophobic substrate and are easily picked up with a hydrophobic AFM cantilever to form a soft colloidal probe. Sample force measurements are conducted to demonstrate the capability of the technique.

  12. Direct measurement and modulation of single-molecule coordinative bonding forces in a transition metal complex

    DEFF Research Database (Denmark)

    Hao, Xian; Zhu, Nan; Gschneidtner, Tina

    2013-01-01

    remain a daunting challenge. Here we demonstrate an interdisciplinary and systematic approach that enables measurement and modulation of the coordinative bonding forces in a transition metal complex. Terpyridine is derived with a thiol linker, facilitating covalent attachment of this ligand on both gold...... substrate surfaces and gold-coated atomic force microscopy tips. The coordination and bond breaking between terpyridine and osmium are followed in situ by electrochemically controlled atomic force microscopy at the single-molecule level. The redox state of the central metal atom is found to have...

  13. High force measurement sensitivity with fiber Bragg gratings fabricated in uniform-waist fiber tapers

    International Nuclear Information System (INIS)

    Wieduwilt, Torsten; Brückner, Sven; Bartelt, Hartmut

    2011-01-01

    Fiber Bragg gratings inscribed in the waist of tapered photosensitive fibers offer specific attractive properties for sensing applications. A small-diameter fiber reduces structural influences for imbedded fiber sensing elements. In the case of application as a force-sensing element for tensile forces, sensitivity scales inversely with the fiber cross-sectional area. It is therefore possible to increase force sensitivity by several orders of magnitude compared to Bragg grating sensors in conventionally sized fibers. Special requirements for such Bragg grating arrangements are discussed and experimental measurements for different fiber taper diameters down to 4 µm are presented

  14. Measurement of Forces and Torques during Non Homogeneous Material Drilling Operation

    OpenAIRE

    Mohd Hazny Aziz; Muhammad Azmi Ayub

    2011-01-01

    The purpose of this study is to measure the forces and toques that produce in the drilling process of non-homogenous material (bone). An automated five degree of freedom CRS CataLyst-5 robot used during the drilling process together with the six degree freedom of force toque sensor. A force torque controller that built in Matlab Simulink environment is used to control the drilling process of the robot. Different feed rate will be used during the experimental of the drilling process. The sen...

  15. Measurement of the traction force of biological cells by digital holography

    Science.gov (United States)

    Yu, Xiao; Cross, Michael; Liu, Changgeng; Clark, David C.; Haynie, Donald T.; Kim, Myung K.

    2011-01-01

    The traction force produced by biological cells has been visualized as distortions in flexible substrata. We have utilized quantitative phase microscopy by digital holography (DH-QPM) to study the wrinkling of a silicone rubber film by motile fibroblasts. Surface deformation and the cellular traction force have been measured from phase profiles in a direct and straightforward manner. DH-QPM is shown to provide highly efficient and versatile means for quantitatively analyzing cellular motility. PMID:22254175

  16. Measurement of internal forces in superconducting accelerator magnets with strain gauge transducers

    International Nuclear Information System (INIS)

    Goodzeit, C.L.; Anerella, M.D.; Ganetis, G.L.

    1988-01-01

    An improved method has been developed for the measurement of internal forces in superconducting accelerator magnets, in particular the compressive stresses in coils and the end restraint forces on the coils. The transducers have been designed to provide improved sensitivity to purely mechanical strain by using bending mode deflections for sensing the applied loads. Strain gauge resistance measurements are made with a new system that eliminates sources of errors due to spurious resistance changes in interconnecting wiring and solder joints. The design of the transducers and their measurement system is presented along with a discussion of the method of compensation for thermal and magnetic effects, methods of calibration with typical calibration data, and measured effect in actual magnets of the thermal stress changes from cooldown and the Lorentz forces during magnet excitation. 13 figs., 1 tab

  17. A novel AFM based method for force measurements between individual hair strands

    International Nuclear Information System (INIS)

    Max, Eva; Haefner, Wolfgang; Wilco Bartels, Frank; Sugiharto, Albert; Wood, Claudia; Fery, Andreas

    2010-01-01

    Interactions between hairs and other natural fibers are of broad interest for both applications and fundamental understanding of biological interfaces. We present a novel method, that allows force measurements between individual hair strands. Hair fragments can be laser-cut without altering their surface chemistry. Subsequently, they are glued onto Atomic force microscopy (AFM) cantilevers. This allows carrying out measurements between the hair fragment and surface immobilized hair in a well-defined crossed-cylinder geometry. Both force-distance and friction measurements are feasible. Measurements in air with controlled humidity and in aqueous environment show clear differences which can be explained by the dominating role of capillary interactions in air. Friction is found to be anisotropic, reflecting the fine structure of hair cuticula. While the investigations are focused on the particular example of human hair, we expect that the approach can be extended to other animal/plant fibers and thus offers perspectives for broad spectrum systems.

  18. Probing surface charge potentials of clay basal planes and edges by direct force measurements.

    Science.gov (United States)

    Zhao, Hongying; Bhattacharjee, Subir; Chow, Ross; Wallace, Dean; Masliyah, Jacob H; Xu, Zhenghe

    2008-11-18

    The dispersion and gelation of clay suspensions have major impact on a number of industries, such as ceramic and composite materials processing, paper making, cement production, and consumer product formulation. To fundamentally understand controlling mechanisms of clay dispersion and gelation, it is necessary to study anisotropic surface charge properties and colloidal interactions of clay particles. In this study, a colloidal probe technique was employed to study the interaction forces between a silica probe and clay basal plane/edge surfaces. A muscovite mica was used as a representative of 2:1 phyllosilicate clay minerals. The muscovite basal plane was prepared by cleavage, while the edge surface was obtained by a microtome cutting technique. Direct force measurements demonstrated the anisotropic surface charge properties of the basal plane and edge surface. For the basal plane, the long-range forces were monotonically repulsive within pH 6-10 and the measured forces were pH-independent, thereby confirming that clay basal planes have permanent surface charge from isomorphic substitution of lattice elements. The measured interaction forces were fitted well with the classical DLVO theory. The surface potentials of muscovite basal plane derived from the measured force profiles were in good agreement with those reported in the literature. In the case of edge surfaces, the measured forces were monotonically repulsive at pH 10, decreasing with pH, and changed to be attractive at pH 5.6, strongly suggesting that the charge on the clay edge surfaces is pH-dependent. The measured force profiles could not be reasonably fitted with the classical DLVO theory, even with very small surface potential values, unless the surface roughness was considered. The surface element integration (SEI) method was used to calculate the DLVO forces to account for the surface roughness. The surface potentials of the muscovite edges were derived by fitting the measured force profiles with the

  19. Measurement of friction force between two mica surfaces with multiple beam interferometry

    Directory of Open Access Journals (Sweden)

    Jung J.C.

    2010-06-01

    Full Text Available Friction forces play a crucial role in the tribological behaviour of microcomponents and the application of MEMS products. It is necessary to develop a measurement system to understand and control the material characteristics. In this study, a microscopic measurement system based on multiple beam interferometry is developed to measure the friction force between two mica thin films. Some frictional behaviour between the two mica sheets in contact are reported. The evaluated shear strength of mica agrees well to the existing data. It is possible to use the developed system for micro-tribology study.

  20. Axial clamp for nuclear reactor head penetration conoseal joints

    International Nuclear Information System (INIS)

    Hackley, T.A.

    1986-01-01

    A method for forming a sealed coupling between two bodies each body presenting an abutment surface, the bodies being arranged so that their respective abutment surfaces are axially adjacent one another and define a space therebetween in which a deformable gasket is disposed. An axial external force is applied to the bodies for compressing the abutment surfaces together against the gasket to form a seal between the bodies and the bodies are immobilized relative to one another while the external force is being applied to the bodies so that sufficient compression will be maintained by the abutment surfaces to preserve the integrity of the seal when the external axial force is withdrawn. The external axial force is then withdrawn, leaving the two bodies coupled together via the seal. (author)

  1. Cellular dynamics of bovine aortic smooth muscle cells measured using MEMS force sensors

    Science.gov (United States)

    Tsukagoshi, Takuya; Nguyen, Thanh-Vinh; Hirayama Shoji, Kayoko; Takahashi, Hidetoshi; Matsumoto, Kiyoshi; Shimoyama, Isao

    2018-04-01

    Adhesive cells perceive the mechanical properties of the substrates to which they adhere, adjusting their cellular mechanical forces according to their biological characteristics. This mechanical interaction subsequently affects the growth, locomotion, and differentiation of the cell. However, little is known about the detailed mechanism that underlies this interaction between adherent cells and substrates because dynamically measuring mechanical phenomena is difficult. Here, we utilize microelectromechamical systems force sensors that can measure cellular traction forces with high temporal resolution (~2.5 µs) over long periods (~3 h). We found that the cellular dynamics reflected physical phenomena with time scales from milliseconds to hours, which contradicts the idea that cellular motion is slow. A single focal adhesion (FA) generates an average force of 7 nN, which disappears in ms via the action of trypsin-ethylenediaminetetraacetic acid. The force-changing rate obtained from our measurements suggests that the time required for an FA to decompose was nearly proportional to the force acting on the FA.

  2. Integrated pressure-force-kinematics measuring system for the characterisation of plantar foot loading during locomotion.

    Science.gov (United States)

    Giacomozzi, C; Macellari, V; Leardini, A; Benedetti, M G

    2000-03-01

    Plantar pressure, ground reaction force and body-segment kinematics measurements are largely used in gait analysis to characterise normal and abnormal function of the human foot. The combination of all these data together provides a more exhaustive, detailed and accurate view of foot loading during activities than traditional measurement systems alone do. A prototype system is presented that integrates a pressure platform, a force platform and a 3D anatomical tracking system to acquire combined information about foot function and loading. A stereophotogrammetric system and an anatomically based protocol for foot segment kinematics is included in a previously devised piezo-dynamometric system that combines pressure and force measurements. Experimental validation tests are carried out to check for both spatial and time synchronisation. Misalignment of the three systems is found to be within 6.0, 5.0 and 1.5 mm for the stereophotogrammetric system, force platform and pressure platform, respectively. The combination of position and pressure data allows for a more accurate selection of plantar foot subareas on the footprint. Measurements are also taken on five healthy volunteers during level walking to verify the feasibility of the overall experimental protocol. Four main subareas are defined and identified, and the relevant vertical and shear force data are computed. The integrated system is effective when there is a need for loading measurements in specific plantar foot subareas. This is attractive both in clinical assessment and in biomechanics research.

  3. Forces and moments on a slender, cavitating body

    Energy Technology Data Exchange (ETDEWEB)

    Hailey, C.E.; Clark, E.L.; Buffington, R.J.

    1988-01-01

    Recently a numerical code has been developed at Sandia National Laboratories to predict the pitching moment, normal force, and axial force of a slender, supercavitating shape. The potential flow about the body and cavity is calculated using an axial distribution of source/sink elements. The cavity surface is assumed to be a constant pressure streamline, extending beyond the base of the model. Slender body approximation is used to model the crossflow for small angles of attack. A significant extension of previous work in cavitation flow is the inclusion of laminar and turbulent boundary layer solutions on the body. Predictions with this code, for axial force at zero angle of attack, show good agreement with experiments. There are virtually no published data availble with which to benchmark the pitching moment and normal force predictions. An experiment was designed to measure forces and moments on a supercavitation shape. The primary reason for the test was to obtain much needed data to benchmark the hydrodynamic force and moment predictions. Since the numerical prediction is for super cavitating shapes at very small cavitation numbers, the experiment was designed to be a ventilated cavity test. This paper describes the experimental procedure used to measure the pitching moment, axial and normal forces, and base pressure on a slender body with a ventilated cavity. Limited results are presented for pitching moment and normal force. 5 refs., 7 figs.

  4. Single molecule force measurements delineate salt, pH and surface effects on biopolymer adhesion

    International Nuclear Information System (INIS)

    Pirzer, T; Geisler, M; Hugel, T; Scheibel, T

    2009-01-01

    In this paper we probe the influence of surface properties, pH and salt on the adhesion of recombinant spider silk proteins onto solid substrates with single molecule force spectroscopy. A single engineered spider silk protein (monomeric C 16 or dimeric (QAQ) 8 NR3) is covalently bound with one end to an AFM tip, which assures long-time measurements for hours with one and the same protein. The tip with the protein is brought into contact with various substrates at various buffer conditions and then retracted to desorb the protein. We observe a linear dependence of the adhesion force on the concentration of three selected salts (NaCl, NaH 2 PO 4 and NaI) and a Hofmeister series both for anions and cations. As expected, the more hydrophobic C 16 shows a higher adhesion force than (QAQ) 8 NR3, and the adhesion force rises with the hydrophobicity of the substrate. Unexpected is the magnitude of the dependences—we never observe a change of more than 30%, suggesting a surprisingly well-regulated balance between dispersive forces, water-structure-induced forces as well as co-solute-induced forces in biopolymer adhesion

  5. Single molecule force measurements delineate salt, pH and surface effects on biopolymer adhesion

    Science.gov (United States)

    Pirzer, T.; Geisler, M.; Scheibel, T.; Hugel, T.

    2009-06-01

    In this paper we probe the influence of surface properties, pH and salt on the adhesion of recombinant spider silk proteins onto solid substrates with single molecule force spectroscopy. A single engineered spider silk protein (monomeric C16 or dimeric (QAQ)8NR3) is covalently bound with one end to an AFM tip, which assures long-time measurements for hours with one and the same protein. The tip with the protein is brought into contact with various substrates at various buffer conditions and then retracted to desorb the protein. We observe a linear dependence of the adhesion force on the concentration of three selected salts (NaCl, NaH2PO4 and NaI) and a Hofmeister series both for anions and cations. As expected, the more hydrophobic C16 shows a higher adhesion force than (QAQ)8NR3, and the adhesion force rises with the hydrophobicity of the substrate. Unexpected is the magnitude of the dependences—we never observe a change of more than 30%, suggesting a surprisingly well-regulated balance between dispersive forces, water-structure-induced forces as well as co-solute-induced forces in biopolymer adhesion.

  6. Factors affecting the transverse force measurements of an optical trap: I

    Science.gov (United States)

    Wood, Tiffany A.; Wright, Amanda; Gleeson, Helen F.; Dickenson, Mark; Mullin, Tom; Murray, Andrew

    2002-03-01

    The transverse force of an optical trap is usually measured by equating the trapping force to the viscous drag force applied to the trapped particle according to Stokes' Law. Under normal conditions, the viscous drag force on a trapped particle is proportional to the fluid velocity of the medium. In this paper we show that an increase of particle concentration within the medium affects force measurements. In order to trap the particle, 1064 nm light from a Nd:YVO4 laser was brought to a focus in a sample slide, of thickness around 380 microns, by using an inverted Zeiss microscope objective, with NA equals 1.3. The slide was filled with distilled water containing 6 micron diameter polystyrene spheres. Measurements were taken at a fluid velocity of 0.75 microns/sec, achieved by moving the sample stage with a piezo-electric transducer whilst a particle was held stationary in the trap. The laser power required to hold a sphere at different trap depths for various concentrations was measured. Significant weakening of the trap was found for concentrations >0.03% solids by weight, becoming weaker for higher trap depths. These results are explained in terms of aberrations, particle-particle interactions and distortion of the beam due to particle-light interactions.

  7. Estimation of excitation forces for wave energy converters control using pressure measurements

    Science.gov (United States)

    Abdelkhalik, O.; Zou, S.; Robinett, R.; Bacelli, G.; Wilson, D.

    2017-08-01

    Most control algorithms of wave energy converters require prediction of wave elevation or excitation force for a short future horizon, to compute the control in an optimal sense. This paper presents an approach that requires the estimation of the excitation force and its derivatives at present time with no need for prediction. An extended Kalman filter is implemented to estimate the excitation force. The measurements in this approach are selected to be the pressures at discrete points on the buoy surface, in addition to the buoy heave position. The pressures on the buoy surface are more directly related to the excitation force on the buoy as opposed to wave elevation in front of the buoy. These pressure measurements are also more accurate and easier to obtain. A singular arc control is implemented to compute the steady-state control using the estimated excitation force. The estimated excitation force is expressed in the Laplace domain and substituted in the control, before the latter is transformed to the time domain. Numerical simulations are presented for a Bretschneider wave case study.

  8. Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Labuda, Aleksander; Proksch, Roger [Asylum Research an Oxford Instruments Company, Santa Barbara, California 93117 (United States)

    2015-06-22

    An ongoing challenge in atomic force microscope (AFM) experiments is the quantitative measurement of cantilever motion. The vast majority of AFMs use the optical beam deflection (OBD) method to infer the deflection of the cantilever. The OBD method is easy to implement, has impressive noise performance, and tends to be mechanically robust. However, it represents an indirect measurement of the cantilever displacement, since it is fundamentally an angular rather than a displacement measurement. Here, we demonstrate a metrological AFM that combines an OBD sensor with a laser Doppler vibrometer (LDV) to enable accurate measurements of the cantilever velocity and displacement. The OBD/LDV AFM allows a host of quantitative measurements to be performed, including in-situ measurements of cantilever oscillation modes in piezoresponse force microscopy. As an example application, we demonstrate how this instrument can be used for accurate quantification of piezoelectric sensitivity—a longstanding goal in the electromechanical community.

  9. Measuring minority-carrier diffusion length using a Kelvin probe force microscope

    International Nuclear Information System (INIS)

    Shikler, R.; Fried, N.; Meoded, T.; Rosenwaks, Y.

    2000-01-01

    A method based on Kelvin probe force microscopy for measuring minority-carrier diffusion length in semiconductors is described. The method is based on measuring the surface photovoltage between the tip of an atomic force microscope and the surface of an illuminated semiconductor junction. The photogenerated carriers diffuse to the junction and change the contact potential difference between the tip and the sample, as a function of the distance from the junction. The diffusion length L is then obtained by fitting the measured contact potential difference using the minority-carrier continuity equation. The method was applied to measurements of electron diffusion length in GaP pn and Schottky junctions. The measured diffusion length was found to be ∼2 μm, in good agreement with electron beam induced current measurements

  10. Sliding mode-based lateral vehicle dynamics control using tyre force measurements

    Science.gov (United States)

    Kunnappillil Madhusudhanan, Anil; Corno, Matteo; Holweg, Edward

    2015-11-01

    In this work, a lateral vehicle dynamics control based on tyre force measurements is proposed. Most of the lateral vehicle dynamics control schemes are based on yaw rate whereas tyre forces are the most important variables in vehicle dynamics as tyres are the only contact points between the vehicle and road. In the proposed method, active front steering is employed to uniformly distribute the required lateral force among the front left and right tyres. The force distribution is quantified through the tyre utilisation coefficients. In order to address the nonlinearities and uncertainties of the vehicle model, a gain scheduling sliding-mode control technique is used. In addition to stabilising the lateral dynamics, the proposed controller is able to maintain maximum lateral acceleration. The proposed method is tested and validated on a multi-body vehicle simulator.

  11. Phase-resolved fluid dynamic forces of a flapping foil energy harvester based on PIV measurements

    Science.gov (United States)

    Liburdy, James

    2017-11-01

    Two-dimensional particle image velocimetry measurements are performed in a wind tunnel to evaluate the spatial and temporal fluid dynamic forces acting on a flapping foil operating in the energy harvesting regime. Experiments are conducted at reduced frequencies (k = fc/U) of 0.05 - 0.2, pitching angle of, and heaving amplitude of A / c = 0.6. The phase-averaged pressure field is obtained by integrating the pressure Poisson equation. Fluid dynamic forces are then obtained through the integral momentum equation. Results are compared with a simple force model based on the concept of flow impulse. These results help to show the detailed force distributions, their transient nature and aide in understanding the impact of the fluid flow structures that contribute to the power production.

  12. A Simple Measure to Assess Hyperinflation and Air Trapping: 1-Forced Expiratory Volume in Three Second / Forced Vital Capacity

    Directory of Open Access Journals (Sweden)

    Sermin Börekçi

    2017-04-01

    Full Text Available Background: Several recent studies have suggested that 1 minus-forced expiratory volume expired in 3 seconds / forced vital capacity (1-FEV3/FVC may be an indicator of distal airway obstruction and a promising measure to evaluate small airways dysfunction. Aims: To investigate the associations of 1-FEV3/FVC with the spirometric measures and lung volumes that assess small airways dysfunction and reflects hyperinflation and air trapping. Study Design: Retrospective cross-sectional study. Methods: Retrospective assessment of a total of 1110 cases who underwent body plethysmographic lung volume estimations between a time span from 2005 to 2012. Patients were assigned into two groups: firstly by FEV1/FVC (FEV1/FVC <70% vs. FEV1/FVC ≥70%; secondly by FEV3/FVC < lower limits of normal (LLN (FEV3/FVC < LLN vs. FEV3/FVC ≥ LLN. Spirometric indices and lung volumes measured by whole-body plethysmography were compared in groups. Also the correlation of spirometric indices with measured lung volumes were assessed in the whole-study population and in subgroups stratified according to FEV1/FVC and FEV3/FVC. Results: Six hundred seven (54.7% were male and 503 (45.3% were female, with a mean age of 52.5±15.6 years. Mean FEV3/FVC and 1-FEV3/FVC were 87.05%, 12.95%, respectively. The mean 1-FEV3/FVC was 4.9% in the FEV1/FVC ≥70% group (n=644 vs. 24.1% in the FEV1/FVC <70% group (n=466. A positive correlation was found between 1-FEV3/FVC and residual volume (r=0.70; p<0.0001, functional residual capacity-pleth (r=0.61; p<0.0001, and total lung capacity (r=0.47; p<0.0001. 1-FEV3/FVC was negatively correlated with forced expiratory flow25-75 (r=−0.84; p<0.0001. The upper limit of 95% confidence interval for 1-FEV3/FVC was 13.7%. 1-FEV3/FVC showed significant correlations with parameters of air trapping and hyperinflation measured by whole-body plethysmography. Importantly, these correlations were higher in study participants with FEV1/FVC <70% or FEV3/FVC

  13. Radial loads and axial thrusts on centrifugal pumps

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The proceedings of a seminar organised by the Power Industries Division of the IMechE are presented in this text. Complete contents: Review of parameters influencing hydraulic forces on centrifugal impellers; The effect of fluid forces at various operation conditions on the vibrations of vertical turbine pumps; A review of the pump rotor axial equilibrium problem - some case studies; Dynamic hydraulic loading on a centrifugal pump impeller; Experimental research on axial thrust loads of double suction centrifugal pumps; A comparison of pressure distribution and radial loads on centrifugal pumps; A theoretical and experimental investigation of axial thrusts within a multi-stage centrifugal pump

  14. The measurement of low pay in the UK labour force survey

    OpenAIRE

    Skinner, Chris; Stuttard, Nigel; Beissel-Durrant, Gabriele; Jenkins, James

    2003-01-01

    Consideration of the National Minimum Wage requires estimates of the distribution of hourly pay. The UK Labour Force Survey (LFS) is a key source of such estimates. The approach most frequently adopted by researchers has been to measure hourly earnings from several questions on pay and hours. The Office for National Statistics is now applying a new approach, based on an alternative more direct measurement introduced in March 1999. These two measures do not produce identical values and this pa...

  15. Measurement of pull-off force on imprinted nanopatterns in an inert liquid

    International Nuclear Information System (INIS)

    Kim, Jae Kwan; Lee, Dong Eon; Lee, Woo Il; Suh, Kahp Y

    2010-01-01

    We report on the measurement of the pull-off force on nanoscale patterns that are formed by thermal nanoimprint lithography (t-NIL). Various patterns with feature sizes in the range of 50-900 nm were fabricated on silicon substrates using a rigiflex polymeric mold of ultraviolet curable polyurethane acrylate (PUA, Young's modulus ∼ 1 GPa) or perfluoropolyether (PFPE, Young's modulus ∼ 10.5 MPa) and a resist layer of polystyrene (PS) of three different molecular weights (M w = 18 100, 211 600 and 2043 000). The pull-off force was measured in non-polar, non-reactive perfluorodecalin (PFD) solvent between a sharp atomic force microscopy (AFM) tip and an imprinted pattern. Our experimental data demonstrated that the measured pull-off forces were in good agreement with a simple adhesion model based on Lifshitz theory. Also, the force on the pressed region (valley) is higher than that on the cavity region (hill), with the ratio (hill/valley) decreasing with the decrease of pattern size and the increase of molecular weight. The confinement effects were more pronounced for smaller patterns ( w = 211 600 and 2043 000) presumably due to sluggish movement of polymer chains into nano-cavities. Finally, the experimental observations were compared with molecular dynamic simulations based on a simplified amorphous polyethylene model.

  16. Faraday forcing of high-temperature levitated liquid metal drops for the measurement of surface tension.

    Science.gov (United States)

    Brosius, Nevin; Ward, Kevin; Matsumoto, Satoshi; SanSoucie, Michael; Narayanan, Ranga

    2018-01-01

    In this work, a method for the measurement of surface tension using continuous periodic forcing is presented. To reduce gravitational effects, samples are electrostatically levitated prior to forcing. The method, called Faraday forcing, is particularly well suited for fluids that require high temperature measurements such as liquid metals where conventional surface tension measurement methods are not possible. It offers distinct advantages over the conventional pulse-decay analysis method when the sample viscosity is high or the levitation feedback control system is noisy. In the current method, levitated drops are continuously translated about a mean position at a small, constant forcing amplitude over a range of frequencies. At a particular frequency in this range, the drop suddenly enters a state of resonance, which is confirmed by large executions of prolate/oblate deformations about the mean spherical shape. The arrival at this resonant condition is a signature that the parametric forcing frequency is equal to the drop's natural frequency, the latter being a known function of surface tension. A description of the experimental procedure is presented. A proof of concept is given using pure Zr and a Ti 39.5 Zr 39.5 Ni 21 alloy as examples. The results compare favorably with accepted literature values obtained using the pulse-decay method.

