WorldWideScience

Sample records for avian influenza vaccines

  1. DIVA vaccination strategies for avian influenza virus.

    Science.gov (United States)

    Suarez, David L

    2012-12-01

    Vaccination for both low pathogenicity avian influenza and highly pathogenic avian influenza is commonly used by countries that have become endemic for avian influenza virus, but stamping-out policies are still common for countries with recently introduced disease. Stamping-out policies of euthanatizing infected and at-risk flocks has been an effective control tool, but it comes at a high social and economic cost. Efforts to identify alternative ways to respond to outbreaks without widespread stamping out has become a goal for organizations like the World Organisation for Animal Health. A major issue with vaccination for avian influenza is trade considerations because countries that vaccinate are often considered to be endemic for the disease and they typically lose their export markets. Primarily as a tool to promote trade, the concept of DIVA (differentiate infected from vaccinated animals) has been considered for avian influenza, but the goal for trade is to differentiate vaccinated and not-infected from vaccinated and infected animals because trading partners are unwilling to accept infected birds. Several different strategies have been investigated for a DIVA strategy, but each has advantages and disadvantages. A review of current knowledge on the research and implementation of the DIVA strategy will be discussed with possible ways to implement this strategy in the field. The increased desire for a workable DIVA strategy may lead to one of these ideas moving from the experimental to the practical.

  2. Influenza vaccines for avian species

    Science.gov (United States)

    Beginning in Southeast Asia, in 2003, a multi-national epizootic outbreak of H5N1 highly pathogenic avian influenza (HPAI) was identified in commercial poultry and wild bird species. This lineage, originally identified in Southern China in 1996 and then Hong Kong in 1997, caused severe morbidity an...

  3. Viral vectors for avian influenza vaccines

    Science.gov (United States)

    Prior to 2003, vaccines against avian influenza (AI) had limited, individual country or regional use in poultry. In late 2003, H5N1 high pathogenicity (HP) AI spread from China to multiple Southeast Asian countries, and to Europe during 2005 and Africa during 2006, challenging governments and all p...

  4. New USDA licensed avian influenza vaccine (rHVT-AI) for protection against H5 avian influenza and usage discussion

    Science.gov (United States)

    Recently, a new avian influenza vaccine was licensed by USDA for use in the United States for protection of commercial poultry. The vaccine is a recombinant herpes virus of turkeys expressing the hemagglutinin gene of an H5 subtype avian influenza virus belonging to the 2.2 clade of the H5N1 highly ...

  5. Practical aspects of vaccination of poultry against avian influenza virus.

    Science.gov (United States)

    Spackman, Erica; Pantin-Jackwood, Mary J

    2014-12-01

    Although little has changed in vaccine technology for avian influenza virus (AIV) in the past 20 years, the approach to vaccination of poultry (chickens, turkeys and ducks) for avian influenza has evolved as highly pathogenic AIV has become endemic in several regions of the world. Vaccination for low pathogenicity AIV is also becoming routine in regions where there is a high level of field challenge. In contrast, some countries will not use vaccination at all and some will only use it on an emergency basis during eradication efforts (i.e. stamping-out). There are pros and cons to each approach and, since every outbreak situation is different, no one method will work equally well in all situations. Numerous practical aspects must be considered when developing an AIV control program with vaccination as a component, such as: (1) the goals of vaccination must be defined; (2) the population to be vaccinated must be clearly identified; (3) there must be a plan to obtain and administer good quality vaccine in a timely manner and to achieve adequate coverage with the available resources; (4) risk factors for vaccine failure should be mitigated as much as possible; and, most importantly, (5) biosecurity must be maintained as much as possible, if not enhanced, during the vaccination period. Published by Elsevier Ltd.

  6. Avian Influenza.

    Science.gov (United States)

    Zeitlin, Gary Adam; Maslow, Melanie Jane

    2005-05-01

    The current epidemic of H5N1 highly pathogenic avian influenza in Southeast Asia raises serious concerns that genetic reassortment will result in the next influenza pandemic. There have been 164 confirmed cases of human infection with avian influenza since 1996. In 2004, there were 45 cases of human H5N1 in Vietnam and Thailand, with a mortality rate more than 70%. In addition to the potential public health hazard, the current zoonotic epidemic has caused severe economic losses. Efforts must be concentrated on early detection of bird outbreaks with aggressive culling, quarantining, and disinfection. To prepare for and prevent an increase in human cases, it is essential to improve detection methods and stockpile effective antivirals. Novel therapeutic modalities, including short-interfering RNAs and new vaccine strategies that use plasmid-based genetic systems, offer promise should a pandemic occur.

  7. Reduction of high pathogenicity avian influenza virus in eggs from chickens once or twice vaccinated with an oil-emulsified inactivated H5 avian influenza vaccine

    Science.gov (United States)

    The negative impact of high pathogenicity avian influenza virus (HPAIV) infection on egg production and deposition of virus in eggs, as well as any protective effect of vaccination, is unknown. Individually housed non-vaccinated, sham-vaccinated and inactivated H5N9 vaccinated once or twice adult Wh...

  8. Avian influenza mucosal vaccination in chickens with replication-defective recombinant adenovirus vaccine

    Science.gov (United States)

    We evaluated protection conferred by mucosal vaccination with replication competent adenovirus (RCA)-free recombinant adenovirus expressing a codon-optimized avian influenza (AI) H5 gene (AdTW68.H5ck). Commercial layer-type chicken groups were singly vaccinated ocularly at 5 days of age, or singly v...

  9. Vaccinating chickens against avian influenza with fowlpox recombinants expressing the H7 haemagglutinin.

    Science.gov (United States)

    Boyle, D B; Selleck, P; Heine, H G

    2000-01-01

    To evaluate the vaccine efficacy of a fowlpox virus recombinant expressing the H7 haemagglutinin of avian influenza virus in poultry. Specific-pathogen-free poultry were vaccinated with fowlpox recombinants expressing H7 or H1 haemagglutinins of influenza virus. Chickens were vaccinated at 2 or 7 days of age and challenged with virulent Australian avian influenza virus at 10 and 21 days later, respectively. Morbidity and mortality, body weight change and the development of immune responses to influenza haemagglutinin and nucleoprotein were recorded. Vaccination of poultry with fowlpox H7 avian influenza virus recombinants induced protective immune responses. All chickens vaccinated at 7 days of age and challenged 21 days later were protected from death. Few clinical signs of infection developed. In contrast, unvaccinated or chickens vaccinated with a non-recombinant fowlpox or a fowlpox expressing the H1 haemagglutinin of human influenza were highly susceptible to avian influenza. All those chickens died within 72 h of challenge. In younger chickens, vaccinated at 2 days of age and challenged 10 days later the protection was lower with 80% of chickens protected from death. Chickens surviving vaccination and challenge had high antibody responses to haemagglutinin and primary antibody responses to nucleoprotein suggesting that although vaccination protected substantially against disease it failed to completely prevent replication of the challenge avian influenza virus. Vaccination of chickens with fowlpox virus expressing the avian influenza H7 haemagglutinin provided good protection against experimental challenge with virulent avian influenza of H7 type. Although eradication will remain the method of first choice for control of avian influenza, in the circumstances of a continuing and widespread outbreak the availability of vaccines based upon fowlpox recombinants provides an additional method for disease control.

  10. Vector vaccines for control of avian influenza

    Science.gov (United States)

    Vaccines play a critical role in the poultry industries efforts at disease control and prevention. However, providing safe, efficacious, and cost-effective vaccines remains a constant issue to the industry. In addition, many viruses undergo mutation in the field requiring vaccine adjustments. Recent...

  11. Strategies and challenges to the development and application of avian influenza vaccines in birds

    Science.gov (United States)

    Vaccines against avian influenza (AI) have had limited use in poultry until 2002, when the H5N1 high pathogenicity avian influenza (HPAI) spread from China to Hong Kong, and then multiple southeast Asian countries in 2003-2004, and to Europe in 2005, and Africa in 2006. Over the past 40 years, AI ...

  12. Periodic updating of avian influenza vaccines is necessary to maintain effectiveness in the field

    Science.gov (United States)

    The impact of avian influenza on poultry production is undeniable. Field outbreaks of H5N1 HPAI have occurred in vaccinated flocks from both failure of the vaccines (i.e. vaccine efficacy) and failure in administration or immune response of the target species (i.e. vaccination effectiveness). Antige...

  13. Validation of diagnostic tests for detection of avian influenza in vaccinated chickens using Bayesian analysis

    NARCIS (Netherlands)

    Goot, van der J.A.; Engel, B.; Water, van de S.G.P.; Buist, W.G.; Jong, de M.C.M.; Koch, G.; Boven, van M.; Stegeman, J.A.

    2010-01-01

    Vaccination is an attractive tool for the prevention of outbreaks of highly pathogenic avian influenza in domestic birds. It is known, however, that under certain circumstances vaccination may fail to prevent infection, and that the detection of infection in vaccinated birds can be problematic.

  14. The affect of infectious bursal disease virus on avian influenza virus vaccine efficacy

    Science.gov (United States)

    Immunosuppressive viruses are known to affect vaccinal immunity, however the impact of virally induced immunosuppression on avian influenza vaccine efficacy has not been quantified. In order to determine the effect of exposure to infectious bursal disease virus (IBDV) on vaccinal immunity to highly ...

  15. Development and evaluation of a potential universal Salmonella-vectored avian influenza vaccine

    Science.gov (United States)

    Development of vaccines for effective control of avian influenza (AI) virus in poultry and wild birds is in high demand. Most AI vaccines target the immunodominant antigens such as hemagglutinin (HA) and neuraminidase (NA); however, these vaccines only provide protection against a particular AI ser...

  16. Recombinant viral-vectored vaccines for the control of avian influenza in poultry

    Science.gov (United States)

    Vaccination is a commonly used tool for the control of both low pathogenic and highly pathogenic avian influenza viruses. Traditionally inactivated adjuvanted vaccines made from a low pathogenic field strain has been used for vaccination, but advances in molecular biology has allowed a number of di...

  17. Increased immunogenicity of avian influenza DNA vaccine delivered to the skin using a microneedle patch

    Science.gov (United States)

    Kim, Yeu-Chun; Song, Jae-Min; Lipatov, Aleksandr S.; Choi, Seong-O; Lee, Jeong Woo; Donis, Ruben O.; Compans, Richard W.; Kang, Sang-Moo; Prausnitz, Mark R.

    2012-01-01

    Effective public health responses to an influenza pandemic require an effective vaccine that can be manufactured and administered to large populations in the shortest possible time. In this study, we evaluated a method for vaccination against avian influenza virus that uses a DNA vaccine for rapid manufacturing and delivered by a microneedle skin patch for simplified administration and increased immunogenicity. We prepared patches containing 700 µm-long microneedles coated with an avian H5 influenza hemagglutinin DNA vaccine from A/Viet Nam/1203/04 influenza virus. The coating DNA dose increased with DNA concentration in the coating solution and the number of dip coating cycles. Coated DNA was released into the skin tissue by dissolution within minutes. Vaccination of mice using microneedles induced higher levels of antibody responses and hemagglutination inhibition titers, and improved protection against lethal infection with avian influenza as compared to conventional intramuscular delivery of the same dose of the DNA vaccine. Additional analysis showed that the microneedle coating solution containing carboxymethylcellulose and a surfactant may have negatively affected the immunogenicity of the DNA vaccine. Overall, this study shows that DNA vaccine delivery by microneedles can be a promising approach for improved vaccination to mitigate an influenza pandemic. PMID:22504442

  18. Serological response to vaccination against avian influenza in zoo-birds using an inactivated H5N9 vaccine

    DEFF Research Database (Denmark)

    Bertelsen, Mads F.; Klausen, Joan; Holm, Elisabeth

    2007-01-01

    Five hundred and forty birds in three zoos were vaccinated twice against avian influenza with a 6-week interval using an inactivated H5N9 vaccine. Serological response was evaluated by hemagglutination inhibition test 4-6 weeks following the second vaccine administration. 84% of the birds...

  19. Silent spread of highly pathogenic Avian Influenza H5N1 virus amongst vaccinated commercial layers

    NARCIS (Netherlands)

    Poetri, O.N.; Boven, M.; Claassen, I.J.T.M.; Koch, G.; Wibawan, I.W.; Stegeman, A.; Broek, van den J.; Bouma, A.

    2014-01-01

    The aim of this study was to determine whether a single vaccination of commercial layer type chickens with an inactivated vaccine containing highly pathogenic avian influenza virus strain H5N1 A/chicken/Legok/2003, carried out on the farm, was sufficient to protect against infection with the

  20. Analysis of H7 avian influenza viruses by antigenic cartography and correlation to protection by vaccination

    Science.gov (United States)

    The H7 hemagglutinin subtype one of the most common subtypes of avian influenza virus (AIV) in poultry world wide and since it has the potential to become highly pathogenic it is among the priority subtypes for vaccination. Selection of the optimal vaccine seed strains may now be aided by antigenic...

  1. Assessment of national strategies for control of high-pathogenicity avian influenza and low-pathogenicity notifiable avian influenza in poultry, with emphasis on vaccines and vaccination.

    Science.gov (United States)

    Swayne, D E; Pavade, G; Hamilton, K; Vallat, B; Miyagishima, K

    2011-12-01

    Twenty-nine distinct epizootics of high-pathogenicity avian influenza (HPAI) have occurred since 1959. The H5N1 HPAI panzootic affecting Asia, Africa and Eastern Europe has been the largest among these, affecting poultry and/or wild birds in 63 countries. A stamping-out programme achieved eradication in 24 of these epizootics (and is close to achieving eradication in the current H5N2 epizootic in South African ostriches), but vaccination was added to the control programmes in four epizootics when stamping out alone was not effective. During the 2002 to 2010 period, more than 113 billion doses of avian influenza (AI) vaccine were used in at-risk national poultry populations of over 131 billion birds. At two to three doses per bird for the 15 vaccinating countries, the average national vaccination coverage rate was 41.9% and the global AI vaccine coverage rate was 10.9% for all poultry. The highest national coverage rate was nearly 100% for poultry in Hong Kong and the lowest national coverage was less than 0.01% for poultry in Israel and The Netherlands. Inactivated AI vaccines accounted for 95.5% and live recombinant virus vaccines for 4.5% of the vaccines used. Most of these vaccines were used in the H5N1 HPAI panzootic, with more than 99% employed in the People's Republic of China, Egypt, Indonesia and Vietnam. Implementation of vaccination in these four countries occurred after H5N1 HPAI became enzootic in domestic poultry and vaccination did not result in the enzootic infections. Vaccine usage prevented clinical disease and mortality in chickens, and maintained rural livelihoods and food security during HPAI outbreaks. Low-pathogenicity notifiable avian influenza (LPNAI) became reportable to the World Organisation for Animal Health in 2006 because some H5 and H7 low-pathogenicity avian influenza (LPAI) viruses have the potential to mutate to HPAI viruses. Fewer outbreaks of LPNAI have been reported than of HPAI and only six countries used vaccine in control

  2. Avian influenza

    DEFF Research Database (Denmark)

    EFSA Panel on Animal Health and Welfare; More, Simon; Bicout, Dominique

    2017-01-01

    Previous introductions of highly pathogenic avian influenza virus (HPAIV) to the EU were most likely via migratory wild birds. A mathematical model has been developed which indicated that virus amplification and spread may take place when wild bird populations of sufficient size within EU become...... infected. Low pathogenic avian influenza virus (LPAIV) may reach similar maximum prevalence levels in wild bird populations to HPAIV but the risk of LPAIV infection of a poultry holding was estimated to be lower than that of HPAIV. Only few non-wild bird pathways were identified having a non...

  3. EVALUATION OF OIL BASED AVIAN INFLUENZA VACCINE (H5NI PREPARED WITH DIFFERENT CONCENTRATIONS OF ADJUVANT

    Directory of Open Access Journals (Sweden)

    M. IQBAL, M. NISAR, ANWARUL-HAQ, S. NOOR AND Z. J. GILL

    2008-12-01

    Full Text Available Bird flu vaccine from H5N1 strain of avian influenza virus was prepared with two concentrations of adjuvant (Montanide ISA 70MVG. Two vaccines (I and II were prepared containing 50 and 60% Montanide, respectively. Immune response of both the vaccines as single, as well as booster, dose was evaluated in layer birds through haemagglutination inhibition test. Single dose of both vaccines showed poor immune response, while booster dose gave better response with both the vaccines. However, the vaccine prepared with 60% Montanide provided better immune response compared with the vaccine containing 50% montanide.

  4. Adenovirus-Vectored Vaccine as a Rapid-Response Tool Against Avian Influenza Pandemic

    International Nuclear Information System (INIS)

    Van Kampen, K. R.; Tang, D. C.

    2007-01-01

    Influenza viruses in nature undergo genetic mutation and reassortment. Three pandemics of avian influenza in man were recorded in the twentieth century. Highly pathogenic avian influenza (HPAI) viruses currently in circulation pose a threat for another world-wide pandemic, if they become transmissible from man to man. Manufacturing protective vaccines using current egg-based technology is often difficult due to the virulence of the virus and its adverse effects on the embryonating egg substrate. New technologies allow the creation of safe and protective pandemic influenza vaccines without the need for egg based substrates. These technologies allow new vaccines to be created in less than one month. Manufacturing is in tissue culture, not eggs. Vaccine can be administered to man non-invasively, without adjuvants, eliciting a rapid and protective immune response. Protective immunity against avian influenza (AI) virus was elicited in chickens by single-dose in ovo vaccination with a replication-competent adenovirus (RCA)-free human adenovirus serotype 5 (Ad5)-derived vector encoding an H5N9 avian influenza virus hemagglutinin. Vaccinated chickens were protected against both H5N1 and H5N2 HPAI virus challenges. Mass-administration of this bird flu vaccine can be streamlined with available robotic in ovo injectors. Vaccination using this vaccine could protect the the largest host reservoir (chickens) and greatly reduce the exposure of man to avian influenza. In addition, Ad5-vectored vaccines can be produced rapidly and the safety margin of a non-replicating vector is superior to that of a replicating counterpart. Furthermore, this mode of vaccination is compatible with epidemiological surveys of natural AI virus infections. In addition to mass immunization of poultry, both animals and humans have been effectively immunized by intranasal administration of Ad5-vectored influenza vaccines without any appreciable side effects, even in mice and human volunteers with

  5. Avian influenza in ovo vaccination with replication defective recombinant adenovirus in chickens: Vaccine potency, antibody persistence, and maternal antibody transfer

    Science.gov (United States)

    Protective immunity against avian influenza (AI) can be elicited in chickens in a single-dose regimen by in ovo vaccination with a replication-competent adenovirus (RCA)-free human adenovirus serotype 5 (Ad)-vector encoding the AI virus (AIV) hemagglutinin (HA). We evaluated vaccine potency, antibo...

  6. Avian influenza vaccine development: Application technology platforms, field use and predictors of protection

    Science.gov (United States)

    Vaccines against avian influenza (AI) began over 100 years ago as experimentally produced products, but commercial application did not occur until: 1) a reliable method was developed to grow and titer the virus (i.e. embryonating chicken eggs), 2) an efficient and predictable method was developed to...

  7. The science behind avian influenza vaccine use as a control tool

    Science.gov (United States)

    Prior to 2003, vaccines against avian influenza (AI) had limited, individual country or regional use in poultry. In late 2003, H5N1 high pathogenicity (HP) AI spread from China to multiple Southeast Asian countries, and to Europe during 2005 and Africa during 2006, challenging governments and all p...

  8. Broadly protective adenovirus-based multivalent vaccines against highly pathogenic avian influenza viruses for pandemic preparedness.

    Directory of Open Access Journals (Sweden)

    Sai V Vemula

    Full Text Available Recurrent outbreaks of H5, H7 and H9 avian influenza viruses in domestic poultry accompanied by their occasional transmission to humans have highlighted the public health threat posed by these viruses. Newer vaccine approaches for pandemic preparedness against these viruses are needed, given the limitations of vaccines currently approved for H5N1 viruses in terms of their production timelines and the ability to induce protective immune responses in the absence of adjuvants. In this study, we evaluated the feasibility of an adenovirus (AdV-based multivalent vaccine approach for pandemic preparedness against H5, H7 and H9 avian influenza viruses in a mouse model. Replication-defective AdV vectors expressing hemagglutinin (HA from different subtypes and nucleoprotein (NP from one subtype induced high levels of humoral and cellular immune responses and conferred protection against virus replication following challenge with H5, H7 and H9 avian influenza virus subtypes. Inclusion of HA from the 2009 H1N1 pandemic virus in the vaccine formulation further broadened the vaccine coverage. Significantly high levels of HA stalk-specific antibodies were observed following immunization with the multivalent vaccine. Inclusion of NP into the multivalent HA vaccine formulation resulted in the induction of CD8 T cell responses. These results suggest that a multivalent vaccine strategy may provide reasonable protection in the event of a pandemic caused by H5, H7, or H9 avian influenza virus before a strain-matched vaccine can be produced.

  9. Broadly Protective Adenovirus-Based Multivalent Vaccines against Highly Pathogenic Avian Influenza Viruses for Pandemic Preparedness

    Science.gov (United States)

    Vemula, Sai V.; Ahi, Yadvinder S.; Swaim, Anne-Marie; Katz, Jacqueline M.; Donis, Ruben; Sambhara, Suryaprakash; Mittal, Suresh K.

    2013-01-01

    Recurrent outbreaks of H5, H7 and H9 avian influenza viruses in domestic poultry accompanied by their occasional transmission to humans have highlighted the public health threat posed by these viruses. Newer vaccine approaches for pandemic preparedness against these viruses are needed, given the limitations of vaccines currently approved for H5N1 viruses in terms of their production timelines and the ability to induce protective immune responses in the absence of adjuvants. In this study, we evaluated the feasibility of an adenovirus (AdV)-based multivalent vaccine approach for pandemic preparedness against H5, H7 and H9 avian influenza viruses in a mouse model. Replication-defective AdV vectors expressing hemagglutinin (HA) from different subtypes and nucleoprotein (NP) from one subtype induced high levels of humoral and cellular immune responses and conferred protection against virus replication following challenge with H5, H7 and H9 avian influenza virus subtypes. Inclusion of HA from the 2009 H1N1 pandemic virus in the vaccine formulation further broadened the vaccine coverage. Significantly high levels of HA stalk-specific antibodies were observed following immunization with the multivalent vaccine. Inclusion of NP into the multivalent HA vaccine formulation resulted in the induction of CD8 T cell responses. These results suggest that a multivalent vaccine strategy may provide reasonable protection in the event of a pandemic caused by H5, H7, or H9 avian influenza virus before a strain-matched vaccine can be produced. PMID:23638099

  10. Avian influenza

    Directory of Open Access Journals (Sweden)

    Tjandra Y. Aditama

    2006-06-01

    Full Text Available Avian influenza, or “bird flu”, is a contagious disease of animals which crossed the species barrier to infect humans and gave a quite impact on public health in the world since 2004, especially due to the threat of pandemic situation. Until 1st March 2006, laboratory-confirmed human cases have been reported in seven countries: Cambodia, Indonesia, Thailand, Viet Nam, China, Iraq and Turkey with a total of 174 cases and 94 dead (54.02%. Indonesia has 27 cases, 20 were dead (74.07%. AI cases in Indonesia are more in male (62.5% and all have a symptom of fever. An influenza pandemic is a rare but recurrent event. An influenza pandemic happens when a new subtype emerges that has not previously circulated in humans. For this reason, avian H5N1 is a strain with pandemic potential, since it might ultimately adapt into a strain that is contagious among humans. Impact of the pandemic could include high rates of illness and worker absenteeism are expected, and these will contribute to social and economic disruption. Historically, the number of deaths during a pandemic has varied greatly. Death rates are largely determined by four factors: the number of people who become infected, the virulence of the virus, the underlying characteristics and vulnerability of affected populations, and the effectiveness of preventive measures. Accurate predictions of mortality cannot be made before the pandemic virus emerges and begins to spread. (Med J Indones 2006; 15:125-8Keywords: Avian Influenza, Pandemic

  11. Avian Influenza (Bird Flu)

    Science.gov (United States)

    ... in People Spread of Bird Flu Viruses Between Animals and People Examples of Human Infections with Avian Influenza A ... Subtypes Transmission of Avian Influenza A Viruses Between Animals and People Related Links Research Glossary of Influenza (Flu) Terms ...

  12. 76 FR 24793 - Highly Pathogenic Avian Influenza

    Science.gov (United States)

    2011-05-03

    ... Inspection Service 9 CFR Parts 93, 94, and 95 RIN 0579-AC36 Highly Pathogenic Avian Influenza AGENCY: Animal... products from regions where any subtype of highly pathogenic avian influenza is considered to exist. The... vaccinated for certain types of avian influenza, or that have moved through regions where any subtype of...

  13. Assessment of vaccination strategies against highly pathogenic avian influenza in China

    Directory of Open Access Journals (Sweden)

    Honglei SUN,Jinhua LIU

    2014-12-01

    Full Text Available Vaccination for highly pathogenic avian influenza (HPAI has been implemented in China for a decade, however, the virus is still present in poultry. A series of recombinant vaccines, Re-1 to Re-7, have been developed and used, and Re-8 will also be used in clinical settings to prevent the prevailing flu strains. The question remains, when can China eradicate the disease? Here, we review the epidemiology of H5 HPAI along with the development, usage and problems of vaccines. Further suggestions for controlling the disease in China are provided.

  14. Evaluation of several adjuvants in avian influenza vaccine to chickens and ducks

    Directory of Open Access Journals (Sweden)

    Li Hong T

    2011-06-01

    Full Text Available Abstract The effects of three different adjuvants, mineral oil, Montanide™ ISA 70M VG, and Montanide™ ISA 206 VG, were evaluated on reverse genetics H5N3 avian influenza virus cell cultured vaccine. The immune results of SPF chickens after challenging with highly pathogenic avian influenza (HPAI virus demonstrated that mineral oil adjuvant group and 70M adjuvant group provided 100% protection efficiency, but 206 adjuvant group provided only 40%. Statistical analysis indicated that the protection effects of mineral oil adjuvant group and the 70M adjuvant showed no significant difference to each other, but with significant difference to 206 adjuvant group. All three groups could induce high titres of antibody after immunizing SPF ducks, but there was no significant difference among them. The immunization effect of 70M adjuvant group on SPF chickens were the best and showed significant difference compared with optimized 70Mi Montanide™ eight series adjuvants groups. These results suggest that 70M adjuvant could be a novel adjuvant for preparing avian influenza vaccine.

  15. Avian Influenza in Birds

    Science.gov (United States)

    ... However, some ducks can be infected without any signs of illness. Top of Page Avian Influenza in Wild Birds Avian influenza A viruses have ... hours. Some ducks can be infected without any signs of illness. Avian influenza outbreaks are of concern in domesticated birds for ...

  16. Immunologic evaluation of 10 different adjuvants for use in vaccines for chickens against highly pathogenic avian influenza virus

    Science.gov (United States)

    Avian influenza viruses (AIV) are a threat to poultry production worldwide. Vaccination is utilized as a component of control programs for both high pathogenicity (HP) and low pathogenicity (LP) AIV. Over 95% of all AIV vaccine used in poultry are inactivated, adjuvanted products. To identify the be...

  17. Induction of respiratory immune responses in the chicken; implications for development of mucosal avian influenza virus vaccines

    NARCIS (Netherlands)

    Geus, de E.D.; Rebel, J.M.J.; Vervelde, L.

    2012-01-01

    The risk and the size of an outbreak of avian influenza virus (AIV) could be restricted by vaccination of poultry. A vaccine used for rapid intervention during an AIV outbreak should be safe, highly effective after a single administration and suitable for mass application. In the case of AIV,

  18. Characterization and efficacy determination of commercially available Central American H5N2 avian influenza vaccines for poultry

    Science.gov (United States)

    A poultry vaccination program was implemented in Central America beginning in January 1995 to control both H5N2 low (LPAI) and high pathogenicity avian influenza. This study was conducted to identify seed strain composition and the efficacy of nine commercially available H5 vaccines against challen...

  19. A single vaccination of commercial broilers does not reduce transmission of H5N1 highly pathogenic avian influenza

    NARCIS (Netherlands)

    Poetri, O.; Bouma, A.; Claassen, I.J.T.M.; Koch, G.; Soejoedono, R.; Stegeman, A.; Boven, M.

    2011-01-01

    Vaccination of chickens has become routine practice in Asian countries in which H5N1 highly pathogenic avian influenza (HPAI) is endemically present. This mainly applies to layer and breeder flocks, but broilers are usually left unvaccinated. Here we investigate whether vaccination is able to reduce

  20. Vaccine protection of poultry against H5 clade 2.3.4.4 highly pathogenic avian influenza

    Science.gov (United States)

    Following the 2014-2015 outbreaks of H5N2 and H5N8 (clade 2.3.4.4) highly pathogenic avian influenza (HPAI) in the U.S., studies were performed to identify vaccines with potential to be used as a control mechanism in the event of future outbreaks. We tested both inactivated and recombinant vaccine...

  1. A randomized clinical trial of an inactivated avian influenza A (H7N7 vaccine.

    Directory of Open Access Journals (Sweden)

    Robert B Couch

    Full Text Available BACKGROUND: Concern for a pandemic caused by a newly emerged avian influenza A virus has led to clinical trials with candidate vaccines as preparation for such an event. Most trials have involved vaccines for influenza A (H5N1, A (H7N7 or A (H9N2. OBJECTIVE: To evaluate dosage-related safety and immunogenicity of an inactivated influenza A (H7N7 vaccine in humans. DESIGN: One hundred twenty-five healthy young adults were randomized to receive two doses intramuscularly of placebo or 7.5, 15, 45 or 90 µg of HA of an inactivated subunit influenza A (H7N7 vaccine (25 per group, four weeks apart. Reactogenicity was evaluated closely for one week and for any adverse effect for six months after each dose. Serum hemagglutination-inhibiting and neutralizing antibody responses were determined four weeks after each dose and at six months. RESULTS: Reactogenicity evaluations indicated the vaccinations were well tolerated. Only one subject developed a ≥4-fold serum hemagglutination-inhibition (HAI antibody response and a final titer of ≥1:40 four weeks after dose two and only five subjects developed a neutralizing antibody rise and a final titer of ≥1:40 in tests performed at a central laboratory. Four of the five were given the 45 or 90 µg HA dosage. A more sensitive HAI assay at the study site revealed a dose-response with increasing HA dosage but only 36% in the 90 µg HA group developed a ≥4-fold rise in antibody in this test and only one of these achieved a titer of ≥1:32. CONCLUSION: This inactivated subunit influenza A (H7N7 vaccine was safe but poorly immunogenic in humans. TRIALS REGISTRATION: ClinicalTrials.gov NCT00546585.

  2. Current status and future needs in diagnostics and vaccines for high pathogenicity avian influenza.

    Science.gov (United States)

    Swayne, D E; Spackman, E

    2013-01-01

    Since 1959, 32 epizootics of high pathogenicity avian influenza (HPAI) have occurred in birds. Rapid detection and accurate identification of HPAI has been critical to controlling such epizootics in poultry. Specific paradigms for the detection and diagnosis of avian influenza virus (AIV) in poultry vary somewhat among different countries and industry compartments depending on specific needs and resources. Importantly, since HPAI and low pathogenicity (LP) AI of the H5 and H7 subtypes are reportable to the World Organization for Animal Health (OIE), diagnostic procedures are implemented for regulatory purposes and are harmonized to some degree. Most current tests are adequate and have been in use for some time, therefore they have been well validated and presently there is no reported new technology that will completely replace the current tests. However, some modifications, updates or additional tests could be beneficial. The element of AIV diagnostics that is most in need of improvement is in determining the hemagglutinin and neuraminidase subtype specificity of antibody to AIV. Most HPAI epizootics have been eradicated using traditional stamping-out programs, but beginning in 1995, five epizootics have added vaccination as an additional, interim control tool. From 2002-2010, >113 billion doses of AI vaccine have been used in poultry; 95.5% as oil-emulsified, inactivated whole AIV vaccines and 4.5% as live vectored vaccines. The majority of vaccine has been used in the four H5N1 HPAI enzootic countries (China [91%], Egypt [4.7%], Indonesia [2.3%], and Vietnam [1.4%]) where vaccination programs are directed to all poultry. The 10 other countries/regions have used less than 1% of the vaccine, administered in a focused, risk- based approach. Some vaccine "failures" have resulted from antigenic drift of field viruses away from the vaccine viruses, but most have resulted from failures in the vaccination process; i.e. failure to adequately administer the vaccine to at

  3. Cross-clade immunity in cats vaccinated with a canarypox-vectored avian influenza vaccine

    Science.gov (United States)

    Several felid species have been shown to be susceptible to infection with highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype. Infection of felids by H5N1 HPAI virus is often fatal, and cat-to-cat transmission has been documented. Domestic cats may then be involved in the transmis...

  4. Efficacy of avian influenza oil-emulsion vaccines in chickens of various ages.

    Science.gov (United States)

    Stone, H D

    1987-01-01

    An experimental avian influenza (AI) oil-emulsion vaccine was formulated with 1 part inactivated A/turkey/Wisconsin/68 (H5N9) AI virus emulsified in 4 parts oil. Broilers were vaccinated subcutaneously (SC) either at 1 or 3 days old or at 4 or 5 wks old. Commercial white leghorn (WL) layers were vaccinated SC at 12 and 20 wks old or at only 20 wks old. Maximum geometric mean hemagglutination-inhibition titers postvaccination (PV) were 1:86-1:320 for broilers, 1:597 for twice-vaccinated layers, and 1:422 for once-vaccinated layers. Ninety to 100% of vaccinated broilers were protected against death and morbidity when challenged with highly pathogenic A/chicken/Penn/83 (H5N2) AI virus 4 weeks PV, and all were protected when challenged 8 wks PV. All controls and most vaccinates were infected by challenge virus, and 90-100% of controls died or exhibited clinical signs. Vaccinated commercial pullets were protected against morbidity, death, and egg-production decline at either peak of lay (25 wks old) or at 55 wks old. All unvaccinated controls became morbid or died, and egg production ceased 72 hours after challenge. The 0.5-ml vaccine dose was determined to contain 251 and 528 mean protective doses (PD50S) in 4-wk-old and 1-year-old SPF WL chickens, respectively, challenged 4 wks PV.

  5. Antigenic Cartography of H9 Avian Influenza Virus and Its Application to Vaccine Selection.

    Science.gov (United States)

    Wang, Yue; Davidson, Irit; Fouchier, Ron; Spackman, Erica

    2016-05-01

    Vaccination is frequently used as a control method for the H9 subtype of low pathogenicity avian influenza virus (AIV), which is widespread in Asia and the Middle East. One of the most important factors for selecting an effective vaccine strain is the antigenic match between the hemagglutinin protein of the vaccine and the strain circulating in the field. To demonstrate the antigenic relationships among H9 AIVs, with a focus on Israeli H9 isolates, antigenic cartography was used to develop a map of H9 AIVs. Based on their antigenic diversity, three isolates from Israel were selected for vaccination-challenge studies: 1) the current vaccine virus, A/chicken/Israel/215/2007 H9N2 (Ck/215); 2) A/chicken/Israel/1163/2011 H9N2 (Ck/1163); and 3) A/ostrich/Israel/1436/2003 (Os/1436). A 50% infective dose (ID50) model was used to determine the effect of the vaccines on susceptibility to infection by using a standardized dose of vaccine. Sera collected immediately prior to challenge showed that Ck/215 was the most immunogenic, followed by Ck/1163 and Os/1436. A significant difference in ID50 was only observed with Ck/215 homologous challenge, where the ID50 was increased by 2 log 10 per bird. The ID50 for Ck/1163 was the same, regardless of vaccine, including sham vaccination. The ID50 for Os/1436 was above the maximum possible dose and therefore could not be established.

  6. Avian influenza virus

    Science.gov (United States)

    Avian influenza virus (AIV) is type A influenza that is adapted to avian host species. Although the virus can be isolated from numerous avian species, the natural host reservoir species are dabbling ducks, shorebirds and gulls. Domestic poultry species (poultry being defined as birds that are rais...

  7. Multivalent HA DNA vaccination protects against highly pathogenic H5N1 avian influenza infection in chickens and mice.

    Directory of Open Access Journals (Sweden)

    Srinivas Rao

    Full Text Available Sustained outbreaks of highly pathogenic avian influenza (HPAI H5N1 in avian species increase the risk of reassortment and adaptation to humans. The ability to contain its spread in chickens would reduce this threat and help maintain the capacity for egg-based vaccine production. While vaccines offer the potential to control avian disease, a major concern of current vaccines is their potency and inability to protect against evolving avian influenza viruses.The ability of DNA vaccines encoding hemagglutinin (HA proteins from different HPAI H5N1 serotypes was evaluated for its ability to elicit neutralizing antibodies and to protect against homologous and heterologous HPAI H5N1 strain challenge in mice and chickens after DNA immunization by needle and syringe or with a pressure injection device. These vaccines elicited antibodies that neutralized multiple strains of HPAI H5N1 when given in combinations containing up to 10 HAs. The response was dose-dependent, and breadth was determined by the choice of the influenza virus HA in the vaccine. Monovalent and trivalent HA vaccines were tested first in mice and conferred protection against lethal H5N1 A/Vietnam/1203/2004 challenge 68 weeks after vaccination. In chickens, protection was observed against heterologous strains of HPAI H5N1 after vaccination with a trivalent H5 serotype DNA vaccine with doses as low as 5 microg DNA given twice either by intramuscular needle injection or with a needle-free device.DNA vaccines offer a generic approach to influenza virus immunization applicable to multiple animal species. In addition, the ability to substitute plasmids encoding different strains enables rapid adaptation of the vaccine to newly evolving field isolates.

  8. Influence of virus strain and antigen mass on efficacy of H5 avian influenza inactivated vaccines.

    Science.gov (United States)

    Swayne, D E; Beck, J R; Garcia, M; Stone, H D

    1999-06-01

    The influence of vaccine strain and antigen mass on the ability of inactivated avian influenza (AI) viruses to protect chicks from a lethal, highly pathogenic (HP) AI virus challenge was studied. Groups of 4-week-old chickens were immunized with inactivated vaccines containing one of 10 haemagglutinin subtype H5 AI viruses, one heterologous H7 AI virus or normal allantoic fluid (sham), and challenged 3 weeks later by intra-nasal inoculation with a HP H5 chicken-origin AI virus. All 10 H5 vaccines provided good protection from clinical signs and death, and produced positive serological reactions on agar gel immunodiffusion and haemagglutination inhibition tests. In experiment 1, challenge virus was recovered from the oropharynx of 80% of chickens in the H5 vaccine group. In five H5 vaccine groups, challenge virus was not recovered from the cloaca of chickens. In the other five H5 vaccine groups, the number of chickens with detection of challenge virus from the cloaca was lower than in the sham group (P turkey/Wisconsin/68 (H5N9) was the best vaccine candidate of the H5 strains tested (PD50= 0.006 μg AI antigen). These data demonstrate that chickens vaccinated with inactivated H5 whole virus AI vaccines were protected from clinical signs and death, but usage of vaccine generally did not prevent infection by the challenge virus, as indicated by recovery of virus from the oropharynx. Vaccine use reduced cloacal detection rates, and quantity of virus shed from the cloaca and oropharynx in some vaccine groups, which would potentially reduce environmental contamination and disease transmission in the field.

  9. Dose response effects of avian influenza (H7N7) vaccination of chickens: Serology, clinical protection and reduction of virus excretion

    NARCIS (Netherlands)

    Maas, H.A.; Tacken, M.G.J.; Zoelen-Bos, van D.J.; Oei, H.L.

    2009-01-01

    Knowledge of the relation between the antigen content of inactivated avian influenza (Al) vaccines, the serological response after vaccination and protection of vaccinated animals is important for the choice of optimal vaccines and vaccination regimes as well as for the assessment of criteria for

  10. Avian influenza

    Science.gov (United States)

    ... develop flu-like symptoms within 10 days of handling infected birds or being in an area with ... your provider if you become sick after you return from your trip. Current information regarding avian flu ...

  11. Immunity to current H5 highly pathogenic avian influenza viruses: From vaccines to adaptive immunity in wild birds

    Science.gov (United States)

    Following the 2014-2015 outbreaks of H5N2 and H5N8 highly pathogenic avian influenza (HPAI) in the U.S., studies were performed to assess the immunity required for protection against future outbreaks should they occur. We assessed the ability of vaccines to induce protection of chickens and turkeys...

  12. Duration of immunity following the administration of oil-based avian influenza H5N1 vaccine in layers

    OpenAIRE

    NISAR, Maryam; RASHID*, Asif; IQBAL, Muhammad

    2014-01-01

    Avian influenza (AI) occurs worldwide and causes tremendous economic losses. The disease is characterised by respiratory signs, depression, and reduced food and water intake. In the present study, an oil-based vaccine created by using Montanide ISA 70 MVG, was prepared and the duration of immunity checked at different time intervals. For this purpose, the cumulative mean titre (CMT) was calculated after employing haemagglutination inhibition test in 50 pullets at day zero before vaccination a...

  13. Newcastle disease virus-based H5 influenza vaccine protects chickens from lethal challenge with a highly pathogenic H5N2 avian influenza virus

    OpenAIRE

    Ma, Jingjiao; Lee, Jinhwa; Liu, Haixia; Mena, Ignacio; Davis, A. Sally; Sunwoo, Sun Young; Lang, Yuekun; Duff, Michael; Morozov, Igor; Li, Yuhao; Yang, Jianmei; García-Sastre, Adolfo; Richt, Juergen A.; Ma, Wenjun

    2017-01-01

    Since December 2014, Eurasian-origin, highly pathogenic avian influenza H5 viruses including H5N1, H5N2, and H5N8 subtypes (called H5Nx viruses), which belong to the H5 clade 2.3.4.4, have been detected in U.S. wild birds. Subsequently, highly pathogenic H5N2 and H5N8 viruses have caused outbreaks in U.S. domestic poultry. Vaccination is one of the most effective ways to control influenza outbreaks and protect animal and public health. Newcastle disease virus (NDV)-based influenza vaccines ha...

  14. Principles for vaccine protection in chickens and domestic waterfowl against avian influenza: emphasis on Asian H5N1 high pathogenicity avian influenza.

    Science.gov (United States)

    Swayne, David E

    2006-10-01

    The H5N1 highly pathogenic (HP) avian influenza (AI) epizootic began with reports of mortality from China in 1996 and, by June 2005, caused outbreaks of disease in nine additional Asian countries, affecting or resulting in culling of over 200 million birds. Vaccines can be used in programs to prevent, manage, or eradicate AI. However, vaccines should only be used as part of a comprehensive control strategy that also includes biosecurity, quarantine, surveillance and diagnostics, education, and elimination of infected poultry. Potent AI vaccines, when properly used, can prevent disease and death, increase resistance to infection, reduce field virus replication and shedding, and reduce virus transmission, but do not provide "sterilizing immunity" in the field; i.e., vaccination does not completely prevent AI virus replication. Inactivated AI vaccines and a recombinant fowlpox-H5-AI vaccine are licensed and used in various countries. Vaccines have been shown to protect chickens, geese, and ducks from H5 HPAI. The inactivated vaccines prevented disease and mortality in chickens and geese, and reduced the ability of the field virus to replicate in gastrointestinal and respiratory tracts. Although the Asian H5N1 HPAI virus did not cause disease or mortality in ducks, the use of inactivated vaccine did reduce field virus replication in the respiratory and intestinal tracts. The inactivated vaccine protected geese from morbidity and mortality, and reduced challenge virus replication. The recombinant fowlpox-H5-AI vaccine has provided similar protection, but the vaccine is used only in chickens and with the advantage of application at 1 day of age in the hatchery.

  15. Influenza vaccination

    DEFF Research Database (Denmark)

    Østerhus, Sven Frederick

    2015-01-01

    The Cochrane Library was systematically searched for meta-analyses regarding influenza vaccination of various populations, both healthy and sick. An effect in reducing the number of cases of influenza, influenza-like illness or complications to influenza was found in some studies, but, generally......, the quality of the studies was low, and several studies lacked hard clinical endpoints. Data on adverse effects were scarce. More randomised controlled trials investigating the effects of influenza vaccination are warranted....

  16. Adenovirus vector-based multi-epitope vaccine provides partial protection against H5, H7, and H9 avian influenza viruses

    Science.gov (United States)

    Hassan, Ahmed O.; Amen, Omar; Sayedahmed, Ekramy E.; Vemula, Sai V.; Amoah, Samuel; York, Ian; Gangappa, Shivaprakash; Sambhara, Suryaprakash; Mittal, Suresh K.

    2017-01-01

    The emergence of H5, H7, and H9 avian influenza virus subtypes in humans reveals their pandemic potential. Although human-to-human transmission has been limited, the genetic reassortment of the avian and human/porcine influenza viruses or mutations in some of the genes resulting in virus replication in the upper respiratory tract of humans could generate novel pandemic influenza viruses. Current vaccines do not provide cross protection against antigenically distinct strains of the H5, H7, and H9 influenza viruses. Therefore, newer vaccine approaches are needed to overcome these potential threats. We developed an egg-independent, adenovirus vector-based, multi-epitope (ME) vaccine approach using the relatively conserved immunogenic domains of the H5N1 influenza virus [M2 ectodomain (M2e), hemagglutinin (HA) fusion domain (HFD), T-cell epitope of nucleoprotein (TNP). and HA α-helix domain (HαD)]. Our ME vaccine induced humoral and cell-mediated immune responses and caused a significant reduction in the viral loads in the lungs of vaccinated mice that were challenged with antigenically distinct H5, H7, or H9 avian influenza viruses. These results suggest that our ME vaccine approach provided broad protection against the avian influenza viruses. Further improvement of this vaccine will lead to a pre-pandemic vaccine that may lower morbidity, hinder transmission, and prevent mortality in a pandemic situation before a strain-matched vaccine becomes available. PMID:29023601

  17. 76 FR 79203 - Prospective Grant of Exclusive License: Avian Influenza Vaccines for Domesticated Poultry/Wild...

    Science.gov (United States)

    2011-12-21

    ... Veterinary Influenza Vaccines. Sustained outbreaks of highly pathogenic influenza in animals increase the... advantages: (a) More efficient and versatile than the conventional inactivated whole-virus vaccines; (b) Can... vaccinated animals to be differentiated from naturally infected animals, key if governments mandate...

  18. Isolation of avian influenza H5N1 virus from vaccinated commercial layer flock in Egypt

    Science.gov (United States)

    2012-01-01

    Background Uninterrupted transmission of highly pathogenic avian influenza virus (HPAIV) H5N1 of clade 2.2.1 in Egypt since 2006 resulted in establishment of two main genetic clusters. The 2.2.1/C group where all recent human and majority of backyard origin viruses clustered together, meanwhile the majority of viruses derived from vaccinated poultry in commercial farms grouped in 2.2.1.1 clade. Findings In the present investigation, an HPAIV H5N1 was isolated from twenty weeks old layers chickens that were vaccinated with a homologous H5N1 vaccine at 1, 7 and 16 weeks old. At twenty weeks of age, birds showed cyanosis of comb and wattle, decrease in egg production and up to 27% mortality. Examined serum samples showed low antibody titer in HI test (Log2 3.2± 4.2). The hemagglutinin (HA) and neuraminidase (NA) genes of the isolated virus were closely related to viruses in 2.2.1/C group isolated from poultry in live bird market (LBM) and backyards or from infected people. Conspicuous mutations in the HA and NA genes including a deletion within the receptor binding domain in the HA globular head region were observed. Conclusions Despite repeated vaccination of layer chickens using a homologous H5N1 vaccine, infection with HPAIV H5N1 resulted in significant morbidity and mortality. In endemic countries like Egypt, rigorous control measures including enforcement of biosecurity, culling of infected birds and constant update of vaccine virus strains are highly required to prevent circulation of HPAIV H5N1 between backyard birds, commercial poultry, LBM and humans. PMID:23185975

  19. [Protective activity of Immunovac-VP-4 vaccine against avian influenza virus H5N2 administered by different methods].

    Science.gov (United States)

    Egorova, N B; Kurbatova, E A; Akhmatova, N K; Semenova, I B

    2011-01-01

    To experimentally assess protective effect of Immunovac-VP-4 vaccine against avian influenza virus H5N2. MATERIALS AND METHODS. Immunization of mice with polycomponent vaccine Immunovac-VP-4 was performed using oral or mucosal route of administration (intranasally, orally, and with combined nasal-oral method). Immunized mice were inoculated intranasally by influenza virus H5N2 adapted for mice. Survival of mice in experimental and control (intact) groups was assessed daily during 14 days. Survival and death rates of mice were determined. Levels of cytokines in sera of mice from both groups were measured by enzyme immunoassay. Half of experimental animals survived after triple subcutaneous administration of vaccine in dose 20 mcg and subsequent intranasal challenge with avian influenza virus H5N2. Single subcutaneous immunization with dose 400 mcg resulted in survival of 80 +/- 12.6% of mice after challenge. Triple intranasal and combined intranasal-oral immunization as well as after triple subcutaneous immunization resulted in survival of half of challenged mice. In control group challenge was lethal for 90 - 100% of mice. Same methods of immunization lead to increase of IL-6, IL-12, IL-15, and IFN-gamma levels. Data about significant protective effect after immunization with Immunovac-VP-4 against avian influenza virus H5N2 were obtained. Immunovac-VP-4 administered by mentioned routes activated nasal-associated lymphoid tissue providing first line defense at entry site of influenza infection, which demonstrates need to further study of this vaccine during development of strategy for non-specific prophylaxis of influenza infection.

  20. Vaccine protection of chickens against antigenically diverse H5 highly pathogenic avian influenza isolates with a live HVT vector vaccine expressing the influenza hemagglutinin gene derived from a clade 2.2 avian influenza virus.

    Science.gov (United States)

    Kapczynski, Darrell R; Esaki, Motoyuki; Dorsey, Kristi M; Jiang, Haijun; Jackwood, Mark; Moraes, Mauro; Gardin, Yannick

    2015-02-25

    Vaccination is an important tool in the protection of poultry against avian influenza (AI). For field use, the overwhelming majority of AI vaccines produced are inactivated whole virus formulated into an oil emulsion. However, recombinant vectored vaccines are gaining use for their ability to induce protection against heterologous isolates and ability to overcome maternal antibody interference. In these studies, we compared protection of chickens provided by a turkey herpesvirus (HVT) vector vaccine expressing the hemagglutinin (HA) gene from a clade 2.2 H5N1 strain (A/swan/Hungary/4999/2006) against homologous H5N1 as well as heterologous H5N1 and H5N2 highly pathogenic (HP) AI challenge. The results demonstrated all vaccinated birds were protected from clinical signs of disease and mortality following homologous challenge. In addition, oral and cloacal swabs taken from challenged birds demonstrated that vaccinated birds had lower incidence and titers of viral shedding compared to sham-vaccinated birds. Following heterologous H5N1 or H5N2 HPAI challenge, 80-95% of birds receiving the HVT vector AI vaccine at day of age survived challenge with fewer birds shedding virus after challenge than sham vaccinated birds. In vitro cytotoxicity analysis demonstrated that splenic T lymphocytes from HVT-vector-AI vaccinated chickens recognized MHC-matched target cells infected with H5, as well as H6, H7, or H9 AI virus. Taken together, these studies provide support for the use of HVT vector vaccines expressing HA to protect poultry against multiple lineages of HPAI, and that both humoral and cellular immunity induced by live vaccines likely contributes to protection. Published by Elsevier Ltd.

  1. Protective efficacy of recombinant and inactivated H5 avian influenza vaccines against challenge from the 2014 intercontinental H5 highly pathogenic avian influenza viruses (H5N8 and H5N2)

    Science.gov (United States)

    Protective immunity against highly pathogenic avian influenza (HPAI) largely depends on the development of an antibody response against a specific subtype of challenge virus. Historically, the use of antigenically closely matched isolates has proven efficacious when used as inactivated vaccines. M...

  2. Vaccination with recombinant RNA replicon particles protects chickens from H5N1 highly pathogenic avian influenza virus.

    Directory of Open Access Journals (Sweden)

    Stefan J Halbherr

    Full Text Available Highly pathogenic avian influenza viruses (HPAIV of subtype H5N1 not only cause a devastating disease in domestic chickens and turkeys but also pose a continuous threat to public health. In some countries, H5N1 viruses continue to circulate and evolve into new clades and subclades. The rapid evolution of these viruses represents a problem for virus diagnosis and control. In this work, recombinant vesicular stomatitis virus (VSV vectors expressing HA of subtype H5 were generated. To comply with biosafety issues the G gene was deleted from the VSV genome. The resulting vaccine vector VSV*ΔG(HA was propagated on helper cells providing the VSV G protein in trans. Vaccination of chickens with a single intramuscular dose of 2×10⁸ infectious replicon particles without adjuvant conferred complete protection from lethal H5N1 infection. Subsequent application of the same vaccine strongly boosted the humoral immune response and completely prevented shedding of challenge virus and transmission to sentinel birds. The vaccine allowed serological differentiation of infected from vaccinated animals (DIVA by employing a commercially available ELISA. Immunized chickens produced antibodies with neutralizing activity against multiple H5 viruses representing clades 1, 2.2, 2.5, and low-pathogenic avian influenza viruses (classical clade. Studies using chimeric H1/H5 hemagglutinins showed that the neutralizing activity was predominantly directed against the globular head domain. In summary, these results suggest that VSV replicon particles are safe and potent DIVA vaccines that may help to control avian influenza viruses in domestic poultry.

  3. Chimpanzee adenovirus vector-based avian influenza vaccine completely protects mice against lethal challenge of H5N1.

    Science.gov (United States)

    Cheng, Tao; Wang, Xiang; Song, Yufeng; Tang, Xinying; Zhang, Chao; Zhang, Hongbo; Jin, Xia; Zhou, Dongming

    2016-09-22

    Highly pathogenic avian H5N1 viruses may give rise to the next influenza pandemic due to their reassortment and mutation of the genome. Vaccine against this virus is important for coping with its potential threat. Chimpanzee adenovirus (Ad) vectors are a novel type of vaccine vectors that share the advantages of human serotype Ad vectors but without being affected by pre-existing human neutralizing antibody to the vaccine vector. Based on a replication-deficient chimpanzee Ad vector, AdC7, we generated a novel H5N1 vaccine candidate AdC7-H5HA that expresses H5N1 Hemagglutinin(HA). When tested in mice, the vaccine significantly reduced the virus load and pathological lesions in the lung tissues, and conferred complete protection against lethal challenge by a homologous virus. Mechanistically, the AdC7-H5HA vaccine can induce both HA-specific humoral and cell-mediated immune responses in mice. Also, sera transfer experiments demonstrated that neutralizing antibodies alone could provide protection. In conclusion, our results show that chimpanzee Ad vector expressing influenza virus HA may represent a promising vaccine candidate for H5N1 viruses and other influenza virus subtypes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Avian And Other Zoonotic Influenza

    Science.gov (United States)

    ... outbreaks in poultry have seriously impacted livelihoods, the economy and international trade in affected countries. Other avian influenza A( ... outbreaks in poultry have seriously impacted livelihoods, the economy and international trade in affected countries. Other avian influenza A( ...

  5. The Effect of Antibiofin® on the Immune Response Against Avian Influenza Subtype H9N2 Vaccine in Broiler Chickens

    Directory of Open Access Journals (Sweden)

    Forough Talazadeh

    2016-08-01

    Full Text Available Background: Some herbs such as thyme (Thymus vulgaris are rich in flavonoids, act as antioxidants, and may improve the immune function. Objectives: This study was performed to investigate the effects of Antibiofin® (mostly including Thymus vulgaris in drinking water on immune response against avian influenza (AI subtype H9N2 vaccine of broiler chickens. Materials and Methods: One hundred eighty one-day-old broiler chickens were purchased and divided into 4 equal groups. Chickens of groups A and B received 0.1% and 0.2% Antibiofin® respectively in their drinking water. Chickens of group C did not receive Antibiofin® but were vaccinated against AI. Chickens of group D were not vaccinated against influenza disease and did not receive Antibiofin®. All groups except group D were vaccinated with AIND killed. Blood samples were collected before vaccination as well as after vaccination on days 14, 21 and 28, and antibody titer against influenza disease vaccine was determined by hemagglutination inhibition (HI test. Results: The results of this study showed that receiving Antibiofin® at 0.1% and 0.2% concentrations, 14 and 28 days after vaccination, could increase the specific antibody titer against avian influenza subtype H9N2 vaccine compared to the control group. Conclusions: Antibiofin® enhanced the systemic antibody response against avian influenza subtype H9N2 vaccine in broiler chickens

  6. Cross-clade protective immune responses of NS1-truncated live attenuated H5N1 avian influenza vaccines.

    Science.gov (United States)

    Shi, Shaohua; Chen, Sujuan; Han, Weizhou; Wu, Bai; Zhang, Xiaojian; Tang, Ying; Wang, Xiao; Zhu, Yinbiao; Peng, Daxin; Liu, Xiufan

    2016-01-12

    H5N1 highly pathogenic avian influenza (HPAI) has raised global concern for causing huge economic losses in poultry industry, and an effective vaccine against HPAI is highly desirable. Live attenuated influenza vaccine with trunctated NS1 protein as a potential strategy will be extremely useful for improving immune efficacy. A series of H5N1 avian influenza virus reassortants harboring amino-terminal 48, 70, 73, and 99 aa in NS1 proteins, along with a modified low pathogenic HA protein was generated, and named as S-HALo/NS48, S-HALo/NS70, S-HALo/NS73, and S-HALo/NS99, respectively. In addition, their biological and immunological characteristics were further analyzed. The viruses S-HALo/NS70, S-HALo/NS73, and S-HALo/NS99, but not S-HALo/NS48, had a comparable growth property with the full-length NS1 virus, S-HALo/NSFu. Mice and chickens studies demonstrated that the viruses with truncated NS1 protein were further attenuated when compared to the virus S-HALo/NSFu. Vaccination with the virus S-HALo/NS73 in chickens induced significant cross-protection against homologous clade 2.3.4 H5 virus and heterologous clade 7.2, 2.3.2.1, and 2.3.4.4 H5 viruses. A 70-aa amino-terminal fragment of NS1 protein may be long enough for viral replication. The recombinant virus S-HALo/NS73 is a broad-spectrum live attenuated H5N1 avian influenza vaccine candidate in chickens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Strategies for differentiating infection in vaccinated animals (DIVA) for foot-and-mouth disease, classical swine fever and avian influenza

    DEFF Research Database (Denmark)

    Uttenthal, Åse; Parida, Satya; Rasmussen, Thomas Bruun

    2010-01-01

    for the presence of infection. This literature review describes the current knowledge on the use of DIVA diagnostic strategies for three important transboundary animal diseases: foot-and-mouth disease in cloven-hoofed animals, classical swine fever in pigs and avian influenza in poultry.......The prophylactic use of vaccines against exotic viral infections in production animals is undertaken exclusively in regions where the disease concerned is endemic. In such areas, the infection pressure is very high and so, to assure optimal protection, the most efficient vaccines are used. However......, in areas considered to be free from these diseases and in which there is the possibility of only limited outbreaks, the use of Differentiation of Infected from Vaccinated Animals (DIVA) or marker vaccines allows for vaccination while still retaining the possibility of serological surveillance...

  8. Chimeric avian paramyxovirus-based vector immunization against highly pathogenic avian influenza followed by conventional Newcastle disease vaccination eliminates lack of protection from virulent ND virus

    Directory of Open Access Journals (Sweden)

    C. Steglich

    2014-01-01

    Full Text Available Recently, we described a chimeric, hemagglutinin of highly pathogenic avian influenza virus (HPAIV H5 expressing Newcastle disease virus (NDV-based vector vaccine (chNDVFHNPMV8H5 in which NDV envelope glycoproteins were replaced by those of avian paramyxovirus-8 (APMV-8. This chimeric vaccine induced solid protection against lethal HPAIV H5N1 even in chickens with maternal antibodies against NDV (MDA+. However, due to the absence of the major NDV immunogens it failed to induce protection against Newcastle disease (ND. Here, we report on protection of MDA+ chickens against HPAI H5N1 and ND, by vaccination with chNDVFHNPMV8H5 either on day 1 or day seven after hatch, and subsequent immunization with live attenuated NDV seven days later. Vaccination was well tolerated and three weeks after immunization, challenge infections with highly pathogenic NDV as well as HPAIV H5N1 were carried out. All animals remained healthy without exhibiting any clinical signs, whereas non-vaccinated animals showed morbidity and mortality. Therefore, vaccination with chNDVFHNPMV8H5 can be followed by NDV vaccination to protect chickens from HPAIV as well as NDV, indicating that the antibody response against chNDVFHNPMV8H5 does not interfere with live ND vaccination.

  9. Adaption of wild-bird origin H5Nx highly pathogenic avian influenza virus Clade 2.3.4.4 in vaccinated poultry

    Science.gov (United States)

    The 2014-2015 incursion of H5Nx clade 2.3.4.4 high pathogenicity avian influenza (HPAI) virus caused the largest animal health emergency in U.S. history and renewed interest in developing vaccines against these newly emergent viruses. Our previous research demonstrated several H5 vaccines with varyi...

  10. Immunogenicity and efficacy of fowlpox-vectored and inactivated avian influenza vaccines alone or in a prime-boost schedule in chickens with maternal antibodies

    Science.gov (United States)

    Inactivated and fowlpox (FP)-vectored vaccines have been used to control avian influenza (AI) in poultry. In endemic countries, breeder flocks are vaccinated and therefore, maternally-derived antibodies (MDA) are transferred to their progeny. Results of several immunogenicity and efficacy studies ...

  11. Determination of efficacious vaccine seed strains for use against Egyptian H5N1 highly pathogenic avian influenza viruses through antigenic cartography and in vivo challenge studies

    Science.gov (United States)

    Since 2006, there have been reported outbreaks of H5N1 highly pathogenic avian influenza (HPAI) in vaccinated chickens in Africa and Asia. This study provides experimental data for selection of efficacious H5N1 vaccine seed strains against recently circulating strains of H5N1 HPAI viruses in Egypt....

  12. Respiratory immune responses in the chicken; Towards development of mucosal avian influenza virus vaccines

    NARCIS (Netherlands)

    de Geus, E.D.

    2012-01-01

    Several important poultry pathogens, including avian influenza virus (AIV), enter the host through the mucosae of the respiratory tract (RT) and subsequently disseminate towards other organs in the body. Therefore, animal health significantly depends on the control of infection in the lung tissue by

  13. Towards an improved vaccination programme against highly pathogenic avian influenza in Indonesia

    NARCIS (Netherlands)

    Poetri, O.N.

    2014-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 are considered to be a major threat for both the poultry industry and public health, and Indonesia is one of the HPAI H5N1 endemic country with the highest incidence of human cases worldwide. The control measures of HPAI, like stamping-out were

  14. Evolution of an Eurasian avian-like influenza virus in naïve and vaccinated pigs.

    Directory of Open Access Journals (Sweden)

    Pablo R Murcia

    Full Text Available Influenza viruses are characterized by an ability to cross species boundaries and evade host immunity, sometimes with devastating consequences. The 2009 pandemic of H1N1 influenza A virus highlights the importance of pigs in influenza emergence, particularly as intermediate hosts by which avian viruses adapt to mammals before emerging in humans. Although segment reassortment has commonly been associated with influenza emergence, an expanded host-range is also likely to be associated with the accumulation of specific beneficial point mutations. To better understand the mechanisms that shape the genetic diversity of avian-like viruses in pigs, we studied the evolutionary dynamics of an Eurasian Avian-like swine influenza virus (EA-SIV in naïve and vaccinated pigs linked by natural transmission. We analyzed multiple clones of the hemagglutinin 1 (HA1 gene derived from consecutive daily viral populations. Strikingly, we observed both transient and fixed changes in the consensus sequence along the transmission chain. Hence, the mutational spectrum of intra-host EA-SIV populations is highly dynamic and allele fixation can occur with extreme rapidity. In addition, mutations that could potentially alter host-range and antigenicity were transmitted between animals and mixed infections were commonplace, even in vaccinated pigs. Finally, we repeatedly detected distinct stop codons in virus samples from co-housed pigs, suggesting that they persisted within hosts and were transmitted among them. This implies that mutations that reduce viral fitness in one host, but which could lead to fitness benefits in a novel host, can circulate at low frequencies.

  15. Heterologous Humoral Response against H5N1, H7N3, and H9N2 Avian Influenza Viruses after Seasonal Vaccination in a European Elderly Population

    Science.gov (United States)

    Sanz, Ivan; Rojo, Silvia; Tamames, Sonia; Eiros, José María; Ortiz de Lejarazu, Raúl

    2017-01-01

    Avian influenza viruses are currently one of the main threats to human health in the world. Although there are some screening reports of antibodies against these viruses in humans from Western countries, most of these types of studies are conducted in poultry and market workers of Asian populations. The presence of antibodies against avian influenza viruses was evaluated in an elderly European population. An experimental study was conducted, including pre- and post-vaccine serum samples obtained from 174 elderly people vaccinated with seasonal influenza vaccines of 2006–2007, 2008–2009, 2009–2010, and 2010–2011 Northern Hemisphere vaccine campaigns. The presence of antibodies against A/H5N1, A/H7N3, and A/H9N2 avian influenza viruses were tested by using haemaglutination inhibition assays. Globally, heterotypic antibodies were found before vaccination in 2.9% of individuals against A/H5N1, 1.2% against A/H7N3, and 25.9% against A/H9N2. These pre-vaccination antibodies were present at titers ≥1/40 in 1.1% of individuals against A/H5N1, in 1.1% against H7N3, and in 0.6% against the A/H9N2 subtype. One 76 year-old male showed pre-vaccine antibodies (Abs) against those three avian influenza viruses, and another three individuals presented Abs against two different viruses. Seasonal influenza vaccination induced a significant number of heterotypic seroconversions against A/H5N1 (14.4%) and A/H9N2 (10.9%) viruses, but only one seroconversion was observed against the A/H7N3 subtype. After vaccination, four individuals showed Abs titers ≥1/40 against those three avian viruses, and 55 individuals against both A/H5N1 and A/H9N2. Seasonal vaccination is able to induce some weak heterotypic responses to viruses of avian origin in elderly individuals with no previous exposure to them. However, this response did not accomplish the European Medicament Agency criteria for influenza vaccine efficacy. The results of this study show that seasonal vaccines induce a broad

  16. Addition of αGal HyperAcute™ technology to recombinant avian influenza vaccines induces strong low-dose antibody responses.

