WorldWideScience

Sample records for avian leukosis

  1. Cell killing by avian leukosis viruses.

    OpenAIRE

    Weller, S K; Temin, H M

    1981-01-01

    Infection of chicken cells with a cytopathic avian leukosis virus resulted in the detachment of killed cells from the culture dish. The detached, dead cells contained more unintegrated viral DNA than the attached cells. These results confirm the hypothesis that cell killing after infection with a cytopathic avian leukosis virus is associated with accumulation of large amounts of unintegrated viral DNA. No accumulation of large amounts of integrated viral DNA was found in cells infected with c...

  2. Analysis of avian leukosis virus infections with an enzyme immunoassay.

    OpenAIRE

    Clark, D P; Ball, R F; Dougherty, R M

    1981-01-01

    An enzyme-linked immunosorbent assay (ELISA) for avian leukosis virus group-specific antigen was used to study infections with and shedding of avian leukosis virus in a commercial flock of chickens with a known high incidence of infection. Avian leukosis virus group-specific antigen was detected in serum or cloacal washings from 76% of a group of 100 61-week-old hens. With eggs collected during the next 3 weeks, antigen was detected in the albumen of 88% of the eggs from ELISA-positive hens a...

  3. Avian leukosis virus infection: analysis of viremia and DNA integration in susceptible and resistant chicken lines.

    OpenAIRE

    Baba, T W; Humphries, E H

    1984-01-01

    Avian leukosis viruses induce lymphoid leukosis, a lymphoma which develops within the bursa of Fabricius several months after virus infection. Chickens from the Hyline SC and FP lines are, respectively, susceptible and resistant to avian leukosis virus-induced lymphoid leukosis. We examined plasma and cellular DNA obtained from avian leukosis virus-infected chickens for the presence of viremia and integrated viral sequences to determine whether the extent of virus infection is comparable in i...

  4. 9 CFR 113.31 - Detection of avian lymphoid leukosis.

    Science.gov (United States)

    2010-01-01

    ... REQUIREMENTS Standard Procedures § 113.31 Detection of avian lymphoid leukosis. The complement-fixation test... the same week from material harvested from each source flock (or other sampling procedure acceptable... cultures shall be prepared from the same cell suspension as the cultures for testing the vaccine....

  5. Specificity of avian leukosis virus-induced hyperlipidemia.

    OpenAIRE

    Carter, J K; Smith, R. E.

    1984-01-01

    Rous-associated virus 7 (RAV-7) is a subgroup C avian leukosis virus which does not transform cells in vitro or carry an oncogene. When injected into 1-day-old hatched chicks, RAV-7 causes a low incidence of lymphoid leukosis after a latent period of several months. In contrast, infection of 10-day-old chicken embryos with RAV-7 leads to a disease syndrome characterized by stunting, obesity, atrophy of the bursa and the thymus, high triglyceride and cholesterol levels, reduced thyroxine level...

  6. Complete genome sequence of an american avian leukosis virus subgroup j isolate that causes hemangiomas and myeloid leukosis.

    Science.gov (United States)

    Malhotra, Sanandan; Justice, James; Lee, Nathan; Li, Yingying; Zavala, Guillermo; Ruano, Miguel; Morgan, Robin; Beemon, Karen

    2015-01-01

    We report the complete genome sequence of avian leukosis virus subgroup J (ALV-J) isolate PDRC-59831, which causes myeloid leukosis and hemangiomas in chickens. This is an American ALV-J isolate, which was found in a 38-week-old broiler breeder chicken on a farm in Georgia in 2007. PMID:25858851

  7. Complete Genome Sequence of an American Avian Leukosis Virus Subgroup J Isolate That Causes Hemangiomas and Myeloid Leukosis

    OpenAIRE

    Malhotra, Sanandan; Justice, James; Lee, Nathan; Li, Yingying; Zavala, Guillermo; Ruano, Miguel; Morgan, Robin; Beemon, Karen

    2015-01-01

    We report the complete genome sequence of avian leukosis virus subgroup J (ALV-J) isolate PDRC-59831, which causes myeloid leukosis and hemangiomas in chickens. This is an American ALV-J isolate, which was found in a 38-week-old broiler breeder chicken on a farm in Georgia in 2007.

  8. Immunological phenotype of lymphomas induced by avian leukosis viruses.

    OpenAIRE

    Chen, L. C.; S.A. Courtneidge; Bishop, J M

    1983-01-01

    The production of immunoglobulin by six cell lines derived from bursal tumors induced by avian leukosis virus follows two general patterns: (i) three cell lines that have been extensively passaged in culture synthesize and secrete light chains only; (ii) three cell lines that are recently isolated produce and secrete monomeric immunoglobulin M in addition to free light chains. All six cell lines synthesize and secrete both glycosylated and unglycosylated forms of light chain. We conclude that...

  9. Rapid induction of hypothyroidism by an avian leukosis virus.

    OpenAIRE

    Carter, J K; Smith, R. E.

    1983-01-01

    Infection of 10-day chicken embryos with an avian leukosis virus, RAV-7, resulted in hypothyroidism within 3 weeks posthatching. Histological examination of the thyroids from infected chickens showed an extensive infiltration of lymphoblastoid cells by 7 days posthatching. Areas resembling germinal centers were present in the thyroids of infected chickens by 3 weeks posthatching. Examination of circulating thyroid and pancreas hormones showed a significant reduction in T3 and T4 levels and a ...

  10. The passage of cells can improve the detection rate of avian leukosis virus to facilitate the elimination of avian leukosis in chickens

    OpenAIRE

    Wang, Xiuzhen; Wang, Bo; Zhang, Peipei; Cheng, Hegang; Sun, Shuhong

    2013-01-01

    Avian leukosis (AL) is one of the most harmful diseases to the poultry industry in China. The detection of the avian leukosis virus (ALV) p27 antigen plays a decisive role in the elimination of avian leukosis. To explore the influence of passaging cells on the detection rate of the ALV p27 antigen, 21 aseptic anticoagulated blood samples were collected from 21 chickens for which the cloacal swabs were positive for the p27 antigen to inoculate two sets of cell culture plates containing DF1 cel...

  11. Complete genome sequence of an avian leukosis virus isolate associated with hemangioma and myeloid leukosis in egg-type and meat-type chickens

    Science.gov (United States)

    A new virus isolate was separated from a commercial egg-type flock of chickens in China and was determined as subgroup J avian leukosis virus (ALV-J). ALV-J is known to cause myeloid leukosis. But this new isolate of viruses causes both hemangioma and myeloid leukosis in chickens. Hemangioma is an a...

  12. Aberrant expression of liver microRNA in chickens infected with subgroup J avian leukosis virus

    Science.gov (United States)

    Subgroup J avian leukosis virus (ALV-J) is an oncogenic retrovirus primarily causing myeloid leukosis (ML) in broilers. Although ALV is well under control in a few countries including the U.S.A., poultry industry in many parts of the world continues suffering from serious economic loss due to sporad...

  13. Genetic determinants of neoplastic diseases induced by a subgroup F avian leukosis virus.

    OpenAIRE

    Simon, M C; Neckameyer, W S; Hayward, W S; Smith, R. E.

    1987-01-01

    Two subgroup F avian leukosis viruses, ring-necked pheasant virus (RPV) and RAV-61, were previously shown to induce a high incidence of a fatal proliferative disorder in the lungs of infected chickens. These lung lesions, termed angiosarcomas, appear rapidly (4 to 5 weeks after infection), show no evidence of proto-oncogene activation by proviral integration, and are not induced by avian leukosis viruses belonging to other subgroups. To identify the viral sequences responsible for induction o...

  14. Enhanced inhibition of Avian leukosis virus subgroup J replication by multi-target miRNAs

    OpenAIRE

    Meng Qing-Wen; Zhang Zai-Ping; Wang Wei; Tian Jin; Xiao Zhi-Guang

    2011-01-01

    Abstract Background Avian leukosis virus (ALV) is a major infectious disease that impacts the poultry industry worldwide. Despite intensive efforts, no effective vaccine has been developed against ALV because of mutations that lead to resistant forms. Therefore, there is a dire need to develop antiviral agents for the treatment of ALV infections and RNA interference (RNAi) is considered an effective antiviral strategy. Results In this study, the avian leukosis virus subgroup J (ALV-J) provira...

  15. Na+/H+ exchanger type 1 is a receptor for pathogenic subgroup J avian leukosis virus

    OpenAIRE

    Chai, Ning; Bates, Paul

    2006-01-01

    Subgroup J avian leukosis virus (ALV-J) is a recently identified avian oncogenic retrovirus responsible for severe economic losses worldwide. In contrast with the other ALV subgroups, ALV-J predominantly induces myeloid leukosis in meat-type chickens. Despite significant homology with the other ALV subgroups across most of the genome, the envelope protein of ALV-J (EnvJ) shares low homology with the others. Pathogenicity and myeloid leukosis induction map to the env gene of ALV-J. A chimeric ...

  16. gga-miR-375 Plays a Key Role in Tumorigenesis Post Subgroup J Avian Leukosis Virus Infection

    OpenAIRE

    Li, Hongxin; Shang, Huiqing; Shu, Dingming; Zhang, Huanmin; Ji, Jun; Sun, Baoli; Li, Hongmei; Xie, Qingmei

    2014-01-01

    Avian leukosis is a neoplastic disease caused in part by subgroup J avian leukosis virus J (ALV-J). Micro ribonucleic acids (miRNAs) play pivotal oncogenic and tumour-suppressor roles in tumour development and progression. However, little is known about the potential role of miRNAs in avian leukosis tumours. We have found a novel tumour-suppressor miRNA, gga-miR-375, associated with avian leukosis tumorigenesis by miRNA microarray in a previous report. We have also previously studied the biol...

  17. CLONING AND EXPRESSION OF ENVELOPE GENE OF SUBGROUP J AVIAN LEUKOSIS VIRUS

    Science.gov (United States)

    Avian leukosis virus subgroup J (ALV-J)was identified in the l990's, and causes mye1ocytic myeloid leukosis in meat-type chicken. The envelope (env)gene of ADOL-4817 strain of ALV-J was amplified by po1ymerase chain reaction (PCR)and cloned into TA vector. The size of env gene is about 1.7 kb. A tr...

  18. On the mechanism of retrovirus-induced avian lymphoid leukosis: deletion and integration of the proviruses.

    OpenAIRE

    Y. K. Fung; Fadly, A M; Crittenden, L B; Kung, H J

    1981-01-01

    There is considerable evidence that infection by avian lymphoid leukosis viruses can led to tumor development in the target organ of the host. The mechanism by which virus-induced oncogenic transformation occurs, however, is not clearly understood. As a first step toward deciphering this process, we have characterized the proviruses of the lymphoid leukosis viruses in DNAs extracted from the leukotic and metastatic tumors by using restriction enzyme digestion and filter hybridization analysis...

  19. Nonconserved tryptophan 38 of the cell surface receptor for subgroup J avian leukosis virus discriminates sensitive from resistant avian species

    OpenAIRE

    Kučerová, D. (Dana); Plachý, J; Reinišová, M. (Markéta); Šenigl, F. (Filip); Trejbalová, K. (Kateřina); Geryk, J. (Josef); Hejnar, J. (Jiří)

    2013-01-01

    Subgroup J avian leukosis virus (ALV-J) is unique among the avian sarcoma and leukosis viruses in using the multimembrane-spanning cell surface protein Na+/H+ exchanger type 1 (NHE1) as a receptor. The precise localization of amino acids critical for NHE1 receptor activity is key in understanding the virus-receptor interaction and potential interference with virus entry. Because no resistant chicken lines have been described until now, we compared the NHE1 amino acid sequences from permissive...

  20. Generation of a helper cell line for packaging avian leukosis virus-based vectors.

    OpenAIRE

    Savatier, P; Bagnis, C.; Thoraval, P; Poncet, D; Belakebi, M; Mallet, F.; Legras, C.; Cosset, F L; Thomas, J.L.; Chebloune, Y

    1989-01-01

    We constructed an avian leukosis virus-based packaging cell line, pHF-g, containing Rous-associated virus DNA with several alterations to abolish RNA packaging. One of them is a 52-base-pair deletion encompassing the putative encapsidation signal in the leader region. The 3' long terminal repeat was also removed and replaced by the polyadenylation sequence from the herpes simplex virus thymidine kinase gene. When pHF-g cells were transfected by an avian leukosis virus-based vector, they produ...

  1. Packaging cells for avian leukosis virus-based vectors with various host ranges.

    OpenAIRE

    Cosset, F L; Ronfort, C.; Molina, R. M.; Flamant, F.; Drynda, A; Benchaibi, M; Valsesia, S; Nigon, V M; Verdier, G

    1992-01-01

    Using our previously described Haydée semipackaging cell line (F. L. Cosset, C. Legras, Y. Chebloune, P. Savatier, P. Thoraval, J. L. Thomas, J. Samarut, V. M. Nigon, and G. Verdier, J. Virol. 64:1070-1078, 1990) which produces avian leukosis virus gag and pol proteins, we have constructed packaging cells with subgroups B, C, and E envelope specificities. This allows us to produce helper-free avian leukosis virus particles carrying the lacZ reporter gene and the A, B, C, or E subgroup specifi...

  2. Embryonic infection with the endogenous avian leukosis virus Rous-associated virus-0 alters responses to exogenous avian leukosis virus infection.

    OpenAIRE

    Crittenden, L B; McMahon, S.; Halpern, M S; Fadly, A M

    1987-01-01

    We inoculated susceptible chicken embryos with the endogenous avian leukosis virus Rous-associated virus-0 (RAV-0) on day 6 of incubation. At 1 week after hatching, RAV-0-infected and control chickens were inoculated with either RAV-1 or RAV-2, exogenous viruses belonging to subgroups A and B, respectively. The chickens injected with RAV-0 as embryos remained viremic with exogenous virus longer and either failed to develop type-specific humoral immunity to exogenous virus or developed it late...

  3. Nonconserved tryptophan 38 of the cell surface receptor for subgroup J avian leukosis virus discriminates sensitive from resistant avian species

    Czech Academy of Sciences Publication Activity Database

    Kučerová, Dana; Plachý, Jiří; Reinišová, Markéta; Šenigl, Filip; Trejbalová, Kateřina; Geryk, Josef; Hejnar, Jiří

    2013-01-01

    Roč. 87, č. 15 (2013), s. 8399-8407. ISSN 0022-538X R&D Projects: GA ČR GAP502/10/1651 Institutional support: RVO:68378050 Keywords : avian leukosis virus * ALV-J * NHE1 * host resistance * receptor Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.648, year: 2013

  4. Lack of evidence of endogenous avian leukosis virus and endogenous avian retrovirus transmission to measles, mumps, and rubella vaccine recipients.

    OpenAIRE

    Hussain, A. I.; V. Shanmugam; Switzer, W. M.; Tsang, S. X.; Fadly, A.; Thea, D.; Helfand, R; Bellini, W J; Folks, T M; Heneine, W

    2001-01-01

    The identification of endogenous avian leukosis virus (ALV) and endogenous avian retrovirus (EAV) in chick cell-derived measles and mumps vaccines in current use has raised concern about transmission of these retroviruses to vaccine recipients. We used serologic and molecular methods to analyze specimens from 206 recipients of measles, mumps, and rubella (MMR) vaccine for evidence of infection with ALV and EAV. A Western blot assay for detecting antibodies to endogenous ALV was developed and ...

  5. The MYC, TERT, and ZIC1 Genes Are Common Targets of Viral Integration and Transcriptional Deregulation in Avian Leukosis Virus Subgroup J-Induced Myeloid Leukosis

    OpenAIRE

    Li, Yuhao; Liu, Xuemei; Yang, Zhen; Xu, Chenggang; Liu, Di; Qin, Jianru; Dai, Manman; Hao, Jianyong; Feng, Min; Huang, Xiaorong; Tan, Liqiang; Cao, Weisheng; Liao, Ming

    2014-01-01

    The integration of retroviruses into the host genome following nonrandom genome-wide patterns may lead to the deregulation of gene expression and oncogene activation near the integration sites. Slow-transforming retroviruses have been widely used to perform genetic screens for the identification of genes involved in cancer. To investigate the involvement of avian leukosis virus subgroup J (ALV-J) integration in myeloid leukosis (ML) in chickens, we utilized an ALV-J insertional identification...

  6. Avian leukosis virus type J (ALV-J) in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Jurajda, V.; Kulíková, L.; Halouzka, R.; Geryk, Josef; Svoboda, Jan

    2000-01-01

    Roč. 69, č. 2 (2000), s. 143-145. ISSN 0001-7213 R&D Projects: GA ČR GA524/01/0866 Keywords : avian leukosis virus-J * myelocytomatosis * breeding chickens Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.240, year: 2000

  7. Diversity in Avian Leukosis Virus Isolates From Single Outbreak of Myelocytomatosis in Commercial Layers

    Science.gov (United States)

    In 1997, three white leghorn flocks were diagnosed with the first reported case of myelocytomatosis in commercial and field layer flocks. Moreover, the first naturally occurring recombinant avian leukosis virus (ALV) termed AF 115-4 (ALV-B/J) containing the envelope of ALV-B and long terminal repeat...

  8. EXPRESSION EFFECT OF RECOMBINANT ENVELOPE GENE OF AVIAN LEUKOSIS VIRUS SUBGROUP J IN SF 9 CELLS

    Science.gov (United States)

    Expression effect of envelope gene of avian leukosis virus (ALV-J) in Sf9 cells infected with recombinant baculovirus rBac-env was analyzed by immunofluorescent assay and immunoprecipitation. The results showed that recombinant envelope gene product was a glycosylated protein in tunicumycin treatme...

  9. Screening for Recombinant Avian Leukosis Viruses in Cell Cultures Inoculated with Various Subgroups of Virus

    Science.gov (United States)

    Chicken embryo fibroblasts (CEFs) prepared from ADOL SPF embryos were co-infected with different concentration ratios of subgroups A, J and E avian leukosis virus (ALV). Inoculated cultures were screened for recombination among the ALV strains. Potential recombinant viruses were purified by limiting...

  10. Generation of transforming viruses in cultures of chicken fibroblasts infected with an avian leukosis virus.

    OpenAIRE

    Stavnezer, E; Gerhard, D S; Binari, R C; Balazs, I.

    1981-01-01

    During serial passages of an avian leukosis virus (the transformation-defective, src deletion mutant of Bratislava 77 avian sarcoma virus, designated tdB77) in chicken embryo fibroblasts, viruses which transformed chicken embryo fibroblasts in vitro emerged. Chicken embryo fibroblasts infected with these viruses (SK770 and Sk780) had a distinctive morphology, formed foci in monolayer cultures, and grew independent of anchorage in semisolid agar. Bone marrow cells were not transformed by these...

  11. Novel sequences of subgroup J avian leukosis viruses associated with hemangioma in Chinese layer hens

    OpenAIRE

    Pan Wei; Gao Yulong; Sun Fenfen; Qin Litin; Liu Zaisi; Yun Bingling; Wang Yongqiang; Qi Xiaole; Gao Honglei; Wang Xiaomei

    2011-01-01

    Abstract Background Avian leukosis virus subgroup J (ALV-J) preferentially induces myeloid leukosis (ML) in meat-type birds. Since 2008, many clinical cases of hemangioma rather than ML have frequently been reported in association with ALV-J infection in Chinese layer flocks. Results Three ALV-J strains associated with hemangioma were isolated and their proviral genomic sequences were determined. The three isolates, JL093-1, SD09DP03 and HLJ09MDJ-1, were 7,670, 7,670, and 7,633 nt in length. ...

  12. Molecular analysis of the c-myc locus in normal tissue and in avian leukosis virus-induced lymphomas.

    OpenAIRE

    Neel, B G; Gasic, G P; Rogler, C E; Skalka, A M; Ju, G; Hishinuma, F; Papas, T; Astrin, S M; Hayward, W S

    1982-01-01

    We isolated molecular clones of the provirus-host cell junctions (tumor junction fragments) from two avian leukosis virus-induced lymphomas and compared the structures of these clones with a clone of the normal c-myc gene. Restriction mapping and DNA sequencing demonstrated that normal proviral integration events occurred adjacent to c-myc in both tumors, without gross structural alteration of c-myc. The right long terminal repeat of an avian leukosis virus provirus is integrated upstream fro...

  13. Absence of missense mutations in activated c-myc genes in avian leukosis virus-induced B-cell lymphomas

    International Nuclear Information System (INIS)

    The authors determined the nucleotide sequences of two independent DNA clones which contained the activated c-myc genes from avian leukosis virus-induced B-cell lymphomas. Neither of these c-myce genes contained missense mutations. This strongly supports the notion that the c-myc photo-oncogene in avian leukosis virus-induced B-cell lymphomas can be oncogenically activated by altered expression of the gene without a change in the primary structure of the gene product

  14. Absence of missense mutations in activated c-myc genes in avian leukosis virus-induced B-cell lymphomas.

    OpenAIRE

    Hahn, M; Hayward, W S

    1988-01-01

    We have determined the nucleotide sequences of two independent DNA clones which contained the activated c-myc genes from avian leukosis virus-induced B-cell lymphomas. Neither of these c-myc genes contained missense mutations. This strongly supports the notion that the c-myc proto-oncogene in avian leukosis virus-induced B-cell lymphomas can be oncogenically activated by altered expression of the gene without a change in the primary structure of the gene product.

  15. Correlation between cell killing and massive second-round superinfection by members of some subgroups of avian leukosis virus.

    OpenAIRE

    Weller, S K; Joy, A E; Temin, H M

    1980-01-01

    Avian leukosis viruses of subgroups B, D, and F are cytopathic for chicken cells, whereas viruses of subgroups A, C, and E are not. The amounts of unintegrated linear viral DNA in cells at different times after infection with cytopathic or noncytopathic viruses were determined by hybridization and transfection assays. Shortly after infection, there is a transient accumulation of unintegrated linear viral DNA in cells infected with cytopathic avian leukosis viruses. By 10 days after infection,...

  16. Absence of missense mutations in activated c-myc genes in avian leukosis virus-induced B-cell lymphomas

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, M.; Hayward, W.S.

    1988-06-01

    The authors determined the nucleotide sequences of two independent DNA clones which contained the activated c-myc genes from avian leukosis virus-induced B-cell lymphomas. Neither of these c-myce genes contained missense mutations. This strongly supports the notion that the c-myc photo-oncogene in avian leukosis virus-induced B-cell lymphomas can be oncogenically activated by altered expression of the gene without a change in the primary structure of the gene product.

  17. Avian sarcoma and leukosis virus gag gene in the Anser anser domesticus genome.

    Science.gov (United States)

    Zhu, F; Jie, H; Lian, L; Qu, L J; Hou, Z C; Zheng, J X; Chen, S Y; Yang, N; Liu, Y P

    2015-01-01

    Endogenous retroviruses are regarded as ideal genetic markers for evolutionary analyses. Birds were some of the initial vertebrates found to contain endogenous retroviruses. However, few studies have investigated the presence and distribution of endogenous retroviruses in goose. In this study, we detected the avian sarcoma and leukosis virus gag gene in the genomic DNA of 8 Chinese native breeds using polymerase chain reaction method. The results indicated that a 1.2-kb avian sarcoma and leukosis virus gag sequence was integrated into all 8 goose breeds. The mean genetic pairwise distance was 0.918% among the investigated geese. To the best of our knowledge, this is the first report demonstrating the presence of the endogenous retroviruses in the domestic goose genome. The genetic structure should be further examined in the domestic goose. PMID:26600497

  18. Detection by PCR of Multiple Subgroups of Avian Leukosis Virus (ALV) in Broilers in the Sudan

    OpenAIRE

    Abdelmelik Ibrahim Khalafalla; Maaz Majzoub Abdel-Latif

    2005-01-01

    An investigation on avian leukosis virus infection in broiler parent farm in Khartoum state, Sudan was conducted. Clinical signs, morbidity rate, mortality rate were recorded. Necropsy was performed, histopathological sections from infected livers were made, and virus isolation trials in chick embryo fibroblast and chorioallantoic membrane were performed. PCR tests were performed on DNA extracted from infected livers and spleen. Affected birds showed in-appetence, abnormal feathering, palenes...

  19. At least two regions of the viral genome determine the oncogenic potential of avian leukosis viruses.

    OpenAIRE

    Robinson, H L; Blais, B M; Tsichlis, P N; Coffin, J. M.

    1982-01-01

    Recombinants of oncogenic and nononcogenic avian leukosis viruses were tested for their oncogenic potential in chickens. The results indicate that at least two regions of the viral genome determine the oncogenic potential of these viruses. The first region contains sequences that control viral mRNA synthesis. These sequences determine the potential of a virus to induce a low incidence of lymphomas, carcinomas, chondrosarcomas, fibrosarcomas, and osteopetrosis. The second region lies outside t...

  20. Development of an antigen-capture ELISA for the detection of avian leukosis virus p27 antigen.

    Science.gov (United States)

    Yun, Bingling; Li, Delong; Zhu, Haibo; Liu, Wen; Qin, Liting; Liu, Zaisi; Wu, Guan; Wang, Yongqiang; Qi, Xiaole; Gao, Honglei; Wang, Xiaomei; Gao, Yulong

    2013-02-01

    An antigen-capture enzyme-linked immunosorbent assay (AC-ELISA) employing monoclonal and polyclonal antibodies against p27 was developed for the detection of the avian leukosis virus (ALV). The specificity of the optimized AC-ELISA was evaluated using avian leukosis virus subgroup J (ALV-J), avian leukosis virus subgroup A (ALV-A), avian leukosis virus subgroup B (ALV-B), avian infectious bronchitis virus (IBV), Marek's disease virus (MDV), avian infectious laryngotracheitis virus (ILTV), Fowlpox virus (FPV), infectious bursal disease virus (IBDV), Newcastle disease virus (NDV), avian reovirus (ARV), reticuloendotheliosis virus (REV), avian influenza virus (AIV) and Escherichia coli. The only specimens that yielded a strong signal were ALV-J, ALV-A and ALV-B, indicating that this assay is suitable for the detection of ALV. The limit of detection of this assay was 1.25 ng/ml of rp27 protein and 10(1.79)TCID(50) units of HLJ09MDJ-1 (ALV-J). Moreover, this AC-ELISA can detect ALV in cloacal swabs of chickens experimentally infected as early as 12 days post-infection. The AC-ELISA detected the virus in the albumin and cloacal swabs of naturally infected chickens, and the results were confirmed by PCR, indicating that the AC-ELISA was a suitable method for the detection of ALV. This test is rapid and sensitive and could be convenient for epidemiological studies and eradication programs. PMID:23201286

  1. Complete Genome Sequence of an Avian Leukosis Virus Isolate Associated with Hemangioma and Myeloid Leukosis in Egg-Type and Meat-Type Chickens

    OpenAIRE

    Ji, Jun; Li, Hongxin; Zhang, Huanmin; Xie, Qingmei; CHANG, SHUANG; Shang, Huiqin; Ma, Jingyun; Bi, Yingzuo

    2012-01-01

    Subgroup J avian leukosis virus (ALV-J) was first isolated from meat-type chickens that developed myeloid leukosis (ML). In recent years, field cases of hemangioma (HE) or HE and ML, rather than ML alone, have been reported in commercial layer flocks exposed to ALV-J with a high incidence in China. Here we report the complete genomic sequence of an ALV-J isolate that caused both HE and ML in egg-type and meat-type chickens in China. These findings will provide additional insights into the mol...

  2. Development of avian sarcoma and leukosis virus-based vector-packaging cell lines.

    OpenAIRE

    Stoker, A W; BISSELL, M. J.

    1988-01-01

    We have constructed an avian leukosis virus derivative with a 5' deletion extending from within the tRNA primer binding site to a SacI site in the leader region. Our aim was to remove cis-acting replicative and/or encapsidation sequences and to use this derivative, RAV-1 psi-, to develop vector-packaging cell lines. We show that RAV-1 psi- can be stably expressed in the quail cell line QT6 and chicken embryo fibroblasts and that it is completely replication deficient in both cell types. Moreo...

  3. Infrequent involvement of c-fos in avian leukosis virus-induced nephroblastoma.

    OpenAIRE

    Collart, K L; Aurigemma, R; Smith, R. E.; Kawai, S; Robinson, H L

    1990-01-01

    To determine whether c-fos is involved in avian leukosis virus-induced nephroblastoma, 28 tumors from chickens were analyzed for novel fos fragments. DNA from 1 of 16 clonal outgrowths (in chicken 6561) contained novel fos-related EcoRI and KpnI fragments which hybridized to both v-fos and viral probes. Oncogenicity tests using filtered 6561 tumor cell homogenates did not reveal a tumor-inducing transduction of c-fos. We conclude that c-fos is only an occasional target for proviral insertions...

  4. Complete Genome Sequence of a J Subgroup Avian Leukosis Virus Isolated from Local Commercial Broilers

    OpenAIRE

    Li, Hongxin; Xue, Chunyi; Ji, Jun; CHANG, SHUANG; Shang, Huiqin; Zhang, Lingjun; Ma, Jingyun; Bi, Yingzuo; Xie, Qingmei

    2012-01-01

    Subgroup J avian leukosis virus (ALV-J) isolate GDKP1202 was isolated from a 50-day-old local yellow commercial broiler in the Guangdong province of China in 2012. Here we report the complete genomic sequence of the GDKP1202 isolate, which caused high mortality, serious growth suppression, thymic atrophy, and liver enlargement in commercial broilers. A novel potential binding site (5′-GGCACCTCC-3′) for c-myb was identified in the GDKP1202 genome. These findings will provide additional insight...

  5. STUDIES OF SUBGROUP J AVIAN LEUKOSIS VIRUS INFECTION AND TUMORS IN A NATURALLY INFECTED COMMERCIAL BROILER BREEDER FLOCK

    Science.gov (United States)

    Chickens were pedigree hatched from a commercial broiler breeder flock that had been identified by the company to have a relatively high incidence (20% - 60%) of subgroup J avian leukosis virus (ALV-J) infection. Unexpectedly, only one of 175 (0.6%) of chicks hatched at our laboratory tested positiv...

  6. Development of an endogenous virus-free line of chickens susceptible to all subgroups of avian leukosis virus

    Science.gov (United States)

    Primary chicken embryo fibroblasts (CEF) from special specific pathogen free chicken lines are normally used for detection of contamination with avian leukosis viruses (ALV). The suitability and efficiency of such tests mostly depend on the susceptibility of CEF to varied subgroups of ALV. The ideal...

  7. Development and evaluation of an immunochromatographic strip for rapid detection of capsid protein antigen p27 of avian leukosis virus.

    Science.gov (United States)

    Qian, Kun; Liang, You-zhi; Yin, Li-ping; Shao, Hong-xia; Ye, Jian-qiang; Qin, Ai-jian

    2015-09-01

    A rapid immunochromatographic strip for detecting capsid protein antigen p27 of avian leukosis virus was successfully developed based on two high-affinity monoclonal antibodies. The test strip could detect not only 600pg purified recombinant p27 protein but also quantified avian leukosis virus as low as 70 TCID50, which has comparative sensitivity to the commercial enzyme-linked immunosorbent assay (ELISA) kit. For the evaluation of this test strip, 1100 samples consisting of cloacal swabs, meconium collected from the earliest stool of one day old chicken and virus isolates were assessed both by the strip and by the commercial ELISA kit. The agreement between these two tests was 93.91%, 93.42% and 100%, respectively. The sensitivity and specificity of the strip were also calculated by using the ELISA kit as the standard. This immunochromatographic strip provides advantages of rapid and simple detection of capsid protein antigen p27 of avian leukosis virus, which could be applied as an on-site testing assay and used for control and eradication programs of avian leukosis disease. PMID:25977186

  8. Symmetrical base preferences surrounding HIV-1, avian sarcoma/leukosis virus, and murine leukemia virus integration sites

    OpenAIRE

    Holman, Alexander G; Coffin, John M.

    2005-01-01

    To investigate retroviral integration targeting on a nucleotide scale, we examined the base frequencies directly surrounding cloned in vivo HIV-1, murine leukemia virus, and avian sarcoma/leukosis virus integrations. Base preferences of up to 2-fold the expected frequencies were found for three viruses, representing P values down to

  9. Subgroup J Avian Leukosis Virus Neutralizing Antibody Escape Variants Contribute to Viral Persistence in Meat-Type Chickens

    Science.gov (United States)

    We have previously demonstrated a high incidence of chickens with persistent viremia even in the presence of neutralizing antibodies (NAb) against the inoculated parental virus (V+A+) in commercial meat-type chickens inoculated at hatch with Subgroup J avian leukosis virus (ALV J) field isolates. I...

  10. Use of molecularly cloned avian leukosis virus to study antigenic variation following infection of meat-type chickens

    Science.gov (United States)

    A molecularly cloned strain of subgroup J avian leukosis virus (ALV-J) termed R5-4 was used to study antigenic variation following infection of meat-type chickens. Chickens were inoculated with R5-4 virus at either 8 days of embryonation or at 1 week of age. Each chicken was housed in a separate is...

  11. Genetic Diversity of NHE1, Receptor for Subgroup J Avian Leukosis Virus, in Domestic Chicken and Wild Anseriform Species

    Czech Academy of Sciences Publication Activity Database

    Reinišová, Markéta; Plachý, Jiří; Kučerová, Dana; Šenigl, Filip; Vinkler, M.; Hejnar, Jiří

    2016-01-01

    Roč. 11, č. 3 (2016), e0150589-e0150589. E-ISSN 1932-6203 R&D Projects: GA MŠk LO1419; GA ČR GA13-30983S Institutional support: RVO:68378050 Keywords : avian leukosis virus * NHE1 * Genetic Diversity Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.234, year: 2014

  12. Improvement of avian leukosis virus (ALV)-based retrovirus vectors by using different cis-acting sequences from ALVs.

    OpenAIRE

    Cosset, F L; Legras, C.; Thomas, J.L.; Molina, R. M.; Chebloune, Y; Faure, C.; Nigon, V M; Verdier, G

    1991-01-01

    Production and expression of double-expression vectors which transduce both Neo(r) and lacZ genes and are based on the structure of avian leukosis virus were enhanced by using cis-acting sequences (long terminal repeats and noncoding sequences) from Rous-associated virus-1 and Rous-associated virus-2 rather than those of avian erythroblastosis virus previously used in our constructs. Polyclonal producer cells obtained after transfection of these vectors into the Isolde packaging cell line gav...

  13. Development of avian sarcoma and leukosis virus-based vector-packaging cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Stoker, A.W.; Bissell, M.J. (Univ. of California, Berkeley (USA))

    1988-03-01

    The authors have constructed an avian leukosis virus derivative with a 5{prime} deletion extending from within the tRNA primer binding site to a SacI site in the leader region. The aim was to remove cis-acting replicative and/or encapsidation sequences and to use this derivative, RAV-1{Psi}{sup {minus}}, to develop vector-packaging cell lines. They show that RAV-1{Psi}{sup {minus}} can be stably expressed in the quail cell line QT6 and chicken embryo fibroblasts and that it is completely replication deficient in both cell types. Moreover, they have demonstrated that QT6-derived lines expressing RAV-1{Psi}{sup {minus}} can efficiently package four structurally different replication-defective v-src expression vectors into infectious virus, with very low or undetectable helper virus release. These RAV-{Psi}{sup {minus}}-expressing cell lines comprise the first prototype avian sarcoma and leukosis virus-based vector-packaging system. The construction of our vectors has also shown us that a sequence present within gag, thought to facilitate virus packaging, is not necessary for efficient vector expression and high virus production. They show that quantitation and characterization of replication-defective viruses can be achieved with a sensitive immunocytochemical procedure, presenting an alternative to internal selectable vector markers.

  14. Enhanced inhibition of Avian leukosis virus subgroup J replication by multi-target miRNAs

    Directory of Open Access Journals (Sweden)

    Meng Qing-Wen

    2011-12-01

    Full Text Available Abstract Background Avian leukosis virus (ALV is a major infectious disease that impacts the poultry industry worldwide. Despite intensive efforts, no effective vaccine has been developed against ALV because of mutations that lead to resistant forms. Therefore, there is a dire need to develop antiviral agents for the treatment of ALV infections and RNA interference (RNAi is considered an effective antiviral strategy. Results In this study, the avian leukosis virus subgroup J (ALV-J proviral genome, including the gag genes, were treated as targets for RNAi. Four pairs of miRNA sequences were designed and synthesized that targeted different regions of the gag gene. The screened target (i.e., the gag genes was shown to effectively suppress the replication of ALV-J by 19.0-77.3%. To avoid the generation of escape variants during virus infection, expression vectors of multi-target miRNAs were constructed using the multi-target serial strategy (against different regions of the gag, pol, and env genes. Multi-target miRNAs were shown to play a synergistic role in the inhibition of ALV-J replication, with an inhibition efficiency of viral replication ranging from 85.0-91.2%. Conclusion The strategy of multi-target miRNAs might be an effective method for inhibiting ALV replication and the acquisition of resistant mutations.

  15. The MET Gene Is a Common Integration Target in Avian Leukosis Virus Subgroup J-Induced Chicken Hemangiomas

    OpenAIRE

    Justice, James; Malhotra, Sanandan; Ruano, Miguel; Li, Yingying; Zavala, Guillermo; Lee, Nathan; Morgan, Robin; Beemon, Karen

    2015-01-01

    Avian leukosis virus subgroup J (ALV-J) is a simple retrovirus that can cause hemangiomas and myeloid tumors in chickens and is currently a major economic problem in Asia. Here we characterize ALV-J strain PDRC-59831, a newly studied U.S. isolate of ALV-J. Five-day-old chicken embryos were infected with this virus, and the chickens developed myeloid leukosis and hemangiomas within 2 months after hatching. To investigate the mechanism of pathogenesis, we employed high-throughput sequencing to ...

  16. Molecular characterization of 3'UTRs of J subgroup avian leukosis virus in passerine birds in China.

    Science.gov (United States)

    Han, Chunyan; Hao, Ruijun; Liu, Lanlan; Zeng, Xiangwei

    2015-03-01

    To assess the status of avian leukosis virus subgroup J (ALV-J) infection in passerine birds in China, 365 passerine birds collected from northeast China from 2011 to 2013 were tested, and two ALV-J strains were isolated from yellow-browed warbler and marsh tit. The 3'untranslated regions (3'UTRs) of the two strains were amplified, cloned, and sequenced, with the results showing that the 3'UTRs of the two strains contained multiple mutations and deletions, which are similar to viral strains isolated from Chinese layer chickens. These results demonstrate the presence of ALV-J in passerine birds and reveal the molecular characteristics of the 3'UTRs of ALV-J from passerine birds. PMID:25577165

  17. Intronic deletions of tva receptor gene decrease the susceptibility to infection by avian sarcoma and leukosis virus subgroup A

    OpenAIRE

    Weiguo Chen; Yang Liu; Hongxing Li; Shuang Chang; Dingming Shu; Huanmin Zhang; Feng Chen; Qingmei Xie

    2015-01-01

    The group of avian sarcoma and leukosis virus (ASLV) in chickens contains six highly related subgroups, A to E and J. Four genetic loci, tva, tvb, tvc and tvj, encode for corresponding receptors that determine the susceptibility to the ASLV subgroups. The prevalence of ASLV in hosts may have imposed strong selection pressure toward resistance to ASLV infection, and the resistant alleles in all four receptor genes have been identified. In this study, two new alleles of the tva receptor gene, t...

  18. A Recombinant Avian Leukosis Virus Subgroup J for Directly Monitoring Viral Infection and the Selection of Neutralizing Antibodies

    OpenAIRE

    Wang, Qi; Li, Xiaofei; Ji, Xiaolin; Wang, Jingfei; Shen, Nan; Gao, Yulong; Qi, Xiaole; Wang, Yongqiang; Gao, Honglei; Zhang, Shide; Wang, Xiaomei

    2014-01-01

    Avian leukosis virus subgroup J (ALV-J) has induced serious clinical outbreaks and has become a serious infectious disease of chickens in China. We describe here the creation of a recombinant ALV-J tagged with the enhanced green fluorescent protein (named rHPRS-103EGFP). We successfully utilize the rHPRS-103EGFP to visualize viral infection and for development of a simplified serum-neutralization test.

  19. Subgroup J avian leukosis virus infection of chicken dendritic cells induces apoptosis via the aberrant expression of microRNAs

    OpenAIRE

    Di Liu; Manman Dai; Xu Zhang; Weisheng Cao; Ming Liao

    2016-01-01

    Subgroup J avian leukosis virus (ALV-J) is an oncogenic retrovirus that causes immunosuppression and enhances susceptibility to secondary infection. The innate immune system is the first line of defense in preventing bacterial and viral infections, and dendritic cells (DCs) play important roles in innate immunity. Because bone marrow is an organ that is susceptible to ALV-J, the virus may influence the generation of bone marrow-derived DCs. In this study, DCs cultured in vitro were used to in...

  20. Spontaenous Avian Leukosis Virus-like lymphomas in specific-pathogen-free chickens inoculated with serotype 2 Marek’s disease virus

    Science.gov (United States)

    Chickens of Avian Disease and Oncology Laboratory (ADOL) line alv6, known to develop spontaneous avian leukosis virus (ALV)-like lymphomas at two years of age or older, were inoculated either in-ovo, or at 1 day of age with strain SB-1 of serotype 2 Marek’s disease virus (MDV). Inoculated and uninoc...

  1. Endogenous avian leukosis viral loci in the Red Jungle Fowl genome assembly.

    Science.gov (United States)

    Benkel, Bernhard; Rutherford, Katherine

    2014-12-01

    The current build (galGal4) of the genome of the ancestor of the modern chicken, the Red Jungle Fowl, contains a single endogenous avian leukosis viral element (ALVE) on chromosome 1 (designated RSV-LTR; family ERVK). The assembly shows the ALVE provirus juxtaposed with a member of a second family of avian endogenous retroviruses (designated GGERV20; family ERVL); however, the status of the 3' end of the ALVE element as well as its flanking region remain unclear due to a gap in the reference genome sequence. In this study, we filled the gap in the assembly using a combination of long-range PCR (LR-PCR) and a short contig present in the unassembled portion of the reference genome database. Our results demonstrate that the ALVE element (ALVE-JFevB) is inserted into the putative envelope region of a GGERV20 element, roughly 1 kbp from its 3' end, and that ALVE-JFevB is complete, and depending on its expression status, potentially capable of directing the production of virus. Moreover, the unassembled portion of the genome database contains junction fragments for a second, previously characterized endogenous proviral element, ALVE-6. PMID:25306461

  2. Persistence of Marek's disease virus in a subpopulation of B cells that is transformed by avian leukosis virus, but not in normal bursal B cells.

    OpenAIRE

    Fynan, E; Block, T M; DuHadaway, J; Olson, W; Ewert, D L

    1992-01-01

    Previous studies have described an augmentation of avian leukosis virus (ALV)-induced lymphoid leukosis in chickens that were coinfected with a serotype 2 Marek's disease virus (MDV) strain, SB-1. As a first step toward understanding the mechanism of this augmentation, we have analyzed the tropism of the MDV for the ALV-transformed B cell. After hatching, chickens were coinfected with ALV and a nonpathogenic strain of MDV, SB-1. Seventy primary and metastatic ALV-induced lymphomas that develo...

  3. The Avian Retrovirus Avian Sarcoma/Leukosis Virus Subtype A Reaches the Lipid Mixing Stage of Fusion at Neutral pH

    OpenAIRE

    Earp, Laurie J.; Delos, Sue E.; Netter, Robert C.; Bates, Paul; White, Judith M.

    2003-01-01

    We previously showed that the envelope glycoprotein (EnvA) of avian sarcoma/leukosis virus subtype A (ASLV-A) binds to liposomes at neutral pH following incubation with its receptor, Tva, at ≥22°C. We also provided evidence that ASLV-C fuses with cells at neutral pH. These findings suggested that receptor binding at neutral pH and ≥22°C is sufficient to activate Env for fusion. A recent study suggested that two steps are necessary to activate avian retroviral Envs: receptor binding at neutral...

  4. Polymorphism of avian leukosis virus subgroup E loci showing selective footprints in chicken.

    Science.gov (United States)

    Chen, Weiguo; Qu, Hao; Li, Chunyu; Luo, Chenglong; Wang, Jie; Yang, Chunfen; Shu, Dingming

    2014-12-01

    Avian leukosis virus subgroup E (ALVE) is a family of endogenous retroviruses in the chicken genome. To investigate the genetic consequences of chicken domestication, we analyzed 18 ALVE loci in red jungle fowls, layers, broilers, and Chinese indigenous chickens. None of the ALVE loci tested were found in red jungle fowls, but 12 were present in domestic chickens. ALVE1 and ALVE16 are found in regions of the genome that harbor quantitative trait loci (QTL) affecting egg production traits. ALVE1 was fixed and ALVE16 was detected only in layers. By contrast, ALVE-b1, ALVE-b5, ALVE-b6, and ALVE-b8 integrated into regions of the genome that harbor QTL affecting meat production traits. Carrier frequencies of these four ALVE loci were high in broilers and low in Chinese local chickens; the loci were not found in the layers. This study demonstrated that insertionally polymorphic ALVE loci can illustrate the selective footprints in the chicken genome. PMID:25007752

  5. Avian leukosis virus is a versatile eukaryotic platform for polypeptide display

    International Nuclear Information System (INIS)

    Display technology refers to methods of generating libraries of modularly coded biomolecules and screening them for particular properties. Retroviruses are good candidates to be a eukaryotic viral platform for the display of polypeptides synthesized in eukaryotic cells. Here we demonstrate that avian leukosis virus (ALV) provides an ideal platform for display of nonviral polyaeptides expressed in a eukaryotic cell substrate. Different sizes of polypeptides were genetically fused to the extreme N-terminus of the ALV envelope glycoprotein in an ALV infectious clone containing an alkaline phosphatase reporter gene. The chimeric envelope glycoproteins were efficiently incorporated into virions and were stably displayed on the surface of the virions through multiple virus replication cycles. The foreign polypeptides did not interfere with the attachment and entry functions of the underlying ALV envelope glycoproteins. The displayed polypeptides were fully functional and could efficiently mediate attachment of the recombinant viruses to their respective cognate receptors. This study demonstrates that ALV is an ideal display platform for the generation and selection of libraries of polypeptides where there is a need for expression, folding, and posttranslational modification in the endoplasmic reticulum of eukaryotic cells

  6. Influence of avian leukosis virus long terminal repeat on biological activities of Marek's disease virus.

    Science.gov (United States)

    Sun, Peng; Cui, Ning; Su, Shuai; Chen, Zimeng; Li, Yanpeng; Ding, Jiabo; Cui, Zhizhong

    2015-01-01

    GX0101 was the first reported field strain of recombinant Marek's disease virus (MDV) that contained a long terminal repeat (LTR) from the reticuloendotheliosis virus (REV). It is a very virulent MDV strain, with relatively high horizontal transmission ability. The REV LTR in GX0101 genome was proved to decrease the pathogenicity but increase the potential for horizontal transmission of the virus. Here we constructed a recombinant MDV GX0101-ALV-LTR to study stability of avian leukosis virus (ALV) LTR at the REV LTR insertion site in GX0101 genome and its influence on biological activities of the recombinant virus. The results showed that GX0101-ALV-LTR was able to replicate stably both in vitro and in vivo. ALV LTR remained stable in chickens infected either by inoculation with the recombinant virus GX0101-ALV-LTR or by horizontal transmission, as well as in cell culture. The pathogenic properties of GX0101-ALV-LTR virus were evaluated in infected specific-pathogen-free chickens. The present study demonstrated that the GX0101-ALV-LTR virus had a weaker inhibitory effect on the growth rates of the infected chickens and induced weaker immunosuppressive effects. Horizontal transmission ability of the GX0101-ALV-LTR virus appeared to be similar with its parental virus GX0101. In short, ALV LTR was stable in GX0101 after replacing REV LTR, and the recombinant virus showed similar horizontal transmission ability but decreased pathogenicity. PMID:26274570

  7. Efficient method to optimize antibodies using avian leukosis virus display and eukaryotic cells.

    Science.gov (United States)

    Yu, Changming; Pike, Gennett M; Rinkoski, Tommy A; Correia, Cristina; Kaufmann, Scott H; Federspiel, Mark J

    2015-08-11

    Antibody-based therapeutics have now had success in the clinic. The affinity and specificity of the antibody for the target ligand determines the specificity of therapeutic delivery and off-target side effects. The discovery and optimization of high-affinity antibodies to important therapeutic targets could be significantly improved by the availability of a robust, eukaryotic display technology comparable to phage display that would overcome the protein translation limitations of microorganisms. The use of eukaryotic cells would improve the diversity of the displayed antibodies that can be screened and optimized as well as more seamlessly transition into a large-scale mammalian expression system for clinical production. In this study, we demonstrate that the replication and polypeptide display characteristics of a eukaryotic retrovirus, avian leukosis virus (ALV), offers a robust, eukaryotic version of bacteriophage display. The binding affinity of a model single-chain Fv antibody was optimized by using ALV display, improving affinity >2,000-fold, from micromolar to picomolar levels. We believe ALV display provides an extension to antibody display on microorganisms and offers virus and cell display platforms in a eukaryotic expression system. ALV display should enable an improvement in the diversity of properly processed and functional antibody variants that can be screened and affinity-optimized to improve promising antibody candidates. PMID:26216971

  8. Evaluation of a multi-epitope subunit vaccine against avian leukosis virus subgroup J in chickens.

    Science.gov (United States)

    Xu, Qingqing; Ma, Xingjiang; Wang, Fangkun; Li, Hongmei; Zhao, Xiaomin

    2015-12-01

    The intricate sequence and antigenic variability of avian leukosis virus subgroup J (ALV-J) have led to unprecedented difficulties in the development of vaccines. Much experimental evidence demonstrates that ALV-J mutants have caused immune evasion and pose a challenge for traditional efforts to develop effective vaccines. To investigate the potential of a multi-epitope vaccination strategy to prevent chickens against ALV-J infections, a recombinant chimeric multi-epitope protein X (rCMEPX) containing both immunodominant B and T epitope concentrated domains selected from the major structural protein of ALV-J using bioinformatics approach was expressed in Escherichia coli Rosetta (DE3). Its immunogenicity and protective efficacy was studied in chickens. The results showed that rCMEPX could elicit neutralizing antibodies and cellular responses, and antibodies induced by rCMEPX could specifically recognize host cell naturally expressed ALV-J proteins, which indicated that the rCMEPX is a good immunogen. Challenge experiments showed 80% chickens that received rCMEPX were well protected against ALV-J challenge. This is the first report of a chimeric multi-epitope protein as a potential immunogen against ALV-J. PMID:26196055

  9. Diagnosis and sequence analysis of avian leukosis virus subgroup J isolated from Chinese Partridge Shank chickens.

    Science.gov (United States)

    Dong, Xuan; Zhao, Peng; Li, Weihua; Chang, Shuang; Li, Jianliang; Li, Yang; Ju, Sidi; Sun, Peng; Meng, Fanfeng; Liu, Juan; Cui, Zhizhong

    2015-04-01

    The diagnosis of avian leukosis virus subgroup J (ALV-J) infection in Chinese Partridge Shank chickens was confirmed by necropsy, histopathological examinations, antibody tests, viral isolation, immunofluorescence assays, and sequence analysis. Myelocytoma, myeloma, and fibrosarcoma were simultaneously found in Partridge Shank flock with ALV-J infection. Sequence analysis of the env genes of ALV-J demonstrated that both gp85 and gp37 were highly homologous among the three strains from local chickens of those among ALV-J strains isolated from white meat-type chickens. The phylogenetic trees indicated that the three strains isolated in this study were closely related to reference strains isolated in so-called Chinese yellow chickens and some strains isolated from white meat-type chickens, both from the USA and China. The observed ALV-J infection was the first report on Partridge Shank chickens, and myelocytoma, myeloma, and fibrosarcoma were found at the same time in this batch of local chickens. PMID:25713393

  10. Avian leukosis virus subgroup J triggers caspase-1-mediated inflammatory response in chick livers.

    Science.gov (United States)

    Liu, Xue-Lan; Shan, Wen-Jie; Jia, Li-Juan; Yang, Xu; Zhang, Jin-Jing; Wu, Ya-Rong; Xu, Fa-Zhi; Li, Jin-Nian

    2016-04-01

    Many pathogens trigger caspase-1-mediated innate immune responses. Avian leukosis virus subgroup J (ALV-J) causes serious immunosuppression and diverse tumors in chicks. The caspase-1 inflammasome mechanism of response to ALV-J invading remains unclear. Here we investigated the expression of caspase-1, the inflammasome adaptor NLRP3, IL-1β and IL-18 in response to ALV-J infection in the liver of chick. We found caspase-1 mRNA expression was elevated at 5dpi and peaked at 7dpi in ALV-J infected animals. Corresponding to this, the expressions of NLRP3 and proinflammatory cytokines IL-1β and IL-18 were significantly increased at 5 or 7dpi. In addition, caspase-1 protein expression and inflammatory cell infiltration were induced after virus infection. These results indicated that ALV-J infection could trigger the caspase-1- mediated inflammatory response in chicks. Thus, an understanding of the inflammatory responses can provide a better insight into the pathogenicity of ALV-J and a possible anti-virus target for ALV-J infection. PMID:26811903

  11. Differences in pathogenicity among strains of the same or different avian leukosis virus subgroups.

    Science.gov (United States)

    Průková, Dana; Vernerová, Zdenka; Pilcík, Tomás; Stepanets, Volodymir; Indrová, Marie; Geryk, Josef; Plachý, Jirí; Hejnar, Jirí; Svoboda, Jan

    2007-02-01

    An efficient induction of wasting disease in chickens by avian leukosis virus (ALV), particularly ALV subgroup C, requires >102 infectious units virus inoculated in mid embryogenesis. The most conspicuous symptoms of the disease were induced by ALV subgroup C; however, significant differences in the occurrence of wasting disease were found among individual members of this subgroup. Almost comparable pathogenicity was exhibited by ALV subgroup D, whereas viruses of subgroups B and A proved to be moderately and almost non-pathogenic, respectively. Using antibodies to cellular antigens, tissue alterations were shown clearly in ALV-C-infected chickens. An essential feature was depletion of lymphocytes in the thymus, bursa and spleen. While the number of dendritic cells in the bursa was increased, their representation in the thymus and spleen was reduced. In the spleen, however, the reduction of dendritic cells concerned only an ellipsoid compartment, which in itself was also markedly reduced. An increased number of macrophages in the thymus and spleen corresponded with the observed general activation of the monocyte-macrophage system. In the spleen, CD4+ T cells were reduced while CD8+ T cells were increased. In agreement with this finding was a failure of chickens to respond to Brucella antigen and an inability of their splenocytes to respond to Concanavalin A, both of which pointed to the damage of immune reactivity. Variation in the pathogenicity among individual ALV strains provides ground for depicting gene sequences playing an important role in ALV acute pathogenicity. PMID:17364506

  12. A Study of Low pH-Induced Refolding of Env of Avian Sarcoma and Leukosis Virus into a Six-Helix Bundle

    OpenAIRE

    Markosyan, R. M.; P. Bates; Cohen, F S; Melikyan, G B

    2004-01-01

    The fusion protein of avian sarcoma and leukosis virus is likely to fold into a six-helix bundle as part of its final configuration. A peptide, R99, inhibits fusion, probably by binding into the grooves of the triple-stranded coiled coil that becomes the central core of the six-helix bundle. The stages at which the envelope protein (Env) of avian sarcoma and leukosis virus subgroup A folds into a bundle during low pH-induced fusion were determined. Effector cells expressing Env were bound to ...