  17. Measuring lip force by oral screens Part 2: The importance of screen design, instruction and suction.

    Science.gov (United States)

    Wertsén, Madeleine; Stenberg, Manne

    2017-10-01

    The aim of this study was to find a reliable method for measuring lip force and to find the most important factors that influence the measurements in terms of magnitude and variability. The hypothesis tested was that suction is involved and thus the instruction and the design of the oral screen are of importance when measuring lip force. This is a methodological study in a healthy population. This study was conducted in a general community. The designs of the screens were soft and hard prefabricated screens and 2 semi-individually made with a tube allowing air to pass. The screens and the instructions squeeze or suck were tested on 29 healthy adults, one at a time and on 4 occasions. The test order of the screens was randomized. Data were collected during 4 consecutive days, and the procedure was repeated after 1 month. The participants were 29 healthy adult volunteers. The instruction was an important mean to distinguish between squeezing and sucking. The design of the screen affected the lip force so that it increases in relation to the projected area of the screen. A screen design with a tube allowing air to pass made it possible to avoid suction when squeezing. By measuring with and without allowing air to pass, it was possible to distinguish between suction related and not suction related lip force. The additional screen pressure when sucking was related to the ability to produce a negative intraoral pressure. In conclusion lip force increases in relation to the projected area of the screen, sucking generally increases the measured lip force and the additional screen pressure when sucking is related to the ability to produce a negative intraoral pressure.

  18. Measurement of the axial and radial diffusivities of a 2D composite material between 500 deg. C and 1500 deg. C; Mesure des diffusivites axiale et radiale d`un composite 2D entre 500 deg. C et 1500 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Demange, D.; Beauchene, P.; Casulleras, R.; Bejet, M. [ONERA, 92 - Chatillon (France); Maillet, D.; Sanson, O. [Lemta (France)

    1996-12-31

    A new experimental method of simultaneous measurement of thermal diffusivity along the two main directions of thin composite materials with a ceramic-based matrix has been developed by the ONERA, the French national office of aerospace studies and research. The principle of this method, derived from the `flash` method consists in the heterogeneous insolation of one face of a cylindrical sample (central spot or ring) in order to analyze the thermal transfers along the axial and radial directions of the sample. Experimental development are in progress and will be integrated to a flash diffusion-meter in operation at the ONERA. (J.S.) 11 refs.

  19. Force sensing using 3D displacement measurements in linear elastic bodies

    Science.gov (United States)

    Feng, Xinzeng; Hui, Chung-Yuen

    2016-07-01

    In cell traction microscopy, the mechanical forces exerted by a cell on its environment is usually determined from experimentally measured displacement by solving an inverse problem in elasticity. In this paper, an innovative numerical method is proposed which finds the "optimal" traction to the inverse problem. When sufficient regularization is applied, we demonstrate that the proposed method significantly improves the widely used approach using Green's functions. Motivated by real cell experiments, the equilibrium condition of a slowly migrating cell is imposed as a set of equality constraints on the unknown traction. Our validation benchmarks demonstrate that the numeric solution to the constrained inverse problem well recovers the actual traction when the optimal regularization parameter is used. The proposed method can thus be applied to study general force sensing problems, which utilize displacement measurements to sense inaccessible forces in linear elastic bodies with a priori constraints.

  20. Measurement and prediction of cutting forces and vibrations on longwall shearers

    Energy Technology Data Exchange (ETDEWEB)

    Bulent Tiryaki [CRCMining (Australia)

    2006-12-15

    CRCMining has developed the Cutting Head Performance Analysis Software (CPAS) to predict cutter motor power, ranging arm reaction forces, and vibrations for different drum designs, coal seams, and shearer operational conditions. This project describes the work on THE DBT EL3000 shearer at Beltana to validate/update CPAS by measuring the cutter motor power, ranging arm vibrations, and reaction forces through an online data acquisition system called Cutting Head Performance Monitoring System (CPMS). This system records the outputs of six strain gauge bridges, six accelerometers, and two pressure transducers on ranging arms during underground coal production. CPAS2 has then been developed in order to eliminate the needs for performing coal cutting tests for the target coal seam. CPAS2 simulations for cutter motor power, vertical reaction force, and vibrations were also close to those measured in the trials. CRCMining will release the CPAS code including fully functioning software code on CD to Australian coal mining industry.

  1. Minimising the effect of nanoparticle deformation in intermittent contact amplitude modulation atomic force microscopy measurements

    International Nuclear Information System (INIS)

    Babic, Bakir; Lawn, Malcolm A.; Coleman, Victoria A.; Jämting, Åsa K.; Herrmann, Jan

    2016-01-01

    The results of systematic height measurements of polystyrene (PS) nanoparticles using intermittent contact amplitude modulation atomic force microscopy (IC-AM-AFM) are presented. The experimental findings demonstrate that PS nanoparticles deform during AFM imaging, as indicated by a reduction in the measured particle height. This deformation depends on the IC-AM-AFM imaging parameters, material composition, and dimensional properties of the nanoparticles. A model for nanoparticle deformation occurring during IC-AM-AFM imaging is developed as a function of the peak force which can be calculated for a particular set of experimental conditions. The undeformed nanoparticle height can be estimated from the model by extrapolation to zero peak force. A procedure is proposed to quantify and minimise nanoparticle deformation during IC-AM-AFM imaging, based on appropriate adjustments of the experimental control parameters.

  2. Minimising the effect of nanoparticle deformation in intermittent contact amplitude modulation atomic force microscopy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Babic, Bakir, E-mail: bakir.babic@measurement.gov.au; Lawn, Malcolm A.; Coleman, Victoria A.; Jämting, Åsa K.; Herrmann, Jan [National Measurement Institute, 36 Bradfield Road, West Lindfield, New South Wales 2070 (Australia)

    2016-06-07

    The results of systematic height measurements of polystyrene (PS) nanoparticles using intermittent contact amplitude modulation atomic force microscopy (IC-AM-AFM) are presented. The experimental findings demonstrate that PS nanoparticles deform during AFM imaging, as indicated by a reduction in the measured particle height. This deformation depends on the IC-AM-AFM imaging parameters, material composition, and dimensional properties of the nanoparticles. A model for nanoparticle deformation occurring during IC-AM-AFM imaging is developed as a function of the peak force which can be calculated for a particular set of experimental conditions. The undeformed nanoparticle height can be estimated from the model by extrapolation to zero peak force. A procedure is proposed to quantify and minimise nanoparticle deformation during IC-AM-AFM imaging, based on appropriate adjustments of the experimental control parameters.

  3. Force platform measurements as predictors of falls among older people - a review.

    Science.gov (United States)

    Piirtola, Maarit; Era, Pertti

    2006-01-01

    Poor postural balance is one of the major risk factors for falling. A great number of reports have analyzed the risk factors and predictors of falls but the results have for the most part been unclear and partly contradictory. Objective data on these matters are thus urgently needed. The force platform technique has widely been used as a tool to assess balance. However, the ability of force platform measures to predict falls remains unknown. The purpose of this systematic review was to extract and critically review the findings of prospective studies where force platform measurements have been used as predictors of falls among elderly populations. The study was done as a systematic literature review. PubMed, the Cochrane Central Register of Controlled Trials, and CINAHL databases from 1950 to April 2005 were used. The review includes prospective follow-up studies using the force platform as a tool to measure postural balance. Nine original prospective studies were included in the final analyses. In five studies fall-related outcomes were associated with some force platform measures and in the remaining four studies associations were not found. For the various parameters derived on the basis of the force platform data, the mean speed of the mediolateral (ML) movement of the center of pressure (COP) during normal standing with the eyes open and closed, the mean amplitude of the ML movement of the COP with the eyes open and closed, and the root-mean-square value of the ML displacement of COP were the indicators that showed significant associations with future falls. Measures related to dynamic posturography (moving platforms) were not predictive of falls. Despite a wide search only a few prospective follow-up studies using the force platform technique to measure postural balance and a reliable registration of subsequent falls were found. The results suggest that certain aspects of force platform data may have predictive value for subsequent falls, especially various

  4. Using axial magnetized permanent rings to build axial gradient magnetic field

    International Nuclear Information System (INIS)

    Peng Quanling

    2003-01-01

    Axial field produced by an axially magnetized permanent ring was studied. For two permanent magnet rings, if they are magnetized in the same direction, a nearly uniform axial field can be produced; if they are magnetized in opposite direction, an axial gradient field can be produced in the region between the two permanent rings, with the field strength changing from -B 0 to B 0 . A high gradient axial magnetic field has been built by using two axially magnetized permanent rings, the measured field results agree with the PANDIRA calculation very well. It is desirable that the field gradient can be varied to match various requirements. A method to produce the variable gradient field is presented. Axial gradient field can also be used as a beam focusing facility for linear accelerator if axial periodic field can be produced. Its magnetic field is similar to that of a solenoid, in which, large stray field will leak to the outside environment. A method for shielding the outside stray field is discussed

  5. In vivo motion and force measurement of surgical needle intervention during prostate brachytherapy

    International Nuclear Information System (INIS)

    Podder, Tarun; Clark, Douglas; Sherman, Jason; Fuller, Dave; Messing, Edward; Rubens, Deborah; Strang, John; Brasacchio, Ralph; Liao, Lydia; Ng, W.-S.; Yu Yan

    2006-01-01

    In this paper, we present needle insertion forces and motion trajectories measured during actual brachytherapy needle insertion while implanting radioactive seeds in the prostate glands of 20 different patients. The needle motion was captured using ultrasound images and a 6 degree-of-freedom electromagnetic-based position sensor. Needle velocity was computed from the position information and the corresponding time stamps. From in vivo data we found the maximum needle insertion forces to be about 15.6 and 8.9 N for 17 gauge (1.47 mm) and 18 gauge (1.27 mm) needles, respectively. Part of this difference in insertion forces is due to the needle size difference (17G and 18G) and the other part is due to the difference in tissue properties that are specific to the individual patient. Some transverse forces were observed, which are attributed to several factors such as tissue heterogeneity, organ movement, human factors in surgery, and the interaction between the template and the needle. However, theses insertion forces are significantly responsible for needle deviation from the desired trajectory and target movement. Therefore, a proper selection of needle and modulated velocity (translational and rotational) may reduce the tissue deformation and target movement by reducing insertion forces and thereby improve the seed delivery accuracy. The knowledge gleaned from this study promises to be useful for not only designing mechanical/robotic systems but also developing a predictive deformation model of the prostate and real-time adaptive controlling of the needle

  6. Measurement of Vehicle-Bridge-Interaction force using dynamic tire pressure monitoring

    Science.gov (United States)

    Chen, Zhao; Xie, Zhipeng; Zhang, Jian

    2018-05-01

    The Vehicle-Bridge-Interaction (VBI) force, i.e., the normal contact force of a tire, is a key component in the VBI mechanism. The VBI force measurement can facilitate experimental studies of the VBI as well as input-output bridge structural identification. This paper introduces an innovative method for calculating the interaction force by using dynamic tire pressure monitoring. The core idea of the proposed method combines the ideal gas law and a basic force model to build a relationship between the tire pressure and the VBI force. Then, unknown model parameters are identified by the Extended Kalman Filter using calibration data. A signal filter based on the wavelet analysis is applied to preprocess the effect that the tire rotation has on the pressure data. Two laboratory tests were conducted to check the proposed method's validity. The effects of different road irregularities, loads and forward velocities were studied. Under the current experiment setting, the proposed method was robust to different road irregularities, and the increase in load and velocity benefited the performance of the proposed method. A high-speed test further supported the use of this method in rapid bridge tests. Limitations of the derived theories and experiment were also discussed.

  7. Atomic force microscope adhesion measurements and atomistic molecular dynamics simulations at different humidities

    International Nuclear Information System (INIS)

    Seppä, Jeremias; Sairanen, Hannu; Korpelainen, Virpi; Husu, Hannu; Heinonen, Martti; Lassila, Antti; Reischl, Bernhard; Raiteri, Paolo; Rohl, Andrew L; Nordlund, Kai

    2017-01-01

    Due to their operation principle atomic force microscopes (AFMs) are sensitive to all factors affecting the detected force between the probe and the sample. Relative humidity is an important and often neglected—both in experiments and simulations—factor in the interaction force between AFM probe and sample in air. This paper describes the humidity control system designed and built for the interferometrically traceable metrology AFM (IT-MAFM) at VTT MIKES. The humidity control is based on circulating the air of the AFM enclosure via dryer and humidifier paths with adjustable flow and mixing ratio of dry and humid air. The design humidity range of the system is 20–60 %rh. Force–distance adhesion studies at humidity levels between 25 %rh and 53 %rh are presented and compared to an atomistic molecular dynamics (MD) simulation. The uncertainty level of the thermal noise method implementation used for force constant calibration of the AFM cantilevers is 10 %, being the dominant component of the interaction force measurement uncertainty. Comparing the simulation and the experiment, the primary uncertainties are related to the nominally 7 nm radius and shape of measurement probe apex, possible wear and contamination, and the atomistic simulation technique details. The interaction forces are of the same order of magnitude in simulation and measurement (5 nN). An elongation of a few nanometres of the water meniscus between probe tip and sample, before its rupture, is seen in simulation upon retraction of the tip in higher humidity. This behaviour is also supported by the presented experimental measurement data but the data is insufficient to conclusively verify the quantitative meniscus elongation. (paper)

  8. Three-Dimensional Force Measurements During Rapid Palatal Expansion in Sus scrofa

    Directory of Open Access Journals (Sweden)

    Kelly Goeckner

    2016-04-01

    Full Text Available Rapid palatal expansion is an orthodontic procedure widely used to correct the maxillary arch. However, its outcome is significantly influenced by factors that show a high degree of variability amongst patients. The traditional treatment methodology is based on an intuitive and heuristic treatment approach because the forces applied in the three dimensions are indeterminate. To enable optimal and individualized treatment, it is essential to measure the three-dimensional (3D forces and displacements created by the expander. This paper proposes a method for performing these 3D measurements using a single embedded strain sensor, combining experimental measurements of strain in the palatal expander with 3D finite element analysis (FEA. The method is demonstrated using the maxillary jaw from a freshly euthanized pig (Sus scrofa and a hyrax-design rapid palatal expander (RPE appliance with integrated strain gage. The strain gage measurements are recorded using a computer interface, following which the expansion forces and extent of expansion are estimated by FEA. A total activation of 2.0 mm results in peak total force of about 100 N—almost entirely along the direction of expansion. The results also indicate that more than 85% of the input activation is immediately transferred to the palate and/or teeth. These studies demonstrate a method for assessing and individualizing expansion magnitudes and forces during orthopedic expansion of the maxilla. This provides the basis for further development of smart orthodontic appliances that provide real-time readouts of forces and movements, which will allow personalized, optimal treatment.

  9. Development of a quartz tuning-fork-based force sensor for measurements in the tens of nanoNewton force range during nanomanipulation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Oiko, V. T. A., E-mail: oiko@ifi.unicamp.br; Rodrigues, V.; Ugarte, D. [Instituto de Física “Gleb Wataghin,” Univ. Estadual de Campinas (UNICAMP), Campinas 13083-859 (Brazil); Martins, B. V. C. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada); Silva, P. C. [Laboratório Nacional de Nanotecnologia, CNPEM, Campinas 13083-970 (Brazil)

    2014-03-15

    Understanding the mechanical properties of nanoscale systems requires new experimental and theoretical tools. In particular, force sensors compatible with nanomechanical testing experiments and with sensitivity in the nN range are required. Here, we report the development and testing of a tuning-fork-based force sensor for in situ nanomanipulation experiments inside a scanning electron microscope. The sensor uses a very simple design for the electronics and it allows the direct and quantitative force measurement in the 1–100 nN force range. The sensor response is initially calibrated against a nN range force standard, as, for example, a calibrated Atomic Force Microscopy cantilever; subsequently, applied force values can be directly derived using only the electric signals generated by the tuning fork. Using a homemade nanomanipulator, the quantitative force sensor has been used to analyze the mechanical deformation of multi-walled carbon nanotube bundles, where we analyzed forces in the 5–40 nN range, measured with an error bar of a few nN.

  10. Numerical and experimental study on vorticity measurement in liquid metal using local Lorentz force velocimetry

    Science.gov (United States)

    Hernández, Daniel; Marangoni, Rafael; Schleichert, Jan; Karcher, Christian; Fröhlich, Thomas; Wondrak, Thomas

    2018-03-01

    Local Lorentz force velocimetry (local LFV) is a contactless velocity measurement technique for liquid metals. Due to the relative movement between an electrically conductive fluid and a static applied magnetic field, eddy currents and a flow-braking Lorentz force are generated inside the metal melt. This force is proportional to the flow rate or to the local velocity, depending on the volume subset of the flow spanned by the magnetic field. By using small-size magnets, a localized magnetic field distribution is achieved allowing a local velocity assessment in the region adjacent to the wall. In the present study, we describe a numerical model of our experiments at a continuous caster model where the working fluid is GaInSn in eutectic composition. Our main goal is to demonstrate that this electromagnetic technique can be applied to measure vorticity distributions, i.e. to resolve velocity gradients as well. Our results show that by using a cross-shaped magnet system, the magnitude of the torque perpendicular to the surface of the mold significantly increases improving its measurement in a liquid metal flow. According to our numerical model, this torque correlates with the vorticity of the velocity in this direction. Before validating our numerical predictions, an electromagnetic dry calibration of the measurement system composed of a multicomponent force and torque sensor and a cross-shaped magnet was done using a rotating disk made of aluminum. The sensor is able to measure simultaneously all three components of force and torque, respectively. This calibration step cannot be avoided and it is used for an accurate definition of the center of the magnet with respect to the sensor’s coordinate system for torque measurements. Finally, we present the results of the experiments at the mini-LIMMCAST facility showing a good agreement with the numerical model.

  11. THE EFFECT OF SUBMAXIMAL INHALATION ON MEASURES DERIVED FROM FORCED EXPIRATORY SPIROMETRY

    Science.gov (United States)

    THE EFFECT OF SUBMAXIMAL INHALATION ON MEASURES DERIVED FROM FORCED EXPIRATORY SPIROMETRY. William F. McDonnell Human Studies Division, NHEERL, U.S. Environmental Protection Agency, RTP, NC 27711. Short-term exposure to ozone results in a neurally-mediated decrease in the ab...

  12. Elastic-properties measurement at high temperatures through contact resonance atomic force microscopy

    DEFF Research Database (Denmark)

    Marinello, Francesco; Pezzuolo, Andrea; Carmignato, Simone

    2015-01-01

    fast direct and non-destructive measurement of Young's modulus and related surface parameters.In this work an instrument set up for Contact Resonance Atomic Force Microscopy is proposed, where the sample with is coupled to a heating stage and a piezoelectric transducer directly vibrate the cantilever...

  13. Measurement of Levitation Forces of High-"T[subscript c] Superconductors

    Science.gov (United States)

    Becker, M.; Koblischka, M. R.; Hartmann, U.

    2010-01-01

    We show the construction of a so-called levitation balance which is capable of measuring the levitation forces between a permanent magnet and a superconducting high-T[subscript c] thin film sample. The underlying theoretical basis is discussed in detail. The experiment is performed as an introductory physics experiment for school students as well…

  14. The knee adduction moment measured with an instrumented force shoe in patients with knee osteoarthritis

    NARCIS (Netherlands)

    van den Noort, J.C.; van den Noort, Josien C.; van der Esch, Martin; Steultjens, Martijn P.M.; Dekker, Joost; Schepers, H. Martin; Veltink, Petrus H.; Harlaar, Jaap

    2012-01-01

    The external knee adduction moment (KAdM) during gait is an important parameter in patients with knee osteoarthritis (OA). KAdM measurement is currently restricted to instruments only available in gait laboratories. However, ambulatory movement analysis technology, including instrumented force shoes

  15. Surface topography characterization using an atomic force microscope mounted on a coordinate measuring machine

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Hansen, H.N; Kofod, N

    1999-01-01

    The paper describes the construction, testing and use of an integrated system for topographic characterization of fine surfaces on parts having relatively big dimensions. An atomic force microscope (AFM) was mounted on a manual three-coordinate measuring machine (CMM) achieving free positioning o...

  16. Force-displacement measurements of earlywood bordered pits using a mesomechanical tester

    Science.gov (United States)

    Samuel L. Zelinka; Keith J. Bourne; John C. Hermanson; Samuel V. Glass; Adriana Costa; Alex C. Wiedenhoeft

    2015-01-01

    The elastic properties of pit membranes are reported to have important implications in understanding air-seeding phenomena in gymnosperms, and pit aspiration plays a large role in wood technological applications such as wood drying and preservative treatment. Here we present force–displacement measurements for pit membranes of circular bordered pits, collected on a...

  17. Measuring q/m for Water Drops--An Introduction to the Effects of Electrical Forces

    Science.gov (United States)

    Hart, Francis X.

    1974-01-01

    Discusses an experiment which introduces students to the effects of electrical forces on the motion of macroscopic objects. Included are the proecedures of measuring the charge-to-mass ratio from deflections of charged water drops in horizontal fields and the overall charges delivered in a Faraday cup. (CC)

  18. Trial manufacture of rotary friction tester and frictional force measurement of metals

    CERN Document Server

    Abe, T; Kanari, M; Tanzawa, S

    2002-01-01

    In the plasma confinement type fusion reactor, in-vessel structures such as a blanket module slide at the joints each other when plasma disruption occurs, and then frictional heat is generated there. Therefore, for the selection of material and the use as the design data, it is important to understand the frictional characteristics of metals and ceramic films in the vacuum. In the present study, we have manufactured a prototype of rotary friction tester and examined the performances of the tester. The frictional characteristics of metals in the room air was measured using the friction tester, and the results obtained are as follows. A drifting friction force for a constant time and a friction force during the idling were 98 mN and 225 mN, respectively. These values were sufficiently small as compared to pressing load (9.8 - 57.8 N) used in the friction test. In a friction force measurement of stainless steel, dynamic friction force obeyed Amontons' law which indicated that dynamic friction force is not depend...

  19. Interactions between Rotavirus and Suwannee River Organic Matter: Aggregation, Deposition, and Adhesion Force Measurement

    KAUST Repository

    Gutierrez, Leonardo

    2012-08-21

    Interactions between rotavirus and Suwannee River natural organic matter (NOM) were studied by time-resolved dynamic light scattering, quartz crystal microbalance, and atomic force microscopy. In NOM-containing NaCl solutions of up to 600 mM, rotavirus suspension remained stable for over 4 h. Atomic force microscopy (AFM) measurement for interaction force decay length at different ionic strengths showed that nonelectrostatic repulsive forces were mainly responsible for eliminating aggregation in NaCl solutions. Aggregation rates of rotavirus in solutions containing 20 mg C/L increased with divalent cation concentration until reaching a critical coagulation concentration of 30 mM CaCl2 or 70 mM MgCl2. Deposition kinetics of rotavirus on NOM-coated silica surface was studied using quartz crystal microbalance. Experimental attachment efficiencies for rotavirus adsorption to NOM-coated surface in MgCl2 solution were lower than in CaCl2 solution at a given divalent cation concentration. Stronger adhesion force was measured for virus-virus and virus-NOM interactions in CaCl2 solution compared to those in MgCl2 or NaCl solutions at the same ionic strength. This study suggested that divalent cation complexation with carboxylate groups in NOM and on virus surface was an important mechanism in the deposition and aggregation kinetics of rotavirus. © 2012 American Chemical Society.

  20. Near-field Light Scattering Techniques for Measuring Nanoparticle-Surface Interaction Energies and Forces.

    Science.gov (United States)

    Schein, Perry; Ashcroft, Colby K; O'Dell, Dakota; Adam, Ian S; DiPaolo, Brian; Sabharwal, Manit; Shi, Ce; Hart, Robert; Earhart, Christopher; Erickson, David

    2015-08-15

    Nanoparticles are quickly becoming commonplace in many commercial and industrial products, ranging from cosmetics to pharmaceuticals to medical diagnostics. Predicting the stability of the engineered nanoparticles within these products a priori remains an important and difficult challenge. Here we describe our techniques for measuring the mechanical interactions between nanoparticles and surfaces using near-field light scattering. Particle-surface interfacial forces are measured by optically "pushing" a particle against a reference surface and observing its motion using scattered near-field light. Unlike atomic force microscopy, this technique is not limited by thermal noise, but instead takes advantage of it. The integrated waveguide and microfluidic architecture allow for high-throughput measurements of about 1000 particles per hour. We characterize the reproducibility of and experimental uncertainty in the measurements made using the NanoTweezer surface instrument. We report surface interaction studies on gold nanoparticles with 50 nm diameters, smaller than previously reported in the literature using similar techniques.