    Science.gov (United States)

    Chen, Wenlan Alex; Zhang, Jinjin; Hall, Katie M; Martin, Carol B; Kisselev, Serguei; Dasen, Emily J; Vahanian, Nicholas N; Link, Charles J; Martin, Brian K

    2017-01-01

    Highly pathogenic avian influenza represents a severe public health threat. Over the last decade, the demand for highly efficacious vaccines against avian influenza viruses has grown, especially after the 2013 H7N9 outbreak in China that resulted in over 600 human cases with over 200 deaths. Currently, there are several H5N1 and H7N9 influenza vaccines in clinical trials, all of which employ traditional oil-in-water adjuvants due to the poor immunogenicity of avian influenza virus antigens. In this study, we developed potent recombinant avian influenza vaccine candidates using HyperAcute™ Technology, which takes advantage of naturally-acquired anti-αGal immunity in humans. We successfully generated αGal-positive recombinant protein and virus-like particle vaccine candidates of H5N1 and H7N9 influenza strains using either biological or our novel CarboLink chemical αGal modification techniques. Strikingly, two doses of 100 ng αGal-modified vaccine, with no traditional adjuvant, was able to induce a much stronger humoral response in αGT BALB/c knockout mice (the only experimental system readily available for testing αGal in vivo) than unmodified vaccines even at 10-fold higher dose (1000 ng/dose). Our data strongly suggest that αGal modification significantly enhances the humoral immunogenicity of the recombinant influenza vaccine candidates. Use of αGal HyperAcute™ technology allows significant dose-sparing while retaining desired immunogenicity. Our success in the development of highly potent H5N1 and H7N9 vaccine candidates demonstrated the potential of αGal HyperAcute™ technology for the development of vaccines against other infectious diseases.

  17. Addition of αGal HyperAcute™ technology to recombinant avian influenza vaccines induces strong low-dose antibody responses.

    Directory of Open Access Journals (Sweden)

    Wenlan Alex Chen

    Full Text Available Highly pathogenic avian influenza represents a severe public health threat. Over the last decade, the demand for highly efficacious vaccines against avian influenza viruses has grown, especially after the 2013 H7N9 outbreak in China that resulted in over 600 human cases with over 200 deaths. Currently, there are several H5N1 and H7N9 influenza vaccines in clinical trials, all of which employ traditional oil-in-water adjuvants due to the poor immunogenicity of avian influenza virus antigens. In this study, we developed potent recombinant avian influenza vaccine candidates using HyperAcute™ Technology, which takes advantage of naturally-acquired anti-αGal immunity in humans. We successfully generated αGal-positive recombinant protein and virus-like particle vaccine candidates of H5N1 and H7N9 influenza strains using either biological or our novel CarboLink chemical αGal modification techniques. Strikingly, two doses of 100 ng αGal-modified vaccine, with no traditional adjuvant, was able to induce a much stronger humoral response in αGT BALB/c knockout mice (the only experimental system readily available for testing αGal in vivo than unmodified vaccines even at 10-fold higher dose (1000 ng/dose. Our data strongly suggest that αGal modification significantly enhances the humoral immunogenicity of the recombinant influenza vaccine candidates. Use of αGal HyperAcute™ technology allows significant dose-sparing while retaining desired immunogenicity. Our success in the development of highly potent H5N1 and H7N9 vaccine candidates demonstrated the potential of αGal HyperAcute™ technology for the development of vaccines against other infectious diseases.

  18. An overview on avian influenza

    Directory of Open Access Journals (Sweden)

    Nelson Rodrigo da Silva Martins

    2012-06-01

    Full Text Available Avian influenza (AI is considered an exotic disease in the Brazilian poultry industry, according to the National Avian Health Program (PNSA, with permanent monitoring of domestic, exotic and native avian species. Brazil presents privileged environmental conditions of reduced risk. In addition, all commercial poultry and conservation holdings are registered in state or national inventories and geographically located (GPS for health control. Poultry health standards are adopted for the conformity to the international market, mostly for the intensified poultry destined for exportation, but also for companion exotic and native conservation facilities. Guidelines for monitoring and the diagnosis of AI are published by the PNSA and follow the standards proposed by the international health code (World Organization for Animal Health, Organization International des Epizooties - OIE and insure the free of status for avian influenza virus (AIV of LPAIV-low pathogenicity AIV and HPAIV-high pathogenicity AIV. In addition, the infections by mesogenic and velogenic Newcastle disease virus, Mycoplasma gallisepticum, M. synoviae and M. meleagridis, Salmonella enteric subspecies enterica serovar Gallinarum biovars Gallinarum and Pullorum are eradicated from reproduction. Controlled infections by S.enterica subspecies enterica serovars Enteritidis and Typhimurium are monitored for breeders. The vaccination of chickens in ovo or at hatch against Marek's disease is mandatory. Broiler production is an indoor activity, confinement which insures biosecurity, with safe distances from the potential AIV reservoir avian species. Worldwide HPAIV H5N1 notifications to the OIE, in March 2011, included 51 countries.

  19. The effectiveness of preventative mass vaccination regimes against the incidence of highly pathogenic avian influenza on Java Island, Indonesia.

    Science.gov (United States)

    Bett, B; McLaws, M; Jost, C; Schoonman, L; Unger, F; Poole, J; Lapar, M L; Siregar, E S; Azhar, M; Hidayat, M M; Dunkle, S E; Mariner, J

    2015-04-01

    We conducted an operational research study involving backyard and semicommercial farms on Java Island, Indonesia, between April 2008 and September 2009 to evaluate the effectiveness of two preventive mass vaccination strategies against highly pathogenic avian influenza (HPAI). One regimen used Legok 2003 H5N1 vaccine, while the other used both Legok 2003 H5N1 and HB1 Newcastle disease (ND) vaccine. A total of 16 districts were involved in the study. The sample size was estimated using a formal power calculation technique that assumed a detectable effect of treatment as a 50% reduction in the baseline number of HPAI-compatible outbreaks. Within each district, candidate treatment blocks with village poultry populations ranging from 80 000 to 120 000 were created along subdistrict boundary lines. Subsequently, four of these blocks were randomly selected and assigned one treatment from a list that comprised control, vaccination against HPAI, vaccination against HPAI + ND. Four rounds of vaccination were administered at quarterly intervals beginning in July 2008. A vaccination campaign involved vaccinating 100 000 birds in a treatment block, followed by another 100 000 vaccinations 3 weeks later as a booster dose. Data on disease incidence and vaccination coverage were also collected at quarterly intervals using participatory epidemiological techniques. Compared with the unvaccinated (control) group, the incidence of HPAI-compatible events declined by 32% (P = 0.24) in the HPAI-vaccinated group and by 73% (P = 0.00) in the HPAI- and ND-vaccinated group. The effect of treatment did not vary with time or district. Similarly, an analysis of secondary data from the participatory disease and response (PDSR) database revealed that the incidence of HPAI declined by 12% in the HPAI-vaccinated group and by 24% in the HPAI + ND-vaccinated group. The results suggest that the HPAI + ND vaccination significantly reduced the incidence of HPAI-compatible events in mixed populations of

  20. Success factors for avian influenza vaccine use in poultry and potential impact at the wild bird-agricultural interface.

    Science.gov (United States)

    Swayne, David E; Spackman, Erica; Pantin-Jackwood, Mary

    2014-01-01

    Thirty-two epizootics of high pathogenicity avian influenza (HPAI) have been reported in poultry and other birds since 1959. The ongoing H5N1 HPAI epizootic that began in 1996 has also spilled over to infect wild birds. Traditional stamping-out programs in poultry have resulted in eradication of most HPAI epizootics. However, vaccination of poultry was added as a control tool in 1995 and has been used during five epizootics. Over 113 billion doses of AI vaccine have been used in poultry from 2002 to 2010 as oil-emulsified, inactivated whole AIV vaccines (95.5%) and live vectored vaccines (4.5%). Over 99% of the vaccine has been used in the four H5N1 HPAI enzootic countries: China including Hong Kong (91%), Egypt (4.7%), Indonesia (2.3%), and Vietnam (1.4%) where vaccination programs have been nationwide and routine to all poultry. Ten other countries used vaccine in poultry in a focused, risk-based manner but this accounted for less than 1% of the vaccine used. Most vaccine "failures" have resulted from problems in the vaccination process; i.e., failure to adequately administer the vaccine to at-risk poultry resulting in lack of population immunity, while fewer failures have resulted from antigenic drift of field viruses away from the vaccine viruses. It is currently not feasible to vaccinate wild birds against H5N1 HPAI, but naturally occurring infections with H5 low pathogenicity avian influenza viruses may generate cross-protective immunity against H5N1 HPAI. The most feasible method to prevent and control H5N1 HPAI in wild birds is through control of the disease in poultry with use of vaccine to reduce environmental burden of H5N1 HPAIV, and eventual eradication of the virus in domestic poultry, especially in domestic ducks which are raised in enzootic countries on range or in other outdoor systems having contact with wild aquatic and periurban terrestrial birds.

  1. Protection against H7N3 high pathogenicity avian influenza in chickens immunized with a recombinant fowlpox and an inactivated avian influenza vaccines

    Science.gov (United States)

    Beginning on June 2012, an H7N3 highly pathogenic avian influenza (HPAI) epizootic was reported in the State of Jalisco (Mexico), with some 22.4 million chickens that died, were slaughtered on affected farms or were preemptively culled on neighboring farms. In the current study, layer chickens were ...

  2. Protection of poultry against the 2012 Mexican H7N3 highly pathogenic avian influenza virus with inactivated H7 avian influenza vaccines

    Science.gov (United States)

    In June of 2012, an outbreak of highly pathogenic avian influenza (HPAI) H7N3 was reported poultry in Jalisco, Mexico. Since that time the virus has spread to the surrounding States of Guanajuato and Aguascalientes and new outbreaks continue to be reported. To date more than 25 million birds have di...

  3. Laboratory methods for assessing and licensing influenza vaccines for poultry

    Science.gov (United States)

    Avian influenza vaccines for poultry are based on hemagglutinin proteins and protection is specific to the vaccine subtype. Over 113 billion doses have been used between 2002 and 2010 for high pathogenicity avian influenza control. No universal vaccines are currently available. The majority of avian...

  4. Fowl adenovirus serotype 9 vectored vaccine for protection of avian influenza virus

    Science.gov (United States)

    A fowl adenovirus serotype 9, a non-pathogenic large double stranded DNA virus, was developed as a viral vector to express influenza genes as a potential vaccine. Two separate constructs were developed that expressed either the hemagglutinin gene of A/Chicken/Jalisco/2012 (H7) or A/ Chicken/Iowa/20...

  5. Flock-based surveillance for lowpathogenic avian influenza virus in ...

    African Journals Online (AJOL)

    Flock-based surveillance for lowpathogenic avian influenza virus in commercial breeders and layers, southwest Nigeria. ... African Journal of Infectious Diseases ... Background: Flock surveillance systems for avian influenza (AI) virus play a critical role in countries where vaccination is not practiced so as to establish the ...

  6. Genomic and Phylogenetic Characterization of Novel, Recombinant H5N2 Avian Influenza Virus Strains Isolated from Vaccinated Chickens with Clinical Symptoms in China

    Directory of Open Access Journals (Sweden)

    Huaiying Xu

    2015-02-01

    Full Text Available Infection of poultry with diverse lineages of H5N2 avian influenza viruses has been documented for over three decades in different parts of the world, with limited outbreaks caused by this highly pathogenic avian influenza virus. In the present study, three avian H5N2 influenza viruses, A/chicken/Shijiazhuang/1209/2013, A/chicken/Chiping/0321/2014, and A/chicken/Laiwu/0313/2014, were isolated from chickens with clinical symptoms of avian influenza. Complete genomic and phylogenetic analyses demonstrated that all three isolates are novel recombinant viruses with hemagglutinin (HA and matrix (M genes derived from H5N1, and remaining genes derived from H9N2-like viruses. The HA cleavage motif in all three strains (PQIEGRRRKR/GL is characteristic of a highly pathogenic avian influenza virus strain. These results indicate the occurrence of H5N2 recombination and highlight the importance of continued surveillance of the H5N2 subtype virus and reformulation of vaccine strains.

  7. Avian influenza surveillance and diagnosis

    Science.gov (United States)

    Rapid detection and accurate identification of low (LPAI) and high pathogenicity avian influenza (HPAI) is critical to controlling infections and disease in poultry. Test selection and algorithms for the detection and diagnosis of avian influenza virus (AIV) in poultry may vary somewhat among differ...

  8. Matrix-M Adjuvated Seasonal Virosomal Influenza Vaccine Induces Partial Protection in Mice and Ferrets against Avian H5 and H7 Challenge.

    Directory of Open Access Journals (Sweden)

    Freek Cox

    Full Text Available There is a constant threat of zoonotic influenza viruses causing a pandemic outbreak in humans. It is virtually impossible to predict which virus strain will cause the next pandemic and it takes a considerable amount of time before a safe and effective vaccine will be available once a pandemic occurs. In addition, development of pandemic vaccines is hampered by the generally poor immunogenicity of avian influenza viruses in humans. An effective pre-pandemic vaccine is therefore required as a first line of defense. Broadening of the protective efficacy of current seasonal vaccines by adding an adjuvant may be a way to provide such first line of defense. Here we evaluate whether a seasonal trivalent virosomal vaccine (TVV adjuvated with the saponin-based adjuvant Matrix-M (MM can confer protection against avian influenza H5 and H7 virus strains in mice and ferrets. We demonstrate that mice were protected from death against challenges with H5N1 and H7N7, but that the protection was not complete as evidenced by severe clinical signs. In ferrets, protection against H7N9 was not observed. In contrast, reduced upper and lower respiratory tract viral loads and reduced lung pathology, was achieved in H5N1 challenged ferrets. Together these results suggest that, at least to some extent, Matrix-M adjuvated seasonal virosomal influenza vaccine can serve as an interim measure to decrease morbidity and mortality associated with a pandemic outbreak.

  9. Flublok Seasonal Influenza (Flu) Vaccination

    Science.gov (United States)

    ... Vaccine Safety and Pregnant Women Febrile Seizures Following Vaccination Flu Vaccine and People with Egg Allergies Guillain- ... Flu Vaccines Quadrivalent Influenza Vaccine Intradermal Influenza (Flu) Vaccination Fluzone High-Dose Seasonal Influenza Vaccine Cell-Based ...

  10. The Application of NHEJ-CRISPR/Cas9 and Cre-Lox System in the Generation of Bivalent Duck Enteritis Virus Vaccine against Avian Influenza Virus

    Directory of Open Access Journals (Sweden)

    Pengxiang Chang

    2018-02-01

    Full Text Available Duck-targeted vaccines to protect against avian influenza are critically needed to aid in influenza disease control efforts in regions where ducks are endemic for highly pathogenic avian influenza (HPAI. Duck enteritis virus (DEV is a promising candidate viral vector for development of vaccines targeting ducks, owing to its large genome and narrow host range. The clustered regularly interspaced palindromic repeats (CRISPR/Cas9 system is a versatile gene-editing tool that has proven beneficial for gene modification and construction of recombinant DNA viral vectored vaccines. Currently, there are two commonly used methods for gene insertion: non-homologous end-joining (NHEJ and homology-directed repair (HDR. Owing to its advantages in efficiency and independence from molecular requirements of the homologous arms, we utilized NHEJ-dependent CRISPR/Cas9 to insert the influenza hemagglutinin (HA antigen expression cassette into the DEV genome. The insert was initially tagged with reporter green fluorescence protein (GFP, and a Cre-Lox system was later used to remove the GFP gene insert. Furthermore, a universal donor plasmid system was established by introducing double bait sequences that were independent of the viral genome. In summary, we provide proof of principle for generating recombinant DEV viral vectored vaccines against the influenza virus using an integrated NHEJ-CRISPR/Cas9 and Cre-Lox system.

  11. Characterisation and Identification of Avian Influenza Virus (AI

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2008-06-01

    Full Text Available Avian Influenza is caused by Influenza A virus which is a member of Orthomyxoviridae family. Influenza A virus is enveloped single stranded RNA with eight-segmented, negative polarity and filament or oval form, 50 – 120 by 200 – 300 nm diameters. Influenza A viruses have been found to infect birds, human, pig, horse and sometimes in the other mammalian such as seal and whale. The viruses are divided into different subtypes based on the antigenic protein which covers the virus surface i.e. Haemaglutinin (HA and Neuraminidase (NA. In addition, the nomenclature of subtype virus is based on HA and NA i.e HxNx, for example H5N1, H9N2 and the others. According to pathogenic, it could be divided into two distinct groups, they are Highly Pathogenic Avian Influenza (HPAI and Low Pathogenic Avian Influenza (LPAI. The Avian Influenza viruses have been continuously occurred and spread out in some continents such us America, Europe, Africa and Asian countries. The outbreak of Avian Influenza caused high mortality on birds and it has been reported that in human case Avian Influenza subtype H5N1 virus has caused several deaths. To anticipate this condition, an effort to prevent the transmission of Avian Influenza is needed. These strategic attempts include biosecurity, depopulation, vaccination, control of virus movement, monitoring and evaluation. Laboratory diagnostic plays an important role for successful prevention, control and eradication programs of Avian Influenza. Recently, there are two diagnostic methods for Avian Influenza. They are conventional (virological diagnosis and molecular methods. The conventional method is usually used for initial diagnostic of Avian Influenza. The conventional method takes more time and more costly, whereas the molecular method is more effective than conventional method. Based on the available diagnostic technique, basically diagnostic of Avian Influenza is done by serology test, isolation and identification as well

  12. Newcastle disease virus-based H5 influenza vaccine protects chickens from lethal challenge with a highly pathogenic H5N2 avian influenza virus.

    Science.gov (United States)

    Ma, Jingjiao; Lee, Jinhwa; Liu, Haixia; Mena, Ignacio; Davis, A Sally; Sunwoo, Sun Young; Lang, Yuekun; Duff, Michael; Morozov, Igor; Li, Yuhao; Yang, Jianmei; García-Sastre, Adolfo; Richt, Juergen A; Ma, Wenjun

    2017-01-01

    Since December 2014, Eurasian-origin, highly pathogenic avian influenza H5 viruses including H5N1, H5N2, and H5N8 subtypes (called H5N x viruses), which belong to the H5 clade 2.3.4.4, have been detected in U.S. wild birds. Subsequently, highly pathogenic H5N2 and H5N8 viruses have caused outbreaks in U.S. domestic poultry. Vaccination is one of the most effective ways to control influenza outbreaks and protect animal and public health. Newcastle disease virus (NDV)-based influenza vaccines have been demonstrated to be efficacious and safe in poultry. Herein, we developed an NDV-based H5 vaccine (NDV-H5) that expresses a codon-optimized ectodomain of the hemagglutinin from the A/chicken/Iowa/04-20/2015 (H5N2) virus and evaluated its efficacy in chickens. Results showed that both live and inactivated NDV-H5 vaccines induced hemagglutinin inhibition antibody titers against the H5N2 virus in immunized chickens after prime and booster, and both NDV-H5 vaccines completely protected chickens from lethal challenge with the highly pathogenic H5N2 A/turkey/Minnesota/9845-4/2015 virus. No clinical signs and only minimal virus shedding was observed in both vaccinated groups. In contrast, all mock-vaccinated, H5N2-infected chickens shed virus and died within 5 days post challenge. Furthermore, one dose of the live NDV-H5 vaccine also provided protection of 90% chickens immunized by coarse spraying; after exposure to H5N2 challenge, sera from vaccinated surviving chickens neutralized both highly pathogenic H5N1 and H5N8 viruses. Taken together, our results suggest that the NDV-based H5 vaccine is able to protect chickens against intercontinental highly pathogenic H5N x viruses and can be used by mass application to protect the poultry industry.

  13. Studies on Nanoparticle Based Avian Influenza Vaccines to Present Immunogenic Epitopes of the Virus with Concentration on Ectodomain of Matrix 2 (M2e) Protein

    Science.gov (United States)

    Babapoor Dighaleh, Sankhiros

    2011-12-01

    Avian influenza is an infectious disease of avian species caused by type A influenza viruses with a significant economic impact on the poultry industry. Vaccination is the main prevention strategy in many countries worldwide. However, available vaccines elicit antibodies against two major surface protein of the virus hemagglutinin (HA) and neuraminidase (NA), where they constantly change by point mutations. Influenza viruses can also easily undergo gene reassortment. Therefore, to protect chickens against new strain of avian influenza virus, as well as control and prevent virus spread among farms, new vaccines needed to be designed which is a tedious, time consuming and expensive. Recently, conserved regions of the influenza genome have been evaluated as possible universal vaccines to eliminate constant vaccine updates based on circulating virus. In this study, peptide nanotechnology was used to generate vaccine nanoparticles that carry the highly conserved external domain of matrix 2 protein (M2e). These nanoparticles presented M2e in monomeric or tetrameric forms, designated as PSC-M2e-CH and BNSC-M2eN-CH. respectively. First, to demonstrate immunogenicity of these nanoparticles, we measured anti-M2e antibody in chickens, particularly when a high dose was applied. Prior to vaccination-challenge study, the challenge dose were determined by oculonasal inoculation of 10 6 EID50 or 107.7 EID50 of low pathogenicity AI virus HSN2 followed by measuring cloacal and tracheal virus shedding. A biphasic virus shedding pattern was observed with two peaks of virus shedding at days 4 and 8 for both tracheal and cloacal swabs. The chickens infected with 107.7 EID50 had significant virus shedding as compared with 106 EID50. Based on results of mentioned studies, a vaccination-challenge study was conducted by using 75mug of each vaccine construct per inoculation (with and without adjuvant) and higher dose of virus for challenge. BN5C-M2e-CH with adjuvant significantly reduced the

  14. Vaccination against H9N2 avian influenza virus reduces bronchus-associated lymphoid tissue formation in cynomolgus macaques after intranasal virus challenge infection.

    Science.gov (United States)

    Nakayama, Misako; Ozaki, Hiroichi; Itoh, Yasushi; Soda, Kosuke; Ishigaki, Hirohito; Okamatsu, Masatoshi; Sakoda, Yoshihiro; Park, Chun-Ho; Tsuchiya, Hideaki; Kida, Hiroshi; Ogasawara, Kazumasa

    2016-12-01

    H9N2 avian influenza virus causes sporadic human infection. Since humans do not possess acquired immunity specific to this virus, we examined the pathogenicity of an H9N2 virus isolated from a human and then analyzed protective effects of a vaccine in cynomolgus macaques. After intranasal challenge with A/Hong Kong/1073/1999 (H9N2) (HK1073) isolated from a human patient, viruses were isolated from nasal and tracheal swabs in unvaccinated macaques with mild fever and body weight loss. A formalin-inactivated H9N2 whole particle vaccine derived from our virus library was subcutaneously inoculated to macaques. Vaccination induced viral antigen-specific IgG and neutralization activity in sera. After intranasal challenge with H9N2, the virus was detected only the day after inoculation in the vaccinated macaques. Without vaccination, many bronchus-associated lymphoid tissues (BALTs) were formed in the lungs after infection, whereas the numbers of BALTs were smaller and the cytokine responses were weaker in the vaccinated macaques than those in the unvaccinated macaques. These findings indicate that the H9N2 avian influenza virus HK1073 is pathogenic in primates but seems to cause milder symptoms than does H7N9 influenza virus as found in our previous studies and that a formalin-inactivated H9N2 whole particle vaccine induces protective immunity against H9N2 virus. © 2016 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  15. Mucosal immunity induced by adenovirus-based H5N1 HPAI vaccine confers protection against a lethal H5N2 avian influenza virus challenge

    International Nuclear Information System (INIS)

    Park, Ki Seok; Lee, Jiyeung; Ahn, So Shin; Byun, Young-Ho; Seong, Baik Lin; Baek, Yun Hee; Song, Min-Suk; Choi, Young Ki; Na, Yun Jeong; Hwang, Inhwan; Sung, Young Chul; Lee, Chang Geun

    2009-01-01

    Development of effective vaccines against highly pathogenic avian influenza (HPAI) H5N1 viruses is a global public health priority. Considering the difficulty in predicting HPAI H5N1 pandemic strains, one strategy used in their design includes the development of formulations with the capacity of eliciting broad cross-protective immunity against multiple viral antigens. To this end we constructed a replication-defective recombinant adenovirus-based avian influenza virus vaccine (rAdv-AI) expressing the codon-optimized M2eX-HA-hCD40L and the M1-M2 fusion genes from HPAI H5N1 human isolate. Although there were no significant differences in the systemic immune responses observed between the intramuscular prime-intramuscular boost regimen (IM/IM) and the intranasal prime-intramuscular boost regimen (IN/IM), IN/IM induced more potent CD8 + T cell and antibody responses at mucosal sites than the IM/IM vaccination, resulting in more effective protection against lethal H5N2 avian influenza (AI) virus challenge. These findings suggest that the strategies used to induce multi-antigen-targeted mucosal immunity, such as IN/IM delivery of rAdv-AI, may be a promising approach for developing broad protective vaccines that may be more effective against the new HPAI pandemic strains.

  16. Field effectiveness of highly pathogenic avian influenza H5N1 vaccination in commercial layers in Indonesia.

    Directory of Open Access Journals (Sweden)

    Simson Tarigan

    Full Text Available Although vaccination of poultry for control of highly pathogenic avian influenza virus (HPAIV H5N1 has been practiced during the last decade in several countries, its effectiveness under field conditions remains largely unquantified. Effective HPAI vaccination is however essential in preventing incursions, silent infections and generation of new H5N1 antigenic variants. The objective of this study was to asses the level and duration of vaccine induced immunity in commercial layers in Indonesia. Titres of H5N1 haemagglutination inhibition (HI antibodies were followed in individual birds from sixteen flocks, age 18-68 week old (wo. The study revealed that H5N1 vaccination had highly variable outcome, including vaccination failures, and was largely ineffective in providing long lasting protective immunity. Flocks were vaccinated with seven different vaccines, administer at various times that could be grouped into three regimes: In regime A, flocks (n = 8 were vaccinated two or three times before 19 wo; in regime B (n = 2, two times before and once after 19 wo; and in regime C (n = 6 three to four times before and two to three times after 19 wo. HI titres in regime C birds were significantly higher during the entire observation period in comparison to titres of regime A or B birds, which also differed significantly from each other. The HI titres of individual birds in each flock differed significantly from birds in other flocks, indicating that the effectiveness of field vaccination was highly variable and farm related. Protective HI titres of >4log2, were present in the majority of flocks at 18 wo, declined thereafter at variable rate and only two regime C flocks had protective HI titres at 68 wo. Laboratory challenge with HPAIV H5N1 of birds from regime A and C flocks confirmed that protective immunity differed significantly between flocks vaccinated by these two regimes. The study revealed that effectiveness of the currently applied H5N1

  17. Genetic versus antigenic differences among highly pathogenic H5N1 avian influenza A viruses: Consequences for vaccine strain selection.

    Science.gov (United States)

    Peeters, Ben; Reemers, Sylvia; Dortmans, Jos; de Vries, Erik; de Jong, Mart; van de Zande, Saskia; Rottier, Peter J M; de Haan, Cornelis A M

    2017-03-01

    Highly pathogenic H5N1 avian influenza A viruses display a remarkable genetic and antigenic diversity. We examined to what extent genetic distances between several H5N1 viruses from different clades correlate with antigenic differences and vaccine performance. H5-specific antisera were generated, and cross-reactivity and antigenic distances between 12 different viruses were determined. In general, antigenic distances increased proportional to genetic distances although notable exceptions were observed. Antigenic distances correlated better with genetic variation in 27 selected, antigenically-relevant H5 residues, than in the complete HA1 domain. Variation in these selected residues could accurately predict the antigenic distances for a novel H5N8 virus. Protection provided by vaccines against heterologous H5N1 challenge viruses indicated that cross-protection also correlates better with genetic variation in the selected antigenically-relevant residues than in complete HA1. When time is limited, variation at these selected residues may be used to accurately predict antigenic distance and vaccine performance. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Evaluation of in vitro cross-reactivity to avian H5N1 and pandemic H1N1 2009 influenza following prime boost regimens of seasonal influenza vaccination in healthy human subjects: a randomised trial.

    Directory of Open Access Journals (Sweden)

    Delia Bethell

    Full Text Available INTRODUCTION: Recent studies have demonstrated that inactivated seasonal influenza vaccines (IIV may elicit production of heterosubtypic antibodies, which can neutralize avian H5N1 virus in a small proportion of subjects. We hypothesized that prime boost regimens of live and inactivated trivalent seasonal influenza vaccines (LAIV and IIV would enhance production of heterosubtypic immunity and provide evidence of cross-protection against other influenza viruses. METHODS: In an open-label study, 26 adult volunteers were randomized to receive one of four vaccine regimens containing two doses of 2009-10 seasonal influenza vaccines administered 8 (±1 weeks apart: 2 doses of LAIV; 2 doses of IIV; LAIV then IIV; IIV then LAIV. Humoral immunity assays for avian H5N1, 2009 pandemic H1N1 (pH1N1, and seasonal vaccine strains were performed on blood collected pre-vaccine and 2 and 4 weeks later. The percentage of cytokine-producing T-cells was compared with baseline 14 days after each dose. RESULTS: Subjects receiving IIV had prompt serological responses to vaccine strains. Two subjects receiving heterologous prime boost regimens had enhanced haemagglutination inhibition (HI and neutralization (NT titres against pH1N1, and one subject against avian H5N1; all three had pre-existing cross-reactive antibodies detected at baseline. Significantly elevated titres to H5N1 and pH1N1 by neuraminidase inhibition (NI assay were observed following LAIV-IIV administration. Both vaccines elicited cross-reactive CD4+ T-cell responses to nucleoprotein of avian H5N1 and pH1N1. All regimens were safe and well tolerated. CONCLUSION: Neither homologous nor heterologous prime boost immunization enhanced serum HI and NT titres to 2009 pH1N1 or avian H5N1 compared to single dose vaccine. However heterologous prime-boost vaccination did lead to in vitro evidence of cross-reactivity by NI; the significance of this finding is unclear. These data support the strategy of

  19. Antibody titer has positive predictive value for vaccine protection against challenge with natural antigenic-drift variants of H5N1 high-pathogenicity avian influenza viruses from Indonesia

    NARCIS (Netherlands)

    D.E. Swayne (David); D.L. Suarez (David L.); E. Spackman (Erica); S. Jadhao (Samadhan); G. Dauphin (Gwenaelle); M. Kim-Torchetti (Mia); J. McGrane (James); J. Weaver (John); P. Daniels (Peter); F. Wong (Frank); P. Selleck (Paul); A. Wiyono (Agus); R. Indriani (Risa); Y. Yupiana (Yuni); E.S. Siregar (Elly Sawitri); T.Y. Prajitno (Teguh); D.J. Smith (Derek James); R.A.M. Fouchier (Ron)

    2015-01-01

    textabstractVaccines are used in integrated control strategies to protect poultry against H5N1 high-pathogenicity avian influenza (HPAI). H5N1 HPAI was first reported in Indonesia in 2003, and vaccination was initiated in 2004, but reports of vaccine failures began to emerge in mid-2005. This study

  20. Avian And Other Zoonotic Influenza

    Science.gov (United States)

    ... consultations Fact sheets Fact files Questions & answers Features Multimedia Contacts Influenza (Avian and other zoonotic) Fact sheet ... respiratory tract infection (fever and cough), early sputum production and rapid progression to severe pneumonia, sepsis with ...

  1. Efficacy of inactivated influenza vaccines for protection of poultry against the H7N9 low pathogenic avian influenza virus isolated in China during 2013

    Science.gov (United States)

    The recent outbreak in China of avian influenza (AI) H7N9 in birds and humans underscores the interspecies movement of these viruses. Interestingly, the genetic composition of these H7N9 viruses appears to be solely of avian origin and of low pathogenicity in birds. Although few isolations of these ...

  2. A baculovirus dual expression system-based vaccine confers complete protection against lethal challenge with H9N2 avian influenza virus in mice

    Directory of Open Access Journals (Sweden)

    Ye Yu

    2011-06-01

    Full Text Available Abstract Background Avian influenza viruses of H9N2 subtype have become highly prevalent in avian species. Although these viruses generally cause only mild to moderate disease, they can infect a wide variety of species, including chickens, quail, turkeys, ducks, geese, pheasant, partridge, and pigeon, even transmitted to mammalian species, including humans, accelerating the efforts to devise protective strategies against them. Results The results showed that stronger immune responses were induced in a mouse model immunized with BV-Dual-HA than in those vaccinated with a DNA vaccine encoding the same antigen. Moreover, complete protection against lethal challenge with H9N2 virus was observed in mice. Conclusion BV-Dual-HA could be utilized as a vaccine candidate against H9N2 virus infection.

  3. Avian influenza : a review article

    Directory of Open Access Journals (Sweden)

    A. Yalda

    2006-07-01

    Full Text Available The purpose of this paper is to provides general information about avian influenza (bird flu and specific information about one type of bird flu, called avian influenza A (H5N1, that has caused infections in birds in Asia and Europe and in human in Asia. The main materials in this report are based on the World Health Organization (WHO , world organization for animal health (OIE , food and agriculture organization of the united nations (FAO information and recommendations and review of the published literature about avian influenza. Since December 2003, highly pathogenic H5N1 avian influenza viruses have swept through poultry populations across Asia and parts of Europe. The outbreaks are historically unprecedented in scale and geographical spread. Their economic impact on the agricultural sector of the affected countries has been large. Human cases, with an overall fatality rate around 50%, have also been reported and almost all human infections can be linked to contact with infected poultry. Influenza viruses are genetically unstable and their behaviour cannot be predicted so the risk of further human cases persists. The human health implications have now gained importance, both for illness and fatalities that have occurred following natural infection with avian viruses, and for the potential of generating a re-assortant virus that could give rise to the next human influenza pandemic.

  4. Heterologous prime-boost immunization of Newcastle disease virus vectored vaccines protected broiler chickens against highly pathogenic avian influenza and Newcastle disease viruses.

    Science.gov (United States)

    Kim, Shin-Hee; Samal, Siba K

    2017-07-24

    Avian Influenza virus (AIV) is an important pathogen for both human and animal health. There is a great need to develop a safe and effective vaccine for AI infections in the field. Live-attenuated Newcastle disease virus (NDV) vectored AI vaccines have shown to be effective, but preexisting antibodies to the vaccine vector can affect the protective efficacy of the vaccine in the field. To improve the efficacy of AI vaccine, we generated a novel vectored vaccine by using a chimeric NDV vector that is serologically distant from NDV. In this study, the protective efficacy of our vaccines was evaluated by using H5N1 highly pathogenic avian influenza virus (HPAIV) strain A/Vietnam/1203/2004, a prototype strain for vaccine development. The vaccine viruses were three chimeric NDVs expressing the hemagglutinin (HA) protein in combination with the neuraminidase (NA) protein, matrix 1 protein, or nonstructural 1 protein. Comparison of their protective efficacy between a single and prime-boost immunizations indicated that prime immunization of 1-day-old SPF chicks with our vaccine viruses followed by boosting with the conventional NDV vector strain LaSota expressing the HA protein provided complete protection of chickens against mortality, clinical signs and virus shedding. Further verification of our heterologous prime-boost immunization using commercial broiler chickens suggested that a sequential immunization of chickens with chimeric NDV vector expressing the HA and NA proteins following the boost with NDV vector expressing the HA protein can be a promising strategy for the field vaccination against HPAIVs and against highly virulent NDVs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. 77 FR 34783 - Highly Pathogenic Avian Influenza

    Science.gov (United States)

    2012-06-12

    ... Avian Influenza AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Interim rule... importation of bird and poultry products from regions where any subtype of highly pathogenic avian influenza... avian influenza (HPAI). On January 24, 2011, we published in the Federal Register (76 FR 4046-4056...

  6. High-yield production of a stable Vero cell-based vaccine candidate against the highly pathogenic avian influenza virus H5N1

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Fangye; Zhou, Jian; Ma, Lei; Song, Shaohui; Zhang, Xinwen; Li, Weidong; Jiang, Shude [No. 5, Department of Bioproducts, Institute of Medical Biology, Chinese Academy of Medical Science and Pecking Union Medical College, Jiaoling Avenue 935, Kunming, Yunnan Province 650102, People' s Republic of China (China); Wang, Yue, E-mail: euy-tokyo@umin.ac.jp [National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Yingxin Lane 100, Xicheng District, Beijing 100052, People' s Republic of China (China); Liao, Guoyang, E-mail: liaogy@21cn.com [No. 5, Department of Bioproducts, Institute of Medical Biology, Chinese Academy of Medical Science and Pecking Union Medical College, Jiaoling Avenue 935, Kunming, Yunnan Province 650102, People' s Republic of China (China)

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer Vero cell-based HPAI H5N1 vaccine with stable high yield. Black-Right-Pointing-Pointer Stable high yield derived from the YNVa H3N2 backbone. Black-Right-Pointing-Pointer H5N1/YNVa has a similar safety and immunogenicity to H5N1delta. -- Abstract: Highly pathogenic avian influenza (HPAI) viruses pose a global pandemic threat, for which rapid large-scale vaccine production technology is critical for prevention and control. Because chickens are highly susceptible to HPAI viruses, the supply of chicken embryos for vaccine production might be depleted during a virus outbreak. Therefore, developing HPAI virus vaccines using other technologies is critical. Meeting vaccine demand using the Vero cell-based fermentation process has been hindered by low stability and yield. In this study, a Vero cell-based HPAI H5N1 vaccine candidate (H5N1/YNVa) with stable high yield was achieved by reassortment of the Vero-adapted (Va) high growth A/Yunnan/1/2005(H3N2) (YNVa) virus with the A/Anhui/1/2005(H5N1) attenuated influenza vaccine strain (H5N1delta) using the 6/2 method. The reassorted H5N1/YNVa vaccine maintained a high hemagglutination (HA) titer of 1024. Furthermore, H5N1/YNVa displayed low pathogenicity and uniform immunogenicity compared to that of the parent virus.

  7. High-yield production of a stable Vero cell-based vaccine candidate against the highly pathogenic avian influenza virus H5N1

    International Nuclear Information System (INIS)

    Zhou, Fangye; Zhou, Jian; Ma, Lei; Song, Shaohui; Zhang, Xinwen; Li, Weidong; Jiang, Shude; Wang, Yue; Liao, Guoyang

    2012-01-01

    Highlights: ► Vero cell-based HPAI H5N1 vaccine with stable high yield. ► Stable high yield derived from the YNVa H3N2 backbone. ► H5N1/YNVa has a similar safety and immunogenicity to H5N1delta. -- Abstract: Highly pathogenic avian influenza (HPAI) viruses pose a global pandemic threat, for which rapid large-scale vaccine production technology is critical for prevention and control. Because chickens are highly susceptible to HPAI viruses, the supply of chicken embryos for vaccine production might be depleted during a virus outbreak. Therefore, developing HPAI virus vaccines using other technologies is critical. Meeting vaccine demand using the Vero cell-based fermentation process has been hindered by low stability and yield. In this study, a Vero cell-based HPAI H5N1 vaccine candidate (H5N1/YNVa) with stable high yield was achieved by reassortment of the Vero-adapted (Va) high growth A/Yunnan/1/2005(H3N2) (YNVa) virus with the A/Anhui/1/2005(H5N1) attenuated influenza vaccine strain (H5N1delta) using the 6/2 method. The reassorted H5N1/YNVa vaccine maintained a high hemagglutination (HA) titer of 1024. Furthermore, H5N1/YNVa displayed low pathogenicity and uniform immunogenicity compared to that of the parent virus.

  8. Optimization of incubation temperature in embryonated chicken eggs inoculated with H9N2 vaccinal subtype of avian influenza virus

    Directory of Open Access Journals (Sweden)

    Saeed Sedigh-Eteghad

    2013-09-01

    Full Text Available There are little information about growth properties of low pathogenic (LP avian influenza virus (AIV in embryonated chicken eggs (ECEs at different incubation temperatures. Knowledge of this information increases the quantity and quality of antigen in vaccine production process. For this purpose, 10-5 dilution of AIV (A/Chicken/Iran/99/H9N2 was inoculated (Intra-allantoic into 400, 11-day old specific pathogen free (SPF ECEs in the 0.1 mL per ECE rate and incubated in 32, 33, 34, 35, 36, 37.5, 38, 39 ̊C for 72 hr in 65% humidity. Early death embryos in first 24 hr were removed. Amnio-allantoic fluid was withdrawn into the measuring cylinder, and tested for hemagglutination (HA activity and egg infective dose 50 (EID50. The utilizable ECEs and amnio-allantoic fluid volume was significantly increased in 35 ̊C, (p < 0.05. Significant difference in HA and EID50 titers, were seen only in 39 ̊C group. Therefore, 35°C is an optimum temperature for incubation of inoculated ECEs.

  9. Success factors for avian influenza vaccine use in poultry and potential impact at the wild bird-agricultural interface

    Science.gov (United States)

    Thirty-two epizootics of high pathogenicity avian influenza (HPAI) have been reported in poultry and other birds since 1959. The ongoing H5N1 HPAI epizootic that began in 1996 has also spilled over to infect wild birds. Traditional stamping-out programs in poultry have resulted in eradication of mos...

  10. Development and evaluation of an avian influenza, neuraminidase subtype 1, indirect enzyme-linked immunosorbent assay for poultry using the differentiation of infected from vaccinated animals control strategy.

    Science.gov (United States)

    Liu, Y; Mundt, E; Mundt, A; Sylte, M; Suarez, D L; Swayne, D E; García, M

    2010-03-01

    An indirect enzyme-linked immunosorbent assay (ELISA) was developed using baculovirus, purified, recombinant N1 protein from A/chicken/Indonesia/PA7/2003 (H5N1) virus. The N1-ELISA showed high selectivity for detection of N1 antibodies, with no cross-reactivity with other neuraminidase subtypes, and broad reactivity with sera to N1 subtype isolates from North American and Eurasian lineages. Sensitivity of the N1-ELISA to detect N1 antibodies in turkey sera, collected 3 wk after H1N1 vaccination, was comparable to detection of avian influenza antibodies by the commercial, indirect ELISAs ProFLOK AIV Plus ELISA Kit (Synbiotics, Kansas City, MO) and Avian Influenza Virus Antibody Test Kit (IDEXX, Westbrook, ME). However, 6 wk after vaccination, the Synbiotics ELISA kit performed better than the N1-ELISA and the IDEXX ELISA kit. An evaluation was made of the ability of the N1-ELISA to discriminate vaccinated chickens from subsequently challenged chickens. Two experiments were conducted, chickens were vaccinated with inactivated H5N2 and H5N9 viruses and challenged with highly pathogenic H5N1 virus, and chickens were vaccinated with recombinant poxvirus vaccine encoding H7 and challenged with highly pathogenic H7N1 virus. Serum samples were collected at 14 days postchallenge and tested by hemagglutination inhibition (HI), quantitative neuraminidase inhibition (NI), and N1-ELISA. At 2 days postchallenge, oropharyngeal swabs were collected for virus isolation (VI) to confirm infection. The N1-ELISA was in fair agreement with VI and HI results. Although the N1-ELISA showed a lower sensitivity than the NI assay, it was demonstrated that detection of N1 antibodies by ELISA was an effective and rapid assay to identify exposure to the challenge virus in vaccinated chickens. Therefore, N1-ELISA can facilitate a vaccination strategy with differentiation of infected from vaccinated animals using a neuraminidase heterologous approach.

  11. Standardization of an inactivated H17N1 avian influenza vaccine and efficacy against A/Chicken/Italy/13474/99 high-pathogenicity virus infection.

    Science.gov (United States)

    Di Trani, L; Cordioli, P; Falcone, E; Lombardi, G; Moreno, A; Sala, G; Tollis, M

    2003-01-01

    The minimum requirements for assessing the immunogenicity of an experimental avian influenza (AI) vaccine prepared from inactivated A/Turkey/Italy/2676/99 (H7N1) low-pathogenicity (LP) AI (LPAI) virus were determined in chickens of different ages. A correlation between the amount of hemagglutinin (HA) per dose of vaccine and the protection against clinical signs of disease and infection by A/Chicken/Italy/13474/99 highly pathogenic (HP) AI (HPAI) virus was established. Depending on the vaccination schedule, one or two administrations of 0.5 microg of hemagglutinin protected chickens against clinical signs and death and completely prevented virus shedding from birds challenged at different times after vaccination.

  12. Control strategies against avian influenza

    Science.gov (United States)

    Since 1959, 40 epizootics of high pathogenicity avian influenza (HPAI) have occurred (Figure 1). Thirty-five of these epizootic HPAI viruses were geographically-limited (mostly to single countries), involved farm-to-farm spread and were eradicated from poultry by stamping-out programs; i.e. the HPAI...

  13. Vaccine-induced protection from egg production losses in commercial turkey breeder hens following experimental challenge with a triple-reassortant H3N2 avian influenza virus.

    Science.gov (United States)

    Kapczynski, Darrell R; Gonder, Eric; Liljebjelke, Karen; Lippert, Ron; Petkov, Daniel; Tilley, Becky

    2009-03-01

    Infections of avian influenza virus (AIV) in turkey breeder hens can cause a decrease in both egg production and quality, resulting in significant production losses. In North Carolina in 2003, a triple-reassortant H3N2 AIV containing human, swine, and avian gene segments was isolated from turkey breeder hens (A/turkey/NC/16108/03). This viral subtype was subsequently isolated from both turkeys and swine in Ohio in 2004, and in Minnesota in 2005, and was responsible for significant losses in turkey production. The objective of this study was to determine if currently available commercial, inactivated avian influenza H3 subtype oil-emulsion vaccines would protect laying turkey hens from egg production losses following challenge with the 2003 H3N2 field virus isolate from North Carolina. Laying turkey hens were vaccinated in the field with two injections of either a commercial monovalent (A/duck/Minnesota/79/79 [H3N4]) or autogenous bivalent (A/turkey/North Carolina/05 (H3N2)-A/turkey/North Carolina/88 [H1N1]) vaccine, at 26 and 30 wk of age, and subsequently challenged under BSL 3-Ag conditions at 32 wk of age. Vaccine-induced efficacy was determined as protection from a 50% decrease in egg production and from a decrease in egg quality within 21 days postchallenge. Results indicate that, following a natural route of challenge (eye drop and intranasal), birds vaccinated with the 2005 North Carolina H3N2 subtype were significantly protected from the drop in egg production observed in both the H3N4 vaccinated and sham-vaccinated hens. The results demonstrate that groups receiving vaccines containing either H3 subtype had a decreased number of unsettable eggs, increased hemagglutination inhibition titers following challenge, and decreased virus isolations from cloacal swabs as compared to the sham-vaccinated group. Phylogenetic analysis of the nucleotide sequence of the HA1 gene segment from the three H3 viruses used in these studies indicated that the two North Carolina

  14. Experimental transmission of avian-like swine H1N1 influenza virus between immunologically naïve and vaccinated pigs.

    Science.gov (United States)

    Lloyd, Lucy E; Jonczyk, Magdalena; Jervis, Carley M; Flack, Deborah J; Lyall, John; Foote, Alasdair; Mumford, Jennifer A; Brown, Ian H; Wood, James L; Elton, Debra M

    2011-09-01

    Infection of pigs with swine influenza has been studied experimentally and in the field; however, little information is available on the natural transmission of this virus in pigs. Two studies in an experimental transmission model are presented here, one in immunologically naïve and one in a combination of vaccinated and naïve pigs. To investigate the transmission of a recent 'avian-like' swine H1N1 influenza virus in naive piglets, to assess the antibody response to a commercially available vaccine and to determine the efficiency of transmission in pigs after vaccination. Transmission chains were initiated by intranasal challenge of two immunologically naïve pigs. Animals were monitored daily for clinical signs and virus shedding. Pairs of pigs were sequentially co-housed, and once virus was detected in recipients, prior donors were removed. In the vaccination study, piglets were vaccinated and circulating antibody levels were monitored by haemagglutination inhibition assay. To study transmission in vaccinates, a pair of infected immunologically naïve animals was co-housed with vaccinated recipient pigs and further pairs of vaccinates were added sequentially as above. The chain was completed by the addition of naive pigs. Transmission of the H1N1 virus was achieved through a chain of six pairs of naïve piglets and through four pairs of vaccinated animals. Transmission occurred with minimal clinical signs and, in vaccinates, at antibody levels higher than previously reported to protect against infection. © 2011 Blackwell Publishing Ltd.

  15. ADULT INFLUENZA VACCINATION GUIDELINE

    African Journals Online (AJOL)

    immunisation, and successful influenza vaccines are available each year for the predominant serotypes of the virus. 2. THE VIRUS2.6-9. The influenza viruses are enveloped viruses with a segmented. RNA genome. There are three types, influenza A, B and C based on antigenic differences. Both influenza A and B viruses.

  16. Efficacy of two H5N9-inactivated vaccines against challenge with a recent H5N1 highly pathogenic avian influenza isolate from a chicken in Thailand.

    Science.gov (United States)

    Bublot, Michel; Le Gros, François-Xavier; Nieddu, Daniela; Pritchard, Nikki; Mickle, Thomas R; Swayne, David E

    2007-03-01

    The objective of this study was to compare the efficacy of two avian influenza (AI) H5-inactivated vaccines containing either an American (A/turkey/Wisconsin/68 H5N9; H5N9-WI) or a Eurasian isolate (A/chicken/Italy/22A/98 H5N9; H5N9-It). Three-week-old specific pathogen-free chickens were vaccinated once and challenged 3 wk later with a H5N1 highly pathogenic AI (HPAI) virus isolated from a chicken in Thailand in 2004. All unvaccinated challenged birds died within 2 days, whereas 90% and 100% of chickens vaccinated with H5N9-WI and H5N9-It, respectively, were protected against morbidity and mortality. Both vaccines prevented cloacal shedding and significantly reduced oral shedding of the challenge HPAI virus. Additional chickens (vaccinated or unvaccinated) were placed in contact with the directly challenged birds 18 hr after challenge. All unvaccinated chickens in contact with unvaccinated challenged birds died within 3 days after contact, whereas unvaccinated chickens in contact with vaccinated challenged birds either showed a significantly delayed mortality or did not become infected. All vaccinated contacts were protected against clinical signs, and most chickens did not shed detectable amount of HPAI virus. Altogether, these data indicate that both vaccines protected very well against morbidity and mortality and reduced or prevented shedding induced by direct or contact exposure to Asian H5N1 HPAI virus.

  17. Non-chromatographic preparation of a bacterially produced single-shot modular virus-like particle capsomere vaccine for avian influenza.

    Science.gov (United States)

    Wibowo, Nani; Wu, Yang; Fan, Yuanyuan; Meers, Joanne; Lua, Linda H L; Middelberg, Anton P J

    2015-11-04

    Highly pathogenic avian influenza (HPAI) causes significant economic loss, reduced food security and poses an ongoing pandemic threat. Poultry vaccination significantly decreases these problems and recognizes that the health of humans, animals and ecosystems are connected. Low-cost manufacture of poultry vaccine matched quickly to the ever-changing circulating strain is needed for effective vaccination. Here, we re-engineered the process to manufacture bacterially synthesized modular capsomere comprising influenza M2e, previously shown to confer complete protection in challenged mice, for application in poultry. Modular capsomere was prepared using a simplified non-chromatographic salting-out precipitation method and its immunogenicity tested in vivo in poultry. Modular capsomere crudely purified by precipitation (pCapM2e) contained more contaminants than equivalent product purified by chromatography (cCapM2e). Unadjuvanted pCapM2e containing 80 EU of endotoxin per dose was inferior to highly purified and adjuvanted cCapM2e (2 EU per dose). However, addition of adjuvant to pCapM2e resulting in high immunogenicity after only a single dose of vaccination, yet without any local adverse reaction. This finding suggests a strong synergy between adjuvant, antigen and contaminants, and the possible existence of a "Goldilocks" level of contaminants, where high immunogenicity and low reactogenicity can be obtained in a single-shot vaccination. The simplified process offers potential cost and speed advantages to address the needs in influenza poultry vaccination in low-cost veterinary markets. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Protection conferred by recombinant turkey herpesvirus avian influenza (rHVT-H5) vaccine in the rearing period in two commercial layer chicken breeds in Egypt.

    Science.gov (United States)

    Kilany, Walid; Dauphin, Gwenaelle; Selim, Abdullah; Tripodi, Astrid; Samy, Mohamed; Sobhy, Heba; VonDobschuetz, Sophie; Safwat, Marwa; Saad, Mona; Erfan, Ahmed; Hassan, Mohamed; Lubroth, Juan; Jobre, Yilma

    2014-01-01

    The effectiveness of recombinant turkey herpesvirus avian influenza (A/swan/Hungary/4999/2006(H5N1)) clade 2.2 virus (rHVT-H5) vaccine was evaluated in two layer chicken breeds (White Bovans [WB] and Brown Shaver [BS]). One dose of rHVT-H5 vaccine was administered at day 1 and birds were monitored serologically (haemagglutination inhibition test) and virologically for 19 weeks. Maternally-derived antibody and post-vaccination H5 antibody titres were measured using the Chinese (A/Goose/Guangdong/1/96(H5N1)) HA and the Egyptian (A/chicken/Egypt/128s/2012(H5N1)) HA as antigens. The challenge was conducted at 19 weeks of age and on six experimental groups: Groups I (WB) and II (BS), both vaccinated and challenged; Groups III (WB) and IV (BS), both vaccinated but not challenged; Groups V and VI, unvaccinated specific pathogen free chickens, serving respectively as positive and negative controls. The challenge virus was the clade 2.2.1 highly pathogenic avian influenza H5N1 A/chicken/Egypt/128s/2012 at a dose of 10(6) median embryo infective dose. For both breeds, complete maternally-derived antibody waning occurred at the age of 4 weeks. The immune response to rHVT-H5 vaccination was detected from the sixth week. The seroconversion rates for both breeds reached 85.7 to 100% in the eighth week of age. Protection levels of 73.3%, 60% and 0% were respectively recorded in Groups I, II and V. No mortalities occurred in the unchallenged groups. Group I showed superior results for all measured post-challenge parameters. In conclusion, a single rHVT-H5 hatchery vaccination conferred a high level of protection for a relatively extended period. This vaccine could be an important tool for future A/H5N1 prevention/control in endemic countries. Further studies on persistence of immunity beyond 19 weeks, need for booster with inactivated vaccines, breed susceptibility and vaccinal response, and transmissibility are recommended.

  19. Construction of a recombinant duck enteritis virus (DEV) expressing hemagglutinin of H5N1 avian influenza virus based on an infectious clone of DEV vaccine strain and evaluation of its efficacy in ducks and chickens

    OpenAIRE

    Wang, Jichun; Ge, Aimin; Xu, Mengwei; Wang, Zhisheng; Qiao, Yongfeng; Gu, Yiqi; Liu, Chang; Liu, Yamei; Hou, Jibo

    2015-01-01

    Background Highly pathogenic avian influenza virus (AIV) subtype H5N1 remains a threat to poultry. Duck enteritis virus (DEV)-vectored vaccines expressing AIV H5N1 hemagglutinin (HA) may be viable AIV and DEV vaccine candidates. Methods To facilitate the generation and further improvement of DEV-vectored HA(H5) vaccines, we first constructed an infectious clone of DEV Chinese vaccine strain C-KCE (DEVC-KCE). Then, we generated a DEV-vectored HA(H5) vaccine (DEV-H5(UL55)) based on the bacteria...

  20. Towards universal influenza vaccines?

    NARCIS (Netherlands)

    A.D.M.E. Osterhaus (Albert); R.A.M. Fouchier (Ron); G.F. Rimmelzwaan (Guus)

    2011-01-01

    textabstractVaccination is the most cost-effective way to reduce the considerable disease burden of seasonal influenza. Although seasonal influenza vaccines are effective, their performance in the elderly and immunocompromised individuals would benefit from improvement. Major problems related to the

  1. Avian Influenza infection in Human

    Directory of Open Access Journals (Sweden)

    Mohan. M

    2008-08-01

    Full Text Available Outbreaks caused by the H5N1 strain are presently of the greatest concern for human health. In assessing risks to human health, it is important to know exactly which avian virus strains are causing the outbreaks in birds.All available evidence points to an increased risk of transmission to humans when outbreaks of highly pathogenic avian H5N1 influenza are widespread in poultry. There is mounting evidence that this strain has a unique capacity to jump the species barrier and cause severe disease, with high mortality, in humans. There is no evidence, to date that efficient human to human transmission of H5N1 strain has occurred and very often. Efficient transmission among humans is a key property of pandemic strains and a property that the avian H5N1 and H9N2 viruses apparently lacked. The biological and molecular basis for effective aerosol transmission among humans is not known. The virus can improve its transmissibility among humans via two principal mechanisms. The first is a “reassortment” event, in which genetic material is exchanged between human and avian viruses during co-infection of a human or pig.Reassortment could result in a fully transmissible pandemic virus, announced by a sudden surge of cases with explosive spread. The second mechanism is a more gradual process of adaptive mutation, whereby the capability of the virus to bind to human cells increases during subsequent infections of humans. Adaptive mutation, expressed initially as small clusters of human cases with some evidence of human-to-human transmission, would probably give the world some time to take defensive action, if detected sufficiently early. As the number of human infections grows, the risk increases that a new virus subtype could emerge, triggering an influenza pandemic. Humans as well as swine must now be considered a potential mixing vessel for the generation of such a virus. This link between widespread infection in poultry and increased risk of human

  2. Avian influenza in shorebirds: experimental infection of ruddy turnstones (Arenaria interpres) with avian influenza virus

    OpenAIRE

    Hall, Jeffrey S.; Krauss, Scott; Franson, J. Christian; TeSlaa, Joshua L.; Nashold, Sean W.; Stallknecht, David E.; Webby, Richard J.; Webster, Robert G.

    2012-01-01

    Please cite this paper as: Hall et al. (2012) Avian influenza in shorebirds: experimental infection of ruddy turnstones (Arenaria interpres) with avian influenza virus. Influenza and Other Respiratory Viruses DOI: 10.1111/j.1750‐2659.2012.00358.x. Background  Low pathogenic avian influenza viruses (LPAIV) have been reported in shorebirds, especially at Delaware Bay, USA, during spring migration. However, data on patterns of virus excretion, minimal infectious doses, and clinical outcome are l...

  3. Avian Influenza A Virus Infections in Humans

    Science.gov (United States)

    ... in People Spread of Bird Flu Viruses Between Animals and People Examples of Human Infections with Avian Influenza A ... Influenza A (H5N1) H5N1 in Birds and Other Animals H5N1 in People Public Health Threat of Highly Pathogenic Asian Avian ...

  4. Avian Influenza Policy Analysis | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Governments in Southeast Asia have adopted a range of policies aimed at controlling the disease in animals, preventing its spread to humans and strengthening national preparedness for an avian influenza pandemic. The Asia Partnership for Avian Influenza Research (APAIR) brings together national research agencies ...

  5. Construction and comparison of different source neuraminidase candidate vaccine strains for human infection with Eurasian avian-like influenza H1N1 virus.

    Science.gov (United States)

    Liu, Liqi; Lu, Jian; Zhou, Jianfang; Li, Zi; Zhang, Heng; Wang, Dayan; Shu, Yuelong

    2017-12-01

    Human infections with Eurasian avian-like swine influenza H1N1 viruses have been reported in China in past years. One case resulted in death and others were mild case. In 2016, the World Health Organization recommended the use of A/Hunan/42443/2015(H1N1) virus to construct the first candidate vaccine strain for Eurasian avian-like swine influenza H1N1 viruses. Previous reports showed that the neuraminidase of A/Puerto Rico/8/34(H1N1) might improve the viral yield of reassortant viruses. Therefore, we constructed two reassortant candidate vaccine viruses of A/Hunan/42443/2015(H1N1) by reverse genetic technology, with (6+2) and (7+1) gene constitution, respectively. The (6+2) virus had hemagglutinin and neuraminidase from A/Hunan/42443/2015, and the (7+1) one had hemagglutinin from A/Hunan/42443/2015, while all the other genes were from A/Puerto Rico/8/34. Our data revealed that although the neuraminidase of the (7+1) virus was from high yield A/Puerto Rico/8/34, the hemagglutination titer and the hemagglutinin protein content of the (7+1) virus was not higher than that of the (6+2) virus. Both of the (7+1) and (6+2) viruses reached a similar level to that of A/Puerto Rico/8/34 at the usual harvest time in vitro. Therefore, both reassortant viruses are potential candidate vaccine viruses, which could contribute to pandemic preparedness. Copyright © 2017. Published by Elsevier Masson SAS.

  6. Underutilization of Influenza Vaccine

    Directory of Open Access Journals (Sweden)

    Marshall K. Cheney

    2013-04-01

    Full Text Available Yearly influenza vaccination continues to be underutilized by those who would most benefit from it. The Health Belief Model was used to explain differences in beliefs about influenza vaccination among at-risk individuals resistant to influenza vaccination. Survey data were collected from 74 members of at-risk groups who were not vaccinated for influenza during the previous flu season. Accepting individuals were more likely to perceive flu as a threat to health and perceive access barriers, and cues to action were the most important influence on whether they plan to get vaccinated. In comparison, resistant individuals did not feel threatened by the flu, access barriers were not a problem, and they did not respond favorably to cues to action. Perceived threat, perceived access barriers, and cues to action were significantly associated with plans to be vaccinated for influenza in the next flu season. Participants who saw influenza as a threat to their health had 5.4 times the odds of planning to be vaccinated than those who did not. Participants reporting barriers to accessing influenza vaccination had 7.5 times the odds of reporting plans to be vaccinated. Those responding positively to cues to action had 12.2 times the odds of planning to be vaccinated in the next flu season than those who did not. Accepting and resistant individuals have significant differences in their beliefs, which require different intervention strategies to increase vaccination rates. These findings provide important information to researchers and practitioners working to increase influenza vaccination rates.

  7. Changes in and shortcomings of drug stockpiling, vaccine development and related policies during outbreaks of avian influenza A H5N1, H1N1, and H7N9 among humans.

    Science.gov (United States)

    Mei, L; Tang, Q; Cui, Y M; Tobe, R G; Selotlegeng, L; Ali, A H; Xu, L Z

    2013-06-01

    The purpose of this paper is to provide a reference for the future stockpiling of drugs and developing vaccines for treatment of emerging infectious diseases by summarizing the status of drug stockpiling, vaccine development, and related policies during three major outbreaks of avian influenza among humans (H5N1 in 2003, H1N1 in 2009, and H7N9 in 2013). Documents regarding drug stockpiling and vaccine development during three influenza outbreaks have been reviewed. Results indicated that the response to pandemic influenza outbreaks has improved markedly in terms of stockpiles of antivirals and vaccine development. These improvements also suggest advances in related policy planning. These trends also foreshadow better prospects for prevention and control of emerging infectious diseases. However, the rationality of drug stockpiling and international cooperation still needs to be enhanced.

  8. Development of a dual-protective live attenuated vaccine against H5N1 and H9N2 avian influenza viruses by modifying the NS1 gene.

    Science.gov (United States)

    Choi, Eun-hye; Song, Min-Suk; Park, Su-Jin; Pascua, Philippe Noriel Q; Baek, Yun Hee; Kwon, Hyeok-il; Kim, Eun-Ha; Kim, Semi; Jang, Hyung-Kwan; Poo, Haryoung; Kim, Chul-Joong; Choi, Young Ki

    2015-07-01

    An increasing number of outbreaks of avian influenza H5N1 and H9N2 viruses in poultry have caused serious economic losses and raised concerns for human health due to the risk of zoonotic transmission. However, licensed H5N1 and H9N2 vaccines for animals and humans have not been developed. Thus, to develop a dual H5N1 and H9N2 live-attenuated influenza vaccine (LAIV), the HA and NA genes from a virulent mouse-adapted avian H5N2 (A/WB/Korea/ma81/06) virus and a recently isolated chicken H9N2 (A/CK/Korea/116/06) virus, respectively, were introduced into the A/Puerto Rico/8/34 backbone expressing truncated NS1 proteins (NS1-73, NS1-86, NS1-101, NS1-122) but still possessing a full-length NS gene. Two H5N2/NS1-LAIV viruses (H5N2/NS1-86 and H5N2/NS1-101) were highly attenuated compared with the full-length and remaining H5N2/NS-LAIV viruses in a mouse model. Furthermore, viruses containing NS1 modifications were found to induce more IFN-β activation than viruses with full-length NS1 proteins and were correspondingly attenuated in mice. Intranasal vaccination with a single dose (10(4.0) PFU/ml) of these viruses completely protected mice from a lethal challenge with the homologous A/WB/Korea/ma81/06 (H5N2), heterologous highly pathogenic A/EM/Korea/W149/06 (H5N1), and heterosubtypic highly virulent mouse-adapted H9N2 viruses. This study clearly demonstrates that the modified H5N2/NS1-LAIV viruses attenuated through the introduction of mutations in the NS1 coding region display characteristics that are desirable for live attenuated vaccines and hold potential as vaccine candidates for mammalian hosts.

