WorldWideScience

Sample records for avian genome evolution

  1. Comparative genomics reveals insights into avian genome evolution and adaptation

    DEFF Research Database (Denmark)

    Zhang, Guojie; Li, Cai; Li, Qiye

    2014-01-01

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size...... this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits....

  2. Origin and evolution of avian microchromosomes.

    Science.gov (United States)

    Burt, D W

    2002-01-01

    The origin of avian microchromosomes has long been the subject of much speculation and debate. Microchromosomes are a universal characteristic of all avian species and many reptilian karyotypes. The typical avian karyotype contains about 40 pairs of chromosomes and usually 30 pairs of small to tiny microchromosomes. This characteristic karyotype probably evolved 100-250 million years ago. Once the microchromosomes were thought to be a non-essential component of the avian genome. Recent work has shown that even though these chromosomes represent only 25% of the genome; they encode 50% of the genes. Contrary to popular belief, microchromosomes are present in a wide range of vertebrate classes, spanning 400-450 million years of evolutionary history. In this paper, comparative gene mapping between the genomes of chicken, human, mouse and zebrafish, has been used to investigate the origin and evolution of avian microchromosomes during this period. This analysis reveals evidence for four ancient syntenies conserved in fish, birds and mammals for over 400 million years. More than half, if not all, microchromosomes may represent ancestral syntenies and at least ten avian microchromosomes are the product of chromosome fission. Birds have one of the smallest genomes of any terrestrial vertebrate. This is likely to be the product of an evolutionary process that minimizes the DNA content (mostly through the number of repeats) and maximizes the recombination rate of microchromosomes. Through this process the properties (GC content, DNA and repeat content, gene density and recombination rate) of microchromosomes and macrochromosomes have diverged to create distinct chromosome types. An ancestral genome for birds likely had a small genome, low in repeats and a karyotype with microchromosomes. A "Fission-Fusion Model" of microchromosome evolution based on chromosome rearrangement and minimization of repeat content is discussed. Copyright 2002 S. Karger AG, Basel

  3. The Genomic Contributions of Avian H1N1 Influenza A Viruses to the Evolution of Mammalian Strains

    Science.gov (United States)

    Wu, Gang; Zhang, Jinghui; Webster, Robert G.

    2015-01-01

    Among the influenza A viruses (IAVs) in wild aquatic birds, only H1, H2, and H3 subtypes have caused epidemics in humans. H1N1 viruses of avian origin have also caused 3 of 5 pandemics. To understand the reappearance of H1N1 in the context of pandemic emergence, we investigated whether avian H1N1 IAVs have contributed to the evolution of human, swine, and 2009 pandemic H1N1 IAVs. On the basis of phylogenetic analysis, we concluded that the polymerase gene segments (especially PB2 and PA) circulating in North American avian H1N1 IAVs have been reintroduced to swine multiple times, resulting in different lineages that led to the emergence of the 2009 pandemic H1N1 IAVs. Moreover, the similar topologies of hemagglutinin and nucleoprotein and neuraminidase and matrix gene segments suggest that each surface glycoprotein coevolved with an internal gene segment within the H1N1 subtype. The genotype of avian H1N1 IAVs of Charadriiformes origin isolated in 2009 differs from that of avian H1N1 IAVs of Anseriformes origin. When the antigenic sites in the hemagglutinin of all 31 North American avian H1N1 IAVs were considered, 60%-80% of the amino acids at the antigenic sites were identical to those in 1918 and/or 2009 pandemic H1N1 viruses. Thus, although the pathogenicity of avian H1N1 IAVs could not be inferred from the phylogeny due to the small dataset, the evolutionary process within the H1N1 IAV subtype suggests that the circulation of H1N1 IAVs in wild birds poses a continuous threat for future influenza pandemics in humans. PMID:26208281

  4. Avian brains: Insights from development, behaviors and evolution.

    Science.gov (United States)

    Nomura, Tadashi; Izawa, Ei-Ichi

    2017-05-01

    Birds are an extensively specialized animal group with unique anatomical, physiological and ecological characteristics. Sophisticated social behaviors and remarkable cognitive abilities are present in several avian lineages, driven by their enlarged brains and intricate neural networks. These unique traits could be a result of adaptive evolution under the wide range of environmental constraints; however, the intrinsic mechanisms of avian brain development and evolution remain unclear. Here, we introduce recent findings regarding developmental aspects of avian brain organization and neuronal networks for specific avian behaviors, which provide an insight into the link between the evolution of brain development and complex cognitive functions. © 2017 Japanese Society of Developmental Biologists.

  5. Tracing the evolution of avian wing digits.

    Science.gov (United States)

    Xu, Xing; Mackem, Susan

    2013-06-17

    It is widely accepted that birds are a subgroup of dinosaurs, but there is an apparent conflict: modern birds have been thought to possess only the middle three fingers (digits II-III-IV) of an idealized five-digit tetrapod hand based on embryological data, but their Mesozoic tetanuran dinosaur ancestors are considered to have the first three digits (I-II-III) based on fossil evidence. How could such an evolutionary quirk arise? Various hypotheses have been proposed to resolve this paradox. Adding to the confusion, some recent developmental studies support a I-II-III designation for avian wing digits whereas some recent paleontological data are consistent with a II-III-IV identification of the Mesozoic tetanuran digits. A comprehensive analysis of both paleontological and developmental data suggests that the evolution of the avian wing digits may have been driven by homeotic transformations of digit identity, which are more likely to have occurred in a partial and piecemeal manner. Additionally, recent genetic studies in mouse models showing plausible mechanisms for central digit loss invite consideration of new alternative possibilities (I-II-IV or I-III-IV) for the homologies of avian wing digits. While much progress has been made, some advances point to the complexity of the problem and a final resolution to this ongoing debate demands additional work from both paleontological and developmental perspectives, which will surely yield new insights on mechanisms of evolutionary adaptation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Evolution of bird genomes-a transposon's-eye view.

    Science.gov (United States)

    Kapusta, Aurélie; Suh, Alexander

    2017-02-01

    Birds, the most species-rich monophyletic group of land vertebrates, have been subject to some of the most intense sequencing efforts to date, making them an ideal case study for recent developments in genomics research. Here, we review how our understanding of bird genomes has changed with the recent sequencing of more than 75 species from all major avian taxa. We illuminate avian genome evolution from a previously neglected perspective: their repetitive genomic parasites, transposable elements (TEs) and endogenous viral elements (EVEs). We show that (1) birds are unique among vertebrates in terms of their genome organization; (2) information about the diversity of avian TEs and EVEs is changing rapidly; (3) flying birds have smaller genomes yet more TEs than flightless birds; (4) current second-generation genome assemblies fail to capture the variation in avian chromosome number and genome size determined with cytogenetics; (5) the genomic microcosm of bird-TE "arms races" has yet to be explored; and (6) upcoming third-generation genome assemblies suggest that birds exhibit stability in gene-rich regions and instability in TE-rich regions. We emphasize that integration of cytogenetics and single-molecule technologies with repeat-resolved genome assemblies is essential for understanding the evolution of (bird) genomes. © 2016 New York Academy of Sciences.

  7. Genome Modification Technologies and Their Applications in Avian Species

    Directory of Open Access Journals (Sweden)

    Hong Jo Lee

    2017-10-01

    Full Text Available The rapid development of genome modification technology has provided many great benefits in diverse areas of research and industry. Genome modification technologies have also been actively used in a variety of research areas and fields of industry in avian species. Transgenic technologies such as lentiviral systems and piggyBac transposition have been used to produce transgenic birds for diverse purposes. In recent years, newly developed programmable genome editing tools such as transcription activator-like effector nuclease (TALEN and clustered regularly interspaced short palindromic repeats (CRISPR/CRISPR-associated protein 9 (CRISPR/Cas9 have also been successfully adopted in avian systems with primordial germ cell (PGC-mediated genome modification. These genome modification technologies are expected to be applied to practical uses beyond system development itself. The technologies could be used to enhance economic traits in poultry such as acquiring a disease resistance or producing functional proteins in eggs. Furthermore, novel avian models of human diseases or embryonic development could also be established for research purposes. In this review, we discuss diverse genome modification technologies used in avian species, and future applications of avian biotechnology.

  8. Comparative genomic data of the Avian Phylogenomics Project

    DEFF Research Database (Denmark)

    Zhang, Guojie; Li, Bo; Li, Cai

    2014-01-01

    , which include 38 newly sequenced avian genomes plus previously released or simultaneously released genomes of Chicken, Zebra finch, Turkey, Pigeon, Peregrine falcon, Duck, Budgerigar, Adelie penguin, Emperor penguin and the Medium Ground Finch. We hope that this resource will serve future efforts...

  9. The genetics and evolution of avian migration

    NARCIS (Netherlands)

    Pulido, F.

    2007-01-01

    One of the characteristics of avian migration is its variability within and among species. Variation in migratory behavior, and in physiological and morphological adaptations to migration, is to a large extent due to genetic differences. Comparative studies suggest that migratory behavior has

  10. Current genomic editing approaches in avian transgenesis.

    Science.gov (United States)

    Park, Tae Sub; Kang, Kyung Soo; Han, Jae Yong

    2013-09-01

    The chicken was domesticated from Red Jungle Fowl over 8000years ago and became one of the major food sources worldwide. At present, the poultry industry is one of the largest industrial animal stocks in the world, and its economic scale is expanding significantly with increasing consumption. Additionally, since Aristotle used chicken eggs as a model to provide remarkable insights into how life begins, chickens have been used as invaluable and powerful experimental materials for studying embryo development, immune systems, biomedical processes, and hormonal regulation. Combined with advancements in efficient transgenic technology, avian models have become even more important than would have been expected. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Developmental origins of mosaic evolution in the avian cranium

    OpenAIRE

    Felice, Ryan N.; Goswami, Anjali

    2017-01-01

    Significance Studies reconstructing morphological evolution have long relied on simple representations of organismal form or on limited sampling of species, hindering a comprehensive understanding of the factors shaping biological diversity. Here, we combine high-resolution 3D quantification of skull shape with dense taxonomic sampling across a major vertebrate clade, birds, to demonstrate that the avian skull is formed of multiple semi-independent regions that epitomize mosaic evolution, wit...

  12. Draft Genome Sequences of Two Virulent Serotypes of Avian Pasteurella multocida

    OpenAIRE

    Abrahante, Juan E.; Johnson, Timothy J.; Hunter, Samuel S.; Maheswaran, Samuel K.; Hauglund, Melissa J.; Bayles, Darrell O.; Tatum, Fred M.; Briggs, Robert E.

    2013-01-01

    Here we report the draft genome sequences of two virulent avian strains of Pasteurella multocida. Comparative analyses of these genomes were done with the published genome sequence of avirulent P.?multocida strain Pm70.

  13. Draft Genome Sequences of Two Virulent Serotypes of Avian Pasteurella multocida

    Science.gov (United States)

    Abrahante, Juan E.; Johnson, Timothy J.; Hunter, Samuel S.; Maheswaran, Samuel K.; Hauglund, Melissa J.; Bayles, Darrell O.; Tatum, Fred M.

    2013-01-01

    Here we report the draft genome sequences of two virulent avian strains of Pasteurella multocida. Comparative analyses of these genomes were done with the published genome sequence of avirulent P. multocida strain Pm70. PMID:23405337

  14. Sex-linked genomic variation and its relationship to avian plumage dichromatism and sexual selection.

    Science.gov (United States)

    Huang, Huateng; Rabosky, Daniel L

    2015-09-16

    Sexual dichromatism is the tendency for sexes to differ in color pattern and represents a striking form of within-species morphological variation. Conspicuous intersexual differences in avian plumage are generally thought to result from Darwinian sexual selection, to the extent that dichromatism is often treated as a surrogate for the intensity of sexual selection in phylogenetic comparative studies. Intense sexual selection is predicted to leave a footprint on genetic evolution by reducing the relative genetic diversity on sex chromosome to that on the autosomes. In this study, we test the association between plumage dichromatism and sex-linked genetic diversity using eight species pairs with contrasting levels of dichromatism. We estimated Z-linked and autosomal genetic diversity for these non-model avian species using restriction-site associated (RAD) loci that covered ~3 % of the genome. We find that monochromatic birds consistently have reduced sex-linked genomic variation relative to phylogenetically-paired dichromatic species and this pattern is robust to mutational biases. Our results are consistent with several interpretations. If present-day sexual selection is stronger in dichromatic birds, our results suggest that its impact on sex-linked genomic variation is offset by other processes that lead to proportionately lower Z-linked variation in monochromatic species. We discuss possible factors that may contribute to this discrepancy between phenotypes and genomic variation. Conversely, it is possible that present-day sexual selection -- as measured by the variance in male reproductive success -- is stronger in the set of monochromatic taxa we have examined, potentially reflecting the importance of song, behavior and other non-plumage associated traits as targets of sexual selection. This counterintuitive finding suggests that the relationship between genomic variation and sexual selection is complex and highlights the need for a more comprehensive survey

  15. The smallest avian genomes are found in hummingbirds.

    Science.gov (United States)

    Gregory, T Ryan; Andrews, Chandler B; McGuire, Jimmy A; Witt, Christopher C

    2009-11-07

    It has often been suggested that the genome sizes of birds are constrained relative to other tetrapods owing to the high metabolic demands of powered flight and the link between nuclear DNA content and red blood cell size. This hypothesis predicts that hummingbirds, which engage in energy-intensive hovering flight, will display especially constrained genomes even relative to other birds. We report genome size measurements for 37 species of hummingbirds that confirm this prediction. Our results suggest that genome size was reduced before the divergence of extant hummingbird lineages, and that only minimal additional reduction occurred during hummingbird diversification. Unlike in some other avian taxa, the small amount of variation observed within hummingbirds is not explained by variation in respiratory and flight-related parameters. Unexpectedly, genome size appears to have increased in four unrelated hummingbird species whose distributions are centred on humid forests of the upper-tropical elevational zone on the eastern slope of the Andes. This suggests that the secondary expansion of the genome may have been mediated by biogeographical and demographic effects.

  16. Theory of microbial genome evolution

    Science.gov (United States)

    Koonin, Eugene

    Bacteria and archaea have small genomes tightly packed with protein-coding genes. This compactness is commonly perceived as evidence of adaptive genome streamlining caused by strong purifying selection in large microbial populations. In such populations, even the small cost incurred by nonfunctional DNA because of extra energy and time expenditure is thought to be sufficient for this extra genetic material to be eliminated by selection. However, contrary to the predictions of this model, there exists a consistent, positive correlation between the strength of selection at the protein sequence level, measured as the ratio of nonsynonymous to synonymous substitution rates, and microbial genome size. By fitting the genome size distributions in multiple groups of prokaryotes to predictions of mathematical models of population evolution, we show that only models in which acquisition of additional genes is, on average, slightly beneficial yield a good fit to genomic data. Thus, the number of genes in prokaryotic genomes seems to reflect the equilibrium between the benefit of additional genes that diminishes as the genome grows and deletion bias. New genes acquired by microbial genomes, on average, appear to be adaptive. Evolution of bacterial and archaeal genomes involves extensive horizontal gene transfer and gene loss. Many microbes have open pangenomes, where each newly sequenced genome contains more than 10% `ORFans', genes without detectable homologues in other species. A simple, steady-state evolutionary model reveals two sharply distinct classes of microbial genes, one of which (ORFans) is characterized by effectively instantaneous gene replacement, whereas the other consists of genes with finite, distributed replacement rates. These findings imply a conservative estimate of at least a billion distinct genes in the prokaryotic genomic universe.

  17. The evolution of the avian bill as a thermoregulatory organ.

    Science.gov (United States)

    Tattersall, Glenn J; Arnaout, Bassel; Symonds, Matthew R E

    2017-08-01

    The avian bill is a textbook example of how evolution shapes morphology in response to changing environments. Bills of seed-specialist finches in particular have been the focus of intense study demonstrating how climatic fluctuations acting on food availability drive bill size and shape. The avian bill also plays an important but under-appreciated role in body temperature regulation, and therefore in energetics. Birds are endothermic and rely on numerous mechanisms for balancing internal heat production with biophysical constraints of the environment. The bill is highly vascularised and heat exchange with the environment can vary substantially, ranging from around 2% to as high as 400% of basal heat production in certain species. This heat exchange may impact how birds respond to heat stress, substitute for evaporative water loss at elevated temperatures or environments of altered water availability, or be an energetic liability at low environmental temperatures. As a result, in numerous taxa, there is evidence for a positive association between bill size and environmental temperatures, both within and among species. Therefore, bill size is both developmentally flexible and evolutionarily adaptive in response to temperature. Understanding the evolution of variation in bill size however, requires explanations of all potential mechanisms. The purpose of this review, therefore, is to promote a greater understanding of the role of temperature on shaping bill size over spatial gradients as well as developmental, seasonal, and evolutionary timescales. © 2016 Cambridge Philosophical Society.

  18. Complete Genome Sequence of the Avian Pathogenic Escherichia coli Strain APEC O78

    OpenAIRE

    Mangiamele, Paul; Nicholson, Bryon; Wannemuehler, Yvonne; Seemann, Torsten; Logue, Catherine M.; Li, Ganwu; Tivendale, Kelly A.; Nolan, Lisa K.

    2013-01-01

    Colibacillosis, caused by avian pathogenic Escherichia coli (APEC), is a significant disease, causing extensive animal and financial losses globally. Because of the significance of this disease, more knowledge is needed regarding APEC's mechanisms of virulence. Here, we present the fully closed genome sequence of a typical avian pathogenic E.?coli strain belonging to the serogroup O78.

  19. Field avian metapneumovirus evolution avoiding vaccine induced immunity.

    Science.gov (United States)

    Catelli, Elena; Lupini, Caterina; Cecchinato, Mattia; Ricchizzi, Enrico; Brown, Paul; Naylor, Clive J

    2010-01-22

    Live avian metapneumovirus (AMPV) vaccines have largely brought turkey rhinotracheitis (TRT) under control in Europe but unexplained outbreaks still occur. Italian AMPV longitudinal farm studies showed that subtype B AMPVs were frequently detected in turkeys some considerable period after subtype B vaccination. Sequencing showed these to be unrelated to the previously applied vaccine. Sequencing of the entire genome of a typical later isolate showed numerous SH and G protein gene differences when compared to both a 1987 Italian field isolate and the vaccine in common use. Experimental challenge of vaccinated birds with recent virus showed that protection was inferior to that seen after challenge with the earlier 1987 isolate. Field virus had changed in key antigenic regions allowing replication and leading to disease in well vaccinated birds.

  20. Complete nucleotide sequences of avian metapneumovirus subtype B genome.

    Science.gov (United States)

    Sugiyama, Miki; Ito, Hiroshi; Hata, Yusuke; Ono, Eriko; Ito, Toshihiro

    2010-12-01

    Complete nucleotide sequences were determined for subtype B avian metapneumovirus (aMPV), the attenuated vaccine strain VCO3/50 and its parental pathogenic strain VCO3/60616. The genomes of both strains comprised 13,508 nucleotides (nt), with a 42-nt leader at the 3'-end and a 46-nt trailer at the 5'-end. The genome contains eight genes in the order 3'-N-P-M-F-M2-SH-G-L-5', which is the same order shown in the other metapneumoviruses. The genes are flanked on either side by conserved transcriptional start and stop signals and have intergenic sequences varying in length from 1 to 88 nt. Comparison of nt and predicted amino acid (aa) sequences of VCO3/60616 with those of other metapneumoviruses revealed higher homology with aMPV subtype A virus than with other metapneumoviruses. A total of 18 nt and 10 deduced aa differences were seen between the strains, and one or a combination of several differences could be associated with attenuation of VCO3/50.

  1. Genomic fossils calibrate the long-term evolution of hepadnaviruses.

    Science.gov (United States)

    Gilbert, Clément; Feschotte, Cédric

    2010-09-28

    Because most extant viruses mutate rapidly and lack a true fossil record, their deep evolution and long-term substitution rates remain poorly understood. In addition to retroviruses, which rely on chromosomal integration for their replication, many other viruses replicate in the nucleus of their host's cells and are therefore prone to endogenization, a process that involves integration of viral DNA into the host's germline genome followed by long-term vertical inheritance. Such endogenous viruses are highly valuable as they provide a molecular fossil record of past viral invasions, which may be used to decipher the origins and long-term evolutionary characteristics of modern pathogenic viruses. Hepadnaviruses (Hepadnaviridae) are a family of small, partially double-stranded DNA viruses that include hepatitis B viruses. Here we report the discovery of endogenous hepadnaviruses in the genome of the zebra finch. We used a combination of cross-species analysis of orthologous insertions, molecular dating, and phylogenetic analyses to demonstrate that hepadnaviruses infiltrated repeatedly the germline genome of passerine birds. We provide evidence that some of the avian hepadnavirus integration events are at least 19 My old, which reveals a much deeper ancestry of Hepadnaviridae than could be inferred based on the coalescence times of modern hepadnaviruses. Furthermore, the remarkable sequence similarity between endogenous and extant avian hepadnaviruses (up to 75% identity) suggests that long-term substitution rates for these viruses are on the order of 10(-8) substitutions per site per year, which is a 1,000-fold slower than short-term rates estimated based on the sequences of circulating hepadnaviruses. Together, these results imply a drastic shift in our understanding of the time scale of hepadnavirus evolution, and suggest that the rapid evolutionary dynamics characterizing modern avian hepadnaviruses do not reflect their mode of evolution on a deep time scale.

  2. Genomic fossils calibrate the long-term evolution of hepadnaviruses.

    Directory of Open Access Journals (Sweden)

    Clément Gilbert

    2010-09-01

    Full Text Available Because most extant viruses mutate rapidly and lack a true fossil record, their deep evolution and long-term substitution rates remain poorly understood. In addition to retroviruses, which rely on chromosomal integration for their replication, many other viruses replicate in the nucleus of their host's cells and are therefore prone to endogenization, a process that involves integration of viral DNA into the host's germline genome followed by long-term vertical inheritance. Such endogenous viruses are highly valuable as they provide a molecular fossil record of past viral invasions, which may be used to decipher the origins and long-term evolutionary characteristics of modern pathogenic viruses. Hepadnaviruses (Hepadnaviridae are a family of small, partially double-stranded DNA viruses that include hepatitis B viruses. Here we report the discovery of endogenous hepadnaviruses in the genome of the zebra finch. We used a combination of cross-species analysis of orthologous insertions, molecular dating, and phylogenetic analyses to demonstrate that hepadnaviruses infiltrated repeatedly the germline genome of passerine birds. We provide evidence that some of the avian hepadnavirus integration events are at least 19 My old, which reveals a much deeper ancestry of Hepadnaviridae than could be inferred based on the coalescence times of modern hepadnaviruses. Furthermore, the remarkable sequence similarity between endogenous and extant avian hepadnaviruses (up to 75% identity suggests that long-term substitution rates for these viruses are on the order of 10(-8 substitutions per site per year, which is a 1,000-fold slower than short-term rates estimated based on the sequences of circulating hepadnaviruses. Together, these results imply a drastic shift in our understanding of the time scale of hepadnavirus evolution, and suggest that the rapid evolutionary dynamics characterizing modern avian hepadnaviruses do not reflect their mode of evolution on a deep

  3. Variation in promiscuity and sexual selection drives avian rate of Faster-Z evolution.

    Science.gov (United States)

    Wright, Alison E; Harrison, Peter W; Zimmer, Fabian; Montgomery, Stephen H; Pointer, Marie A; Mank, Judith E

    2015-03-01

    Higher rates of coding sequence evolution have been observed on the Z chromosome relative to the autosomes across a wide range of species. However, despite a considerable body of theory, we lack empirical evidence explaining variation in the strength of the Faster-Z Effect. To assess the magnitude and drivers of Faster-Z Evolution, we assembled six de novo transcriptomes, spanning 90 million years of avian evolution. Our analysis combines expression, sequence and polymorphism data with measures of sperm competition and promiscuity. In doing so, we present the first empirical evidence demonstrating the positive relationship between Faster-Z Effect and measures of promiscuity, and therefore variance in male mating success. Our results from multiple lines of evidence indicate that selection is less effective on the Z chromosome, particularly in promiscuous species, and that Faster-Z Evolution in birds is due primarily to genetic drift. Our results reveal the power of mating system and sexual selection in shaping broad patterns in genome evolution. © 2015 John Wiley & Sons Ltd.

  4. Complete Genome Sequence of an Avian Metapneumovirus Subtype A Strain Isolated from Chicken (Gallus gallus) in Brazil

    OpenAIRE

    Rizotto, La?s S.; Scagion, Guilherme P.; Cardoso, Tereza C.; Sim?o, Raphael M.; Caserta, Leonardo C.; Benassi, Julia C.; Keid, Lara B.; Oliveira, Tr?cia M. F. de S.; Soares, Rodrigo M.; Arns, Clarice W.; Van Borm, Steven; Ferreira, Helena L.

    2017-01-01

    ABSTRACT We report here the complete genome sequence of an avian metapneumovirus (aMPV) isolated from a tracheal tissue sample of a commercial layer flock. The complete genome sequence of aMPV-A/chicken/Brazil-SP/669/2003 was obtained using MiSeq (Illumina, Inc.) sequencing. Phylogenetic analysis of the complete genome classified the isolate as avian metapneumovirus subtype A.

  5. Avian papillomaviruses: the parrot Psittacus erithacus papillomavirus (PePV genome has a unique organization of the early protein region and is phylogenetically related to the chaffinch papillomavirus

    Directory of Open Access Journals (Sweden)

    Jenson A Bennett

    2002-07-01

    Full Text Available Abstract Background An avian papillomavirus genome has been cloned from a cutaneous exophytic papilloma from an African grey parrot (Psittacus erithacus. The nucleotide sequence, genome organization, and phylogenetic position of the Psittacus erithacus papillomavirus (PePV were determined. This PePV sequence represents the first complete avian papillomavirus genome defined. Results The PePV genome (7304 basepairs differs from other papillomaviruses, in that it has a unique organization of the early protein region lacking classical E6 and E7 open reading frames. Phylogenetic comparison of the PePV sequence with partial E1 and L1 sequences of the chaffinch (Fringilla coelebs papillomavirus (FPV reveals that these two avian papillomaviruses form a monophyletic cluster with a common branch that originates near the unresolved center of the papillomavirus evolutionary tree. Conclusions The PePV genome has a unique layout of the early protein region which represents a novel prototypic genomic organization for avian papillomaviruses. The close relationship between PePV and FPV, and between their Psittaciformes and Passeriformes hosts, supports the hypothesis that papillomaviruses have co-evolved and speciated together with their host species throughout evolution.

  6. Evolution of olfaction in non-avian theropod dinosaurs and birds.

    Science.gov (United States)

    Zelenitsky, Darla K; Therrien, François; Ridgely, Ryan C; McGee, Amanda R; Witmer, Lawrence M

    2011-12-22

    Little is known about the olfactory capabilities of extinct basal (non-neornithine) birds or the evolutionary changes in olfaction that occurred from non-avian theropods through modern birds. Although modern birds are known to have diverse olfactory capabilities, olfaction is generally considered to have declined during avian evolution as visual and vestibular sensory enhancements occurred in association with flight. To test the hypothesis that olfaction diminished through avian evolution, we assessed relative olfactory bulb size, here used as a neuroanatomical proxy for olfactory capabilities, in 157 species of non-avian theropods, fossil birds and living birds. We show that relative olfactory bulb size increased during non-avian maniraptoriform evolution, remained stable across the non-avian theropod/bird transition, and increased during basal bird and early neornithine evolution. From early neornithines through a major part of neornithine evolution, the relative size of the olfactory bulbs remained stable before decreasing in derived neoavian clades. Our results show that, rather than decreasing, the importance of olfaction actually increased during early bird evolution, representing a previously unrecognized sensory enhancement. The relatively larger olfactory bulbs of earliest neornithines, compared with those of basal birds, may have endowed neornithines with improved olfaction for more effective foraging or navigation skills, which in turn may have been a factor allowing them to survive the end-Cretaceous mass extinction.

  7. Genome Size Dynamics and Evolution in Monocots

    Directory of Open Access Journals (Sweden)

    Ilia J. Leitch

    2010-01-01

    Full Text Available Monocot genomic diversity includes striking variation at many levels. This paper compares various genomic characters (e.g., range of chromosome numbers and ploidy levels, occurrence of endopolyploidy, GC content, chromosome packaging and organization, genome size between monocots and the remaining angiosperms to discern just how distinctive monocot genomes are. One of the most notable features of monocots is their wide range and diversity of genome sizes, including the species with the largest genome so far reported in plants. This genomic character is analysed in greater detail, within a phylogenetic context. By surveying available genome size and chromosome data it is apparent that different monocot orders follow distinctive modes of genome size and chromosome evolution. Further insights into genome size-evolution and dynamics were obtained using statistical modelling approaches to reconstruct the ancestral genome size at key nodes across the monocot phylogenetic tree. Such approaches reveal that while the ancestral genome size of all monocots was small (1C=1.9 pg, there have been several major increases and decreases during monocot evolution. In addition, notable increases in the rates of genome size-evolution were found in Asparagales and Poales compared with other monocot lineages.

  8. Evolution of Plastic Transmission Strategies in Avian Malaria

    Science.gov (United States)

    Cornet, Stéphane; Nicot, Antoine; Rivero, Ana; Gandon, Sylvain

    2014-01-01

    Malaria parasites have been shown to adjust their life history traits to changing environmental conditions. Parasite relapses and recrudescences—marked increases in blood parasite numbers following a period when the parasite was either absent or present at very low levels in the blood, respectively—are expected to be part of such adaptive plastic strategies. Here, we first present a theoretical model that analyses the evolution of transmission strategies in fluctuating seasonal environments and we show that relapses may be adaptive if they are concomitant with the presence of mosquitoes in the vicinity of the host. We then experimentally test the hypothesis that Plasmodium parasites can respond to the presence of vectors. For this purpose, we repeatedly exposed birds infected by the avian malaria parasite Plasmodium relictum to the bites of uninfected females of its natural vector, the mosquito Culex pipiens, at three different stages of the infection: acute (∼34 days post infection), early chronic (∼122 dpi) and late chronic (∼291 dpi). We show that: (i) mosquito-exposed birds have significantly higher blood parasitaemia than control unexposed birds during the chronic stages of the infection and that (ii) this translates into significantly higher infection prevalence in the mosquito. Our results demonstrate the ability of Plasmodium relictum to maximize their transmission by adopting plastic life history strategies in response to the availability of insect vectors. PMID:25210974

  9. Extended genomes: symbiosis and evolution.

    Science.gov (United States)

    Hurst, Gregory D D

    2017-10-06

    Many aspects of an individual's biology derive from its interaction with symbiotic microbes, which further define many aspects of the ecology and evolution of the host species. The centrality of microbes in the function of individual organisms has given rise to the concept of the holobiont-that an individual's biology is best understood as a composite of the 'host organism' and symbionts within. This concept has been further elaborated to posit the holobiont as a unit of selection. In this review, I critically examine whether it is useful to consider holobionts as a unit of selection. I argue that microbial heredity-the direct passage of microbes from parent to offspring-is a key factor determining the degree to which the holobiont can usefully be considered a level of selection. Where direct vertical transmission (VT) is common, microbes form part of extended genomes whose dynamics can be modelled with simple population genetics, but that nevertheless have subtle quantitative distinctions from the classic mutation/selection model for nuclear genes. Without direct VT, the correlation between microbial fitness and host individual fitness erodes, and microbe fitness becomes associated with host survival only (rather than reproduction). Furthermore, turnover of microbes within a host may lessen associations between microbial fitness with host survival, and in polymicrobial communities, microbial fitness may derive largely from the ability to outcompete other microbes, to avoid host immune clearance and to minimize mortality through phage infection. These competing selection pressures make holobiont fitness a very minor consideration in determining symbiont evolution. Nevertheless, the importance of non-heritable microbes in organismal function is undoubted-and as such the evolutionary and ecological processes giving rise to variation and evolution of the microbes within and between host individuals represent a key research area in biology.

  10. Genome-Wide Survey of Genes Under Positive Selection in Avian Pathogenic Escherichia coli Strains.

    Science.gov (United States)

    Rojas, Thaís Cabrera Galvão; Lobo, Francisco Pereira; Hongo, Jorge Augusto; Vicentini, Renato; Verma, Renu; Maluta, Renato Pariz; da Silveira, Wanderley Dias

    2017-05-01

    The ability to obtain bacterial genomes from the same host has allowed for comparative studies that help in the understanding of the molecular evolution of specific pathotypes. Avian pathogenic Escherichia coli (APEC) is a group of extraintestinal strains responsible for causing colibacillosis in birds. APEC is also suggested to possess a role as a zoonotic agent. Despite its importance, APEC pathogenesis still has several cryptic pathogenic processes that need to be better understood. In this work, a genome-wide survey of eight APEC strains for genes with evidence of recombination revealed that ∼14% of the homologous groups evaluated present signs of recombination. Enrichment analyses revealed that nine Gene Ontology (GO) terms were significantly more represented in recombinant genes. Among these GO terms, several were noted to be ATP-related categories. The search for positive selection in these APEC genomes revealed 32 groups of homologous genes with evidence of positive selection. Among these groups, we found several related to cell metabolism, as well as several uncharacterized genes, beyond the well-known virulence factors ompC, lamB, waaW, waaL, and fliC. A GO term enrichment test showed a prevalence of terms related to bacterial cell contact with the external environment (e.g., viral entry into host cell, detection of virus, pore complex, bacterial-type flagellum filament C, and porin activity). Finally, the genes with evidence of positive selection were retrieved from genomes of non-APEC strains and tested as were done for APEC strains. The result revealed that none of the groups of genes presented evidence of positive selection, confirming that the analysis was effective in inferring positive selection for APEC and not for E. coli in general, which means that the study of the genes with evidence of positive selection identified in this study can contribute for the better understanding of APEC pathogenesis processes.

  11. Complete Genome Sequence of the Avian-Pathogenic Escherichia coli Strain APEC O18

    OpenAIRE

    Nicholson, Bryon A.; Wannemuehler, Yvonne M.; Logue, Catherine M.; Li, Ganwu; Nolan, Lisa K.

    2016-01-01

    Avian-pathogenic Escherichia coli (APEC) is the causative agent of colibacillosis, a disease that affects all facets of poultry production worldwide, resulting in multimillion dollar losses annually. Here, we report the genome sequence of an APEC O18 sequence type 95 (ST95) strain associated with disease in a chicken.