  13. Novel sequences of subgroup J avian leukosis viruses associated with hemangioma in Chinese layer hens

    Directory of Open Access Journals (Sweden)

    Pan Wei

    2011-12-01

    Full Text Available Abstract Background Avian leukosis virus subgroup J (ALV-J preferentially induces myeloid leukosis (ML in meat-type birds. Since 2008, many clinical cases of hemangioma rather than ML have frequently been reported in association with ALV-J infection in Chinese layer flocks. Results Three ALV-J strains associated with hemangioma were isolated and their proviral genomic sequences were determined. The three isolates, JL093-1, SD09DP03 and HLJ09MDJ-1, were 7,670, 7,670, and 7,633 nt in length. Their gag and pol genes were well conserved, with identities of 94.5-98.6% and 97.1-99.5%, respectively, with other ALV-J strains at the amino acid level (aa, while the env genes of the three isolates shared a higher aa identity with the env genes of other hemangioma strains than with those of ML strains. Interestingly, two novel 19-bp insertions in the U3 region in the LTR and 5' UTR, most likely derived from other retroviruses, were found in all the three isolates, thereby separately introducing one E2BP binding site in the U3 region in the LTR and RNA polymerase II transcription factor IIB and core promoter motif ten elements in the 5' UTR. Meanwhile, two binding sites in the U3 LTRs of the three isolates for NFAP-1 and AIB REP1 were lost, and a 1-base deletion in the E element of the 3' UTR of JL093-1 and SD09DP03 introduced a binding site for c-Ets-1. In addition to the changes listed above, the rTM of the 3' UTR was deleted in each of the three isolates. Conclusion Our study is the first to discovery the coexistence of two novel insertions in the U3 region in the LTR and the 5' UTR of ALV-J associated with hemangioma symptoms, and the transcriptional regulatory elements introduced should be taken into consideration in the occurrence of hemangioma.

  14. Identification of a novel B-cell epitope specific for avian leukosis virus subgroup J gp85 protein.

    Science.gov (United States)

    Li, Xiaofei; Zhu, Haibo; Wang, Qi; Sun, Jiashan; Gao, Yanni; Qi, Xiaole; Wang, Yongqiang; Gao, Honglei; Gao, Yulong; Wang, Xiaomei

    2015-04-01

    Avian leukosis virus subgroup J (ALV-J) is an avian oncogenic retrovirus that has caused severe economic losses in China. Gp85 protein is the main envelope protein and the most variable structural protein of ALV-J. It is also involved in virus neutralization. In this study, a specific monoclonal antibody, 4A3, was produced against the ALV-J gp85 protein. Immunofluorescence assays showed that 4A3 could react with different strains of ALV-J, including the British prototype isolate HPRS103, the American strains, an early Chinese broiler isolate, and layer isolates. A linear epitope on the gp85 protein was identified using a series of partially overlapping fragments spanning the gp85-encoding gene and subjecting them to western blot analysis. The results indicated that (134)AEAELRDFI(142) was the minimal linear epitope that could be recognized by mAb 4A3. Enzyme-linked immunosorbent assay (ELISA) revealed that chicken anti-ALV-J sera and mouse anti-ALV-J gp85 sera could also recognize the minimal linear epitope. Alignment analysis of amino acid sequences indicated that the epitope was highly conserved among 34 ALV-J strains. Furthermore, the epitope was not conserved among subgroup A and B of avian leukosis virus (ALV). Taken together, the mAb and the identified epitope may provide valuable tools for the development of new diagnostic methods for ALV-J. PMID:25655260

  15. Production and Characterization of a Soluble, Active Form of Tva, the Subgroup A Avian Sarcoma and Leukosis Virus Receptor

    OpenAIRE

    Balliet, John W; Berson, Joanne; D’Cruz, Celina M.; Huang, Julie; Crane, Joanne; Gilbert, Joanna M.; Bates, Paul

    1999-01-01

    The receptor for the subgroup A avian sarcoma and leukosis viruses [ASLV(A)] is the cellular glycoprotein Tva. A soluble form of Tva, sTva, was produced and purified with a baculovirus expression system. Using this system, 7 to 10 mg of purified sTva per liter of cultured Sf9 cells was obtained. Characterization of the carbohydrate modification of sTva revealed that the three N glycosylation sites in sTva were differentially utilized; however, the O glycosylation common to Tva produced in mam...

  16. Sequences near the 5' long terminal repeat of avian leukosis viruses determine the ability to induce osteopetrosis.

    OpenAIRE

    Robinson, H L; Reinsch, S S; Shank, P R

    1986-01-01

    Avian leukosis virus (ALV)-induced osteopetrosis is associated with the accumulation of unintegrated viral DNA in osteoblasts. Viruses constructed from the DNAs of an osteopetrosis-inducing ALV (Br21) and a non-osteopetrosis-inducing ALV (RAV-0) have been used to test for the role of viral genes in the induction of osteopetrosis. Our results map osteopetrotic potential to a 1,400-base-pair region near the 5' long terminal repeat. This region contains signals for the splicing, translation, and...

  17. MicroRNA-23b Promotes Avian Leukosis Virus Subgroup J (ALV-J) Replication by Targeting IRF1

    OpenAIRE

    Zhenhui Li; Biao Chen; Min Feng; Hongjia Ouyang; Ming Zheng; Qiao Ye; Qinghua Nie; Xiquan Zhang

    2015-01-01

    Avian leukosis virus subgroup J (ALV-J) can cause several different leukemia-like proliferative diseases in the hemopoietic system of chickens. Here, we investigated the transcriptome profiles and miRNA expression profiles of ALV-J-infected and uninfected chicken spleens to identify the genes and miRNAs related to ALV-J invasion. In total, 252 genes and 167 miRNAs were differentially expressed in ALV-J-infected spleens compared to control uninfected spleens. miR-23b expression was up-regulate...

  18. Multiple proto-oncogene activations in avian leukosis virus-induced lymphomas: evidence for stage-specific events.

    OpenAIRE

    Clurman, B E; Hayward, W S

    1989-01-01

    We have examined avian leukosis virus-induced B-cell lymphomas for multiple, stage-specific oncogene activations. Three targets for viral integration were identified: c-myb, c-myc, and a newly identified locus termed c-bic. The c-myb and c-myc genes were associated with different lymphoma phenotypes. The c-bic locus was a target for integration in one class of lymphomas, usually in conjunction with c-myc activation. The data indicate that c-myc and c-bic may act synergistically during lymphom...

  19. Properties of avian sarcoma-leukosis virus pp32-related pol-endonucleases produced in Escherichia coli.

    OpenAIRE

    Terry, R; Soltis, D A; Katzman, M; Cobrinik, D; Leis, J; Skalka, A M

    1988-01-01

    The gag-pol precursor protein of the avian sarcoma-leukosis virus is processed into three known pol-encoded mature polypeptides; the 95- and 63-kilodalton (kDa) beta and alpha subunits, respectively, of reverse transcriptase and the 32-kDa pp32 protein. The pp32 protein possesses DNA endonuclease activity and is produced from the precursor by two proteolytic cleavage events, one of which removes 4.1 kDa of protein from the C terminus. A 36-kDa protein (p36pol) which retains this C-terminal se...

  20. Epitope selection from an uncensored peptide library displayed on avian leukosis virus

    International Nuclear Information System (INIS)

    Phage display libraries have provided an extraordinarily versatile technology to facilitate the isolation of peptides, growth factors, single chain antibodies, and enzymes with desired binding specificities or enzymatic activities. The overall diversity of peptides in phage display libraries can be significantly limited by Escherichia coli protein folding and processing machinery, which result in sequence censorship. To achieve an optimal diversity of displayed eukaryotic peptides, the library should be produced in the endoplasmic reticulum of eukaryotic cells using a eukaryotic display platform. In the accompanying article, we presented experiments that demonstrate that polypeptides of various sizes could be efficiently displayed on the envelope glycoproteins of a eukaryotic virus, avian leukosis virus (ALV), and the displayed polypeptides could efficiently attach to cognate receptors without interfering with viral attachment and entry into susceptible cells. In this study, methods were developed to construct a model library of randomized eight amino acid peptides using the ALV eukaryotic display platform and screen the library for specific epitopes using immobilized antibodies. A virus library with approximately 2 x 106 different members was generated from a plasmid library of approximately 5 x 106 diversity. The sequences of the randomized 24 nucleotide/eight amino acid regions of representatives of the plasmid and virus libraries were analyzed. No significant sequence censorship was observed in producing the virus display library from the plasmid library. Different populations of peptide epitopes were selected from the virus library when different monoclonal antibodies were used as the target. The results of these two studies clearly demonstrate the potential of ALV as a eukaryotic platform for the display and selection of eukaryotic polypeptides libraries

  1. EMERGENCE OF SUBGROUP J AVIAN LEUKOSIS VIRUS NEUTRALIZING ANTIBODY ESCAPE VARIANTS IN MEAT-TYPE CHICKENS INFECTED WITH VIRUS AT HATCH

    Science.gov (United States)

    Infection of meat-type chickens at hatch with field isolates of Subgroup J avian leukosis virus (ALV J) results in a high incidence of chickens with persistent viremia even in the presence of neutralizing antibodies (NAb) against the inoculated parental virus (V+A+). The purpose of this study was t...

  2. Intronic deletions that disrupt mRNA splicing of the tva receptor gene result in decreased susceptibility to infection by avian sarcoma and leukosis virus subgroup A

    Czech Academy of Sciences Publication Activity Database

    Reinišová, Markéta; Plachý, Jiří; Trejbalová, Kateřina; Šenigl, Filip; Kučerová, Dana; Geryk, Josef; Svoboda, Jan; Hejnar, Jiří

    2012-01-01

    Roč. 86, č. 4 (2012), s. 2021-2030. ISSN 1098-5514 R&D Projects: GA ČR GAP502/10/1651 Institutional research plan: CEZ:AV0Z50520514 Keywords : avian sarcoma and leukosis virus * virus-host coevolution * resistance to retroviruses Subject RIV: EB - Genetics ; Molecular Biology

  3. Isolation, identification and evolution analysis of a novel subgroup of avian leukosis virus isolated from a local Chinese yellow broiler in South China

    Science.gov (United States)

    Avian leukosis virus (ALV) causes high mortality associated with tumor formation and decreased fertility, and results in major economic losses in the poultry industry worldwide. Recently, a putative novel ALV subgroup virus named ALV-K was observed in Chinese local chickens. In this study, a novel A...

  4. COMPARISON OF CHINESE FIELD STRAINS OF AVIAN LEUKOSIS SUBGROUP J VIRUSES WITH PROTOTYPE STRAIN HPRS-103 AND U.S. STRAINS

    Science.gov (United States)

    Eight Chinese field strains of subgroup J avian leukosis viruses (ALV-J) were isolated from broilers or breeders during January, 1999 to April, 2001. One of them, SD9902, was an acute transforming virus and able to induce typical myelocytomatosis in 22-38 days after inoculation of 1-day-old meat-typ...

  5. EFFECTS OF VIRULENT AND VACCINE STRAINS OF MAREK'S DISEASE VIRUS ON SUBGROUP J AVIAN LEUKOSIS VIRUS INFECTION IN MEAT-TYPE CHICKENS

    Science.gov (United States)

    The objective of this study was to determine the influence of virulent and vaccine strains of Marek's disease virus (MDV) on subgroup J avian leukosis virus (ALV-J) -induced viremia and cloacal shedding in meat-type chickens. Chickens from two lines were infected with ALV-J at hatch; chickens were ...

  6. Influence of strain and dose of virus and age at inoculation on subgroup J avian leukosis virus persistence, antibody response and oncogenicity in commercial meat-type chickens

    Science.gov (United States)

    The effects of viral strain and dose, and age at inoculation on Subgroup J avian leukosis virus (ALV J) persistence, neutralizing antibody (NAb) response, and tumors were studied in commercial meat-type chickens. Chickens were inoculated on the 5th day of embryonation (5 ED) or on day of hatch (DOH...

  7. Molecular and biological characterization of a naturally occurring recombinant subgroup B avian leukosis virus (ALV) with a subgroup J like long terminal repeat (LTR)

    Science.gov (United States)

    Infection of broiler chickens with subgroup J avian leukosis virus (ALV) results in the induction of myeloid tumors. However, although egg-type chickens are susceptible to infection with ALVJ, the tumor incidence is very low and on rare occasion the tumors observed are of the myeloid lineage. We re...

  8. Intronic deletions of tva receptor gene decrease the susceptibility to infection by subgroup A avian sarcoma and leukosis virus subgroup A

    Science.gov (United States)

    The group of avian sarcoma and leukosis virus (ASLV) in chickens contains six highly related subgroups, A to E and J. Four genetic loci, tva, tvb, tvc and tvj, encode for corresponding receptors that determine the susceptibility to the ASLV subgroups. The prevalence of ASLV in hosts may have imposed...

  9. Development of a polymerase chain reaction to differentiate avian leukosis virus (ALV) subgroups: detection of an ALV contaminate in a commercial Marek's disease vaccine

    Science.gov (United States)

    Avian leukosis viruses (ALVs) are common in many poultry flocks and can be detected by using an ELISA assay or any other test designed to identify the viral antigen p27. However, endogenous retroviruses, expressing p27, are often present and can be confused with exogenous ALVs. A more specific and i...

  10. Quantitative iTRAQ LC-MS/MS Proteomics Reveals the Proteome Profiles of DF-1 Cells after Infection with Subgroup J Avian Leukosis Virus

    OpenAIRE

    Xiaofei Li; Qi Wang; Yanni Gao; Xiaole Qi; Yongqiang Wang; Honglei Gao; Yulong Gao; Xiaomei Wang

    2015-01-01

    Avian leukosis virus subgroup J (ALV-J) is an avian oncogenic retrovirus that can induce various clinical tumors and has caused severe economic losses in China. To improve our understanding of the host cellular responses to virus infection and the pathogenesis of ALV-J infection, we applied isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with multidimensional liquid chromatography-tandem mass spectrometry to detect the protein changes in DF-1 cells infected and...

  11. A system for tissue-specific gene targeting: transgenic mice susceptible to subgroup A avian leukosis virus-based retroviral vectors.

    OpenAIRE

    Federspiel, M J; P. Bates; Young, J A; Varmus, H E; Hughes, S. H.

    1994-01-01

    Avian leukosis viruses (ALVs) have been used extensively as genetic vectors in avian systems, but their utility in mammals or mammalian cell lines is compromised by inefficient viral entry. We have overcome this limitation by generating transgenic mice that express the receptor for the subgroup A ALV under the control of the chicken alpha sk-actin promoter. The skeletal muscles of these transgenic animals are susceptible to efficient infection by subgroup A ALV. Because infection is restricte...

  12. Differentially expressed genes in a flock of Chinese local-breed chickens infected with a subgroup J avian leukosis virus using suppression subtractive hybridization

    OpenAIRE

    Guiping Zhao; Maiqing Zheng; Jilan Chen; Jie Wen; Chunmei Wu; Wenjuan Li; Libo Liu; Yuan Zhang

    2010-01-01

    Avian leukosis virus subgroup J (ALV-J) is a new type of virus that mainly induces myeloid leukosis (ML) in chickens. To further elucidate the pathogenesis of ALV-J infection and tumor development, expression profiles from the bone marrow tissue of 15 infected and 18 non-infected birds from a local-breed poultry-farm under naturally infected conditions, were analyzed by suppression-subtractive hybridization. The birds were diagnosed as ML+ (or ML-) by specific ALV-J detection methods, involvi...

  13. Production and characterization of a soluble, active form of Tva, the subgroup A avian sarcoma and leukosis virus receptor.

    Science.gov (United States)

    Balliet, J W; Berson, J; D'Cruz, C M; Huang, J; Crane, J; Gilbert, J M; Bates, P

    1999-04-01

    The receptor for the subgroup A avian sarcoma and leukosis viruses [ASLV(A)] is the cellular glycoprotein Tva. A soluble form of Tva, sTva, was produced and purified with a baculovirus expression system. Using this system, 7 to 10 mg of purified sTva per liter of cultured Sf9 cells was obtained. Characterization of the carbohydrate modification of sTva revealed that the three N glycosylation sites in sTva were differentially utilized; however, the O glycosylation common to Tva produced in mammalian and avian cells was not observed. Purified sTva demonstrates significant biological activity, specifically blocking infection of avian cells by ASLV(A) with a 90% inhibitory concentration of approximately 25 pM. A quantitative enzyme-linked immunosorbent assay, developed to assess the binding of sTva to ASLV envelope glycoprotein, demonstrates that sTva has a high affinity for EnvA, with an apparent dissociation constant of approximately 0.3 nM. Once they are bound, a very stable complex is formed between EnvA and sTva, with an estimated complex half-life of 6 h. The soluble receptor protein described here represents a valuable tool for analysis of the receptor-envelope glycoprotein interaction and for structural analysis of Tva. PMID:10074155

  14. a1/EBP: a leucine zipper protein that binds CCAAT/enhancer elements in the avian leukosis virus long terminal repeat enhancer.

    OpenAIRE

    Bowers, W J; Ruddell, A

    1992-01-01

    Avian leukosis virus (ALV) induces bursal lymphoma in chickens after integration of proviral long terminal repeat (LTR) enhancer sequences next to the c-myc proto-oncogene. Labile LTR-binding proteins appear to be essential for c-myc hyperexpression, since both LTR-enhanced transcription and the activities of LTR-binding proteins are specifically decreased after inhibition of protein synthesis (A. Ruddell, M. Linial, W. Schubach, and M. Groudine, J. Virol. 62:2728-2735, 1988). This lability i...

  15. The receptor for the subgroup C avian sarcoma and leukosis viruses, Tvc, is related to mammalian butyrophilins, members of the immunoglobulin superfamily

    Czech Academy of Sciences Publication Activity Database

    Elleder, Daniel; Stepanets, Volodymyr; Melder, D. C.; Šenigl, Filip; Geryk, Josef; Pajer, Petr; Plachý, Jiří; Hejnar, Jiří; Federspiel, M. J.

    2005-01-01

    Roč. 79, č. 16 (2005), s. 10408-10419. ISSN 0022-538X R&D Projects: GA ČR(CZ) GA523/04/0489 Grant ostatní: National Institutes of Health(US) AI48682 Institutional research plan: CEZ:AV0Z50520514 Keywords : retrovirus receptor * avian sarcoma and leukosis viruses * butyrophilin Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.178, year: 2005

  16. Homologous and nonhomologous retroviral recombinations are both involved in the transfer by infectious particles of defective avian leukosis virus-derived transcomplementing genomes.

    OpenAIRE

    Girod, A.; Drynda, A; Cosset, F L; Verdier, G; Ronfort, C.

    1996-01-01

    We previously described avian leukosis virus-based packaging cell lines that produce stocks of retroviral vectors in which replication-competent viruses were not detectable. However, following infection of target cells with these retroviral stocks, we recently obtained colonies resulting from the transmission of recombinant genomes. Here, we have analyzed their genetic structure and shown that (i) each of them results from recombination between the packaging- and integration-defective transco...

  17. Avian sarcoma leukosis virus receptor-envelope system for simultaneous dissection of multiple neural circuits in mammalian brain.

    Science.gov (United States)

    Matsuyama, Makoto; Ohashi, Yohei; Tsubota, Tadashi; Yaguchi, Masae; Kato, Shigeki; Kobayashi, Kazuto; Miyashita, Yasushi

    2015-06-01

    Pathway-specific gene delivery is requisite for understanding complex neuronal systems in which neurons that project to different target regions are locally intermingled. However, conventional genetic tools cannot achieve simultaneous, independent gene delivery into multiple target cells with high efficiency and low cross-reactivity. In this study, we systematically screened all receptor-envelope pairs resulting from the combination of four avian sarcoma leukosis virus (ASLV) envelopes (EnvA, EnvB, EnvC, and EnvE) and five engineered avian-derived receptors (TVA950, TVB(S3), TVC, TVB(T), and DR-46TVB) in vitro. Four of the 20 pairs exhibited both high infection rates (TVA-EnvA, 99.6%; TVB(S3)-EnvB, 97.7%; TVC-EnvC, 98.2%; and DR-46TVB-EnvE, 98.8%) and low cross-reactivity (98%), with no observed cross-reaction. Finally, by expressing three receptor types in a single animal, we achieved pathway-specific, differential fluorescent labeling of three thalamic neuronal populations, each projecting into different somatosensory areas. Thus, we identified three orthogonal pairs from the list of ASLV subgroups and established a new vector system that provides a simultaneous, independent, and highly specific genetic tool for transferring genes into multiple target cells in vivo. Our approach is broadly applicable to pathway-specific labeling and functional analysis of diverse neuronal systems. PMID:25991858

  18. An avian leukosis virus subgroup J isolate with a Rous sarcoma virus-like 5'-LTR shows enhanced replication capability.

    Science.gov (United States)

    Gao, Yanni; Guan, Xiaolu; Liu, Yongzhen; Li, Xiaofei; Yun, Bingling; Qi, Xiaole; Wang, Yongqiang; Gao, Honglei; Cui, Hongyu; Liu, Changjun; Zhang, Yanping; Wang, Xiaomei; Gao, Yulong

    2015-01-01

    Avian leukosis virus subgroup J (ALV-J) was first isolated from meat-producing chickens that had developed myeloid leukosis. However, ALV-J infections associated with hemangiomas have occurred in egg-producing (layer) flocks in China. In this study, we identified an ALV-J layer isolate (HLJ13SH01) as a recombinant of ALV-J and a Rous sarcoma virus Schmidt-Ruppin B strain (RSV-SRB), which contained the RSV-SRB 5'-LTR and the other genes of ALV-J. Replication kinetic testing indicated that the HLJ13SH01 strain replicated faster than other ALV-J layer isolates in vitro. Sequence analysis indicated that the main difference between the two isolates was the 5'-LTR sequences, particularly the U3 sequences. A 19 nt insertion was uniquely found in the U3 region of the HLJ13SH01 strain. The results of a Dual-Glo luciferase assay revealed that the 19 nt insertion in the HLJ13SH01 strain increased the enhancer activity of the U3 region. Moreover, an additional CCAAT/enhancer element was found in the 19 nt insertion and the luciferase assay indicated that this element played a key role in increasing the enhancer activity of the 5'-U3 region. To confirm the potentiation effect of the 19 nt insertion and the CCAAT/enhancer element on virus replication, three infectious clones with 5'-U3 region variations were constructed and rescued. Replication kinetic testing of the rescued viruses demonstrated that the CCAAT/enhancer element in the 19 nt insertion enhanced the replication capacity of the ALV-J recombinant in vitro. PMID:25274857

  19. Cell-specific targeting of lentiviral vectors mediated by fusion proteins derived from Sindbis virus, vesicular stomatitis virus, or avian sarcoma/leukosis virus

    Directory of Open Access Journals (Sweden)

    Marino Michael P

    2010-01-01

    Full Text Available Abstract Background The ability to efficiently and selectively target gene delivery vectors to specific cell types in vitro and in vivo remains one of the formidable challenges in gene therapy. We pursued two different strategies to target lentiviral vector delivery to specific cell types. In one of the strategies, vector particles bearing a membrane-bound stem cell factor sequence plus a separate fusion protein based either on Sindbis virus strain TR339 glycoproteins or the vesicular stomatitis virus G glycoprotein were used to selectively transduce cells expressing the corresponding stem cell factor receptor (c-kit. An alternative approach involved soluble avian sarcoma/leukosis virus receptors fused to cell-specific ligands including stem cell factor and erythropoietin for targeting lentiviral vectors pseudotyped with avian sarcoma/leukosis virus envelope proteins to cells that express the corresponding receptors. Results The titers of unconcentrated vector particles bearing Sindbis virus strain TR339 or vesicular stomatitis virus G fusion proteins plus stem cell factor in the context of c-kit expressing cells were up to 3.2 × 105 transducing units per ml while vector particles lacking the stem cell factor ligand displayed titers that were approximately 80 fold lower. On cells that lacked the c-kit receptor, the titers of stem cell factor-containing vectors were approximately 40 times lower compared to c-kit-expressing cells. Lentiviral vectors pseudotyped with avian sarcoma/leukosis virus subgroup A or B envelope proteins and bearing bi-functional bridge proteins encoding erythropoietin or stem cell factor fused to the soluble extracellular domains of the avian sarcoma/leukosis virus subgroup A or B receptors resulted in efficient transduction of erythropoietin receptor or c-kit-expressing cells. Transduction of erythropoietin receptor-expressing cells mediated by bi-functional bridge proteins was found to be dependent on the dose, the

  20. Avian sarcoma and leukosis virus-receptor interactions: From classical genetics to novel insights into virus-cell membrane fusion

    International Nuclear Information System (INIS)

    For over 40 years, avian sarcoma and leukosis virus (ASLV)-receptor interactions have been employed as a useful model system to study the mechanism of retroviral entry into cells. Pioneering studies on this system focused upon the genetic basis of the differential susceptibilities of different lines of chickens to infection by distinct subgroups of ASLV. These studies led to the definition of three distinct autosomal recessive genes that were predicted to encode cellular receptors for different viral subgroups. They also led to the concept of viral interference, i.e. the mechanism by which infection by one virus can render cells resistant to reinfection by other viruses that use the same cellular receptor. Here, we review the contributions that analyses of the ASLV-receptor system have made in unraveling the mechanisms of retroviral entry into cells and focus on key findings such as identification and characterization of the ASLV receptor genes and the subsequent elucidation of an unprecedented mechanism of virus-cell fusion. Since many of the initial findings on this system were published in the early volumes of Virology, this subject is especially well suited to this special anniversary issue of the journal

  1. Differential expression of immune-related cytokine genes in response to J group avian leukosis virus infection in vivo.

    Science.gov (United States)

    Gao, Yanni; Liu, Yongzhen; Guan, Xiaolu; Li, Xiaofei; Yun, Bingling; Qi, Xiaole; Wang, Yongqiang; Gao, Honglei; Cui, Hongyu; Liu, Changjun; Zhang, Yanping; Wang, Xiaomei; Gao, Yulong

    2015-03-01

    Infection with J group avian leukosis virus (ALV-J) can result in immunosuppression and subsequently increased susceptibility to secondary infection. The innate immune system is the first line defense system in prevention of further bacterial and viral infections. Cytokines play key roles in the innate immune system. In this study, we used RT-qPCR technology to test the cytokine mRNA expression levels in various immune tissues, including the spleen, bursa of fabricius and cecal tonsil, in the days following ALV-J infection. The results indicated that in the infected group, the expression levels of interleukin-6 (IL-6), IL-18, interferon-α (IFN-α) and IFN-γ significantly increased in the spleen and reached peak levels that were thousandfolds higher than baselines at 9-12 days post-infection (d.p.i.). The levels in the bursa of fabricius slightly increased, and the levels in the cecal tonsil were not significantly altered. Moreover, the pattern of the expression of these three cytokines in the spleens of the infected group was similar to the pattern of viremia of this group. These results suggest that the spleen plays an important role in the interaction between ALV-J infection and the innate immune system. This study contributes to the understanding of innate immune responses to ALV-J infection and also elucidates the mechanisms of the pathogenicity of ALV-J in chickens. PMID:25438822

  2. Subgroup J avian leukosis virus infection of chicken dendritic cells induces apoptosis via the aberrant expression of microRNAs.

    Science.gov (United States)

    Liu, Di; Dai, Manman; Zhang, Xu; Cao, Weisheng; Liao, Ming

    2016-01-01

    Subgroup J avian leukosis virus (ALV-J) is an oncogenic retrovirus that causes immunosuppression and enhances susceptibility to secondary infection. The innate immune system is the first line of defense in preventing bacterial and viral infections, and dendritic cells (DCs) play important roles in innate immunity. Because bone marrow is an organ that is susceptible to ALV-J, the virus may influence the generation of bone marrow-derived DCs. In this study, DCs cultured in vitro were used to investigate the effects of ALV infection. The results revealed that ALV-J could infect these cells during the early stages of differentiation, and infection of DCs with ALV-J resulted in apoptosis. miRNA sequencing data of uninfected and infected DCs revealed 122 differentially expressed miRNAs, with 115 demonstrating upregulation after ALV-J infection and the other 7 showing significant downregulation. The miRNAs that exhibited the highest levels of upregulation may suppress nutrient processing and metabolic function. These results indicated that ALV-J infection of chicken DCs could induce apoptosis via aberrant microRNA expression. These results provide a solid foundation for the further study of epigenetic influences on ALV-J-induced immunosuppression. PMID:26830017

  3. Intronic deletions of tva receptor gene decrease the susceptibility to infection by avian sarcoma and leukosis virus subgroup A.

    Science.gov (United States)

    Chen, Weiguo; Liu, Yang; Li, Hongxing; Chang, Shuang; Shu, Dingming; Zhang, Huanmin; Chen, Feng; Xie, Qingmei

    2015-01-01

    The group of avian sarcoma and leukosis virus (ASLV) in chickens contains six highly related subgroups, A to E and J. Four genetic loci, tva, tvb, tvc and tvj, encode for corresponding receptors that determine the susceptibility to the ASLV subgroups. The prevalence of ASLV in hosts may have imposed strong selection pressure toward resistance to ASLV infection, and the resistant alleles in all four receptor genes have been identified. In this study, two new alleles of the tva receptor gene, tva(r5) and tva(r6), with similar intronic deletions were identified in Chinese commercial broilers. These natural mutations delete the deduced branch point signal within the first intron, disrupting mRNA splicing of the tva receptor gene and leading to the retention of intron 1 and introduction of premature TGA stop codons in both the longer and shorter tva isoforms. As a result, decreased susceptibility to subgroup A ASLV in vitro and in vivo was observed in the subsequent analysis. In addition, we identified two groups of heterozygous allele pairs which exhibited quantitative differences in host susceptibility to ASLV-A. This study demonstrated that defective splicing of the tva receptor gene can confer genetic resistance to ASLV subgroup A in the host. PMID:25873518

  4. Gene expression changes in chicken NLRC5 signal pathway associated with in vitro avian leukosis virus subgroup J infection.

    Science.gov (United States)

    Qiu, L L; Xu, L; Guo, X M; Li, Z T; Wan, F; Liu, X P; Chen, G H; Chang, G B

    2016-01-01

    Nucleotide-binding oligomerization domain-like receptors (NLRs) play a key role in the innate immune response as pattern-recognition receptors. However, the role of NLRC5, which is a member of the NLR family, in NF-κB activation and MHC-I expression remains debatable. Infection with the J group avian leukosis virus (ALV-J) can result in immunosuppression and a subsequent increase in susceptibility to secondary infection. This results in huge economic losses to the poultry industry worldwide. Using quantitative real-time polymerase chain reaction (qRT-PCR), we investigated the mRNA expression levels of NLRC5 signal pathway-related genes in secondary chicken embryo fibroblasts 7 days after infection with ALV-J. The results indicated that, compared with the control groups, the expression levels of TLR7, MHC-I, and IL-18 increased significantly in the infected groups at 7 days post-infection (d.p.i.). The expression levels of NLRC5 and IL-6 were conspicuously downregulated at 7 d.p.i., but the expression levels of NF-κB, STAT1, and STAT3 were not significantly altered. These results suggest that NLRC5 and some genes involved in the NLRC5 pathway play a key role in antiviral immunity, typically the response to ALV-J infection. Moreover, MHC-I expression levels vary between different cell types. PMID:27050957

  5. Synergistic pathogenic effects of co-infection of subgroup J avian leukosis virus and reticuloendotheliosis virus in broiler chickens.

    Science.gov (United States)

    Dong, Xuan; Zhao, Peng; Chang, Shuang; Ju, Sidi; Li, Yang; Meng, Fanfeng; Sun, Peng; Cui, Zhizhong

    2015-01-01

    To study interactions between avian leukosis virus subgroup J (ALV-J) and reticuloendotheliosis virus (REV) and the effects of co-infection on pathogenicity of these viruses, 1-day-old broiler chicks were infected with ALV-J, REV or both ALV-J and REV. The results indicated that co-infection of ALV-J and REV induced more growth retardation and higher mortality rate than ALV-J or REV single infection (P < 0.05). Chickens co-infected with ALV-J and REV also showed more severe immunosuppression than those with a single infection. This was manifested by significantly lower bursa of Fabricius and thymus to body weight ratios and lower antibody responses to Newcastle disease virus and H9-avian influenza virus (P < 0.05). Perihepatitis and pericarditis related to severe infection with Escherichia coli were found in many of the dead birds. E. coli was isolated from each case of perihepatitis and pericarditis. The mortality associated with E. coli infection in the co-infection groups was significantly higher than in the other groups (P < 0.05). Among 516 tested E. coli isolates from 58 dead birds, 12 serotypes of the O-antigen were identified in two experiments. Different serotypes of E. coli strains were even isolated from the same organ of the same bird. Diversification of O-serotypes suggested that perihepatitis and pericarditis associated with E. coli infection was the most frequent secondary infection following the immunosuppression induced by ALV-J and REV co-infection. These results suggested that the co-infection of ALV-J and REV caused more serious synergistic pathogenic effects, growth retardation, immunosuppression, and secondary E. coli infection in broiler chickens. PMID:25484188

  6. Evidence of Avian Leukosis Virus Subgroup E and Endogenous Avian Virus in Marek’s Disease Vaccines Derived from Chicken Embryo Fibroblasts

    Directory of Open Access Journals (Sweden)

    N.R. Dhanutha

    2012-12-01

    Full Text Available The aim of this study was to detect and characterize the endogenous ALVs in cell associated MD vaccine. Chicken embryo fibroblast cell associated Marek’s disease vaccine was tested for possible contamination with Avian Leukosis Viruses (ALVs. Initially the vaccine cell lysate was tested for presence of group specific antigen (p27 of ALVs by ELISA and found positive for GSA. Subsequently total DNA and RNA was isolated from vaccine CEFs and analyzed by PCR and RT-PCR using primers specific for ALV subgroups A-E and J. Subgroup specific PCR and RT-PCR revealed that the CEFs were positive for ALV-E and negative for all other exogenous ALV subgroups (ALV-A, B, C, D and J. Envelope gp85 gene sequence alignment and phylogenetic analysis further confirmed that the ALV sequences found in CEFs of MD vaccine were belongs to endogenous ALV-E. Further this sequence has high homology with endogenous loci ev-1, ev-3 and ev-6. Amplification of genomic DNA with endogenous virus locus specific primers revealed that the CEFs of MD vaccine possess ev-1 and ev-6 and negative for ev-3, ev-9 and ev-21. In conclusion, the data in this study clearly demonstrated that the cell associated commercial MD vaccine tested was contaminated with an endogenous subgroup E and also possess ev-loci such as ev1 and ev-6.

  7. Low pH Is Required for Avian Sarcoma and Leukosis Virus Env-Induced Hemifusion and Fusion Pore Formation but Not for Pore Growth

    OpenAIRE

    Melikyan, G. B.; Barnard, R. J. O.; Markosyan, R M; Young, J. A. T.; Cohen, F S

    2004-01-01

    Binding of avian sarcoma and leukosis virus (ASLV) to its cognate receptor on the cell surface causes conformational changes in its envelope protein (Env). It is currently debated whether low pH is required for ASLV infection. To elucidate the role of low pH, we studied the association between ASLV subgroup B (ASLV-B) and liposomes and fusion between effector cells expressing Env from ASLV-A and ASLV-B and target cells expressing cognate receptors. Neither EnvA nor EnvB promoted cell-cell fus...

  8. Low pH Is Required for Avian Sarcoma and Leukosis Virus Env-Dependent Viral Penetration into the Cytosol and Not for Viral Uncoating

    OpenAIRE

    Barnard, Richard J. O.; Narayan, Shakti; Dornadula, Geethanjali; Miller, Michael D.; Young, John A. T.

    2004-01-01

    A novel entry mechanism has been proposed for the avian sarcoma and leukosis virus (ASLV), whereby interaction with specific cell surface receptors activates or primes the viral envelope glycoprotein (Env), rendering it sensitive to subsequent low-pH-dependent fusion triggering in acidic intracellular organelles. However, ASLV fusion seems to proceed to a lipid mixing stage at neutral pH, leading to the suggestion that low pH might instead be required for a later stage of viral entry such as ...

  9. Close relationship between the long terminal repeats of avian leukosis-sarcoma virus and copia-like movable genetic elements of Drosophila.

    OpenAIRE

    Kugimiya, W; Ikenaga, H.; Saigo, K

    1983-01-01

    A new species of copia-like movable genetic element termed 17.6 was identified in Drosophila melanogaster, and the nucleotide sequences of its long terminal repeats (LTRs) were determined. The LTRs of 17.6 were not only homologous to those of 297, a sibling movable genetic element of 17.6, but also closely matched those of avian leukosis-sarcoma virus. This made it possible (i) to identify the nucleotide sequences in 17.6 and 297 that correspond to the crucial regulatory sequences for both tr...

  10. Role of gga-miR-221 and gga-miR-222 during Tumour Formation in Chickens Infected by Subgroup J Avian Leukosis Virus

    OpenAIRE

    Zhenkai Dai; Jun Ji; Yiming Yan; Wencheng Lin; Hongxin Li; Feng Chen; Yang Liu; Weiguo Chen; Yingzuo Bi; Qingmei Xie

    2015-01-01

    Subgroup J avian leukosis virus (ALV-J) causes a neoplastic disease in infected chickens. Differential expression patterns of microRNAs (miRNAs) are closely related to the formation and growth of tumors. (1) Background: This study was undertaken to understand how miRNAs might be related to tumor growth during ALV-J infection. We chose to characterize the effects of miR-221 and miR-222 on cell proliferation, migration, and apoptosis based on previous microarray data. (2) Methods: In vivo, the ...

  11. Purification of rabbit IgG, obtention of sheep anti rabbit IgG and their use in radioimmunoassay of avian leukosis virus p15

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Tomoko; Ogata, Hiroe; Veiga, Silvio Sanches; Nogueira, Zelia Maria [Instituto de Quimica, Sao Paulo, SP (Brazil); Souza Felippe, Julia Maria Martins de [Instituto Adolfo Lutz, Sao Paulo, SP (Brazil). Div. de Virus

    1988-01-01

    Immunoglobulin from rabbit serum was purified by ammonium sulphate precipitation followed by chromatography on DEA-cellulose and gel filtration in Sephadex G-200. The efficiency of all steps was followed by protein determination and profiles in sodium dodecyl-sulphate polyacrylamide gel electrophoresis. Sheeps were immunized with purified IgG. The deep anti-rabbit IgG titre was evaluated by double immuno diffusion gel plates. The system rabbit serum vs sheep anti-rabbit IgG serum was used as precipitating system in radioimmunoassay of the retrovirus immunogens, in this case, p15 of avian leukosis virus. (author). 19 refs., 4 figs., 3 tabs.

  12. Purification of rabbit IgG, obtention of sheep anti rabbit IgG and their use in radioimmunoassay of avian leukosis virus p15

    International Nuclear Information System (INIS)

    Immunoglobulin from rabbit serum was purified by ammonium sulphate precipitation followed by chromatography on DEA-cellulose and gel filtration in Sephadex G-200. The efficiency of all steps was followed by protein determination and profiles in sodium dodecyl-sulphate polyacrylamide gel electrophoresis. Sheeps were immunized with purified IgG. The deep anti-rabbit IgG titre was evaluated by double immuno diffusion gel plates. The system rabbit serum vs sheep anti-rabbit IgG serum was used as precipitating system in radioimmunoassay of the retrovirus immunogens, in this case, p15 of avian leukosis virus. (author). 19 refs., 4 figs., 3 tabs

  13. The Spacing between Cysteines Two and Three of the LDL-A Module of Tva Is Important for Subgroup A Avian Sarcoma and Leukosis Virus Entry

    OpenAIRE

    Rai, Tia; Marble, Deborah; Rihani, Kayla; Rong, Lijun

    2004-01-01

    Rong et al. have demonstrated previously that with a few substitutions, the fourth repeat of human low-density lipoprotein (hLDL-A4) receptor can functionally replace the LDL-A module of Tva, the cellular receptor for subgroup A avian sarcoma and leukosis virus (ASLV-A), in viral entry (L. Rong, K. Gendron, and P. Bates, Proc. Natl. Acad. Sci. USA 95:8467-8472, 1998). Here we have shown that swapping the amino terminus of hLDL repeat 5 (hLDL-A5) with that of Tva, in addition to the correspond...

  14. Recombinant chicken interferon-alpha inhibits the replication of exogenous avian leukosis virus (ALV) in DF-1 cells.

    Science.gov (United States)

    Dai, Manman; Wu, Siyu; Feng, Min; Feng, Saixiang; Sun, Chao; Bai, Dayong; Gu, Mingzhu; Liao, Ming; Cao, Weisheng

    2016-08-01

    Chickeninterferon alpha (ChIFNα) belongs to type I IFNs that are important antiviral cytokines. We investigated whether ChIFNα plays a role in avian leukosis virus (ALV) infections of chickens. Firstly, we explored the immune response to ALV in vivo by measuring cytokine expression profiles in the spleens and bursas of chickens during the late stages of ALV-J infection. The results indicated that ALV-J infection could induce a mixed Th1/Th2 cytokine response by elevating levels of both interleukin-2 (IL-2) and IL-10. In contrast, tumor necrosis factor alpha (TNF-α) levels decreased in the spleen while interferon beta (IFNβ) and Toll-like receptor 7 (TLR7) expression levels in the bursa increased significantly. This indicated that ALV-J stimulates a Type I IFN response. Next, we found that different ALV subgroups or strains up-regulated chicken IFN regulatory factor 3 (ChIRF-3) promoter activity, suggesting that ALV infection could trigger Type I IFNs pathway in vitro. Accordingly, we further investigated ChIFNα antiviral effects on ALV replication in DF-1 cells by successfully expressing recombinant ChIFNα in Escherichia coli (E. coli) strain BL21. The specific activity of the purified rChIFNα protein was determined to be 4×10(7)U/mL. When added at 4000U/mL, the recombinant protein restrained ALV replication as measured by decreases in viral protein p27 levels and mRNA expression. This new reagent may be useful for prophylactic and therapeutic drug design. PMID:27372921

  15. Synergy of subgroup J avian leukosis virus and Eimeria tenella to increase pathogenesis in specific-pathogen-free chickens.

    Science.gov (United States)

    Cui, Ning; Wang, Qi; Shi, Wenyan; Han, Linzhen; Wang, Jiazhong; Ma, Xingjiang; Li, Hongmei; Wang, Fangkun; Su, Shuai; Zhao, Xiaomin

    2016-09-01

    To investigate the effects of co-infections of subgroup J avian leukosis virus (ALV-J) and Eimeria tenella on the pathogenesis in specific-pathogen-free (SPF) white leghorn chickens, groups of chickens were infected with ALV-J strain NX0101 at one day of age or with E. tenella at 14 days of age or both. The control group was left uninfected and was mock-inoculated with phosphate buffer saline (PBS). Mortality rates, body weights, cecal lesions, and viremia of infected chickens in each group were evaluated. Immune status was evaluated by measuring several parameters: immune organ weight/body weight index, specific humoral responses to inactivated NDV vaccine and to inoculated E. tenella, proportions of blood CD3+CD4+ and CD3+CD8α+ lymphocytes and transcriptional levels of cytokines in blood and cecal tonsils. The results show that co-infections of ALV-J and E. tenella induced a higher mortality rate and a lower body weight in SPF chickens compared to single-pathogen infection. In co-infected chickens, ALV-J accelerated the disease symptoms induced by E. tenella, and the E. tenella extended the ALV-J viremia. Thymus atrophy, decrease in the humoral response levels to pathogens and the NDV vaccine, modifications in the blood lymphocyte sub-populations and transcriptional cytokine disorders were found in co-infected chickens compared to chickens infected with one pathogen alone and to controls. We underline a synergy between ALV-J and E. tenella that results in increasing pathogenesis in SPF chickens. PMID:27436443

  16. Genetic Diversity of NHE1, Receptor for Subgroup J Avian Leukosis Virus, in Domestic Chicken and Wild Anseriform Species

    Science.gov (United States)

    Šenigl, Filip; Vinkler, Michal; Hejnar, Jiří

    2016-01-01

    J subgroup avian leukosis virus (ALV-J) infects domestic chicken, jungle fowl, and turkey and enters the host cell through a receptor encoded by tvj locus and identified as Na+/H+ exchanger 1 (NHE1). The resistance to ALV-J in a great majority of examined galliform species was explained by deletions or substitutions of the critical tryptophan 38 in the first extracellular loop of NHE1, and genetic polymorphisms around this site predict the susceptibility or resistance of a given species or individual. In this study, we examined the NHE1 polymorphism in domestic chicken breeds and documented quantitative differences in their susceptibility to ALV-J in vitro. In a panel of chicken breeds assembled with the aim to cover the maximum variability encountered in domestic chickens, we found a completely uniform sequence of NHE1 extracellular loop 1 (ECL1) without any source of genetic variation for the selection of ALV-J-resistant poultry. In parallel, we studied the natural polymorphisms of NHE1 in wild ducks and geese because of recent reports on ALV-J positivity in feral Asian species. In anseriform species, we demonstrate a specific and highly conserved critical ECL1 sequence without any homologue of tryptophan 38 in accordance with the resistance of duck cells to prototype ALV-J. Last, we demonstrated that the new Asian strains of ALV-J have not evolved their envelope glycoprotein to the entry the duck cells. Our results contribute substantially to the current discussion of possible heterotransmission of ALV-J and its spill-over into the wild ducks and geese. PMID:26978658

  17. Seroprevalence of Avian Leukosis Virus Antigen Using ELISA Technique in Exotic Broilers and Nigerian Local Chickens in Zaria, Nigeria

    Directory of Open Access Journals (Sweden)

    N. A. Sani

    Full Text Available In an attempt to determine the seroprevalence of avian leukosis virus (ALV in exotic broiler chickens and Nigerian local chickens in Zaria, Nigeria, a total of 600 sera (300 from exotic broiler chickens and 300 from Nigerian local chickens, obtained from the live bird market in Zaria, Nigeria, were tested for ALV p27 antigen by the antigen capture-enzyme linked immunosorbent assay (ac-ELISA technique. The age range of the Nigerian local chickens sampled in this study was 6 – 24 months, while that of the exotic broiler chickens used in this study was 2-3 months. Fourteen out of the 300 sera obtained from the exotic broiler chickens tested positive to ALV p27 antigen, which represents 4.70%, while 180 of the 300 Nigerian local chicken sera were confirmed positive to the antigen, representing 60.00%. Thirteen (92.86% of the fourteen sera from the exotic broiler chickens were lowly positive (ELISA Units range of 10-20% to ALV p27 antigen, while only one (7.14% serum sample was moderately positive to ALV p27 antigen with an ELISA Unit of 29.33%. Of the 180 sera from the Nigerian local chickens that tested positive to ALV p27 antigen , 79 (43.89% were lowly positive with ELISA Units ranging from 10.67% to 21.33%, while 101 (56.11% serum samples were moderately positive to ALV p27 antigen with ELISA Units ranging from 28.0% to 73.33%. A higher seroprevalence of ALV was detected in Nigerian local chickens than the exotic broiler chickens. [Vet. World 2011; 4(8.000: 345-348

  18. MicroRNA-23b Promotes Avian Leukosis Virus Subgroup J (ALV-J) Replication by Targeting IRF1.

    Science.gov (United States)

    Li, Zhenhui; Chen, Biao; Feng, Min; Ouyang, Hongjia; Zheng, Ming; Ye, Qiao; Nie, Qinghua; Zhang, Xiquan

    2015-01-01

    Avian leukosis virus subgroup J (ALV-J) can cause several different leukemia-like proliferative diseases in the hemopoietic system of chickens. Here, we investigated the transcriptome profiles and miRNA expression profiles of ALV-J-infected and uninfected chicken spleens to identify the genes and miRNAs related to ALV-J invasion. In total, 252 genes and 167 miRNAs were differentially expressed in ALV-J-infected spleens compared to control uninfected spleens. miR-23b expression was up-regulated in ALV-J-infected spleens compared with the control spleens, and transcriptome analysis revealed that the expression of interferon regulatory factor 1 (IRF1) was down-regulated in ALV-J-infected spleens compared to uninfected spleens. A dual-luciferase reporter assay showed that IRF1 was a direct target of miR-23b. miR-23b overexpression significantly (P = 0.0022) decreased IRF1 mRNA levels and repressed IRF1-3'-UTR reporter activity. In vitro experiments revealed that miR-23b overexpression strengthened ALV-J replication, whereas miR-23b loss of function inhibited ALV-J replication. IRF1 overexpression inhibited ALV-J replication, and IRF1 knockdown enhanced ALV-J replication. Moreover, IRF1 overexpression significantly (P = 0.0014) increased IFN-β expression. In conclusion, these results suggested that miR-23b may play an important role in ALV-J replication by targeting IRF1. PMID:25980475

  19. Genetic Diversity of NHE1, Receptor for Subgroup J Avian Leukosis Virus, in Domestic Chicken and Wild Anseriform Species.

    Science.gov (United States)

    Reinišová, Markéta; Plachý, Jiří; Kučerová, Dana; Šenigl, Filip; Vinkler, Michal; Hejnar, Jiří

    2016-01-01

    J subgroup avian leukosis virus (ALV-J) infects domestic chicken, jungle fowl, and turkey and enters the host cell through a receptor encoded by tvj locus and identified as Na+/H+ exchanger 1 (NHE1). The resistance to ALV-J in a great majority of examined galliform species was explained by deletions or substitutions of the critical tryptophan 38 in the first extracellular loop of NHE1, and genetic polymorphisms around this site predict the susceptibility or resistance of a given species or individual. In this study, we examined the NHE1 polymorphism in domestic chicken breeds and documented quantitative differences in their susceptibility to ALV-J in vitro. In a panel of chicken breeds assembled with the aim to cover the maximum variability encountered in domestic chickens, we found a completely uniform sequence of NHE1 extracellular loop 1 (ECL1) without any source of genetic variation for the selection of ALV-J-resistant poultry. In parallel, we studied the natural polymorphisms of NHE1 in wild ducks and geese because of recent reports on ALV-J positivity in feral Asian species. In anseriform species, we demonstrate a specific and highly conserved critical ECL1 sequence without any homologue of tryptophan 38 in accordance with the resistance of duck cells to prototype ALV-J. Last, we demonstrated that the new Asian strains of ALV-J have not evolved their envelope glycoprotein to the entry the duck cells. Our results contribute substantially to the current discussion of possible heterotransmission of ALV-J and its spill-over into the wild ducks and geese. PMID:26978658

  20. Identification of a variant antigenic neutralizing epitope in hypervariable region 1 of avian leukosis virus subgroup J.

    Science.gov (United States)

    Hou, Minbo; Zhou, Defang; Li, Gen; Guo, Huijun; Liu, Jianzhu; Wang, Guihua; Zheng, Qiankun; Cheng, Ziqiang

    2016-03-01

    Avian leukosis virus subgroup J (ALV-J) is a hypervariable oncogenic retrovirus that causes great economic loss in poultry. Antigenic variations in the variable regions make the development of an effective vaccine a challenging task. In the present study, we identified a variant antigenic neutralizing epitope using reverse vaccinology methods. First, we predicted the B-cell epitopes in gp85 gene of ALV-J strains by DNAman and bioinformatics. Fourteen candidate epitopes were selected and linked in tandem with glycines or serines as a multi-epitope gene. The expressed protein of multi-epitope gene can induce high-titer antibody that can recognize nature ALV-J and neutralize the infectivity of ALV-J strains. Next, we identified a high effective epitope using eight overlapping fragments of gp85 gene reacting with mAb 2D5 and anti-multi-epitope sera. The identified epitope contained one of the predicted epitopes and localized in hyervariable region 1 (hr1), indicating a variant epitope. To better understand if the variants of the epitope have a good antigenicity, we synthesized four variants to react with mAb 2D5 and anti-ALV-J sera. The result showed that all variants could react with the two kinds of antibodies though they showed different antigenicity, while could not react with ALV-J negative sera. Thus, the variant antigenic neutralizing epitope was determined as 137-LRDFIA/E/TKWKS/GDDL/HLIRPYVNQS-158. The result shows a potential use of this variant epitopes as a novel multi-epitope vaccine against ALV-J in poultry. PMID:26850757

  1. Development and application of reverse transcriptase nested polymerase chain reaction test for the detection of exogenous avian leukosis virus.

    Science.gov (United States)

    García, Maricarmen; El-Attrache, John; Riblet, Sylva M; Lunge, Vagner R; Fonseca, André S K; Villegas, Pedro; Ikuta, Nilo

    2003-01-01

    A polymerase chain reaction (PCR) assay that utilizes nested primers to amplify a fragment of the long terminal repeat of exogenous avian leukosis virus (ALV) was developed and evaluated for detection of ALV subgroup J directly from clinical samples. Compilation of sequence data from different endogenous and exogenous ALVs allowed the selection of a conserved set of nested primers specific for the amplification of exogenous ALV subgroups A, B, C, D, and J and excluded amplification of endogenous viruses or endogenous viral sequences within the chicken genome. The nested primers were successfully used in both PCR and reverse transcriptase (RT)-PCR assays to detect genetically diverse ALV-J field isolates. Detection limits of ALV-J isolate ADOL-Hc1 DNA by nested PCR and RNA by RT-nested PCR were superior to detection of group-specific antigen by enzyme-linked immunosorbent assay (ELISA) in cell culture. Detection of ALV-J in cloacal swabs by RT-nested PCR was compared with direct detection by antigen-capture (ac)-ELISA; RT-nested PCR detected fewer positive samples than ac-ELISA, suggesting that RT-nested PCR excluded detection of endogenous virus in clinical samples. Detection of ALV-J in plasma samples by RT-nested PCR was compared with virus isolation in C/E chicken embryo fibroblasts; the level of agreement between both assays as applied to plasma samples ranged from low to moderate. The main disagreement between both assays was observed for a group of plasma samples found positive by RT-nested PCR and negative by virus isolation, suggesting that RT-nested PCR detected ALV-J genome in plasma samples of transiently or intermittently infected birds. ALV-J transient and intermittent infection profiles are characterized by inconsistent virus isolation responses throughout the life of a naturally infected flock. PMID:12713157

  2. Distribution of viral antigen gp85 and provirus in various tissues from commercial meat-type and experimental white leghorn line 0 chickens with different subgroup J avian leukosis virus infection profiles

    Science.gov (United States)

    Immunohistochemistry (IHC) and polymerase chain reaction (PCR) were used to test for the presence of subgroup J avian leukosis virus (ALV J) envelope antigen gp85 and provirus, respectively in various tissues (adrenal gland, bone marrow, gonad, heart, kidney, liver, lung, pancreas, proventriculus, s...