  9. Identification of viral epitopes recognized by the immune system following vaccination and challenge with the H7N9 avian influenza virus from China

    Science.gov (United States)

    In March of 2013, the first cases of H7N9 influenza were reported in humans in China, and shortly thereafter the virus was confirmed from poultry in live bird markets. Since that time the virus has persisted in both human and avian populations. The genetic composition of these H7N9 influenza virus...

  10. Respons Antibodi terhadap Penyakit Tetelo pada Ayam yang Divaksin Tetelo dan Tetelo-Flu Burung (NEWCASTLE DISEASE/ND ANTIBODY RESPONSE OF CHICKENS VACCINATED WITH ND SINGLE AND COMBINED ND AND AVIAN INFLUENZA VACCINES

    Directory of Open Access Journals (Sweden)

    Gusti Ayu Yuniati Kencana

    2015-08-01

    Full Text Available The aim of this study was to investigate antibody response of specific pathogen-free (SPF chickens vaccinatedwith single inactivated Newcastle disease (ND vaccine and combined inactive ND and avian influenza(AI vaccines and to known the efficacy of both vaccines. The vaccines used were killed ND vaccine andkilled ND-AI vaccine produced by PT. Sanbio Laboratories Bogor, West Java. SPF chickens were vaccinatedwith 3 different doses. Antibody titer of SPF chickens against ND virus were determined byhaemagglutination inhibition (HI test. As many as 130 two week old SPF chickens were used and theywere divided into 2 groups (A and B consisting of 60 chickens and 10 chickens were used as control withoutvaccine. Group A chickens were vaccinated with ND-K vaccine and group B were vaccinated with combinedkilled ND-AI vaccines. Each group was further divided into 3 subsgroups (1, 2 and 3 consisting 20 chickens.Subgroups 1, 2 and 3 were vaccinated intramuscularly respectively with intramuskular 1, 1/10 and 1/100doses of each vaccines. Antibody response of chickens against ND virus was examined before vaccinationand every three week after vaccination and was expresses as geometric mean titre (GMT HI units. Theresult showed that the titre antibody against ND increased at the second week following the vaccination.The antibody titer against ND virus of chickens vaccinated single killed ND at the second week in eachdose were 6.05 GMT HI unit, 4.05 GMT HI unit, and 0.9 GMT HI unit. The antibody titre at the third week were 7.90 GMT HI unit ,5.40 GMT HI unit and 2.20 GMT HI unit. The antibody titre against ND virus ofchickens vaccinated with combined ND-AI vaccine at the second week were 6.30 GMT HI unit , 4.15 GMTHI unit , and 2.05 GMT HI unit. At the third week, the antibody titre against ND virus of chickensvaccinated with combined ND-AI vaccine in each subgroup were 7.45 GMT HI unit, 5.60 GMT HI unit , and2.40 GMT HI unit . It showed that the antibody titers

  11. Isolation of avian influenza virus in Texas.

    Science.gov (United States)

    Glass, S E; Naqi, S A; Grumbles, L C

    1981-01-01

    An avian influenza virus with surface antigens similar to those of fowl plague virus (Hav 1 Nav 2) was isolated in 1979 from 2 commercial turkey flocks in Central Texas. Two flocks in contact with these infected flocks developed clinical signs, gross lesions, and seroconversion but yielded no virus. This was the first recorded incidence of clinical avian influenza in Texas turkeys and only the second time that an agent with these surface antigens was isolated from turkeys in U.S.

  12. Vaccination against seasonal influenza

    CERN Multimedia

    DG Unit

    2009-01-01

    As every year, the Medical Service is taking part in the campaign to promote vaccination against seasonal influenza. Vaccination against seasonal influenza is especially recommended for people suffering from chronic lung, cardio-vascular or kidney conditions or diabetes, for those recovering from a serious illness or surgical operation and for everyone over the age of 65. The influenza virus is transmitted by air and contact with contaminated surfaces, hence the importance of washing hands regularly with soap and / or disinfection using a hydro-alcoholic solution. From the onset of symptoms (fever> 38°, chills, cough, muscle aches and / or joint pain, fatigue) you are strongly recommended to stay at home to avoid spreading the virus. In the present context of the influenza A (H1N1) pandemic, it is important to dissociate these two illnesses and emphasise that the two viruses and the vaccines used to combat them are quite different and that protection against one will not pr...

  13. Changes in and shortcomings of control strategies, drug stockpiles, and vaccine development during outbreaks of avian influenza A H5N1, H1N1, and H7N9 among humans.

    Science.gov (United States)

    Mei, Lin; Song, Peipei; Tang, Qi; Shan, Ke; Tobe, Ruoyan Gai; Selotlegeng, Lesego; Ali, Asghar Hammad; Cheng, Yangyang; Xu, Lingzhong

    2013-04-01

    The purpose of this review is to provide a reference for the future prevention and control of emerging infectious diseases by summarizing the control strategies, the status of drugs and vaccines, and shortcomings during three major outbreaks of avian influenza among humans (H5N1 in 2003, H1N1 in 2009, and H7N9 in 2013). Data on and documents regarding the three influenza outbreaks have been reviewed. Results indicated that the response to pandemic influenza outbreaks has improved markedly in terms of control strategies, stockpiles of antivirals, and vaccine development. These improvements also suggest advances in disease surveillance, transparency in reporting, and regional collaboration and cooperation. These trends also foreshadow better prospects for prevention and control of emerging infectious diseases. However, there are shortcomings since strategies failed to focus on high-risk groups, quantitative and measurable results (both direct and indirect) were unclear, and quantitative assessment is still lacking.

  14. [Influenza vaccine and adjuvant].

    Science.gov (United States)

    Nakayama, Tetsuo

    2011-01-01

    Adjuvant is originated from the Latin word "adjuvare" which means "help" in English to enhance the immunological responses when given together with antigens. The beginning of adjuvant was mineral oil which enhanced the immune response when it was given with inactivated Salmonella typhimurium. Aluminium salt was used to precipitate diphtheria toxoid and increased level of antibody response was demonstrated when administered with alum-precipitated antigens. Since 1930, aluminium salt has been used as DTaP (diphtheria-tetanus-acellular pertussis vaccine) adjuvant. Many candidates were tested for adjuvant activity but only aluminum salt is allowed to use for human vaccines. New adjuvant MF59, oil-in-water emulsion type, was developed for influenza vaccine for elderly (Fluad) and series of AS adjuvant are used for hepatitis B, pandemic flue, and human papiloma virus vaccines. Oil-adjuvanted influenza pandemic vaccines induced higher antibody response than alum-adjuvanted vaccine with higher incidence of adverse events, especially for local reactions. Alum-adjuvanted whole virion inactivated H5N1 vaccine was developed in Japan, and it induced relatively well immune responses in adults. When it applied for children, febrile reaction was noted in approximately 60% of the subjects, with higher antibodies. Recent investigation on innate immunity demonstrates that adjuvant activity is initiated from the stimulation on innate immunity and/or inflammasome, resulting in cytokine induction and antigen uptake by monocytes and macrophages. The probable reason for high incidence of febrile reaction should be investigated to develop a safe and effective influenza vaccine.

  15. Egg-Independent Influenza Vaccines and Vaccine Candidates

    Directory of Open Access Journals (Sweden)

    Ilaria Manini

    2017-07-01

    Full Text Available Vaccination remains the principal way to control seasonal infections and is the most effective method of reducing influenza-associated morbidity and mortality. Since the 1940s, the main method of producing influenza vaccines has been an egg-based production process. However, in the event of a pandemic, this method has a significant limitation, as the time lag from strain isolation to final dose formulation and validation is six months. Indeed, production in eggs is a relatively slow process and production yields are both unpredictable and highly variable from strain to strain. In particular, if the next influenza pandemic were to arise from an avian influenza virus, and thus reduce the egg-laying hen population, there would be a shortage of embryonated eggs available for vaccine manufacturing. Although the production of egg-derived vaccines will continue, new technological developments have generated a cell-culture-based influenza vaccine and other more recent platforms, such as synthetic influenza vaccines.

  16. Progress in Developing Virus-like Particle Influenza Vaccines

    Science.gov (United States)

    Quan, Fu-Shi; Lee, Young-Tae; Kim, Ki-Hye; Kim, Min-Chul; Kang, Sang-Moo

    2016-01-01

    Summary Recombinant vaccines based on virus-like particles (VLPs) or nanoparticles have been successful in their safety and efficacy in preclinical and clinical studies. The technology of expressing enveloped VLP vaccines has combined with molecular engineering of proteins in membrane-anchor and immunogenic forms mimicking the native conformation of surface proteins on the enveloped viruses. This review summarizes recent developments in influenza VLP vaccines against seasonal, pandemic, and avian influenza viruses from the perspective of use in humans. The immunogenicity and efficacies of influenza VLP vaccine in the homologous and cross-protection were reviewed. Discussions include limitations of current influenza vaccination strategies and future directions to confer broadly cross protective new influenza vaccines as well as vaccination. PMID:27058302

  17. Different immune responses to three different vaccines following H6N1 low pathogenic avian influenza virus challenge in Taiwanese local chicken breeds.

    Science.gov (United States)

    Chang, Chi-Sheng; Tixier-Boichard, Michèle; Chazara, Olympe; Lee, Yen-Pai; Chen, Chih-Feng; Chang, Poa-Chun; Chen, Jan-Wei; Bed'hom, Bertrand

    2011-06-03

    H6N1 low pathogenic avian influenza virus (LPAIV) are frequently isolated in Taiwan and lead to significant economic losses, either directly or indirectly through association with other infectious diseases. This study investigates immune responses to three different vaccines following a H6N1 challenge in different local breeds. Experimental animals were sampled from six local chicken breeds maintained at the National Chung-Hsing University, namely Hsin-Yi, Ju-Chi, Hua-Tung (Taiwan), Quemoy (Quemoy Island), Shek-Ki (China), Nagoya (Japan) and a specific pathogen free (SPF) White Leghorn line. A total number of 338 chickens have been distributed between a control and a challenge group, H6N1 challenge was performed at 7 weeks of age; vaccination against Newcastle Disease (ND), Infectious Bursal Disease (IBD) and Infectious Bronchitis (IB) was performed at 11 weeks. The anti-H6N1 LPAIV antibody titers were measured by ELISA at days 0, 7, 14 and 21 after challenge, and the anti-ND, anti-IBD and anti-IB antibody titers were measured by inhibition of hemagglutination test and ELISA at days 0, 14, 28 after vaccination. There was no effect of the H6N1 LPAIV challenge at 7 weeks of age on the subsequent responses to ND and IBD vaccine at 11 weeks of age, but, surprisingly, the H6N1 LPAIV challenge significantly affected antibody levels to IB vaccine in some breeds, since IB0 and IB14 antibody titers were lower in the challenge groups. However, there was no significant difference in IB28 antibody titers among the experimental groups. Local breeds have different immune response to H6N1 LPAIV challenge and subsequent vaccines. Differences dealt mainly with kinetics of response and with peak values. Quemoy exhibited higher antibody levels to H6N1, ND and IBD. The negative effect of the H6N1 LPAIV challenge on IB vaccine response may be related to the fact that both viruses target the lung tissues, and the type of local immune response induced by LPAIV challenge may not be

  18. Avian Influenza A(H5N1) Virus in Egypt.

    Science.gov (United States)

    Kayali, Ghazi; Kandeil, Ahmed; El-Shesheny, Rabeh; Kayed, Ahmed S; Maatouq, Asmaa M; Cai, Zhipeng; McKenzie, Pamela P; Webby, Richard J; El Refaey, Samir; Kandeel, Amr; Ali, Mohamed A

    2016-03-01

    In Egypt, avian influenza A subtype H5N1 and H9N2 viruses are enzootic in poultry. The control plan devised by veterinary authorities in Egypt to prevent infections in poultry focused mainly on vaccination and ultimately failed. Recently, widespread H5N1 infections in poultry and a substantial increase in the number of human cases of H5N1 infection were observed. We summarize surveillance data from 2009 through 2014 and show that avian influenza viruses are established in poultry in Egypt and are continuously evolving genetically and antigenically. We also discuss the epidemiology of human infection with avian influenza in Egypt and describe how the true burden of disease is underestimated. We discuss the failures of relying on vaccinating poultry as the sole intervention tool. We conclude by highlighting the key components that need to be included in a new strategy to control avian influenza infections in poultry and humans in Egypt.

  19. Multimeric recombinant M2e protein-based ELISA: a significant improvement in differentiating avian influenza infected chickens from vaccinated ones.

    Directory of Open Access Journals (Sweden)

    Farshid Hadifar

    Full Text Available Killed avian influenza virus (AIV vaccines have been used to control H5N1 infections in countries where the virus is endemic. Distinguishing vaccinated from naturally infected birds (DIVA in such situations however, has become a major challenge. Recently, we introduced the recombinant ectodomain of the M2 protein (M2e of H5N1 subtype as a novel tool for an ELISA based DIVA test. Despite being antigenic in natural infection the monomer form of the M2e used in ELISA had limited antigenicity and consequently poor diagnostic capability. To address this shortcoming, we evaluated the use of four tandem copies of M2e (tM2e for increased efficiency of M2e antibody detection. The tM2e gene of H5N1 strain from Indonesia (A/Indonesia/CDC540/2006 was cloned into a pMAL- p4x expression vector and expressed in E.coli as a recombinant tM2e-MBP or M2e-MBP proteins. Both of these, M2e and tM2e antigens reacted with sera obtained from chickens following live H5N1 infection but not with sera from vaccinated birds. A significantly stronger M2e antibody reaction was observed with the tM2e compared to M2e antigen. Western blotting also supported the superiority of tM2e over M2e in detection of specific M2e antibodies against live H5N1 infection. Results from this study demonstrate that M2e tetramer is a better antigen than single M2e and could be more suitable for an ELISA based DIVA test.

  20. Dried influenza vaccines : Over the counter vaccines

    NARCIS (Netherlands)

    Saluja, Vinay; Hinrichs, Wouter L. J.; Frijlink, Henderik W.

    2010-01-01

    Since last year influenza pandemic has struck again after 40 years, this is the right moment to discuss the different available formulation options for influenza vaccine. Looking back to the last 4 decades, most vaccines are still formulated as liquid solution. These vaccines have shown a poor

  1. Novel vaccines against influenza viruses

    OpenAIRE

    Kang, Sang-Moo; Song, Jae-Min; Compans, Richard W.

    2011-01-01

    Killed and live attenuated influenza virus vaccines are effective in preventing and curbing the spread of influenza epidemics when the strains present in the vaccines are closely matched with the predicted epidemic strains. These vaccines are primarily targeted to induce immunity to the variable major target antigen, hemagglutinin (HA) of influenza virus. However, current vaccines are not effective in preventing the emergence of new pandemic or highly virulent viruses. New approaches are bein...

  2. Public Health and Epidemiological Considerations For Avian Influenza Risk Mapping and Risk Assessment

    Directory of Open Access Journals (Sweden)

    Joseph P. Dudley

    2008-12-01

    populations to serve as reservoirs for highly pathogenic avian influenza viruses. There are still uncertainties regarding the epidemiological and ecological mechanisms that regulate "spill-over" and "spill-back" transmission of highly pathogenic avian influenza viruses between poultry and wild bird populations, and the interspecies transmission of avian influenza from infected birds to humans and other species of mammals. Further investigations are needed to evaluate the effectiveness of poultry vaccination programs for the control and eradication of avian influenza in poultry populations at the national and regional level, and the effect of long term poultry vaccination programs on human public health risks from avian influenza viruses. There is a need to determine risk factors associated with the extent of direct human involvement in the spread and proliferation of avian influenza viruses through commercial supply chain and transportation networks, and specific risk factors associated with domestic and international trade in live poultry, captive wild birds, poultry food products, (meat, eggs, poultry by-products (feathers, poultry meal, poultry manure, and poultry litter. Addressing these issues will greatly enhance our ability to implement economically and ecologically sustainable programs for the control of avian influenza outbreaks in wild and domesticated birds, increase our capability for promoting the protection of wild bird populations from disease and disruption, and help improve food security and public health in countries worldwide.

  3. Pulmonary immunization of chickens using non-adjuvanted spray-freeze dried whole inactivated virus vaccine completely protects against highly pathogenic H5N1 avian influenza virus.

    NARCIS (Netherlands)

    Peeters, B.P.H.; Tonnis, W.F.; Murugappan, S.; Rottier, P.; Koch, G.; Frijlink, H.W.; Huckriede, A.; Hinrichs, W.L.J.

    2014-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 virus is a major threat to public health as well as to the global poultry industry. Most fatal human infections are caused by contact with infected poultry. Therefore, preventing the virus from entering the poultry population is a priority. This is,

  4. Effect of passive immunization on immunogenicity and protective efficacy of vaccination against a Mexican low-pathogenic avian H5N2 influenza virus.

    Science.gov (United States)

    Forrest, Heather L; Garcia, Alejandro; Danner, Angela; Seiler, Jon P; Friedman, Kimberly; Webster, Robert G; Jones, Jeremy C

    2013-11-01

    Despite the use of vaccines, low-pathogenic (LP) H5N2 influenza viruses have continued to circulate and evolve in chickens in Mexico since 1993, giving rise to multiple genetic variants. Antigenic drift is partially responsible for the failure to control H5N2 influenza by vaccination; the contribution of maternal antibodies to this problem has received less attention. We investigated the effect of different antisera on the efficacy of vaccination and whether booster doses of vaccine can impact immune suppression. While single doses of inactivated oil emulsion vaccine to currently circulating H5N2 influenza viruses provide partial protection from homologous challenge, chickens that receive high-titer homologous antisera intraperitoneally before vaccination showed effects ranging from added protection to immunosuppression. Post-infection antisera were less immunosuppressive than antisera obtained from field-vaccinated chickens. Homologous, post-infection chicken antisera provided initial protection from virus challenge, but reduced the induction of detectable antibody responses. Homologous antisera from field-vaccinated chickens were markedly immunosuppressive, annulling the efficacy of the vaccine and leaving the chickens as susceptible to infection as non-vaccinated birds. Booster doses of vaccine reduced the immunosuppressive effects of the administered sera. Vaccine efficacy against LP H5N2 in Mexico can be severely reduced by maternal antibodies. Source-dependent antisera effects offer the possibility of further elucidation of the immunosuppressive components involved. © 2013 John Wiley & Sons Ltd.

  5. Novel vaccines against influenza viruses.

    Science.gov (United States)

    Kang, S M; Song, J M; Compans, R W

    2011-12-01

    Killed and live attenuated influenza virus vaccines are effective in preventing and curbing the spread of influenza epidemics when the strains present in the vaccines are closely matched with the predicted epidemic strains. These vaccines are primarily targeted to induce immunity to the variable major target antigen, hemagglutinin (HA) of influenza virus. However, current vaccines are not effective in preventing the emergence of new pandemic or highly virulent viruses. New approaches are being investigated to develop universal influenza virus vaccines as well as to apply more effective vaccine delivery methods. Conserved vaccine targets including the influenza M2 ion channel protein and HA stalk domains are being developed using recombinant technologies to improve the level of cross protection. In addition, recent studies provide evidence that vaccine supplements can provide avenues to further improve current vaccies. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Vaccination against seasonal influenza

    CERN Multimedia

    SC Unit

    2009-01-01

    As every year, the Medical Service is taking part in the campaign to promote vaccination against seasonal influenza. Vaccination against seasonal influenza is especially recommended for people suffering from chronic lung, cardio-vascular or kidney conditions or diabetes, for those recovering from a serious illness or surgical operation and for everyone over the age of 65. The influenza virus is transmitted by air and contact with contaminated surfaces, hence the importance of washing hands regularly with soap and / or disinfection using a hydro-alcoholic solution. From the onset of symptoms (fever> 38°, chills, cough, muscle aches and / or joint pain, fatigue) you are strongly recommended to stay at home to avoid spreading the virus. In the present context of the influenza A (H1N1) pandemic, it is important to dissociate these two illnesses and emphasise that the two viruses and the vaccines used to combat them are quite different and that protection against one will not provide protection against the...

  7. 76 FR 66032 - Availability of an Environmental Assessment for Field Testing Avian Influenza-Marek's Disease...

    Science.gov (United States)

    2011-10-25

    ... Avian Influenza-Marek's Disease Vaccine, H5 Subtype, Serotype 3, Live Marek's Disease Vector AGENCY...-Marek's Disease Vaccine, H5 Subtype, Serotype 3, Live Marek's Disease Vector. The environmental... notice unless new substantial issues bearing on the effects of this action are brought to our attention...

  8. Avian influenza: The tip of the iceberg

    Directory of Open Access Journals (Sweden)

    Balkhy Hanan

    2008-01-01

    Full Text Available For some years now, we have been living with the fear of an impending pandemic of avian influenza (AI. Despite the recognition, in 1996, of the global threat posed by the highly pathogenic H5N1 influenza virus found in farmed geese in Guangdong Province, China, planning for the anticipated epidemic remains woefully inadequate; this is especially true in developing countries such as Saudi Arabia. These deficiencies became obvious in 1997, with the outbreak of AI in the live animal markets in Hong Kong that led to the transmission of infection to 18 humans with close contact with diseased birds; there were six reported deaths. [1] In 2003, with the reemergence of H5N1 (considered the most likely AI virus in the Republic of Korea and its subsequent spread to Thailand, Vietnam, Hong Kong and China. Many countries started aggressively making preparations to meet the threat. [2] The pressure for real action from governments has increased. Most developed countries have requested increased funding for the search for a more effective vaccine, for stockpiling possibly helpful antiviral drugs, and for intensifying domestic and global surveillance. [3] Most countries, however, continue to be inadequately prepared for such an epidemic, especially with regard to animal surveillance in the farm market and surveillance among migratory birds. Even now, most countries do not have the ability to detect disease among humans in the early stages of an outbreak nor do most hospitals comply with effective infection control measures that could curtail the spread of the virus in the early stages of an epidemic. In Saudi Arabia we are rapidly implementing many of these measures. [4

  9. Cell-Based Systems Biology Analysis of Human AS03-Adjuvanted H5N1 Avian Influenza Vaccine Responses: A Phase I Randomized Controlled Trial.

    Science.gov (United States)

    Howard, Leigh M; Hoek, Kristen L; Goll, Johannes B; Samir, Parimal; Galassie, Allison; Allos, Tara M; Niu, Xinnan; Gordy, Laura E; Creech, C Buddy; Prasad, Nripesh; Jensen, Travis L; Hill, Heather; Levy, Shawn E; Joyce, Sebastian; Link, Andrew J; Edwards, Kathryn M

    2017-01-01

    Vaccine development for influenza A/H5N1 is an important public health priority, but H5N1 vaccines are less immunogenic than seasonal influenza vaccines. Adjuvant System 03 (AS03) markedly enhances immune responses to H5N1 vaccine antigens, but the underlying molecular mechanisms are incompletely understood. We compared the safety (primary endpoint), immunogenicity (secondary), gene expression (tertiary) and cytokine responses (exploratory) between AS03-adjuvanted and unadjuvanted inactivated split-virus H5N1 influenza vaccines. In a double-blinded clinical trial, we randomized twenty adults aged 18-49 to receive two doses of either AS03-adjuvanted (n = 10) or unadjuvanted (n = 10) H5N1 vaccine 28 days apart. We used a systems biology approach to characterize and correlate changes in serum cytokines, antibody titers, and gene expression levels in six immune cell types at 1, 3, 7, and 28 days after the first vaccination. Both vaccines were well-tolerated. Nine of 10 subjects in the adjuvanted group and 0/10 in the unadjuvanted group exhibited seroprotection (hemagglutination inhibition antibody titer > 1:40) at day 56. Within 24 hours of AS03-adjuvanted vaccination, increased serum levels of IL-6 and IP-10 were noted. Interferon signaling and antigen processing and presentation-related gene responses were induced in dendritic cells, monocytes, and neutrophils. Upregulation of MHC class II antigen presentation-related genes was seen in neutrophils. Three days after AS03-adjuvanted vaccine, upregulation of genes involved in cell cycle and division was detected in NK cells and correlated with serum levels of IP-10. Early upregulation of interferon signaling-related genes was also found to predict seroprotection 56 days after first vaccination. Using this cell-based systems approach, novel mechanisms of action for AS03-adjuvanted pandemic influenza vaccination were observed. ClinicalTrials.gov NCT01573312.

  10. Serological diagnosis of avian influenza in poultry

    DEFF Research Database (Denmark)

    Comin, Arianna; Toft, Nils; Stegeman, Arjan

    2013-01-01

    Background The serological diagnosis of avian influenza (AI) can be performed using different methods, yet the haemagglutination inhibition (HI) test is considered the gold standard' for AI antibody subtyping. Although alternative diagnostic assays have been developed, in most cases, their accuracy...

  11. Epitope-based approaches to a universal influenza vaccine.

    Science.gov (United States)

    Gottlieb, Tanya; Ben-Yedidia, Tamar

    2014-11-01

    The development of vaccines has been one of the most important contributions of immunology to public health to date. Although several infectious diseases have all but vanished thanks to effective vaccines, the most common infectious disease, influenza, still represents a major threat to public health. This is more concerning than ever before in light of potentially virulent avian pandemic strains which have emerged in the last decade and infected human hosts, causing high morbidity and mortality. Despite considerable efforts to improve production of influenza vaccines and vaccinate large portions of the population annually, the currently available influenza vaccines are strain-specific and not effective enough. Considering the vulnerability of infants and elderly to seasonal influenza-related complications and the ever present public health threat of a deadly influenza pandemic, there is urgent need for a new kind of influenza vaccine. Ideally, such a vaccine should provide enhanced long term, multi-strain protection without compromising safety and in this way, dramatically improve global protection against seasonal and pandemic influenza viruses. This review highlights one approach to developing a universal influenza vaccine, which is based on highly conserved viral sequences, 'epitopes', that specifically activate humoral and/or cellular immune responses. This approach to vaccinology was pioneered by Prof Arnon, who initiated development of an epitope-based universal vaccine called Multimeric-001 (M-001), which has already been validated in clinical trials to induce broad immunity against A and B-Type, seasonal and pandemic strains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Protection of chickens against H5N1 highly pathogenic avian influenza virus infection by live vaccination with infectious laryngotracheitis virus recombinants expressing H5 hemagglutinin and N1 neuraminidase.

    Science.gov (United States)

    Pavlova, Sophia P; Veits, Jutta; Keil, Günther M; Mettenleiter, Thomas C; Fuchs, Walter

    2009-01-29

    Attenuated vaccine strains of the alphaherpesvirus causing infectious laryngotracheitis of chickens (ILTV, gallid herpesvirus 1) can be used for mass application. Previously, we showed that live virus vaccination with recombinant ILTV expressing hemagglutinin of highly pathogenic avian influenza viruses (HPAIV) protected chickens against ILT and fowl plague caused by HPAIV carrying the corresponding hemagglutinin subtypes [Lüschow D, Werner O, Mettenleiter TC, Fuchs W. Protection of chickens from lethal avian influenza A virus infection by live-virus vaccination with infectious laryngotracheitis virus recombinants expressing the hemagglutinin (H5) gene. Vaccine 2001;19(30):4249-59; Veits J, Lüschow D, Kindermann K, Werner O, Teifke JP, Mettenleiter TC, et al. Deletion of the non-essential UL0 gene of infectious laryngotracheitis (ILT) virus leads to attenuation in chickens, and UL0 mutants expressing influenza virus haemagglutinin (H7) protect against ILT and fowl plague. J Gen Virol 2003;84(12):3343-52]. However, protection against H5N1 HPAIV was not satisfactory. Therefore, a newly designed dUTPase-negative ILTV vector was used for rapid insertion of the H5-hemagglutinin, or N1-neuraminidase genes of a recent H5N1 HPAIV isolate. Compared to our previous constructs, protein expression was considerably enhanced by insertion of synthetic introns downstream of the human cytomegalovirus immediate-early promoter within the 5'-nontranslated region of the transgenes. Deletion of the viral dUTPase gene did not affect in vitro replication of the ILTV recombinants, but led to sufficient attenuation in vivo. After a single ocular immunization, all chickens developed H5- or N1-specific serum antibodies. Nevertheless, animals immunized with N1-ILTV died after subsequent H5N1 HPAIV challenge, although survival times were prolonged compared to non-vaccinated controls. In contrast, all chickens vaccinated with either H5-ILTV alone, or H5- and N1-ILTV simultaneously, survived

  13. A mathematical model of avian influenza with half-saturated incidence.

    Science.gov (United States)

    Chong, Nyuk Sian; Tchuenche, Jean Michel; Smith, Robert J

    2014-03-01

    The widespread impact of avian influenza viruses not only poses risks to birds, but also to humans. The viruses spread from birds to humans and from human to human In addition, mutation in the primary strain will increase the infectiousness of avian influenza. We developed a mathematical model of avian influenza for both bird and human populations. The effect of half-saturated incidence on transmission dynamics of the disease is investigated. The half-saturation constants determine the levels at which birds and humans contract avian influenza. To prevent the spread of avian influenza, the associated half-saturation constants must be increased, especially the half-saturation constant H m for humans with mutant strain. The quantity H m plays an essential role in determining the basic reproduction number of this model. Furthermore, by decreasing the rate β m at which human-to-human mutant influenza is contracted, an outbreak can be controlled more effectively. To combat the outbreak, we propose both pharmaceutical (vaccination) and non-pharmaceutical (personal protection and isolation) control methods to reduce the transmission of avian influenza. Vaccination and personal protection will decrease β m, while isolation will increase H m. Numerical simulations demonstrate that all proposed control strategies will lead to disease eradication; however, if we only employ vaccination, it will require slightly longer to eradicate the disease than only applying non-pharmaceutical or a combination of pharmaceutical and non-pharmaceutical control methods. In conclusion, it is important to adopt a combination of control methods to fight an avian influenza outbreak.

  14. Influenza Vaccines: Unmet Needs and Recent Developments

    Science.gov (United States)

    Noh, Ji Yun

    2013-01-01

    Influenza is a worldwide public health concern. Since the introduction of trivalent influenza vaccine in 1978, vaccination has been the primary means of prevention and control of influenza. Current influenza vaccines have moderate efficacy, good safety, and acceptable tolerability; however, they have unsatisfactory efficacy in older adults, are dependent on egg supply for production, and are time-consuming to manufacture. This review outlines the unmet medical needs of current influenza vaccines. Recent developments in influenza vaccines are also described. PMID:24475351

  15. Characterization of avian influenza H5N1 virosome

    Directory of Open Access Journals (Sweden)

    Chatchai Sarachai

    2014-04-01

    Full Text Available The purpose of this study was to prepare and characterize virosome containing envelope proteins of the avian influenza (H5N1 virus. The virosome was prepared by the solubilization of virus with octaethyleneglycol mono (n-dodecyl ether (C12E8 followed by detergent removal with SM2 Bio-Beads. Biochemical analysis by SDS-PAGE and western blotting, indicated that avian influenza H5N1 virosome had similar characteristics to the parent virus and contained both the hemagglutinin (HA, 60-75 kDa and neuraminidase (NA, 220 kDa protein, with preserved biological activity, such as hemagglutination activity. The virosome structure was analyzed by negative stained transmission electron microscope (TEM demonstrated that the spherical shapes of vesicles with surface glycoprotein spikes were harbored. In conclusion, the biophysical properties of the virosome were similar to the parent virus, and the use of octaethyleneglycol mono (n-dodecyl ether to solubilize viral membrane, followed by removal of detergent using polymer beads adsorption (Bio-Beads SM2 was the preferable method for obtaining avian influenza virosome. The outcome of this study might be useful for further development veterinary virus vaccines.

  16. Antibody and T cell responses induced in chickens immunized with avian influenza virus N1 and NP DNA vaccine with chicken IL-15 and IL-18.

    Science.gov (United States)

    Lim, Kian-Lam; Jazayeri, Seyed Davoud; Yeap, Swee Keong; Mohamed Alitheen, Noorjahan Banu; Bejo, Mohd Hair; Ideris, Aini; Omar, Abdul Rahman

    2013-12-01

    We had examined the immunogenicity of a series of plasmid DNAs which include neuraminidase (NA) and nucleoprotein (NP) genes from avian influenza virus (AIV). The interleukin-15 (IL-15) and interleukin-18 (IL-18) as genetic adjuvants were used for immunization in combination with the N1 and NP AIV genes. In the first trial, 8 groups of chickens were established with 10 specific-pathogen-free (SPF) chickens per group while, in the second trial 7 SPF chickens per group were used. The overall N1 enzyme-linked immunosorbent assay (ELISA) titer in chickens immunized with the pDis/N1+pDis/IL-15 was higher compared to the chickens immunized with the pDis/N1 and this suggesting that chicken IL-15 could play a role in enhancing the humoral immune response. Besides that, the chickens that were immunized at 14-day-old (Trial 2) showed a higher N1 antibody titer compared to the chickens that were immunized at 1-day-old (Trial 1). Despite the delayed in NP antibody responses, the chickens co-administrated with IL-15 were able to induce earlier and higher antibody response compared to the pDis/NP and pDis/NP+pDis/IL-18 inoculated groups. The pDis/N1+pDis/IL-15 inoculated chickens also induced higher CD8+ T cells increase than the pDis/N1 group in both trials (P0.05) in inducing CD4+ and CD8+ T cells when co-administered with the pDis/IL-18 in both trials in comparison to the pDis/NP. Our data suggest that the pDis/N1+pDis/IL-15 combination has the potential to be used as a DNA vaccine against AIV in chickens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Psychological determinants of influenza vaccination.

    Science.gov (United States)

    Bock, Jens-Oliver; Hajek, André; König, Hans-Helmut

    2017-08-29

    Previous studies investigated the determinants of individuals' decision to vaccinate against influenza primarily focusing on social as well as certain proximal determinants, for example, behavioral beliefs. Thus, so far, the analysis of psychological factors as determinants of influenza vaccination was mainly limited to beliefs, attitudes or perceptions that were directly related to influenza vaccination and its perceived impact. However, considering general psychological factors, like general self-efficacy, optimism or subjective well-being, might further enhance the understanding of why certain people vaccinate while others do not. The aim was to investigate the relationship between various general psychological factors and older people's decision to vaccinate against seasonal flu. The data of individuals aged 60 or older (n = 5037; in 2014) were used from the Germany Ageing Survey. The data were collected in face-to-face interviews and in self-administered questionnaires. They include questions on the use of influenza vaccination and the psychological factors of optimism, self-efficacy, self-esteem, perceived stress, self-regulation, life satisfaction, and negative affect as well as positive affect. The psychological determinants of regular influenza vaccination were investigated using multiple logistic regressions. 53.2% of all participants were regular users of influenza vaccination. There were significant bivariate correlations of all cited psychological factor with influenza vaccination except for life satisfaction and negative affect. After controlling for numerous potential socio-demographic, morbidity- and lifestyle-related confounders, regular influenza vaccination was still positively associated with lower levels of self-esteem and a higher level of perceived stress. There are significant associations of general individual psychological constructs with the decision to vaccinate against influenza. Future research might determine the impact of

  18. Influenza Vaccination Strategies: Comparing Inactivated and Live Attenuated Influenza Vaccines

    Science.gov (United States)

    Sridhar, Saranya; Brokstad, Karl A.; Cox, Rebecca J.

    2015-01-01

    Influenza is a major respiratory pathogen causing annual outbreaks and occasional pandemics. Influenza vaccination is the major method of prophylaxis. Currently annual influenza vaccination is recommended for groups at high risk of complications from influenza infection such as pregnant women, young children, people with underlying disease and the elderly, along with occupational groups such a healthcare workers and farm workers. There are two main types of vaccines available: the parenteral inactivated influenza vaccine and the intranasal live attenuated influenza vaccine. The inactivated vaccines are licensed from 6 months of age and have been used for more than 50 years with a good safety profile. Inactivated vaccines are standardized according to the presence of the viral major surface glycoprotein hemagglutinin and protection is mediated by the induction of vaccine strain specific antibody responses. In contrast, the live attenuated vaccines are licensed in Europe for children from 2–17 years of age and provide a multifaceted immune response with local and systemic antibody and T cell responses but with no clear correlate of protection. Here we discuss the immunological immune responses elicited by the two vaccines and discuss future work to better define correlates of protection. PMID:26343192

  19. Avian influenza in shorebirds: experimental infection of ruddy turnstones (Arenaria interpres) with avian influenza virus

    Science.gov (United States)

    Hall, Jeffrey S.; Krauss, Scott; Franson, J. Christian; TeSlaa, Joshua L.; Nashold, Sean W.; Stallknecht, David E.; Webby, Richard J.; Webster, Robert G.

    2013-01-01

    Background: Low pathogenic avian influenza viruses (LPAIV) have been reported in shorebirds, especially at Delaware Bay, USA, during spring migration. However, data on patterns of virus excretion, minimal infectious doses, and clinical outcome are lacking. The ruddy turnstone (Arenaria interpres) is the shorebird species with the highest prevalence of influenza virus at Delaware Bay. Objectives: The primary objective of this study was to experimentally assess the patterns of influenza virus excretion, minimal infectious doses, and clinical outcome in ruddy turnstones. Methods: We experimentally challenged ruddy turnstones using a common LPAIV shorebird isolate, an LPAIV waterfowl isolate, or a highly pathogenic H5N1 avian influenza virus. Cloacal and oral swabs and sera were analyzed from each bird. Results: Most ruddy turnstones had pre-existing antibodies to avian influenza virus, and many were infected at the time of capture. The infectious doses for each challenge virus were similar (103·6–104·16 EID50), regardless of exposure history. All infected birds excreted similar amounts of virus and showed no clinical signs of disease or mortality. Influenza A-specific antibodies remained detectable for at least 2 months after inoculation. Conclusions: These results provide a reference for interpretation of surveillance data, modeling, and predicting the risks of avian influenza transmission and movement in these important hosts.

  20. Generation of influenza virus from avian cells infected by Salmonella carrying the viral genome.

    Directory of Open Access Journals (Sweden)

    Xiangmin Zhang

    Full Text Available Domestic poultry serve as intermediates for transmission of influenza A virus from the wild aquatic bird reservoir to humans, resulting in influenza outbreaks in poultry and potential epidemics/pandemics among human beings. To combat emerging avian influenza virus, an inexpensive, heat-stable, and orally administered influenza vaccine would be useful to vaccinate large commercial poultry flocks and even migratory birds. Our hypothesized vaccine is a recombinant attenuated bacterial strain able to mediate production of attenuated influenza virus in vivo to induce protective immunity against influenza. Here we report the feasibility and technical limitations toward such an ideal vaccine based on our exploratory study. Five 8-unit plasmids carrying a chloramphenicol resistance gene or free of an antibiotic resistance marker were constructed. Influenza virus was successfully generated in avian cells transfected by each of the plasmids. The Salmonella carrier was engineered to allow stable maintenance and conditional release of the 8-unit plasmid into the avian cells for recovery of influenza virus. Influenza A virus up to 10⁷ 50% tissue culture infective doses (TCID50/ml were recovered from 11 out of 26 co-cultures of chicken embryonic fibroblasts (CEF and Madin-Darby canine kidney (MDCK cells upon infection by the recombinant Salmonella carrying the 8-unit plasmid. Our data prove that a bacterial carrier can mediate generation of influenza virus by delivering its DNA cargoes into permissive host cells. Although we have made progress in developing this Salmonella influenza virus vaccine delivery system, further improvements are necessary to achieve efficient virus production, especially in vivo.

  1. Protection of White Leghorn chickens by U.S. emergency H5 vaccination against clade 2.3.4.4 H5N2 high pathogenicity avian influenza virus.

    Science.gov (United States)

    Bertran, Kateri; Balzli, Charles; Lee, Dong-Hun; Suarez, David L; Kapczynski, Darrell R; Swayne, David E

    2017-11-01

    During December 2014-June 2015, the U.S. experienced a high pathogenicity avian influenza (HPAI) outbreak caused by clade 2.3.4.4 H5Nx Goose/Guangdong lineage viruses with devastating consequences for the poultry industry. Three vaccines, developed based on updating existing registered vaccines or currently licensed technologies, were evaluated for possible use: an inactivated reverse genetics H5N1 vaccine (rgH5N1) and an RNA particle vaccine (RP-H5), both containing the hemagglutinin gene of clade 2.3.4.4 strain, and a recombinant herpesvirus turkey vectored vaccine (rHVT-H5) containing the hemagglutinin gene of clade 2.2 strain. The efficacy of the three vaccines, alone or in combination, was assessed in White Leghorn chickens against clade 2.3.4.4 H5N2 HPAI virus challenge. In Study 1, single (rHVT-H5) and prime-boost (rHVT-H5+rgH5N1 or rHVT-H5+RP-H5) vaccination strategies protected chickens with high levels of protective immunity and significantly reduced virus shedding. In Study 2, single vaccination with either rgH5N1 or RP-H5 vaccines provided clinical protection in adult chickens and significantly reduced virus shedding. In Study 3, double rgH5N1 vaccination protected adult chickens from clinical signs and mortality when challenged 20weeks post-boost, with high levels of long-lasting protective immunity and significantly reduced virus shedding. These studies support the use of genetically related vaccines, possibly in combination with a broad protective priming vaccine, for emergency vaccination programs against clade 2.3.4.4 H5Nx HPAI virus in young and adult layer chickens. Published by Elsevier Ltd.

  2. Avian Influenza: a global threat needing a global solution

    Directory of Open Access Journals (Sweden)

    Koh GCH

    2008-11-01

    Full Text Available Abstract There have been three influenza pandemics since the 1900s, of which the 1919–1919 flu pandemic had the highest mortality rates. The influenza virus infects both humans and birds, and mutates using two mechanisms: antigenic drift and antigenic shift. Currently, the H5N1 avian flu virus is limited to outbreaks among poultry and persons in direct contact to infected poultry, but the mortality rate among infected humans is high. Avian influenza (AI is endemic in Asia as a result of unregulated poultry rearing in rural areas. Such birds often live in close proximity to humans and this increases the chance of genetic re-assortment between avian and human influenza viruses which may produce a mutant strain that is easily transmitted between humans. Once this happens, a global pandemic is likely. Unlike SARS, a person with influenza infection is contagious before the onset of case-defining symptoms which limits the effectiveness of case isolation as a control strategy. Researchers have shown that carefully orchestrated of public health measures could potentially limit the spread of an AI pandemic if implemented soon after the first cases appear. To successfully contain and control an AI pandemic, both national and global strategies are needed. National strategies include source surveillance and control, adequate stockpiles of anti-viral agents, timely production of flu vaccines and healthcare system readiness. Global strategies such as early integrated response, curbing the disease outbreak at source, utilization of global resources, continuing research and open communication are also critical.

  3. Understanding of and possible strategies to avian influenza outbreak.

    Science.gov (United States)

    Shen, Junkang; Zhang, Andy; Xu, Huifen; Sirois, Pierre; Zhang, Jia; Li, Kai; Xiao, Li

    2013-01-01

    Swine flu and avian flu outbreaks have occurred in recent years in addition to seasonal flu. As mortality rate records are not available at the early stage of an outbreak, two parameters may be useful to assess the viral virulence : 1. the time required for the first domestic case in a newly involved region, and 2. the doubling time of new infected cases. Viral virulence is one of the most important factors in guiding short term and immediate responses. Although routine surveillance and repeated vaccination are useful efforts, some novel strategies that may be relevant to prevent and control the spread of influenza among human beings and domestic animals are discussed.

  4. Pandemic H1N1 influenza virus in Chilean commercial turkeys with genetic and serologic comparisons to U.S. H1N1 avian influenza vaccine isolates

    Science.gov (United States)

    Beginning in April 2009, a novel H1N1 influenza virus has caused acute respiratory disease in humans, first in Mexico and then spreading around the world. The resulting pandemic influenza A H1N1 2009 (pH1N1) virus was isolated in swine in Canada in June, 2009, and later in turkey breeders in Chile, ...

  5. Now and future influenza vaccines.

    Science.gov (United States)

    Ruben, F L

    1990-03-01

    Influenza is a modern day plague. In the young, the clinical picture is classical, but in the elderly, the disease may go unsuspected until complications such as pneumonia develop. Influenza A and B viruses are responsible, and these viruses mutate with great regularity. Antibodies to the HA and NA surface antigens of influenza viruses, both naturally and vaccine induced, are protective. The earliest influenza vaccines were crude, toxic, and ineffective. With modern purification techniques, the egg-grown viruses have been turned into safe, immunogenic, and effective killed-virus vaccines--whole virus and split virus. Surveillance permits the correct virus strains to be incorporated into each new vaccine. Those who have been experiencing the worst effects of influenza have been identified. These individuals need to be immunized each year. In the future, live influenza virus vaccines may offer the benefits of ease of administration and longer-lasting protection. Synthetic peptides, genetically engineered antigens, and even nonantigen (anti-idiotype) vaccines are possible, but such vaccines will require adjuvant enhancement. For the present, greater efforts must be made to use existing influenza vaccines.

  6. Vaccination against seasonal influenza

    CERN Document Server

    GS Department

    2010-01-01

    This year, as usual, the Medical Service is helping to promote vaccination against seasonal influenza. Vaccination against seasonal flu is especially recommended for anyone who suffers from chronic pulmonary, cardio-vascular or kidney disease or diabetes, is recovering from a serious illness or major surgery, or is over 65 years of age. The flu virus is transmitted through the air and through contact with contaminated surfaces, so frequent hand-washing with soap and/or an antiseptic hand wash is of great importance. As soon as the first symptoms appear (fever above 38°, shivering, coughing, muscle and/or joint pains, generalised weakness), you are strongly recommended to stay at home to avoid spreading the virus. Anyone working on the CERN site who wishes to be vaccinated against seasonal flu should go to the Infirmary (Building 57, ground floor), with their dose of vaccine. The Medical Service will issue a prescription on the day of the vaccination for the purposes of reimbursement through UNIQA...

  7. Efficacy of single dose of a bivalent vaccine containing inactivated Newcastle disease virus and reassortant highly pathogenic avian influenza H5N1 virus against lethal HPAI and NDV infection in chickens.

    Directory of Open Access Journals (Sweden)

    Dong-Hun Lee

    Full Text Available Highly pathogenic avian influenza (HPAI and Newcastle disease (ND are 2 devastating diseases of poultry, which cause great economic losses to the poultry industry. In the present study, we developed a bivalent vaccine containing antigens of inactivated ND and reassortant HPAI H5N1 viruses as a candidate poultry vaccine, and we evaluated its immunogenicity and protective efficacy in specific pathogen-free chickens. The 6:2 reassortant H5N1 vaccine strain containing the surface genes of the A/Chicken/Korea/ES/2003(H5N1 virus was successfully generated by reverse genetics. A polybasic cleavage site of the hemagglutinin segment was replaced by a monobasic cleavage site. We characterized the reverse genetics-derived reassortant HPAI H5N1 clade 2.5 vaccine strain by evaluating its growth kinetics in eggs, minimum effective dose in chickens, and cross-clade immunogenicity against HPAI clade 1 and 2. The bivalent vaccine was prepared by emulsifying inactivated ND (La Sota strain and reassortant HPAI viruses with Montanide ISA 70 adjuvant. A single immunization with this vaccine induced high levels of hemagglutination-inhibiting antibody titers and protected chickens against a lethal challenge with the wild-type HPAI and ND viruses. Our results demonstrate that the bivalent, inactivated vaccine developed in this study is a promising approach for the control of both HPAI H5N1 and ND viral infections.

  8. Matrix-M Adjuvated Seasonal Virosomal Influenza Vaccine Induces Partial Protection in Mice and Ferrets against Avian H5 and H7 Challenge

    NARCIS (Netherlands)

    Cox, Freek; Roos, Anna; Hafkemeijer, Nicole; Baart, Matthijs; Tolboom, Jeroen; Dekking, Liesbeth; Stittelaar, Koert; Goudsmit, Jaap; Radošević, Katarina; Saeland, Eirikur

    2015-01-01

    There is a constant threat of zoonotic influenza viruses causing a pandemic outbreak in humans. It is virtually impossible to predict which virus strain will cause the next pandemic and it takes a considerable amount of time before a safe and effective vaccine will be available once a pandemic

  9. Influenza vaccination for children with asthma

    OpenAIRE

    Friedman, Bat-Chen; Goldman, Ran D.

    2010-01-01

    QUESTION Parents of children with asthma are encouraged by many health organizations to vaccinate their children against seasonal influenza viruses. Is the influenza vaccine efficient in preventing asthma exacerbation? Are current vaccinations safe to administer to children with asthma?

  10. Avian influenza in Chile: a successful experience.

    Science.gov (United States)

    Max, Vanessa; Herrera, José; Moreira, Rubén; Rojas, Hernán

    2007-03-01

    Avian influenza (AI) was diagnosed in May 2002 for the first time in Chile and South America. The epidemic was caused by the highly pathogenic AI (HPAI) virus subtype H7N3 that emerged from a low pathogenic virus. The index farm was a broiler breeder, located in San Antonio, V Region, which at the time was a densely populated poultry area. Stamping of 465,000 breeders, in 27 sheds, was immediately conducted. Surveillance activities detected a second outbreak, 1 wk later, at a turkey breeding farm from the same company. The second farm was located 4 km from the index case. Only 25% of the sheds were infected, and 18,500 turkeys were destroyed. In both outbreaks, surveillance zones and across-country control measures were established: prediagnosis quarantine, depopulation, intensive surveillance, movement control, and increased biosecurity. Other measures included cleaning, disinfection, and controlling the farms with sentinels to detect the potential presence of the virus. Zoning procedures were implemented to allow the international trade of poultry products from unaffected areas. Positive serologic results to H5N2 virus also were detected in other poultry farms, but there was no evidence of clinical signs or virus isolation. Epidemiological investigation and laboratory confirmation determined that positive serology was related to a contaminated imported batch of vaccine against inclusion body hepatitis. All actions taken allowed the control of the epidemic, and within 7 mo, Chile was free of AI. Epidemic and control measures that prevented further spread are described in this article, which illustrates the importance of a combination of control measures during and after an outbreak of AI. This study is a good example of how veterinary services need to respond if their country is affected by HPAI.

  11. A comparative analysis of influenza vaccination programs.

    Directory of Open Access Journals (Sweden)

    Shweta Bansal

    2006-10-01

    Full Text Available BACKGROUND: The threat of avian influenza and the 2004-2005 influenza vaccine supply shortage in the United States have sparked a debate about optimal vaccination strategies to reduce the burden of morbidity and mortality caused by the influenza virus. METHODS AND FINDINGS: We present a comparative analysis of two classes of suggested vaccination strategies: mortality-based strategies that target high-risk populations and morbidity-based strategies that target high-prevalence populations. Applying the methods of contact network epidemiology to a model of disease transmission in a large urban population, we assume that vaccine supplies are limited and then evaluate the efficacy of these strategies across a wide range of viral transmission rates and for two different age-specific mortality distributions. We find that the optimal strategy depends critically on the viral transmission level (reproductive rate of the virus: morbidity-based strategies outperform mortality-based strategies for moderately transmissible strains, while the reverse is true for highly transmissible strains. These results hold for a range of mortality rates reported for prior influenza epidemics and pandemics. Furthermore, we show that vaccination delays and multiple introductions of disease into the community have a more detrimental impact on morbidity-based strategies than mortality-based strategies. CONCLUSIONS: If public health officials have reasonable estimates of the viral transmission rate and the frequency of new introductions into the community prior to an outbreak, then these methods can guide the design of optimal vaccination priorities. When such information is unreliable or not available, as is often the case, this study recommends mortality-based vaccination priorities.

  12. Universal influenza vaccines: Shifting to better vaccines.

    Science.gov (United States)

    Berlanda Scorza, Francesco; Tsvetnitsky, Vadim; Donnelly, John J

    2016-06-03

    Influenza virus causes acute upper and lower respiratory infections and is the most likely, among known pathogens, to cause a large epidemic in humans. Influenza virus mutates rapidly, enabling it to evade natural and vaccine-induced immunity. Furthermore, influenza viruses can cross from animals to humans, generating novel, potentially pandemic strains. Currently available influenza vaccines induce a strain specific response and may be ineffective against new influenza viruses. The difficulty in predicting circulating strains has frequently resulted in mismatch between the annual vaccine and circulating viruses. Low-resource countries remain mostly unprotected against seasonal influenza and are particularly vulnerable to future pandemics, in part, because investments in vaccine manufacturing and stockpiling are concentrated in high-resource countries. Antibodies that target conserved sites in the hemagglutinin stalk have been isolated from humans and shown to confer protection in animal models, suggesting that broadly protective immunity may be possible. Several innovative influenza vaccine candidates are currently in preclinical or early clinical development. New technologies include adjuvants, synthetic peptides, virus-like particles (VLPs), DNA vectors, messenger RNA, viral vectors, and attenuated or inactivated influenza viruses. Other approaches target the conserved exposed epitope of the surface exposed membrane matrix protein M2e. Well-conserved influenza proteins, such as nucleoprotein and matrix protein, are mainly targeted for developing strong cross-protective T cell responses. With multiple vaccine candidates moving along the testing and development pipeline, the field is steadily moving toward a product that is more potent, durable, and broadly protective than previously licensed vaccines. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  13. Memory T cells established by seasonal human influenza A infection cross-react with avian influenza A (H5N1) in healthy individuals

    NARCIS (Netherlands)

    Lee, Laurel Yong-Hwa; Anh, Ha Do Lien; Simmons, Cameron; de Jong, Menno D.; Chau, Nguyen Van Vinh; Schumacher, Reto; Peng, Yan Chun; McMichael, Andrew J.; Farrar, Jeremy J.; Smith, Geoffrey L.; Townsend, Alain R. M.; Askonas, Brigitte A.; Rowland-Jones, Sarah; Dong, Tao

    2008-01-01

    The threat of avian influenza A (H5N1) infection in humans remains a global health concern. Current influenza vaccines stimulate antibody responses against the surface glycoproteins but are ineffective against strains that have undergone significant antigenic variation. An alternative approach is to

  14. Protection against H5N1 Highly Pathogenic Avian and Pandemic (H1N1) 2009 Influenza Virus Infection in Cynomolgus Monkeys by an Inactivated H5N1 Whole Particle Vaccine

    Science.gov (United States)

    Nakayama, Misako; Shichinohe, Shintaro; Itoh, Yasushi; Ishigaki, Hirohito; Kitano, Mitsutaka; Arikata, Masahiko; Pham, Van Loi; Ishida, Hideaki; Kitagawa, Naoko; Okamatsu, Masatoshi; Sakoda, Yoshihiro; Ichikawa, Takaya; Tsuchiya, Hideaki; Nakamura, Shinichiro; Le, Quynh Mai; Ito, Mutsumi; Kawaoka, Yoshihiro; Kida, Hiroshi; Ogasawara, Kazumasa

    2013-01-01

    H5N1 highly pathogenic avian influenza virus (HPAIV) infection has been reported in poultry and humans with expanding clade designations. Therefore, a vaccine that induces immunity against a broad spectrum of H5N1 viruses is preferable for pandemic preparedness. We established a second H5N1 vaccine candidate, A/duck/Hokkaido/Vac-3/2007 (Vac-3), in our virus library and examined the efficacy of inactivated whole particles of this strain against two clades of H5N1 HPAIV strains that caused severe morbidity in cynomolgus macaques. Virus propagation in vaccinated macaques infected with either of the H5N1 HPAIV strains was prevented compared with that in unvaccinated macaques. This vaccine also prevented propagation of a pandemic (H1N1) 2009 virus in macaques. In the vaccinated macaques, neutralization activity, which was mainly shown by anti-hemagglutinin antibody, against H5N1 HPAIVs in plasma was detected, but that against H1N1 virus was not detected. However, neuraminidase inhibition activity in plasma and T-lymphocyte responses in lymph nodes against H1N1 virus were detected. Therefore, cross-clade and heterosubtypic protective immunity in macaques consisted of humoral and cellular immunity induced by vaccination with Vac-3. PMID:24376571

  15. Protection against H5N1 highly pathogenic avian and pandemic (H1N1 2009 influenza virus infection in cynomolgus monkeys by an inactivated H5N1 whole particle vaccine.

    Directory of Open Access Journals (Sweden)

    Misako Nakayama

    Full Text Available H5N1 highly pathogenic avian influenza virus (HPAIV infection has been reported in poultry and humans with expanding clade designations. Therefore, a vaccine that induces immunity against a broad spectrum of H5N1 viruses is preferable for pandemic preparedness. We established a second H5N1 vaccine candidate, A/duck/Hokkaido/Vac-3/2007 (Vac-3, in our virus library and examined the efficacy of inactivated whole particles of this strain against two clades of H5N1 HPAIV strains that caused severe morbidity in cynomolgus macaques. Virus propagation in vaccinated macaques infected with either of the H5N1 HPAIV strains was prevented compared with that in unvaccinated macaques. This vaccine also prevented propagation of a pandemic (H1N1 2009 virus in macaques. In the vaccinated macaques, neutralization activity, which was mainly shown by anti-hemagglutinin antibody, against H5N1 HPAIVs in plasma was detected, but that against H1N1 virus was not detected. However, neuraminidase inhibition activity in plasma and T-lymphocyte responses in lymph nodes against H1N1 virus were detected. Therefore, cross-clade and heterosubtypic protective immunity in macaques consisted of humoral and cellular immunity induced by vaccination with Vac-3.

  16. Development of Live-Attenuated Influenza Vaccines against Outbreaks of H5N1 Influenza

    Directory of Open Access Journals (Sweden)

    Yinglei Yi

    2012-12-01

    Full Text Available Several global outbreaks of highly pathogenic avian influenza (HPAI H5N1 virus have increased the urgency of developing effective and safe vaccines against H5N1. Compared with H5N1 inactivated vaccines used widely, H5N1 live-attenuated influenza vaccines (LAIVs have advantages in vaccine efficacy, dose-saving formula, long-lasting effect, ease of administration and some cross-protective immunity. Furthermore, H5N1 LAIVs induce both humoral and cellular immune responses, especially including improved IgA production at the mucosa. The current trend of H5N1 LAIVs development is toward cold-adapted, temperature-sensitive or replication-defective vaccines, and moreover, H5N1 LAIVs plus mucosal adjuvants are promising candidates. This review provides an update on the advantages and development of H5N1 live-attenuated influenza vaccines.

  17. Genetic versus antigenic differences among highly pathogenic H5N1 avian influenza A viruses

    NARCIS (Netherlands)

    Peeters, Ben; Reemers, Sylvia; Dortmans, Jos; Vries, de Erik; Jong, de Mart; Zande, van de Saskia; Rottier, Peter J.M.; Haan, de Cornelis A.M.

    2017-01-01

    Highly pathogenic H5N1 avian influenza A viruses display a remarkable genetic and antigenic diversity. We examined to what extent genetic distances between several H5N1 viruses from different clades correlate with antigenic differences and vaccine performance. H5-specific antisera were generated,

  18. Avian influenza in birds and mammals.

    Science.gov (United States)

    Cardona, Carol J; Xing, Zheng; Sandrock, Christian E; Davis, Cristina E

    2009-07-01

    The disease syndromes caused by avian influenza viruses are highly variable depending on the host species infected, its susceptibility and response to infection and the virulence of the infecting viral strain. Although avian influenza viruses have a broad host range in general, it is rare for an individual strain or subtype to infect more than one species. The H5N1 highly pathogenic avian influenza virus (HPAIV) lineages of viruses that descended from A/goose/Guandong/96 (H5N1 HPAIV) are unusual in the diversity of species they have infected worldwide. Although the species affected by H5N1 HPAI in the field and those that have been experimentally studied are diverse, their associated disease syndromes are remarkably similar across species. In some species, multi-organ failure and death are rapid and no signs of the disease are observed. Most prominently in this category are chickens and other avian species of the order Galliformes. In other species, neurologic signs develop resulting in the death of the host. This is what has been reported in domestic cats (Carnivora), geese (Anseriformes), ratites (Struthioniformes), pigeons inoculated with high doses (Columbiformes) and ducks infected with H5N1 HPAIV isolated since 2002 (Anseriformes). In some other species, the disease is more prolonged and although multi-organ failure and death are the eventual outcomes, the signs of disease are more extensive. Predominantly, these species include humans (Primates) and the laboratory models of human disease, the ferret (Carnivora), mouse (Rodentia) and cynamologous macaques (Primates). Finally, some species are more resistant to infection with H5N1 HPAIV and show few or no signs of disease. These species include pigeons in some studies (Columbiformes), ducks inoculated with pre-2002 isolates (Anseriformes), and pigs (Artiodactyla).

  19. Avian influenza, Newcastle and Gumboro disease antibodies and ...

    African Journals Online (AJOL)

    Studies on avian influenza and Newcastle disease focus on waterfowls, considered natural reservoirs of these viruses. This study surveyed avian influenza (AI), Gumboro and Newcastle disease antibodies and antigens in birds in live wild bird markets (LWBMs), live poultry markets (LPMs) and free flying in Kaduna State ...

  20. Prevention and Treatment of Avian Influenza A Viruses in People

    Science.gov (United States)

    ... in People Spread of Bird Flu Viruses Between Animals and People Examples of Human Infections with Avian Influenza A ... Influenza A (H5N1) H5N1 in Birds and Other Animals H5N1 in People Public Health Threat of Highly Pathogenic Asian Avian ...

  1. Avian Influenza A (H7N9) Virus

    Science.gov (United States)

    ... in People Spread of Bird Flu Viruses Between Animals and People Examples of Human Infections with Avian Influenza A ... Influenza A (H5N1) H5N1 in Birds and Other Animals H5N1 in People Public Health Threat of Highly Pathogenic Asian Avian ...

  2. New vaccines against influenza virus

    Science.gov (United States)

    Lee, Young-Tae; Kim, Ki-Hye; Ko, Eun-Ju; Lee, Yu-Na; Kim, Min-Chul; Kwon, Young-Man; Tang, Yinghua; Cho, Min-Kyoung; Lee, Youn-Jeong

    2014-01-01

    Vaccination is one of the most effective and cost-benefit interventions that prevent the mortality and reduce morbidity from infectious pathogens. However, the licensed influenza vaccine induces strain-specific immunity and must be updated annually based on predicted strains that will circulate in the upcoming season. Influenza virus still causes significant health problems worldwide due to the low vaccine efficacy from unexpected outbreaks of next epidemic strains or the emergence of pandemic viruses. Current influenza vaccines are based on immunity to the hemagglutinin antigen that is highly variable among different influenza viruses circulating in humans and animals. Several scientific advances have been endeavored to develop universal vaccines that will induce broad protection. Universal vaccines have been focused on regions of viral proteins that are highly conserved across different virus subtypes. The strategies of universal vaccines include the matrix 2 protein, the hemagglutinin HA2 stalk domain, and T cell-based multivalent antigens. Supplemented and/or adjuvanted vaccination in combination with universal target antigenic vaccines would have much promise. This review summarizes encouraging scientific advances in the field with a focus on novel vaccine designs. PMID:24427759

  3. USGS highly pathogenic avian influenza research strategy

    Science.gov (United States)

    Harris, M. Camille; Miles, A. Keith; Pearce, John M.; Prosser, Diann J.; Sleeman, Jonathan M.; Whalen, Mary E.

    2015-09-09

    Avian influenza viruses are naturally occurring in wild birds such as ducks, geese, swans, and gulls. These viruses generally do not cause illness in wild birds, however, when spread to poultry they can be highly pathogenic and cause illness and death in backyard and commercial farms. Outbreaks may cause devastating agricultural economic losses and some viral strains have the potential to infect people directly. Furthermore, the combination of avian influenza viruses with mammalian viruses can result in strains with the ability to transmit from person to person, possibly leading to viruses with pandemic potential. All known pandemic influenza viruses have had some genetic material of avian origin. Since 1996, a strain of highly pathogenic avian influenza (HPAI) virus, H5N1, has caused infection in wild birds, losses to poultry farms in Eurasia and North Africa, and led to the deaths of several hundred people. Spread of the H5N1 virus and other influenza strains from China was likely facilitated by migratory birds. In December 2014, HPAI was detected in poultry in Canada and migratory birds in the United States. Since then, HPAI viruses have spread to large parts of the United States and will likely continue to spread through migratory bird flyways and other mechanisms throughout North America. In the United States, HPAI viruses have severely affected the poultry industry with millions of domestic birds dead or culled. These strains of HPAI are not known to cause disease in humans; however, the Centers for Disease Control and Prevention (CDC) advise caution when in close contact with infected birds. Experts agree that HPAI strains currently circulating in wild birds of North America will likely persist for the next few years. This unprecedented situation presents risks to the poultry industry, natural resource management, and potentially human health. Scientific knowledge and decision support tools are urgently needed to understand factors affecting the persistence

  4. Traditional and New Influenza Vaccines

    Science.gov (United States)

    Wong, Sook-San

    2013-01-01

    SUMMARY The challenges in successful vaccination against influenza using conventional approaches lie in their variable efficacy in different age populations, the antigenic variability of the circulating virus, and the production and manufacturing limitations to ensure safe, timely, and adequate supply of vaccine. The conventional influenza vaccine platform is based on stimulating immunity against the major neutralizing antibody target, hemagglutinin (HA), by virus attenuation or inactivation. Improvements to this conventional system have focused primarily on improving production and immunogenicity. Cell culture, reverse genetics, and baculovirus expression technology allow for safe and scalable production, while adjuvants, dose variation, and alternate routes of delivery aim to improve vaccine immunogenicity. Fundamentally different approaches that are currently under development hope to signal new generations of influenza vaccines. Such approaches target nonvariable regions of antigenic proteins, with the idea of stimulating cross-protective antibodies and thus creating a “universal” influenza vaccine. While such approaches have obvious benefits, there are many hurdles yet to clear. Here, we discuss the process and challenges of the current influenza vaccine platform as well as new approaches that are being investigated based on the same antigenic target and newer technologies based on different antigenic targets. PMID:23824369

  5. Emerging influenza viruses and the prospect of a universal influenza virus vaccine.

    Science.gov (United States)

    Krammer, Florian

    2015-05-01

    Influenza viruses cause annual seasonal epidemics and pandemics at irregular intervals. Several cases of human infections with avian and swine influenza viruses have been detected recently, warranting enhanced surveillance and the development of more effective countermeasures to address the pandemic potential of these viruses. The most effective countermeasure against influenza virus infection is the use of prophylactic vaccines. However, vaccines that are currently in use for seasonal influenza viruses have to be re-formulated and re-administered in a cumbersome process every year due to the antigenic drift of the virus. Furthermore, current seasonal vaccines are ineffective against novel pandemic strains. This paper reviews zoonotic influenza viruses with pandemic potential and technological advances towards better vaccines that induce broad and long lasting protection from influenza virus infection. Recent efforts have focused on the development of broadly protective/universal influenza virus vaccines that can provide immunity against drifted seasonal influenza virus strains but also against potential pandemic viruses. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Enhancement of Th1-biased protective immunity against avian influenza H9N2 virus via oral co-administration of attenuated Salmonella enterica serovar Typhimurium expressing chicken interferon-α and interleukin-18 along with an inactivated vaccine

    Directory of Open Access Journals (Sweden)

    Rahman Md

    2012-07-01

    Full Text Available Abstract Background Control of currently circulating re-assorted low-pathogenicity avian influenza (LPAI H9N2 is a major concern for both animal and human health. Thus, an improved LPAI H9N2 vaccination strategy is needed to induce complete immunity in chickens against LPAI H9N2 virus strains. Cytokines play a crucial role in mounting both the type and extent of an immune response generated following infection with a pathogen or after vaccination. To improve the efficacy of inactivated LPAI H9N2 vaccine, attenuated Salmonella enterica serovar Typhimurium was used for oral co-administration of chicken interferon-α (chIFN-α and chicken interleukin-18 (chIL-18 as natural immunomodulators. Results Oral co-administration of S. enterica serovar Typhimurium expressing chIFN-α and chIL-18, prior to vaccination with inactivated AI H9N2 vaccine, modulated the immune response of chickens against the vaccine antigen through enhanced humoral and Th1-biased cell-mediated immunity, compared to chickens that received single administration of S. enterica serovar Typhimurium expressing either chIFN-α or chIL-18. To further test the protective efficacy of this improved vaccination regimen, immunized chickens were intra-tracheally challenged with a high dose of LPAI H9N2 virus. Combined administration of S. enterica serovar Typhimurium expressing chIFN-α and chIL-18 showed markedly enhanced protection compared to single administration of the construct, as determined by mortality, clinical severity, and feed and water intake. This enhancement of protective immunity was further confirmed by reduced rectal shedding and replication of AIV H9N2 in different tissues of challenged chickens. Conclusions Our results indicate the value of combined administration of chIFN-α and chIL-18 using a Salmonella vaccine strain to generate an effective immunization strategy in chickens against LPAI H9N2.