  12. Complete Genome Sequence of an Avian Metapneumovirus Subtype A Strain Isolated from Chicken (Gallus gallus) in Brazil.

    Science.gov (United States)

    Rizotto, Laís S; Scagion, Guilherme P; Cardoso, Tereza C; Simão, Raphael M; Caserta, Leonardo C; Benassi, Julia C; Keid, Lara B; Oliveira, Trícia M F de S; Soares, Rodrigo M; Arns, Clarice W; Van Borm, Steven; Ferreira, Helena L

    2017-07-20

    We report here the complete genome sequence of an avian metapneumovirus (aMPV) isolated from a tracheal tissue sample of a commercial layer flock. The complete genome sequence of aMPV-A/chicken/Brazil-SP/669/2003 was obtained using MiSeq (Illumina, Inc.) sequencing. Phylogenetic analysis of the complete genome classified the isolate as avian metapneumovirus subtype A. Copyright © 2017 Rizotto et al.

  13. Evolution of small prokaryotic genomes

    Directory of Open Access Journals (Sweden)

    David José Martínez-Cano

    2015-01-01

    Full Text Available As revealed by genome sequencing, the biology of prokaryotes with reduced genomes is strikingly diverse. These include free-living prokaryotes with ~800 genes as well as endosymbiotic bacteria with as few as ~140 genes. Comparative genomics is revealing the evolutionary mechanisms that led to these small genomes. In the case of free-living prokaryotes, natural selection directly favored genome reduction, while in the case of endosymbiotic prokaryotes neutral processes played a more prominent role. However, new experimental data suggest that selective processes may be at operation as well for endosymbiotic prokaryotes at least during the first stages of genome reduction. Endosymbiotic prokaryotes have evolved diverse strategies for living with reduced gene sets inside a host-defined medium. These include utilization of host-encoded functions (some of them coded by genes acquired by gene transfer from the endosymbiont and/or other bacteria; metabolic complementation between co-symbionts; and forming consortiums with other bacteria within the host. Recent genome sequencing projects of intracellular mutualistic bacteria showed that previously believed universal evolutionary trends like reduced G+C content and conservation of genome synteny are not always present in highly reduced genomes. Finally, the simplified molecular machinery of some of these organisms with small genomes may be used to aid in the design of artificial minimal cells. Here we review recent genomic discoveries of the biology of prokaryotes endowed with small gene sets and discuss the evolutionary mechanisms that have been proposed to explain their peculiar nature.

  14. The effect of vaccination on the evolution and population dynamics of avian paramyxovirus-1.

    Directory of Open Access Journals (Sweden)

    Yee Ling Chong

    2010-04-01

    Full Text Available Newcastle Disease Virus (NDV is a pathogenic strain of avian paramyxovirus (aPMV-1 that is among the most serious of disease threats to the poultry industry worldwide. Viral diversity is high in aPMV-1; eight genotypes are recognized based on phylogenetic reconstruction of gene sequences. Modified live vaccines have been developed to decrease the economic losses caused by this virus. Vaccines derived from avirulent genotype II strains were developed in the 1950s and are in use globally, whereas Australian strains belonging to genotype I were developed as vaccines in the 1970s and are used mainly in Asia. In this study, we evaluated the consequences of attenuated live virus vaccination on the evolution of aPMV-1 genotypes. There was phylogenetic incongruence among trees based on individual genes and complete coding region of 54 full length aPMV-1 genomes, suggesting that recombinant sequences were present in the data set. Subsequently, five recombinant genomes were identified, four of which contained sequences from either genotype I or II. The population history of vaccine-related genotype II strains was distinct from other aPMV-1 genotypes; genotype II emerged in the late 19(th century and is evolving more slowly than other genotypes, which emerged in the 1960s. Despite vaccination efforts, genotype II viruses have experienced constant population growth to the present. In contrast, other contemporary genotypes showed population declines in the late 1990s. Additionally, genotype I and II viruses, which are circulating in the presence of homotypic vaccine pressure, have unique selection profiles compared to nonvaccine-related strains. Collectively, these data show that vaccination with live attenuated viruses has changed the evolution of aPMV-1 by maintaining a large effective population size of a vaccine-related genotype, allowing for coinfection and recombination of vaccine and wild type strains, and by applying unique selective pressures on

  15. The genomic landscape of compensatory evolution.

    Directory of Open Access Journals (Sweden)

    Béla Szamecz

    2014-08-01

    Full Text Available Adaptive evolution is generally assumed to progress through the accumulation of beneficial mutations. However, as deleterious mutations are common in natural populations, they generate a strong selection pressure to mitigate their detrimental effects through compensatory genetic changes. This process can potentially influence directions of adaptive evolution by enabling evolutionary routes that are otherwise inaccessible. Therefore, the extent to which compensatory mutations shape genomic evolution is of central importance. Here, we studied the capacity of the baker's yeast genome to compensate the complete loss of genes during evolution, and explored the long-term consequences of this process. We initiated laboratory evolutionary experiments with over 180 haploid baker's yeast genotypes, all of which initially displayed slow growth owing to the deletion of a single gene. Compensatory evolution following gene loss was rapid and pervasive: 68% of the genotypes reached near wild-type fitness through accumulation of adaptive mutations elsewhere in the genome. As compensatory mutations have associated fitness costs, genotypes with especially low fitnesses were more likely to be subjects of compensatory evolution. Genomic analysis revealed that as compensatory mutations were generally specific to the functional defect incurred, convergent evolution at the molecular level was extremely rare. Moreover, the majority of the gene expression changes due to gene deletion remained unrestored. Accordingly, compensatory evolution promoted genomic divergence of parallel evolving populations. However, these different evolutionary outcomes are not phenotypically equivalent, as they generated diverse growth phenotypes across environments. Taken together, these results indicate that gene loss initiates adaptive genomic changes that rapidly restores fitness, but this process has substantial pleiotropic effects on cellular physiology and evolvability upon

  16. [Trends of angiosperm genome evolution].

    Science.gov (United States)

    Sheremet'ev, S N; Gamaleĭ, Iu V; Slemnev, N N

    2011-01-01

    Direction of evolutionary variability of parameters of genome size and structurally functional activity of plants on life forms groups and angiosperms taxa are analyzed. It is shown that, in the Cretaceous-Cenozoic, their nuclear genome tended to increase. Functional genome efficiency (intensity of functions per 1 pg of DNA) decreased from as much as possible high at trees and lianas of rain and monsoonal forests of the Paleogene to minimum at shrubs, perennial and annual grasses of meadow-steppe vegetation which had appeared in the neogene. Important for the vegetation environmental changes in temperature, humidity and CO2 concentration in an adverse direction are discussed as the cause of evolutionary genome size growth and decrease in its functional efficiency. Price for phylogenetic adaptogenesis of angiosperms to the step Cenozoic climate cooling was 4-fold and more genome growth.

  17. Genome Evolution of Plant-Parasitic Nematodes.

    Science.gov (United States)

    Kikuchi, Taisei; Eves-van den Akker, Sebastian; Jones, John T

    2017-08-04

    Plant parasitism has evolved independently on at least four separate occasions in the phylum Nematoda. The application of next-generation sequencing (NGS) to plant-parasitic nematodes has allowed a wide range of genome- or transcriptome-level comparisons, and these have identified genome adaptations that enable parasitism of plants. Current genome data suggest that horizontal gene transfer, gene family expansions, evolution of new genes that mediate interactions with the host, and parasitism-specific gene regulation are important adaptations that allow nematodes to parasitize plants. Sequencing of a larger number of nematode genomes, including plant parasites that show different modes of parasitism or that have evolved in currently unsampled clades, and using free-living taxa as comparators would allow more detailed analysis and a better understanding of the organization of key genes within the genomes. This would facilitate a more complete understanding of the way in which parasitism has shaped the genomes of plant-parasitic nematodes.

  18. Conservation and losses of non-coding RNAs in avian genomes.

    Directory of Open Access Journals (Sweden)

    Paul P Gardner

    Full Text Available Here we present the results of a large-scale bioinformatics annotation of non-coding RNA loci in 48 avian genomes. Our approach uses probabilistic models of hand-curated families from the Rfam database to infer conserved RNA families within each avian genome. We supplement these annotations with predictions from the tRNA annotation tool, tRNAscan-SE and microRNAs from miRBase. We identify 34 lncRNA-associated loci that are conserved between birds and mammals and validate 12 of these in chicken. We report several intriguing cases where a reported mammalian lncRNA, but not its function, is conserved. We also demonstrate extensive conservation of classical ncRNAs (e.g., tRNAs and more recently discovered ncRNAs (e.g., snoRNAs and miRNAs in birds. Furthermore, we describe numerous "losses" of several RNA families, and attribute these to either genuine loss, divergence or missing data. In particular, we show that many of these losses are due to the challenges associated with assembling avian microchromosomes. These combined results illustrate the utility of applying homology-based methods for annotating novel vertebrate genomes.

  19. Genome evolution during progression to breast cancer

    KAUST Repository

    Newburger, D. E.

    2013-04-08

    Cancer evolution involves cycles of genomic damage, epigenetic deregulation, and increased cellular proliferation that eventually culminate in the carcinoma phenotype. Early neoplasias, which are often found concurrently with carcinomas and are histologically distinguishable from normal breast tissue, are less advanced in phenotype than carcinomas and are thought to represent precursor stages. To elucidate their role in cancer evolution we performed comparative whole-genome sequencing of early neoplasias, matched normal tissue, and carcinomas from six patients, for a total of 31 samples. By using somatic mutations as lineage markers we built trees that relate the tissue samples within each patient. On the basis of these lineage trees we inferred the order, timing, and rates of genomic events. In four out of six cases, an early neoplasia and the carcinoma share a mutated common ancestor with recurring aneuploidies, and in all six cases evolution accelerated in the carcinoma lineage. Transition spectra of somatic mutations are stable and consistent across cases, suggesting that accumulation of somatic mutations is a result of increased ancestral cell division rather than specific mutational mechanisms. In contrast to highly advanced tumors that are the focus of much of the current cancer genome sequencing, neither the early neoplasia genomes nor the carcinomas are enriched with potentially functional somatic point mutations. Aneuploidies that occur in common ancestors of neoplastic and tumor cells are the earliest events that affect a large number of genes and may predispose breast tissue to eventual development of invasive carcinoma.

  20. Genome evolution during progression to breast cancer

    Science.gov (United States)

    Newburger, Daniel E.; Kashef-Haghighi, Dorna; Weng, Ziming; Salari, Raheleh; Sweeney, Robert T.; Brunner, Alayne L.; Zhu, Shirley X.; Guo, Xiangqian; Varma, Sushama; Troxell, Megan L.; West, Robert B.; Batzoglou, Serafim; Sidow, Arend

    2013-01-01

    Cancer evolution involves cycles of genomic damage, epigenetic deregulation, and increased cellular proliferation that eventually culminate in the carcinoma phenotype. Early neoplasias, which are often found concurrently with carcinomas and are histologically distinguishable from normal breast tissue, are less advanced in phenotype than carcinomas and are thought to represent precursor stages. To elucidate their role in cancer evolution we performed comparative whole-genome sequencing of early neoplasias, matched normal tissue, and carcinomas from six patients, for a total of 31 samples. By using somatic mutations as lineage markers we built trees that relate the tissue samples within each patient. On the basis of these lineage trees we inferred the order, timing, and rates of genomic events. In four out of six cases, an early neoplasia and the carcinoma share a mutated common ancestor with recurring aneuploidies, and in all six cases evolution accelerated in the carcinoma lineage. Transition spectra of somatic mutations are stable and consistent across cases, suggesting that accumulation of somatic mutations is a result of increased ancestral cell division rather than specific mutational mechanisms. In contrast to highly advanced tumors that are the focus of much of the current cancer genome sequencing, neither the early neoplasia genomes nor the carcinomas are enriched with potentially functional somatic point mutations. Aneuploidies that occur in common ancestors of neoplastic and tumor cells are the earliest events that affect a large number of genes and may predispose breast tissue to eventual development of invasive carcinoma. PMID:23568837

  1. Evolution of epigenetic regulation in vertebrate genomes

    Science.gov (United States)

    Lowdon, Rebecca F.; Jang, Hyo Sik; Wang, Ting

    2016-01-01

    Empirical models of sequence evolution have spurred progress in the field of evolutionary genetics for decades. We are now realizing the importance and complexity of the eukaryotic epigenome. While epigenome analysis has been applied to genomes from single cell eukaryotes to human, comparative analyses are still relatively few, and computational algorithms to quantify epigenome evolution remain scarce. Accordingly, a quantitative model of epigenome evolution remains to be established. Here we review the comparative epigenomics literature and synthesize its overarching themes. We also suggest one mechanism, transcription factor binding site turnover, which relates sequence evolution to epigenetic conservation or divergence. Lastly, we propose a framework for how the field can move forward to build a coherent quantitative model of epigenome evolution. PMID:27080453

  2. Genome Evolution Due to Allopolyploidization in Wheat

    Science.gov (United States)

    Feldman, Moshe; Levy, Avraham A.

    2012-01-01

    The wheat group has evolved through allopolyploidization, namely, through hybridization among species from the plant genera Aegilops and Triticum followed by genome doubling. This speciation process has been associated with ecogeographical expansion and with domestication. In the past few decades, we have searched for explanations for this impressive success. Our studies attempted to probe the bases for the wide genetic variation characterizing these species, which accounts for their great adaptability and colonizing ability. Central to our work was the investigation of how allopolyploidization alters genome structure and expression. We found in wheat that allopolyploidy accelerated genome evolution in two ways: (1) it triggered rapid genome alterations through the instantaneous generation of a variety of cardinal genetic and epigenetic changes (which we termed “revolutionary” changes), and (2) it facilitated sporadic genomic changes throughout the species’ evolution (i.e., evolutionary changes), which are not attainable at the diploid level. Our major findings in natural and synthetic allopolyploid wheat indicate that these alterations have led to the cytological and genetic diploidization of the allopolyploids. These genetic and epigenetic changes reflect the dynamic structural and functional plasticity of the allopolyploid wheat genome. The significance of this plasticity for the successful establishment of wheat allopolyploids, in nature and under domestication, is discussed. PMID:23135324

  3. Evolution of highly pathogenic avian H5N1 influenza viruses

    Energy Technology Data Exchange (ETDEWEB)

    Macken, Catherine A [Los Alamos National Laboratory; Green, Margaret A [Los Alamos National Laboratory

    2009-01-01

    Highly pathogenic avian H5N1 viruses have circulated in Southeast Asia for more than a decade, are now endemic in parts of this region, and have also spread to more than 60 countries on three continents. The evolution of these viruses is characterized by frequent reassortment events that have created a significant number of different genotypes, both transient and longer lasting. However, fundamental questions remain about the generation and perpetuation of this substantial genetic diversity. These gaps in understanding may, in part, be due to the difficulties of genotyping closely related viruses, and limitations in the size of the data sets used in analysis. Using our recently published novel genotyping procedure ('two-time test'), which is amenable to high throughput analysis and provides an increased level of resolution relative to previous analyses, we propose a detailed model for the evolution and diversification of avian H5N1 viruses. Our analysis suggests that (i) all current H5N1 genotypes are derived from a single, clearly defined sequence of initial reassortment events; (ii) reassortment of the polymerase and NP genes may have played an important role in avian H5N1 virus evolution; (iii) the current genotype Z viruses have diverged into three distinguishable sub-genotypes in the absence of reassortment; (iv) some potentially significant molecular changes appear to be correlated with particular genotypes (for example, reassortment of the internal genes is often paralleled by a change in the HA clade); and (v) as noted in earlier studies of avian influenza A virus evolution, novel segments are typically derived from different donors (i.e., there is no obvious pattern of gene linkage in reassortment). The model of avian H5N1 viral evolution by reassortment and mutation that emerges from our study provides a context within which significant amino acid changes may be revealed; it also may help in predicting the 'success' of newly emerging

  4. Avian polymavirus in wild birds: genome analysis of isolates from Falconiformes and Psittaciformes.

    Science.gov (United States)

    Johne, R; Müller, H

    1998-01-01

    Avian polyomavirus (APV) infections have been reported to cause fatal disease in a wide range of psittacine species. Here we demonstrate APV infections in buzzards (Buteo buteo) and in a falcon (Falco tinnunculus) found dead in Germany, and in lovebirds (Agapornis pullaria) with fatal disease, wild-caught in Moçambique. APV infection in buzzards was determined by PCR amplification of parts of the viral genome followed by Southern blot hybridisation. The genomes of the isolates obtained from the falcon and one of the lovebirds proved to be very closely related to those of Budgerigar Fledgling Disease Virus (BFDV)-1, BFDV-2 and BFDV-3, isolated from budgerigar, chicken, and parakeet, respectively. A consensus sequence was delineated from the known nucleotide sequences of APV isolates. The significance of some nucleotide changes is discussed. Infectivity of all of these isolates was neutralized by antibodies directed against BFDV-1. Data presented in this investigation show that the polyomavirus isolates obtained from different avian species so far all belong to one genotype and one serotype within the proposed subgenus Avipolyomavirus of the family Papovaviridae. The designation Budgerigar Fledgling Disease Virus (BFDV) is, therefore, misleading as this virus type infects different species of birds. The name Avian Polymavirus and the abreviation APV should be adopted to all of the isolates investigated in detail at present. The possible role of birds of passage in the epidemiology in APV infections is discussed.

  5. Complete genome sequences of four avian paramyxoviruses of serotype 10 isolated from Rockhopper Penguins on the Falkland Islands

    Science.gov (United States)

    The first complete genome sequences of four Avian paramyxovirus serotype 10 (APMV-10) isolates are described here. The viruses were isolated from Rockhopper Penguins sampled in 2007 on the Falkland Islands. All four genomes are 15,456 nucleotides in length and phylogenetic analyses show them to be c...

  6. Exploring novel candidate genes from the Mouse Genome Informatics database: Potential implications for avian migration research.

    Science.gov (United States)

    Contina, Andrea; Bridge, Eli S; Kelly, Jeffrey F

    2016-07-01

    To search for genes associated with migratory phenotypes in songbirds, we selected candidate genes through annotations from the Mouse Genome Informatics database and assembled an extensive candidate-gene library. Then, we implemented a next-generation sequencing approach to obtain DNA sequences from the Painted Bunting genome. We focused on those sequences that were conserved across avian species and that aligned with candidate genes in our mouse library. We genotyped short sequence repeats from the following candidate genes: ADRA1d, ANKRD17, CISH and MYH7. We studied the possible correlations between allelic variations occurring in these novel candidate migration genes and avian migratory phenotypes available from the published literature. We found that allele variation at MYH7 correlated with a calculated index of speed of migration (km/day) across 11 species of songbirds. We highlight the potential of the Mouse Genome Informatics database in providing new candidate genes that might play a crucial role in regulating migration in birds and possibly in other taxa. Our research effort shows the benefits and limitations of working with extensive genomic datasets and offers a snapshot of the challenges related to cross-species validation in behavioral and molecular ecology studies. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  7. Endogenous avian leukosis viral loci in the Red Jungle Fowl genome assembly.

    Science.gov (United States)

    Benkel, Bernhard; Rutherford, Katherine

    2014-12-01

    The current build (galGal4) of the genome of the ancestor of the modern chicken, the Red Jungle Fowl, contains a single endogenous avian leukosis viral element (ALVE) on chromosome 1 (designated RSV-LTR; family ERVK). The assembly shows the ALVE provirus juxtaposed with a member of a second family of avian endogenous retroviruses (designated GGERV20; family ERVL); however, the status of the 3' end of the ALVE element as well as its flanking region remain unclear due to a gap in the reference genome sequence. In this study, we filled the gap in the assembly using a combination of long-range PCR (LR-PCR) and a short contig present in the unassembled portion of the reference genome database. Our results demonstrate that the ALVE element (ALVE-JFevB) is inserted into the putative envelope region of a GGERV20 element, roughly 1 kbp from its 3' end, and that ALVE-JFevB is complete, and depending on its expression status, potentially capable of directing the production of virus. Moreover, the unassembled portion of the genome database contains junction fragments for a second, previously characterized endogenous proviral element, ALVE-6. ©2014 Poultry Science Association Inc.

  8. Genome Evolution and Host Adaptation in Bartonella

    OpenAIRE

    Berglund, Eva Caroline

    2009-01-01

    Bacteria of the genus Bartonella infect the red blood cells of a wide range of wild and domestic mammals and are transmitted between hosts by blood-sucking insects. Although most Bartonella infections are asymptomatic, the genus contains several human pathogens. In this work, host adaptation and host switches in Bartonella have been studied from a genomic perspective, with special focus on the acquisition and evolution of genes involved in host interactions. As part of this study, the complet...

  9. Genomic Evolution of the Ascomycete Yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Robert; Haridas, Sajeet; Salamov, Asaf; Boundy-Mills, Kyria; Goker, Markus; Hittinger, Chris; Klenk, Hans-Peter; Lopes, Mariana; Meir-Kolthoff, Jan P.; Rokas, Antonis; Rosa, Carlos; Scheuner, Carmen; Soares, Marco; Stielow, Benjamin; Wisecaver, Jennifer H.; Wolfe, Ken; Blackwell, Meredith; Kurtzman, Cletus; Grigoriev, Igor; Jeffries, Thomas

    2015-03-16

    Yeasts are important for industrial and biotechnological processes and show remarkable metabolic and phylogenetic diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. Phylogenetic analysis of these and previously published yeast genomes helped resolve the placement of species including Saitoella complicata, Babjeviella inositovora, Hyphopichia burtonii, and Metschnikowia bicuspidata. Moreover, we find that alternative nuclear codon usage, where CUG encodes serine instead of leucine, are monophyletic within the Saccharomycotina. Most of the yeasts have compact genomes with a large fraction of single exon genes, and a tendency towards more introns in early-diverging species. Analysis of enzyme phylogeny gives insights into the evolution of metabolic capabilities such as methanol utilization and assimilation of alternative carbon sources.

  10. Temporal genomic evolution of bird sex chromosomes

    DEFF Research Database (Denmark)

    Wang, Zongji; Zhang, Jilin; Yang, Wei

    2014-01-01

    BACKGROUND: Sex chromosomes exhibit many unusual patterns in sequence and gene expression relative to autosomes. Birds have evolved a female heterogametic sex system (male ZZ, female ZW), through stepwise suppression of recombination between chrZ and chrW. To address the broad patterns and complex...... driving forces of Z chromosome evolution, we analyze here 45 newly available bird genomes and four species' transcriptomes, over their course of recombination loss between the sex chromosomes. RESULTS: We show Z chromosomes in general have a significantly higher substitution rate in introns and synonymous...... ('fast-Z' evolution). And species with a lower level of intronic heterozygosities tend to evolve even faster on the Z chromosome. Further analysis of fast-evolving genes' enriched functional categories and sex-biased expression patterns support that, fast-Z evolution in birds is mainly driven by genetic...

  11. Comparative genomics and evolution of eukaryotic phospholipidbiosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Lykidis, Athanasios

    2006-12-01

    Phospholipid biosynthetic enzymes produce diverse molecular structures and are often present in multiple forms encoded by different genes. This work utilizes comparative genomics and phylogenetics for exploring the distribution, structure and evolution of phospholipid biosynthetic genes and pathways in 26 eukaryotic genomes. Although the basic structure of the pathways was formed early in eukaryotic evolution, the emerging picture indicates that individual enzyme families followed unique evolutionary courses. For example, choline and ethanolamine kinases and cytidylyltransferases emerged in ancestral eukaryotes, whereas, multiple forms of the corresponding phosphatidyltransferases evolved mainly in a lineage specific manner. Furthermore, several unicellular eukaryotes maintain bacterial-type enzymes and reactions for the synthesis of phosphatidylglycerol and cardiolipin. Also, base-exchange phosphatidylserine synthases are widespread and ancestral enzymes. The multiplicity of phospholipid biosynthetic enzymes has been largely generated by gene expansion in a lineage specific manner. Thus, these observations suggest that phospholipid biosynthesis has been an actively evolving system. Finally, comparative genomic analysis indicates the existence of novel phosphatidyltransferases and provides a candidate for the uncharacterized eukaryotic phosphatidylglycerol phosphate phosphatase.

  12. The ecology and evolution of avian alarm call signaling systems

    Science.gov (United States)

    Billings, Alexis Chandon

    Communication is often set up as a simple dyadic exchange between one sender and one receiver. However, in reality, signaling systems have evolved and are used with many forms and types of information bombarding multiple senders, who in turn send multiple signals of different modalities, through various environmental spaces, finally reaching multiple receivers. In order to understand both the ecology and evolution of a signaling system, we must examine all the facets of the signaling system. My dissertation focused on the alarm call signaling system in birds. Alarm calls are acoustic signals given in response to danger or predators. My first two chapters examine how information about predators alters alarm calls. In chapter one I found that chickadees make distinctions between predators of different hunting strategies and appear to encode information about predators differently if they are heard instead of seen. In my second chapter, I test these findings more robustly in a non-model bird, the Steller's jay. I again found that predator species matters, but that how Steller's jays respond if they saw or heard the predator depends on the predator species. In my third chapter, I tested how habitat has influenced the evolution of mobbing call acoustic structure. I found that habitat is not a major contributor to the variation in acoustic structure seen across species and that other selective pressures such as body size may be more important. In my fourth chapter I present a new framework to understand the evolution of multimodal communication across species. I identify a unique constraint, the need for overlapping sensory systems, thresholds and cognitive abilities between sender and receiver in order for different forms of interspecific communication to evolve. Taken together, these chapters attempt to understand a signaling system from both an ecological and evolutionary perspective by examining each piece of the communication scheme.

  13. Genome sequencing of a virulent avian Pasteurella multocida strain GX-Pm reveals the candidate genes involved in the pathogenesis.

    Science.gov (United States)

    Yu, Chengjie; Sizhu, Suolang; Luo, Qingping; Xu, Xuewen; Fu, Lei; Zhang, Anding

    2016-04-01

    Pasteurella multocida (P. multocida) was first shown to be the causative agent of fowl cholera by Louis Pasteur in 1881. First genomic study was performed on an avirulent avian strain Pm70, and until 2013, two genomes of virulent avian strains X73 and P1059 were sequenced. Comparative genome study supplied important information for further study on the pathogenesis of fowl cholera. In the previous study, a capsular serotype A strain GX-Pm was isolated from the liver of a chicken, which died during an outbreak of fowl cholera in 2011. The strain showed multiple drug resistance and was highly virulent to chickens. Therefore, the present study performed the genome sequencing and a comparative genomic analysis to reveal the candidate genes involved in virulence of P. multocida. Sequenced draft genome sequence of GX-Pm was 2,292,886 bp, contained 2941 protein-coding genes, 5 genomic islands, 4 IS elements and 2 prophage regions. Notability, all the predicted drug-resistance genes were included in predicted genomic islands. A comparative genome study on virulent avian strains P1059, X73 and GX-Pm with the avirulent avian strain Pm 70 indicated that 475 unique genes were only identified in either of virulent strains but absent in the avirulent strain. Among these genes, 20 genes were contained within genomes of all three virulent strains, including a few of putative virulence genes. Further characterization of the pathogenic functions of these genes would benefit the understanding of pathogenesis of fowl cholera. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Weird Animals, Sex, and Genome Evolution.

    Science.gov (United States)

    Graves, Jennifer A Marshall

    2018-02-15

    Making my career in Australia exposed me to the tyranny of distance, but it gave me opportunities to study our unique native fauna. Distantly related animal species present genetic variation that we can use to explore the most fundamental biological structures and processes. I have compared chromosomes and genomes of kangaroos and platypus, tiger snakes and emus, devils (Tasmanian) and dragons (lizards). I particularly love the challenges posed by sex chromosomes, which, apart from determining sex, provide stunning examples of epigenetic control and break all the evolutionary rules that we currently understand. Here I describe some of those amazing animals and the insights on genome structure, function, and evolution they have afforded us. I also describe my sometimes-random walk in science and the factors and people who influenced my direction. Being a woman in science is still not easy, and I hope others will find encouragement and empathy in my story.

  15. Draft Genome Sequences of Four Salmonella enterica subsp. enterica Serovar Enteritidis Strains Implicated in Infections of Avian and Human Hosts

    KAUST Repository

    An, Ran

    2018-01-24

    Salmonella enterica subsp. enterica serovar Enteritidis is a wide-host-range pathogen. Occasionally, it is involved in invasive infections, leading to a high mortality rate. Here, we present the draft genome sequences of four S Enteritidis strains obtained from human and avian hosts that had been involved in bacteremia, gastroenteritis, and primary infections.

  16. Isolation, genome sequencing and functional analysis of two T7-like coliphages of avian pathogenic Escherichia coli.

    Science.gov (United States)

    Chen, Mianmian; Xu, Juntian; Yao, Huochun; Lu, Chengping; Zhang, Wei

    2016-05-10

    Avian pathogenic Escherichia coli (APEC) causes colibacillosis, which results in significant economic losses to the poultry industry worldwide. Due to the drug residues and increased antibiotic resistance caused by antibiotic use, bacteriophages and other alternative therapeutic agents are expected to control APEC infection in poultry. Two APEC phages, named P483 and P694, were isolated from the feces from the farmers market in China. We then studied their biological properties, and carried out high-throughput genome sequencing and homology analyses of these phages. Assembly results of high-throughput sequencing showed that the structures of both P483 and P694 genomes consist of linear and double-stranded DNA. Results of the electron microscopy and homology analysis revealed that both P483 and P694 belong to T7-like virus which is a member of the Podoviridae family of the Caudovirales order. Comparative genomic analysis showed that most of the predicted proteins of these two phages showed strongest sequence similarity to the Enterobacteria phages BA14 and 285P, Erwinia phage FE44, and Kluyvera phage Kvp1; however, some proteins such as gp0.6a, gp1.7 and gp17 showed lower similarity (<85%) with the homologs of other phages in the T7 subgroup. We also found some unique characteristics of P483 and P694, such as the two types of the genes of P694 and no lytic activity of P694 against its host bacteria in liquid medium. Our results serve to further our understanding of phage evolution of T7-like coliphages and provide the potential application of the phages as therapeutic agents for the treatment of diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Examination of prokaryotic multipartite genome evolution through experimental genome reduction.

    Directory of Open Access Journals (Sweden)

    George C diCenzo

    2014-10-01

    Full Text Available Many bacteria carry two or more chromosome-like replicons. This occurs in pathogens such as Vibrio cholerea and Brucella abortis as well as in many N2-fixing plant symbionts including all isolates of the alfalfa root-nodule bacteria Sinorhizobium meliloti. Understanding the evolution and role of this multipartite genome organization will provide significant insight into these important organisms; yet this knowledge remains incomplete, in part, because technical challenges of large-scale genome manipulations have limited experimental analyses. The distinct evolutionary histories and characteristics of the three replicons that constitute the S. meliloti genome (the chromosome (3.65 Mb, pSymA megaplasmid (1.35 Mb, and pSymB chromid (1.68 Mb makes this a good model to examine this topic. We transferred essential genes from pSymB into the chromosome, and constructed strains that lack pSymB as well as both pSymA and pSymB. This is the largest reduction (45.4%, 3.04 megabases, 2866 genes of a prokaryotic genome to date and the first removal of an essential chromid. Strikingly, strains lacking pSymA and pSymB (ΔpSymAB lost the ability to utilize 55 of 74 carbon sources and various sources of nitrogen, phosphorous and sulfur, yet the ΔpSymAB strain grew well in minimal salts media and in sterile soil. This suggests that the core chromosome is sufficient for growth in a bulk soil environment and that the pSymA and pSymB replicons carry genes with more specialized functions such as growth in the rhizosphere and interaction with the plant. These experimental data support a generalized evolutionary model, in which non-chromosomal replicons primarily carry genes with more specialized functions. These large secondary replicons increase the organism's niche range, which offsets their metabolic burden on the cell (e.g. pSymA. Subsequent co-evolution with the chromosome then leads to the formation of a chromid through the acquisition of functions core to all

  18. Evolutionary genomics and adaptive evolution of the Hedgehog gene family (Shh, Ihh and Dhh in vertebrates.

    Directory of Open Access Journals (Sweden)

    Joana Pereira

    Full Text Available The Hedgehog (Hh gene family codes for a class of secreted proteins composed of two active domains that act as signalling molecules during embryo development, namely for the development of the nervous and skeletal systems and the formation of the testis cord. While only one Hh gene is found typically in invertebrate genomes, most vertebrates species have three (Sonic hedgehog--Shh; Indian hedgehog--Ihh; and Desert hedgehog--Dhh, each with different expression patterns and functions, which likely helped promote the increasing complexity of vertebrates and their successful diversification. In this study, we used comparative genomic and adaptive evolutionary analyses to characterize the evolution of the Hh genes in vertebrates following the two major whole genome duplication (WGD events. To overcome the lack of Hh-coding sequences on avian publicly available databases, we used an extensive dataset of 45 avian and three non-avian reptilian genomes to show that birds have all three Hh paralogs. We find suggestions that following the WGD events, vertebrate Hh paralogous genes evolved independently within similar linkage groups and under different evolutionary rates, especially within the catalytic domain. The structural regions around the ion-binding site were identified to be under positive selection in the signaling domain. These findings contrast with those observed in invertebrates, where different lineages that experienced gene duplication retained similar selective constraints in the Hh orthologs. Our results provide new insights on the evolutionary history of the Hh gene family, the functional roles of these paralogs in vertebrate species, and on the location of mutational hotspots.

  19. Episodic positive selection in the evolution of avian toll-like receptor innate immunity genes.

    Science.gov (United States)

    Grueber, Catherine E; Wallis, Graham P; Jamieson, Ian G

    2014-01-01

    Toll-like receptors (TLRs) are a family of conserved pattern-recognition molecules responsible for initiating innate and acquired immune responses. Because they play a key role in host defence, these genes have received increasing interest in the evolutionary and population genetics literature, as their variation represents a potential target of adaptive evolution. However, the role of pathogen-mediated selection (i.e. episodic positive selection) in the evolution of these genes remains poorly known and has not been examined outside of mammals. A recent increase in the number of bird species for which TLR sequences are available has enabled us to examine the selective processes that have influenced evolution of the 10 known avian TLR genes. Specifically, we tested for episodic positive selection to identify codons that experience purifying selection for the majority of their evolution, interspersed with bursts of positive selection that may occur only in restricted lineages. We included up to 23 species per gene (mean = 16.0) and observed that, although purifying selection was evident, an average of 4.5% of codons experienced episodic positive selection across all loci. For four genes in which sequence coverage traversed both the extracellular leucine-rich repeat region (LRR) and transmembrane/intracellular domains of the proteins, increased positive selection was observed at the extracellular domain, consistent with theoretical predictions. Our results provide evidence that episodic positive selection has played an important role in the evolution of most avian TLRs, consistent with the role of these loci in pathogen recognition and a mechanism of host-pathogen coevolution.