  3. 9 CFR 381.82 - Diseases of the leukosis complex.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Diseases of the leukosis complex. 381... Carcasses and Parts § 381.82 Diseases of the leukosis complex. Carcasses of poultry affected with any one or more of the several forms of the avian leukosis complex shall be condemned....

  4. The avian retrovirus avian sarcoma/leukosis virus subtype A reaches the lipid mixing stage of fusion at neutral pH.

    Science.gov (United States)

    Earp, Laurie J; Delos, Sue E; Netter, Robert C; Bates, Paul; White, Judith M

    2003-03-01

    We previously showed that the envelope glycoprotein (EnvA) of avian sarcoma/leukosis virus subtype A (ASLV-A) binds to liposomes at neutral pH following incubation with its receptor, Tva, at >or=22 degrees C. We also provided evidence that ASLV-C fuses with cells at neutral pH. These findings suggested that receptor binding at neutral pH and >or=22 degrees C is sufficient to activate Env for fusion. A recent study suggested that two steps are necessary to activate avian retroviral Envs: receptor binding at neutral pH, followed by exposure to low pH (W. Mothes et al., Cell 103:679-689, 2000). Therefore, we evaluated the requirements for intact ASLV-A particles to bind to target bilayers and fuse with cells. We found that ASLV-A particles bind stably to liposomes in a receptor- and temperature-dependent manner at neutral pH. Using ASLV-A particles biosynthetically labeled with pyrene, we found that ASLV-A mixes its lipid envelope with cells within 5 to 10 min at 37 degrees C. Lipid mixing was neither inhibited nor enhanced by incubation at low pH. Lipid mixing of ASLV-A was inhibited by a peptide designed to prevent six-helix bundle formation in EnvA; the same peptide inhibits virus infection and EnvA-mediated cell-cell fusion (at both neutral and low pHs). Bafilomycin and dominant-negative dynamin inhibited lipid mixing of Sindbis virus (which requires low pH for fusion), but not of ASLV-A, with host cells. Finally, we found that, although EnvA-induced cell-cell fusion is enhanced at low pH, a mutant EnvA that is severely compromised in its ability to support infection still induced massive syncytia at low pH. Our results indicate that receptor binding at neutral pH is sufficient to activate EnvA, such that ASLV-A particles bind hydrophobically to and merge their membranes with target cells. Possible roles for low pH at subsequent stages of viral entry are discussed. PMID:12584331

  5. A 19-Nucleotide Insertion in the Leader Sequence of Avian Leukosis Virus Subgroup J Contributes to Its Replication in Vitro but Is Not Related to Its Pathogenicity in Vivo

    OpenAIRE

    Ji, Xiaolin; Wang, Qi; Li, Xiaofei; Qi, Xiaole; Wang, Yongqiang; Gao, Honglei; Gao, Yulong; Wang, Xiaomei

    2014-01-01

    Subgroup J avian leukosis virus (ALV-J) was first isolated from meat-type chickens that had developed myeloid leukosis and since 2008, ALV-J infections in chickens have become widespread in China. A comparison of the sequence of ALV-J epidemic isolates with HPRS-103, the ALV-J prototype virus, revealed several distinct features, one of which is a 19-nucleotide (nt) insertion in the leader sequence. To determine the role of the 19-nt insertion in ALV-J pathogenicity, a pair of viruses were con...

  6. An Evaluation of the Infection Status and Source of Subgroup J Avian Leukosis Virus in Cloned Free-Range Layers

    Institute of Scientific and Technical Information of China (English)

    ZHANG Pei-pei; LIU Shao-qiong; WANG Jian; WANG Bo; ZHAO Cheng-di; ZHANG Yong-guang; SUN Shu-hong

    2013-01-01

    In recent years, subgroup J avian leukosis virus (ALV-J) has been found to frequently infect layers in China. This virus is responsible for economic losses due to both mortality and decreased performance in chickens. In this study, 45-d-old cloned free-range layers were suspected to be infected with ALV and other immunosuppressive diseases because their feathers were unkempt and their growth rate was impaired. To estimate the infection status and determine the source of ALV-J in the flock, 30 cloacal swabs were randomly collected to measure the p27 antigen level by enzyme-linked immunosorbent assay (ELISA). Among the birds that were tested, 87%(26/30) were positive. In addition, 6 anticoagulant blood samples were aseptically collected at random from the flock when the layers were 60 d old. These samples were centrifuged to obtain the leukocytes, which were then used to inoculate chicken embryo fibroblast (CEF) cells for the identification of ALV-J by indirect immunofluorescence (IFA). Of the samples tested, 100%(6/6) were positive. The flock’s production performance was also investigated, and 10 layers were necropsied to evaluate pathological changes at 115 d of age. The flock never laid eggs even though they reached the age of the first laying (110 d). Furthermore, there were pathological changes present, including atrophy of the thymus and bursa of Fabricius, undeveloped ovaries, glandular stomach haemorrhage, and hepatosplenomegaly. Paraffin-embedded sections of intumescent liver and spleen were prepared for antigen localisation using IFA. Positive signals were prevalent in paraffin-embedded sections of the intumescent liver and spleen. Furthermore, provirus DNA was extracted from 4 cloned free-range layers, and 2 paternal parents (HR native cocks), and the gp85 gene of ALV-J was amplified by PCR to analyse the genetic variation. The results of the autogenous variation analysis showed that the 6 strains were 98.5-99.7%homologous. This study indicated that

  7. Molecular analysis of endogenous avian leukosis/sarcoma virus genomes in Korean chicken embryos.

    Science.gov (United States)

    Kim, You-Jung; Park, Sang-Ik; Park, Su-Jin; Kim, Ha-Hyun; Jung, Yong-Wun; Kwon, Jung-Taek; Jang, Byoung-Gui; Kim, Hak-Kue; Cho, Kyoung-Oh

    2008-01-01

    Since the status of endogenous avian leucosis/sarcoma virus (ALSV) infections in Korean broiler chickens is unclear, this study examined embryonated eggs obtained from broiler farms and Korean native chicken breeds in Korea using PCR with the primer sets specific for endogenous ALSVs. The PCR assays detected the genomes of EAV, ev, ev/J and ART-CH belonging to the endogenous ALSV from all embryos tested. Phylogenetically, the Korean EAV genomes were more closely related to the prototype EAV-0 than to the other prototype, E51. The Korean ART-CH elements clustered together but were distinct from the prototype ART-CH clones, 5 and 14. Although there was comparatively little divergence in the nucleotide and amino acid sequences of the Korean ev and ev/J genomes compared with the other known ev and ev/J genomes, the Korean genomes had phylogenetically distinct branches. From these results, endogenous genomes are quite prevalent in Korean broiler chickens. In addition, the endogenous genomes circulating in Korean broiler chickens are genetically different from the other known endogenous genomes. These results are expected to provide useful information for the control and establishment of a surveillance system for endogenous ALSVs in Korea. PMID:18250567

  8. Structure and membrane interaction of the internal fusion peptide of avian sarcoma leukosis virus.

    Science.gov (United States)

    Cheng, Shu-Fang; Wu, Cheng-Wei; Kantchev, Eric Assen B; Chang, Ding-Kwo

    2004-12-01

    The structure and membrane interaction of the internal fusion peptide (IFP) fragment of the avian sarcoma and leucosis virus (ASLV) envelope glycoprotein was studied by an array of biophysical methods. The peptide was found to induce lipid mixing of vesicles more strongly than the fusion peptide derived from the N-terminal fusion peptide of influenza virus (HA2-FP). It was observed that the helical structure was enhanced in association with the model membranes, particularly in the N-terminal portion of the peptide. According to the infrared study, the peptide inserted into the membrane in an oblique orientation, but less deeply than the influenza HA2-FP. Analysis of NMR data in sodium dodecyl sulfate micelle suspension revealed that Pro13 of the peptide was located near the micelle-water interface. A type II beta-turn was deduced from NMR data for the peptide in aqueous medium, demonstrating a conformational flexibility of the IFP in analogy to the N-terminal FP such as that of gp41. A loose and multimodal self-assembly was deduced from the rhodamine fluorescence self-quenching experiments for the peptide bound to the membrane bilayer. Oligomerization of the peptide and its variants can also be observed in the electrophoretic experiments, suggesting a property in common with other N-terminal FP of class I fusion proteins. PMID:15606759

  9. Differentially expressed genes in a flock of Chinese local-breed chickens infected with a subgroup J avian leukosis virus using suppression subtractive hybridization

    Directory of Open Access Journals (Sweden)

    Guiping Zhao

    2010-01-01

    Full Text Available Avian leukosis virus subgroup J (ALV-J is a new type of virus that mainly induces myeloid leukosis (ML in chickens. To further elucidate the pathogenesis of ALV-J infection and tumor development, expression profiles from the bone marrow tissue of 15 infected and 18 non-infected birds from a local-breed poultry-farm under naturally infected conditions, were analyzed by suppression-subtractive hybridization. The birds were diagnosed as ML+ (or ML- by specific ALV-J detection methods, involving serological tests for antigens and antibodies, and RT-PCR to detect viral RNA. A total of 59 partial gene sequences were revealed by differential screening of 496 forward and 384 reverse subtracted cDNA clones. Of these, 22 identified genes, including 8 up-regulated and 14 down-regulated, were related to immune functions, these genes being, MHC B-G antigen, translationally-controlled tumor protein (TPT1/TPTC, transferrin and ferritin, hemoglobin and Carbonic anhydrase. Four of the down-regulated genes were selected for further analysis, in view of their predicted roles in infection and immunity by real-time qRT-PCR, using RNA collected from the same birds as those used for SSH. The four genes were expressed at significantly lower levels (p < 0.001 in ALV-J infected birds than in non-infected ones.

  10. Karyotype analysis of the acute fibrosarcoma from chickens infected with subgroup J avian leukosis virus associated with v-src oncogene.

    Science.gov (United States)

    Dong, Xuan; Ju, Sidi; Chen, Junxia; Meng, Fanfeng; Sun, Peng; Li, Yang; Wang, Xin; Wang, Yixin; Liu, Juan; Chang, Shuang; Zhao, Peng; Cui, Zhizhong

    2016-04-01

    To understand the cytogenetic characteristics of acute fibrosarcoma in chickens infected with the subgroup J avian leukosis virus associated with the v-src oncogene, we performed a karyotype analysis of fibrosarcoma cell cultures. Twenty-nine of 50 qualified cell culture spreads demonstrated polyploidy of some macrochromosomes, 21 of which were trisomic for chromosome 7, and others were trisomic for chromosomes 3, 4, 5 (sex chromosome w), and 10. In addition, one of them was trisomic for both chromosome 7 and the sex chromosome 5 (w). In contrast, no aneuploidy was found for 10 macrochromosomes of 12 spreads of normal chicken embryo fibroblast cells, although aneuploidy for some microchromosomes was demonstrated in five of the 12 spreads. The cytogenetic mosaicism or polymorphism of the aneuploidy in the acute fibrosarcoma described in this study suggests that the analysed cells are polyclonal. PMID:27100152

  11. Contamination rate of Avian Leukosis viruses among commercial Marek's Disease vaccines in Assiut, Egypt market using Reverse Transcriptase-Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Moemen A. Mohamed

    2010-02-01

    Full Text Available Avian leukosis viruses (ALVs in poultry may induce a variety of deleterious effects including tumors, increased mortalities, growth retardation and decrease in egg size and production that led to considerable economic losses. The identification of avian leukosis viruses (ALVs in imported Marek’s disease (MD vaccines has raised concern about transmission of these retroviruses to vaccine recipients esp. poultry breeding stocks, so Egypt as one of importing countries requires freedom of infection with ALVs in such vaccines. Subgroup specific RT-PCR was undertaken on isolated RNA from 13 obtained commercial MD vaccines using six pairs of primers that correspond to envelope glycoprotein gene (gp85 which determines possible contamination with the six ALV subgroups: A, B, C, D, E, and J. The results indicated that RT-PCR assay for ALV-gp85 subgroup-E was positive for eight out of thirteen (61.5% tested MD vaccines, while primers designed to detect subgroup A and J ALVs were positive for five out of thirteen (38.5% and two out of thirteen (7.7% respectively among examined vaccines. No ALVs was detected in 3/13 (23.07% of commercially examined vaccines by using any of six primer pairs. Finally, the using of RT-PCR assay provides us a new, sensitive approach for identifying ALVs as a contaminant agent that will help greatly in applying this method for equipped labs as a quality control measure for testing delivered MD vaccines before its administration in poultry breeding stocks as well eradication programs through identifying infected birds. [Vet. World 2010; 3(1.000: 8-12

  12. Further observations on serotype 2 Marek's disease virus-induced enhancement of spontaneous avian leukosis virus-like bursal lymphomas in ALVA6 transgenic chickens.

    Science.gov (United States)

    Cao, Weisheng; Mays, Jody; Kulkarni, Gururaj; Dunn, John; Fulton, Richard M; Fadly, Aly

    2015-01-01

    Breeders of the 2009 generation of Avian Disease and Oncology Laboratory transgenic chicken line ALVA6, known to be resistant to infection with subgroups A and E avian leukosis virus (ALV), were vaccinated at hatch with a trivalent Marek's disease (MD) vaccine containing serotypes 1, 2, and 3 Marek's disease virus (MDV) and were maintained under pathogen-free conditions from the day of hatch until 75 weeks of age. Spontaneous ALV-like bursal lymphomas, also termed lymphoid leukosis (LL)-like lymphomas, were detected in 7% of the ALVA6 breeders. There was no evidence of infection with exogenous and endogenous ALV as determined by virus isolation tests of plasma and tumour tissue homogenates. For the next three generations, serotype 2 MDV was eliminated from the trivalent MD vaccine used. Results show, for the first time, that removal of serotype 2 MDV from MD vaccines eliminated spontaneous LL-like lymphomas within 50 to 72 weeks of age for at least three consecutive generations. Two experiments were also conducted to determine the influence of in ovo vaccination with serotype 2 MD vaccines on enhancement of spontaneous LL-like lymphomas in ALVA6 chickens. Chickens from the 2012 generation were each inoculated in ovo or at hatch with 5000 plaque-forming units of serotype 2 MDV. Results indicate that by 50 weeks of age the incidence of spontaneous LL-like lymphomas in chickens inoculated in ovo with serotype 2 MDV was comparable with that in chickens inoculated with virus at hatch, suggesting that the augmentation effect of serotype 2 MDV is independent of age of vaccination. PMID:25407937

  13. Letter to the Editor Avian sarcoma and leukosis virus gag gene - Genet. Mol. Res. 14 (4): 14379-14386 "Avian sarcoma and leukosis virus gag gene in the Anser anser domesticus genome".

    Science.gov (United States)

    Elleder, D; Hejnar, J

    2016-01-01

    Dear Editor, A recent paper in the GMR Journal (Zhu et al., 2015) reported the discovery of endogenous avian sarcoma and leukosis virus (enASLV) in the domestic goose (Anser anser domesticus) genome. The discovery was based on PCR detection of a single viral gene (gag). This would be a very surprising finding, as ASLV-related endogenous retroviruses have only been detected in galliform birds (Dimcheff et al., 2000). Geese, which belong to the order Anseriformes, split from the Galliformes more than 80 million years ago. We argue below that the data supporting the findings by Zhu et al. are technically unsatisfactory, and that much stronger evidence would be needed. In our view, it is possible that their PCR amplifications were contaminated with chicken genomic DNA. Zhu et al. used PCR to amplify an approximately 1200-nucleotide fragment of the enASLV from all the eight Chinese domestic goose breeds that they tested. They used primers, designed in a previous study (Dimcheff et al., 2000), complementary to conserved regions of the ASLV gag gene. The sequences obtained by Zhu et al. were more than 99% identical to sequences present in the chicken genome. The authors used three arbitrarily chosen chicken enASLVs to analyze the phylogenetic relationship between the purported goose enASLV and the chicken enASLV. They concluded that there is a clear separation between chicken and goose sequences and that the goose sequences are more variable than the chicken sequences. However, we analyzed the purported goose ASLV sequence against the complete set of more than a hundred enASLVs assembled in a previous study (Dimcheff et al., 2000). In that study, the ASLV gag genes were amplified from 26 species of galliform birds. The phylogenies of viruses and avian hosts were largely congruent, indicating long association and vertical transmission during speciation of Galliformes. In our phylogenetic analysis, the purported goose ASLV sequence falls deeply within the cluster of chicken

  14. Quantitative iTRAQ LC-MS/MS proteomics reveals the proteome profiles of DF-1 cells after infection with subgroup J Avian leukosis virus.

    Science.gov (United States)

    Li, Xiaofei; Wang, Qi; Gao, Yanni; Qi, Xiaole; Wang, Yongqiang; Gao, Honglei; Gao, Yulong; Wang, Xiaomei

    2015-01-01

    Avian leukosis virus subgroup J (ALV-J) is an avian oncogenic retrovirus that can induce various clinical tumors and has caused severe economic losses in China. To improve our understanding of the host cellular responses to virus infection and the pathogenesis of ALV-J infection, we applied isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with multidimensional liquid chromatography-tandem mass spectrometry to detect the protein changes in DF-1 cells infected and mock-infected with ALV-J. A total of 75 cellular proteins were significantly changed, including 33 upregulated proteins and 42 downregulated proteins. The reliability of iTRAQ-LC MS/MS was confirmed via real-time PCR. Most of these proteins were related to the physiological functions of metabolic processes, biosynthetic processes, responses to stimuli, protein binding, signal transduction, cell cytoskeleton, and so forth. We also found some proteins that play important roles in apoptosis and oncogenicity. The differentially expressed proteins identified may provide valuable information to elucidate the pathogenesis of virus infection and virus-host interactions. PMID:25632391

  15. Role of gga-miR-221 and gga-miR-222 during Tumour Formation in Chickens Infected by Subgroup J Avian Leukosis Virus

    Directory of Open Access Journals (Sweden)

    Zhenkai Dai

    2015-12-01

    Full Text Available Subgroup J avian leukosis virus (ALV-J causes a neoplastic disease in infected chickens. Differential expression patterns of microRNAs (miRNAs are closely related to the formation and growth of tumors. (1 Background: This study was undertaken to understand how miRNAs might be related to tumor growth during ALV-J infection. We chose to characterize the effects of miR-221 and miR-222 on cell proliferation, migration, and apoptosis based on previous microarray data. (2 Methods: In vivo, the expression levels of miR-221 and miR-222 were significantly increased in the liver of ALV-J infected chickens (p < 0.01. Over-expression of gga-miR-221 and gga-miR-222 promoted the proliferation, migration, and growth of DF-1 cells, and decreased the expression of BCL-2 modifying factor (BMF making cells more resistant to apoptosis. (3 Results: Our results suggest that gga-miR-221 and gga-miR-222 may be tumour formation relevant gene in chicken that promote proliferation, migration, and growth of cancer cells, and inhibit apoptosis. BMF expression was significantly reduced in vivo 70 days after ALV-J infection. They may also play a pivotal role in tumorigenesis during ALV-J infection.

  16. Role of gga-miR-221 and gga-miR-222 during Tumour Formation in Chickens Infected by Subgroup J Avian Leukosis Virus.

    Science.gov (United States)

    Dai, Zhenkai; Ji, Jun; Yan, Yiming; Lin, Wencheng; Li, Hongxin; Chen, Feng; Liu, Yang; Chen, Weiguo; Bi, Yingzuo; Xie, Qingmei

    2015-12-01

    Subgroup J avian leukosis virus (ALV-J) causes a neoplastic disease in infected chickens. Differential expression patterns of microRNAs (miRNAs) are closely related to the formation and growth of tumors. (1) BACKGROUND: This study was undertaken to understand how miRNAs might be related to tumor growth during ALV-J infection. We chose to characterize the effects of miR-221 and miR-222 on cell proliferation, migration, and apoptosis based on previous microarray data. (2) METHODS: In vivo, the expression levels of miR-221 and miR-222 were significantly increased in the liver of ALV-J infected chickens (p < 0.01). Over-expression of gga-miR-221 and gga-miR-222 promoted the proliferation, migration, and growth of DF-1 cells, and decreased the expression of BCL-2 modifying factor (BMF) making cells more resistant to apoptosis. (3) RESULTS: Our results suggest that gga-miR-221 and gga-miR-222 may be tumour formation relevant gene in chicken that promote proliferation, migration, and growth of cancer cells, and inhibit apoptosis. BMF expression was significantly reduced in vivo 70 days after ALV-J infection. They may also play a pivotal role in tumorigenesis during ALV-J infection. PMID:26690468

  17. Amino acid residues Tyr-67, Asn-72, and Asp-73 of the TVB receptor are important for subgroup E avian sarcoma and leukosis virus interaction

    International Nuclear Information System (INIS)

    The chicken TVBS1 protein serves as the cellular receptor for the cytopathic subgroups B and D avian sarcoma and leukosis viruses (ASLVs) as well as for the non-cytopathic subgroup E ASLV. Previous studies had mapped the subgroup B viral interaction determinants to a region that was located between residues 32 and 46 of TVBS1 [J. Virol. 76 (2002) 5404]. To gain a greater insight into ASLV Env-receptor interactions and the possible role of these interactions in viral cytopathic effects, we employed a homolog-scanning mutagenesis approach to identify amino acid residues important for subgroup E viral receptor function by exchanging amino acid residues between TVBS1 and its human homolog, DR5. These studies identified residues Tyr-67, Asn-72, and Asp-73 of TVBS1 as important subgroup E viral interaction determinants. Intriguingly, these three residues are conserved between TVBS1 and DR5, demonstrating that the human protein contains critical subgroup E viral interaction determinants, but in this context, they cannot support viral entry. These data confirm that the molecular determinants of the TVB receptor required for subgroup E viral entry are completely distinct from those used by subgroup B viruses

  18. Identification of avian leukosis virus subgroup J-associated acutely transforming viruses carrying the v-src oncogene in layer chickens.

    Science.gov (United States)

    Wang, Yixin; Li, Jianliang; Li, Yang; Fang, Lichun; Sun, Xiaolong; Chang, Shuang; Zhao, Peng; Cui, Zhizhong

    2016-05-01

    To elucidate the molecular basis for the rapid oncogenicity of an acutely transforming avian leukosis virus (ALV), isolated from fibrosarcomas in Hy-Line Brown commercial layer chickens infected with ALV subgroup J (ALV-J), the complete genomic structure of the provirus was determined. In addition to ALV-J replication-complete virus SDAU1102, five proviral DNA genomes, named SJ-1, SJ-2, SJ-3, SJ-4 and SJ-5, carrying different lengths of the v-src oncogene were amplified from original tumours and chicken embryo fibroblasts (CEFs) infected with viral stocks. The genomic sequences of the SJ-1-SJ-5 provirus were closely related to that of SDAU1102 but were defective. The results of Western blot analysis and immunohistochemical staining also showed overexpression of the p60v-src protein in infected CEFs and tumour tissue. To the best of our knowledge, this is the first report of the isolation and identification of acutely transforming viruses carrying the v-src oncogene with ALV-J as the helper virus. It also offers insight into the generation of acutely transforming ALVs carrying the v-src oncogene. PMID:26842006

  19. Identification of glycosylation sites in the SU component of the Avian Sarcoma/Leukosis virus Envelope Glycoprotein (Subgroup A) by mass spectrometry

    International Nuclear Information System (INIS)

    We used enzymatic digestion and mass spectrometry to identify the sites of glycosylation on the SU component of the Avian Sarcoma/Leukosis virus (ASLV) Envelope Glycoprotein (Subgroup A). The analysis was done with an SU(A)-rIgG fusion protein that binds the cognate receptor (Tva) specifically. PNGase F removed all the carbohydrate from the SU(A)-rIgG fusion. PNGase F is specific for N-linked carbohydrates; this shows that all the carbohydrate on SU(A) is N-linked. There are 10 modified aspargines in SU(A) (N17, N59, N80, N97, N117, N196, N230, N246, N254, and N330). All conform to the consensus site for N-linked glycosylation NXS/T. There is one potential glycosylation site (N236) that is not modified. Removing most of the carbohydrate from the mature SU(A)-rIgG by PNGase F treatment greatly reduces the ability of the protein to bind Tva, suggesting that carbohydrate may play a direct role in receptor binding

  20. Mutations in and Expression of the Tumor Suppressor Gene p53 in Egg-Type Chickens Infected With Subgroup J Avian Leukosis Virus.

    Science.gov (United States)

    Yue, Q; Yulong, G; Liting, Q; Shuai, Y; Delong, L; Yubao, L; Lili, J; Sidang, L; Xiaomei, W

    2015-11-01

    To investigate the molecular mechanisms of the oncogenic effects of avian leukosis virus subgroup J (ALV-J), we examined mutations in and the expression of p53 in the myelocytomas distributed in the liver, spleen, trachea, and bone marrow, as well as in fibrosarcomas in the abdominal cavity and hemangiomas in skin from chickens that were naturally or experimentally infected with ALV-J. Two types of mutations in the p53 gene were detected in myelocytomas of both the experimentally infected and the naturally infected chickens and included point mutations and deletions. Two of the point mutations have not been reported previously. Partial complementary DNA clones with a 122-bp deletion in the p53 gene ORF and a 15-bp deletion in the C-terminus were identified in the myelocytomas. In addition, moderate expression of the mutant p53 protein was detected in the myelocytomas that were distributed in the liver, trachea, spleen, and bone marrow. Mutant p53 protein was not detected in the subcutaneous hemangiomas or in the abdominal fibrosarcomas associated with natural and experimental ALV-J infection, respectively. These results identify mutations associated with abnormal expression of p53 in ALV-J-associated myelocytomas, suggesting a role in tumorigenesis. PMID:25445321

  1. The critical time of avian leukosis virus subgroup J-mediated immunosuppression during early stage infection in specific pathogen-free chickens.

    Science.gov (United States)

    Wang, Feng; Wang, Xiaowei; Chen, Hongbo; Liu, Jianzhu; Cheng, Ziqiang

    2011-09-01

    The critical time of avian leukosis virus subgroup J (ALV-J)-mediated immunosuppression was determined by body weight, relative immune organ weight, histopathology, and presence of group specific antigen and antibodies in specific pathogen-free (SPF) chickens. CD4(+) and CD8(+) cell activity in the spleen, total and differential leukocyte counts in blood, and viral RNA levels in spleen were measured. Significant growth suppression was observed in the two ALV-J-infected groups. A strong immune response by infected groups was present in spleen at 2-weeks-of-age, but after 4-weeks-of-age, the response decreased quickly. The thymus and bursa showed persistent immunosuppression until 4-weeks-of-age. Proliferation of fibroblasts and dendritic cells were observed in immune organs at 4- and 5-weeks-of-age. However, the granulocyte cell number was markedly lower in the infected groups than in the control group. In group 1 (day 1 infection) CD4(+) cells increased during the second week but significantly decreased during the fourth week, while group 2 (day 7 infection) showed the opposite effect. Viral RNA increased significantly by the fourth week. These data identify 3~4 weeks post-infection as the key time at which the ALV-J virus exerts its immunosuppressive effects on the host. PMID:21897096

  2. A low incidence of histiocytic sarcomatosis associated with infection of chickens with the HPRS-103 strain of subgroup J avian leukosis virus.

    Science.gov (United States)

    Arshad, S S; Bland, A P; Hacker, S M; Payne, L N

    1997-01-01

    Ten cases of histiocytic proliferative lesions in meat-type chickens associated in low incidence with infection by subgroup J avian leukosis virus (ALV) are described. Six were field cases in adult chickens from naturally infected flocks and four were from younger birds from transmission experiments with HPRS-103 ALV or the related acutely transforming ALV strains 17 and 879. The lesions were observed mostly in the spleen and in some cases in other organs. Microscopically, the lesions were comprised mainly of pleomorphic histiocyte-like cells admixed with variable numbers of lymphoid cells. More detailed studies were carried out on two birds at 4 and 7 wk of age following infection with HPRS-103 at 1 day of age. These birds had multiple small nodular lesions in the spleen, liver, and kidney that appeared similar cytologically to the more extensive lesions in older birds. Monoclonal antibodies specific for various lymphoid and nonlymphoid accessory cells were used in immunohistochemical studies to identify a predominance of cells of monocyte/macrophage lineage, and CD4- and CD8-positive lymphocytes, in the splenic nodules. Ultrastructural studies also revealed a similar mixed population of cells. Expression of ALV group-specific antigen, and gag and ALV-J env RNA, was not a marked feature of the histiocytic lesions. The proliferative histiocytic lesion is designated a histiocytic sarcomatosis. PMID:9454931

  3. Nucleotide sequence 5′ of the chicken c-myc coding region: Localization of a noncoding exon that is absent from myc transcripts in most avian leukosis virus-induced lymphomas

    OpenAIRE

    1984-01-01

    We have determined the nucleotide sequence of the 2.2-kilobase-pair region upstream of the chicken c-myc coding exons. Using RNA blot analysis, we have localized a noncoding exon to a region that is separated from the c-myc coding sequences by an intron of 700-800 base pairs. In most avian leukosis virus-induced lymphomas proviral integration has occurred within, or downstream of, the first exon, thus presumably displacing the regulatory sequences that normally control c-myc expression. More ...

  4. Resistance to Infection by Subgroups B, D, and E Avian Sarcoma and Leukosis Viruses Is Explained by a Premature Stop Codon within a Resistance Allele of the tvb Receptor Gene

    OpenAIRE

    Klucking, Sara; Adkins, Heather B.; Young, John A. T.

    2002-01-01

    Here we present the first molecular characterization of the defect associated with an avian sarcoma and leukosis virus (ASLV) receptor resistance allele, tvbr. We show that resistance to infection by subgroups B, D, and E ASLV is explained by the presence of a single base pair mutation that distinguishes this allele from tvbs1, an allele which encodes a receptor for all three viral subgroups. This mutation generates an in-frame stop codon that is predicted to lead to the production of a sever...

  5. Co-infection of Avian Leukosis Virus and Salmonella pullorum with the Preliminary Eradication in Breeders of Chinese Local “ShouGuang” Chickens

    Directory of Open Access Journals (Sweden)

    Jian Qiang Huang, Jing Kai Xin, Cui Mao, Feng Zhong and Jia Qian Chai*

    2013-11-01

    Full Text Available The study was designed to investigate the infection status and to finish the preliminary eradication of avian leukosis virus (ALV and Salmonella pullorum (SP in breeders of Chinese local “ShouGuang” chickens. ALV antigen and antibody was tested via ELISA, and SP antibody was detected by serum plate agglutination test (SPAT. The etiology and pathology was also studied. The ALV-P27 antigen, ALV-A/B and SP antibody positive chickens were eliminated in turn, and then the negative were retained as the breeder flocks. The results showed that the positive rate of antigen to ALV-P27, antibody to ALV-A/B, ALV-J and SP was 57.8, 6.7, 0 and 17.8% in this breeder farm, respectively. The co-infection of ALV and SP was confirmed and the positive rate of both SP and ALV-P27 or ALV-A/B was 10 and 1%, respectively. There were obvious tumor nodules and lymphoid tumor cells in the comb, liver and spleen of the co-infected chickens. The degenerative and atrophic ovarian follicles, inflammatory cell infiltration in muscle biopsies were also found. The elimination rate of ALV-p27, ALV-A/B and SP positive chickens was 55.4, 13 and 6.1%, respectively. The final amount of the breeder conservation was 309 chickens. In conclusion, the co-infection of ALV-B and SP was found and more emphasis should be given on its prevention; the preliminary eradication of “ShouGuang” breeder chickens was finished.

  6. Analysis of the subgroup A avian sarcoma and leukosis virus receptor: the 40-residue, cysteine-rich, low-density lipoprotein receptor repeat motif of Tva is sufficient to mediate viral entry.

    Science.gov (United States)

    Rong, L; Bates, P

    1995-08-01

    The genes encoding the receptor for subgroup A Rous sarcoma viruses (tva) were recently cloned from both chicken and quail cells (P. Bates, J. A. T. Young, and H. E. Varmus, Cell 74:1043-1051, 1993; J. A. T. Young, P. Bates, and H. E. Varmus, J. Virol. 67:1811-1816, 1993). Previous work suggested that only the extracellular domain of Tva interacts with the virus (P. Bates, J. A. T. Young, and H. E. Varmus, Cell 74:1043-1051, 1993). Tva is a small membrane-associated protein containing in its extracellular domain a 40-amino-acid region which is closely related to the low-density lipoprotein receptor (LDLR) repeat motif. To determine the region of the Tva extracellular domain responsible for viral receptor function, we created chimeric proteins containing various regions of the Tva extracellular domain fused with a murine CD8 membrane anchor. Analysis of these proteins demonstrates that any chimera containing the Tva LDLR repeat motif can specifically bind the envelope protein of subgroup A avian sarcoma and leukosis viruses. Furthermore, NIH 3T3 cell lines expressing these chimeric proteins were efficiently infected by subgroup A avian sarcoma and leukosis virus vectors. Our results demonstrate that the 40-residue-long LDLR repeat motif of Tva is responsible for viral receptor function. PMID:7609052

  7. The spacing between cysteines two and three of the LDL-A module of Tva is important for subgroup A avian sarcoma and leukosis virus entry.

    Science.gov (United States)

    Rai, Tia; Marble, Deborah; Rihani, Kayla; Rong, Lijun

    2004-01-01

    Rong et al. have demonstrated previously that with a few substitutions, the fourth repeat of human low-density lipoprotein (hLDL-A4) receptor can functionally replace the LDL-A module of Tva, the cellular receptor for subgroup A avian sarcoma and leukosis virus (ASLV-A), in viral entry (L. Rong, K. Gendron, and P. Bates, Proc. Natl. Acad. Sci. USA 95:8467-8472, 1998). Here we have shown that swapping the amino terminus of hLDL repeat 5 (hLDL-A5) with that of Tva, in addition to the corresponding substitutions made in human LDL-A4, was required to convert hLDL-A5 into an efficient ASLV-A receptor. These results substantiated our previous findings regarding the role of the specific residues in the viral interaction domain of Tva and demonstrated the critical role of the amino terminus of the Tva LDL-A module in ASLV-A infection. Furthermore, we have shown that the residues between cysteines 2 and 3 of the Tva LDL-A module in a Tva/LDL-A5 chimeric protein can be functionally replaced by the corresponding region of another LDL-A module, human LDL receptor-related protein repeat 22 (LDL-A22), to mediate efficient ASLV-A entry. Since the only conserved feature between the C2-C3 region of LDL-A22 and the Tva LDL-A module is that both contain nine amino acids of which none are conserved, we conclude that the spacing between C2 and C3 of the LDL-A module of Tva is an important determinant for ASLV-A entry. Thus, the present study provides strong evidence to support our hypothesis that one role of the N terminus of the LDL-A module of Tva is to allow proper folding and conformation of the protein for optimal interaction with the viral glycoprotein EnvA in ASLV-A entry. PMID:14694099

  8. Evolution of gp85 gene of subgroup J avian leukosis virus under the selective pressure of antibodies

    Institute of Scientific and Technical Information of China (English)

    WANG; Zhengfu; CUI; Zhizhong

    2006-01-01

    Subgroup J Avian leucosis virus (ALV-J) strain NX0101 was inoculated into chicken embryo fibroblasts (CEF) monolayers in 6-well plates. The six wells of CEF inoculated with NX0101 were divided into groups A (without anti-ALV-J serum in the medium) and B (with anti-ALV-J serum in the medium), then viruses from each well of both groups were separately passed in CEF every 6 d and formed their independent passage lineages. For each lineage of both groups, gp85 genes of the viruses in the 10th, 20th and 30th passages were amplified, cloned and sequenced. The sequence data indicated that the homologies of gp85 at aa level between the primary virus and the passed viruses of different passages of 3 lineages in group A were 97.7%―99.7%; and the homologies of gp85 between the primary virus and the passed viruses of different passages of 3 lineages in group B were 93.8%―96.1%. Analysis of the ratios of nonsynonium (NS) vs synonium (S) mutations of nucleic acids demonstrated that NS/S in 3 highly variable (hr-) regions at aa#110―120, aa#141―151 and aa#189―194 of gp85 in 3 lineages of group A were 2 (8/4), 1(3/3) and 1.3 (4/3), however, NS/S in the same 3 hr-regions of group B were 4.1 (13/3), 4.7 (14/3) and 3.3 (11/3). This study is the first demonstration of influence of immune selective pressure on evolution of ALV-J gp85 by specific antibodies under the controlled in vitro experiments.

  9. Evolution of gp85 gene of subgroup J avian leukosis virus under the selective pressure of antibodies.

    Science.gov (United States)

    Wang, Zhengfu; Cui, Zhizhong

    2006-06-01

    Subgroup J Avian leucosis virus (ALV-J) strain NX0101 was inoculated into chicken embryo fibroblasts (CEF) monolayers in 6-well plates. The six wells of CEF inoculated with NX0101 were divided into groups A (without anti-ALV-J serum in the medium) and B (with anti-ALV-J serum in the medium), then viruses from each well of both groups were separately passed in CEF every 6 d and formed their independent passage lineages. For each lineage of both groups, gp85 genes of the viruses in the 10th, 20th and 30th passages were amplified, cloned and sequenced. The sequence data indicated that the homologies of gp85 at aa level between the primary virus and the passed viruses of different passages of 3 lineages in group A were 97.7%-99.7%; and the homologies of gp85 between the primary virus and the passed viruses of different passages of 3 lineages in group B were 93.8%-96.1%. Analysis of the ratios of nonsynonium (NS) vs synonium (S) mutations of nucleic acids demonstrated that NS/S in 3 highly variable (hr-) regions at aa#110-120, aa#141-151 and aa#189-194 of gp85 in 3 lineages of group A were 2 (8/4), 1(3/3) and 1.3 (4/3), however, NS/S in the same 3 hr-regions of group B were 4.1 (13/3), 4.7 (14/3) and 3.3 (11/3). This study is the first demonstration of influence of immune selective pressure on evolution of ALV-J gp85 by specific antibodies under the controlled in vitro experiments. PMID:16856491

  10. Electrochemical immunoassay for subgroup J of avian leukosis viruses using a glassy carbon electrode modified with a film of poly (3-thiophene boronic acid), gold nanoparticles, graphene and immobilized antibody

    International Nuclear Information System (INIS)

    We have modified a glassy carbon electrode (GCE) with a film of poly(3-thiophene boronic acid), gold nanoparticles and graphene, and an antibody (Ab) was immobilized on its surface through the covalent bond formed between the boronic acid group and the glycosyl groups of the Ab. Subgroup J of avian leukosis viruses (ALV-J) were electrochemically determined with the help of this electrode. There is a linear relationship between the electron transfer resistance (Ret) and the concentration of ALV-J in the range from 527 to 3,162 TCID50.mL-1 (where TCID50 is the 50 % tissue culture infective dose). The detection limit is 210 TCID50.mL-1 (at an S/N of 3), and the correlation coefficient (R) is 0.9964. The electrochemical immunoassay showed good selectivity, stability and reproducibility. (author)

  11. A single-amino-acid substitution in the TvbS1 receptor results in decreased susceptibility to infection by avian sarcoma and leukosis virus subgroups B and D and resistance to infection by subgroup E in vitro and in vivo

    Czech Academy of Sciences Publication Activity Database

    Reinišová, Markéta; Šenigl, Filip; Yin, X.; Plachý, Jiří; Geryk, Josef; Elleder, Daniel; Svoboda, Jan; Federspiel, M. J.; Hejnar, Jiří

    2008-01-01

    Roč. 82, č. 5 (2008), s. 2097-2105. ISSN 0022-538X R&D Projects: GA ČR GA523/07/1171; GA ČR GA523/07/1282 Grant ostatní: NIH(US) AI48682 Institutional research plan: CEZ:AV0Z50520514 Keywords : retrovirus receptors * avian sarcoma and leukosis virus * resistance to retrovirus Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.308, year: 2008

  12. Pathologic Research of Lymphocytic Subgroup J-Avian Leukosis in Qingyuan Local Chicken%淋巴细胞性J亚群禽白血病病理学观察

    Institute of Scientific and Technical Information of China (English)

    邓桦; 武云飞; 卢玉葵; 王政富; 杨鸿; 马春全

    2011-01-01

    本研究旨在探讨日益复杂和多样的J亚群禽白血病的肿瘤病理表现.在流行病学调查基础上,对广东省4个集约型清远麻鸡种鸡场的禽白血病病原进行了分离鉴定和PCR检测,确诊其病原为禽白血病毒J亚群(ALV-J).通过病理组织学研究发现,这些鸡场ALV-J的主要病理表现为淋巴细胞性肿瘤(82.9%),其次为血管瘤型肿瘤(11.4%),髓细胞性肿瘤仅为5.7%.淋巴细胞性肿瘤主要出现在内脏实质器官,肝脏、脾脏、肾脏、肺脏、腺胃和胰腺等器官明显肿胀,实质中可见大小不一的灰白色肿瘤结节,切面均质柔软.肿瘤的实质主要由典型的成淋巴细胞和淋巴样瘤细胞构成,病理性核分裂像多见.研究结果证实,清远麻鸡出现了一种新的J亚群禽白血病表现形式,即淋巴细胞性J亚群禽白血病,在国内外尚属首次报道.%This experiment was conducted to explore the complicated tumor manifestation of avian leucosis subgroup J. On the basis of epidemiology survey of four Qingyuan local layer chicken farms in Guangdong province, then the avian leucosis virus was isolated and detected by PCR test, and avian leucosis virus subgroup J (ALV-J) was definite diagnosed as the pathogen. The histopathologic study showed that the most tumorous manifestation was lymphocytic leucosis (82. 9%), and then was hemangioma (11. 4%), myeloid leukosis was 5. 7%. Abnormal proliferation of lymphocytic leukosis was occurred mainly in parenchymatous organs, including heavy swollen of liver, spleen, kidney, lung, proventriculus and pancreas. There were many ivory-white tumors and nodules occurred in the parenchyma, and the sections were homogeneous and soft. The solid components of tumors were typical lymphoblast and neoplastic lymphoid cells, and many phanerous pathologic nuclear mitotic figures were observed. Those results confirmed that there appeared a novel tumorous manifestation in Qingyuan local chicken, lymphocytic

  13. Serological Survey of the Avain Leukosis Virus Infection in China Native Chickens

    OpenAIRE

    Deqing Li; Xuan Dong; Chengtai Ma; Zhizhong Cui; Peng Zhao

    2012-01-01

    To investigate the Avain leukosis virus infection status in China native chicken flocks, 2530 serum samples from 26 kinds of China native chickens were collected and detected using the Avian Leukosis Virus Antibody Test kit (ALV-A/B) and Avian Leukosis Virus Antibody Test kit-Subgroup J (ALV-J). The results showed that among 2530 sera samples 118 samples were positive for ALV-A/B, 332 samples were positive for ALV-J and 35 samples were positive for both ALV-A/B and ALV-J. The positive rate fo...

  14. In vitro analysis of a primary, major histocompatibility complex (MHC)-restricted, cytotoxic T-lymphocyte response to avian leukosis virus (ALV), using target cells expressing MHC class I cDNA inserted into a recombinant ALV vector.

    Science.gov (United States)

    Thacker, E L; Fulton, J E; Hunt, H D

    1995-10-01

    The interaction between the major histocompatibility complex (MHC) and cytotoxic T lymphocytes (CTLs) is an important component of the host's resistance to viral infections and tumor formation. In this study, an avian leukosis virus (ALV) vector system, RCASBP, expressing MHC chicken class I (B-F) cDNA was used to develop target cells expressing the chicken class I glycoproteins complexed with ALV antigens on the cell surface. Peripheral blood from chickens inoculated with ALV was shown to contain antigen-specific, MHC-restricted, CD8+ effector CTLs, using a 51Cr release assay utilizing the RCASBP B-F target cells. The stimulated effector cells were also predominantly alpha beta T-cell receptor-positive (TCR2) T cells. The CTL response varied between two haplotypes of chickens which differed in their response to Rous sarcoma virus (RSV)-induced tumors. Chickens with the B21 haplotype which regress RSV-induced tumors showed maximal cytolytic activity, while chickens with the B13 haplotype which do not regress RSV-induced tumors had minimal to no cytolytic activity. In addition to assessing the CTL response to ALV, the creation of MHC-specific immortal target cell lines will be extremely useful in evaluating CTL responses to other viral disease in chickens. PMID:7666545

  15. Radioimmunological comparison of the DNA polymerases of avian retroviruses.

    OpenAIRE

    Bauer, G.; Temin, H M

    1980-01-01

    125I-labeled DNA polymerases of avian myeloblastosis virus and spleen necrosis virus were used in a radioimmunological characterization of avian retrovirus DNA polymerases. It was shown that avian leukosis virus and reticuloendotheliosis virus DNA polymerases do not cross-react in radioimmunoassays. Within the avian leukosis virus species, species-specific and type-specific antigenic determinants of the DNA polymerase were defined. The previous finding of genus-specific antigenic determinants...

  16. Sequence analysis for the complete proviral genome of subgroup J Avian Leukosis virus associated with hemangioma: a special 11 bp deletion was observed in U3 region of 3'UTR

    Directory of Open Access Journals (Sweden)

    Zou Nianli

    2011-04-01

    Full Text Available Abstract Background Avian Leukosis virus (ALV of subgroup J (ALV-J belong to retroviruses, which could induce tumors in domestic and wild birds. Myelocytomatosis was the most common neoplasma observed in infected flocks; however, few cases of hemangioma caused by ALV-J were reported in recent year. Results An ALV-J strain SCDY1 associated with hemangioma was isolated and its proviral genomic sequences were determined. The full proviral sequence of SCDY1 was 7489 nt long. Homology analysis of the env, pol and gag gene between SCDY1 and other strains in GenBank were 90.3-94.2%, 96.6-97.6%, and 94.3-96.5% at nucleotide level, respectively; while 85.1-90.7%, 97.4-98.7%, and 96.2-98.4% at amino acid level, respectively. Alignment analysis of the genomic sequence of ALV-J strains by using HPRS-103 as reference showed that a special 11 bp deletion was observed in U3 region of 3'UTR of SCDY1 and another ALV-J strain NHH isolated from case of hemangioma, and the non-functional TM and E element were absent in the genome of SCDY1, but the transcriptional regulatory elements including C/EBP, E2BP, NFAP-1, CArG box and Y box were highly conserved. Phylogenetic analysis revealed that all analyzed ALV-J strains could be separated into four groups, and SCDY1 as well as another strain NHH were included in the same cluster. Conclusion The variation in envelope glycoprotein was higher than other genes. The genome sequence of SCDY1 has a close relationship with that of another ALV-J strain NHH isolated from case of hemangioma. A 11 bp deletion observed in U3 region of 3'UTR of genome of ALV-J isolated from case of hemangioma is interesting, which may be associated with the occurrence of hemangioma.

  17. The immunological relationship between filtrable agent, Salmonella and murine leukosis

    Directory of Open Access Journals (Sweden)

    Hamazaki,Yukio

    1977-12-01

    Full Text Available Salmonella typhimurium was invariably isolated from our J strain murine leukosis. Immunization of D103 mice with either inactivated Salmonella typhimurium or the cell-free extract of leukosis inhibited the transplantation of leukosis. The adoptive immunization of D103 mice with spleen cells of Strong A mice immunized with either Salmonella or the cell-free extract of leukosis inhibited the transplantation of leukosis. The addition of either Salmonella or the cell-free extract of leukosis inhibited the migration of macrophages of leukosis spleen in tissue culture. Strong A mice is non-susceptible to J strain leukosis. However, inoculation of neonatal Strong A mice with the cell-free extract of leukosis produced a susceptibility to the transplantation of leukosis. These results suggest that both a filtrable agent and Salmonella typhimurium are present in cells of this leukosis and might be etiologically related to the leukosis.

  18. Characterization of Y73, an avian sarcoma virus: a unique transforming gene and its product, a phosphopolyprotein with protein kinase activity.

    OpenAIRE

    Kawai, S; Yoshida, M; Segawa, K; Sugiyama, H; Ishizaki, R; Toyoshima, K

    1980-01-01

    The Y73 strain of avian sarcoma virus recently isolated in Japan is defective in replication and is associated with subgroup A leukosis virus (YAV). The virus caused sarcoma but not acute leukosis when inoculated into chickens. Studies on the viral RNA showed that a 26S RNA, etimated to be 4.8 kilobases long, was Y73 viral RNA carrying a transforming gene. The 26S RNA has sequences in common with the RNA of an avian leukosis virus but no homology with the src gene sequence of avian sarcoma vi...

  19. Kidney alkaline phosphatase in mercuric chloride injected chicks resistant and susceptible to leukosis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, V.L.; McIntyre, J.A.; Bearse, G.E.

    1969-01-01

    Two strains of chickens were selected for resistance and susceptibility to avian leukosis. Researchers found that the resistant chicks retained two to four times as much mercury in the liver and kidneys as did the susceptible chicks following injection of mercuric chloride or phenylmercuric acetate. Differences in alkaline phosphatase in the kidneys of the resistant and susceptible chicks, and the effect of the mercuric chloride injection on the alkaline phosphatase activity were reported in this paper. 19 references, 2 tables.

  20. Clinical manifestations of bovine leukosis

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, D.K.

    1979-01-01

    The diagnosis of animals infected with BLV can be accurately identified with the available serologic tests. Diagnosis of animals in the incipient stage of leukosis is extremely difficult and can only be diagnosed by a positive tissue biopsy. Animals with frank tumor involvement can be suspected and diagnosed on a tentative clinical basis on the signs reported. Positive diagnosis must be made on the basis of a biopsy of the tumor or in some cases on a hemotological examination.

  1. Letter to the Editor Reply to commentary by D. Elleder and J. Hejnar on the article "Avian sarcoma and leukosis virus gag gene in the Anser anser domesticus genome" published in Genetics and Molecular Research 14 (4): 14379-14386 to the letter published in Genet. Mol. Res. 15 (1): gmr.15014956.

    Science.gov (United States)

    Liu, Y P

    2016-01-01

    Dear Editor, I should thank to the questioner and these questions are very valuable. Here, I want to give some opinions for it. In letter, questioner mentions that the gag sequences we got are too homologous with chicken sequence, unlike other Galliformes birds. Actually, endogenous avian sarcoma and leukosis virus (enASLV) sequences are variable in the Galliformes birds, and geese have split with chicken for a long time. However, it is hard to have a final conclusion about conservation of gag gene in waterfowl, because geese have no vertical relation with Galliformes birds; specially domestic geese have a very different background. Moreover, the sequences we got are only part of gag gene, and the complete sequence is still unknown. As known, some endogenous retrovirus (ERV) sequences were inserted into the ancient bird genome. There is an assumption that ASLV has infected the common ancestors of Galliformes and Anseriformes before differentiation. Of course, as questioner referred to, a possible horizontal transmission between chicken and domestic goose might occur in the process of domestication. In this study, we wanted to verify hypothesis using PCR technology and designed an experiment to do it. Our results showed the probability. Also, questioner referred that they cannot get any PCR product with same primers in domestic goose and swan. I am not aware of their experiments, because I do not know any information about their samples and conditions. I only emphasize that our reaction conditions are designed to optimize the PCR program. Additionally, they said they did not find any ALSV sequences in swan goose genome (GCA_000971095.1). We also did a mapping on it using BLAST and we failed to find any hit too. Although we failed to locate the gag sequence, we still could not make sure the validity of gene mapping on current version reference sequences. The biggest problem is that this version reference only have lots of scaffolds and this means it still have many

  2. Prevalence and economics and bovine leukosis in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, D.K.; Beal, V.C. Jr.

    1979-01-01

    This paper reviews the prevalence of bovine leukosis in the US and discusses the economic significance of the disease. The term leukosis is used except when reporting the Meat Inspection Department data which used the term malignant lymphoma instead. (PCS)

  3. Long-term inspection on imported egg-type grandparent breeder chicken for avian leukosis virus infection status%蛋用型祖代鸡群禽白血病病毒感染状态的持续观察

    Institute of Scientific and Technical Information of China (English)

    李中明; 王景艳; 张青婵; 赵冬敏; 崔治中

    2011-01-01

    To inspect imported egg-type grandparent breeder chicks for their avian leukosis virus (ALV) infection status. Two hundred and forty 1-day-old chicks were kept and raised in SPF isolators. The cloaca swabs, blood plasmas and sera were collected for 6 times at different ages during about 3 months. They were tested for p27 antigen detection, virus isolation and antibodies. The results indicated that the positive rates of p27 antigen were quite different among 6 varieties of the grandparent breeders. One of them were kept negative for all swab samples, other 5 varieties were demonstrated p27 periodically at different tiems and rates in cloaca swabs. There was no relationship between the p27 detection and feather growth rates. One of 36 chicks was transiently positive to ALV-AB antibody at 45 d and 2 of 36 chicks were transiently positive to ALV-J antibody at 60 d in the variety C. Plasma samples collected at 7 and 21 days of age and inoculated into DF1 cells, no exogenous virus was isolated from all 240 chicks.%为了检测从国外直接进口的蛋用型祖代鸡群是否存在外源性禽白血病病毒(ALV)的感染,将240只1日龄鸡饲养在严格的SPF环境中.在不同日龄采集泄殖腔棉拭子检测ALV群特异性p27抗原、采集血浆分离外源性ALV和采集血清检测ALV-AB及J特异性抗体.结果表明:在近3个月的6次采样检测中,6个不同的配套系间泄殖腔棉拭子检出率显著不同.其中1个配套系6次完全阴性,其余5个则在不同时期呈间隙性阳性.各品系之间ALV p27抗原检出率与快慢羽性状没有相关性.慢羽的配套系C,36只鸡中在45日龄检出了1例ALV-AB抗体一过性阳性,在60日龄检出了2例ALV-J抗体一过性阳性.分别在5、21日龄采血浆在DF1细胞分离病毒,所有的6个配套系的204只鸡外源性ALV的病毒分离均为阴性.

  4. Characterization of avian sarcoma and leukosis virus receptors

    Czech Academy of Sciences Publication Activity Database

    Elleder, Daniel; Melder, D. C.; Stepanets, Volodymyr; Plachý, Jiří; Geryk, Josef; Federspiel, M. J.; Svoboda, Jan

    Heidelberg : EMBL, 2004 - (Krijnse-Locker, J.; Sodeik, B.; Suomalainen, M.). s. 1 [EMBO Workshop on the Cell Biology of Virus Infection. 25.09.2004-29.09.2004, Heidelberg] Keywords : ASLV * retrovirus receptor Subject RIV: EB - Genetics ; Molecular Biology

  5. Characterization of avian sarcoma and leukosis virus receptors

    Czech Academy of Sciences Publication Activity Database

    Elleder, Daniel; Melder, D. C.; Plachý, Jiří; Geryk, Josef; Pajer, Petr; Federspiel, M.; Svoboda, Jan

    Praha : JPM Tisk s.r.o., 2004 - (Hunter, E.; Ruml, T.; Pichová, I.; Rumlová, M.; Sakalian, M.). s. 69 ISBN 80-86313-13-1. [The Retrovirus Assembly Meeting. 02.10.2004-06.10.2004, Praha] Keywords : ASLV * retrovirus receptor Subject RIV: EB - Genetics ; Molecular Biology

  6. Molecular-genetic analysis of field isolates of Avian Leucosis Viruses in the Russian Federation

    Science.gov (United States)

    Commercial poultry farms in 14 regions of Russian Federation were monitored for avian leukosis virus (ALV) infection using virus isolation tests and serology. Results indicated the presence of two subgroups of ALV in farms located in 11 of 14 regions. Analysis of the genomes of 12 field isolates of...