  7. SEROMONITORING OF AVIAN INFLUENZA H9 SUBTYPE IN BREEDERS AND COMMERCIAL LAYER FLOCKS

    Directory of Open Access Journals (Sweden)

    M. Numan, M. Siddique and M. S. Yousaf1

    2005-07-01

    Full Text Available A serological survey for detection of antibodies against avian influenza virus (AIV subtype H9 in vaccinated layer flocks was carried out. Serum samples were divided into age groups A, B, C, D (commercial layers and E, F, G, H (layer breeders. Haemagglutination inhibition (HI test was performed to determine serum antibodies against AIV-H9 subtype. Geometric mean titer (GMT values were calculated. Results showed the level of protection of vaccinated birds was satisfactory.

  8. Avian influenza overview September–November 2017

    DEFF Research Database (Denmark)

    Brown, Ian; Kuiken, Thijs; Mulatti, Paolo

    2017-01-01

    the outbreaks, no transmission to humans has been identified in the EU. The report includes an update of the list of wild bird target species for passive surveillance activities that is based on reported AI-infected wild birds since 2006. The purpose of this list is to provide information on which bird species...... the continuing threat of this avian influenza virus to human health and possible introduction via migratory wild birds into Europe. Close monitoring is required of the situation in Africa with regards to HPAI of the subtypes A(H5N1) and A(H5N8), given the rapidity of the evolution and the uncertainty...

  9. Effective influenza vaccines for children

    Science.gov (United States)

    Banzhoff, Angelika; Stoddard, Jeffrey J.

    2012-01-01

    Seasonal influenza causes clinical illness and hospitalization in all age groups; however, conventional inactivated vaccines have only limited efficacy in young children. MF59®, an oil-in-water emulsion adjuvant, has been used since the 1990s to enhance the immunogenicity of influenza vaccines in the elderly, a population with waning immune function due to immunosenescence.   Clinical trials now provide information to support a favorable immunogenicity and safety profile of MF59-adjuvanted influenza vaccine in young children. Published data indicate that Fluad®, a trivalent seasonal influenza vaccine with MF59, was immunogenic and well tolerated in young children, with a benefit/risk ratio that supports routine clinical use. A recent clinical trial also shows that Fluad provides high efficacy against PCR-confirmed influenza. Based on the results of clinical studies in children, the use of MF59-adjuvanted vaccine offers the potential to enhance efficacy and make vaccination a viable prevention and control strategy in this population. PMID:22327501

  10. Seasonal Inactivated Influenza Virus Vaccines

    OpenAIRE

    Couch, Robert B.

    2008-01-01

    Inactivated influenza virus vaccines are the primary modality used for prevention of influenza. A system of annual identification of new strains causing illnesses, selections for vaccines, chick embryo growth, inactivation, processing, packaging, distribution and usage has been in place for decades. Current vaccines contain 15 µg of the HA of an A/H1N1, A/H3N2 and B strain and are given parenterally to induce serum anti-HA antibody for prevention of subsequent infection and illness from natur...

  11. Influenza vaccinations : who needs them and when?

    NARCIS (Netherlands)

    Hak, Eelko; Hoes, Arno W; Verheij, Theo J M

    2002-01-01

    Influenza vaccination programmes should aim at reducing the burden from influenza among those who need it most. The primary aim of this literature review is to identify who should receive priority in influenza vaccination programmes. Risk factors for severe post-influenza complications include

  12. Universal influenza vaccines, science fiction or soon reality?

    NARCIS (Netherlands)

    R.D. de Vries (Rory); A.F. Altenburg (Arwen); G.F. Rimmelzwaan (Guus)

    2015-01-01

    textabstractCurrently used influenza vaccines are only effective when the vaccine strains match the epidemic strains antigenically. To this end, seasonal influenza vaccines must be updated almost annually. Furthermore, seasonal influenza vaccines fail to afford protection against antigenically

  13. Intranasal Immunization with Pressure Inactivated Avian Influenza Elicits Cellular and Humoral Responses in Mice.

    Directory of Open Access Journals (Sweden)

    Shana P C Barroso

    Full Text Available Influenza viruses pose a serious global health threat, particularly in light of newly emerging strains, such as the avian influenza H5N1 and H7N9 viruses. Vaccination remains the primary method for preventing acquiring influenza or for avoiding developing serious complications related to the disease. Vaccinations based on inactivated split virus vaccines or on chemically inactivated whole virus have some important drawbacks, including changes in the immunogenic properties of the virus. To induce a greater mucosal immune response, intranasally administered vaccines are highly desired as they not only prevent disease but can also block the infection at its primary site. To avoid these drawbacks, hydrostatic pressure has been used as a potential method for viral inactivation and vaccine production. In this study, we show that hydrostatic pressure inactivates the avian influenza A H3N8 virus, while still maintaining hemagglutinin and neuraminidase functionalities. Challenged vaccinated animals showed no disease signs (ruffled fur, lethargy, weight loss, and huddling. Similarly, these animals showed less Evans Blue dye leakage and lower cell counts in their bronchoalveolar lavage fluid compared with the challenged non-vaccinated group. We found that the whole inactivated particles were capable of generating a neutralizing antibody response in serum, and IgA was also found in nasal mucosa and feces. After the vaccination and challenge we observed Th1/Th2 cytokine secretion with a prevalence of IFN-γ. Our data indicate that the animals present a satisfactory immune response after vaccination and are protected against infection. Our results may pave the way for the development of a novel pressure-based vaccine against influenza virus.

  14. [Epidemiological perspectives on SARS and avian influenza].

    Science.gov (United States)

    del Rey Calero, Juan

    2004-01-01

    SARS is a respiratory infection caused by Coronavirus (Nidoviruses, RNA) from which 3 groups are known. Group 1 affects dogs, cats, pigs, and the human agent is 229 E. Group 2 affects bovines or rodents, and the human agent is OC43. And group 3 corresponds to the avian pathology.... The epidemics emerged on February 2003 in Guangdong, South China, due to consumption of exotic animals (Civeta, etc.), and it spread through interperson contagion to other regions in Asia, America and Europe. Incubation period is about 2-7 days. Transmission Of the virus is person-to person, but also by excretions and residual water. Basic reproductive rate is 2 to 4, and it is considered that 2.7 persons are infected from the initial case. In June 2003, SARS affected over 8,000 people and 774 were killed. Mortality approaches to 10%, and it is higher among older people rising up to 50% in those aged over 65 years. It is important to quickly establish action protocols regarding clinical, epidemiological and prevention aspects. Avian influenza is an infection caused by type A Influenza Orthomixovirus, in which migration birds and wild ducks are the main reservoir. Avian viruses correspond to H5, H7, H9. In 1997 it was observed that type AH5N1 jumped interspecies barrier and affected 18 humans, and 6 of them died. At the end of 2003 and in 2004 this type of poultry flu was described in Asia. FAO has emphasized that sacrifice of chicken in affected farms is the most effective measure to fight against the disease. It has also been established suppression of imports from these countries. There is no evidence on interperson contagion from chicken contagion, nor on food-borne contagion to humans.

  15. The Relationship of Avian Influenza and Waterbirds in Creating Genetic Diversity and the Role of Waterbirds as Reservoir for Avian Influenza

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2012-03-01

    Full Text Available Outbreaks of Avian Influenza (AI has enormous implications for poultry and human health.These outbreaks are caused by influenza A virus that belongS to the family of Orthomyxoviridae. These viruses are RNA viruses, negative polarity, and the envelope has segmented genom. Generally, Avian Influenza is a disease which originally occurred in birds with complex ecology including reassortment and transmission among different species of birds and mammals. The gene of AI virus can be transmitted among human and avian species as shown by the virus reasortantment that caused pandemic human influenza in 1957 and 1968. Pandemi in 1957 and 1968 were different from previously human viruses because the substitution of several genes are derived from avian viruses. Wild waterfowls especially Anseriformes (duck, muscovy duck and geese and Charadriiformes (gulls, seabirds, wild birds are the natural reservoirs for influenza type A viruses and play important role on the ecology and propagation of the virus. From this reservoir, influenza type A virus usually can be transmitted to other birds, mammals (including human and caused outbreak of lethal diseases. Waterfowl that is infected with influenza A virus usually does not show any clinical symptoms. However, several reports stated that HPAI viruses can cause severe disease with neurogical disorders led to death in waterfowl. Migration of birds including waterfowls have active role in transmitting and spreading the disease. Movement of wild birds and inappropriate poultry trade transportation play a greater role as vector in spreading HPAI to humans. Ecological change of environment has also a great effect in spreading AI viruses. The spreading pattern of AI viruses is usually influenced by seasons, where the prevalence of AI was reported to be in the fall, winter and rainy seasons. Finally, the effective control strategies against the spreading of AI viruses is required. Programs of monitoring, surveilence and

  16. Virus-Vectored Influenza Virus Vaccines

    Science.gov (United States)

    Tripp, Ralph A.; Tompkins, S. Mark

    2014-01-01

    Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines. PMID:25105278

  17. Public health risk from avian influenza viruses.

    Science.gov (United States)

    Perdue, Michael L; Swayne, David E

    2005-09-01

    Since 1997, avian influenza (AI) virus infections in poultry have taken on new significance, with increasing numbers of cases involving bird-to-human transmission and the resulting production of clinically severe and fatal human infections. Such human infections have been sporadic and are caused by H7N7 and H5N1 high-pathogenicity (HP) and H9N2 low-pathogenicity (LP) AI viruses in Europe and Asia. These infections have raised the level of concern by human health agencies for the potential reassortment of influenza virus genes and generation of the next human pandemic influenza A virus. The presence of endemic infections by H5N1 HPAI viruses in poultry in several Asian countries indicates that these viruses will continue to contaminate the environment and be an exposure risk with human transmission and infection. Furthermore, the reports of mammalian infections with H5N1 AI viruses and, in particular, mammal-to-mammal transmission in humans and tigers are unprecedented. However, the subsequent risk for generating a pandemic human strain is unknown. More international funding from both human and animal health agencies for diagnosis or detection and control of AI in Asia is needed. Additional funding for research is needed to understand why and how these AI viruses infect humans and what pandemic risks they pose.

  18. An Outbreak Of Highly Pathogenic Avian Influenza (Hpai) In A Mixed ...

    African Journals Online (AJOL)

    An Outbreak Of Highly Pathogenic Avian Influenza (Hpai) In A Mixed Farm By The Introduction Of A Water Fowl. ... C A Meseko, A T Oladokun, B Shehu. Abstract. Avian influenza (AI) is caused by a range of Influenza type A viruses of high and low pathogenicity (Fauci, 2005). H5N1 Highly Pathogenic Avian Influenza (HPAI) ...

  19. Inhibiting avian influenza virus shedding using a novel RNAi antiviral vector technology: proof of concept in an avian cell model.

    Science.gov (United States)

    Linke, Lyndsey M; Wilusz, Jeffrey; Pabilonia, Kristy L; Fruehauf, Johannes; Magnuson, Roberta; Olea-Popelka, Francisco; Triantis, Joni; Landolt, Gabriele; Salman, Mo

    2016-03-01

    Influenza A viruses pose significant health and economic threats to humans and animals. Outbreaks of avian influenza virus (AIV) are a liability to the poultry industry and increase the risk for transmission to humans. There are limitations to using the AIV vaccine in poultry, creating barriers to controlling outbreaks and a need for alternative effective control measures. Application of RNA interference (RNAi) techniques hold potential; however, the delivery of RNAi-mediating agents is a well-known obstacle to harnessing its clinical application. We introduce a novel antiviral approach using bacterial vectors that target avian mucosal epithelial cells and deliver (small interfering RNA) siRNAs against two AIV genes, nucleoprotein (NP) and polymerase acidic protein (PA). Using a red fluorescent reporter, we first demonstrated vector delivery and intracellular expression in avian epithelial cells. Subsequently, we demonstrated significant reductions in AIV shedding when applying these anti-AIV vectors prophylactically. These antiviral vectors provided up to a 10,000-fold reduction in viral titers shed, demonstrating in vitro proof-of-concept for using these novel anti-AIV vectors to inhibit AIV shedding. Our results indicate this siRNA vector technology could represent a scalable and clinically applicable antiviral technology for avian and human influenza and a prototype for RNAi-based vectors against other viruses.

  20. Bovine and human-derived passive immunization could help slow a future avian influenza pandemic.

    Science.gov (United States)

    Alisky, Joseph

    2009-01-01

    An epidemic of human transmitted avian influenza could have casualties on a scale seen in the great Spanish influenza pandemic of 1918. This paper proposes that should such occur before effective vaccines and antiviral drugs are available, the outbreak could be significantly slowed by consumption of raw milk produced by herds of pathogen-free lactating cows intranasally inoculated with heat-sterilized sputa pooled from avian influenza patients, supplemented by parenteral serum immune globulin from the same cows. Efficiency of bovine antibody production could be enhanced using cholera toxin subunit b, and milk production could be rapidly accelerated using recombinant bovine somatotropin hormone. In this way, it would be possible to quickly create and distribute large quantities of milk-based and serum-based passive immune globulin active against the strains of avian influenza present in a particular geographic area and gain time for production of human convalescent plasma and other public health measures. This novel approach might also have utility for other serious respiratory infectious diseases, including non-avian influenza, SARS, hantavirus, respiratory syncytial virus, antibiotic-resistant Streptococcus pneumoniae and pneumonia-causing Staphylococcus aureus.

  1. A triclade DNA vaccine designed on the basis of a comprehensive serologic study elicits neutralizing antibody responses against all clades and subclades of highly pathogenic avian influenza H5N1 viruses.

    Science.gov (United States)

    Zhou, Fan; Wang, Guiqin; Buchy, Philippe; Cai, Zhipeng; Chen, Honglin; Chen, Zhiwei; Cheng, Genhong; Wan, Xiu-Feng; Deubel, Vincent; Zhou, Paul

    2012-06-01

    Because of their rapid evolution, genetic diversity, broad host range, ongoing circulation in birds, and potential human-to-human transmission, H5N1 influenza viruses remain a major global health concern. Their high degree of genetic diversity also poses enormous burdens and uncertainties in developing effective vaccines. To overcome this, we took a new approach, i.e., the development of immunogens based on a comprehensive serologic study. We constructed DNA plasmids encoding codon-optimized hemagglutinin (HA) from 17 representative strains covering all reported clades and subclades of highly pathogenic avian influenza H5N1 viruses. Using DNA plasmids, we generated the corresponding H5N1 pseudotypes and immune sera. We performed an across-the-board pseudotype-based neutralization assay and determined antigenic clusters by cartography. We then designed a triclade DNA vaccine and evaluated its immunogenicity and protection in mice. We report here that (sub)clades 0, 1, 3, 4, 5, 6, 7.1, and 9 were grouped into antigenic cluster 1, (sub)clades 2.1.3.2, 2.3.4, 2.4, 2.5, and 8 were grouped into another antigenic cluster, with subclade 2.2.1 loosely connected to it, and each of subclades 2.3.2.1 and 7.2 was by itself. Importantly, the triclade DNA vaccine encoding HAs of (sub)clades 0, 2.3.2.1, and 7.2 elicited broadly neutralizing antibody responses against all H5 clades and subclades and protected mice against high-lethal-dose heterologous H5N1 challenge. Thus, we conclude that broadly neutralizing antibodies against all H5 clades and subclades can indeed be elicited with immunogens on the basis of a comprehensive serologic study. Further evaluation and optimization of such an approach in ferrets and in humans is warranted.

  2. Construction of a recombinant duck enteritis virus (DEV) expressing hemagglutinin of H5N1 avian influenza virus based on an infectious clone of DEV vaccine strain and evaluation of its efficacy in ducks and chickens.

    Science.gov (United States)

    Wang, Jichun; Ge, Aimin; Xu, Mengwei; Wang, Zhisheng; Qiao, Yongfeng; Gu, Yiqi; Liu, Chang; Liu, Yamei; Hou, Jibo

    2015-08-13

    Highly pathogenic avian influenza virus (AIV) subtype H5N1 remains a threat to poultry. Duck enteritis virus (DEV)-vectored vaccines expressing AIV H5N1 hemagglutinin (HA) may be viable AIV and DEV vaccine candidates. To facilitate the generation and further improvement of DEV-vectored HA(H5) vaccines, we first constructed an infectious clone of DEV Chinese vaccine strain C-KCE (DEV(C-KCE)). Then, we generated a DEV-vectored HA(H5) vaccine (DEV-H5(UL55)) based on the bacterial artificial chromosome (BAC) by inserting a synthesized HA(H5) expression cassette with a pMCMV IE promoter and a consensus HA sequence into the noncoding area between UL55 and LORF11. The immunogenicity and protective efficacy of the resulting recombinant vaccine against DEV and AIV H5N1 were evaluated in both ducks and chickens. The successful construction of DEV BAC and DEV-H5(UL55) was verified by restriction fragment length polymorphism analysis. Recovered virus from the BAC or mutants showed similar growth kinetics to their parental viruses. The robust expression of HA in chicken embryo fibroblasts infected with the DEV-vectored vaccine was confirmed by indirect immunofluorescence and western blotting analyses. A single dose of 10(6) TCID50 DEV-vectored vaccine provided 100 % protection against duck viral enteritis in ducks, and the hemagglutination inhibition (HI) antibody titer of AIV H5N1 with a peak of 8.2 log2 was detected in 3-week-old layer chickens. In contrast, only very weak HI titers were observed in ducks immunized with 10(7) TCID50 DEV-vectored vaccine. A mortality rate of 60 % (6/10) was observed in 1-week-old specific pathogen free chickens inoculated with 10(6) TCID50 DEV-vectored vaccine. We demonstrate the following in this study. (i) The constructed BAC is a whole genome clone of DEV(C-KCE). (ii) The insertion of an HA expression cassette sequence into the noncoding area between UL55 and LORF11 of DEV(C-KCE) affects neither the growth kinetics of the virus nor its

  3. Socioeconomic Impacts of Avian Influenza on Small and Backyard ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    and compensation schemes are more difficult to enforce than in large commercial poultry farms. Moreover, small and backyard farmers have fewer reserves to cope with the financial impact of avian influenza and, possibly, greater motivation to circumvent government control measures. The Asian Partnership for Avian ...

  4. Avian Influenza spread and transmission dynamics

    Science.gov (United States)

    Bourouiba, Lydia; Gourley, Stephen A.; Liu, Rongsong; Takekawa, John Y.; Wu, Jianhong; Chen, Dongmei; Moulin, Bernard; Wu, Jianhong

    2015-01-01

    The spread of highly pathogenic avian influenza (HPAI) viruses of type A of subtype H5N1 has been a serious threat to global public health. Understanding the roles of various (migratory, wild, poultry) bird species in the transmission of these viruses is critical for designing and implementing effective control and intervention measures. Developing appropriate models and mathematical techniques to understand these roles and to evaluate the effectiveness of mitigation strategies have been a challenge. Recent development of the global health surveillance (especially satellite tracking and GIS techniques) and the mathematical theory of dynamical systems combined have gradually shown the promise of some cutting-edge methodologies and techniques in mathematical biology to meet this challenge.

  5. Universal influenza virus vaccines and therapeutic antibodies.

    Science.gov (United States)

    Nachbagauer, R; Krammer, F

    2017-04-01

    Current influenza virus vaccines are effective when well matched to the circulating strains. Unfortunately, antigenic drift and the high diversity of potential emerging zoonotic and pandemic viruses make it difficult to select the right strains for vaccine production. This problem causes vaccine mismatches, which lead to sharp drops in vaccine effectiveness and long response times to manufacture matched vaccines in case of novel pandemic viruses. To provide an overview of universal influenza virus vaccines and therapeutic antibodies in preclinical and clinical development. PubMed and clinicaltrials.gov were used as sources for this review. Universal influenza virus vaccines that target conserved regions of the influenza virus including the haemagglutinin stalk domain, the ectodomain of the M2 ion channel or the internal matrix and nucleoproteins are in late preclinical and clinical development. These vaccines could confer broad protection against all influenza A and B viruses including drift variants and thereby abolish the need for annual re-formulation and re-administration of influenza virus vaccines. In addition, these novel vaccines would enhance preparedness against emerging influenza virus pandemics. Finally, novel therapeutic antibodies against the same conserved targets are in clinical development and could become valuable tools in the fight against influenza virus infection. Both universal influenza virus vaccines and therapeutic antibodies are potential future options for the control of human influenza infections. Copyright © 2017 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  6. Highly Pathogenic Avian Influenza (HPAI H5N1 is endemic in Indonesia especially in unvaccinated sector-4 poultry. Considering that vaccination against influenza viruses does not induce sterilizing immunity and the source of infection is prevalent around the vaccinated farms, infection in the commercial layers and breeders may be common. Because infection in vaccinated birds is usually subclinical, its presence is unnoticable. The virus in such farms may be circulated persistently and become the source of infection to the surrounding areas. The test, Differentiation Infected from Vaccinated Animals (DIVA that can be used to identify subclinically infected farms is not available yet in Indonesia. Observation on sentinel chicken among vaccinated birds is a sensitive and accurate method but unsafe for HPAI. The DIVA method based on heterologous neuraminidase has been successfully used in Italy, but it is difficult to be applied in Indonesia. The DIVA method based on Ectodomain protein M2 virus Influenza (M2e uses antibody against M2e as infection marker and does not limit the subtype of vaccine used. This method is potential to be used in Indonesia because the M2e is very conserved across all avian influenza viruses and has high proportion of post-infected seroconverted birds.

    Directory of Open Access Journals (Sweden)

    Simson Tarigan

    2015-06-01

    Full Text Available Highly Pathogenic Avian Influenza (HPAI H5N1 is endemic in Indonesia especially in unvaccinated sector-4 poultry. Considering that vaccination against influenza viruses does not induce sterilizing immunity and the source of infection is prevalent around the vaccinated farms, infection in the commercial layers and breeders may be common. Because infection in vaccinated birds is usually subclinical, its presence is unnoticable. The virus in such farms may be circulated persistently and become the source of infection to the surrounding areas. The test, Differentiation Infected from Vaccinated Animals (DIVA that can be used to identify subclinically infected farms is not available yet in Indonesia. Observation on sentinel chicken among vaccinated birds is a sensitive and accurate method but unsafe for HPAI. The DIVA method based on heterologous neuraminidase has been successfully used in Italy, but it is difficult to be applied in Indonesia. The DIVA method based on Ectodomain protein M2 virus Influenza (M2e uses antibody against M2e as infection marker and does not limit the subtype of vaccine used. This method is potential to be used in Indonesia because the M2e is very conserved across all avian influenza viruses and has high proportion of post-infected seroconverted birds.

  7. Plant-made virus-like particle vaccines bearing the hemagglutinin of either seasonal (H1) or avian (H5) influenza have distinct patterns of interaction with human immune cells in vitro.

    Science.gov (United States)

    Hendin, Hilary E; Pillet, Stéphane; Lara, Amanda N; Wu, Cheng-Ying; Charland, Nathalie; Landry, Nathalie; Ward, Brian J

    2017-05-02

    The recent emergence of avian influenza strains has fuelled concern about pandemic preparedness since vaccines targeting these viruses are often poorly immunogenic. Weak antibody responses to vaccines have been seen across multiple platforms including plant-made VLPs. To better understand these differences, we compared the in vitro responses of human immune cells exposed to plant-made virus-like particle (VLP) vaccines targeting H1N1 (H1-VLP) and H5N1 (H5-VLP). Peripheral blood mononuclear cells (PBMC) from healthy adults were stimulated ex vivo with 2-5µg/mL VLPs bearing the hemagglutinin (HA) of either H1N1 (A/California/7/2009) or H5N1 (A/Indonesia/5/05). VLP-immune cell interactions were characterized by confocal microscopy and flow cytometry 30min after stimulation with dialkylaminostyryl dye-labeled (DiD) VLP. Expression of CD69 and pro-inflammatory cytokines were used to assess innate immune activation 6h after stimulation. H1- and H5-VLPs rapidly associated with all subsets of human PBMC but exhibited unique binding preferences and frequencies. The H1-VLP bound to 88.7±1.6% of the CD19 + B cells compared to only 21.9±1.8% bound by the H5-VLP. At 6h in culture, CD69 expression on B cells was increased in response to H1-VLP but not H5-VLP (22.79±3.42% vs. 6.15±0.82% respectively: pinduce a comparable response and the pattern of cytokine production differed between VLP vaccines. Plant-made VLP vaccines bearing H1 or H5 rapidly elicit immune activation and cytokine production in human PBMC. Differences in the VLP-immune cell interactions suggest that features of the HA proteins themselves, such as receptor specificity, influence innate immune responses. Although not generally considered for inactivated vaccines, the distribution and characteristics of influenza receptor(s) on the immune cells themselves may contribute to both the strength and pattern of the immune response generated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Protection of avian influenza (AI vaccines for poultry against infection of field isolates A/Chicken/West Java/Smi-Pat/2006 and A/Chicken/West Java/Smi-Mae/2008 under laboratory condition

    Directory of Open Access Journals (Sweden)

    Risa Indriani

    2011-06-01

    Full Text Available The aim of this research was to study level of protection of avian influenza (AI commercial vaccines available in Indonesia (subtipe H5N1, H5N2 and H5N9 against infection of HPAI field isolates of A/Chicken/West Java/Smi-Pat/2006 and A/Chicken/West Java/Smi-Mae/2008. There were 7 commercial vaccines used in this study, the each vaccines were injected in to 3 weeks old of layer chichickenen intramuscularly. At 3 weeks after vaccination, ten chichickenens from each group were challenged separately with the A/Chicken/West Java/Smi-Pat/2006 and A/Chicken/West Java/Smi-Mae/2008 isolates intranasaly with dose 106 ELD50 per 0,1 ml per chicken. Ten unvaccinated chicken were included in the challenge test as control. The study demonstrate that the AI vaccines with subtipe H5N1 protected chicken (100% against virus of A/Chicken/West Java/Smi-Pat/2006 and 90-100% against virus A/Chicken/West Java/Smi-Mae/2008. Viral shedding were not seen by 2 days post challenge. The AI vaccines with subtipe H5N2 protected chicken at 20-30% against virus of A/Chicken/West Java/Smi-Pat/2006 and protected chicken at 70-100% against virus of A/Chicken/West Java/Smi-Mae/2008. Viral shedding still detected at 8 days post challenge. The AI vaccines AI with subtipe H5N9 did not protect chicken (0% against virus A/Chicken/West Java/Smi-Pat/2006 and protected chicken at 50% against virus A/Chicken/West Java/Smi-Mae/2008. Viral shedding still detected by 8 days post challenge. This study concluded that AI vaccines with subtipe H5N1 are better than other AI subtipe vaccines in preventing HPAI virus A/Chicken/West Java/Smi-Pat/2006 dan A/Chicken/West Java/Smi-Mae/2008 infections under laboratory condition.

  9. Updates on Influenza Vaccination in Children.

    Science.gov (United States)

    Campbell, Angela J P; Grohskopf, Lisa A

    2018-03-01

    Influenza vaccination is recommended for all children 6 months of age and older who do not have contraindications. This article provides an overview of information concerning burden of influenza among children in the United States; US-licensed influenza vaccines; vaccine immunogenicity, effectiveness, and safety; and recent updates relevant to use of these vaccines in pediatric populations. Influenza antiviral medications are discussed. Details concerning vaccine-related topics may be found in the current US Centers for Disease Control and Prevention/Advisory Committee on Immunization Practices recommendations for use of influenza vaccines (https://www.cdc.gov/vaccines/hcp/acip-recs/vacc-specific/flu.html). Additional information on influenza antivirals is located at https://www.cdc.gov/flu/professionals/antivirals/index.htm. Published by Elsevier Inc.

  10. Pathogenicity of highly pathogenic avian influenza virus in mammals

    NARCIS (Netherlands)

    de Wit, Emmie; Kawaoka, Yoshihiro; de Jong, Menno D.; Fouchier, Ron A. M.

    2008-01-01

    In recent years, there has been an increase in outbreaks of highly pathogenic avian influenza (HPAI) in poultry. Occasionally, these outbreaks have resulted in transmission of influenza viruses to humans and other mammals, with symptoms ranging from conjunctivitis to pneumonia and death. Here, the

  11. Freshwater clams as bioconcentrators of avian influenza virus in water.

    Science.gov (United States)

    Huyvaert, Kathryn P; Carlson, Jenny S; Bentler, Kevin T; Cobble, Kacy R; Nolte, Dale L; Franklin, Alan B

    2012-10-01

    We report experimental evidence for bioconcentration of a low-pathogenicity avian influenza virus (H6N8) in the tissue of freshwater clams. Our results support the concept that freshwater clams may provide an effective tool for use in the early detection of influenza A viruses in aquatic environments.

  12. Meningoencephalitis syndrome following influenza vaccination.

    Science.gov (United States)

    Gross, W L; Ravens, K G; Hansen, H W

    1978-02-14

    Immunological reactions to non-virus substances of vaccines may be of considerable significance to the pathogenesis of neurological complications after anti-influenza vaccination. A 60 year old female patient with a known allergic diathesis developed a meningoencephalitis syndrome a few hours after vaccination. The case history as well as the clinical course suggested an immunopathogenetic mechanism. We therefore analyzed the immune profile. Intracutaneous testing with chicken meat and chicken egg protein lead to a striking local anaphylactic reaction which is discussed in causal relation to the postvaccination complication.

  13. Aerosolized avian influenza virus by laboratory manipulations

    Directory of Open Access Journals (Sweden)

    Li Zhiping

    2012-08-01

    Full Text Available Abstract Background Avian H5N1 influenza viruses present a challenge in the laboratory environment, as they are difficult to collect from the air due to their small size and relatively low concentration. In an effort to generate effective methods of H5N1 air removal and ensure the safety of laboratory personnel, this study was designed to investigate the characteristics of aerosolized H5N1 produced by laboratory manipulations during research studies. Results Normal laboratory procedures used to process the influenza virus were carried out independently and the amount of virus polluting the on-site atmosphere was measured. In particular, zootomy, grinding, centrifugation, pipetting, magnetic stirring, egg inoculation, and experimental zoogenetic infection were performed. In addition, common accidents associated with each process were simulated, including breaking glass containers, syringe injection of influenza virus solution, and rupturing of centrifuge tubes. A micro-cluster sampling ambient air pollution collection device was used to collect air samples. The collected viruses were tested for activity by measuring their ability to induce hemagglutination with chicken red blood cells and to propagate in chicken embryos after direct inoculation, the latter being detected by reverse-transcription PCR and HA test. The results showed that the air samples from the normal centrifugal group and the negative-control group were negative, while all other groups were positive for H5N1. Conclusions Our findings suggest that there are numerous sources of aerosols in laboratory operations involving H5N1. Thus, laboratory personnel should be aware of the exposure risk that accompanies routine procedures involved in H5N1 processing and take proactive measures to prevent accidental infection and decrease the risk of virus aerosol leakage beyond the laboratory.

  14. Avian Influenza: Myth or Mass Murder?

    Directory of Open Access Journals (Sweden)

    Carol Louie

    2005-01-01

    Full Text Available The purpose of the present article was to determine whether avian influenza (AI is capable of causing a pandemic. Using research from a variety of medical journals, books and texts, the present paper evaluates the probability of the AI virus becoming sufficiently virulent to pose a global threat. Previous influenza A pandemics from the past century are reviewed, focusing on the mortality rate and the qualities of the virus that distinguish it from other viruses. Each of the influenza A viruses reviewed were classified as pandemic because they met three key criteria: first, the viruses were highly pathogenic within the human population; second, the viruses were easily transmissible from person to person; and finally, the viruses were novel, such that a large proportion of the population was susceptible to infection. Information about the H5N1 subtype of AI has also been critically assessed. Evidence suggests that this AI subtype is both novel and highly pathogenic. The mortality rate from epidemics in Thailand in 2004 was as high as 66%. Clearly, this virus is aggressive. It causes a high death rate, proving that humans have a low immunity to the disease. To date, there has been little evidence to suggest that AI can spread among humans. There have been cases where the virus has transferred from birds to humans, in settings such as farms or open markets with live animal vending. If AI were to undergo a genetic reassortment that allowed itself to transmit easily from person to person, then a serious pandemic could ensue, resulting in high morbidity and mortality. Experts at the World Health Organization and the United States Centers for Disease Control and Prevention agree that AI has the potential to undergo an antigenic shift, thus triggering the next pandemic.

  15. Avian Respiratory Coinfection and Impact on Avian Influenza Pathogenicity in Domestic Poultry: Field and Experimental Findings.

    Science.gov (United States)

    Samy, Ahmed; Naguib, Mahmoud M

    2018-02-24

    The avian respiratory system hosts a wide range of commensal and potential pathogenic bacteria and/or viruses that interact with each other. Such interactions could be either synergistic or antagonistic, which subsequently determines the severity of the disease complex. The intensive rearing methods of poultry are responsible for the marked increase in avian respiratory diseases worldwide. The interaction between avian influenza with other pathogens can guarantee the continuous existence of other avian pathogens, which represents a global concern. A better understanding of the impact of the interaction between avian influenza virus and other avian respiratory pathogens provides a better insight into the respiratory disease complex in poultry and can lead to improved intervention strategies aimed at controlling virus spread.

  16. Antimicrobial Products Registered for Disinfection Use against Avian Influenza on Poultry Farms and Other Facilities

    Science.gov (United States)

    EPA registers disinfectants against Avian Influenza A. Although there are no antimicrobial products registered for the H5N2 subtype of Avian Influenza A virus, based on available scientific information these products will work against other HPAI strains.

  17. Replicon particle vaccine protects swine against influenza.

    Science.gov (United States)

    Bosworth, B; Erdman, M M; Stine, D L; Harris, I; Irwin, C; Jens, M; Loynachan, A; Kamrud, K; Harris, D L

    2010-12-01

    An alphavirus derived replicon particle (RP) vaccine expressing the cluster IV H3N2 swine influenza virus (SIV) hemagglutinin (HA) gene induced protective immunity against homologous influenza virus challenge. However, pigs with maternal antibody had no protective immunity against challenge after vaccination with RP vaccines expressing HA gene alone or in combination with nucleoprotein gene. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Nanostructures for the development of vaccines against avian ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2018-01-12

    Jan 12, 2018 ... Photo: IDRC / Sven Torfinn. The impact of avian influenza. The livelihoods of smallholder farmers, who most frequently own poultry have been severely impacted by recent outbreaks of avian influenza (AI). The severity of the disease can range from mild to extremely severe cases with up to a 100% mortality ...

  19. Will Wallace's Line Save Australia from Avian Influenza?

    Directory of Open Access Journals (Sweden)

    Hamish I. McCallum

    2008-12-01

    Full Text Available Australia is separated from the Asian faunal realm by Wallace's Line, across which there is relatively little avian migration. Although this does diminish the risk of high pathogenicity avian influenza of Asian origin arriving with migratory birds, the barrier is not complete. Migratory shorebirds, as well as a few landbirds, move through the region on annual migrations to and from Southeast Asia and destinations further north, although the frequency of infection of avian influenza in these groups is low. Nonetheless, high pathogenicity H5N1 has recently been recorded on the island of New Guinea in West Papua in domestic poultry. This event increases interest in the movements of birds between Wallacea in eastern Indonesia, New Guinea, and Australia, particularly by waterbirds. There are frequent but irregular movements of ducks, geese, and other waterbirds across Torres Strait between New Guinea and Australia, including movements to regions in which H5N1 has occurred in the recent past. Although the likelihood of avian influenza entering Australia via an avian vector is presumed to be low, the nature and extent of bird movements in this region is poorly known. There have been five recorded outbreaks of high pathogenicity avian influenza in Australian poultry flocks, all of the H7 subtype. To date, Australia is the only inhabited continent not to have recorded high pathogenicity avian influenza since 1997, and H5N1 has never been recorded. The ability to map risk from high pathogenicity avian influenza to Australia is hampered by the lack of quantitative data on the extent of bird movements between Australia and its northern neighbors. Recently developed techniques offer the promise to fill this knowledge gap.

  20. Evaluation of antibody response in mice against avian influenza A ...

    Indian Academy of Sciences (India)

    2014-03-20

    Mar 20, 2014 ... Protection abilities of influenza B virus DNA vaccines express- ing hemagglutinin, neuraminidase, or both in mice. Acta. Virologica 52 107–112. Fedson DS 2008 NEW technologies for meeting the global demand for pandemic influenza vaccines. Biologicals: J. Int. Assn. Biol. Standard. 36 346–349.

  1. Adolescent Attitudes toward Influenza Vaccination and Vaccine Uptake in a School-Based Influenza Vaccination Intervention: A Mediation Analysis

    Science.gov (United States)

    Painter, Julia E.; Sales, Jessica M.; Pazol, Karen; Wingood, Gina M.; Windle, Michael; Orenstein, Walter A.; DiClemente, Ralph J.

    2011-01-01

    Background: School-based vaccination programs may provide an effective strategy to immunize adolescents against influenza. This study examined whether adolescent attitudes toward influenza vaccination mediated the relationship between receipt of a school-based influenza vaccination intervention and vaccine uptake. Methods: Participants were…

  2. 9 CFR 145.15 - Diagnostic surveillance program for low pathogenic avian influenza.

    Science.gov (United States)

    2010-01-01

    ... low pathogenic avian influenza. 145.15 Section 145.15 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of the...

  3. Detecting emerging transmissibility of avian influenza virus in human households.

    Directory of Open Access Journals (Sweden)

    Michiel van Boven

    2007-07-01

    Full Text Available Accumulating infections of highly pathogenic H5N1 avian influenza in humans underlines the need to track the ability of these viruses to spread among humans. A human-transmissible avian influenza virus is expected to cause clusters of infections in humans living in close contact. Therefore, epidemiological analysis of infection clusters in human households is of key importance. Infection clusters may arise from transmission events from (i the animal reservoir, (ii humans who were infected by animals (primary human-to-human transmission, or (iii humans who were infected by humans (secondary human-to-human transmission. Here we propose a method of analysing household infection data to detect changes in the transmissibility of avian influenza viruses in humans at an early stage. The method is applied to an outbreak of H7N7 avian influenza virus in The Netherlands that was the cause of more than 30 human-to-human transmission events. The analyses indicate that secondary human-to-human transmission is plausible for the Dutch household infection data. Based on the estimates of the within-household transmission parameters, we evaluate the effectiveness of antiviral prophylaxis, and conclude that it is unlikely that all household infections can be prevented with current antiviral drugs. We discuss the applicability of our method for the detection of emerging human-to-human transmission of avian influenza viruses in particular, and for the analysis of within-household infection data in general.

  4. [Immune response to influenza vaccination].

    Science.gov (United States)

    Alvarez, I; Corral, J; Arranz, A; Foruria, A; Landa, V; Lejarza, J R; Marijuán, L; Martínez, J M

    1989-01-01

    The present study investigated the level of immunity of the population against three strains of the influenza virus (A Chile/1/83 -A Philippines/2/82 and B URSS/100/83) before and three months after vaccination, and the immune response to whole virus vaccine as compared with fragmented virus vaccine. A high percentage of the population had titers greater than or equal to 1/10 before vaccination for the Chile (54%) and Philippines (65.7%) strains, while titers against the URSS strain were lower (25.4%). There was a definitive increase in antibody titer in the vaccinated population, although it was lower than expected. The overall response to both vaccines, with protecting titers greater than or equal to 1/40 after vaccination was 65.2% for the Chile strain, 74.6% for the Philippines strain, and 15% for the URSS strain. No differences in the overall immune response were found between the groups vaccinated with whole and fragmented virus.

  5. Universal influenza vaccines, science fiction or soon reality?

    Science.gov (United States)

    de Vries, Rory D; Altenburg, Arwen F; Rimmelzwaan, Guus F

    2015-01-01

    Currently used influenza vaccines are only effective when the vaccine strains match the epidemic strains antigenically. To this end, seasonal influenza vaccines must be updated almost annually. Furthermore, seasonal influenza vaccines fail to afford protection against antigenically distinct pandemic influenza viruses. Because of an ever-present threat of the next influenza pandemic and the continuous emergence of drift variants of seasonal influenza A viruses, there is a need for an universal influenza vaccine that induces protective immunity against all influenza A viruses. Here, we summarize some of the efforts that are ongoing to develop universal influenza vaccines.

  6. Avian Influenza in wild birds from Chile, 2007-2009.

    Science.gov (United States)

    Mathieu, Christian; Moreno, Valentina; Pedersen, Janice; Jeria, Julissa; Agredo, Michel; Gutiérrez, Cristian; García, Alfonso; Vásquez, Marcela; Avalos, Patricia; Retamal, Patricio

    2015-03-02

    Aquatic and migratory birds, the main reservoir hosts of avian influenza viruses including those with high pathogenic potential, are the wildlife species with the highest risk for viral dissemination across countries and continents. In 2002, the Chilean poultry industry was affected with a highly pathogenic avian influenza strain, which created economic loss and triggered the establishment of a surveillance program in wild birds. This effort consisted of periodic samplings of sick or suspicious animals found along the coast and analyses with standardized techniques for detection of influenza A virus. The aim of this work is to report the detection of three avian influenza strains (H13N2, H5N9, H13N9) in gulls from Chile between 2007-2009, which nucleotide sequences showed highest similitudes to viruses detected in wild birds from North America. These results suggest a dissemination route for influenza viruses along the coasts of Americas. Migratory and synanthropic behaviors of birds included in this study support continued monitoring of avian influenza viruses isolated from wild birds in The Americas and the establishment of biosecurity practices in farms. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. 9 CFR 113.70 - Pasteurella Multocida Vaccine, Avian Isolate.

    Science.gov (United States)

    2010-01-01

    ... Isolate. 113.70 Section 113.70 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... REQUIREMENTS Live Bacterial Vaccines § 113.70 Pasteurella Multocida Vaccine, Avian Isolate. Pasteurella Multocida Vaccine, Avian Isolate, shall be prepared as a desiccated live culture of an avirulent or modified...

  8. How influenza vaccination policy may affect vaccine logistics.

    Science.gov (United States)

    Assi, Tina-Marie; Rookkapan, Korngamon; Rajgopal, Jayant; Sornsrivichai, Vorasith; Brown, Shawn T; Welling, Joel S; Norman, Bryan A; Connor, Diana L; Chen, Sheng-I; Slayton, Rachel B; Laosiritaworn, Yongjua; Wateska, Angela R; Wisniewski, Stephen R; Lee, Bruce Y

    2012-06-22

    When policymakers make decision about the target populations and timing of influenza vaccination, they may not consider the impact on the vaccine supply chains, which may in turn affect vaccine availability. Our goal is to explore the effects on the Thailand vaccine supply chain of introducing influenza vaccines and varying the target populations and immunization time-frames. We Utilized our custom-designed software HERMES (Highly Extensible Resource for Modeling Supply Chains), we developed a detailed, computational discrete-event simulation model of the Thailand's National Immunization Program (NIP) supply chain in Trang Province, Thailand. A suite of experiments simulated introducing influenza vaccines for different target populations and over different time-frames prior to and during the annual influenza season. Introducing influenza vaccines creates bottlenecks that reduce the availability of both influenza vaccines as well as the other NIP vaccines, with provincial to district transport capacity being the primary constraint. Even covering only 25% of the Advisory Committee on Immunization Practice-recommended population while administering the vaccine over six months hinders overall vaccine availability so that only 62% of arriving patients can receive vaccines. Increasing the target population from 25% to 100% progressively worsens these bottlenecks, while increasing influenza vaccination time-frame from 1 to 6 months decreases these bottlenecks. Since the choice of target populations for influenza vaccination and the time-frame to deliver this vaccine can substantially affect the flow of all vaccines, policy-makers may want to consider supply chain effects when choosing target populations for a vaccine. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Influenza and pneumococcal vaccination: patient perceptions.

    Science.gov (United States)

    Findlay, P F; Gibbons, Y M; Primrose, W R; Ellis, G; Downie, G

    2000-04-01

    The efficacy of the influenza vaccine in reducing mortality and hospital admissions is established, particularly in the elderly. However, up to 50% of those at risk do not receive the vaccine. These patients are also at risk from pneumococcal infection and there is considerable overlap between the target group for each vaccine. This study sought to identify at risk individuals from consecutive admissions to an acute geriatric unit and to gain an insight into their perceptions with regard to vaccination. The awareness of each vaccine was recorded, together with the vaccination history. Seventy four per cent of the final cohort had heard of the influenza vaccine, while only 13% had heard of the pneumococcal vaccine. Fifty per cent perceived themselves to be at risk from influenza and its complications and 87% of the cohort believed it to be a serious infection. Influenza vaccine was judged to confer good protection by 72% of the sample and yet up to 50% believed that the vaccine can make the recipient ill. Influenza is perceived as a serious infection by patients and yet many do not believe themselves to be at particular risk. Although influenza vaccination is believed to confer protection, the decision whether, or not, to accept the vaccine is coloured by many factors, including popular myths and anecdotal information from friends and relatives. The uptake of influenza vaccine is suboptimal and the awareness of the pneumococcal vaccine certainly in the elderly is poor. The need for a comprehensive nationwide education campaign promoting both influenza and pneumococcal vaccine is highlighted.

  10. The threshold of a stochastic avian-human influenza epidemic model with psychological effect

    Science.gov (United States)

    Zhang, Fengrong; Zhang, Xinhong

    2018-02-01

    In this paper, a stochastic avian-human influenza epidemic model with psychological effect in human population and saturation effect within avian population is investigated. This model describes the transmission of avian influenza among avian population and human population in random environments. For stochastic avian-only system, persistence in the mean and extinction of the infected avian population are studied. For the avian-human influenza epidemic system, sufficient conditions for the existence of an ergodic stationary distribution are obtained. Furthermore, a threshold of this stochastic model which determines the outcome of the disease is obtained. Finally, numerical simulations are given to support the theoretical results.

  11. Effect of receptor binding specificity on the immunogenicity and protective efficacy of influenza virus A H1 vaccines

    Science.gov (United States)

    Sun, Xiangjie; Cao, Weiping; Pappas, Claudia; Liu, Feng; Katz, Jacqueline M.; Tumpey, Terrence M.

    2018-01-01

    The biological basis for the poor immunogenicity of unadjuvanted avian influenza A virus vaccines in mammals is not well understood. Here, we mutated the hemagglutinin (HA) of two H1N1 virus vaccines to determine whether virus receptor binding specificity contributes to the low immunogenicity of avian influenza virus vaccines. Mutations were introduced into the HA of an avian influenza virus, A/Duck/New York/15024–21/96 (Dk/96) which switched the binding preference from α2,3- to α2,6-linked sialic acid (SA). A switch in receptor specificity of the human A/South Carolina/1/18 (SC/18) virus generated a mutant virus with α2,3 SA (avian) binding preference. Inactivated vaccines were generated and administered to mice and ferrets intramuscularly. We found that the vaccines with human receptor binding preference induced slightly higher antibody titers and cell-mediated immune responses compared to their isogenic viruses with avian receptor binding specificity. Upon challenge with DK/96 or SC18 virus, differences in lung virus titers between the vaccine groups with different receptor-binding specificities were minimal. Overall, our data suggest that receptor binding specificity contributes only marginally to the immunogenicity of avian influenza vaccines and that other factors may also be involved. PMID:25078114

  12. Short- and long-term protective efficacy against clade 2.3.4.4 H5N2 highly pathogenic avian influenza virus following prime-boost vaccination in turkeys

    Science.gov (United States)

    Highly pathogenic avian influenza virus (HPAIV) infections are frequently associated with systemic disease and high mortality in domestic poultry, particularly in chickens and turkeys. Clade 2.3.4.4 represents a genetic cluster within the Asian HPAIV H5 Goose/Guangdong lineage that has spread throu...

  13. Influenza vaccines: Evaluation of the safety profile

    Science.gov (United States)

    Trombetta, Claudia Maria; Gianchecchi, Elena; Montomoli, Emanuele

    2018-01-01

    ABSTRACT The safety of vaccines is a critical factor in maintaining public trust in national vaccination programs. Vaccines are recommended for children, adults and elderly subjects and have to meet higher safety standards, since they are administered to healthy subjects, mainly healthy children. Although vaccines are strictly monitored before authorization, the possibility of adverse events and/or rare adverse events cannot be totally eliminated. Two main types of influenza vaccines are currently available: parenteral inactivated influenza vaccines and intranasal live attenuated vaccines. Both display a good safety profile in adults and children. However, they can cause adverse events and/or rare adverse events, some of which are more prevalent in children, while others with a higher prevalence in adults. The aim of this review is to provide an overview of influenza vaccine safety according to target groups, vaccine types and production methods. PMID:29297746

  14. The virosome concept for influenza vaccines

    NARCIS (Netherlands)

    Huckriede, A; Bungener, L; Stegmann, T; Daemen, T; Medema, J; Palache, AM; Wilschut, J

    2005-01-01

    There is a need for more efficacious inactivated influenza vaccines, since current formulations show suboptimal immunogenicity in at-risk populations, like the elderly. More effective vaccines are also urgently needed for an improved influenza pandemic preparedness. In this context, there is

  15. Avian influenza: the political economy of disease control in Cambodia.

    Science.gov (United States)

    Ear, Sophal

    2011-01-01

    Abstract In the wake of avian flu outbreaks in 2004, Cambodia received $45 million in commitments from international donors to help combat the spread of animal and human influenza, particularly avian influenza (H5N1). How countries leverage foreign aid to address the specific needs of donors and the endemic needs of the nation is a complex and nuanced issue throughout the developing world. Cambodia is a particularly compelling study in pandemic preparedness and the management of avian influenza because of its multilayered network of competing local, national, and global needs, and because the level of aid in Cambodia represents approximately $2.65 million per human case-a disproportionately high number when compared with neighbors Vietnam and Indonesia. This paper examines how the Cambodian government has made use of animal and human influenza funds to protect (or fail to protect) its citizens and the global community. It asks how effective donor and government responses were to combating avian influenza in Cambodia, and what improvements could be made at the local and international level to help prepare for and respond to future outbreaks. Based on original interviews, a field survey of policy stakeholders, and detailed examination of Cambodia's health infrastructure and policies, the findings illustrate that while pandemic preparedness has shown improvements since 2004, new outbreaks and human fatalities accelerated in 2011, and more work needs to be done to align the specific goals of funders with the endemic needs of developing nations.

  16. The Effect of Tsukamurella inchonensis Bacterin on the Immune Response Against Influenza and Newcastle Disease Vaccines in Broiler Chickens

    Directory of Open Access Journals (Sweden)

    Forough Talazadeh

    2016-11-01

    Full Text Available Background: In poultry production, improving immunity is very important to prevent infectious diseases. One solution to improve the immunity of animals and to decrease their susceptibility to infectious disease is administration of immunostimulants. Surveys have indicated that some bacteria can work as immunomodulators such as Mycobacterium vaccae and can promote Th1-mediated mechanisms, and switch off pre-existing Th2 preponderance (1. Objectives: The aim of this study was to examine the effect of Tsukamurella inchonensis bacterin on the immune response against Influenza and Newcastle disease vaccine in broiler chickens . Materials and Methods: A total of 170 day-old broiler chicks were purchased and divided randomly into 5 equal groups. Chickens of group A received 106 bacterin subcutaneously on two days before vaccination against Newcastle disease and avian influenza. Chickens of group B received 106 bacterin subcutaneously on six days after the first injection of bacterin. Chickens of group C received 106bacterin subcutaneously on six days after the second injection of bacterin. Chickens of group D, vaccinated against Newcastle disease and avian influenza but did not receive bacterin. Chickens of group E, did not vaccinate against Newcastle disease and avian influenza and did not receive bacterin. All groups except group E, were vaccinated with live Newcastle vaccine and AI-ND killed vaccine (subtype H9N2. Blood samples were collected and antibody titer against Newcastle disease vaccine and avian influenza vaccine was determined by HI test. Results: The results of present study showed that receiving of Tsukamurella inchonensis bacterin for 3 times, significantly increased the specific antibody response to avian influenza subtype H9N2 vaccine. Also about Newcastle vaccine, significantly increased the specific antibody response to Newcastle vaccine at 21 and 28 days after vaccination. Conclusions: Receiving of Tsukamurella inchonensis bacterin

  17. Prevalence of Antibodies to H9N2 Avian Influenza Virus in Backyard Chickens around Maharlou Lake in Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Hadipour*, Gholamhossein Habibi and Amir Vosoughi

    2011-06-01

    Full Text Available Backyard chickens play an important role in the epidemiology of H9N2 avian influenza virus infection. Close contact of backyard chickens with migratory birds, especially with aquatic birds, as well as neighboring poultry farms, may pose the risk of transmitting avian influenza virus, but little is known about the disease status of backyard poultry. A H9N2 avian influenza virus seroprevalence survey was carried out in 500 backyard chickens from villages around Maharlou lake in Iran, using the hemagglutination-inhibition (HI test. The studied backyard chickens had not been previously vaccinated and showed no clinical signs of disease. The overall HI titer and seroprevalence against H9N2 were 7.73 and 81.6%, respectively.

  18. Heterosybtypic T-cell immunity to influenza in humans: challenges for universal T-cell influenza vaccines

    Directory of Open Access Journals (Sweden)

    Saranya eSridhar

    2016-05-01

    Full Text Available Influenza A virus (IAV remains a significant global health issue causing annual epidemics, pandemics and sporadic human infections with highly pathogenic avian or swine influenza viruses. Current inactivated and live vaccines are the mainstay of the public health response to influenza although vaccine efficacy is lower against antigenically distinct viral strains. The first pandemic of the 21st century underlined the urgent need to develop new vaccines capable of protection against a broad range of influenza strains. Such universal influenza vaccines are based on the idea of heterosubtypic immunity wherein immune responses to epitopes conserved across IAV strains can confer protection against subsequent infection and disease. T-cells recognising conserved antigens are a key contributor to reducing viral load and limiting disease severity during heterosubtypic infection in animal models. Recent studies undertaken during the 2009 H1N1 pandemic provided key insights into the role of cross-reactive T-cells in mediating heterosubtypic protection in humans. This review focuses on human influenza to discuss the epidemiological observations that underpin cross-protective immunity, the role of T-cells as key players in mediating heterosubtypic immunity including recent data from natural history cohort studies and the ongoing clinical development of T-cell inducing universal influenza vaccines. The challenges and knowledge gaps for developing vaccines to generate long-lived protective T-cell responses is discussed.

  19. Replication of avian influenza A viruses in mammals.

    OpenAIRE

    Hinshaw, V S; Webster, R G; Easterday, B C; Bean, W J

    1981-01-01

    The recent appearance of an avian influenza A virus in seals suggests that viruses are transmitted from birds to mammals in nature. To examine this possibility, avian viruses of different antigenic subtypes were evaluated for their ability to replicate in three mammals-pigs, ferrets, and cats. In each of these mammals, avian strains replicated to high titers in the respiratory tract (10(5) to 10(7) 50% egg infective doses per ml of nasal wash), with peak titers at 2 to 4 days post-inoculation...

  20. Seroprevalence survey of H9N2 avian influenza virus in backyard chickens around the Caspian Sea in Iran

    Directory of Open Access Journals (Sweden)

    MM Hadipour

    2010-03-01

    Full Text Available Since 1998, an epidemic of avian influenza occurred in the Iranian poultry industry. The identified agent presented low pathogenicity, and was subtyped as an H9N2 avian influenza virus. Backyard chickens can play an important role in the epidemiology of H9N2 avian influenza virus infection. Close contact of backyard chickens with migratory birds, especially with aquatic birds, as well as neighboring poultry farms, may pose the risk of transmitting avian influenza virus, but little is known about the disease status of backyard poultry. A H9N2 avian influenza virus seroprevalence survey was carried out in 700 backyard chickens from villages around the Caspian Sea, Northern Iran, using the hemagglutination-inhibition (HI test. The studied backyard chickens had not been previously vaccinated and showed no clinical signs of disease. The mean antibody titers found were 6.8, 7.5, 5.9, 7.2, 5.7, 6.4, 6.2 and the seroprevalence was 76.2%, 79.5%, 68.18%, 78.27%, 65%, 72.31% and 71.4% as found in seven villages. Overall HI titer and seroprevalence against H9N2 were 6.52 and 72.98%, respectively.

  1. Does influenza vaccination improve pediatric asthma outcomes?

    Science.gov (United States)

    Ong, Bruce A; Forester, Joseph; Fallot, Andre

    2009-06-01

    Controversy exists regarding the effectiveness of influenza vaccination in preventing influenza-related asthma exacerbations in the pediatric population. While yearly influenza immunization is widely recommended for children with asthma, there is currently little evidence to support this practice. Several studies have demonstrated no measurable benefit in asthma outcomes. This study sought to determine whether influenza vaccination status is associated with indicators of asthma morbidity within the military pediatric population. A survey was conducted of patients 3 to 18 years of age with a diagnosis of asthma enrolled in the pediatric clinics of Brooke Army Medical Center, Fort Sam Houston, Texas, and Wilford Hall Medical Center, Lackland Air Force Base, Texas. Management practices and outcomes for 80 children were evaluated. Data were analyzed using the statistical package SPSS version 12 (SPSS Inc., Chicago). Univariate analyses were performed to identify associations between influenza vaccination, selected demographic variables and asthma exacerbation defined by oral steroid prescription, hospital visits, and unscheduled clinic or emergency department visits for asthma symptoms. Logistic regression analyses were conducted to detect possible confounding variables. In the univariate analyses, current influenza vaccination status was associated with a significant reduction of oral steroid use in the 12 months before the survey. This relationship was appreciated to a lesser extent with emergency department or unscheduled clinic visits in the last 12 months. No significant differences were found regarding the distribution of influenza vaccination status across selected demographic variables. In the multivariate analyses, current influenza vaccination status was independently associated with significantly decreased odds of using oral steroids in the previous 12 months. There was no evidence of confounding or effect modification. This study suggests influenza

  2. Protection of chickens to antigenically variant avian influenza virus challenge after immunization with two antigenically unrelated strains of the same subtype

    Science.gov (United States)

    The antigenic diversity of avian influenza virus (AIV) within a subtype has been well established and is believed to be driven by the selection of immunologic escape mutants. In regions where vaccination against AIV has been implemented for prolonged periods (e.g. Vietnam and Egypt), vaccines which...

  3. Direct and indirect effects of influenza vaccination.

    Science.gov (United States)

    Eichner, Martin; Schwehm, Markus; Eichner, Linda; Gerlier, Laetitia

    2017-04-26

    After vaccination, vaccinees acquire some protection against infection and/or disease. Vaccination, therefore, reduces the number of infections in the population. Due to this herd protection, not everybody needs to be vaccinated to prevent infections from spreading. We quantify direct and indirect effects of influenza vaccination examining the standard Susceptible-Infected-Recovered (SIR) and Susceptible-Infected-Recovered-Susceptible (SIRS) model as well as simulation results of a sophisticated simulation tool which allows for seasonal transmission of four influenza strains in a population with realistic demography and age-dependent contact patterns. As shown analytically for the simple SIR and SIRS transmission models, indirect vaccination effects are bigger than direct ones if the effective reproduction number of disease transmission is close to the critical value of 1. Simulation results for 20-60% vaccination with live influenza vaccine of 2-17 year old children in Germany, averaged over 10 years (2017-26), confirm this result: four to seven times as many influenza cases are prevented among non-vaccinated individuals as among vaccinees. For complications like death due to influenza which occur much more frequently in the unvaccinated elderly than in the vaccination target group of children, indirect benefits can surpass direct ones by a factor of 20 or even more than 30. The true effect of vaccination can be much bigger than what would be expected by only looking at vaccination coverage and vaccine efficacy.

  4. Microneedle and mucosal delivery of influenza vaccines

    Science.gov (United States)

    Kang, Sang-Moo; Song, Jae-Min; Kim, Yeu-Chun

    2017-01-01

    In recent years with the threat of pandemic influenza and other public health needs, alternative vaccination methods other than intramuscular immunization have received great attention. The skin and mucosal surfaces are attractive sites probably because of both non-invasive access to the vaccine delivery and unique immunological responses. Intradermal vaccines using a microinjection system (BD Soluvia) and intranasal vaccines (FluMist) are licensed. As a new vaccination method, solid microneedles have been developed using a simple device that may be suitable for self-administration. Because coated micorneedle influenza vaccines are administered in the solid state, developing formulations maintaining the stability of influenza vaccines is an important issue to be considered. Marketable microneedle devices and clinical trials remain to be developed. Other alternative mucosal routes such as oral and intranasal delivery systems are also attractive for inducing cross protective mucosal immunity but effective non-live mucosal vaccines remain to be developed. PMID:22697052

  5. Estimation of transmission parameters of H5N1 avian influenza virus in chickens.

    Directory of Open Access Journals (Sweden)

    Annemarie Bouma

    2009-01-01

    Full Text Available Despite considerable research efforts, little is yet known about key epidemiological parameters of H5N1 highly pathogenic influenza viruses in their avian hosts. Here we show how these parameters can be estimated using a limited number of birds in experimental transmission studies. Our quantitative estimates, based on Bayesian methods of inference, reveal that (i the period of latency of H5N1 influenza virus in unvaccinated chickens is short (mean: 0.24 days; 95% credible interval: 0.099-0.48 days; (ii the infectious period of H5N1 virus in unvaccinated chickens is approximately 2 days (mean: 2.1 days; 95%CI: 1.8-2.3 days; (iii the reproduction number of H5N1 virus in unvaccinated chickens need not be high (mean: 1.6; 95%CI: 0.90-2.5, although the virus is expected to spread rapidly because it has a short generation interval in unvaccinated chickens (mean: 1.3 days; 95%CI: 1.0-1.5 days; and (iv vaccination with genetically and antigenically distant H5N2 vaccines can effectively halt transmission. Simulations based on the estimated parameters indicate that herd immunity may be obtained if at least 80% of chickens in a flock are vaccinated. We discuss the implications for the control of H5N1 avian influenza virus in areas where it is endemic.

  6. Harnessing Local Immunity for an Effective Universal Swine Influenza Vaccine.

    Science.gov (United States)

    Tchilian, Elma; Holzer, Barbara

    2017-05-05

    Influenza A virus infections are a global health threat to humans and are endemic in pigs, contributing to decreased weight gain and suboptimal reproductive performance. Pigs are also a source of new viruses of mixed swine, avian, and human origin, potentially capable of initiating human pandemics. Current inactivated vaccines induce neutralising antibody against the immunising strain but rapid escape occurs through antigenic drift of the surface glycoproteins. However, it is known that prior infection provides a degree of cross-protective immunity mediated by cellular immune mechanisms directed at the more conserved internal viral proteins. Here we review new data that emphasises the importance of local immunity in cross-protection and the role of the recently defined tissue-resident memory T cells, as well as locally-produced, and sometimes cross-reactive, antibody. Optimal induction of local immunity may require aerosol delivery of live vaccines, but it remains unclear how long protective local immunity persists. Nevertheless, a universal vaccine might be extremely useful for disease prevention in the face of a pandemic. As a natural host for influenza A viruses, pigs are both a target for a universal vaccine and an excellent model for developing human influenza vaccines.

  7. Avian and Human Influenza Pandemic, How Prepared is the ...

    African Journals Online (AJOL)

    How much the perennial flight patterns of wild bird had on its spread is another question for consideration? The avian influenza virus does not readily cross the species barrier, though there is a potential for genetic re-assortment and cross infection. The main finding of this review suggest a lack of historic epidemiological ...