  20. The primary feather lengths of early birds with respect to avian wing shape evolution.

    Science.gov (United States)

    Wang, X; Nudds, R L; Dyke, G J

    2011-06-01

    We examine the relationships between primary feather length (f(prim)) and total arm length (ta) (sum of humerus, ulna and manus lengths) in Mesozoic fossil birds to address one aspect of avian wing shape evolution. Analyses show that there are significant differences in the composition of the wing between the known lineages of basal birds and that mean f(prim) (relative to ta length) is significantly shorter in Archaeopteryx and enantiornithines than it is in Confuciusornithidae and in living birds. Based on outgroup comparisons with nonavian theropods that preserve forelimb primary feathers, we show that the possession of a relatively shorter f(prim) (relative to ta length) must be the primitive condition for Aves. There is also a clear phylogenetic trend in relative primary feather length throughout bird evolution: our analyses demonstrate that the f(prim)/ta ratio increases among successive lineages of Mesozoic birds towards the crown of the tree ('modern birds'; Neornithes). Variance in this ratio also coincides with the enormous evolutionary radiation at the base of Neornithes. Because the f(prim)/ta ratio is linked to flight mode and performance in living birds, further comparisons of wing proportions among Mesozoic avians will prove informative and certainly imply that the aerial locomotion of the Early Cretaceous Confuciusornis was very different to other extinct and living birds. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  1. Temporal genomic evolution of bird sex chromosomes.

    Science.gov (United States)

    Wang, Zongji; Zhang, Jilin; Yang, Wei; An, Na; Zhang, Pei; Zhang, Guojie; Zhou, Qi

    2014-12-12

    Sex chromosomes exhibit many unusual patterns in sequence and gene expression relative to autosomes. Birds have evolved a female heterogametic sex system (male ZZ, female ZW), through stepwise suppression of recombination between chrZ and chrW. To address the broad patterns and complex driving forces of Z chromosome evolution, we analyze here 45 newly available bird genomes and four species' transcriptomes, over their course of recombination loss between the sex chromosomes. We show Z chromosomes in general have a significantly higher substitution rate in introns and synonymous protein-coding sites than autosomes, driven by the male-to-female mutation bias ('male-driven evolution' effect). Our genome-wide estimate reveals that the degree of such a bias ranges from 1.6 to 3.8 among different species. G + C content of third codon positions exhibits the same trend of gradual changes with that of introns, between chrZ and autosomes or regions with increasing ages of becoming Z-linked, therefore codon usage bias in birds is probably driven by the mutational bias. On the other hand, Z chromosomes also evolve significantly faster at nonsynonymous sites relative to autosomes ('fast-Z' evolution). And species with a lower level of intronic heterozygosities tend to evolve even faster on the Z chromosome. Further analysis of fast-evolving genes' enriched functional categories and sex-biased expression patterns support that, fast-Z evolution in birds is mainly driven by genetic drift. Finally, we show in species except for chicken, gene expression becomes more male-biased within Z-linked regions that have became hemizygous in females for a longer time, suggesting a lack of global dosage compensation in birds, and the reported regional dosage compensation in chicken has only evolved very recently. In conclusion, we uncover that the sequence and expression patterns of Z chromosome genes covary with their ages of becoming Z-linked. In contrast to the mammalian X chromosomes, such

  2. Bird evolution: testing the Metaves clade with six new mitochondrial genomes

    Directory of Open Access Journals (Sweden)

    Phillips Matthew J

    2008-01-01

    Full Text Available Abstract Background Evolutionary biologists are often misled by convergence of morphology and this has been common in the study of bird evolution. However, the use of molecular data sets have their own problems and phylogenies based on short DNA sequences have the potential to mislead us too. The relationships among clades and timing of the evolution of modern birds (Neoaves has not yet been well resolved. Evidence of convergence of morphology remain controversial. With six new bird mitochondrial genomes (hummingbird, swift, kagu, rail, flamingo and grebe we test the proposed Metaves/Coronaves division within Neoaves and the parallel radiations in this primary avian clade. Results Our mitochondrial trees did not return the Metaves clade that had been proposed based on one nuclear intron sequence. We suggest that the high number of indels within the seventh intron of the β-fibrinogen gene at this phylogenetic level, which left a dataset with not a single site across the alignment shared by all taxa, resulted in artifacts during analysis. With respect to the overall avian tree, we find the flamingo and grebe are sister taxa and basal to the shorebirds (Charadriiformes. Using a novel site-stripping technique for noise-reduction we found this relationship to be stable. The hummingbird/swift clade is outside the large and very diverse group of raptors, shore and sea birds. Unexpectedly the kagu is not closely related to the rail in our analysis, but because neither the kagu nor the rail have close affinity to any taxa within this dataset of 41 birds, their placement is not yet resolved. Conclusion Our phylogenetic hypothesis based on 41 avian mitochondrial genomes (13,229 bp rejects monophyly of seven Metaves species and we therefore conclude that the members of Metaves do not share a common evolutionary history within the Neoaves.

  3. Common and specific genomic sequences of avian and human extraintestinal pathogenic Escherichia coli as determined by genomic subtractive hybridization

    Directory of Open Access Journals (Sweden)

    Nolan Lisa K

    2007-08-01

    Full Text Available Abstract Background Suppression subtractive hybridization (SSH strategy was used with extraintestinal pathogenic Escherichia coli (EXPEC that cause avian colibacillosis (avian pathogenic E. coli or APEC and human urinary tract infections (uropathogenic E. coli or UPEC to determine if they possessed genes that were host and/or niche specific. Both APEC and UPEC isolates were used as tester and driver strains in 4 different SSHs in order to obtain APEC- and UPEC-specific subtraction fragments (SFs. Results These procedures yielded a total of 136 tester-specific SFs of which 85 were APEC-derived and 51 were UPEC-derived. Most of the APEC-derived SFs were associated with plasmids; whereas, the majority of UPEC-derived sequences matched to the bacterial chromosome. We further determined the distribution of these tester-derived sequences in a collection of UPEC and APEC isolates using polymerase chain reaction techniques. Plasmid-borne, APEC-derived sequences (tsh, cvaB, traR, traC and sopB were predominantly present in APEC, as compared to UPEC. Of the UPEC-derived SFs, those encoding hemolysin D and F1C major and minor fimbrial subunits were present only in UPEC. However, two UPEC-derived SFs that showed strong similarity to the uropathgenic-specific protein gene (usp occurred in APEC, demonstrating that usp is not specific to UPEC. Conclusion This study provides evidence of the genetic variability of ExPEC as well as genomic similarities between UPEC and APEC; it did not identify any single marker that would dictate host and/or niche specificity in APEC or UPEC. However, further studies on the genes that encode putative or hypothetical proteins might offer important insight into the pathogenesis of disease, as caused by these two ExPEC.

  4. The Evolution of Clutch Size in Hosts of Avian Brood Parasites.

    Science.gov (United States)

    Medina, Iliana; Langmore, Naomi E; Lanfear, Robert; Kokko, Hanna

    2017-11-01

    Coevolution with avian brood parasites shapes a range of traits in their hosts, including morphology, behavior, and breeding systems. Here we explore whether brood parasitism is also associated with the evolution of host clutch size. Several studies have proposed that hosts of highly virulent parasites could decrease the costs of parasitism by evolving a smaller clutch size, because hosts with smaller clutches will lose fewer progeny when their clutch is parasitized. We describe a model of the evolution of clutch size, which challenges this logic and shows instead that an increase in clutch size (or no change) should evolve in hosts. We test this prediction using a broad-scale comparative analysis to ask whether there are differences in clutch size within hosts and between hosts and nonhosts. Consistent with our model, this analysis revealed that host species do not have smaller clutches and that hosts that incur larger costs from raising a parasite lay larger clutches. We suggest that brood parasitism might be an influential factor in clutch-size evolution and could potentially select for the evolution of larger clutches in host species.

  5. The evolution of acceptance and tolerance in hosts of avian brood parasites.

    Science.gov (United States)

    Medina, Iliana; Langmore, Naomi E

    2016-08-01

    Avian brood parasites lay their eggs in the nests of their hosts, which rear the parasite's progeny. The costs of parasitism have selected for the evolution of defence strategies in many host species. Most research has focused on resistance strategies, where hosts minimize the number of successful parasitism events using defences such as mobbing of adult brood parasites or rejection of parasite eggs. However, many hosts do not exhibit resistance. Here we explore why some hosts accept parasite eggs in their nests and how this is related to the virulence of the parasite. We also explore the extent to which acceptance of parasites can be explained by the evolution of tolerance; a strategy in which the host accepts the parasite but adjusts its life history or other traits to minimize the costs of parasitism. We review examples of tolerance in hosts of brood parasites (such as modifications to clutch size and multi-broodedness), and utilize the literature on host-pathogen interactions and plant herbivory to analyse the prevalence of each type of defence (tolerance or resistance) and their evolution. We conclude that (i) the interactions between brood parasites and their hosts provide a highly tractable system for studying the evolution of tolerance, (ii) studies of host defences against brood parasites should investigate both resistance and tolerance, and (iii) tolerance and resistance can lead to contrasting evolutionary scenarios. © 2015 Cambridge Philosophical Society.

  6. In silico phylogenetic and virulence gene profile analyses of avian pathogenic Escherichia coli genome sequences

    Directory of Open Access Journals (Sweden)

    Thaís C.G. Rojas

    2014-02-01

    Full Text Available Avian pathogenic Escherichia coli (APEC infections are responsible for significant losses in the poultry industry worldwide. A zoonotic risk has been attributed to APEC strains because they present similarities to extraintestinal pathogenic E. coli (ExPEC associated with illness in humans, mainly urinary tract infections and neonatal meningitis. Here, we present in silico analyses with pathogenic E. coli genome sequences, including recently available APEC genomes. The phylogenetic tree, based on multi-locus sequence typing (MLST of seven housekeeping genes, revealed high diversity in the allelic composition. Nevertheless, despite this diversity, the phylogenetic tree was able to cluster the different pathotypes together. An in silico virulence gene profile was also determined for each of these strains, through the presence or absence of 83 well-known virulence genes/traits described in pathogenic E. coli strains. The MLST phylogeny and the virulence gene profiles demonstrated a certain genetic similarity between Brazilian APEC strains, APEC isolated in the United States, UPEC (uropathogenic E. coli and diarrheagenic strains isolated from humans. This correlation corroborates and reinforces the zoonotic potential hypothesis proposed to APEC.

  7. Evolution of genome size and genomic GC content in carnivorous holokinetics (Droseraceae).

    Science.gov (United States)

    Veleba, Adam; Šmarda, Petr; Zedek, František; Horová, Lucie; Šmerda, Jakub; Bureš, Petr

    2017-02-01

    Studies in the carnivorous family Lentibulariaceae in the last years resulted in the discovery of the smallest plant genomes and an unusual pattern of genomic GC content evolution. However, scarcity of genomic data in other carnivorous clades still prevents a generalization of the observed patterns. Here the aim was to fill this gap by mapping genome evolution in the second largest carnivorous family, Droseraceae, where this evolution may be affected by chromosomal holokinetism in Drosera METHODS: The genome size and genomic GC content of 71 Droseraceae species were measured by flow cytometry. A dated phylogeny was constructed, and the evolution of both genomic parameters and their relationship to species climatic niches were tested using phylogeny-based statistics. The 2C genome size of Droseraceae varied between 488 and 10 927 Mbp, and the GC content ranged between 37·1 and 44·7 %. The genome sizes and genomic GC content of carnivorous and holocentric species did not differ from those of their non-carnivorous and monocentric relatives. The genomic GC content positively correlated with genome size and annual temperature fluctuations. The genome size and chromosome numbers were inversely correlated in the Australian clade of Drosera CONCLUSIONS: Our results indicate that neither carnivory (nutrient scarcity) nor the holokinetism have a prominent effect on size and DNA base composition of Droseraceae genomes. However, the holokinetic drive seems to affect karyotype evolution in one of the major clades of Drosera Our survey confirmed that the evolution of GC content is tightly connected with the evolution of genome size and also with environmental conditions. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Evolution and genome architecture in fungal plant pathogens.

    Science.gov (United States)

    Möller, Mareike; Stukenbrock, Eva H

    2017-12-01

    The fungal kingdom comprises some of the most devastating plant pathogens. Sequencing the genomes of fungal pathogens has shown a remarkable variability in genome size and architecture. Population genomic data enable us to understand the mechanisms and the history of changes in genome size and adaptive evolution in plant pathogens. Although transposable elements predominantly have negative effects on their host, fungal pathogens provide prominent examples of advantageous associations between rapidly evolving transposable elements and virulence genes that cause variation in virulence phenotypes. By providing homogeneous environments at large regional scales, managed ecosystems, such as modern agriculture, can be conducive for the rapid evolution and dispersal of pathogens. In this Review, we summarize key examples from fungal plant pathogen genomics and discuss evolutionary processes in pathogenic fungi in the context of molecular evolution, population genomics and agriculture.

  9. Mechanisms of genome evolution of Streptococcus.

    Science.gov (United States)

    Andam, Cheryl P; Hanage, William P

    2015-07-01

    The genus Streptococcus contains 104 recognized species, many of which are associated with human or animal hosts. A globally prevalent human pathogen in this group is Streptococcus pneumoniae (the pneumococcus). While being a common resident of the upper respiratory tract, it is also a major cause of otitis media, pneumonia, bacteremia and meningitis, accounting for a high burden of morbidity and mortality worldwide. Recent findings demonstrate the importance of recombination and selection in driving the population dynamics and evolution of different pneumococcal lineages, allowing them to successfully evade the impacts of selective pressures such as vaccination and antibiotic treatment. We highlight the ability of pneumococci to respond to these pressures through processes including serotype replacement, capsular switching and horizontal gene transfer (HGT) of antibiotic resistance genes. The challenge in controlling this pathogen also lies in the exceptional genetic and phenotypic variation among different pneumococcal lineages, particularly in terms of their pathogenicity and resistance to current therapeutic strategies. The widespread use of pneumococcal conjugate vaccines, which target only a small subset of the more than 90 pneumococcal serotypes, provides us with a unique opportunity to elucidate how the processes of selection and recombination interact to generate a remarkable level of plasticity and heterogeneity in the pneumococcal genome. These processes also play an important role in the emergence and spread of multi-resistant strains, which continues to pose a challenge in disease control and/or eradication. The application of population of genomic approaches at different spatial and temporal scales will help improve strategies to control this global pathogen, and potentially other pathogenic streptococci. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Epidemiology, Evolution, and Recent Outbreaks of Avian Influenza Virus in China.

    Science.gov (United States)

    Su, Shuo; Bi, Yuhai; Wong, Gary; Gray, Gregory C; Gao, George F; Li, Shoujun

    2015-09-01

    Novel reassortants of H7N9, H10N8, and H5N6 avian influenza viruses (AIVs) are currently circulating in China's poultry flocks, occasionally infecting humans and other mammals. Combined with the sometimes enzootic H5N1 and H9N2 strains, this cauldron of genetically diverse AIVs pose significant risks to public health. Here, we review the epidemiology, evolution, and recent outbreaks of AIVs in China, discuss reasons behind the recent increase in the emergence of novel AIVs, and identify warning signs which may point to the emergence of a potentially virulent and highly transmissible AIV to humans. This review will be useful to authorities who consider options for the detection and control of AIV transmission in animals and humans, with the goal of preventing future epidemics and pandemics. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. The Tarenaya hassleriana Genome Provides Insight into Reproductive Trait and Genome Evolution of Crucifers

    NARCIS (Netherlands)

    Cheng, S.; Bergh, van den E.; Zeng, P.; Zong, X.; Hofberger, J.; Bruijn, de S.A.; Bhide, A.S.; Kuelahoglu, C.; Bian, C.; Chen, J.; Fan, G.; Kaufmann, K.; Hall, J.C.; Becker, A.; Brautigam, A.; Weber, A.P.M.; Shi, C.; Zheng, Z.; Li, W.; Lv, M.; Tao, Y.; Wang, M.; Zou, H.; Quan, Z.; Hibberd, J.M.; Zhang, G.; Zhu, X.; Schranz, M.E.

    2013-01-01

    The Brassicaceae, including Arabidopsis thaliana and Brassica crops, is unmatched among plants in its wealth of genomic and functional molecular data and has long served as a model for understanding gene, genome, and trait evolution. However, genome information from a phylogenetic outgroup that is

  12. Tolerance of Whole-Genome Doubling Propagates Chromosomal Instability and Accelerates Cancer Genome Evolution

    DEFF Research Database (Denmark)

    Dewhurst, Sally M.; McGranahan, Nicholas; Burrell, Rebecca A.

    2014-01-01

    The contribution of whole-genome doubling to chromosomal instability (CIN) and tumor evolution is unclear. We use long-term culture of isogenic tetraploid cells from a stable diploid colon cancer progenitor to investigate how a genome-doubling event affects genome stability over time. Rare cells ...

  13. 100 million years of multigene family evolution: origin and evolution of the avian MHC class IIB

    Czech Academy of Sciences Publication Activity Database

    Goebel, J.; Promerová, Marta; Bonadonna, F.; McCoy, K. D.; Serbielle, C.; Strandh, M.; Yannic, G.; Burri, R.; Fumagalli, L.

    2017-01-01

    Roč. 18, č. 460 (2017), s. 1-9 ISSN 1471-2164 R&D Projects: GA ČR GAP505/10/1871 Institutional support: RVO:68081766 Keywords : Birds * Birth-death evolution * Concerted evolution * Gene duplication * Gene conversion * Major histocompatibility complex * Recombination Subject RIV: EG - Zoology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 3.729, year: 2016

  14. 100 million years of multigene family evolution: origin and evolution of the avian MHC class IIB

    Czech Academy of Sciences Publication Activity Database

    Goebel, J.; Promerová, Marta; Bonadonna, F.; McCoy, K. D.; Serbielle, C.; Strandh, M.; Yannic, G.; Burri, R.; Fumagalli, L.

    2017-01-01

    Roč. 18, č. 460 (2017), s. 1-9 ISSN 1471-2164 R&D Projects: GA ČR GAP505/10/1871 Institutional support: RVO:68081766 Keywords : Birds * Birth -death evolution * Concerted evolution * Gene duplication * Gene conversion * Major histocompatibility complex * Recombination Subject RIV: EG - Zoology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 3.729, year: 2016

  15. The amphioxus genome and the evolution of the chordate karyotype

    Energy Technology Data Exchange (ETDEWEB)

    Putnam, Nicholas H.; Butts, Thomas; Ferrier, David E.K.; Furlong, Rebecca F.; Hellsten, Uffe; Kawashima, Takeshi; Robinson-Rechavi, Marc; Shoguchi, Eiichi; Terry, Astrid; Yu, Jr-Kai; Benito-Gutierrez, Elia; Dubchak, Inna; Garcia-Fernandez, Jordi; Gibson-Brown, Jeremy J.; Grigoriev, Igor V.; Horton, Amy C.; de Jong, Pieter J.; Jurka, Jerzy; Kapitonov, Vladimir; Kohara, Yuji; Kuroki, Yoko; Lindquist, Erika; Lucas, Susan; Osoegawa, Kazutoyo; Pennacchio, Len A.; Salamov, Asaf A.; Satou, Yutaka; Sauka-Spengler, Tatjana; Schmutz[, Jeremy; Shin-I, Tadasu; Toyoda, Atsushi; Bronner-Fraser, Marianne; Fujiyama, Asao; Holland, Linda Z.; Holland, Peter W. H.; Satoh, Nori; Rokhsar, Daniel S.

    2008-04-01

    Lancelets ('amphioxus') are the modern survivors of an ancient chordate lineage with a fossil record dating back to the Cambrian. We describe the structure and gene content of the highly polymorphic {approx}520 million base pair genome of the Florida lancelet Branchiostoma floridae, and analyze it in the context of chordate evolution. Whole genome comparisons illuminate the murky relationships among the three chordate groups (tunicates, lancelets, and vertebrates), and allow reconstruction of not only the gene complement of the last common chordate ancestor, but also a partial reconstruction of its genomic organization, as well as a description of two genome-wide duplications and subsequent reorganizations in the vertebrate lineage. These genome-scale events shaped the vertebrate genome and provided additional genetic variation for exploitation during vertebrate evolution.

  16. Evolution of genome size and complexity in Pinus.

    Directory of Open Access Journals (Sweden)

    Alison M Morse

    Full Text Available BACKGROUND: Genome evolution in the gymnosperm lineage of seed plants has given rise to many of the most complex and largest plant genomes, however the elements involved are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: Gymny is a previously undescribed retrotransposon family in Pinus that is related to Athila elements in Arabidopsis. Gymny elements are dispersed throughout the modern Pinus genome and occupy a physical space at least the size of the Arabidopsis thaliana genome. In contrast to previously described retroelements in Pinus, the Gymny family was amplified or introduced after the divergence of pine and spruce (Picea. If retrotransposon expansions are responsible for genome size differences within the Pinaceae, as they are in angiosperms, then they have yet to be identified. In contrast, molecular divergence of Gymny retrotransposons together with other families of retrotransposons can account for the large genome complexity of pines along with protein-coding genic DNA, as revealed by massively parallel DNA sequence analysis of Cot fractionated genomic DNA. CONCLUSIONS/SIGNIFICANCE: Most of the enormous genome complexity of pines can be explained by divergence of retrotransposons, however the elements responsible for genome size variation are yet to be identified. Genomic resources for Pinus including those reported here should assist in further defining whether and how the roles of retrotransposons differ in the evolution of angiosperm and gymnosperm genomes.

  17. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes

    Science.gov (United States)

    Liu, Shengyi; Liu, Yumei; Yang, Xinhua; Tong, Chaobo; Edwards, David; Parkin, Isobel A. P.; Zhao, Meixia; Ma, Jianxin; Yu, Jingyin; Huang, Shunmou; Wang, Xiyin; Wang, Junyi; Lu, Kun; Fang, Zhiyuan; Bancroft, Ian; Yang, Tae-Jin; Hu, Qiong; Wang, Xinfa; Yue, Zhen; Li, Haojie; Yang, Linfeng; Wu, Jian; Zhou, Qing; Wang, Wanxin; King, Graham J; Pires, J. Chris; Lu, Changxin; Wu, Zhangyan; Sampath, Perumal; Wang, Zhuo; Guo, Hui; Pan, Shengkai; Yang, Limei; Min, Jiumeng; Zhang, Dong; Jin, Dianchuan; Li, Wanshun; Belcram, Harry; Tu, Jinxing; Guan, Mei; Qi, Cunkou; Du, Dezhi; Li, Jiana; Jiang, Liangcai; Batley, Jacqueline; Sharpe, Andrew G; Park, Beom-Seok; Ruperao, Pradeep; Cheng, Feng; Waminal, Nomar Espinosa; Huang, Yin; Dong, Caihua; Wang, Li; Li, Jingping; Hu, Zhiyong; Zhuang, Mu; Huang, Yi; Huang, Junyan; Shi, Jiaqin; Mei, Desheng; Liu, Jing; Lee, Tae-Ho; Wang, Jinpeng; Jin, Huizhe; Li, Zaiyun; Li, Xun; Zhang, Jiefu; Xiao, Lu; Zhou, Yongming; Liu, Zhongsong; Liu, Xuequn; Qin, Rui; Tang, Xu; Liu, Wenbin; Wang, Yupeng; Zhang, Yangyong; Lee, Jonghoon; Kim, Hyun Hee; Denoeud, France; Xu, Xun; Liang, Xinming; Hua, Wei; Wang, Xiaowu; Wang, Jun; Chalhoub, Boulos; Paterson, Andrew H

    2014-01-01

    Polyploidization has provided much genetic variation for plant adaptive evolution, but the mechanisms by which the molecular evolution of polyploid genomes establishes genetic architecture underlying species differentiation are unclear. Brassica is an ideal model to increase knowledge of polyploid evolution. Here we describe a draft genome sequence of Brassica oleracea, comparing it with that of its sister species B. rapa to reveal numerous chromosome rearrangements and asymmetrical gene loss in duplicated genomic blocks, asymmetrical amplification of transposable elements, differential gene co-retention for specific pathways and variation in gene expression, including alternative splicing, among a large number of paralogous and orthologous genes. Genes related to the production of anticancer phytochemicals and morphological variations illustrate consequences of genome duplication and gene divergence, imparting biochemical and morphological variation to B. oleracea. This study provides insights into Brassica genome evolution and will underpin research into the many important crops in this genus. PMID:24852848

  18. Genome graphs and the evolution of genome inference

    Science.gov (United States)

    Paten, Benedict; Novak, Adam M.; Eizenga, Jordan M.; Garrison, Erik

    2017-01-01

    The human reference genome is part of the foundation of modern human biology and a monumental scientific achievement. However, because it excludes a great deal of common human variation, it introduces a pervasive reference bias into the field of human genomics. To reduce this bias, it makes sense to draw on representative collections of human genomes, brought together into reference cohorts. There are a number of techniques to represent and organize data gleaned from these cohorts, many using ideas implicitly or explicitly borrowed from graph-based models. Here, we survey various projects underway to build and apply these graph-based structures—which we collectively refer to as genome graphs—and discuss the improvements in read mapping, variant calling, and haplotype determination that genome graphs are expected to produce. PMID:28360232

  19. Phylogenomic Analysis and Dynamic Evolution of Chloroplast Genomes in Salicaceae

    Directory of Open Access Journals (Sweden)

    Yuan Huang

    2017-06-01

    Full Text Available Chloroplast genomes of plants are highly conserved in both gene order and gene content. Analysis of the whole chloroplast genome is known to provide much more informative DNA sites and thus generates high resolution for plant phylogenies. Here, we report the complete chloroplast genomes of three Salix species in family Salicaceae. Phylogeny of Salicaceae inferred from complete chloroplast genomes is generally consistent with previous studies but resolved with higher statistical support. Incongruences of phylogeny, however, are observed in genus Populus, which most likely results from homoplasy. By comparing three Salix chloroplast genomes with the published chloroplast genomes of other Salicaceae species, we demonstrate that the synteny and length of chloroplast genomes in Salicaceae are highly conserved but experienced dynamic evolution among species. We identify seven positively selected chloroplast genes in Salicaceae, which might be related to the adaptive evolution of Salicaceae species. Comparative chloroplast genome analysis within the family also indicates that some chloroplast genes are lost or became pseudogenes, infer that the chloroplast genes horizontally transferred to the nucleus genome. Based on the complete nucleus genome sequences from two Salicaceae species, we remarkably identify that the entire chloroplast genome is indeed transferred and integrated to the nucleus genome in the individual of the reference genome of P. trichocarpa at least once. This observation, along with presence of the large nuclear plastid DNA (NUPTs and NUPTs-containing multiple chloroplast genes in their original order in the chloroplast genome, favors the DNA-mediated hypothesis of organelle to nucleus DNA transfer. Overall, the phylogenomic analysis using chloroplast complete genomes clearly elucidates the phylogeny of Salicaceae. The identification of positively selected chloroplast genes and dynamic chloroplast-to-nucleus gene transfers in

  20. Genomic organization and evolution of ruminant lysozyme c genes

    OpenAIRE

    IRWIN, David M

    2015-01-01

    Ruminant stomach lysozyme is a long established model of adaptive gene evolution. Evolution of stomach lysozyme function required changes in the site of expression of the lysozyme c gene and changes in the enzymatic properties of the enzyme. In ruminant mammals, these changes were associated with a change in the size of the lysozyme c gene family. The recent release of near complete genome sequences from several ruminant species allows a more complete examination of the evolution and diversif...

  1. Evolution of linear chromosomes and multipartite genomes in yeast mitochondria

    Science.gov (United States)

    Valach, Matus; Farkas, Zoltan; Fricova, Dominika; Kovac, Jakub; Brejova, Brona; Vinar, Tomas; Pfeiffer, Ilona; Kucsera, Judit; Tomaska, Lubomir; Lang, B. Franz; Nosek, Jozef

    2011-01-01

    Mitochondrial genome diversity in closely related species provides an excellent platform for investigation of chromosome architecture and its evolution by means of comparative genomics. In this study, we determined the complete mitochondrial DNA sequences of eight Candida species and analyzed their molecular architectures. Our survey revealed a puzzling variability of genome architecture, including circular- and linear-mapping and multipartite linear forms. We propose that the arrangement of large inverted repeats identified in these genomes plays a crucial role in alterations of their molecular architectures. In specific arrangements, the inverted repeats appear to function as resolution elements, allowing genome conversion among different topologies, eventually leading to genome fragmentation into multiple linear DNA molecules. We suggest that molecular transactions generating linear mitochondrial DNA molecules with defined telomeric structures may parallel the evolutionary emergence of linear chromosomes and multipartite genomes in general and may provide clues for the origin of telomeres and pathways implicated in their maintenance. PMID:21266473

  2. Insights into bilaterian evolution from three spiralian genomes

    Energy Technology Data Exchange (ETDEWEB)

    Simakov, Oleg; Marletaz, Ferdinand; Cho, Sung-Jin; Edsinger-Gonzales, Eric; Havlak, Paul; Hellsten, Uffe; Kuo, Dian-Han; Larsson, Tomas; Lv, Jie; Arendt, Detlev; Savage, Robert; Osoegawa, Kazutoyo; de Jong, Pieter; Grimwood, Jane; Chapman, Jarrod A.; Shapiro, Harris; Otillar, Robert P.; Terry, Astrid Y.; Boore, Jeffrey L.; Grigoriev, Igor V.; Lindberg, David R.; Seaver, Elaine C.; Weisblat, David A.; Putnam, Nicholas H.; Rokhsar, Daniel S.; Aerts, Andrea

    2012-01-07

    Current genomic perspectives on animal diversity neglect two prominent phyla, the molluscs and annelids, that together account for nearly one-third of known marine species and are important both ecologically and as experimental systems in classical embryology1, 2, 3. Here we describe the draft genomes of the owl limpet (Lottia gigantea), a marine polychaete (Capitella teleta) and a freshwater leech (Helobdella robusta), and compare them with other animal genomes to investigate the origin and diversification of bilaterians from a genomic perspective. We find that the genome organization, gene structure and functional content of these species are more similar to those of some invertebrate deuterostome genomes (for example, amphioxus and sea urchin) than those of other protostomes that have been sequenced to date (flies, nematodes and flatworms). The conservation of these genomic features enables us to expand the inventory of genes present in the last common bilaterian ancestor, establish the tripartite diversification of bilaterians using multiple genomic characteristics and identify ancient conserved long- and short-range genetic linkages across metazoans. Superimposed on this broadly conserved pan-bilaterian background we find examples of lineage-specific genome evolution, including varying rates of rearrangement, intron gain and loss, expansions and contractions of gene families, and the evolution of clade-specific genes that produce the unique content of each genome.

  3. Convergent evolution of the genomes of marine mammals

    Science.gov (United States)

    Foote, Andrew D.; Liu, Yue; Thomas, Gregg W.C.; Vinař, Tomáš; Alföldi, Jessica; Deng, Jixin; Dugan, Shannon; van Elk, Cornelis E.; Hunter, Margaret E.; Joshi, Vandita; Khan, Ziad; Kovar, Christie; Lee, Sandra L.; Lindblad-Toh, Kerstin; Mancia, Annalaura; Nielsen, Rasmus; Qin, Xiang; Qu, Jiaxin; Raney, Brian J.; Vijay, Nagarjun; Wolf, Jochen B. W.; Hahn, Matthew W.; Muzny, Donna M.; Worley, Kim C.; Gilbert, M. Thomas P.; Gibbs, Richard A.

    2015-01-01

    Marine mammals from different mammalian orders share several phenotypic traits adapted to the aquatic environment and are therefore a classic example of convergent evolution. To investigate convergent evolution at the genomic level, we sequenced and de novo assembled the genomes of three species of marine mammals (the killer whale, walrus and manatee) from three mammalian orders that share independently evolved phenotypic adaptations to a marine existence. Our comparative genomic analyses found that convergent amino acid substitutions were widespread throughout the genome, and that a subset were in genes evolving under positive selection and putatively associated with a marine phenotype. However, we found higher levels of convergent amino acid substitutions in a control set of terrestrial sister taxa to the marine mammals. Our results suggest that while convergent molecular evolution is relatively common, adaptive molecular convergence linked to phenotypic convergence is comparatively rare. PMID:25621460

  4. Convergent evolution of the genomes of marine mammals

    Science.gov (United States)

    Foote, Andrew D.; Liu, Yue; Thomas, Gregg W.C.; Vinař, Tomáš; Alföldi, Jessica; Deng, Jixin; Dugan, Shannon; van Elk, Cornelis E.; Hunter, Margaret; Joshi, Vandita; Khan, Ziad; Kovar, Christie; Lee, Sandra L.; Lindblad-Toh, Kerstin; Mancia, Annalaura; Nielsen, Rasmus; Qin, Xiang; Qu, Jiaxin; Raney, Brian J.; Vijay, Nagarjun; Wolf, Jochen B. W.; Hahn, Matthew W.; Muzny, Donna M.; Worley, Kim C.; Gilbert, M. Thomas P.; Gibbs, Richard A.

    2015-01-01

    Marine mammals from different mammalian orders share several phenotypic traits adapted to the aquatic environment and therefore represent a classic example of convergent evolution. To investigate convergent evolution at the genomic level, we sequenced and performed de novo assembly of the genomes of three species of marine mammals (the killer whale, walrus and manatee) from three mammalian orders that share independently evolved phenotypic adaptations to a marine existence. Our comparative genomic analyses found that convergent amino acid substitutions were widespread throughout the genome and that a subset of these substitutions were in genes evolving under positive selection and putatively associated with a marine phenotype. However, we found higher levels of convergent amino acid substitutions in a control set of terrestrial sister taxa to the marine mammals. Our results suggest that, whereas convergent molecular evolution is relatively common, adaptive molecular convergence linked to phenotypic convergence is comparatively rare.