  7. Inhibition of avian tumor viruses by vector-based RNA interference

    Science.gov (United States)

    RNA interference (RNAi) has been shown to reduce the replication of certain animal viruses both in cell culture and in live animals. We developed RNAi-based anti-viral strategies against two important chicken pathogens: avian leukosis virus (ALV) and Marek’s Disease virus MDV). Entry plasmids conta...

  8. Long-term inspection on imported egg-type grandparent breeder chicken for avian leukosis virus infection status and relatedness comparison of p27 and virus isolation positive rates%进口海兰褐祖代鸡禽白血病感染状态的持续观察及与国内发病鸡群种蛋p27检出率、病毒分离率的相关性

    Institute of Scientific and Technical Information of China (English)

    王丽; 李传龙; 赵鹏; 李德庆; 张青婵; 李中明; 崔治中

    2013-01-01

    对自国外直接进口的蛋用型海兰褐祖代鸡群的禽白血病感染状态进行了持续观察,并与国内3个不同发病状况的海兰褐父母代鸡群的种蛋p27检出率、抗体阳性率、投诉情况进行了比较.将国外直接进口的蛋用型海兰褐祖代鸡群3个配套系240只1日龄鸡在SPF环境中饲养,在不同日龄采集泄殖腔棉拭子检测禽白血病病毒(A-vian leukosis virus,ALV)群特异性p27抗原、采集血清检测ALV-AB及J特异性抗体和采集血浆分离外源性ALV,并在鸡群开产后收集种蛋,检测蛋清p27抗原和父母代鸡群胎粪p27抗原.同时对来自天津、山东的不同投诉情况的3个父母代鸡场种蛋p27抗原或ALV-AB及J抗体进行了检测.结果显示,进口祖代鸡ALV-AB及J特异性抗体在68、150日龄检测均为阴性;分别在12、26、68、150日龄采血浆在DF1细胞分离病毒均为阴性;收集的250枚种蛋蛋清和孵化的父母代鸡群胎粪p27抗原检测均为阴性.而其他国内3个父母代鸡场的种蛋p27检出率最高达12%.结果表明,该海兰褐祖代鸡群无外源性禽白血病的感染,不同鸡群的种蛋p27检出率与病毒分离率 及发病情况具有较好的吻合性,可以作为开展ALV的流行病学调查和种鸡场净化的重要指标.%To inspect imported egg-type grandparent breeder chicks for their avian leukosis virus ( ALV) infection status,and compare the relatedness between p27 and virus isolation positive rate of parent breeder chicks from three domestic farms with different condition of complaints. Two hundred and forty one-day-old chicks of 3 varieties were kept and raised in SPF isolators. The cloaca swabs,blood plasma and sera were collected at different ages during raising period. They were tested for p27 antigen, antibodies and virus isolation. Collect eggs after they begin laying, detect p27 antigen in egg white and meconium of parent breeder chicks. At the same time, chicks from the three

  9. Radioimmunoassay of bovine leukosis virus antibodies

    International Nuclear Information System (INIS)

    A RIA method was developed for identifying the presence of serum antibodies to the bovine leukosis virus. The chosen procedure uses the ability of the virus antigen to bind to the solid phase of a polystyrene carrier. The method was compared with the ELISA method and with the pseudoneutralization and immunodiffusion tests. A high level of agreement was achieved between the RIA and the ELISA methods (95%). By its accuracy the RIA method proves superior to the immunodiffusion test. (author)

  10. Relationship of avian retrovirus DNA synthesis to integration in vitro.

    OpenAIRE

    Lee, Y.M.; Coffin, J M

    1991-01-01

    An in vitro integration system derived from avian leukosis virus-infected cells supports both intra- and intermolecular integration of the viral DNA. In the absence of polyethylene glycol, intramolecular integration of viral DNA molecules into themselves (autointegration) was preferred. In the presence of polyethylene glycol, integration into an exogenously supplied DNA target was greatly promoted. Analysis of integration intermediates revealed that the strand transfer mechanisms of both reac...

  11. RAV-1 insertional mutagenesis: disruption of the c-myb locus and development of avian B-cell lymphomas.

    OpenAIRE

    Pizer, E; Humphries, E H

    1989-01-01

    Infection of young chickens with RAV-1, a subgroup A isolate of avian leukosis virus, results in the development of lymphoid leukosis, a B-cell lymphoma characterized by provirus insertion into the c-myc locus. We report here that when 12- to 13-day-old embryos rather than 1-day-old chickens were infected with RAV-1, a novel B-cell lymphoma developed in which proviral insertions had activated expression of the c-myb gene. These tumors expressed elevated levels of a 4.5-kilobase myb-containing...

  12. Avian influenza

    Science.gov (United States)

    Bird flu; H5N1; H5N2; H5N8; H7N9; Avian influenza A (HPAI) H5 ... The first avian influenza in humans was reported in Hong Kong in 1997. It was called avian influenza (H5N1). The outbreak was linked ...

  13. Prevalence, transmission and impact of bovine leukosis in Michigan dairies

    Science.gov (United States)

    Bovine leukosis, caused by infection with the retrovirus bovine leukemia virus (BLV), has been characterized as a contagious, but practically benign disease of the immune system. National Animal Health Monitoring Surveys in 1996 and 2007 indicate complacency has resulted in high prevalence of infect...

  14. Investigation of some hematological and blood biochemical parameters in cattle spontaneously infected with bovine leukosis virus

    OpenAIRE

    Sandev Nikolay; Zapryanova Dimitrinka; Stoycheva Ivanka; Rusenova Nikolina; Mircheva Teodora

    2013-01-01

    The aim of the present study was to follow out the alterations in some haematological and blood biochemical parameters in cattle spontaneously infected with enzootic bovine leukosis virus with regard to the invivodifferentiation of bovine leukosis stages. The experiment included 76 cows at various ages and body weight. Serological leukosis tests were done by agar-gel immunodiffusion test with a commercial kit of Synbiotiсs (France), containing standardised gp 51 antigen and positive serum app...

  15. Avian influenza

    Science.gov (United States)

    ... of avian influenza A in Asia, Africa, Europe, Indonesia, Vietnam, the Pacific, and the near East. Hundreds ... to detect abnormal breath sounds) Chest x-ray Culture from the nose or throat A method or ...

  16. Avian Flu

    Energy Technology Data Exchange (ETDEWEB)

    Eckburg, Paul

    2006-11-06

    Since 2003, a severe form of H5N1 avian influenza has rapidly spread throughout Asia and Europe, infecting over 200 humans in 10 countries. The spread of H5N1 virus from person-to-person has been rare, thus preventing the emergence of a widespread pandemic. However, this ongoing epidemic continues to pose an important public health threat. Avian flu and its pandemic potential in humans will be discussed.

  17. Avian Flu

    International Nuclear Information System (INIS)

    Since 2003, a severe form of H5N1 avian influenza has rapidly spread throughout Asia and Europe, infecting over 200 humans in 10 countries. The spread of H5N1 virus from person-to-person has been rare, thus preventing the emergence of a widespread pandemic. However, this ongoing epidemic continues to pose an important public health threat. Avian flu and its pandemic potential in humans will be discussed.

  18. Avian Research

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    <正>Aims and Scope Avian Research is an open access,peer-reviewed journal publishing high quality research and review articles on all aspects of ornithology from all over the world.It aims to report the latest and most significant progress in ornithology and to encourage exchange of ideas among international ornithologists.As an Open Access journal,Avian Research provides a unique opportunity to publish high quality contents that will be internationally accessible to any reader at no cost.

  19. Control of bovine leukosis virus in a dairy herd by a change in dehorning.

    OpenAIRE

    DiGiacomo, R F; Hopkins, S G; Darlington, R L; Evermann, J F

    1987-01-01

    Following the demonstration that bovine leukosis virus was transmitted in calves by gouge dehorning, electrical dehorning at a younger age was implemented in a commercial Holstein herd. Subsequently, annual testing of the herd revealed a decline in the prevalence of bovine leukosis virus antibodies as older cattle dehorned by the former method were replaced by younger cattle dehorned by the latter method.

  20. Avian Influenza

    OpenAIRE

    Tsung-Zu Wu; Li-Min Huang

    2005-01-01

    Influenza is an old disease but remains vital nowadays. Three types of influenza viruses,namely A, B, C, have been identified; among them influenza A virus has pandemic potential.The first outbreak of human illness due to avian influenza virus (H5N1) occurred in1997 in Hong Kong with a mortality of 30%. The most recent outbreak of the avian influenzaepidemic has been going on in Asian countries since 2003. As of March 2005, 44 incidentalhuman infections and 32 deaths have been documented. Hum...

  1. Avian Research

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>Aims and Scope Avian Research is an open access,peer-reviewed journal publishing high quality research and review articles on all aspects of ornithology from all over the world.It aims to report the latest and most significant progress in ornithology and to encourage exchange of ideas among international ornithologists.As an Open Access journal,

  2. Avian Research

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    <正>Aims and Scope Avian Research is an open access,peer-reviewed journal publishing high quality research and review articles on all aspects of ornithology from all over the world.It aims to report the latest and most significant progress in ornithology and to encourage exchange of ideas among international ornithologists.As an Open Access journal,

  3. Possible relationship between mercury retention and resistance to lymphoid leukosis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, V.L.; Bearse, G.E.; McClary, C.F.; Csonka, E.

    1969-01-01

    An attempt is made to investigate the retention of mercury by resistant and susceptible chicks from four separate selective breeding programs. Four to eight week old chicks, weighing approximately 300-700 g., were injected intramuscularly with 3.0 mg. mercury per kg body weight as mercuric chloride or as pheynlmercuric acetate. After 96 hours the chicks were killed and the livers and kidneys excised and analyzed for mercury. Results revealed that chicks resistant to lymphoid leukosis retained larger amounts of mercury from mercuric chloride or phenylmercuric acetate injections than susceptible chicks.

  4. [Molecular-genetic analysis of the field isolates of avian leucosis viruses in the Russian Federation].

    Science.gov (United States)

    Plotnikov, V A; Grebennikova, T V; Iuzhakov, A G; Dudnikova, E K; Norkina, S N; Zaberezhnyĭ, A D; Aliper, T I; Fadly, A M

    2012-01-01

    Results of monitoring of different subtypes of avian leukosis virus (ALV) from commercial poultry farms in 14 regions of Russian Federation were discussed. Only three regions were found to be negative. ALV was detected in other 11 regions in 46-64% cases (for different regions). The phylogenetic analysis of the genomes for the 12 field isolates of ALV was carried out in different regions of Russian Federation. The isolates belong to different subtypes of the virus and form two large groups. The genomic differences between Russian and foreign isolates within each group range from 5% to 10%. PMID:23248858

  5. Factors affecting the infectivity of lymphocytes from cattle with bovine leukosis virus.

    OpenAIRE

    Buxton, B A; Schultz, R D

    1984-01-01

    Peripheral blood mononuclear cells were obtained from 13 bovine leukosis virus infected cattle and inoculated subcutaneously into 29 recipient adult steers to determine (a) the number of mononuclear cells (equivalent amount of blood) necessary to cause infection and (b) factors influencing infectivity of mononuclear cells from bovine leukosis virus-infected animals. A total of 55 inoculations were made. Inoculation of 1 X 10(4), 2 X 10(4) and 5 X 10(4) mononuclear cells caused seroconversion ...

  6. Avian influenza

    Directory of Open Access Journals (Sweden)

    Tjandra Y. Aditama

    2006-06-01

    Full Text Available Avian influenza, or “bird flu”, is a contagious disease of animals which crossed the species barrier to infect humans and gave a quite impact on public health in the world since 2004, especially due to the threat of pandemic situation. Until 1st March 2006, laboratory-confirmed human cases have been reported in seven countries: Cambodia, Indonesia, Thailand, Viet Nam, China, Iraq and Turkey with a total of 174 cases and 94 dead (54.02%. Indonesia has 27 cases, 20 were dead (74.07%. AI cases in Indonesia are more in male (62.5% and all have a symptom of fever. An influenza pandemic is a rare but recurrent event. An influenza pandemic happens when a new subtype emerges that has not previously circulated in humans. For this reason, avian H5N1 is a strain with pandemic potential, since it might ultimately adapt into a strain that is contagious among humans. Impact of the pandemic could include high rates of illness and worker absenteeism are expected, and these will contribute to social and economic disruption. Historically, the number of deaths during a pandemic has varied greatly. Death rates are largely determined by four factors: the number of people who become infected, the virulence of the virus, the underlying characteristics and vulnerability of affected populations, and the effectiveness of preventive measures. Accurate predictions of mortality cannot be made before the pandemic virus emerges and begins to spread. (Med J Indones 2006; 15:125-8Keywords: Avian Influenza, Pandemic

  7. Avian Influenza

    OpenAIRE

    Tjandra Y. Aditama

    2008-01-01

    Avian influenza, or “bird flu”, is a contagious disease of animals which crossed the species barrier to infect humans and gave a quite impact on public health in the world since 2004, especially due to the threat of pandemic situation. Until 1st March 2006, laboratory-confirmed human cases have been reported in seven countries: Cambodia, Indonesia, Thailand, Viet Nam, China, Iraq and Turkey with a total of 174 cases and 94 dead (54.02%). Indonesia has 27 cases, 20 were dead (74.07%). AI cases...

  8. Differences in pathogenicity among strains of the same or different avian leukosis virus subgroups

    Czech Academy of Sciences Publication Activity Database

    Průková, Dana; Vernerová, Z.; Pilčík, Tomáš; Stepanets, Volodymyr; Indrová, Marie; Geryk, Josef; Plachý, Jiří; Hejnar, Jiří; Svoboda, Jan

    2007-01-01

    Roč. 36, č. 1 (2007), s. 15-27. ISSN 0307-9457 R&D Projects: GA ČR GA523/04/0489 Institutional research plan: CEZ:AV0Z50520514 Keywords : chicken * wasting disease * ALV Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.257, year: 2007

  9. Secondary Structure Analysis of a Minimal Avian Leukosis-Sarcoma Virus Packaging Signal

    OpenAIRE

    Banks, Jennifer D.; Linial, Maxine L.

    2000-01-01

    We previously identified a 160-nucleotide packaging signal, MΨ, from the 5′ end of the Rous sarcoma virus genome. In this study, we determine the secondary structure of MΨ by using phylogenetic analysis with computer modeling and heterologous packaging assays of point mutants. The results of the in vivo studies are in good agreement with the computer model. Additionally, the packaging studies indicate several structures which are important for efficient packaging, including a single-stranded ...

  10. Inhibition of avian leukosis virus replication by vector-based RNA interference

    Science.gov (United States)

    RNAi has recently emerged as a promising antiviral technique in vertebrates. To date, most studies have used exogenous short interfering RNAs (siRNAs) to inhibit viral replication, though vectors expressing short hairpin RNAs (shRNA-mirs) in the context of a modified endogenous micro-RNA (miRNA) are...

  11. Role of Virus-Encoded microRNAs in Avian Viral Diseases

    Science.gov (United States)

    Yao, Yongxiu; Nair, Venugopal

    2014-01-01

    With total dependence on the host cell, several viruses have adopted strategies to modulate the host cellular environment, including the modulation of microRNA (miRNA) pathway through virus-encoded miRNAs. Several avian viruses, mostly herpesviruses, have been shown to encode a number of novel miRNAs. These include the highly oncogenic Marek’s disease virus-1 (26 miRNAs), avirulent Marek’s disease virus-2 (36 miRNAs), herpesvirus of turkeys (28 miRNAs), infectious laryngotracheitis virus (10 miRNAs), duck enteritis virus (33 miRNAs) and avian leukosis virus (2 miRNAs). Despite the closer antigenic and phylogenetic relationship among some of the herpesviruses, miRNAs encoded by different viruses showed no sequence conservation, although locations of some of the miRNAs were conserved within the repeat regions of the genomes. However, some of the virus-encoded miRNAs showed significant sequence homology with host miRNAs demonstrating their ability to serve as functional orthologs. For example, mdv1-miR-M4-5p, a functional ortholog of gga-miR-155, is critical for the oncogenicity of Marek’s disease virus. Additionally, we also describe the potential association of the recently described avian leukosis virus subgroup J encoded E (XSR) miRNA in the induction of myeloid tumors in certain genetically-distinct chicken lines. In this review, we describe the advances in our understanding on the role of virus-encoded miRNAs in avian diseases. PMID:24662606

  12. Role of Virus-Encoded microRNAs in Avian Viral Diseases

    Directory of Open Access Journals (Sweden)

    Yongxiu Yao

    2014-03-01

    Full Text Available With total dependence on the host cell, several viruses have adopted strategies to modulate the host cellular environment, including the modulation of microRNA (miRNA pathway through virus-encoded miRNAs. Several avian viruses, mostly herpesviruses, have been shown to encode a number of novel miRNAs. These include the highly oncogenic Marek’s disease virus-1 (26 miRNAs, avirulent Marek’s disease virus-2 (36 miRNAs, herpesvirus of turkeys (28 miRNAs, infectious laryngotracheitis virus (10 miRNAs, duck enteritis virus (33 miRNAs and avian leukosis virus (2 miRNAs. Despite the closer antigenic and phylogenetic relationship among some of the herpesviruses, miRNAs encoded by different viruses showed no sequence conservation, although locations of some of the miRNAs were conserved within the repeat regions of the genomes. However, some of the virus-encoded miRNAs showed significant sequence homology with host miRNAs demonstrating their ability to serve as functional orthologs. For example, mdv1-miR-M4-5p, a functional ortholog of gga-miR-155, is critical for the oncogenicity of Marek’s disease virus. Additionally, we also describe the potential association of the recently described avian leukosis virus subgroup J encoded E (XSR miRNA in the induction of myeloid tumors in certain genetically-distinct chicken lines. In this review, we describe the advances in our understanding on the role of virus-encoded miRNAs in avian diseases.

  13. Role of virus-encoded microRNAs in Avian viral diseases.

    Science.gov (United States)

    Yao, Yongxiu; Nair, Venugopal

    2014-01-01

    With total dependence on the host cell, several viruses have adopted strategies to modulate the host cellular environment, including the modulation of microRNA (miRNA) pathway through virus-encoded miRNAs. Several avian viruses, mostly herpesviruses, have been shown to encode a number of novel miRNAs. These include the highly oncogenic Marek's disease virus-1 (26 miRNAs), avirulent Marek's disease virus-2 (36 miRNAs), herpesvirus of turkeys (28 miRNAs), infectious laryngotracheitis virus (10 miRNAs), duck enteritis virus (33 miRNAs) and avian leukosis virus (2 miRNAs). Despite the closer antigenic and phylogenetic relationship among some of the herpesviruses, miRNAs encoded by different viruses showed no sequence conservation, although locations of some of the miRNAs were conserved within the repeat regions of the genomes. However, some of the virus-encoded miRNAs showed significant sequence homology with host miRNAs demonstrating their ability to serve as functional orthologs. For example, mdv1-miR-M4-5p, a functional ortholog of gga-miR-155, is critical for the oncogenicity of Marek's disease virus. Additionally, we also describe the potential association of the recently described avian leukosis virus subgroup J encoded E (XSR) miRNA in the induction of myeloid tumors in certain genetically-distinct chicken lines. In this review, we describe the advances in our understanding on the role of virus-encoded miRNAs in avian diseases. PMID:24662606

  14. J亚群禽白血病的研究进展%Recent Development in J Subgroup Avian Leucosis

    Institute of Scientific and Technical Information of China (English)

    童淑梅; 赵振华; 杨玉莹

    2007-01-01

      J亚群禽白血病病毒(Avian leukosis virus subgroup J,ALV-J)出现以来的十几年间,已然在世界范围内广泛传播.由于诱发肿瘤、患鸡胴体废弃、产蛋性能下降和其它未知的对鸡群生产性能的影响,ALV-J给养禽业带来巨大经济损失和严重威胁[1].……

  15. 蛋鸡J亚群白血病的快速诊断%Rapid Diagnosis of Avian Leucosis in Layers

    Institute of Scientific and Technical Information of China (English)

    张蓉蓉; 罗青平; 温国元; 商雨; 杨峻; 艾地云; 王红琳; 罗玲; 邵华斌

    2010-01-01

    @@ 禽白血病(avian leukosis,AL)是禽白血病病毒引起的一种以成年禽类产生淋巴样肿瘤和产蛋量下降为特征的肿瘤性疾病[1].本病常呈渐进性发生和持续的低死亡率,Roloff[2]在1896年首次描述了鸡白血病,到目前为止该病仍然被认为是危害养禽业的重要疾病之一.

  16. Cytological Evaluation of Bone Marrow in Normal Laying Hens and those With Lymphoid Leukosis

    Directory of Open Access Journals (Sweden)

    H.I. Al-Sadi and E.Y. Hussein

    Full Text Available The purpose of this study was to evaluate cytologically the bone marrow (and peripheral blood of adult laying hens affected with lymphoid leukosis. Diagnosis of the neoplasm was made on the basis of clinical history, signs and symptoms and pathology. Only histologically confirmed cases were included in the study. Examination of blood smears revealed +2 heterophil toxicity and the presence of large numbers of reactive (blast – transformed lymphocytes. Smears that were prepared from the bone marrow showed increased numbers of hemopoietic cells. The total erythrocyte count (TEC, hemoglobin percentage (Hb% , hemoglobin concentration (Hb conc., packed cell volume (PCV and the mean corpuscular hemoglobin concentration (MCHC values were significantly higher (P<0.01 in hens with lymphoid leukosis than in apparently normal hens. The mean corpuscular volume (MCV and the mean corpuscular hemoglobin (MCH were significantly lower (P< 0.01 in hens with lymphoid leukosis than in apparently normal hens. Results of the leukogram indicated that the total leukocyte count (TLC and the percentage (% of lymphocytes were significantly higher (P < 0.01 in hens with lymphoid leukosis than in apparently normal hens. From results of this study it was concluded that cytological evaluation of bone marrow may prove to be a simple , rapid , and useful tool in the diagnosis of lymphoid leukosis in laying hens. [Veterinary World 2010; 3(11.000: 497-499

  17. Avian respiratory system disorders

    Science.gov (United States)

    Olsen, G.H.

    1989-01-01

    Diagnosing and treating respiratory diseases in avian species requires a basic knowledge about the anatomy and physiology of this system in birds. Differences between mammalian and avian respiratory system function, diagnosis, and treatment are highlighted.

  18. Avian Influenza in Birds

    Science.gov (United States)

    ... Research Making a Candidate Vaccine Virus Related Links Influenza Types Seasonal Avian Swine Variant Pandemic Other Get ... Submit What's this? Submit Button Past Newsletters Avian Influenza in Birds Language: English Español Recommend on ...

  19. Avian Influenza (Bird Flu)

    Science.gov (United States)

    ... Research Making a Candidate Vaccine Virus Related Links Influenza Types Seasonal Avian Swine Variant Pandemic Other Get ... this? Submit Button Past Newsletters Information on Avian Influenza Language: English Español Recommend on Facebook Tweet ...

  20. Genome-wide association mapping and pathway analysis of leukosis incidence in a US Holstein cattle population.

    Science.gov (United States)

    Abdalla, E A; Peñagaricano, F; Byrem, T M; Weigel, K A; Rosa, G J M

    2016-08-01

    Bovine leukosis virus is an oncogenic virus that infects B cells, causing bovine leukosis disease. This disease is known to have a negative impact on dairy cattle production and, because no treatment or vaccine is available, finding a possible genetic solution is important. Our objective was to perform a comprehensive genetic analysis of leukosis incidence in dairy cattle. Data on leukosis occurrence, pedigree and molecular information were combined into multitrait GBLUP models with milk yield (MY) and somatic cell score (SCS) to estimate genetic parameters and to perform whole-genome scans and pathway analysis. Leukosis data were available for 11 554 Holsteins daughters of 3002 sires from 112 herds in 16 US states. Genotypes from a 60K SNP panel were available for 961 of those bulls as well as for 2039 additional bulls. Heritability for leukosis incidence was estimated at about 8%, and the genetic correlations of leukosis disease incidence with MY and SCS were moderate at 0.18 and 0.20 respectively. The genome-wide scan indicated that leukosis is a complex trait, possibly modulated by many genes. The gene set analysis identified many functional terms that showed significant enrichment of genes associated with leukosis. Many of these terms, such as G-Protein Coupled Receptor Signaling Pathway, Regulation of Nucleotide Metabolic Process and different calcium-related processes, are known to be related to retrovirus infection. Overall, our findings contribute to a better understanding of the genetic architecture of this complex disease. The functional categories associated with leukosis may be useful in future studies on fine mapping of genes and development of dairy cattle breeding strategies. PMID:27090879

  1. Effect of phenylmercuric acetate injections on phosphatase activity in chickens resistant and susceptible to Leukosis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, V.L.; Bearse, G.E.; Csonka, E.

    1972-01-01

    The weighted means of liver and kidney alkaline phosphatase activity was greater in three strains of chickens classified as susceptible to limphoid leukosis than in five strains classified as resistant. On the same basis, four strains classified as susceptible to Marek's disease had more liver alkaline phosphatase activity than four strains classified as resistant. The weighted means of liver and kidney acid phosphatase activity were not different among the same strains of chickens classified similarly. Kidney alkaline phosphatase activity was the most generally inhibited by phenylmercuric acetate injections, followed by liver acid and alkaline phosphatase. Kidney acid phosphatase activity was enhanced by phenylmercuric acetate injections in three strains of chickens classified as resistant to both lymphoid leukosis and Marek's disease. Liver acid phosphatase activity was depressed in three strains classed as resistant to lymphoid leukosis.

  2. [Lesions in the nervous system during chemotherapy of acute leukosis and non-Hodgkin lymphomas].

    Science.gov (United States)

    Zyrina, G V

    2012-01-01

    We studied lesions in the nervous system of 60 patients with acute leukosis and 25 with non-Hodgkin lymphomas during standard chemotherapy. Toxic encephalopathy was diagnosed in 6 (10%) patients with acute leucosis treated by endolumbal administration of metotherxate, cytarabine and prednisolone (to prevent neuroleukemia) and in 2 (8%) patients with non-Hodgkin lymphomas. 5 (8.3%) patients with acute leukosis and 5 (20%) with non-Hodgkin lymphomas suffered polyneuropathy after vincristine therapy. Acute disturbance of cerebral circulation was documented in 17 (28.3%) patients with acute leucosis. PMID:22997727

  3. Prevalence of enzootic bovine leukosis in the Republic of Bulgaria in 1997-2004

    OpenAIRE

    Sandev, Nikolay; Ilieva, Darinka; Sizov, Ignat; Rusenova, Nikolina; ILIEV, Emil

    2006-01-01

    The serological investigations using the agar gel immunodiffusion (AGID) test performed in the Republic of Bulgaria in the period 1997-2004 showed a high prevalence of enzootic bovine leukosis (EBL), from 8.47% in 1997 to 22.26% in 2004. The highest percentage of seroreagents was observed in the regions of Silistra (48.61%), Dobrich (47.57%) and Burgas (47.32%), with the lowest, in the regions of Pazardjik (0.28%), Kyustendil (1.89%) and Smolyan (1.95%). Leukosis infection was found to be mor...

  4. Use of the Polymerase Chain Reaction in the Detection of Bovine Leukosis

    OpenAIRE

    Kelly, Emma Jane

    1992-01-01

    A diagnostic test for bovine leukosis was developed using the polymerase chain reaction (PCR) to amplify a 375 base pair region in the gag gene of the proviral genome. Blood samples were collected from 3 adult Holstein cows shown to be infected with bovine leukosis virus (BLV) by the agar-gel immunodiffusion (AGID) technique. The 3 samples were mixed and the composite blood was used to inoculate 10 cows. Five of the cows were inoculated with 0.1 ml of blood, and the other cows were inocula...

  5. Diagnosis of Lymphoid Leukosis (LL) by ELISA (Enzyme-Linked Immunosorbent Assay) and Marek's Disease (MD) by IF (Immunofluorescence) Test in Chickens

    OpenAIRE

    ÖZBİLGİN, Selda; ŞEN, Ayşin; ÜLGEN, Mihriban; ÇARLI, K. Tayfun

    2001-01-01

    In this study, our aim was to diagnose lymphoid leukosis and Marek's disease, which are neoplastic diseases of chickens, by ELISA and Indirect Immunofluorescence Test (IIF), respectively. Samples (eggs and tissues) were selectively taken from the flocks suspected of having lymphoid leukosis and Marek's disease. The tissues were macroscopically and microscopically examined. Tissues belonging to some flocks showed typical lesions for lymphoid leukosis and Marek's disease. Seve...

  6. Genistein inhibits the replication of avian leucosis virus subgroup J in DF-1 cells.

    Science.gov (United States)

    Qian, Kun; Gao, Ai-jun; Zhu, Ming-yue; Shao, Hong-xia; Jin, Wen-jie; Ye, Jian-qiang; Qin, Ai-jian

    2014-11-01

    To investigate the antiviral effects of genistein on the replication of avian leukosis virus subgroup J (ALV-J) in DF-1 cells, the cells were treated with genistein at different time points and the antiviral effects were examined by using a variety of assays. We determined that genistein strongly inhibited viral gene expression and decreased the viral protein level in the cell supernatant and the cytoplasm without alerting virus receptor expression and viral attachment. We also observed that genistein was not found to interfere with virus entry, but significantly inhibited both viral gene transcriptions at 24h post infection and virus release, which indicate that genistein exerts its inhibitory effects on the late phase of ALV-J replicative cycle. These results demonstrate that genistein effectively block ALV-J replication by inhibiting virus transcription and release in DF-1 cells, which may be useful for therapeutic drug design. PMID:25197039

  7. Quantification and characterization of avian RNA tumor virus group specific antigen by radioimmunoassay

    International Nuclear Information System (INIS)

    Although the gs antigen preparation used in the RIA had originally been thought to contain only one protein, further analysis by column chromatography and polyacrylamide gel electrophoresis revealed the presence of two viral polypeptides. Subsequent analysis of the immune precipitates of the RIA by SDS polyacrylamide gel electrophoresis identified 70 percent of precipitable radioactivity as gs-1 (major antigen) and 30 percent as gs-3. Extensive immunological competitive inhibition reactions confirmed this analysis. The RIA for avian group specific antigen has, therefore, duel specificity since it does not require one polypeptide specificity for the majority of its applications. The RIA was used to follow the progress of in vitro infection by avian leukosis and sarcoma viruses by monitoring the intracellular appearance of gs antigen. In these studies gs antigen was detected within 6-12 hours after virus infections. This was 6 hours before the release of progeny virus and 18 hours before the previous studies had detected viral products. These studies were also important in demonstrating the feasibility of using production of an intracellular viral antigen as a marker to follow virus infections. The success of these in vitro studies allowed the quantification in vivo of the pathogenesis of a virus induced chicken leukemia, avian myeloblastosis

  8. Effectivity of PCR and AGID methods to detect of enzootic bovine leukosis in Indonesia

    OpenAIRE

    Saepulloh M; Sendow I

    2015-01-01

    Enzootic Bovine Leucosis (EBL) is one of viral diseases in cattle caused by bovine leukemia virus (BLV), from Retroviridae. The virus can be detected using severals methods such as Polymerase Chain Reaction (PCR), while antibody can be detected using Agar Gel Immunodifussion (AGID). The aim of this experiment was to study the effectivity of PCR and AGID methods to detect enzootic bovine leukosis virus in Indonesia. Samples of peripheral blood leukocyte (PBL) were collected from cattles those ...

  9. Alterations in composition of sterols and in properties of erythrocyte membranes in rats with Shvetz experimental leukosis and after UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Palamarchyuk, V.I.; Trikash, I.O. (AN Ukrainskoj SSR, Kiev. Inst. Biokhimii)

    1983-05-01

    Sterol composition of erythrocyte membrane is studied in experimental Schwetz leukosis. Interconnections of alteration in sterol composition and membrane properties are investigated, as well as the effect of UV-radiation on the alteration of sterol composition of erythrocyte membrane and lifetime of animals With leukosis. The effect of UV-radiation on survival of the leukosis animals has been studied which showed that irradiation of rats in the dose of 8 mWt/min/cm/sup 2/ for 12 days increases the lifetime of animals by several days, i.e. increases resistance of animals to leukosis. In the case of short-time UV-radiation of rats the cholesterine amount in erythrocyte membranes increases by 9% as compared with the norm, simultaneously, other substances appear. Acidic resistance of erythrocytes of irradiated animals also increases. The supposition is made that alterations promote the increase of organism resistance to leukosis.

  10. Alterations in composition of sterols and in properties of erythrocyte membranes in rats with Shvetz experimental leukosis and after UV irradiation

    International Nuclear Information System (INIS)

    Sterol composition of erythrocyte membrane is studied in experimental Schwetz leukosis. Interconnections of alteration in sterol composition and membrane properties are investigated, as well as the effect of UV-radiation on the alteration of sterol composition of erythrocyte membrane and lifetime of animals With leukosis. The effect of UV-radiation on survival of the leukosis animals has been studied which showed that irradiation of rats in the dose of 8 mWt/min/cm2 for 12 days increases the lifetime of animals by several days, i.e. increases resistance of animals to leukosis. In the case of short-time UV-radiation of rats the cholesterine amount in erythrocyte membranes increases by 9% as compared with the norm, simultaneously, other substances appear. Acidic resistance of erythrocytes of irradiated animals also increases. The supposition is made that alterations promote the increase of organism resistance to leukosis

  11. Avian influenza – Review

    OpenAIRE

    Öner, Ahmet Faik

    2007-01-01

    Recent spread of avian influenza A H5N1 virus to poultry and wild birds has increased the threat of human infections with H5N1 virus worldwide In this review the epidemiology virolgy clinical and laboratory characteristics and management of avian influenza is described The virus has demonsrated considerable pandemic potential and is the most likely candidate of next pandemic threat For pandemic preparedness stockpiling antiviral agents and vaccination are the most important intervention measu...

  12. Editorial: Avian Research

    Institute of Scientific and Technical Information of China (English)

    Yong; Wang; Guangmei; Zheng

    2014-01-01

    <正>Welcome to Avian Research!This new journal is a continuation and enhancement of Chinese Birds,which has been and continues to be sponsored by the China Ornithological Society and Beijing Forestry University.In the four years since its inception,the original journal—the only one in China focusing on avian research—has published over 130 manuscripts,with authors from all continents across the world,garnering global respect in

  13. Amyloid A amyloidosis in non-infected and avian leukosis virus-C persistently infected inbred ducks

    Czech Academy of Sciences Publication Activity Database

    Stepanets, Volodymyr; Vernerová, Z.; Vilhelmová, Milena; Geryk, Josef; Hejnar, Jiří; Svoboda, Jan

    2001-01-01

    Roč. 30, č. 1 (2001), s. 33-42. ISSN 0307-9457 R&D Projects: GA ČR GA301/94/0713; GA ČR GA524/01/0866 Institutional research plan: CEZ:AV0Z5052915 Keywords : amyloidosis * amyloid A * persistent retroviral infection Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.655, year: 2001

  14. Proviral load and expression of avian leukosis viruses of subgroup C in long-term persistently infected heterologous hosts (ducks)

    Czech Academy of Sciences Publication Activity Database

    Trejbalová, Kateřina; Gebhard, K.; Vernerová, Z.; Dušek, L.; Geryk, Josef; Hejnar, Jiří; Haase, A. T.; Svoboda, Jan

    1999-01-01

    Roč. 144, - (1999), s. 1779-1807. ISSN 0304-8608 R&D Projects: GA ČR GA301/94/0713; GA ČR GA203/96/0883 Grant ostatní: FIRCA(US) 1RO3TW00 155-01A1 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.591, year: 1999

  15. Amyloid A amyloidosis in non-infected and avian leukosis virus-C persistently infected inbred ducks

    Czech Academy of Sciences Publication Activity Database

    Stepanets, Volodymyr; Vernerová, Z.; Vilhelmová, Milena; Geryk, Josef; Hejnar, Jiří; Svoboda, Jan

    2001-01-01

    Roč. 30, č. 1 (2001), s. 33-42. ISSN 0307-9457 R&D Projects: GA ČR GA301/94/0713; GA ČR GA524/01/0866 Institutional research plan: CEZ:AV0Z5052915 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.655, year: 2001

  16. Intraembryonic avian leukosis virus subgroup C (ALV-C) inoculation producing wasting disease in ducks soon after hatching

    Czech Academy of Sciences Publication Activity Database

    Stepanets, Volodymyr; Vernerová, Z.; Vilhelmová, Miloslava; Geryk, Josef; Plachý, Jiří; Hejnar, Jiří; Weichold, F.; Svoboda, Jan

    2003-01-01

    Roč. 2003, č. 49 (2003), s. 100-109. ISSN 0015-5500 Institutional research plan: CEZ:AV0Z5052915 Keywords : Rous-sarcoma * virus * transformation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.527, year: 2003

  17. Investigation of some hematological and blood biochemical parameters in cattle spontaneously infected with bovine leukosis virus

    Directory of Open Access Journals (Sweden)

    Sandev Nikolay

    2013-09-01

    Full Text Available The aim of the present study was to follow out the alterations in some haematological and blood biochemical parameters in cattle spontaneously infected with enzootic bovine leukosis virus with regard to the invivodifferentiation of bovine leukosis stages. The experiment included 76 cows at various ages and body weight. Serological leukosis tests were done by agar-gel immunodiffusion test with a commercial kit of Synbiotiсs (France, containing standardised gp 51 antigen and positive serum approved by the EU. On the basis of haematological results, the cows were divided into three groups: first group – EBL-seropositive with normal haemogramme; second group – EBL seropositive with altered haemogramme and third group – controls. In cows from the first and the second group, a statistically significantly increased blood cell counts was established compared to healthy controls. The total WBC were increased in the second group (leukocytosis up to 33.21×109/l vs reference range of 5-10×109/l as well as lymphocyte percentages (lymphocytosis – 81.89% (reference 40–63%. A reduction in the proportion of neutrophils to 12.78% (relative neutropenia vs the reference range of 22-49% and monocytes (monocytopenia to 1.78% (reference range 2–6% was observed. A statistically significant reduction in Ca concentrations (4.41 mg/dl and higher inorganic phosphate levels (5.28 mg/dl were established in cows from the second group. Also, ASAT activity was considerably lower – 47.03 U/l, while alkaline phosphatase increased slightly within the reference range up to 167.68 U/l and 165.81 U/l in groups one and two, respectively. The present haematological and whole blood/serum biochemical results in cows spontaneously infected with EBL virus could be used as prognostic markers of the course of the disease, to distinguish the stages of infection with regard to alive diagnostics.

  18. Genetic analysis of leukosis incidence in United States Holstein and Jersey populations.

    Science.gov (United States)

    Abdalla, E A; Rosa, G J M; Weigel, K A; Byrem, T

    2013-09-01

    Bovine leukosis (BL) is a retroviral disease caused by the bovine leukosis virus that affects only cattle. It is associated with decreased milk production and increased cull rates due to development of lymphosarcoma. The virus also affects the immune system. Infected cows display a weak response to some vaccinations. It is important to determine if the heritability of BL susceptibility is greater than zero, or if the environment is the only factor that can be used to reduce the transmission and incidence of the disease. Accordingly, the aim of this study was to estimate the heritability for BL incidence and the genetic merit of sires for leukosis resistance in Holstein and Jersey cattle. Continuous scores and binary milk ELISA results for 13,217 Holstein cows from 114 dairy herds across 16 states and 642 Jersey cows from 8 dairy herds were considered. Data were obtained from commercial testing records at Antel BioSystems (Lansing, MI). Out of the 13,859 animals tested, 38% were found to be infected with the disease. Linear and threshold animal models were used to analyze the continuous and binary data, respectively. Results from both models were similar in terms of estimated breeding values and variance components in their respective scales. Estimates of heritability obtained with the 2 approaches were approximately 8% for both breeds, indicating a considerable genetic component underlying BL disease incidence. The correlation between the estimated breeding values from the 2 models was larger than 0.90, and the lists of top 10% bulls selected from each model had about 80% overlap for both breeds. In summary, results indicate that a simple linear model using the continuous ELISA scores as the response variable was a reasonable approach for the genetic analysis of BL incidence in cattle. In addition, the levels of heritability found indicate that genetic selection could also be used to decrease susceptibility to bovine leukosis virus infection in Holstein and Jersey

  19. Avian influenza (fowl plague)

    Science.gov (United States)

    Avian influenza (AI) viruses infect domestic poultry and wild birds. In domestic poultry, AI viruses are typically of low pathogenicity (LP) causing subclinical infections, respiratory disease or drops in egg production. However, a few AI viruses cause severe systemic disease with high mortality; ...

  20. Avian pox in ostriches.

    Science.gov (United States)

    Allwright, D M; Burger, W P; Geyer, A; Wessles, J

    1994-03-01

    Nodular cutaneous and diphtheric oral lesions, resembling avian pox were observed in 2 flocks of young ostrich chicks. Typical eosinophilic intracytoplasmic inclusion bodies were seen in histological sections and a pox virus was isolated from the lesions. A commercial fowl pox vaccine was used to protect young ostriches in the field. PMID:7745588

  1. Avian dark cells

    Science.gov (United States)

    Hara, J.; Plymale, D. R.; Shepard, D. L.; Hara, H.; Garry, Robert F.; Yoshihara, T.; Zenner, Hans-Peter; Bolton, M.; Kalkeri, R.; Fermin, Cesar D.

    2002-01-01

    Dark cells (DCs) of mammalian and non-mammalian species help to maintain the homeostasis of the inner ear fluids in vivo. Although the avian cochlea is straight and the mammalian cochlea is coiled, no significant difference in the morphology and/or function of mammalian and avian DCs has been reported. The mammalian equivalent of avian DCs are marginal cells and are located in the stria vascularis along a bony sheet. Avian DCs hang free from the tegmentum vasculosum (TV) of the avian lagena between the perilymph and endolymph. Frame averaging was used to image the fluorescence emitted by several fluorochromes applied to freshly isolated dark cells (iDCs) from chickens (Gallus domesticus) inner ears. The viability of iDCs was monitored via trypan blue exclusion at each isolation step. Sodium Green, BCECF-AM, Rhodamine 123 and 9-anthroyl ouabain molecules were used to test iDC function. These fluorochromes label iDCs ionic transmembrane trafficking function, membrane electrogenic potentials and Na+/K+ ATPase pump's activity. Na+/K+ ATPase pump sites, were also evaluated by the p-nitrophenyl phosphatase reaction. These results suggest that iDCs remain viable for several hours after isolation without special culturing requirements and that the number and functional activity of Na+/K+ ATPase pumps in the iDCs were indistinguishable from in vivo DCs. Primary cultures of freshly iDCs were successfully maintained for 28 days in plastic dishes with RPMI 1640 culture medium. The preparation of iDCs overcomes the difficulty of DCs accessability in vivo and the unavoidable contamination that rupturing the inner ear microenvironments induces.

  2. Avian Influenza A Virus Infections in Humans

    Science.gov (United States)

    ... Past Newsletters Avian Influenza A Virus Infections in Humans Language: English Español Recommend on Facebook Tweet ... A Viruses Avian Influenza A Virus Infections in Humans Although avian influenza A viruses usually do not ...

  3. Radiosensitizing and cytotoxic effects of hyperthermia on various biological systems. Radiosensitizing and cytotoxic effect of hyperthermia on mouse leukosis La cells

    Energy Technology Data Exchange (ETDEWEB)

    Shtejn, L.V.; Konoplyannikov, A.G. (Akademiya Meditsinskikh Nauk SSSR, Obninsk. Nauchno-Issledovatel' skij Inst. Meditsinskoj Radiologii)

    When mouse leukosis cell suspensions were subjected to heating the survival rate of animals decreased exponentially with increasing time of heating. It is shown that the increase of temperature for 1 deg C in range 40-45 deg C was equivalent to a decrease in the heating time by a factor of approximately 2. The hyperthermia-induced increase in the radiosensitivity of leukosis cells was dependent upon a medium in which heating was performed.

  4. An overview on avian influenza

    OpenAIRE

    Nelson Rodrigo da Silva Martins

    2012-01-01

    Avian influenza (AI) is considered an exotic disease in the Brazilian poultry industry, according to the National Avian Health Program (PNSA), with permanent monitoring of domestic, exotic and native avian species. Brazil presents privileged environmental conditions of reduced risk. In addition, all commercial poultry and conservation holdings are registered in state or national inventories and geographically located (GPS) for health control. Poultry health standards are adopted for the confo...

  5. Avian influenza viruses in humans.

    OpenAIRE

    Malik Peiris, J S

    2009-01-01

    Past pandemics arose from low pathogenic avian influenza (LPAI) viruses. In more recent times, highly pathogenic avian influenza (HPAI) H5N1, LPAI H9N2 and both HPAI and LPAI H7 viruses have repeatedly caused zoonotic disease in humans. Such infections did not lead to sustained human-to-human transmission. Experimental infection of human volunteers and seroepidemiological studies suggest that avian influenza viruses of other subtypes may also infect humans. Viruses of the H7 subtype appear to...

  6. SEKILAS TENTANG AVIAN INFLUENZA (AI)

    OpenAIRE

    Fauziah Elytha

    2011-01-01

    Fluburung atau Avian Influenza (AI) adalah penyakit zoonosis fatal dan menular serta dapat menginfeksi semua jenis burung, manusia, babi, kuda dan anjing, Virus Avian Influenza tipe A (hewan) dari keluarga Drthomyxoviridae telah menyerang manusia dan menyebabkan banyak korban meninggal dunia. Saat ini avian Influenza telah menjadi masalah kesehatan global yang sangat serius, termasuk di Indonesia. Sejak Juli 2005 Sampai 12 April 2006 telah ditemukan 479 kasus kumulatif dan dicurigai flu burun...

  7. The avian haemophili.

    OpenAIRE

    Blackall, P. J.

    1989-01-01

    There are four currently recognized taxa to accommodate the avian haemophili: Haemophilus paragallinarum, Pasteurella avium, Pasteurella volantium, and Pasteurella species A (the last three being formerly united as Haemophilus avium). A range of other taxa has also been recognized, but they have been neither named nor assigned to a genus. All of these various taxa, legitimate and otherwise, have the common characteristic of requiring V factor, but not X factor, for in vitro growth. Several re...

  8. BIRD FLU (AVIAN INFLUENZA)

    OpenAIRE

    Acar, Ali; Bulent BESIRBELLIOÐLU

    2005-01-01

    Avian influenza (bird flu) is a contagious disease of animals caused by influenza A viruses. These flu viruses occur naturally among birds. Actually, humans are not infected by bird flu viruses.. However, during an outbreak of bird flu among poultry, there is a possible risk to people who have contact infect birds or surface that have been contaminated with excreations from infected birds. Symptoms of bird flu in humans have ranged from typical flu-like symptoms to eye infections, pneumonia, ...

  9. Avian psychology and communication.

    OpenAIRE

    Rowe, Candy; Skelhorn, John

    2004-01-01

    The evolution of animal communication is a complex issue and one that attracts much research and debate. 'Receiver psychology' has been highlighted as a potential selective force, and we review how avian psychological processes and biases can influence the evolution and design of signals as well as the progress that has been made in testing these ideas in behavioural studies. Interestingly, although birds are a focal group for experimental psychologists and behavioural ecologists alike, the i...

  10. Avian mycoplasmosis update

    OpenAIRE

    ER Nascimento; VLA Pereira; MGF Nascimento; ML Barreto

    2005-01-01

    Avian mycoplasmas occur in a variety of bird species. The most important mycoplasmas for chickens and turkeys are Mycoplasma gallisepticum (MG), M. synoviae (MS), and M. meleagridis. Besides, M. iowe (MI) is an emerging pathogen in turkeys, but of little concern for chickens. Mycoplasmas are bacteria that lack cell wall and belong to the class Mollicutes. Although they have been considered extracellular agents, scientists admit nowadays that some of them are obligatory intracellular microorga...

  11. Applications of avian transgenesis.

    Science.gov (United States)

    Scott, Benjamin B; Velho, Tarciso A; Sim, Shuyin; Lois, Carlos

    2010-01-01

    The ability to introduce foreign DNA into the genome of an organism has proven to be one of the most powerful tools in modern biology. Methods for the manipulation of the animal genome have been developed at an impressive pace for 3 decades, but only in the past 5 years have useful tools for avian transgenesis emerged. The most efficient technique involves the use of replication-deficient lentiviral vectors to deliver foreign DNA into the avian germline. Although lentiviral-mediated transgenesis presents some constraints, progress in this area has garnered interest in both industry and academia for its potential applications in biological research, biotechnology, and agriculture. In this review we evaluate methods for the production of transgenic birds, focusing on the advantages and limitations of lentiviral-mediated transgenesis. We also provide an overview of future applications of this technology. The most exciting of these include disease-resistant transgenic poultry, genetically modified hens that produce therapeutic proteins in their eggs, and transgenic songbirds that serve as a model to study communication disorders. Finally, we discuss technological advances that will be necessary to make avian transgenesis a more versatile tool. PMID:21131712

  12. Grid attacks avian flu

    CERN Multimedia

    2006-01-01

    During April, a collaboration of Asian and European laboratories analysed 300,000 possible drug components against the avian flu virus H5N1 using the EGEE Grid infrastructure. Schematic presentation of the avian flu virus.The distribution of the EGEE sites in the world on which the avian flu scan was performed. The goal was to find potential compounds that can inhibit the activities of an enzyme on the surface of the influenza virus, the so-called neuraminidase, subtype N1. Using the Grid to identify the most promising leads for biological tests could speed up the development process for drugs against the influenza virus. Co-ordinated by CERN and funded by the European Commission, the EGEE project (Enabling Grids for E-sciencE) aims to set up a worldwide grid infrastructure for science. The challenge of the in silico drug discovery application is to identify those molecules which can dock on the active sites of the virus in order to inhibit its action. To study the impact of small scale mutations on drug r...

  13. Avian influenza: Vaccination and control

    Science.gov (United States)

    Avian influenza (AI) is a viral disease of poultry that remains an economic threat to commercial poultry throughout the world by negatively impacting animal health and trade. Strategies to control avian influenza (AI) virus are developed to prevent, manage or eradicate the virus from the country, re...

  14. Avian gyrovirus 2 and avirulent Newcastle disease virus coinfection in a chicken flock with neurologic symptoms and high mortalities.

    Science.gov (United States)

    Abolnik, Celia; Wandrag, Daniel B R

    2014-03-01

    A disease with severe neurologic symptoms caused 100% mortality in a small broiler operation in the Gauteng Province, South Africa in late March 2013. Routine diagnostic PCR testing failed to identify a possible cause of the outbreak; thus, samples were submitted for virus isolation, serology, and bacteriology. An avirulent Newcastle disease virus (NDV) strain isolated was identified as a V4-like genotype 1 strain, by DNA sequencing, with a cleavage site of 112GKQGR decrease L117. Real-time reverse transcription PCR identified NDV in the brain but not in cecal tonsils or pooled tracheas, spleens, lungs, and livers. A random amplification deep sequencing of a transcriptome library generated from pooled tissues produced 927,966 paired-end reads. A contig of 2,309 nucleotides was identified as a near-complete avian gyrovirus 2 (AGV2) genome. This is the first report on the African continent of AGV2, which has been reported in southern Brazil, The Netherlands, and Hong Kong thus far. A real-time PCR for AGV2 only detected the virus in the brain but not in cecal tonsils or pooled tracheas, spleens, lungs, and livers. Sequence reads also mapped to the genomes of mycoplasma, Escherichia coli, avian leukosis virus subtype J, and Marek's disease virus but excluded influenza A virus, Ornithobacterium rhinotracheale, avian rhinotracheitis virus, avian encephalomyelitis virus, and West Nile virus. Air sac swabs were positive on bacterial culture for E. coli. The possibility of a synergistic pathogenic effect between avirulent NDV and AGV2 requires further investigation. PMID:24758119

  15. Sporadic Bovine Leukosis: A Description of Eight Calves Received at Animal Diseases Research Institute from 1974-1980

    OpenAIRE

    Bundza, A.; Greig, A. S.; Chander, S; Dukes, T W

    1980-01-01

    Eight calves with sporadic bovine leukosis are described. The common features were generalized lymphadenopathy, visceral involvement and raised total leukocyte and lymphocyte counts. Agar gel immunodiffusion tests for bovine leukemia virus antibodies were negative in eight animals and in all animals from three herds of origin. Lymphocytic nuclear pockets were found in the tissues of one calf but attempts to isolate bovine leukemia virus from two animals were unsuccessful.

  16. Relationship between the serological status towards enzootic bovine leukosis and reproductive parameters in specialized dairy herds in Costa Rica

    OpenAIRE

    Juan José Romero; Gerardo Dávila; Gabriela Beita; Gaby Dolz

    2015-01-01

    An analytical longitudinal study was conducted to determine the cumulative incidence, and the relationship of the serostatus towards enzootic bovine leukosis virus (EBLV) and reproductive parameters, in 26 dairy farms in Costa Rica using the VAMPP Bovine information system. A first sampling was carried out in 2006- 2007 in animals older than 6 months old; then, in 2009, a second sampling was performed in all cows seronegative in 2006-2007. The overall and farm- specific cumulative incidence w...

  17. Avian Influenza Infection Dynamics in Minor Avian Species

    OpenAIRE

    Bertran Dols, Kateri

    2013-01-01

    Avian influenza (AI) has become one of the most important challenges that ever emerged from animal reservoirs. The constant outbreaks detected worldwide in domestic and wild bird species are of concern to the economics of the poultry industry, wildlife conservation, and animal and public health. Susceptibility to AI viruses (AIVs) varies deeply among avian species, as well as their possible role as sentinels, intermediate hosts or reservoirs. To date, several experimental studies and natural ...

  18. Influenza pandemics and avian flu

    OpenAIRE

    2005-01-01

    Douglas Fleming is general practitioner in a large suburban practice in Birmingham. In this article he seeks to clarify clinical issues relating to potential pandemics of influenza, including avian influenza

  19. Low Speed Avian Maneuvering Flight

    OpenAIRE

    Ros, Ivo

    2013-01-01

    Low speed avian maneuvering flight is an ecologically crucial behavior that has contributed to the explosive diversification of several avian taxa by allowing access to complex spatial environments. Negotiating a sharp aerial turn requires finely tuned interactions between an animal's sensory-motor system and its environment. My thesis work focuses on how aerodynamic forces, wing and body dynamics, and sensory feedback interact during aerial turning in the pigeon (Columba livea).