  8. Evaluation of antibody response in mice against avian influenza A ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... ... for a circulating and newer strain of avian influenza, and would aid in combating the disease in a pandemic situation, in which production time matters ... India; Indian Immunologicals Ltd, Hyderabad, India; Virology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India- ...

  9. Innate resistance to avian influenza: Of MHC's and Mx proteins

    Science.gov (United States)

    Avian influenza (AI) is an economically important virus of poultry that has significant impact on global trade. Recently, increased attention to animal genomics has been applied to enhance innate resistance to infectious diseases in poultry. Two known contributors to innate resistance are the host m...

  10. Avian influenza: An ecological and envolutionary perspective for waterbird scientists

    NARCIS (Netherlands)

    Muzaffar, S.B.; Ydenberg, R.C.; Jones, I.L.

    2006-01-01

    Highly pathogenic avian influenza (HPAI) type A of the subtype H5N1 has recently spread widely and rapidly across Eurasia, and even to Africa, with deaths of both wild and domestic birds recorded. There are fears that it may soon spread to the Americas. Media accounts, communications from

  11. Evaluation of antibody response in mice against avian influenza A

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 39; Issue 3. Evaluation of antibody response in mice against avian influenza A (H5N1) strain neuraminidase expressed in yeast Pichia pastoris. Murugan Subathra Ponsekaran Santhakumar Mangamoori Lakshmi Narasu Syed Sultan Beevi Sunil K Lal. Articles Volume 39 ...

  12. Ducks as sentinels for avian influenza in wild birds.

    Science.gov (United States)

    Globig, Anja; Baumer, Anette; Revilla-Fernández, Sandra; Beer, Martin; Wodak, Eveline; Fink, Maria; Greber, Norbert; Harder, Timm C; Wilking, Hendrik; Brunhart, Iris; Matthes, Doris; Kraatz, Ulf; Strunk, Peter; Fiedler, Wolfgang; Fereidouni, Sasan R; Staubach, Christoph; Conraths, Franz J; Griot, Chris; Mettenleiter, Thomas C; Stärk, Katharina D C

    2009-10-01

    To determine the effectiveness of ducks as sentinels for avian influenza virus (AIV) infection, we placed mallards in contact with wild birds at resting sites in Germany, Austria, and Switzerland. Infections of sentinel birds with different AIV subtypes confirmed the value of such surveillance for AIV monitoring.

  13. DETECTION OF HIGHLY PATHOGENIC AVIAN INFLUENZA (H5N1 ...

    African Journals Online (AJOL)

    kamani

    domestic poultry in Hong Kong. Different reassortant of this virus however continued to emerge from goose and duck containing the same H5 haemagglutinins glycoprotein but had various internal genes and spread to different regions (Guan et al., 2002). Highly Pathogenic Avian Influenza also caused respiratory disease ...

  14. First characterization of avian influenza viruses from Greenland 2014

    DEFF Research Database (Denmark)

    Hartby, Christina Marie; Krog, Jesper Schak; Ravn Merkel, Flemming

    2016-01-01

    In late February 2014, unusually high numbers of wild birds, thick-billed murre (Uria lomvia), were found dead at the coast of South Greenland. To investigate the cause of death, 45 birds were submitted for laboratory examinations in Denmark. Avian influenza viruses (AIVs) with subtypes H11N2...

  15. Classical Swine Fever and Avian Influenza epidemcis: Lessons learned

    NARCIS (Netherlands)

    Elbers, A.R.; Loeffen, W.L.A.; Koch, G.

    2012-01-01

    This publication is based on a talk which was held in the course of the spring symposium „Impfen statt Keulen“ of the Akademie für Tiergesundheit (AfT) 2011 in Wiesbaden-Naurod. Experience with recent large-scale epidemics of Classical Swine Fever and Avian Influenza – among others in the

  16. Review of highly pathogenic avian influenza outbreaks in poultry in ...

    African Journals Online (AJOL)

    All the confirmed highly pathogenic avian influenza cases that were diagnosed in Zaria at the Veterinary Teaching Hospital, Ahmadu Bello University, Zaria, Nigeria, were reviewed in this study. The outbreaks occurred between the months of December, 2006 and March, 2007. The clinical signs and postmortem lesions ...

  17. The epizootiology of the highly pathogenic avian influenza prior to ...

    African Journals Online (AJOL)

    The epizootiology of the highly pathogenic avian influenza prior to the anticipated pandemic of the early twenty first century. ... Transmission of highly pathogenic H5N1 from domestic fowls back to migratory waterfowl in western China has increased the geographic spread. This has grave consequences for the poultry ...

  18. Avian Influenza in Migratory Birds : Regional Surveillance and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Outbreaks may only occur after transmission from migratory species to domestic flocks through local amplification and secondary spread through the movement of poultry or people, as well as equipment or vehicles contaminated by sick birds. The Asia Partnership for Avian Influenza Research (APAIR) brings together ...

  19. Avian Influenza in Migratory Birds : Regional Surveillance and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The highly pathogenic avian influenza (HPAI) virus H5N1 produces severe disease and high mortality in domestic poultry, waterfowl and other bird species. Although the international spread of the disease is still poorly understood, scientists are increasingly convinced that at least some migratory waterfowl carry the H5N1 ...

  20. Asian Partnership for Avian Influenza Research : Effectiveness of ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... Indonesia, Thailand and Viet Nam for collaboration on research and research capacity building in avian influenza prevention and control. This grant will allow APAIR to investigate the effectiveness of the measures employed by China, Thailand and Viet Nam and evaluate the factors contributing to their success or failure.

  1. Rumor surveillance and avian influenza H5N1.

    Science.gov (United States)

    Samaan, Gina; Patel, Mahomed; Olowokure, Babatunde; Roces, Maria C; Oshitani, Hitoshi

    2005-03-01

    We describe the enhanced rumor surveillance during the avian influenza H5N1 outbreak in 2004. The World Health Organization's Western Pacific Regional Office identified 40 rumors; 9 were verified to be true. Rumor surveillance informed immediate public health action and prevented unnecessary and costly responses.

  2. Prevention And Control Of Highly Pathogenic Avian Influenza In Africa

    African Journals Online (AJOL)

    Highly Pathogenic Avian Influenza (HPAI) is a zoonotic trans-boundary disease. Its occurrence in a country constitutes a major constraint to profitable livestock operations and poses a high public health risk at regional and global levels. Since February 2006, HPAI has infected eleven African countries (Nigeria, Egypt, Niger, ...

  3. Detection of antibodies to avian influenza, infectious bronchitis and ...

    African Journals Online (AJOL)

    Detection of antibodies to avian influenza, infectious bronchitis and Newcastle disease viruses in wild birds in three states of Nigeria. ... The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader). If you would like more ...

  4. Rapidly expanding range of highly pathogenic avian influenza viruses

    Science.gov (United States)

    Hall, Jeffrey S.; Dusek, Robert J.; Spackman, Erica

    2015-01-01

    The movement of highly pathogenic avian influenza (H5N8) virus across Eurasia and into North America and the virus’ propensity to reassort with co-circulating low pathogenicity viruses raise concerns among poultry producers, wildlife biologists, aviculturists, and public health personnel worldwide. Surveillance, modeling, and experimental research will provide the knowledge required for intelligent policy and management decisions.

  5. Highly pathogenic avian influenza virus among wild birds in Mongolia

    Science.gov (United States)

    The central Asian country of Mongolia supports large populations of migratory water birds that migrate across much of Asia where highly pathogenic avian influenza (HPAI) virus subtype H5N1 is endemic. This, together with the near absence of domestic poultry, makes Mongolia an ideal location to unde...

  6. Asian Partnership for Avian Influenza Research : Effectiveness of ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Highly pathogenic avian influenza (HPAI) caused by viruses of the H5N1 subtype is a major disease of poultry that affects humans at a low rate. The World Health Organization (WHO) believes that these viruses may have the potential to mutate and became contagious between people, causing a human pandemic.

  7. Transmission of highly pathogenic avian influenza H7 virus

    NARCIS (Netherlands)

    Bos, M.E.H.

    2009-01-01

    Knowledge of the transmission of highly pathogenic avian influenza (HPAI) virus still has gaps, complicating epidemic control. A model was developed to back-calculate the day HPAI virus was introduced into a flock, based on within-flock mortality data of the Dutch HPAI H7N7 epidemic (2003). The

  8. Quantitative Risk Assessment of Avian Influenza Virus Infection via Water

    NARCIS (Netherlands)

    Schijven FJ; Teunis PFM; Roda Husman AM de; MGB

    2006-01-01

    Using literature data, daily infection risks of chickens and humans with H5N1 avian influenza virus (AIV) by drinking water consumption were estimated for the Netherlands. A highly infectious virus and less than 4 log10 drinking water treatment (reasonably inefficient) may lead to a high infection

  9. Avian Influenza Risk : Characterization and Dynamics of Backyard ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Thought and Measures of Supply Chain Management to Reinforce Food Quality and Safety [Chinese language]. Download PDF. Journal articles. Impact of the IDRC project interventions on the KAP changing of the backyaders in relation to the reduction and management of avian influenza risk [Vietnamese language].

  10. Avian Influenza Risk : Characterization and Dynamics of Backyard ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The highly pathogenic avian influenza (HPAI) virus H5N1 produces severe disease and high mortality in domestic poultry, waterfowl and other bird species. Public health authorities are concerned that this strain may mutate to became contagious between people. Throughout Southeast Asia and China, farmers raise poultry ...

  11. Broadly protective influenza vaccines: Redirecting the antibody response through adjuvation

    NARCIS (Netherlands)

    Cox, F.

    2016-01-01

    Influenza virus infections are responsible for significant morbidity worldwide and current vaccines have limited coverage, therefore it remains a high priority to develop broadly protective vaccines. With the discovery of broadly neutralizing antibodies (bnAbs) against influenza these vaccines

  12. Safety and effectiveness of MF-59 adjuvanted influenza vaccines in children and adults.

    Science.gov (United States)

    Black, Steven

    2015-06-08

    The squalene oil-in-water emulsion MF-59 adjuvant was developed initially to enhance the immunogenicity of influenza vaccines in populations such as children and adults with known suboptimal response. Developed in the 1990s, it was initially licensed in Europe for use in seasonal influenza vaccine in the elderly. Since that time, both Avian and p2009H1N1 vaccines have also been developed. Overall, more than 30,000 individuals have participated in clinical trials of MF-59 adjuvanted vaccine and more than 160 million doses of licensed vaccine have been administered. Safety and effectiveness data from clinical trials and observation studies attest to the safety of MF-59 and to its ability to enhance the effectiveness of influenza vaccines in children and the elderly. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. PRODUKSI KOLOSTRUM ANTIVIRUS AVIAN INFLUENZA DALAM RANGKA PENGENDALIAN INFEKSI VIRUS FLU BURUNG

    Directory of Open Access Journals (Sweden)

    A. Esfandari

    2008-08-01

    Full Text Available This experiment was conducted to study the prospect of bovine colostrum utilization to produce specific antibody as passive immunotherapy against avian influenza. Pregnant Frisian Holstein cows were injected with commercial killed Avian Influenza (AI vaccine given double doses subcutaneously three times every two weeks. Prior to vaccination, the cows were given immunomodulator 0.1 mg.kg-1 BW administered orally for three days. The animals then were injected by inactive H5N1 antigent without adjuvant intravenously to meet the dose of 104 HAU. Blood samples were collected to detect anti AI antibody using Enzyme Linked Jmmunosorbent Assay technique. Colostral samples were analysed to detect antibody against AI using Haemagglutination Inhibition technique. IgG stabilities were tested against enzyme, pH, and spray dried prosessing with inlet dan outlet temperature of 1400C and 520C.repectively. The colostral lgG efficacy on neutralizing H5N1 virus activity was determined in vitro (by using Serum Neutralization Test and protective titer measurement and in ovo (challenge test by using Embryonic Chicken Egg. The result indicated that serum antibody against H5N1 was detected one week after the second vaccination. Titer of colostral antibody against H5N1 was high (28 . Biological activity of colostral IgG remain stable at pH 5-7 and after spraying-drying prosessing, but decreased after treatment by trypsin and pepsin enzymes. The neutralization test showed that the fresh and spray dried colostral IgG against H5N1 were able to neutralize 107 EID50 AI virus H5N1 with neutralization index of 1.1 and 1.0, respectively. In conclusion, pregnant Frisian Holstein cows injected with commercial killed Avian Influenza (AI vaccine were able to produce colostral lgG against AI H5Nl

  14. Active Surveillance for Avian Influenza Virus, Egypt, 2010–2012

    Science.gov (United States)

    Kandeil, Ahmed; El-Shesheny, Rabeh; Kayed, Ahmed S.; Gomaa, Mokhtar M.; Maatouq, Asmaa M.; Shehata, Mahmoud M.; Moatasim, Yassmin; Bagato, Ola; Cai, Zhipeng; Rubrum, Adam; Kutkat, Mohamed A.; McKenzie, Pamela P.; Webster, Robert G.; Webby, Richard J.; Ali, Mohamed A.

    2014-01-01

    Continuous circulation of influenza A(H5N1) virus among poultry in Egypt has created an epicenter in which the viruses evolve into newer subclades and continue to cause disease in humans. To detect influenza viruses in Egypt, since 2009 we have actively surveyed various regions and poultry production sectors. From August 2010 through January 2013, >11,000 swab samples were collected; 10% were positive by matrix gene reverse transcription PCR. During this period, subtype H9N2 viruses emerged, cocirculated with subtype H5N1 viruses, and frequently co-infected the same avian host. Genetic and antigenic analyses of viruses revealed that influenza A(H5N1) clade 2.2.1 viruses are dominant and that all subtype H9N2 viruses are G1-like. Cocirculation of different subtypes poses concern for potential reassortment. Avian influenza continues to threaten public and animal health in Egypt, and continuous surveillance for avian influenza virus is needed. PMID:24655395

  15. 9 CFR 113.208 - Avian Encephalomyelitis Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ..., Killed Virus. 113.208 Section 113.208 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.208 Avian Encephalomyelitis Vaccine, Killed Virus. Avian...

  16. A viable recombinant rhabdovirus lacking its glycoprotein gene and expressing influenza virus hemagglutinin and neuraminidase is a potent influenza vaccine.

    Science.gov (United States)

    Ryder, Alex B; Buonocore, Linda; Vogel, Leatrice; Nachbagauer, Raffael; Krammer, Florian; Rose, John K

    2015-03-01

    The emergence of novel influenza viruses that cause devastating human disease is an ongoing threat and serves as an impetus for the continued development of novel approaches to influenza vaccines. Influenza vaccine development has traditionally focused on producing humoral and/or cell-mediated immunity, often against the viral surface glycoproteins hemagglutinin (HA) and neuraminidase (NA). Here, we describe a new vaccine candidate that utilizes a replication-defective vesicular stomatitis virus (VSV) vector backbone that lacks the native G surface glycoprotein gene (VSVΔG). The expression of the H5 HA of an H5N1 highly pathogenic avian influenza virus (HPAIV), A/Vietnam/1203/04 (VN1203), and the NA of the mouse-adapted H1N1 influenza virus A/Puerto Rico/8/34 (PR8) in the VSVΔG vector restored the ability of the recombinant virus to replicate in cell culture, without the requirement for the addition of trypsin. We show here that this recombinant virus vaccine candidate was nonpathogenic in mice when given by either the intramuscular or intranasal route of immunization and that the in vivo replication of VSVΔG-H5N1 is profoundly attenuated. This recombinant virus also provided protection against lethal H5N1 infection after a single dose. This novel approach to vaccination against HPAIVs may be widely applicable to other emerging strains of influenza virus. Preparation for a potentially catastrophic influenza pandemic requires novel influenza vaccines that are safe, can be produced and administered quickly, and are effective, both soon after administration and for a long duration. We have created a new influenza vaccine that utilizes an attenuated vesicular stomatitis virus (VSV) vector, to deliver and express influenza virus proteins against which vaccinated animals develop potent antibody responses. The influenza virus hemagglutinin and neuraminidase proteins, expressed on the surface of VSV particles, allowed this vaccine to grow in cell culture and induced a

  17. Emergence of fatal avian influenza in New England harbor seals.

    Science.gov (United States)

    Anthony, S J; St Leger, J A; Pugliares, K; Ip, H S; Chan, J M; Carpenter, Z W; Navarrete-Macias, I; Sanchez-Leon, M; Saliki, J T; Pedersen, J; Karesh, W; Daszak, P; Rabadan, R; Rowles, T; Lipkin, W I

    2012-01-01

    From September to December 2011, 162 New England harbor seals died in an outbreak of pneumonia. Sequence analysis of postmortem samples revealed the presence of an avian H3N8 influenza A virus, similar to a virus circulating in North American waterfowl since at least 2002 but with mutations that indicate recent adaption to mammalian hosts. These include a D701N mutation in the viral PB2 protein, previously reported in highly pathogenic H5N1 avian influenza viruses infecting people. Lectin staining and agglutination assays indicated the presence of the avian-preferred SAα-2,3 and mammalian SAα-2,6 receptors in seal respiratory tract, and the ability of the virus to agglutinate erythrocytes bearing either the SAα-2,3 or the SAα-2,6 receptor. The emergence of this A/harbor seal/Massachusetts/1/2011 virus may herald the appearance of an H3N8 influenza clade with potential for persistence and cross-species transmission. The emergence of new strains of influenza virus is always of great public concern, especially when the infection of a new mammalian host has the potential to result in a widespread outbreak of disease. Here we report the emergence of an avian influenza virus (H3N8) in New England harbor seals which caused an outbreak of pneumonia and contributed to a U.S. federally recognized unusual mortality event (UME). This outbreak is particularly significant, not only because of the disease it caused in seals but also because the virus has naturally acquired mutations that are known to increase transmissibility and virulence in mammals. Monitoring the spillover and adaptation of avian viruses in mammalian species is critically important if we are to understand the factors that lead to both epizootic and zoonotic emergence.

  18. Avian influenza in backyard poultry of the Mopti region, Mali.

    Science.gov (United States)

    Molia, Sophie; Traoré, Abdallah; Gil, Patricia; Hammoumi, Saliha; Lesceu, Stéphanie; Servan de Almeida, Renata; Albina, Emmanuel; Chevalier, Véronique

    2010-06-01

    This study reports the first evidence of circulation of avian influenza viruses (AIV) in domestic poultry in Mali. In the Mopti region, where AIV have already been isolated in migratory water birds, we sampled 223 backyard domestic birds potentially in contact with wild birds and found that 3.6% had tracheal or cloacal swabs positive by real-time reverse transcription PCR (rRT-PCR) for type A influenza viruses (IVA) and that 13.7% had sera positive by commercial ELISA test detecting antibodies against IVA. None of the birds positive by rRT-PCR for IVA was positive by rRT-PCR for H5 and H7 subtypes, and none showed any clinical signs therefore indicating the circulation of low pathogenic avian influenza. Unfortunately, no virus isolation was possible. Further studies are needed to assess the temporal evolution of AIV circulation in the Mopti region and its possible correlation with the presence of wild birds.

  19. The Knowledge Level of Interns of Medical Faculty in Ondokuz Mayis University about Avian Influenza

    Directory of Open Access Journals (Sweden)

    Ozlem Terzi

    2009-02-01

    Full Text Available AIM: It is predictable that our country, especially Samsun city will be affect by a probable avian influenza epidemic because of is location that takes place in the region of wild birds migration way. The aim of this study is to ascertain the knowledge level of interns of medical faculty about avian influenza. METHODS: This descriptive study was conducted on 175 (81.7% of 214 intern of medical faculty between 1 and 30 May 2008. A questionnaire included six questions related with the agent, group of the agent and therapy of avian influenza and source of information about avian influenza, was applied to the participants. The questionnaire also included 10 questions, which should be answered as true/false for each the following subjects transmission ways, risk groups, symptoms and protection methods of the disease. Each correct answer is scored as one point and a knowledge score was calculated for each subject. RESULTS: In all, 79 students (45.1% were girls, 96(54.9% were boys. The median age was 24.6±1.1 years. While the proportion of true response was 73.7% about the avian influenza agent, 55.3% of the whole group knew the group of the agent. The median points for knowing the transmission ways of virus, risk groups and prevention were 7.0, 6.0 and 7.0 respectively. The median point of the participants was 9,0 for the question related with the symptoms of the disease and this question was the most correctly answered one. Although 56.4% of the participants knew the treatment of the disease, 33.5% of them stated that vaccination is protective. The information sources about disease were television (74.2%, newspapers/magazine (46.8% and the internet (36.0%. CONCLUSION: In conclusion, it’s found that interns have a medium level of knowledge about avian influenza. Lessons about, the diseases those can cause epidemics and important health problems in the future should be integrated in to the education programs to improve the knowledge level of interns

  20. Influenza Vaccines: From Surveillance Through Production to Protection

    Science.gov (United States)

    Tosh, Pritish K.; Jacobson, Robert M.; Poland, Gregory A.

    2010-01-01

    Influenza is an important contributor to population and individual morbidity and mortality. The current influenza pandemic with novel H1N1 has highlighted the need for health care professionals to better understand the processes involved in creating influenza vaccines, both for pandemic as well as for seasonal influenza. This review presents an overview of influenza-related topics to help meet this need and includes a discussion of the burden of disease, virology, epidemiology, viral surveillance, and vaccine strain selection. We then present an overview of influenza vaccine—related topics, including vaccine production, vaccine efficacy and effectiveness, influenza vaccine misperceptions, and populations that are recommended to receive vaccination. English-language articles in PubMed published between January 1, 1970, and October 7, 2009, were searched using key words human influenza, influenza vaccines, influenza A, and influenza B. PMID:20118381

  1. Development of stable influenza vaccine powder formulations : Challenges and possibilities

    NARCIS (Netherlands)

    Amorij, J-P; Huckriede, A; Wilschut, J; Frijlink, H W; Hinrichs, W L J

    2008-01-01

    Influenza vaccination represents the cornerstone of influenza prevention. However, today all influenza vaccines are formulated as liquids that are unstable at ambient temperatures and have to be stored and distributed under refrigeration. In order to stabilize influenza vaccines, they can be brought

  2. How Experience Shapes Health Beliefs: The Case of Influenza Vaccination

    Science.gov (United States)

    Shahrabani, Shosh; Benzion, Uri

    2012-01-01

    This study examines the impact of past experience with influenza and the influenza vaccine on four categories of the Health Belief Model: beliefs about susceptibility to contracting influenza, severity of illness, perceived benefits of the vaccine in preventing influenza, and perceived barriers to getting vaccinated. The study population comprised…

  3. Intranasal Administration of Whole Inactivated Influenza Virus Vaccine as a Promising Influenza Vaccine Candidate.

    Science.gov (United States)

    Ainai, Akira; Suzuki, Tadaki; Tamura, Shin-Ichi; Hasegawa, Hideki

    The effect of the current influenza vaccine, an inactivated virus vaccine administered by subcutaneous/intramuscular injection, is limited to reducing the morbidity and mortality associated with seasonal influenza outbreaks. Intranasal vaccination, by contrast, mimics natural infection and induces not only systemic IgG antibodies but also local secretory IgA (S-IgA) antibodies found on the surface of the mucosal epithelium in the upper respiratory tract. S-IgA antibodies are highly effective at preventing virus infection. Although the live attenuated influenza vaccine (LAIV) administered intranasally can induce local antibodies, this vaccine is restricted to healthy populations aged 2-49 years because of safety concerns associated with using live viruses in a vaccine. Instead of LAIV, an intranasal vaccine made with inactivated virus could be applied to high-risk populations, including infants and elderly adults. Normally, a mucosal adjuvant would be required to enhance the effect of intranasal vaccination with an inactivated influenza vaccine. However, we found that intranasal administration of a concentrated, whole inactivated influenza virus vaccine without any mucosal adjuvant was enough to induce local neutralizing S-IgA antibodies in the nasal epithelium of healthy individuals with some immunological memory for seasonal influenza viruses. This intranasal vaccine is a novel candidate that could improve on the current injectable vaccine or the LAIV for the prevention of seasonal influenza epidemics.

  4. Influenza vaccinations of health care personnel

    Directory of Open Access Journals (Sweden)

    Aneta Nitsch-Osuch

    2013-02-01

    Full Text Available Influenza is one of the most common respiratory diseases affecting people of all age groups all over the world. Seasonal influenza leads to substantial morbidity and mortality on a global scale. Vaccines are undeniably one of the most important health advances of the past century, however, managing influenza in working populations remains a difficult issue. Vaccination of health care workers (HCW is an efficient way to reduce the risk of occupational infection and to prevent nosocomial transmission to vulnerable patients. Despite this, achieving high immunization rates among those professionals is a challenge. Knowledge and attitudes of healthcare providers have significant impact on the frequency with which vaccines are offered and accepted, but many HCWs are poorly equipped to make informed recommendations about vaccine merits and risks. Principal reasons for vaccination are the willing not to be infected and avoiding transmission to patients and the family. The main reasons for refusing is lack of time, a feeling of invulnerability to vaccination, conviction of not being at risk, of being too young or in good health. Misconceptions about influenza vaccine efficacy, like adverse effects, and fear of contracting illness from the vaccine are significantly associated with noncompliance with vaccination. Therefore, strategies to increase awareness of the importance of recommending influenza immunization among health professionals are required. Med Pr 2013;64(1:119–129

  5. [Influenza vaccination. Effectiveness of current vaccines and future challenges].

    Science.gov (United States)

    Ortiz de Lejarazu, Raúl; Tamames, Sonia

    2015-01-01

    Seasonal influenza is an annual challenge for health-care systems, due to factors such as co-circulation of 2 influenza A subtypes jointly with 2 influenza B lineages; the antigenic drift of these virus, which eludes natural immunity, as well as immunity conferred by vaccination; together with influenza impact in terms of morbidity and mortality. Influenza vaccines have been available for more than 70 years and they have progressed in formulation, production and delivery route. Recommendations on vaccination are focused on those with a higher probability of severe disease, and have a progressively wider coverage, and classically based on inactivated vaccines, but with an increasing importance of attenuated live vaccines. More inactivated vaccines are becoming available, from adyuvanted and virosomal vaccines to intradermal delivery, cell-culture or quadrivalent. Overall vaccine effectiveness is about 65%, but varies depending on characteristics of vaccines, virus, population and the outcomes to be prevented, and ranges from less than 10% to almost 90%. Future challenges are formulations that confer more extensive and lasting protection, as well as increased vaccination coverage, especially in groups such as pregnant women and health-care professionals, as well as being extended to paediatrics. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  6. 75 FR 48712 - Proposed Vaccine Information Materials for Influenza Vaccine

    Science.gov (United States)

    2010-08-11

    ... of the benefits of the vaccine, (2) A concise description of the risks associated with the vaccine... each year. However, known benefits and risks for each year's influenza vaccine are generally the same... difficulty breathing, hoarseness or wheezing, hives, paleness, weakness, a fast heart beat or dizziness. What...

  7. Viral vector-based influenza vaccines

    Science.gov (United States)

    de Vries, Rory D.; Rimmelzwaan, Guus F.

    2016-01-01

    ABSTRACT Antigenic drift of seasonal influenza viruses and the occasional introduction of influenza viruses of novel subtypes into the human population complicate the timely production of effective vaccines that antigenically match the virus strains that cause epidemic or pandemic outbreaks. The development of game-changing vaccines that induce broadly protective immunity against a wide variety of influenza viruses is an unmet need, in which recombinant viral vectors may provide. Use of viral vectors allows the delivery of any influenza virus antigen, or derivative thereof, to the immune system, resulting in the optimal induction of virus-specific B- and T-cell responses against this antigen of choice. This systematic review discusses results obtained with vectored influenza virus vaccines and advantages and disadvantages of the currently available viral vectors. PMID:27455345

  8. Viral vector-based influenza vaccines.

    Science.gov (United States)

    de Vries, Rory D; Rimmelzwaan, Guus F

    2016-11-01

    Antigenic drift of seasonal influenza viruses and the occasional introduction of influenza viruses of novel subtypes into the human population complicate the timely production of effective vaccines that antigenically match the virus strains that cause epidemic or pandemic outbreaks. The development of game-changing vaccines that induce broadly protective immunity against a wide variety of influenza viruses is an unmet need, in which recombinant viral vectors may provide. Use of viral vectors allows the delivery of any influenza virus antigen, or derivative thereof, to the immune system, resulting in the optimal induction of virus-specific B- and T-cell responses against this antigen of choice. This systematic review discusses results obtained with vectored influenza virus vaccines and advantages and disadvantages of the currently available viral vectors.

  9. Influenza Gain-of-Function Experiments: Their Role in Vaccine Virus Recommendation and Pandemic Preparedness

    Science.gov (United States)

    Webby, R. J.; Webster, R. G.; Kelso, A.; Barr, I. G.; McCauley, J. W.; Daniels, R. S.; Wang, D.; Shu, Y.; Nobusawa, E.; Itamura, S.; Tashiro, M.; Harada, Y.; Watanabe, S.; Odagiri, T.; Ye, Z.; Grohmann, G.; Harvey, R.; Engelhardt, O.; Smith, D.; Hamilton, K.; Claes, F.; Dauphin, G.

    2014-01-01

    Abstract In recent years, controversy has arisen regarding the risks and benefits of certain types of gain-of-function (GOF) studies involving avian influenza viruses. In this article, we provide specific examples of how different types of data, including information garnered from GOF studies, have helped to shape the influenza vaccine production process—from selection of candidate vaccine viruses (CVVs) to the manufacture and stockpiling of safe, high-yield prepandemic vaccines for the global community. The article is not written to support a specific pro- or anti-GOF stance but rather to inform the scientific community about factors involved in vaccine virus selection and the preparation of prepandemic influenza vaccines and the impact that some GOF information has had on this process. PMID:25505124

  10. Outbreak of avian influenza H7N3 on a turkey farm in the Netherlands

    OpenAIRE

    Velkers, F.C.; Bouma, A.; Matthijs, M.G.R.; Koch, G.; Westendorp, S.T.; Stegeman, J.A.

    2006-01-01

    This case report describes the course of an outbreak of avian influenza on a Dutch turkey farm. When clinical signs were observed their cause remained unclear. However, serum samples taken for the monitoring campaign launched during the epidemic of highly pathogenic avian influenza in 2003, showed that all the remaining turkeys were seropositive against an H7 strain of avian influenza virus, and the virus was subsequently isolated from stored carcases. The results of a reverse-transcriptase P...

  11. Movements of Birds and Avian Influenza from Asia into Alaska

    OpenAIRE

    Winker, Kevin; McCracken, Kevin G.; Gibson, Daniel D.; Pruett, Christin L.; Meier, Rose; Huettmann, Falk; Wege, Michael; Kulikova, Irina V.; Zhuravlev, Yuri N.; Perdue, Michael L.; Spackman, Erica; Suarez, David L.; Swayne, David E.

    2007-01-01

    Asian-origin avian influenza (AI) viruses are spread in part by migratory birds. In Alaska, diverse avian hosts from Asia and the Americas overlap in a region of intercontinental avifaunal mixing. This region is hypothesized to be a zone of Asia-to-America virus transfer because birds there can mingle in waters contaminated by wild-bird?origin AI viruses. Our 7 years of AI virus surveillance among waterfowl and shorebirds in this region (1998?2004; 8,254 samples) showed remarkably low infecti...

  12. Influenza viruses production: Evaluation of a novel avian cell line DuckCelt®-T17.

    Science.gov (United States)

    Petiot, Emma; Proust, Anaïs; Traversier, Aurélien; Durous, Laurent; Dappozze, Frédéric; Gras, Marianne; Guillard, Chantal; Balloul, Jean-Marc; Rosa-Calatrava, Manuel

    2017-05-29

    The influenza vaccine manufacturing industry is looking for production cell lines that are easily scalable, highly permissive to multiple viruses, and more effective in term of viral productivity. One critical characteristic of such cell lines is their ability to grow in suspension, in serum free conditions and at high cell densities. Influenza virus causing severe epidemics both in human and animals is an important threat to world healthcare. The repetitive apparition of influenza pandemic outbreaks in the last 20years explains that manufacturing sector is still looking for more effective production processes to replace/supplement embryonated egg-based process. Cell-based production strategy, with a focus on avian cell lines, is one of the promising solutions. Three avian cell lines, namely duck EB66®cells (Valneva), duck AGE.CR® cells (Probiogen) and quail QOR/2E11 cells (Baxter), are now competing with traditional mammalian cell platforms (Vero and MDCK cells) used for influenza vaccine productions and are currently at advance stage of commercial development for the manufacture of influenza vaccines. The DuckCelt®-T17 cell line presented in this work is a novel avian cell line developed by Transgene. This cell line was generated from primary embryo duck cells with the constitutive expression of the duck telomerase reverse transcriptase (dTERT). The DuckCelt®-T17 cells were able to grow in batch suspension cultures and serum-free conditions up to 6.5×10 6 cell/ml and were easily scaled from 10ml up to 3l bioreactor. In the present study, DuckCelt®-T17 cell line was tested for its abilities to produce various human, avian and porcine influenza strains. Most of the viral strains were produced at significant infectious titers (>5.8 log TCID50/ml) with optimization of the infection conditions. Human strains H1N1 and H3N2, as well as all the avian strains tested (H5N2, H7N1, H3N8, H11N9, H12N5) were the most efficiently produced with highest titre reached of 9

  13. Access to health information may improve behavior in preventing Avian influenza among women

    Directory of Open Access Journals (Sweden)

    Ajeng T. Endarti

    2011-02-01

    Full Text Available Background: Improving human behavior toward Avian influenza may lessen the chance to be infected by Avian influenza. This study aimed to identify several factors influencing behavior in the community.Method: A cross-sectional study was conducted in July 2008. Behavior regarding Avian influenza was measured by scoring the variables of knowledge, attitude, and practice. Subjects were obtained from the sub district of Limo, in Depok, West Java, which was considered a high risk area for Avian influenza. The heads of household as the sample unit were chosen by multi-stage sampling.Results: Among 387 subjects, 29.5% of them was had good behavior toward Avian influenza. The final model revealed that gender and access to health information were two dominant factors for good behavior in preventing Avian influenza. Compared with men, women had 67% higher risk to have good behavior [adjusted relative risk (RRa = 1.67; 95% confidence interval (CI = 0.92-3.04; P = 0.092]. Compared to those with no access to health information, subjects with access to health information had 3.4 fold increase to good behavior (RRa = 3.40; 95% CI =  0.84-13.76; P = 0.087.Conclusion: Acces to health information concerning Avian influenza was more effective among women in promoting good behavior toward preventing Avian influenza. (Med J Indones 2011; 20:56-61Keywords: avian influenza, behavior, gender, health promotion

  14. Establishment of pandemic influenza vaccine production capacity at Bio Farma, Indonesia.

    Science.gov (United States)

    Suhardono, Mahendra; Ugiyadi, Dori; Nurnaeni, Ida; Emelia, Imelda

    2011-07-01

    In Indonesia, avian influenza A(H5N1) virus started to spread in humans in June 2005, with an alarming case-fatality rate of more than 80%. Considering that global influenza vaccine production capacity would barely have covered 10% of the world's pandemic vaccine needs, and that countries with no production facilities or prearranged contracts would be without access to a vaccine, the Government of Indonesia embarked on a programme to increase its readiness for a future influenza pandemic. This included the domestic production of influenza vaccine, which was entrusted to Bio Farma. This health security strategy consists of developing trivalent influenza vaccine production capacity in order to be able to convert immediately to monovalent production of up to 20 million pandemic doses for the Indonesian market upon receipt of the seed strain from the World Health Organization (WHO). For this purpose, a dedicated production facility is being constructed within the Bio Farma premises in Bandung. As an initial stage of influenza vaccine development, imported seasonal influenza bulk has been formulated and filled in the Bio Farma facility. Following three consecutive batches and successful clinical trials, the product was licensed by the Indonesian National Regulatory Authority and distributed commercially for the Hajj programme in 2009. With continued support from its technology transfer partners, Bio Farma is now advancing with the development of upstream processes to produce its own bulk for seasonal and pandemic use. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Diverse uses of feathers with emphasis on diagnosis of avian viral infections and vaccine virus monitoring

    Directory of Open Access Journals (Sweden)

    I Davidson

    2009-09-01

    Full Text Available The large amounts of feathers produced by the poultry industry, that is considered as a waste was explored for possible uses in various industries, such as meals for animals, biofuels, biodegradable plastic materials, combating water pollution and more. That review mentions these uses, but concentrate on the utilization of feathers for the diagnosis of viral infections and for monitoring vaccine viruses in chickens after vaccination. The viral diseases in which diagnosis using nucleic acids extracted from the feather shafts was described are, Marek's disease virus, circoviruses, chicken anemia virus, fowlpox virus, avian retroviruses, avian influenza virus and infectious laryngotracheitis virus. In two cases, of Marek's disease virus and of infectious laryngotracheitis virus, the differentiation of vaccine and wild-type viruses from feather shafts was made possible, thus allowing for monitoring the vaccination efficacy. The present review demonstrates also the stability of DNA viruses in feather shafts, and the possible evaluation of environmental dissemination of pathogens. When viruses are transmitted vertically, like in the cases of the retrovirus REV, a teratogenic effect on the development of feathers of the day-old newly hatched chick might occur in the case of avian influenza and the chicken anemia virus, which might indicate on a viral infection.

  16. Key Facts about Influenza (Flu) and Flu Vaccine

    Science.gov (United States)

    ... Collection of Respiratory Specimens for Influenza Virus Testing Clinical Signs & Symptoms of Influenza Symptoms & Laboratory Diagnosis Information for ... Submit" /> Archived Flu Emails Influenza Types Seasonal Avian Swine Variant Pandemic Other ... This Page What is Influenza (also called Flu)? Signs and Symptoms of Flu How Flu Spreads Period ...

  17. Highly pathogenic avian influenza viruses inhibit effective immune responses of human blood-derived macrophages

    OpenAIRE

    Friesenhagen, Judith; Boergeling, Yvonne; Hrincius, Eike; Ludwig, Stephan; Roth, Johannes; Viemann, Dorothee

    2012-01-01

    Human blood-derived macrophages are non-permissive for influenza virus propagation, and fail to elicit inflammatory and antiviral responses upon infection with high pathogenic avian influenza viruses.

  18. A generic model of contagious disease and its application to human-to-human transmission of avian influenza.

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, Gary B.

    2007-03-01

    Modeling contagious diseases has taken on greater importance over the past several years as diseases such as SARS and avian influenza have raised concern about worldwide pandemics. Most models developed to consider projected outbreaks have been specific to a single disease. This paper describes a generic System Dynamics contagious disease model and its application to human-to-human transmission of a mutant version of avian influenza. The model offers the option of calculating rates of new infections over time based either on a fixed ''reproductive number'' that is traditional in contagious disease models or on contact rates for different sub-populations and likelihood of transmission per contact. The paper reports on results with various types of interventions. These results suggest the potential importance of contact tracing, limited quarantine, and targeted vaccination strategies as methods for controlling outbreaks, especially when vaccine supplies may initially be limited and the efficacy of anti-viral drugs uncertain.

  19. An electronic learning course on avian influenza in Italy (2008).

    Science.gov (United States)

    Dalla Pozza, Manuela; Valerii, Leila; Graziani, Manuel; Ianniello, Marco; Bagni, Marina; Damiani, Silvia; Ravarotto, Licia; Busani, Luca; Ceolin, Chiara; Terregino, Calogero; Cecchinato, Mattia; Marangon, Stefano; Lelli, Rossella; Alessandrini, Barbara

    2010-03-01

    The success of emergency intervention to control contagious animal diseases is dependent on the preparedness of veterinary services. In the framework of avian influenza preparedness, the Italian Ministry of Health, in cooperation with the National Reference Centers for Epidemiology and Avian Influenza, implemented an electronic learning course using new web-based information and communication technologies. The course was designed to train veterinary officers involved in disease outbreak management, laboratory diagnosis, and policy making. The "blended learning model" was applied, involving participants in tutor-supported self-learning, collaborative learning activities, and virtual classes. The course duration was 16 hr spread over a 4-wk period. Six editions were implemented for 705 participants. All participants completed the evaluation assignments, and the drop out rate was very low (only 4%). This project increased the number of professionals receiving high-quality training on AI in Italy, while reducing expenditure and maximizing return on effort.

  20. Influenza B vaccine lineage selection-An optimized trivalent vaccine

    NARCIS (Netherlands)

    A. Mosterín Höpping (Ana); J.M. Fonville (Judith); C.A. Russell (Colin); S.L. James (Sarah ); D.J. Smith (Derek James)

    2016-01-01

    textabstractEpidemics of seasonal influenza viruses cause considerable morbidity and mortality each year. Various types and subtypes of influenza circulate in humans and evolve continuously such that individuals at risk of serious complications need to be vaccinated annually to keep protection up to

  1. DNA-based influenza vaccines as immunoprophylactic agents toward universality.

    Science.gov (United States)

    Zhang, Han; El Zowalaty, Mohamed E

    2016-01-01

    Influenza is an illness of global public health concern. Influenza viruses have been responsible for several pandemics affecting humans. Current influenza vaccines have proved satisfactory safety; however, they have limitations and do not provide protection against unexpected emerging influenza virus strains. Therefore, there is an urgent need for alternative approaches to conventional influenza vaccines. The development of universal influenza vaccines will help alleviate the severity of influenza pandemics. Influenza DNA vaccines have been the subject of many studies over the past decades due to their ability to induce broad-based protective immune responses in various animal models. The present review highlights the recent advances in influenza DNA vaccine research and its potential as an affordable universal influenza vaccine.

  2. Isolation and characterization of virus of highly pathogenic avian influenza H5 subtype of chicken from outbreaks in Indonesia

    Directory of Open Access Journals (Sweden)

    Agus Wiyono

    2004-03-01

    are highly pathogenic to experimental animals. It is concluded that the causative agent of the outbreaks of avian disease in Indonesia was avian influenza H5 subtype virus. The result has been the basis of further study such as development serological tests and vaccine production. The decission of Indonesian Government to conduct vaccination program using homolog vaccine in order to control the disease is regarded as the correct choice. However, it should be accompanied by conducting surveillance and monitoring of the disease as well as the possibility of mutation of virus. The program should be coordinated nationally.

  3. Avian influenza (bird flu) outbreak news scare and its economic ...

    African Journals Online (AJOL)

    Avian influenza (bird flu) outbreak news scare and its economic implication on poultry enterprises in Adamawa state, Nigeria. MR Ja'afar-Furo, HG Balla, B Yakubu. Abstract. No Abstract. Global Journal of Agricultural Sciences Vol. 6 (1) 2007: pp. 61-68. http://dx.doi.org/10.4314/gjass.v6i1.2302 · AJOL African Journals ...

  4. Uptake of the Influenza Vaccination in Pregnancy

    LENUS (Irish Health Repository)

    Crosby, DA

    2016-09-01

    Influenza is caused by a highly infectious RNA virus, which usually occurs in a seasonal pattern with epidemics in the winter months. The objective of this study was to determine the uptake of the influenza vaccine in a pregnant population and ascertain the reasons why some women did not receive it. A prospective cohort study was conducted over a two-week period in January 2016 in the National Maternity Hospital Dublin, a tertiary referral maternity hospital delivering over 9000 infants per year. There were 504 women studied over the 2-week period. Overall, 197(39.1%) women received the vaccine at a mean gestational age 20.9 weeks (SD 7.0). Given the increased rates of influenza in the community and the associated implications for mother and infant, it is important that pregnant women are educated regarding the risks of influenza in pregnancy and encourage this cohort to be vaccinated.

  5. The role of environmental transmission in recurrent avian influenza epidemics.

    Directory of Open Access Journals (Sweden)

    Romulus Breban

    2009-04-01

    Full Text Available Avian influenza virus (AIV persists in North American wild waterfowl, exhibiting major outbreaks every 2-4 years. Attempts to explain the patterns of periodicity and persistence using simple direct transmission models are unsuccessful. Motivated by empirical evidence, we examine the contribution of an overlooked AIV transmission mode: environmental transmission. It is known that infectious birds shed large concentrations of virions in the environment, where virions may persist for a long time. We thus propose that, in addition to direct fecal/oral transmission, birds may become infected by ingesting virions that have long persisted in the environment. We design a new host-pathogen model that combines within-season transmission dynamics, between-season migration and reproduction, and environmental variation. Analysis of the model yields three major results. First, environmental transmission provides a persistence mechanism within small communities where epidemics cannot be sustained by direct transmission only (i.e., communities smaller than the critical community size. Second, environmental transmission offers a parsimonious explanation of the 2-4 year periodicity of avian influenza epidemics. Third, very low levels of environmental transmission (i.e., few cases per year are sufficient for avian influenza to persist in populations where it would otherwise vanish.

  6. Epilepsy in Children After Pandemic Influenza Vaccination.

    Science.gov (United States)

    Håberg, Siri E; Aaberg, Kari M; Surén, Pål; Trogstad, Lill; Ghaderi, Sara; Stoltenberg, Camilla; Magnus, Per; Bakken, Inger Johanne

    2018-02-15

    To determine if pandemic influenza vaccination was associated with an increased risk of epilepsy in children. Information from Norwegian registries from 2006 through 2014 on all children <18 years living in Norway on October 1, 2009 was used in Cox regression models to estimate hazard ratios for incident epilepsy after vaccination. A self-controlled case series analysis was used to estimate incidence rate ratios in defined risk periods after pandemic vaccination. In Norway, the main period of the influenza A subtype H1N1 pandemic was from October 2009 to December 2009. On October 1, 2009, 1 154 113 children <18 years of age were registered as residents in Norway. Of these, 572 875 (50.7%) were vaccinated against pandemic influenza. From October 2009 through 2014 there were 3628 new cases of epilepsy (incidence rate 6.09 per 10 000 person-years). The risk of epilepsy was not increased after vaccination: hazard ratio: 1.07; 95% confidence interval: 0.94-1.23. Results from the self-controlled case series analysis supported the finding of no association between vaccination and subsequent epilepsy. Pandemic influenza vaccination was not associated with increased risk of epilepsy. Concerns about pandemic vaccination causing epilepsy in children seem to be unwarranted. Copyright © 2018 by the American Academy of Pediatrics.

  7. Genetic characterization of highly pathogenic avian influenza A H5N8 viruses isolated from wild birds in Egypt.

    Science.gov (United States)

    Kandeil, Ahmed; Kayed, Ahmed; Moatasim, Yassmin; Webby, Richard J; McKenzie, Pamela P; Kayali, Ghazi; Ali, Mohamed A

    2017-07-01

    A newly emerged H5N8 influenza virus was isolated from green-winged teal in Egypt during December 2016. In this study, we provide a detailed characterization of full genomes of Egyptian H5N8 viruses and some virological features. Genetic analysis demonstrated that the Egyptian H5N8 viruses are highly pathogenic avian influenza viruses. Phylogenetic analysis revealed that the genome of the Egyptian H5N8 viruses was related to recently characterized reassortant H5N8 viruses of clade 2.3.4.4 isolated from different Eurasian countries. Multiple peculiar mutations were characterized in the Egyptian H5N8 viruses, which probably permits transmission and virulence of these viruses in mammals. The Egyptian H5N8 viruses preferentially bound to avian-like receptors rather than human-like receptors. Also, the Egyptian H5N8 viruses were fully sensitive to amantadine and neuraminidase inhibitors. Chicken sera raised against commercial inactivated avian influenza-H5 vaccines showed no or very low reactivity with the currently characterized H5N8 viruses in agreement with the genetic dissimilarity. Surveillance of avian influenza in waterfowl provides early warning of specific threats to poultry and human health and hence should be continued.

  8. Impact of influenza vaccination on mortality risk among the elderly

    NARCIS (Netherlands)

    Groenwold, R. H. H.; Hoes, A. W.; Hak, E.

    Estimates of influenza vaccine effectiveness have mostly been derived from nonrandomised studies and therefore are potentially confounded. The aim of the current study was to estimate influenza vaccine effectiveness in preventing mortality among the elderly, taking both measured and unmeasured

  9. Vaccination coverage among adults, excluding influenza vaccination - United States, 2013.

    Science.gov (United States)

    Williams, Walter W; Lu, Peng-Jun; O'Halloran, Alissa; Bridges, Carolyn B; Kim, David K; Pilishvili, Tamara; Hales, Craig M; Markowitz, Lauri E

    2015-02-06

    Vaccinations are recommended throughout life to prevent vaccine-preventable diseases and their sequelae. Adult vaccination coverage, however, remains low for most routinely recommended vaccines and below Healthy People 2020 targets. In October 2014, the Advisory Committee on Immunization Practices (ACIP) approved the adult immunization schedule for 2015. With the exception of influenza vaccination, which is recommended for all adults each year, other adult vaccinations are recommended for specific populations based on a person's age, health conditions, behavioral risk factors (e.g., injection drug use), occupation, travel, and other indications. To assess vaccination coverage among adults aged ≥19 years for selected vaccines, CDC analyzed data from the 2013 National Health Interview Survey (NHIS). This report highlights results of that analysis for pneumococcal, tetanus toxoid-containing (tetanus and diphtheria vaccine [Td] or tetanus and diphtheria with acellular pertussis vaccine [Tdap]), hepatitis A, hepatitis B, herpes zoster (shingles), and human papillomavirus (HPV) vaccines by selected characteristics (age, race/ethnicity,† and vaccination indication). Influenza vaccination coverage estimates for the 2013-14 influenza season have been published separately. Compared with 2012, only modest increases occurred in Tdap vaccination among adults aged ≥19 years (a 2.9 percentage point increase to 17.2%), herpes zoster vaccination among adults aged ≥60 years (a 4.1 percentage point increase to 24.2%), and HPV vaccination among males aged 19-26 years (a 3.6 percentage point increase to 5.9%); coverage among adults in the United States for the other vaccines did not improve. Racial/ethnic disparities in coverage persisted for all six vaccines and widened for Tdap and herpes zoster vaccination. Increases in vaccination coverage are needed to reduce the occurrence of vaccine-preventable diseases among adults. Awareness of the need for vaccines for adults is low

  10. Prospective study of avian influenza virus infections among rural Thai villagers.

    Directory of Open Access Journals (Sweden)

    Whitney S Krueger

    Full Text Available In 2008, 800 rural Thai adults living within Kamphaeng Phet Province were enrolled in a prospective cohort study of zoonotic influenza transmission. Serological analyses of enrollment sera suggested this cohort had experienced subclinical avian influenza virus (AIV infections with H9N2 and H5N1 viruses.After enrollment, participants were contacted weekly for 24 mos for acute influenza-like illnesses (ILI. Cohort members confirmed to have influenza A infections were enrolled with their household contacts in a family transmission study involving paired sera and respiratory swab collections. Cohort members also provided sera at 12 and 24 months after enrollment. Serologic and real-time RT-PCR assays were performed against avian, swine, and human influenza viruses.Over the 2 yrs of follow-up, 81 ILI investigations in the cohort were conducted; 31 (38% were identified as influenza A infections by qRT-PCR. Eighty-three household contacts were enrolled; 12 (14% reported ILIs, and 11 (92% of those were identified as influenza infections. A number of subjects were found to have slightly elevated antibodies against avian-like A/Hong Kong/1073/1999(H9N2 virus: 21 subjects (2.7% at 12-months and 40 subjects (5.1% at 24-months. Among these, two largely asymptomatic acute infections with H9N2 virus were detected by >4-fold increases in annual serologic titers (final titers 1:80. While controlling for age and influenza vaccine receipt, moderate poultry exposure was significantly associated with elevated H9N2 titers (adjusted OR = 2.3; 95% CI, 1.04-5.2 at the 24-month encounter. One subject had an elevated titer (1:20 against H5N1 during follow-up.From 2008-10, evidence for AIV infections was sparse among this rural population. Subclinical H9N2 AIV infections likely occurred, but serological results were confounded by antibody cross-reactions. There is a critical need for improved serological diagnostics to more accurately detect subclinical AIV infections in

  11. Avian Influenza Virus Glycoproteins Restrict Virus Replication and Spread through Human Airway Epithelium at Temperatures of the Proximal Airways

    OpenAIRE

    Scull, Margaret A.; Gillim-Ross, Laura; Santos, Celia; Roberts, Kim L.; Bordonali, Elena; Subbarao, Kanta; Barclay, Wendy S.; Pickles, Raymond J.

    2009-01-01

    Transmission of avian influenza viruses from bird to human is a rare event even though avian influenza viruses infect the ciliated epithelium of human airways in vitro and ex vivo. Using an in vitro model of human ciliated airway epithelium (HAE), we demonstrate that while human and avian influenza viruses efficiently infect at temperatures of the human distal airways (37 degrees C), avian, but not human, influenza viruses are restricted for infection at the cooler temperatures of the human p...

  12. Seroprevalence survey of H9N2 avian influenza virus in backyard chickens around the Caspian Sea in Iran

    OpenAIRE

    Hadipour,MM

    2010-01-01

    Since 1998, an epidemic of avian influenza occurred in the Iranian poultry industry. The identified agent presented low pathogenicity, and was subtyped as an H9N2 avian influenza virus. Backyard chickens can play an important role in the epidemiology of H9N2 avian influenza virus infection. Close contact of backyard chickens with migratory birds, especially with aquatic birds, as well as neighboring poultry farms, may pose the risk of transmitting avian influenza virus, but little is known ab...

  13. Vaccination and antigenic drift in influenza.

    Science.gov (United States)

    Boni, Maciej F

    2008-07-18

    The relationship between influenza antigenic drift and vaccination lies at the intersection of evolutionary biology and public health, and it must be viewed and analyzed in both contexts simultaneously. In this paper, 1 review what is known about the effects of antigenic drift on vaccination and the effects of vaccination on antigenic drift, and I suggest some simple ways to detect the presence of antigenic drift in seasonal influenza data. If antigenic drift occurs on the time scale of a single influenza season, it may be associated with the presence of herd immunity at the beginning of the season and may indicate a need to monitor for vaccine updates at the end of the season. The relationship between antigenic drift and vaccination must also be viewed in the context of the global circulation of influenza strains and the seeding of local and regional epidemics. In the data sets I consider--from New Zealand, New York, and France--antigenic drift can be statistically detected during some seasons, and seeding of epidemics appears to be endogenous sometimes and exogenous at other times. Improved detection of short-term antigenic drift and epidemic seeding would significantly benefit influenza monitoring efforts and vaccine selection.

  14. Influenza vaccines in immunosuppressed adults with cancer.

    Science.gov (United States)

    Bitterman, Roni; Eliakim-Raz, Noa; Vinograd, Inbal; Zalmanovici Trestioreanu, Anca; Leibovici, Leonard; Paul, Mical

    2018-02-01

    This is an update of the Cochrane review published in 2013, Issue 10.Immunosuppressed cancer patients are at increased risk of serious influenza-related complications. Guidelines, therefore, recommend influenza vaccination for these patients. However, data on vaccine effectiveness in this population are lacking, and the value of vaccination in this population remains unclear. To assess the effectiveness of influenza vaccine in immunosuppressed adults with malignancies. The primary review outcome is all-cause mortality, preferably at the end of the influenza season. Influenza-like illness (ILI, a clinical definition), confirmed influenza, pneumonia, any hospitalisations, influenza-related mortality and immunogenicity were defined as secondary outcomes. We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase and LILACS databases up to May 2017. We searched the following conference proceedings: ICAAC, ECCMID, IDSA (infectious disease conferences), ASH, ASBMT, EBMT (haematological), and ASCO (oncological) between the years 2006 to 2017. In addition, we scanned the references of all identified studies and pertinent reviews. We searched the websites of the manufacturers of influenza vaccine. Finally, we searched for ongoing or unpublished trials in clinical trial registry databases. Randomised controlled trials (RCTs), prospective and retrospective cohort studies and case-control studies were considered, comparing inactivated influenza vaccines versus placebo, no vaccination or a different vaccine, in adults (16 years and over) with cancer. We considered solid malignancies treated with chemotherapy, haematological cancer patients treated or not treated with chemotherapy, cancer patients post-autologous (up to six months after transplantation) or allogeneic (at any time) haematopoietic stem cell transplantation (HSCT). Two review authors independently assessed the risk of bias and extracted data from included studies adhering to Cochrane

  15. Characterization of influenza vaccine immunogenicity using influenza antigen microarrays.

    Directory of Open Access Journals (Sweden)

    Jordan V Price

    Full Text Available Existing methods to measure influenza vaccine immunogenicity prohibit detailed analysis of epitope determinants recognized by immunoglobulins. The development of highly multiplex proteomics platforms capable of capturing a high level of antibody binding information will enable researchers and clinicians to generate rapid and meaningful readouts of influenza-specific antibody reactivity.We developed influenza hemagglutinin (HA whole-protein and peptide microarrays and validated that the arrays allow detection of specific antibody reactivity across a broad dynamic range using commercially available antibodies targeted to linear and conformational HA epitopes. We derived serum from blood draws taken from 76 young and elderly subjects immediately before and 28±7 days post-vaccination with the 2008/2009 trivalent influenza vaccine and determined the antibody reactivity of these sera to influenza array antigens.Using linear regression and correcting for multiple hypothesis testing by the Benjamini and Hochberg method of permutations over 1000 resamplings, we identified antibody reactivity to influenza whole-protein and peptide array features that correlated significantly with age, H1N1, and B-strain post-vaccine titer as assessed through a standard microneutralization assay (p<0.05, q <0.2. Notably, we identified several peptide epitopes that were inversely correlated with regard to age and seasonal H1N1 and B-strain neutralization titer (p<0.05, q <0.2, implicating reactivity to these epitopes in age-related defects in response to H1N1 influenza. We also employed multivariate linear regression with cross-validation to build models based on age and pre-vaccine peptide reactivity that predicted vaccine-induced neutralization of seasonal H1N1 and H3N2 influenza strains with a high level of accuracy (84.7% and 74.0%, respectively.Our methods provide powerful tools for rapid and accurate measurement of broad antibody-based immune responses to influenza

  16. Perception and Attitudes of Korean Obstetricians about Maternal Influenza Vaccination

    OpenAIRE

    Noh, Ji Yun; Seo, Yu Bin; Song, Joon Young; Choi, Won Suk; Lee, Jacob; Jung, Eunju; Kang, Seonghui; Choi, Min Joo; Jun, Jiho; Yoon, Jin Gu; Lee, Saem Na; Hyun, Hakjun; Lee, Jin-Soo; Cheong, Hojin; Cheong, Hee Jin

    2016-01-01

    Pregnant women are prioritized to receive influenza vaccination. However, the maternal influenza vaccination rate has been low in Korea. To identify potential barriers for the vaccination of pregnant women against influenza, a survey using a questionnaire on the perceptions and attitudes about maternal influenza vaccination was applied to Korean obstetricians between May and August of 2014. A total of 473 respondents participated in the survey. Most respondents (94.8%, 442/466) recognized tha...

  17. From SARS to Avian Influenza Preparedness in Hong Kong.

    Science.gov (United States)

    Wong, Andrew T Y; Chen, Hong; Liu, Shao-Haei; Hsu, Enoch K; Luk, Kristine S; Lai, Christopher K C; Chan, Regina F Y; Tsang, Owen T Y; Choi, K W; Kwan, Y W; Tong, Anna Y H; Cheng, Vincent C C; Tsang, Dominic N C

    2017-05-15

    The first human H5N1 case was diagnosed in Hong Kong in 1997. Since then, experience in effective preparedness strategies that target novel influenza viruses has expanded. Here, we report on avian influenza preparedness in public hospitals in Hong Kong to illustrate policies and practices associated with control of emerging infectious diseases. The Hong Kong government's risk-based preparedness plan for influenza pandemics includes 3 response levels for command, control, and coordination frameworks for territory-wide responses. The tiered levels of alert, serious, and emergency response enable early detection based on epidemiological exposure followed by initiation of a care bundle. Information technology, laboratory preparedness, clinical and public health management, and infection control preparedness provide a comprehensive and generalizable preparedness plan for emerging infectious diseases. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  18. Effect of Vaccination on Transmission of HPAI H5N1: The Effect of a Single Vaccination Dose on Transmission of Highly Pathogenic Avian Influanza H5N1 in Peking Ducks

    NARCIS (Netherlands)

    Goot, van der J.A.; Boven, van R.M.; Jong, de M.C.M.; Koch, G.

    2007-01-01

    The highly pathogenic H5N1 avian influenza virus is widespread among domestic ducks throughout Southeast Asia. Many aspects of the poultry industry and social habits hinder the containment and eradication of AI. Vaccination is often put forward as a tool for the control of AI. However, vaccination

  19. 75 FR 2049 - National Influenza Vaccination Week, 2010

    Science.gov (United States)

    2010-01-13

    ... Part IV The President Proclamation 8472--National Influenza Vaccination Week, 2010 #0; #0; #0..., 2010 National Influenza Vaccination Week, 2010 By the President of the United States of America A... hospitalization or even death. We know that influenza vaccination is the best way to protect ourselves against the...

  20. Influenza vaccination in children being treated with chemotherapy for cancer

    NARCIS (Netherlands)

    Goossen, Ginette M.; Kremer, Leontien C. M.; van de Wetering, Marianne D.

    2009-01-01

    Influenza infection is a potential cause of severe morbidity in children with cancer, therefore vaccination against influenza is recommended. However, there are conflicting data concerning the immune response to influenza vaccination in children with cancer and the value of vaccination remains

  1. Influenza vaccination in children being treated with chemotherapy for cancer

    NARCIS (Netherlands)

    Goossen, Ginette M.; Kremer, Leontien C. M.; van de Wetering, Marianne D.

    2013-01-01

    Influenza infection is a potential cause of severe morbidity in children with cancer; therefore vaccination against influenza is recommended. However, data are conflicting regarding the immune response to influenza vaccination in children with cancer, and the value of vaccination remains unclear. 1.

  2. 77 FR 13329 - Pandemic Influenza Vaccines-Amendment

    Science.gov (United States)

    2012-03-06

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Office of the Secretary Pandemic Influenza Vaccines... Secretary issued a declaration for pandemic influenza vaccines, which has been amended a number of times. The original pandemic influenza vaccine declaration was published on January 26, 2007,\\1\\ and was...

  3. Influenza Vaccinations, Fall 2009: Model School-Located Vaccination Clinics

    Science.gov (United States)

    Herl Jenlink, Carolyn; Kuehnert, Paul; Mazyck, Donna

    2010-01-01

    The 2009 H1N1 influenza virus presented a major challenge to health departments, schools, and other community partners to effectively vaccinate large numbers of Americans, primarily children. The use of school-located vaccination (SLV) programs to address this challenge led health departments and schools to become creative in developing models for…

  4. Novel Platforms for the Development of a Universal Influenza Vaccine

    Directory of Open Access Journals (Sweden)

    Arun Kumar

    2018-03-01

    Full Text Available Despite advancements in immunotherapeutic approaches, influenza continues to cause severe illness, particularly among immunocompromised individuals, young children, and elderly adults. Vaccination is the most effective way to reduce rates of morbidity and mortality caused by influenza viruses. Frequent genetic shift and drift among influenza-virus strains with the resultant disparity between circulating and vaccine virus strains limits the effectiveness of the available conventional influenza vaccines. One approach to overcome this limitation is to develop a universal influenza vaccine that could provide protection against all subtypes of influenza viruses. Moreover, the development of a novel or improved universal influenza vaccines may be greatly facilitated by new technologies including virus-like particles, T-cell-inducing peptides and recombinant proteins, synthetic viruses, broadly neutralizing antibodies, and nucleic acid-based vaccines. This review discusses recent scientific advances in the development of next-generation universal influenza vaccines.

  5. Modelling the Innate Immune Response against Avian Influenza Virus in Chicken

    NARCIS (Netherlands)

    Hagenaars, T J; Fischer, E A J; Jansen, C A; Rebel, J M J; Spekreijse, D; Vervelde, L; Backer, J A; de Jong, M.C.M.; Koets, A P

    2016-01-01

    At present there is limited understanding of the host immune response to (low pathogenic) avian influenza virus infections in poultry. Here we develop a mathematical model for the innate immune response to avian influenza virus in chicken lung, describing the dynamics of viral load, interferon-α, -β

  6. Human Infection with Avian Influenza A(H7N9) Virus - China

    Science.gov (United States)

    ... response operations Diseases Biorisk reduction Disease outbreak news Human infection with avian influenza A(H7N9) virus – ... Region (SAR) notified WHO of a laboratory-confirmed human infection with avian influenza A(H7N9) virus and ...

  7. Serosurvey of antibody to highly pathogenic avian influenza (H5N1 ...

    African Journals Online (AJOL)

    Avian influenza is a disease of economic and public health importance that has been described in most domestic animals and humans. Highly pathogenic avian influenza H5N1 epidemic in Nigeria was observed in agro-ecological zones where pigs and chickens are raised in shared environment with chances of ...

  8. New avian influenza A virus subtype combination H5N7 identified in Danish mallard ducks

    DEFF Research Database (Denmark)

    Bragstad, K.; Jørgensen, Poul Henrik; Handberg, Kurt

    2005-01-01

    7, was identified. The HA gene showed great. sequence similarity to the highly pathogenic avian influenza A virus (HPAIV) A/Chicken/ftaly/312/97 (H5N2); however, the cleavage site sequence between HA1 and HA2 had a motif typical for low pathogenic avian influenza viruses (LPAIV). The full-length NA...

  9. Outbreak of avian influenza H7N3 on a turkey farm in the Netherlands

    NARCIS (Netherlands)

    Velkers, F.C.; Bouma, A.; Matthijs, M.G.R.; Koch, G.; Westendorp, S.T.; Stegeman, J.A.