  5. Avian sex, sex chromosomes, and dosage compensation in the age of genomics.

    Science.gov (United States)

    Graves, Jennifer A Marshall

    2014-04-01

    Comparisons of the sex chromosome systems in birds and mammals are widening our view and deepening our understanding of vertebrate sex chromosome organization, function, and evolution. Birds have a very conserved ZW system of sex determination in which males have two copies of a large, gene-rich Z chromosome, and females have a single Z and a female-specific W chromosome. The avian ZW system is quite the reverse of the well-studied mammalian XY chromosome system, and evolved independently from different autosomal blocs. Despite the different gene content of mammal and bird sex chromosomes, there are many parallels. Genes on the bird Z and the mammal X have both undergone selection for male-advantage functions, and there has been amplification of male-advantage genes and accumulation of LINEs. The bird W and mammal Y have both undergone extensive degradation, but some birds retain early stages and some mammals terminal stages of the process, suggesting that the process is more advanced in mammals. Different sex-determining genes, DMRT1 and SRY, define the ZW and XY systems, but DMRT1 is involved in downstream events in mammals. Birds show strong cell autonomous specification of somatic sex differences in ZZ and ZW tissue, but there is growing evidence for direct X chromosome effects on sexual phenotype in mammals. Dosage compensation in birds appears to be phenotypically and molecularly quite different from X inactivation, being partial and gene-specific, but both systems use tools from the same molecular toolbox and there are some signs that galliform birds represent an early stage in the evolution of a coordinated system.

  6. Survival analysis of infected mice reveals pathogenic variations in the genome of avian H1N1 viruses

    Science.gov (United States)

    Koçer, Zeynep A.; Fan, Yiping; Huether, Robert; Obenauer, John; Webby, Richard J.; Zhang, Jinghui; Webster, Robert G.; Wu, Gang

    2014-01-01

    Most influenza pandemics have been caused by H1N1 viruses of purely or partially avian origin. Here, using Cox proportional hazard model, we attempt to identify the genetic variations in the whole genome of wild-type North American avian H1N1 influenza A viruses that are associated with their virulence in mice by residue variations, host origins of virus (Anseriformes-ducks or Charadriiformes-shorebirds), and host-residue interactions. In addition, through structural modeling, we predicted that several polymorphic sites associated with pathogenicity were located in structurally important sites, especially in the polymerase complex and NS genes. Our study introduces a new approach to identify pathogenic variations in wild-type viruses circulating in the natural reservoirs and ultimately to understand their infectious risks to humans as part of risk assessment efforts towards the emergence of future pandemic strains. PMID:25503687

  7. Reductive genome evolution in Buchnera aphidicola

    Science.gov (United States)

    van Ham, Roeland C. H. J.; Kamerbeek, Judith; Palacios, Carmen; Rausell, Carolina; Abascal, Federico; Bastolla, Ugo; Fernández, Jose M.; Jiménez, Luis; Postigo, Marina; Silva, Francisco J.; Tamames, Javier; Viguera, Enrique; Latorre, Amparo; Valencia, Alfonso; Morán, Federico; Moya, Andrés

    2003-01-01

    We have sequenced the genome of the intracellular symbiont Buchnera aphidicola from the aphid Baizongia pistacea. This strain diverged 80–150 million years ago from the common ancestor of two previously sequenced Buchnera strains. Here, a field-collected, nonclonal sample of insects was used as source material for laboratory procedures. As a consequence, the genome assembly unveiled intrapopulational variation, consisting of ≈1,200 polymorphic sites. Comparison of the 618-kb (kbp) genome with the two other Buchnera genomes revealed a nearly perfect gene-order conservation, indicating that the onset of genomic stasis coincided closely with establishment of the symbiosis with aphids, ≈200 million years ago. Extensive genome reduction also predates the synchronous diversification of Buchnera and its host; but, at a slower rate, gene loss continues among the extant lineages. A computational study of protein folding predicts that proteins in Buchnera, as well as proteins of other intracellular bacteria, are generally characterized by smaller folding efficiency compared with proteins of free living bacteria. These and other degenerative genomic features are discussed in light of compensatory processes and theoretical predictions on the long-term evolutionary fate of symbionts like Buchnera. PMID:12522265

  8. Comparative Genome Analysis Reveals Divergent Genome Size Evolution in a Carnivorous Plant Genus

    Directory of Open Access Journals (Sweden)

    Giang T. H. Vu

    2015-11-01

    Full Text Available The C-value paradox remains incompletely resolved after >40 yr and is exemplified by 2,350-fold variation in genome sizes of flowering plants. The carnivorous Lentibulariaceae genus , displaying a 25-fold range of genome sizes, is a promising subject to study mechanisms and consequences of evolutionary genome size variation. Applying genomic, phylogenetic, and cytogenetic approaches, we uncovered bidirectional genome size evolution within the genus . The Steyerm. genome (86 Mbp has probably shrunk by retroelement silencing and deletion-biased double-strand break (DSB repair, from an ancestral size of 400 to 800 Mbp to become one of the smallest among flowering plants. The Stapf genome has expanded by whole-genome duplication (WGD and retrotransposition to 1550 Mbp. became allotetraploid after the split from the clade ∼29 Ma. A. St.-Hil. (179 Mbp, a close relative of , proved to be a recent (autotetraploid. Our analyses suggest a common ancestor of the genus a with an intermediate 1C value (400–800 Mbp and subsequent rapid genome size evolution in opposite directions. Many abundant repeats of the larger genome are absent in the smaller, casting doubt on their functionality for the organism, while recurrent WGD seems to safeguard against the loss of essential elements in the face of genome shrinkage. We cannot identify any consistent differences in habitat or life strategy that correlate with genome size changes, raising the possibility that these changes may be selectively neutral.

  9. The Genomic Code: Genome Evolution and Potential Applications

    KAUST Repository

    Bernardi, Giorgio

    2016-01-25

    The genome of metazoans is organized according to a genomic code which comprises three laws: 1) Compositional correlations hold between contiguous coding and non-coding sequences, as well as among the three codon positions of protein-coding genes; these correlations are the consequence of the fact that the genomes under consideration consist of fairly homogeneous, long (≥200Kb) sequences, the isochores; 2) Although isochores are defined on the basis of purely compositional properties, GC levels of isochores are correlated with all tested structural and functional properties of the genome; 3) GC levels of isochores are correlated with chromosome architecture from interphase to metaphase; in the case of interphase the correlation concerns isochores and the three-dimensional “topological associated domains” (TADs); in the case of mitotic chromosomes, the correlation concerns isochores and chromosomal bands. Finally, the genomic code is the fourth and last pillar of molecular biology, the first three pillars being 1) the double helix structure of DNA; 2) the regulation of gene expression in prokaryotes; and 3) the genetic code.

  10. A novel recombinant retrovirus in the genomes of modern birds combines features of avian and mammalian retroviruses.

    Science.gov (United States)

    Henzy, Jamie E; Gifford, Robert J; Johnson, Welkin E; Coffin, John M

    2014-03-01

    Endogenous retroviruses (ERVs) represent ancestral sequences of modern retroviruses or their extinct relatives. The majority of ERVs cluster alongside exogenous retroviruses into two main groups based on phylogenetic analyses of the reverse transcriptase (RT) enzyme. Class I includes gammaretroviruses, and class II includes lentiviruses and alpha-, beta-, and deltaretroviruses. However, analyses of the transmembrane subunit (TM) of the envelope glycoprotein (env) gene result in a different topology for some retroviruses, suggesting recombination events in which heterologous env sequences have been acquired. We previously demonstrated that the TM sequences of five of the six genera of orthoretroviruses can be divided into three types, each of which infects a distinct set of vertebrate classes. Moreover, these classes do not always overlap the host range of the associated RT classes. Thus, recombination resulting in acquisition of a heterologous env gene could in theory facilitate cross-species transmissions across vertebrate classes, for example, from mammals to reptiles. Here we characterized a family of class II avian ERVs, "TgERV-F," that acquired a mammalian gammaretroviral env sequence. Although TgERV-F clusters near a sister clade to alpharetroviruses, its genome also has some features of betaretroviruses. We offer evidence that this unusual recombinant has circulated among several avian orders and may still have infectious members. In addition to documenting the infection of a nongalliform avian species by a mammalian retrovirus, TgERV-F also underscores the importance of env sequences in reconstructing phylogenies and supports a possible role for env swapping in allowing cross-species transmissions across wide taxonomic distances. Retroviruses can sometimes acquire an envelope gene (env) from a distantly related retrovirus. Since env is a key determinant of host range, such an event affects the host range of the recombinant virus and can lead to the creation

  11. Genome characterisation of the newly discovered avian influenza A H5N7 virus subtype combination

    DEFF Research Database (Denmark)

    Bragstad, K.; Jørgensen, Poul Henrik; Handberg, K.J.

    2007-01-01

    In Denmark, in 2003, a previously unknown subtype combination of avian influenza A virus, H5N7 (A/Mallard/Denmark/64650/03), was isolated from a flock of 12,000 mallards. The H5N7 subtype combination might be a reassortant between recent European avian influenza A H5, H7, and a third subtype....../Duck/Hong Kong/3096/99 (H6N2) and A/WDk/ST/1737/2000 (H6N8), respectively. All genes of the H5N7 strain were of avian origin, and no further evidence of pathogenicity to humans has been found....

  12. Evolutionary genomics and adaptive evolution of the hedgehog gene family (Shh, Ihh and Dhh) in vertebrates

    DEFF Research Database (Denmark)

    Pereira, Joana; Johnson, Warren E.; O'Brien, Stephen J.

    2014-01-01

    The Hedgehog (Hh) gene family codes for a class of secreted proteins composed of two active domains that act as signalling molecules during embryo development, namely for the development of the nervous and skeletal systems and the formation of the testis cord. While only one Hh gene is found typi...... in the Hh orthologs. Our results provide new insights on the evolutionary history of the Hh gene family, the functional roles of these paralogs in vertebrate species, and on the location of mutational hotspots....... typically in invertebrate genomes, most vertebrates species have three (Sonic hedgehog - Shh; Indian hedgehog - Ihh; and Desert hedgehog - Dhh), each with different expression patterns and functions, which likely helped promote the increasing complexity of vertebrates and their successful diversification....... In this study, we used comparative genomic and adaptive evolutionary analyses to characterize the evolution of the Hh genes in vertebrates following the two major whole genome duplication (WGD) events. To overcome the lack of Hh-coding sequences on avian publicly available databases, we used an extensive...

  13. Cytogenetics and genome evolution in the subfamily Triatominae (Hemiptera, Reduviidae).

    Science.gov (United States)

    Panzera, F; Pérez, R; Panzera, Y; Ferrandis, I; Ferreiro, M J; Calleros, L

    2010-01-01

    The subfamily Triatominae (Hemiptera, Reduviidae), vectors of Chagas disease, includes over 140 species. Karyotypic information is currently available for 80 of these species. This paper summarizes the chromosomal variability of the subfamily and how it may reveal aspects of genome evolution in this group. The Triatominae present a highly conserved chromosome number. All species, except 3, present 20 autosomes. The differences in chromosome number are mainly caused by variation in the number of sex chromosomes, due to the existence of 3 sex systems in males (XY, X(1)X(2)Y and X(1)X(2)X(3)Y). However, inter- and intraspecific differences in the position, quantity and meiotic behavior of constitutive heterochromatin, in the total genome size, and in the location of ribosomal 45S rRNA clusters, have revealed considerable cytogenetic variability within the subfamily. This cytogenetic diversity offers the opportunity to perform cytotaxonomic and phylogenetic studies, as well as structural, evolutionary, and functional analyses of the genome. The imminent availability of the complete genome of Rhodnius prolixus also opens new perspectives for understanding the evolution and genome expression of triatomines. The application of fluorescence in situ hybridization for the mapping of genes and sequences, as well as comparative analyses of genome homology by comparative genomic hybridization will be useful tools for understanding the genomic changes in relation to evolutionary processes such as speciation and adaptation to different environments. Copyright 2010 S. Karger AG, Basel.

  14. Understanding Cancer Genome and Its Evolution by Next Generation Sequencing

    DEFF Research Database (Denmark)

    Hou, Yong

    knowledge we previously know. There is very limited knowledge of East Asia lung cancer genome except enrichment of EGFR mutations and lack of KRAS mutations. We carried out integrated genomic, transcriptomic and methylomic analysis of 335 primary Chinese lung adenocarcinomas (LUAD) and 35 corresponding......Cancer will cause 13 million deaths by the year of 2030, ranking the second leading cause of death worldwide. Previous studies indicate that most of the cancers originate from cells that acquired somatic mutations and evolved as Darwin Theory. Ten biological insights of cancer have been summarized...... recently. Cutting-age technologies like next generation sequencing (NGS) enable exploring cancer genome and evolution much more efficiently. However, integrated cancer genome sequencing studies showed great inter-/intra-tumoral heterogeneity (ITH) and complex evolution patterns beyond the cancer biological...

  15. Evolution of genome size in Brassicaceae.

    Science.gov (United States)

    Johnston, J Spencer; Pepper, Alan E; Hall, Anne E; Chen, Z Jeffrey; Hodnett, George; Drabek, Janice; Lopez, Rebecca; Price, H James

    2005-01-01

    Brassicaceae, with nearly 340 genera and more than 3350 species, anchors the low range of angiosperm genome sizes. The relatively narrow range of DNA content (0.16 pg Lepidium virginicum and Brassica rapa. Branches in the phylogenetic tree that represent probable evolutionary increases in genome size terminate in Arabidopsis halleri, A. lyrata, Arabis hirsuta, Capsella rubella, Caulanthus heterophyllus, Crucihimalaya, Lepidium sativum, Sisymbrium and Thlaspi arvense. Branches within one clade containing Brassica were identified that represent two ancient ploidy events (2x to 4x and 4x to 6x) that were predicted from published comparative mapping studies.

  16. Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs.

    Science.gov (United States)

    Green, Richard E; Braun, Edward L; Armstrong, Joel; Earl, Dent; Nguyen, Ngan; Hickey, Glenn; Vandewege, Michael W; St John, John A; Capella-Gutiérrez, Salvador; Castoe, Todd A; Kern, Colin; Fujita, Matthew K; Opazo, Juan C; Jurka, Jerzy; Kojima, Kenji K; Caballero, Juan; Hubley, Robert M; Smit, Arian F; Platt, Roy N; Lavoie, Christine A; Ramakodi, Meganathan P; Finger, John W; Suh, Alexander; Isberg, Sally R; Miles, Lee; Chong, Amanda Y; Jaratlerdsiri, Weerachai; Gongora, Jaime; Moran, Christopher; Iriarte, Andrés; McCormack, John; Burgess, Shane C; Edwards, Scott V; Lyons, Eric; Williams, Christina; Breen, Matthew; Howard, Jason T; Gresham, Cathy R; Peterson, Daniel G; Schmitz, Jürgen; Pollock, David D; Haussler, David; Triplett, Eric W; Zhang, Guojie; Irie, Naoki; Jarvis, Erich D; Brochu, Christopher A; Schmidt, Carl J; McCarthy, Fiona M; Faircloth, Brant C; Hoffmann, Federico G; Glenn, Travis C; Gabaldón, Toni; Paten, Benedict; Ray, David A

    2014-12-12

    To provide context for the diversification of archosaurs--the group that includes crocodilians, dinosaurs, and birds--we generated draft genomes of three crocodilians: Alligator mississippiensis (the American alligator), Crocodylus porosus (the saltwater crocodile), and Gavialis gangeticus (the Indian gharial). We observed an exceptionally slow rate of genome evolution within crocodilians at all levels, including nucleotide substitutions, indels, transposable element content and movement, gene family evolution, and chromosomal synteny. When placed within the context of related taxa including birds and turtles, this suggests that the common ancestor of all of these taxa also exhibited slow genome evolution and that the comparatively rapid evolution is derived in birds. The data also provided the opportunity to analyze heterozygosity in crocodilians, which indicates a likely reduction in population size for all three taxa through the Pleistocene. Finally, these data combined with newly published bird genomes allowed us to reconstruct the partial genome of the common ancestor of archosaurs, thereby providing a tool to investigate the genetic starting material of crocodilians, birds, and dinosaurs. Copyright © 2014, American Association for the Advancement of Science.

  17. Polyploidy-associated genome modifications during land plant evolution.

    Science.gov (United States)

    Jiao, Yuannian; Paterson, Andrew H

    2014-08-05

    The occurrence of polyploidy in land plant evolution has led to an acceleration of genome modifications relative to other crown eukaryotes and is correlated with key innovations in plant evolution. Extensive genome resources provide for relating genomic changes to the origins of novel morphological and physiological features of plants. Ancestral gene contents for key nodes of the plant family tree are inferred. Pervasive polyploidy in angiosperms appears likely to be the major factor generating novel angiosperm genes and expanding some gene families. However, most gene families lose most duplicated copies in a quasi-neutral process, and a few families are actively selected for single-copy status. One of the great challenges of evolutionary genomics is to link genome modifications to speciation, diversification and the morphological and/or physiological innovations that collectively compose biodiversity. Rapid accumulation of genomic data and its ongoing investigation may greatly improve the resolution at which evolutionary approaches can contribute to the identification of specific genes responsible for particular innovations. The resulting, more 'particulate' understanding of plant evolution, may elevate to a new level fundamental knowledge of botanical diversity, including economically important traits in the crop plants that sustain humanity. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  18. Evolution of Genome Organization and Epigenetic Machineries ...

    Indian Academy of Sciences (India)

    48

    specifically appears at the stationary phase when the genome should be organized into a compact structure to ensure that most of the genes are shut down whereas the DNA bending proteins are predominant in the early and late exponential phase to facilitate the recruitment of transcription machineries to complete the life ...

  19. Evolution: In Chloroplast Genomes, Anything Goes.

    Science.gov (United States)

    Smith, David Roy

    2017-12-18

    A new study shows that Cladophorales green algae have the most unconventional chloroplast DNAs ever observed, whereby genes are located on small linear single-stranded palindromic elements. This puzzling architecture has parallels with mini-circular chloroplast genomes of dinoflagellates and raises many questions about how it arose and is maintained. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Reductive genome evolution in Buchnera aphidicola

    NARCIS (Netherlands)

    Ham, van R.C.H.J.; Kamerbeek, J.; Palacios, C.; Rausell, C.; Abascal, F.; Bastolla, U.; Fernandez, J.M.; Jimenez, L.; Postigo, M.; Silva, F.J.; Tamames, J.; Viguera, E.; Latorre, A.; Valencia, A.; Moran, F.; Moya, A.

    2003-01-01

    We have sequenced the genome of the intracellular symbiont Buchnera aphidicola from the aphid Baizongia pistacea. This strain diverged 80-150 million years ago from the common ancestor of two previously sequenced Buchnera strains. Here, a field-collected, nonclonal sample of insects was used as

  1. The evolution of mitochondrial genomes in modern frogs (Neobatrachia): nonadaptive evolution of mitochondrial genome reorganization.

    Science.gov (United States)

    Xia, Yun; Zheng, Yuchi; Miura, Ikuo; Wong, Pamela B Y; Murphy, Robert W; Zeng, Xiaomao

    2014-08-20

    Although mitochondrial (mt) gene order is highly conserved among vertebrates, widespread gene rearrangements occur in anurans, especially in neobatrachians. Protein coding genes in the mitogenome experience adaptive or purifying selection, yet the role that selection plays on genomic reorganization remains unclear. We sequence the mitogenomes of three species of Glandirana and hot spots of gene rearrangements of 20 frog species to investigate the diversity of mitogenomic reorganization in the Neobatrachia. By combing these data with other mitogenomes in GenBank, we evaluate if selective pressures or functional constraints act on mitogenomic reorganization in the Neobatrachia. We also look for correlations between tRNA positions and codon usage. Gene organization in Glandirana was typical of neobatrachian mitogenomes except for the presence of pseudogene trnS (AGY). Surveyed ranids largely exhibited gene arrangements typical of neobatrachian mtDNA although some gene rearrangements occurred. The correlation between codon usage and tRNA positions in neobatrachians was weak, and did not increase after identifying recurrent rearrangements as revealed by basal neobatrachians. Codon usage and tRNA positions were not significantly correlated when considering tRNA gene duplications or losses. Change in number of tRNA gene copies, which was driven by genomic reorganization, did not influence codon usage bias. Nucleotide substitution rates and dN/dS ratios were higher in neobatrachian mitogenomes than in archaeobatrachians, but the rates of mitogenomic reorganization and mt nucleotide diversity were not significantly correlated. No evidence suggests that adaptive selection drove the reorganization of neobatrachian mitogenomes. In contrast, protein-coding genes that function in metabolism showed evidence for purifying selection, and some functional constraints appear to act on the organization of rRNA and tRNA genes. As important nonadaptive forces, genetic drift and mutation

  2. Evolution of genes and genomes on the Drosophila phylogeny.

    Science.gov (United States)

    Clark, Andrew G; Eisen, Michael B; Smith, Douglas R; Bergman, Casey M; Oliver, Brian; Markow, Therese A; Kaufman, Thomas C; Kellis, Manolis; Gelbart, William; Iyer, Venky N; Pollard, Daniel A; Sackton, Timothy B; Larracuente, Amanda M; Singh, Nadia D; Abad, Jose P; Abt, Dawn N; Adryan, Boris; Aguade, Montserrat; Akashi, Hiroshi; Anderson, Wyatt W; Aquadro, Charles F; Ardell, David H; Arguello, Roman; Artieri, Carlo G; Barbash, Daniel A; Barker, Daniel; Barsanti, Paolo; Batterham, Phil; Batzoglou, Serafim; Begun, Dave; Bhutkar, Arjun; Blanco, Enrico; Bosak, Stephanie A; Bradley, Robert K; Brand, Adrianne D; Brent, Michael R; Brooks, Angela N; Brown, Randall H; Butlin, Roger K; Caggese, Corrado; Calvi, Brian R; Bernardo de Carvalho, A; Caspi, Anat; Castrezana, Sergio; Celniker, Susan E; Chang, Jean L; Chapple, Charles; Chatterji, Sourav; Chinwalla, Asif; Civetta, Alberto; Clifton, Sandra W; Comeron, Josep M; Costello, James C; Coyne, Jerry A; Daub, Jennifer; David, Robert G; Delcher, Arthur L; Delehaunty, Kim; Do, Chuong B; Ebling, Heather; Edwards, Kevin; Eickbush, Thomas; Evans, Jay D; Filipski, Alan; Findeiss, Sven; Freyhult, Eva; Fulton, Lucinda; Fulton, Robert; Garcia, Ana C L; Gardiner, Anastasia; Garfield, David A; Garvin, Barry E; Gibson, Greg; Gilbert, Don; Gnerre, Sante; Godfrey, Jennifer; Good, Robert; Gotea, Valer; Gravely, Brenton; Greenberg, Anthony J; Griffiths-Jones, Sam; Gross, Samuel; Guigo, Roderic; Gustafson, Erik A; Haerty, Wilfried; Hahn, Matthew W; Halligan, Daniel L; Halpern, Aaron L; Halter, Gillian M; Han, Mira V; Heger, Andreas; Hillier, LaDeana; Hinrichs, Angie S; Holmes, Ian; Hoskins, Roger A; Hubisz, Melissa J; Hultmark, Dan; Huntley, Melanie A; Jaffe, David B; Jagadeeshan, Santosh; Jeck, William R; Johnson, Justin; Jones, Corbin D; Jordan, William C; Karpen, Gary H; Kataoka, Eiko; Keightley, Peter D; Kheradpour, Pouya; Kirkness, Ewen F; Koerich, Leonardo B; Kristiansen, Karsten; Kudrna, Dave; Kulathinal, Rob J; Kumar, Sudhir; Kwok, Roberta; Lander, Eric; Langley, Charles H; Lapoint, Richard; Lazzaro, Brian P; Lee, So-Jeong; Levesque, Lisa; Li, Ruiqiang; Lin, Chiao-Feng; Lin, Michael F; Lindblad-Toh, Kerstin; Llopart, Ana; Long, Manyuan; Low, Lloyd; Lozovsky, Elena; Lu, Jian; Luo, Meizhong; Machado, Carlos A; Makalowski, Wojciech; Marzo, Mar; Matsuda, Muneo; Matzkin, Luciano; McAllister, Bryant; McBride, Carolyn S; McKernan, Brendan; McKernan, Kevin; Mendez-Lago, Maria; Minx, Patrick; Mollenhauer, Michael U; Montooth, Kristi; Mount, Stephen M; Mu, Xu; Myers, Eugene; Negre, Barbara; Newfeld, Stuart; Nielsen, Rasmus; Noor, Mohamed A F; O'Grady, Patrick; Pachter, Lior; Papaceit, Montserrat; Parisi, Matthew J; Parisi, Michael; Parts, Leopold; Pedersen, Jakob S; Pesole, Graziano; Phillippy, Adam M; Ponting, Chris P; Pop, Mihai; Porcelli, Damiano; Powell, Jeffrey R; Prohaska, Sonja; Pruitt, Kim; Puig, Marta; Quesneville, Hadi; Ram, Kristipati Ravi; Rand, David; Rasmussen, Matthew D; Reed, Laura K; Reenan, Robert; Reily, Amy; Remington, Karin A; Rieger, Tania T; Ritchie, Michael G; Robin, Charles; Rogers, Yu-Hui; Rohde, Claudia; Rozas, Julio; Rubenfield, Marc J; Ruiz, Alfredo; Russo, Susan; Salzberg, Steven L; Sanchez-Gracia, Alejandro; Saranga, David J; Sato, Hajime; Schaeffer, Stephen W; Schatz, Michael C; Schlenke, Todd; Schwartz, Russell; Segarra, Carmen; Singh, Rama S; Sirot, Laura; Sirota, Marina; Sisneros, Nicholas B; Smith, Chris D; Smith, Temple F; Spieth, John; Stage, Deborah E; Stark, Alexander; Stephan, Wolfgang; Strausberg, Robert L; Strempel, Sebastian; Sturgill, David; Sutton, Granger; Sutton, Granger G; Tao, Wei; Teichmann, Sarah; Tobari, Yoshiko N; Tomimura, Yoshihiko; Tsolas, Jason M; Valente, Vera L S; Venter, Eli; Venter, J Craig; Vicario, Saverio; Vieira, Filipe G; Vilella, Albert J; Villasante, Alfredo; Walenz, Brian; Wang, Jun; Wasserman, Marvin; Watts, Thomas; Wilson, Derek; Wilson, Richard K; Wing, Rod A; Wolfner, Mariana F; Wong, Alex; Wong, Gane Ka-Shu; Wu, Chung-I; Wu, Gabriel; Yamamoto, Daisuke; Yang, Hsiao-Pei; Yang, Shiaw-Pyng; Yorke, James A; Yoshida, Kiyohito; Zdobnov, Evgeny; Zhang, Peili; Zhang, Yu; Zimin, Aleksey V; Baldwin, Jennifer; Abdouelleil, Amr; Abdulkadir, Jamal; Abebe, Adal; Abera, Brikti; Abreu, Justin; Acer, St Christophe; Aftuck, Lynne; Alexander, Allen; An, Peter; Anderson, Erica; Anderson, Scott; Arachi, Harindra; Azer, Marc; Bachantsang, Pasang; Barry, Andrew; Bayul, Tashi; Berlin, Aaron; Bessette, Daniel; Bloom, Toby; Blye, Jason; Boguslavskiy, Leonid; Bonnet, Claude; Boukhgalter, Boris; Bourzgui, Imane; Brown, Adam; Cahill, Patrick; Channer, Sheridon; Cheshatsang, Yama; Chuda, Lisa; Citroen, Mieke; Collymore, Alville; Cooke, Patrick; Costello, Maura; D'Aco, Katie; Daza, Riza; De Haan, Georgius; DeGray, Stuart; DeMaso, Christina; Dhargay, Norbu; Dooley, Kimberly; Dooley, Erin; Doricent, Missole; Dorje, Passang; Dorjee, Kunsang; Dupes, Alan; Elong, Richard; Falk, Jill; Farina, Abderrahim; Faro, Susan; Ferguson, Diallo; Fisher, Sheila; Foley, Chelsea D; Franke, Alicia; Friedrich, Dennis; Gadbois, Loryn; Gearin, Gary; Gearin, Christina R; Giannoukos, Georgia; Goode, Tina; Graham, Joseph; Grandbois, Edward; Grewal, Sharleen; Gyaltsen, Kunsang; Hafez, Nabil; Hagos, Birhane; Hall, Jennifer; Henson, Charlotte; Hollinger, Andrew; Honan, Tracey; Huard, Monika D; Hughes, Leanne; Hurhula, Brian; Husby, M Erii; Kamat, Asha; Kanga, Ben; Kashin, Seva; Khazanovich, Dmitry; Kisner, Peter; Lance, Krista; Lara, Marcia; Lee, William; Lennon, Niall; Letendre, Frances; LeVine, Rosie; Lipovsky, Alex; Liu, Xiaohong; Liu, Jinlei; Liu, Shangtao; Lokyitsang, Tashi; Lokyitsang, Yeshi; Lubonja, Rakela; Lui, Annie; MacDonald, Pen; Magnisalis, Vasilia; Maru, Kebede; Matthews, Charles; McCusker, William; McDonough, Susan; Mehta, Teena; Meldrim, James; Meneus, Louis; Mihai, Oana; Mihalev, Atanas; Mihova, Tanya; Mittelman, Rachel; Mlenga, Valentine; Montmayeur, Anna; Mulrain, Leonidas; Navidi, Adam; Naylor, Jerome; Negash, Tamrat; Nguyen, Thu; Nguyen, Nga; Nicol, Robert; Norbu, Choe; Norbu, Nyima; Novod, Nathaniel; O'Neill, Barry; Osman, Sahal; Markiewicz, Eva; Oyono, Otero L; Patti, Christopher; Phunkhang, Pema; Pierre, Fritz; Priest, Margaret; Raghuraman, Sujaa; Rege, Filip; Reyes, Rebecca; Rise, Cecil; Rogov, Peter; Ross, Keenan; Ryan, Elizabeth; Settipalli, Sampath; Shea, Terry; Sherpa, Ngawang; Shi, Lu; Shih, Diana; Sparrow, Todd; Spaulding, Jessica; Stalker, John; Stange-Thomann, Nicole; Stavropoulos, Sharon; Stone, Catherine; Strader, Christopher; Tesfaye, Senait; Thomson, Talene; Thoulutsang, Yama; Thoulutsang, Dawa; Topham, Kerri; Topping, Ira; Tsamla, Tsamla; Vassiliev, Helen; Vo, Andy; Wangchuk, Tsering; Wangdi, Tsering; Weiand, Michael; Wilkinson, Jane; Wilson, Adam; Yadav, Shailendra; Young, Geneva; Yu, Qing; Zembek, Lisa; Zhong, Danni; Zimmer, Andrew; Zwirko, Zac; Jaffe, David B; Alvarez, Pablo; Brockman, Will; Butler, Jonathan; Chin, CheeWhye; Gnerre, Sante; Grabherr, Manfred; Kleber, Michael; Mauceli, Evan; MacCallum, Iain

    2007-11-08

    Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species.

  3. Genome sequence analysis of the model grass Brachypodium distachyon: insights into grass genome evolution

    Energy Technology Data Exchange (ETDEWEB)

    Schulman, Al

    2009-08-09

    Three subfamilies of grasses, the Erhardtoideae (rice), the Panicoideae (maize, sorghum, sugar cane and millet), and the Pooideae (wheat, barley and cool season forage grasses) provide the basis of human nutrition and are poised to become major sources of renewable energy. Here we describe the complete genome sequence of the wild grass Brachypodium distachyon (Brachypodium), the first member of the Pooideae subfamily to be completely sequenced. Comparison of the Brachypodium, rice and sorghum genomes reveals a precise sequence- based history of genome evolution across a broad diversity of the grass family and identifies nested insertions of whole chromosomes into centromeric regions as a predominant mechanism driving chromosome evolution in the grasses. The relatively compact genome of Brachypodium is maintained by a balance of retroelement replication and loss. The complete genome sequence of Brachypodium, coupled to its exceptional promise as a model system for grass research, will support the development of new energy and food crops

  4. Genomic evolution of Saccharomyces cerevisiae under Chinese rice wine fermentation.

    Science.gov (United States)

    Li, Yudong; Zhang, Weiping; Zheng, Daoqiong; Zhou, Zhan; Yu, Wenwen; Zhang, Lei; Feng, Lifang; Liang, Xinle; Guan, Wenjun; Zhou, Jingwen; Chen, Jian; Lin, Zhenguo

    2014-09-10

    Rice wine fermentation represents a unique environment for the evolution of the budding yeast, Saccharomyces cerevisiae. To understand how the selection pressure shaped the yeast genome and gene regulation, we determined the genome sequence and transcriptome of a S. cerevisiae strain YHJ7 isolated from Chinese rice wine (Huangjiu), a popular traditional alcoholic beverage in China. By comparing the genome of YHJ7 to the lab strain S288c, a Japanese sake strain K7, and a Chinese industrial bioethanol strain YJSH1, we identified many genomic sequence and structural variations in YHJ7, which are mainly located in subtelomeric regions, suggesting that these regions play an important role in genomic evolution between strains. In addition, our comparative transcriptome analysis between YHJ7 and S288c revealed a set of differentially expressed genes, including those involved in glucose transport (e.g., HXT2, HXT7) and oxidoredutase activity (e.g., AAD10, ADH7). Interestingly, many of these genomic and transcriptional variations are directly or indirectly associated with the adaptation of YHJ7 strain to its specific niches. Our molecular evolution analysis suggested that Japanese sake strains (K7/UC5) were derived from Chinese rice wine strains (YHJ7) at least approximately 2,300 years ago, providing the first molecular evidence elucidating the origin of Japanese sake strains. Our results depict interesting insights regarding the evolution of yeast during rice wine fermentation, and provided a valuable resource for genetic engineering to improve industrial wine-making strains. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. The comparison of pathology in ferrets infected by H9N2 avian influenza viruses with different genomic features.