  20. Avian influenza : a review article

    OpenAIRE

    A. Yalda; EMADI H; M. Haji Abdolbaghi

    2006-01-01

    The purpose of this paper is to provides general information about avian influenza (bird flu) and specific information about one type of bird flu, called avian influenza A (H5N1), that has caused infections in birds in Asia and Europe and in human in Asia. The main materials in this report are based on the World Health Organization (WHO) , world organization for animal health (OIE) , food and agriculture organization of the united nations (FAO) information and recommendations and review of th...

  1. The Avian Development Facility

    Science.gov (United States)

    2003-01-01

    The Avian Development Facility (ADF) supports 36 eggs in two carousels, one of which rotates to provide a 1-g control for comparing to eggs grown in microgravity. The ADF was designed to incubate up to 36 Japanese quail eggs, 18 in microgravity and 18 in artificial gravity. The two sets of eggs were exposed to otherwise identical conditions, the first time this is been accomplished in space. Eggs are preserved at intervals to provide snapshots of their development for later analysis. Quails incubate in just 15 days, so they are an ideal species to be studied within the duration of space shuttle missions. Further, several investigators can use the same specimens to address different questions. The ADF originated in NASA's Shuttle Student Involvement program in the 1980s and was developed under the NASA Small Business Irnovation Research program. In late 2001, the ADF made its first flight and carried eggs used in two investigations.

  2. BIRD FLU (AVIAN INFLUENZA

    Directory of Open Access Journals (Sweden)

    Ali ACAR

    2005-12-01

    Full Text Available Avian influenza (bird flu is a contagious disease of animals caused by influenza A viruses. These flu viruses occur naturally among birds. Actually, humans are not infected by bird flu viruses.. However, during an outbreak of bird flu among poultry, there is a possible risk to people who have contact infect birds or surface that have been contaminated with excreations from infected birds. Symptoms of bird flu in humans have ranged from typical flu-like symptoms to eye infections, pneumonia, severe respiratory diseases and other severe and life-threatening complications. In such situation, people should avoid contact with infected birds or contaminated surface, and should be careful when handling and cooking poultry. [TAF Prev Med Bull 2005; 4(6.000: 345-353

  3. Thromboelastography in Selected Avian Species.

    Science.gov (United States)

    Strindberg, Sophie; Nielsen, Tenna W; Ribeiro, Ângela M; Wiinberg, Bo; Kristensen, Annemarie T; Bertelsen, Mads F

    2015-12-01

    Currently available assay methods and reagents are not optimized for evaluating avian hemostasis; therefore, assessing avian coagulopathies is challenging. Recently, thromboelastography (TEG), which measures the viscoelastic properties of blood, has been used clinically in mammalian species to diagnose and characterize hemostatic disorders. To evaluate TEG in healthy individuals of 6 avian species, we modified existing mammalian TEG protocols to allow analysis of citrated, avian whole-blood samples collected from scarlet ibis (Eudocimus ruber) (n = 13), American flamingos ( Phoenicopterus ruber ) (n = 13), helmeted Guinea fowl ( Numida meleagris ) (n = 12), Amazon parrots (Amazona species) (n = 9), Humboldt penguins ( Spheniscus humboldti ) (n = 6), and domestic chickens (n = 16). Activated partial thromboplastin time, prothrombin time, and fibrinogen were measured as a means of comparison. Regardless of the mode of activation, clot formation in the species studied was markedly delayed compared with mammals. Because of prolonged reaction time (14.7-52.7 minutes) with kaolin and diluted tissue factor, undiluted human tissue factor was used in all avian samples because it provided the shortest reaction time. Species differed significantly in reaction time (P = .007), clotting rate (P < .001), rate of clot formation (α angle; P < .001), and maximum amplitude (P < .001) values, indicating that species-specific reference intervals are necessary. Based on these results, TEG with specific reference intervals could prove useful in evaluating avian hemostatic disorders. PMID:26771317

  4. Effect of low-intensity low-dose rate irradiation on the incidence and the development of spontaneous leukosis in AKR mice

    International Nuclear Information System (INIS)

    Development of spontaneous leukosis in AKR mice is accelerated by irradiation with low doses of 1.2-2.4 cGy and low dose rate 0.06 cGy/day. The leukoses incidence rate increases. Deaths of the animals from leukosis occurs earlier, shortening the average and maximum life-spans of the animals. The dynamics of changes in the mass of organs of the immune systems (thymus and spleen) shows extrema. The moment of reaching the extremum correlates with the maximum rate of animals' deaths

  5. Avian mycoplasmosis update

    Directory of Open Access Journals (Sweden)

    ER Nascimento

    2005-03-01

    Full Text Available Avian mycoplasmas occur in a variety of bird species. The most important mycoplasmas for chickens and turkeys are Mycoplasma gallisepticum (MG, M. synoviae (MS, and M. meleagridis. Besides, M. iowe (MI is an emerging pathogen in turkeys, but of little concern for chickens. Mycoplasmas are bacteria that lack cell wall and belong to the class Mollicutes. Although they have been considered extracellular agents, scientists admit nowadays that some of them are obligatory intracellular microorganisms, whereas all other mycoplasmas are considered facultative intracellular organisms. Their pathogenic mechanism for disease include adherence to host target cells, mediation of apoptosis, innocent bystander damage to host cell due to intimate membrane contact, molecular (antigen mimicry that may lead to tolerance, and mitotic effect for B and/or T lymphocytes, which could lead to suppressed T-cell function and/or production of cytotoxic T cell, besides mycoplasma by-products, such as hydrogen peroxide and superoxide radicals. Moreover, mycoplasma ability to stimulate macrophages, monocytes, T-helper cells and NK cells, results in the production of substances, such as tumor necrosing factor (TNF-alpha, interleukin (IL-1, 2, 6 and interferon (a, b, g. The major clinical signs seen in avian mycoplasmosis are coughing, sneezing, snicks, respiratory rales, ocular and nasal discharge, decreased feed intake and egg production, increased mortality, poor hatchability, and, primarily in turkeys, swelling of the infraorbital sinus(es. Nevertheless, chronic and unapparent infections are most common and more threatening. Mycoplasmas are transmitted horizontally, from bird to bird, and vertically, from dam to offspring through the eggs. Losses attributed to mycoplasmosis, mainly MG and MS infections, result from decreased egg production and egg quality, poor hatchability (high rate of embryonic mortality and culling of day-old birds, poor feed efficiency, increase in

  6. Effectivity of PCR and AGID methods to detect of enzootic bovine leukosis in Indonesia

    Directory of Open Access Journals (Sweden)

    Saepulloh M

    2015-03-01

    Full Text Available Enzootic Bovine Leucosis (EBL is one of viral diseases in cattle caused by bovine leukemia virus (BLV, from Retroviridae. The virus can be detected using severals methods such as Polymerase Chain Reaction (PCR, while antibody can be detected using Agar Gel Immunodifussion (AGID. The aim of this experiment was to study the effectivity of PCR and AGID methods to detect enzootic bovine leukosis virus in Indonesia. Samples of peripheral blood leukocyte (PBL were collected from cattles those with and without showing clinical signs. A total of 307 blood and serum samples were tested against BLV using PCR and AGID tests, while 21 semen samples which were from similar animals for blood collection were collected only for PCR test. The results indicated that twelve cattles have positive results with PCR test in PBL, but from those cattles only seven were positive with AGID. On the other hand, the PCR did not detect EBL in 21 bovine semen samples tested, although one sample gave positive result with PCR in PBL. This results indicated that PCR method from blood samples was more sensitive than that AGID method. The PCR detection was also more sensitive for PBL than that for semen samples

  7. Markov Chain Estimation of Avian Seasonal Fecundity

    Science.gov (United States)

    To explore the consequences of modeling decisions on inference about avian seasonal fecundity we generalize previous Markov chain (MC) models of avian nest success to formulate two different MC models of avian seasonal fecundity that represent two different ways to model renestin...

  8. An overview on avian influenza

    Directory of Open Access Journals (Sweden)

    Nelson Rodrigo da Silva Martins

    2012-06-01

    Full Text Available Avian influenza (AI is considered an exotic disease in the Brazilian poultry industry, according to the National Avian Health Program (PNSA, with permanent monitoring of domestic, exotic and native avian species. Brazil presents privileged environmental conditions of reduced risk. In addition, all commercial poultry and conservation holdings are registered in state or national inventories and geographically located (GPS for health control. Poultry health standards are adopted for the conformity to the international market, mostly for the intensified poultry destined for exportation, but also for companion exotic and native conservation facilities. Guidelines for monitoring and the diagnosis of AI are published by the PNSA and follow the standards proposed by the international health code (World Organization for Animal Health, Organization International des Epizooties - OIE and insure the free of status for avian influenza virus (AIV of LPAIV-low pathogenicity AIV and HPAIV-high pathogenicity AIV. In addition, the infections by mesogenic and velogenic Newcastle disease virus, Mycoplasma gallisepticum, M. synoviae and M. meleagridis, Salmonella enteric subspecies enterica serovar Gallinarum biovars Gallinarum and Pullorum are eradicated from reproduction. Controlled infections by S.enterica subspecies enterica serovars Enteritidis and Typhimurium are monitored for breeders. The vaccination of chickens in ovo or at hatch against Marek's disease is mandatory. Broiler production is an indoor activity, confinement which insures biosecurity, with safe distances from the potential AIV reservoir avian species. Worldwide HPAIV H5N1 notifications to the OIE, in March 2011, included 51 countries.

  9. Avian infectious laryngotracheitis.

    Science.gov (United States)

    Bagust, T J; Jones, R C; Guy, J S

    2000-08-01

    Avian infectious laryngotracheitis (ILT) herpesvirus continues to cause sporadic cases of respiratory disease in chickens world-wide. Sources of transmission of ILT infection are three-fold, namely: chickens with acute upper respiratory tract disease, latently infected 'carrier' fowls which excrete infectious laryngotracheitis virus (ILTV) when stressed, and all fomites (inanimate articles as well as the personnel in contact with infected chickens). Infectious laryngotracheitis virus infectivity can persist for weeks to months in tracheal mucus or carcasses. Rigorous site biosecurity is therefore critical in ILT disease control. Furthermore, while current (modified live) ILT vaccines can offer good protection, the strains of ILTV used in vaccines can also produce latent infections, as well as ILT disease following bird-to-bird spread. The regional nature of reservoirs of ILTV-infected flocks will tend to interact unfavourably with widely varying ILT control practices in the poultry industry, so as to periodically result in sporadic and unexpected outbreaks of ILT in intensive poultry industry populations. Precautions for trade-related movements of chickens of all ages must therefore include an accurate knowledge of the ILT infection status, both of the donor and recipient flocks. PMID:10935275

  10. Avian influenza virus in pregnancy.

    Science.gov (United States)

    Liu, Shelan; Sha, Jianping; Yu, Zhao; Hu, Yan; Chan, Ta-Chien; Wang, Xiaoxiao; Pan, Hao; Cheng, Wei; Mao, Shenghua; Zhang, Run Ju; Chen, Enfu

    2016-07-01

    The unprecedented epizootic of avian influenza viruses, such as H5N1, H5N6, H7N1 and H10N8, has continued to cause disease in humans in recent years. In 2013, another novel influenza A (H7N9) virus emerged in China, and 30% of those patients died. Pregnant women are particularly susceptible to avian influenza and are more likely to develop severe complications and to die, especially when infection occurs in the middle and late trimesters. Viremia is believed to occur infrequently, and thus vertical transmission induced by avian influenza appears to be rare. However, avian influenza increases the risk of adverse pregnancy outcomes, including spontaneous abortion, preterm birth and fatal distress. This review summarises 39 cases of pregnant women and their fetuses from different countries dating back to 1997, including 11, 15 and 13 infections with H7N9, H5N1 and the 2009 pandemic influenza (H1N1), respectively. We analysed the epidemic features, following the geographical, population and pregnancy trimester distributions; underlying diseases; exposure history; medical timelines; human-to-human transmission; pathogenicity and vertical transmission; antivirus treatments; maternal severity and mortality and pregnancy outcome. The common experiences reported in different countries and areas suggest that early identification and treatment are imperative. In the future, vigilant virologic and epidemiologic surveillance systems should be developed to monitor avian influenza viruses during pregnancy. Furthermore, extensive study on the immune mechanisms should be conducted, as this will guide safe, rational immunomodulatory treatment among this high-risk population. Most importantly, we should develop a universal avian influenza virus vaccine to prevent outbreaks of the different subtypes. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27187752

  11. Avian Influenza infection in Human

    OpenAIRE

    Mohan M; Trevor Francis Fernandez and Feroz Mohammed.M.S.

    2008-01-01

    Outbreaks caused by the H5N1 strain are presently of the greatest concern for human health. In assessing risks to human health, it is important to know exactly which avian virus strains are causing the outbreaks in birds.All available evidence points to an increased risk of transmission to humans when outbreaks of highly pathogenic avian H5N1 influenza are widespread in poultry. There is mounting evidence that this strain has a unique capacity to jump the species barrier and cause severe dise...

  12. Avian reproductive physiology

    Science.gov (United States)

    Gee, G.F.

    1995-01-01

    Knowledge of the many physiological factors associated with egg production , fertility, incubation, and brooding in nondomestic birds is limited. Science knows even less about reproduction in most of the 238 endangered or threatened birds. This discussion uses studies of nondomestic and, when necessary, domestic birds to describe physiological control of reproduction. Studies of the few nondomestic avian species show large variation in physiological control of reproduction. Aviculturists, in order to successfully propagate an endangered bird, must understand the bird's reproductive peculiarities. First, investigators can do studies with carefully chosen surrogate species, but eventually they need to confirm the results in the target endangered bird. Studies of reproduction in nondomestic birds increased in the last decade. Still, scientists need to do more comparative studies to understand the mechanisms that control reproduction in birds. New technologies are making it possible to study reproductive physiology of nondomestic species in less limiting ways. These technologies include telemetry to collect information without inducing stress on captives (Howey et al., 1987; Klugman, 1987), new tests for most of the humoral factors associated with reproduction, and the skill to collect small samples and manipulate birds without disrupting the physiological mechanisms (Bercovitz et al., 1985). Managers are using knowledge from these studies to improve propagation in zoological parks, private and public propagation facilities, and research institutions. Researchers need to study the control of ovulation, egg formation, and oviposition in the species of nondomestic birds that lay very few eggs in a season, hold eggs in the oviduct for longer intervals, or differ in other ways from the more thoroughly studied domestic birds. Other techniques that would enhance propagation for nondomestlc birds include tissue culture of cloned embryonic cells, cryopreservation of embryos

  13. Molecular characterization of Indonesia avian influenza virus

    Directory of Open Access Journals (Sweden)

    N.L.P.I. Dharmayanti

    2005-06-01

    Full Text Available Avian influenza outbreaks in poultry have been reported in Java island since August 2003. A total of 14 isolates of avian influenza virus has been isolated from October 2003 to October 2004. The viruses have been identified as HPAI H5N1 subtype. All of them were characterized further at genetic level and also for their pathogenicity. Phylogenetic analysis showed all of the avian influenza virus isolates were closely related to avian influenza virus from China (A/Duck/China/E319-2/03(H5N1. Molecular basis of pathogenicity in HA cleavage site indicated that the isolates of avian influenza virus have multiple basic amino acid (B-X-B-R indicating that all of the isolates representing virulent avian influenza virus (highly pathogenic avian influenza virus.

  14. Utility of serum thymidine kinase activity measurements for cases of bovine leukosis with difficult clinical diagnoses.

    Science.gov (United States)

    Tawfeeq, Mohammad Monir; Miura, Saori; Horiuchi, Noriyuki; Kobayashi, Yoshiyasu; Furuoka, Hidefumi; Inokuma, Hisashi

    2013-01-01

    This study evaluated the clinical usefulness of serum thymidine kinase (TK) activity for diagnosing bovine leukosis cases for which clinical diagnosis was difficult ('BL with difficult diagnosis'). Median TK activity values in 24 'BL with difficult diagnosis' and 36 cattle for which BL was clinically confirmed by cytology findings of enlarged superficial lymph nodes ('clinically confirmed BL') were 36.8 and 39.4 U/l, respectively (no significant difference). The percentage with positive TK activity (> 5.4 U/l) was also similar in both groups (83.3% for 'BL with difficult diagnosis' and 97.2% for 'clinically confirmed BL'). TK activity was significantly higher in cows with 'BL with difficult diagnosis' compared to those with other tumors (N = 13) and those with inflammatory diseases (N = 14). Maximum TK activity in cows with other tumors and inflammatory diseases was not high (cows with other tumors and those with inflammatory diseases were 1.8 and 1.4 IU/l, respectively. Positive TK activity was found in a significantly higher percentage of cows with 'BL with difficult diagnosis' (83.3%) relative to the percentages of cows with other tumors (15.3%) and inflammatory diseases (21.4%). Thus, TK activity is an appropriate marker for detecting BL onset in cows with 'BL with difficult diagnosis' as well as 'clinically confirmed BL' group. While the specificity of TK activity required for BL diagnosis is not clear, simultaneous evaluation of serum lactate dehydrogenase activity may assist in the differential diagnoses of other tumors and inflammatory diseases from BL. PMID:23628971

  15. Influenza vaccines for avian species

    Science.gov (United States)

    Beginning in Southeast Asia, in 2003, a multi-national epizootic outbreak of H5N1 highly pathogenic avian influenza (HPAI) was identified in commercial poultry and wild bird species. This lineage, originally identified in Southern China in 1996 and then Hong Kong in 1997, caused severe morbidity an...

  16. Thromboelastography in Selected Avian Species

    DEFF Research Database (Denmark)

    Strindberg, Sophie; Nielsen, Tenna W; Ribeiro, Ângela M;

    2015-01-01

    . Regardless of the mode of activation, clot formation in the species studied was markedly delayed compared with mammals. Because of prolonged reaction time (14.7-52.7 minutes) with kaolin and diluted tissue factor, undiluted human tissue factor was used in all avian samples because it provided the shortest...

  17. OFFLU Network on Avian Influenza

    OpenAIRE

    Edwards, Steven

    2006-01-01

    OFFLU is the name of the network of avian influenza expertise inaugurated jointly in 2005 by the Food and Agriculture Organization of the United Nations and the World Organisation for Animal Health. Achievements and constraints to date and plans for the future are described.

  18. Avian Influenza: Our current understanding

    Science.gov (United States)

    Avian influenza virus (AIV) has become one of the most important diseases of the poultry industry around the world. The virus has a broad host range in birds and mammals, although the natural reservoir is considered to be in wild birds where it typically causes an asymptomatic to mild infection. T...

  19. Avian influenza virus RNA extraction

    Science.gov (United States)

    The efficient extraction and purification of viral RNA is critical for down-stream molecular applications whether it is the sensitive and specific detection of virus in clinical samples, virus gene cloning and expression, or quantification of avian influenza (AI) virus by molecular methods from expe...

  20. Lymphoid leukosis: detection of group specific viral antigen in chicken spleens by immunofluorescence and complement fixation.

    OpenAIRE

    Spencer, J.L.; Gilka, F

    1982-01-01

    Monospecific antiserum obtained from rabbits hyperimmunized against homogeneous p27 group specific protein purified from avian myeloblastosis virus was commercially procured and was then conjugated with fluorescein isothiocyanate. The conjugate was applied to spleens from naturally or experimentally infected chickens that had no evidence of lymphoid tumors. Fluorescence was usually localized in connective tissue of sheathed capillaries giving it a ring-like appearance. Sites of fluorescence c...

  1. Transfection by DNAs of avian erythroblastosis virus and avian myelocytomatosis virus strain MC29.

    OpenAIRE

    Copeland, N G; Cooper, G M

    1980-01-01

    Chicken embryo fibroblasts and NIH 3T3 mouse cells were transformable by DNAs of chicken cells infected with avian myelocytomatosis virus strain MC29 or with avian erythroblastosis virus. Transfection of chicken cells appeared to require replication of MC29 or avian erythroblastosis virus in the presence of a nontransforming helper virus. In contrast, NIH 3T3 cells transformed by MC29 or avian erythroblastosis virus DNA contained only replication-defective transforming virus genomes.

  2. Chymotrypsin and trypsin sensitivities of avian reoviruses.

    OpenAIRE

    Drastini, Y; McKenna, P K; Kibenge, F S; Lopez, A

    1994-01-01

    Experiments were undertaken to examine the chymotrypsin sensitivity and trypsin sensitivity of 13 avian reoviruses, and to determine if there was any correlation with pathogenicity of some chicken reoviruses. A wide variation in the degree of sensitivity of avian reoviruses to chymotrypsin and trypsin was observed. Overall, the infectivity of the 13 avian reoviruses for Vero cells was markedly reduced by treatment with 0.01% chymotrypsin (the lowest concentration tested) while 0.5% trypsin si...

  3. Molecular characterization of Indonesia avian influenza virus

    OpenAIRE

    N.L.P.I Dharmayanti; R Damayanti; R Indriani; A Wiyono; R.M.A Adjid

    2005-01-01

    Avian influenza outbreaks in poultry have been reported in Java island since August 2003. A total of 14 isolates of avian influenza virus has been isolated from October 2003 to October 2004. The viruses have been identified as HPAI H5N1 subtype. All of them were characterized further at genetic level and also for their pathogenicity. Phylogenetic analysis showed all of the avian influenza virus isolates were closely related to avian influenza virus from China (A/Duck/China/E319-2/03(H5N1). Mo...

  4. Expression of the env gene from the avian endogenous retrovirus ALVE and regulation by miR-155.

    Science.gov (United States)

    Hu, Xuming; Zhu, Wenqi; Chen, Shihao; Liu, Yangyang; Sun, Zhen; Geng, Tuoyu; Wang, Xiaoyan; Gao, Bo; Song, Chengyi; Qin, Aijian; Cui, Hengmi

    2016-06-01

    Endogenous retroviruses (ERVs) are important retroelements that reside in host genomes. However, ERV expression patterns and regulatory mechanisms are poorly understood. In this study, chicken embryo fibroblasts (CEFs) and MSB1 cells infected with Marek's disease virus (MDV) exhibited significantly increased expression of env from the endogenous retrovirus ALVE. In contrast, env expression was significantly lower in CEF and MSB1 cells infected with exogenous avian leukosis virus J (ALVJ) at the early infection stage. Furthermore, env was found to be ubiquitously expressed in various chicken tissues, with high expression in certain tissues at 2 days of age and low levels in most tissues, including immune organs (thymus, spleen and bursa) as well as the brain and heart, at 35 days of age. Sequence analysis revealed miR-155 target sites in env transcripts, which was verified using a firefly luciferase reporter assay, and treatment with miR-155 agomir significantly decreased levels of env transcripts in MSB1 and CEF cells. Together, these findings suggest that the env gene from the endogenous retrovirus ALVE is regulated by miR-155. PMID:27016933

  5. Avian Influenza infection in Human

    Directory of Open Access Journals (Sweden)

    Mohan. M

    2008-08-01

    Full Text Available Outbreaks caused by the H5N1 strain are presently of the greatest concern for human health. In assessing risks to human health, it is important to know exactly which avian virus strains are causing the outbreaks in birds.All available evidence points to an increased risk of transmission to humans when outbreaks of highly pathogenic avian H5N1 influenza are widespread in poultry. There is mounting evidence that this strain has a unique capacity to jump the species barrier and cause severe disease, with high mortality, in humans. There is no evidence, to date that efficient human to human transmission of H5N1 strain has occurred and very often. Efficient transmission among humans is a key property of pandemic strains and a property that the avian H5N1 and H9N2 viruses apparently lacked. The biological and molecular basis for effective aerosol transmission among humans is not known. The virus can improve its transmissibility among humans via two principal mechanisms. The first is a “reassortment” event, in which genetic material is exchanged between human and avian viruses during co-infection of a human or pig.Reassortment could result in a fully transmissible pandemic virus, announced by a sudden surge of cases with explosive spread. The second mechanism is a more gradual process of adaptive mutation, whereby the capability of the virus to bind to human cells increases during subsequent infections of humans. Adaptive mutation, expressed initially as small clusters of human cases with some evidence of human-to-human transmission, would probably give the world some time to take defensive action, if detected sufficiently early. As the number of human infections grows, the risk increases that a new virus subtype could emerge, triggering an influenza pandemic. Humans as well as swine must now be considered a potential mixing vessel for the generation of such a virus. This link between widespread infection in poultry and increased risk of human

  6. MicroRNA-26a-mediated regulation of interleukin-2 expression in transformed avian lymphocyte lines

    Directory of Open Access Journals (Sweden)

    Smith Lorraine P

    2010-05-01

    Full Text Available Abstract Background Micro(miRNAs are a class of small non-coding RNAs that play critical roles in the induction of various cancers, including lymphomas induced by oncogenic viruses. While some of the miRNAs are oncogenic, miRNAs such as miR-26a are consistently downregulated in a number of cancers, demonstrating their potential tumor suppressor functions. Global miRNA expression profiles of a number of virus-transformed avian lymphoma cell lines have shown downregulation of gga-miR-26a expression, irrespective of molecular mechanisms of transformation or the viral aetiology. The neoplastic transformation of lymphocytes by many viruses accompanies high levels of proliferative responses, mostly mediated through cytokines such as IL-2. Chicken IL-2 can modulate T-cell proliferation and cytotoxicity in vitro and in vivo and dysregulation of IL-2 expression is observed in diseases such as leukaemia. Results The expression levels of gga-miR-26a in chicken lymphoma cells transformed by 3 distinct avian oncogenic viruses, viz Marek's disease virus (MDV, avian leukosis virus (ALV and Reticuloendotheliosis virus (REV were consistently downregulated compared to the levels in the normal lymphocytes. This downregulation of miR-26a regardless of the viral etiology and molecular mechanisms of transformation was consistent with the tumor suppressor role of this miRNA. Notwithstanding this well-established role in cancer, we demonstrate the additional role of this miRNA in directly targeting chicken IL-2 through reporter and biochemical assays. The downregulation of miR-26a can relieve the suppressive effect of this miRNA on IL-2 expression. Conclusions We show that miR-26a is globally downregulated in a number of avian lymphoma cells irrespective of the mechanisms of transformation, reiterating the highly conserved tumor suppressor function of this miRNA. However, with the potential for directly targeting chicken IL-2, the downregulation of miR-26a in these

  7. Climate change and avian influenza

    OpenAIRE

    Gilbert, Marius; Slingenbergh, Jan; Xiao, Xiangming

    2008-01-01

    This paper discusses impacts of climate change on the ecology of avian influenza viruses (AI viruses), which presumably co-evolved with migratory water birds, with virus also persisting outside the host in subarctic water bodies. Climate change would almost certainly alter bird migration, influence the AI virus transmission cycle and directly affect virus survival outside the host. The joint, net effects of these changes are rather unpredictable, but it is likely that AI virus circulation in ...

  8. Simulating Avian Wingbeats and Wakes

    OpenAIRE

    Parslew, Ben

    2012-01-01

    Analytical models of avian flight have previously been used to predict mechanical and metabolic power consumption during cruise. These models are limited, in that they neglect details of wing kinematics, and model power by assuming a fixed or rotary wing (actuator disk) weight support mechanism. Theoretical methods that incorporate wing kinematics potentially offer more accurate predictions of power consumption by calculating instantaneous aerodynamic loads on the wing. However, the success o...

  9. Avian zoonoses – a review

    OpenAIRE

    Kozdruń Wojciech; Czekaj Hanna; Styś Natalia

    2015-01-01

    Birds are one of the most interesting and most colourful groups of animals, but they can also be a source of zoonotic factors dangerous for humans. This paper describes the threats to human health from contact with birds. The most vulnerable occupational groups associated with birds are veterinarians, owners of poultry farms, breeders of ornamental birds, zoo personnel, and poultry slaughterhouse workers. Ornithosis is the most dangerous zoonosis of the avian bacterial diseases. Among other h...

  10. Using EGEE against avian flu

    CERN Multimedia

    2006-01-01

    During April 2006 avian flu was spreading across the world with the potential of turning into a pandemic, a drug to treat the deadly H5N1 strain was needed. Such a task required the huge processing power provided by EGEE, which analysed 300 000 possible drug components for their suitability. This map shows the network of computer centres and their activity during this time.

  11. Avian zoonoses – a review

    Directory of Open Access Journals (Sweden)

    Kozdruń Wojciech

    2015-06-01

    Full Text Available Birds are one of the most interesting and most colourful groups of animals, but they can also be a source of zoonotic factors dangerous for humans. This paper describes the threats to human health from contact with birds. The most vulnerable occupational groups associated with birds are veterinarians, owners of poultry farms, breeders of ornamental birds, zoo personnel, and poultry slaughterhouse workers. Ornithosis is the most dangerous zoonosis of the avian bacterial diseases. Among other hazardous bacterial factors, Salmonella and Campylobacter are responsible for gastrointestinal diseases. Avian influenza is the most dangerous of the viral diseases. It should be noted, however, that avian influenza is a disease of birds, not humans. The recent threat which has appeared is infection with West Nile virus. The results of serological examinations of birds and humans indicate that the virus exists in our ecosystem. Allergic alveolitis connected with the pigeon tick and the Dermanyssus gallinae mite also merits mention. In any case, where people have contact with birds or their droppings and secretions, special precautions should be taken. This way the negative effects of birds on human health can be minimised or eliminated

  12. Two different molecular defects in the Tva receptor gene explain the resistance of two tvar lines of chickens to infection by subgroup A avian sarcoma and leukosis viruses

    Czech Academy of Sciences Publication Activity Database

    Elleder, Daniel; Melder, D. C.; Trejbalová, Kateřina; Svoboda, Jan; Federspiel, M.

    2004-01-01

    Roč. 78, č. 24 (2004), s. 13489-13500. ISSN 0022-538X R&D Projects: GA ČR GA523/04/0489; GA AV ČR KSK5011112 Institutional research plan: CEZ:AV0Z5052915 Keywords : ASLV * retrovirus receptor Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.398, year: 2004

  13. The core element of a CpG island protects avian sarcoma and leukosis virus-derived vectors from transcriptional silencing

    Czech Academy of Sciences Publication Activity Database

    Šenigl, Filip; Plachý, Jiří; Hejnar, Jiří

    2008-01-01

    Roč. 82, č. 16 (2008), s. 7818-7827. ISSN 0022-538X R&D Projects: GA ČR GA204/05/0939; GA ČR GA523/07/1171 Institutional research plan: CEZ:AV0Z50520514 Keywords : anti-methylation protection * retroviral vector * CpG island Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.308, year: 2008

  14. Progress on Subgroup J Avian Leukosis Virus for the past few Years%J亚群禽白血病研究进展

    Institute of Scientific and Technical Information of China (English)

    李建亮; 崔言顺

    2010-01-01

    J亚群禽白血病病毒是上世纪90年代初从商品代肉鸡中分离鉴定出来的新的ALV亚群,主要引起肉鸡的骨髓瘤白血病(myloid leucosis,ML).2009年,J亚群禽白血病在我国呈高发态势.我国于1999年首先在肉用型鸡群分离鉴定出ALV-J的中国株,随后相关研究依次展开.论文就ALV-J的流行病学、检测方法、病毒变异、免疫抑制及与其他免疫抑制疾病共感染等几个方面进行了简要介绍.

  15. Cell-specific targeting of lentiviral vectors mediated by fusion proteins derived from Sindbis virus, vesicular stomatitis virus, or avian sarcoma/leukosis virus

    OpenAIRE

    Marino Michael P; Bialkowska Agnieszka; Kutner Robert H; Zhang Xian-Yang; Klimstra William B; Reiser Jakob

    2010-01-01

    Abstract Background The ability to efficiently and selectively target gene delivery vectors to specific cell types in vitro and in vivo remains one of the formidable challenges in gene therapy. We pursued two different strategies to target lentiviral vector delivery to specific cell types. In one of the strategies, vector particles bearing a membrane-bound stem cell factor sequence plus a separate fusion protein based either on Sindbis virus strain TR339 glycoproteins or the vesicular stomati...

  16. Exogenous avian leukosis virus-induced activation of the ERK/AP1 pathway is required for virus replication and correlates with virus-induced tumorigenesis.

    Science.gov (United States)

    Dai, Manman; Feng, Min; Ye, Yu; Wu, Xiaochan; Liu, Di; Liao, Ming; Cao, Weisheng

    2016-01-01

    A proteomics approach was used to reveal the up-regulated proteins involved in the targeted mitogen-activated protein kinase (MAPK) signal transduction pathway in DF-1 cells after ALV subgroup J (ALV-J) infection. Next, we found that ALV-J CHN06 strain infection of DF-1 cells correlated with extracellular signal-regulated kinase 2 (ERK2) activation, which was mainly induced within 15 min, a very early stage of infection, and at a late infection stage, from 108 h to 132 h post-infection. Infection with other ALV subgroup (A/B) strains also triggered ERK/MAPK activation. Moreover, when activating ERK2, ALV subgroups A, B and J simultaneously induced the phosphorylation of c-Jun, an AP1 family member and p38 activation but had no obvious effect on JNK activation at either 15 min or 120 h. Interestingly, only PD98059 inhibited the ALV-induced c-Jun phosphorylation while SP600125 or SB203580 had no influence on c-Jun activation. Furthermore, the viral gp85 and gag proteins were found to contribute to ERK2/AP1 activation. Additionally, the specific ERK inhibitor, PD980509, significantly suppressed ALV replication, as evidenced by extremely low levels of ALV promoter activity and ALV-J protein expression. In vivo analysis of ERK2 activation in tumor cells derived from ALV-J-infected chicken demonstrated a strong correlation between ERK/MAPK activation and virus-associated tumorigenesis. PMID:26754177

  17. Short communication: Genetic correlation of bovine leukosis incidence with somatic cell score and milk yield in a US Holstein population.

    Science.gov (United States)

    Abdalla, E A; Weigel, K A; Byrem, T M; Rosa, G J M

    2016-03-01

    Bovine leukosis (BL) is a retroviral disease caused by the bovine leukosis virus (BLV), which affects only cattle. Dairy cows positive for BL produce less milk and have more days open than cows negative for BL. In addition, the virus also affects the immune system and causes weaker response to vaccines. Heritability estimates of BL incidence have been reported for Jersey and Holstein populations at about 0.08, indicating an important genetic component that can potentially be exploited to reduce the prevalence of the disease. However, before BL is used in selection programs, it is important to study its genetic associations with other economically important traits such that correlated responses to selection can be predicted. Hence, this study aimed to estimate the genetic correlations of BL with milk yield (MY) and with somatic cell score (SCS). Data of a commercial assay (ELISA) used to detect BLV antibodies in milk samples were obtained from Antel BioSystems (Lansing, MI). The data included continuous milk ELISA scores and binary milk ELISA results for 11,554 cows from 112 dairy herds across 16 US states. Continuous and binary milk ELISA were analyzed with linear and threshold models, respectively, together with MY and SCS using multitrait animal models. Genetic correlations (posterior means ± standard deviations) between BL incidence and MY were 0.17±0.077 and 0.14±0.076 using ELISA scores and results, respectively; with SCS, such estimates were 0.20±0.081 and 0.17±0.079, respectively. In summary, the results indicate that selection for higher MY may lead to increased BLV prevalence in dairy herds, but that the inclusion of BL (or SCS as an indicator trait) in selection indexes may help attenuate this problem. PMID:26778307

  18. Detection of monoclonal integration of bovine leukemia virus proviral DNA as a malignant marker in two enzootic bovine leukosis cases with difficult clinical diagnosis.

    Science.gov (United States)

    Miura, Saori; Horiuchi, Noriyuki; Matsumoto, Kotaro; Kobayashi, Yoshiyasu; Kawazu, Shin-Ichiro; Inokuma, Hisashi

    2015-07-01

    Monoclonal integration of bovine leukemia virus (BLV) proviral DNA into bovine genomes was detected in peripheral blood from two clinical cases of enzootic bovine leukosis (EBL) without enlargement of superficial lymph nodes. A BLV-specific probe hybridized with 1 to 3 EcoRI and HindIII fragments in these 2 atypical EBL cattle by Southern blotting and hybridization, as well as in 3 typical EBL cattle. The probe also hybridized to a large number of EcoRI and HindIII fragments in 5 cattle with persistent leukosis. These results suggest that the detection of monoclonal integration of BLV provirus into the host genome may serve as a marker of monoclonal proliferation and malignancy in difficult to diagnose EBL cattle. PMID:25766769

  19. Overexpression of interleukin 2 receptor, thymidine kinase and immunoglobulin-associated alpha-1 messenger RNA in a clinical case of enzootic bovine leukosis.

    Science.gov (United States)

    Tawfeeq, Mohammad Monir; Tagawa, Michihito; Itoh, Yuuki; Sugimoto, Kazuya; Kobayashi, Yoshiyasu; Inokuma, Hisashi

    2012-09-01

    A 49-month-old Holstein cow with anorexia, tachypnea, enlarged peripheral lymph nodes, and difficulty standing up was suspected of bovine leukosis. Hematological examination revealed lymphocytosis with the presence of neoplastic cells. Increased total lactate dehydrogenase (LDH) activity, isozymes of LDH-2 and LDH-3 activities and thymidine kinase activity were observed. Cytological findings of fine needle aspiration of subiliac lymph nodes indicated lymphosarcoma. Histopathology and antibody analysis confirmed the diagnosis of enzootic bovine leukosis, a B-cell bovine lymphoma caused by bovine leukemia virus. Gene expressions known as biomarkers of hematopoietic neoplasia in human were also examined in the present case. Increased messenger RNA expression of interleukin 2 receptor, thymidine kinase, and immunoglobulin-associated alpha-1 was observed in the case animal. PMID:23037779

  20. Avian influenza and the poultry trade

    OpenAIRE

    Nicita, Alessandro

    2008-01-01

    Because of high mortality rates, high rates of contagion, and the possibility of cross-species infection to mammals including humans, high pathogenic avian influenza is a major concern both to consumers and producers of poultry. The implications of the avian influenza for international poultry markets are large and include the loss of consumer confidence, loss of competitiveness, loss of m...

  1. Atypical Avian Influenza (H5N1)

    OpenAIRE

    Apisarnthanarak, Anucha; Kitphati, Rungrueng; Thongphubeth, Kanokporn; Patoomanunt, Prisana; Anthanont, Pimjai; Auwanit, Wattana; Thawatsupha, Pranee; Chittaganpitch, Malinee; Saeng-Aroon, Siriphan; Waicharoen, Sunthareeya; Apisarnthanarak, Piyaporn; Storch, Gregory A.; Mundy, Linda M.; Fraser, Victoria J.

    2004-01-01

    We report the first case of avian influenza in a patient with fever and diarrhea but no respiratory symptoms. Avian influenza should be included in the differential diagnosis for patients with predominantly gastrointestinal symptoms, particularly if they have a history of exposure to poultry.

  2. 76 FR 24793 - Highly Pathogenic Avian Influenza

    Science.gov (United States)

    2011-05-03

    ... (76 FR 4046-4056, Docket No. APHIS-2006-0074) an interim rule that amended the regulations governing... Inspection Service 9 CFR Parts 93, 94, and 95 RIN 0579-AC36 Highly Pathogenic Avian Influenza AGENCY: Animal... products from regions where any subtype of highly pathogenic avian influenza is considered to exist....

  3. A brief introduction to avian influenza virus

    Science.gov (United States)

    Avian influenza virus (AIV) causes a disease of high economic importance for poultry production worldwide. The earliest recorded cases of probable high pathogenicity AIV in poultry were reported in Italy in the 1870’s and avian influenza been recognized in domestic poultry through the modern era of ...

  4. The global nature of avian influenza

    Science.gov (United States)

    Avian influenza virus is a global virus which knows no geographic boundaries, has no political agenda, and can infect poultry irrespective of their agricultural or anthropocentric production systems. Avian influenza viruses or evidence of their infection have been detected in poultry and wild birds...

  5. Investigation of Bovine Viral Diarrheae Virus, Bovine Herpesvirus 1, and Bovine Leukosis Virus infections in a dairy cattle herd with abortion problem

    OpenAIRE

    Avcı, Oğuzhan; Yavru, Sibel; Kale, Mehmet

    2014-01-01

    A survey was conducted to determine of Bovine Viral Diarrhea Virus, Bovine Herpesvirus 1 and Bovine Leukosis Virus infections in a dairy cattle herd with abortion problem in Çankırı. A total of 172 serum and 172 leukocytes samples were collected from unvaccinated Holstein cows for mentioned infections in 2010. All sampled animals were over 3 years. While the serum samples were analysed by commercially available indirect enzyme linked immunosorbent assays (ELISA), leukocyte samples...

  6. Molecular patterns of avian influenza A viruses

    Institute of Scientific and Technical Information of China (English)

    KOU Zheng; LEI FuMin; WANG ShengYue; ZHOU YanHong; LI TianXian

    2008-01-01

    Avian influenza A viruses could get across the species barrier and be fatal to humans. Highly patho-genic avian influenza H5N1 virus was an example. The mechanism of interspecies transmission is not clear as yet. In this research, the protein sequences of 237 influenza A viruses with different subtypes were transformed into pseudo-signals. The energy features were extracted by the method of wavelet packet decomposition and used for virus classification by the method of hierarchical clustering. The clustering results showed that five patterns existed in avian influenza A viruses, which associated with the phenotype of interspecies transmission, and that avian viruses with patterns C and E could across species barrier and those with patterns A, B and D might not have the abilities. The results could be used to construct an early warning system to predict the transmissibility of avian influenza A viruses to humans.

  7. Cryoconservation of avian gonads in Canada.

    Science.gov (United States)

    Silversides, F G; Robertson, M C; Liu, J

    2013-10-01

    Avian genetic resources have declined dramatically over the past half century as the cost of maintaining populations has exceeded the perceived benefit of keeping them. Despite the early importance of poultry in the development of cryopreservation techniques, very little avian germplasm has been conserved. Cryopreservation and recovery of avian gonads preserve the W chromosome and overcome problems of freezing and recovering semen or conserving and manipulating embryonic cells, and the use of vitrification procedures for preserving gonads minimizes cellular damage. On the basis of research demonstrating the biological possibility of cryopreserving and transplanting avian gonads, 5,125 testicles and 2,667 ovaries from 10 populations of Japanese quail, 9 populations of chickens, and 1 population of Chilean tinamou were cryopreserved and sent to the Canadian Animal Genetic Resources program for long-term storage. These gonads represent 20 of the 33 distinct avian populations currently maintained at Canadian public institutions of agricultural research. PMID:24046407

  8. An observational study of the temporal and spatial patterns of Marek's-disease-associated leukosis condemnation of young chickens in the United States of America.

    Science.gov (United States)

    Kennedy, David A; Dunn, John R; Dunn, Patricia A; Read, Andrew F

    2015-07-01

    Marek's disease, a disease primarily affecting immature chickens, is a worldwide problem that has on at least three occasions threatened the poultry industry in the United States. A rich dataset to study the epidemiology of this disease is available because the United States Department of Agriculture has required mandatory inspections of all commercially sold poultry of significant scale since the mid-20th century with over 99% of all chickens inspected. This dataset includes monthly totals aggregated by state since 1961 of the number of "young chickens" inspected and the number with "leukosis", a condemnation category that is almost always associated with Marek's disease in this category of birds. The objective of this study was to analyze temporal and spatial patterns in this condemnation data to gain insight into the ecology and epidemiology of the causative virus. We extracted visual patterns in the data using seasonal trend decomposition, and we tested for statistical significance using extended linear modeling techniques. The analysis confirmed previous findings that there are differences in leukosis condemnation rates between states, across years, and within years. The analysis also revealed several patterns not previously highlighted, including spatial and temporal autocorrelations in leukosis condemnation, changes to the amplitude of seasonality over time, and increasing within-year variation in condemnation rate over time. These patterns suggest that locally shared farm practices, virus transmission between farms, or viral persistence may be important to understanding the dynamics of the disease. We also discuss the plausibility of other potential explanations for these patterns. PMID:25998661

  9. Influenza vaccines for avian species.

    Science.gov (United States)

    Kapczynski, Darrell R; Swayne, David E

    2009-01-01

    Beginning in Southeast Asia in 2003, a multinational epizootic outbreak of H5N1 highly pathogenic avian influenza (HPAI) was identified in commercial poultry and wild bird species. This lineage, originally identified in Southern China in 1996 and then Hong Kong in 1997, caused severe morbidity and mortality in many bird species, was responsible for considerable economic losses via trade restrictions, and crossed species barriers (including its recovery from human cases). To date, these H5N1 HPAI viruses have been isolated in European, Middle Eastern, and African countries, and are considered endemic in many areas where regulatory control and different production sectors face substantial hurdles in controlling the spread of this disease. While control of avian influenza (AI) virus infections in wild bird populations may not be feasible at this point, control and eradiation of AI from commercial, semicommercial, zoo, pet, and village/backyard birds will be critical to preventing events that could lead to the emergence of epizootic influenza virus. Efficacious vaccines can help reduce disease, viral shedding, and transmission to susceptible cohorts. However, only when vaccines are used in a comprehensive program including biosecurity, education, culling, diagnostics and surveillance can control and eradication be considered achievable goals. In humans, protection against influenza is provided by vaccines that are chosen based on molecular, epidemiologic, and antigenic data. In poultry and other birds, AI vaccines are produced against a specific hemagglutinin subtype of AI, and use is decided by government and state agricultural authorities based on risk and economic considerations, including the potential for trade restrictions. In the current H5N1 HPAI epizootic, vaccines have been used in a variety of avian species as a part of an overall control program to aid in disease management and control. PMID:19768403

  10. Avian Influenza Virus: The Threat of A Pandemic

    OpenAIRE

    Shih-Cheng Chang; Yi-Ying Cheng; Shin-Ru Shih

    2006-01-01

    The 1918 influenza A virus pandemic caused a death toll of 40~50 million. Currently,because of the widespread dissemination of the avian influenza virus (H5N1), there is a highrisk of another pandemic. Avian species are the natural hosts for numerous subtypes ofinfluenza A viruses; however, the highly pathogenic avian influenza virus (HPAI) is not onlyextremely lethal to domestic avian species but also can infect humans and cause death. Thisreview discusses why the avian influenza virus is co...

  11. Avian botulism and avian chlamydiosis in wild water birds, Benton Lake National Wildlife Refuge, Montana, USA

    Science.gov (United States)

    Docherty, Douglas E.; Franson, J. Christian; Brannian, Roger E.; Long, Renee R.; Radi, Craig A.; Krueger, David; Johnson, Robert F.

    2012-01-01

    In 1999, the U.S. Geological Survey (USGS) National Wildlife Health Center, Madison, Wisconsin, conducted a diagnostic investigation into a water bird mortality event involving intoxication with avian botulism type C and infection with avian chlamydiosis at the Benton Lake National Wildlife Refuge in Montana, USA. Of 24 carcasses necropsied, 11 had lesions consistent with avian chlamydiosis, including two that tested positive for infectious Chlamydophila psittaci, and 12 were positive for avian botulism type C. One bird tested positive for both avian botulism type C and C. psittaci. Of 61 apparently healthy water birds sampled and released, 13 had serologic evidence of C. psittaci infection and 7 were, at the time of capture, shedding infectious C. psittaci via the cloacal or oropharyngeal route. Since more routinely diagnosed disease conditions may mask avian chlamydiosis, these findings support the need for a comprehensive diagnostic investigation when determining the cause of a wildlife mortality event.

  12. Presence of avian bornavirus RNA and anti-avian bornavirus antibodies in apparently healthy macaws.

    Science.gov (United States)

    De Kloet, Siwo R; Dorrestein, Gerry M

    2009-12-01

    Recently a novel avian bornavirus has been described that has been suggested to be the possible etiological agent for proventricular dilatation disease or macaw wasting disease. This article describes two macaws that shed avian bornaviral RNA sequences and demonstrated anti-avian bornavirus antibodies as revealed by reverse transcriptase polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and Western blot, yet are free of outward clinical signs of the disease. PMID:20095158

  13. Avian influenza: an osteopathic component to treatment

    OpenAIRE

    Hruby, Raymond J; Hoffman, Keasha N

    2007-01-01

    Avian influenza is an infection caused by the H5N1 virus. The infection is highly contagious among birds, and only a few known cases of human avian influenza have been documented. However, healthcare experts around the world are concerned that mutation or genetic exchange with more commonly transmitted human influenza viruses could result in a pandemic of avian influenza. Their concern remains in spite of the fact that the first United States vaccine against the H5N1 virus was recently approv...

  14. Lack of evidence that avian oncogenic viruses are infectious for humans: a review.

    Science.gov (United States)

    Schat, Karel A; Erb, Hollis N

    2014-09-01

    Chickens may be infected with three different oncogenic viruses: avian leukosis virus (ALV), reticuloendotheliosis virus (REV), and Marek's disease herpesvirus (MDV). Several epidemiological studies have suggested a link between these viruses and different types of cancer in people working in poultry processing plants and with multiple sclerosis. In this article, we analyze the epidemiological evidence that these viruses are causative agents for human cancer, followed by description of the relevant key characteristics of ALV, REV, and MDV. Finally, we discuss the biological evidence or lack thereof that avian tumor viruses are involved in the etiology of human cancer and multiple sclerosis (MS). The recent primary epidemiologic articles that we reviewed as examples were only hypothesis-generating studies examining massive numbers of risk factors for associations with various imprecise, non-viral-specific outcomes. The studies lacked precise evidence of exposure to the relevant viruses and the statistical methods failed to adjust for the large risks of false-positive claims. ALV subgroups A-D and J have been eradicated in the United States from the pure lines down to the parent stocks by the breeder companies, which have greatly reduced the incidence of infection in layer flocks and broilers. As a consequence, potential exposure of humans to these viruses has greatly diminished. Infection of humans working in processing plants with ALV-A and ALV-B is unlikely, because broilers are generally resistant to infection with these two subgroups. Moreover, these viruses enter cells by specific receptors present on chicken, but not on mammalian, cells. Infection of mammalian cell cultures or animals with ALV-A, ALV-B, and ALV-J has not been reported. Moreover, humans vaccinated with exogenous or endogenous ALV-contaminated vaccines against yellow fever, measles, and mumps did not become antibody- or virus-positive for ALV. The risks for human infection with REV are similarly

  15. 77 FR 34783 - Highly Pathogenic Avian Influenza

    Science.gov (United States)

    2012-06-12

    ... avian influenza (HPAI). On January 24, 2011, we published in the Federal Register (76 FR 4046-4056... Register on May 3, 2011 (76 FR 24793, Docket No. APHIS-2006-0074), we reopened the comment period for...

  16. Clipping the wings of avian influenza

    OpenAIRE

    2012-01-01

    Up to now, the threat of avian influenza has been lessened by effective animal husbandry methods. However, the public health community is trying to ensure enough measures are in place to prevent a possible pandemic. Jane Parry reports.

  17. Avian Habitat Data; Seward Peninsula, Alaska, 2012

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data product contains avian habitat data collected on the Seward Peninsula, Alaska, USA, during 21 May – 10 June 2012. We conducted replicated 10-min surveys...

  18. Montana 2006 Avian Influenza Surveillance Project Report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — During the summer of 2006, the U.S. Department of Agriculture (USDA) and the U.S. Fish and Wildlife Service (USFWS) initiated a nationwide avian influenza...

  19. Oseltamivir in human avian influenza infection

    OpenAIRE

    Smith, James R.

    2010-01-01

    Avian influenza A viruses continue to cause disease outbreaks in humans, and extrapulmonary infection is characteristic. In vitro studies demonstrate the activity of oseltamivir against avian viruses of the H5, H7 and H9 subtypes. In animal models of lethal infection, oseltamivir treatment and prophylaxis limit viral replication and improve survival. Outcomes are influenced by the virulence of the viral strain, dosage regimen and treatment delay; it is also critical for the compound to act sy...

  20. Avian influenza: an emerging pandemic threat.

    Science.gov (United States)

    Jin, Xian Wen; Mossad, Sherif B

    2005-12-01

    While we are facing the threat of an emerging pandemic from the current avian flu outbreak in Asia, we have learned important traits of the virus responsible for the 1918 Spanish influenza pandemic that made it so deadly. By using stockpiled antiviral drugs effectively and developing an effective vaccine, we can be in a better position than ever to mitigate the global impact of an avian influenza pandemic. PMID:16392727

  1. Avian Circadian Organization: A Chorus of Clocks

    OpenAIRE

    Cassone, Vincent M.

    2013-01-01

    In birds, biological clock function pervades all aspects of biology, controlling daily changes in sleep: wake, visual function, song, migratory patterns and orientation, as well as seasonal patterns of reproduction, song and migration. The molecular bases for circadian clocks are highly conserved, and it is likely the avian molecular mechanisms are similar to those expressed in mammals, including humans. The central pacemakers in the avian pineal gland, retinae and SCN dynamically interact to...

  2. A review of avian probiotics.

    Science.gov (United States)

    Smith, Jeanne Marie

    2014-06-01

    Probiotics have been used in poultry for decades and have become common in the pet bird industry. Desirable characteristics of probiotic organisms are that they are nonpathogenic, have the ability to adhere to intestinal epithelial cells, have the ability to colonize and reproduce in the host, have the ability to be host-specific, survive transit through the gastrointestinal tract and exposure to stomach acid and bile, produce metabolites that inhibit or kill pathogenic bacteria, modulate gastrointestinal immune responses, and survive processing and storage. Purported benefits in birds are disease prevention and promotion of growth. Recommendations for use in avian species are for periodic use to replenish normal flora, use after antibiotic therapy to reestablish normal flora, and use during periods of stress to counter effects of immunosuppression. PMID:25115036

  3. Ecology and conservation biology of avian malaria

    Science.gov (United States)

    LaPointe, Dennis A.; Atkinson, Carter T.; Samuel, Michael D.

    2012-01-01

    Avian malaria is a worldwide mosquito-borne disease caused by Plasmodium parasites. These parasites occur in many avian species but primarily affect passerine birds that have not evolved with the parasite. Host pathogenicity, fitness, and population impacts are poorly understood. In contrast to continental species, introduced avian malaria poses a substantial threat to naive birds on Hawaii, the Galapagos, and other archipelagoes. In Hawaii, transmission is maintained by susceptible native birds, competence and abundance of mosquitoes, and a disease reservoir of chronically infected native birds. Although vector habitat and avian communities determine the geographic distribution of disease, climate drives transmission patterns ranging from continuous high infection in warm lowland forests, seasonal infection in midelevation forests, and disease-free refugia in cool high-elevation forests. Global warming is expected to increase the occurrence, distribution, and intensity of avian malaria across this elevational gradient and threaten high-elevation refugia, which is the key to survival of many susceptible Hawaiian birds. Increased temperatures may have already increased global avian malaria prevalence and contributed to an emergence of disease in New Zealand.