  1. Reliability of the Q Force; a mobile instrument for measuring isometric quadriceps muscle strength

    OpenAIRE

    Schans, van der, C.P.; Zijlstra, W.; Regterschot, G.R.H.; Krijnen, W.P.; Douma, K.W.; Slager, G.E.C.

    2016-01-01

    BACKGROUND: The ability to generate muscle strength is a pre-requisite for all human movement. Decreased quadriceps muscle strength is frequently observed in older adults and is associated with a decreased performance and activity limitations. To quantify the quadriceps muscle strength and to monitor changes over time, instruments and procedures with a sufficient reliability are needed. The Q Force is an innovative mobile muscle strength measurement instrument suitable to measure in various d...

  2. Measuring system and method of determining the Adaptive Force

    Directory of Open Access Journals (Sweden)

    Laura Schaefer

    2017-07-01

    Full Text Available The term Adaptive Force (AF describes the capability of adaptation of the nerve-muscle-system to externally applied forces during isometric and eccentric muscle action. This ability plays an important role in real life motions as well as in sports. The focus of this paper is on the specific measurement method of this neuromuscular action, which can be seen as innovative. A measuring system based on the use of compressed air was constructed and evaluated for this neuromuscular function. It depends on the physical conditions of the subject, at which force level it deviates from the quasi isometric position and merges into eccentric muscle action. The device enables – in contrast to the isokinetic systems – a measure of strength without forced motion. Evaluation of the scientific quality criteria of the devices was done by measurements regarding the intra- and interrater-, the test-retest-reliability and fatiguing measurements. Comparisons of the pneumatic device with a dynamometer were also done. Looking at the mechanical evaluation, the results show a high level of consistency (r²=0.94 to 0.96. The parallel test reliability delivers a very high and significant correlation (ρ=0.976; p=0.000. Including the biological system, the concordance of three different raters is very high (p=0.001, Cronbachs alpha α=0.987. The test retest with 4 subjects over five weeks speaks for the reliability of the device in showing no statistically significant differences. These evaluations indicate that the scientific evaluation criteria are fulfilled. The specific feature of this system is that an isometric position can be maintained while the externally impacting force rises. Moreover, the device can capture concentric, static and eccentric strength values. Fields of application are performance diagnostics in sports and medicine.

  3. Reliability of the Q Force; a mobile instrument for measuring isometric quadriceps muscle strength.

    Science.gov (United States)

    Douma, K W; Regterschot, G R H; Krijnen, W P; Slager, G E C; van der Schans, C P; Zijlstra, W

    2016-01-01

    The ability to generate muscle strength is a pre-requisite for all human movement. Decreased quadriceps muscle strength is frequently observed in older adults and is associated with a decreased performance and activity limitations. To quantify the quadriceps muscle strength and to monitor changes over time, instruments and procedures with a sufficient reliability are needed. The Q Force is an innovative mobile muscle strength measurement instrument suitable to measure in various degrees of extension. Measurements between 110 and 130° extension present the highest values and the most significant increase after training. The objective of this study is to determine the test-retest reliability of muscle strength measurements by the Q Force in older adults in 110° extension. Forty-one healthy older adults, 13 males and 28 females were included in the study. Mean (SD) age was 81.9 (4.89) years. Isometric muscle strength of the Quadriceps muscle was assessed with the Q Force at 110° of knee extension. Participants were measured at two sessions with a three to eight day interval between sessions. To determine relative reliability, the intraclass correlation coefficient (ICC) was calculated. To determine absolute reliability, Bland and Altman Limits of Agreement (LOA) were calculated and t-tests were performed. Relative reliability of the Q Force is good to excellent as all ICC coefficients are higher than 0.75. Generally a large 95 % LOA, reflecting only moderate absolute reliability, is found as exemplified for the peak torque left leg of -18.6 N to 33.8 N and the right leg of -9.2 N to 26.4 N was between 15.7 and 23.6 Newton representing 25.2 % to 39.9 % of the size of the mean. Small systematic differences in mean were found between measurement session 1 and 2. The present study shows that the Q Force has excellent relative test-retest reliability, but limited absolute test-retest reliability. Since the Q Force is relatively cheap and mobile it is suitable for

  4. Midinfrared absorption measured at a lambda/400 resolution with an atomic force microscope.

    Science.gov (United States)

    Houel, Julien; Homeyer, Estelle; Sauvage, Sébastien; Boucaud, Philippe; Dazzi, Alexandre; Prazeres, Rui; Ortéga, Jean-Michel

    2009-06-22

    Midinfrared absorption can be locally measured using a detection combining an atomic force microscope and a pulsed excitation. This is illustrated for the midinfrared bulk GaAs phonon absorption and for the midinfrared absorption of thin SiO(2) microdisks. We show that the signal given by the cantilever oscillation amplitude of the atomic force microscope follows the spectral dependence of the bulk material absorption. The absorption spatial resolution achieved with microdisks is around 50 nanometer for an optical excitation around 22 micrometer wavelength.

  5. Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy

    Science.gov (United States)

    Cuenot, Stéphane; Frétigny, Christian; Demoustier-Champagne, Sophie; Nysten, Bernard

    2004-04-01

    The effect of reduced size on the elastic properties measured on silver and lead nanowires and on polypyrrole nanotubes with an outer diameter ranging between 30 and 250 nm is presented and discussed. Resonant-contact atomic force microscopy (AFM) is used to measure their apparent elastic modulus. The measured modulus of the nanomaterials with smaller diameters is significantly higher than that of the larger ones. The latter is comparable to the macroscopic modulus of the materials. The increase of the apparent elastic modulus for the smaller diameters is attributed to surface tension effects. The surface tension of the probed material may be experimentally determined from these AFM measurements.

  6. Effects of the positioning force of electrostatic levitators on viscosity measurements

    International Nuclear Information System (INIS)

    Ishikawa, Takehiko; Paradis, Paul-Francois; Koike, Noriyuki; Watanabe, Yuki

    2009-01-01

    Electrostatic levitators use strong electric fields to levitate and accurately position a sample against gravity. In this study, the effects of the electric field are investigated with regard to viscosity measurements conducted with the oscillating drop method. The effects of the external field on viscosity measurements are experimentally confirmed by changing the sample size. Moreover, a numerical simulation based on a simple mass-spring-damper system can reproduce the experimental observations. Based on the above results, measurement procedures are improved. These help to minimize the effect of the positioning force and to increase the accuracy of the viscosity measurements.

  7. Partnership for the Revitalization of National Wind Tunnel Force Measurement Capability

    Science.gov (United States)

    Rhew, Ray D.; Skelley, Marcus L.; Woike, Mark R.; Bader, Jon B.; Marshall, Timothy J.

    2009-01-01

    Lack of funding and lack of focus on research over the past several years, coupled with force measurement capabilities being decentralized and distributed across the National Aeronautics and Space Administration (NASA) research centers, has resulted in a significant erosion of (1) capability and infrastructure to produce and calibrate force measurement systems; (2) NASA s working knowledge of those systems; and (3) the quantity of high-quality, full-capability force measurement systems available for use in aeronautics testing. Simultaneously, and at proportional rates, the capability of industry to design, manufacture, and calibrate these test instruments has been eroding primarily because of a lack of investment by the aeronautics community. Technical expertise in this technology area is a core competency in aeronautics testing; it is highly specialized and experience-based, and it represents a niche market for only a few small precision instrument shops in the United States. With this backdrop, NASA s Aeronautics Test Program (ATP) chartered a team to examine the issues and risks associated with the problem, focusing specifically on strain- gage balances. The team partnered with the U.S. Air Force s Arnold Engineering Development Center (AEDC) to exploit their combined capabilities and take a national level government view of the problem. This paper describes the team s approach, its findings, and its recommendations, and the current status for revitalizing the government s balance capability with respect to designing, fabricating, calibrating, and using the instruments.

  8. On electrostatic and Casimir force measurements between conducting surfaces in a sphere-plane configuration

    International Nuclear Information System (INIS)

    Kim, W J; Brown-Hayes, M; Brownell, J H; Dalvit, D A R; Onofrio, R

    2009-01-01

    We report on measurements of forces acting between two conducting surfaces in a spherical-plane configuration in the 35 nm-1 μm separation range. The measurements are obtained by performing electrostatic calibrations followed by a residuals analysis after subtracting the electrostatic-dependent component. We find in all runs optimal fitting of the calibrations for exponents smaller than the one predicted by electrostatics for an ideal sphere-plane geometry. We also find that the external bias potential necessary to minimize the electrostatic contribution depends on the sphere-plane distance. In spite of these anomalies, by implementing a parametrization-dependent subtraction of the electrostatic contribution we have found evidence for short-distance attractive forces of magnitude comparable to the expected Casimir-Lifshitz force. We finally discuss the relevance of our findings in the more general context of Casimir-Lifshitz force measurements, with particular regard to the critical issues of the electrical and geometrical characterization of the involved surfaces.

  9. On renormalization of axial anomaly

    International Nuclear Information System (INIS)

    Efremov, A.V.; Teryaev, O.V.

    1989-01-01

    It is shown that multiplicative renormalization of the axial singlet current results in renormalization of the axial anomaly in all orders of perturbation theory. It is a necessary condition for the Adler - Bardeen theorem being valid. 10 refs.; 2 figs

  10. Influence of Axial Load on Electromechanical Impedance (EMI) of Embedded Piezoceramic Transducers in Steel Fiber Concrete.

    Science.gov (United States)

    Wang, Zhijie; Chen, Dongdong; Zheng, Liqiong; Huo, Linsheng; Song, Gangbing

    2018-06-01

    With the advantages of high tensile, bending, and shear strength, steel fiber concrete structures have been widely used in civil engineering. The health monitoring of concrete structures, including steel fiber concrete structures, receives increasing attention, and the Electromechanical Impedance (EMI)-based method is commonly used. Structures are often subject to changing axial load and ignoring the effect of axial forces may introduce error to Structural Health Monitoring (SHM), including the EMI-based method. However, many of the concrete structure monitoring algorithms do not consider the effects of axial loading. To investigate the influence of axial load on the EMI of a steel fiber concrete structure, concrete specimens with different steel fiber content (0, 30, 60, 90, 120) (kg/m³) were casted and the Lead Zirconate Titanate (PZT)-based Smart Aggregate (SA) was used as the EMI sensor. During tests, the step-by-step loading procedure was applied on different steel fiber content specimens, and the electromechanical impedance values were measured. The Normalized root-mean-square deviation Index (NI) was developed to analyze the EMI information and evaluate the test results. The results show that the normalized root-mean-square deviation index increases with the increase of the axial load, which clearly demonstrates the influence of axial load on the EMI values for steel fiber concrete and this influence should be considered during a monitoring or damage detection procedure if the axial load changes. In addition, testing results clearly reveal that the steel fiber content, often at low mass and volume percentage, has no obvious influence on the PZT's EMI values. Furthermore, experiments to test the repeatability of the proposed method were conducted. The repeating test results show that the EMI-based indices are repeatable and there is a great linearity between the NI and the applied loading.

  11. Influence of Axial Load on Electromechanical Impedance (EMI of Embedded Piezoceramic Transducers in Steel Fiber Concrete

    Directory of Open Access Journals (Sweden)

    Zhijie Wang

    2018-06-01

    Full Text Available With the advantages of high tensile, bending, and shear strength, steel fiber concrete structures have been widely used in civil engineering. The health monitoring of concrete structures, including steel fiber concrete structures, receives increasing attention, and the Electromechanical Impedance (EMI-based method is commonly used. Structures are often subject to changing axial load and ignoring the effect of axial forces may introduce error to Structural Health Monitoring (SHM, including the EMI-based method. However, many of the concrete structure monitoring algorithms do not consider the effects of axial loading. To investigate the influence of axial load on the EMI of a steel fiber concrete structure, concrete specimens with different steel fiber content (0, 30, 60, 90, 120 (kg/m3 were casted and the Lead Zirconate Titanate (PZT-based Smart Aggregate (SA was used as the EMI sensor. During tests, the step-by-step loading procedure was applied on different steel fiber content specimens, and the electromechanical impedance values were measured. The Normalized root-mean-square deviation Index (NI was developed to analyze the EMI information and evaluate the test results. The results show that the normalized root-mean-square deviation index increases with the increase of the axial load, which clearly demonstrates the influence of axial load on the EMI values for steel fiber concrete and this influence should be considered during a monitoring or damage detection procedure if the axial load changes. In addition, testing results clearly reveal that the steel fiber content, often at low mass and volume percentage, has no obvious influence on the PZT’s EMI values. Furthermore, experiments to test the repeatability of the proposed method were conducted. The repeating test results show that the EMI-based indices are repeatable and there is a great linearity between the NI and the applied loading.

  12. Axial tomographic scanner

    International Nuclear Information System (INIS)

    1976-01-01

    An axial tomographic system is described comprising axial tomographic means for collecting sets of data corresponding to the transmission or absorption of a number of beams of penetrating radiation through a planar slice of an object. It includes means to locate an object to be analyzed, a source and detector for directing one or more beams of penetrating radiation through the object from the source to the detector, and means to rotate (and optionally translate) the source as well as means to process the collected sets of data. Data collection, data processing, and data display can each be conducted independently of each other. An additional advantage of the system described is that the raw data (i.e., the originally collected data) are not destroyed by the data processing but instead are retained intact for further reference or use, if needed

  13. A Scheme for Solving the Plane–Plane Challenge in Force Measurements at the Nanoscale

    Directory of Open Access Journals (Sweden)

    Comin Fabio

    2010-01-01

    Full Text Available Abstract Non-contact interaction between two parallel flat surfaces is a central paradigm in sciences. This situation is the starting point for a wealth of different models: the capacitor description in electrostatics, hydrodynamic flow, thermal exchange, the Casimir force, direct contact study, third body confinement such as liquids or films of soft condensed matter. The control of parallelism is so demanding that no versatile single force machine in this geometry has been proposed so far. Using a combination of nanopositioning based on inertial motors, of microcrystal shaping with a focused-ion beam (FIB and of accurate in situ and real-time control of surface parallelism with X-ray diffraction, we propose here a “gedanken” surface-force machine that should enable one to measure interactions between movable surfaces separated by gaps in the micrometer and nanometer ranges.

  14. Optical Tweezers-Based Measurements of Forces and Dynamics at Microtubule Ends.

    Science.gov (United States)

    Baclayon, Marian; Kalisch, Svenja-Marei; Hendel, Ed; Laan, Liedewij; Husson, Julien; Munteanu, E Laura; Dogterom, Marileen

    2017-01-01

    Microtubules are dynamic cytoskeletal polymers that polymerize and depolymerize while interacting with different proteins and structures within the cell. The highly regulated dynamic properties as well as the pushing and pulling forces generated by dynamic microtubule ends play important roles in processes such as in cell division. For instance, microtubule end-binding proteins are known to affect dramatically the dynamic properties of microtubules, and cortical dyneins are known to mediate pulling forces on microtubule ends. We discuss in this chapter our efforts to reconstitute these systems in vitro and mimic their interactions with structures within the cell using micro-fabricated barriers. Using an optical tweezers setup, we investigate the dynamics and forces of microtubules growing against functionalized barriers in the absence and presence of end-binding proteins and barrier-attached motor proteins. This setup allows high-speed as well as nanometer and piconewton resolution measurements on dynamic microtubules.

  15. Fractal based complexity measure and variation in force during sustained isometric muscle contraction: effect of aging.

    Science.gov (United States)

    Arjunan, Sridhar P; Kumar, Dinesh K; Bastos, Teodiano

    2012-01-01

    This study has investigated the effect of age on the fractal based complexity measure of muscle activity and variance in the force of isometric muscle contraction. Surface electromyogram (sEMG) and force of muscle contraction were recorded from 40 healthy subjects categorized into: Group 1: Young - age range 20-30; 10 Males and 10 Females, Group 2: Old - age range 55-70; 10 Males and 10 Females during isometric exercise at Maximum Voluntary contraction (MVC). The results show that there is a reduction in the complexity of surface electromyogram (sEMG) associated with aging. The results demonstrate that there is an increase in the coefficient of variance (CoV) of the force of muscle contraction and a decrease in complexity of sEMG for the Old age group when compared with the Young age group.

  16. Post-tensioning tendon force loss detection using low power pulsed eddy current measurement

    Science.gov (United States)

    Kim, Ji-Min; Lee, Jun; Sohn, Hoon

    2018-04-01

    In the field of bridge engineering, pre-fabrication of a bridge member and its construction in site have been issued and studied, which achieves improved quality and rapid construction. For integration of those pre-fabricated segments into a structural member (i.e., a concrete slab, girder and pier), post-tensioning (PT) technique is adopted utilizing a high-strength steel tendon, and an effective investigation of the remaining PT tendon force is essential to assure an overall structural integrity. This study proposes a pulsed eddy current based tendon force loss detection system. A compact eddy current sensor is designed to be installed on the surface of an anchor holding a steel PT tendon. The intensity of the induced eddy current varies with PT tendon force alteration due to the magnetostriction effect of a ferromagnetic material. The advantages of the proposed system are as follows: (1) low power consumption, (2) rapid inspection, and (3) simple installation. Its performance was validated experimentally in a full-scale lab test of a 3.3-m long, 15.2-mm diameter mono-tendon that was tensioned using a universal testing machine. Tendon force was controlled from 20 to 180 kN with 20 kN interval, and eddy current responses were measured and analyzed at each force condition. The proposed damage index and the amount of force loss of PT tendon were monotonically related, and an excessive loss as much as 30 % of an initially-introduced tendon force was successfully predicted.

  17. A force measurement system based on an electrostatic sensing and actuating technique for calibrating force in a micronewton range with a resolution of nanonewton scale

    International Nuclear Information System (INIS)

    Chen, Sheng-Jui; Pan, Sheau-Shi

    2011-01-01

    This paper introduces a force measurement system recently established at the Center for Measurement Standards, Industrial Technology Research Institute for calibrating forces in a micronewton range with a resolution of a few nanonewtons. The force balance consists of a monolithic flexure stage and a specially made capacitor for electrostatic sensing and actuating. The capacitor is formed by three electrodes which can be utilized as a capacitive position sensor and an electrostatic force actuator at the same time. Force balance control is implemented with a digital controller by which the signal of the stage deflection is acquired, filtered and fed back to the electrostatic force driver to bring the flexure stage to the null position. The detailed description of the apparatus including the design of a monolithic flexure stage, principle of capacitive position sensing/electrostatic actuation and the force balance control is given in the paper. Finally, we present the results of electrostatic force calibration and the weighing of a 1 mg wire weight

  18. Atomic force microscopy imaging to measure precipitate volume fraction in nickel-based superalloys

    International Nuclear Information System (INIS)

    Bourhettar, A.; Troyon, M.; Hazotte, A.

    1995-01-01

    In nickel-based superalloys, quantitative analysis of scanning electron microscopy images fails in providing accurate microstructural data, whereas more efficient techniques are very time-consuming. As an alternative approach, the authors propose to perform quantitative analysis of atomic force microscopy images of polished/etched surfaces (quantitative microprofilometry). This permits the measurement of microstructural parameters and the depth of etching, which is the main source of measurement bias. Thus, nonbiased estimations can be obtained by extrapolation of the measurements up to zero etching depth. In this article, the authors used this approach to estimate the volume fraction of γ' precipitates in a nickel-based superalloy single crystal. Atomic force microscopy images of samples etched for different times show definition, homogeneity, and contrast high enough to perform image analysis. The result after extrapolation is in very good agreement with volume fraction values available from published reports

  19. Measurements of stiff-material compliance on the nanoscale using ultrasonic force microscopy

    Science.gov (United States)

    Dinelli, F.; Biswas, S. K.; Briggs, G. A. D.; Kolosov, O. V.

    2000-05-01

    Ultrasonic force microscopy (UFM) was introduced to probe nanoscale mechanical properties of stiff materials. This was achieved by vibrating the sample far above the first resonance of the probing atomic force microscope cantilever where the cantilever becomes dynamically rigid. By operating UFM at different set force values, it is possible to directly measure the absolute values of the tip-surface contact stiffness. From this an evaluation of surface elastic properties can be carried out assuming a suitable solid-solid contact model. In this paper we present curves of stiffness as a function of the normal load in the range of 0-300 nN. The dependence of stiffness on the relative humidity has also been investigated. Materials with different elastic constants (such as sapphire lithium fluoride, and silicon) have been successfully differentiated. Continuum mechanics models cannot however explain the dependence of stiffness on the normal force and on the relative humidity. In this high-frequency regime, it is likely that viscous forces might play an important role modifying the tip-surface interaction. Plastic deformation might also occur due to the high strain rates applied when ultrasonically vibrating the sample. Another possible cause of these discrepancies might be the presence of water in between the two bodies in contact organizing in a solidlike way and partially sustaining the load.

  20. Validity of a Simple Method for Measuring Force-Velocity-Power Profile in Countermovement Jump.

    Science.gov (United States)

    Jiménez-Reyes, Pedro; Samozino, Pierre; Pareja-Blanco, Fernando; Conceição, Filipe; Cuadrado-Peñafiel, Víctor; González-Badillo, Juan José; Morin, Jean-Benoît

    2017-01-01

    To analyze the reliability and validity of a simple computation method to evaluate force (F), velocity (v), and power (P) output during a countermovement jump (CMJ) suitable for use in field conditions and to verify the validity of this computation method to compute the CMJ force-velocity (F-v) profile (including unloaded and loaded jumps) in trained athletes. Sixteen high-level male sprinters and jumpers performed maximal CMJs under 6 different load conditions (0-87 kg). A force plate sampling at 1000 Hz was used to record vertical ground-reaction force and derive vertical-displacement data during CMJ trials. For each condition, mean F, v, and P of the push-off phase were determined from both force-plate data (reference method) and simple computation measures based on body mass, jump height (from flight time), and push-off distance and used to establish the linear F-v relationship for each individual. Mean absolute bias values were 0.9% (± 1.6%), 4.7% (± 6.2%), 3.7% (± 4.8%), and 5% (± 6.8%) for F, v, P, and slope of the F-v relationship (S Fv ), respectively. Both methods showed high correlations for F-v-profile-related variables (r = .985-.991). Finally, all variables computed from the simple method showed high reliability, with ICC >.980 and CV push-off distance, and jump height are known.

  1. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles

    Science.gov (United States)

    Huang, Qiaoyun; Wu, Huayong; Cai, Peng; Fein, Jeremy B.; Chen, Wenli

    2015-01-01

    Bacterial adhesion onto mineral surfaces and subsequent biofilm formation play key roles in aggregate stability, mineral weathering, and the fate of contaminants in soils. However, the mechanisms of bacteria-mineral interactions are not fully understood. Atomic force microscopy (AFM) was used to determine the adhesion forces between bacteria and goethite in water and to gain insight into the nanoscale surface morphology of the bacteria-mineral aggregates and biofilms formed on clay-sized minerals. This study yields direct evidence of a range of different association mechanisms between bacteria and minerals. All strains studied adhered predominantly to the edge surfaces of kaolinite rather than to the basal surfaces. Bacteria rarely formed aggregates with montmorillonite, but were more tightly adsorbed onto goethite surfaces. This study reports the first measured interaction force between bacteria and a clay surface, and the approach curves exhibited jump-in events with attractive forces of 97 ± 34 pN between E. coli and goethite. Bond strengthening between them occurred within 4 s to the maximum adhesion forces and energies of −3.0 ± 0.4 nN and −330 ± 43 aJ (10−18 J), respectively. Under the conditions studied, bacteria tended to form more extensive biofilms on minerals under low rather than high nutrient conditions. PMID:26585552

  2. A quadruple-scanning-probe force microscope for electrical property measurements of microscopic materials

    International Nuclear Information System (INIS)

    Higuchi, Seiji; Kubo, Osamu; Kuramochi, Hiromi; Aono, Masakazu; Nakayama, Tomonobu

    2011-01-01

    Four-terminal electrical measurement is realized on a microscopic structure in air, without a lithographic process, using a home-built quadruple-scanning-probe force microscope (QSPFM). The QSPFM has four probes whose positions are individually controlled by obtaining images of a sample in the manner of atomic force microscopy (AFM), and uses the probes as contacting electrodes for electrical measurements. A specially arranged tuning fork probe (TFP) is used as a self-detection force sensor to operate each probe in a frequency modulation AFM mode, resulting in simultaneous imaging of the same microscopic feature on an insulator using the four TFPs. Four-terminal electrical measurement is then demonstrated in air by placing each probe electrode in contact with a graphene flake exfoliated on a silicon dioxide film, and the sheet resistance of the flake is measured by the van der Pauw method. The present work shows that the QSPFM has the potential to measure the intrinsic electrical properties of a wide range of microscopic materials in situ without electrode fabrication.

  3. Preliminarily measurement and analysis of sawing forces in fresh cadaver mandible using reciprocating saw for reality-based haptic feedback.