    Science.gov (United States)

    Gao, Rongbao; Bai, Tian; Li, Xiaodan; Xiong, Ying; Huang, Yiwei; Pan, Ming; Zhang, Ye; Bo, Hong; Zou, Shumei; Shu, Yuelong

    2016-01-15

    H9N2 avian influenza virus circulates widely in poultry and has been responsible for sporadic human infections in several regions. Few studies have been conducted on the pathogenicity of H9N2 AIV isolates that have different genomic features. We compared the pathology induced by a novel reassortant H9N2 virus and two currently circulating H9N2 viruses that have different genomic features in ferrets. The results showed that the three viruses can induce infections with various amounts of viral shedding in ferrets. The novel H9N2 induced respiratory infection, but no pathological lesions were observed in lung tissues. The other two viruses induced mild to intermediate pathological lesions in lung tissues, although the clinical signs presented mildly in ferrets. The pathological lesions presented a diversity consistent with viral replication in ferrets. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Cubozoan genome illuminates functional diversification of opsins and photoreceptor evolution

    Czech Academy of Sciences Publication Activity Database

    Liegertová, Michaela; Pergner, Jiří; Kozmiková, Iryna; Fabian, Peter; Pombinho, António R.; Strnad, Hynek; Pačes, Jan; Vlček, Čestmír; Bartůněk, Petr; Kozmik, Zbyněk

    2015-01-01

    Roč. 5, Jul 8 (2015) ISSN 2045-2322 R&D Projects: GA ČR GAP305/10/2141; GA MŠk LO1220 Institutional support: RVO:68378050 Keywords : Cubozoan genome * opsins * photoreceptor * evolution Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.228, year: 2015

  7. Gene fragmentation: a key to mitochondrial genome evolution in Euglenozoa?

    Czech Academy of Sciences Publication Activity Database

    Flegontov, Pavel; Gray, M.W.; Burger, G.; Lukeš, Julius

    2011-01-01

    Roč. 57, č. 4 (2011), 225-232 ISSN 0172-8083 Institutional research plan: CEZ:AV0Z60220518 Keywords : Euglena * Diplonema * Mitochondrial genome * RNA editing * Constructive neutral evolution Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.556, year: 2011

  8. Nearly Neutral Evolution Across the Drosophila melanogaster Genome

    DEFF Research Database (Denmark)

    Esteve, David Castellano; James, Jennifer; Eyre-Walker, Adam

    2017-01-01

    Under the nearly neutral theory of molecular evolution the proportion of effectively neutral mutations is expected to depend upon the effective population size (Ne). Here we investigate whether this is the case across the genome of Drosophila melanogaster using polymorphism data from 128 North...

  9. Mitochondrial genome evolution in fire ants (Hymenoptera: Formicidae).

    Science.gov (United States)

    Gotzek, Dietrich; Clarke, Jessica; Shoemaker, DeWayne

    2010-10-07

    Complete mitochondrial genome sequences have become important tools for the study of genome architecture, phylogeny, and molecular evolution. Despite the rapid increase in available mitogenomes, the taxonomic sampling often poorly reflects phylogenetic diversity and is often also biased to represent deeper (family-level) evolutionary relationships. We present the first fully sequenced ant (Hymenoptera: Formicidae) mitochondrial genomes. We sampled four mitogenomes from three species of fire ants, genus Solenopsis, which represent various evolutionary depths. Overall, ant mitogenomes appear to be typical of hymenopteran mitogenomes, displaying a general A+T-bias. The Solenopsis mitogenomes are slightly more compact than other hymentoperan mitogenomes (~15.5 kb), retaining all protein coding genes, ribosomal, and transfer RNAs. We also present evidence of recombination between the mitogenomes of the two conspecific Solenopsis mitogenomes. Finally, we discuss potential ways to improve the estimation of phylogenies using complete mitochondrial genome sequences. The ant mitogenome presents an important addition to the continued efforts in studying hymenopteran mitogenome architecture, evolution, and phylogenetics. We provide further evidence that the sampling across many taxonomic levels (including conspecifics and congeners) is useful and important to gain detailed insights into mitogenome evolution. We also discuss ways that may help improve the use of mitogenomes in phylogenetic analyses by accounting for non-stationary and non-homogeneous evolution among branches.

  10. The Genomic Evolution of Prostate Cancer

    Science.gov (United States)

    2017-06-01

    vitro organoid models and in vivo xenograft models to characterize the evolution of tumor cells in response to therapy . 6. PUBLICATIONS, ABSTRACTS...into sub aims, and tasks outlined in the statement of work. This portion of the report will give a brief overall summary, followed by specific... therapies (Figure 2). The manuscript from this work is currently under review. Figure 1. Mutations in coincident ductal and acinar

  11. The compact Selaginella genome identifies changes in gene content associated with the evolution of vascular plants

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.; Banks, Jo Ann; Nishiyama, Tomoaki; Hasebe, Mitsuyasu; Bowman, John L.; Gribskov, Michael; dePamphilis, Claude; Albert, Victor A.; Aono, Naoki; Aoyama, Tsuyoshi; Ambrose, Barbara A.; Ashton, Neil W.; Axtell, Michael J.; Barker, Elizabeth; Barker, Michael S.; Bennetzen, Jeffrey L.; Bonawitz, Nicholas D.; Chapple, Clint; Cheng, Chaoyang; Correa, Luiz Gustavo Guedes; Dacre, Michael; DeBarry, Jeremy; Dreyer, Ingo; Elias, Marek; Engstrom, Eric M.; Estelle, Mark; Feng, Liang; Finet, Cedric; Floyd, Sandra K.; Frommer, Wolf B.; Fujita, Tomomichi; Gramzow, Lydia; Gutensohn, Michael; Harholt, Jesper; Hattori, Mitsuru; Heyl, Alexander; Hirai, Tadayoshi; Hiwatashi, Yuji; Ishikawa, Masaki; Iwata, Mineko; Karol, Kenneth G.; Koehler, Barbara; Kolukisaoglu, Uener; Kubo, Minoru; Kurata, Tetsuya; Lalonde, Sylvie; Li, Kejie; Li, Ying; Litt, Amy; Lyons, Eric; Manning, Gerard; Maruyama, Takeshi; Michael, Todd P.; Mikami, Koji; Miyazaki, Saori; Morinaga, Shin-ichi; Murata, Takashi; Mueller-Roeber, Bernd; Nelson, David R.; Obara, Mari; Oguri, Yasuko; Olmstead, Richard G.; Onodera, Naoko; Petersen, Bent Larsen; Pils, Birgit; Prigge, Michael; Rensing, Stefan A.; Riano-Pachon, Diego Mauricio; Roberts, Alison W.; Sato, Yoshikatsu; Scheller, Henrik Vibe; Schulz, Burkhard; Schulz, Christian; Shakirov, Eugene V.; Shibagaki, Nakako; Shinohara, Naoki; Shippen, Dorothy E.; Sorensen, Iben; Sotooka, Ryo; Sugimoto, Nagisa; Sugita, Mamoru; Sumikawa, Naomi; Tanurdzic, Milos; Theilsen, Gunter; Ulvskov, Peter; Wakazuki, Sachiko; Weng, Jing-Ke; Willats, William W.G.T.; Wipf, Daniel; Wolf, Paul G.; Yang, Lixing; Zimmer, Andreas D.; Zhu, Qihui; Mitros, Therese; Hellsten, Uffe; Loque, Dominique; Otillar, Robert; Salamov, Asaf; Schmutz, Jeremy; Shapiro, Harris; Lindquist, Erika; Lucas, Susan; Rokhsar, Daniel

    2011-04-28

    We report the genome sequence of the nonseed vascular plant, Selaginella moellendorffii, and by comparative genomics identify genes that likely played important roles in the early evolution of vascular plants and their subsequent evolution

  12. Reassessment of the evidence for postcranial skeletal pneumaticity in Triassic archosaurs, and the early evolution of the avian respiratory system.

    Directory of Open Access Journals (Sweden)

    Richard J Butler

    Full Text Available Uniquely among extant vertebrates, birds possess complex respiratory systems characterised by the combination of small, rigid lungs, extensive pulmonary air sacs that possess diverticula that invade (pneumatise the postcranial skeleton, unidirectional ventilation of the lungs, and efficient crosscurrent gas exchange. Crocodilians, the only other living archosaurs, also possess unidirectional lung ventilation, but lack true air sacs and postcranial skeletal pneumaticity (PSP. PSP can be used to infer the presence of avian-like pulmonary air sacs in several extinct archosaur clades (non-avian theropod dinosaurs, sauropod dinosaurs and pterosaurs. However, the evolution of respiratory systems in other archosaurs, especially in the lineage leading to crocodilians, is poorly documented. Here, we use µCT-scanning to investigate the vertebral anatomy of Triassic archosaur taxa, from both the avian and crocodilian lineages as well as non-archosaurian diapsid outgroups. Our results confirm previous suggestions that unambiguous evidence of PSP (presence of internal pneumatic cavities linked to the exterior by foramina is found only in bird-line (ornithodiran archosaurs. We propose that pulmonary air sacs were present in the common ancestor of Ornithodira and may have been subsequently lost or reduced in some members of the clade (notably in ornithischian dinosaurs. The development of these avian-like respiratory features might have been linked to inferred increases in activity levels among ornithodirans. By contrast, no crocodile-line archosaur (pseudosuchian exhibits evidence for unambiguous PSP, but many of these taxa possess the complex array of vertebral laminae and fossae that always accompany the presence of air sacs in ornithodirans. These laminae and fossae are likely homologous with those in ornithodirans, which suggests the need for further investigation of the hypothesis that a reduced, or non-invasive, system of pulmonary air sacs may be have

  13. Reassessment of the evidence for postcranial skeletal pneumaticity in Triassic archosaurs, and the early evolution of the avian respiratory system.

    Science.gov (United States)

    Butler, Richard J; Barrett, Paul M; Gower, David J

    2012-01-01

    Uniquely among extant vertebrates, birds possess complex respiratory systems characterised by the combination of small, rigid lungs, extensive pulmonary air sacs that possess diverticula that invade (pneumatise) the postcranial skeleton, unidirectional ventilation of the lungs, and efficient crosscurrent gas exchange. Crocodilians, the only other living archosaurs, also possess unidirectional lung ventilation, but lack true air sacs and postcranial skeletal pneumaticity (PSP). PSP can be used to infer the presence of avian-like pulmonary air sacs in several extinct archosaur clades (non-avian theropod dinosaurs, sauropod dinosaurs and pterosaurs). However, the evolution of respiratory systems in other archosaurs, especially in the lineage leading to crocodilians, is poorly documented. Here, we use µCT-scanning to investigate the vertebral anatomy of Triassic archosaur taxa, from both the avian and crocodilian lineages as well as non-archosaurian diapsid outgroups. Our results confirm previous suggestions that unambiguous evidence of PSP (presence of internal pneumatic cavities linked to the exterior by foramina) is found only in bird-line (ornithodiran) archosaurs. We propose that pulmonary air sacs were present in the common ancestor of Ornithodira and may have been subsequently lost or reduced in some members of the clade (notably in ornithischian dinosaurs). The development of these avian-like respiratory features might have been linked to inferred increases in activity levels among ornithodirans. By contrast, no crocodile-line archosaur (pseudosuchian) exhibits evidence for unambiguous PSP, but many of these taxa possess the complex array of vertebral laminae and fossae that always accompany the presence of air sacs in ornithodirans. These laminae and fossae are likely homologous with those in ornithodirans, which suggests the need for further investigation of the hypothesis that a reduced, or non-invasive, system of pulmonary air sacs may be have been present

  14. Localizing recent adaptive evolution in the human genome

    DEFF Research Database (Denmark)

    Williamson, Scott H; Hubisz, Melissa J; Clark, Andrew G

    2007-01-01

    -nucleotide polymorphism ascertainment, while also providing fine-scale estimates of the position of the selected site, we analyzed a genomic dataset of 1.2 million human single-nucleotide polymorphisms genotyped in African-American, European-American, and Chinese samples. We identify 101 regions of the human genome......, clusters of olfactory receptors, genes involved in nervous system development and function, immune system genes, and heat shock genes. We also observe consistent evidence of selective sweeps in centromeric regions. In general, we find that recent adaptation is strikingly pervasive in the human genome......Identifying genomic locations that have experienced selective sweeps is an important first step toward understanding the molecular basis of adaptive evolution. Using statistical methods that account for the confounding effects of population demography, recombination rate variation, and single...

  15. Comparative genome analysis and genome evolution of members of the magnaporthaceae family of fungi.

    Science.gov (United States)

    Okagaki, Laura H; Sailsbery, Joshua K; Eyre, Alexander W; Dean, Ralph A

    2016-02-25

    Magnaporthaceae, a family of ascomycetes, includes three fungi of great economic importance that cause disease in cereal and turf grasses: Magnaporthe oryzae (rice blast), Gaeumannomyces graminis var. tritici (take-all disease), and Magnaporthe poae (summer patch disease). Recently, the sequenced and assembled genomes for these three fungi were reported. Here, the genomes were compared for orthologous genes in order to identified genes that are unique to the Magnaporthaceae family of fungi. In addition, ortholog clustering was used to identify a core proteome for the Magnaporthaceae, which was examined for diversifying and purifying selection and evidence of two-speed genome evolution. A genome-scale comparative study was conducted across 74 fungal genomes to identify clusters of orthologous genes unique to the three Magnaporthaceae species as well as species specific genes. We found 1149 clusters that were unique to the Magnaporthaceae family of fungi with 295 of those containing genes from all three species. Gene clusters involved in metabolic and enzymatic activities were highly represented in the Magnaporthaceae specific clusters. Also highly represented in the Magnaporthaceae specific clusters as well as in the species specific genes were transcriptional regulators. In addition, we examined the relationship between gene evolution and distance to repetitive elements found in the genome. No correlations between diversifying or purifying selection and distance to repetitive elements or an increased rate of evolution in secreted and small secreted proteins were observed. Taken together, these data show that at the genome level, there is no evidence to suggest multi-speed genome evolution or that proximity to repetitive elements play a role in diversification of genes.

  16. Complete Genomic and Lysis-Cassette Characterization of the Novel Phage, KBNP1315, which Infects Avian Pathogenic Escherichia coli (APEC.

    Directory of Open Access Journals (Sweden)

    Jung Seok Lee

    Full Text Available Avian pathogenic Escherichia coli (APEC is a major pathogen that causes avian colibacillosis and is associated with severe economic losses in the chicken-farming industry. Here, bacteriophage KBNP1315, infecting APEC strain KBP1315, was genomically and functionally characterized. The evolutionary relationships of KBNP1315 were analyzed at the genomic level using gene (protein-sharing networks, the Markov clustering (MCL algorithm, and comparative genomics. Our network analysis showed that KBNP1315 was connected to 30 members of the Autographivirinae subfamily, which comprises the SP6-, T7-, P60-, phiKMV-, GAP227- and KP34-related groups. Network decomposition suggested that KBNP1315 belongs to the SP6-like phages, but our comparison of putative encoded proteins revealed that key proteins of KBNP1315, including the tail spike protein and endolysin, had relative low levels of amino acid sequence similarity with other members of the SP6-like phages. Thus KBNP1315 may only be distantly related to the SP6-like phages, and (based on the difference in endolysin its lysis mechanism may differ from theirs. To characterize the lytic functions of the holin and endolysin proteins from KBNP1315, we expressed these proteins individually or simultaneously in E. coli BL21 (DE3 competent cell. Interestingly, the expressed endolysin was secreted into the periplasm and caused a high degree of host cell lysis that was dose-dependently delayed/blocked by NaN3-mediated inhibition of the SecA pathway. The expressed holin triggered only a moderate inhibition of cell growth, whereas coexpression of holin and endolysin enhanced the lytic effect of endolysin. Together, these results revealed that KBNP1315 appears to use a pin-holin/signal-arrest-release (SAR endolysin pathway to trigger host cell lysis.

  17. Evolution and genomic organization of muscle microRNAs in fish genomes.

    Science.gov (United States)

    Nachtigall, Pedro Gabriel; Dias, Marcos Correa; Pinhal, Danillo

    2014-09-25

    MicroRNAs (miRNAs) are small non-coding RNA molecules with an important role upon post-transcriptional regulation. These molecules have been shown essential for several cellular processes in vertebrates, including muscle biology. Many miRNAs were described as exclusively or highly expressed in skeletal and/or cardiac muscle. However, knowledge on the genomic organization and evolution of muscle miRNAs has been unveiled in a reduced number of vertebrates and mostly only reflects their organization in mammals, whereas fish genomes remain largely uncharted. The main goal of this study was to elucidate particular features in the genomic organization and the putative evolutionary history of muscle miRNAs through a genome-wide comparative analysis of cartilaginous and bony fish genomes. As major outcomes we show that (1) miR-208 was unexpectedly absent in cartilaginous and ray-finned fish genomes whereas it still exist in other vertebrate groups; (2) miR-499 was intergenic in medaka and stickleback conversely to other vertebrates where this miRNA is intronic; (3) the zebrafish genome is the unique harboring two extra paralogous copies of miR-499 and their host gene (Myh7b); (4) a rare deletion event of the intergenic and bicistronic cluster miR-1-1/133a-2 took place only into Tetraodontiformes genomes (pufferfish and spotted green puffer); (5) the zebrafish genome experienced a duplication event of miR-206/-133b; and (6) miR-214 was specifically duplicated in species belonging to superorder Acanthopterygii. Despite of the aforementioned singularities in fish genomes, large syntenic blocks containing muscle-enriched miRNAs were found to persist, denoting colligated functionality between miRNAs and neighboring genes. Based on the genomic data here obtained, we envisioned a feasible scenario for explaining muscle miRNAs evolution in vertebrates.

  18. Nannochloropsis Genomes Reveal Evolution of Microalgal Oleaginous Traits

    Science.gov (United States)

    Hu, Jianqiang; Han, Danxiang; Wang, Hui; Zeng, Xiaowei; Jing, Xiaoyan; Zhou, Qian; Su, Xiaoquan; Chang, Xingzhi; Wang, Anhui; Wang, Wei; Jia, Jing; Wei, Li; Xin, Yi; Qiao, Yinghe; Huang, Ranran; Chen, Jie; Han, Bo; Yoon, Kangsup; Hill, Russell T.; Zohar, Yonathan; Chen, Feng; Hu, Qiang; Xu, Jian

    2014-01-01

    Oleaginous microalgae are promising feedstock for biofuels, yet the genetic diversity, origin and evolution of oleaginous traits remain largely unknown. Here we present a detailed phylogenomic analysis of five oleaginous Nannochloropsis species (a total of six strains) and one time-series transcriptome dataset for triacylglycerol (TAG) synthesis on one representative strain. Despite small genome sizes, high coding potential and relative paucity of mobile elements, the genomes feature small cores of ca. 2,700 protein-coding genes and a large pan-genome of >38,000 genes. The six genomes share key oleaginous traits, such as the enrichment of selected lipid biosynthesis genes and certain glycoside hydrolase genes that potentially shift carbon flux from chrysolaminaran to TAG synthesis. The eleven type II diacylglycerol acyltransferase genes (DGAT-2) in every strain, each expressed during TAG synthesis, likely originated from three ancient genomes, including the secondary endosymbiosis host and the engulfed green and red algae. Horizontal gene transfers were inferred in most lipid synthesis nodes with expanded gene doses and many glycoside hydrolase genes. Thus multiple genome pooling and horizontal genetic exchange, together with selective inheritance of lipid synthesis genes and species-specific gene loss, have led to the enormous genetic apparatus for oleaginousness and the wide genomic divergence among present-day Nannochloropsis. These findings have important implications in the screening and genetic engineering of microalgae for biofuels. PMID:24415958

  19. Nannochloropsis genomes reveal evolution of microalgal oleaginous traits.

    Directory of Open Access Journals (Sweden)

    Dongmei Wang

    2014-01-01

    Full Text Available Oleaginous microalgae are promising feedstock for biofuels, yet the genetic diversity, origin and evolution of oleaginous traits remain largely unknown. Here we present a detailed phylogenomic analysis of five oleaginous Nannochloropsis species (a total of six strains and one time-series transcriptome dataset for triacylglycerol (TAG synthesis on one representative strain. Despite small genome sizes, high coding potential and relative paucity of mobile elements, the genomes feature small cores of ca. 2,700 protein-coding genes and a large pan-genome of >38,000 genes. The six genomes share key oleaginous traits, such as the enrichment of selected lipid biosynthesis genes and certain glycoside hydrolase genes that potentially shift carbon flux from chrysolaminaran to TAG synthesis. The eleven type II diacylglycerol acyltransferase genes (DGAT-2 in every strain, each expressed during TAG synthesis, likely originated from three ancient genomes, including the secondary endosymbiosis host and the engulfed green and red algae. Horizontal gene transfers were inferred in most lipid synthesis nodes with expanded gene doses and many glycoside hydrolase genes. Thus multiple genome pooling and horizontal genetic exchange, together with selective inheritance of lipid synthesis genes and species-specific gene loss, have led to the enormous genetic apparatus for oleaginousness and the wide genomic divergence among present-day Nannochloropsis. These findings have important implications in the screening and genetic engineering of microalgae for biofuels.

  20. Phylogenomics and the Dynamic Genome Evolution of the Genus Streptococcus

    Science.gov (United States)

    Richards, Vincent P.; Palmer, Sara R.; Pavinski Bitar, Paulina D.; Qin, Xiang; Weinstock, George M.; Highlander, Sarah K.; Town, Christopher D.; Burne, Robert A.; Stanhope, Michael J.

    2014-01-01

    The genus Streptococcus comprises important pathogens that have a severe impact on human health and are responsible for substantial economic losses to agriculture. Here, we utilize 46 Streptococcus genome sequences (44 species), including eight species sequenced here, to provide the first genomic level insight into the evolutionary history and genetic basis underlying the functional diversity of all major groups of this genus. Gene gain/loss analysis revealed a dynamic pattern of genome evolution characterized by an initial period of gene gain followed by a period of loss, as the major groups within the genus diversified. This was followed by a period of genome expansion associated with the origins of the present extant species. The pattern is concordant with an emerging view that genomes evolve through a dynamic process of expansion and streamlining. A large proportion of the pan-genome has experienced lateral gene transfer (LGT) with causative factors, such as relatedness and shared environment, operating over different evolutionary scales. Multiple gene ontology terms were significantly enriched for each group, and mapping terms onto the phylogeny showed that those corresponding to genes born on branches leading to the major groups represented approximately one-fifth of those enriched. Furthermore, despite the extensive LGT, several biochemical characteristics have been retained since group formation, suggesting genomic cohesiveness through time, and that these characteristics may be fundamental to each group. For example, proteolysis: mitis group; urea metabolism: salivarius group; carbohydrate metabolism: pyogenic group; and transcription regulation: bovis group. PMID:24625962

  1. The Apostasia genome and the evolution of orchids.

    Science.gov (United States)

    Zhang, Guo-Qiang; Liu, Ke-Wei; Li, Zhen; Lohaus, Rolf; Hsiao, Yu-Yun; Niu, Shan-Ce; Wang, Jie-Yu; Lin, Yao-Cheng; Xu, Qing; Chen, Li-Jun; Yoshida, Kouki; Fujiwara, Sumire; Wang, Zhi-Wen; Zhang, Yong-Qiang; Mitsuda, Nobutaka; Wang, Meina; Liu, Guo-Hui; Pecoraro, Lorenzo; Huang, Hui-Xia; Xiao, Xin-Ju; Lin, Min; Wu, Xin-Yi; Wu, Wan-Lin; Chen, You-Yi; Chang, Song-Bin; Sakamoto, Shingo; Ohme-Takagi, Masaru; Yagi, Masafumi; Zeng, Si-Jin; Shen, Ching-Yu; Yeh, Chuan-Ming; Luo, Yi-Bo; Tsai, Wen-Chieh; Van de Peer, Yves; Liu, Zhong-Jian

    2017-09-21

    Constituting approximately 10% of flowering plant species, orchids (Orchidaceae) display unique flower morphologies, possess an extraordinary diversity in lifestyle, and have successfully colonized almost every habitat on Earth. Here we report the draft genome sequence of Apostasia shenzhenica, a representative of one of two genera that form a sister lineage to the rest of the Orchidaceae, providing a reference for inferring the genome content and structure of the most recent common ancestor of all extant orchids and improving our understanding of their origins and evolution. In addition, we present transcriptome data for representatives of Vanilloideae, Cypripedioideae and Orchidoideae, and novel third-generation genome data for two species of Epidendroideae, covering all five orchid subfamilies. A. shenzhenica shows clear evidence of a whole-genome duplication, which is shared by all orchids and occurred shortly before their divergence. Comparisons between A. shenzhenica and other orchids and angiosperms also permitted the reconstruction of an ancestral orchid gene toolkit. We identify new gene families, gene family expansions and contractions, and changes within MADS-box gene classes, which control a diverse suite of developmental processes, during orchid evolution. This study sheds new light on the genetic mechanisms underpinning key orchid innovations, including the development of the labellum and gynostemium, pollinia, and seeds without endosperm, as well as the evolution of epiphytism; reveals relationships between the Orchidaceae subfamilies; and helps clarify the evolutionary history of orchids within the angiosperms.

  2. Modeling protein network evolution under genome duplication and domain shuffling

    Directory of Open Access Journals (Sweden)

    Isambert Hervé

    2007-11-01

    Full Text Available Abstract Background Successive whole genome duplications have recently been firmly established in all major eukaryote kingdoms. Such exponential evolutionary processes must have largely contributed to shape the topology of protein-protein interaction (PPI networks by outweighing, in particular, all time-linear network growths modeled so far. Results We propose and solve a mathematical model of PPI network evolution under successive genome duplications. This demonstrates, from first principles, that evolutionary conservation and scale-free topology are intrinsically linked properties of PPI networks and emerge from i prevailing exponential network dynamics under duplication and ii asymmetric divergence of gene duplicates. While required, we argue that this asymmetric divergence arises, in fact, spontaneously at the level of protein-binding sites. This supports a refined model of PPI network evolution in terms of protein domains under exponential and asymmetric duplication/divergence dynamics, with multidomain proteins underlying the combinatorial formation of protein complexes. Genome duplication then provides a powerful source of PPI network innovation by promoting local rearrangements of multidomain proteins on a genome wide scale. Yet, we show that the overall conservation and topology of PPI networks are robust to extensive domain shuffling of multidomain proteins as well as to finer details of protein interaction and evolution. Finally, large scale features of direct and indirect PPI networks of S. cerevisiae are well reproduced numerically with only two adjusted parameters of clear biological significance (i.e. network effective growth rate and average number of protein-binding domains per protein. Conclusion This study demonstrates the statistical consequences of genome duplication and domain shuffling on the conservation and topology of PPI networks over a broad evolutionary scale across eukaryote kingdoms. In particular, scale

  3. A unifying model of genome evolution under parsimony.

    Science.gov (United States)

    Paten, Benedict; Zerbino, Daniel R; Hickey, Glenn; Haussler, David

    2014-06-19

    Parsimony and maximum likelihood methods of phylogenetic tree estimation and parsimony methods for genome rearrangements are central to the study of genome evolution yet to date they have largely been pursued in isolation. We present a data structure called a history graph that offers a practical basis for the analysis of genome evolution. It conceptually simplifies the study of parsimonious evolutionary histories by representing both substitutions and double cut and join (DCJ) rearrangements in the presence of duplications. The problem of constructing parsimonious history graphs thus subsumes related maximum parsimony problems in the fields of phylogenetic reconstruction and genome rearrangement. We show that tractable functions can be used to define upper and lower bounds on the minimum number of substitutions and DCJ rearrangements needed to explain any history graph. These bounds become tight for a special type of unambiguous history graph called an ancestral variation graph (AVG), which constrains in its combinatorial structure the number of operations required. We finally demonstrate that for a given history graph G, a finite set of AVGs describe all parsimonious interpretations of G, and this set can be explored with a few sampling moves. This theoretical study describes a model in which the inference of genome rearrangements and phylogeny can be unified under parsimony.

  4. The Completeness of the Fossil Record of Mesozoic Birds: Implications for Early Avian Evolution

    Science.gov (United States)

    Brocklehurst, Neil; Upchurch, Paul; Mannion, Philip D.; O'Connor, Jingmai

    2012-01-01

    Many palaeobiological analyses have concluded that modern birds (Neornithes) radiated no earlier than the Maastrichtian, whereas molecular clock studies have argued for a much earlier origination. Here, we assess the quality of the fossil record of Mesozoic avian species, using a recently proposed character completeness metric which calculates the percentage of phylogenetic characters that can be scored for each taxon. Estimates of fossil record quality are plotted against geological time and compared to estimates of species level diversity, sea level, and depositional environment. Geographical controls on the avian fossil record are investigated by comparing the completeness scores of species in different continental regions and latitudinal bins. Avian fossil record quality varies greatly with peaks during the Tithonian-early Berriasian, Aptian, and Coniacian–Santonian, and troughs during the Albian-Turonian and the Maastrichtian. The completeness metric correlates more strongly with a ‘sampling corrected’ residual diversity curve of avian species than with the raw taxic diversity curve, suggesting that the abundance and diversity of birds might influence the probability of high quality specimens being preserved. There is no correlation between avian completeness and sea level, the number of fluviolacustrine localities or a recently constructed character completeness metric of sauropodomorph dinosaurs. Comparisons between the completeness of Mesozoic birds and sauropodomorphs suggest that small delicate vertebrate skeletons are more easily destroyed by taphonomic processes, but more easily preserved whole. Lagerstätten deposits might therefore have a stronger impact on reconstructions of diversity of smaller organisms relative to more robust forms. The relatively poor quality of the avian fossil record in the Late Cretaceous combined with very patchy regional sampling means that it is possible neornithine lineages were present throughout this interval but

  5. The completeness of the fossil record of mesozoic birds: implications for early avian evolution.

    Directory of Open Access Journals (Sweden)

    Neil Brocklehurst

    Full Text Available Many palaeobiological analyses have concluded that modern birds (Neornithes radiated no earlier than the Maastrichtian, whereas molecular clock studies have argued for a much earlier origination. Here, we assess the quality of the fossil record of Mesozoic avian species, using a recently proposed character completeness metric which calculates the percentage of phylogenetic characters that can be scored for each taxon. Estimates of fossil record quality are plotted against geological time and compared to estimates of species level diversity, sea level, and depositional environment. Geographical controls on the avian fossil record are investigated by comparing the completeness scores of species in different continental regions and latitudinal bins. Avian fossil record quality varies greatly with peaks during the Tithonian-early Berriasian, Aptian, and Coniacian-Santonian, and troughs during the Albian-Turonian and the Maastrichtian. The completeness metric correlates more strongly with a 'sampling corrected' residual diversity curve of avian species than with the raw taxic diversity curve, suggesting that the abundance and diversity of birds might influence the probability of high quality specimens being preserved. There is no correlation between avian completeness and sea level, the number of fluviolacustrine localities or a recently constructed character completeness metric of sauropodomorph dinosaurs. Comparisons between the completeness of Mesozoic birds and sauropodomorphs suggest that small delicate vertebrate skeletons are more easily destroyed by taphonomic processes, but more easily preserved whole. Lagerstätten deposits might therefore have a stronger impact on reconstructions of diversity of smaller organisms relative to more robust forms. The relatively poor quality of the avian fossil record in the Late Cretaceous combined with very patchy regional sampling means that it is possible neornithine lineages were present throughout this

  6. The completeness of the fossil record of mesozoic birds: implications for early avian evolution.

    Science.gov (United States)

    Brocklehurst, Neil; Upchurch, Paul; Mannion, Philip D; O'Connor, Jingmai

    2012-01-01

    Many palaeobiological analyses have concluded that modern birds (Neornithes) radiated no earlier than the Maastrichtian, whereas molecular clock studies have argued for a much earlier origination. Here, we assess the quality of the fossil record of Mesozoic avian species, using a recently proposed character completeness metric which calculates the percentage of phylogenetic characters that can be scored for each taxon. Estimates of fossil record quality are plotted against geological time and compared to estimates of species level diversity, sea level, and depositional environment. Geographical controls on the avian fossil record are investigated by comparing the completeness scores of species in different continental regions and latitudinal bins. Avian fossil record quality varies greatly with peaks during the Tithonian-early Berriasian, Aptian, and Coniacian-Santonian, and troughs during the Albian-Turonian and the Maastrichtian. The completeness metric correlates more strongly with a 'sampling corrected' residual diversity curve of avian species than with the raw taxic diversity curve, suggesting that the abundance and diversity of birds might influence the probability of high quality specimens being preserved. There is no correlation between avian completeness and sea level, the number of fluviolacustrine localities or a recently constructed character completeness metric of sauropodomorph dinosaurs. Comparisons between the completeness of Mesozoic birds and sauropodomorphs suggest that small delicate vertebrate skeletons are more easily destroyed by taphonomic processes, but more easily preserved whole. Lagerstätten deposits might therefore have a stronger impact on reconstructions of diversity of smaller organisms relative to more robust forms. The relatively poor quality of the avian fossil record in the Late Cretaceous combined with very patchy regional sampling means that it is possible neornithine lineages were present throughout this interval but have

  7. The role of ecological constraint in driving the evolution of avian song frequency across a latitudinal gradient.

    Science.gov (United States)

    Weir, Jason T; Wheatcroft, David J; Price, Trevor D

    2012-09-01

    Just as features of the physical and biotic environment constrain evolution of ecological and morphological traits, they may also affect evolution of communication systems. Here we analyze constraints on rates of vocal evolution, using a large dataset of New World avian sister taxa. We show that species breeding in tropical forests sing at generally lower frequencies and across narrower bandwidths than species breeding in open habitats, or at high latitudes. We attribute these restrictions on birdsong frequency to the presence of high-frequency insect noise and greater degradation of high-frequency sounds in tropical forests. We fit Ornstein-Uhlenbeck models to show that recent evolution of song frequency has been more greatly constrained in tropical forests than elsewhere, that is, songs have shown less tendency to diverge over time in tropical forests, consistent with inferred acoustic restrictions. In addition, we find that song frequency has evolved more rapidly overall at high latitudes in both forest and open habitats. Besides a larger available sound window, other factors contributing to more rapid divergence at high latitudes may include an overall increased intensity of sexual selection, occupation of more divergent habitats, and the presence of fewer competing species. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  8. Segmental duplications: evolution and impact among the current Lepidoptera genomes.