    2006-01-01

    This case report describes the course of an outbreak of avian influenza on a Dutch turkey farm. When clinical signs were observed their cause remained unclear. However, serum samples taken for the monitoring campaign launched during the epidemic of highly pathogenic avian influenza in 2003, showed

  10. No evidence that migratory geese disperse avian influenza viruses from breeding to wintering ground

    NARCIS (Netherlands)

    Yin, Shenglai; Kleijn, David; Müskens, Gerard J.D.M.; Fouchier, Ron A.M.; Verhagen, Josanne H.; Glazov, Petr M.; Si, Yali; Prins, Herbert H.T.; Boer, de Fred

    2017-01-01

    Low pathogenic avian influenza virus can mutate to a highly pathogenic strain that causes severe clinical signs in birds and humans. Migratory waterfowl, especially ducks, are considered the main hosts of low pathogenic avian influenza virus, but the role of geese in dispersing the virus over

  11. No evidence that migratory geese disperse avian influenza viruses from breeding to wintering ground

    NARCIS (Netherlands)

    Yin, S. (Shenglai); D. Kleijn (David); Müskens, G.J.D.M. (Gerard J. D. M.); R.A.M. Fouchier (Ron); J.H. Verhagen (Josanne); Glazov, P.M. (Petr M.); Si, Y. (Yali); Prins, H.H.T. (Herbert H. T.); De Boer, W.F. (Willem Frederik)

    2017-01-01

    textabstractLow pathogenic avian influenza virus can mutate to a highly pathogenic strain that causes severe clinical signs in birds and humans. Migratory waterfowl, especially ducks, are considered the main hosts of low pathogenic avian influenza virus, but the role of geese in dispersing the virus

  12. Surveillance of low pathogenic avian influenza in layer chickens: risk factors, transmission and early detection

    NARCIS (Netherlands)

    Gonzales Rojas, J.L.

    2012-01-01

    Low pathogenic avian influenza virus (LPAIv) of H5 and H7 subtypes are able to mutate to highly pathogenic avian influenza virus (HPAIv), which are lethal for most poultry species, can cause large epidemics and are a serious threat to public health. Thus, circulation of these LPAIv in poultry is

  13. Sero-Surveillance of Avian Influenza in Sudan, 2009-2010 | Egbal ...

    African Journals Online (AJOL)

    This study reports the evidence of circulation of avian influenza viruses (AIV) in domestic poultry in Sudan. A total of 3525 sera samples collected from 14 States from 2009-2010 and were assayed for avian influenza (AI) antibodies using ELISA. Sera were collected from commercial (2267), backyard (550) and live birds ...

  14. Modelling the innate immune response against avian influenza virus in chicken

    NARCIS (Netherlands)

    Hagenaars, T.J.; Fischer, E.A.J.; Jansen, C.A.; Rebel, J.M.J.; Spekreijse, D.; Vervelde, L.; Backer, J.A.; Jong, de M.C.M.; Koets, A.P.

    2016-01-01

    At present there is limited understanding of the host immune response to (low pathogenic) avian influenza virus infections in poultry. Here we develop a mathematical model for the innate immune response to avian influenza virus in chicken lung, describing the dynamics of viral load,

  15. Cost Analysis of Various Low Pathogenic Avian Influenza Surveillance Systems in the Dutch Egg Layer Sector

    NARCIS (Netherlands)

    Rutten, N.; Gonzales, J.L.; Elbers, A.R.; Velthuis, A.G.J.

    2012-01-01

    Background As low pathogenic avian influenza viruses can mutate into high pathogenic viruses the Dutch poultry sector implemented a surveillance system for low pathogenic avian influenza (LPAI) based on blood samples. It has been suggested that egg yolk samples could be sampled instead of blood

  16. Influenza Plasmid DNA Vaccines: Progress and Prospects.

    Science.gov (United States)

    Bicho, Diana; Queiroz, João António; Tomaz, Cândida Teixeira

    2015-01-01

    Current influenza vaccines have long been used to fight flu infectious; however, recent advances highlight the importance of produce new alternatives. Even though traditional influenza vaccines are safe and usually effective, they need to be uploaded every year to anticipate circulating flu viruses. This limitation together with the use of embryonated chicken eggs as the substrate for vaccine production, is time-consuming and could involve potential biohazards in growth of new virus strains. Plasmid DNA produced by prokaryote microorganisms and encoding foreign proteins had emerged as a promising therapeutic tool. This technology allows the expression of a gene of interest by eukaryotic cells in order to induce protective immune responses against the pathogen of interest. In this review, we discuss the strategies to choose the best DNA vaccine to be applied in the treatment and prevention of influenza. Specifically, we give an update of influenza DNA vaccines developments, all involved techniques, their main characteristics, applicability and technical features to obtain the best option against influenza infections.

  17. Modeling the effects of annual influenza vaccination

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.J.; Ackley, D.H.; Forrest, S. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Computer Science; Perelson, A.S. [Los Alamos National Lab., NM (United States). Theoretical Div.

    1998-12-31

    Although influenza vaccine efficacy is 70--90% in young healthy first-time vaccinees, the efficacy in repeat vaccinees has varied considerably. In some studies, vaccine efficacy in repeat vaccinees was higher than in first-time vaccinees, whereas in other studies vaccine efficacy in repeat vaccinees was significantly lower than in first-time vaccinees and sometimes no higher than in unvaccinated controls. It is known that the closeness of the antigenic match between the vaccine strain and the epidemic virus is important for vaccine effectiveness. In this study the authors show that the antigenic differences between a first vaccine strain and a second vaccine strain, and between the first vaccine strain and the epidemic strain, might account for the observed variation in attack rate among two-time vaccinees.

  18. Formulation of influenza T cell peptides: in search of a universal influenza vaccine

    OpenAIRE

    Soema, Peter Christiaan

    2015-01-01

    Current seasonal influenza vaccines rely on the induction of antibodies to neutralize the virus. However, influenza viruses frequently undergo genetic mutations due to antigenic drift and shift, altering the surface proteins hemagglutinin and neuraminidase to which antibodies usually bind. This could render vaccine-induced antibody responses ineffective, resulting in an ineffective influenza vaccine. Influenza vaccines based on the induction of T cell responses might be cross-reactive, since ...

  19. Comparative analysis of chest radiological findings between avian human influenza and SARS

    International Nuclear Information System (INIS)

    Cai Mingjin; Mai Weiwen; Xian Jianxing; Zhang Jiayun; Lin Wenjian; Wei Liping; Chen Jincheng

    2008-01-01

    Objective: To study the chest radiological findings of a mortal avian human influenza case. Methods: One patient in our hospital was proved to be infected avian human influenza in Guangdong province on March 1, 2006. The Clinical appearances and chest radiological findings of this case were retrospectively analyzed and compared with that of 3 mortal SARS cases out of 16 cases in 2003. Results: Large consolidated areas in left lower lobe was showed in pulmonary radiological findings of this patient and soon developed into ARDS (adult respiratory distress syndrome). However, the pulmonary radiological findings had no characteristic. Characteristics of soaring size and number during short term appeared in SARS instead of avian human influenza. Final diagnosis was up to the etiology and serology examination. Conclusion: Bronchial dissemination was not observed in this avian human influenza case. Pay attention to the avian human influenza in spite of no history of contract with sick or dead poultry in large city. (authors)

  20. Transmission of Avian Influenza Virus (H3N2) to Dogs

    OpenAIRE

    Song, Daesub; Kang, Bokyu; Lee, Chulseung; Jung, Kwonil; Ha, Gunwoo; Kang, Dongseok; Park, Seongjun; Park, Bongkyun; Oh, Jinsik

    2008-01-01

    In South Korea, where avian influenza virus subtypes H3N2, H5N1, H6N1, and H9N2 circulate or have been detected, 3 genetically similar canine influenza virus (H3N2) strains of avian origin (A/canine/Korea/01/2007, A/canine/Korea/02/2007, and A/canine/Korea/03/2007) were isolated from dogs exhibiting severe respiratory disease. To determine whether the novel canine influenza virus of avian origin was transmitted among dogs, we experimentally infected beagles with this influenza virus (H3N2) is...

  1. USGS role and response to highly pathogenic avian influenza

    Science.gov (United States)

    Harris, M. Camille; Miles, A. Keith; Pearce, John M.; Prosser, Diann J.; Sleeman, Jonathan M.; Whalen, Mary E.

    2015-09-09

    Avian influenza viruses are naturally occurring in wild birds such as ducks, geese, swans, and gulls. These viruses generally do not cause illness in wild birds, however, when spread to poultry they can be highly pathogenic and cause illness and death in backyard and commercial farms. Outbreaks may cause devastating agricultural economic losses and some viral strains have the potential to infect people directly. Furthermore, the combination of avian influenza viruses with mammalian viruses can result in strains with the ability to transmit from person to person, possibly leading to viruses with pandemic potential. All known pandemic influenza viruses have had some genetic material of avian origin. Since 1996, a strain of highly pathogenic avian influenza (HPAI) virus, H5N1, has caused infection in wild birds, losses to poultry farms in Eurasia and North Africa, and led to the deaths of several hundred people. Spread of the H5N1 virus and other influenza strains from China was likely facilitated by migratory birds. In December 2014, HPAI was detected in poultry in Canada and migratory birds in the United States. Since then, HPAI viruses have spread to large parts of the United States and will likely continue to spread through migratory bird flyways and other mechanisms throughout North America. In the United States, HPAI viruses have severely affected the poultry industry with millions of domestic birds dead or culled. These strains of HPAI are not known to cause disease in humans; however, the Centers for Disease Control and Prevention (CDC) advise caution when in close contact with infected birds. Experts agree that HPAI strains currently circulating in wild birds of North America will likely persist for the next few years. This unprecedented situation presents risks to the poultry industry, natural resource management, and potentially human health. Scientific knowledge and decision support tools are urgently needed to understand factors affecting the persistence

  2. Improving influenza vaccination in dialysis facilities.

    Science.gov (United States)

    Lynch, Janet R; Frankovich, Edith; Tetrick, Claire A; Howard, Andrew D

    2010-01-01

    The End-Stage Renal Disease Network 5 sought to improve the influenza vaccination rate for the period September 1, 2008, to January 31, 2009, through an awareness campaign, coupled with primary data collection in the form of a tracking tool prepopulated with patient names. The latter served as a reminder to staff to determine the immunization status of patients and offer the influenza vaccination, as appropriate. Targets for the intervention were all facilities and their prevalent hemodialysis and peritoneal dialysis patients, with the exclusion of military treatment centers, Veterans Health Administration hospitals, and prisons. The majority of eligible network facilities (86.9%) participated in the project to achieve an overall adult influenza vaccination rate of 82.6% (95% confidence interval = 82.1%, 83.2%), greatly exceeding the project goal of 64.5% and representing substantial progress toward the 2010 goal of 90%. The initiative is reported here using the Standards for Quality Improvement Reporting Excellence (SQUIRE).

  3. School-based influenza vaccination: parents' perspectives.

    Science.gov (United States)

    Lind, Candace; Russell, Margaret L; MacDonald, Judy; Collins, Ramona; Frank, Christine J; Davis, Amy E

    2014-01-01

    School-age children are important drivers of annual influenza epidemics yet influenza vaccination coverage of this population is low despite universal publicly funded influenza vaccination in Alberta, Canada. Immunizing children at school may potentially increase vaccine uptake. As parents are a key stakeholder group for such a program, it is important to consider their concerns. We explored parents' perspectives on the acceptability of adding an annual influenza immunization to the immunization program that is currently delivered in Alberta schools, and obtained suggestions for structuring such a program. Forty-eight parents of children aged 5-18 years participated in 9 focus groups. Participants lived in urban areas of the Alberta Health Services Calgary Zone. Three major themes emerged: Advantages of school-based influenza vaccination (SBIV), Disadvantages of SBIV, and Implications for program design & delivery. Advantages were perceived to occur for different populations: children (e.g. emotional support), families (e.g. convenience), the community (e.g. benefits for school and multicultural communities), the health sector (e.g. reductions in costs due to burden of illness) and to society at large (e.g. indirect conduit of information about health services, building structure for pandemic preparedness, building healthy lifestyles). Disadvantages, however, might also occur for children (e.g. older children less likely to be immunized), families (e.g. communication challenges, perceived loss of parental control over information, choices and decisions) and the education sector (loss of instructional time). Nine second-level themes emerged within the major theme of Implications for program design & delivery: program goals/objectives, consent process, stakeholder consultation, age-appropriate program, education, communication, logistics, immunizing agent, and clinic process. Parents perceived advantages and disadvantages to delivering annual seasonal influenza

  4. Adenoviral vectors as novel vaccines for influenza.

    Science.gov (United States)

    Coughlan, Lynda; Mullarkey, Caitlin; Gilbert, Sarah

    2015-03-01

    Influenza is a viral respiratory disease causing seasonal epidemics, with significant annual illness and mortality. Emerging viruses can pose a major pandemic threat if they acquire the capacity for sustained human-to-human transmission. Vaccination reduces influenza-associated mortality and is critical in minimising the burden on the healthcare system. However, current vaccines are not always effective in at-risk populations and fail to induce long-lasting protective immunity against a range of viruses. The development of 'universal' influenza vaccines, which induce heterosubtypic immunity capable of reducing disease severity, limiting viral shedding or protecting against influenza subtypes with pandemic potential, has gained interest in the research community. To date, approaches have focused on inducing immune responses to conserved epitopes within the stem of haemagglutinin, targeting the ectodomain of influenza M2e or by stimulating cellular immunity to conserved internal antigens, nucleoprotein or matrix protein 1. Adenoviral vectors are potent inducers of T-cell and antibody responses and have demonstrated safety in clinical applications, making them an excellent choice of vector for delivery of vaccine antigens. In order to circumvent pre-existing immunity in humans, serotypes from non-human primates have recently been investigated. We will discuss the pre-clinical development of these novel vectors and their advancement to clinical trials. © 2015 Royal Pharmaceutical Society.

  5. Differential lung NK cell responses in avian influenza virus infected chickens correlate with pathogenicity

    OpenAIRE

    Jansen, C.A.; de Geus, E.D.; van Haarlem, D.A.; van de Haar, P.M.; Löndt, B.Z; Graham, S.P.; Göbel, T.W.; van Eden, W.; Brookes, S.M.; Vervelde, L.

    2013-01-01

    Infection of chickens with low pathogenicity avian influenza (LPAI) virus results in mild clinical signs while infection with highly pathogenic avian influenza (HPAI) viruses causes death of the birds within 36–48 hours. Since natural killer (NK) cells have been shown to play an important role in influenza-specific immunity, we hypothesise that NK cells are involved in this difference in pathogenicity. To investigate this, the role of chicken NK-cells in LPAI virus infection was studied. Next...

  6. Troop education and avian influenza surveillance in military barracks in Ghana, 2011.

    Science.gov (United States)

    Odoom, John Kofi; Bel-Nono, Samuel; Rodgers, David; Agbenohevi, Prince G; Dafeamekpor, Courage K; Sowa, Roland M L; Danso, Fenteng; Tettey, Reuben; Suu-Ire, Richard; Bonney, Joseph H K; Asante, Ivy A; Aboagye, James; Abana, Christopher Zaab-Yen; Frimpong, Joseph Asamoah; Kronmann, Karl C; Oyofo, Buhari A; Ampofo, William K

    2012-11-08

    Influenza A viruses that cause highly pathogenic avian influenza (HPAI) also infect humans. In many developing countries such as Ghana, poultry and humans live in close proximity in both the general and military populations, increasing risk for the spread of HPAI from birds to humans. Respiratory infections such as influenza are especially prone to rapid spread among military populations living in close quarters such as barracks making this a key population for targeted avian influenza surveillance and public health education. Twelve military barracks situated in the coastal, tropical rain forest and northern savannah belts of the country were visited and the troops and their families educated on pandemic avian influenza. Attendants at each site was obtained from the attendance sheet provided for registration. The seminars focused on zoonotic diseases, influenza surveillance, pathogenesis of avian influenza, prevention of emerging infections and biosecurity. To help direct public health policies, a questionnaire was used to collect information on animal populations and handling practices from 102 households in the military barracks. Cloacal and tracheal samples were taken from 680 domestic and domesticated wild birds and analysed for influenza A using molecular methods for virus detection. Of the 1028 participants that took part in the seminars, 668 (65%) showed good knowledge of pandemic avian influenza and the risks associated with its infection. Even though no evidence of the presence of avian influenza (AI) infection was found in the 680 domestic and wild birds sampled, biosecurity in the households surveyed was very poor. Active surveillance revealed that there was no AI circulation in the military barracks in April 2011. Though participants demonstrated good knowledge of pandemic avian influenza, biosecurity practices were minimal. Sustained educational programs are needed to further strengthen avian influenza surveillance and prevention in military barracks.

  7. Troop education and avian influenza surveillance in military barracks in Ghana, 2011

    Directory of Open Access Journals (Sweden)

    Odoom John

    2012-11-01

    Full Text Available Abstract Background Influenza A viruses that cause highly pathogenic avian influenza (HPAI also infect humans. In many developing countries such as Ghana, poultry and humans live in close proximity in both the general and military populations, increasing risk for the spread of HPAI from birds to humans. Respiratory infections such as influenza are especially prone to rapid spread among military populations living in close quarters such as barracks making this a key population for targeted avian influenza surveillance and public health education. Method Twelve military barracks situated in the coastal, tropical rain forest and northern savannah belts of the country were visited and the troops and their families educated on pandemic avian influenza. Attendants at each site was obtained from the attendance sheet provided for registration. The seminars focused on zoonotic diseases, influenza surveillance, pathogenesis of avian influenza, prevention of emerging infections and biosecurity. To help direct public health policies, a questionnaire was used to collect information on animal populations and handling practices from 102 households in the military barracks. Cloacal and tracheal samples were taken from 680 domestic and domesticated wild birds and analysed for influenza A using molecular methods for virus detection. Results Of the 1028 participants that took part in the seminars, 668 (65% showed good knowledge of pandemic avian influenza and the risks associated with its infection. Even though no evidence of the presence of avian influenza (AI infection was found in the 680 domestic and wild birds sampled, biosecurity in the households surveyed was very poor. Conclusion Active surveillance revealed that there was no AI circulation in the military barracks in April 2011. Though participants demonstrated good knowledge of pandemic avian influenza, biosecurity practices were minimal. Sustained educational programs are needed to further strengthen

  8. Avian Influenza A (H5N1)

    Centers for Disease Control (CDC) Podcasts

    2009-05-27

    In this podcast, CDC's Dr. Tim Uyeki discusses H5N1, a subtype of influenza A virus. This highly pathogenic H5N1 virus doesn't usually infect people, although some rare infections with H5N1 viruses have occurred in humans. We need to use a comprehensive strategy to prevent the spread of H5N1 virus among birds, including having human health and animal health work closely together.  Created: 5/27/2009 by Emerging Infectious Diseases.   Date Released: 5/27/2009.

  9. Vaccines for preventing influenza in healthy adults.

    Science.gov (United States)

    Demicheli, Vittorio; Jefferson, Tom; Ferroni, Eliana; Rivetti, Alessandro; Di Pietrantonj, Carlo

    2018-02-01

    The consequences of influenza in adults are mainly time off work. Vaccination of pregnant women is recommended internationally. This is an update of a review published in 2014. Future updates of this review will be made only when new trials or vaccines become available. Observational data included in previous versions of the review have been retained for historical reasons but have not been updated due to their lack of influence on the review conclusions. To assess the effects (efficacy, effectiveness, and harm) of vaccines against influenza in healthy adults, including pregnant women. We searched the Cochrane Central Register of Controlled Trials (CENTRAL; 2016, Issue 12), MEDLINE (January 1966 to 31 December 2016), Embase (1990 to 31 December 2016), the WHO International Clinical Trials Registry Platform (ICTRP; 1 July 2017), and ClinicalTrials.gov (1 July 2017), as well as checking the bibliographies of retrieved articles. Randomised controlled trials (RCTs) or quasi-RCTs comparing influenza vaccines with placebo or no intervention in naturally occurring influenza in healthy individuals aged 16 to 65 years. Previous versions of this review included observational comparative studies assessing serious and rare harms cohort and case-control studies. Due to the uncertain quality of observational (i.e. non-randomised) studies and their lack of influence on the review conclusions, we decided to update only randomised evidence. The searches for observational comparative studies are no longer updated. Two review authors independently assessed trial quality and extracted data. We rated certainty of evidence for key outcomes (influenza, influenza-like illness (ILI), hospitalisation, and adverse effects) using GRADE. We included 52 clinical trials of over 80,000 people assessing the safety and effectiveness of influenza vaccines. We have presented findings from 25 studies comparing inactivated parenteral influenza vaccine against placebo or do-nothing control groups as the

  10. Review of Avian Influenza Outbreaks in South Korea from 1996 to 2014.

    Science.gov (United States)

    Mo, In-Pil; Bae, Yeon-Ji; Lee, Seung-Baek; Mo, Jong-Suk; Oh, Kwang-Hyun; Shin, Jeong-Hwa; Kang, Hyun-Mi; Lee, Youn-Jeong

    2016-05-01

    Since the first outbreak of low pathogenic avian influenza (LPAI) in 1996, outbreaks of LPAI have become more common in Korea, leading to the development of a nationwide mass vaccination program in 2007. In the case of highly pathogenic avian influenza (HPAI), four outbreaks took place in 2003-04, 2006-07, 2008, and 2010-11; a fifth outbreak began in 2014 and was ongoing at the time of this writing. The length of the four previous outbreaks varied, ranging from 42 days (2008) to 139 days (2010-11). The number of cases reported by farmers that were subsequently confirmed as HPAI also varied, from seven cases in 2006-07 to 53 in 2010-11. The number of farms affected by the outbreaks varied, from a low of 286 (2006-07) with depopulation of 6,473,000 birds, to a high of 1500 farms (2008) with depopulation of 10,200,000 birds. Government compensation for bird depopulation ranged from $253 million to $683 million in the five outbreaks. Despite the damage caused by the five HPAI outbreaks, efficient control strategies have yet to be established. Meanwhile, the situation in the field worsens. Analysis of the five HPAI outbreaks revealed horizontal farm-to-farm transmission as the main factor effecting major economic losses. However, horizontal transmission could not be efficiently prevented because of insufficient transparency within the poultry industry, especially within the duck industry, which is reluctant to report suspicious cases early. Moreover, the experiences and expertise garnered in previous outbreaks has yet to be effectively applied to the management of new outbreaks. Considering the magnitude of the economic damage caused by avian influenza and the increasing likelihood of its endemicity, careful and quantitative analysis of outbreaks and the establishment of control policies are urgently needed.

  11. Cost Effectiveness of Influenza Vaccine for U.S. Children: Live Attenuated and Inactivated Influenza Vaccine.

    Science.gov (United States)

    Shim, Eunha; Brown, Shawn T; DePasse, Jay; Nowalk, Mary Patricia; Raviotta, Jonathan M; Smith, Kenneth J; Zimmerman, Richard K

    2016-09-01

    Prior studies showed that live attenuated influenza vaccine (LAIV) is more effective than inactivated influenza vaccine (IIV) in children aged 2-8 years, supporting the Centers for Disease Control and Prevention (CDC) recommendations in 2014 for preferential LAIV use in this age group. However, 2014-2015 U.S. effectiveness data indicated relatively poor effectiveness of both vaccines, leading CDC in 2015 to no longer prefer LAIV. An age-structured model of influenza transmission and vaccination was developed, which incorporated both direct and indirect protection induced by vaccination. Based on this model, the cost effectiveness of influenza vaccination strategies in children aged 2-8 years in the U.S. was estimated. The base case assumed a mixed vaccination strategy where 33.3% and 66.7% of vaccinated children aged 2-8 years receive LAIV and IIV, respectively. Analyses were performed in 2014-2015. Using published meta-analysis vaccine effectiveness data (83% LAIV and 64% IIV), exclusive LAIV use would be a cost-effective strategy when vaccinating children aged 2-8 years, whereas IIV would not be preferred. However, when 2014-2015 U.S. effectiveness data (0% LAIV and 15% IIV) were used, IIV was likely to be preferred. The cost effectiveness of influenza vaccination in children aged 2-8 years is highly dependent on vaccine effectiveness; the vaccine type with higher effectiveness is preferred. In general, exclusive IIV use is preferred over LAIV use, as long as vaccine effectiveness is higher for IIV than for LAIV. Copyright © 2016 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  12. Influenza Vaccination During Pregnancy: Influenza Seasons 2002-2012, Vaccine Safety Datalink.

    Science.gov (United States)

    Groom, Holly C; Henninger, Michelle L; Smith, Ning; Koppolu, Padma; Cheetham, T Craig; Glanz, Jason M; Hambidge, Simon J; Jackson, Lisa A; Kharbanda, Elyse O; Klein, Nicola P; McCarthy, Natalie L; Nordin, James D; Weintraub, Eric S; Naleway, Allison L

    2016-04-01

    Pregnant women are at risk for influenza-related complications and have been recommended for vaccination by the Advisory Committee on Immunization Practices (ACIP) since 1990. Annual rates of influenza coverage of pregnant women have been consistently low. The Vaccine Safety Datalink was used to assess influenza vaccine coverage over 10 consecutive years (2002-2012); assess patterns related to changes in ACIP recommendations; identify predictors of vaccination; and compare the results with those published by national U.S. surveys. Retrospective cohort study of 721,898 pregnancies conducted in 2014. Coverage rates were assessed for all pregnancies and for live births only. Multivariate regression analysis identified predictors associated with vaccination. Coverage increased from 8.8% to 50.9% in 2002-2012. Seasonal coverage rates increased slowly following the 2004 ACIP influenza vaccine recommendation (to remove the first trimester restriction), but spiked significantly during the 2009 H1N1 influenza pandemic. Significant predictors of vaccination during pregnancy included older age; vaccination in a previous season; high-risk conditions in addition to pregnancy; pregnancy during either the 2004-2005 or 2009-2010 seasons; entering the influenza season after the first trimester of pregnancy; and a pregnancy with longer overlap with the influenza season (pvaccination coverage among pregnant women increased between the 2002-2003 and 2011-2012 seasons, although it was still below the developmental Healthy People 2020 goal of 80%. The 2004 ACIP language change positively impacted first-trimester vaccination uptake. Vaccine Safety Datalink data estimates were consistent with U.S. estimates. Copyright © 2016 American Journal of Preventive Medicine. All rights reserved.

  13. Protection against Multiple Subtypes of Influenza Viruses by Virus-Like Particle Vaccines Based on a Hemagglutinin Conserved Epitope

    Directory of Open Access Journals (Sweden)

    Shaoheng Chen

    2015-01-01

    Full Text Available We selected the conserved sequence in the stalk region of influenza virus hemagglutinin (HA trimmer, the long alpha helix (LAH, as the vaccine candidate sequence, and inserted it into the major immunodominant region (MIR of hepatitis B virus core protein (HBc, and, by using the E. coli expression system, we prepared a recombinant protein vaccine LAH-HBc in the form of virus-like particles (VLP. Intranasal immunization of mice with this LAH-HBc VLP plus cholera toxin B subunit with 0.2% of cholera toxin (CTB* adjuvant could effectively elicit humoral and cellular immune responses and protect mice against a lethal challenge of homologous influenza viruses (A/Puerto Rico/8/1934 (PR8 (H1N1. In addition, passage of the immune sera containing specific antibodies to naïve mice rendered them resistant against a lethal homologous challenge. Immunization with LAH-HBc VLP vaccine plus CTB* adjuvant could also fully protect mice against a lethal challenge of the 2009 pandemic H1N1 influenza virus or the avian H9N2 virus and could partially protect mice against a lethal challenge of the avian H5N1 influenza virus. This study demonstrated that the LAH-HBc VLP vaccine based on a conserved sequence of the HA trimmer stalk region is a promising candidate vaccine for developing a universal influenza vaccine against multiple influenza viruses infections.

  14. Simplifying influenza vaccination during pandemics : sublingual priming and intramuscular boosting of immune responses with heterologous whole inactivated influenza vaccine

    NARCIS (Netherlands)

    Murugappan, Senthil; Patil, Harshad P; Frijlink, Henderik W; Huckriede, Anke; Hinrichs, Wouter L J

    2014-01-01

    The best approach to control the spread of influenza virus during a pandemic is vaccination. Yet, an appropriate vaccine is not available early in the pandemic since vaccine production is time consuming. For influenza strains with a high pandemic potential like H5N1, stockpiling of vaccines has been

  15. Zoonosis Update on H9N2 Avian Influenza Virus

    Directory of Open Access Journals (Sweden)

    Abdul Ahad*, Masood Rabbani, Altaf Mahmood1, Zulfiqar Hussan Kuthu2, Arfan Ahmad and Muhammad Mahmudur Rahman3

    2013-07-01

    Full Text Available Influenza A viruses infect various mammals like human, horse, pig and birds as well. A total of 16 hemagglutinin (HA and 9 neuraminidase (NA subtypes have been identified. Most of the combinations are found in birds and relatively few have been isolated from mammals. Although there is no report of human to human transmission till to date, several cases of H5N1, H7N7 and H9N2 identified in humans since 1997 raised serious concern for health and veterinary profession. This review paper will focus H9N2 avian influenza virus (AIV with special emphasis on zoonosis. The virus H9N2 though not highly pathogenic like H5N1 but can be virulent through antigenic drift and shift.

  16. Avian influenza: integration of knowledge updated for disease prevention and control

    Directory of Open Access Journals (Sweden)

    Chethanond, U.

    2006-07-01

    Full Text Available Avian influenza (AI subtype H5N1 is a highly contagious as well as highly pathogenic disease of poultry, and also a zoonosis. The epidemic has occurred in Asia since 2003, causing great economic loss to the poultry industry. The fear has arisen that the virus, which can mutate easily, may have reassortment with influenza virus leading to pandemic outbreak. Stamping out the birds in infected farms is the major control measure in Thailand which has an impact on not only the psychic loss of raisers but also the loss of genetic pool. This review is aimed to disclose updated knowledge and approaches to implement the control measures. The strategies are involved with 1 outreach to stakeholders on the property of virus and transmission, 2 restriction of movement and carcass disposition, and 3 reduction of viral contamination in the environment and increased farm biosecurity. Vaccination is an option for which both pro and cons must be considered. However, owing to sophisticated technology, vaccines offer more choices and are produced better results in terms of protection and reduction of viral contamination. Thus, many countries decided to use vaccine for AI prevention and control nowadays.

  17. Improving Influenza Vaccination Rate among Primary Healthcare Workers in Qatar

    OpenAIRE

    Elawad, Khalid H.; Farag, Elmoubasher A.; Abuelgasim, Dina A.; Smatti, Maria K.; Al-Romaihi, Hamad E.; Al Thani, Mohammed; Al Mujalli, Hanan; Shehata, Zienab; Alex, Merin; Al Thani, Asmaa A.; Yassine, Hadi M.

    2017-01-01

    The purpose of this study was to improve influenza vaccination, and determine factors influencing vaccine declination among health care workers (HCW) in Qatar. We launched an influenza vaccination campaign to vaccinate around 4700 HCW in 22 Primary Health Care Corporation (PHCC) centers in Qatar between 1st and 15th of November, 2015. Our target was to vaccinate 60% of all HCW. Vaccine was offered free of charge at all centers, and information about the campaign and the importance of influenz...

  18. Principles underlying rational design of live attenuated influenza vaccines

    OpenAIRE

    Jang, Yo Han; Seong, Baik-Lin

    2012-01-01

    Despite recent innovative advances in molecular virology and the developments of vaccines, influenza virus remains a serious burden for human health. Vaccination has been considered a primary countermeasure for prevention of influenza infection. Live attenuated influenza vaccines (LAIVs) are particularly attracting attention as an effective strategy due to several advantages over inactivated vaccines. Cold-adaptation, as a classical means for attenuating viral virulence, has been successfully...

  19. Influenza virus vaccine live intranasal--MedImmune vaccines: CAIV-T, influenza vaccine live intranasal.

    Science.gov (United States)

    2003-01-01

    MedImmune Vaccines (formerly Aviron) has developed a cold-adapted live influenza virus vaccine [FluMist] that can be administered by nasal spray. FluMist is the first live virus influenza vaccine and also the first nasally administered vaccine to be marketed in the US. The vaccine will be formulated to contain live attenuated (att) influenza virus reassortants of the strains recommended by the US Public Health Service for each 'flu season. The vaccine is termed cold-adapted (ca) because the virus has been adapted to replicate efficiently at 25 degrees C in the nasal passages, which are below normal body temperature. The strains used in the seasonal vaccine will also be made temperature sensitive (ts) so that their replication is restricted at 37 degrees C (Type B strains) and 39 degrees C (Type A strains). The combined effect of the antigenic properties and the att, ca and ts phenotypes of the influenza strains contained in the vaccine enables the viruses to replicate in the nasopharynx to produce protective immunity. The original formulation of FluMist requires freezer storage throughout distribution. Because many international markets do not have distribution channels well suited to the sale of frozen vaccines, Wyeth and MedImmune are collaborating to develop a second generation, refrigerator-stable, liquid trivalent cold-adapted influenza vaccine (CAIV-T), which is in phase III trials. Initially, the frozen formulation will only be available in the US. For the 2003-2004 season, FluMist will contain A/New Caledonia/20/99 (H1N1), A/Panama/2007/99 (H3N2) (A/Moscow/10/99-like) and B/Hong Kong/330/2001. Aviron was acquired by MedImmune on 15 January 2002. Aviron is now a wholly-owned subsidiary of MedImmune and is called MedImmune Vaccines. Aviron acquired FluMist in March 1995 through a Co-operative Research and Development Agreement (CRADA) with the US NIAID, and a licensing agreement with the University of Michigan, Ann Arbor, USA. In June 2000, the CRADA was

  20. Intranasal Inactivated Influenza Vaccines: a Reasonable Approach to Improve the Efficacy of Influenza Vaccine?

    Science.gov (United States)

    Tamura, Shin-Ichi; Ainai, Akira; Suzuki, Tadaki; Kurata, Takeshi; Hasegawa, Hideki

    2016-01-01

    Influenza is a contagious, acute respiratory disease caused by the influenza virus. The mucosal lining in the host respiratory tract is not only the site of virus infection, but also the site of defense; it is at this site that the host immune response targets the virus and protects against reinfection. One of the most effective methods to prevent influenza is to induce specific antibody (Ab) responses in the respiratory tract by vaccination. Two types of influenza vaccines, intranasal live attenuated influenza virus (LAIV) vaccines and parenteral (injectable) inactivated vaccines, are currently used worldwide. These vaccines are approved by the European Medicines Agency (EMA) and the US Food and Drug Administration. Live attenuated vaccines induce both secretory IgA (S-IgA) and serum IgG antibodies (Abs), whereas parenteral vaccines induce only serum IgG Abs. However, intranasal administration of inactivated vaccines together with an appropriate adjuvant induces both S-IgA and IgG Abs. Several preclinical studies on adjuvant-combined, nasal-inactivated vaccines revealed that nasal S-IgA Abs, a major immune component in the upper respiratory tract, reacted with homologous virus hemagglutinin (HA) and were highly cross-reactive with viral HA variants, resulting in protection and cross-protection against infection by both homologous and variant viruses, respectively. Serum-derived IgG Abs, which are present mainly in the lower respiratory tract, are less cross-reactive and cross-protective. In addition, our own clinical trials have shown that nasal-inactivated whole virus vaccines, including a built-in adjuvant (single-stranded RNA), induced serum hemagglutination inhibition (HI) Ab titers that fulfilled the EMA criteria for vaccine efficacy. The nasal-inactivated whole virus vaccines also induced high levels of nasal HI and neutralizing Ab titers, although we have not yet evaluated the nasal HI titers due to the lack of official criteria to establish efficacy based

  1. Considerations for the rapid deployment of vaccines against H7N9 influenza.

    Science.gov (United States)

    Chua, Brendon Y; Brown, Lorena E; Jackson, David C

    2014-11-01

    The threat of an outbreak of avian-origin influenza H7N9 and the devastating consequences that a pandemic could have on global population health and economies has mobilized programs of constant surveillance and the implementation of preemptive plans. Central to these plans is the production of prepandemic vaccines that can be rapidly deployed to minimize disease severity and deaths resulting from such an occurrence. In this article, we review current H7N9 vaccine strategies in place and the available technologies and options that can help accelerate vaccine production and increase dose-sparing capabilities to provide enough vaccines to cover the population. We also present possible means of reducing disease impact during the critical period after an outbreak occurs before a strain matched vaccine becomes available and consider the use of existing stockpiles and seed strains of phylogenetically related subtypes, alternate vaccination regimes and vaccine forms that induce cross-reactive immunity.

  2. Large-scale avian influenza surveillance in wild birds throughout the United States.

    Directory of Open Access Journals (Sweden)

    Sarah N Bevins

    Full Text Available Avian influenza is a viral disease that primarily infects wild and domestic birds, but it also can be transmitted to a variety of mammals. In 2006, the United States of America Departments of Agriculture and Interior designed a large-scale, interagency surveillance effort that sought to determine if highly pathogenic avian influenza viruses were present in wild bird populations within the United States of America. This program, combined with the Canadian and Mexican surveillance programs, represented the largest, coordinated wildlife disease surveillance program ever implemented. Here we analyze data from 197,885 samples that were collected from over 200 wild bird species. While the initial motivation for surveillance focused on highly pathogenic avian influenza, the scale of the data provided unprecedented information on the ecology of avian influenza viruses in the United States, avian influenza virus host associations, and avian influenza prevalence in wild birds over time. Ultimately, significant advances in our knowledge of avian influenza will depend on both large-scale surveillance efforts and on focused research studies.

  3. Repeated annual influenza vaccination and vaccine effectiveness: review of evidence.

    Science.gov (United States)

    Belongia, Edward A; Skowronski, Danuta M; McLean, Huong Q; Chambers, Catharine; Sundaram, Maria E; De Serres, Gaston

    2017-07-01

    Studies in the 1970s and 1980s signaled concern that repeated influenza vaccination could affect vaccine protection. The antigenic distance hypothesis provided a theoretical framework to explain variability in repeat vaccination effects based on antigenic similarity between successive vaccine components and the epidemic strain. Areas covered: A meta-analysis of vaccine effectiveness studies from 2010-11 through 2014-15 shows substantial heterogeneity in repeat vaccination effects within and between seasons and subtypes. When negative effects were observed, they were most pronounced for H3N2, especially in 2014-15 when vaccine components were unchanged and antigenically distinct from the epidemic strain. Studies of repeated vaccination across multiple seasons suggest that vaccine effectiveness may be influenced by more than one prior season. In immunogenicity studies, repeated vaccination blunts the hemagglutinin antibody response, particularly for H3N2. Expert commentary: Substantial heterogeneity in repeated vaccination effects is not surprising given the variation in study populations and seasons, and the variable effects of antigenic distance and immunological landscape in different age groups and populations. Caution is required in the interpretation of pooled results across multiple seasons, since this can mask important variation in repeat vaccination effects between seasons. Multi-season clinical studies are needed to understand repeat vaccination effects and guide recommendations.

  4. Conventional influenza vaccines influence the performance of a universal influenza vaccine in mice.

    Science.gov (United States)

    Rowell, Janelle; Lo, Chia-Yun; Price, Graeme E; Misplon, Julia A; Epstein, Suzanne L; Garcia, Mayra

    2018-02-08

    Universal influenza vaccines are designed to protect against diverse strains of influenza virus. Preclinical testing of new vaccine candidates is usually done in naïve animals, despite intended use in the human population with its varied immune history including responses to previous vaccinations. As an approach more relevant to human use, we tested a candidate universal influenza vaccine in mice with a history of conventional vaccination. Female BALB/c mice were given two intramuscular doses of inactivated influenza vaccine (IIV) or diphtheria and tetanus toxoids vaccine (DT), one month apart. Another group was given two intranasal doses of live attenuated influenza virus (LAIV). One month after the second dose, mice were given the universal influenza vaccine: recombinant adenoviruses expressing influenza A nucleoprotein (A/NP) and matrix 2 (M2) (A/NP + M2-rAd). Immune responses to universal vaccine antigens A/NP and M2 were assessed by ELISA and interferon-γ ELISPOT. Protection was tested by challenge with mouse-adapted A/FM/1/47 (H1N1) and monitoring for weight loss and survival. Universal vaccine performance was enhanced, inhibited or unaffected by particular prior vaccinations. Mice given Afluria IIV and LAIV had greater antibody and T-cell response to A/NP than mice without prior vaccination, providing examples of enhanced A/NP + M2-rAd performance. Though Fluvirin IIV partially inhibited, the universal vaccine still provided considerable protection unlike conventional vaccination. Fluzone IIV and DT had no effect on A/NP + M2-rAd performance. Thus our results demonstrate that universal vaccine candidate A/NP + M2-rAd was at least partially effective in mice with diverse prior histories. However, the degree of protection and nature of the immune responses may be affected by a history of conventional vaccination and suggests that performance in humans would be influenced by immune history. Published by Elsevier Ltd.

  5. [Epidemics of conjunctivitis caused by avian influenza virus and molecular basis for its ocular tropism].

    Science.gov (United States)

    Yang, Chao; Jin, Ming

    2014-07-01

    Avian influenza virus (AIV) has caused several outbreaks in humans, leading to disasters to human beings. The outbreak of H7N9 avian influenza in China in 2003 re-attracted our close attention to this disease. More and more evidences demonstrated that eye is one of invasion portals of AIV, leading to conjunctivitis. The current studies showed that only subtypes H7 and H5 could cause severe systemic infections. Abundant distribution of α-2, 3 siliac acid receptor in conjunctiva and cornea as well as specific activiation of NF-κB signal transduction pathway by subtype H7 virus may contribute to the ocular tropism of the virus. These studies suggest that avian influenza conjunctivitis should be considered as a differential diagnosis during influenza epidemic seasons, and eyes should be well protected for disease control personnel when handling avian influenza epidemics. This review focused on AIV conjunctivitis and the molecular basis of ocular tropism.

  6. Influenza vaccination in the elderly: seeking new correlates of protection and improved vaccines

    OpenAIRE

    McElhaney, Janet E

    2008-01-01

    Influenza is foremost among all infectious diseases for an age-related increase in risk for serious complications and death. Determining the benefit of current influenza vaccines is largely limited to epidemiologic studies, since placebo-controlled trials of influenza vaccines are no longer considered ethical in the older adult population. Vaccine effectiveness is calculated from the relative reduction in influenza outcomes in individuals who elect to be vaccinated compared with those who do ...

  7. Immune responses after live attenuated influenza vaccination

    Science.gov (United States)

    Mohn, Kristin G.-I.; Smith, Ingrid; Sjursen, Haakon; Cox, Rebecca Jane

    2018-01-01

    ABSTRACT Since 2003 (US) and 2012 (Europe) the live attenuated influenza vaccine (LAIV) has been used as an alternative to the traditional inactivated influenza vaccines (IIV). The immune responses elicted by LAIV mimic natural infection and have been found to provide broader clinical protection in children compared to the IIVs. However, our knowledge of the detailed immunological mechanisims induced by LAIV remain to be fully elucidated, and despite 14 years on the global market, there exists no correlate of protection. Recently, matters are further complicated by differing efficacy data from the US and Europe which are not understood. Better understanding of the immune responses after LAIV may aid in achieving the ultimate goal of a future “universal influenza vaccine”. In this review we aim to cover the current understanding of the immune responses induced after LAIV. PMID:28933664

  8. A Cross-Sectional Study of Avian Influenza in One District of Guangzhou, 2013

    Science.gov (United States)

    Zhang, Haiming; Peng, Cong; Duan, Xiaodong; Shen, Dan; Lan, Guanghua; Xiao, Wutao; Tan, Hai; Wang, Ling; Hou, Jialei; Zhu, Jiancui; He, Riwen; Zhang, Haibing; Zheng, Lilan; Yang, Jianyu; Zhang, Zhen; Zhou, Zhiwei; Li, Wenhua; Hu, Mailing; Zhong, Jinhui; Chen, Yuhua

    2014-01-01

    Since Feb, 2013, more than 100 human beings had been infected with novel H7N9 avian influenza virus. As of May 2013, several H7N9 viruses had been found in retail live bird markets (LBMs) in Guangdong province of southern China where several human cases were confirmed later. However, the real avian influenza virus infection status especially H7N9 in Guangzhou remains unclear. Therefore, a cross-sectional study of avian influenza in commercial poultry farms, the wholesale LBM and retail LBMs in one district of Guangzhou was conducted from October to November, 2013. A total of 1505 cloacal and environmental samples from 52 commercial poultry farms, 1 wholesale LBM and 18 retail LBMs were collected and detected using real-time RT-PCR for type A, H7, H7N9 and H9 subtype avian influenza virus, respectively. Of all the flocks randomly sampled, 6 farms, 12 vendors of the wholesale LBM and 18 retail LBMs were type A avian influenza virus positive with 0, 3 and 11 positive for H9, respectively. The pooled prevalence and individual prevalence of type A avian influenza virus were 33.9% and 7.9% which for H9 subtype was 7.6% and 1.6%, respectively. None was H7 and H7N9 subtype virus positive. Different prevalence and prevalence ratio were found in different poultry species with partridges having the highest prevalence for both type A and H9 subtype avian influenza virus. Our results suggest that LBM may have a higher risk for sustaining and transmission of avian influenza virus than commercial poultry farms. The present study also indicates that different species may play different roles in the evolution and transmission of avian influenza virus. Therefore, risk-based surveillance and management measures should be conducted in future in this area. PMID:25356738

  9. A cross-sectional study of avian influenza in one district of Guangzhou, 2013.

    Directory of Open Access Journals (Sweden)

    Haiming Zhang

    Full Text Available Since Feb, 2013, more than 100 human beings had been infected with novel H7N9 avian influenza virus. As of May 2013, several H7N9 viruses had been found in retail live bird markets (LBMs in Guangdong province of southern China where several human cases were confirmed later. However, the real avian influenza virus infection status especially H7N9 in Guangzhou remains unclear. Therefore, a cross-sectional study of avian influenza in commercial poultry farms, the wholesale LBM and retail LBMs in one district of Guangzhou was conducted from October to November, 2013. A total of 1505 cloacal and environmental samples from 52 commercial poultry farms, 1 wholesale LBM and 18 retail LBMs were collected and detected using real-time RT-PCR for type A, H7, H7N9 and H9 subtype avian influenza virus, respectively. Of all the flocks randomly sampled, 6 farms, 12 vendors of the wholesale LBM and 18 retail LBMs were type A avian influenza virus positive with 0, 3 and 11 positive for H9, respectively. The pooled prevalence and individual prevalence of type A avian influenza virus were 33.9% and 7.9% which for H9 subtype was 7.6% and 1.6%, respectively. None was H7 and H7N9 subtype virus positive. Different prevalence and prevalence ratio were found in different poultry species with partridges having the highest prevalence for both type A and H9 subtype avian influenza virus. Our results suggest that LBM may have a higher risk for sustaining and transmission of avian influenza virus than commercial poultry farms. The present study also indicates that different species may play different roles in the evolution and transmission of avian influenza virus. Therefore, risk-based surveillance and management measures should be conducted in future in this area.

  10. A cross-sectional study of avian influenza in one district of Guangzhou, 2013.

    Science.gov (United States)

    Zhang, Haiming; Peng, Cong; Duan, Xiaodong; Shen, Dan; Lan, Guanghua; Xiao, Wutao; Tan, Hai; Wang, Ling; Hou, Jialei; Zhu, Jiancui; He, Riwen; Zhang, Haibing; Zheng, Lilan; Yang, Jianyu; Zhang, Zhen; Zhou, Zhiwei; Li, Wenhua; Hu, Mailing; Zhong, Jinhui; Chen, Yuhua

    2014-01-01

    Since Feb, 2013, more than 100 human beings had been infected with novel H7N9 avian influenza virus. As of May 2013, several H7N9 viruses had been found in retail live bird markets (LBMs) in Guangdong province of southern China where several human cases were confirmed later. However, the real avian influenza virus infection status especially H7N9 in Guangzhou remains unclear. Therefore, a cross-sectional study of avian influenza in commercial poultry farms, the wholesale LBM and retail LBMs in one district of Guangzhou was conducted from October to November, 2013. A total of 1505 cloacal and environmental samples from 52 commercial poultry farms, 1 wholesale LBM and 18 retail LBMs were collected and detected using real-time RT-PCR for type A, H7, H7N9 and H9 subtype avian influenza virus, respectively. Of all the flocks randomly sampled, 6 farms, 12 vendors of the wholesale LBM and 18 retail LBMs were type A avian influenza virus positive with 0, 3 and 11 positive for H9, respectively. The pooled prevalence and individual prevalence of type A avian influenza virus were 33.9% and 7.9% which for H9 subtype was 7.6% and 1.6%, respectively. None was H7 and H7N9 subtype virus positive. Different prevalence and prevalence ratio were found in different poultry species with partridges having the highest prevalence for both type A and H9 subtype avian influenza virus. Our results suggest that LBM may have a higher risk for sustaining and transmission of avian influenza virus than commercial poultry farms. The present study also indicates that different species may play different roles in the evolution and transmission of avian influenza virus. Therefore, risk-based surveillance and management measures should be conducted in future in this area.

  11. Assaying the Potency of Influenza Vaccines

    Directory of Open Access Journals (Sweden)

    Philip D. Minor

    2015-02-01

    Full Text Available The potency of vaccines must be determined to ensure that the appropriate dose is given. The manufacture and assessment of influenza vaccines are complicated by the continuously changing nature of the pathogen, which makes efficacy estimates difficult but also confounds attempts to produce a well-validated, consistent potency assay. Single radial diffusion has been used for decades and provides a relatively simple way to measure the amount of biologically active materials present in the vaccine. It requires reagents, which are updated on a regular, frequently yearly, basis and alternative methods continue to be sought.

  12. Avian influenza infection alters fecal odor in mallards.

    Directory of Open Access Journals (Sweden)

    Bruce A Kimball

    Full Text Available Changes in body odor are known to be a consequence of many diseases. Much of the published work on disease-related and body odor changes has involved parasites and certain cancers. Much less studied have been viral diseases, possibly due to an absence of good animal model systems. Here we studied possible alteration of fecal odors in animals infected with avian influenza viruses (AIV. In a behavioral study, inbred C57BL/6 mice were trained in a standard Y-maze to discriminate odors emanating from feces collected from mallard ducks (Anas platyrhynchos infected with low-pathogenic avian influenza virus compared to fecal odors from non-infected controls. Mice could discriminate odors from non-infected compared to infected individual ducks on the basis of fecal odors when feces from post-infection periods were paired with feces from pre-infection periods. Prompted by this indication of odor change, fecal samples were subjected to dynamic headspace and solvent extraction analyses employing gas chromatography/mass spectrometry to identify chemical markers indicative of AIV infection. Chemical analyses indicated that AIV infection was associated with a marked increase of acetoin (3-hydroxy-2-butanone in feces. These experiments demonstrate that information regarding viral infection exists via volatile metabolites present in feces. Further, they suggest that odor changes following virus infection could play a role in regulating behavior of conspecifics exposed to infected individuals.

  13. Effectiveness of A(H1N1)pdm09 influenza vaccine in adults recommended for annual influenza vaccination

    NARCIS (Netherlands)

    Gefenaite, G.; Tacken, M.A.; Bos, J.; Stirbu-Wagner, I.; Korevaar, J.C.; Stolk, R.P.; Wolters, B.; Bijl, M. van der; Postma, M.J.; Wilschut, J.; Nichol, K.L.; Hak, E.

    2013-01-01

    INTRODUCTION: Because of variability in published A(H1N1)pdm09 influenza vaccine effectiveness estimates, we conducted a study in the adults belonging to the risk groups to assess the A(H1N1)pdm09 MF59-adjuvanted influenza vaccine effectiveness. METHODS: VE against influenza and/or pneumonia was

  14. Effectiveness of A(H1N1)pdm09 influenza vaccine in adults recommended for annual influenza vaccination.

    NARCIS (Netherlands)

    Gefenaite, G.; Tacken, M.; Bos, J.; Stirbu-Wagner, I.; Korevaar, J.C.; Stolk, R.P.; Wolters, B.; Bijl, M.; Postma, M.J.; Wilschut, J.; Nichol, K.L.; Hak, E.

    2013-01-01

    Introduction: Because of variability in published A(H1N1)pdm09 influenza vaccine effectiveness estimates, we conducted a study in the adults belonging to the risk groups to assess the A(H1N1)pdm09 MF59-adjuvanted influenza vaccine effectiveness. Methods: VE against influenza and/or pneumonia was

  15. Dry influenza vaccines : towards a stable, effective and convenient alternative to conventional parenteral influenza vaccination

    NARCIS (Netherlands)

    Tomar, Jasmine; Born, Philip A.; Frijlink, Henderik W.; Hinrichs, Wouter L. J.

    2016-01-01

    Cold-chain requirements, limited stockpiling potential and the lack of potent immune responses are major challenges of parenterally formulated influenza vaccines. Decreased cold chain dependence and stockpiling can be achieved if vaccines are formulated in a dry state using suitable excipients and

  16. Reverse Genetics Approaches for the Development of Influenza Vaccines

    Science.gov (United States)

    Nogales, Aitor; Martínez-Sobrido, Luis

    2016-01-01

    Influenza viruses cause annual seasonal epidemics and occasional pandemics of human respiratory disease. Influenza virus infections represent a serious public health and economic problem, which are most effectively prevented through vaccination. However, influenza viruses undergo continual antigenic variation, which requires either the annual reformulation of seasonal influenza vaccines or the rapid generation of vaccines against potential pandemic virus strains. The segmented nature of influenza virus allows for the reassortment between two or more viruses within a co-infected cell, and this characteristic has also been harnessed in the laboratory to generate reassortant viruses for their use as either inactivated or live-attenuated influenza vaccines. With the implementation of plasmid-based reverse genetics techniques, it is now possible to engineer recombinant influenza viruses entirely from full-length complementary DNA copies of the viral genome by transfection of susceptible cells. These reverse genetics systems have provided investigators with novel and powerful approaches to answer important questions about the biology of influenza viruses, including the function of viral proteins, their interaction with cellular host factors and the mechanisms of influenza virus transmission and pathogenesis. In addition, reverse genetics techniques have allowed the generation of recombinant influenza viruses, providing a powerful technology to develop both inactivated and live-attenuated influenza vaccines. In this review, we will summarize the current knowledge of state-of-the-art, plasmid-based, influenza reverse genetics approaches and their implementation to provide rapid, convenient, safe and more effective influenza inactivated or live-attenuated vaccines. PMID:28025504

  17. Superior in vitro stimulation of human CD8+ T-cells by whole virus versus split virus influenza vaccines.

    Science.gov (United States)

    Halbroth, Benedict R; Heil, Alexander; Distler, Eva; Dass, Martin; Wagner, Eva M; Plachter, Bodo; Probst, Hans Christian; Strand, Dennis; Hartwig, Udo F; Karner, Anita; Aichinger, Gerald; Kistner, Otfried; Landfester, Katharina; Herr, Wolfgang

    2014-01-01

    Pandemic and seasonal influenza viruses cause considerable morbidity and mortality in the general human population. Protection from severe disease may result from vaccines that activate antigen-presenting DC for effective stimulation of influenza-specific memory T cells. Special attention is paid to vaccine-induced CD8+ T-cell responses, because they are mainly directed against conserved internal influenza proteins thereby presumably mediating cross-protection against circulating seasonal as well as emerging pandemic virus strains. Our study showed that influenza whole virus vaccines of major seasonal A and B strains activated DC more efficiently than those of pandemic swine-origin H1N1 and pandemic-like avian H5N1 strains. In contrast, influenza split virus vaccines had a low ability to activate DC, regardless which strain was investigated. We also observed that whole virus vaccines stimulated virus-specific CD8+ memory T cells much stronger compared to split virus counterparts, whereas both vaccine formats activated CD4+ Th cell responses similarly. Moreover, our data showed that whole virus vaccine material is delivered into the cytosolic pathway of DC for effective activation of virus-specific CD8+ T cells. We conclude that vaccines against seasonal and pandemic (-like) influenza strains that aim to stimulate cross-reacting CD8+ T cells should include whole virus rather than split virus formulations.

  18. Adaptation of high-growth influenza H5N1 vaccine virus in Vero cells: implications for pandemic preparedness.

    Directory of Open Access Journals (Sweden)

    Yu-Fen Tseng

    Full Text Available Current egg-based influenza vaccine production technology can't promptly meet the global demand during an influenza pandemic as shown in the 2009 H1N1 pandemic. Moreover, its manufacturing capacity would be vulnerable during pandemics caused by highly pathogenic avian influenza viruses. Therefore, vaccine production using mammalian cell technology is becoming attractive. Current influenza H5N1 vaccine strain (NIBRG-14, a reassortant virus between A/Vietnam/1194/2004 (H5N1 virus and egg-adapted high-growth A/PR/8/1934 virus, could grow efficiently in eggs and MDCK cells but not Vero cells which is the most popular cell line for manufacturing human vaccines. After serial passages and plaque purifications of the NIBRG-14 vaccine virus in Vero cells, one high-growth virus strain (Vero-15 was generated and can grow over 10(8 TCID(50/ml. In conclusion, one high-growth H5N1 vaccine virus was generated in Vero cells, which can be used to manufacture influenza H5N1 vaccines and prepare reassortant vaccine viruses for other influenza A subtypes.

  19. Inactivation of various influenza strains to model avian influenza (Bird Flu) with various disinfectant chemistries.

    Energy Technology Data Exchange (ETDEWEB)

    Oberst, R. D.; Bieker, Jill Marie; Souza, Caroline Ann

    2005-12-01

    Due to the grave public health implications and economic impact possible with the emergence of the highly pathogenic avian influenza A isolate, H5N1, currently circulating in Asia we have evaluated the efficacy of various disinfectant chemistries against surrogate influenza A strains. Chemistries included in the tests were household bleach, ethanol, Virkon S{reg_sign}, and a modified version of the Sandia National Laboratories developed DF-200 (DF-200d, a diluted version of the standard DF-200 formulation). Validation efforts followed EPA guidelines for evaluating chemical disinfectants against viruses. The efficacy of the various chemistries was determined by infectivity, quantitative RNA, and qualitative protein assays. Additionally, organic challenges using combined poultry feces and litter material were included in the experiments to simulate environments in which decontamination and remediation will likely occur. In all assays, 10% bleach and Sandia DF-200d were the most efficacious treatments against two influenza A isolates (mammalian and avian) as they provided the most rapid and complete inactivation of influenza A viruses.

  20. Development of a thermostable microneedle patch for influenza vaccination

    Science.gov (United States)

    Mistilis, Matthew; Bommarius, Andreas S; Prausnitz, Mark R.

    2017-01-01

    The goal of this study is to develop thermostable microneedle patch formulations for influenza vaccine that can be partially or completely removed from the cold chain. During vaccine drying associated with microneedle patch manufacturing, ammonium acetate and HEPES buffer salts stabilized influenza vaccine, surfactants had little effect during drying, drying temperature had weak effects on vaccine stability, and drying on polydimethylsiloxane led to increased stability compared to drying on stainless steel. A number of excipients, mostly polysaccharides and some amino acids, further stabilized the influenza vaccine during drying. Over longer time scales of storage, combinations of stabilizers preserved the most vaccine activity. Finally, dissolving microneedle patches formulated with arginine and calcium heptagluconate had no significant activity loss for all three strains of seasonal influenza vaccine during storage at room temperature for six months. We conclude that appropriately formulated microneedle patches can exhibit remarkable thermostability that could enable storage and distribution of influenza vaccine outside the cold chain. PMID:25448542

  1. Influenza Vaccination Coverage During Pregnancy - Selected Sites, United States, 2005-06 Through 2013-14 Influenza Vaccine Seasons.

    Science.gov (United States)

    Kerr, Stephen; Van Bennekom, Carla M; Mitchell, Allen A

    2016-12-09

    Seasonal influenza vaccine is recommended for all pregnant women because of their increased risk for influenza-associated complications. In addition, receipt of influenza vaccine by women during pregnancy has been shown to protect their infants for several months after birth (1). As part of its case-control surveillance study of medications and birth defects, the Birth Defects Study of the Slone Epidemiology Center at Boston University has recorded data on vaccinations received during pregnancy since the 2005-06 influenza vaccination season. Among the 5,318 mothers of infants without major structural birth defects (control newborns) in this population, seasonal influenza vaccination coverage was approximately 20% in the seasons preceding the 2009-10 pandemic H1N1 (pH1N1) influenza season. During the 2009-10 influenza vaccination season, influenza vaccination coverage among pregnant women increased to 33%, and has increased modestly since then, to 41% during the 2013-14 season. Among pregnant women who received influenza vaccine during the 2013-14 season, 80% reported receiving their vaccine in a traditional health care setting, (e.g., the office of their obstetrician or primary care physician or their prenatal clinic) and 20% received it in a work/school, pharmacy/supermarket, or government setting. Incorporating routine administration of seasonal influenza vaccination into the management of pregnant women by their health care providers might increase coverage with this important public health intervention.

  2. Repeated seasonal influenza vaccination among elderly in Europe: Effects on laboratory confirmed hospitalised influenza.

    NARCIS (Netherlands)

    Rondy, Marc; Launay, Odile; Castilla, Jesus; Costanzo, Simona; Puig-Barberà, Joan; Gefenaite, Giedre; Larrauri, Amparo; Rizzo, Caterina; Pitigoi, Daniela; Syrjänen, Ritva K; Machado, Ausenda; Kurečić Filipović, Sanja; Krisztina Horváth, Judit; Paradowska-Stankiewicz, Iwona; Marbus, Sierk; Moren, Alain

    2017-01-01

    In Europe, annual influenza vaccination is recommended to elderly. From 2011 to 2014 and in 2015-16, we conducted a multicentre test negative case control study in hospitals of 11 European countries to measure influenza vaccine effectiveness (IVE) against laboratory confirmed hospitalised influenza

  3. Effects of influenza vaccination and influenza illness on exacerbations in multiple sclerosis

    NARCIS (Netherlands)

    De Keyser, J; Zwanikken, C

    1998-01-01

    Despite reports that influenza vaccination appears to be safe in multiple sclerosis there is uncertainty which patients may benefit from it. By using a questionnaire we compared the effects of influenza illness (1995-1996 season) and influenza vaccination (autumn of 1996) on neurologic symptoms in

  4. Predictors of seasonal influenza vaccination among older adults in Thailand.

    Directory of Open Access Journals (Sweden)

    Prabda Praphasiri

    Full Text Available In advance of a large influenza vaccine effectiveness (VE cohort study among older adults in Thailand, we conducted a population-based, cross-sectional survey to measure vaccine coverage and identify factors associated with influenza vaccination among older Thai adults that could bias measures of vaccine effectiveness.We selected adults ≥65 years using a two-stage, stratified, cluster sampling design. Functional status was assessed using the 10-point Vulnerable Elders Survey (VES; scores ≥3 indicated vulnerability. Questions about attitudes towards vaccination were based on the Health Belief Model. The distance between participants' households and the nearest vaccination clinic was calculated. Vaccination status was determined using national influenza vaccination registry. Prevalence ratios (PR and 95% confidence intervals (CIs were calculated using log-binomial multivariable models accounting for the sampling design.We enrolled 581 participants, of whom 60% were female, median age was 72 years, 41% had at least one chronic underlying illness, 24% met the criteria for vulnerable, and 23% did not leave the house on a daily basis. Influenza vaccination rate was 34%. In multivariable models, no variable related to functional status was associated with vaccination. The strongest predictors of vaccination were distance to the nearest vaccination center (PR 3.0, 95% CI 1.7-5.1 for participants in the closest quartile compared to the furthest, and high levels of a perception of benefits of influenza vaccination (PR 2.8, 95% CI 1.4-5.6 and cues to action (PR 2.7, 95% CI 1.5-5.1.Distance to vaccination clinics should be considered in analyses of influenza VE studies in Thailand. Strategies that emphasize benefits of vaccination and encourage physicians to recommend annual influenza vaccination could improve influenza vaccine uptake among older Thai adults. Outreach to more distant and less mobile older adults may also be required to improve influenza

  5. Influenza vaccination rates in children decline when the live attenuated influenza vaccine is not recommended.

    Science.gov (United States)

    Fogel, Benjamin; Hicks, Steven

    2017-09-18

    In 2016 the Centers for Disease Control and Prevention (CDC) recommended against using the live attenuated influenza vaccine (LAIV) for the 2016-2017 influenza season. This recommendation is potentially important for vaccination rates because perceived effectiveness and ease of administration are among the primary determinants of families decisions to vaccinate their children. This investigation sought to determine whether rates of pediatric influenza vaccination changed in a season when the LAIV was not recommended. This study used cohort and cross sectional data from an academic primary care pediatric center in central Pennsylvania that serves approximately 12,500 patients. Early season (prior to November 1) and end-of-season (prior to March 1) vaccination rates in the 2015-16 and 2016-17 influenza seasons were recorded for individuals 2-17years old. Repeat vaccination rates (percentage of children receiving influenza vaccination in one season who were also vaccinated in the next season) were recorded for the 2015-16 into 2016-17 seasons. A logistic regression model adjusting for race, ethnicity, age, insurance type and type of vaccination received was employed to identify predictors of repeat vaccination. In the absence of LAIV (2016-17) early vaccination rates were significantly higher (24.7% vs 22.8%, p=0.004), but end-of-season rates were lower (50.4% vs 52.0%, p=0.03) than when LAIV was offered (2015-16). After adjusting for covariates, those who had received IIV in the 2015-16 season had higher odds (OR 1.32, 95% CI, 1.15-1.52) of getting a repeat vaccination in the 2016-17 season, compared with those who had received LAIV in the 2015-16 season. End-of-season vaccination rates were lower in 2016-17 when LAIV was not recommended, particularly among children who received LAIV in the preceding year. Unavailability of LAIV in the 2016-17 season may have impacted influenza vaccination convenience and perceived effectiveness, two factors which could influence

  6. Parental attitudes towards influenza vaccination for children in South India.

    Science.gov (United States)

    Ramprasad, Chethan; Zachariah, Rajeev; Steinhoff, Mark; Simon, Anna

    2017-02-01

    The rate of influenza vaccination is low for children in India. The purpose of this study is to assess parental attitudes towards influenza vaccination in South India. Participants were parents who brought their children to the Well Baby Clinic of Christian Medical College Hospital, Vellore, India for routine immunization. Participants answered questions by written survey while waiting for their children's vaccination. A total of 456 surveys were completed (403 parents did not opt for trivalent influenza vaccination and 53 opted for influenza vaccination). The majority (53.60%) of those parents who did not accept influenza vaccination identified the lack of a doctor's recommendation as the main reason. When asked separately, many non-acceptors (44.91%) indicated that they did not believe or were not sure that the influenza vaccine was effective. Nearly all non-acceptors (92.56%) stated that they would opt for influenza vaccination if a doctor recommended it. The most common reason that parents not opting for influenza vaccination for their children was the lack of recommendation by a doctor. The results of this study suggest that recommendation by a doctor is a more important factor than belief in efficacy, cost, or convenience in parental decision-making regarding childhood influenza vaccination in India, unlike the United States where parents are less likely to follow recommendations.