    Science.gov (United States)

    Yua, Dedong; Zhengb, Xiaohu; Chenc, Ming; Shend, Steve G F

    2012-05-01

    The aim of the study was to preliminarily measure and analyze the cutting forces in fresh Chinese cadaver mandible using a clinically widely used reciprocating saw for reality-based haptic feedback. Eight mandibles were taken from fresh Chinese cadavers, 4 females and 4 males, aged between 59 and 95 years. A set of sawing experiments, using a surgery Stryker micro-reciprocating saw and Kistler piezoelectric dynamometer, was carried out by a CNC machining center. Under different vibration frequencies of saw and feeding rates measured from orthognathic surgery, sawing forces were recorded by a signal acquisition system. Remarkably different sawing forces were measured from different cadavers. Feed and vibration frequency of the reciprocating saw could determine the cutting forces only on 1 body. To reduce the impact of bone thickness changes on the cutting force measurements, all the cutting force data should be converted to the force of unit cutting length. The vibration frequency of haptic feedback system is determined by main cutting forces. Fast Fourier transform method can be used to calculate the frequency of this system. To simulate surgery in higher fidelity, all the sawing forces from the experiment should be amended by experienced surgeons before use in virtual reality surgery simulator. Sawing force signals of different ages for force feedback were measured successfully, and more factors related to the bone mechanical properties, such as bone density, should be concerned in the future.

  4. Fluid-elastic force measurements acting on a tube bundle in two-phase cross flow

    International Nuclear Information System (INIS)

    Inada, Fumio; Kawamura, Koji; Yasuo, Akira

    1996-01-01

    Fluid-elastic force acting on a square tube bundle of P/D = 1.47 in air-water two-phase cross flow was measured to investigate the characteristics and to clarify whether the fluid elastic vibration characteristics could be expressed using two-phase mixture characteristics. Measured fluid elastic forces were separated into fluid-elastic force coefficients such as added mass, added stiffness, and added damping coefficient. The added damping coefficient was separated into a two-phase damping and a flow-dependent component as in previous research (Carlucci, 1981 and 1983; Pettigrew, 1994). These coefficients were nondimensionalized with two-phase mixture characteristics such as void fraction, mixture density and mixture velocity, which were obtained using the drift-flux model with consideration given to the model. The result was compared with the result obtained with the homogeneous model. It was found that fluid-elastic force coefficients could be expressed with two-phase flow mixture characteristics very well in the experimental result, and that better result can be derived using the slip model as compared to the homogeneous model. Added two-phase flow, which could be expressed as a function of void fraction, where two-phase damping was nondimensionalized with the relative velocity between the gas and liquid phases used as a reference velocity. Using these, the added stiffness coefficient and flow-dependent component of damping could be expressed very well as a function of nondimensional mixture velocity

  5. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Loganathan, Muthukumaran; Bristow, Douglas A., E-mail: dbristow@mst.edu [Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, Missouri 65401 (United States)

    2014-04-15

    This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.

  6. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy.

    Science.gov (United States)

    Loganathan, Muthukumaran; Bristow, Douglas A

    2014-04-01

    This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.

  7. Acquisition and deconvolution of seismic signals by different methods to perform direct ground-force measurements

    Science.gov (United States)

    Poletto, Flavio; Schleifer, Andrea; Zgauc, Franco; Meneghini, Fabio; Petronio, Lorenzo

    2016-12-01

    We present the results of a novel borehole-seismic experiment in which we used different types of onshore-transient-impulsive and non-impulsive-surface sources together with direct ground-force recordings. The ground-force signals were obtained by baseplate load cells located beneath the sources, and by buried soil-stress sensors installed in the very shallow-subsurface together with accelerometers. The aim was to characterize the source's emission by its complex impedance, function of the near-field vibrations and soil stress components, and above all to obtain appropriate deconvolution operators to remove the signature of the sources in the far-field seismic signals. The data analysis shows the differences in the reference measurements utilized to deconvolve the source signature. As downgoing waves, we process the signals of vertical seismic profiles (VSP) recorded in the far-field approximation by an array of permanent geophones cemented at shallow-medium depth outside the casing of an instrumented well. We obtain a significant improvement in the waveform of the radiated seismic-vibrator signals deconvolved by ground force, similar to that of the seismograms generated by the impulsive sources, and demonstrates that the results obtained by different sources present low values in their repeatability norm. The comparison evidences the potentiality of the direct ground-force measurement approach to effectively remove the far-field source signature in VSP onshore data, and to increase the performance of permanent acquisition installations for time-lapse application purposes.

  8. Specific binding of antigen-antibody in physiological environments: Measurement, force characteristics and analysis

    Science.gov (United States)

    Gu, Xin; Zhou, Jun; Zhou, Lu; Xie, Shusen; Petti, Lucia; Wang, Shaomin; Wang, Fuyan

    2018-05-01

    The specific recognition of the antigen by the antibody is the crucial step in immunoassays. Measurement and analysis of the specific recognition, including the ways in which it is influenced by external factors are of paramount significance for the quality of the immunoassays. Using prostate-specific antigen (PSA)/anti-PSA antibody and α-fetoprotein (AFP) /anti-AFP antibody as examples, we have proposed a novel solution for measuring the binding forces between the antigens and their corresponding antibodies in different physiological environments by combining laminar flow control technology and optical tweezers technology. On the basis of the experimental results, the different binding forces of PSA/anti-PSA antibody and AFP/anti-AFP antibody in the same phosphate-buffered saline (PBS) environments are analysed by comparing the affinity constant of the two antibodies and the number of antigenic determinants of the two antigens. In different electrolyte environments, the changes of the binding force of antigens-antibodies are explained by the polyelectrolyte effect and hydrophobic interaction. Furthermore, in different pH environments, the changes of binding forces of antigens-antibodies are attributed to the role of the denaturation of protein. The study aims to recognise the antigen-antibody immune mechanism, thus ensuring further understanding of the biological functions of tumour markers, and it promises to be very useful for the clinical diagnosis of early-stage cancer.

  9. Merging Psychophysical and Psychometric Theory to Estimate Global Visual State Measures from Forced-Choices

    International Nuclear Information System (INIS)

    Massof, Robert W; Schmidt, Karen M; Laby, Daniel M; Kirschen, David; Meadows, David

    2013-01-01

    Visual acuity, a forced-choice psychophysical measure of visual spatial resolution, is the sine qua non of clinical visual impairment testing in ophthalmology and optometry patients with visual system disorders ranging from refractive error to retinal, optic nerve, or central visual system pathology. Visual acuity measures are standardized against a norm, but it is well known that visual acuity depends on a variety of stimulus parameters, including contrast and exposure duration. This paper asks if it is possible to estimate a single global visual state measure from visual acuity measures as a function of stimulus parameters that can represent the patient's overall visual health state with a single variable. Psychophysical theory (at the sensory level) and psychometric theory (at the decision level) are merged to identify the conditions that must be satisfied to derive a global visual state measure from parameterised visual acuity measures. A global visual state measurement model is developed and tested with forced-choice visual acuity measures from 116 subjects with no visual impairments and 560 subjects with uncorrected refractive error. The results are in agreement with the expectations of the model

  10. MHD Collimation Mechanism in Arched Flux Ropes Characterized Using Volumetric, Time-Dependent B-Vector Measurements

    Science.gov (United States)

    Haw, Magnus A.; Bellan, Paul M.

    2017-10-01

    Laboratory measurements of B(x,t) in a volume enclosing portions of two arched flux ropes show flux rope collimation driven by gradients in axial current density. These measurements verify the three predictions of a proposed MHD collimation mechanism: (1) axial magnetic forces exist in current channels with spatially varying minor radius, (2) these forces can drive counterpropagating axial flows, and (3) this process collimates the flux rope. This mechanism may explain the axial uniformity of solar loops and is relevant to other systems with current channels of varying minor radius such as solar prominences and astrophysical jets.

  11. Analysis of SONACO axial cooling experiments

    International Nuclear Information System (INIS)

    Sigg, B.; Dury, T.V.; Hudina, M.

    1994-01-01

    The SONACO test rig contained a sodium-cooled, electrically heated 37-pin bundle. On this rig, a series of forced, mixed and natural convection experiments have been performed with the aim of contributing to the understanding of thermal-hydraulic phenomena and providing data for code validation for a subassembly at decay heat power level with low flow or stagnant coolant. The test section and especially the heater pins were equipped with an extensive number of chromel-alumel thermocouples. In addition, special permanent-magnet probes were used for measuring local velocities. In this paper we give a survey of results from axial cooling experiments, where heat was removed by natural convection to a cooling coil situated in the coolant channel (plenum) above the bundle. The experimental conditions led to turbulent convection with a slowly varying, large scale flow pattern. It is shown that a power tilt in the bundle reduces these fluctuations but does not eliminate them. For the uniformly heated bundle, aglebraic expressions for the average turbulent heat flux as well as for temperature and velocity fluctuations are derived from a second-moments model and compared with experimental data. Furthermore, heat transfer in the plenum and the consequences of the SONACO experiments for the coolability of reactor fuel elements under loss-of-flow conditions are discussed. ((orig.))

  12. Simultaneous measurement of dynamic force and spatial thin film thickness between deformable and solid surfaces by integrated thin liquid film force apparatus.

    Science.gov (United States)

    Zhang, Xurui; Tchoukov, Plamen; Manica, Rogerio; Wang, Louxiang; Liu, Qingxia; Xu, Zhenghe

    2016-11-09

    Interactions involving deformable surfaces reveal a number of distinguishing physicochemical characteristics that do not exist in interactions between rigid solid surfaces. A unique fully custom-designed instrument, referred to as integrated thin liquid film force apparatus (ITLFFA), was developed to study the interactions between one deformable and one solid surface in liquid. Incorporating a bimorph force sensor with interferometry, this device allows for the simultaneous measurement of the time-dependent interaction force and the corresponding spatiotemporal film thickness of the intervening liquid film. The ITLFFA possesses the specific feature of conducting measurement under a wide range of hydrodynamic conditions, with a displacement velocity of deformable surfaces ranging from 2 μm s -1 to 50 mm s -1 . Equipped with a high speed camera, the results of a bubble interacting with hydrophilic and partially hydrophobic surfaces in aqueous solutions indicated that ITLFFA can provide information on interaction forces and thin liquid film drainage dynamics not only in a stable film but also in films of the quick rupture process. The weak interaction force was extracted from a measured film profile. Because of its well-characterized experimental conditions, ITLFFA permits the accurate and quantitative comparison/validation between measured and calculated interaction forces and temporal film profiles.

  13. Real time drift measurement for colloidal probe atomic force microscope: a visual sensing approach

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuliang, E-mail: wangyuliang@buaa.edu.cn; Bi, Shusheng [Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Wang, Huimin [Department of Materials Science and Engineering, The Ohio State University, 2041 College Rd., Columbus, OH 43210 (United States)

    2014-05-15

    Drift has long been an issue in atomic force microscope (AFM) systems and limits their ability to make long time period measurements. In this study, a new method is proposed to directly measure and compensate for the drift between AFM cantilevers and sample surfaces in AFM systems. This was achieved by simultaneously measuring z positions for beads at the end of an AFM colloidal probe and on sample surface through an off-focus image processing based visual sensing method. The working principle and system configuration are presented. Experiments were conducted to validate the real time drift measurement and compensation. The implication of the proposed method for regular AFM measurements is discussed. We believe that this technique provides a practical and efficient approach for AFM experiments requiring long time period measurement.

  14. How to Measure Load-Dependent Kinetics of Individual Motor Molecules Without a Force-Clamp

    DEFF Research Database (Denmark)

    Sung, Jongmin; Mortensen, Kim; Spudich, James A.

    Molecular motors are responsible for numerous cellular processes from cargo transport to heart contraction. Their interactions with other cellular components are often transient and exhibit kinetics that depend on load. Here, we measure such interactions using a new method, Harmonic Force...... and efficient. The protocol accumulates statistics fast enough to deliver single-molecule results from single-molecule experiments. We demonstrate the method's performance by measuring the force-dependent kinetics of individual human beta-cardiac myosin molecules interacting with an actin filament...... at physiological ATP concentration. We show that a molecule's ADP release rate depends exponentially on the applied load. This points to Kramer's Brownian diffusion model of chemical reactions as explanation why muscle contracts with a velocity inversely proportional to external load....

  15. MEASUREMENTS OF SHOCK WAVE FORCE IN SHOCK TUBE WITH INDIRECT METHODS

    Directory of Open Access Journals (Sweden)

    Mario Dobrilović

    2005-12-01

    Full Text Available Tests have been conducted at the “Laboratory for testing of civil explosives, detonators, electrical detonators and pyrotechnical materials”, Department for mining and geotechnics of the Faculty of mining, geology and petroleum engineering, University of Zagreb with the purpose of designing a detonator that would unite advantages of a non-electric system and the precision in regulation of time delay in electronic initiation system. Sum of energy released by the wave force in shock tube is a pre-condition for operation of the new detonator, and measurement of wave force is the first step in determining the sum of energy. The sum of energy is measured indirectly, based on two principles: movement sensors and strain.

  16. MEMS two-axis force plate array used to measure the ground reaction forces during the running motion of an ant

    International Nuclear Information System (INIS)

    Takahashi, Hidetoshi; Thanh-Vinh, Nguyen; Jung, Uijin G; Shimoyama, Isao; Matsumoto, Kiyoshi

    2014-01-01

    A terrestrial insect can perform agile running maneuvers. However, the balance of ground reaction forces (GRFs) between each leg in an insect have remained poorly characterized. In this report, we present a micro force plate array for the simultaneous measurement of the anterior and vertical components of GRFs of multiple legs during the running motion of an ant. The proposed force plate, which consists of a 2000 µm × 980 µm × 20 µm plate base as the contact surface of an ant's leg, and the supported beams with piezoresistors on the sidewall and surface are sufficiently compact to be adjacently arrayed along the anterior direction. Eight plates arrayed in parallel were fabricated on the same silicon-on-insulator substrate to narrow the gap between each plate to 20 µm. We compartmented the plate surface into 32 blocks and evaluated the sensitivities to two-axis forces in each block so that the exerted forces could be detected wherever a leg came into contact. The force resolutions in both directions were under 1 µN within ±20 µN. Using the fabricated force plate array, we achieved a simultaneous measurement of the GRFs of three legs on one side while an ant was running. (paper)

  17. An Analysis of Measures Used to Evaluate the Air Force Critical Item Program

    Science.gov (United States)

    1991-09-01

    example of a histogram. Cause & Effect Diagram. The cause and effect diagram was introduced in 1953 by Dr. Kaoru Ishikawa in summarizing the opinions of...Personal Interview. Air Force Institute of Technology, School of Engineering, Wright-Patterson AFB OH, 24 April 1991. 31. Ishikawa , Dr. Kaoru . Guide to...collected. How the data are collected will determine which measurement techniques are appropriate. Ishikawa classifies data collection into five categories

  18. Force measurements of flexible tandem wings in hovering and forward flights

    International Nuclear Information System (INIS)

    Zheng, Yingying; Wu, Yanhua; Tang, Hui

    2015-01-01

    Aerodynamic forces, power consumptions and efficiencies of flexible and rigid tandem wings undergoing combined plunging/pitching motion were measured in a hovering flight and two forward flights with Strouhal numbers of 0.6 and 0.3. Three flexible dragonfly-like tandem wing models termed Wing I, Wing II, and Wing III which are progressively less flexible, as well as a pair of rigid wings as the reference were operated at three phase differences of 0°, 90° and 180°. The results showed that both the flexibility and phase difference have significant effects on the aerodynamic performances. In both hovering and forward flights at a higher oscillation frequency of 1 Hz (St = 0.6), the Wing III model outperformed the other wing models with larger total horizontal force coefficient and efficiency. In forward flight at the lower frequency of 0.5 Hz (St = 0.3), Wing III, rigid wings and Wing II models performed best at 0°, 90° and 180° phase difference, respectively. From the time histories of force coefficients of fore- and hind-wings, different peak values, phase lags, and secondary peaks were found to be the important reasons to cause the differences in the average horizontal force coefficients. Particle image velocimetry and deformation measurements were performed to provide the insights into how the flexibility affects the aerodynamic performance of the tandem wings. The spanwise bending deformation was found to contribute to the horizontal force, by offering a more beneficial position to make LEV more attached to the wing model in both hovering and forward flights, and inducing a higher-velocity region in forward flight. (paper)

  19. Force measurements of a magnetic micro actuator proposed for a microvalve array

    International Nuclear Information System (INIS)

    Chang, Pauline J; Chang, Frank W; Yuen, Michelle C; Horsley, David A; Otillar, Robert

    2014-01-01

    Low-cost, easily-fabricated and power-efficient microvalves are necessary for many microfluidic lab-on-a-chip applications. In this study, we present a simple, low-power, scalable, CMOS-compatible magnetic actuator for microvalve applications composed of a paramagnetic bead as the ball valve over a picoliter reaction well etched into a silicon substrate. The paramagnetic bead, composed of either pure FeSi or magnetite in a SiO 2  matrix, is actuated by the local magnetic field gradient generated by a microcoil in an aqueous environment, and the reaction well is situated at the microcoil center. A permanent magnet beneath the microvalve device provides an external magnetic biasing field that magnetizes the bead, enabling bidirectional actuation and reducing the current required to actuate the bead to a level below 10 mA. The vertical and radial magnetic forces exerted on the bead by the microcoil were measured for both pure FeSi and composite beads and agree well with the predictions of 2D axisymmetric finite element method models. Vertical forces were within a range of 13–80 nN, and radial forces were 11–60 nN depending on the bead type. The threshold current required to initiate bead actuation was measured as a function of bead diameter and is found to scale inversely with volume for small beads, as expected based on the magnetic force model. To provide an estimate of the stiction force acting between the bead and the passivation layer on the substrate, repeated actuation trials were used to study the bead throw distance for substrates coated with silicon dioxide, Parylene-C, and photoresist. The stiction observed was lowest for a photoresist-coated substrate, while silicon dioxide and Parylene-C coated substrates exhibited similar levels of stiction. (paper)

  20. Magnetic Signals of High-Temperature Superconductor Bulk During the Levitation Force Measurement Process

    Science.gov (United States)

    Huang, Huan; Zheng, Jun; Qian, Nan; Che, Tong; Zheng, Botian; Jin, Liwei; Deng, Zigang

    2017-05-01

    In order to study the commonly neglected magnetic field information in the course of levitation force measurement process in a superconducting maglev system, a multipoint magnetic field measurement platform was employed to acquire magnetic signals of a bulk high-Tc superconductor on both the top and the bottom surface. Working conditions including field cooling (FC) and zero field cooling were investigated for these vertical down and up motions above a permanent magnet guideway performed on a HTS maglev measurement system. We have discussed the magnetic flux variation process based on the Bean model. A magnetic hysteresis effect similar to the levitation force hysteresis loop of the bulk superconductor was displayed and analyzed in this paper. What is more valuable, there exists some available magnetic flux on the top surface of the bulk superconductor, and the proportion is as high as 62.42% in the FC condition, which provides an experimental hint to design the superconductor bulk and the applied field for practical use in a more efficient way. In particular, this work reveals real-time magnetic flux variation of the bulk superconductor in the levitation application, which is the other important information in contrast to the macroscopic levitation and guidance force investigations in previous studies, and it enriches the existing research methods. The results are significant for understanding the magnetic characteristic of superconductors, and they can contribute to optimize the present HTS maglev system design.

  1. Measurement of circulation around wing-tip vortices and estimation of lift forces using stereo PIV

    Science.gov (United States)

    Asano, Shinichiro; Sato, Haru; Sakakibara, Jun

    2017-11-01

    Applying the flapping flight to the development of an aircraft as Mars space probe and a small aircraft called MAV (Micro Air Vehicle) is considered. This is because Reynolds number assumed as the condition of these aircrafts is low and similar to of insects and small birds flapping on the earth. However, it is difficult to measure the flow around the airfoil in flapping flight directly because of its three-dimensional and unsteady characteristics. Hence, there is an attempt to estimate the flow field and aerodynamics by measuring the wake of the airfoil using PIV, for example the lift estimation method based on a wing-tip vortex. In this study, at the angle of attack including the angle after stall, we measured the wing-tip vortex of a NACA 0015 cross-sectional and rectangular planform airfoil using stereo PIV. The circulation of the wing-tip vortex was calculated from the obtained velocity field, and the lift force was estimated based on Kutta-Joukowski theorem. Then, the validity of this estimation method was examined by comparing the estimated lift force and the force balance data at various angles of attack. The experiment results are going to be presented in the conference.

  2. Writing forces associated with four pencil grasp patterns in grade 4 children.

    Science.gov (United States)

    Schwellnus, Heidi; Carnahan, Heather; Kushki, Azadeh; Polatajko, Helene; Missiuna, Cheryl; Chau, Tom

    2013-01-01

    OBJECTIVE. We investigated differences in handwriting kinetics, speed, and legibility among four pencil grasps after a 10-min copy task. METHOD. Seventy-four Grade 4 students completed a handwriting assessment before and after a copy task. Grip and axial forces were measured with an instrumented stylus and force-sensitive tablet. We used multiple linear regression to analyze the relationship between grasp pattern and grip and axial forces. RESULTS. We found no kinetic differences among grasps, whether considered individually or grouped by the number of fingers on the barrel. However, when grasps were grouped according to the thumb position, the adducted grasps exhibited higher mean grip and axial forces. CONCLUSION. Grip forces were generally similar across the different grasps. Kinetic differences resulting from thumb position seemed to have no bearing on speed and legibility. Interventions for handwriting difficulties should focus more on speed and letter formation than on grasp pattern. Copyright © 2013 by the American Occupational Therapy Association, Inc.

  3. Critical Axial Load

    Directory of Open Access Journals (Sweden)

    Walt Wells

    2008-01-01

    Full Text Available Our objective in this paper is to solve a second order differential equation for a long, simply supported column member subjected to a lateral axial load using Heun's numerical method. We will use the solution to find the critical load at which the column member will fail due to buckling. We will calculate this load using Euler's derived analytical approach for an exact solution, as well as Euler's Numerical Method. We will then compare the three calculated values to see how much they deviate from one another. During the critical load calculation, it will be necessary to calculate the moment of inertia for the column member.

  4. Measurement correction method for force sensor used in dynamic pressure calibration based on artificial neural network optimized by genetic algorithm

    Science.gov (United States)

    Gu, Tingwei; Kong, Deren; Shang, Fei; Chen, Jing

    2017-12-01

    We present an optimization algorithm to obtain low-uncertainty dynamic pressure measurements from a force-transducer-based device. In this paper, the advantages and disadvantages of the methods that are commonly used to measure the propellant powder gas pressure, the applicable scope of dynamic pressure calibration devices, and the shortcomings of the traditional comparison calibration method based on the drop-weight device are firstly analysed in detail. Then, a dynamic calibration method for measuring pressure using a force sensor based on a drop-weight device is introduced. This method can effectively save time when many pressure sensors are calibrated simultaneously and extend the life of expensive reference sensors. However, the force sensor is installed between the drop-weight and the hammerhead by transition pieces through the connection mode of bolt fastening, which causes adverse effects such as additional pretightening and inertia forces. To solve these effects, the influence mechanisms of the pretightening force, the inertia force and other influence factors on the force measurement are theoretically analysed. Then a measurement correction method for the force measurement is proposed based on an artificial neural network optimized by a genetic algorithm. The training and testing data sets are obtained from calibration tests, and the selection criteria for the key parameters of the correction model is discussed. The evaluation results for the test data show that the correction model can effectively improve the force measurement accuracy of the force sensor. Compared with the traditional high-accuracy comparison calibration method, the percentage difference of the impact-force-based measurement is less than 0.6% and the relative uncertainty of the corrected force value is 1.95%, which can meet the requirements of engineering applications.

  5. Exact axially symmetric galactic dynamos

    Science.gov (United States)

    Henriksen, R. N.; Woodfinden, A.; Irwin, J. A.

    2018-05-01

    We give a selection of exact dynamos in axial symmetry on a galactic scale. These include some steady examples, at least one of which is wholly analytic in terms of simple functions and has been discussed elsewhere. Most solutions are found in terms of special functions, such as associated Lagrange or hypergeometric functions. They may be considered exact in the sense that they are known to any desired accuracy in principle. The new aspect developed here is to present scale-invariant solutions with zero resistivity that are self-similar in time. The time dependence is either a power law or an exponential factor, but since the geometry of the solution is self-similar in time we do not need to fix a time to study it. Several examples are discussed. Our results demonstrate (without the need to invoke any other mechanisms) X-shaped magnetic fields and (axially symmetric) magnetic spiral arms (both of which are well observed and documented) and predict reversing rotation measures in galaxy haloes (now observed in the CHANG-ES sample) as well as the fact that planar magnetic spirals are lifted into the galactic halo.

  6. Measuring the force of single protein molecule detachment from surfaces with AFM.

    Science.gov (United States)

    Tsapikouni, Theodora S; Missirlis, Yannis F

    2010-01-01

    Atomic force microscopy (AFM) was used to measure the non-specific detachment force of single fibrinogen molecules from glass surfaces. The identification of single unbinding events was based on the characteristics of the parabolic curves, recorded during the stretching of protein molecules. Fibrinogen molecules were covalently bound to Si(3)N(4) AFM tips, previously modified with 3-aminopropyl-dimethyl-ethoxysilane, through a homobifunctional poly(ethylene glycol) linker bearing two hydroxysulfosuccinimide esters. The most probable detachment force was found to be 210 pN, when the tip was retracting with a velocity of 1400 nm/s, while the distribution of the detachment distances indicated that the fibrinogen chain can be elongated beyond the length of the physical conformation before detachment. The dependence of the most probable detachment force on the loading rate was examined and the dynamics of fibrinogen binding to the surface were found amenable to the simple expression of the Bell-Evans theory. The theory's expansion, however, by incorporating the concept of the rupture of parallel residue-surface bonds could only describe the detachment of fibrinogen for a small number of such bonds. Finally, the mathematical expression of the Worm-Like Chain model was used to fit the stretching curves before rupture and two interpretations are suggested for the description of the AFM curves with multiple detachment events.