    Science.gov (United States)

    Zhao, Qian; Ma, Dongna; Vasseur, Liette; You, Minsheng

    2017-07-06

    Structural variation among genomes is now viewed to be as important as single nucleoid polymorphisms in influencing the phenotype and evolution of a species. Segmental duplication (SD) is defined as segments of DNA with homologous sequence. Here, we performed a systematic analysis of segmental duplications (SDs) among five lepidopteran reference genomes (Plutella xylostella, Danaus plexippus, Bombyx mori, Manduca sexta and Heliconius melpomene) to understand their potential impact on the evolution of these species. We find that the SDs content differed substantially among species, ranging from 1.2% of the genome in B. mori to 15.2% in H. melpomene. Most SDs formed very high identity (similarity higher than 90%) blocks but had very few large blocks. Comparative analysis showed that most of the SDs arose after the divergence of each linage and we found that P. xylostella and H. melpomene showed more duplications than other species, suggesting they might be able to tolerate extensive levels of variation in their genomes. Conserved ancestral and species specific SD events were assessed, revealing multiple examples of the gain, loss or maintenance of SDs over time. SDs content analysis showed that most of the genes embedded in SDs regions belonged to species-specific SDs ("Unique" SDs). Functional analysis of these genes suggested their potential roles in the lineage-specific evolution. SDs and flanking regions often contained transposable elements (TEs) and this association suggested some involvement in SDs formation. Further studies on comparison of gene expression level between SDs and non-SDs showed that the expression level of genes embedded in SDs was significantly lower, suggesting that structure changes in the genomes are involved in gene expression differences in species. The results showed that most of the SDs were "unique SDs", which originated after species formation. Functional analysis suggested that SDs might play different roles in different species. Our

  9. Population dynamics and rates of molecular evolution of a recently emerged paramyxovirus, avian metapneumovirus subtype C.

    Science.gov (United States)

    Padhi, Abinash; Poss, Mary

    2009-02-01

    We report the existence of two distinct sublineages of avian metapneumovirus (MPV) subtype C, a virus which has caused serious economic loss in commercial turkey farms in the United States. This subtype is closely related to human MPV, infects multiple avian species, and is globally distributed. The evolutionary rates of this virus are estimated to be 1.3 x 10(-3) to 7 x 10(-3) substitutions per site per year, and coalescent estimates place its emergence between 1991 and 1996. The four genes examined show a concordant demographic pattern which is characterized by a rapid increase in population size followed by stable population grown until the present.

  10. The evolution of genome mining in microbes – a review

    DEFF Research Database (Denmark)

    Ziemert, Nadine; Alanjary, Mohammad; Weber, Tilmann

    2016-01-01

    the development of these computational approaches during the last decade and shows how the revolution of next generation sequencing methods has led to an evolution of various genome mining approaches, techniques and tools. After a short introduction and brief overview of important milestones, this article...... clusters that await linkage to their encoded natural products. With the development of high-throughput sequencing methods and the wealth of DNA data available, a variety of genome mining methods and tools have been developed to guide discovery and characterisation of these compounds. This article reviews...

  11. The human genome and the human control of natural evolution.

    Science.gov (United States)

    Sakamoto, H

    2001-10-01

    Recent advances in research on the Human Genome are provoking many critical problems in the global policy regarding the future status of human beings as well as in that of the whole life system on the earth, and consequently, these advances provoke the serious bioethical and philosophical questions. Firstly, how can we comprehend that we are going to have the complete technology to manipulate the system of the human genome and other non-human genomes? Though no science and technology can be complete, we will, I believe, take possession of an almost complete gene technology in the early stage of the next Century. Gene technology will soon fall into the hands of human beings instead of rendering in the province of God. Secondly, which gene technologies will we actually realize and utilize in the early stages of the 21st Century? Most probably, we will adopt these technologies to health care to treat some apparent bodily diseases, for instance, cancer, hemophilia, ADA deficiency, and so forth, and sooner or later we will adopt gene therapy to germ lines, which, in the long run, suggests the possibility of a future "artificial evolution" instead of the "natural evolution" of the past. Thirdly, how is the new concept of "artificial evolution" justified ethically? I believe this kind of manmade evolution is the only way for human beings to survive into the future global environment. There cannot be any serious ethical objection against the idea of artificial evolution. Fourthly, what is the background philosophy for the concept of "artificial evolution"? I will discuss the nature of modern European humanism with individual dignity and fundamental human rights which has led the philosophy of modern culture and modern society, and I will conclude by suggesting that we should abolish an essential part of modern humanism and newly devise some alternative philosophy to fit the new Millennium.

  12. Airborne Detection of H5N8 Highly Pathogenic Avian Influenza Virus Genome in Poultry Farms, France

    Directory of Open Access Journals (Sweden)

    Axelle Scoizec

    2018-02-01

    Full Text Available In southwestern France, during the winter of 2016–2017, the rapid spread of highly pathogenic avian influenza H5N8 outbreaks despite the implementation of routine control measures, raised the question about the potential role of airborne transmission in viral spread. As a first step to investigate the plausibility of that transmission, air samples were collected inside, outside and downwind from infected duck and chicken facilities. H5 avian influenza virus RNA was detected in all samples collected inside poultry houses, at external exhaust fans and at 5 m distance from poultry houses. For three of the five flocks studied, in the sample collected at 50–110 m distance, viral genomic RNA was detected. The measured viral air concentrations ranged between 4.3 and 6.4 log10 RNA copies per m3, and their geometric mean decreased from external exhaust fans to the downwind measurement point. These findings are in accordance with the possibility of airborne transmission and question the procedures for outbreak depopulation.

  13. Rapid and Recent Evolution of LTR Retrotransposons Drives Rice Genome Evolution During the Speciation of AA-GenomeOryzaSpecies.

    Science.gov (United States)

    Zhang, Qun-Jie; Gao, Li-Zhi

    2017-06-07

    The dynamics of long terminal repeat (LTR) retrotransposons and their contribution to genome evolution during plant speciation have remained largely unanswered. Here, we perform a genome-wide comparison of all eight Oryza AA-genome species, and identify 3911 intact LTR retrotransposons classified into 790 families. The top 44 most abundant LTR retrotransposon families show patterns of rapid and distinct diversification since the species split over the last ∼4.8 MY (million years). Phylogenetic and read depth analyses of 11 representative retrotransposon families further provide a comprehensive evolutionary landscape of these changes. Compared with Ty1- copia , independent bursts of Ty3- gypsy retrotransposon expansions have occurred with the three largest showing signatures of lineage-specific evolution. The estimated insertion times of 2213 complete retrotransposons from the top 23 most abundant families reveal divergent life histories marked by speedy accumulation, decline, and extinction that differed radically between species. We hypothesize that this rapid evolution of LTR retrotransposons not only divergently shaped the architecture of rice genomes but also contributed to the process of speciation and diversification of rice. Copyright © 2017 Zhang and Gao.

  14. Non-conflict theories for the evolution of genomic imprinting.

    Science.gov (United States)

    Spencer, H G; Clark, A G

    2014-08-01

    Theories focused on kinship and the genetic conflict it induces are widely considered to be the primary explanations for the evolution of genomic imprinting. However, there have appeared many competing ideas that do not involve kinship/conflict. These ideas are often overlooked because kinship/conflict is entrenched in the literature, especially outside evolutionary biology. Here we provide a critical overview of these non-conflict theories, providing an accessible perspective into this literature. We suggest that some of these alternative hypotheses may, in fact, provide tenable explanations of the evolution of imprinting for at least some loci.

  15. Genomic selection for the improvement of antibody response to Newcastle disease and avian influenza virus in chickens.

    Directory of Open Access Journals (Sweden)

    Tianfei Liu

    Full Text Available Newcastle disease (ND and avian influenza (AI are the most feared diseases in the poultry industry worldwide. They can cause flock mortality up to 100%, resulting in a catastrophic economic loss. This is the first study to investigate the feasibility of genomic selection for antibody response to Newcastle disease virus (Ab-NDV and antibody response to Avian Influenza virus (Ab-AIV in chickens. The data were collected from a crossbred population. Breeding values for Ab-NDV and Ab-AIV were estimated using a pedigree-based best linear unbiased prediction model (BLUP and a genomic best linear unbiased prediction model (GBLUP. Single-trait and multiple-trait analyses were implemented. According to the analysis using the pedigree-based model, the heritability for Ab-NDV estimated from the single-trait and multiple-trait models was 0.478 and 0.487, respectively. The heritability for Ab-AIV estimated from the two models was 0.301 and 0.291, respectively. The estimated genetic correlation between the two traits was 0.438. A four-fold cross-validation was used to assess the accuracy of the estimated breeding values (EBV in the two validation scenarios. In the family sample scenario each half-sib family is randomly allocated to one of four subsets and in the random sample scenario the individuals are randomly divided into four subsets. In the family sample scenario, compared with the pedigree-based model, the accuracy of the genomic prediction increased from 0.086 to 0.237 for Ab-NDV and from 0.080 to 0.347 for Ab-AIV. In the random sample scenario, the accuracy was improved from 0.389 to 0.427 for Ab-NDV and from 0.281 to 0.367 for Ab-AIV. The multiple-trait GBLUP model led to a slightly higher accuracy of genomic prediction for both traits. These results indicate that genomic selection for antibody response to ND and AI in chickens is promising.

  16. Bordetella pertussis evolution in the (functional) genomics era

    Science.gov (United States)

    Belcher, Thomas; Preston, Andrew

    2015-01-01

    The incidence of whooping cough caused by Bordetella pertussis in many developed countries has risen dramatically in recent years. This has been linked to the use of an acellular pertussis vaccine. In addition, it is thought that B. pertussis is adapting under acellular vaccine mediated immune selection pressure, towards vaccine escape. Genomics-based approaches have revolutionized the ability to resolve the fine structure of the global B. pertussis population and its evolution during the era of vaccination. Here, we discuss the current picture of B. pertussis evolution and diversity in the light of the current resurgence, highlight import questions raised by recent studies in this area and discuss the role that functional genomics can play in addressing current knowledge gaps. PMID:26297914

  17. Genomic organization and evolution of the Atlantic salmon hemoglobin repertoire

    Directory of Open Access Journals (Sweden)

    Phillips Ruth B

    2010-10-01

    Full Text Available Abstract Background The genomes of salmonids are considered pseudo-tetraploid undergoing reversion to a stable diploid state. Given the genome duplication and extensive biological data available for salmonids, they are excellent model organisms for studying comparative genomics, evolutionary processes, fates of duplicated genes and the genetic and physiological processes associated with complex behavioral phenotypes. The evolution of the tetrapod hemoglobin genes is well studied; however, little is known about the genomic organization and evolution of teleost hemoglobin genes, particularly those of salmonids. The Atlantic salmon serves as a representative salmonid species for genomics studies. Given the well documented role of hemoglobin in adaptation to varied environmental conditions as well as its use as a model protein for evolutionary analyses, an understanding of the genomic structure and organization of the Atlantic salmon α and β hemoglobin genes is of great interest. Results We identified four bacterial artificial chromosomes (BACs comprising two hemoglobin gene clusters spanning the entire α and β hemoglobin gene repertoire of the Atlantic salmon genome. Their chromosomal locations were established using fluorescence in situ hybridization (FISH analysis and linkage mapping, demonstrating that the two clusters are located on separate chromosomes. The BACs were sequenced and assembled into scaffolds, which were annotated for putatively functional and pseudogenized hemoglobin-like genes. This revealed that the tail-to-tail organization and alternating pattern of the α and β hemoglobin genes are well conserved in both clusters, as well as that the Atlantic salmon genome houses substantially more hemoglobin genes, including non-Bohr β globin genes, than the genomes of other teleosts that have been sequenced. Conclusions We suggest that the most parsimonious evolutionary path leading to the present organization of the Atlantic salmon

  18. Genomic organization and evolution of the Atlantic salmon hemoglobin repertoire

    Science.gov (United States)

    2010-01-01

    Background The genomes of salmonids are considered pseudo-tetraploid undergoing reversion to a stable diploid state. Given the genome duplication and extensive biological data available for salmonids, they are excellent model organisms for studying comparative genomics, evolutionary processes, fates of duplicated genes and the genetic and physiological processes associated with complex behavioral phenotypes. The evolution of the tetrapod hemoglobin genes is well studied; however, little is known about the genomic organization and evolution of teleost hemoglobin genes, particularly those of salmonids. The Atlantic salmon serves as a representative salmonid species for genomics studies. Given the well documented role of hemoglobin in adaptation to varied environmental conditions as well as its use as a model protein for evolutionary analyses, an understanding of the genomic structure and organization of the Atlantic salmon α and β hemoglobin genes is of great interest. Results We identified four bacterial artificial chromosomes (BACs) comprising two hemoglobin gene clusters spanning the entire α and β hemoglobin gene repertoire of the Atlantic salmon genome. Their chromosomal locations were established using fluorescence in situ hybridization (FISH) analysis and linkage mapping, demonstrating that the two clusters are located on separate chromosomes. The BACs were sequenced and assembled into scaffolds, which were annotated for putatively functional and pseudogenized hemoglobin-like genes. This revealed that the tail-to-tail organization and alternating pattern of the α and β hemoglobin genes are well conserved in both clusters, as well as that the Atlantic salmon genome houses substantially more hemoglobin genes, including non-Bohr β globin genes, than the genomes of other teleosts that have been sequenced. Conclusions We suggest that the most parsimonious evolutionary path leading to the present organization of the Atlantic salmon hemoglobin genes involves

  19. The Amphimedon queenslandica genome and the evolution of animal complexity

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Mansi; Simakov, Oleg; Chapman, Jarrod; Fahey, Bryony; Gauthier, Marie E.A.; Mitros, Therese; Richards, Gemma S.; Conaco, Cecilia; Dacre, Michael; Hellsten, Uffe; Larroux, Claire; Putnam, Nicholas H.; Stanke, Mario; Adamska, Maja; Darling, Aaron; Degnan, Sandie M.; Oakley, Todd H.; Plachetzki, David C.; Zhai, Yufeng; Adamski, Marcin; Calcino, Andrew; Cummins, Scott F.; Goodstein, David M.; Harris, Christina; Jackson, Daniel J.; Leys, Sally P.; Shu, Shengqiang; Woodcroft, Ben J.; Vervoort, Michel; Kosik, Kenneth S.; Manning, Gerard; Degnan, Bernard M.; Rokhsar, Daniel S.

    2010-07-01

    Sponges are an ancient group of animals that diverged from other metazoans over 600 million years ago. Here we present the draft genome sequence of Amphimedon queenslandica, a demosponge from the Great Barrier Reef, and show that it is remarkably similar to other animal genomes in content, structure and organization. Comparative analysis enabled by the sponge sequence reveals genomic events linked to the origin and early evolution of animals, including the appearance, expansion, and diversification of pan-metazoan transcription factor, signaling pathway, and structural genes. This diverse 'toolkit' of genes correlates with critical aspects of all metazoan body plans, and comprises cell cycle control and growth, development, somatic and germ cell specification, cell adhesion, innate immunity, and allorecognition. Notably, many of the genes associated with the emergence of animals are also implicated in cancer, which arises from defects in basic processes associated with metazoan multicellularity.

  20. Tracing Monotreme Venom Evolution in the Genomics Era

    Science.gov (United States)

    Whittington, Camilla M.; Belov, Katherine

    2014-01-01

    The monotremes (platypuses and echidnas) represent one of only four extant venomous mammalian lineages. Until recently, monotreme venom was poorly understood. However, the availability of the platypus genome and increasingly sophisticated genomic tools has allowed us to characterize platypus toxins, and provides a means of reconstructing the evolutionary history of monotreme venom. Here we review the physiology of platypus and echidna crural (venom) systems as well as pharmacological and genomic studies of monotreme toxins. Further, we synthesize current ideas about the evolution of the venom system, which in the platypus is likely to have been retained from a venomous ancestor, whilst being lost in the echidnas. We also outline several research directions and outstanding questions that would be productive to address in future research. An improved characterization of mammalian venoms will not only yield new toxins with potential therapeutic uses, but will also aid in our understanding of the way that this unusual trait evolves. PMID:24699339

  1. Tracing Monotreme Venom Evolution in the Genomics Era

    Directory of Open Access Journals (Sweden)

    Camilla M. Whittington

    2014-04-01

    Full Text Available The monotremes (platypuses and echidnas represent one of only four extant venomous mammalian lineages. Until recently, monotreme venom was poorly understood. However, the availability of the platypus genome and increasingly sophisticated genomic tools has allowed us to characterize platypus toxins, and provides a means of reconstructing the evolutionary history of monotreme venom. Here we review the physiology of platypus and echidna crural (venom systems as well as pharmacological and genomic studies of monotreme toxins. Further, we synthesize current ideas about the evolution of the venom system, which in the platypus is likely to have been retained from a venomous ancestor, whilst being lost in the echidnas. We also outline several research directions and outstanding questions that would be productive to address in future research. An improved characterization of mammalian venoms will not only yield new toxins with potential therapeutic uses, but will also aid in our understanding of the way that this unusual trait evolves.

  2. The Population Genomics of Sunflowers and Genomic Determinants of Protein Evolution Revealed by RNAseq

    Directory of Open Access Journals (Sweden)

    Loren H. Rieseberg

    2012-10-01

    Full Text Available Few studies have investigated the causes of evolutionary rate variation among plant nuclear genes, especially in recently diverged species still capable of hybridizing in the wild. The recent advent of Next Generation Sequencing (NGS permits investigation of genome wide rates of protein evolution and the role of selection in generating and maintaining divergence. Here, we use individual whole-transcriptome sequencing (RNAseq to refine our understanding of the population genomics of wild species of sunflowers (Helianthus spp. and the factors that affect rates of protein evolution. We aligned 35 GB of transcriptome sequencing data and identified 433,257 polymorphic sites (SNPs in a reference transcriptome comprising 16,312 genes. Using SNP markers, we identified strong population clustering largely corresponding to the three species analyzed here (Helianthus annuus, H. petiolaris, H. debilis, with one distinct early generation hybrid. Then, we calculated the proportions of adaptive substitution fixed by selection (alpha and identified gene ontology categories with elevated values of alpha. The “response to biotic stimulus” category had the highest mean alpha across the three interspecific comparisons, implying that natural selection imposed by other organisms plays an important role in driving protein evolution in wild sunflowers. Finally, we examined the relationship between protein evolution (dN/dS ratio and several genomic factors predicted to co-vary with protein evolution (gene expression level, divergence and specificity, genetic divergence [FST], and nucleotide diversity pi. We find that variation in rates of protein divergence was correlated with gene expression level and specificity, consistent with results from a broad range of taxa and timescales. This would in turn imply that these factors govern protein evolution both at a microevolutionary and macroevolutionary timescale. Our results contribute to a general understanding of the

  3. Reconstructing the Evolution of Brachypodium Genomes Using Comparative Chromosome Painting.

    Directory of Open Access Journals (Sweden)

    Alexander Betekhtin

    Full Text Available Brachypodium distachyon is a model for the temperate cereals and grasses and has a biology, genomics infrastructure and cytogenetic platform fit for purpose. It is a member of a genus with fewer than 20 species, which have different genome sizes, basic chromosome numbers and ploidy levels. The phylogeny and interspecific relationships of this group have not to date been resolved by sequence comparisons and karyotypical studies. The aims of this study are not only to reconstruct the evolution of Brachypodium karyotypes to resolve the phylogeny, but also to highlight the mechanisms that shape the evolution of grass genomes. This was achieved through the use of comparative chromosome painting (CCP which hybridises fluorescent, chromosome-specific probes derived from B. distachyon to homoeologous meiotic chromosomes of its close relatives. The study included five diploids (B. distachyon 2n = 10, B. sylvaticum 2n = 18, B. pinnatum 2n = 16; 2n = 18, B. arbuscula 2n = 18 and B. stacei 2n = 20 three allotetraploids (B. pinnatum 2n = 28, B. phoenicoides 2n = 28 and B. hybridum 2n = 30, and two species of unknown ploidy (B. retusum 2n = 38 and B. mexicanum 2n = 40. On the basis of the patterns of hybridisation and incorporating published data, we propose two alternative, but similar, models of karyotype evolution in the genus Brachypodium. According to the first model, the extant genome of B. distachyon derives from B. mexicanum or B. stacei by several rounds of descending dysploidy, and the other diploids evolve from B. distachyon via ascending dysploidy. The allotetraploids arise by interspecific hybridisation and chromosome doubling between B. distachyon and other diploids. The second model differs from the first insofar as it incorporates an intermediate 2n = 18 species between the B. mexicanum or B. stacei progenitors and the dysploidic B. distachyon.

  4. Genomic and Phylogenetic Characterization of Novel, Recombinant H5N2 Avian Influenza Virus Strains Isolated from Vaccinated Chickens with Clinical Symptoms in China

    Directory of Open Access Journals (Sweden)

    Huaiying Xu

    2015-02-01

    Full Text Available Infection of poultry with diverse lineages of H5N2 avian influenza viruses has been documented for over three decades in different parts of the world, with limited outbreaks caused by this highly pathogenic avian influenza virus. In the present study, three avian H5N2 influenza viruses, A/chicken/Shijiazhuang/1209/2013, A/chicken/Chiping/0321/2014, and A/chicken/Laiwu/0313/2014, were isolated from chickens with clinical symptoms of avian influenza. Complete genomic and phylogenetic analyses demonstrated that all three isolates are novel recombinant viruses with hemagglutinin (HA and matrix (M genes derived from H5N1, and remaining genes derived from H9N2-like viruses. The HA cleavage motif in all three strains (PQIEGRRRKR/GL is characteristic of a highly pathogenic avian influenza virus strain. These results indicate the occurrence of H5N2 recombination and highlight the importance of continued surveillance of the H5N2 subtype virus and reformulation of vaccine strains.

  5. Generation of influenza virus from avian cells infected by Salmonella carrying the viral genome.

    Directory of Open Access Journals (Sweden)

    Xiangmin Zhang

    Full Text Available Domestic poultry serve as intermediates for transmission of influenza A virus from the wild aquatic bird reservoir to humans, resulting in influenza outbreaks in poultry and potential epidemics/pandemics among human beings. To combat emerging avian influenza virus, an inexpensive, heat-stable, and orally administered influenza vaccine would be useful to vaccinate large commercial poultry flocks and even migratory birds. Our hypothesized vaccine is a recombinant attenuated bacterial strain able to mediate production of attenuated influenza virus in vivo to induce protective immunity against influenza. Here we report the feasibility and technical limitations toward such an ideal vaccine based on our exploratory study. Five 8-unit plasmids carrying a chloramphenicol resistance gene or free of an antibiotic resistance marker were constructed. Influenza virus was successfully generated in avian cells transfected by each of the plasmids. The Salmonella carrier was engineered to allow stable maintenance and conditional release of the 8-unit plasmid into the avian cells for recovery of influenza virus. Influenza A virus up to 10⁷ 50% tissue culture infective doses (TCID50/ml were recovered from 11 out of 26 co-cultures of chicken embryonic fibroblasts (CEF and Madin-Darby canine kidney (MDCK cells upon infection by the recombinant Salmonella carrying the 8-unit plasmid. Our data prove that a bacterial carrier can mediate generation of influenza virus by delivering its DNA cargoes into permissive host cells. Although we have made progress in developing this Salmonella influenza virus vaccine delivery system, further improvements are necessary to achieve efficient virus production, especially in vivo.

  6. Thermodynamic basis for the emergence of genomes during prebiotic evolution.

    Directory of Open Access Journals (Sweden)

    Hyung-June Woo

    2012-05-01

    Full Text Available The RNA world hypothesis views modern organisms as descendants of RNA molecules. The earliest RNA molecules must have been random sequences, from which the first genomes that coded for polymerase ribozymes emerged. The quasispecies theory by Eigen predicts the existence of an error threshold limiting genomic stability during such transitions, but does not address the spontaneity of changes. Following a recent theoretical approach, we applied the quasispecies theory combined with kinetic/thermodynamic descriptions of RNA replication to analyze the collective behavior of RNA replicators based on known experimental kinetics data. We find that, with increasing fidelity (relative rate of base-extension for Watson-Crick versus mismatched base pairs, replications without enzymes, with ribozymes, and with protein-based polymerases are above, near, and below a critical point, respectively. The prebiotic evolution therefore must have crossed this critical region. Over large regions of the phase diagram, fitness increases with increasing fidelity, biasing random drifts in sequence space toward 'crystallization.' This region encloses the experimental nonenzymatic fidelity value, favoring evolutions toward polymerase sequences with ever higher fidelity, despite error rates above the error catastrophe threshold. Our work shows that experimentally characterized kinetics and thermodynamics of RNA replication allow us to determine the physicochemical conditions required for the spontaneous crystallization of biological information. Our findings also suggest that among many potential oligomers capable of templated replication, RNAs may have evolved to form prebiotic genomes due to the value of their nonenzymatic fidelity.

  7. Echinoderm development and evolution in the post-genomic era.

    Science.gov (United States)

    Cary, Gregory A; Hinman, Veronica F

    2017-07-15

    The highly recognizable animals within the phylum Echinodermata encompass an enormous disparity of adult and larval body plans. The extensive knowledge of sea urchin development has culminated in the description of the exquisitely detailed gene regulatory network (GRN) that governs the specification of various embryonic territories. This information provides a unique opportunity for comparative studies in other echinoderm taxa to understand the evolution and developmental mechanisms underlying body plan change. This review focuses on recent work that has utilized new genomic resources and systems-level experiments to address questions of evolutionary developmental biology. In particular, we synthesize the results of several recent studies from various echinoderm classes that have explored the development and evolution of the larval skeleton, which is a major feature that distinguishes the two predominant larval subtypes within the Phylum. We specifically examine the ways in which GRNs can evolve, either through cis regulatory and/or protein-level changes in transcription factors. We also examine recent work comparing evolution across shorter time scales that occur within and between species of sea urchin, and highlight the kinds of questions that can be addressed by these comparisons. The advent of new genomic and transcriptomic datasets in additional species from all classes of echinoderm will continue to empower the use of these taxa for evolutionary developmental studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Genomes of the T4-related bacteriophages as windows on microbial genome evolution.

    Science.gov (United States)

    Petrov, Vasiliy M; Ratnayaka, Swarnamala; Nolan, James M; Miller, Eric S; Karam, Jim D

    2010-10-28

    The T4-related bacteriophages are a group of bacterial viruses that share morphological similarities and genetic homologies with the well-studied Escherichia coli phage T4, but that diverge from T4 and each other by a number of genetically determined characteristics including the bacterial hosts they infect, the sizes of their linear double-stranded (ds) DNA genomes and the predicted compositions of their proteomes. The genomes of about 40 of these phages have been sequenced and annotated over the last several years and are compared here in the context of the factors that have determined their diversity and the diversity of other microbial genomes in evolution. The genomes of the T4 relatives analyzed so far range in size between ~160,000 and ~250,000 base pairs (bp) and are mosaics of one another, consisting of clusters of homology between them that are interspersed with segments that vary considerably in genetic composition between the different phage lineages. Based on the known biological and biochemical properties of phage T4 and the proteins encoded by the T4 genome, the T4 relatives reviewed here are predicted to share a genetic core, or "Core Genome" that determines the structural design of their dsDNA chromosomes, their distinctive morphology and the process of their assembly into infectious agents (phage morphogenesis). The Core Genome appears to be the most ancient genetic component of this phage group and constitutes a mere 12-15% of the total protein encoding potential of the typical T4-related phage genome. The high degree of genetic heterogeneity that exists outside of this shared core suggests that horizontal DNA transfer involving many genetic sources has played a major role in diversification of the T4-related phages and their spread to a wide spectrum of bacterial species domains in evolution. We discuss some of the factors and pathways that might have shaped the evolution of these phages and point out several parallels between their diversity

  9. Genomes of the T4-related bacteriophages as windows on microbial genome evolution

    Directory of Open Access Journals (Sweden)

    Miller Eric S

    2010-10-01

    Full Text Available Abstract The T4-related bacteriophages are a group of bacterial viruses that share morphological similarities and genetic homologies with the well-studied Escherichia coli phage T4, but that diverge from T4 and each other by a number of genetically determined characteristics including the bacterial hosts they infect, the sizes of their linear double-stranded (ds DNA genomes and the predicted compositions of their proteomes. The genomes of about 40 of these phages have been sequenced and annotated over the last several years and are compared here in the context of the factors that have determined their diversity and the diversity of other microbial genomes in evolution. The genomes of the T4 relatives analyzed so far range in size between ~160,000 and ~250,000 base pairs (bp and are mosaics of one another, consisting of clusters of homology between them that are interspersed with segments that vary considerably in genetic composition between the different phage lineages. Based on the known biological and biochemical properties of phage T4 and the proteins encoded by the T4 genome, the T4 relatives reviewed here are predicted to share a genetic core, or "Core Genome" that determines the structural design of their dsDNA chromosomes, their distinctive morphology and the process of their assembly into infectious agents (phage morphogenesis. The Core Genome appears to be the most ancient genetic component of this phage group and constitutes a mere 12-15% of the total protein encoding potential of the typical T4-related phage genome. The high degree of genetic heterogeneity that exists outside of this shared core suggests that horizontal DNA transfer involving many genetic sources has played a major role in diversification of the T4-related phages and their spread to a wide spectrum of bacterial species domains in evolution. We discuss some of the factors and pathways that might have shaped the evolution of these phages and point out several parallels

  10. Clusters of adaptive evolution in the human genome.

    Science.gov (United States)

    Scheinfeldt, Laura B; Biswas, Shameek; Madeoy, Jennifer; Connelly, Caitlin F; Akey, Joshua M

    2011-01-01

    Considerable work has been devoted to identifying regions of the human genome that have been subjected to recent positive selection. Although detailed follow-up studies of putatively selected regions are critical for a deeper understanding of human evolutionary history, such studies have received comparably less attention. Recently, we have shown that ALMS1 has been the target of recent positive selection acting on standing variation in Eurasian populations. Here, we describe a careful follow-up analysis of genetic variation across the ALMS1 region, which unexpectedly revealed a cluster of substrates of positive selection. Specifically, through the analysis of SNP data from the HapMap and Human Genome Diversity Project-Centre d'Etude du Polymorphisme Humain samples as well sequence data from the region, we find compelling evidence for three independent and distinct signals of recent positive selection across this 3 Mb region surrounding ALMS1. Moreover, we analyzed the HapMap data to identify other putative clusters of independent selective events and conservatively discovered 19 additional clusters of adaptive evolution. This work has important implications for the interpretation of genome-scans for positive selection in humans and more broadly contributes to a better understanding of how recent positive selection has shaped genetic variation across the human genome.

  11. Genome of wild olive and the evolution of oil biosynthesis.

    Science.gov (United States)

    Unver, Turgay; Wu, Zhangyan; Sterck, Lieven; Turktas, Mine; Lohaus, Rolf; Li, Zhen; Yang, Ming; He, Lijuan; Deng, Tianquan; Escalante, Francisco Javier; Llorens, Carlos; Roig, Francisco J; Parmaksiz, Iskender; Dundar, Ekrem; Xie, Fuliang; Zhang, Baohong; Ipek, Arif; Uranbey, Serkan; Erayman, Mustafa; Ilhan, Emre; Badad, Oussama; Ghazal, Hassan; Lightfoot, David A; Kasarla, Pavan; Colantonio, Vincent; Tombuloglu, Huseyin; Hernandez, Pilar; Mete, Nurengin; Cetin, Oznur; Van Montagu, Marc; Yang, Huanming; Gao, Qiang; Dorado, Gabriel; Van de Peer, Yves

    2017-10-31

    Here we present the genome sequence and annotation of the wild olive tree ( Olea europaea var. sylvestris ), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudochromosomes obtained through a newly constructed genetic map. The oleaster genome contains signatures of two Oleaceae lineage-specific paleopolyploidy events, dated at ∼28 and ∼59 Mya. These events contributed to the expansion and neofunctionalization of genes and gene families that play important roles in oil biosynthesis. The functional divergence of oil biosynthesis pathway genes, such as FAD2 , SACPD, EAR , and ACPTE , following duplication, has been responsible for the differential accumulation of oleic and linoleic acids produced in olive compared with sesame, a closely related oil crop. Duplicated oleaster FAD2 genes are regulated by an siRNA derived from a transposable element-rich region, leading to suppressed levels of FAD2 gene expression. Additionally, neofunctionalization of members of the SACPD gene family has led to increased expression of SACPD2 , 3 , 5 , and 7 , consequently resulting in an increased desaturation of steric acid. Taken together, decreased FAD2 expression and increased SACPD expression likely explain the accumulation of exceptionally high levels of oleic acid in olive. The oleaster genome thus provides important insights into the evolution of oil biosynthesis and will be a valuable resource for oil crop genomics.

  12. The genomic signatures of Shigella evolution, adaptation and geographical spread.

    Science.gov (United States)

    The, Hao Chung; Thanh, Duy Pham; Holt, Kathryn E; Thomson, Nicholas R; Baker, Stephen

    2016-04-01

    Shigella spp. are some of the key pathogens responsible for the global burden of diarrhoeal disease. These facultative intracellular bacteria belong to the family Enterobacteriaceae, together with other intestinal pathogens, such as Escherichia coli and Salmonella spp. The genus Shigella comprises four different species, each consisting of several serogroups, all of which show phenotypic similarity, including invasive pathogenicity. DNA sequencing suggests that this similarity results from the convergent evolution of different Shigella spp. founders. Here, we review the evolutionary relationships between Shigella spp. and E . coli, and we highlight how the genomic plasticity of these bacteria and their acquisition of a distinctive virulence plasmid have enabled the development of such highly specialized pathogens. Furthermore, we discuss the insights that genotyping and whole-genome sequencing have provided into the phylogenetics and intercontinental spread of Shigella spp.