  7. [Clinical aspects of human infection by the avian influenza virus].

    Science.gov (United States)

    Goubau, P

    2009-01-01

    The species barrier is not perfect for Influenza A and numerous transmissions of the virus from pigs or poultry to humans have been described these years. Appearing in 1997 and becoming epidemic in 2003, influenza A/H5N1 provoked many deadly enzootics in poultry batteries (highly pathogenic avian influenza of HPAI). Starting in Asia, many countries throughout Africa and Europe were affected. Sporadic human cases were described in direct contact with diseased chicken or other poultry. Half of the cases are lethal, but human to human transmission occurs with difficulty. From January 2003 to August 11th 2009, 438 cases were declared worldwide with 262 deaths. Many countries declared cases, but recently most cases occurred in Egypt. Measures in hospital were taken which were copied from the measures for SARS (Severe Acute Respiratory Syndrome), but these were probably excessive in this case, considering the low rate of secondary cases with A/H5N1. In many human infections, signs of severe respiratory distress develop and multi organ failure. It was feared that this deadly virus could become easily transmitted between humans, leading to a new pandemic. This was not the case up to now. The strong pathogenicity of the virus is still not completely explained, but the deep location of infection in the lungs and the deregulation of cytokine production by the target cells, particularly macrophages, may be part of the explanation.

  8. A DNA Vaccine That Targets Hemagglutinin to Antigen-Presenting Cells Protects Mice against H7 Influenza.

    Science.gov (United States)

    Andersen, Tor Kristian; Zhou, Fan; Cox, Rebecca; Bogen, Bjarne; Grødeland, Gunnveig

    2017-12-01

    Zoonotic influenza H7 viral infections have a case fatality rate of about 40%. Currently, no or limited human to human spread has occurred, but we may be facing a severe pandemic threat if the virus acquires the ability to transmit between humans. Novel vaccines that can be rapidly produced for global distribution are urgently needed, and DNA vaccines may be the only type of vaccine that allows for the speed necessary to quench an emerging pandemic. Here, we constructed DNA vaccines encoding the hemagglutinin (HA) from influenza A/chicken/Italy/13474/99 (H7N1). In order to increase the efficacy of DNA vaccination, HA was targeted to either major histocompatibility complex class II molecules or chemokine receptors 1, 3, and 5 (CCR1/3/5) that are expressed on antigen-presenting cells (APC). A single DNA vaccination with APC-targeted HA significantly increased antibody levels in sera compared to nontargeted control vaccines. The antibodies were confirmed neutralizing in an H7 pseudotype-based neutralization assay. Furthermore, the APC-targeted vaccines increased the levels of antigen-specific cytotoxic T cells, and a single DNA vaccination could confer protection against a lethal challenge with influenza A/turkey/Italy/3889/1999 (H7N1) in mice. In conclusion, we have developed a vaccine that rapidly could contribute protection against a pandemic threat from avian influenza. IMPORTANCE Highly pathogenic avian influenza H7 constitute a pandemic threat that can cause severe illness and death in infected individuals. Vaccination is the main method of prophylaxis against influenza, but current vaccine strategies fall short in a pandemic situation due to a prolonged production time and insufficient production capabilities. In contrast, a DNA vaccine can be rapidly produced and deployed to prevent the potential escalation of a highly pathogenic influenza pandemic. We here demonstrate that a single DNA delivery of hemagglutinin from an H7 influenza could mediate full

  9. Addition of N-glycosylation sites on the globular head of the H5 hemagglutinin induces the escape of highly pathogenic avian influenza A H5N1 viruses from vaccine-induced immunity.

    Science.gov (United States)

    Hervé, Pierre-Louis; Lorin, Valérie; Jouvion, Grégory; Da Costa, Bruno; Escriou, Nicolas

    2015-12-01

    Highly pathogenic avian influenza A H5N1 viruses remain endemic in poultry in several countries and still constitute a pandemic threat. Since the early 20th century, we experienced four influenza A pandemics. H3N2 and H1N1pdm09 viruses that respectively emerged during 1968 and 2009 pandemics are still responsible for seasonal epidemics. These viruses evolve regularly by substitutions in antigenic sites of the hemagglutinin (HA), which prevent neutralization by antibodies directed against previous strains (antigenic drift). For seasonal H3N2 viruses, an addition of N-glycosylation sites (glycosites) on H3 contributed to this drift. Here, we questioned whether additional glycosites on H5 could induce an escape of H5N1 virus from neutralization, as it was observed for seasonal H3N2 viruses. Seven H5N1 mutants were produced by adding glycosites on H5. The most glycosylated virus escaped from neutralizing antibodies, in vitro and in vivo. Furthermore, a single additional glycosite was responsible for this escape. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Isolation strategy of a two-strain avian influenza model using optimal control

    Science.gov (United States)

    Mardlijah, Ariani, Tika Desi; Asfihani, Tahiyatul

    2017-08-01

    Avian influenza has killed many victims of both birds and humans. Most cases of avian influenza infection in humans have resulted transmission from poultry to humans. To prevent or minimize the patients of avian influenza can be done by pharmaceutical and non-pharmaceutical measures such as the use of masks, isolation, etc. We will be analyzed two strains of avian influenza models that focus on treatment of symptoms with insulation, then investigate the stability of the equilibrium point by using Routh-Hurwitz criteria. We also used optimal control to reduce the number of humans infected by making the isolation level as the control then proceeds optimal control will be simulated. The completion of optimal control used in this study is the Pontryagin Minimum Principle and for simulation we are using Runge Kutta method. The results obtained showed that the application of two control is more optimal compared to apply one control only.

  11. Cross-protective peptide vaccine against influenza A viruses developed in HLA-A*2402 human immunity model.

    Directory of Open Access Journals (Sweden)

    Toru Ichihashi

    Full Text Available BACKGROUND: The virus-specific cytotoxic T lymphocyte (CTL induction is an important target for the development of a broadly protective human influenza vaccine, since most CTL epitopes are found on internal viral proteins and relatively conserved. In this study, the possibility of developing a strain/subtype-independent human influenza vaccine was explored by taking a bioinformatics approach to establish an immunogenic HLA-A24 restricted CTL epitope screening system in HLA-transgenic mice. METHODOLOGY/PRINCIPAL FINDINGS: HLA-A24 restricted CTL epitope peptides derived from internal proteins of the H5N1 highly pathogenic avian influenza A virus were predicted by CTL epitope peptide prediction programs. Of 35 predicted peptides, six peptides exhibited remarkable cytotoxic activity in vivo. More than half of the mice which were subcutaneously vaccinated with the three most immunogenic and highly conserved epitopes among three different influenza A virus subtypes (H1N1, H3N2 and H5N1 survived lethal influenza virus challenge during both effector and memory CTL phases. Furthermore, mice that were intranasally vaccinated with these peptides remained free of clinical signs after lethal virus challenge during the effector phase. CONCLUSIONS/SIGNIFICANCE: This CTL epitope peptide selection system can be used as an effective tool for the development of a cross-protective human influenza vaccine. Furthermore this vaccine strategy can be applicable to the development of all intracellular pathogens vaccines to induce epitope-specific CTL that effectively eliminate infected cells.

  12. Novel viral vectored vaccines for the prevention of influenza.

    Science.gov (United States)

    Lambe, Teresa

    2012-10-24

    Influenza represents a substantial global healthcare burden, with annual epidemics resulting in 3-5 million cases of severe illness with a significant associated mortality. In addition, the risk of a virulent and lethal influenza pandemic has generated widespread and warranted concern. Currently licensed influenza vaccines are limited in their ability to induce efficacious and long-lasting herd immunity. In addition, and as evidenced by the H1N1 pandemic in 2009, there can be a significant delay between the emergence of a pandemic influenza and an effective, antibody-inducing vaccine. There is, therefore, a continued need for new, efficacious vaccines conferring cross-clade protection-obviating the need for biannual reformulation of seasonal influenza vaccines. Development of such a vaccine would yield enormous health benefits to society and also greatly reduce the associated global healthcare burden. There are a number of alternative influenza vaccine technologies being assessed both preclinically and clinically. In this review we discuss viral vectored vaccines, either recombinant live-attenuated or replication-deficient viruses, which are current lead candidates for inducing efficacious and long-lasting immunity toward influenza viruses. These alternate influenza vaccines offer real promise to deliver viable alternatives to currently deployed vaccines and more importantly may confer long-lasting and universal protection against influenza viral infection.

  13. Influenza vaccination among workers-21 U.S. states, 2013.

    Science.gov (United States)

    O'Halloran, Alissa C; Lu, Peng-Jun; Williams, Walter W; Schumacher, Pamela; Sussell, Aaron; Birdsey, Jan; Boal, Winifred L; Sweeney, Marie Haring; Luckhaupt, Sara E; Black, Carla L; Santibanez, Tammy A

    2017-04-01

    Influenza illnesses can result in missed days at work and societal costs, but influenza vaccination can reduce the risk of disease. Knowledge of vaccination coverage by industry and occupation can help guide prevention efforts and be useful during influenza pandemic planning. Data from 21 states using the 2013 Behavioral Risk Factor Surveillance System industry-occupation module were analyzed. Influenza vaccination coverage was reported by select industry and occupation groups, including health care personnel (HCP) and other occupational groups who may have first priority to receive influenza vaccination during a pandemic (tier 1). The t tests were used to make comparisons between groups. Influenza vaccination coverage varied by industry and occupation, with high coverage among persons in health care industries and occupations. Approximately half of persons classified as tier 1 received influenza vaccination, and vaccination coverage among tier 1 and HCP groups varied widely by state. This report points to the particular industries and occupations where improvement in influenza vaccination coverage is needed. Prior to a pandemic event, more specificity on occupational codes to define exact industries and occupations in each tier group would be beneficial in implementing pandemic influenza vaccination programs and monitoring the success of these programs. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. All rights reserved.

  14. Formulation of influenza T cell peptides : in search of a universal influenza vaccine

    NARCIS (Netherlands)

    Soema, Peter Christiaan

    2015-01-01

    Current seasonal influenza vaccines rely on the induction of antibodies to neutralize the virus. However, influenza viruses frequently undergo genetic mutations due to antigenic drift and shift, altering the surface proteins hemagglutinin and neuraminidase to which antibodies usually bind. This

  15. The Impact of Avian Influenza on Vertical Price Transmission in the Egyptian Poultry Sector

    OpenAIRE

    Hassouneh, Islam; Radwan, Amr; Serra, Teresa; Gil, Jose Maria

    2010-01-01

    In recent years, health risks have received increasing attention among consumers and created interest in analysing the relationship between food scares, food consumption and market prices. One of the most relevant and recent food scares is the avian influenza that has had important effects not only on human and animal health, but also on the economy. We assess effects of avian influenza on price transmission along the Egyptian poultry marketing chain. Although Egypt has been one of the most a...

  16. How Highly Pathogenic Avian Influenza (H5N1) Has Affected World Poultry-Meat Trade

    OpenAIRE

    Taha, Fawzi A.

    2007-01-01

    In 2003, outbreaks of the highly pathogenic avian influenza (HPAI) H5N1 virus had a major negative impact on the global poultry industry. Initially, import demand for both uncooked and cooked poultry declined substantially, due to consumers’ fear of contracting avian influenza by eating poultry meat. Consumer fears adversely affected poultry consumption in many countries, leading to lower domestic prices, decreased production, and lower poultry meat exports. These reductions proved to be shor...

  17. No evidence that migratory geese disperse avian influenza viruses from breeding to wintering ground

    OpenAIRE

    Yin, Shenglai; Kleijn, David; M?skens, Gerard J. D. M.; Fouchier, Ron A. M.; Verhagen, Josanne H.; Glazov, Petr M.; Si, Yali; Prins, Herbert H. T.; de Boer, Willem Frederik

    2017-01-01

    textabstractLow pathogenic avian influenza virus can mutate to a highly pathogenic strain that causes severe clinical signs in birds and humans. Migratory waterfowl, especially ducks, are considered the main hosts of low pathogenic avian influenza virus, but the role of geese in dispersing the virus over long-distances is still unclear. We collected throat and cloaca samples from three goose species, Bean goose (Anser fabalis), Barnacle goose (Branta leucopsis) and Greater white-fronted goose...

  18. Replication of avian influenza viruses in equine tracheal epithelium but not in horses

    OpenAIRE

    Chambers, Thomas M.; Balasuriya, Udeni B. R.; Reedy, Stephanie E.; Tiwari, Ashish

    2013-01-01

    We evaluated a hypothesis that horses are susceptible to avian influenza viruses by in vitro testing, using explanted equine tracheal epithelial cultures, and in vivo testing by aerosol inoculation of ponies. Results showed that several subtypes of avian influenza viruses detectably replicated in vitro. Three viruses with high in vitro replication competence were administered to ponies. None of the three demonstrably replicated or caused disease signs in ponies. While these results do not exh...

  19. Highly Pathogenic Avian Influenza Viruses and Generation of Novel Reassortants, United States, 2014-2015.

    Science.gov (United States)

    Lee, Dong-Hun; Bahl, Justin; Torchetti, Mia Kim; Killian, Mary Lea; Ip, Hon S; DeLiberto, Thomas J; Swayne, David E

    2016-07-01

    Asian highly pathogenic avian influenza A(H5N8) viruses spread into North America in 2014 during autumn bird migration. Complete genome sequencing and phylogenetic analysis of 32 H5 viruses identified novel H5N1, H5N2, and H5N8 viruses that emerged in late 2014 through reassortment with North American low-pathogenicity avian influenza viruses.

  20. Highly pathogenic avian influenza viruses and generation of novel reassortants,United States, 2014–2015

    Science.gov (United States)

    Dong-Hun Lee,; Justin Bahl,; Mia Kim Torchetti,; Mary Lea Killian,; Ip, Hon S.; David E Swayne,

    2016-01-01

    Asian highly pathogenic avian influenza A(H5N8) viruses spread into North America in 2014 during autumn bird migration. Complete genome sequencing and phylogenetic analysis of 32 H5 viruses identified novel H5N1, H5N2, and H5N8 viruses that emerged in late 2014 through reassortment with North American low-pathogenicity avian influenza viruses.

  1. Highly Pathogenic Avian Influenza Viruses and Generation of Novel Reassortants, United States, 2014?2015

    OpenAIRE

    Lee, Dong-Hun; Bahl, Justin; Torchetti, Mia Kim; Killian, Mary Lea; Ip, Hon S.; DeLiberto, Thomas J.; Swayne, David E.

    2016-01-01

    Asian highly pathogenic avian influenza A(H5N8) viruses spread into North America in 2014 during autumn bird migration. Complete genome sequencing and phylogenetic analysis of 32 H5 viruses identified novel H5N1, H5N2, and H5N8 viruses that emerged in late 2014 through reassortment with North American low-pathogenicity avian influenza viruses.

  2. Influenza Vaccination Coverage Among Pregnant Women - United States, 2016-17 Influenza Season.

    Science.gov (United States)

    Ding, Helen; Black, Carla L; Ball, Sarah; Fink, Rebecca V; Williams, Walter W; Fiebelkorn, Amy Parker; Lu, Peng-Jun; Kahn, Katherine E; D'Angelo, Denise V; Devlin, Rebecca; Greby, Stacie M

    2017-09-29

    Pregnant women and their infants are at increased risk for severe influenza-associated illness (1), and since 2004, the Advisory Committee on Immunization Practices (ACIP) has recommended influenza vaccination for all women who are or might be pregnant during the influenza season, regardless of the trimester of the pregnancy (2). To assess influenza vaccination coverage among pregnant women during the 2016-17 influenza season, CDC analyzed data from an Internet panel survey conducted during March 28-April 7, 2017. Among 1,893 survey respondents pregnant at any time during October 2016-January 2017, 53.6% reported having received influenza vaccination before (16.2%) or during (37.4%) pregnancy, similar to coverage during the preceding four influenza seasons. Also similar to the preceding influenza season, 67.3% of women reported receiving a provider offer for influenza vaccination, 11.9% reported receiving a recommendation but no offer, and 20.7% reported receiving no recommendation; among these women, reported influenza vaccination coverage was 70.5%, 43.7%, and 14.8%, respectively. Among women who received a provider offer for vaccination, vaccination coverage differed by race/ethnicity, education, insurance type, and other sociodemographic factors. Use of evidence-based practices such as provider reminders and standing orders could reduce missed opportunities for vaccination and increase vaccination coverage among pregnant women.

  3. Prospective study of avian influenza transmission to humans in egypt

    Directory of Open Access Journals (Sweden)

    Sherif Lobna S

    2010-11-01

    Full Text Available Abstract Background The highly pathogenic avian influenza (HPAI H5N1 virus remains a public health threat and continues to cause outbreaks among poultry as well as human infections. Since its appearance, the virus has spread to numerous geographic areas and is now considered endemic in Egypt and other countries. Most studies on human H5N1 cases were conducted to investigate outbreak situations and were not designed to address fundamental questions about the epidemiology of human infection with H5N1 viruses. Our objective for this study is to answer these questions by estimating the prevalence and incidence rates of human cases and determine associated risk and protective factors in areas where H5N1 viruses are endemic. Methods/Design We designed a 3-year prospective cohort study of 1000 individuals of various exposure levels to poultry in Egypt. At onset, we will collect sera to estimate baseline antibody titers against AI viruses H4-H16. Two follow-up visits are scheduled at 1-year intervals following initial enrollment. At follow-up, we will also collect sera to measure changes in antibody titers over time. Thus, annual prevalence rates as well as incidence rates of infection will be calculated. At each visit, exposure and other data will be collected using a specifically tailored questionnaire. This data will be used to measure risk and protective factors associated with infection. Subjects will be asked to contact the study team any time they have influenza-like illness (ILI. In this case, the study team will verify infection by rapid influenza A test and obtain swabs from the subject's contacts to isolate and characterize viruses causing acute infection. Discussion Epidemiologic studies at the influenza human-animal interface are rare, hence many questions concerning transmission, severity, and extent of infection at the population level remain unanswered. We believe that our study will help tackle and clarify some of these issues.

  4. Antibody Responses to Trivalent Inactivated Influenza Vaccine in Health Care Personnel Previously Vaccinated and Vaccinated for The First Time

    OpenAIRE

    Kuan-Ying A. Huang; Shih-Cheng Chang; Yhu-Chering Huang; Cheng-Hsun Chiu; Tzou-Yien Lin

    2017-01-01

    Inactivated influenza vaccination induces a hemagglutinin-specific antibody response to the strain used for immunization. Annual vaccination is strongly recommended for health care personnel. However, it is debatable if repeated vaccination would affect the antibody response to inactivated influenza vaccine through the time. We enrolled health care personnel who had repeated and first trivalent inactivated influenza vaccination in 2005?2008. Serological antibody responses were measured by hem...

  5. Influenza vaccination in children with neurologic or neurodevelopmental disorders.

    Science.gov (United States)

    Smith, Michael; Peacock, Georgina; Uyeki, Timothy M; Moore, Cynthia

    2015-05-11

    Children with neurologic or neurodevelopmental disorders (NNDDs) are at increased risk of complications from influenza. Although the Advisory Committee on Immunization Practices (ACIP) has recognized NNDDs as high-risk conditions for influenza complications since 2005, little is known about influenza vaccination practices in this population. CDC collaborated with Family Voices, a national advocacy group for children with special healthcare needs, to recruit parents of children with chronic medical conditions. Parents were surveyed about their knowledge, attitudes, and practices surrounding influenza vaccination. The primary outcome of interest was parental report of vaccination, or intent to vaccinate, at the time of survey participation. CDC also collaborated with the American Academy of Pediatrics to recruit primary care and specialty physicians who provide care for high-risk children, specifically those with neurologic conditions. The primary outcome was physician recognition of ACIP high-risk influenza conditions. 2138 surveys were completed by parents of children with high-risk conditions, including 1143 with at least one NNDD. Overall, 50% of children with an NNDD were vaccinated, or their parents planned to have them vaccinated against influenza. Among all 2138 children, in multivariable analysis, the presence of a respiratory condition and prior seasonal influenza vaccination was significantly associated with receipt or planned current season influenza vaccination, but the presence of an NNDD was not. 412 pediatricians completed the provider survey. Cerebral palsy was recognized as a high-risk influenza condition by 74% of physician respondents, but epilepsy (51%) and intellectual disability (46%) were less commonly identified. Our estimates of influenza vaccination in children with NNDDs are comparable to published reports of vaccination in healthy children, which continue to be suboptimal. Education of parents of children with NNDDs and healthcare

  6. Influenza vaccination coverage among health-care personnel--United States, 2012-13 influenza season.

    Science.gov (United States)

    2013-09-27

    Routine influenza vaccination of health-care personnel (HCP) every influenza season can reduce influenza-related illness and its potentially serious consequences among HCP and their patients. To protect HCP and their patients, the Advisory Committee on Immunization Practices (ACIP) recommends that all HCP be vaccinated against influenza during each influenza season. To estimate influenza vaccination coverage among HCP during the 2012-13 season, CDC conducted an opt-in Internet panel survey of 1,944 self-selected HCP during April 1-16, 2013. This report summarizes the results of that survey, which found that, overall, 72.0% of HCP reported having had an influenza vaccination for the 2012-13 season, an increase from 66.9% vaccination coverage during the 2011-12 season. By occupation type, coverage was 92.3% among physicians, 89.1% among pharmacists, 88.5% among nurse practitioners/physician assistants, and 84.8% among nurses. By occupational setting, vaccination coverage was highest among hospital-based HCP (83.1%) and was lowest among HCP at long-term care facilities (LTCF) (58.9%). Vaccination coverage was higher for HCP in occupational settings offering vaccination on-site at no cost for one (75.7%) or multiple (86.2%) days compared with HCP in occupational settings not offering vaccination on-site at no cost (55.3%). Widespread implementation of comprehensive influenza vaccination strategies that focus on improving access to vaccination services is needed to improve HCP vaccination coverage. Influenza vaccination of HCP in all health-care settings might be increased by providing 1) HCP with information on vaccination benefits and risks for themselves and their patients, 2) vaccinations in the workplace at convenient locations and times, and 3) influenza vaccinations at no cost.

  7. On the role of vaccine dose and antigenic distance in the transmission dynamics of Highly Pathogenic Avian Influenza (HPAI) H5N1 virus and its selected mutants in vaccinated animals

    NARCIS (Netherlands)

    Sitaras, Ioannis

    2017-01-01

    Influenza virus infections can cause high morbidity and mortality rates among animals and humans, and result in staggering direct and indirect financial losses amounting to billions of US dollars. Ever since it emerged in 1996 in Guangdong province, People’s Republic of China, one particular

  8. Mid-Season Influenza Vaccine Effectiveness Estimates for the 2013-2014 Influenza Season

    Science.gov (United States)

    2014-05-21

    Naval Health Research Center Mid-Season Influenza Vaccine Effectiveness Estimates for the 2013–2014 Influenza Season Angelia A. Cost...2000–2013 P A G E 1 5 Brief report: mid-season influenza vaccine effectiveness estimates for the 2013–2014 influenza season Angelia A. Cost, PhD...hospitals near the U.S.– Mexico border from 25 November 2013 through 16 January 2014. Infl uenza cases were individ- uals who had positive laboratory

  9. Universal Influenza Vaccines, a Dream to Be Realized Soon

    Directory of Open Access Journals (Sweden)

    Han Zhang

    2014-04-01

    Full Text Available Due to frequent viral antigenic change, current influenza vaccines need to be re-formulated annually to match the circulating strains for battling seasonal influenza epidemics. These vaccines are also ineffective in preventing occasional outbreaks of new influenza pandemic viruses. All these challenges call for the development of universal influenza vaccines capable of conferring broad cross-protection against multiple subtypes of influenza A viruses. Facilitated by the advancement in modern molecular biology, delicate antigen design becomes one of the most effective factors for fulfilling such goals. Conserved epitopes residing in virus surface proteins including influenza matrix protein 2 and the stalk domain of the hemagglutinin draw general interest for improved antigen design. The present review summarizes the recent progress in such endeavors and also covers the encouraging progress in integrated antigen/adjuvant delivery and controlled release technology that facilitate the development of an affordable universal influenza vaccine.

  10. A simple and rapid approach to develop recombinant avian herpesvirus vectored vaccines using CRISPR/Cas9 system.

    Science.gov (United States)

    Tang, Na; Zhang, Yaoyao; Pedrera, Miriam; Chang, Pengxiang; Baigent, Susan; Moffat, Katy; Shen, Zhiqiang; Nair, Venugopal; Yao, Yongxiu

    2018-01-29

    Herpesvirus of turkeys (HVT) has been successfully used as live vaccine against Marek's disease (MD) worldwide for more than 40 years either alone or in combination with other serotypes. HVT is also widely used as a vector platform for generation of recombinant vaccines against a number of avian diseases such as infectious bursal disease (IBD), Newcastle disease (ND) and avian influenza (AI) using conventional recombination methods or recombineering tools on cloned viral genomes. In the present study, we describe the application of CRISPR/Cas9-based genome editing as a rapid and efficient method of generating HVT recombinants expressing VP2 protein of IBDV. This approach offers an efficient method to introduce other viral antigens into the HVT genome for rapid development of recombinant vaccines. Copyright © 2018 The Pirbright Institute. Published by Elsevier Ltd.. All rights reserved.

  11. [Effectiveness of influenza vaccination in healthy adults--a fourfold decrease in influenza morbidity during one influenza season].

    Science.gov (United States)

    Chlíbek, R; Beran, J; Splino, M

    2002-04-01

    Despite the existence and availability of effective and safe influenza vaccines, influenza still remains an important cause of morbidity and mortality worldwide, incl. all economic consequences and the increased number of days of work incapacity. Vaccination against influenza is an effective method of prevention of the disease and its complications. Nevertheless many people still do not trust the effectiveness of anti-influenza vaccination, incl. many physicians, nurses and other health professionals. The objective of the present study is to evaluate the effectiveness of vaccination against influenza in healthy adults aged 18-60 years, vaccinated with one of the five commonly available vaccines. The evaluation is based on notifications of influenza and influenza--like diseases. The trial comprised 375 subjects vaccinated against influenza during a given season, as a control group served 340 non-vaccinated subjects. Both groups of volunteers were investigated for six months. During this period the incidence of influenza or influenza--like diseases was recorded, the presence of local and general influenza symptoms, the number of days of work incapacity and the number of visits to the doctor. These data were obtained by the postal correspondence method. In the group of 375 vaccinated subjects 17 (4.5%) became ill. In the group of non-vaccinated subjects 65 (19.1%) became ill. The difference in the incidence of influenza was statistically significant. In subjects vaccinated against influenza a 73-76% effectiveness of vaccination was achieved. Subjects in the non-vaccinated group reported more than a fourfold incidence of influenza as compared with vaccinated subjects. The symptoms of the disease did not differ significantly in the two groups. The most frequent symptom of the disease which was recorded in both groups was fever higher than 38 degrees C, pain in the joints, myalgia and finally cough. More than two thirds of the sick volunteers visited their doctor while

  12. Novel Platforms for the Development of a Universal influenza vaccine

    DEFF Research Database (Denmark)

    Kumar, Arun; Meldgaard, Trine Sundebo; Bertholet, Sylvie

    2018-01-01

    provide protection against all subtypes of influenza viruses. Moreover, the development of a novel or improved universal influenza vaccines may be greatly facilitated by new technologies including virus-like particles, T-cell-inducing peptides and recombinant proteins, synthetic viruses, broadly......Despite advancements in immunotherapeutic approaches, influenza continues to cause severe illness, particularly among immunocompromised individuals, young children, and elderly adults. Vaccination is the most effective way to reduce rates of morbidity and mortality caused by influenza viruses....... Frequent genetic shift and drift among influenzavirus strains with the resultant disparity between circulating and vaccine virus strains limits the effectiveness of the available conventional influenza vaccines. One approach to overcome this limitation is to develop a universal influenza vaccine that could...

  13. Prevalence of Antibodies to H9N2 Avian Influenza Virus in Backyard Chickens around Maharlou Lake in Iran

    OpenAIRE

    Mohammad Mehdi Hadipour*, Gholamhossein Habibi and Amir Vosoughi

    2011-01-01

    Backyard chickens play an important role in the epidemiology of H9N2 avian influenza virus infection. Close contact of backyard chickens with migratory birds, especially with aquatic birds, as well as neighboring poultry farms, may pose the risk of transmitting avian influenza virus, but little is known about the disease status of backyard poultry. A H9N2 avian influenza virus seroprevalence survey was carried out in 500 backyard chickens from villages around Maharlou lake in Iran, using the ...

  14. Molecular epidemiology and biological properties of avian influenza viruses of subtype H5N1 and H9N2

    OpenAIRE

    Parvin, Rokshana

    2015-01-01

    Rokshana Parvin Molecular epidemiology and biological properties of avian influenza viruses of subtype H5N1 and H9N2 Institute of Virology Submitted in November 2014 Pages 106, Figures 7, Table 1, References 339, Publications 4 Keywords: Avian Influenza Virus, H5N1, H9N2, Reassortment, Mutation, Replication and Growth kinetics Introduction Avian influenza viruses (AIVs) are the major cause of significant disease outbreaks with high morbidity and mortality worldwide in ...

  15. Intranasal immunization with a formalin-inactivated human influenza A virus whole-virion vaccine alone and intranasal immunization with a split-virion vaccine with mucosal adjuvants show similar levels of cross-protection.

    Science.gov (United States)

    Okamoto, Shigefumi; Matsuoka, Sumiko; Takenaka, Nobuyuki; Haredy, Ahmad M; Tanimoto, Takeshi; Gomi, Yasuyuki; Ishikawa, Toyokazu; Akagi, Takami; Akashi, Mitsuru; Okuno, Yoshinobu; Mori, Yasuko; Yamanishi, Koichi

    2012-07-01

    The antigenicity of seasonal human influenza virus changes continuously; thus, a cross-protective influenza vaccine design needs to be established. Intranasal immunization with an influenza split-virion (SV) vaccine and a mucosal adjuvant induces cross-protection; however, no mucosal adjuvant has been assessed clinically. Formalin-inactivated intact human and avian viruses alone (without adjuvant) induce cross-protection against the highly pathogenic H5N1 avian influenza virus. However, it is unknown whether seasonal human influenza formalin-inactivated whole-virion (WV) vaccine alone induces cross-protection against strains within a subtype or in a different subtype of human influenza virus. Furthermore, there are few reports comparing the cross-protective efficacy of the WV vaccine and SV vaccine-mucosal adjuvant mixtures. Here, we found that the intranasal human influenza WV vaccine alone induced both the innate immune response and acquired immune response, resulting in cross-protection against drift variants within a subtype of human influenza virus. The cross-protective efficacy conferred by the WV vaccine in intranasally immunized mice was almost the same as that conferred by a mixture of SV vaccine and adjuvants. The level of cross-protective efficacy was correlated with the cross-reactive neutralizing antibody titer in the nasal wash and bronchoalveolar fluids. However, neither the SV vaccine with adjuvant nor the WV vaccine induced cross-reactive virus-specific cytotoxic T-lymphocyte activity. These results suggest that the intranasal human WV vaccine injection alone is effective against variants within a virus subtype, mainly through a humoral immune response, and that the cross-protection elicited by the WV vaccine and the SV vaccine plus mucosal adjuvants is similar.

  16. Predictors of influenza vaccine. Acceptance among healthy adult workers.

    Science.gov (United States)

    Blue, Carolyn L; Valley, Juanita M

    2002-05-01

    A self administered questionnaire with items derived from the Health Belief Model was mailed to a random sample of workers prior to a worksite influenza vaccine program in this descriptive study of 207 service and clerical workers. The researchers investigated the utility of the Health Belief Model in predicting influenza vaccine acceptance. A second postcard questionnaire was mailed after the program to verify the vaccination status. Workers who received the vaccine had higher scores for susceptibility, seriousness, benefits, cues to action, knowledge, and health motivation and lower scores for barriers than did workers who did not receive a vaccine. Logistic regression analysis revealed the importance of benefits, barriers, and cues to action in predicting influenza vaccine acceptance. Study results suggest education and program efforts directed toward increasing benefits, dispelling myths about influenza and the vaccine, reducing barriers, and developing a campaign to increase program awareness may increase workers' vaccine acceptance.

  17. Transmission of Avian Influenza Virus (H3N2) to Dogs

    Science.gov (United States)

    Song, Daesub; Kang, Bokyu; Lee, Chulseung; Jung, Kwonil; Ha, Gunwoo; Kang, Dongseok; Park, Seongjun; Park, Bongkyun

    2008-01-01

    In South Korea, where avian influenza virus subtypes H3N2, H5N1, H6N1, and H9N2 circulate or have been detected, 3 genetically similar canine influenza virus (H3N2) strains of avian origin (A/canine/Korea/01/2007, A/canine/Korea/02/2007, and A/canine/Korea/03/2007) were isolated from dogs exhibiting severe respiratory disease. To determine whether the novel canine influenza virus of avian origin was transmitted among dogs, we experimentally infected beagles with this influenza virus (H3N2) isolate. The beagles shed virus through nasal excretion, seroconverted, and became ill with severe necrotizing tracheobronchitis and bronchioalveolitis with accompanying clinical signs (e.g., high fever). Consistent with histologic observation of lung lesions, large amounts of avian influenza virus binding receptor (SAα 2,3-gal) were identified in canine tracheal, bronchial, and bronchiolar epithelial cells, which suggests potential for direct transmission of avian influenza virus (H3N2) from poultry to dogs. Our data provide evidence that dogs may play a role in interspecies transmission and spread of influenza virus. PMID:18439355

  18. Avian and human influenza A virus receptors in trachea and lung of animals.

    Science.gov (United States)

    Thongratsakul, Sukanya; Suzuki, Yasuo; Hiramatsu, Hiroaki; Sakpuaram, Thavajchai; Sirinarumitr, Theerapol; Poolkhet, Chaithep; Moonjit, Pattra; Yodsheewan, Rungrueang; Songserm, Thaweesak

    2010-12-01

    Influenza A viruses are capable of crossing the specific barrier between human beings and animals resulting in interspecies transmission. The important factor of potential infectivity of influenza A viruses is the suitability of the receptor binding site of the host and viruses. The affinities of avian and human influenza virus to bind with the receptors and the distributions of receptors in animals are different. This study aims to investigate the anatomical distribution of avian and human influenza virus receptors using the double staining lectin histochemistry method. Double staining of lectin histochemistry was performed to identify both SA alpha2,3 Gal and SA alpha2,6 Gal receptors in trachea and lung tissue of dogs, cats, tigers, ferret, pigs, ducks and chickens. We have demonstrated that avian and human influenza virus receptors were abundantly present in trachea, bronchus and bronchiole, but in alveoli of dogs, cats and tigers showed SA alpha2,6 Gal only. Furthermore, endothelial cells in lung tissues showed presence of SA alpha2,3 Gal. The positive sites of both receptors in respiratory tract, especially in the trachea, suggest that all mammalian species studied can be infected with avian influenza virus. These findings suggested that dogs and cats in close contact with humans should be of greater concern as an intermediate host for avian influenza A in which there is the potential for viral adaptation and reassortment.

  19. Influenza vaccination in north Indian patients with heart failure.

    Science.gov (United States)

    Koul, Parvaiz A; Ali, Saima; Mir, Hyder; Ahmad, Syed J; Bhat, Shabir Akram; Bhat, Muneer A

    No data exists regarding the uptake of influenza vaccination in patients with heart failure (HF) in India. The present study was designed to assess the uptake, knowledge, attitude and practices of the Indian HF patients towards influenza vaccination. Five-hundred patients with acute/chronic HF were approached for a personal interview and responses to an interview recorded in a pre-defined questionnaire depicting their knowledge, attitudes and practice regarding influenza vaccination. Of the 500 approached, 320 (64%, 174 male, age 3-90 years) consented to participate in the survey. Only 7.5% (n=24) knew of influenza as an illness with adverse potential consequences for themselves or their family. Seventeen (5.3%) were aware of potentially serious nature of influenza and 40 (12.5%) knew of the availability of a vaccine against it and its local availability. However only 14 (4.4%) had actually received the vaccine 1-2 times in the past 5 years. Only 21 (6.56%) had been prescribed influenza vaccine by their respective physicians. Reasons for declining vaccination included misperceptions about safety and efficacy of the vaccine. Most of the participants, however, had not been prescribed vaccination at all. Poor influenza vaccination rates in HF mandate intense efforts to improve vaccination rates. Copyright © 2016. Published by Elsevier B.V.

  20. Influenza Vaccination Among US Children With Asthma, 2005-2013.

    Science.gov (United States)

    Simon, Alan E; Ahrens, Katherine A; Akinbami, Lara J

    2016-01-01

    Children with asthma face higher risk of complications from influenza. Trends in influenza vaccination among children with asthma are unknown. We used 2005-2013 National Health Interview Survey data for children 2 to 17 years of age. We assessed, separately for children with and without asthma, any vaccination (received August through May) during each of the 2005-2006 through 2012-2013 influenza seasons and, for the 2010-2011 through 2012-2013 seasons only, early vaccination (received August through October). We used April-July interviews each year (n = 31,668) to assess vaccination during the previous influenza season. Predictive margins from logistic regression with time as the independent and vaccination status as the dependent variable were used to assess time trends. We also estimated the association between several sociodemographic variables and the likelihood of influenza vaccination. From 2005 to 2013, among children with asthma, influenza vaccination receipt increased about 3 percentage points per year (P children with asthma vaccinated by October (early vaccination) was slightly above 30% in 2012-2013. In 2010-2013, adolescents, the uninsured, children of parents with some college education, and those living in the Midwest, South, and West were less likely to be vaccinated. The percentage of children 2 to 17 years of age with asthma receiving influenza vaccination has increased since 2004-2005, reaching approximately 55% in 2012-2013. Published by Elsevier Inc.

  1. Influenza Vaccination Among US Children With Asthma, 2005–2013

    Science.gov (United States)

    Simon, Alan E.; Ahrens, Katherine A.; Akinbami, Lara J.

    2016-01-01

    Background Children with asthma face higher risk of complications from influenza. Trends in influenza vaccination among children with asthma are unknown. Methods We used 2005–2013 National Health Interview Survey data for children 2 to 17 years of age. We assessed, separately for children with and without asthma, any vaccination (received August through May) during each of the 2005–2006 through 2012–2013 influenza seasons and, for the 2010–2011 through 2012–2013 seasons only, early vaccination (received August through October). We used April–July interviews each year (n = 31,668) to assess vaccination during the previous influenza season. Predictive margins from logistic regression with time as the independent and vaccination status as the dependent variable were used to assess time trends. We also estimated the association between several sociodemographic variables and the likelihood of influenza vaccination. Results From 2005 to 2013, among children with asthma, influenza vaccination receipt increased about 3 percentage points per year (P children with asthma vaccinated by October (early vaccination) was slightly above 30% in 2012–2013. In 2010–2013, adolescents, the uninsured, children of parents with some college education, and those living in the Midwest, South, and West were less likely to be vaccinated. Conclusions The percentage of children 2 to 17 years of age with asthma receiving influenza vaccination has increased since 2004–2005, reaching approximately 55% in 2012–2013. PMID:26518382

  2. Poly I:C adjuvanted inactivated swine influenza vaccine induces heterologous protective immunity in pigs.

    Science.gov (United States)

    Thomas, Milton; Wang, Zhao; Sreenivasan, Chithra C; Hause, Ben M; Gourapura J Renukaradhya; Li, Feng; Francis, David H; Kaushik, Radhey S; Khatri, Mahesh

    2015-01-15

    Swine influenza is widely prevalent in swine herds in North America and Europe causing enormous economic losses and a public health threat. Pigs can be infected by both avian and mammalian influenza viruses and are sources of generation of reassortant influenza viruses capable of causing pandemics in humans. Current commercial vaccines provide satisfactory immunity against homologous viruses; however, protection against heterologous viruses is not adequate. In this study, we evaluated the protective efficacy of an intranasal Poly I:C adjuvanted UV inactivated bivalent swine influenza vaccine consisting of Swine/OH/24366/07 H1N1 and Swine/CO/99 H3N2, referred as PAV, in maternal antibody positive pigs against an antigenic variant and a heterologous swine influenza virus challenge. Groups of three-week-old commercial-grade pigs were immunized intranasally with PAV or a commercial vaccine (CV) twice at 2 weeks intervals. Three weeks after the second immunization, pigs were challenged with the antigenic variant Swine/MN/08 H1N1 (MN08) and the heterologous Swine/NC/10 H1N2 (NC10) influenza virus. Antibodies in serum and respiratory tract, lung lesions, virus shedding in nasal secretions and virus load in lungs were assessed. Intranasal administration of PAV induced challenge viruses specific-hemagglutination inhibition- and IgG antibodies in the serum and IgA and IgG antibodies in the respiratory tract. Importantly, intranasal administration of PAV provided protection against the antigenic variant MN08 and the heterologous NC10 swine influenza viruses as evidenced by significant reductions in lung virus load, gross lung lesions and significantly reduced shedding of challenge viruses in nasal secretions. These results indicate that Poly I:C or its homologues may be effective as vaccine adjuvants capable of generating cross-protective immunity against antigenic variants/heterologous swine influenza viruses in pigs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. School-Based Influenza Vaccination: Health and Economic Impact of Maine's 2009 Influenza Vaccination Program.

    Science.gov (United States)

    Basurto-Dávila, Ricardo; Meltzer, Martin I; Mills, Dora A; Beeler Asay, Garrett R; Cho, Bo-Hyun; Graitcer, Samuel B; Dube, Nancy L; Thompson, Mark G; Patel, Suchita A; Peasah, Samuel K; Ferdinands, Jill M; Gargiullo, Paul; Messonnier, Mark; Shay, David K

    2017-12-01

    To estimate the societal economic and health impacts of Maine's school-based influenza vaccination (SIV) program during the 2009 A(H1N1) influenza pandemic. Primary and secondary data covering the 2008-09 and 2009-10 influenza seasons. We estimated weekly monovalent influenza vaccine uptake in Maine and 15 other states, using difference-in-difference-in-differences analysis to assess the program's impact on immunization among six age groups. We also developed a health and economic Markov microsimulation model and conducted Monte Carlo sensitivity analysis. We used national survey data to estimate the impact of the SIV program on vaccine coverage. We used primary data and published studies to develop the microsimulation model. The program was associated with higher immunization among children and lower immunization among adults aged 18-49 years and 65 and older. The program prevented 4,600 influenza infections and generated $4.9 million in net economic benefits. Cost savings from lower adult vaccination accounted for 54 percent of the economic gain. Economic benefits were positive in 98 percent of Monte Carlo simulations. SIV may be a cost-beneficial approach to increase immunization during pandemics, but programs should be designed to prevent lower immunization among nontargeted groups. © Health Research and Educational Trust.

  4. Advances in the development of influenza virus vaccines.

    Science.gov (United States)

    Krammer, Florian; Palese, Peter

    2015-03-01

    Influenza virus infections are a major public health concern and cause significant morbidity and mortality worldwide. Current influenza virus vaccines are an effective countermeasure against infection but need to be reformulated almost every year owing to antigenic drift. Furthermore, these vaccines do not protect against novel pandemic strains, and the timely production of pandemic vaccines remains problematic because of the limitations of current technology. Several improvements have been made recently to enhance immune protection induced by seasonal and pandemic vaccines, and to speed up production in case of a pandemic. Importantly, vaccine constructs that induce broad or even universal influenza virus protection are currently in preclinical and clinical development.

  5. Influenza Vaccination in Patients with Common Variable Immunodeficiency (CVID).

    Science.gov (United States)

    Mieves, Jan F; Wittke, Kirsten; Freitag, Helma; Volk, Hans-Dieter; Scheibenbogen, Carmen; Hanitsch, Leif G

    2017-10-05

    Vaccination against influenza in patients with primary antibody deficiency is recommended. Common variable immunodeficiency (CVID) is the most frequent and clinically relevant antibody deficiency disease and is by definition characterized by an impaired vaccination response. The purpose of this review is to present the current knowledge of humoral and cellular vaccine response to influenza in CVID patients. Studies conducted in CVID patients demonstrated an impaired humoral response upon influenza vaccination. Data on cellular immune response are in part conflicting, with two out of three studies showing responses similar to healthy controls. Available data suggest a benefit from influenza vaccination in CVID patients. Therefore, annual influenza vaccination in patients and their close household contacts is recommended.

  6. Progress toward the development of universal influenza vaccines.

    Science.gov (United States)

    Hoft, Daniel F; Belshe, Robert B

    2014-01-01

    Influenza remains a major problem causing significant morbidity and mortality annually and periodic pandemics with the potential for 10-100 fold increased mortality. Conventional vaccines can be highly effective if generated each year to match currently circulating viruses. Ongoing research focuses on producing cross-protective vaccines that induce T cell and/ or antibody responses specific for highly conserved viral epitopes. The Saint Louis University Center for Vaccine Development (SLUCVD) is highly engaged in multiple efforts to generate universally relevant influenza vaccines.

  7. Predictors of seasonal influenza vaccination among older adults in Thailand

    OpenAIRE

    Praphasiri, Prabda; Ditsungnoen, Darunee; Sirilak, Supakit; Rattanayot, Jarawee; Areerat, Peera; Dawood, Fatimah S.; Lindblade, Kim A.

    2017-01-01

    Background In advance of a large influenza vaccine effectiveness (VE) cohort study among older adults in Thailand, we conducted a population-based, cross-sectional survey to measure vaccine coverage and identify factors associated with influenza vaccination among older Thai adults that could bias measures of vaccine effectiveness. Method We selected adults ≥65 years using a two-stage, stratified, cluster sampling design. Functional status was assessed using the 10-point Vulnerable Elders Surv...

  8. Field avian metapneumovirus evolution avoiding vaccine induced immunity.

    Science.gov (United States)

    Catelli, Elena; Lupini, Caterina; Cecchinato, Mattia; Ricchizzi, Enrico; Brown, Paul; Naylor, Clive J

    2010-01-22

    Live avian metapneumovirus (AMPV) vaccines have largely brought turkey rhinotracheitis (TRT) under control in Europe but unexplained outbreaks still occur. Italian AMPV longitudinal farm studies showed that subtype B AMPVs were frequently detected in turkeys some considerable period after subtype B vaccination. Sequencing showed these to be unrelated to the previously applied vaccine. Sequencing of the entire genome of a typical later isolate showed numerous SH and G protein gene differences when compared to both a 1987 Italian field isolate and the vaccine in common use. Experimental challenge of vaccinated birds with recent virus showed that protection was inferior to that seen after challenge with the earlier 1987 isolate. Field virus had changed in key antigenic regions allowing replication and leading to disease in well vaccinated birds.

  9. Subclinical avian influenza A(H5N1) virus infection in human, Vietnam

    NARCIS (Netherlands)

    Le, Mai Quynh; Horby, Peter; Fox, Annette; Nguyen, Hien Tran; Le Nguyen, Hang Khanh; Hoang, Phuong Mai Vu; Nguyen, Khanh Cong; de Jong, Menno D.; Jeeninga, Rienk E.; Rogier van Doorn, H.; Farrar, Jeremy; Wertheim, Heiman F. L.

    2013-01-01

    Laboratory-confirmed cases of subclinical infection with avian influenza A(H5N1) virus in humans are rare, and the true number of these cases is unknown. We describe the identification of a laboratory-confirmed subclinical case in a woman during an influenza A(H5N1) contact investigation in northern

  10. Genetic Data Provide Evidence for Wind-Mediated Transmission of Highly Pathogenic Avian Influenza

    NARCIS (Netherlands)

    Ypma, R.J.F.; Jonges, M.; Bataille, A.M.A.; Stegeman, J.A.; Koch, G.; van Boven, R.M.; Koopmans, M.; van Ballegooijen, W.M.; Wallinga, J.

    2013-01-01

    Outbreaks of highly pathogenic avian influenza in poultry can cause severe economic damage and represent a public health threat. Development of efficient containment measures requires an understanding of how these influenza viruses are transmitted between farms. However, the actual mechanisms of

  11. Rapid detection of the avian influenza virus H5N1 subtype in Egypt ...

    African Journals Online (AJOL)

    Influenza A virus continue to cause widespread morbidity and mortality. The unprecedented spread of highly pathogenic avian influenza virus subtype H5N1 in Egypt is threatening poultry and public health systems. Effective diagnosis and control management are needed to control the disease. To this end, polyclonal ...

  12. H5N1 avian influenza virus: human cases reported in southern China.

    NARCIS (Netherlands)

    Crofts, J.; Paget, J.; Karcher, F.

    2003-01-01

    Two cases of confirmed influenza due to the avian influenza A H5N1 virus were reported last week in Hong Kong (1). The cases occurred in a Hong Kong family who had recently visited Fujian province in southern China. The daughter, aged 8 years, died following a respiratory illness. The cause of her

  13. Prevalence of Avian Origin H5 and H7 Influenza Virus Antibodies in ...

    African Journals Online (AJOL)

    As part of ongoing influenza surveillance efforts in livestock and companion animals in Nigeria, a study was conducted to investigate the prevalence of avian H5 and H7 influenza virus antibodies in exotic and Nigerian village dogs in Ibadan and Sagamu, two cities in Oyo and Ogun states respectively. One hundred and ...

  14. Mapping the risk of avian influenza in wild birds in the US

    Science.gov (United States)

    Trevon L. Fuller; Sassan S. Saatchi; Emily E. Curd; Erin Toffelmier; Henri A. Thomassen; Wolfgang Buermann; David F. DeSante; Mark P. Nott; James F. Saracco; C. J. Ralph; John D. Alexander; John P. Pollinger; Thomas B. Smith.

    2010-01-01

    Avian influenza virus (AIV) is an important public health issue because pandemic influenza viruses in people have contained genes from viruses that infect birds. The H5 and H7 AIV subtypes have periodically mutated from low pathogenicity to high pathogenicity form. Analysis of the geographic distribution of AIV can identify areas where reassortment events might occur...

  15. Probable Tiger-to-Tiger Transmission of Avian Influenza H5N1

    Science.gov (United States)

    Thanawongnuwech, Roongroje; Amonsin, Alongkorn; Tantilertcharoen, Rachod; Damrongwatanapokin, Sudarat; Theamboonlers, Apiradee; Payungporn, Sunchai; Nanthapornphiphat, Kamonchart; Ratanamungklanon, Somchuan; Tunak, Eakchai; Songserm, Thaweesak; Vivatthanavanich, Veravit; Lekdumrongsak, Thawat; Kesdangsakonwut, Sawang; Tunhikorn, Schwann

    2005-01-01

    During the second outbreak of avian influenza H5N1 in Thailand, probable horizontal transmission among tigers was demonstrated in the tiger zoo. Sequencing and phylogenetic analysis of those viruses showed no differences from the first isolate obtained in January 2004. This finding has implications for influenza virus epidemiology and pathogenicity in mammals. PMID:15890122

  16. Genome characterisation of the newly discovered avian influenza A H5N7 virus subtype combination

    DEFF Research Database (Denmark)

    Bragstad, K.; Jørgensen, Poul Henrik; Handberg, K.J.

    2007-01-01

    In Denmark, in 2003, a previously unknown subtype combination of avian influenza A virus, H5N7 (A/Mallard/Denmark/64650/03), was isolated from a flock of 12,000 mallards. The H5N7 subtype combination might be a reassortant between recent European avian influenza A H5, H7, and a third subtype....../Duck/Hong Kong/3096/99 (H6N2) and A/WDk/ST/1737/2000 (H6N8), respectively. All genes of the H5N7 strain were of avian origin, and no further evidence of pathogenicity to humans has been found....

  17. Development of high-yield influenza B virus vaccine viruses.

    Science.gov (United States)

    Ping, Jihui; Lopes, Tiago J S; Neumann, Gabriele; Kawaoka, Yoshihiro

    2016-12-20

    The burden of human infections with influenza A and B viruses is substantial, and the impact of influenza B virus infections can exceed that of influenza A virus infections in some seasons. Over the past few decades, viruses of two influenza B virus lineages (Victoria and Yamagata) have circulated in humans, and both lineages are now represented in influenza vaccines, as recommended by the World Health Organization. Influenza B virus vaccines for humans have been available for more than half a century, yet no systematic efforts have been undertaken to develop high-yield candidates. Therefore, we screened virus libraries possessing random mutations in the six "internal" influenza B viral RNA segments [i.e., those not encoding the major viral antigens, hemagglutinin (HA) and neuraminidase NA)] for mutants that confer efficient replication. Candidate viruses that supported high yield in cell culture were tested with the HA and NA genes of eight different viruses of the Victoria and Yamagata lineages. We identified combinations of mutations that increased the titers of candidate vaccine viruses in mammalian cells used for human influenza vaccine virus propagation and in embryonated chicken eggs, the most common propagation system for influenza viruses. These influenza B virus vaccine backbones can be used for improved vaccine virus production.

  18. Development of high-yield influenza B virus vaccine viruses

    Science.gov (United States)

    Ping, Jihui; Lopes, Tiago J. S.; Neumann, Gabriele; Kawaoka, Yoshihiro

    2016-01-01

    The burden of human infections with influenza A and B viruses is substantial, and the impact of influenza B virus infections can exceed that of influenza A virus infections in some seasons. Over the past few decades, viruses of two influenza B virus lineages (Victoria and Yamagata) have circulated in humans, and both lineages are now represented in influenza vaccines, as recommended by the World Health Organization. Influenza B virus vaccines for humans have been available for more than half a century, yet no systematic efforts have been undertaken to develop high-yield candidates. Therefore, we screened virus libraries possessing random mutations in the six “internal” influenza B viral RNA segments [i.e., those not encoding the major viral antigens, hemagglutinin (HA) and neuraminidase NA)] for mutants that confer efficient replication. Candidate viruses that supported high yield in cell culture were tested with the HA and NA genes of eight different viruses of the Victoria and Yamagata lineages. We identified combinations of mutations that increased the titers of candidate vaccine viruses in mammalian cells used for human influenza vaccine virus propagation and in embryonated chicken eggs, the most common propagation system for influenza viruses. These influenza B virus vaccine backbones can be used for improved vaccine virus production. PMID:27930325

  19. Effect of influenza vaccination on the prognosis of hospitalized influenza patients.

    Science.gov (United States)

    Casado, Itziar; Domínguez, Angela; Toledo, Diana; Chamorro, Judith; Force, Lluis; Soldevila, Núria; Astray, Jenaro; Egurrola, Mikel; Godoy, Pere; Mayoral, José M; Tamames, Sonia; Sanz, Francisco; Castilla, Jesús

    2016-01-01

    This study aimed to assess whether influenza vaccination reduces the risk of severe and fatal outcomes in influenza inpatients aged ≥65 years. During the 2013-2014 influenza season persons aged ≥65 years hospitalized with laboratory-confirmed influenza were selected in 19 Spanish hospitals. A severe influenza case was defined as admission to the intensive care unit, death in hospital or within 30 days after admission. Logistic regression was used to compare the influenza vaccination status between severe and non-severe influenza inpatients. Of 433 influenza confirmed patients, 81 (19%) were severe cases. Vaccination reduced the risk of severe illness (odds ratio: 0.57; 95%CI: 0.33-0.98). The cumulative number of influenza vaccine doses received since the 2010-2011 season was associated with a lower risk of severe influenza (odds ratio: 0.78; 95% CI 0.66-0.91). Adherence to seasonal influenza vaccination in the elderly may reduce the risk of severe influenza outcomes.

  20. Improving Influenza Vaccination Rate among Primary Healthcare Workers in Qatar

    Directory of Open Access Journals (Sweden)

    Khalid H. Elawad

    2017-10-01

    Full Text Available The purpose of this study was to improve influenza vaccination, and determine factors influencing vaccine declination among health care workers (HCW in Qatar. We launched an influenza vaccination campaign to vaccinate around 4700 HCW in 22 Primary Health Care Corporation (PHCC centers in Qatar between 1st and 15th of November, 2015. Our target was to vaccinate 60% of all HCW. Vaccine was offered free of charge at all centers, and information about the campaign and the importance of influenza vaccination was provided to employees through direct communication, emails, and social media networks. Staff were reported as vaccinated or non-vaccinated using a declination form that included their occupation, place of work and reasons for declining the vaccine. Survey responses were summarized as proportional outcomes. We exceeded our goal, and vaccinated 77% of the target population. Only 9% declined to take the vaccine, and the remaining 14% were either on leave or had already been vaccinated. Vaccine uptake was highest among aides (98.1%, followed by technicians (95.2%, and was lowest amongst pharmacists (73.2%, preceded by physicians (84%. Of those that declined the vaccine, 34% provided no reason, 18% declined it due to behavioral issues, and 21% declined it due to medical reasons. Uptake of influenza vaccine significantly increased during the 2015 immunization campaign. This is attributed to good planning, preparation, a high level of communication, and providing awareness and training to HCW with proper supervision and monitoring.

  1. Improving Influenza Vaccination Rate among Primary Healthcare Workers in Qatar.

    Science.gov (United States)

    Elawad, Khalid H; Farag, Elmoubasher A; Abuelgasim, Dina A; Smatti, Maria K; Al-Romaihi, Hamad E; Al Thani, Mohammed; Al Mujalli, Hanan; Shehata, Zienab; Alex, Merin; Al Thani, Asmaa A; Yassine, Hadi M

    2017-10-10

    The purpose of this study was to improve influenza vaccination, and determine factors influencing vaccine declination among health care workers (HCW) in Qatar. We launched an influenza vaccination campaign to vaccinate around 4700 HCW in 22 Primary Health Care Corporation (PHCC) centers in Qatar between 1st and 15th of November, 2015. Our target was to vaccinate 60% of all HCW. Vaccine was offered free of charge at all centers, and information about the campaign and the importance of influenza vaccination was provided to employees through direct communication, emails, and social media networks. Staff were reported as vaccinated or non-vaccinated using a declination form that included their occupation, place of work and reasons for declining the vaccine. Survey responses were summarized as proportional outcomes. We exceeded our goal, and vaccinated 77% of the target population. Only 9% declined to take the vaccine, and the remaining 14% were either on leave or had already been vaccinated. Vaccine uptake was highest among aides (98.1%), followed by technicians (95.2%), and was lowest amongst pharmacists (73.2%), preceded by physicians (84%). Of those that declined the vaccine, 34% provided no reason, 18% declined it due to behavioral issues, and 21% declined it due to medical reasons. Uptake of influenza vaccine significantly increased during the 2015 immunization campaign. This is attributed to good planning, preparation, a high level of communication, and providing awareness and training to HCW with proper supervision and monitoring.

  2. Nucleolar localization of influenza A NS1: striking differences between mammalian and avian cells

    Directory of Open Access Journals (Sweden)

    Mazel-Sanchez Beryl

    2010-03-01

    Full Text Available Abstract In mammalian cells, nucleolar localization of influenza A NS1 requires the presence of a C-terminal nucleolar localization signal. This nucleolar localization signal is present only in certain strains of influenza A viruses. Therefore, only certain NS1 accumulate in the nucleolus of mammalian cells. In contrast, we show that all NS1 tested in this study accumulated in the nucleolus of avian cells even in the absence of the above described C-terminal nucleolar localization signal. Thus, nucleolar localization of NS1 in avian cells appears to rely on a different nucleolar localization signal that is more conserved among influenza virus strains.

  3. Urban and Rural Differences in Parental Attitudes About Influenza Vaccination and Vaccine Delivery Models.

    Science.gov (United States)

    O'Leary, Sean T; Barnard, Juliana; Lockhart, Steven; Kolasa, Maureen; Shmueli, Doron; Dickinson, L Miriam; Kile, Deidre; Dibert, Eva; Kempe, Allison

    2015-01-01

    To assess and compare among parents of healthy children in urban and rural areas: (1) reported influenza vaccination status; (2) attitudes regarding influenza vaccination; and (3) attitudes about collaborative models for influenza vaccination delivery involving practices and public health departments. A mail survey to random samples of parents from 2 urban and 2 rural private practices in Colorado from April 2012 to June 2012. The response rate was 58% (288/500). In the prior season, 63% of urban and 41% of rural parents reported their child received influenza vaccination (P urban and rural parents were found, with 75% of urban and 73% of rural parents agreeing their child should receive an influenza vaccine every year (P = .71). High proportions reported willingness to participate in a collaborative clinic in a community setting (59% urban, 70% rural, P = .05) or at their child's provider (73% urban, 73% rural, P = .99) with public health department assisting. Fewer (36% urban, 53% rural, P health department if referred by their provider. Rural parents were more willing for their child to receive vaccination outside of their provider's office (70% vs. 55%, P = .01). While attitudes regarding influenza vaccination were similar, rural children were much less likely to have received vaccination. Most parents were amenable to collaborative models of influenza vaccination delivery, but rural parents were more comfortable with influenza vaccination outside their provider's office, suggesting that other venues for influenza vaccination in rural settings should be promoted. © 2015 National Rural Health Association.

  4. Heterosubtypic protection against pathogenic human and avian influenza viruses via in vivo electroporation of synthetic consensus DNA antigens.

    Directory of Open Access Journals (Sweden)

    Dominick J Laddy

    Full Text Available BACKGROUND: The persistent evolution of highly pathogenic avian influenza (HPAI highlights the need for novel vaccination techniques that can quickly and effectively respond to emerging viral threats. We evaluated the use of optimized consensus influenza antigens to provide broad protection against divergent strains of H5N1 influenza in three animal models of mice, ferrets, and non-human primates. We also evaluated the use of in vivo electroporation to deliver these vaccines to overcome the immunogenicity barrier encountered in larger animal models of vaccination. METHODS AND FINDINGS: Mice, ferrets and non-human primates were immunized with consensus plasmids expressing H5 hemagglutinin (pH5HA, N1 neuraminidase (pN1NA, and nucleoprotein antigen (pNP. Dramatic IFN-gamma-based cellular immune responses to both H5 and NP, largely dependent upon CD8+ T cells were seen in mice. Hemaggutination inhibition titers classically associated with protection (>1:40 were seen in all species. Responses in both ferrets and macaques demonstrate the ability of synthetic consensus antigens to induce antibodies capable of inhibiting divergent strains of the H5N1 subtype, and studies in the mouse and ferret demonstrate the ability of synthetic consensus vaccines to induce protection even in the absence of such neutralizing antibodies. After challenge, protection from morbidity and mortality was seen in mice and ferrets, with significant reductions in viral shedding and disease progression seen in vaccinated animals. CONCLUSIONS: By combining several consensus influenza antigens with in vivo electroporation, we demonstrate that these antigens induce both protective cellular and humoral immune responses in mice, ferrets and non-human primates. We also demonstrate the ability of these antigens to protect from both morbidity and mortality in a ferret model of HPAI, in both the presence and absence of neutralizing antibody, which will be critical in responding to the

  5. 21 CFR 610.11a - Inactivated influenza vaccine, general safety test.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Inactivated influenza vaccine, general safety test... Inactivated influenza vaccine, general safety test. For inactivated influenza vaccine, the general safety test... subcutaneous or intraperitoneal injection of 5.0 milliliters of inactivated influenza vaccine into each guinea...

  6. Improving influenza vaccination rates in the workplace: a randomized trial.

    Science.gov (United States)

    Nowalk, Mary Patricia; Lin, Chyongchiou J; Toback, Seth L; Rousculp, Matthew D; Eby, Charles; Raymund, Mahlon; Zimmerman, Richard K

    2010-03-01

    To minimize absenteeism resulting from influenza, employers frequently offer on-site influenza vaccination to employees. Yet the level of uptake of vaccine is low among working adults. This study was designed to increase workplace influenza vaccination rates by offering both a choice of intranasal (LAIV) and injectable (TIV) influenza vaccines to eligible employees, and an incentive for being vaccinated, and by increasing awareness of the vaccine clinic. This study used a stratified randomized cluster trial. A total of 12,222 employees in 53 U.S. companies with previous influenza vaccine clinics were examined. Control sites advertised and offered vaccine clinics as previously done. Choice sites offered LAIV or TIV and maintained their previous advertising level but promoted the choice of vaccines. Choice Plus sites increased advertising and promoted and offered a choice of vaccines and a nominal incentive. These included vaccination rates among eligible employees. Hierarchic linear modeling (HLM) was used to determine factors associated with vaccination. The overall vaccination rate increased from 39% in 2007-2008 to 46% in 2008-2009 (pvaccination rates for LAIV was 6.5% for Choice versus Control and 9.9% for Choice Plus versus Control (both p or =50 years (p=0.024). Rates of TIV did not change in workers aged 18-49 years in either intervention arm or in workers aged > or =50 years in the Choice arm. In HLM analyses, factors significantly associated with increased vaccination were older age, female gender, previous company vaccination rate, and the Choice Plus intervention. An incentive for vaccination, an intensified advertising campaign, and offering a choice of influenza vaccines improved vaccination rates in the workplace. Copyright (c) 2010 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  7. Prospects of HA-Based Universal Influenza Vaccine

    OpenAIRE

    Hashem, Anwar M.