  7. Validation of absolute axial neutron flux distribution calculations with MCNP with 197Au(n,γ)198Au reaction rate distribution measurements at the JSI TRIGA Mark II reactor.

    Science.gov (United States)

    Radulović, Vladimir; Štancar, Žiga; Snoj, Luka; Trkov, Andrej

    2014-02-01

    The calculation of axial neutron flux distributions with the MCNP code at the JSI TRIGA Mark II reactor has been validated with experimental measurements of the (197)Au(n,γ)(198)Au reaction rate. The calculated absolute reaction rate values, scaled according to the reactor power and corrected for the flux redistribution effect, are in good agreement with the experimental results. The effect of different cross-section libraries on the calculations has been investigated and shown to be minor. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. VARIABILITY OF FORCED OSCILLATION (SIEMENS SIREGNOST FD-5) MEASUREMENTS OF TOTAL RESPIRATORY RESISTANCE IN PATIENTS AND HEALTHY-SUBJECTS

    NARCIS (Netherlands)

    GIMENO, F; VANDERWEELE, LT; KOETER, GH; DEMONCHY, JGR; VANALTENA, R

    The reproducibility of total respiratory resistance (R(rs)) measured with a simplified forced oscillatory method (Siemens Siregnost FD 5) was measured and compared with that of slow inspiratory vital capacity (IVC) and forced expiratory volume in one second (FEV1). The former technique has the

  9. Measurement method for determining the magnetic hysteresis effects of reluctance actuators by evaluation of the force and flux variation

    NARCIS (Netherlands)

    Vrijsen, N.H.; Jansen, J.W.; Compter, J.C.; Lomonova, E.

    2013-01-01

    A measurement method is presented which identifies the magnetic hysteresis effects present in the force of linear reluctance actuators. The measurement method is applied to determine the magnetic hysteresis in the force of an E-core reluctance actuator, with and without pre-biasing permanent magnet.

  10. Technique to measure contact angle of micro/nanodroplets using atomic force microscopy

    International Nuclear Information System (INIS)

    Jung, Yong Chae; Bhushan, Bharat

    2008-01-01

    Contact angle is the primary parameter that characterizes wetting; however, the measurement techniques have been limited to droplets with a diameter as low as about 50 μm. The authors developed an atomic force microscopy-based technique to measure the contact angle of micro- and nanodroplets deposited using a modified nanoscale dispensing tip. The obtained contact angle results were compared with those of a macrodroplet (2.1 mm diameter). It was found that the contact angle on various surfaces decreases with decreasing the droplet size

  11. Reliable measurement of elastic modulus of cells by nanoindentation in an atomic force microscope

    KAUST Repository

    Zhou, Zhoulong; Ngan, Alfonso H W; Tang, Bin; Wang, Anxun

    2012-01-01

    The elastic modulus of an oral cancer cell line UM1 is investigated by nanoindentation in an atomic force microscope with a flat-ended tip. The commonly used Hertzian method gives apparent elastic modulus which increases with the loading rate, indicating strong effects of viscoelasticity. On the contrary, a rate-jump method developed for viscoelastic materials gives elastic modulus values which are independent of the rate-jump magnitude. The results show that the rate-jump method can be used as a standard protocol for measuring elastic stiffness of living cells, since the measured values are intrinsic properties of the cells. © 2011 Elsevier Ltd.

  12. Magnetic vortex chirality determination via local hysteresis loops measurements with magnetic force microscopy

    Science.gov (United States)

    Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Manzin, Alessandra; Vinai, Franco; Tiberto, Paola

    2016-01-01

    Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction is taken into account numerically, and exploited experimentally, to influence the side of the square where nucleation of the vortex preferably occurs, therefore providing a way to both measure and drive chirality with the present technique. PMID:27426442

  13. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Yoshiyuki [Department of Intelligent Mechanical Engineering, Fukuoka Institute of Technology, 3-30-1 Wajirohigashi, Higashiku, Fukuoka 811-0295 (Japan)

    2016-01-15

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO{sub 2}) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO{sub 2} gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value.

  14. Characterization of thermoelectric devices by laser induced Seebeck electromotive force (LIS-EMF) measurement

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Luis-David Patino [Universite de Bordeaux 1, Centre de Physique Moleculaire Optique et Hertzienne, 351, cours de la liberation, 33405 Talence (France); Dilhaire, Stefan [Universite de Bordeaux 1, Centre de Physique Moleculaire Optique et Hertzienne, 351, cours de la liberation, 33405 Talence (France); Grauby, Stephane [Universite de Bordeaux 1, Centre de Physique Moleculaire Optique et Hertzienne, 351, cours de la liberation, 33405 Talence (France); Salhi, M Amine [Universite de Bordeaux 1, Centre de Physique Moleculaire Optique et Hertzienne, 351, cours de la liberation, 33405 Talence (France); Ezzahri, Younes [Universite de Bordeaux 1, Centre de Physique Moleculaire Optique et Hertzienne, 351, cours de la liberation, 33405 Talence (France); Claeys, Wilfrid [Universite de Bordeaux 1, Centre de Physique Moleculaire Optique et Hertzienne, 351, cours de la liberation, 33405 Talence (France); Batsale, Jean-Christophe [Laboratoire TREFLE, Esplanade des Arts et Metiers, 33405 Talence Cedex (France)

    2005-05-21

    An in-depth study related to a new method of characterizing properties in thermoelectrics is proposed in this paper. This technique is appropriate for single or multi-layered thermoelectric devices. A modulated laser beam is used as a heater in order to generate a Seebeck electromotive force (EMF). The laser beam, line shaped, can be focused at any location along the sample surface, allowing spatially resolved measurements. Seebeck EMF measurements, associated with a versatile model based on the thermal quadrupoles method, allow determination of the sample Seebeck EMF profile and identifying of the sample thermal contact resistances, and should be useful for identification of devices and material thermoelectric properties.

  15. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale.

    Science.gov (United States)

    Kawamura, Yoshiyuki

    2016-01-01

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO2) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO2 gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value.

  16. Characterization of thermoelectric devices by laser induced Seebeck electromotive force (LIS-EMF) measurement

    International Nuclear Information System (INIS)

    Lopez, Luis-David Patino; Dilhaire, Stefan; Grauby, Stephane; Salhi, M Amine; Ezzahri, Younes; Claeys, Wilfrid; Batsale, Jean-Christophe

    2005-01-01

    An in-depth study related to a new method of characterizing properties in thermoelectrics is proposed in this paper. This technique is appropriate for single or multi-layered thermoelectric devices. A modulated laser beam is used as a heater in order to generate a Seebeck electromotive force (EMF). The laser beam, line shaped, can be focused at any location along the sample surface, allowing spatially resolved measurements. Seebeck EMF measurements, associated with a versatile model based on the thermal quadrupoles method, allow determination of the sample Seebeck EMF profile and identifying of the sample thermal contact resistances, and should be useful for identification of devices and material thermoelectric properties

  17. Reliable measurement of elastic modulus of cells by nanoindentation in an atomic force microscope

    KAUST Repository

    Zhou, Zhoulong

    2012-04-01

    The elastic modulus of an oral cancer cell line UM1 is investigated by nanoindentation in an atomic force microscope with a flat-ended tip. The commonly used Hertzian method gives apparent elastic modulus which increases with the loading rate, indicating strong effects of viscoelasticity. On the contrary, a rate-jump method developed for viscoelastic materials gives elastic modulus values which are independent of the rate-jump magnitude. The results show that the rate-jump method can be used as a standard protocol for measuring elastic stiffness of living cells, since the measured values are intrinsic properties of the cells. © 2011 Elsevier Ltd.

  18. Accurate measurement of Atomic Force Microscope cantilever deflection excluding tip-surface contact with application to force calibration

    Energy Technology Data Exchange (ETDEWEB)

    Slattery, Ashley D.; Blanch, Adam J.; Quinton, Jamie S.; Gibson, Christopher T., E-mail: christopher.gibson@flinders.edu.au

    2013-08-15

    Considerable attention has been given to the calibration of AFM cantilever spring constants in the last 20 years. Techniques that do not require tip-sample contact are considered advantageous since the imaging tip is not at risk of being damaged. Far less attention has been directed toward measuring the cantilever deflection or sensitivity, despite the fact that the primary means of determining this factor relies on the AFM tip being pressed against a hard surface, such as silicon or sapphire; which has the potential to significantly damage the tip. A recent method developed by Tourek et al. in 2010 involves deflecting the AFM cantilever a known distance from the imaging tip by pressing the cantilever against a sharpened tungsten wire. In this work a similar yet more precise method is described, whereby the deflection of the cantilever is achieved using an AFM probe with a spring constant much larger than the test cantilever, essentially a rigid cantilever. The exact position of loading on the test cantilever was determined by reverse AFM imaging small spatial markers that are milled into the test cantilever using a focussed ion beam. For V shaped cantilevers it is possible to reverse image the arm intersection in order to determine the exact loading point without necessarily requiring FIB milled spatial markers, albeit at the potential cost of additional uncertainty. The technique is applied to tip-less, beam shaped and V shaped cantilevers and compared to the hard surface contact technique with very good agreement (on average less than 5% difference). While the agreement with the hard surface contact technique was very good the error on the technique is dependent upon the assumptions inherent in the method, such as cantilever shape, loading point distance and ratio of test to rigid cantilever spring constants. The average error ranged between 2 to 5% for the majority of test cantilevers studied. The sensitivity derived with this technique can then be used to

  19. Visualized Multiprobe Electrical Impedance Measurements with STM Tips Using Shear Force Feedback Control

    Directory of Open Access Journals (Sweden)

    Luis Botaya

    2016-05-01

    Full Text Available Here we devise a multiprobe electrical measurement system based on quartz tuning forks (QTFs and metallic tips capable of having full 3D control over the position of the probes. The system is based on the use of bent tungsten tips that are placed in mechanical contact (glue-free solution with a QTF sensor. Shear forces acting in the probe are measured to control the tip-sample distance in the Z direction. Moreover, the tilting of the tip allows the visualization of the experiment under the optical microscope, allowing the coordination of the probes in X and Y directions. Meanwhile, the metallic tips are connected to a current–voltage amplifier circuit to measure the currents and thus the impedance of the studied samples. We discuss here the different aspects that must be addressed when conducting these multiprobe experiments, such as the amplitude of oscillation, shear force distance control, and wire tilting. Different results obtained in the measurement of calibration samples and microparticles are presented. They demonstrate the feasibility of the system to measure the impedance of the samples with a full 3D control on the position of the nanotips.

  20. A precision measurement of the neutron2. Probing the color force

    Energy Technology Data Exchange (ETDEWEB)

    Posik, Matthew R. [Temple Univ., Philadelphia, PA (United States)

    2014-01-01

    The g2 nucleon spin-dependent structure function measured in electron deep inelastic scattering contains information beyond the simple parton model description of the nucleon. It provides insight into quark-gluon correlations and a path to access the confining local color force a struck quark experiences just as it is hit by the virtual photon due to the remnant di-quark. The quantity d2, a measure of this local color force, has its information encoded in an x2 weighted integral of a linear combination of spin structure functions g1 and g2 and thus is dominated by the valence-quark region at large momentum fraction x. To date, theoretical calculations and experimental measurements of the neutron d2 differ by about two standard deviations. Therefore, JLab experiment E06-014, performed in Hall A, made a precision measurement of this quantity at two mean four momentum transfers values of 3.21 and 4.32 GeV2. Double spin asymmetries and absolute cross-sections were measured in both DIS and resonance regions by scattering longitudinally polarized electrons at beam energies of 4.74 and 5.89 GeV from a longitudinally and transversely polarized 3He target. Results for the absolute cross-sections and spin structure functions on 3He will be presented in the dissertation, as well as results for the neutron d2 and extracted color forces.

  1. Force-displacement measurements of earlywood bordered pits using a mesomechanical tester.

    Science.gov (United States)

    Zelinka, Samuel L; Bourne, Keith J; Hermanson, John C; Glass, Samuel V; Costa, Adriana; Wiedenhoeft, Alex C

    2015-10-01

    The elastic properties of pit membranes are reported to have important implications in understanding air-seeding phenomena in gymnosperms, and pit aspiration plays a large role in wood technological applications such as wood drying and preservative treatment. Here we present force-displacement measurements for pit membranes of circular bordered pits, collected on a mesomechanical testing system. The system consists of a quartz microprobe attached to a microforce sensor that is positioned and advanced with a micromanipulator mounted on an inverted microscope. Membrane displacement is measured from digital image analysis. Unaspirated pits from earlywood of never-dried wood of Larix and Pinus and aspirated pits from earlywood of dried wood of Larix were tested to generate force-displacement curves up to the point of membrane failure. Two failure modes were observed: rupture or tearing of the pit membrane by the microprobe tip, and the stretching of the pit membrane until the torus was forced out of the pit chamber through the pit aperture without rupture, a condition we refer to as torus prolapse. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  2. Measuring protein isoelectric points by AFM-based force spectroscopy using trace amounts of sample

    Science.gov (United States)

    Guo, Shifeng; Zhu, Xiaoying; Jańczewski, Dominik; Lee, Serina Siew Chen; He, Tao; Teo, Serena Lay Ming; Vancso, G. Julius

    2016-09-01

    Protein charge at various pH and isoelectric point (pI) values is important in understanding protein function. However, often only trace amounts of unknown proteins are available and pI measurements cannot be obtained using conventional methods. Here, we show a method based on the atomic force microscope (AFM) to determine pI using minute quantities of proteins. The protein of interest is immobilized on AFM colloidal probes and the adhesion force of the protein is measured against a positively and a negatively charged substrate made by layer-by-layer deposition of polyelectrolytes. From the AFM force-distance curves, pI values with an estimated accuracy of ±0.25 were obtained for bovine serum albumin, myoglobin, fibrinogen and ribonuclease A over a range of 4.7-9.8. Using this method, we show that the pI of the ‘footprint’ of the temporary adhesive proteins secreted by the barnacle cyprid larvae of Amphibalanus amphitrite is in the range 9.6-9.7.

  3. Cellular Force Microscopy for in Vivo Measurements of Plant Tissue Mechanics1[W][OA

    Science.gov (United States)

    Routier-Kierzkowska, Anne-Lise; Weber, Alain; Kochova, Petra; Felekis, Dimitris; Nelson, Bradley J.; Kuhlemeier, Cris; Smith, Richard S.

    2012-01-01

    Although growth and morphogenesis are controlled by genetics, physical shape change in plant tissue results from a balance between cell wall loosening and intracellular pressure. Despite recent work demonstrating a role for mechanical signals in morphogenesis, precise measurement of mechanical properties at the individual cell level remains a technical challenge. To address this challenge, we have developed cellular force microscopy (CFM), which combines the versatility of classical microindentation techniques with the high automation and resolution approaching that of atomic force microscopy. CFM’s large range of forces provides the possibility to map the apparent stiffness of both plasmolyzed and turgid tissue as well as to perform micropuncture of cells using very high stresses. CFM experiments reveal that, within a tissue, local stiffness measurements can vary with the level of turgor pressure in an unexpected way. Altogether, our results highlight the importance of detailed physically based simulations for the interpretation of microindentation results. CFM’s ability to be used both to assess and manipulate tissue mechanics makes it a method of choice to unravel the feedbacks between mechanics, genetics, and morphogenesis. PMID:22353572

  4. A concept for automated nanoscale atomic force microscope (AFM) measurements using a priori knowledge

    International Nuclear Information System (INIS)

    Recknagel, C; Rothe, H

    2009-01-01

    The nanometer coordinate measuring machine (NCMM) is developed for comparatively fast large area scans with high resolution. The system combines a metrological atomic force microscope (AFM) with a precise positioning system. The sample is moved under the probe system via the positioning system achieving a scan range of 25 × 25 × 5 mm 3 with a resolution of 0.1 nm. A concept for AFM measurements using a priori knowledge is implemented. The a priori knowledge is generated through measurements with a white light interferometer and the use of CAD data. Dimensional markup language is used as a transfer and target format for a priori knowledge and measurement data. Using the a priori knowledge and template matching algorithms combined with the optical microscope of the NCMM, the region of interest can automatically be identified. In the next step the automatic measurement of the part coordinate system and the measurement elements with the AFM sensor of the NCMM is done. The automatic measurement involves intelligent measurement strategies, which are adapted to specific geometries of the measurement feature to reduce measurement time and drift effects

  5. High frequency write head measurement with the phase detection magnetic force microscope

    International Nuclear Information System (INIS)

    Abe, M.; Tanaka, Y.

    2001-01-01

    We demonstrated the measurement of the high frequency (HF) magnetic field of a write head with the phase detection magnetic force microscope. An amplitude-modulated current was applied to the head coil to detect the force gradient induced by the HF magnetic field. Spatial resolution of this method was higher than that of the deflection detection method previously proposed. By the phase detection method, dynamic HF magnetic fields at the poles of the write heads were clearly imaged. HF magnetic field leakage was observed along the P2 pole shape on the air-bearing surface. The frequency dependence of the write head dynamics up to 350 MHz was also investigated. [copyright] 2001 American Institute of Physics

  6. Axial Vircator for Electronic Warfare Applications

    Directory of Open Access Journals (Sweden)

    L. Drazan

    2009-12-01

    Full Text Available This paper deals with a high power microwave generator with virtual cathode – vircator in axial release for electronic warfare applications. The classification of directed energy weapons microwave (DEWM is introduced together with basic block diagrams of a particular class of DEWM. In the paper, methods for designing vircator pulsed power supply, axial vircator structure, measurement methods and experimental results are presented. The vircator in electromagnetic ammunition is powered by magneto-cumulative generator and in weapons for defense of objects (WDO, it is powered by Marx generator. The possible applications of a vircator in the DEWM area are discussed.

  7. A Study of the Confinement Induced Sponge to Lamellar Phase Transformation by Direct Force Measurement

    International Nuclear Information System (INIS)

    Antelmi, David

    1996-10-01

    The interactions between two macroscopic walls immersed in an isotropic symmetric sponge phase (L_3) at different volume fractions, Φ, were studied with a surface force apparatus. The purpose of these experiments was to investigate the behaviour of the sponge phase when confined between two smooth rigid surfaces. Particular attention was given to investigating this behaviour as the bulk transition to the lamellar phase (L_α) was approached. At temperatures far from the L_3/L_α bulk transition temperature, the force-distance profile showed weak oscillations with a periodicity approximately equal to twice the characteristic length, ξ, measured for the sponge phase from small angle x-ray scattering. Furthermore, the oscillations were superimposed on an exponential attractive background that decayed with an order parameter correlation length of 2-3 times ξ The attractive background was explained by the enhancement of the sponge order in the vicinity of the rigid walls. The structural oscillations observed in the force-distance profile, although not completely understood, were discussed in terms of the packing of sponge cells (cell size ξ). The significance of the observed periodicity (2ξ) may indicate the importance of the symmetric nature of the sponge phase. By moving pairs of cells in response to an applied strain, the symmetry of the sponge structure is protected. As the temperature increased towards the L_3/L_α bulk transition temperature, an abrupt change in the force-distance profile was observed at a threshold separation labelled D*_i_n. A different force regime was observed for separations below D*_i_n which oscillated with a periodicity that was twice the reticular spacing, d, for a L_α phase of similar Φ. The force oscillations were superimposed on an attractive background that was almost linear. These observations were consistent with a first order phase transition from the sponge phase to the lamellar phase, induced by the confinement, where the

  8. Ultrasound power measurements of HITU transducer with a more stable radiation force balance

    Energy Technology Data Exchange (ETDEWEB)

    Karaboece, B; Sadiko' lu, E; Bilgic, E, E-mail: baki.karaboce@ume.tubitak.gov.t [Tuebitak Ulusal Metroloji Enstituesue (UME), P.K. 54 41470 Gebze-Kocaeli (Turkey)

    2011-02-01

    A new radiation force balance (RFB) system was established at Turkish National Metrology Institute (UME) Ultrasonics Laboratory for High intensity therapeutic ultrasound (HITU) power measurements. The new system is highly stable at high power levels up to 500 Watts. The measurement system consists of a Plexiglas cylindrical balance arm, target mounting scale disks, conical reflecting and absorbing targets, adjustment nuts, and a hanging wire. Both of the two sides of balance were mounted similar size and weight targets. The equilibrium of the balance arm can be adjusted with nuts on screws located at both sides of the balance arm. Transducer was mounted to bottom of water tank. Absorbers in the bottom and the near walls of the tank were used for reflecting target case. Ultrasound power was applied to one scale of the balance where the reflecting/absorbing target was mounted and corresponding force was measured on the other scale of balance where was connected to a balance with a thin wire while the thin rest standing on a support. Ultrasound power of two HITU transducers at frequencies 0.93 MHz, 1.1 MHz and 3.3 MHz were measured with conventional and new system, the values were compared and uncertainty components were assessed in this paper.

  9. Ultrasound power measurements of HITU transducer with a more stable radiation force balance

    International Nuclear Information System (INIS)

    Karaboece, B; Sadiko'lu, E; Bilgic, E

    2011-01-01

    A new radiation force balance (RFB) system was established at Turkish National Metrology Institute (UME) Ultrasonics Laboratory for High intensity therapeutic ultrasound (HITU) power measurements. The new system is highly stable at high power levels up to 500 Watts. The measurement system consists of a Plexiglas cylindrical balance arm, target mounting scale disks, conical reflecting and absorbing targets, adjustment nuts, and a hanging wire. Both of the two sides of balance were mounted similar size and weight targets. The equilibrium of the balance arm can be adjusted with nuts on screws located at both sides of the balance arm. Transducer was mounted to bottom of water tank. Absorbers in the bottom and the near walls of the tank were used for reflecting target case. Ultrasound power was applied to one scale of the balance where the reflecting/absorbing target was mounted and corresponding force was measured on the other scale of balance where was connected to a balance with a thin wire while the thin rest standing on a support. Ultrasound power of two HITU transducers at frequencies 0.93 MHz, 1.1 MHz and 3.3 MHz were measured with conventional and new system, the values were compared and uncertainty components were assessed in this paper.

  10. Measurement of the viscoelastic compliance of the eustachian tube using a modified forced-response test.

    Science.gov (United States)

    Ghadiali, Samir N; Federspiel, William J; Swarts, J Douglas; Doyle, William J

    2002-01-01

    Eustachian tube compliance (ETC) was suggested to be an important determinate of function. Previous attempts to quantify ETC used summary measures that are not clearly related to the physical properties of the system. Here, we present a new method for measuring ETC that conforms more closely to the engineering definition of compliance. The forced response test was modified to include oscillations in applied flow after the forced tubal opening. Pressure and flow were recorded during the standard and modified test in 12 anesthetized cynomolgus monkeys. The resulting pressure-flow, hysteresis loops were compared with those predicted by a simple fluid-structure model of the Eustachian tube with linear-elastic or viscoelastic properties. The tubal compliance index (TCI) and a viscoelastic compliance (C(v)) were calculated from these data for each monkey. The behavior of a viscoelastic, but not a linear elastic model accurately reproduced the experimental data for the monkey. The TCI and C(v) were linearly related, but the shared variance in these measures was only 63%. This new method for measuring ETC captures all information contained in the traditional TCI, but also provides information regarding the contribution of wall viscosity to Eustachian tube mechanics.

  11. Axial skeletal CT densitometry

    International Nuclear Information System (INIS)

    Lampmann, L.E.H.

    1982-01-01

    Since the discovery of the Roentgen ray a precise and accurate assessment of bone mineral content has been a challenge to many investigators. A number of methods have been developed but no one satisfied. Considering its technical possibilities computed tomography is very promising in determination of bone mineral content (BMC). The new modality enables BMC estimations in the axial skeletal trabecular bone. CT densitometry can be performed on a normal commercially available third generation whole body CT scanner. No dedicated device in a special clinical set-up is necessary. In this study 106 patients, most of them clinically suspected of osteoporosis, were examined. The new method CT densitometry has been evaluated. The results have been correlated to alternative BMC determination methods. (Auth.)

  12. The four step axial flow compressor of the Technical University of Dresden - development concept and results of flow measurements. Der vierstufige Axialverdichter der TU Dresden - Entwicklungskonzeption und Ergebnisse von Stroemungsmessungen

    Energy Technology Data Exchange (ETDEWEB)

    Boos, P.; Moeeckel, H.; Mueller, R.; Sauer, H.; Wolf, E. (Technische Univ. Dresden (Germany))

    1999-01-01

    In this paper the results obtained from flow-technical investigations at low velocity compressor in Dresden were presented. They were supposed to give little insight on the focus of current research works in the field of axial flow compressors. A detailed solution of the flow structure applying the conventional pneumatic measuring technology as well as the hot-wire, microphone, culite, laser and light-section measuring technology enables to understand flow parameter better and to find approaches for improving power density, efficiency, environmental friendliness and operational stability. The large-scale research plant was constructed in approximately Two and a half years. The low velocity compressor in Dresden constitutes a tool in Germany and Europe that enables the manufacturers of stationary gas turbine plants and steel jet engines to improve various parameters of their products. The MTU in Munich already pointed out this fact in its contribution to the final report on the construction phase. It noted that this plant is going to extend the possibilities of research and development in Europe in the field of aerodynamics of axial flow compressors in an excellent way. (orig.)