  13. Wild tobacco genomes reveal the evolution of nicotine biosynthesis.

    Science.gov (United States)

    Xu, Shuqing; Brockmöller, Thomas; Navarro-Quezada, Aura; Kuhl, Heiner; Gase, Klaus; Ling, Zhihao; Zhou, Wenwu; Kreitzer, Christoph; Stanke, Mario; Tang, Haibao; Lyons, Eric; Pandey, Priyanka; Pandey, Shree P; Timmermann, Bernd; Gaquerel, Emmanuel; Baldwin, Ian T

    2017-06-06

    Nicotine, the signature alkaloid of Nicotiana species responsible for the addictive properties of human tobacco smoking, functions as a defensive neurotoxin against attacking herbivores. However, the evolution of the genetic features that contributed to the assembly of the nicotine biosynthetic pathway remains unknown. We sequenced and assembled genomes of two wild tobaccos, Nicotiana attenuata (2.5 Gb) and Nicotiana obtusifolia (1.5 Gb), two ecological models for investigating adaptive traits in nature. We show that after the Solanaceae whole-genome triplication event, a repertoire of rapidly expanding transposable elements (TEs) bloated these Nicotiana genomes, promoted expression divergences among duplicated genes, and contributed to the evolution of herbivory-induced signaling and defenses, including nicotine biosynthesis. The biosynthetic machinery that allows for nicotine synthesis in the roots evolved from the stepwise duplications of two ancient primary metabolic pathways: the polyamine and nicotinamide adenine dinucleotide (NAD) pathways. In contrast to the duplication of the polyamine pathway that is shared among several solanaceous genera producing polyamine-derived tropane alkaloids, we found that lineage-specific duplications within the NAD pathway and the evolution of root-specific expression of the duplicated Solanaceae-specific ethylene response factor that activates the expression of all nicotine biosynthetic genes resulted in the innovative and efficient production of nicotine in the genus Nicotiana Transcription factor binding motifs derived from TEs may have contributed to the coexpression of nicotine biosynthetic pathway genes and coordinated the metabolic flux. Together, these results provide evidence that TEs and gene duplications facilitated the emergence of a key metabolic innovation relevant to plant fitness.

  14. Evolution of a transposon in Daphnia hybrid genomes

    Directory of Open Access Journals (Sweden)

    Vergilino Roland

    2013-02-01

    Full Text Available Abstract Background Transposable elements play a major role in genome evolution. Their capacity to move and/or multiply in the genome of their host may have profound impacts on phenotypes, and may have dramatic consequences on genome structure. Hybrid and polyploid clones have arisen multiple times in the Daphnia pulex complex and are thought to reproduce by obligate parthenogenesis. Our study examines the evolution of a DNA transposable element named Pokey in the D. pulex complex. Results Portions of Pokey elements inserted in the 28S rRNA genes from various Daphnia hybrids (diploids and polyploids were sequenced and compared to sequences from a previous study to understand the evolutionary history of the elements. Pokey sequences show a complex phylogenetic pattern. We found evidence of recombination events in numerous Pokey alleles from diploid and polyploid hybrids and also from non-hybrid diploids. The recombination rate in Pokey elements is comparable to recombination rates previously estimated for 28S rRNA genes in the congener, Daphnia obtusa. Some recombinant Pokey alleles were encountered in Daphnia isolates from multiple locations and habitats. Conclusions Phylogenetic and recombination analyses showed that recombination is a major force that shapes Pokey evolution. Based on Pokey phylogenies, reticulation has played and still plays an important role in shaping the diversity of the D. pulex complex. Horizontal transfer of Pokey seems to be rare and hybrids often possess Pokey elements derived from recombination among alleles encountered in the putative parental species. The insertion of Pokey in hotspots of recombination may have important impacts on the diversity and fitness of this transposable element.

  15. Avian skull morphological evolution: exploring exo- and endocranial covariation with two-block partial least squares.

    Science.gov (United States)

    Marugán-Lobón, Jesús; Buscalioni, Angela D

    2006-01-01

    While rostral variation has been the subject of detailed avian evolutionary research, avian skull organization, characterized by a flexed or extended appearance of the skull, has eventually become neglected by mainstream evolutionary inquiries. This study aims to recapture its significance, evaluating possible functional, phylogenetic and developmental factors that may be underlying it. In order to estimate which, and how, elements of the skull intervene in patterning the skull we tested the statistical interplay between a series of old mid-sagittal angular measurements (mostly endocranial) in combination with newly obtained skull metrics based on landmark superimposition methods (exclusively exocranial shape), by means of the statistic-morphometric technique of two-block partial least squares. As classic literature anticipated, we found that the external appearance of the skull corresponds to the way in which the plane of the caudal cranial base is oriented, in connection with the orientations of the plane of the foramen magnum and of the lateral semicircular canal. The pattern of covariation found between metrics conveys flexed or extended appearances of the skull implicitly within a single and statistically significant dimension of covariation. Marked shape changes with which angles covary concentrate at the supraoccipital bone, the cranial base and the antorbital window, whereas the plane measuring the orientation of the anterior portion of the rostrum does not intervene. Statistical covariance between elements of the caudal cranial base and the occiput inplies that morphological integration underlies avian skull macroevolutionary organization as a by-product of the regional concordance of such correlated elements within the early embryonic chordal domain of mesodermic origin.

  16. Complete Genome Sequence of an Avian Paramyxovirus Type 4 Strain Isolated from Domestic Duck at a Live Bird Market in South Korea.

    Science.gov (United States)

    Tseren-Ochir, Erdene-Ochir; Yuk, Seong-Su; Kwon, Jung-Hoon; Noh, Jin-Yong; Hong, Woo-Tack; Jeong, Jei-Hyun; Jeong, Sol; Kim, Yu-Jin; Kim, Kyu-Jik; Lee, Ji-Ho; Kim, Jun-Beom; Lee, Joong-Bok; Park, Seung-Yong; Choi, In-Soo; Lee, Sang-Won; Song, Chang-Seon

    2017-05-18

    We report here the first full-genome sequence of an avian paramyxovirus type 4 (APMV-4) strain isolated from a domestic mallard duck at a live bird market in South Korea. Phylogenetic analyses provide genetic information on a new genetic clade, APMV-4, isolated from a domestic duck and evidence of APMV-4 exchange between poultry and wild birds. Copyright © 2017 Tseren-Ochir et al.

  17. Waves of genomic hitchhikers shed light on the evolution of gamebirds (Aves: Galliformes

    Directory of Open Access Journals (Sweden)

    Brosius Jürgen

    2007-10-01

    Full Text Available Abstract Background The phylogenetic tree of Galliformes (gamebirds, including megapodes, currassows, guinea fowl, New and Old World quails, chicken, pheasants, grouse, and turkeys has been considerably remodeled over the last decades as new data and analytical methods became available. Analyzing presence/absence patterns of retroposed elements avoids the problems of homoplastic characters inherent in other methodologies. In gamebirds, chicken repeats 1 (CR1 are the most prevalent retroposed elements, but little is known about the activity of their various subtypes over time. Ascertaining the fixation patterns of CR1 elements would help unravel the phylogeny of gamebirds and other poorly resolved avian clades. Results We analyzed 1,978 nested CR1 elements and developed a multidimensional approach taking advantage of their transposition in transposition character (TinT to characterize the fixation patterns of all 22 known chicken CR1 subtypes. The presence/absence patterns of those elements that were active at different periods of gamebird evolution provided evidence for a clade (Cracidae + (Numididae + (Odontophoridae + Phasianidae not including Megapodiidae; and for Rollulus as the sister taxon of the other analyzed Phasianidae. Genomic trace sequences of the turkey genome further demonstrated that the endangered African Congo Peafowl (Afropavo congensis is the sister taxon of the Asian Peafowl (Pavo, rejecting other predominantly morphology-based groupings, and that phasianids are monophyletic, including the sister taxa Tetraoninae and Meleagridinae. Conclusion The TinT information concerning relative fixation times of CR1 subtypes enabled us to efficiently investigate gamebird phylogeny and to reconstruct an unambiguous tree topology. This method should provide a useful tool for investigations in other taxonomic groups as well.

  18. The evolution of isochore patterns in vertebrate genomes

    Directory of Open Access Journals (Sweden)

    Cammarano Rosalia

    2009-04-01

    Full Text Available Abstract Background Previous work from our laboratory showed that (i vertebrate genomes are mosaics of isochores, typically megabase-size DNA segments that are fairly homogeneous in base composition; (ii isochores belong to a small number of families (five in the human genome characterized by different GC levels; (iii isochore family patterns are different in fishes/amphibians and mammals/birds, the latter showing GC-rich isochore families that are absent or very scarce in the former; (iv there are two modes of genome evolution, a conservative one in which isochore patterns basically do not change (e.g., among mammalian orders, and a transitional one, in which they do change (e.g., between amphibians and mammals; and (v isochores are tightly linked to a number of basic biological properties, such as gene density, gene expression, replication timing and recombination. Results The present availability of a number of fully sequenced genomes ranging from fishes to mammals allowed us to carry out investigations that (i more precisely quantified our previous conclusions; (ii showed that the different isochore families of vertebrate genomes are largely conserved in GC levels and dinucleotide frequencies, as well as in isochore size; and (iii isochore family patterns can be either conserved or change within both warm- and cold-blooded vertebrates. Conclusion On the basis of the results presented, we propose that (i the large conservation of GC levels and dinucleotide frequencies may reflect the conservation of chromatin structures; (ii the conservation of isochore size may be linked to the role played by isochores in chromosome structure and replication; (iii the formation, the maintainance and the changes of isochore patterns are due to natural selection.

  19. Comparative genome analysis of an avirulent and two virulent strains of avian Pasteurella multocida reveals candidate genes involved in fitness and pathogenicity

    Science.gov (United States)

    2013-01-01

    Background Pasteurella multocida is the etiologic agent of fowl cholera, a highly contagious and severe disease of poultry causing significant mortality and morbidity throughout the world. All types of poultry are susceptible to fowl cholera. Turkeys are most susceptible to the peracute/acute forms of the disease while chickens are most susceptible to the acute and chronic forms of the disease. The whole genome of the Pm70 strain of P. multocida was sequenced and annotated in 2001. The Pm70 strain is not virulent to chickens and turkeys. In contrast, strains X73 and P1059 are highly virulent to turkeys, chickens, and other poultry species. In this study, we sequenced the genomes of P. multocida strains X73 and P1059 and undertook a detailed comparative genome analysis with the avirulent Pm70 strain. The goal of this study was to identify candidate genes in the virulent strains that may be involved in pathogenicity of fowl cholera disease. Results Comparison of virulent versus avirulent avian P. multocida genomes revealed 336 unique genes among the P1059 and/or X73 genomes compared to strain Pm70. Genes of interest within this subset included those encoding an L-fucose transport and utilization system, several novel sugar transport systems, and several novel hemagglutinins including one designated PfhB4. Additionally, substantial amino acid variation was observed in many core outer membrane proteins and single nucleotide polymorphism analysis confirmed a higher dN/dS ratio within proteins localized to the outer membrane. Conclusions Comparative analyses of highly virulent versus avirulent avian P. multocida identified a number of genomic differences that may shed light on the ability of highly virulent strains to cause disease in the avian host, including those that could be associated with enhanced virulence or fitness. PMID:23672515

  20. Complete genome sequence of avian paramyxovirus (APMV serotype 5 completes the analysis of nine APMV serotypes and reveals the longest APMV genome.

    Directory of Open Access Journals (Sweden)

    Arthur S Samuel

    2010-02-01

    Full Text Available Avian paramyxoviruses (APMV consist of nine known serotypes. The genomes of representatives of all APMV serotypes except APMV type 5 have recently been fully sequenced. Here, we report the complete genome sequence of the APMV-5 prototype strain budgerigar/Kunitachi/74.APMV-5 Kunitachi virus is unusual in that it lacks a virion hemagglutinin and does not grow in the allantoic cavity of embryonated chicken eggs. However, the virus grew in the amniotic cavity of embryonated chicken eggs and in twelve different established cell lines and two primary cell cultures. The genome is 17,262 nucleotides (nt long, which is the longest among members of genus Avulavirus, and encodes six non-overlapping genes in the order of 3'N-P/V/W-M-F-HN-L-5' with intergenic regions of 4-57 nt. The genome length follows the 'rule of six' and contains a 55-nt leader sequence at the 3'end and a 552 nt trailer sequence at the 5' end. The phosphoprotein (P gene contains a conserved RNA editing site and is predicted to encode P, V, and W proteins. The cleavage site of the F protein (G-K-R-K-K-R downward arrowF conforms to the cleavage site motif of the ubiquitous cellular protease furin. Consistent with this, exogenous protease was not required for virus replication in vitro. However, the intracerebral pathogenicity index of APMV-5 strain Kunitachi in one-day-old chicks was found to be zero, indicating that the virus is avirulent for chickens despite the presence of a polybasic F cleavage site.Phylogenetic analysis of the sequences of the APVM-5 genome and proteins versus those of the other APMV serotypes showed that APMV-5 is more closely related to APMV-6 than to the other APMVs. Furthermore, these comparisons provided evidence of extensive genome-wide divergence that supports the classification of the APMVs into nine separate serotypes. The structure of the F cleavage site does not appear to be a reliable indicator of virulence among APMV serotypes 2-9. The availability of

  1. The first whole genome and transcriptome of the cinereous vulture reveals adaptation in the gastric and immune defense systems and possible convergent evolution between the Old and New World vultures.

    Science.gov (United States)

    Chung, Oksung; Jin, Seondeok; Cho, Yun Sung; Lim, Jeongheui; Kim, Hyunho; Jho, Sungwoong; Kim, Hak-Min; Jun, JeHoon; Lee, HyeJin; Chon, Alvin; Ko, Junsu; Edwards, Jeremy; Weber, Jessica A; Han, Kyudong; O'Brien, Stephen J; Manica, Andrea; Bhak, Jong; Paek, Woon Kee

    2015-10-21

    The cinereous vulture, Aegypius monachus, is the largest bird of prey and plays a key role in the ecosystem by removing carcasses, thus preventing the spread of diseases. Its feeding habits force it to cope with constant exposure to pathogens, making this species an interesting target for discovering functionally selected genetic variants. Furthermore, the presence of two independently evolved vulture groups, Old World and New World vultures, provides a natural experiment in which to investigate convergent evolution due to obligate scavenging. We sequenced the genome of a cinereous vulture, and mapped it to the bald eagle reference genome, a close relative with a divergence time of 18 million years. By comparing the cinereous vulture to other avian genomes, we find positively selected genetic variations in this species associated with respiration, likely linked to their ability of immune defense responses and gastric acid secretion, consistent with their ability to digest carcasses. Comparisons between the Old World and New World vulture groups suggest convergent gene evolution. We assemble the cinereous vulture blood transcriptome from a second individual, and annotate genes. Finally, we infer the demographic history of the cinereous vulture which shows marked fluctuations in effective population size during the late Pleistocene. We present the first genome and transcriptome analyses of the cinereous vulture compared to other avian genomes and transcriptomes, revealing genetic signatures of dietary and environmental adaptations accompanied by possible convergent evolution between the Old World and New World vultures.

  2. Genome-wide signals of positive selection in human evolution.

    Science.gov (United States)

    Enard, David; Messer, Philipp W; Petrov, Dmitri A

    2014-06-01

    The role of positive selection in human evolution remains controversial. On the one hand, scans for positive selection have identified hundreds of candidate loci, and the genome-wide patterns of polymorphism show signatures consistent with frequent positive selection. On the other hand, recent studies have argued that many of the candidate loci are false positives and that most genome-wide signatures of adaptation are in fact due to reduction of neutral diversity by linked deleterious mutations, known as background selection. Here we analyze human polymorphism data from the 1000 Genomes Project and detect signatures of positive selection once we correct for the effects of background selection. We show that levels of neutral polymorphism are lower near amino acid substitutions, with the strongest reduction observed specifically near functionally consequential amino acid substitutions. Furthermore, amino acid substitutions are associated with signatures of recent adaptation that should not be generated by background selection, such as unusually long and frequent haplotypes and specific distortions in the site frequency spectrum. We use forward simulations to argue that the observed signatures require a high rate of strongly adaptive substitutions near amino acid changes. We further demonstrate that the observed signatures of positive selection correlate better with the presence of regulatory sequences, as predicted by the ENCODE Project Consortium, than with the positions of amino acid substitutions. Our results suggest that adaptation was frequent in human evolution and provide support for the hypothesis of King and Wilson that adaptive divergence is primarily driven by regulatory changes. © 2014 Enard et al.; Published by Cold Spring Harbor Laboratory Press.

  3. Rapid sequencing of the bamboo mitochondrial genome using Illumina technology and parallel episodic evolution of organelle genomes in grasses.

    Directory of Open Access Journals (Sweden)

    Peng-Fei Ma

    Full Text Available BACKGROUND: Compared to their counterparts in animals, the mitochondrial (mt genomes of angiosperms exhibit a number of unique features. However, unravelling their evolution is hindered by the few completed genomes, of which are essentially Sanger sequenced. While next-generation sequencing technologies have revolutionized chloroplast genome sequencing, they are just beginning to be applied to angiosperm mt genomes. Chloroplast genomes of grasses (Poaceae have undergone episodic evolution and the evolutionary rate was suggested to be correlated between chloroplast and mt genomes in Poaceae. It is interesting to investigate whether correlated rate change also occurred in grass mt genomes as expected under lineage effects. A time-calibrated phylogenetic tree is needed to examine rate change. METHODOLOGY/PRINCIPAL FINDINGS: We determined a largely completed mt genome from a bamboo, Ferrocalamus rimosivaginus (Poaceae, through Illumina sequencing of total DNA. With combination of de novo and reference-guided assembly, 39.5-fold coverage Illumina reads were finally assembled into scaffolds totalling 432,839 bp. The assembled genome contains nearly the same genes as the completed mt genomes in Poaceae. For examining evolutionary rate in grass mt genomes, we reconstructed a phylogenetic tree including 22 taxa based on 31 mt genes. The topology of the well-resolved tree was almost identical to that inferred from chloroplast genome with only minor difference. The inconsistency possibly derived from long branch attraction in mtDNA tree. By calculating absolute substitution rates, we found significant rate change (∼4-fold in mt genome before and after the diversification of Poaceae both in synonymous and nonsynonymous terms. Furthermore, the rate change was correlated with that of chloroplast genomes in grasses. CONCLUSIONS/SIGNIFICANCE: Our result demonstrates that it is a rapid and efficient approach to obtain angiosperm mt genome sequences using

  4. Molecular cytogenetic definition of the chicken genome: the first complete Avian Karyotype

    NARCIS (Netherlands)

    Masabanda, J.S.; Burt, D.W.; O'Brien, P.C.M.; Vignal, A.; Fillon, V.; Walsh, P.S.; Cox, H.; Tempest, H.G.; Smit, J.; Habermann, F.; Schmidt, M.; Matsuda, Y.; Ferguson-Smith, M.A.; Crooijmans, R.P.M.A.; Groenen, M.A.M.; Griffin, D.K.

    2004-01-01

    Chicken genome mapping is important for a range of scientific disciplines. The ability to distinguish chromosomes of the chicken and other birds is thus a priority. Here we describe the molecular cytogenetic characterization of each chicken chromosome using chromosome painting and mapping of

  5. Full-length genome sequence analysis of four subgroup J avian leukosis virus strains isolated from chickens with clinical hemangioma.

    Science.gov (United States)

    Lin, Lulu; Wang, Peikun; Yang, Yongli; Li, Haijuan; Huang, Teng; Wei, Ping

    2017-12-01

    Since 2014, cases of hemangioma associated with avian leukosis virus subgroup J (ALV-J) have been emerging in commercial chickens in Guangxi. In this study, four strains of the subgroup J avian leukosis virus (ALV-J), named GX14HG01, GX14HG04, GX14LT07, and GX14ZS14, were isolated from chickens with clinical hemangioma in 2014 by DF-1 cell culture and then identified with ELISA detection of ALV group specific antigen p27, the detection of subtype specific PCR and indirect immunofluorescence assay (IFA) with ALV-J specific monoclonal antibody. The complete genomes of the isolates were sequenced and it was found that the gag and pol were relatively conservative, while env was variable especially the gp85 gene. Homology analysis of the env gene sequences showed that the env gene of all the four isolates had higher similarities with the hemangioma (HE)-type reference strains than that of the myeloid leukosis (ML)-type strains, and moreover, the HE-type strains' specific deletion of 205-bp sequence covering the rTM and DR1 in 3'UTR fragment was also found in the four isolates. Further analysis on the sequences of subunits of env gene revealed an interesting finding: the gp85 of isolates GX14ZS14 and GX14HG04 had a higher similarity with HPRS-103 and much lower similarity with the HE-type reference strains resulting in GX14ZS14, GX14HG04, and HPRS-103 being clustered in the same branch, while gp37 had higher similarities with the HE-type reference strains when compared to that of HPRS-103, resulted in GX14ZS14, GX14HG04, and HE-type reference strains being clustered in the same branch. The results suggested that isolates GX14ZS14 and GX14HG04 may be the recombinant strains of the foreign strain HPRS-103 with the local epidemic HE-type strains of ALV-J.

  6. Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage.

    Science.gov (United States)

    Benson, Roger B J; Campione, Nicolás E; Carrano, Matthew T; Mannion, Philip D; Sullivan, Corwin; Upchurch, Paul; Evans, David C

    2014-05-01

    Large-scale adaptive radiations might explain the runaway success of a minority of extant vertebrate clades. This hypothesis predicts, among other things, rapid rates of morphological evolution during the early history of major groups, as lineages invade disparate ecological niches. However, few studies of adaptive radiation have included deep time data, so the links between extant diversity and major extinct radiations are unclear. The intensively studied Mesozoic dinosaur record provides a model system for such investigation, representing an ecologically diverse group that dominated terrestrial ecosystems for 170 million years. Furthermore, with 10,000 species, extant dinosaurs (birds) are the most speciose living tetrapod clade. We assembled composite trees of 614-622 Mesozoic dinosaurs/birds, and a comprehensive body mass dataset using the scaling relationship of limb bone robustness. Maximum-likelihood modelling and the node height test reveal rapid evolutionary rates and a predominance of rapid shifts among size classes in early (Triassic) dinosaurs. This indicates an early burst niche-filling pattern and contrasts with previous studies that favoured gradualistic rates. Subsequently, rates declined in most lineages, which rarely exploited new ecological niches. However, feathered maniraptoran dinosaurs (including Mesozoic birds) sustained rapid evolution from at least the Middle Jurassic, suggesting that these taxa evaded the effects of niche saturation. This indicates that a long evolutionary history of continuing ecological innovation paved the way for a second great radiation of dinosaurs, in birds. We therefore demonstrate links between the predominantly extinct deep time adaptive radiation of non-avian dinosaurs and the phenomenal diversification of birds, via continuing rapid rates of evolution along the phylogenetic stem lineage. This raises the possibility that the uneven distribution of biodiversity results not just from large-scale extrapolation of

  7. Rates of Dinosaur Body Mass Evolution Indicate 170 Million Years of Sustained Ecological Innovation on the Avian Stem Lineage

    Science.gov (United States)

    Benson, Roger B. J.; Campione, Nicolás E.; Carrano, Matthew T.; Mannion, Philip D.; Sullivan, Corwin; Upchurch, Paul; Evans, David C.

    2014-01-01

    Large-scale adaptive radiations might explain the runaway success of a minority of extant vertebrate clades. This hypothesis predicts, among other things, rapid rates of morphological evolution during the early history of major groups, as lineages invade disparate ecological niches. However, few studies of adaptive radiation have included deep time data, so the links between extant diversity and major extinct radiations are unclear. The intensively studied Mesozoic dinosaur record provides a model system for such investigation, representing an ecologically diverse group that dominated terrestrial ecosystems for 170 million years. Furthermore, with 10,000 species, extant dinosaurs (birds) are the most speciose living tetrapod clade. We assembled composite trees of 614–622 Mesozoic dinosaurs/birds, and a comprehensive body mass dataset using the scaling relationship of limb bone robustness. Maximum-likelihood modelling and the node height test reveal rapid evolutionary rates and a predominance of rapid shifts among size classes in early (Triassic) dinosaurs. This indicates an early burst niche-filling pattern and contrasts with previous studies that favoured gradualistic rates. Subsequently, rates declined in most lineages, which rarely exploited new ecological niches. However, feathered maniraptoran dinosaurs (including Mesozoic birds) sustained rapid evolution from at least the Middle Jurassic, suggesting that these taxa evaded the effects of niche saturation. This indicates that a long evolutionary history of continuing ecological innovation paved the way for a second great radiation of dinosaurs, in birds. We therefore demonstrate links between the predominantly extinct deep time adaptive radiation of non-avian dinosaurs and the phenomenal diversification of birds, via continuing rapid rates of evolution along the phylogenetic stem lineage. This raises the possibility that the uneven distribution of biodiversity results not just from large-scale extrapolation

  8. Urban landscape genomics identifies fine-scale gene flow patterns in an avian invasive.

    Science.gov (United States)

    Low, G W; Chattopadhyay, B; Garg, K M; Irestedt, M; Ericson, Pgp; Yap, G; Tang, Q; Wu, S; Rheindt, F E

    2018-01-01

    Invasive species exert a serious impact on native fauna and flora and have been the target of many eradication and management efforts worldwide. However, a lack of data on population structure and history, exacerbated by the recency of many species introductions, limits the efficiency with which such species can be kept at bay. In this study we generated a novel genome of high assembly quality and genotyped 4735 genome-wide single nucleotide polymorphic (SNP) markers from 78 individuals of an invasive population of the Javan Myna Acridotheres javanicus across the island of Singapore. We inferred limited population subdivision at a micro-geographic level, a genetic patch size (~13-14 km) indicative of a pronounced dispersal ability, and barely an increase in effective population size since introduction despite an increase of four to five orders of magnitude in actual population size, suggesting that low population-genetic diversity following a bottleneck has not impeded establishment success. Landscape genomic analyses identified urban features, such as low-rise neighborhoods, that constitute pronounced barriers to gene flow. Based on our data, we consider an approach targeting the complete eradication of Javan Mynas across Singapore to be unfeasible. Instead, a mixed approach of localized mitigation measures taking into account urban geographic features and planning policy may be the most promising avenue to reducing the adverse impacts of this urban pest. Our study demonstrates how genomic methods can directly inform the management and control of invasive species, even in geographically limited datasets with high gene flow rates.

  9. Full-length genome sequencing analysis of avian infectious bronchitis virus isolate associated with nephropathogenic infection.

    Science.gov (United States)

    Leghari, R A; Fan, B; Wang, H; Bai, J; Zhang, L; Abro, S H; Jiang, P

    2016-12-01

    Infectious bronchitis virus (IBV) produces infectious bronchitis (IB) disease in poultry worldwide. In spite of proper vaccinations against the IBV, new IBV strains are continually emerging worldwide. In this study, a new highly virulent nephropathogenic IBV strain named CK/CH/XDC-2/2013 was identified from a vaccinated flock with clinical signs of IB in the Jiangsu province of China. The full-length genome sequence of the isolate was 27,714 nucleotides long, and the genome was organized similarly to classical IBV strains. Minimum divergence, phylogenetic analysis, and distance matrix of the genome showed that the CK/CH/XDC-2/2013 isolate had the highest similarity to the IBV BJ strain. The spike glycoprotein (S) gene had the greatest similarity to the nephropathogenic BJ strain and showed an 8 amino acid insertion (YSNGNSDV) at 73 to 80 sites and 3 amino acid deletion at sites 126 to 128 compared to the IBV vaccine strains. A recombination analysis of the S gene showed that the new isolate evolved from the IBV BJ strain and the KM91 vaccine strain. An animal challenge experiment showed a mortality of 60 to 80% in early-age chickens by different inoculation routes. Pathological examinations of the kidneys revealed inflammation, distention with uric acid deposits, and tubular degeneration. It indicated that the CK/CH/XDC-2/2013 isolate has robust kidney tissue tropism, and new nephropathogenic IBV strains are continuously evolving in China. © 2016 Poultry Science Association Inc.

  10. Retrocopy contributions to the evolution of the human genome

    Directory of Open Access Journals (Sweden)

    Haussler David

    2008-10-01

    Full Text Available Abstract Background Evolution via point mutations is a relatively slow process and is unlikely to completely explain the differences between primates and other mammals. By contrast, 45% of the human genome is composed of retroposed elements, many of which were inserted in the primate lineage. A subset of retroposed mRNAs (retrocopies shows strong evidence of expression in primates, often yielding functional retrogenes. Results To identify and analyze the relatively recently evolved retrogenes, we carried out BLASTZ alignments of all human mRNAs against the human genome and scored a set of features indicative of retroposition. Of over 12,000 putative retrocopy-derived genes that arose mainly in the primate lineage, 726 with strong evidence of transcript expression were examined in detail. These mRNA retroposition events fall into three categories: I 34 retrocopies and antisense retrocopies that added potential protein coding space and UTRs to existing genes; II 682 complete retrocopy duplications inserted into new loci; and III an unexpected set of 13 retrocopies that contributed out-of-frame, or antisense sequences in combination with other types of transposed elements (SINEs, LINEs, LTRs, even unannotated sequence to form potentially novel genes with no homologs outside primates. In addition to their presence in human, several of the gene candidates also had potentially viable ORFs in chimpanzee, orangutan, and rhesus macaque, underscoring their potential of function. Conclusion mRNA-derived retrocopies provide raw material for the evolution of genes in a wide variety of ways, duplicating and amending the protein coding region of existing genes as well as generating the potential for new protein coding space, or non-protein coding RNAs, by unexpected contributions out of frame, in reverse orientation, or from previously non-protein coding sequence.

  11. Bacmeta: simulator for genomic evolution in bacterial metapopulations.

    Science.gov (United States)

    Sipola, Aleksi; Marttinen, Pekka; Corander, Jukka

    2018-02-20

    The advent of genomic data from densely sampled bacterial populations has created a need for flexible simulators by which models and hypotheses can be efficiently investigated in the light of empirical observations. Bacmeta provides fast stochastic simulation of neutral evolution within a large collection of interconnected bacterial populations with completely adjustable connectivity network. Stochastic events of mutations, recombinations, insertions/deletions, migrations and microepidemics can be simulated in discrete non-overlapping generations with a Wright-Fisher model that operates on explicit sequence data of any desired genome length. Each model component, including locus, bacterial strain, population, and ultimately the whole metapopulation, is efficiently simulated using C ++ objects, and detailed metadata from each level can be acquired. The software can be executed in a cluster environment using simple textual input files, enabling, e.g., large-scale simulations and likelihood-free inference. Bacmeta is implemented with C ++ for Linux, Mac and Windows. It is available at https://bitbucket.org/aleksisipola/bacmeta under the BSD 3-clause license. aleksi.sipola@helsinki.fi, jukka.corander@medisin.uio.no. Supplementary data are available at Bioinformatics online.

  12. Genome-Wide Analysis of Human Metapneumovirus Evolution.

    Directory of Open Access Journals (Sweden)

    Jin Il Kim

    Full Text Available Human metapneumovirus (HMPV has been described as an important etiologic agent of upper and lower respiratory tract infections, especially in young children and the elderly. Most of school-aged children might be introduced to HMPVs, and exacerbation with other viral or bacterial super-infection is common. However, our understanding of the molecular evolution of HMPVs remains limited. To address the comprehensive evolutionary dynamics of HMPVs, we report a genome-wide analysis of the eight genes (N, P, M, F, M2, SH, G, and L using 103 complete genome sequences. Phylogenetic reconstruction revealed that the eight genes from one HMPV strain grouped into the same genetic group among the five distinct lineages (A1, A2a, A2b, B1, and B2. A few exceptions of phylogenetic incongruence might suggest past recombination events, and we detected possible recombination breakpoints in the F, SH, and G coding regions. The five genetic lineages of HMPVs shared quite remote common ancestors ranging more than 220 to 470 years of age with the most recent origins for the A2b sublineage. Purifying selection was common, but most protein genes except the F and M2-2 coding regions also appeared to experience episodic diversifying selection. Taken together, these suggest that the five lineages of HMPVs maintain their individual evolutionary dynamics and that recombination and selection forces might work on shaping the genetic diversity of HMPVs.

  13. Transformation asymmetry and the evolution of the bacterial accessory genome.

    Science.gov (United States)

    Apagyi, Katinka J; Fraser, Christophe; Croucher, Nicholas J

    2017-12-01

    Bacterial transformation can insert or delete genomic islands (GIs), depending on the donor and recipient genotypes, if an homologous recombination spans the GI's integration site and includes sufficiently long flanking homologous arms. Combining mathematical models of recombination with experiments using pneumococci found GI insertion rates declined geometrically with the GI's size. The decrease in acquisition frequency with length (1.08x10-3 bp-1) was higher than a previous estimate of the analogous rate at which core genome recombinations terminated. Although most efficient for shorter GIs, transformation-mediated deletion frequencies did not vary consistently with GI length, with removal of 10 kb GIs approximately 50% as efficient as acquisition of base substitutions. Fragments of two kilobases, typical of transformation event sizes, could drive all these deletions independent of island length. The strong asymmetry of transformation, and its capacity to efficiently remove GIs, suggests non-mobile accessory loci will decline in frequency without preservation by selection. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  14. Molecular phylogeny and plumage signal evolution in a trans Andean and circum Amazonian avian species complex.

    Science.gov (United States)

    Lovette, Irby J

    2004-08-01

    Species with fragmented distributions are particularly useful models for investigating processes underlying biological diversification in the Neotropics. The Phaeothlypis wood-warbler complex (Aves: Parulidae) is comprised of six disjunct or parapatric populations. The geographic distribution of these six populations mirrors the classic map of Neotropical areas of endemism that were originally proposed as putative Pleistocene forest refugia, but the magnitude of mitochondrial DNA divergence between these populations suggests that they are each substantially older, with origins in the late Pliocene. Phylogenetic reconstructions based on long mtDNA coding sequences show that the Guiana Shield and Atlantic Forest populations are sister lineages, and group this combined lineage and the remaining four population-specific lineages in a five-way hard polytomy. MtDNA-based phylogenetic reconstructions provide no evidence that the three populations with conspicuous yellow rump and tail feathers currently grouped as the Buff-rumped Warbler (P. fulvicauda) form a monophyletic group. Furthermore, there is a broad discordance between mtDNA and plumage along a transect just east of the Andes, where the contact zone between highly divergent mtDNA clades is more than 1000 km north of the phenotypic hybrid zone between the bright and dark plumage forms. This discordance between mtDNA genotype and plumage phenotype is similar to patterns seen on a finer geographic scale in other avian hybrid zones and may result from asymmetric introgression of the bright plumage trait.

  15. Avian metapneumovirus (AMPV) attachment protein involvement in probable virus evolution concurrent with mass live vaccine introduction.