  4. The use of ELISA and nucleic acid hybridization tests in research and diagnosis of bovine leukosis virus

    International Nuclear Information System (INIS)

    Enzootic bovine leukosis (EBL) is a disease that affects adult cattle although animals can carry the virus without showing any clinical symptoms. An initial survey in Cuba using the agar gel immunodiffusion test (AGID) revealed that only 15% of the animals on the island were infected and it was therefore decided to undertake a control and eradication campaign. However, prior to the onset of this campaign it was felt necessary to examine a variety of more modern diagnostic procedures to determine which might be most applicable. For the detection of antibodies an ELISA system based on the use of SUMA (a micro-analytical system developed in Cuba) was compared with the AGID and syncytia inhibition test and found to be more sensitive than AGID and far more suitable for large-scale use than either of the other two. For detection of viral proteins the ELISA was compared with a reverse transcriptase assay and the use of immunoperoxidase staining. The latter two methods detected viral proteins in over 50% more samples than the ELISA and although the ELISA is more simple than either of the other to assays when used routinely, its low sensitivity would preclude its use in an eradication programme. (author). 10 refs, 4 tabs

  5. Using avian radar to examine relationships among avian activity, bird strikes, and meteorological factors

    Science.gov (United States)

    Coates, Peter S.; Casazza, Michael L.; Halstead, Brian J.; Fleskes, Joseph P.; Laughlin, James A.

    2011-01-01

    Radar systems designed to detect avian activity at airfields are useful in understanding factors that influence the risk of bird and aircraft collisions (bird strikes). We used an avian radar system to measure avian activity at Beale Air Force Base, California, USA, during 2008 and 2009. We conducted a 2-part analysis to examine relationships among avian activity, bird strikes, and meteorological and time-dependent factors. We found that avian activity around the airfield was greater at times when bird strikes occurred than on average using a permutation resampling technique. Second, we developed generalized linear mixed models of an avian activity index (AAI). Variation in AAI was first explained by seasons that were based on average migration dates of birds at the study area. We then modeled AAI by those seasons to further explain variation by meteorological factors and daily light levels within a 24-hour period. In general, avian activity increased with decreased temperature, wind, visibility, precipitation, and increased humidity and cloud cover. These effects differed by season. For example, during the spring bird migration period, most avian activity occurred before sunrise at twilight hours on clear days with low winds, whereas during fall migration, substantial activity occurred after sunrise, and birds generally were more active at lower temperatures. We report parameter estimates (i.e., constants and coefficients) averaged across models and a relatively simple calculation for safety officers and wildlife managers to predict AAI and the relative risk of bird strike based on time, date, and meteorological values. We validated model predictability and assessed model fit. These analyses will be useful for general inference of avian activity and risk assessment efforts. Further investigation and ongoing data collection will refine these inference models and improve our understanding of factors that influence avian activity, which is necessary to inform

  6. Avian Influenza A (H7N9) Virus

    Science.gov (United States)

    ... Research Making a Candidate Vaccine Virus Related Links Influenza Types Seasonal Avian Swine Variant Pandemic Other Get ... Submit What's this? Submit Button Past Newsletters Avian Influenza A (H7N9) Virus Language: English Español Recommend ...

  7. Avian Point Count Locations - Dahomey NWR 2007-2008

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Map depicts locations of avian point counts conducted on Dahomey in 2007 and 2008. Actual point count data are contained in the avian knowledge network database

  8. Detection of monoclonal integration of bovine leukemia virus proviral DNA as a malignant marker in two enzootic bovine leukosis cases with difficult clinical diagnosis

    OpenAIRE

    MIURA, Saori; HORIUCHI, Noriyuki; MATSUMOTO, Kotaro; Kobayashi, Yoshiyasu; Kawazu, Shin-ichiro; INOKUMA, Hisashi

    2015-01-01

    Monoclonal integration of bovine leukemia virus (BLV) proviral DNA into bovine genomes was detected in peripheral blood from two clinical cases of enzootic bovine leukosis (EBL) without enlargement of superficial lymph nodes. A BLV-specific probe hybridized with 1 to 3 EcoRI and HindIII fragments in these 2 atypical EBL cattle by Southern blotting and hybridization, as well as in 3 typical EBL cattle. The probe also hybridized to a large number of EcoRI and HindIII fragments in 5 cattle with ...

  9. Enzootic bovine leukosis and Bovine leukemia virus/ Leucose enzoótica bovina e vírus da leucemia bovina

    Directory of Open Access Journals (Sweden)

    Amauri Alcindo Alfieri

    2001-05-01

    Full Text Available All over de World the Enzootic Bovine Leukosis is a important viral infection in cattle herds. This revision points out topics relative to the etiological agent, clinical signals, diagnosis methods, control and prophylaxis of the infection.A Leucose Enzoótica Bovina é uma infecção viral amplamente disseminada em rebanhos bovinos de todo o mundo. Esta revisão tem por objetivo apresentar tópicos relacionados ao agente etiológico, à doença clínica e aos métodos de diagnóstico, controle e profilaxia da infecção.

  10. Evaluation of enzyme-linked immunosorbent assays performed on milk and serum samples for detection of neosporosis and leukosis in lactating dairy cows

    OpenAIRE

    Walsh, Robert B.; Kelton, David F.; Hietala, Sharon K.; Duffield, Todd F.

    2013-01-01

    Serum and milk samples from 1229 cows on 22 Ontario dairy farms were individually tested for antibodies specific for bovine leukosis virus (BLV) and Neospora caninum by enzyme-linked immunosorbent assay (ELISA). Antibodies against BLV were present in 361 serum samples (29.4%) and 369 milk samples (30.0%). Comparing the 2 tests, agreement was almost perfect (k = 0.86; 95% CI = 0.83 to 0.90) and the proportions of samples positive were not significantly different (P = 0.56). Both tests identifi...

  11. Enzootic bovine leukosis and Bovine leukemia virus/
    Leucose enzoótica bovina e vírus da leucemia bovina

    OpenAIRE

    Amauri Alcindo Alfieri; Alice Fernandes Alfieri; Luis Álvaro Leuzzi Junior

    2001-01-01

    All over de World the Enzootic Bovine Leukosis is a important viral infection in cattle herds. This revision points out topics relative to the etiological agent, clinical signals, diagnosis methods, control and prophylaxis of the infection.A Leucose Enzoótica Bovina é uma infecção viral amplamente disseminada em rebanhos bovinos de todo o mundo. Esta revisão tem por objetivo apresentar tópicos relacionados ao agente etiológico, à doença clínica e aos métodos de diagnóstico, controle e profila...

  12. Survival of leukosis La cells after prolonged exposure to gamma-rays of Co60 and mixed gamma-neutron radiation of Cf252

    International Nuclear Information System (INIS)

    Survival curves of mouse leukosis La cells exposed in vitro to γ-rays of Co60 and γ/neutron radiation of Cf252 are characterized by the following parameters: an average lethal dose (D0) is 199.2 and 67.9 rad (for the neutron component), and the extrapolation number, 5.3 and 3.4, correspondingly. RBE of radiation from Cf252 is a function of the radiation dose, that is as the radiation dose increases the RBE decreases down to a minimum value of 1.7 for mixed irradiation and 2.2 for a purely neutron component

  13. Proceedings of National Avian-Wind Power Planning Meeting IV

    Energy Technology Data Exchange (ETDEWEB)

    NWCC Avian Subcommittee

    2001-05-01

    OAK-B135 The purpose of the fourth meeting was to (1) share research and update research conducted on avian wind interactions (2) identify questions and issues related to the research results, (3) develop conclusions about some avian/wind power issues, and (4) identify questions and issues for future avian research.

  14. 9 CFR 113.325 - Avian Encephalomyelitis Vaccine.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Avian Encephalomyelitis Vaccine. 113... REQUIREMENTS Live Virus Vaccines § 113.325 Avian Encephalomyelitis Vaccine. Avian Encephalomyelitis Vaccine... vaccine production. All serials shall be prepared from the first through the fifth passage from the...

  15. Avian Leucosis Virus and Immunological Suppression%禽白血病病毒与免疫抑制

    Institute of Scientific and Technical Information of China (English)

    祝丽; 张玲娟; 孙磊

    2009-01-01

    禽白血病是由禽白血病病毒(Avian Leukosi s Virus,ALV)引起的以造血细胞恶性增生为主的一类传染病,包括淋巴细胞性白血病,成红细胞性白血病,成髓细胞性白血病和骨髓细胞瘤病.1988年,Payne等从肉仔鸡中分离出一种新型的禽白血病病毒亚群即J亚群(ALV-J),1997-1998年间,禽白血病J亚群世界范围内的流行,给世界养禽业带来了巨大的经济损失.鸡群感染ALV-J后可造成广泛的免疫抑制,从而继发其它病毒和细菌的感染,给生产带来巨大的损失.因此,在未来数年内,研究和控制禽白血病免疫抑制问题可能成为家禽业的主要任务之一,本文就白血病的病原及其产生免疫抑制的危害进行了概述,并且从基因水平上分析了ALV-J引起免疫抑制的主要机理.

  16. Immunology of avian influenza virus: a review.

    Science.gov (United States)

    Suarez, D L; Schultz-Cherry, S

    2000-01-01

    Avian influenza virus can cause serious disease in a wide variety of birds and mammals, but its natural host range is in wild ducks, gulls, and shorebirds. Infections in poultry can be inapparent or cause respiratory disease, decreases in production, or a rapidly fatal systemic disease known as highly pathogenic avian influenza (HPAI). For the protection of poultry, neutralizing antibody to the hemagglutinin and neuraminidase proteins provide the primary protection against disease. A variety of vaccines elicit neutralizing antibody, including killed whole virus vaccines and fowl-pox recombinant vaccines. Antigenic drift of influenza viruses appears to be less important in causing vaccine failures in poultry as compared to humans. The cytotoxic T lymphocyte response can reduce viral shedding in mildly pathogenic avian influenza viruses, but provides questionable protection against HPAI. Influenza viruses can directly affect the immune response of infected birds, and the role of the Mx gene, interferons, and other cytokines in protection from disease remains unknown. PMID:10717293

  17. Enzootic bovine leukosis: report of eradication and surveillance measures in Italy over an 8-year period (2005-2012).

    Science.gov (United States)

    Maresca, C; Costarelli, S; Dettori, A; Felici, A; Iscaro, C; Feliziani, F

    2015-05-01

    Bovine leukaemia virus (BLV) is associated with enzootic bovine leukosis (EBL). BLV causes malignant lymphoma and lymphosarcoma; however, most BLV infections remain clinically silent in an aleukaemic state. EBL is a notifiable disease, and official control measures include screening or monitoring, precautions at borders, control of movement inside the country, and stamping out. The objective of this study was to evaluate EBL eradication and surveillance measures in Italy from 2005 to 2012. One-hundred twenty-three outbreaks were recorded (1 January 2006 to 31 December 2012) in the National Veterinary Information System (SIMAN) on 7 November 2013. Of these, 101 had occurred in southern Italy. An outbreak usually lasted for a few days, but sometimes lasted for weeks. Some areas were subjected to normal eradication measures, whereas others were subjected to additional eradication measures as a consequence of persisting EBL outbreaks. During the study period, we noted an overall annual decrease from 0.21% in 2005 to 0.08% in 2012 in the herd prevalence rate, from 0.06% in 2005 to 0.04% in 2012 in the herd incidence rate, and from 0.027% in 2005 to 0.015% in 2012 in the animal prevalence rate. Regions officially recognised as EBL-free areas were found to have their own surveillance plans. Differences in their surveillance plans include the type of sample (serum, milk, or both), age at which the animals must be tested (12 or 24 months), and test frequency of herds (annually or every 2, 3, 4, 5, or 6 years). The eradication programme for EBL is difficult to implement in some Italian areas because of several factors such as incomplete herd registry, geographical location and socio-economic conditions of the region. PMID:25772530

  18. [Progress in microRNAs associated with major avian viruses].

    Science.gov (United States)

    Man, Chaolai; Mu, Weitao; Zhao, Dongxue; Chang, Yang

    2015-09-01

    Recently, avian viral diseases have become one of the main models to study mechanisms of viral infections and pathogenesis. The study of regulatory relationships and mechanisms between viruses and microRNAs has also become the focus. In this review, we briefly summarize the general situations of microRNAs encoded by avian herpesviruses. Also, we analyze the regulatory relationships between tumorigenicity of avian herpesviruses and microRNAs. Additionally, the possible applications for prevention and treatment of viral diseases (such as infectious bursal disease, avian influenza and avian leucosis) using the regulatory mechanisms of microRNAs are also discussed. PMID:26955707

  19. Evaluation of enzyme-linked immunosorbent assays performed on milk and serum samples for detection of neosporosis and leukosis in lactating dairy cows

    Science.gov (United States)

    Walsh, Robert B.; Kelton, David F.; Hietala, Sharon K.; Duffield, Todd F.

    2013-01-01

    Serum and milk samples from 1229 cows on 22 Ontario dairy farms were individually tested for antibodies specific for bovine leukosis virus (BLV) and Neospora caninum by enzyme-linked immunosorbent assay (ELISA). Antibodies against BLV were present in 361 serum samples (29.4%) and 369 milk samples (30.0%). Comparing the 2 tests, agreement was almost perfect (k = 0.86; 95% CI = 0.83 to 0.90) and the proportions of samples positive were not significantly different (P = 0.56). Both tests identified the same 3 herds free of bovine leukosis virus. Antibodies against N. caninum were detected in 138 serum samples (11.2%), and 111 milk samples (9.0%). Agreement between the 2 tests was moderate (k = 0.52; 95% CI = 0.43 to 0.59). Four herds were free of neosporosis by the serum test, while 10 herds were negative by the milk test. The ELISA on milk samples facilitates sample collection to classify herds free of BLV; the milk N. caninum ELISA was less reliable in predicting herd-level infection. PMID:24082160

  20. Evaluation of enzyme-linked immunosorbent assays performed on milk and serum samples for detection of neosporosis and leukosis in lactating dairy cows.

    Science.gov (United States)

    Walsh, Robert B; Kelton, David F; Hietala, Sharon K; Duffield, Todd F

    2013-04-01

    Serum and milk samples from 1229 cows on 22 Ontario dairy farms were individually tested for antibodies specific for bovine leukosis virus (BLV) and Neospora caninum by enzyme-linked immunosorbent assay (ELISA). Antibodies against BLV were present in 361 serum samples (29.4%) and 369 milk samples (30.0%). Comparing the 2 tests, agreement was almost perfect (k = 0.86; 95% CI = 0.83 to 0.90) and the proportions of samples positive were not significantly different (P = 0.56). Both tests identified the same 3 herds free of bovine leukosis virus. Antibodies against N. caninum were detected in 138 serum samples (11.2%), and 111 milk samples (9.0%). Agreement between the 2 tests was moderate (k = 0.52; 95% CI = 0.43 to 0.59). Four herds were free of neosporosis by the serum test, while 10 herds were negative by the milk test. The ELISA on milk samples facilitates sample collection to classify herds free of BLV; the milk N. caninum ELISA was less reliable in predicting herd-level infection. PMID:24082160

  1. Avian influenza surveillance of wild birds

    Science.gov (United States)

    Slota, Paul

    2007-01-01

    The President's National Strategy for Pandemic Influenza directs federal agencies to expand the surveillance of United States domestic livestock and wildlife to ensure early warning of hightly pathogenic avian influenza (HPAI) in the U.S. The immediate concern is a potential introduction of HPAI H5N1 virus into the U.S. The presidential directive resulted in the U.S. Interagency Strategic Plan for Early Detection of H5N1 Highly Pathogenic Avian Influenza in Wild Migratory Birds (referred to as the Wild Bird Surveillance Plan or the Plan).

  2. Composting for Avian Influenza Virus Elimination

    OpenAIRE

    Elving, Josefine; Emmoth, Eva; Albihn, Ann; Vinnerås, Björn; Ottoson, Jakob

    2012-01-01

    Effective sanitization is important in viral epizootic outbreaks to avoid further spread of the pathogen. This study examined thermal inactivation as a sanitizing treatment for manure inoculated with highly pathogenic avian influenza virus H7N1 and bacteriophages MS2 and ϕ6. Rapid inactivation of highly pathogenic avian influenza virus H7N1 was achieved at both mesophilic (35°C) and thermophilic (45 and 55°C) temperatures. Similar inactivation rates were observed for bacteriophage ϕ6, while b...

  3. Avian Influenza: Should China Be Alarmed?

    OpenAIRE

    Su, Zhaoliang; Xu, Huaxi; Chen, Jianguo

    2007-01-01

    Avian influenza has emerged as one of the primary public health concern of the 21st century. Influenza strain H5N1 is capable of incidentally infecting humans and other mammals. Since their reemergence in 2003, highly pathogenic avian influenza A (H5N1) viruses have been transmitted from poultry to humans (by direct or indirect contact with infected birds) in several provinces of Mainland China, which has resulted in 22 cases of human infection and has created repercussions for the Chinese ec...

  4. Avian influenza virus risk assessment in falconry

    OpenAIRE

    Lüschow Dörte; Lierz Peter; Jansen Andreas; Harder Timm; Hafez Hafez; Kohls Andrea; Schweiger Brunhilde; Lierz Michael

    2011-01-01

    Abstract Background There is a continuing threat of human infections with avian influenza viruses (AIV). In this regard falconers might be a potential risk group because they have close contact to their hunting birds (raptors such as falcons and hawks) as well as their avian prey such as gulls and ducks. Both (hunting birds and prey birds) seem to be highly susceptible to some AIV strains, especially H5N1. We therefore conducted a field study to investigate AIV infections in falconers, their ...

  5. Thermal emissivity of avian eggshells.

    Science.gov (United States)

    Björn, Lars Olof; Bengtson, Sven-Axel; Li, Shaoshan; Hecker, Christoph; Ullah, Saleem; Roos, Arne; Nilsson, Annica M

    2016-04-01

    The hypothesis has been tested that evolution has resulted in lower thermal emissivity of eggs of birds breeding openly in cold climates than of eggs of birds that nest under protective covering or in warmer climates. Directional thermal emissivity has been estimated from directional-hemispherical reflectance spectra. Due to several methodological difficulties the absolute emissivity is not accurately determined, but differences between species are obvious. Most notably, small waders of the genus Calidris, breeding in cold climates on the tundra, and in most cases with uniparental nest attendance, have low directional emissivity of their eggshells, about 0.92 when integration is carried out for wavelengths up to 16μm. Species belonging to Galloanserinae have the highest directional emissivity, about 0.96, of their eggs. No differences due to climate or breeding conditions were found within this group. Eggs of most other birds tested possess intermediate emissivity, but the values for Pica pica and Corvus corone cornix are as low as for Calidris. Large species-dependent differences in spectral reflectance were found at specific wavelengths. For instance, at 4.259μm the directional-hemispherical reflectance for galliforms range from 0.05 to 0.09, while for Fratercula arctica and Fulmarus glacialis it is about 0.3. The reflection peaks at 6.5 and 11.3μm due to calcite are differentially attenuated in different species. In conclusion, the hypothesis that evolution has resulted in lower thermal emissivity of bird eggs being exposed in cold climates is not supported by our results. The emissivity is not clearly related to nesting habits or climate, and it is unlikely that the small differences observed are ecologically important. The spectral differences between eggs that nevertheless exist should be taken into account when using infrared thermometers for estimating the surface temperature of avian eggs. PMID:27033033

  6. Website for avian flu information and bioinformatics

    Institute of Scientific and Technical Information of China (English)

    GAO; George; Fu

    2009-01-01

    Highly pathogenic influenza A virus H5N1 has spread out worldwide and raised the public concerns. This increased the output of influenza virus sequence data as well as the research publication and other reports. In order to fight against H5N1 avian flu in a comprehensive way, we designed and started to set up the Website for Avian Flu Information (http://www.avian-flu.info) from 2004. Other than the influenza virus database available, the website is aiming to integrate diversified information for both researchers and the public. From 2004 to 2009, we collected information from all aspects, i.e. reports of outbreaks, scientific publications and editorials, policies for prevention, medicines and vaccines, clinic and diagnosis. Except for publications, all information is in Chinese. Till April 15, 2009, the cumulative news entries had been over 2000 and research papers were approaching 5000. By using the curated data from Influenza Virus Resource, we have set up an influenza virus sequence database and a bioinformatic platform, providing the basic functions for the sequence analysis of influenza virus. We will focus on the collection of experimental data and results as well as the integration of the data from the geological information system and avian influenza epidemiology.

  7. Website for avian flu information and bioinformatics

    Institute of Scientific and Technical Information of China (English)

    LIU Di; LIU Quan-He; WU Lin-Huan; LIU Bin; WU Jun; LAO Yi-Mei; LI Xiao-Jing; GAO George Fu; MA Jun-Cai

    2009-01-01

    Highly pathogenic influenza A virus H5N1 has spread out worldwide and raised the public concerns. This increased the output of influenza virus sequence data as well as the research publication and other reports. In order to fight against H5N1 avian flu in a comprehensive way, we designed and started to set up the Website for Avian Flu Information (http://www.avian-flu.info) from 2004. Other than the influenza virus database available, the website is aiming to integrate diversified information for both researchers and the public. From 2004 to 2009, we collected information from all aspects, i.e. reports of outbreaks, scientific publications and editorials, policies for prevention, medicines and vaccines, clinic and diagnosis. Except for publications, all information is in Chinese. Till April 15, 2009, the cumulative news entries had been over 2000 and research papers were approaching 5000. By using the curated data from Influenza Virus Resource, we have set up an influenza virus sequence database and a bioin-formatic platform, providing the basic functions for the sequence analysis of influenza virus. We will focus on the collection of experimental data and results as well as the integration of the data from the geological information system and avian influenza epidemiology.

  8. Avian Influenza Risk Perception, Europe and Asia

    OpenAIRE

    de Zwart, Onno; Veldhuijzen, Irene K; Elam, Gillian; Aro, Arja R; Abraham, Thomas; Bishop, George D.; Richardus, Jan Hendrik; Brug, Johannes

    2007-01-01

    During autumn 2005, we conducted 3,436 interviews in European and Asian countries. We found risk perceptions of avian influenza to be at an intermediate level and beliefs of efficacy to be slightly lower. Risk perceptions were higher in Asia than Europe; efficacy beliefs were lower in Europe than Asia.

  9. Avian Influenza Outbreaks in Chickens, Bangladesh

    OpenAIRE

    Paritosh K Biswas; Christensen, Jens P.; Ahmed, Syed S.U.; Barua, Himel; Das, Ashutosh; Rahman, Mohammed H.; Giasuddin, Mohammad; Hannan, Abu S. M. A.; Habib, Mohammad A.; Ahad, Abdul; Rahman, Abu S.M.S.; Faruque, Rayhan; Nitish C Debnath

    2008-01-01

    To determine the epidemiology of outbreaks of avian influenza A virus (subtypes H5N1, H9N2) in chickens in Bangladesh, we conducted surveys and examined virus isolates. The outbreak began in backyard chickens. Probable sources of infection included egg trays and vehicles from local live bird markets and larger live bird markets.

  10. Avian pox in Magellanic Penguins (Spheniscus magellanicus).

    Science.gov (United States)

    Kane, Olivia J; Uhart, Marcela M; Rago, Virginia; Pereda, Ariel J; Smith, Jeffrey R; Van Buren, Amy; Clark, J Alan; Boersma, P Dee

    2012-07-01

    Avian pox is an enveloped double-stranded DNA virus that is mechanically transmitted via arthropod vectors or mucosal membrane contact with infectious particles or birds. Magellanic Penguins (Spheniscus magellanicus) from two colonies (Punta Tombo and Cabo Dos Bahías) in Argentina showed sporadic, nonepidemic signs of avian pox during five and two of 29 breeding seasons (1982-2010), respectively. In Magellanic Penguins, avian pox expresses externally as wart-like lesions around the beak, flippers, cloaca, feet, and eyes. Fleas (Parapsyllus longicornis) are the most likely arthropod vectors at these colonies. Three chicks with cutaneous pox-like lesions were positive for Avipoxvirus and revealed phylogenetic proximity with an Avipoxvirus found in Black-browed Albatross (Thalassarche melanophrys) from the Falkland Islands in 1987. This proximity suggests a long-term circulation of seabird Avipoxviruses in the southwest Atlantic. Avian pox outbreaks in these colonies primarily affected chicks, often resulted in death, and were not associated with handling, rainfall, or temperature. PMID:22740548

  11. Avian Disease & Oncology Lab (ADOL) Research Update

    Science.gov (United States)

    Employing Genomics, Epigenetics, and Immunogenetics to Control Diseases Induced by Avian Tumor Viruses - Gene expression is a major factor accounting for phenotypic variation. Taking advantage of allele-specific expression (ASE) screens, we found the use of genetic markers was superior to traditiona...

  12. 76 FR 4046 - Highly Pathogenic Avian Influenza

    Science.gov (United States)

    2011-01-24

    ... poultry caused by a paramyxovirus. END is one of most infectious diseases of poultry in the world. A death... avian influenza (HPAI) is an extremely infectious and potentially fatal form of the disease in birds and... birds' or poultry's freedom from END, HPAI subtype H5N1, and other communicable diseases,...

  13. A clinical survey of common avian infectious diseases in China.

    Science.gov (United States)

    Zhuang, Qing-Ye; Wang, Su-Chun; Li, Jin-Ping; Liu, Dong; Liu, Shuo; Jiang, Wen-Ming; Chen, Ji-Ming

    2014-06-01

    Multiple common avian infectious diseases (CAIDs), namely, avian infectious diseases excluding highly pathogenic avian influenza and Newcastle disease, such as avian salmonellosis and coccidiosis, cause huge economic loss in poultry production and are of great significance in public health. However, they are usually not covered in the systems for reporting of animal diseases. Consequently, the distribution of CAIDs is not clear in many countries. Here, we report a clinical survey of CAIDs in China based on clinical diagnosis of eight veterinary clinics in 2011 and 2012. This survey provided the distribution data of viral, bacterial, and parasitic CAIDs in different types of avian flocks, seasons, and regions, data that are of great value in the research, prevention, and control of poultry diseases. This survey suggested that avian colibacillosis, infectious serositis in ducks caused by Riemerella anatipestifer, avian salmonellosis, fowl cholera, avian mycoplasmosis, avian aspergillosis, coccidiosis, low pathogenic avian influenza, infectious bronchitis, infectious bursal disease, and infectious laryngotracheitis are likely to be prevalent in the poultry in China. PMID:25055636

  14. Morphometric Analysis of the Sternum in Avian Species

    OpenAIRE

    DÜZLER, Ayhan; Özgel, Özcan; DURSUN, Nejdet

    2006-01-01

    The anatomy of the sternum in avian species differs according to their movement and particularly flight capability, as well as species and habitat. Various studies aimed at the examination and measurement of the sternum in avian species have been carried out. However, to the authors' knowledge, no study on the correlation between sternal measurements and movement style has been published previously. In this study, the sternums of certain avian species including the red falcon (Buteo rufi...

  15. Multiple Control Strategies for Prevention of Avian Influenza Pandemic

    OpenAIRE

    Roman Ullah; Gul Zaman; Saeed Islam

    2014-01-01

    We present the prevention of avian influenza pandemic by adjusting multiple control functions in the human-to-human transmittable avian influenza model. First we show the existence of the optimal control problem; then by using both analytical and numerical techniques, we investigate the cost-effective control effects for the prevention of transmission of disease. To do this, we use three control functions, the effort to reduce the number of contacts with human infected with mutant avian influ...

  16. Avian influenza infections in birds – a moving target

    OpenAIRE

    Capua, Ilaria; Alexander, Dennis J.

    2006-01-01

    Avian influenza (AI) is a complex infection of birds, of which the ecology and epidemiology have undergone substantial changes over the last decade. Avian influenza viruses infecting poultry can be divided into two groups. The very virulent viruses cause highly pathogenic avian influenza (HPAI), with flock mortality as high as 100%. These viruses have been restricted to subtypes H5 and H7, although not all H5 and H7 viruses cause HPAI. All other viruses cause a milder, primarily respiratory, ...

  17. Economic effects of avian influenza on egg producers in Turkey

    OpenAIRE

    V Demircan; Yilmaz, H.; Z Dernek; T Bal; Gül, M; H Koknaroglu

    2009-01-01

    This study determined the economic effects of avian influenza on the egg-production sector of Afyon Province, Turkey. Economic indicators were compared before and during the avian influenza outbreak. A questionnaire was conducted with 75 poultry farmers. Farms were divided into three groups according to their size. The profitability of the three farm size groups was compared during two study periods: before and during the avian influenza outbreak. The results indicate that, as compared to pre...

  18. Avian influenza virus and free-ranging wild birds

    Science.gov (United States)

    Dierauf, Leslie A.; Karesh, W.B.; Ip, Hon S.; Gilardi, K.V.; Fischer, John R.

    2006-01-01

    Recent media and news reports and other information implicate wild birds in the spread of highly pathogenic avian influenza in Asia and Eastern Europe. Although there is little information concerning highly pathogenic avian influenza viruses in wild birds, scientists have amassed a large amount of data on low-pathogenicity avian influenza viruses during decades of research with wild birds. This knowledge can provide sound guidance to veterinarians, public health professionals, the general public, government agencies, and other entities with concerns about avian influenza.

  19. Avian use of Norris Hill Wind Resource Area, Montana

    Energy Technology Data Exchange (ETDEWEB)

    Harmata, A.; Podruzny, K.; Zelenak, J. [Montana State Univ., Bozeman, MT (United States). Biology Dept.

    1998-07-01

    This document presents results of a study of avian use and mortality in and near a proposed wind resource area in southwestern Montana. Data collected in autumn 1995 through summer 1996 represented preconstruction condition; it was compiled, analyzed, and presented in a format such that comparison with post-construction data would be possible. The primary emphasis of the study was recording avian migration in and near the wind resource area using state-of-the-art marine surveillance radar. Avian use and mortality were investigated during the breeding season by employing traditional avian sampling methods, radiotelemetry, radar, and direct visual observation. 61 figs., 34 tabs.

  20. Applications of thermal imaging in avian science

    OpenAIRE

    McCafferty, D. J.

    2013-01-01

    Thermal imaging, or infrared thermography, has been used in avian science since the 1960s. More than 30 species of birds, ranging in size from passerines to ratites, have been studied using this technology. The main strength of this technique is that it is a non-invasive and non-contact method of measuring surface temperature. Its limitations and measurement errors are well understood and suitable protocols have been developed for a variety of experimental settings. Thermal imaging has been u...

  1. Avian influenza and poultry workers, Peru, 2006

    OpenAIRE

    Ortiz, Ernesto J.; Tadeusz J Kochel; Capuano, Ana W; Setterquist, Sharon F.; Gray, Gregory C.

    2007-01-01

    Background  Currently numerous countries in Asia, Africa and Europe are encountering highly pathogenic avian influenza (AI) infections in poultry and humans. In the Americas, home of the world’s largest poultry exporters, contingency plans are being developed and evaluated in preparation for the arrival of these viral strains. Objectives  With this cross‐sectional study, to our knowledge the first in its kind in Central or South America, we sought to learn whether Peruvian poultry workers had...

  2. Prevalence of avian influenza and host ecology

    OpenAIRE

    Garamszegi, László Zsolt; Møller, Anders Pape

    2007-01-01

    Waterfowl and shorebirds are common reservoirs of the low pathogenic subtypes of avian influenza (LPAI), which are easily transmitted to poultry and become highly pathogenic. As the risk of virus transmission depends on the prevalence of LPAI in host-reservoir systems, there is an urgent need for understanding how host ecology, life history and behaviour can affect virus prevalence in the wild. To test for the most important ecological correlates of LPAI virus prevalence at the interspecific ...

  3. Aerosolized avian influenza virus by laboratory manipulations

    OpenAIRE

    Li Zhiping; Li Jinsong; Zhang Yandong; Li Lin; Ma Limin; Li Dan; Gao Feng; Xia Zhiping

    2012-01-01

    Abstract Background Avian H5N1 influenza viruses present a challenge in the laboratory environment, as they are difficult to collect from the air due to their small size and relatively low concentration. In an effort to generate effective methods of H5N1 air removal and ensure the safety of laboratory personnel, this study was designed to investigate the characteristics of aerosolized H5N1 produced by laboratory manipulations during research studies. Results Normal laboratory procedures used ...

  4. Control of Avian Influenza in Poultry

    OpenAIRE

    Capua, Ilaria; Marangon, Stefano

    2006-01-01

    Avian influenza, listed by the World Organization for Animal Health (OIE), has become a disease of great importance for animal and human health. Several aspects of the disease lack scientific information, which has hampered the management of some recent crises. Millions of animals have died, and concern is growing over the loss of human lives and management of the pandemic potential. On the basis of data generated in recent outbreaks and in light of new OIE regulations and maintenance of anim...

  5. Avian influenza: The tip of the iceberg

    OpenAIRE

    Balkhy Hanan

    2008-01-01

    For some years now, we have been living with the fear of an impending pandemic of avian influenza (AI). Despite the recognition, in 1996, of the global threat posed by the highly pathogenic H5N1 influenza virus found in farmed geese in Guangdong Province, China, planning for the anticipated epidemic remains woefully inadequate; this is especially true in developing countries such as Saudi Arabia. These deficiencies became obvious in 1997, with the outbreak of AI in the live animal markets in...

  6. Avian influenza: Myth or mass murder?

    OpenAIRE

    Carol Louie

    2005-01-01

    The purpose of the present article was to determine whether avian influenza (AI) is capable of causing a pandemic. Using research from a variety of medical journals, books and texts, the present paper evaluates the probability of the AI virus becoming sufficiently virulent to pose a global threat. Previous influenza A pandemics from the past century are reviewed, focusing on the mortality rate and the qualities of the virus that distinguish it from other viruses. Each of the influenza A virus...

  7. Evaluation of Antiviral Compounds Against Avian Influenza

    OpenAIRE

    Call, Evan W.

    1991-01-01

    Tests in vitro for antiviral activity against avian influenza viruses, A/Turkey/Sanpete/85 (H6N8) and A/Turkey/Sanpete/86 (H10N9), isolated in Sanpete County, Utah, utilized known antiviral agents, amantadine•HCl (adamantanamine hydrochloride) and ribavirin (1-β-D ribofuranosyl-1,2,4-triazole-3-carboxamide). The testing involved evaluation of seven drug concentrations. Maximum tolerated dose, minimum inhibitory concentration and therapeutic indexes were determined for each drug used. Both dru...

  8. Avian influenza: genetic evolution under vaccination pressure

    OpenAIRE

    Nava Gerardo M; Lucio Eduardo; Rodríguez-Ropón Andrea; Méndez Sara T; Vázquez Lourdes; Escorcia Magdalena

    2008-01-01

    Abstract Antigenic drift of avian influenza viruses (AIVs) has been observed in chickens after extended vaccination program, similar to those observed with human influenza viruses. To evaluate the evolutionary properties of endemic AIV under high vaccination pressure (around 2 billion doses used in the last 12 years), we performed a pilot phylogenic analysis of the hemagglutinin (HA) gene of AIVs isolated from 1994 to 2006. This study demonstrates that Mexican low pathogenicity (LP) H5N2-AIVs...

  9. Avian Influenza: Mixed Infections and Missing Viruses

    OpenAIRE

    Wentworth, David E.; Dugan, Vivien G.; Xudong Lin; Seth Schobel; Magdalena Plancarte; Kelly, Terra R.; Lindsay, LeAnn L.; Boyce, Walter M.

    2013-01-01

    A high prevalence and diversity of avian influenza (AI) viruses were detected in a population of wild mallards sampled during summer 2011 in California, providing an opportunity to compare results obtained before and after virus culture. We tested cloacal swab samples prior to culture by matrix real-time PCR, and by amplifying and sequencing a 640bp portion of the hemagglutinin (HA) gene. Each sample was also inoculated into embryonated chicken eggs, and full genome sequences were determined ...

  10. Avian Coronavirus in Wild Aquatic Birds

    OpenAIRE

    Chu, D. K. W.; Leung, C. Y. H.; Gilbert, M.; Joyner, P. H.; Ng, E. M.; Tse, T. M.; Guan, Y; Peiris, J. S. M.; Poon, L.L.M

    2011-01-01

    We detected a high prevalence (12.5%) of novel avian coronaviruses in aquatic wild birds. Phylogenetic analyses of these coronaviruses suggest that there is a diversity of gammacoronaviruses and deltacoronaviruses circulating in birds. Gammacoronaviruses were found predominantly in Anseriformes birds, whereas deltacoronaviruses could be detected in Ciconiiformes, Pelecaniformes, and Anseriformes birds in this study. We observed that there are frequent interspecies transmissions of gammacorona...

  11. Scaling of avian primary feather length

    OpenAIRE

    Nudds, Robert L.; Kaiser, Gary V.; Dyke, Gareth J.

    2011-01-01

    The evolution of the avian wing has long fascinated biologists, yet almost no work includes the length of primary feathers in consideration of overall wing length variation. Here we show that the length of the longest primary feather ( ) contributing to overall wing length scales with negative allometry against total arm (ta = humerus+ulna+manus). The scaling exponent varied slightly, although not significantly so, depending on whether a species level analysis was used or phylogeny was contro...

  12. Avian cytokines in health and disease

    Directory of Open Access Journals (Sweden)

    Wigley P

    2003-01-01

    Full Text Available Cytokines are proteins secreted by cells that play an important role in the activation and regulation of other cells and tissues during inflammation and immune responses. Although well described in several mammalian species, the role of cytokines and other related proteins is poorly understood in avian species. Recent advances in avian genetics and immunology have begun to allow the exploration of cytokines in health and disease. Cytokines may be classified in a number of ways, but may be conveniently arranged into four broad groups on the basis of their function. Proinflammatory cytokines such as interleukin-6 and interleukin-1beta play a role in mediating inflammation during disease or injury. Th1 cytokines, including interleukin-12 and interferon-gamma, are involved in the induction of cell-mediated immunity, whereas Th2 cytokines such as interleukin-4 are involved in the induction of humoral immunity. The final group Th3 or Tr cytokines play a role in regulation of immunity. The role of various cytokines in infectious and non-infectious diseases of chickens and turkeys is now being investigated. Although there are only a few reliable ELISAs or bioassays developed for avian cytokines, the use of molecular techniques, and in particular quantitative RT-PCR (Taqman has allowed investigation of cytokine responses in a number of diseases including salmonellosis, coccidiosis and autoimmune thyroiditis. In addition the use of recombinant cytokines as therapeutic agents or as vaccine adjuvants is now being explored.

  13. Serology Investigatio and PCR Diagnosis of Avian Myelocytomatosis%禽白血病病毒J亚群(ALV-J)的血清学调查及PCR诊断

    Institute of Scientific and Technical Information of China (English)

    成子强; 赵振华; 郝永清; 赵心力; 哈斯阿古拉

    2002-01-01

    @@ 禽骨髓细胞性白血病(myeloid leucosis)(或称禽骨髓细胞瘤,myelcytomatomatosis)(ML)是由禽白血病病毒(Avian leukosis virus)J亚群(ALV-J)引起的禽的一种肿瘤性传染病[1],ALV-J是英国的Payne于1991年从肉鸡中分离出来的一个新的囊膜亚群[2,3].对ALV-J的原型株,HPRS-103的致病性和传播的研究中发现,本病毒能诱导肉鸡产生骨髓细胞瘤病(ML)、肾瘤和其它多种肿瘤,死亡率为1%~2%,偶尔可高达20%.由于本病毒为ALV和禽内源性反转录病毒囊膜(E51)的重组体[4,5],因此其可通过水平传播和垂直传播迅速地感染整个鸡群,使鸡群在短时间内遭受灭顶之灾.近十年来,在许多国家,包括美国在内的肉鸡中,ML已经是引起死亡和其它生产性问题的严重原因.

  14. Avian Influenza Viruses in Water Birds, Africa 1

    OpenAIRE

    Gaidet, Nicolas; Dodman, Tim; Caron, Alexandre; Balança, Gilles; Desvaux, Stephanie; Goutard, Flavie; Cattoli, Giovanni; Lamarque, François; Hagemeijer, Ward; Monicat, François

    2007-01-01

    We report the first large-scale surveillance of avian influenza viruses in water birds conducted in Africa. This study shows evidence of avian influenza viruses in wild birds, both Eurasian and Afro-tropical species, in several major wetlands of Africa.

  15. Genetic differences between avian and human isolates of Candida dubliniensis.

    LENUS (Irish Health Repository)

    McManus, Brenda A

    2009-09-01

    When Candida dubliniensis isolates obtained from seabird excrement and from humans in Ireland were compared by using multilocus sequence typing, 13 of 14 avian isolates were genetically distinct from human isolates. The remaining avian isolate was indistinguishable from a human isolate, suggesting that transmission may occur between humans and birds.

  16. 9 CFR 113.408 - Avian mycoplasma antigen.

    Science.gov (United States)

    2010-01-01

    ... with 9 CFR 114.8. If phenol is used, a direct titration with a standardized bromide-bromate solution... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Avian mycoplasma antigen. 113.408... Diagnostics and Reagents § 113.408 Avian mycoplasma antigen. Mycoplasma antigens shall be prepared...

  17. Molecular cloning and functional characterization of avian interleukin-19

    Science.gov (United States)

    The present study describes the cloning and functional characterization of avian interleukin (IL)-19, a cytokine that, in mammals, alters the balance of Th1 and Th2 cells in favor of the Th2 phenotype. The full-length avian IL-19 gene, located on chromosome 26, was amplified from LPS-stimulated chi...

  18. China's Cool Handling of Avian Flu

    Institute of Scientific and Technical Information of China (English)

    LIWUZHOU

    2004-01-01

    ON January 27, 2004,the China National Avian Flu Reference Lab confirmed that in Dingdang Town, Long'an County,Guangxi Zhuang Autonomous Region a duck had died of the highly pathogenic H5N1 avian influenza. In contrast to the SARS epidemic last year, this occurrence has been handled coolly and efficiently by the Chinese government and people in general.

  19. Practical aspects of vaccination of poultry against avian influenza virus

    Science.gov (United States)

    Although little has changed in vaccine technology for avian influenza virus (AIV) in the past 20 years, the approach to vaccination of poultry (chickens, turkeys and ducks) for avian influenza has evolved as highly pathogenic (HP) AIV has become endemic in several regions of the world. Vaccination f...

  20. THE MOLECULAR BIOLOGY OF AVIAN INFLUENZA VIRUS IN SHORT

    Science.gov (United States)

    Avian influenza virus (AIV) is an important pathogen of poultry as it can cause severe economic losses through disease, including respiratory signs and mortality, and effects on trade. Avian influenza virus is classified as type A influenza, which is a member of the orthomyxoviridae family. Charact...

  1. Avian influenza in shorebirds: experimental infection of ruddy turnstones (Arenaria interpres) with avian influenza virus

    Science.gov (United States)

    Hall, Jeffrey S.; Krauss, Scott; Franson, J. Christian; TeSlaa, Joshua L.; Nashold, Sean W.; Stallknecht, David E.; Webby, Richard J.; Webster, Robert G.

    2013-01-01

    Background: Low pathogenic avian influenza viruses (LPAIV) have been reported in shorebirds, especially at Delaware Bay, USA, during spring migration. However, data on patterns of virus excretion, minimal infectious doses, and clinical outcome are lacking. The ruddy turnstone (Arenaria interpres) is the shorebird species with the highest prevalence of influenza virus at Delaware Bay. Objectives: The primary objective of this study was to experimentally assess the patterns of influenza virus excretion, minimal infectious doses, and clinical outcome in ruddy turnstones. Methods: We experimentally challenged ruddy turnstones using a common LPAIV shorebird isolate, an LPAIV waterfowl isolate, or a highly pathogenic H5N1 avian influenza virus. Cloacal and oral swabs and sera were analyzed from each bird. Results: Most ruddy turnstones had pre-existing antibodies to avian influenza virus, and many were infected at the time of capture. The infectious doses for each challenge virus were similar (103·6–104·16 EID50), regardless of exposure history. All infected birds excreted similar amounts of virus and showed no clinical signs of disease or mortality. Influenza A-specific antibodies remained detectable for at least 2 months after inoculation. Conclusions: These results provide a reference for interpretation of surveillance data, modeling, and predicting the risks of avian influenza transmission and movement in these important hosts.

  2. Infection of Avian Pox Virus in Oriental Turtle-Doves

    Directory of Open Access Journals (Sweden)

    Kyung-Yeon Eo1, Young-Hoan Kim2, Kwang-Hyun Cho3, Jong-Sik Jang4, Tae-Hwan Kim5, Dongmi Kwak5 and Oh-Deog Kwon5*

    2011-10-01

    Full Text Available Three Oriental Turtle-doves (Streptopelia orientalis exhibiting lethargy, dyspnea, poor physical condition, and poor flight endurance, were rescued and referred to the Animal Health Center, Seoul Zoo, Korea. The doves had wart-like lesions on the legs and head. All of them died the following day after arrival, with the exception of one that survived for 6 days. Diphtheritic membranes on the tongue and oral mucosa were apparent at necropsy. Avian pox virus infection was suspected based on the proliferative skin lesions and oral diphtheritic lesions. Infection of the avian pox virus was confirmed by PCR using primers specific to the 4b core protein gene of avian pox virus. All cases were diagnosed with avian pox virus infection. This is believed to be the first description on natural infection of avian pox in Oriental Turtle-doves in Korea.

  3. Avian artificial insemination and semen preservation

    Science.gov (United States)

    Gee, G.F.

    1983-01-01

    Summary: Artificial insemination is a practical propagation tool that has been successful with a variety of birds. Cooperative, massage, and electroejaculation and modifications of these three basic methods of semen collection are described for a variety of birds. Semen color and consistency and sperm number, moti!ity, and morphology, as discussed, are useful indicators of semen quality, but the most reliable test of semen quality is the production of fertile eggs. Successful cryogenic preservation of avian semen with DMSO or glycerol as the cryoprotectant has been possible. Although the methods for preservation require special equipment, use of frozen semen requires only simple insemination supplies

  4. Avian influenza risk perception, Hong Kong

    OpenAIRE

    Fielding, Richard; Lam, Wendy W.T.; Ho, Ella Y.Y.; Lam, Tai Hing; Hedley, Anthony J.; Leung, Gabriel M

    2005-01-01

    A telephone survey of 986 Hong Kong households determined exposure and risk perception of avian influenza from live chicken sales. Householders bought 38,370,000 live chickens; 11% touched them when buying, generating 4,220,000 exposures annually; 36% (95% confidence interval [CI] 33%–39%) perceived this as risky, 9% (7%–11%) estimated >50% likelihood of resultant sickness, whereas 46% (43%–49%) said friends worried about such sickness. Recent China travel (adjusted odds ratio 0.35; CI 0.13–0...

  5. Fossil avian eggshell preserves ancient DNA

    DEFF Research Database (Denmark)

    Oskam, Charlotte L; Haile, James; McLay, Emma;

    2010-01-01

    Owing to exceptional biomolecule preservation, fossil avian eggshell has been used extensively in geochronology and palaeodietary studies. Here, we show, to our knowledge, for the first time that fossil eggshell is a previously unrecognized source of ancient DNA (aDNA). We describe the successful......, evidenced by retrieval of both mitochondrial and nuclear DNA from many of the samples. Using confocal microscopy and quantitative PCR, this study critically evaluates approaches to maximize DNA recovery from powdered eggshell. Our quantitative PCR experiments also demonstrate that moa eggshell has...

  6. Mapping and modelling of Angola's avian diversity

    OpenAIRE

    Monteiro, Miguel José Ascensão Freire Parada

    2014-01-01

    Mestrado em Gestão e Conservação de Recursos Naturais - Instituto Superior de Agronomia / Universidade de Évora Angola harbours one of the richest and most diverse avifaunas in Africa, due to its vast number of biomas and ecosystems. However, mainly due to the Portuguese Colonial war (1961-1974) and Angolan civil war (1974-2002), the country’s avian diversity and distribution is still poorly known. One way to increase the scientific knowledge of Angolan ornithology is by studyi...

  7. Avian colibacillosis: still many black holes.

    Science.gov (United States)

    Guabiraba, Rodrigo; Schouler, Catherine

    2015-08-01

    Avian pathogenic Escherichia coli (APEC) strains cause severe respiratory and systemic diseases, threatening food security and avian welfare worldwide. Intensification of poultry production and the quick expansion of free-range production systems will increase the incidence of colibacillosis through greater exposure of birds to pathogens and stress. Therapy is mainly based on antibiotherapy and current vaccines have poor efficacy. Serotyping remains the most frequently used diagnostic method, only allowing the identification of a limited number of APEC strains. Several studies have demonstrated that the most common virulence factors studied in APEC are all rarely present in the same isolate, showing that APEC strains constitute a heterogeneous group. Different isolates may harbor different associations of virulence factors, each one able to induce colibacillosis. Despite its economical relevance, pathogenesis of colibacillosis is poorly understood. Our knowledge on the host response to APEC is based on very descriptive studies, mostly restricted to bacteriological and histopathological analysis of infected organs such as lungs. Furthermore, only a small number of APEC isolates have been used in experimental studies. In the present review, we discuss current knowledge on APEC diversity and virulence, including host response to infection and the associated inflammatory response with a focus on pulmonary colibacillosis. PMID:26204893

  8. Avian Bornaviruses in North American Gulls.

    Science.gov (United States)

    Guo, Jianhua; Tizard, Ian; Baroch, John; Shivaprasad, H L; Payne, Susan L

    2015-07-01

    Avian bornaviruses, recently described members of the family Bornaviridae, have been isolated from captive parrots and passerines as well as wild waterfowl in which they may cause lethal neurologic disease. We report detection of avian bornavirus RNA in the brains of apparently healthy gulls. We tested 439 gull brain samples from 18 states, primarily in the northeastern US, using a reverse-transcriptase PCR assay with primers designed to detect a conserved region of the bornavirus M gene. Nine birds yielded a PCR product of appropriate size. Sequencing of PCR products indicated that the virus was closely related to aquatic bird bornavirus 1 (ABBV-1). Viral RNA was detected in Herring Gulls (Larus argentatus), Ring-billed Gulls (Larus delawarensis), and Laughing Gulls (Leucophaeus atricilla). Eight of the nine positive birds came from the New York/New Jersey area. One positive Herring Gull came from New Hampshire. Histopathologic examination of one well-preserved brain from a Herring Gull from Union County New Jersey, showed a lymphocytic encephalitis similar to that observed in bornavirus-infected parrots and geese. Bornavirus N protein was confirmed in two Herring Gull brains by immunohistochemistry. Thus ABBV-1 can infect gulls and cause encephalitic brain lesions similar to those observed in other birds. PMID:25973630

  9. Collapsing avian community on a Hawaiian island.

    Science.gov (United States)

    Paxton, Eben H; Camp, Richard J; Gorresen, P Marcos; Crampton, Lisa H; Leonard, David L; VanderWerf, Eric A

    2016-09-01

    The viability of many species has been jeopardized by numerous negative factors over the centuries, but climate change is predicted to accelerate and increase the pressure of many of these threats, leading to extinctions. The Hawaiian honeycreepers, famous for their spectacular adaptive radiation, are predicted to experience negative responses to climate change, given their susceptibility to introduced disease, the strong linkage of disease distribution to climatic conditions, and their current distribution. We document the rapid collapse of the native avifauna on the island of Kaua'i that corresponds to changes in climate and disease prevalence. Although multiple factors may be pressuring the community, we suggest that a tipping point has been crossed in which temperatures in forest habitats at high elevations have reached a threshold that facilitates the development of avian malaria and its vector throughout these species' ranges. Continued incursion of invasive weeds and non-native avian competitors may be facilitated by climate change and could also contribute to declines. If current rates of decline continue, we predict multiple extinctions in the coming decades. Kaua'i represents an early warning for the forest bird communities on the Maui and Hawai'i islands, as well as other species around the world that are trapped within a climatic space that is rapidly disappearing. PMID:27617287

  10. Studying avian encephalization with geometric morphometrics.

    Science.gov (United States)

    Marugán-Lobón, Jesús; Watanabe, Akinobu; Kawabe, Soichiro

    2016-08-01

    Encephalization is a core concept in comparative neurobiology, aiming to quantify the neurological capacity of organisms. For measuring encephalization, many studies have employed relative brain sizes corrected for expected allometric scaling to body size. Here we highlight the utility of a multivariate geometric morphometric (GM) approach for visualizing and analyzing neuroanatomical shape variation associated with encephalization. GM readily allows the statistical evaluation of covariates, such as size, and many software tools exist for visualizing their effects on shape. Thus far, however, studies using GM have not attempted to translate the meaning of encephalization to shape data. As such, we tested the statistical relationship between size and encephalization quotients (EQs) to brain shape utilizing a broad interspecific sample of avian endocranial data. Although statistically significant, the analyses indicate that allometry accounts for <10% of total neuroanatomical shape variation. Notably, we find that EQs, despite being corrected for allometric scaling based on size, contain size-related neuroanatomical shape changes. In addition, much of what is traditionally considered encephalization comprises clade-specific trends in relative forebrain expansion, particularly driven by landbirds. EQs, therefore, fail to capture 90% of the total neuroanatomical variation after correcting for allometry and shared phylogenetic history. Moving forward, GM techniques provide crucial tools for investigating key drivers of this vast, largely unexplored aspect of avian brain morphology. PMID:27112986

  11. Risk Mapping of Highly Pathogenic Avian Influenza Distribution and Spread

    Directory of Open Access Journals (Sweden)

    Richard A. J. Williams

    2008-12-01

    Full Text Available The rapid emergence and spread of highly pathogenic H5N1 avian influenza begs effective and accurate mapping of current knowledge and future risk of infection. Methods for such mapping, however, are rudimentary, and few good examples exist for use as templates for risk-mapping efforts. We review the transmission cycle of avian influenza viruses, and identify points on which risk-mapping can focus. We provide examples from the literature and from our work that illustrate mapping risk based on (1 avian influenza case occurrences, (2 poultry distributions and movements, and (3 migratory bird movements.

  12. Replication of avian influenza A viruses in mammals.

    OpenAIRE

    Hinshaw, V S; Webster, R. G.; Easterday, B C; Bean, W J

    1981-01-01

    The recent appearance of an avian influenza A virus in seals suggests that viruses are transmitted from birds to mammals in nature. To examine this possibility, avian viruses of different antigenic subtypes were evaluated for their ability to replicate in three mammals-pigs, ferrets, and cats. In each of these mammals, avian strains replicated to high titers in the respiratory tract (10(5) to 10(7) 50% egg infective doses per ml of nasal wash), with peak titers at 2 to 4 days post-inoculation...

  13. Virulence of Avian Influenza A Viruses for Squirrel Monkeys

    Science.gov (United States)

    Murphy, Brian R.; Hinshaw, Virginia S.; Sly, D. Lewis; London, William T.; Hosier, Nanette T.; Wood, Frank T.; Webster, Robert G.; Chanock, Robert M.