  13. Axial clamp for nuclear reactor head penetration conoseal joints

    International Nuclear Information System (INIS)

    Hackley, T.A.

    1987-01-01

    A method is described for forming a sealed coupling between two bodies, each body presenting an annular abutment surface. The respective bodies are arranged so that their respective annular abutment surfaces are axially adjacent one another, defining a space therebetween, wherein a deformable gasket is disposed within the space. The method comprises: providing one of the bodies with an annular projection; providing the other body with threads for receiving an annular locknut which can be tightened to bear against the annular projection of the one body; applying an external axial forced to the bodies for compressing the abutment surfaces together against the gasket to form a seal between the bodies; immobilizing the bodies relative to one another while the external force is being applied to the bodies by hand-tightening an annular locknut via the threads of the other body until the locknut abuts the annular projection of the one body, substantially preventing relative axial movement between the bodies when the external axial force is withdrawn; and withdrawing the external axial force applied to the bodies, leaving the two bodies coupled together via the seal

  14. Validity of using tri-axial accelerometers to measure human movement - Part II: Step counts at a wide range of gait velocities.

    Science.gov (United States)

    Fortune, Emma; Lugade, Vipul; Morrow, Melissa; Kaufman, Kenton

    2014-06-01

    A subject-specific step counting method with a high accuracy level at all walking speeds is needed to assess the functional level of impaired patients. The study aim was to validate step counts and cadence calculations from acceleration data by comparison to video data during dynamic activity. Custom-built activity monitors, each containing one tri-axial accelerometer, were placed on the ankles, thigh, and waist of 11 healthy adults. ICC values were greater than 0.98 for video inter-rater reliability of all step counts. The activity monitoring system (AMS) algorithm demonstrated a median (interquartile range; IQR) agreement of 92% (8%) with visual observations during walking/jogging trials at gait velocities ranging from 0.1 to 4.8m/s, while FitBits (ankle and waist), and a Nike Fuelband (wrist) demonstrated agreements of 92% (36%), 93% (22%), and 33% (35%), respectively. The algorithm results demonstrated high median (IQR) step detection sensitivity (95% (2%)), positive predictive value (PPV) (99% (1%)), and agreement (97% (3%)) during a laboratory-based simulated free-living protocol. The algorithm also showed high median (IQR) sensitivity, PPV, and agreement identifying walking steps (91% (5%), 98% (4%), and 96% (5%)), jogging steps (97% (6%), 100% (1%), and 95% (6%)), and less than 3% mean error in cadence calculations. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  15. Development of optical FBG force measurement system for the medical application

    Science.gov (United States)

    Song, Hoseok; Kim, Kiyoung; Suh, Jungwook; Lee, Jungju

    2010-03-01

    Haptic feedback plays a very important role in medical surgery. In minimally invasive surgery (MIS), however, very long and stiff bar of instruments take haptic feeling away from the surgeon. In minimally invasive robotic surgery (MIRS), moreover, haptic feelings are totally eliminated. Previous researchers have reported that the absence of force feedback increased the average force magnitude applied to the tissue by at least 50%, and increased the peakforce magnitude by at least a factor of two. Therefore, it is very important to provide haptic information in MIRS. Recently, many sensors are being developed for MIS or MIRS, but they have some obstacles in their application to real situations of medical surgery. The most critical problems are size limit and sterilizability. Optical fiber sensors are one of the most suitable sensors for this environment. Especially, optical fiber Bragg grating (FBG) sensor has one additional advantage than the other optical fiber sensors. FBG sensor is not influenced by intensity of light source. In this paper, we would like to present the initial results of study on the application of the FBG sensor to measure reflected forces in MIRS environments and then suggest the possibility of successful application to the MIRS systems.

  16. Vector electric field measurement via position-modulated Kelvin probe force microscopy

    Science.gov (United States)

    Dwyer, Ryan P.; Smieska, Louisa M.; Tirmzi, Ali Moeed; Marohn, John A.

    2017-10-01

    High-quality spatially resolved measurements of electric fields are critical to understanding charge injection, charge transport, and charge trapping in semiconducting materials. Here, we report a variation of frequency-modulated Kelvin probe force microscopy that enables spatially resolved measurements of the electric field. We measure electric field components along multiple directions simultaneously by employing position modulation and lock-in detection in addition to numeric differentiation of the surface potential. We demonstrate the technique by recording linescans of the in-plane electric field vector in the vicinity of a patch of trapped charge in a 2,7-diphenyl[1]benzothieno[3,2-b][1]benzothiophene (DPh-BTBT) organic field-effect transistor. This technique is simple to implement and should be especially useful for studying electric fields in spatially inhomogeneous samples like organic transistors and photovoltaic blends.

  17. Plasmonic micropillars for precision cell force measurement across a large field-of-view

    Science.gov (United States)

    Xiao, Fan; Wen, Ximiao; Tan, Xing Haw Marvin; Chiou, Pei-Yu

    2018-01-01

    A plasmonic micropillar platform with self-organized gold nanospheres is reported for the precision cell traction force measurement across a large field-of-view (FOV). Gold nanospheres were implanted into the tips of polymer micropillars by annealing gold microdisks with nanosecond laser pulses. Each gold nanosphere is physically anchored in the center of a pillar tip and serves as a strong, point-source-like light scattering center for each micropillar. This allows a micropillar to be clearly observed and precisely tracked even under a low magnification objective lens for the concurrent and precision measurement across a large FOV. A spatial resolution of 30 nm for the pillar deflection measurement has been accomplished on this platform with a 20× objective lens.

  18. A review of measurement-based assessments of the aerosol direct radiative effect and forcing

    Directory of Open Access Journals (Sweden)

    H. Yu

    2006-01-01

    Full Text Available Aerosols affect the Earth's energy budget directly by scattering and absorbing radiation and indirectly by acting as cloud condensation nuclei and, thereby, affecting cloud properties. However, large uncertainties exist in current estimates of aerosol forcing because of incomplete knowledge concerning the distribution and the physical and chemical properties of aerosols as well as aerosol-cloud interactions. In recent years, a great deal of effort has gone into improving measurements and datasets. It is thus feasible to shift the estimates of aerosol forcing from largely model-based to increasingly measurement-based. Our goal is to assess current observational capabilities and identify uncertainties in the aerosol direct forcing through comparisons of different methods with independent sources of uncertainties. Here we assess the aerosol optical depth (τ, direct radiative effect (DRE by natural and anthropogenic aerosols, and direct climate forcing (DCF by anthropogenic aerosols, focusing on satellite and ground-based measurements supplemented by global chemical transport model (CTM simulations. The multi-spectral MODIS measures global distributions of aerosol optical depth (τ on a daily scale, with a high accuracy of ±0.03±0.05τ over ocean. The annual average τ is about 0.14 over global ocean, of which about 21%±7% is contributed by human activities, as estimated by MODIS fine-mode fraction. The multi-angle MISR derives an annual average AOD of 0.23 over global land with an uncertainty of ~20% or ±0.05. These high-accuracy aerosol products and broadband flux measurements from CERES make it feasible to obtain observational constraints for the aerosol direct effect, especially over global the ocean. A number of measurement-based approaches estimate the clear-sky DRE (on solar radiation at the top-of-atmosphere (TOA to be about -5.5±0.2 Wm-2 (median ± standard error from various methods over the global ocean. Accounting for thin cirrus

  19. Local photoconductivity of microcrystalline silicon thin films measured by conductive atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ledinsky, Martin; Fejfar, Antonin; Vetushka, Aliaksei; Stuchlik, Jiri; Rezek, Bohuslav; Kocka, Jan [Institute of Physics, Academy of Sciences of the Czech Republic, v.v.i. Cukrovarnicka 10, 162 00 Praha 6 (Czech Republic)

    2011-11-15

    Local currents measured under standard conductive atomic force microscopy (C-AFM) conditions on microcrystalline silicon ({mu}c-Si:H) thin films were studied. It was shown that the AFM detection diode illuminating the AFM cantilever (see the figure on the right side) 100 x enhanced the current flows through the photosensitive {mu}c-Si:H layer. The local current map and current-voltage characteristics were measured under dark conditions. This study enables mapping of both the dark current and photocurrent. C-AFM cantilever illuminated by the detection diode during measurement on {mu}c-Si:H thin film. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. An Overview on Gripping Force Measurement at the Micro and Nano-Scales Using Two-Fingered Microrobotic Systems

    Directory of Open Access Journals (Sweden)

    Mokrane Boudaoud

    2014-03-01

    Full Text Available Two-fingered micromanipulation systems with an integrated force sensor are widely used in robotics to sense and control gripping forces at the micro and nano-scales. They became of primary importance for an efficient manipulation and characterization of highly deformable biomaterials and nanostructures. This paper presents a chronological overview of gripping force measurement using two-fingered micromanipulation systems. The work summarizes the major achievements in this field from the early 90s to the present, focusing in particular on the evolution of measurement technologies regarding the requirements of microrobotic applications. Measuring forces below the microNewton for the manipulation of highly deformable materials, embedding force sensors within microgrippers to increase their dexterity, and reducing the influence of noise to improve the measurement resolution are among the addressed challenges. The paper shows different examples of how these challenges have been addressed. Resolution, operating range and signal/noise ratio of gripping force sensors are reported and compared. A discussion about force measurement technologies and gripping force control is performed and future trends are highlighted.

  1. Hypersonic force measurements using internal balance based on optical micromachined Fabry-Perot interferometry

    Science.gov (United States)

    Qiu, Huacheng; Min, Fu; Zhong, Shaolong; Song, Xin; Yang, Yanguang

    2018-03-01

    Force measurements using wind tunnel balance are necessary for determining a variety of aerodynamic performance parameters, while the harsh environment in hypersonic flows requires that the measurement instrument should be reliable and robust, in against strong electromagnetic interference, high vacuum, or metal (oxide) dusts. In this paper, we demonstrated a three-component internal balance for hypersonic aerodynamic force measurements, using novel optical micromachined Fabry-Perot interferometric (FPI) strain gauges as sensing elements. The FPI gauges were fabricated using Micro-Opto-Electro-Mechanical Systems (MOEMS) surface and bulk fabrication techniques. High-reflectivity coatings are used to form a high-finesse Fabry-Perot cavity, which benefits a high resolution. Antireflective and passivation coatings are used to reduce unwanted interferences. The FPI strain gauge based balance has been calibrated and evaluated in a Mach 5 hypersonic flow. The results are compared with the traditional technique using the foil resistive strain gauge balance, indicating that the proposed balance based on the MOEMS FPI strain gauge is reliable and robust and is potentially suitable for the hypersonic wind tunnel harsh environment.

  2. Estimating product-to-product variations in metal forming using force measurements

    Science.gov (United States)

    Havinga, Jos; van den Boogaard, Ton

    2017-10-01

    The limits of production accuracy of metal forming processes can be stretched by the development of control systems for compensation of product-to-product variations. Such systems require the use of measurements from each semi-finished product. These measurements must be used to estimate the final quality of each product. We propose to predict part of the product-to-product variations in multi-stage forming processes based on force measurements from previous process stages. The reasoning is that final product properties as well as process forces are expected to be correlated since they are both affected by material and process variation. In this study, an approach to construct a moving window process model based on historical data from the process is presented. These regression models can be built and updated in real-time during production. The approach is tested with data from a demonstrator process with cutting, deep drawing and bending stages. It is shown that part of the product-to-product variations in the process can be predicted with the developed process model.

  3. Measurements of Properties of the Strong and Electroweak forces with the ATLAS detector at the LHC

    CERN Document Server

    Gregersen, Kristian; The ATLAS collaboration

    2015-01-01

    The Standard Model of particle physics is built around the idea of local gauge symmetries, leading to the existence of vector bosons, mediators of the strong and electroweak forces. The production of single and multiple electroweak vector bosons in p-p collisions in LHC Run-1 has been extensively studied by the ATLAS Collaboration. The production of charged and neutral weak gauge bosons via the Drell Yan process, is sensitive to high-order effects in the strong force, the proton structure and electroweak corrections. Cross section measurements of a W or Z boson in association with up to seven jets are reported. Interference effects between the exchange of photons and Z bosons can be used for the measurements of Standard Model parameters with high precision, such as the weak mixing angle from the forward-backward asymmetry. The Standard Model makes detailed predictions on the production of multiple W, Z and isolated photons, which are fixed by the gauge symmetry. Measurements involving two or three bosons in t...

  4. Measurements of Properties of the Strong and Electroweak forces with the ATLAS detector at the LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00236292; The ATLAS collaboration

    2016-01-01

    The Standard Model of particle physics is built around the idea of local gauge symmetries, leading to the existence of vector bosons, mediators of the strong and electroweak forces. The production of single and multiple electroweak vector bosons in p-p collisions in LHC Run-1 has been extensively studied by the ATLAS Collaboration. The production of charged and neutral weak gauge bosons via the Drell Yan process, is sensitive to high-order effects in the strong force, the proton structure and electroweak corrections. Cross section measurements of a W or Z boson in association with up to seven jets are reported. Interference effects between the exchange of photons and Z bosons can be used for the measurements of Standard Model parameters with high precision, such as the weak mixing angle from the forward-backward asymmetry. The Standard Model makes detailed predictions on the production of multiple W, Z and isolated photons, which are fixed by the gauge symmetry. Measurements involving two or three bosons in t...

  5. Inter-atomic force constants of BaF{sub 2} by diffuse neutron scattering measurement

    Energy Technology Data Exchange (ETDEWEB)

    Sakuma, Takashi, E-mail: sakuma@mx.ibaraki.ac.jp; Makhsun,; Sakai, Ryutaro [Institute of Applied Beam Science, Ibaraki University, Mito 310-8512 (Japan); Xianglian [College of Physics and Electronics Information, Inner Mongolia University for the Nationalities, Tongliao 028043 (China); Takahashi, Haruyuki [Institute of Applied Beam Science, Ibaraki University, Hitachi 316-8511 (Japan); Basar, Khairul [Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132 (Indonesia); Igawa, Naoki [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai 319-1195 (Japan); Danilkin, Sergey A. [Bragg Institute, Australian Nuclear Science and Technology Organisation, Kirrawee DC NSW 2232 (Australia)

    2015-04-16

    Diffuse neutron scattering measurement on BaF{sub 2} crystals was performed at 10 K and 295 K. Oscillatory form in the diffuse scattering intensity of BaF{sub 2} was observed at 295 K. The correlation effects among thermal displacements of F-F atoms were obtained from the analysis of oscillatory diffuse scattering intensity. The force constants among neighboring atoms in BaF{sub 2} were determined and compared to those in ionic crystals and semiconductors.

  6. An experiment for Shuttle aerodynamic force coefficient determination from inflight dynamical and atmospheric measurements

    Science.gov (United States)

    Compton, H. R.; Blanchard, R. C.; Walberg, G. D.

    1978-01-01

    A two-phase experiment is proposed which utilizes the Shuttle Orbiter and its unique series of repeated entries into the earth's atmosphere as an airborne in situ aerodynamic testing laboratory. The objective of the experiment is to determine static aerodynamic force coefficients, first of the orbiter, and later of various entry configurations throughout the high speed flight regime, including the transition from free molecule to continuum fluid flow. The objective will be accomplished through analysis of inflight measurements from both shuttle-borne and shuttle-launched instrumented packages. Results are presented to demonstrate the feasibility of such an experiment.

  7. Work function of few layer graphene covered nickel thin films measured with Kelvin probe force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Eren, B. [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Material Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States); Gysin, U.; Marot, L., E-mail: Laurent.marot@unibas.ch; Glatzel, Th.; Steiner, R.; Meyer, E. [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)

    2016-01-25

    Few layer graphene and graphite are simultaneously grown on a ∼100 nm thick polycrystalline nickel film. The work function of few layer graphene/Ni is found to be 4.15 eV with a variation of 50 meV by local measurements with Kelvin probe force microscopy. This value is lower than the work function of free standing graphene due to peculiar electronic structure resulting from metal 3d-carbon 2p(π) hybridization.

  8. Derivation of Inter-Atomic Force Constants of Cu2O from Diffuse Neutron Scattering Measurement

    Directory of Open Access Journals (Sweden)

    T. Makhsun

    2013-04-01

    Full Text Available Neutron scattering intensity from Cu2O compound has been measured at 10 K and 295 K with High Resolution Powder Diffractometer at JRR-3 JAEA. The oscillatory diffuse scattering related to correlations among thermal displacements of atoms was observed at 295 K. The correlation parameters were determined from the observed diffuse scattering intensity at 10 and 295 K. The force constants between the neighboring atoms in Cu2O were estimated from the correlation parameters and compared to those of Ag2O

  9. Out-of-Plane Electromechanical Response of Monolayer Molybdenum Disulfide Measured by Piezoresponse Force Microscopy.

    Science.gov (United States)

    Brennan, Christopher J; Ghosh, Rudresh; Koul, Kalhan; Banerjee, Sanjay K; Lu, Nanshu; Yu, Edward T

    2017-09-13

    Two-dimensional (2D) materials have recently been theoretically predicted and experimentally confirmed to exhibit electromechanical coupling. Specifically, monolayer and few-layer molybdenum disulfide (MoS 2 ) have been measured to be piezoelectric within the plane of their atoms. This work demonstrates and quantifies a nonzero out-of-plane electromechanical response of monolayer MoS 2 and discusses its possible origins. A piezoresponse force microscope was used to measure the out-of-plane deformation of monolayer MoS 2 on Au/Si and Al 2 O 3 /Si substrates. Using a vectorial background subtraction technique, we estimate the effective out-of-plane piezoelectric coefficient, d 33 eff , for monolayer MoS 2 to be 1.03 ± 0.22 pm/V when measured on the Au/Si substrate and 1.35 ± 0.24 pm/V when measured on Al 2 O 3 /Si. This is on the same order as the in-plane coefficient d 11 reported for monolayer MoS 2 . Interpreting the out-of-plane response as a flexoelectric response, the effective flexoelectric coefficient, μ eff * , is estimated to be 0.10 nC/m. Analysis has ruled out the possibility of elastic and electrostatic forces contributing to the measured electromechanical response. X-ray photoelectron spectroscopy detected some contaminants on both MoS 2 and its substrate, but the background subtraction technique is expected to remove major contributions from the unwanted contaminants. These measurements provide evidence that monolayer MoS 2 exhibits an out-of-plane electromechanical response and our analysis offers estimates of the effective piezoelectric and flexoelectric coefficients.

  10. Bayesian inverse problems in measure spaces with application to Burgers and Hamilton–Jacobi equations with white noise forcing

    International Nuclear Information System (INIS)

    Hoang, Viet Ha

    2012-01-01

    This paper formulates Bayesian inverse problems for inference in a topological measure space given noisy observations. Conditions for the validity of the Bayes’ formula and the well posedness of the posterior measure are studied. The abstract theory is then applied to Burgers and Hamilton–Jacobi equations on a semi-infinite time interval with forcing functions which are white noise in time. Inference is made on the white noise forcing, assuming the Wiener measure as the prior. (paper)

  11. New analysis procedure for fast and reliable size measurement of nanoparticles from atomic force microscopy images

    International Nuclear Information System (INIS)

    Boyd, Robert D.; Cuenat, Alexandre

    2011-01-01

    Accurate size measurement during nanoparticle production is essential for the continuing innovation, quality and safety of nano-enabled products. Size measurement by analysing a number of separate particles individually has particular advantages over ensemble methods. In the latter case nanoparticles have to be well dispersed in a fluid and changes that may occur during analysis, such as agglomeration and degradation, will not be detected which could lead to misleading results. Atomic force microscopy (AFM) allows imaging of particles both in air and liquid, however, the strong interactions between the probe and the particle will cause the broadening of the lateral dimension in the final image. In this paper a new procedure to measure the size of spherical nanoparticles from AFM images via vertical height measurement is described. This procedure will quickly analyse hundred of particles simultaneously and reproduce the measurements obtained from electron microscopy (EM). Nanoparticles samples that were difficult, if not impossible, to analyse with EM were successfully measured using this method. The combination of this procedure with the use of a metrological AFM moves closer to true traceable measurements of nanoparticle dispersions.

  12. Reliability and Validity of Computerized Force Platform Measures of Balance Function in Healthy Older Adults.

    Science.gov (United States)

    Harro, Cathy C; Garascia, Chelsea

    2018-01-10

    Postural control declines with aging and is an independent risk factor for falls in older adults. Objective examination of balance function is warranted to direct fall prevention strategies. Force platform (FP) systems provide quantitative measures of postural control and analysis of different aspects of balance. The purpose of this study was to examine the reliability and validity of FP measures in healthy older adults. This study enrolled 46 healthy elderly adults, mean age 67.67 (5.1) years, who had no history of falls. They were assessed on 3 standardized tests on the NeuroCom Equitest FP system: limits of stability (LOS), motor control test (MCT), and sensory organization test (SOT). The test battery was administered twice within a 10-day period for test-retest reliability; intraclass correlation coefficients (ICCs), standard error of measurement (SEM), and minimal detectable change based on a 95% confidence interval (MDC95) were calculated. FP measures were compared with criterion clinical balance (Mini-BESTest and Functional Gait Assessment) and gait (10-m walk and 6-minute walk) measures to examine concurrent validity using Pearson correlation coefficients. Multiple linear regression analysis examined whether age and activity level were associated with FP performance. The α level was set at P point excursion measures all demonstrated excellent test-retest reliability (ICC = 0.90, 0.85, and 0.77, respectively), whereas moderate to good reliability was found for SOT vestibular ratio score (ICC = 0.71). There was large variability in performance in this healthy elderly cohort, resulting in relatively large MDC95 for these measures, especially for the LOS test. Fair correlations were found between LOS end point excursion and clinical balance and gait measures (r = 0.31-0.49), and between MCT average latency and gait measures only (r = -0.32). No correlations were found between SOT measures and clinical balance and gait measures. Age was only marginally

  13. Jet Exit Rig Six Component Force Balance

    Science.gov (United States)

    Castner, Raymond; Wolter, John; Woike, Mark; Booth, Dennis

    2012-01-01

    A new six axis air balance was delivered to the NASA Glenn Research Center. This air balance has an axial force capability of 800 pounds, primary airflow of 10 pounds per second, and a secondary airflow of 3 pounds per second. Its primary use was for the NASA Glenn Jet Exit Rig, a wind tunnel model used to test both low-speed, and high-speed nozzle concepts in a wind tunnel. This report outlines the installation of the balance in the Jet Exit Rig, and the results from an ASME calibration nozzle with an exit area of 8 square-inches. The results demonstrated the stability of the force balance for axial measurements and the repeatability of measurements better than 0.20 percent.

  14. The Effects of Noncellulosic Compounds on the Nanoscale Interaction Forces Measured between Carbohydrate-Binding Module and Lignocellulosic Biomass.

    Science.gov (United States)

    Arslan, Baran; Colpan, Mert; Ju, Xiaohui; Zhang, Xiao; Kostyukova, Alla; Abu-Lail, Nehal I

    2016-05-09

    The lack of fundamental understanding of the types of forces that govern how cellulose-degrading enzymes interact with cellulosic and noncellulosic components of lignocellulosic surfaces limits the design of new strategies for efficient conversion of biomass to bioethanol. In a step to improve our fundamental understanding of such interactions, nanoscale forces acting between a model cellulase-a carbohydrate-binding module (CBM) of cellobiohydrolase I (CBH I)-and a set of lignocellulosic substrates with controlled composition were measured using atomic force microscopy (AFM). The three model substrates investigated were kraft (KP), sulfite (SP), and organosolv (OPP) pulped substrates. These substrates varied in their surface lignin coverage, lignin type, and xylan and acetone extractives' content. Our results indicated that the overall adhesion forces of biomass to CBM increased linearly with surface lignin coverage with kraft lignin showing the highest forces among lignin types investigated. When the overall adhesion forces were decoupled into specific and nonspecific component forces via the Poisson statistical model, hydrophobic and Lifshitz-van der Waals (LW) forces dominated the binding forces of CBM to kraft lignin, whereas permanent dipole-dipole interactions and electrostatic forces facilitated the interactions of lignosulfonates to CBM. Xylan and acetone extractives' content increased the attractive forces between CBM and lignin-free substrates, most likely through hydrogen bonding forces. When the substrates treated differently were compared, it was found that both the differences in specific and nonspecific forces between lignin-containing and lignin-free substrates were the least for OPP. Therefore, cellulase enzymes represented by CBM would weakly bind to organosolv lignin. This will facilitate an easy enzyme recovery compared to other substrates treated with kraft or sulfite pulping. Our results also suggest that altering the surface hydrophobicity

  15. Surface force measurements and simulations of mussel-derived peptide adhesives on wet organic surfaces.

    Science.gov (United States)

    Levine, Zachary A; Rapp, Michael V; Wei, Wei; Mullen, Ryan Gotchy; Wu, Chun; Zerze, Gül H; Mittal, Jeetain; Waite, J Herbert; Israelachvili, Jacob N; Shea, Joan-Emma

    2016-04-19

    Translating sticky biological molecules-such as mussel foot proteins (MFPs)-into synthetic, cost-effective underwater adhesives with adjustable nano- and macroscale characteristics requires an intimate understanding of the glue's molecular interactions. To help facilitate the next generation of aqueous adhesives, we performed a combination of surface forces apparatus (SFA) measurements and replica-exchange molecular dynamics (REMD) simulations on a synthetic, easy to prepare, Dopa-containing peptide (MFP-3s peptide), which adheres to organic surfaces just as effectively as its wild-type protein analog. Experiments and simulations both show significant differences in peptide adsorption on CH3-terminated (hydrophobic) and OH-terminated (hydrophilic) self-assembled monolayers (SAMs), where adsorption is strongest on hydrophobic SAMs because of orientationally specific interactions with Dopa. Additional umbrella-sampling simulations yield free-energy profiles that quantitatively agree with SFA measurements and are used to extract the adhesive properties of individual amino acids within the context of MFP-3s peptide adhesion, revealing a delicate balance between van der Waals, hydrophobic, and electrostatic forces.