    2015-01-01

    Current influenza vaccines afford substantial protection in humans by inducing strain-specific neutralizing antibodies (Abs). Most of these Abs target highly variable immunodominant epitopes in the globular domain of the viral hemagglutinin (HA). Therefore, current vaccines may not be able to induce heterosubtypic immunity against the divergent influenza subtypes. The identification of broadly neutralizing Abs (BnAbs) against influenza HA using recent technological advancements in antibody li...

  8. To Dream the Impossible Dream: Universal Influenza Vaccination

    OpenAIRE

    Yewdell, Jonathan W.

    2013-01-01

    Year in and year out, influenza viruses exact a deadly and expensive toll on humanity. Current vaccines simply do not keep pace with viral immune evasion, providing partial protection, at best, among various age groups. A quantum leap in understanding the basic principles of the adaptive and innate immune responses to influenza viruses offers the opportunity to develop vaccines that forestall, and potentially ultimately defeat, influenza virus antigenic variation.

  9. Can influenza epidemics be prevented by voluntary vaccination?

    Directory of Open Access Journals (Sweden)

    Raffaele Vardavas

    2007-05-01

    Full Text Available Previous modeling studies have identified the vaccination coverage level necessary for preventing influenza epidemics, but have not shown whether this critical coverage can be reached. Here we use computational modeling to determine, for the first time, whether the critical coverage for influenza can be achieved by voluntary vaccination. We construct a novel individual-level model of human cognition and behavior; individuals are characterized by two biological attributes (memory and adaptability that they use when making vaccination decisions. We couple this model with a population-level model of influenza that includes vaccination dynamics. The coupled models allow individual-level decisions to influence influenza epidemiology and, conversely, influenza epidemiology to influence individual-level decisions. By including the effects of adaptive decision-making within an epidemic model, we can reproduce two essential characteristics of influenza epidemiology: annual variation in epidemic severity and sporadic occurrence of severe epidemics. We suggest that individual-level adaptive decision-making may be an important (previously overlooked causal factor in driving influenza epidemiology. We find that severe epidemics cannot be prevented unless vaccination programs offer incentives. Frequency of severe epidemics could be reduced if programs provide, as an incentive to be vaccinated, several years of free vaccines to individuals who pay for one year of vaccination. Magnitude of epidemic amelioration will be determined by the number of years of free vaccination, an individuals' adaptability in decision-making, and their memory. This type of incentive program could control epidemics if individuals are very adaptable and have long-term memories. However, incentive-based programs that provide free vaccination for families could increase the frequency of severe epidemics. We conclude that incentive-based vaccination programs are necessary to control

  10. M2e-Based Universal Influenza A Vaccines

    Science.gov (United States)

    Deng, Lei; Cho, Ki Joon; Fiers, Walter; Saelens, Xavier

    2015-01-01

    The successful isolation of a human influenza virus in 1933 was soon followed by the first attempts to develop an influenza vaccine. Nowadays, vaccination is still the most effective method to prevent human influenza disease. However, licensed influenza vaccines offer protection against antigenically matching viruses, and the composition of these vaccines needs to be updated nearly every year. Vaccines that target conserved epitopes of influenza viruses would in principle not require such updating and would probably have a considerable positive impact on global human health in case of a pandemic outbreak. The extracellular domain of Matrix 2 (M2e) protein is an evolutionarily conserved region in influenza A viruses and a promising epitope for designing a universal influenza vaccine. Here we review the seminal and recent studies that focused on M2e as a vaccine antigen. We address the mechanism of action and the clinical development of M2e-vaccines. Finally, we try to foresee how M2e-based vaccines could be implemented clinically in the future. PMID:26344949

  11. Landscape attributes driving avian influenza virus circulation in the Lake Alaotra region of Madagascar

    Directory of Open Access Journals (Sweden)

    Laure Guerrini

    2014-05-01

    Full Text Available While the spatial pattern of the highly pathogenic avian influenza H5N1 virus has been studied throughout Southeast Asia, little is known on the spatial risk factors for avian influenza in Africa. In the present paper, we combined serological data from poultry and remotely sensed environmental factors in the Lake Alaotra region of Madagascar to explore for any association between avian influenza and landscape variables. Serological data from cross-sectional surveys carried out on poultry in 2008 and 2009 were examined together with a Landsat 7 satellite image analysed using supervised classification. The dominant landscape features in a 1-km buffer around farmhouses and distance to the closest water body were extracted. A total of 1,038 individual bird blood samples emanating from 241 flocks were analysed, and the association between avian influenza seroprevalence and these landcape variables was quantified using logistic regression models. No evidence of the presence of H5 or H7 avian influenza subtypes was found, suggesting that only low pathogenic avian influenza (LPAI circulated. Three predominant land cover classes were identified around the poultry farms: grassland savannah, rice paddy fields and wetlands. A significant negative relationship was found between LPAI seroprevalence and distance to the closest body of water. We also found that LPAI seroprevalence was higher in farms characterised by predominant wetlands or rice landscapes than in those surrounded by dry savannah. Results from this study suggest that if highly pathogenic avian influenza H5N1 virus were introduced in Madagascar, the environmental conditions that prevail in Lake Alaotra region may allow the virus to spread and persist.

  12. Prospects of HA-Based Universal Influenza Vaccine

    Directory of Open Access Journals (Sweden)

    Anwar M. Hashem

    2015-01-01

    Full Text Available Current influenza vaccines afford substantial protection in humans by inducing strain-specific neutralizing antibodies (Abs. Most of these Abs target highly variable immunodominant epitopes in the globular domain of the viral hemagglutinin (HA. Therefore, current vaccines may not be able to induce heterosubtypic immunity against the divergent influenza subtypes. The identification of broadly neutralizing Abs (BnAbs against influenza HA using recent technological advancements in antibody libraries, hybridoma, and isolation of single Ab-secreting plasma cells has increased the interest in developing a universal influenza vaccine as it could provide life-long protection. While these BnAbs can serve as a source for passive immunotherapy, their identification represents an important step towards the design of such a universal vaccine. This review describes the recent advances and approaches used in the development of universal influenza vaccine based on highly conserved HA regions identified by BnAbs.

  13. Influenza-vaccination: an inventory of strategies to reach the target population and optimise vaccination uptake.

    NARCIS (Netherlands)

    Kroneman, M.; Paget, J.

    2002-01-01

    Background: Influenza continues to be a considerable health problem of the populations in Europe. Complications of influenza are especially present in elderly patients and patients with chronic conditions such as cardiovascular disorders and respiratory disorders. Vaccination is an effective

  14. Influenza vaccination in the elderly: seeking new correlates of protection and improved vaccines.

    Science.gov (United States)

    McElhaney, Janet E

    2008-12-01

    Influenza is foremost among all infectious diseases for an age-related increase in risk for serious complications and death. Determining the benefit of current influenza vaccines is largely limited to epidemiologic studies, since placebo-controlled trials of influenza vaccines are no longer considered ethical in the older adult population. Vaccine effectiveness is calculated from the relative reduction in influenza outcomes in individuals who elect to be vaccinated compared with those who do not, the assumptions for which are diverse and have led to considerable controversy as to the exact benefit of influenza vaccination in older adults. In spite of this controversy, there is no doubt that new influenza vaccine technologies are needed to improve protection and reverse the trend of rising hospitalization and death rates related to influenza in older adults despite widespread influenza vaccination programs. This article will review the challenges to new vaccine development, explore the potential correlates of protection against influenza, and describe how new vaccine technologies may improve protection against complicated influenza illness in the older adult population.

  15. Effectiveness of 2010/2011 seasonal influenza vaccine in Ireland.

    LENUS (Irish Health Repository)

    Barret, A S

    2012-02-01

    We conducted a case-control study to estimate the 2010\\/2011 trivalent influenza vaccine effectiveness (TIVE) using the Irish general practitioners\\' influenza sentinel surveillance scheme. Cases were influenza-like illness (ILI) patients with laboratory-confirmed influenza. Controls were ILI patients who tested negative for influenza. Participating sentinel general practitioners (GP) collected swabs from patients presenting with ILI along with their vaccination history and other individual characteristics. The TIVE was computed as (1 - odds ratiofor vaccination) x100%. Of 60 sentinel GP practices, 22 expressed interest in participating in the study and 17 (28%) recruited at least one ILI patient. In the analysis, we included 106 cases and 85 controls. Seven controls (8.2%) and one influenza case (0.9%) had been vaccinated in 2010\\/2011. The estimated TIVE against any influenza subtype was 89.4% [95% CI: 13.8; 99.8%], suggesting a protective effect against GP-attended laboratory confirmed influenza. This study design could be used to monitor influenza vaccine effectiveness annually but sample size and vaccination coverage should be increased to obtain precise and adjusted estimates.

  16. Peering into the crystal ball: influenza pandemics and vaccine efficacy.

    Science.gov (United States)

    Miller, Matthew S; Palese, Peter

    2014-04-10

    The looming threat of a new influenza virus pandemic has fueled ambitious efforts to devise more predictive parameters for assessing the risks associated with emergent virus strains. At the same time, a comprehensive understanding of critical factors that can accurately predict the outcome of vaccination is sorely needed in order to improve the effectiveness of influenza virus vaccines. Will new studies aimed at identifying adaptations required for virus transmissibility and systems-level analyses of influenza virus vaccine responses provide an improved framework for predictive models of viral adaptation and vaccine efficacy? Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Control of highly pathogenic avian influenza in Quang Tri province, Vietnam: voices from the human-animal interface.

    Science.gov (United States)

    Farrell, Penny C; Hunter, Cynthia; Truong, Bui; Bunning, Michel

    2015-01-01

    Highly pathogenic avian influenza (HPAI) is caused by the haemagglutinin 5, neuraminidase 1 (H5N1) influenza A virus. Around 80% of households in rural Vietnam raise poultry, which provides food security and nutrition to their households and beyond. Of these, around 15-20% are semi-commercial producers, producing at least 28% of the country's chicken. Through learning the experiences of these semi-commercial farmers, this study aimed to explore the local understandings and sociocultural aspects of HPAI's impact, particularly the aetiology, diagnosis, and the prevention and control methods in one Vietnamese rural province. This study was conducted in Quang Tri province, Vietnam. Quang Tri province has eight districts. Five of these districts were at high risk of HPAI during the study period, of which three were selected for the present study. Within these three districts, six communes were randomly selected for the study from the list of intervention communes in Quang Tri province. Six out of the 26 intervention communes in Quang Tri were therefore selected. Participants were randomly selected and recruited from lists of semi-commercial farmers, village animal health workers, village human health workers and local authorities so that the study population (representative population) included an amount of variability similar to that of the wider population. A key benefit of this village-level control program was the residential proximity of animal and human health professionals. Participants were well aware of the typical clinical signs for avian influenza and of the reporting process for suspect cases. However there was extensive room for improvement in Quang Tri province regarding access to the HPAI vaccine, essential medical equipment for animal use, and available financial support. This qualitative research study provided an important insight for in-country policy makers and international stakeholders. It is vital that there are continued efforts to prevent and

  18. Impact of quadrivalent influenza vaccine on public health and influenza-related costs in Australia

    Directory of Open Access Journals (Sweden)

    Aurélien Jamotte

    2016-07-01

    Full Text Available Abstract Background Annual trivalent influenza vaccines (TIV containing three influenza strains (A/H1N1, A/H3N2, and one B have been recommended for the prevention of influenza. However, worldwide co-circulation of two distinct B lineages (Victoria and Yamagata and difficulties in predicting which lineage will predominate each season have led to the development of quadrivalent influenza vaccines (QIV, which include both B lineages. Our analysis evaluates the public health benefit and associated influenza-related costs avoided which would have been obtained by using QIV rather than TIV in Australia over the period 2002–2012. Methods A static model stratified by age group was used, focusing on people at increased risk of influenza as defined by the Australian vaccination recommendations. B-lineage cross-protection was accounted for. We calculated the potential impact of QIV compared with TIV over the seasons 2002–2012 (2009 pandemic year excluded using Australian data on influenza circulation, vaccine coverage, hospitalisation and mortality rates as well as unit costs, and international data on vaccine effectiveness, influenza attack rate, GP consultation rate and working days lost. Third-party payer and societal influenza-related costs were estimated in 2014 Australian dollars. Sensitivity analyses were conducted. Results Using QIV instead of TIV over the period 2002–2012 would have prevented an estimated 68,271 additional influenza cases, 47,537 GP consultations, 3,522 hospitalisations and 683 deaths in the population at risk of influenza. These results translate into influenza-related societal costs avoided of $46.5 million. The estimated impact of QIV was higher for young children and the elderly. The overall impact of QIV depended mainly on vaccine effectiveness and the influenza attack rate attributable to the mismatched B lineage. Conclusion The broader protection offered by QIV would have reduced the number of influenza infections

  19. Rural parents' vaccination-related attitudes and intention to vaccinate middle and high school children against influenza following educational influenza vaccination intervention

    Science.gov (United States)

    Painter, Julia E.; Pazol, Karen; Gargano, Lisa M.; Orenstein, Walter; Hughes, James M.; DiClemente, Ralph J.

    2011-01-01

    Objective: This study examined changes in parental influenza vaccination attitudes and intentions after participating in school-based educational influenza vaccination intervention. Methods: Participants were drawn from three counties participating in a school-based influenza vaccination intervention in rural Georgia (baseline N=324; follow-up N=327). Data were collected pre- and post-intervention from phone surveys with parents’ with children attending middle- and high-school. Attitudes, beliefs, vaccination history, and intention to vaccinate were assessed.  Results:  Parents who participated in the intervention conditions reported significantly higher influenza vaccination rates in their adolescents, relative to a control group, as well as increased vaccination rates post-intervention participation relative to their baseline rates. Intervention participants reported greater intention to have their adolescent vaccinated in the coming year compared to control parents.  Significant differences were observed post intervention in perceived barriers and benefits of vaccination. Conclusions: These findings suggest that a school-delivered educational influenza vaccination intervention targeting parents and teens may influence influenza vaccination in rural communities. Future influenza vaccination efforts geared toward the parents of rural middle- and high-school students may benefit from addressing barriers and benefits of influenza vaccination. PMID:22048112

  20. A review of highly pathogenic avian influenza in birds, with an emphasis on Asian H5N1 and recommendations for prevention and control.

    Science.gov (United States)

    Kelly, Terra R; Hawkins, Michelle G; Sandrock, Christian E; Boyce, Walter M

    2008-03-01

    Avian influenza is a disease of both veterinary and public health importance. Influenza A viruses infect a range of hosts, including humans, and can cause significant morbidity and mortality. These viruses have high genetic variability, and new strains develop through both mutation and reassortment. Modes of transmission as well as the location of viral shedding may differ both by host species and by viral strain. Clinical signs of influenza A virus infection in birds vary considerably depending on the viral subtype, environmental factors, and age, health status, and species of the bird and range from decreased egg production and gastrointestinal manifestations to nervous system disorders and respiratory signs. Most commonly, peracute death with minimal clinical disease is observed in poultry infected with a highly pathogenic avian influenza virus. There are various prevention and control strategies for avian influenza, including education, biosecurity, surveillance, culling of infected animals, and vaccination. These strategies will differ by institution and current federal regulations. Each institution should have an established biosecurity protocol that can be properly instituted. Lastly, human health precautions, such as proper hand hygiene, personal protective equipment, and employee health monitoring, are imperative for at-risk individuals.

  1. Targeted vaccination in healthy school children - Can primary school vaccination alone control influenza?

    Science.gov (United States)

    Thorrington, Dominic; Jit, Mark; Eames, Ken

    2015-10-05

    The UK commenced an extension to the seasonal influenza vaccination policy in autumn 2014 that will eventually see all healthy children between the ages of 2-16 years offered annual influenza vaccination. Models suggest that the new policy will be both highly effective at reducing the burden of influenza as well as cost-effective. We explore whether targeting vaccination at either primary or secondary schools would be more effective and/or cost-effective than the current strategy. An age-structured deterministic transmission dynamic SEIR-type mathematical model was used to simulate a national influenza outbreak in England. Costs including GP consultations, hospitalisations due to influenza and vaccinations were compared to potential gains in quality-adjusted life years achieved through vaccinating healthy children. Costs and benefits of the new JCVI vaccination policy were estimated over a single season, and compared to the hypothesised new policies of targeted and heterogeneous vaccination. All potential vaccination policies were highly cost-effective. Influenza transmission can be eliminated for a particular season by vaccinating both primary and secondary school children, but not by vaccinating only one group. The most cost-effective policy overall is heterogeneous vaccination coverage with 48% uptake in primary schools and 34% in secondary schools. The Joint Committee on Vaccination and Immunisation can consider a modification to their policy of offering seasonal influenza vaccinations to all healthy children of ages 2-16 years. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. AS03- and MF59-Adjuvanted Influenza Vaccines in Children

    Science.gov (United States)

    Wilkins, Amanda L.; Kazmin, Dmitri; Napolitani, Giorgio; Clutterbuck, Elizabeth A.; Pulendran, Bali; Siegrist, Claire-Anne; Pollard, Andrew J.

    2017-01-01

    Influenza is a major cause of respiratory disease leading to hospitalization in young children. However, seasonal trivalent influenza vaccines (TIVs) have been shown to be ineffective and poorly immunogenic in this population. The development of live-attenuated influenza vaccines and adjuvanted vaccines are important advances in the prevention of influenza in young children. The oil-in-water emulsions MF59 and adjuvant systems 03 (AS03) have been used as adjuvants in both seasonal adjuvanted trivalent influenza vaccines (ATIVs) and pandemic monovalent influenza vaccines. Compared with non-adjuvanted vaccine responses, these vaccines induce a more robust and persistent antibody response for both homologous and heterologous influenza strains in infants and young children. Evidence of a significant improvement in vaccine efficacy with these adjuvanted vaccines resulted in the use of the monovalent (A/H1N1) AS03-adjuvanted vaccine in children in the 2009 influenza pandemic and the licensure of the seasonal MF59 ATIV for children aged 6 months to 2 years in Canada. The mechanism of action of MF59 and AS03 remains unclear. Adjuvants such as MF59 induce proinflammatory cytokines and chemokines, including CXCL10, but independently of type-1 interferon. This proinflammatory response is associated with improved recruitment, activation and maturation of antigen presenting cells at the injection site. In young children MF59 ATIV produced more homogenous and robust transcriptional responses, more similar to adult-like patterns, than did TIV. Early gene signatures characteristic of the innate immune response, which correlated with antibody titers were also identified. Differences were detected when comparing child and adult responses including opposite trends in gene set enrichment at day 3 postvaccination and, unlike adult data, a lack of correlation between magnitude of plasmablast response at day 7 and antibody titers at day 28 in children. These insights show the utility

  3. AS03- and MF59-Adjuvanted Influenza Vaccines in Children

    Directory of Open Access Journals (Sweden)

    Amanda L. Wilkins

    2017-12-01

    Full Text Available Influenza is a major cause of respiratory disease leading to hospitalization in young children. However, seasonal trivalent influenza vaccines (TIVs have been shown to be ineffective and poorly immunogenic in this population. The development of live-attenuated influenza vaccines and adjuvanted vaccines are important advances in the prevention of influenza in young children. The oil-in-water emulsions MF59 and adjuvant systems 03 (AS03 have been used as adjuvants in both seasonal adjuvanted trivalent influenza vaccines (ATIVs and pandemic monovalent influenza vaccines. Compared with non-adjuvanted vaccine responses, these vaccines induce a more robust and persistent antibody response for both homologous and heterologous influenza strains in infants and young children. Evidence of a significant improvement in vaccine efficacy with these adjuvanted vaccines resulted in the use of the monovalent (A/H1N1 AS03-adjuvanted vaccine in children in the 2009 influenza pandemic and the licensure of the seasonal MF59 ATIV for children aged 6 months to 2 years in Canada. The mechanism of action of MF59 and AS03 remains unclear. Adjuvants such as MF59 induce proinflammatory cytokines and chemokines, including CXCL10, but independently of type-1 interferon. This proinflammatory response is associated with improved recruitment, activation and maturation of antigen presenting cells at the injection site. In young children MF59 ATIV produced more homogenous and robust transcriptional responses, more similar to adult-like patterns, than did TIV. Early gene signatures characteristic of the innate immune response, which correlated with antibody titers were also identified. Differences were detected when comparing child and adult responses including opposite trends in gene set enrichment at day 3 postvaccination and, unlike adult data, a lack of correlation between magnitude of plasmablast response at day 7 and antibody titers at day 28 in children. These insights

  4. AS03- and MF59-Adjuvanted Influenza Vaccines in Children.

    Science.gov (United States)

    Wilkins, Amanda L; Kazmin, Dmitri; Napolitani, Giorgio; Clutterbuck, Elizabeth A; Pulendran, Bali; Siegrist, Claire-Anne; Pollard, Andrew J

    2017-01-01

    Influenza is a major cause of respiratory disease leading to hospitalization in young children. However, seasonal trivalent influenza vaccines (TIVs) have been shown to be ineffective and poorly immunogenic in this population. The development of live-attenuated influenza vaccines and adjuvanted vaccines are important advances in the prevention of influenza in young children. The oil-in-water emulsions MF59 and adjuvant systems 03 (AS03) have been used as adjuvants in both seasonal adjuvanted trivalent influenza vaccines (ATIVs) and pandemic monovalent influenza vaccines. Compared with non-adjuvanted vaccine responses, these vaccines induce a more robust and persistent antibody response for both homologous and heterologous influenza strains in infants and young children. Evidence of a significant improvement in vaccine efficacy with these adjuvanted vaccines resulted in the use of the monovalent (A/H1N1) AS03-adjuvanted vaccine in children in the 2009 influenza pandemic and the licensure of the seasonal MF59 ATIV for children aged 6 months to 2 years in Canada. The mechanism of action of MF59 and AS03 remains unclear. Adjuvants such as MF59 induce proinflammatory cytokines and chemokines, including CXCL10, but independently of type-1 interferon. This proinflammatory response is associated with improved recruitment, activation and maturation of antigen presenting cells at the injection site. In young children MF59 ATIV produced more homogenous and robust transcriptional responses, more similar to adult-like patterns, than did TIV. Early gene signatures characteristic of the innate immune response, which correlated with antibody titers were also identified. Differences were detected when comparing child and adult responses including opposite trends in gene set enrichment at day 3 postvaccination and, unlike adult data, a lack of correlation between magnitude of plasmablast response at day 7 and antibody titers at day 28 in children. These insights show the utility

  5. Haemophilus Influenzae Type b (Hib) Vaccine: What You Need to Know

    Science.gov (United States)

    VACCINE INFORMATION STATEMENT Hib Vaccine ( Haemophilus Influenzae Type b) What You Need to Know Many Vaccine Information Statements are available in Spanish and other languages. See www. immunize. ...

  6. Annually repeated influenza vaccination improves humoral responses to several influenza virus strains in healthy elderly

    NARCIS (Netherlands)

    I.A. de Bruijn (Iris); E.J. Remarque (Edmond); W.E.Ph. Beyer (Walter); S. le Cessie (Saskia); N. Masurel (Nic); G.L. Ligthart (Gerard)

    1997-01-01

    textabstractThe benefit of annually repeated influenza vaccination on antibody formation is still under debate. In this study the effect of annually repeated influenza vaccination on haemagglutination inhibiting (HI) antibody formation in the elderly is investigated. Between 1990 and 1993 healthy

  7. Conjugate Haemophilus influenzae type b vaccines for sickle cell disease.

    Science.gov (United States)

    Allali, Slimane; Chalumeau, Martin; Launay, Odile; Ballas, Samir K; de Montalembert, Mariane

    2016-02-16

    People affected with sickle cell disease are at high risk of infection from Haemophilus influenzae type b. Before the implementation of Haemophilus influenzae type b conjugate vaccination in high-income countries, this was responsible for a high mortality rate in children under five years of age. In African countries, where coverage of this vaccination is still extremely low, Haemophilus influenzae type b remains one of the most common cause of bacteraemias in children with sickle cell disease. The increased uptake of this conjugate vaccination may substantially improve the survival of children with sickle cell disease. The primary objective was to determine whether Haemophilus influenzae type b conjugate vaccines reduce mortality and morbidity in children and adults with sickle cell disease.The secondary objectives were to assess the following in children and adults with sickle cell disease: the immunogenicity of Haemophilus influenzae type b conjugate vaccines; the safety of these vaccines; and any variation in effect according to type of vaccine, mode of administration (separately or in combination with other vaccines), number of doses, and age at first dose. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Haemoglobinopathies Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also contacted relevant pharmaceutical companies to identify unpublished trials.Date of last search: 23 November 2015. All randomised and quasi-randomised controlled trials comparing Haemophilus influenzae type b conjugate vaccines with placebo or no treatment, or comparing different types of Haemophilus influenzae type b conjugate vaccines in people with sickle cell disease. No trials of Haemophilus influenzae type b conjugate vaccines in people with sickle cell disease were found. There is an absence of evidence from randomised controlled trials relating to the subject of this review. There has

  8. Hatchability, serology and virus excretion following in ovo vaccination of chickens with an avian metapneumovirus vaccine.

    Science.gov (United States)

    Hess, M; Huggins, M B; Heincz, U

    2004-12-01

    The present investigation describes for the first time the effect of an avian metapneumovirus vaccine administered in ovo to 18-day-old chicken embryos. The application of the vaccine had no adverse effect on the hatchability or the health of the chicks post hatch. The antibody titres achieved were higher than those determined for birds vaccinated at 1 day old. Not only were the mean titres in the in ovo vaccinated groups higher, but many more birds developed a measurable antibody response than birds vaccinated at 1 day old. Variation of the vaccine dose used in ovo had little effect on the serological responses that peaked 21 to 28 days post hatch. Re-isolation of the vaccine virus was much more successful from birds vaccinated in ovo than from birds vaccinated at 1 day old, and detection of the nucleic acid by polymerase chain reaction correlated with the results of live virus isolation.

  9. PROSPEK PEMANFAATAN TELUR AYAM BERKHASIAT ANTI VIRUS AVIAN INFLUENZA DALAM USAHA PENGENDALIAN INFEKSI VIRUS FLU BURUNG DENGAN PENDEKATAN PENGEBALAN PASIF

    Directory of Open Access Journals (Sweden)

    Wibawan IWT

    2008-12-01

    Full Text Available Production of polyclonal antibody against avian influenza type H5H1 and H5N2 was done in horse, cavia and chicken using respective commercial avian influenza vaccine. The presence of specific antibody in sera as well as egg yolk was detected with haemagglutination inhibition test (HI and agar gell precipitation test (AGPT. One week after first vaccination the presence of specific antibody in chicken sera could be detected in HI test with titer 2-2 using homolog antigen. The titer value discrepancy of1-2 digits was detected using heterlog antigen. The titer of antibody increase significantly after booster treatment, in horse sera with HI value 2,2-2 in cavia and 2-2 in chicken sera.the purification of IgG and IgY was done using affinity chromatography technique . cavia Ig G had neutralization ability to AI virus H%H1 isolate 2005 with the titer of 10 EID 50 was 1,3. This indicated that by the dilution of sera 10,could neutralize all viral particles used in the assay (100%.using spray dried egg yolk containing antibody with titer 10 could neutralize 50% of AI virus 10 EID 50, and titer antibody of 10 neutralized 80% of AI virus 10 EID 50. These result indicaed a good prospect of using chicken egg for the production specific antibody (IgY AI virus and could be used in the passive immunazition

  10. Chitosan Nanoparticle Encapsulated Hemagglutinin-Split Influenza Virus Mucosal Vaccine

    OpenAIRE

    Sawaengsak, Chompoonuch; Mori, Yasuko; Yamanishi, Koichi; Mitrevej, Ampol; Sinchaipanid, Nuttanan

    2013-01-01

    Subunit/split influenza vaccines are less reactogenic compared with the whole virus vaccines. However, their immunogenicity is relatively low and thus required proper adjuvant and/or delivery vehicle for immunogenicity enhancement. Influenza vaccines administered intramuscularly induce minimum, if any, mucosal immunity at the respiratory mucosa which is the prime site of the infection. In this study, chitosan (CS) nanoparticles were prepared by ionic cross-linking of the CS with sodium tripol...

  11. Vaccines for preventing influenza in people with asthma.

    Science.gov (United States)

    Cates, C J; Jefferson, T O; Rowe, B H

    2008-04-16

    Influenza vaccination is recommended for asthmatic patients in many countries as observational studies have shown that influenza infection can be associated with asthma exacerbations, but influenza vaccination itself has the potential to adversely affect pulmonary function. A recent overview concluded that there was no clear benefit of influenza vaccination in patients with asthma but this conclusion was not based on a systematic search of the literature. Whilst influenza may cause asthma exacerbations, there is controversy about the use of influenza vaccinations, since they may precipitate an asthma attack in some people. The objective of this review was to assess the efficacy of influenza vaccination in children and adults with asthma. We searched the Cochrane Airways Group trials register and checked reference lists of articles. The last search was carried out in September 2007. Randomised trials of influenza vaccination in children (over two years of age) and adults with asthma. Studies involving people with chronic obstructive pulmonary disease were excluded. Inclusion criteria and assessment of trial quality were applied by two reviewers independently. Data extraction was done by two reviewers independently. Study authors were contacted for missing information. Nine trials were initially included. Four of these trials were of high quality. Six further articles have been included in three updates (Bueving 2003; Castro 2001; Fleming 2006; Redding 2002; Reid 1998). The included studies covered a wide diversity of people, settings and types of influenza vaccination, but data from the more recent studies that used similar vaccines have been pooled. Bueving 2003 studied 696 children with asthma and did not demonstrate a significant reduction in influenza related asthma exacerbations (Risk Difference 0.01; 95% confidence interval -0.02 to 0.04). The pooled results of two trials involving 2306 people with asthma did not demonstrate a significant increase in asthma

  12. Ischaemic heart disease, influenza and influenza vaccination: a prospective case control study.

    Science.gov (United States)

    Macintyre, C Raina; Heywood, Anita E; Kovoor, Pramesh; Ridda, Iman; Seale, Holly; Tan, Timothy; Gao, Zhanhai; Katelaris, Anthea L; Siu, Ho Wai Derrick; Lo, Vincent; Lindley, Richard; Dwyer, Dominic E

    2013-12-01

    Abundant, indirect epidemiological evidence indicates that influenza contributes to all-cause mortality and cardiovascular hospitalisations with studies showing increases in acute myocardial infarction (AMI) and death during the influenza season. To investigate whether influenza is a significant and unrecognised underlying precipitant of AMI. Case-control study. Tertiary referral hospital in Sydney, Australia, during 2008 to 2010. Cases were inpatients with AMI and controls were outpatients without AMI at a hospital in Sydney, Australia. Primary outcome was laboratory evidence of influenza. Secondary outcome was baseline self-reported acute respiratory tract infection. Of 559 participants, 34/275 (12.4%) cases and 19/284 (6.7%) controls had influenza (OR 1.97, 95% CI 1.09 to 3.54); half were vaccinated. None were recognised as having influenza during their clinical encounter. After adjustment, influenza infection was no longer a significant predictor of recent AMI. However, influenza vaccination was significantly protective (OR 0.55, 95% CI 0.35 to 0.85), with a vaccine effectiveness of 45% (95% CI 15% to 65%). Recent influenza infection was an unrecognised comorbidity in almost 10% of hospital patients. Influenza did not predict AMI, but vaccination was significantly protective but underused. The potential population health impact of influenza vaccination, particularly in the age group 50-64 years, who are at risk for AMI but not targeted for vaccination, should be further explored. Our data should inform vaccination policy and cardiologists should be aware of missed opportunities to vaccinate individuals with ischaemic heart disease against influenza.

  13. Effect of receptor binding domain mutations on receptor binding and transmissibility of avian influenza H5N1 viruses

    DEFF Research Database (Denmark)

    Maines, Taronna R; Chen, Li-Mei; Van Hoeven, Neal

    2011-01-01

    Although H5N1 influenza viruses have been responsible for hundreds of human infections, these avian influenza viruses have not fully adapted to the human host. The lack of sustained transmission in humans may be due, in part, to their avian-like receptor preference. Here, we have introduced...

  14. Deaths among wild birds during highly pathogenic avian influenza A(H5N8) virus outbreak, the Netherlands

    NARCIS (Netherlands)

    Kleyheeg, Erik; Slaterus, Roy; Bodewes, Rogier; Rijks, Jolianne M.; Spierenburg, Marcel A.H.; Beerens, Nancy; Kelder, Leon; Poen, Marjolein J.; Stegeman, Jan A.; Fouchier, Ron A.M.; Kuiken, Thijs; Jeugd, van der Henk P.

    2017-01-01

    During autumn–winter 2016–2017, highly pathogenic avian influenza A(H5N8) viruses caused mass die-offs among wild birds in the Netherlands. Among the ≈13,600 birds reported dead, most were tufted ducks (Aythya fuligula) and Eurasian wigeons (Anas penelope). Recurrence of avian influenza outbreaks

  15. Deaths among Wild Birds during Highly Pathogenic Avian Influenza A(H5N8) Virus Outbreak, the Netherlands

    NARCIS (Netherlands)

    Kleyheeg, Erik; Slaterus, Roy; Bodewes, Rogier; Rijks, Jolianne M.; Spierenburg, Marcel A.H.; Beerens, Nancy; Kelder, Leon; Poen, Marjolein J.; Stegeman, Jan A.; Fouchier, Ron A. M.; Kuiken, Thijs; Jeugd, Henk P. van der

    2017-01-01

    During autumn–winter 2016–2017, highly pathogenic avian influenza A(H5N8) viruses caused mass die-offs among wild birds in the Netherlands. Among the ≈13,600 birds reported dead, most were tufted ducks (Aythya fuligula) and Eurasian wigeons (Anas penelope). Recurrence of avian influenza outbreaks

  16. An emerging avian influenza A virus H5N7 is a genetic reassortant of highly pathogenic genes

    DEFF Research Database (Denmark)

    Bragstad, K.; Jørgensen, Poul Henrik; Handberg, Kurt

    2006-01-01

    We full genome characterised the newly discovered avian influenza virus H5N7 subtype combination isolated from a stock of Danish game ducks to investigate the composition of the genome and possible features of high pathogenicity. It was found that the haemagglutinin and the acidic polymerase genes...... low pathogenic avian influenza A viruses. (c) 2006 Elsevier Ltd. All rights reserved....

  17. Identifying crucial gaps in our knowledge of the life-history of avian influenza viruses - an Australian perspective

    NARCIS (Netherlands)

    Klaassen, M.R.J.; Hoye, B.J.; Roshier, D.

    2011-01-01

    We review our current knowledge of the epidemiology and ecology of avian influenza viruses (AIVs) in Australia in relation to the ecology of their hosts. Understanding the transmission and maintenance of low-pathogenic avian influenza (LPAI) viruses deserves scientific scrutiny because some of these

  18. Influenza virus neuraminidase (NA): a target for antivirals and vaccines.

    Science.gov (United States)

    Jagadesh, Anitha; Salam, Abdul Ajees Abdul; Mudgal, Piya Paul; Arunkumar, Govindakarnavar

    2016-08-01

    Influenza, the most common infectious disease, poses a great threat to human health because of its highly contagious nature and fast transmissibility, often leading to high morbidity and mortality. Effective vaccination strategies may aid in the prevention and control of recurring epidemics and pandemics associated with this infectious disease. However, antigenic shifts and drifts are major concerns with influenza virus, requiring effective global monitoring and updating of vaccines. Current vaccines are standardized primarily based on the amount of hemagglutinin, a major surface antigen, which chiefly constitutes these preparations along with the varying amounts of neuraminidase (NA). Anti-influenza drugs targeting the active site of NA have been in use for more than a decade now. However, NA has not been approved as an effective antigenic component of the influenza vaccine because of standardization issues. Although some studies have suggested that NA antibodies are able to reduce the severity of the disease and induce a long-term and cross-protective immunity, a few major scientific issues need to be addressed prior to launching NA-based vaccines. Interestingly, an increasing number of studies have shown NA to be a promising target for future influenza vaccines. This review is an attempt to consolidate studies that reflect the strength of NA as a suitable vaccine target. The studies discussed in this article highlight NA as a potential influenza vaccine candidate and support taking the process of developing NA vaccines to the next stage.

  19. Protective effect of a polyvalent influenza DNA vaccine in pigs

    DEFF Research Database (Denmark)

    Karlsson, Ingrid; Borggren, Marie; Rosenstierne, Maiken Worsøe

    2018-01-01

    Background Influenza A virus in swine herds represents a major problem for the swine industry and poses a constant threat for the emergence of novel pandemic viruses and the development of more effective influenza vaccines for pigs is desired. By optimizing the vector backbone and using a needle......-free delivery method, we have recently demonstrated a polyvalent influenza DNA vaccine that induces a broad immune response, including both humoral and cellular immunity. Objectives To investigate the protection of our polyvalent influenza DNA vaccine approach in a pig challenge study. Methods By intradermal...... needle-free delivery to the skin, we immunized pigs with two different doses (500 μg and 800 μg) of an influenza DNA vaccine based on six genes of pandemic origin, including internally expressed matrix and nucleoprotein and externally expressed hemagglutinin and neuraminidase as previously demonstrated...

  20. Polyarteritis nodosa related with influenza vaccine = Poliarteritis nodosa relacionada con vacuna contra la influenza

    Directory of Open Access Journals (Sweden)

    Restrepo Escobar, Mauricio

    2013-01-01

    Full Text Available Vasculitis can be secondary to various processes, among them infections, malignancies, connective tissue diseases or medications, or primary, generally idiopathic. The reported adverse events after vaccination can be mild and transient or more serious such as autoimmune diseases. Possibly the most frequently described autoimmune phenomena after influenza vaccination are different forms of vasculitis. We report the case of a patient who presented a clinical picture of vasculitis classified as polyarteritis nodosa that began two weeks after receiving the influenza vaccine. After critically reviewing the literature, this would be the first clearly documented case of polyarteritis nodosa associated with vaccination against influenza.

  1. Risk factors and characteristics of low pathogenic avian influenza virus isolated from commercial poultry in Tunisia.

    Directory of Open Access Journals (Sweden)

    Wafa Tombari

    Full Text Available OBJECTIVE: Estimate the seroprevalence of influenza A virus in various commercial poultry farms and evaluate specific risk factors as well as analyze their genetic nature using molecular assays. MATERIALS AND METHODS: This report summarizes the findings of a national survey realized from October 2010 to May 2011 on 800 flocks in 20 governorates. Serum samples were screened for the presence of specific influenza virus antibodies using cELISA test. Additionally, swab samples were tested by real time and conventional RT-PCR and compared with results obtained by others assays. Phylogenetic and genetic analyses of the glycoproteins were established for some strains. RESULTS: Out of the 800 chicken and turkey flocks tested by cELISA, 223 showed positive anti-NP antibodies (28.7%, 95% CI: 25.6-32.1. Significantly higher seroprevalence was found among the coastal areas compared to inland and during the autumn and winter. Broiler flocks showed significantly lower seroprevalence than layers and broiler breeders. The influenza virus infection prevalence increased after the laying phase among layer flocks. In addition, AIV seropositivity was significantly associated with low biosecurity measures. The Ag EIA and rRT-PCR tests revealed significantly higher numbers of AI positive samples as compared to cell cultures or egg inoculation. All new strains were subtyped as H9N2 by real time and conventional RT-PCR. Drift mutations, addition or deletion of glycosylation sites were likely to have occurred in the HA and NA glycoproteins of Tunisian strains resulting in multiple new amino acid substitutions. This fact may reflect different evolutionary pressures affecting these glycoproteins. The role of these newly detected substitutions should be tested. CONCLUSION: Our findings highlight the potential risk of AIV to avian health. Strict enforcement of biosecurity measures and possible vaccination of all poultry flocks with continuous monitoring of poultry stations

  2. Efficacy of Influenza Vaccination and Tamiflu? Treatment ? Comparative Studies with Eurasian Swine Influenza Viruses in Pigs

    OpenAIRE

    Duerrwald, Ralf; Schlegel, Michael; Bauer, Katja; Vissiennon, Th?ophile; Wutzler, Peter; Schmidtke, Michaela

    2013-01-01

    Recent epidemiological developments demonstrated that gene segments of swine influenza A viruses can account for antigenic changes as well as reduced drug susceptibility of pandemic influenza A viruses. This raises questions about the efficacy of preventive measures against swine influenza A viruses. Here, the protective effect of vaccination was compared with that of prophylactic Tamiflu® treatment against two Eurasian swine influenza A viruses. 11-week-old pigs were infected by aerosol nebu...

  3. The safety of influenza vaccines in children: An Institute for Vaccine Safety white paper.

    Science.gov (United States)

    Halsey, Neal A; Talaat, Kawsar R; Greenbaum, Adena; Mensah, Eric; Dudley, Matthew Z; Proveaux, Tina; Salmon, Daniel A

    2015-12-30

    Most influenza vaccines are generally safe, but influenza vaccines can cause rare serious adverse events. Some adverse events, such as fever and febrile seizures, are more common in children than adults. There can be differences in the safety of vaccines in different populations due to underlying differences in genetic predisposition to the adverse event. Live attenuated vaccines have not been studied adequately in children under 2 years of age to determine the risks of adverse events; more studies are needed to address this and several other priority safety issues with all influenza vaccines in children. All vaccines intended for use in children require safety testing in the target age group, especially in young children. Safety of one influenza vaccine in children should not be extrapolated to assumed safety of all influenza vaccines in children. The low rates of adverse events from influenza vaccines should not be a deterrent to the use of influenza vaccines because of the overwhelming evidence of the burden of disease due to influenza in children. Copyright © 2016. Published by Elsevier Ltd.

  4. Genotyping and detection of common avian and human origin-influenza viruses using a portable chemiluminescence imaging microarray.

    Science.gov (United States)

    Zhang, Yingjie; Liu, Qiqi; Wang, Dou; Chen, Suhong; Wang, Xiaobo; Wang, Shengqi

    2016-01-01

    Influenza viruses are divided into three types, A, B, and C. Human influenza A and B viruses can cause seasonal epidemics, but influenza C causes only a mild respiratory illness. Influenza A virus can infect various host species. In 2013, human-infectious avian influenza A (H7N9) was first reported in China. By the second week of 2014, there were 210 laboratory-confirmed human cases in the country, and the mortality rate eventually reached 22 %. Rapid and accurate diagnosis of influenza viruses is important for clinical management and epidemiology. In this assay, a cost-effective chemiluminescence (CL) detection oligonucleotide microarray was developed to genotype and detect avian influenza A (H7N9), avian influenza A (H5N1), 2009 influenza A (H1N1), seasonal influenza A (H1N1), and seasonal influenza A (H3N2). Influenza A viruses and influenza B viruses were also generally detected using this microarray. The results of detection of 40 cultivated influenza virus strains showed that the microarray was able to distinguish the subtypes of these influenza viruses very well. The microarray possessed similar or 10 fold higher limit of detection than the real-time RT-PCR method. Sixty-six clinical swab samples were detected using this microarray and verified with real time RT-PCR to evaluate the efficiency of this microarray for clinical testing. A reliable CL detection oligonucleotide microarray had been developed to genotype and detected these influenza viruses.

  5. Reducing Racial Disparities in Influenza Vaccination Among Children With Asthma.

    Science.gov (United States)

    Lin, Chyongchiou Jeng; Nowalk, Mary Patricia; Zimmerman, Richard K; Moehling, Krissy K; Conti, Tracey; Allred, Norma J; Reis, Evelyn C

    2016-01-01

    A multifaceted intervention to raise influenza vaccination rates was tested among children with asthma. In a pre/post study design, 18 primary care practices implemented the 4 Pillars Immunization Toolkit along with other strategies. The primary outcome was the difference in influenza vaccination rates at each practice among children with asthma between the baseline year (before the intervention) and at the end of year 2 (after the intervention), both overall and by race (White vs. non-White). Influenza vaccination rates increased significantly in 13 of 18 practices. The percentage of vaccinated non-White children increased from 46% to 61% (p vaccinated White children increased from 58% to 65% (p vaccination was significantly lower for non-White children before the intervention (odds ratio = 0.66; 95% confidence interval = 0.59-0.73; p vaccination uptake and reduced racial disparities among children with asthma. Copyright © 2016 National Association of Pediatric Nurse Practitioners. All rights reserved.

  6. Vaccines for Nontypeable Haemophilus influenzae: the Future Is Now.

    Science.gov (United States)

    Murphy, Timothy F

    2015-05-01

    Infections due to nontypeable Haemophilus influenzae result in enormous global morbidity in two clinical settings: otitis media in children and respiratory tract infections in adults with chronic obstructive pulmonary disease (COPD). Recurrent otitis media affects up to 20% of children and results in hearing loss, delays in speech and language development and, in developing countries, chronic suppurative otitis media. Infections in people with COPD result in clinic and emergency room visits, hospital admissions, and respiratory failure. An effective vaccine would prevent morbidity, help control health care costs, and reduce antibiotic use, a major contributor to the global crisis in bacterial antibiotic resistance. The widespread use of the pneumococcal conjugate vaccines is causing a relative increase in H. influenzae otitis media. The partial protection against H. influenzae otitis media induced by the pneumococcal H. influenzae protein D conjugate vaccine represents a proof of principle of the feasibility of a vaccine for nontypeable H. influenzae. An ideal vaccine antigen should be conserved among strains, have abundant epitopes on the bacterial surface, be immunogenic, and induce protective immune responses. Several surface proteins of H. influenzae have been identified as potential vaccine candidates and are in various stages of development. With continued research, progress toward a broadly effective vaccine to prevent infections caused by nontypeable H. influenzae is expected over the next several years. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Vaccines for Nontypeable Haemophilus influenzae: the Future Is Now

    Science.gov (United States)

    2015-01-01

    Infections due to nontypeable Haemophilus influenzae result in enormous global morbidity in two clinical settings: otitis media in children and respiratory tract infections in adults with chronic obstructive pulmonary disease (COPD). Recurrent otitis media affects up to 20% of children and results in hearing loss, delays in speech and language development and, in developing countries, chronic suppurative otitis media. Infections in people with COPD result in clinic and emergency room visits, hospital admissions, and respiratory failure. An effective vaccine would prevent morbidity, help control health care costs, and reduce antibiotic use, a major contributor to the global crisis in bacterial antibiotic resistance. The widespread use of the pneumococcal conjugate vaccines is causing a relative increase in H. influenzae otitis media. The partial protection against H. influenzae otitis media induced by the pneumococcal H. influenzae protein D conjugate vaccine represents a proof of principle of the feasibility of a vaccine for nontypeable H. influenzae. An ideal vaccine antigen should be conserved among strains, have abundant epitopes on the bacterial surface, be immunogenic, and induce protective immune responses. Several surface proteins of H. influenzae have been identified as potential vaccine candidates and are in various stages of development. With continued research, progress toward a broadly effective vaccine to prevent infections caused by nontypeable H. influenzae is expected over the next several years. PMID:25787137

  8. Little evidence of subclinical avian influenza virus infections among rural villagers in Cambodia.

    Directory of Open Access Journals (Sweden)

    Gregory C Gray

    Full Text Available In 2008, 800 adults living within rural Kampong Cham Province, Cambodia were enrolled in a prospective cohort study of zoonotic influenza transmission. After enrollment, participants were contacted weekly for 24 months to identify acute influenza-like illnesses (ILI. Follow-up sera were collected at 12 and 24 months. A transmission substudy was also conducted among the family contacts of cohort members reporting ILI who were influenza A positive. Samples were assessed using serological or molecular techniques looking for evidence of infection with human and avian influenza viruses. Over 24 months, 438 ILI investigations among 284 cohort members were conducted. One cohort member was hospitalized with a H5N1 highly pathogenic avian influenza (HPAI virus infection and withdrew from the study. Ninety-seven ILI cases (22.1% were identified as influenza A virus infections by real-time RT-PCR; none yielded evidence for AIV. During the 2 years of follow-up, 21 participants (3.0% had detectable antibody titers (≥ 1:10 against the studied AIVs: 1 against an avian-like A/Migratory duck/Hong Kong/MPS180/2003(H4N6, 3 against an avian-like A/Teal/Hong Kong/w312/97(H6N1, 9 (3 of which had detectible antibody titers at both 12- and 24-month follow-up against an avian-like A/Hong Kong/1073/1999(H9N2, 6 (1 detected at both 12- and 24-month follow-up against an avian-like A/Duck/Memphis/546/74(H11N9, and 2 against an avian-like A/Duck/Alberta/60/76(H12N5. With the exception of the one hospitalized cohort member with H5N1 infection, no other symptomatic avian influenza infections were detected among the cohort. Serological evidence for subclinical infections was sparse with only one subject showing a 4-fold rise in microneutralization titer over time against AvH12N5. In summary, despite conducting this closely monitored cohort study in a region enzootic for H5N1 HPAI, we were unable to detect subclinical avian influenza infections, suggesting either that these

  9. Perceived Risk of Avian Influenza and Urbanization in Northern Vietnam.

    Science.gov (United States)

    Finucane, Melissa L; Tuyen, Nghiem; Saksena, Sumeet; Spencer, James H; Fox, Jefferson M; Lam, Nguyen; Thau, Trinh Dinh; Vien, Tran Duc; Lewis, Nancy Davis

    2017-03-01

    Highly pathogenic avian influenza (HPAI) is an important public health concern because of potential for widespread morbidity and mortality in humans and poultry and associated devastating economic losses. We examined how perceptions of the risk of HPAI in poultry vary across communes/wards in the north of Vietnam at different levels of urbanization (rural, peri-urban, urban). Analyses of questionnaire responses from 1081 poultry raisers suggested that the perceived risk of HPAI in poultry was highest in peri-urban and rural settings. We also found that perceived risk was higher when respondents rated settings in which they did not live and that the process of change is related to perceived risk. Compared with others, respondents in peri-urban areas reported less disease management planning; respondents in rural areas reported less ability to separate infected poultry. These findings are consistent with, and add to, the limited previous research on the perceived risk of HPAI in poultry in developing countries. What is new in the present findings is that we describe how urbanization is related to people's perceptions of and ability to respond appropriately to variations in their environment. In particular, the inability to respond is not necessarily because of an inability to perceive change. Rather, rapid and extensive change poses different challenges for poultry management as communes move from rural to peri-urban to urban settings. Our results suggest that health promotion campaigns should address the perceptions and needs of poultry raisers in different settings.

  10. Avian influenza virus infection dynamics in shorebird hosts.

    Science.gov (United States)

    Maxted, Angela M; Luttrell, M Page; Goekjian, Virginia H; Brown, Justin D; Niles, Lawrence J; Dey, Amanda D; Kalasz, Kevin S; Swayne, David E; Stallknecht, David E

    2012-04-01

    To gain insight into avian influenza virus (AIV) transmission, exposure, and maintenance patterns in shorebirds at Delaware Bay during spring migration, we examined temporal AIV prevalence trends in four Charadriiformes species with the use of serial cross-sectional data from 2000 through 2008 and generalized linear and additive models. Prevalence of AIV in Ruddy Turnstones (Arenaria interpres morinella) increased after arrival, peaked in mid-late May, and decreased prior to departure. Antibody prevalence also increased over this period; together, these results suggested local infection and recovery prior to departure. Red Knots (Calidris canutus rufa), Sanderlings (Calidris alba), and Laughing Gulls (Leucophaeus atricilla) were rarely infected, but dynamic changes in antibody prevalence differed among species. In Red Knots, declining antibody prevalence over the stopover period suggested AIV exposure prior to arrival at Delaware Bay with limited infection at this site. Antibody prevalence was consistently high in Laughing Gulls and low in Sanderlings. Both viral prevalence and antibody prevalence in Sanderlings varied directly with those in turnstones, suggesting virus spillover to Sanderlings. Results indicate that, although hundreds of thousands of birds concentrate at Delaware Bay during spring, dynamics of AIV infection differ among species, perhaps due to differences in susceptibility, potential for contact with AIV at this site, or prior exposure. Additionally, Ruddy Turnstones possibly act as a local AIV amplifying host rather than a reservoir.

  11. Migration strategy affects avian influenza dynamics in mallards (Anas platyrhynchos).

    Science.gov (United States)

    Takekawa, John Y.; Hill, Nichola J.; Ackerman, Joshua T.; Herring, Garth; Hobson, Keith; Cardona, Carol J.; Runstadler, Jonathan; Boyce, Walter M.

    2012-01-01

    Studies of pathogen transmission typically overlook that wildlife hosts can include both migrant and resident populations when attempting to model circulation. Through the application of stable isotopes in flight feathers, we estimated the migration strategy of mallards (Anas platyrhynchos) occurring on California wintering grounds. Our study demonstrates that mallards- a principal host of avian influenza virus (AIV) in nature, contribute differently to virus gene flow depending on migration strategy. No difference in AIV prevalence was detected between resident (9.6%), intermediate-distance (9.6%) and long-distance migrants (7.4%). Viral diversity among the three groups was also comparable, possibly owing to viral pool mixing when birds converge at wetlands during winter. However, migrants and residents contributed differently to the virus gene pool at wintering wetlands. Migrants introduced virus from northern breeding grounds (Alaska and the NW Pacific Rim) into the wintering population, facilitating gene flow at continental scales, but circulation of imported virus appeared to be limited. In contrast, resident mallards acted as AIV reservoirs facilitating year-round circulation of limited subtypes (i.e. H5N2) at lower latitudes. This study supports a model of virus exchange in temperate regions driven by the convergence of wild birds with separate geographic origins and exposure histories.

  12. Influenza vaccination type, live, attenuated influenza vaccine (LAIV) versus inactivated influenza vaccine (IIV), received by children, United States, 2011-12 through 2013-14 influenza seasons.

    Science.gov (United States)

    Kahn, Katherine E; Santibanez, Tammy A; Zhai, Yusheng; Singleton, James A

    2015-09-22

    Influenza vaccines available for children in the United States include inactivated influenza vaccine (IIV) and live, attenuated influenza vaccine (LAIV). Objectives of this study were to quantify proportions of IIV and LAIV received by vaccinated children, and examine associations between vaccine type received and demographic characteristics. National Immunization Survey-Flu (NIS-Flu) parental reported data for the 2011-12 through 2013-14 influenza seasons were used to estimate proportions of vaccinated children 2-17 years who received IIV and LAIV. Tests of association between vaccination type and demographic variables were conducted using Wald chi-square tests and pair-wise comparison t-tests. Multivariable logistic regression was used to determine variables independently associated with receipt of LAIV versus IIV. In the 2013-14 season, 33.3% of vaccinated children received LAIV, similar to the proportion in the 2011-12 (32.2%) and 2012-13 (32.1%) seasons. Across all seasons studied, the strongest observed association was between vaccination type and child's age, with children 2-8 years (Adjusted Prevalence Ratio (95% confidence interval) [APR(95% CI)] 1.41(1.27-1.56), 1.46(1.34-1.59), and 1.50(1.38-1.63) for 2011-12, 2012-13, and 2013-14) and 9-12 years (APR(95% CI) 1.37(1.23-1.54), 1.38(1.26-1.51), and 1.50(1.38-1.63) for 2011-12, 2012-13, and 2013-14) being more likely to have received LAIV than children 13-17 years. Among those vaccinated, whites were more likely to have received LAIV compared with blacks (APR(95% CI) 1.19(1.05-1.35), 1.24(1.10-1.39), and 1.22(1.11-1.34) for 2011-12, 2012-13, and 2013-14), and children living above poverty (annual income >$75,000) were more likely to have received LAIV than those living at or below poverty (APR(95% CI) 1.43(1.23-1.67), 1.13(1.02-1.26), and 1.16(1.06-1.28) for 2011-12, 2012-13, and 2013-14). This study provides a baseline of the extent and patterns of LAIV uptake that can be used to measure the impact of

  13. Influenza vaccination and humoral alloimmunity in solid organ transplant recipients.

    Science.gov (United States)

    Vermeiren, Pieter; Aubert, Vincent; Sugamele, Rocco; Aubert, John-David; Venetz, Jean-Pierre; Meylan, Pascal; Pascual, Manuel; Manuel, Oriol

    2014-09-01

    Annual influenza vaccination is recommended in solid organ transplant (SOT) recipients. However, concerns have been raised about the impact of vaccination on antigraft alloimmunity. We evaluated the humoral alloimmune responses to influenza vaccination in a cohort of SOT recipients between October 2008 and December 2011. Anti-HLA antibodies were measured before and 4-8 weeks after influenza vaccination using a solid-phase assay. Overall, 169 SOT recipients were included (kidney = 136, lung = 26, liver = 3, and combined = 4). Five (2.9%) of 169 patients developed de novo anti-HLA antibodies after vaccination, including one patient who developed donor-specific antibodies (DSA) 8 months after vaccination. In patients with pre-existing anti-HLA antibodies, median MFI was not significantly different before and after vaccination (P = 0.73 for class I and P = 0.20 for class II anti-HLA antibodies) and no development of de novo DSA was observed. Five episodes of rejection (2.9%) were observed within 12 months after vaccination, and only one patient had de novo anti-HLA antibodies. The incidence of development of anti-HLA antibodies after influenza vaccination in our cohort of SOT recipients was very low. Our findings indicate that influenza vaccination is safe and does not trigger humoral alloimmune responses in SOT recipients. © 2014 Steunstichting ESOT.

  14. Production of H5N1 influenza virus matrix protein 2 ectodomain protein bodies in tobacco plants and in insect cells as a candidate universal influenza vaccine

    Directory of Open Access Journals (Sweden)

    Sandiswa Mbewana

    2015-12-01

    Full Text Available The spread of influenza A viruses is partially controlled and prevented by vaccination. The matrix protein 2 ectodomain (M2e is the most conserved sequence in influenza A viruses, and is therefore a good potential target for a vaccine to protect against multiple virus subtypes. We explored the feasibility of a M2e-based universal influenza A vaccine candidate based on the highly pathogenic avian influenza A virus, H5N1. A synthetic M2e gene was human and plant codon optimised and fused in-frame with a sequence encoding the N-terminal proline-rich domain (Zera® of the γ-zein protein of maize. Zera®M2e was expressed transiently in Nicotiana benthamiana and Sf21 baculovirus / insect cell expression systems, and Zera®M2e protein bodies (PBs were successfully produced in both expression systems. The plant-produced Zera®M2e PBs were purified and injected into Balb/c mice. Western blot analysis using insect cell-produced Zera®M2e PBs and multiple tandem M2e sequences (5xM2e fused with the avian influenza H5N1 transmembrane and cytosolic tail (5xM2e_tHA confirmed the presence of M2e-specific antibodies in immunised mice sera. The immunogenicity of the Zera®M2e indicates that our plant-produced protein has potential as an inexpensive universal influenza A vaccine.

  15. School-Located Influenza Vaccinations: A Randomized Trial.

    Science.gov (United States)

    Szilagyi, Peter G; Schaffer, Stanley; Rand, Cynthia M; Vincelli, Phyllis; Eagan, Ashley; Goldstein, Nicolas P N; Hightower, A Dirk; Younge, Mary; Blumkin, Aaron; Albertin, Christina S; Yoo, Byung-Kwang; Humiston, Sharon G

    2016-11-01

    Assess impact of offering school-located influenza vaccination (SLIV) clinics using both Web-based and paper consent upon overall influenza vaccination rates among elementary school children. We conducted a cluster-randomized trial (stratified by suburban/urban districts) in upstate New York in 2014-2015. We randomized 44 elementary schools, selected similar pairs of schools within districts, and allocated schools to SLIV versus usual care (control). Parents of children at SLIV schools were sent information and vaccination consent forms via e-mail, backpack fliers, or both (depending on school preferences) regarding school vaccine clinics. Health department nurses conducted vaccine clinics and billed insurers. For all children registered at SLIV/control schools, we compared receipt of influenza vaccination anywhere (primary outcome). The 44 schools served 19 776 eligible children in 2014-2015. Children in SLIV schools had higher influenza vaccination rates than children in control schools county-wide (54.1% vs 47.4%, P vaccination in previous season) confirmed bivariate findings. Among parents who consented for SLIV, nearly half of those notified by backpack fliers and four-fifths of those notified by e-mail consented online. In suburban districts, SLIV did not substitute for primary care influenza vaccination. In urban schools, some substitution occurred. SLIV raised seasonal influenza vaccination rates county-wide and in both suburban and urban settings. SLIV did not substitute for primary care vaccinations in suburban settings where pediatricians often preorder influenza vaccine but did substitute somewhat in urban settings. Copyright © 2016 by the American Academy of Pediatrics.

  16. Avian influenza ecology in North Atlantic sea ducks: Not all ducks are created equal

    Science.gov (United States)

    Hall, Jeffrey S.; Russell, Robin E.; Franson, J. Christian; Soos, Catherine; Dusek, Robert J.; Allen, R. Bradford; Nashold, Sean W.; Teslaa, Joshua L.; Jónsson, Jón Einar; Ballard, Jennifer R.; Harms, Naomi Jnae; Brown, Justin D.

    2015-01-01

    Wild waterfowl are primary reservoirs of avian influenza viruses (AIV). However the role of sea ducks in the ecology of avian influenza, and how that role differs from freshwater ducks, has not been examined. We obtained and analyzed sera from North Atlantic sea ducks and determined the seroprevalence in those populations. We also tested swab samples from North Atlantic sea ducks for the presence of AIV. We found relatively high serological prevalence (61%) in these sea duck populations but low virus prevalence (0.3%). Using these data we estimated that an antibody half-life of 141 weeks (3.2 years) would be required to attain these prevalences. These findings are much different than what is known in freshwater waterfowl and have implications for surveillance efforts, AIV in marine environments, and the roles of sea ducks and other long-lived waterfowl in avian influenza ecology.

  17. Outbreak of avian influenza H7N3 on a turkey farm in the Netherlands.

    Science.gov (United States)

    Velkers, F C; Bouma, A; Matthijs, M G R; Koch, G; Westendorp, S T; Stegeman, J A

    2006-09-23

    This case report describes the course of an outbreak of avian influenza on a Dutch turkey farm. When clinical signs were observed their cause remained unclear. However, serum samples taken for the monitoring campaign launched during the epidemic of highly pathogenic avian influenza in 2003, showed that all the remaining turkeys were seropositive against an H7 strain of avian influenza virus, and the virus was subsequently isolated from stored carcases. The results of a reverse-transcriptase pcr showed that a H7N3 strain was involved, and it was characterised as of low pathogenicity. However, its intravenous pathogenicity index was 2.4, characterising it as of high pathogenicity, suggesting that a mixture of strains of low and high pathogenicity may have been present in the isolate. The outbreak remained limited to three farms.

  18. Evidence of infection with avian, human, and swine influenza viruses in pigs in Cairo, Egypt.

    Science.gov (United States)

    Gomaa, Mokhtar R; Kandeil, Ahmed; El-Shesheny, Rabeh; Shehata, Mahmoud M; McKenzie, Pamela P; Webby, Richard J; Ali, Mohamed A; Kayali, Ghazi

    2018-02-01

    The majority of the Egyptian swine population was culled in the aftermath of the 2009 H1N1 pandemic, but small-scale growing remains. We sampled pigs from piggeries and an abattoir in Cairo. We found virological evidence of infection with avian H9N2 and H5N1 viruses as well as human pandemic H1N1 influenza virus. Serological evidence suggested previous exposure to avian H5N1 and H9N2, human pandemic H1N1, and swine avian-like and human-like viruses. This raises concern about potential reassortment of influenza viruses in pigs and highlights the need for better control and prevention of influenza virus infection in pigs.

  19. Serological response to influenza vaccination among children vaccinated for multiple influenza seasons.

    Directory of Open Access Journals (Sweden)

    Sajjad Rafiq

    Full Text Available To evaluate if, among children aged 3 to 15 years, influenza vaccination for multiple seasons affects the proportion sero-protected.Participants were 131 healthy children aged 3-15 years. Participants were vaccinated with trivalent inactivated seasonal influenza vaccine (TIV over the 2005-06, 2006-07 and 2007-8 seasons. Number of seasons vaccinated were categorized as one (2007-08; two (2007-08 and 2006-07 or 2007-08 and 2005-06 or three (2005-06, 2006-07, and 2007-08. Pre- and post-vaccination sera were collected four weeks apart. Antibody titres were determined by hemagglutination inhibition (HAI assay using antigens to A/Solomon Islands/03/06 (H1N1, A/Wisconsin/67/05 (H3N2 and B/Malaysia/2506/04. The proportions sero-protected were compared by number of seasons vaccinated using cut-points for seroprotection of 1:40 vs. 1:320. The proportions of children sero-protected against H1N1 and H3N2 was high (>85% regardless of number of seasons vaccinated and regardless of cut-point for seroprotection. For B Malaysia there was no change in proportions sero-protected by number of seasons vaccinated; however the proportions protected were lower than for H1N1 and H3N2, and there was a lower proportion sero-protected when the higher, compared to lower, cut-point was used for sero-protection.The proportion of children sero-protected is not affected by number of seasons vaccinated.

  20. A Systematic Review of Recent Advances in Equine Influenza Vaccination

    Science.gov (United States)

    Paillot, Romain

    2014-01-01

    Equine influenza (EI) is a major respiratory disease of horses, which is still causing substantial outbreaks worldwide despite several decades of surveillance and prevention. Alongside quarantine procedures, vaccination is widely used to prevent or limit spread of the disease. The panel of EI vaccines commercially available is probably one of the most varied, including whole inactivated virus vaccines, Immuno-Stimulating Complex adjuvanted vaccines (ISCOM and ISCOM-Matrix), a live attenuated equine influenza virus (EIV) vaccine and a recombinant poxvirus-vectored vaccine. Several other strategies of vaccination are also evaluated. This systematic review reports the advances of EI vaccines during the last few years as well as some of the mechanisms behind the inefficient or sub-optimal response of horses to vaccination. PMID:26344892