    1982-01-01

    Ten serologically distinct avian influenza A viruses were administered to squirrel monkeys and hamsters to compare their replication and virulence with those of human influenza A virus, A/Udorn/307/72 (H3N2). In squirrel monkeys, the 10 avian influenza A viruses exhibited a spectrum of replication and virulence. The levels of virus replication and clinical response were closely correlated. Two viruses, A/Mallard/NY/6874/78 (H3N2) and A/Pintail/Alb/121/79 (H7N8), resembled the human virus in their level and duration of replication and in their virulence. At the other end of the spectrum, five avian viruses were restricted by 100- to 10,000-fold in replication in the upper and lower respiratory tract and were clearly attenuated compared with the human influenza virus. In hamsters, the 10 viruses exhibited a spectrum of replication in the nasal turbinates, ranging from viruses that replicated as efficiently as the human virus to those that were 8,000- fold restricted. Since several avian viruses were closely related serologically to human influenza viruses, studies were done to confirm the avian nature of these isolates. Each of the avian viruses plaqued efficiently at 42°C, a restrictive temperature for replication of human influenza A viruses. Avian strains that had replicated either very efficiently or very poorly in squirrel monkeys still grew to high titer in the intestinal tracts of ducks, a tropism characteristic of avian, but not mammalian, influenza viruses. These observations indicate that some avian influenza A viruses grow well and cause disease in a primate host, whereas other avian viruses are very restricted in this host. These findings also provide a basis for determining the gene or genes involved in the restriction of replication that is observed with the attenuated avian viruses. Application of such information may allow the preparation of reassortant viruses derived from a virulent human influenza virus and an attenuated avian virus for possible

  14. Data base on avian mortality on man-made structures

    Energy Technology Data Exchange (ETDEWEB)

    Dailey, N. S.

    1978-01-01

    A computerized data base concerning avian mortality on man-made structures is available for searching at the Ecological Sciences Information Center of the Information Center Complex, Information Division, Oak Ridge National Laboratory. This data base, which contains entries from the available literature, provides information on avian mortality from either collision into or electrocution on man-made structures. Primary emphasis has been placed on avian collision with obstacles such as television and radio towers, airport ceilometers, transmission lines, and cooling towers. Other structures included in the studies are fences, glass walls and windows, lighthouses, telegraph and telephone wires, buildings, monuments, smokestacks, and water towers.

  15. The Helper Activities of Different Avian Viruses for Propagation of Recombinant Avian Adeno-Associated Virus

    Institute of Scientific and Technical Information of China (English)

    WANG An-ping; SUN Huai-chang; WANG Jian-ye; WANG Yong-juan; YUAN Wei-feng

    2007-01-01

    To compare the helper activities of different avian viruses for propagation of recombinant avian adeno-associated virus (rAAAV), AAV-293 cells were cotransfected with the AAAV vector pAITR-GFP containing green fluorescent protein (GFP) gene, the AAAV helper vector pcDNA-ARC expressing the rep and cap genes, and the adenovirus helper vector pHelper expressing Ad5 E2A, E4, and VA-RNA genes. Chicken embryonic fibroblast (CEF) or chicken embryonic liver (CEL) cells were cotransfected with the AAAV vector and the AAAV helper vector, followed by infection with Marek's disease virus (MDV), avian adenovirus, chicken embryo lethal orphan (CELO) virus or infectious bursal disease virus (IBDV). Infectious rAAAV particles generated by the two strategies were harvested and titrated on CEF and CEL cells. A significantly higher viral titer was obtained with the helper activity provided by the pHelper vector than by MDV or CELO virus. Further experiments showed that rAAAV-mediated green fluorescent protein (gfp) expression was overtly enhanced by MDV or CELO virus super infection or treatment with sodium butyric acid, but not by IBDV super infection. These data demonstrated that MDV and CELO viruses could provide weak helper activity for propagation of rAAAV, and rAAAV-mediated transgene expression could be enhanced by super infection with the helper viruses.

  16. Changes in the content of protein p53, L-chains, of immunoglobulins, and Iron complexes in Mice of the leukosis line AKR irradiated at low doses

    International Nuclear Information System (INIS)

    Changes in the content of protein p53 (regulator of the cell cycle) L-chains of immunoglobulins, and iron complexes (Fe2+) during the development of spontaneous leukosis in mice and upon irradiation of animals at the dose of 1.2 cGy were studied by ESR spectroscopy, electrophoresis and immunoblotting. It was found that irradiation leads to an increase in the incidence of leukoses in males by 7% and a decrease in life span of females. A decrease in the content of protein p53 and L-chains in immunoglobulins in males and females was observed; however, in females, the decreases was less pronounced because the content of these proteins in females is naturally decreased. In mice irradiated at low doses at the age of three - to months, a decrease in the amount of iron complexes at a later age (seven - to eight months) was registered. These data suggest that there is a relationship between the induction of protein p53 and the content of immunoglobulin L-chains in the blood serum of animals

  17. The 3rd International Symposium on Avian Brood Parasitism

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    正Invited participants on the 3rd International Symposium on Avian Brood Parasitism, sponsored by Hainan Normal University (HNU), China, Norwegian University of Science and Technology (NTNU), Norway, the Research Council of Norway, and China Ornithological Society (COS).

  18. Comparative genomics reveals insights into avian genome evolution and adaptation

    DEFF Research Database (Denmark)

    Zhang, Guojie; Li, Cai; Li, Qiye;

    2014-01-01

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size......, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this...... pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits....

  19. Historical review of avian botulism at Stillwater Wildlife Management Area

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to review historical information on avian botulism at Stillwater Wildlife Management Area. This report includes incidental reports of...

  20. Markov Chain Estimation of Avian Seasonal Fecundity, Presentation

    Science.gov (United States)

    Avian seasonal fecundity is of interest from evolutionary, ecological, and conservation perspectives. However, direct estimation of seasonal fecundity is difficult, especially with multibrooded birds, and models representing the renesting and quitting processes are usually requi...

  1. Status of Avian Research at the National Renewable Energy Laboratory

    International Nuclear Information System (INIS)

    As the use of wind energy expands across the United States, concerns about the impacts of commercial wind farms on bird and bat populations are frequently raised. Two primary areas of concern are (1) possible litigation resulting from the killing of even one bird if it is protected by the Migratory Bird Treaty Act, the Endangered Species Act, or both; and (2) the effect of avian mortality on bird populations. To properly address these concerns, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) supports scientifically based avian/wind power interaction research. In this paper I describe NREL's field-based research projects and summarize the status of the research. I also summarize NREL's other research activities, including lab-based vision research to increase the visibility of moving turbine blades and avian acoustic research, as well as our collaborative efforts with the National Wind Coordinating Committee's Avian Subcommittee

  2. Transmission of Avian Influenza A Viruses Between Animals and People

    Science.gov (United States)

    ... Newsletters Transmission of Avian Influenza A Viruses Between Animals and People Language: English Español Recommend on ... Compartir Influenza A viruses have infected many different animals, including ducks, chickens, pigs, whales, horses, and seals. ...

  3. Prevention and Treatment of Avian Influenza A Viruses in People

    Science.gov (United States)

    ... this? Submit What's this? Submit Button Past Newsletters Prevention and Treatment of Avian Influenza A Viruses in ... Recommend on Facebook Tweet Share Compartir The Best Prevention is to Avoid Sources of Exposure Currently, the ...

  4. Avian influenza surveillance sample collection and shipment protocol

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Instructions for mortality collection and shipment of avian influenza (AI) live bird surveillance sample collections. AI sample collections will include...

  5. The avian tectorial membrane: Why is it tapered?

    CERN Document Server

    Iwasa, Kuni H

    2015-01-01

    While the mammalian- and the avian inner ears have well defined tonotopic organizations as well as hair cells specialized for motile and sensing roles, the structural organization of the avian ear is different from its mammalian cochlear counterpart. Presumably this difference stems from the difference in the way motile hair cells function. Short hair cells, whose role is considered analogous to mammalian outer hair cells, presumably depends on their hair bundles, and not motility of their cell body, in providing the motile elements of the cochlear amplifier. This report focuses on the role of the avian tectorial membrane, specifically by addressing the question, "Why is the avian tectorial membrane tapered from the neural to the abneural direction?"

  6. Avian Point Transect Survey; Seward Peninsula, Alaska, 2012

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data product contains avian point-transect survey data and habitat data collected on the Seward Peninsula, Alaska, USA, during 21 May – 10 June 2012. We...

  7. Chemical ions affect survival of avian cholera organisms in pondwater

    Science.gov (United States)

    Price, J.I.; Yandell, B.S.; Porter, W.P.

    1992-01-01

    Avian cholera (Pasteurella multocida) is a major disease of wild waterfowl, but its epizootiology remains little understood. Consequently, we examined whether chemical ions affected survival of avian cholera organisms in water collected from the Nebraska Rainwater Basin where avian cholera is enzootic. We tested the response of P. multocida to ammonium (NH4), calcium (Ca), magnesium (Mg), nitrate (NO3), and ortho-phosphate (PO4) ions individually and in combination using a fractional factorial design divided into 4 blocks. High concentrations of Ca and Mg, singly or in combination, increased survival of P. multocida organisms (P < 0.001). We developed a survival index to predict whether or not specific ponds could be "problem" or "nonproblem" avian cholera sites based on concentrations of these ions in the water.

  8. Region 6 Avian Health Program FY2011 Annual Report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report describes activities and fund allocations of the Region 6 Avian Health Program in FY2011. Activities include morbidity and mortality monitoring, disease...

  9. Avian populations and habitat use in interior Alaska taiga

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Avian community structure, habitat occupancy levels, and species habitat use patterns were examined in the woody habitats of interior Alaska taiga. Some birds...

  10. Migratory Bird Avian Influenza Sampling; Yukon Kuskokwim Delta, Alaska, 2015

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Data set containing avian influenza sampling information for spring and summer waterbirds on the Yukon Kuskokwim Delta, 2015. Data contains sample ID, species...

  11. fRNAdb Summary: FR384377 [

    Lifescience Database Archive (English)

    Full Text Available FR384377 AF198348,K02374,M14898,M62407,X13744,X77628 Retrovirus direct repeat 1 (dr1) mature_tra ... nscript Avian leukosis ... virus,Avian retrovirus IC10,Rous-associated virus ...

  12. Avian ecology of arid habitats in Namibia / Henriette Cornelia Potgieter

    OpenAIRE

    Potgieter, Henriette Cornelia

    2015-01-01

    Examination of bird assemblages along an environmental gradient which encompasses both climate and habitat change is needed if we are to better understand the potential effects of these changes for avians and the ecological process that depend upon them. Climate change is predicted to have a significant impact on deserts and desert margins, resulting in distributional shifts of entire ecosystems and new community associations. This study explores the probable responses of avian communities to...

  13. The role of the avian hippocampus in spatial memory.

    OpenAIRE

    Macphail E. M.

    2002-01-01

    Avian hippocampal function is surveyed, using data drawn from three areas: conventional laboratory paradigms, pigeon navigation, and food-storing. Damage to the avian hippocampus disrupts performance in laboratory tasks that tap spatial learning and memory, and also disrupts both pigeon homing and cache recovery by food-storing birds. Further evidence of hippocampal involvement in food-storing is provided by the fact that the hippocampus of food-storing birds is ...

  14. Avian-like breathing mechanics in maniraptoran dinosaurs

    OpenAIRE

    Codd, Jonathan R.; Phillip L. Manning; Mark A Norell; Perry, Steven F.

    2007-01-01

    In 1868 Thomas Huxley first proposed that dinosaurs were the direct ancestors of birds and subsequent analyses have identified a suite of ‘avian’ characteristics in theropod dinosaurs. Ossified uncinate processes are found in most species of extant birds and also occur in extinct non-avian maniraptoran dinosaurs. Their presence in these dinosaurs represents another morphological character linking them to Aves, and further supports the presence of an avian-like air-sac respiratory system in th...

  15. Predicting power-optimal kinematics of avian wings

    OpenAIRE

    Parslew, Ben

    2015-01-01

    A theoretical model of avian flight is developed which simulates wing motion through a class of methods known as predictive simulation. This approach uses numerical optimization to predict power-optimal kinematics of avian wings in hover, cruise, climb and descent. The wing dynamics capture both aerodynamic and inertial loads. The model is used to simulate the flight of the pigeon, Columba livia, and the results are compared with previous experimental measurements. In cruise, the model uneart...

  16. Surveillance of wild birds for avian influenza virus

    OpenAIRE

    Hoye, B.; Munster, V.J.; Nishiura, H.M.; Klaassen, M.; Fouchier, R. A. M.

    2010-01-01

    Recent demand for increased understanding of avian infl uenza virus in its natural hosts, together with the development of high-throughput diagnostics, has heralded a new era in wildlife disease surveillance. However, survey design, sampling, and interpretation in the context of host populations still present major challenges. We critically reviewed current surveillance to distill a series of considerations pertinent to avian infl uenza virus surveillance in wild birds, including consideratio...

  17. Detecting emerging transmissibility of avian influenza virus in human households

    OpenAIRE

    van Boven, M.; Koopmans, M.; Du Ry van Beest Holle, M.; Meijer, Adam; Klinkenberg, D.; Donnelly, C. A.; Heesterbeek, J A P

    2007-01-01

    Accumulating infections of highly pathogenic H5N1 avian influenza in humans underlines the need to track the ability of these viruses to spread among humans. A human-transmissible avian influenza virus is expected to cause clusters of infections in humans living in close contact. Therefore, epidemiological analysis of infection clusters in human households is of key importance. Infection clusters may arise from transmission events from (i) the animal reservoir, (ii) humans who were infected b...

  18. Low-pathogenic avian influenza viruses in wild house mice.

    Directory of Open Access Journals (Sweden)

    Susan A Shriner

    Full Text Available BACKGROUND: Avian influenza viruses are known to productively infect a number of mammal species, several of which are commonly found on or near poultry and gamebird farms. While control of rodent species is often used to limit avian influenza virus transmission within and among outbreak sites, few studies have investigated the potential role of these species in outbreak dynamics. METHODOLOGY/PRINCIPAL FINDINGS: We trapped and sampled synanthropic mammals on a gamebird farm in Idaho, USA that had recently experienced a low pathogenic avian influenza outbreak. Six of six house mice (Mus musculus caught on the outbreak farm were presumptively positive for antibodies to type A influenza. Consequently, we experimentally infected groups of naïve wild-caught house mice with five different low pathogenic avian influenza viruses that included three viruses derived from wild birds and two viruses derived from chickens. Virus replication was efficient in house mice inoculated with viruses derived from wild birds and more moderate for chicken-derived viruses. Mean titers (EID(50 equivalents/mL across all lung samples from seven days of sampling (three mice/day ranged from 10(3.89 (H3N6 to 10(5.06 (H4N6 for the wild bird viruses and 10(2.08 (H6N2 to 10(2.85 (H4N8 for the chicken-derived viruses. Interestingly, multiple regression models indicated differential replication between sexes, with significantly (p<0.05 higher concentrations of avian influenza RNA found in females compared with males. CONCLUSIONS/SIGNIFICANCE: Avian influenza viruses replicated efficiently in wild-caught house mice without adaptation, indicating mice may be a risk pathway for movement of avian influenza viruses on poultry and gamebird farms. Differential virus replication between males and females warrants further investigation to determine the generality of this result in avian influenza disease dynamics.

  19. Avian bornavirus in the urine of infected birds

    OpenAIRE

    Heatley, J. Jill; Villalobos, de, Leonor Cristina

    2012-01-01

    J Jill Heatley,1 Alice R Villalobos21Zoological Medicine, 2Department of Nutrition & Food Science, Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USAAbstract: Avian bornavirus (ABV) causes proventricular dilatation disease in multiple avian species. In severe clinical disease, the virus, while primarily neurotropic, can be detected in many organs, including the kidneys. We postulated that ABV could be shed by the kidneys and ...

  20. Will Wallace's Line Save Australia from Avian Influenza?

    Directory of Open Access Journals (Sweden)

    Leo Joseph

    2008-12-01

    Full Text Available Australia is separated from the Asian faunal realm by Wallace's Line, across which there is relatively little avian migration. Although this does diminish the risk of high pathogenicity avian influenza of Asian origin arriving with migratory birds, the barrier is not complete. Migratory shorebirds, as well as a few landbirds, move through the region on annual migrations to and from Southeast Asia and destinations further north, although the frequency of infection of avian influenza in these groups is low. Nonetheless, high pathogenicity H5N1 has recently been recorded on the island of New Guinea in West Papua in domestic poultry. This event increases interest in the movements of birds between Wallacea in eastern Indonesia, New Guinea, and Australia, particularly by waterbirds. There are frequent but irregular movements of ducks, geese, and other waterbirds across Torres Strait between New Guinea and Australia, including movements to regions in which H5N1 has occurred in the recent past. Although the likelihood of avian influenza entering Australia via an avian vector is presumed to be low, the nature and extent of bird movements in this region is poorly known. There have been five recorded outbreaks of high pathogenicity avian influenza in Australian poultry flocks, all of the H7 subtype. To date, Australia is the only inhabited continent not to have recorded high pathogenicity avian influenza since 1997, and H5N1 has never been recorded. The ability to map risk from high pathogenicity avian influenza to Australia is hampered by the lack of quantitative data on the extent of bird movements between Australia and its northern neighbors. Recently developed techniques offer the promise to fill this knowledge gap.

  1. Comparative genomic data of the Avian Phylogenomics Project

    OpenAIRE

    Zhang, Guojie; Li, Bo; Li, Cai; Gilbert, M. Thomas P.; Jarvis, Erich D.; Wang, Jun; Avian Genome Consortium

    2014-01-01

    Background The evolutionary relationships of modern birds are among the most challenging to understand in systematic biology and have been debated for centuries. To address this challenge, we assembled or collected the genomes of 48 avian species spanning most orders of birds, including all Neognathae and two of the five Palaeognathae orders, and used the genomes to construct a genome-scale avian phylogenetic tree and perform comparative genomics analyses (Jarvis et al. in press; Zhang et al....

  2. Artist conception of the Avian Development Facility

    Science.gov (United States)

    2003-01-01

    The Avian Development Facility (ADF) supports 36 eggs in two carousels, one of which rotates to provide a 1-g control for comparing to eggs grown in microgravity. The ADF was designed to incubate up to 36 Japanese quail eggs, 18 in microgravity and 18 in artificial gravity. The two sets of eggs were exposed to otherwise identical conditions, the first time this is been accomplished in space. Eggs are preserved at intervals to provide snapshots of their development for later analysis. Quails incubate in just 15 days, so they are an ideal species to be studied within the duration of space shuttle missions. Further, several investigators can use the same specimens to address different questions. The ADF originated in NASA's Shuttle Student Involvement program in the 1980s and was developed under the NASA Small Business Irnovation Research program. In late 2001, the ADF made its first flight and carried eggs used in two investigations.

  3. 禽流感病%Avian Influenza

    Institute of Scientific and Technical Information of China (English)

    周先志

    1999-01-01

    @@ 禽流感病(avian influenza)是由甲型流感病毒引起的一种禽类疾病综合征.1997年5月,我国香港特别行政区1例3岁儿童死于不明原因的多器官功能衰竭,同年8月经美国疾病预防和控制中心以及WHO荷兰鹿特丹国家流感中心鉴定为禽甲型流感病毒H5N1[A(H5N1)]引起的人类流感[1~3].这是世界上首次证实A(H5N1)感染人类,因而引起医学界的广泛关注.

  4. 禽流感%Avian influenza

    Institute of Scientific and Technical Information of China (English)

    范学工; 龙云铸

    2005-01-01

    禽流感(avian influenza)是禽类流行性感冒的简称,是由甲型流感病毒株的某些亚型引起的急性呼吸道传染病。通常情况下,禽流感病毒并不感染人类,但自1997年禽甲型流感病毒H5N1感染人类之后,相继有H9N2、H7N7.亚型感染人类和H5N1再次感染人类的报道,引起了世人的广泛关注。

  5. Quantum coherence and sensitivity of avian magnetoreception

    CERN Document Server

    Bandyopadhyay, Jayendra N; Kaszlikowski, Dagomir

    2012-01-01

    Migratory birds and other species have the ability to navigate by sensing the geomagnetic field. Recent experiments indicate that the essential process in the navigation takes place in bird's eye and uses chemical reaction involving molecular ions with unpaired electron spins (radical pair). Sensing is achieved via geomagnetic-dependent dynamics of the spins of the unpaired electrons. Here we utilize the results of all behavioral experiments conducted on European Robins to argue that the average life-time of the radical pair is of the order of a microsecond and therefore agrees with experimental estimations of this parameter for cryptochrome --- a pigment believed to form the radical pairs. We also found a reasonable parameter regime where sensitivity of the avian compass is enhanced by environmental noise, showing that long coherence time is not required for navigation and may even spoil it.

  6. Efficient statistical mapping of avian count data

    Science.gov (United States)

    Royle, J. Andrew; Wikle, C.K.

    2005-01-01

    We develop a spatial modeling framework for count data that is efficient to implement in high-dimensional prediction problems. We consider spectral parameterizations for the spatially varying mean of a Poisson model. The spectral parameterization of the spatial process is very computationally efficient, enabling effective estimation and prediction in large problems using Markov chain Monte Carlo techniques. We apply this model to creating avian relative abundance maps from North American Breeding Bird Survey (BBS) data. Variation in the ability of observers to count birds is modeled as spatially independent noise, resulting in over-dispersion relative to the Poisson assumption. This approach represents an improvement over existing approaches used for spatial modeling of BBS data which are either inefficient for continental scale modeling and prediction or fail to accommodate important distributional features of count data thus leading to inaccurate accounting of prediction uncertainty.

  7. Infrasound and the avian navigational map

    Science.gov (United States)

    Hagstrum, J.T.

    2001-01-01

    Birds can accurately navigate over hundreds to thousands of kilometres, and use celestial and magnetic compass senses to orient their flight. How birds determine their location in order to select the correct homeward bearing (map sense) remains controversial, and has been attributed to their olfactory or magnetic senses. Pigeons can hear infrasound down to 0??05 Hz, and an acoustic avian map is proposed consisting of infrasonic cues radiated from steep-sided topographic features. The source of these infrasonic signals is microseisms continuously generated by interfering oceanic waves. Atmospheric processes affecting the infrasonic map cues can explain perplexing experimental results from pigeon releases. Moreover, four recent disrupted pigeon races in Europe and the north-eastern USA intersected infrasonic shock waves from the Concorde supersonic transport. Having an acoustic map might also allow clock-shifted birds to test their homeward progress and select between their magnetic and solar compasses.

  8. Serological diagnosis of avian influenza in poultry

    DEFF Research Database (Denmark)

    Comin, Arianna; Toft, Nils; Stegeman, Arjan;

    2013-01-01

    Background The serological diagnosis of avian influenza (AI) can be performed using different methods, yet the haemagglutination inhibition (HI) test is considered the gold standard' for AI antibody subtyping. Although alternative diagnostic assays have been developed, in most cases, their accuracy...... Sp, the HI test may be effectively considered a gold standard. In the framework of LPAI surveillance, where large numbers of samples have to be processed, the blocking ELISA could be a valid alternative to the HI test, in that it is almost as sensitive and specific as the HI test yet quicker and...... has been evaluated in comparison with HI test results, whose performance for poultry has not been properly evaluated. Objective The objective of this study was to estimate the diagnostic sensitivity (Se) and specificity (Sp) of the HI test and six other diagnostic assays for the detection of AI...

  9. Mechanisms of avian songs and calls

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye

    2008-01-01

    . The use of thin, flexible endoscopes has made direct observation of the syrinx possible in situ. The effects of direct muscle stimulation on the syringeal aperture have identified adductor and abductor muscles, confirming results from electromyographic studies. Endoscopic observations have revealed...... the dynamics of syringeal reconfiguration during phonation, which in most bird species investigated results in simultaneous movement of soft tissue masses (the medial and lateral labia in songbirds and lateral tympaniform membranes in non-songbirds) into the bronchial lumen where they collide. High......-speed video-filming during sound production has revealed that sound pulses coincide with short duration formation of slots between the soft tissue masses forming a pneumatic valve, which suggests that the avian sound generating mechanism is a similar to that in the human larynx. Lately studies have revealed...

  10. A glossary for avian conservation biology

    Science.gov (United States)

    Koford, Rolf R.; Dunning, J.B., Jr.; Ribic, C.A.; Finch, D.M.

    1994-01-01

    This glossary provides standard definitions for many of the terms used in avian conservation biology. We compiled these definitions to assist communication among researchers, managers, and others involved in the Neotropical Migratory Bird Conservation Program, also known as Partners in Flight. We used existing glossaries and recent literature to prepare this glossary. The cited sources were not necessarily the first ones to use the terms. Many definitions were taken verbatim from the cited source material. Others were modified slightly to clarify the meaning. Definitions that were modified to a greater extent are indicated as being adapted from the originals. Terms that have been used in more than one way by different authors are listed with numbered alternative definitions if the definitions differ substantially.

  11. Avian Influenza spread and transmission dynamics

    Science.gov (United States)

    Bourouiba, Lydia; Gourley, Stephen A.; Liu, Rongsong; Takekawa, John; Wu, Jianhong

    2015-01-01

    The spread of highly pathogenic avian influenza (HPAI) viruses of type A of subtype H5N1 has been a serious threat to global public health. Understanding the roles of various (migratory, wild, poultry) bird species in the transmission of these viruses is critical for designing and implementing effective control and intervention measures. Developing appropriate models and mathematical techniques to understand these roles and to evaluate the effectiveness of mitigation strategies have been a challenge. Recent development of the global health surveillance (especially satellite tracking and GIS techniques) and the mathematical theory of dynamical systems combined have gradually shown the promise of some cutting-edge methodologies and techniques in mathematical biology to meet this challenge.

  12. Avian influenza in Croatia - Current status

    International Nuclear Information System (INIS)

    Full text: Wild birds can carry a wide range of viral and other zoonotic agents, which may be transmitted to humans. From October 2005 to March 2006 HPAI H5N1 virus was isolated from wild birds (mute swans, black-headed gulls and a mallard duck) in Croatia at five locations. After isolation of H5N1 virus at 2006 from mallard duck near City of Zagreb (capital of Croatia) Department of Poultry Diseases with Clinic at the Faculty of Veterinary Medicine, has conducted monitoring of avian viruses that could endanger human health. Samples (999 pharyngeal and cloacal swabs) from 23 wild bird species were taken. After year 2006 Croatia has regular monitoring for avian influenza in wild birds and poultry (especially in the backyard flocks). During 2007 (6,928 wild birds and 18,000 blood samples from poultry) and 2008 (2,486 wild birds; 20,000 blood samples and 1,500 cloacal swabs from poultry) were taken. Isolation was performed with classical virus detection method by inoculation of 10 day old chicken embryos, and molecular methods by conventional PCR and Real Time PCR (M gene, H5, H7 and N1 genes), and serological methods by antibody detection from blood samples (inhibition hemagglutination and ELISA). All samples were HPAI virus negative but investigators from the Poultry Centre of the Croatian Veterinary Institute isolated from wild birds LPAI viruses: H2N3, H3N8, H5N3 and H10N7. The results obtained by these investigations and monitoring revealed the need for permanent monitoring of wild bird's health status, especially the water birds species. Vaccination against AI is never practiced in Croatia. Quick and accurate detection of wild migratory birds infected with the H5N1 virus prevented the spread of the virus to the domestic poultry in Croatia which would have had enormous consequences. (author)

  13. Early warning: Avian flu and nuclear science

    International Nuclear Information System (INIS)

    Avian flu has spread to 51 countries, 36 this year alone, many of which are densely populated and deprived. The joint FAO/IAEA programme is working on the rapid detection of emerging diseases, including bird flu, and using nuclear and radiation techniques in the process. The problems are serious and challenging, but nuclear technologies may offer a solution. For most developing countries, TAD (transboundary animal diseases) detection is still vital. The bottleneck is their inability to rapidly detect the virus and to determine early enough whether it is H5N1 or another subtype, so that authorities can take appropriate control measures. Serious efforts are focused on the early detection of the agents. Timely recognition of such viral infections would prevent the spread of the diseases to large animal populations in huge geographic areas. Thus, the development of novel, powerful diagnostic nuclear and nuclear-related assays is a crucial issue today in veterinary research and animal health care. Molecular virology offers a range of new methods, which are able to accelerate and improve the diagnosis of infectious diseases in animals and in man. The molecular detection assays, like the polymerase chain reaction (PCR) technologies, provide possibilities for a very rapid diagnosis. The detection of viruses can be completed within hours or hopefully even within minutes with a sensitivity level of less than one pathogenic organism. Molecular approaches have contributed significantly to the rapid detection of well-established, as well as newly emerging, infectious agents such as Nipah and Hendra viruses or corona viruses in the SARS scenario and the detection and molecular characterisation of the highly pathogenic avian influenza H5N1 subtype that threatens the world today. The nucleic acid amplification assays, although they were at first expensive and cumbersome, have become relatively cheap and user-friendly tools in the diagnostic laboratories

  14. Avian influenza virus risk assessment in falconry

    Directory of Open Access Journals (Sweden)

    Lüschow Dörte

    2011-04-01

    Full Text Available Abstract Background There is a continuing threat of human infections with avian influenza viruses (AIV. In this regard falconers might be a potential risk group because they have close contact to their hunting birds (raptors such as falcons and hawks as well as their avian prey such as gulls and ducks. Both (hunting birds and prey birds seem to be highly susceptible to some AIV strains, especially H5N1. We therefore conducted a field study to investigate AIV infections in falconers, their falconry birds as well as prey birds. Findings During 2 hunting seasons (2006/2007 and 2007/2008 falconers took tracheal and cloacal swabs from 1080 prey birds that were captured by their falconry birds (n = 54 in Germany. AIV-RNA of subtypes H6, H9, or H13 was detected in swabs of 4.1% of gulls (n = 74 and 3.8% of ducks (n = 53 using RT-PCR. The remaining 953 sampled prey birds and all falconry birds were negative. Blood samples of the falconry birds tested negative for AIV specific antibodies. Serum samples from all 43 falconers reacted positive in influenza A virus-specific ELISA, but remained negative using microneutralisation test against subtypes H5 and H7 and haemagglutination inhibition test against subtypes H6, H9 and H13. Conclusion Although we were able to detect AIV-RNA in samples from prey birds, the corresponding falconry birds and falconers did not become infected. Currently falconers do not seem to carry a high risk for getting infected with AIV through handling their falconry birds and their prey.

  15. Single nucleotide polymorphism variants within tva and tvb receptor genes in Chinese chickens

    Science.gov (United States)

    Avian leukosis is an immunosuppressive neoplastic disease caused by avian leukosis viruses (ALV), which causes tremendous economic losses in the worldwide poultry industry. The susceptibility or resistance of chicken cells to subgroup A ALV and subgroup B, D, and E ALV are determined by the receptor...

  16. Avian Antimicrobial Host Defense Peptides: From Biology to Therapeutic Applications

    Directory of Open Access Journals (Sweden)

    Guolong Zhang

    2014-02-01

    Full Text Available Host defense peptides (HDPs are an important first line of defense with antimicrobial and immunomoduatory properties. Because they act on the microbial membranes or host immune cells, HDPs pose a low risk of triggering microbial resistance and therefore, are being actively investigated as a novel class of antimicrobials and vaccine adjuvants. Cathelicidins and β-defensins are two major families of HDPs in avian species. More than a dozen HDPs exist in birds, with the genes in each HDP family clustered in a single chromosomal segment, apparently as a result of gene duplication and diversification. In contrast to their mammalian counterparts that adopt various spatial conformations, mature avian cathelicidins are mostly α-helical. Avian β-defensins, on the other hand, adopt triple-stranded β-sheet structures similar to their mammalian relatives. Besides classical β-defensins, a group of avian-specific β-defensin-related peptides, namely ovodefensins, exist with a different six-cysteine motif. Like their mammalian counterparts, avian cathelicidins and defensins are derived from either myeloid or epithelial origin expressed in a majority of tissues with broad-spectrum antibacterial and immune regulatory activities. Structure-function relationship studies with several avian HDPs have led to identification of the peptide analogs with potential for use as antimicrobials and vaccine adjuvants. Dietary modulation of endogenous HDP synthesis has also emerged as a promising alternative approach to disease control and prevention in chickens.

  17. Global Dynamics of Avian Influenza Epidemic Models with Psychological Effect

    Directory of Open Access Journals (Sweden)

    Sanhong Liu

    2015-01-01

    Full Text Available Cross-sectional surveys conducted in Thailand and China after the outbreaks of the avian influenza A H5N1 and H7N9 viruses show a high degree of awareness of human avian influenza in both urban and rural populations, a higher level of proper hygienic practice among urban residents, and in particular a dramatically reduced number of visits to live markets in urban population after the influenza A H7N9 outbreak in China in 2013. In this paper, taking into account the psychological effect toward avian influenza in the human population, a bird-to-human transmission model in which the avian population exhibits saturation effect is constructed. The dynamical behavior of the model is studied by using the basic reproduction number. The results demonstrate that the saturation effect within avian population and the psychological effect in human population cannot change the stability of equilibria but can affect the number of infected humans if the disease is prevalent. Numerical simulations are given to support the theoretical results and sensitivity analyses of the basic reproduction number in terms of model parameters that are performed to seek for effective control measures for avian influenza.

  18. Avian antimicrobial host defense peptides: from biology to therapeutic applications.

    Science.gov (United States)

    Zhang, Guolong; Sunkara, Lakshmi T

    2014-01-01

    Host defense peptides (HDPs) are an important first line of defense with antimicrobial and immunomoduatory properties. Because they act on the microbial membranes or host immune cells, HDPs pose a low risk of triggering microbial resistance and therefore, are being actively investigated as a novel class of antimicrobials and vaccine adjuvants. Cathelicidins and β-defensins are two major families of HDPs in avian species. More than a dozen HDPs exist in birds, with the genes in each HDP family clustered in a single chromosomal segment, apparently as a result of gene duplication and diversification. In contrast to their mammalian counterparts that adopt various spatial conformations, mature avian cathelicidins are mostly α-helical. Avian β-defensins, on the other hand, adopt triple-stranded β-sheet structures similar to their mammalian relatives. Besides classical β-defensins, a group of avian-specific β-defensin-related peptides, namely ovodefensins, exist with a different six-cysteine motif. Like their mammalian counterparts, avian cathelicidins and defensins are derived from either myeloid or epithelial origin expressed in a majority of tissues with broad-spectrum antibacterial and immune regulatory activities. Structure-function relationship studies with several avian HDPs have led to identification of the peptide analogs with potential for use as antimicrobials and vaccine adjuvants. Dietary modulation of endogenous HDP synthesis has also emerged as a promising alternative approach to disease control and prevention in chickens. PMID:24583933

  19. Analysis of the subgroup A avian sarcoma and leukosis virus receptor: the 40-residue, cysteine-rich, low-density lipoprotein receptor repeat motif of Tva is sufficient to mediate viral entry.

    OpenAIRE

    Rong, L; P. Bates

    1995-01-01

    The genes encoding the receptor for subgroup A Rous sarcoma viruses (tva) were recently cloned from both chicken and quail cells (P. Bates, J. A. T. Young, and H. E. Varmus, Cell 74:1043-1051, 1993; J. A. T. Young, P. Bates, and H. E. Varmus, J. Virol. 67:1811-1816, 1993). Previous work suggested that only the extracellular domain of Tva interacts with the virus (P. Bates, J. A. T. Young, and H. E. Varmus, Cell 74:1043-1051, 1993). Tva is a small membrane-associated protein containing in its ...

  20. Evolution of Enzootic Bovine Leukosis prevalence in an university dairy herd /
    Evolução da soroprevalência da Leucose Enzoótica Bovina em um rebanho bovino leiteiro universitário

    OpenAIRE

    Rüdiger Daniel Ollhoff; Fábio Cipriano; Thaís Dittrich; Ciro Meirelles

    2009-01-01

    The prevalence of Enzootic Bovine Leukosis virus infection was determined in adult cows of the catholic university of Paraná (Pontifícia Universidade Católica do Paraná) dairy herd in 2000, 2003 and 2006 using the agar-gel immunodiffusion. The prevalence of the infection in adult lactating cows was respectively, over the years, 63.33%, 81.08% and 55.56%. Serum samples of all animals were taken in 2006, observing a continuously rise in antibody prevalence over the time up to more than 80% in a...

  1. An avian outbreak associated with panzootic equine influenza in 1872: an early example of highly pathogenic avian influenza?

    OpenAIRE

    Morens, David M.; Taubenberger, Jeffery K.

    2010-01-01

    Please cite this paper as: Morens and Taubenberger (2010) An avian outbreak associated with panzootic equine influenza in 1872: an early example of highly pathogenic avian influenza? Influenza and Other Respiratory Viruses 4(6), 373–377. Background  An explosive fatal epizootic in poultry, prairie chickens, turkeys, ducks and geese, occurred over much of the populated United States between 15 November and 15 December 1872. To our knowledge the scientific literature contains no mention of the ...

  2. PATHOLOGICAL AND VIRALOGICAL ANALYSIS OF A FIBROSARCOMA CASE INDUCED BY AVIAN LEUCOSIS VIRUS SUBGROUP A%一例A亚型禽白血病病毒引起的纤维肉瘤的病理学和病毒学分析

    Institute of Scientific and Technical Information of China (English)

    王鑫; 齐鹏飞; 杜艳; 王丽; 李传龙; 李德庆; 赵鹏; 崔治中

    2011-01-01

    将禽白血病A亚型(Avian leukosis virus subgroup A,ALV-A)SDAU09C3毒株人工感染SPF引起的肾脏和肝脏纤维细胞样肉瘤进行病理组织学观察,同时检测是否有其它肿瘤相关病毒感染,另外,应用PCR扩增病毒囊膜蛋白gp85基因,并对其基因编码的氨基酸序列与原攻毒株比较分析.结果显示,SDAU09C3毒株引起的肿瘤,主要为纤维细胞肉瘤,胶原纤维较少,细胞及纤维排列极不规则.病毒学检测证明发病鸡只存在ALV-A的感染,而ALV-J、马立克氏病病毒(Marek's disease virus,MDV)、网状内皮增生症病毒(Reticuloendotheliosis virus,REV)均为阴性.所分离的ALV-A病毒的囊膜蛋白gp85基因编码的氨基酸序列与原攻毒株同源性为99.5%.

  3. Cross Dot Blot Hybridization with Specific Nucleic Acid Probes for Detection of Pathogenic Exogenous Avian Leucosis Virus%鸡致病性外源性禽白血病病毒特异性核酸探针交叉斑点杂交检测试剂盒的研制

    Institute of Scientific and Technical Information of China (English)

    崔治中; 赵鹏; 孙淑红; 王鑫; 李文平

    2011-01-01

    Four DIG - labeled nucleic acid probes for specific detection of chicken endogenous and pathogenic exogenous avian leukosis virus(ALV) were synthesized by PCR using specific primers, these probes are used to detect exogenous pathogenic ALV specific nucleic acid in suspected samples through cross dot hybridization. Genomic DNA extracted from the samples or its amplified PCR products using the appropriate primers can be detected with specific probes. The results could be reported in 24 - 36h by cross - dot hybridization.%用特定引物通过PCR合成了经地高辛标记的鸡致病性外源性及内源性禽白血病病毒特异性核酸探针,通过交叉斑点分子杂交,这些探针将可用于检测病料样品中致病性外源性禽白血病毒特异性核酸的存在。利用此试剂盒,对从病料组织样品中提取的基因组DNA作交叉斑点分子杂交或对提取的DNA用相应引物扩增后的PCR产物作交叉斑点分子杂交,可在24~36h内完成检测并报告结果。

  4. Avian influenza viruses - new causative a gents of human infections

    Directory of Open Access Journals (Sweden)

    Hrnjaković-Cvjetković Ivana

    2006-01-01

    Full Text Available Introduction. Influenza A viruses can infect humans, some mammals and especially birds. Subtypes of human influenza A viruses: ACH1N1, ACH2N2 and A(H3N2 have caused pandemics. Avian influenza viruses vary owing to their 15 hemagglutinins (H and 9 neuraminidases (N. Human cases of avian influenza A In the Netherlands in 2003, there were 83 human cases of influenza A (H7N7. In 1997, 18 cases of H5N1 influenza A, of whom 6 died, were found among residents of Hong Kong. In 2004, 34 human cases (23 deaths were reported in Viet Nam and Thailand. H5N1 virus-infected patients presented with fever and respiratory symptoms. Complications included respiratory distress syndrome, renal failure, liver dysfunction and hematologic disorders. Since 1999, 7 cases of human influenza H9N2 infection have been identified in China and Hong Kong. The importance of human infection with avian influenza viruses. H5N1 virus can directly infect humans. Genetic reassortment of human and avian influenza viruses may occur in humans co infected with current human A(HIN1 or A(H3N2 subtypes and avian influenza viruses. The result would be a new influenza virus with pandemic potential. All genes of H5Nl viruses isolated from humans are of avian origin. Prevention and control. The reassortant virus containing H and N from avian and the remaining proteins from human influenza viruses will probably be used as a vaccine strain. The most important control measures are rapid destruction of all infected or exposed birds and rigorous disinfection of farms. Individuals exposed to suspected animals should receive prophylactic treatment with antivirals and annual vaccination. .

  5. Avian Influenza (H5N1) Expert System using Dempster-Shafer Theory

    OpenAIRE

    Maseleno, Andino; Hasan, Md. Mahmud

    2012-01-01

    Based on Cumulative Number of Confirmed Human Cases of Avian Influenza (H5N1) Reported to World Health Organization (WHO) in the 2011 from 15 countries, Indonesia has the largest number death because Avian Influenza which 146 deaths. In this research, the researcher built an Avian Influenza (H5N1) Expert System for identifying avian influenza disease and displaying the result of identification process. In this paper, we describe five symptoms as major symptoms which include depression, combs,...

  6. Access to health information may improve behavior in preventing Avian influenza among women

    OpenAIRE

    Ajeng T. Endarti; Shamsul A. Shah

    2011-01-01

    Background: Improving human behavior toward Avian influenza may lessen the chance to be infected by Avian influenza. This study aimed to identify several factors influencing behavior in the community.Method: A cross-sectional study was conducted in July 2008. Behavior regarding Avian influenza was measured by scoring the variables of knowledge, attitude, and practice. Subjects were obtained from the sub district of Limo, in Depok, West Java, which was considered a high risk area for Avian inf...

  7. Seroepidemiological Evidence of Avian Influenza A Virus Transmission to Pigs in Southern China

    OpenAIRE

    Su, Shuo; Qi, Wenbao; Chen, Jidang; Zhu, Wanjun; Huang, Zhen; Xie, Jiexiong; Zhang, Guihong

    2013-01-01

    Recently, three novel avian-origin swine influenza viruses (SIVs) were first isolated from pigs in Guangdong Province, southern China, yet little is known about the seroprevalence of avian influenza viruses among pigs in southern China. Here, we report for the first time the seroprevalence of avian H3, H4, and H6 influenza viruses in swine populations and the lack of seroepidemiological evidence of avian H5 influenza virus transmission to pigs in China.

  8. Evaluation of Amplified Fragment Length Polymorphism for Differentiation of Avian Mycoplasma Species

    OpenAIRE

    Hong, Y; Garcia, M.; Levisohn, S; Lysnyansky, I.; Leiting, V.; Savelkoul, P. H. M.; Kleven, S. H.

    2005-01-01

    Amplified fragment length polymorphism (AFLP) was used for typing avian mycoplasma species. Forty-four avian mycoplasma strains were successfully typed into eight distinct groups, with each representing a different species. Homology of AFLP patterns of 35% or less was used as a cutoff value to differentiate avian mycoplasma strains into different species.

  9. H5N1 Avian Flu (H5N1 Bird Flu)

    Science.gov (United States)

    ... Swine Flu H5N1 - Avian/Bird Flu H5N1 Avian Flu - H5N1 Bird Flu H5N1 is a highly pathogenic avian (bird) flu ... WhiteHouse.gov USA.gov GobiernoUSA.gov BusinessUSA.gov Flu Basics Symptoms (CDC) Prevention (CDC) Treatment (CDC) Vaccination ( ...

  10. Human Illness from Avian Influenza H7N3, British Columbia

    OpenAIRE

    Tweed, S. Aleina; Skowronski, Danuta M.; David, Samara T; Larder, Andrew; Petric, Martin; Lees, Wayne; Li, Yan; Katz, Jacqueline; Krajden, Mel; Tellier, Raymond; Halpert, Christine; Hirst, Martin; Astell, Caroline; Lawrence, David; Mak, Annie

    2004-01-01

    Avian influenza that infects poultry in close proximity to humans is a concern because of its pandemic potential. In 2004, an outbreak of highly pathogenic avian influenza H7N3 occurred in poultry in British Columbia, Canada. Surveillance identified two persons with confirmed avian influenza infection. Symptoms included conjunctivitis and mild influenzalike illness.

  11. 75 FR 10645 - Low Pathogenic Avian Influenza; Voluntary Control Program and Payment of Indemnity

    Science.gov (United States)

    2010-03-09

    ... Pathogenic Avian Influenza; Voluntary Control Program and Payment of Indemnity AGENCY: Animal and Plant... avian influenza in commercial poultry. As amended by this document, the rule provides that the amount of... agencies with respect to H5/H7 low pathogenic avian influenza outbreaks, provides that consistency...

  12. Evidence of previous avian influenza infection among US turkey workers.

    Science.gov (United States)

    Kayali, G; Ortiz, E J; Chorazy, M L; Gray, G C

    2010-06-01

    The threat of an influenza pandemic is looming, with new cases of sporadic avian influenza infections in man frequently reported. Exposure to diseased poultry is a leading risk factor for these infections. In this study, we used logistic regression to investigate serological evidence of previous infection with avian influenza subtypes H4, H5, H6, H7, H8, H9, H10, and H11 among 95 adults occupationally exposed to turkeys in the US Midwest and 82 unexposed controls. Our results indicate that farmers practising backyard, organic or free-ranging turkey production methods are at an increased risk of infection with avian influenza. Among these farmers, the adjusted odds ratios (ORs) for elevated microneutralization assay titres against avian H4, H5, H6, H9, and H10 influenza strains ranged between 3.9 (95% CI 1.2-12.8) and 15.3 (95% CI 2.0-115.2) when compared to non-exposed controls. The measured ORs were adjusted for antibody titres against human influenza viruses and other exposure variables. These data suggest that sometime in their lives, the workers had been exposed to low pathogenicity avian influenza viruses. These findings support calls for inclusion of agricultural workers in priority groups in pandemic influenza preparedness efforts. These data further support increasing surveillance and other preparedness efforts to include not only confinement poultry facilities, but more importantly, also small scale farms. PMID:19486492

  13. Detecting emerging transmissibility of avian influenza virus in human households.

    Directory of Open Access Journals (Sweden)

    Michiel van Boven

    2007-07-01

    Full Text Available Accumulating infections of highly pathogenic H5N1 avian influenza in humans underlines the need to track the ability of these viruses to spread among humans. A human-transmissible avian influenza virus is expected to cause clusters of infections in humans living in close contact. Therefore, epidemiological analysis of infection clusters in human households is of key importance. Infection clusters may arise from transmission events from (i the animal reservoir, (ii humans who were infected by animals (primary human-to-human transmission, or (iii humans who were infected by humans (secondary human-to-human transmission. Here we propose a method of analysing household infection data to detect changes in the transmissibility of avian influenza viruses in humans at an early stage. The method is applied to an outbreak of H7N7 avian influenza virus in The Netherlands that was the cause of more than 30 human-to-human transmission events. The analyses indicate that secondary human-to-human transmission is plausible for the Dutch household infection data. Based on the estimates of the within-household transmission parameters, we evaluate the effectiveness of antiviral prophylaxis, and conclude that it is unlikely that all household infections can be prevented with current antiviral drugs. We discuss the applicability of our method for the detection of emerging human-to-human transmission of avian influenza viruses in particular, and for the analysis of within-household infection data in general.

  14. Next generation sequencing technologies: tool to study avian virus diversity.

    Science.gov (United States)

    Kapgate, S S; Barbuddhe, S B; Kumanan, K

    2015-03-01

    Increased globalisation, climatic changes and wildlife-livestock interface led to emergence of novel viral pathogens or zoonoses that have become serious concern to avian, animal and human health. High biodiversity and bird migration facilitate spread of the pathogen and provide reservoirs for emerging infectious diseases. Current classical diagnostic methods designed to be virus-specific or aim to be limited to group of viral agents, hinder identifying of novel viruses or viral variants. Recently developed approaches of next-generation sequencing (NGS) provide culture-independent methods that are useful for understanding viral diversity and discovery of novel virus, thereby enabling a better diagnosis and disease control. This review discusses the different possible steps of a NGS study utilizing sequence-independent amplification, high-throughput sequencing and bioinformatics approaches to identify novel avian viruses and their diversity. NGS lead to the identification of a wide range of new viruses such as picobirnavirus, picornavirus, orthoreovirus and avian gamma coronavirus associated with fulminating disease in guinea fowl and is also used in describing viral diversity among avian species. The review also briefly discusses areas of viral-host interaction and disease associated causalities with newly identified avian viruses. PMID:25790045

  15. Avian Blood-Vessel Formation in Space

    Science.gov (United States)

    Lelkes, Peter I.

    1999-01-01

    Based on previous studies, we hypothesized that the developmental anomalies observed in the past might be related to or caused by delayed or improper vascular development. The objective of our research is to test the hypothesis that exposure to microgravity during space flight cause delayed or improper vascular development during embryogenesis. The effects of microgravity on the time course and extent of avian blood-vessel formation are assessed using two models, one for angiogenesis and one for vasculogenesis. The methodological approach is dictated by the constraints of the tissue preservation method used in space. Thus, both in the chorioallantoic membrane (CAM) and in the adrenal, we will evaluate microscopically the vascular architecture and immunostain endothelial cells with specific antibodies (anti- vWF and QH1). The extent of ECM protein deposition will be assessed by immunohistochemistry and correlated with the degree of vascularization, using computer-based image analysis. Also, the cellular source for ECM proteins will be assessed by in situ hybridization.

  16. Scaling of avian primary feather length.

    Directory of Open Access Journals (Sweden)

    Robert L Nudds

    Full Text Available The evolution of the avian wing has long fascinated biologists, yet almost no work includes the length of primary feathers in consideration of overall wing length variation. Here we show that the length of the longest primary feather (f(prim contributing to overall wing length scales with negative allometry against total arm (ta = humerus+ulna+manus. The scaling exponent varied slightly, although not significantly so, depending on whether a species level analysis was used or phylogeny was controlled for using independent contrasts: f(prim is proportional to ta(0.78-0.82. The scaling exponent was not significantly different from that predicted (0.86 by earlier work. It appears that there is a general trend for the primary feathers of birds to contribute proportionally less, and ta proportionally more, to overall wingspan as this dimension increases. Wingspan in birds is constrained close to mass (M(1/3 because of optimisation for lift production, which limits opportunities for exterior morphological change. Within the wing, variations in underlying bone and feather lengths nevertheless may, in altering the joint positions, permit a range of different flight styles by facilitating variation in upstroke kinematics.

  17. Research progress in avian dispersal behavior

    Institute of Scientific and Technical Information of China (English)

    Yang LIU; Zhengwang ZHANG

    2008-01-01

    Dispersal, defined as a linear spreading move-ment of individuals away from others of the population is a fundamental characteristic of organisms in nature. Dispersal is a central concept in ecological, behavioral and evolutionary studies, driven by different forces such as avoidance of inbreeding depression, density-dependent competition and the need to change breeding locations. By effective dispersal, organisms can enlarge their geo-graphic range and adjust the dynamic, sex ratio and gen-etic compositions of a population. Birds are one of the groups that are studied intensively by human beings. Due to their diurnal habits, diverse life history strategies and complex movement, birds are also ideal models for the study of dispersal behaviors. Certain topics of avian dispersal including sex-biased, asymmetric dispersal caused by differences in body conditions, dispersal pro-cesses, habitat selection and long distance dispersal are discussed here. Bird-ringing or marking, radio-telemetry and genetic markers are useful tools widely applied in dispersal studies. There are three major challenges regard-ing theoretical study and methodology research of dis-persal: (1) improvement in research methodology is needed, (2) more in-depth theoretical research is neces-sary, and (3) application of theoretical research into the conservation efforts for threatened birds and the manage-ment of their habitats should be carried out immediately.

  18. Comparison of lead residues among avian bones

    International Nuclear Information System (INIS)

    To determine if significant differences exist in lead (Pb) accumulation in different bones, especially those most often used for bone-Pb studies in wildlife, we compared Pb concentrations in radius, ulna, humerus, femur, and tibia of Common Eider (Somateria mollissima); and radius/ulna (combined), femur, and tibia of American Woodcock (Scolopax minor). There were no significant differences in bone-Pb concentrations among woodcock bones over a wide range of Pb concentrations (3-311 μg/g). In eider, where bone-Pb concentrations were low (<10 μg/g), leg bones had significantly higher Pb concentrations (approximately 30-40%) than wing bones from the same individuals. The variation among individual birds was greater than the variation among different bones within a bird. Based on our findings, we conclude that one type of bone may be substituted for another in bone-Pb studies although the same bone type should be analyzed for all birds within a study, whenever possible. - Variability in Pb concentrations among avian bones

  19. Avian Influenza: Mixed Infections and Missing Viruses

    Directory of Open Access Journals (Sweden)

    David E. Wentworth

    2013-08-01

    Full Text Available A high prevalence and diversity of avian influenza (AI viruses were detected in a population of wild mallards sampled during summer 2011 in California, providing an opportunity to compare results obtained before and after virus culture. We tested cloacal swab samples prior to culture by matrix real-time PCR, and by amplifying and sequencing a 640bp portion of the hemagglutinin (HA gene. Each sample was also inoculated into embryonated chicken eggs, and full genome sequences were determined for cultured viruses. While low matrix Ct values were a good predictor of virus isolation from eggs, samples with high or undetectable Ct values also yielded isolates. Furthermore, a single passage in eggs altered the occurrence and detection of viral strains, and mixed infections (different HA subtypes were detected less frequently after culture. There is no gold standard or perfect reference comparison for surveillance of unknown viruses, and true negatives are difficult to distinguish from false negatives. This study showed that sequencing samples prior to culture increases the detection of mixed infections and enhances the identification of viral strains and sequences that may have changed or even disappeared during culture.