  16. Elasticity maps of living neurons measured by combined fluorescence and atomic force microscopy.

    Science.gov (United States)

    Spedden, Elise; White, James D; Naumova, Elena N; Kaplan, David L; Staii, Cristian

    2012-09-05

    Detailed knowledge of mechanical parameters such as cell elasticity, stiffness of the growth substrate, or traction stresses generated during axonal extensions is essential for understanding the mechanisms that control neuronal growth. Here, we combine atomic force microscopy-based force spectroscopy with fluorescence microscopy to produce systematic, high-resolution elasticity maps for three different types of live neuronal cells: cortical (embryonic rat), embryonic chick dorsal root ganglion, and P-19 (mouse embryonic carcinoma stem cells) neurons. We measure how the stiffness of neurons changes both during neurite outgrowth and upon disruption of microtubules of the cell. We find reversible local stiffening of the cell during growth, and show that the increase in local elastic modulus is primarily due to the formation of microtubules. We also report that cortical and P-19 neurons have similar elasticity maps, with elastic moduli in the range 0.1-2 kPa, with typical average values of 0.4 kPa (P-19) and 0.2 kPa (cortical). In contrast, dorsal root ganglion neurons are stiffer than P-19 and cortical cells, yielding elastic moduli in the range 0.1-8 kPa, with typical average values of 0.9 kPa. Finally, we report no measurable influence of substrate protein coating on cell body elasticity for the three types of neurons. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Quantitative measurement of local elasticity of SiOx film by atomic force acoustic microscopy

    International Nuclear Information System (INIS)

    Cun-Fu, He; Gai-Mei, Zhang; Bin, Wu

    2010-01-01

    In this paper the elastic properties of SiO x film are investigated quantitatively for local fixed point and qualitatively for overall area by atomic force acoustic microscopy (AFAM) in which the sample is vibrated at the ultrasonic frequency while the sample surface is touched and scanned with the tip contacting the sample respectively for fixed point and continuous measurements. The SiO x films on the silicon wafers are prepared by the plasma enhanced chemical vapour deposition (PECVD). The local contact stiffness of the tip-SiO x film is calculated from the contact resonance spectrum measured with the atomic force acoustic microscopy. Using the reference approach, indentation modulus of SiO x film for fixed point is obtained. The images of cantilever amplitude are also visualized and analysed when the SiO x surface is excited at a fixed frequency. The results show that the acoustic amplitude images can reflect the elastic properties of the sample. (classical areas of phenomenology)

  18. Force Measurement Improvements to the National Transonic Facility Sidewall Model Support System

    Science.gov (United States)

    Goodliff, Scott L.; Balakrishna, Sundareswara; Butler, David; Cagle, C. Mark; Chan, David; Jones, Gregory S.; Milholen, William E., II

    2016-01-01

    The National Transonic Facility is a transonic pressurized cryogenic facility. The development of the high Reynolds number semi-span capability has advanced over the years to include transonic active flow control and powered testing using the sidewall model support system. While this system can be used in total temperatures down to -250Â F for conventional unpowered configurations, it is limited to temperatures above -60Â F when used with powered models that require the use of the high-pressure air delivery system. Thermal instabilities and non-repeatable mechanical arrangements revealed several data quality shortfalls by the force and moment measurement system. Recent modifications to the balance cavity recirculation system have improved the temperature stability of the balance and metric model-to-balance hardware. Changes to the mechanical assembly of the high-pressure air delivery system, particularly hardware that interfaces directly with the model and balance, have improved the repeatability of the force and moment measurement system. Drag comparisons with the high-pressure air system removed will also be presented in this paper.

  19. A new method for measuring lift forces acting on an airfoil under dynamic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wolken-Moehlmann, Gerrit; Peinke, Joachim [Institute of Physics, University of Oldenburg (Germany)

    2008-07-01

    Wind turbines operate in a turbulent atmospheric boundary layer and are exposed to strong wind fluctuations in time and space. This can induce the dynamic stall, a phenomenon that causes extra loads. Dynamic stall occurs under fast changes in the angle of attack (AoA) and was determined in detail in helicopter research. But in contrast to helicopter aerodynamics, the changes in the AoA of wind turbine airfoils are in general non-sinusoidal, and thus it seems to be difficult to use these measurements and models. Our goal is to acquire lift data under conditions more comparable to real wind turbines, including non-periodic changes in the AoA. For this purpose a closed test section for our wind tunnel was built. An airfoil with a chord length of 0.2m will be rotated by a stepping motor with angular velocities of up to 300 {sup circle} /s. With a maximum wind velocity of 50m/s, Reynolds numbers of Re=700 000 can be realized. The lift force is determined by the counter forces acting on the wind tunnel walls. These are measured by two lines of 40 pressure sensors with sampling rates up to 2kHz. The results show distinct dynamic stall characteristics. Further experiments with different parameters and foils will give a better insight in dynamic stall and a verification and improvement of existing models.

  20. Quantitative measurement of density by color schlieren based on axial symmetry field%轴对称流场的彩色纹影密度场定量测量

    Institute of Scientific and Technical Information of China (English)

    叶继飞; 洪延姬

    2013-01-01

    实现定量测量是纹影技术发展的最新要求。制作一种彩色滤光片,代替传统“Z”字形纹影系统刀口,提出了一种能够定量测量轴对称流场密度场的纹影测量方法,提供了一种基于传统纹影装置的定性显示向定量测量探索的新途径。介绍了所提出的纹影定量测量方法的基本原理、标定方法和典型装置,以轴对称自由射流为研究对象,构建了典型的实验系统,并基于理论分析与数值模拟结果,对所获得的实验结果进行了对比。结果表明:所提出的彩色纹影定量测量方法适合于轴对称流场的密度场定量测量。%The quantitative schlieren measure ment is new development of schlieren technology. A color filter was made for the substitute of the typical "Z" schlieren knife. The quantitative color schlieren method was advanced for measurement of the density of the axial symmetry field. A new approach was researched for the development of the quantitative schlieren technology based on the typical schlieren setting. The measurement theory and calibration method were introduced, and the typical setting was given as an applied example. Take the axial symmetry free jet as an object, the theory analysis and computer simulation results were contrasted with the experimental data. The results show the given method is suitable for the density quantitative measurement of axial symmetry field.

  1. Fabrication of birefringent nanocylinders for single-molecule force and torque measurement

    Science.gov (United States)

    Li, Ping-Chun; Chang, Jen-Chien; La Porta, Arthur; Yu, Edward T.

    2014-06-01

    Optically anisotropic subwavelength scale dielectric particles have been shown to enable studies of the mechanical properties of bio-molecules via optical trapping and manipulation. However, techniques emphasized to date for fabrication of such particles generally suffer from limited uniformity and control over particle dimensions, or low throughput and high cost. Here, an approach for rapid, low-cost, fabrication of large quantities of birefringent quartz nanocylinders with dimensions optimized for optical torque wrench experiments is described. For a typical process, 108 or more quartz cylinders with diameters of 500 nm and heights of 800 nm, with uniformity of ±5% in each dimension, can be fabricated over ˜10 cm2 areas, for binding to a single bio-molecule, and harvested for use in optical trapping experiments. Use of these structures to measure extensional and torsional dynamics of single DNA molecules is demonstrated with measured forces and torques shown to be in very good agreement with previously reported results.

  2. Fabrication of birefringent nanocylinders for single-molecule force and torque measurement

    International Nuclear Information System (INIS)

    Li, Ping-Chun; T Yu, Edward; Chang, Jen-Chien; La Porta, Arthur

    2014-01-01

    Optically anisotropic subwavelength scale dielectric particles have been shown to enable studies of the mechanical properties of bio-molecules via optical trapping and manipulation. However, techniques emphasized to date for fabrication of such particles generally suffer from limited uniformity and control over particle dimensions, or low throughput and high cost. Here, an approach for rapid, low-cost, fabrication of large quantities of birefringent quartz nanocylinders with dimensions optimized for optical torque wrench experiments is described. For a typical process, 10 8 or more quartz cylinders with diameters of 500 nm and heights of 800 nm, with uniformity of ±5% in each dimension, can be fabricated over ∼10 cm 2 areas, for binding to a single bio-molecule, and harvested for use in optical trapping experiments. Use of these structures to measure extensional and torsional dynamics of single DNA molecules is demonstrated with measured forces and torques shown to be in very good agreement with previously reported results. (papers)

  3. In situ measurements of human articular cartilage stiffness by means of a scanning force microscope

    International Nuclear Information System (INIS)

    Imer, Raphael; Akiyama, Terunobu; Rooij, Nico F de; Stolz, Martin; Aebi, Ueli; Kilger, Robert; Friederich, Niklaus F; Wirz, Dieter; Daniels, A U; Staufer, Urs

    2007-01-01

    Osteoarthritis is a painful and disabling progressive joint disease, characterized by degradation of articular cartilage. In order to study this disease at early stages, we have miniaturized and integrated a complete scanning force microscope into a standard arthroscopic device fitting through a standard orthopedic canula. This instrument will allow orthopedic surgeons to measure the mechanical properties of articular cartilage at the nanometer and micrometer scale in-vivo during a standard arthroscopy. An orthopedic surgeon assessed the handling of the instrument. First measurements of the elasticity-modulus of human cartilage were recorded in a cadaver knee non minimal invasive. Second, minimally invasive experiments were performed using arthroscopic instruments. Load-displacement curves were successfully recorded

  4. Design and construction of a strain gage compression load cell to measure rolling forces

    International Nuclear Information System (INIS)

    Schoeffer, L.; Borchardt, I.G.; Carvalho, L.F.A.

    1978-05-01

    A complete detailed mechanical desion of a strain gauge compression load cell is presented. This cell was specialy designed to measure rolling forces at conventional duo or trio industrial roughing stands. The stands, in general, have little space (height) to adjust to the cells. Moreover the contact stands surfaces are very rough. Do to this facts, load cells of elastic cilindrical geometries are not recommended for accuracies better than 8%. This work describes the complete design and the construction of a circular (membrane) steel plate load cell. A prototype of 300 KN (approximately 30t) capacity, with 2% accuracies and with a height of 6 cm was constructed and tested. The design proposed is a general one and permits the construction of small load cells to measure any compression load [pt

  5. A brute-force spectral approach for wave estimation using measured vessel motions

    DEFF Research Database (Denmark)

    Nielsen, Ulrik D.; Brodtkorb, Astrid H.; Sørensen, Asgeir J.

    2018-01-01

    , and the procedure is simple in its mathematical formulation. The actual formulation is extending another recent work by including vessel advance speed and short-crested seas. Due to its simplicity, the procedure is computationally efficient, providing wave spectrum estimates in the order of a few seconds......The article introduces a spectral procedure for sea state estimation based on measurements of motion responses of a ship in a short-crested seaway. The procedure relies fundamentally on the wave buoy analogy, but the wave spectrum estimate is obtained in a direct - brute-force - approach......, and the estimation procedure will therefore be appealing to applications related to realtime, onboard control and decision support systems for safe and efficient marine operations. The procedure's performance is evaluated by use of numerical simulation of motion measurements, and it is shown that accurate wave...

  6. In situ measurements of human articular cartilage stiffness by means of a scanning force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Imer, Raphael [Institute of Microtechnology, University of Neuchatel, Jaquet-Droz 1, 2007 Neuchatel (Switzerland); Akiyama, Terunobu [Institute of Microtechnology, University of Neuchatel, Jaquet-Droz 1, 2007 Neuchatel (Switzerland); Rooij, Nico F de [Institute of Microtechnology, University of Neuchatel, Jaquet-Droz 1, 2007 Neuchatel (Switzerland); Stolz, Martin [Maurice E. Mueller Institute, University of Basel, Klingelbergstr. 70, 4056 Basel (Switzerland); Aebi, Ueli [Maurice E. Mueller Institute, University of Basel, Klingelbergstr. 70, 4056 Basel (Switzerland); Kilger, Robert [Clinics for Orthopedic Surgery and Traumatology, Kantonsspital, 4101 Bruderholz (Switzerland); Friederich, Niklaus F [Clinics for Orthopedic Surgery and Traumatology, Kantonsspital, 4101 Bruderholz (Switzerland); Wirz, Dieter [Lab. for Orthopaedic Biomechanics, University of Basel, Klingelbergstr. 50-70, 4056 Basel (Switzerland); Daniels, A U [Lab. for Orthopaedic Biomechanics, University of Basel, Klingelbergstr. 50-70, 4056 Basel (Switzerland); Staufer, Urs [Institute of Microtechnology, University of Neuchatel, Jaquet-Droz 1, 2007 Neuchatel (Switzerland)

    2007-03-15

    Osteoarthritis is a painful and disabling progressive joint disease, characterized by degradation of articular cartilage. In order to study this disease at early stages, we have miniaturized and integrated a complete scanning force microscope into a standard arthroscopic device fitting through a standard orthopedic canula. This instrument will allow orthopedic surgeons to measure the mechanical properties of articular cartilage at the nanometer and micrometer scale in-vivo during a standard arthroscopy. An orthopedic surgeon assessed the handling of the instrument. First measurements of the elasticity-modulus of human cartilage were recorded in a cadaver knee non minimal invasive. Second, minimally invasive experiments were performed using arthroscopic instruments. Load-displacement curves were successfully recorded.

  7. Dissipative Axial Inflation

    CERN Document Server

    Notari, Alessio

    2016-12-22

    We analyze in detail the background cosmological evolution of a scalar field coupled to a massless abelian gauge field through an axial term $\\frac{\\phi}{f_\\gamma} F \\tilde{F}$, such as in the case of an axion. Gauge fields in this case are known to experience tachyonic growth and therefore can backreact on the background as an effective dissipation into radiation energy density $\\rho_R$, which which can lead to inflation without the need of a flat potential. We analyze the system, for momenta $k$ smaller than the cutoff $f_\\gamma$, including numerically the backreaction. We consider the evolution from a given static initial condition and explicitly show that, if $f_\\gamma$ is smaller than the field excursion $\\phi_0$ by about a factor of at least ${\\cal O} (20)$, there is a friction effect which turns on before that the field can fall down and which can then lead to a very long stage of inflation with a generic potential. In addition we find superimposed oscillations, which would get imprinted on any kind of...

  8. Uniform Decay for Solutions of an Axially Moving Viscoelastic Beam

    Energy Technology Data Exchange (ETDEWEB)

    Kelleche, Abdelkarim, E-mail: kellecheabdelkarim@gmail.com [Université des Sciences et de la Technologie Houari Boumediene, Faculté des Mathématiques (Algeria); Tatar, Nasser-eddine, E-mail: tatarn@Kfupm.edu.sa [King Fahd University of Petroleum and Minerals, Department of Mathematics and Statistics (Saudi Arabia)

    2017-06-15

    The paper deals with an axially moving viscoelastic structure modeled as an Euler–Bernoulli beam. The aim is to suppress the transversal displacement (transversal vibrations) that occur during the axial motion of the beam. It is assumed that the beam is moving with a constant axial speed and it is subject to a nonlinear force at the right boundary. We prove that when the axial speed of the beam is smaller than a critical value, the dissipation produced by the viscoelastic material is sufficient to suppress the transversal vibrations. It is shown that the rate of decay of the energy depends on the kernel which arise in the viscoelastic term. We consider a general kernel and notice that solutions cannot decay faster than the kernel.

  9. Imaging and size measurement of nanoparticles in aqueous medium by use of atomic force microscopy.

    Science.gov (United States)

    Takechi-Haraya, Yuki; Goda, Yukihiro; Sakai-Kato, Kumiko

    2018-02-01

    Size control of nanoparticles in nanotechnology-based drug products is crucial for their successful development, since the in vivo pharmacokinetics of nanoparticles are size-dependent. In this study, we evaluated the use of atomic force microscopy (AFM) for imaging and size measurement of nanoparticles in aqueous medium. The height sizes of rigid polystyrene nanoparticles and soft liposomes were measured by AFM and were compared with the hydrodynamic sizes measured by dynamic light scattering (DLS). The lipid compositions of the studied liposomes were similar to those of commercial products. AFM proved to be a viable method for obtaining images of both polystyrene nanoparticles and liposomes in aqueous medium. For the polystyrene nanoparticles, the average height size observed by AFM was similar to the average number-weighted diameter obtained by DLS, indicating the usefulness of AFM for measuring the sizes of nanoparticles in aqueous medium. For the liposomes, the height sizes obtained by AFM differed depending upon the procedures of immobilizing the liposomes onto a solid substrate. In addition, the resultant average height sizes of the liposomes were smaller than those obtained by DLS. This knowledge will help the correct use of AFM as a powerful tool for imaging and size measurement of nanotechnology-based drug products for clinical use.

  10. An improved visualization-based force-measurement technique for short-duration hypersonic facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laurence, Stuart J.; Karl, Sebastian [Institute of Aerodynamics and Flow Technology, Spacecraft Section, German Aerospace Center (DLR), Goettingen (Germany)

    2010-06-15

    This article is concerned with describing and exploring the limitations of an improved version of a recently proposed visualization-based technique for the measurement of forces and moments in short-duration hypersonic wind tunnels. The technique is based on tracking the motion of a free-flying body over a sequence of high-speed visualizations; while this idea is not new in itself, the use of high-speed digital cinematography combined with a highly accurate least-squares tracking algorithm allows improved results over what have been previously possible with such techniques. The technique precision is estimated through the analysis of artificially constructed and experimental test images, and the resulting error in acceleration measurements is characterized. For wind-tunnel scale models, position measurements to within a few microns are shown to be readily attainable. Image data from two previous experimental studies in the T5 hypervelocity shock tunnel are then reanalyzed with the improved technique: the uncertainty in the mean drag acceleration is shown to be reduced to the order of the flow unsteadiness, 2-3%, and time-resolved acceleration measurements are also shown to be possible. The response time of the technique for the configurations studied is estimated to be {proportional_to}0.5 ms. Comparisons with computations using the DLR TAU code also yield agreement to within the overall experimental uncertainty. Measurement of the pitching moment for blunt geometries still appears challenging, however. (orig.)

  11. Using Maximal Isometric Force to Determine the Optimal Load for Measuring Dynamic Muscle Power

    Science.gov (United States)

    Spiering, Barry A.; Lee, Stuart M. C.; Mulavara, Ajitkumar P.; Bentley, Jason R.; Nash, Roxanne E.; Sinka, Joseph; Bloomberg, Jacob J.

    2009-01-01

    Maximal power output occurs when subjects perform ballistic exercises using loads of 30-50% of one-repetition maximum (1-RM). However, performing 1-RM testing prior to power measurement requires considerable time, especially when testing involves multiple exercises. Maximal isometric force (MIF), which requires substantially less time to measure than 1-RM, might be an acceptable alternative for determining the optimal load for power testing. PURPOSE: To determine the optimal load based on MIF for maximizing dynamic power output during leg press and bench press exercises. METHODS: Twenty healthy volunteers (12 men and 8 women; mean +/- SD age: 31+/-6 y; body mass: 72 +/- 15 kg) performed isometric leg press and bench press movements, during which MIF was measured using force plates. Subsequently, subjects performed ballistic leg press and bench press exercises using loads corresponding to 20%, 30%, 40%, 50%, and 60% of MIF presented in randomized order. Maximal instantaneous power was calculated during the ballistic exercise tests using force plates and position transducers. Repeated-measures ANOVA and Fisher LSD post hoc tests were used to determine the load(s) that elicited maximal power output. RESULTS: For the leg press power test, six subjects were unable to be tested at 20% and 30% MIF because these loads were less than the lightest possible load (i.e., the weight of the unloaded leg press sled assembly [31.4 kg]). For the bench press power test, five subjects were unable to be tested at 20% MIF because these loads were less than the weight of the unloaded aluminum bar (i.e., 11.4 kg). Therefore, these loads were excluded from analysis. A trend (p = 0.07) for a main effect of load existed for the leg press exercise, indicating that the 40% MIF load tended to elicit greater power output than the 60% MIF load (effect size = 0.38). A significant (p . 0.05) main effect of load existed for the bench press exercise; post hoc analysis indicated that the effect of

  12. Development and Testing of an Integrated Rotating Dynamometer Based on Fiber Bragg Grating for Four-Component Cutting Force Measurement.

    Science.gov (United States)

    Liu, Mingyao; Bing, Junjun; Xiao, Li; Yun, Kang; Wan, Liang

    2018-04-18

    Cutting force measurement is of great importance in machining processes. Hence, various methods of measuring the cutting force have been proposed by many researchers. In this work, a novel integrated rotating dynamometer based on fiber Bragg grating (FBG) was designed, constructed, and tested to measure four-component cutting force. The dynamometer consists of FBGs that are pasted on the newly designed elastic structure which is then mounted on the rotating spindle. The elastic structure is designed as two mutual-perpendicular semi-octagonal rings. The signals of the FBGs are transmitted to FBG interrogator via fiber optic rotary joints and optical fiber, and the wavelength values are displayed on a computer. In order to determine the static and dynamic characteristics, many tests have been done. The results show that it is suitable for measuring cutting force.

  13. An ergonomic modular foot platform for isometric force/torque measurements in poststroke functional assessment: A pilot study

    OpenAIRE

    Stefano Mazzoleni, PhD; Jo Van Vaerenbergh, PhD; Emma Stokes, PhD; Gábor Fazekas, MD, PhD; Paolo Dario, PhD; Eugenio Guglielmelli, PhD

    2012-01-01

    The main goal of this article is to present the design, technical development, and preliminary validation of an innovative mechatronic device for force/torque measurements taken from the human foot using pilot data. The device, formed by a mobile platform equipped with two six-axis force/torque sensors, was used to perform accurate quantitative measurements during isometric exercises, aimed at performing functional assessment tests in poststroke patients undergoing a rehabilitation treatment....

  14. The FORCE Fitness Profile--Adding a Measure of Health-Related Fitness to the Canadian Armed Forces Operational Fitness Evaluation.

    Science.gov (United States)

    Gagnon, Patrick; Spivock, Michael; Reilly, Tara; Mattie, Paige; Stockbrugger, Barry

    2015-11-01

    In 2013, the Canadian Armed Forces (CAF) implemented the Fitness for Operational Requirements of Canadian Armed Forces Employment (FORCE), a field expedient fitness test designed to predict the physical requirements of completing common military tasks. Given that attaining this minimal physical fitness standard may not represent a challenge to some personnel, a fitness incentive program was requested by the chain of command to recognize and reward fitness over and above the minimal standard. At the same time, it was determined that the CAF would benefit from a measure of general health-related fitness, in addition to this measure of operational fitness. The resulting incentive program structure is based on gender and 8 age categories. The results on the 4 elements of the FORCE evaluation were converted to a point scale from which normative scores were derived, where the median score corresponds to the bronze level, and silver, gold, and platinum correspond to a score which is 1, 2, and 3 SDs above this median, respectively. A suite of rewards including merit board point toward promotions and recognition on the uniform and material rewards was developed. A separate group rewards program was also tabled, to recognize achievements in fitness at the unit level. For general fitness, oxygen capacity was derived from FORCE evaluation results and combined with a measure of abdominal circumference. Fitness categories were determined based on relative risks of mortality and morbidity for each age and gender group. Pilot testing of this entire program was performed with 624 participants to assess participants' reactions to the enhanced test, and also to verify logistical aspects of the electronic data capture, calculation, and transfer system. The newly dubbed fitness profile program was subsequently approved by the senior leadership of the CAF and is scheduled to begin a phased implementation in June 2015.