  20. Serological survey of avian influenza virus infection in non-avian wildlife in Xinjiang, China.

    Science.gov (United States)

    Wei, Yu-Rong; Yang, Xue-Yun; Li, Yuan-Guo; Wei, Jie; Ma, Wen-Ge; Ren, Zhi-Guang; Guo, Hui-Ling; Wang, Tie-Cheng; Mi, Xiao-Yun; Adili, Gulizhati; Miao, Shu-Kui; Shaha, Ayiqiaolifan; Gao, Yu-Wei; Huang, Jiong; Xia, Xian-Zhu

    2016-04-01

    We conducted a serological survey to detect antibodies against avian influenza virus (AIV) in Gazella subgutturosa, Canis lupus, Capreolus pygargus, Sus scrofa, Cervus elaphus, Capra ibex, Ovis ammon, Bos grunniens and Pseudois nayaur in Xinjiang, China. Two hundred forty-six sera collected from 2009 to 2013 were assayed for antibodies against H5, H7 and H9 AIVs using hemagglutination inhibition (HI) tests and a pan-influenza competitive ELISA. Across all tested wildlife species, 4.47 % harbored anti-AIV antibodies that were detected by the HI assay. The seroprevalence for each AIV subtype across all species evaluated was 0 % for H5 AIV, 0.81 % for H7 AIV, and 3.66 % for H9 AIV. H7-reactive antibodies were found in Canis lupus (9.09 %) and Ovis ammon (4.55 %). H9-reactive antibodies were found in Gazella subgutturosa (4.55 %), Canis lupus (27.27 %), Pseudois nayaur (23.08 %), and Ovis ammon (4.55 %). The pan-influenza competitive ELISA results closely corresponded to the cumulative prevalence of AIV exposure as measured by subtype-specific HI assays, suggesting that H7 and H9 AIV subtypes predominate in the wildlife species evaluated. These data provide evidence of prior infection with H7 and H9 AIVs in non-avian wildlife in Xinjiang, China. PMID:26733295

  1. Interactive mechanism between avian infectious bronchitis S1 protein T cell peptide and avian MHC I molecule.

    Science.gov (United States)

    Zhu, Feng-Zhu; Lu, Mei; Huang, Qing-Hua; Huang, Yan-Yan; Yang, Shao-Hua; Cui, Yan-Shun; Liu, Chang; Tan, Liugang; Kong, Zhengjie; Xu, Chuan-Tian

    2016-04-01

    This study aims to construct a 3D structure of the avian major histocompatibility complex (MHC)-β2M complex through homology modelling technology, perform molecular docking of the predicted infectious bronchitis virus (IBV) S1 protein potential epitope peptide Sp6 (NQFYIKLT) and the avian MHC-β2M complex, and demonstrate the interactive mechanism between Sp6 and MHC using molecular dynamical simulations. The peptide Sp6 and the non-related peptide NP89-97 (PKKTGGPIY) were used to stimulate in vitro recombinant plasmid (pCAGGS-S1) avian splenic lymphocytes. Flow cytometric results show that CD8(+) T lymphocytes reproduce stimulated by the Sp6 and the nonrelated peptide proliferate by 34.8% and 2.6%, respectively. Meanwhile, fluorescent quantitative PCR results show that the secretion of IFN-γ in avian splenic lymphocytes increases after Sp6 stimulation. These data suggest that Sp6 can induce the activated avian lymphocytes in vitro to produce CTL, which is the CTL epitope in IBV S1. PMID:26876645

  2. ABCD: a functional database for the avian brain.

    Science.gov (United States)

    Schrott, Aniko; Kabai, Peter

    2008-01-30

    Here we present the first database developed for storing, retrieving and cross-referencing neuroscience information about the connectivity of the avian brain. The Avian Brain Circuitry Database (ABCD) contains entries about the new and old terminology of the areas and their hierarchy, data on connections between brain regions, as well as a functional keyword system linked to brain regions and connections. Data were collected from the primary literature and textbooks, and an online submission system was developed to facilitate further data collection directly from researchers. The database aims to help spread the results of avian connectivity studies, the recently revised nomenclature and also to provide data for brain network research. ABCD is freely available at http://www.behav.org/abcd. PMID:17889371

  3. Antigenic properties of avian hepatitis E virus capsid protein.

    Science.gov (United States)

    Zhao, Qin; Syed, Shahid Faraz; Zhou, En-Min

    2015-10-22

    Avian hepatitis E virus (HEV) is the main causative agent of big liver and spleen disease and hepatitis-splenomegaly syndrome in chickens, and is genetically and antigenically related to mammalian HEVs. HEV capsid protein contains immunodominant epitopes and induces a protective humoral immune response. A better understanding of the antigenic composition of this protein is critically important for the development of effective vaccine and sensitive and specific serological assays. To date, six linear antigenic domains (I-VI) have been characterized in avian HEV capsid protein and analyzed for their applications in the serological diagnosis and vaccine design. Domains I and V induce strong immune response in chickens and are common to avian, human, and swine HEVs, indicating that the shared epitopes hampering differential diagnosis of avian HEV infection. Domains III and IV are not immunodominant and elicit a weak immune response. Domain VI, located in the N-terminal region of the capsid protein, can also trigger an intense immune response, but the anti-domain VI antibodies are transient. The protection analysis showed that the truncated capsid protein containing the C-terminal 268 amino acid residues expressed by the bacterial system can provide protective immunity against avian HEV infection in chickens. However, the synthetic peptides incorporating the different linear antigenic domains (I-VI) and epitopes are non-protective. The antigenic composition of avian HEV capsid protein is altogether complex. To develop an effective vaccine and accurate serological diagnostic methods, more conformational antigenic domains or epitopes are to be characterized in detail. PMID:26340899

  4. Sequence conservation of an avian centromeric repeated DNA component.

    Science.gov (United States)

    Madsen, C S; Brooks, J E; de Kloet, E; de Kloet, S R

    1994-06-01

    The approximately 190-bp centromeric repeat monomers of the spur-winged lapwing (Vanellus spinosus, Charadriidae), the Chilean flamingo (Phoenicopterus chilensis, Phoenicopteridae), the sarus crane (Grus antigone, Gruidae), parrots (Psittacidae), waterfowl (Anatidae), and the merlin (Falco columbarius, Falconidae) contain elements that are interspecifically highly variable, as well as elements (trinucleotides and higher order oligonucleotides) that are highly conserved in sequence and relative location within the repeat. Such conservation suggests that the centromeric repeats of these avian species have evolved from a common ancestral sequence that may date from very early stages of avian radiation. PMID:8034177

  5. The challenges of avian influenza virus: mechanism, epidemiology and control

    Institute of Scientific and Technical Information of China (English)

    George F. GAO; Pang-Chui SHAW

    2009-01-01

    @@ Early 2009, eight human infection cases of H5N1 highly pathogenic avian influenza (HPAI) virus, with 5 death cases, were reported in China. This again made the world alert on a possible pandemic worldwide, probably caused by avian-origin influenza virus. Again H5N1 is in the spotlight of the world, not only for the scientists but also for the ordinary people. How much do we know about this virus? Where will this virus go and where did it come? Can we avoid a possible pandemic of influenza? Will the human beings conquer this devastating agent? Obviously we can list more questions than we know the answers.

  6. Emergence of Fatal Avian Influenza in New England Harbor Seals

    OpenAIRE

    Anthony, S. J.; St. Leger, J. A.; Pugliares, K.; Ip, H S; Chan, J. M.; Carpenter, Z. W.; Navarrete-Macias, I.; Sanchez-Leon, M.; Saliki, J T; Pedersen, J; Karesh, W; Daszak, P; Rabadan, R.; Rowles, T.; Lipkin, W. I.

    2012-01-01

    ABSTRACT From September to December 2011, 162 New England harbor seals died in an outbreak of pneumonia. Sequence analysis of postmortem samples revealed the presence of an avian H3N8 influenza A virus, similar to a virus circulating in North American waterfowl since at least 2002 but with mutations that indicate recent adaption to mammalian hosts. These include a D701N mutation in the viral PB2 protein, previously reported in highly pathogenic H5N1 avian influenza viruses infecting people. L...

  7. Avian Influenza: a global threat needing a global solution

    OpenAIRE

    Koh GCH; Wong TY; Cheong SK; Koh DSQ

    2008-01-01

    Abstract There have been three influenza pandemics since the 1900s, of which the 1919–1919 flu pandemic had the highest mortality rates. The influenza virus infects both humans and birds, and mutates using two mechanisms: antigenic drift and antigenic shift. Currently, the H5N1 avian flu virus is limited to outbreaks among poultry and persons in direct contact to infected poultry, but the mortality rate among infected humans is high. Avian influenza (AI) is endemic in Asia as a result of unre...

  8. Avian tuberculosis in a captive cassowary (Casuarius casuarius

    Directory of Open Access Journals (Sweden)

    Krajewska Monika

    2015-12-01

    Full Text Available The paper describes avian tuberculosis in a captive bred cassowary. A two-and-a-half-year-old bird was obtained by a Polish zoo in 2010 from the Netherlands under conditions compliant with the recommendations of the European Association of Zoos and Aquaria. Despite being of small size for the age, the bird appeared healthy and showed no signs of the disease until the day when it was found recumbent in its pen. Later on it was euthanised due to lack of treatment possibilities. Pathological changes typical of avian tuberculosis were found in the liver and spleen. Mycobacterium avium ssp. avium was cultured from both organs.

  9. Virulence of Avian Influenza A Viruses for Squirrel Monkeys

    OpenAIRE

    Murphy, Brian R.; Hinshaw, Virginia S.; Sly, D. Lewis; London, William T.; Hosier, Nanette T.; Wood, Frank T.; Webster, Robert G.; Chanock, Robert M.

    1982-01-01

    Ten serologically distinct avian influenza A viruses were administered to squirrel monkeys and hamsters to compare their replication and virulence with those of human influenza A virus, A/Udorn/307/72 (H3N2). In squirrel monkeys, the 10 avian influenza A viruses exhibited a spectrum of replication and virulence. The levels of virus replication and clinical response were closely correlated. Two viruses, A/Mallard/NY/6874/78 (H3N2) and A/Pintail/Alb/121/79 (H7N8), resembled the human virus in t...

  10. Global Dynamics of Avian Influenza Epidemic Models with Psychological Effect

    OpenAIRE

    Sanhong Liu; Liuyong Pang; Shigui Ruan; Xinan Zhang

    2015-01-01

    Cross-sectional surveys conducted in Thailand and China after the outbreaks of the avian influenza A H5N1 and H7N9 viruses show a high degree of awareness of human avian influenza in both urban and rural populations, a higher level of proper hygienic practice among urban residents, and in particular a dramatically reduced number of visits to live markets in urban population after the influenza A H7N9 outbreak in China in 2013. In this paper, taking into account the psychological effect toward...

  11. Avian influenza viruses - new causative a gents of human infections

    OpenAIRE

    Hrnjaković-Cvjetković Ivana; Cvjetković Dejan; Jerant-Patić Vera; Milošević Vesna; Tadić-Radovanov Jelena; Kovačević Gordana

    2006-01-01

    Introduction. Influenza A viruses can infect humans, some mammals and especially birds. Subtypes of human influenza A viruses: ACH1N1), ACH2N2) and A(H3N2) have caused pandemics. Avian influenza viruses vary owing to their 15 hemagglutinins (H) and 9 neuraminidases (N). Human cases of avian influenza A In the Netherlands in 2003, there were 83 human cases of influenza A (H7N7). In 1997, 18 cases of H5N1 influenza A, of whom 6 died, were found among residents of Hong Kong. In 2004, 34 human ca...

  12. Applied comparative anatomy of the avian middle ear.

    OpenAIRE

    Mills, R.

    1994-01-01

    The anatomy of the middle ear has been studied in nine species of birds, with particular reference to the structure of the ossicle and its relationship to the tympanic membrane. The morphology of the avian middle ear has been compared to that of the reconstructed human middle ear. Drum to stapes foot plate assemblies created during ossiculoplasty operations differ from the pattern found in the avian middle ear in a number of important respects and this may help to explain why they are often u...

  13. Analysis of gp85 Gene of Avian Leucosis Viruses Subgroup J from Layer Chicken%蛋鸡J亚群禽白血病病毒gp85基因遗传进化分析

    Institute of Scientific and Technical Information of China (English)

    林甦; 陈珍; 朱春华; 江斌; 刘斌琼; 蔡国彰; 胡奇林; 黄瑜

    2015-01-01

    为了解福建省蛋鸡J亚型禽白血病病毒(ALV‐J)的遗传进化关系,对来自福建省蛋鸡场发病蛋鸡中分离鉴定的3株ALV‐J的 gp85基因进行克隆与测序,并与国内外18株ALV‐J参考株的基因序列进行分析。结果表明:3株蛋鸡分离株的 gp85基因与亚群2的国内蛋鸡分离株(CL09DP02、GL09DP01和 HuB09JY03)以及原型株HPRS‐103的亲缘关系较近,达97.8%~99.6%,表明福建省蛋鸡 ALV‐J株很可能与国内部分蛋鸡ALV‐J分离株有着共同的来源。%Avian leukosis of laying hen caused serious harm in breeding industry in our province. To investigate the genetic evolution of subgroup J avian leucosis viruses (ALV‐J) isolated from the local layer flocks in Fujian ,the gp85 gene of three isolates from different farms in Fujian were sequenced and analysis. By comparing with the gp85 gene of the 18 reference strains from both at home and abroad in GenBank ,the results showed that the gp85 gene of these three were highly related with domestic layer isolates subgroup II (including CL09DP02 ,GL09DP01 and HuB09JY03) and the prototype ALV‐J strain HPRS‐103 (97.8% -99.6% ) , indicating that the layer ALV‐J isolates in Fujian may have the same origination with part of the domestic layer isolates.

  14. Homo- and Heterosubtypic Low Pathogenic Avian Influenza Exposure on H5N1 Highly Pathogenic Avian Influenza Virus Infection in Wood Ducks (Aix sponsa)

    OpenAIRE

    Costa, Taiana P.; Brown, Justin D.; Howerth, Elizabeth W.; Stallknecht, David E.; Swayne, David E.

    2011-01-01

    Wild birds in the Orders Anseriformes and Charadriiformes are the natural reservoirs for avian influenza (AI) viruses. Although they are often infected with multiple AI viruses, the significance and extent of acquired immunity in these populations is not understood. Pre-existing immunity to AI virus has been shown to modulate the outcome of a highly pathogenic avian influenza (HPAI) virus infection in multiple domestic avian species, but few studies have addressed this effect in wild birds. I...

  15. Avian Influenza: Myth or Mass Murder?

    Directory of Open Access Journals (Sweden)

    Carol Louie

    2005-01-01

    Full Text Available The purpose of the present article was to determine whether avian influenza (AI is capable of causing a pandemic. Using research from a variety of medical journals, books and texts, the present paper evaluates the probability of the AI virus becoming sufficiently virulent to pose a global threat. Previous influenza A pandemics from the past century are reviewed, focusing on the mortality rate and the qualities of the virus that distinguish it from other viruses. Each of the influenza A viruses reviewed were classified as pandemic because they met three key criteria: first, the viruses were highly pathogenic within the human population; second, the viruses were easily transmissible from person to person; and finally, the viruses were novel, such that a large proportion of the population was susceptible to infection. Information about the H5N1 subtype of AI has also been critically assessed. Evidence suggests that this AI subtype is both novel and highly pathogenic. The mortality rate from epidemics in Thailand in 2004 was as high as 66%. Clearly, this virus is aggressive. It causes a high death rate, proving that humans have a low immunity to the disease. To date, there has been little evidence to suggest that AI can spread among humans. There have been cases where the virus has transferred from birds to humans, in settings such as farms or open markets with live animal vending. If AI were to undergo a genetic reassortment that allowed itself to transmit easily from person to person, then a serious pandemic could ensue, resulting in high morbidity and mortality. Experts at the World Health Organization and the United States Centers for Disease Control and Prevention agree that AI has the potential to undergo an antigenic shift, thus triggering the next pandemic.

  16. Aerosolized avian influenza virus by laboratory manipulations

    Directory of Open Access Journals (Sweden)

    Li Zhiping

    2012-08-01

    Full Text Available Abstract Background Avian H5N1 influenza viruses present a challenge in the laboratory environment, as they are difficult to collect from the air due to their small size and relatively low concentration. In an effort to generate effective methods of H5N1 air removal and ensure the safety of laboratory personnel, this study was designed to investigate the characteristics of aerosolized H5N1 produced by laboratory manipulations during research studies. Results Normal laboratory procedures used to process the influenza virus were carried out independently and the amount of virus polluting the on-site atmosphere was measured. In particular, zootomy, grinding, centrifugation, pipetting, magnetic stirring, egg inoculation, and experimental zoogenetic infection were performed. In addition, common accidents associated with each process were simulated, including breaking glass containers, syringe injection of influenza virus solution, and rupturing of centrifuge tubes. A micro-cluster sampling ambient air pollution collection device was used to collect air samples. The collected viruses were tested for activity by measuring their ability to induce hemagglutination with chicken red blood cells and to propagate in chicken embryos after direct inoculation, the latter being detected by reverse-transcription PCR and HA test. The results showed that the air samples from the normal centrifugal group and the negative-control group were negative, while all other groups were positive for H5N1. Conclusions Our findings suggest that there are numerous sources of aerosols in laboratory operations involving H5N1. Thus, laboratory personnel should be aware of the exposure risk that accompanies routine procedures involved in H5N1 processing and take proactive measures to prevent accidental infection and decrease the risk of virus aerosol leakage beyond the laboratory.

  17. Role of estrogen in avian osteoporosis.

    Science.gov (United States)

    Beck, M M; Hansen, K K

    2004-02-01

    One of the difficulties associated with commercial layer production is the development of osteoporosis in hens late in the production cycle. In light of this fact and because of hens' unique requirements for Ca, many studies have focused on the regulation of Ca and the role of estrogen in this process. The time course of estrogen synthesis over the productive life of hens has been well documented; increased circulating estrogen accompanies the onset of sexual maturity while decreases signal a decline in egg production prior to a molt. Numbers of estrogen receptors decrease with age in numerous tissues. The parallel changes in calcium-regulating proteins, primarily Calbindin D28K, and in the ability of duodenal cells to transport Ca, are thought to occur as a result of the changes in estrogen, and are also reversible by the molt process. In addition to the traditional model of estrogen action, evidence now exists for a possible nongenomic action of estrogen via membrane-bound receptors, demonstrated by extremely rapid surges of ionized Ca in chicken granulosa cells in response to 17beta-estradiol. Estrogen receptors have also been discovered in duodenal tissue, and tamoxifen, which binds to the estrogen receptor, has been shown to cause a rapid increase in Ca transport in the duodenum. In addition, recent evidence also suggests that mineralization of bone per se may not explain entirely the etiology of osteoporosis in the hen but that changes in the collagen matrix may contribute through decreases in bone elasticity. Taken together, these studies suggest that changes in estrogen synthesis and estrogen receptor populations may underlie the age-related changes in avian bone. As with postmenopausal women, dietary Ca and vitamin D are of limited benefit as remedies for osteoporosis in the hen. PMID:14979570

  18. Quantitative Risk Assessment of Avian Influenza Virus Infection via Water

    NARCIS (Netherlands)

    Schijven FJ; Teunis PFM; Roda Husman AM de; MGB

    2006-01-01

    Using literature data, daily infection risks of chickens and humans with H5N1 avian influenza virus (AIV) by drinking water consumption were estimated for the Netherlands. A highly infectious virus and less than 4 log10 drinking water treatment (reasonably inefficient) may lead to a high infection r

  19. Avian Encephalomyelitis in Layer Pullets Associated with Vaccination.

    Science.gov (United States)

    Sentíes-Cué, C Gabriel; Gallardo, Rodrigo A; Reimers, Nancy; Bickford, Arthur A; Charlton, Bruce R; Shivaprasad, H L

    2016-06-01

    Avian encephalomyelitis (AE) was diagnosed in three flocks of leghorn layer pullets following AE vaccination. Ages of the birds were 11, 12, and 14 wk. The submissions came from three different companies located in two geographic areas of the Central Valley of California. The clinical signs included birds down on their legs, unilateral recumbency or sitting on their hocks, lethargy, reluctance to move, dehydration, unevenness in size, low weight, tremors of the head in a few birds, and mildly to moderately elevated mortality. The flocks had been vaccinated against fowl pox and AE with a combined product in the wing-web 2 wk prior to the onset of AE clinical signs. Histopathologic examination revealed lesions consistent with AE, including lymphocytic perivascular infiltration and neuronal central chromatolysis in the brain and spinal cord, as well as gliosis in the cerebellar molecular layer. The AE virus was detected by reverse-transcriptase PCR in the brain homogenate from three cases and peripheral nerves in one case. Additionally, the AE virus was isolated in specific-pathogen-free (SPF) embryonated eggs from brain tissue pool samples. Other avian viral infections capable of causing encephalitis, including avian paramyxoviruses, avian influenza virus (AIV), West Nile virus (WNV), eastern equine encephalitis virus (EEEV), and western equine encephalitis virus (WEEV), were ruled out by attempting virus isolation and molecular procedures. PMID:27309297

  20. DETECTION OF AVIAN INFLUENZA VIRUS USING AN INTERFEROMETRIC BIOSENSOR

    Science.gov (United States)

    An optical interferometric waveguide immunoassay for direct and label-less detection of avian influenza virus is described. The assay response is based on index of refraction changes that occur upon binding of virus particles to antigen (hemagglutinin) specific antibodies on the waveguide surface. ...

  1. Highly Pathogenic Avian Influenza Virus Infection in Feral Raccoons, Japan

    OpenAIRE

    Horimoto, Taisuke; Maeda, Ken; Murakami, Shin; Kiso, Maki; Iwatsuki-Horimoto, Kiyoko; SASHIKA, Mariko; Ito, Toshihiro; Suzuki, Kazuo; Yokoyama, Mayumi; Kawaoka, Yoshihiro

    2011-01-01

    Although raccoons (Procyon lotor) are susceptible to influenza viruses, highly pathogenic avian influenza virus (H5N1) infection in these animals has not been reported. We performed a serosurvey of apparently healthy feral raccoons in Japan and found specific antibodies to subtype H5N1 viruses. Feral raccoons may pose a risk to farms and public health.

  2. Avian Metapneumovirus Molecular Biology and Development of Genetically Engineered Vaccines

    Science.gov (United States)

    Avian metapneumovirus (aMPV) is an economically important pathogen of turkeys with a worldwide distribution. aMPV is a member of the genus Metapneumovirus within the subfamily Pneumovirinae of the family Paramyxoviridae. The genome of aMPV is a non-segmented, single-stranded, negative-sense RNA of 1...

  3. Low frequency of paleoviral infiltration across the avian phylogeny

    DEFF Research Database (Denmark)

    Cui, Jie; Zhao, Wei; Huang, Zhiyong;

    2014-01-01

    endogenous viral element evolution.Results: Through a systematic screening of the genomes of 48 species sampled across the avian phylogeny we reveal that birds harbor a limited number of endogenous viral elements compared to mammals, with only five viral families observed: Retroviridae, Hepadnaviridae...

  4. 9 CFR 113.208 - Avian Encephalomyelitis Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ..., Killed Virus. 113.208 Section 113.208 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.208 Avian Encephalomyelitis Vaccine, Killed Virus....

  5. Avian Influenza H5N1 in Tigers and Leopards

    OpenAIRE

    Keawcharoen, Juthatip; Oraveerakul, Kanisak; Kuiken, Thijs; Fouchier, Ron A M; Amonsin, Alongkorn; Payungporn, Sunchai; Noppornpanth, Suwanna; Wattanodorn, Sumitra; Theamboonlers, Apiradee; Tantilertcharoen, Rachod; Pattanarangsan, Rattapan; Arya, Nlin; Ratanakorn, Parntep; Osterhaus, Albert D. M. E.; Poovorawan, Yong

    2004-01-01

    Influenza virus is not known to affect wild felids. We demonstrate that avian influenza A (H5N1) virus caused severe pneumonia in tigers and leopards that fed on infected poultry carcasses. This finding extends the host range of influenza virus and has implications for influenza virus epidemiology and wildlife conservation.

  6. Avian Influenza in wild birds from Chile, 2007-2009.

    Science.gov (United States)

    Mathieu, Christian; Moreno, Valentina; Pedersen, Janice; Jeria, Julissa; Agredo, Michel; Gutiérrez, Cristian; García, Alfonso; Vásquez, Marcela; Avalos, Patricia; Retamal, Patricio

    2015-03-01

    Aquatic and migratory birds, the main reservoir hosts of avian influenza viruses including those with high pathogenic potential, are the wildlife species with the highest risk for viral dissemination across countries and continents. In 2002, the Chilean poultry industry was affected with a highly pathogenic avian influenza strain, which created economic loss and triggered the establishment of a surveillance program in wild birds. This effort consisted of periodic samplings of sick or suspicious animals found along the coast and analyses with standardized techniques for detection of influenza A virus. The aim of this work is to report the detection of three avian influenza strains (H13N2, H5N9, H13N9) in gulls from Chile between 2007-2009, which nucleotide sequences showed highest similitudes to viruses detected in wild birds from North America. These results suggest a dissemination route for influenza viruses along the coasts of Americas. Migratory and synanthropic behaviors of birds included in this study support continued monitoring of avian influenza viruses isolated from wild birds in The Americas and the establishment of biosecurity practices in farms. PMID:25602438

  7. 9 CFR 113.326 - Avian Pox Vaccine.

    Science.gov (United States)

    2010-01-01

    ... Vaccines § 113.326 Avian Pox Vaccine. Fowl Pox Vaccine and Pigeon Pox Vaccine shall be prepared from virus... established as follows: (1) Fowl pox susceptible birds all of the same age and from the same source, shall be... controls do not develop fowl pox during the observation period, the test is inconclusive and may...

  8. Pathobiology of avian influenza virus infections in wild birds

    Science.gov (United States)

    Individual avian Influenza (AI) viruses vary in their ability to produce infection, disease and death in different bird species. Based on the pathobiological features in chickens, AI viruses (AIV) are categorized as low pathogenicity (LPAI) or high pathogenicity (HPAI) viruses, and can be of any of...

  9. Scare of Avian Flu Revisits India: A Bumpy Road Ahead

    Directory of Open Access Journals (Sweden)

    Rajnish Kumar Rai

    2008-04-01

    Full Text Available With the threat of an avian flu pandemic once again looming over eastern India, issues regarding patents and affordability and accessibility of drugs have taken center stage. The key priority of India should be to remain prepared to address the public health crisis effectively, by stockpiling the drug tamiflu so that it can be easily distributed and administered to the needy.India had been confronted with a serious threat of avian flu in 2005-06, but past experience shows that, despite having some of the broadest and most comprehensive compulsory patent licensing laws, India's policymaking elite shied away from fully exploiting these legal 'flexibilities.' Fortunately, the danger of avian flu did not turn into a substantial public health crisis that year. Under this backdrop, this paper explores various ‘flexibilities’ available in the Indian patent law and suggests short term and long term strategies to effectively tackle the impending danger of an avian flu pandemic, and similar public health crises in future. This paper will discuss potential areas of conflict between the indigenous generic drug firms and the multi-national companies with respect to TRIPS compliance in the event that these flexibilities are exploited. This paper also highlights the administrative constraints and the economic viability of the compulsory licensing system. Finally, this paper shows how political will is often more critical than having well documented provisions in statute books to respond to such situations effectively.

  10. MHC haplotype involvement in avian resistance to an ectoparasite.

    Science.gov (United States)

    Owen, Jeb P; Delany, Mary E; Mullens, Bradley A

    2008-10-01

    Research on immune function in evolutionary ecology has frequently focused on avian ectoparasites (e.g., mites and lice). However, host immunogenetics involved with bird resistance to ectoparasites has not been determined. The critical role of the major histocompatibility complex (MHC) in adaptive immunity and high genetic variation found within the MHC make this gene complex useful for exploring the immunogenetic basis for bird resistance to ectoparasites. The objective of this study was to determine if the avian MHC influenced resistance to a blood-feeding ectoparasite. Four congenic lines of chickens, differing only at the MHC, were comparatively infested with a cosmopolitan ectoparasite of birds-northern fowl mite (NFM)-which is also a serious pest species of poultry. Mite infestations were monitored over time and mite densities (weekly and maximum) were compared among lines. Chickens with the MHC haplotype B21 were relatively resistant to NFM, compared with birds in the B15 congenic line (P density were tested. The highest peak NFM populations occurred more often on hens with the B15 haplotype versus the B21 haplotype (P = 0.012), which supported the results of the congenic study. These data indicate the avian MHC influences ectoparasite resistance, which is relevant to disease ecology and avian-ectoparasite interaction. PMID:18626638

  11. Avian Bornavirus in Free-Ranging Psittacine Birds, Brazil

    OpenAIRE

    Encinas-Nagel, Nuri; Enderlein, Dirk; Piepenbring, Anne; Herden, Christiane; Heffels-Redmann, Ursula; Felippe, Paulo A.N.; Arns, Clarice; Hafez, Hafez M.; Lierz, Michael

    2014-01-01

    Avian bornavirus (ABV) has been identified as the cause of proventricular dilatation disease in birds, but the virus is also found in healthy birds. Most studies of ABV have focused on captive birds. We investigated 86 free-ranging psittacine birds in Brazil and found evidence for natural, long-term ABV infection.

  12. Prevention and control of avian influenza in Asia

    Science.gov (United States)

    The H5N1 high pathogenicity avian influenza (HPAI) virus emerged in China during 1996 and has spread to infect poultry and/or wild birds in 62 countries during the past 15 years. For 2011-2012, 19 countries reported outbreaks of H5N1 in domestic poultry, wild birds or both. The majority of the outbr...

  13. Highly Pathogenic Avian Influenza: Intersecting Humans, Animals, and the Environment

    Science.gov (United States)

    The Eurasian-African H5N1 highly pathogenic avian influenza (HPAI) virus has caused an unprecedented epizootic affecting mainly poultry, but has crossed multiple species barriers to infect captive and wild birds, carnivorous mammals and humans. There is still great concern over the continued infecti...

  14. Highly pathogenic avian influenza virus among wild birds in Mongolia

    Science.gov (United States)

    The central Asian country of Mongolia supports large populations of migratory water birds that migrate across much of Asia where highly pathogenic avian influenza (HPAI) virus subtype H5N1 is endemic. This, together with the near absence of domestic poultry, makes Mongolia an ideal location to unde...

  15. Avian influenza: the political economy of disease control in Cambodia.

    Science.gov (United States)

    Ear, Sophal

    2011-01-01

    Abstract In the wake of avian flu outbreaks in 2004, Cambodia received $45 million in commitments from international donors to help combat the spread of animal and human influenza, particularly avian influenza (H5N1). How countries leverage foreign aid to address the specific needs of donors and the endemic needs of the nation is a complex and nuanced issue throughout the developing world. Cambodia is a particularly compelling study in pandemic preparedness and the management of avian influenza because of its multilayered network of competing local, national, and global needs, and because the level of aid in Cambodia represents approximately $2.65 million per human case-a disproportionately high number when compared with neighbors Vietnam and Indonesia. This paper examines how the Cambodian government has made use of animal and human influenza funds to protect (or fail to protect) its citizens and the global community. It asks how effective donor and government responses were to combating avian influenza in Cambodia, and what improvements could be made at the local and international level to help prepare for and respond to future outbreaks. Based on original interviews, a field survey of policy stakeholders, and detailed examination of Cambodia's health infrastructure and policies, the findings illustrate that while pandemic preparedness has shown improvements since 2004, new outbreaks and human fatalities accelerated in 2011, and more work needs to be done to align the specific goals of funders with the endemic needs of developing nations. PMID:22702421

  16. Immunohistochemical staining of avian influenza virus in tissues

    Science.gov (United States)

    Immunohistochemical methods are commonly used for studying the pathogenesis of avian influenza (AI) virus by allowing the identification of sites of replication of the virus in infected tissues and the correlation with the histopathological changes observed. In this chapter, the materials and metho...

  17. Avian influenza diagnosis in the Russian Federation: Achievements and perspectives

    International Nuclear Information System (INIS)

    According to the Rosselkhoznadzor data, during 2005-2006, the avian influenza H5N1 outbreaks were reported in the Russian Federation in the Siberian, Ural, Central and South Federal Okrugs. In 2007, the RF officials notified the IOE about HPAI/H5N1 outbreaks in the territories of the Krasnodarsky Krai, Republic of Adygea, Moskovskaya and Kaluzhskaya Oblast. In 2008 there was one report about HPAI/H5N1 outbreak in Primorskii Krai (Far Eastern Okrug). To detect and characterize the avian influenza virus the following diagnostic scheme was used in ARRIAH: suspected cases (poultry, wild birds) and for monitoring purposes. 392 samples were positive in PCR to avian influenza virus type A. The most part of them were HPAI H5N1. In 2005 it was discovered 618 samples (223 - from poultry and 395 are from wild birds). Avian influenza type A virus genome was detected in 174 samples (85 - from poultry and 89 are from wild birds). 84 poultry samples and 36 wild birds samples were positive to subtype H5N1 (HPAI). 44 AI virus isolates were recovered (28 - from poultry and 16 are from wild birds). In 2006 it was discovered 1014 samples (159 - from poultry and 855 are from wild birds). Avian influenza type A virus genome was detected in 144 samples (84 - from poultry and 60 are from wild birds). Most part of these samples were positive to subtype H5N1. 67 AI virus isolates were recovered (50 - from poultry and 17 are from wild birds). In 2007 there were analyzed 833 samples (233 - from poultry and 600 are from wild birds). Avian influenza type A virus genome was detected in 55 poultry samples. All are positive to H5N1 subtype. Avian Influenza type A virus genome was detected in 7 samples from 1 region. Avian Influenza subtype H5N1 virus was not found. In 2008 we analyzed approximately 1400 samples. Most of them are from wild birds. Only 30 samples are from poultry. Avian influenza type A virus genome was detected in 1 poultry sample (HPAI H5N1). Avian Influenza type A virus genome

  18. Risk Mapping for Avian Influenza: a Social–Ecological Problem

    Directory of Open Access Journals (Sweden)

    Graeme S. Cumming

    2010-09-01

    Full Text Available Pathogen dynamics are inseparable from the broader environmental context in which pathogens occur. Although some pathogens of people are primarily limited to the human population, occurrences of zoonoses and vector-borne diseases are intimately linked to ecosystems. The emergence of these diseases is currently being driven by a variety of influences that include, among other things, changes in the human population, long-distance travel, high-intensity animal-production systems, and anthropogenic modification of ecosystems. Anthropogenic impacts on ecosystems have both direct and indirect (food-web mediated effects. Therefore, understanding disease risk for zoonoses is a social–ecological problem. The articles in this special feature focus on risk assessment for avian influenza. They include analyses of the history and epidemiological context of avian influenza; planning and policy issues relating to risk; the roles of biogeography and spatial and temporal variation in driving the movements of potential avian influenza carriers; approaches to quantifying risk; and an assessment of risk-related interactions among people and birds in Vietnamese markets. They differ from the majority of published studies of avian influenza in that they emphasize unknowns and uncertainties in risk mapping and societal responses to avian influenza, rather than concentrating on known or proven facts. From a systems perspective, the different aspects of social–ecological systems that are relevant to the problem of risk mapping can be summarized under the general categories of structural, spatial, and temporal components. I present some examples of relevant system properties, as suggested by this framework, and argue that, ultimately, risk mapping for infectious disease will need to develop a more holistic perspective that includes explicit consideration of the roles of policy, disease management, and feedbacks between ecosystems and societies.

  19. Evaluation and optimization of avian embryos and cell culture methods for efficient isolation and propagation of avian influenza viruses

    Science.gov (United States)

    Surveillance of wild bird populations for avian influenza viruses (AIV) contributes to our understanding of AIV evolution and ecology. Both real-time reverse transcriptase polymerase chain reaction (RRT-PCR) and virus isolation in embryonating chicken eggs (ECE) are standard methods for detecting A...

  20. Ocorrência de leucose enzoótica bovina na microrregião da Serra de Botucatu Occurrence of bovine leukosis virus in the microregion of the Serra de Botucatu, SP, Brazil

    Directory of Open Access Journals (Sweden)

    J. Megid

    2003-10-01

    Full Text Available The aim of this study was characterize the positivity of the bovine leukosis virus in the Microregion of the Serra de Botucatu. Sera from 1193 bovine from 65 properties of the Microregion of the Serra de Botucatu were evaluated throught ELISA test. All the evaluated animals were adult and 16 of them only were male; 85.5% were crossbred, 6.45% Nellore and 8% dutch. Of the analyzed samples, 618 sera had resulted positive to the test. In only one flock it was not found seroreagents animals, the regional positivity was 52% (the seropositivity in the properties varied of 10% to 67%, the higher the percentage of positivity was in the animals of the dutch race (94.7%, followed for the crossbred (43.7%. The high percentage of positivity of the disease in our region is distinguished.

  1. Outbreak of H7N8 Low Pathogenic Avian Influenza in Commercial Turkeys with Spontaneous Mutation to Highly Pathogenic Avian Influenza.

    Science.gov (United States)

    Killian, Mary Lea; Kim-Torchetti, Mia; Hines, Nichole; Yingst, Sam; DeLiberto, Thomas; Lee, Dong-Hun

    2016-01-01

    Highly pathogenic avian influenza (HPAI) subtype H7N8 was detected in commercial turkeys in January 2016. Control zone surveillance discovered a progenitor low pathogenic avian influenza (LPAI) virus in surrounding turkey flocks. Data analysis supports a single LPAI virus introduction followed by spontaneous mutation to HPAI on a single premises. PMID:27313288

  2. Outbreak of H7N8 Low Pathogenic Avian Influenza in Commercial Turkeys with Spontaneous Mutation to Highly Pathogenic Avian Influenza

    Science.gov (United States)

    Killian, Mary Lea; Hines, Nichole; Yingst, Sam; DeLiberto, Thomas; Lee, Dong-Hun

    2016-01-01

    Highly pathogenic avian influenza (HPAI) subtype H7N8 was detected in commercial turkeys in January 2016. Control zone surveillance discovered a progenitor low pathogenic avian influenza (LPAI) virus in surrounding turkey flocks. Data analysis supports a single LPAI virus introduction followed by spontaneous mutation to HPAI on a single premises. PMID:27313288

  3. Changes in avian disease and mosquito vector prevalence; A 15-year perceptive and assessment of future risk: Hakalau National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Mosquito-borne avian disease, avian malaria and avian pox, is a major limiting factor for Hawaiian forest birds. While native bird communities at Hakalau Forest NWR...

  4. Molecular diagnostics of Avian influenza virus

    Directory of Open Access Journals (Sweden)

    Petrović Tamaš

    2006-01-01

    direct sequencing of the PCR product. The possibility of typization using molecular methods is based on the big difference at the amino acid and nucleotide levels between different HA subtypes (from 20- 74%, while the differences between strains of the same HA subtype are relatively small (0- 9%. The basic advantage in the detection and typization of influenza viruses using the RTPCR method is that it saves time. Namely, it can be performed directly from the samples taken in the field, and the result can be obtained within the same day, contrary to conventional methods that take 7 to 10 days. The obtained PCR product can also be sequenced immediately, which can provide an answer to the possible virulent potential of the isolate and its further spreading. The establishment of changes in the HA gene sequence can provide us with the information about the direction of the development of the genetic drift. The paper will describe in detail the possibilities for the implementation of molecular methods in diagnostics and typization, in fact, in the molecular epizootiology of avian influenza.

  5. Avian Collisions with Wind Turbines: A Summary of Existing Studies and Comparisons to Other Sources of Avian Collision Mortality in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, Wallace P.; Johnson, Gregory D.; Strickland, Dale M.; Young, Jr., David P.; Sernka, Karyn J.; Good, Rhett E.

    2001-08-01

    It has been estimated that from 100 million to well over 1 billion birds are killed annually in the United States due to collisions with human-made structures, including vehicles, buildings and windows, powerlines, communication towers, and wind turbines. Although wind energy is generally considered environmentally friendly (because it generates electricity without emitting air pollutants or greenhouse gases), the potential for avian fatalities has delayed and even significantly contributed to blocking the development of some windplants in the U.S. Given the importance of developing a viable renewable source of energy, the objective of this paper is to put the issue of avian mortality associated with windpower into perspective with other sources of avian collision mortality across the U.S. The purpose of this paper is to provide a detailed summary of the mortality data collected at windplants and put avian collision mortality associated with windpower development into perspective with other significant sources of avian collision mortality across the United States. We provide a summary of data collected at many of the U.S. windplants and provide annual bird fatality estimates and projections for all wind turbines in the U.S. For comparison, we also review studies of avian collision mortality from other major human-made structures and report annual bird fatality estimates for these sources. Other sources also significantly contribute to overall avian mortality. For example, the National Audubon Society estimates avian mortality due to house cats at 100 million birds per year. Pesticide use, oil spills, disease, etc., are other significant sources of unintended avian mortality. Due to funding constraints, the scope of this paper is limited to examining only avian mortality resulting from collisions with human-made obstacles.

  6. Evolution of olfaction in non-avian theropod dinosaurs and birds

    OpenAIRE

    Darla K Zelenitsky; Therrien, François; Ridgely, Ryan C.; McGee, Amanda R.; Witmer, Lawrence M.

    2011-01-01

    Little is known about the olfactory capabilities of extinct basal (non-neornithine) birds or the evolutionary changes in olfaction that occurred from non-avian theropods through modern birds. Although modern birds are known to have diverse olfactory capabilities, olfaction is generally considered to have declined during avian evolution as visual and vestibular sensory enhancements occurred in association with flight. To test the hypothesis that olfaction diminished through avian evolution, we...

  7. Avian Influenza (H5N1) Warning System using Dempster-Shafer Theory and Web Mapping

    OpenAIRE

    Maseleno, Andino; Hasan, Md. Mahmud

    2012-01-01

    Based on Cumulative Number of Confirmed Human Cases of Avian Influenza (H5N1) Reported to World Health Organization (WHO) in the 2011 from 15 countries, Indonesia has the largest number death because Avian Influenza which 146 deaths. In this research, the researcher built a Web Mapping and Dempster-Shafer theory as early warning system of avian influenza. Early warning is the provision of timely and effective information, through identified institutions, that allows individuals exposed to a h...

  8. Adenovirus as a carrier for the development of influenza virus-free avian influenza vaccines

    OpenAIRE

    Tang, De-chu C.; Zhang, Jianfeng; Toro, Haroldo; Shi, Zhongkai; van Kampen, Kent R.

    2009-01-01

    A long-sought goal during the battle against avian influenza is to develop a new generation of vaccines capable of mass immunizing humans as well as poultry (the major source of avian influenza for human infections) in a timely manner. Although administration of the currently licensed influenza vaccine is effective in eliciting protective immunity against seasonal influenza, this approach is associated with a number of insurmountable problems for preventing an avian influenza pandemic. Many o...

  9. A Complete Molecular Diagnostic Procedure for Applications in Surveillance and Subtyping of Avian Influenza Virus

    OpenAIRE

    Chun-Hsien Tseng; Hsiang-Jung Tsai; Chung-Ming Chang

    2014-01-01

    Introduction. The following complete molecular diagnostic procedure we developed, based on real-time quantitative PCR and traditional PCR, is effective for avian influenza surveillance, virus subtyping, and viral genome sequencing. Method. This study provides a specific and sensitive step-by-step procedure for efficient avian influenza identification of 16 hemagglutinin and 9 neuraminidase avian influenza subtypes. Result and Conclusion. This diagnostic procedure may prove exceedingly useful ...

  10. Linking avian communities and avian influenza ecology in southern Africa using epidemiological functional groups

    Directory of Open Access Journals (Sweden)

    Caron Alexandre

    2012-10-01

    Full Text Available Abstract The ecology of pathogens, and particularly their emergence in multi-host systems, is complex. New approaches are needed to reduce superficial complexities to a level that still allows scientists to analyse underlying and more fundamental processes. One promising approach for simplification is to use an epidemiological-function classification to describe ecological diversity in a way that relates directly to pathogen dynamics. In this article, we develop and apply the epidemiological functional group (EFG concept to explore the relationships between wild bird communities and avian influenza virus (AIV in three ecosystems in southern Africa. Using a two year dataset that combined bird counts and bimonthly sampling for AIV, we allocated each bird species to a set of EFGs that captured two overarching epidemiological functions: the capacity of species to maintain AIV in the system, and their potential to introduce the virus. Comparing AIV prevalence between EFGs suggested that the hypothesis that anseriforms (ducks and charadriiforms (waders drive AIV epidemiology cannot entirely explain the high prevalence observed in some EFGs. If anseriforms do play an important role in AIV dynamics in each of the three ecosystems, the role of other species in the local maintenance of AIV cannot be ruled out. The EFG concept thus helped us to identify gaps in knowledge and to highlight understudied bird groups that might play a role in AIV epidemiology. In general, the use of EFGs has potential for generating a range of valuable insights in epidemiology, just as functional group approaches have done in ecology.

  11. A new feathered maniraptoran dinosaur fossil that fills a morphological gap in avian origin

    Institute of Scientific and Technical Information of China (English)

    XU Xing; ZHAO Qi; NORELL Mark; SULLIVAN Corwin; HONE David; ERICKSON Gregory; WANG XiaoLin; HAN FengLu; GUO Yu

    2009-01-01

    Recent fossil discoveries have substantially reduced the morphological gap between non-avian and avian dinosaurs, yet avians including Archaeopteryx differ from non-avian theropods in their limb proportions. In particular, avians have proportionally longer and more robust forelimbs that are capable of supporting a large aerodynamic surface. Here we report on a new maniraptoran dinosaur, Anchiornis huxleyi gen. et sp. nov., based on a specimen collected from Iacustrine deposits of uncertain age in western Liaoning, China. With an estimated mass of 110 grams, Anchiornis is the smallest known non-avian theropod dinosaur. It exhibits some wrist features indicative of high mobility, presaging the wing-folding mechanisms seen in more derived birds and suggesting rapid evolution of the carpus. Otherwise, Anchiornis is intermediate in general morphology between non-avian and avian dinosaurs, particularly with regard to relative forelimb length and thickness, and represents a transitional step toward the avian condition. In contrast with some recent comprehensive phylogenetic analyses, our phylogenetic analysis incorporates subtle morphological variations and recovers a conventional result supporting the monophyly of Avialae.

  12. Access to health information may improve behavior in preventing Avian influenza among women

    Directory of Open Access Journals (Sweden)

    Ajeng T. Endarti

    2011-02-01

    Full Text Available Background: Improving human behavior toward Avian influenza may lessen the chance to be infected by Avian influenza. This study aimed to identify several factors influencing behavior in the community.Method: A cross-sectional study was conducted in July 2008. Behavior regarding Avian influenza was measured by scoring the variables of knowledge, attitude, and practice. Subjects were obtained from the sub district of Limo, in Depok, West Java, which was considered a high risk area for Avian influenza. The heads of household as the sample unit were chosen by multi-stage sampling.Results: Among 387 subjects, 29.5% of them was had good behavior toward Avian influenza. The final model revealed that gender and access to health information were two dominant factors for good behavior in preventing Avian influenza. Compared with men, women had 67% higher risk to have good behavior [adjusted relative risk (RRa = 1.67; 95% confidence interval (CI = 0.92-3.04; P = 0.092]. Compared to those with no access to health information, subjects with access to health information had 3.4 fold increase to good behavior (RRa = 3.40; 95% CI =  0.84-13.76; P = 0.087.Conclusion: Acces to health information concerning Avian influenza was more effective among women in promoting good behavior toward preventing Avian influenza. (Med J Indones 2011; 20:56-61Keywords: avian influenza, behavior, gender, health promotion

  13. Avian influenza vaccines against H5N1 'bird flu'.

    Science.gov (United States)

    Li, Chengjun; Bu, Zhigao; Chen, Hualan

    2014-03-01

    H5N1 avian influenza viruses (AIVs) have spread widely to more than 60 countries spanning three continents. To control the disease, vaccination of poultry is implemented in many of the affected countries, especially in those where H5N1 viruses have become enzootic in poultry and wild birds. Recently, considerable progress has been made toward the development of novel avian influenza (AI) vaccines, especially recombinant virus vector vaccines and DNA vaccines. Here, we will discuss the recent advances in vaccine development and use against H5N1 AIV in poultry. Understanding the properties of the available, novel vaccines will allow for the establishment of rational vaccination protocols, which in turn will help the effective control and prevention of H5N1 AI. PMID:24491922

  14. Session: Avoiding, minimizing, and mitigating avian and bat impacts

    International Nuclear Information System (INIS)

    This session at the Wind Energy and Birds/Bats workshop consisted of two presentations followed by a discussion/question answer period. The session addressed a variety of questions related to avoiding, minimizing, and mitigating the avian and bat impacts of wind power development including: what has been learned from operating turbines and mitigating impacts where they are unavoidable, such as at Altamont Pass WRA, and should there be mitigation measures such as habitat creation or land conservation where impacts occur. Other impact minimization and mitigation approaches discussed included: location and siting evaluations; options for construction and operation of wind facilities; turbine lighting; and the physical alignment/orientation. Titles and authors of the presentations were: 'Bird Fatalities in the Altamont Pass Wind Resource Area: A Case Study, Part II' by Carl Thelander and 'Prevention and Mitigation of Avian Impacts at Wind Power Facilities' by Paul Kerlinger

  15. Multiscale assessment of patterns of avian species richness

    DEFF Research Database (Denmark)

    Rahbek, C; Graves, G R

    2001-01-01

    -250% greater than those recorded at equivalent latitudes in the central Amazon basin. These findings reflect the extraordinary abundance of species associated with humid montane regions at equatorial latitudes and the importance of orography in avian speciation. In a broader context, our data reinforce......The search for a common cause of species richness gradients has spawned more than 100 explanatory hypotheses in just the past two decades. Despite recent conceptual advances, further refinement of the most plausible models has been stifled by the difficulty of compiling high-resolution databases...... at continental scales. We used a database of the geographic ranges of 2,869 species of birds breeding in South America (nearly a third of the world's living avian species) to explore the influence of climate, quadrat area, ecosystem diversity, and topography on species richness gradients at 10 spatial scales...

  16. PCR em tempo real para diagnóstico da leucose enzoótica bovina Enzootic bovine leukosis real time PCR

    Directory of Open Access Journals (Sweden)

    Natanael Lamas Dias

    2012-08-01

    Full Text Available O objetivo deste trabalho foi realizar a validação de uma reação em cadeia da polimerase em tempo real com o sistema Plexor® (qPCR para o diagnóstico da Leucose Enzoótica Bovina (LEB, por meio da comparação com testes de diagnóstico recomendados pela Organização Mundial de Saúde Animal (OIE. A qPCR foi comparada com duas outras técnicas: a PCR nested (nPCR e a imunodifusão em gel de ágar (IDGA. Das 82 amostras analisadas pela qPCR e nPCR, 79 apresentaram resultados concordantes, sendo a concordância, classificada pelo Índice Kappa, como alta. Entre as PCRs e a IDGA, o número de resultados concordantes foi de 71 e 69, respectivamente, para qPCR e nPCR, sendo a concordância classificada como considerável. A qPCR apresentou altos valores de sensibilidade e especificidade. Os valores preditivos da qPCR observados demonstraram a alta capacidade de classificação dos casos positivos e negativos. A qPCR não foi capaz de detectar três amostras positivas e tem custo ligeiramente superior que a nPCR. Entretanto, a qPCR é uma técnica mais rápida, menos susceptível a contaminações, tem alta sensibilidade, não utiliza e não gera resíduos carcinogênicos. Concluímos que a qPCR pode substituir a nPCR recomendada pela OIE no diagnóstico de rotina em áreas em que a LEB é endêmica, como no Brasil.The goal of this research was to validate a Plexor® real time Polymerase Chain Reaction (qPCR for Enzootic Bovine Leukosis (EBL diagnosis by comparison with methods recommend by the World Animal Health Organization (OIE. The qPCR was compared with two other techniques: the nested PCR (nPCR and to the agar gel immunodiffusion (AGID. Of 82 qPCR and nPCR analysed samples, 79 presented concordant results, being the concordance classified by Kappa Index as high. Between the PCRs and AGID, the number of concordant results was 71 and 69, out of 82, to qPCR and nPCR, respectively, being the concordance classified as considerable, in both

  17. Free-grazing ducks and highly pathogenic avian influenza, Thailand

    OpenAIRE

    Gilbert, Marius; Chaitaweesup, P.; Parakamawongsa, T.; Premashthira, S.; Tiensin, T.; Kalpravidh, W.; Wagner, H.; Slingenbergh, J.

    2006-01-01

    Thailand has recently had 3 epidemic waves of highly pathogenic avian influenza (HPAI); virus was again detected in July 2005. Risk factors need to be identified to better understand disease ecology and assist HPAI surveillance and detection. This study analyzed the spatial distribution of HPAI outbreaks in relation to poultry, land use, and other anthropogenic variables from the start of the second epidemic wave (July 2004–May 2005). Results demonstrate a strong association between H5N1 viru...

  18. Global Climate Change Leads to Mistimed Avian Reproduction

    OpenAIRE

    Visser, Marcel E; Both, Christiaan; Lambrechts, Marcel M.

    2004-01-01

    Climate change is apparent as an advancement of spring phenology. However, there is no a priori reason to expect that all components of food chains will shift their phenology at the same rate. This differential shift will lead to mistimed reproduction in many species, including seasonally breeding birds. We argue that climate change induced mistiming in avian reproduction occurs because there is a substantial period between the moment of decision making on when to reproduce and the moment at ...

  19. The Bird of Time: Cognition and the Avian Biological Clock

    OpenAIRE

    Vincent Michael Cassone; David F Westneat

    2012-01-01

    Avian behavior and physiology are embedded in time at many levels of biological organization. Biological clock function in birds is critical for sleep/wake cycles, but may also regulate the acquisition of place memory, learning of song from tutors, social integration and time-compensated navigation. This relationship has two major implications. First, mechanisms of the circadian clock should be linked in some way to the mechanisms of all these behaviors. How is not yet clear, and evidence tha...

  20. The Bird of Time: Cognition and the Avian Biological Clock

    Directory of Open Access Journals (Sweden)

    Vincent Michael Cassone

    2012-03-01

    Full Text Available Avian behavior and physiology are embedded in time at many levels of biological organization. Biological clock function in birds is critical for sleep/wake cycles, but may also regulate the acquisition of place memory, learning of song from tutors, social integration and time-compensated navigation. This relationship has two major implications. First, mechanisms of the circadian clock should be linked in some way to the mechanisms of all these behaviors. How is not yet clear, and evidence that the central clock has effects is piecemeal. Second, selection acting on characters that are linked to the circadian clock should influence aspects of the clock mechanism itself. Little evidence exists for this in birds, but there have been few attempts to assess this idea. At its core, the avian circadian clock is a multi-oscillator system comprising the pineal gland, the retinae and the avian homologues of the suprachiasmatic nuclei, whose mutual interactions ensure coordinated physiological functions, which are in turn synchronized to ambient light cycles via encephalic, pineal and retinal photoreceptors. At the molecular level, avian biological clocks comprise a genetic network of positive elements clock and bmal1 whose interactions with the negative elements period2, period3 and the cryptochromes form an oscillatory feedback loop that circumnavigates the 24 hrs of the day. We assess the possibilities for dual integration of the clock with time-dependent cognitive processes. Closer examination of the molecular, physiological, and behavioral elements of the circadian system would place birds at a very interesting fulcrum in the neurobiology of time in learning, memory and navigation.