  15. Measurement model and calibration experiment of over-constrained parallel six-dimensional force sensor based on stiffness characteristics analysis

    International Nuclear Information System (INIS)

    Niu, Zhi; Zhao, Yanzhi; Zhao, Tieshi; Cao, Yachao; Liu, Menghua

    2017-01-01

    An over-constrained, parallel six-dimensional force sensor has various advantages, including its ability to bear heavy loads and provide redundant force measurement information. These advantages render the sensor valuable in important applications in the field of aerospace (space docking tests, etc). The stiffness of each component in the over-constrained structure has a considerable influence on the internal force distribution of the structure. Thus, the measurement model changes when the measurement branches of the sensor are under tensile or compressive force. This study establishes a general measurement model for an over-constrained parallel six-dimensional force sensor considering the different branch tensions and compression stiffness values. Numerical calculations and analyses are performed using practical examples. Based on the parallel mechanism, an over-constrained, orthogonal structure is proposed for a six-dimensional force sensor. Hence, a prototype is designed and developed, and a calibration experiment is conducted. The measurement accuracy of the sensor is improved based on the measurement model under different branch tensions and compression stiffness values. Moreover, the largest class I error is reduced from 5.81 to 2.23% full scale (FS), and the largest class II error is reduced from 3.425 to 1.871% FS. (paper)

  16. Measuring cell viscoelastic properties using a force-spectrometer: influence of protein-cytoplasm interactions.

    Science.gov (United States)

    Canetta, Elisabetta; Duperray, Alain; Leyrat, Anne; Verdier, Claude

    2005-01-01

    Cell adhesive and rheological properties play a very important role in cell transmigration through the endothelial barrier, in particular in the case of inflammation (leukocytes) or cancer metastasis (cancer cells). In order to characterize cell viscoelastic properties, we have designed a force spectrometer (AFM) which can stretch cells thereby allowing measurement of their rheological properties. This custom-made force spectrometer allows two different visualizations, one lateral and one from below. It allows investigation of the effects of rheology involved during cell stretching. To test the ability of our system to characterize such viscoelastic properties, ICAM-1 transfected CHO cells were analyzed. Two forms of ICAM-1 were tested; wild type ICAM-1, which can interact with the cytoskeleton, and a mutant form which lacks the cytoplasmic domain, and is unable to associate with the cytoskeleton. Stretching experiments carried out on these cells show the formation of long filaments. Using a previous model of filament elongation, we could determine the viscoelastic properties of a single cell. As expected, different viscoelastic components were found between the wild type and the mutant, which reveal that the presence of interactions between ICAM-1 and the cytoskeleton increases the stiffness of the cell.

  17. Field Measurements of Heating Efficiency of Electric Forced-Air Furnaces in Six Manufactured Homes.

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Bob; Palmiter, Larry S.; Siegel, Jeff

    1994-07-26

    This report presents the results of field measurements of heating efficiency for six manufactured homes in the Pacific Northwest heated with electric forced-air systems. This is the first in a series of regional and national efforts to measure in detail the heating efficiency of manufactured homes. Only six homes were included in this study because of budgetary constraints; therefore this is not a representative sample. These investigations do provide some useful information on the heating efficiency of these homes. Useful comparisons can be drawn between these study homes and site-built heating efficiencies measured with a similar protocol. The protocol used to test these homes is very similar to another Ecotope protocol used in the study conducted in 1992 and 1993 for the Bonneville Power Administration to test the heating efficiency of 24 homes. This protocol combined real-time power measurements of furnace energy usage with energy usage during co-heat periods. Accessory data such as house and duct tightness measurements and tracer gas measurements were used to describe these homes and their heating system efficiency. Ensuring that manufactured housing is constructed in an energy and resource efficient manner is of increasing concern to manufactured home builders and consumers. No comparable work has been done to measure the heating system efficiency of MCS manufactured homes, although some co-heat tests have been performed on manufactured homes heated with natural gas to validate HUD thermal standards. It is expected that later in 1994 more research of this kind will be conducted, and perhaps a less costly and less time-consuming method for testing efficiencies will be develops.

  18. Contact-resonance atomic force microscopy for nanoscale elastic property measurements: Spectroscopy and imaging

    International Nuclear Information System (INIS)

    Stan, G.; Krylyuk, S.; Davydov, A.V.; Vaudin, M.D.; Bendersky, L.A.; Cook, R.F.

    2009-01-01

    Quantitative measurements of the elastic modulus of nanosize systems and nanostructured materials are provided with great accuracy and precision by contact-resonance atomic force microscopy (CR-AFM). As an example of measuring the elastic modulus of nanosize entities, we used the CR-AFM technique to measure the out-of-plane indentation modulus of tellurium nanowires. A size-dependence of the indentation modulus was observed for the investigated tellurium nanowires with diameters in the range 20-150 nm. Over this diameter range, the elastic modulus of the outer layers of the tellurium nanowires experienced significant enhancement due to a pronounced surface stiffening effect. Quantitative estimations for the elastic moduli of the outer and inner parts of tellurium nanowires of reduced diameter are made with a core-shell structure model. Besides localized elastic modulus measurements, we have also developed a unique CR-AFM imaging capability to map the elastic modulus over a micrometer-scale area. We used this CR-AFM capability to construct indentation modulus maps at the junction between two adjacent facets of a tellurium microcrystal. The clear contrast observed in the elastic moduli of the two facets indicates the different surface crystallography of these facets.

  19. In Situ Roughness Measurements for the Solar Cell Industry Using an Atomic Force Microscope

    Directory of Open Access Journals (Sweden)

    Higinio González-Jorge

    2010-04-01

    Full Text Available Areal roughness parameters always need to be under control in the thin film solar cell industry because of their close relationship with the electrical efficiency of the cells. In this work, these parameters are evaluated for measurements carried out in a typical fabrication area for this industry. Measurements are made using a portable atomic force microscope on the CNC diamond cutting machine where an initial sample of transparent conductive oxide is cut into four pieces. The method is validated by making a comparison between the parameters obtained in this process and in the laboratory under optimal conditions. Areal roughness parameters and Fourier Spectral Analysis of the data show good compatibility and open the possibility to use this type of measurement instrument to perform in situ quality control. This procedure gives a sample for evaluation without destroying any of the transparent conductive oxide; in this way 100% of the production can be tested, so improving the measurement time and rate of production.

  20. Intelligent measurement and compensation of linear motor force ripple: a projection-based learning approach in the presence of noise

    Science.gov (United States)

    Liu, Yang; Song, Fazhi; Yang, Xiaofeng; Dong, Yue; Tan, Jiubin

    2018-06-01

    Due to their structural simplicity, linear motors are increasingly receiving attention for use in high velocity and high precision applications. The force ripple, as a space-periodic disturbance, however, would deteriorate the achievable dynamic performance. Conventional force ripple measurement approaches are time-consuming and have high requirements on the experimental conditions. In this paper, a novel learning identification algorithm is proposed for force ripple intelligent measurement and compensation. Existing identification schemes always use all the error signals to update the parameters in the force ripple. However, the error induced by noise is non-effective for force ripple identification, and even deteriorates the identification process. In this paper only the most pertinent information in the error signal is utilized for force ripple identification. Firstly, the effective error signals caused by the reference trajectory and the force ripple are extracted by projecting the overall error signals onto a subspace spanned by the physical model of the linear motor as well as the sinusoidal model of the force ripple. The time delay in the linear motor is compensated in the basis functions. Then, a data-driven approach is proposed to design the learning gain. It balances the trade-off between convergence speed and robustness against noise. Simulation and experimental results validate the proposed method and confirm its effectiveness and superiority.

  1. Ball Screw Actuator Including an Axial Soft Stop

    Science.gov (United States)

    Wingett, Paul T. (Inventor); Forrest, Steven Talbert (Inventor); Abel, Steve (Inventor); Woessner, George (Inventor); Hanlon, Casey (Inventor)

    2016-01-01

    An actuator includes an actuator housing, a ball screw, and an axial soft stop assembly. The ball screw extends through the actuator housing and has a first end and a second end. The ball screw is coupled to receive a drive force and is configured, upon receipt of the drive force, to selectively move in a retract direction and an extend direction. The axial soft stop assembly is disposed within the actuator housing. The axial soft stop assembly is configured to be selectively engaged by the ball screw and, upon being engaged thereby, to translate, with compliance, a predetermined distance in the extend direction, and to prevent further movement of the ball screw upon translating the predetermined distance.

  2. Characterization of Multiflux Axial Compressors

    International Nuclear Information System (INIS)

    Brasnarof, Daniel; Kyung Kyu-Hyung; Rivarola, Martin; Gonzalez Jose; Florido, Pablo; Orellano, Pablo; Bergallo, Juan

    2003-01-01

    In the present work the results of analytical models of performance are compared with experimental data acquired in the multi flux axial compressor test facility, built in The Pilcaniyeu Technological Complex for the SIGMA project.We describe the experimental circuit and the data of the dispersion inside the axial compressor obtained using a tracer gas through one of the annular inlets.The attained results can be used to validate the design code for the multi flux axial compressors and SIGMA industrial plant

  3. Axial gap rotating electrical machine

    Science.gov (United States)

    None

    2016-02-23

    Direct drive rotating electrical machines with axial air gaps are disclosed. In these machines, a rotor ring and stator ring define an axial air gap between them. Sets of gap-maintaining rolling supports bear between the rotor ring and the stator ring at their peripheries to maintain the axial air gap. Also disclosed are wind turbines using these generators, and structures and methods for mounting direct drive rotating electrical generators to the hubs of wind turbines. In particular, the rotor ring of the generator may be carried directly by the hub of a wind turbine to rotate relative to a shaft without being mounted directly to the shaft.

  4. Study of axial magnetic effect

    Energy Technology Data Exchange (ETDEWEB)

    Braguta, Victor [IHEP, Protvino, Moscow region, 142284 Russia ITEP, B. Cheremushkinskaya street 25, Moscow, 117218 (Russian Federation); School of Biomedicine, Far Eastern Federal University, Ajax 10 Building 25, Russian island, Vladivostok, 690922 (Russian Federation); Chernodub, M. N. [CNRS, Laboratoire de Mathématiques et Physique Théorique, Université François-Rabelais Tours, Fédération Denis Poisson, Parc de Grandmont, 37200 Tours, France Department of Physics and Astronomy, University of Gent, Krijgslaan 281, S9, B-9000 Gent (Belgium); School of Biomedicine, Far Eastern Federal University, Ajax 10 Building 25, Russian island, Vladivostok, 690922 (Russian Federation); Goy, V. A. [School of Natural Sciences, Far Eastern Federal University, Sukhanova street 8, Vladivostok, 690950 (Russian Federation); Landsteiner, K. [Instituto de Física Teórica UAM/CSIC, C/ Nicolás Cabrera 13-15, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Molochkov, A. V. [School of Biomedicine, Far Eastern Federal University, Ajax 10 Building 25, Russian island, Vladivostok, 690922 (Russian Federation); Ulybyshev, M. [ITEP, B. Cheremushkinskaya street 25, Moscow, 117218 Russia Institute for Theoretical Problems of Microphysics, Moscow State University, Moscow, 119899 (Russian Federation)

    2016-01-22

    The Axial Magnetic Effect manifests itself as an equilibrium energy flow of massless fermions induced by the axial (chiral) magnetic field. Here we study the Axial Magnetic Effect in the quenched SU(2) lattice gauge theory with massless overlap fermions at finite temperature. We numerically observe that in the low-temperature hadron phase the effect is absent due to the quark confinement. In the high-temperature deconfinement phase the energy flow is an increasing function of the temperature which reaches the predicted asymptotic T{sup 2} behavior at high temperatures. We find, however, that energy flow is about one order of magnitude lower compared to a theoretical prediction.

  5. Dynamics of space and polarization charges of ferroelectric thin films measured by atomic force microscopy

    International Nuclear Information System (INIS)

    Oh, Y.J.; Lee, J.H.; Jo, W.

    2006-01-01

    Retention behavior and local hysteresis characteristics in Pb(Zr 0.52 Ti 0.48 )O 3 (PZT) thin films on Pt electrodes have been investigated by electrostatic force microscopy (EFM). A sol-gel method is used to synthesize PZT thin films and drying conditions are carefully explored over a wide range of temperature. Decay and retention mechanisms of single-poled and reverse-poled regions of the ferroelectric thin films are explained by space charge redistribution. Trapping behavior of space charges is dependent on the nature of interface between ferroelectric thin films and bottom electrodes. Local measurement of polarization-electric field curves by EFM shows inhomogeneous space charge entrapment

  6. Elastic moduli of faceted aluminum nitride nanotubes measured by contact resonance atomic force microscopy

    International Nuclear Information System (INIS)

    Stan, G; Cook, R F; Ciobanu, C V; Thayer, T P; Wang, G T; Creighton, J R; Purushotham, K P; Bendersky, L A

    2009-01-01

    A new methodology for determining the radial elastic modulus of a one-dimensional nanostructure laid on a substrate has been developed. The methodology consists of the combination of contact resonance atomic force microscopy (AFM) with finite element analysis, and we illustrate it for the case of faceted AlN nanotubes with triangular cross-sections. By making precision measurements of the resonance frequencies of the AFM cantilever-probe first in air and then in contact with the AlN nanotubes, we determine the contact stiffness at different locations on the nanotubes, i.e. on edges, inner surfaces, and outer facets. From the contact stiffness we have extracted the indentation modulus and found that this modulus depends strongly on the apex angle of the nanotube, varying from 250 to 400 GPa for indentation on the edges of the nanotubes investigated.

  7. Rigorous approach to the comparison between experiment and theory in Casimir force measurements

    International Nuclear Information System (INIS)

    Klimchitskaya, G L; Chen, F; Decca, R S; Fischbach, E; Krause, D E; Lopez, D; Mohideen, U; Mostepanenko, V M

    2006-01-01

    In most experiments on the Casimir force the comparison between measurement data and theory was done using the concept of the root-mean-square deviation, a procedure that has been criticized in the literature. Here we propose a special statistical analysis which should be performed separately for the experimental data and for the results of the theoretical computations. In so doing, the random, systematic and total experimental errors are found as functions of separation, taking into account the distribution laws for each error at 95% confidence. Independently, all theoretical errors are combined to obtain the total theoretical error at the same confidence. Finally, the confidence interval for the differences between theoretical and experimental values is obtained as a function of separation. This rigorous approach is applied to two recent experiments on the Casimir effect

  8. Optimal sample preparation for nanoparticle metrology (statistical size measurements) using atomic force microscopy

    International Nuclear Information System (INIS)

    Hoo, Christopher M.; Doan, Trang; Starostin, Natasha; West, Paul E.; Mecartney, Martha L.

    2010-01-01

    Optimal deposition procedures are determined for nanoparticle size characterization by atomic force microscopy (AFM). Accurate nanoparticle size distribution analysis with AFM requires non-agglomerated nanoparticles on a flat substrate. The deposition of polystyrene (100 nm), silica (300 and 100 nm), gold (100 nm), and CdSe quantum dot (2-5 nm) nanoparticles by spin coating was optimized for size distribution measurements by AFM. Factors influencing deposition include spin speed, concentration, solvent, and pH. A comparison using spin coating, static evaporation, and a new fluid cell deposition method for depositing nanoparticles is also made. The fluid cell allows for a more uniform and higher density deposition of nanoparticles on a substrate at laminar flow rates, making nanoparticle size analysis via AFM more efficient and also offers the potential for nanoparticle analysis in liquid environments.

  9. Relationships between sensory evaluations of beef tenderness, shear force measurements and consumer characteristics.

    Science.gov (United States)

    Van Wezemael, Lynn; De Smet, Stefaan; Ueland, Øydis; Verbeke, Wim

    2014-07-01

    The supply of tender beef is an important challenge for the beef industry. Knowledge about the profile of consumers who are more optimistic or more accurate in their tenderness evaluations is important for product development and beef marketing purposes. Central location tests of beef steaks were performed in Norway and Belgium (n=218). Instrumental and sensorial tenderness of three muscles from Belgian Blue and Norwegian Red cattle was reported. Consumers who are optimistically evaluating tenderness were found to be more often male, less food neophobic, more positive towards beef healthiness, and showed fewer concerns about beef safety. No clear profile emerged for consumers who assessed tenderness similar to shear force measurements, which suggests that tenderness is mainly evaluated subjectively. The results imply a window of opportunities in tenderness improvements, and allow targeting a market segment which is less critical towards beef tenderness. © 2013 Elsevier Ltd. All rights reserved.

  10. Image-based overlay measurement using subsurface ultrasonic resonance force microscopy

    Science.gov (United States)

    Tamer, M. S.; van der Lans, M. J.; Sadeghian, H.

    2018-03-01

    Image Based Overlay (IBO) measurement is one of the most common techniques used in Integrated Circuit (IC) manufacturing to extract the overlay error values. The overlay error is measured using dedicated overlay targets which are optimized to increase the accuracy and the resolution, but these features are much larger than the IC feature size. IBO measurements are realized on the dedicated targets instead of product features, because the current overlay metrology solutions, mainly based on optics, cannot provide sufficient resolution on product features. However, considering the fact that the overlay error tolerance is approaching 2 nm, the overlay error measurement on product features becomes a need for the industry. For sub-nanometer resolution metrology, Scanning Probe Microscopy (SPM) is widely used, though at the cost of very low throughput. The semiconductor industry is interested in non-destructive imaging of buried structures under one or more layers for the application of overlay and wafer alignment, specifically through optically opaque media. Recently an SPM technique has been developed for imaging subsurface features which can be potentially considered as a solution for overlay metrology. In this paper we present the use of Subsurface Ultrasonic Resonance Force Microscopy (SSURFM) used for IBO measurement. We used SSURFM for imaging the most commonly used overlay targets on a silicon substrate and photoresist. As a proof of concept we have imaged surface and subsurface structures simultaneously. The surface and subsurface features of the overlay targets are fabricated with programmed overlay errors of +/-40 nm, +/-20 nm, and 0 nm. The top layer thickness changes between 30 nm and 80 nm. Using SSURFM the surface and subsurface features were successfully imaged and the overlay errors were extracted, via a rudimentary image processing algorithm. The measurement results are in agreement with the nominal values of the programmed overlay errors.

  11. Optical tweezers for the measurement of binding forces: system description and application for the study of E. coli adhesion

    Science.gov (United States)

    Fallman, Erik G.; Schedin, Staffan; Andersson, Magnus J.; Jass, Jana; Axner, Ove

    2003-06-01

    Optical tweezers together with a position sensitive detection system allows measurements of forces in the pN range between micro-sized biological objects. A prototype force measurement system has been constructed around in inverted microscope with an argon-ion pumped Ti:sapphire laser as light source for optical trapping. A trapped particle in the focus of the high numerical aperture microscope-objective behaves like an omni-directional mechanical spring if an external force displaces it. The displacement from the equilibrium position is a measure of the exerted force. For position detection of the trapped particle (polystyrene beads), a He-Ne laser beam is focused a small distance below the trapping focus. An image of the bead appears as a distinct spot in the far field, monitored by a photosensitive detector. The position data is converted to a force measurement by a calibration procedure. The system has been used for measuring the binding forces between E-coli bacterial adhesin and their receptor sugars.

  12. Reorganization energy upon charging a single molecule on an insulator measured by atomic force microscopy

    Science.gov (United States)

    Fatayer, Shadi; Schuler, Bruno; Steurer, Wolfram; Scivetti, Ivan; Repp, Jascha; Gross, Leo; Persson, Mats; Meyer, Gerhard

    2018-05-01

    Intermolecular single-electron transfer on electrically insulating films is a key process in molecular electronics1-4 and an important example of a redox reaction5,6. Electron-transfer rates in molecular systems depend on a few fundamental parameters, such as interadsorbate distance, temperature and, in particular, the Marcus reorganization energy7. This crucial parameter is the energy gain that results from the distortion of the equilibrium nuclear geometry in the molecule and its environment on charging8,9. The substrate, especially ionic films10, can have an important influence on the reorganization energy11,12. Reorganization energies are measured in electrochemistry13 as well as with optical14,15 and photoemission spectroscopies16,17, but not at the single-molecule limit and nor on insulating surfaces. Atomic force microscopy (AFM), with single-charge sensitivity18-22, atomic-scale spatial resolution20 and operable on insulating films, overcomes these challenges. Here, we investigate redox reactions of single naphthalocyanine (NPc) molecules on multilayered NaCl films. Employing the atomic force microscope as an ultralow current meter allows us to measure the differential conductance related to transitions between two charge states in both directions. Thereby, the reorganization energy of NPc on NaCl is determined as (0.8 ± 0.2) eV, and density functional theory (DFT) calculations provide the atomistic picture of the nuclear relaxations on charging. Our approach presents a route to perform tunnelling spectroscopy of single adsorbates on insulating substrates and provides insight into single-electron intermolecular transport.

  13. Distribution of base rock depth estimated from Rayleigh wave measurement by forced vibration tests

    International Nuclear Information System (INIS)

    Hiroshi Hibino; Toshiro Maeda; Chiaki Yoshimura; Yasuo Uchiyama

    2005-01-01

    This paper shows an application of Rayleigh wave methods to a real site, which was performed to determine spatial distribution of base rock depth from the ground surface. At a certain site in Sagami Plain in Japan, the base rock depth from surface is assumed to be distributed up to 10 m according to boring investigation. Possible accuracy of the base rock depth distribution has been needed for the pile design and construction. In order to measure Rayleigh wave phase velocity, forced vibration tests were conducted with a 500 N vertical shaker and linear arrays of three vertical sensors situated at several points in two zones around the edges of the site. Then, inversion analysis was carried out for soil profile by genetic algorithm, simulating measured Rayleigh wave phase velocity with the computed counterpart. Distribution of the base rock depth inverted from the analysis was consistent with the roughly estimated inclination of the base rock obtained from the boring tests, that is, the base rock is shallow around edge of the site and gradually inclines towards the center of the site. By the inversion analysis, the depth of base rock was determined as from 5 m to 6 m in the edge of the site, 10 m in the center of the site. The determined distribution of the base rock depth by this method showed good agreement on most of the points where boring investigation were performed. As a result, it was confirmed that the forced vibration tests on the ground by Rayleigh wave methods can be useful as the practical technique for estimating surface soil profiles to a depth of up to 10 m. (authors)

  14. Measurement of Distraction Force in Cleft Lip and Palate Patients During Le Fort I Maxillary Advancement With Rigid External Distraction.

    Science.gov (United States)

    Sawada, Hiromi; Ogawa, Takuya; Kataoka, Keiichi; Baba, Yoshiyuki; Moriyama, Keiji

    2017-03-01

    Maxillary distraction osteogenesis (DO) is a mainstream surgical technique for patients who have severe maxillary hypoplasia associated with craniofacial syndromes and cleft-related deformities. However, limited information about the biomechanical aspects of maxillary DO is available limiting broad utilization and improvements to the procedure. The objective of this study was to analyze force levels during the active distraction process and to investigate the relationship between distraction force and maxillary movement during Le Fort I maxillary DO using a rigid external distraction (RED) system. Microtension gauges were integrated into the distraction wires on each side of the RED system. Six patients with cleft lip and palate aged 12.8 to 23.5 years underwent strain gauge measurements during maxillary advancement with DO using an RED system. Lateral cephalograms were taken to measure maxillary horizontal, vertical, and linear movements after DO. The average linear maxillary movement was 11.2 mm (range 8.5-15.9 mm). The applied forces ranged from 13.4 to 26.8 N. The distance of maxillary movement was proportional to the distraction force. The measurement of distraction forces during DO provides important information with which to establish appropriate protocols. Patients requiring more advancement may require more distraction force. However, other factors such as scarring, patient anatomy, surgical freedom of the osteotomized maxilla, and the like, may affect the required force during DO with the RED system.

  15. Talking and learning physics: Predicting future grades from network measures and Force Concept Inventory pretest scores

    Directory of Open Access Journals (Sweden)

    Jesper Bruun

    2013-07-01

    Full Text Available The role of student interactions in learning situations is a foundation of sociocultural learning theory, and social network analysis can be used to quantify student relations. We discuss how self-reported student interactions can be viewed as processes of meaning making and use this to understand how quantitative measures that describe the position in a network, called centrality measures, can be understood in terms of interactions that happen in the context of a university physics course. We apply this discussion to an empirical data set of self-reported student interactions. In a weekly administered survey, first year university students enrolled in an introductory physics course at a Danish university indicated with whom they remembered having communicated within different interaction categories. For three categories pertaining to (1 communication about how to solve physics problems in the course (called the PS category, (2 communications about the nature of physics concepts (called the CD category, and (3 social interactions that are not strictly related to the content of the physics classes (called the ICS category in the introductory mechanics course, we use the survey data to create networks of student interaction. For each of these networks, we calculate centrality measures for each student and correlate these measures with grades from the introductory course, grades from two subsequent courses, and the pretest Force Concept Inventory (FCI scores. We find highly significant correlations (p<0.001 between network centrality measures and grades in all networks. We find the highest correlations between network centrality measures and future grades. In the network composed of interactions regarding problem solving (the PS network, the centrality measures hide and PageRank show the highest correlations (r=-0.32 and r=0.33, respectively with future grades. In the CD network, the network measure target entropy shows the highest correlation

  16. Design and evaluation of a low thermal electromotive force guarded scanner for resistance measurements

    Science.gov (United States)

    Jarrett, Dean G.; Marshall, James A.; Marshall, Thomas A.; Dziuba, Ronald F.

    1999-06-01

    The design and testing of a low thermal electromotive force guarded scanner, developed to provide completely guarded switching when used with actively guarded resistance bridge networks, is described. The design provides a continuous guard circuit trace on the scanner circuit boards that surrounds the relay contacts and protects the measurement circuit from leakages to ground. Modification to the circuit boards and relays of the guarded scanner are explained. Several tests were developed to evaluate the guarding effectiveness, including isolating sections of the guard circuit to create a potential drop between the main and guard circuits. Calibration of standard resistors using the guarded scanner has shown relative differences less than 1×10-6, 30×10-6, and 150×10-6 for measurements made with and with