    Science.gov (United States)

    Cecchinato, Mattia; Catelli, Elena; Lupini, Caterina; Ricchizzi, Enrico; Clubbe, Jayne; Battilani, Mara; Naylor, Clive J

    2010-11-20

    Avian metapneumoviruses detected in Northern Italy between 1987 and 2007 were sequenced in their fusion (F) and attachment (G) genes together with the same genes from isolates collected throughout western European prior to 1994. Fusion protein genes sequences were highly conserved while G protein sequences showed much greater heterogeneity. Phylogenetic studies based on both genes clearly showed that later Italian viruses were significantly different to all earlier virus detections, including early detections from Italy. Furthermore a serine residue in the G proteins and lysine residue in the fusion protein were exclusive to Italian viruses, indicating that later viruses probably arose within the country and the notion that these later viruses evolved from earlier Italian progenitors cannot be discounted. Biocomputing analysis applied to F and G proteins of later Italian viruses predicted that only G contained altered T cell epitopes. It appears likely that Italian field viruses evolved in response to selection pressure from vaccine induced immunity. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Symbiosis in the microbial world: from ecology to genome evolution

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Raina

    2018-02-01

    Full Text Available The concept of symbiosis – defined in 1879 by de Bary as ‘the living together of unlike organisms’ – has a rich and convoluted history in biology. In part, because it questioned the concept of the individual, symbiosis fell largely outside mainstream science and has traditionally received less attention than other research disciplines. This is gradually changing. In nature organisms do not live in isolation but rather interact with, and are impacted by, diverse beings throughout their life histories. Symbiosis is now recognized as a central driver of evolution across the entire tree of life, including, for example, bacterial endosymbionts that provide insects with vital nutrients and the mitochondria that power our own cells. Symbioses between microbes and their multicellular hosts also underpin the ecological success of some of the most productive ecosystems on the planet, including hydrothermal vents and coral reefs. In November 2017, scientists working in fields spanning the life sciences came together at a Company of Biologists’ workshop to discuss the origin, maintenance, and long-term implications of symbiosis from the complementary perspectives of cell biology, ecology, evolution and genomics, taking into account both model and non-model organisms. Here, we provide a brief synthesis of the fruitful discussions that transpired.

  17. Symbiosis in the microbial world: from ecology to genome evolution.

    Science.gov (United States)

    Raina, Jean-Baptiste; Eme, Laura; Pollock, F Joseph; Spang, Anja; Archibald, John M; Williams, Tom A

    2018-02-22

    The concept of symbiosis - defined in 1879 by de Bary as 'the living together of unlike organisms' - has a rich and convoluted history in biology. In part, because it questioned the concept of the individual, symbiosis fell largely outside mainstream science and has traditionally received less attention than other research disciplines. This is gradually changing. In nature organisms do not live in isolation but rather interact with, and are impacted by, diverse beings throughout their life histories. Symbiosis is now recognized as a central driver of evolution across the entire tree of life, including, for example, bacterial endosymbionts that provide insects with vital nutrients and the mitochondria that power our own cells. Symbioses between microbes and their multicellular hosts also underpin the ecological success of some of the most productive ecosystems on the planet, including hydrothermal vents and coral reefs. In November 2017, scientists working in fields spanning the life sciences came together at a Company of Biologists' workshop to discuss the origin, maintenance, and long-term implications of symbiosis from the complementary perspectives of cell biology, ecology, evolution and genomics, taking into account both model and non-model organisms. Here, we provide a brief synthesis of the fruitful discussions that transpired. © 2018. Published by The Company of Biologists Ltd.

  18. The adaptive evolution of the mammalian mitochondrial genome

    Directory of Open Access Journals (Sweden)

    O'Brien Stephen J

    2008-03-01

    Full Text Available Abstract Background The mitochondria produce up to 95% of a eukaryotic cell's energy through oxidative phosphorylation. The proteins involved in this vital process are under high functional constraints. However, metabolic requirements vary across species, potentially modifying selective pressures. We evaluate the adaptive evolution of 12 protein-coding mitochondrial genes in 41 placental mammalian species by assessing amino acid sequence variation and exploring the functional implications of observed variation in secondary and tertiary protein structures. Results Wide variation in the properties of amino acids were observed at functionally important regions of cytochrome b in species with more-specialized metabolic requirements (such as adaptation to low energy diet or large body size, such as in elephant, dugong, sloth, and pangolin, and adaptation to unusual oxygen requirements, for example diving in cetaceans, flying in bats, and living at high altitudes in alpacas. Signatures of adaptive variation in the NADH dehydrogenase complex were restricted to the loop regions of the transmembrane units which likely function as protons pumps. Evidence of adaptive variation in the cytochrome c oxidase complex was observed mostly at the interface between the mitochondrial and nuclear-encoded subunits, perhaps evidence of co-evolution. The ATP8 subunit, which has an important role in the assembly of F0, exhibited the highest signal of adaptive variation. ATP6, which has an essential role in rotor performance, showed a high adaptive variation in predicted loop areas. Conclusion Our study provides insight into the adaptive evolution of the mtDNA genome in mammals and its implications for the molecular mechanism of oxidative phosphorylation. We present a framework for future experimental characterization of the impact of specific mutations in the function, physiology, and interactions of the mtDNA encoded proteins involved in oxidative phosphorylation.

  19. Differential paralog divergence modulates genome evolution across yeast species

    Science.gov (United States)

    Lynch, Bryony; Huang, Mei; Alcantara, Erica; DeSevo, Christopher G.; Pai, Dave A.; Hoang, Margaret L.

    2017-01-01

    Evolutionary outcomes depend not only on the selective forces acting upon a species, but also on the genetic background. However, large timescales and uncertain historical selection pressures can make it difficult to discern such important background differences between species. Experimental evolution is one tool to compare evolutionary potential of known genotypes in a controlled environment. Here we utilized a highly reproducible evolutionary adaptation in Saccharomyces cerevisiae to investigate whether experimental evolution of other yeast species would select for similar adaptive mutations. We evolved populations of S. cerevisiae, S. paradoxus, S. mikatae, S. uvarum, and interspecific hybrids between S. uvarum and S. cerevisiae for ~200–500 generations in sulfate-limited continuous culture. Wild-type S. cerevisiae cultures invariably amplify the high affinity sulfate transporter gene, SUL1. However, while amplification of the SUL1 locus was detected in S. paradoxus and S. mikatae populations, S. uvarum cultures instead selected for amplification of the paralog, SUL2. We measured the relative fitness of strains bearing deletions and amplifications of both SUL genes from different species, confirming that, converse to S. cerevisiae, S. uvarum SUL2 contributes more to fitness in sulfate limitation than S. uvarum SUL1. By measuring the fitness and gene expression of chimeric promoter-ORF constructs, we were able to delineate the cause of this differential fitness effect primarily to the promoter of S. uvarum SUL1. Our data show evidence of differential sub-functionalization among the sulfate transporters across Saccharomyces species through recent changes in noncoding sequence. Furthermore, these results show a clear example of how such background differences due to paralog divergence can drive changes in genome evolution. PMID:28196070

  20. The mitochondrial genome of soybean reveals complex genome structures and gene evolution at intercellular and phylogenetic levels.

    Directory of Open Access Journals (Sweden)

    Shengxin Chang

    Full Text Available Determining mitochondrial genomes is important for elucidating vital activities of seed plants. Mitochondrial genomes are specific to each plant species because of their variable size, complex structures and patterns of gene losses and gains during evolution. This complexity has made research on the soybean mitochondrial genome difficult compared with its nuclear and chloroplast genomes. The present study helps to solve a 30-year mystery regarding the most complex mitochondrial genome structure, showing that pairwise rearrangements among the many large repeats may produce an enriched molecular pool of 760 circles in seed plants. The soybean mitochondrial genome harbors 58 genes of known function in addition to 52 predicted open reading frames of unknown function. The genome contains sequences of multiple identifiable origins, including 6.8 kb and 7.1 kb DNA fragments that have been transferred from the nuclear and chloroplast genomes, respectively, and some horizontal DNA transfers. The soybean mitochondrial genome has lost 16 genes, including nine protein-coding genes and seven tRNA genes; however, it has acquired five chloroplast-derived genes during evolution. Four tRNA genes, common among the three genomes, are derived from the chloroplast. Sizeable DNA transfers to the nucleus, with pericentromeric regions as hotspots, are observed, including DNA transfers of 125.0 kb and 151.6 kb identified unambiguously from the soybean mitochondrial and chloroplast genomes, respectively. The soybean nuclear genome has acquired five genes from its mitochondrial genome. These results provide biological insights into the mitochondrial genome of seed plants, and are especially helpful for deciphering vital activities in soybean.

  1. Genomic comparison of closely related Giant Viruses supports an accordion-like model of evolution.

    Directory of Open Access Journals (Sweden)

    Jonathan eFilée

    2015-06-01

    Full Text Available Genome gigantism occurs so far in Phycodnaviridae and Mimiviridae (order Megavirales. Origin and evolution of these Giant Viruses (GVs remain open questions. Interestingly, availability of a collection of closely related GV genomes enabling genomic comparisons offer the opportunity to better understand the different evolutionary forces acting on these genomes. Whole genome alignment for 5 groups of viruses belonging to the Mimiviridae and Phycodnaviridae families show that there is no trend of genome expansion or general tendency of genome contraction. Instead, GV genomes accumulated genomic mutations over the time with gene gains compensating the different losses. In addition, each lineage displays specific patterns of genome evolution. Mimiviridae (megaviruses and mimiviruses and Chlorella Phycodnaviruses evolved mainly by duplications and losses of genes belonging to large paralogous families (including movements of diverse mobiles genetic elements, whereas Micromonas and Ostreococcus Phycodnaviruses derive most of their genetic novelties thought lateral gene transfers. Taken together, these data support an accordion-like model of evolution in which GV genomes have undergone successive steps of gene gain and gene loss, accrediting the hypothesis that genome gigantism appears early, before the diversification of the different GV lineages.

  2. Wings versus legs in the avian bauplan: development and evolution of alternative locomotor strategies.

    Science.gov (United States)

    Heers, Ashley M; Dial, Kenneth P

    2015-02-01

    Wings have long been regarded as a hallmark of evolutionary innovation, allowing insects, birds, and bats to radiate into aerial environments. For many groups, our intuitive and colloquial perspective is that wings function for aerial activities, and legs for terrestrial, in a relatively independent manner. However, insects and birds often engage their wings and legs cooperatively. In addition, the degree of autonomy between wings and legs may be constrained by tradeoffs, between allocating resources to wings versus legs during development, or between wing versus leg investment and performance (because legs must be carried as baggage by wings during flight and vice versa). Such tradeoffs would profoundly affect the development and evolution of locomotor strategies, and many related aspects of animal ecology. Here, we provide the first evaluation of wing versus leg investment, performance and relative use, in birds-both across species, and during ontogeny in three precocial species with different ecologies. Our results suggest that tradeoffs between wing and leg modules help shape ontogenetic and evolutionary trajectories, but can be offset by recruiting modules cooperatively. These findings offer a new paradigm for exploring locomotor strategies of flying organisms and their extinct precursors, and thereby elucidating some of the most spectacular diversity in animal history. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  3. Tracking marsupial evolution using archaic genomic retroposon insertions.

    Directory of Open Access Journals (Sweden)

    Maria A Nilsson

    2010-07-01

    Full Text Available The Australasian and South American marsupial mammals, such as kangaroos and opossums, are the closest living relatives to placental mammals, having shared a common ancestor around 130 million years ago. The evolutionary relationships among the seven marsupial orders have, however, so far eluded resolution. In particular, the relationships between the four Australasian and three South American marsupial orders have been intensively debated since the South American order Microbiotheria was taxonomically moved into the group Australidelphia. Australidelphia is significantly supported by both molecular and morphological data and comprises the four Australasian marsupial orders and the South American order Microbiotheria, indicating a complex, ancient, biogeographic history of marsupials. However, the exact phylogenetic position of Microbiotheria within Australidelphia has yet to be resolved using either sequence or morphological data analysis. Here, we provide evidence from newly established and virtually homoplasy-free retroposon insertion markers for the basal relationships among marsupial orders. Fifty-three phylogenetically informative markers were retrieved after in silico and experimental screening of approximately 217,000 retroposon-containing loci from opossum and kangaroo. The four Australasian orders share a single origin with Microbiotheria as their closest sister group, supporting a clear divergence between South American and Australasian marsupials. In addition, the new data place the South American opossums (Didelphimorphia as the first branch of the marsupial tree. The exhaustive computational and experimental evidence provides important insight into the evolution of retroposable elements in the marsupial genome. Placing the retroposon insertion pattern in a paleobiogeographic context indicates a single marsupial migration from South America to Australia. The now firmly established phylogeny can be used to determine the direction of

  4. Comparative Genomic Analyses of the Human NPHP1 Locus Reveal Complex Genomic Architecture and Its Regional Evolution in Primates.

    Directory of Open Access Journals (Sweden)

    Bo Yuan

    2015-12-01

    Full Text Available Many loci in the human genome harbor complex genomic structures that can result in susceptibility to genomic rearrangements leading to various genomic disorders. Nephronophthisis 1 (NPHP1, MIM# 256100 is an autosomal recessive disorder that can be caused by defects of NPHP1; the gene maps within the human 2q13 region where low copy repeats (LCRs are abundant. Loss of function of NPHP1 is responsible for approximately 85% of the NPHP1 cases-about 80% of such individuals carry a large recurrent homozygous NPHP1 deletion that occurs via nonallelic homologous recombination (NAHR between two flanking directly oriented ~45 kb LCRs. Published data revealed a non-pathogenic inversion polymorphism involving the NPHP1 gene flanked by two inverted ~358 kb LCRs. Using optical mapping and array-comparative genomic hybridization, we identified three potential novel structural variant (SV haplotypes at the NPHP1 locus that may protect a haploid genome from the NPHP1 deletion. Inter-species comparative genomic analyses among primate genomes revealed massive genomic changes during evolution. The aggregated data suggest that dynamic genomic rearrangements occurred historically within the NPHP1 locus and generated SV haplotypes observed in the human population today, which may confer differential susceptibility to genomic instability and the NPHP1 deletion within a personal genome. Our study documents diverse SV haplotypes at a complex LCR-laden human genomic region. Comparative analyses provide a model for how this complex region arose during primate evolution, and studies among humans suggest that intra-species polymorphism may potentially modulate an individual's susceptibility to acquiring disease-associated alleles.

  5. Orthopoxvirus Genome Evolution: The Role of Gene Loss

    Directory of Open Access Journals (Sweden)

    Eneida L. Hatcher

    2010-09-01

    Full Text Available Poxviruses are highly successful pathogens, known to infect a variety of hosts. The family Poxviridae includes Variola virus, the causative agent of smallpox, which has been eradicated as a public health threat but could potentially reemerge as a bioterrorist threat. The risk scenario includes other animal poxviruses and genetically engineered manipulations of poxviruses. Studies of orthologous gene sets have established the evolutionary relationships of members within the Poxviridae family. It is not clear, however, how variations between family members arose in the past, an important issue in understanding how these viruses may vary and possibly produce future threats. Using a newly developed poxvirus-specific tool, we predicted accurate gene sets for viruses with completely sequenced genomes in the genus Orthopoxvirus. Employing sensitive sequence comparison techniques together with comparison of syntenic gene maps, we established the relationships between all viral gene sets. These techniques allowed us to unambiguously identify the gene loss/gain events that have occurred over the course of orthopoxvirus evolution. It is clear that for all existing Orthopoxvirus species, no individual species has acquired protein-coding genes unique to that species. All existing species contain genes that are all present in members of the species Cowpox virus and that cowpox virus strains contain every gene present in any other orthopoxvirus strain. These results support a theory of reductive evolution in which the reduction in size of the core gene set of a putative ancestral virus played a critical role in speciation and confining any newly emerging virus species to a particular environmental (host or tissue niche.

  6. Molecular and antigenic evolution and geographical spread of H5N1 highly pathogenic avian influenza viruses in western Africa.

    Science.gov (United States)

    Ducatez, M F; Olinger, C M; Owoade, A A; Tarnagda, Z; Tahita, M C; Sow, A; De Landtsheer, S; Ammerlaan, W; Ouedraogo, J B; Osterhaus, A D M E; Fouchier, R A M; Muller, C P

    2007-08-01

    In Africa, highly pathogenic avian influenza H5N1 virus was first detected in northern Nigeria and later also in other regions of the country. Since then, seven other African countries have reported H5N1 infections. This study reports a comparison of full-length genomic sequences of H5N1 isolates from seven chicken farms in Nigeria and chicken and hooded vultures in Burkina Faso with earlier H5N1 outbreaks worldwide. In addition, the antigenicity of Nigerian H5N1 isolates was compared with earlier strains. All African strains clustered within three sublineages denominated A (south-west Nigeria, Niger), B (south-west Nigeria, Egypt, Djibouti) and C (northern Nigeria, Burkina Faso, Sudan, Côte d'Ivoire), with distinct nucleotide and amino acid signatures and distinct geographical distributions within Africa. Probable non-African ancestors within the west Asian/Russian/European lineage distinct from the south-east Asian lineages were identified for each sublineage. All reported human cases in Africa were caused by sublineage B. Substitution rates were calculated on the basis of sequences from 11 strains from a single farm in south-west Nigeria. As H5N1 emerged essentially at the same time in the north and south-west of Nigeria, the substitution rates confirmed that the virus probably did not spread from the north to the south, given the observed sequence diversity, but that it entered the country via three independent introductions. The strains from Burkina Faso seemed to originate from northern Nigeria. At least two of the sublineages also circulated in Europe in 2006 as seen in Germany, further suggesting that the sublineages had already emerged outside of Africa and seemed to have followed the east African/west Asian and Black Sea/Mediterranean flyways of migratory birds.

  7. Discordance between genomic divergence and phenotypic variation in a rapidly evolving avian genus (Motacilla).

    Science.gov (United States)

    Harris, Rebecca B; Alström, Per; Ödeen, Anders; Leaché, Adam D

    2018-03-01

    Generally, genotypes and phenotypes are expected to be spatially congruent; however, in widespread species complexes with few barriers to dispersal, multiple contact zones, and limited reproductive isolation, discordance between phenotypes and phylogeographic groups is more probable. Wagtails (Motacilla) are a genus of birds with striking plumage pattern variation across the Old World. Up to 13 subspecies are recognized within a single species, yet previous studies using mitochondrial DNA have supported polyphyletic phylogeographic groups that are inconsistent with subspecies plumage characteristics. In this study, we investigate the link between phenotypes and genotype by taking a phylogenetic approach. We use genome-wide SNPs, nuclear introns, and mitochondrial DNA to estimate population structure, isolation by distance, and species relationships. Together, our genetic sampling includes complete species-level sampling and comprehensive coverage of the three most phenotypically diverse Palearctic species. Our study provides strong evidence for species-level patterns of differentiation, however population-level differentiation is less pronounced. SNPs provide a robust estimate of species-level relationships, which are mostly corroborated by a combined analysis of mtDNA and nuclear introns (the first time-calibrated species tree for the genus). However, the mtDNA tree is strongly incongruent and is considered to misrepresent the species phylogeny. The extant wagtail lineages originated during the Pliocene and the Eurasian lineage underwent rapid diversification during the Pleistocene. Three of four widespread Eurasian species exhibit an east-west divide that contradicts both subspecies taxonomy and phenotypic variation. Indeed, SNPs fail to distinguish between phenotypically distinct subspecies within the M. alba and M. flava complexes, and instead support geographical regions, each of which is home to two or more different looking subspecies. This is a major step

  8. GenomicusPlants: a web resource to study genome evolution in flowering plants.

    Science.gov (United States)

    Louis, Alexandra; Murat, Florent; Salse, Jérôme; Crollius, Hugues Roest

    2015-01-01

    Comparative genomics combined with phylogenetic reconstructions are powerful approaches to study the evolution of genes and genomes. However, the current rapid expansion of the volume of genomic information makes it increasingly difficult to interrogate, integrate and synthesize comparative genome data while taking into account the maximum breadth of information available. GenomicusPlants (http://www.genomicus.biologie.ens.fr/genomicus-plants) is an extension of the Genomicus webserver that addresses this issue by allowing users to explore flowering plant genomes in an intuitive way, across the broadest evolutionary scales. Extant genomes of 26 flowering plants can be analyzed, as well as 23 ancestral reconstructed genomes. Ancestral gene order provides a long-term chronological view of gene order evolution, greatly facilitating comparative genomics and evolutionary studies. Four main interfaces ('views') are available where: (i) PhyloView combines phylogenetic trees with comparisons of genomic loci across any number of genomes; (ii) AlignView projects loci of interest against all other genomes to visualize its topological conservation; (iii) MatrixView compares two genomes in a classical dotplot representation; and (iv) Karyoview visualizes chromosome karyotypes 'painted' with colours of another genome of interest. All four views are interconnected and benefit from many customizable features. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  9. A physical map for the Amborella trichopoda genome sheds light on the evolution of angiosperm genome structure

    Science.gov (United States)

    2011-01-01

    Background Recent phylogenetic analyses have identified Amborella trichopoda, an understory tree species endemic to the forests of New Caledonia, as sister to a clade including all other known flowering plant species. The Amborella genome is a unique reference for understanding the evolution of angiosperm genomes because it can serve as an outgroup to root comparative analyses. A physical map, BAC end sequences and sample shotgun sequences provide a first view of the 870 Mbp Amborella genome. Results Analysis of Amborella BAC ends sequenced from each contig suggests that the density of long terminal repeat retrotransposons is negatively correlated with that of protein coding genes. Syntenic, presumably ancestral, gene blocks were identified in comparisons of the Amborella BAC contigs and the sequenced Arabidopsis thaliana, Populus trichocarpa, Vitis vinifera and Oryza sativa genomes. Parsimony mapping of the loss of synteny corroborates previous analyses suggesting that the rate of structural change has been more rapid on lineages leading to Arabidopsis and Oryza compared with lineages leading to Populus and Vitis. The gamma paleohexiploidy event identified in the Arabidopsis, Populus and Vitis genomes is shown to have occurred after the divergence of all other known angiosperms from the lineage leading to Amborella. Conclusions When placed in the context of a physical map, BAC end sequences representing just 5.4% of the Amborella genome have facilitated reconstruction of gene blocks that existed in the last common ancestor of all flowering plants. The Amborella genome is an invaluable reference for inferences concerning the ancestral angiosperm and subsequent genome evolution. PMID:21619600

  10. Chlamydiaceae Genomics Reveals Interspecies Admixture and the Recent Evolution of Chlamydia abortus Infecting Lower Mammalian Species and Humans.

    Science.gov (United States)

    Joseph, Sandeep J; Marti, Hanna; Didelot, Xavier; Castillo-Ramirez, Santiago; Read, Timothy D; Dean, Deborah

    2015-10-27

    Chlamydiaceae are obligate intracellular bacteria that cause a diversity of severe infections among humans and livestock on a global scale. Identification of new species since 1989 and emergence of zoonotic infections, including abortion in women, underscore the need for genome sequencing of multiple strains of each species to advance our knowledge of evolutionary dynamics across Chlamydiaceae. Here, we genome sequenced isolates from avian, lower mammalian and human hosts. Based on core gene phylogeny, five isolates previously classified as Chlamydia abortus were identified as members of Chlamydia psittaci and Chlamydia pecorum. Chlamydia abortus is the most recently emerged species and is a highly monomorphic group that lacks the conserved virulence-associated plasmid. Low-level recombination and evidence for adaptation to the placenta echo evolutionary processes seen in recently emerged, highly virulent niche-restricted pathogens, such as Bacillus anthracis. In contrast, gene flow occurred within C. psittaci and other Chlamydiaceae species. The C. psittaci strain RTH, isolated from a red-tailed hawk (Buteo jamaicensis), is an outlying strain with admixture of C. abortus, C. psittaci, and its own population markers. An average nucleotide identity of less than 94% compared with other Chlamydiaceae species suggests that RTH belongs to a new species intermediary between C. psittaci and C. abortus. Hawks, as scavengers and predators, have extensive opportunities to acquire multiple species in their intestinal tract. This could facilitate transformation and homologous recombination with the potential for new species emergence. Our findings indicate that incubator hosts such as birds-of-prey likely promote Chlamydiaceae evolution resulting in novel pathogenic lineages. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. The genome of the obligate intracellular parasite Trachipleistophora hominis: new insights into microsporidian genome dynamics and reductive evolution.

    Directory of Open Access Journals (Sweden)

    Eva Heinz

    Full Text Available The dynamics of reductive genome evolution for eukaryotes living inside other eukaryotic cells are poorly understood compared to well-studied model systems involving obligate intracellular bacteria. Here we present 8.5 Mb of sequence from the genome of the microsporidian Trachipleistophora hominis, isolated from an HIV/AIDS patient, which is an outgroup to the smaller compacted-genome species that primarily inform ideas of evolutionary mode for these enormously successful obligate intracellular parasites. Our data provide detailed information on the gene content, genome architecture and intergenic regions of a larger microsporidian genome, while comparative analyses allowed us to infer genomic features and metabolism of the common ancestor of the species investigated. Gene length reduction and massive loss of metabolic capacity in the common ancestor was accompanied by the evolution of novel microsporidian-specific protein families, whose conservation among microsporidians, against a background of reductive evolution, suggests they may have important functions in their parasitic lifestyle. The ancestor had already lost many metabolic pathways but retained glycolysis and the pentose phosphate pathway to provide cytosolic ATP and reduced coenzymes, and it had a minimal mitochondrion (mitosome making Fe-S clusters but not ATP. It possessed bacterial-like nucleotide transport proteins as a key innovation for stealing host-generated ATP, the machinery for RNAi, key elements of the early secretory pathway, canonical eukaryotic as well as microsporidian-specific regulatory elements, a diversity of repetitive and transposable elements, and relatively low average gene density. Microsporidian genome evolution thus appears to have proceeded in at least two major steps: an ancestral remodelling of the proteome upon transition to intracellular parasitism that involved reduction but also selective expansion, followed by a secondary compaction of genome

  12. Directed evolution combined with synthetic biology strategies expedite semi-rational engineering of genes and genomes.

    Science.gov (United States)

    Kang, Zhen; Zhang, Junli; Jin, Peng; Yang, Sen

    2015-01-01

    Owing to our limited understanding of the relationship between sequence and function and the interaction between intracellular pathways and regulatory systems, the rational design of enzyme-coding genes and de novo assembly of a brand-new artificial genome for a desired functionality or phenotype are difficult to achieve. As an alternative approach, directed evolution has been widely used to engineer genomes and enzyme-coding genes. In particular, significant developments toward DNA synthesis, DNA assembly (in vitro or in vivo), recombination-mediated genetic engineering, and high-throughput screening techniques in the field of synthetic biology have been matured and widely adopted, enabling rapid semi-rational genome engineering to generate variants with desired properties. In this commentary, these novel tools and their corresponding applications in the directed evolution of genomes and enzymes are discussed. Moreover, the strategies for genome engineering and rapid in vitro enzyme evolution are also proposed.

  13. Evolution of genes and genomes on the Drosophila phylogeny

    DEFF Research Database (Denmark)

    Clark, Andrew G; Eisen, Michael B; Smith, Douglas R

    2007-01-01

    Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the ...

  14. Unique genome organization of non-mammalian papillomaviruses provides insights into the evolution of viral early proteins

    Science.gov (United States)

    Van Doorslaer, Koenraad; Ruoppolo, Valeria; Schmidt, Annie; Lescroël, Amelie; Jongsomjit, Dennis; Elrod, Megan; Kraberger, Simona; Stainton, Daisy; Dugger, Katie M.; Ballard, Grant; Ainley, David G.; Varsani, Arvind

    2017-01-01

    The family Papillomaviridae contains more than 320 papillomavirus types, with most having been identified as infecting skin and mucosal epithelium in mammalian hosts. To date, only nine non-mammalian papillomaviruses have been described from birds (n = 5), a fish (n = 1), a snake (n = 1), and turtles (n = 2). The identification of papillomaviruses in sauropsids and a sparid fish suggests that early ancestors of papillomaviruses were already infecting the earliest Euteleostomi. The Euteleostomi clade includes more than 90 per cent of the living vertebrate species, and progeny virus could have been passed on to all members of this clade, inhabiting virtually every habitat on the planet. As part of this study, we isolated a novel papillomavirus from a 16-year-old female Adélie penguin (Pygoscelis adeliae) from Cape Crozier, Ross Island (Antarctica). The new papillomavirus shares ∼64 per cent genome-wide identity to a previously described Adélie penguin papillomavirus. Phylogenetic analyses show that the non-mammalian viruses (expect the python, Morelia spilota, associated papillomavirus) cluster near the base of the papillomavirus evolutionary tree. A papillomavirus isolated from an avian host (Northern fulmar; Fulmarus glacialis), like the two turtle papillomaviruses, lacks a putative E9 protein that is found in all other avian papillomaviruses. Furthermore, the Northern fulmar papillomavirus has an E7 more similar to the mammalian viruses than the other avian papillomaviruses. Typical E6 proteins of mammalian papillomaviruses have two Zinc finger motifs, whereas the sauropsid papillomaviruses only have one such motif. Furthermore, this motif is absent in the fish papillomavirus. Thus, it is highly likely that the most recent common ancestor of the mammalian and sauropsid papillomaviruses had a single motif E6. It appears that a motif duplication resulted in mammalian papillomaviruses having a double Zinc finger motif in E6. We estimated the

  15. Comparative genomics of the bacterial genus Listeria: Genome evolution is characterized by limited gene acquisition and limited gene loss

    Directory of Open Access Journals (Sweden)

    Barker Melissa

    2010-12-01

    Full Text Available Abstract Background The bacterial genus Listeria contains pathogenic and non-pathogenic species, including the pathogens L. monocytogenes and L. ivanovii, both of which carry homologous virulence gene clusters such as the prfA cluster and clusters of internalin genes. Initial evidence for multiple deletions of the prfA cluster during the evolution of Listeria indicates that this genus provides an interesting model for studying the evolution of virulence and also presents practical challenges with regard to definition of pathogenic strains. Results To better understand genome evolution and evolution of virulence characteristics in Listeria, we used a next generation sequencing approach to generate draft genomes for seven strains representing Listeria species or clades for which genome sequences were not available. Comparative analyses of these draft genomes and six publicly available genomes, which together represent the main Listeria species, showed evidence for (i a pangenome with 2,032 core and 2,918 accessory genes identified to date, (ii a critical role of gene loss events in transition of Listeria species from facultative pathogen to saprotroph, even though a consistent pattern of gene loss seemed to be absent, and a number of isolates representing non-pathogenic species still carried some virulence associated genes, and (iii divergence of modern pathogenic and non-pathogenic Listeria species and strains, most likely circa 47 million years ago, from a pathogenic common ancestor that contained key virulence genes. Conclusions Genome evolution in Listeria involved limited gene loss and acquisition as supported by (i a relatively high coverage of the predicted pan-genome by the observed pan-genome, (ii conserved genome size (between 2.8 and 3.2 Mb, and (iii a highly syntenic genome. Limited gene loss in Listeria did include loss of virulence associated genes, likely associated with multiple transitions to a saprotrophic lifestyle. The genus

  16. Functional Convergence in Reduced Genomes of Bacterial Symbionts Spanning 200 My of Evolution

    OpenAIRE

    McCutcheon, John P.; Moran, Nancy A.

    2010-01-01

    The main genomic changes in the evolution of host-restricted microbial symbionts are ongoing inactivation and loss of genes combined with rapid sequence evolution and extreme structural stability; these changes reflect high levels of genetic drift due to small population sizes and strict clonality. This genomic erosion includes irreversible loss of genes in many functional categories and can include genes that underlie the nutritional contributions to hosts that are the basis of the symbiotic...

  17. Aerodynamic modelling of a Cretaceous bird reveals thermal soaring capabilities during early avian evolution.

    Science.gov (United States)

    Serrano, Francisco José; Chiappe, Luis María

    2017-07-01

    Several flight modes are thought to have evolved during the early evolution of birds. Here, we use a combination of computational modelling and morphofunctional analyses to infer the flight properties of the raven-sized, Early Cretaceous bird Sapeornis chaoyangensis -a likely candidate to have evolved soaring capabilities. Specifically, drawing information from (i) mechanical inferences of the deltopectoral crest of the humerus, (ii) wing shape (i.e. aspect ratio), (iii) estimations of power margin (i.e. difference between power required for flight and available power from muscles), (iv) gliding behaviour (i.e. forward speed and sinking speed), and (v) palaeobiological evidence, we conclude that S. chaoyangensis was a thermal soarer with an ecology similar to that of living South American screamers. Our results indicate that as early as 125 Ma, some birds evolved the morphological and aerodynamic requirements for soaring on continental thermals, a conclusion that highlights the degree of ecological, functional and behavioural diversity that resulted from the first major evolutionary radiation of birds. © 2017 The Author(s).

  18. Chlamydiaceae Genomics Reveals Interspecies Admixture and the Recent Evolution of Chlamydia abortus Infecting Lower Mammalian Species and Humans

    OpenAIRE

    Joseph, Sandeep J.; Marti, Hanna; Didelot, Xavier; Castillo-Ramirez, Santiago; Read, Timothy D.; Dean, Deborah

    2015-01-01

    Chlamydiaceae are obligate intracellular bacteria that cause a diversity of severe infections among humans and livestock on a global scale. Identification of new species since 1989 and emergence of zoonotic infections, including abortion in women, underscore the need for genome sequencing of multiple strains of each species to advance our knowledge of evolutionary dynamics across Chlamydiaceae. Here, we genome sequenced isolates from avian, lower mammalian and human hosts. Based on core gene ...

  19. Genome Size Diversity and Its Impact on the Evolution of Land Plants

    Directory of Open Access Journals (Sweden)

    Jaume Pellicer

    2018-02-01

    Full Text Available Genome size is a biodiversity trait that shows staggering diversity across eukaryotes, varying over 64,000-fold. Of all major taxonomic groups, land plants stand out due to their staggering genome size diversity, ranging ca. 2400-fold. As our understanding of the implications and significance of this remarkable genome size diversity in land plants grows, it is becoming increasingly evident that this trait plays not only an important role in shaping the evolution of plant genomes, but also in influencing plant community assemblages at the ecosystem level. Recent advances and improvements in novel sequencing technologies, as well as analytical tools, make it possible to gain critical insights into the genomic and epigenetic mechanisms underpinning genome size changes. In this review we provide an overview of our current understanding of genome size diversity across the different land plant groups, its implications on the biology of the genome and what future directions need to be addressed to fill key knowledge gaps.

  20. Avian anemia's

    Directory of Open Access Journals (Sweden)

    Raukar Jelena

    2005-01-01

    Full Text Available This paper deals with avian anemia's classified by MCHC/MCV and with types of anemia's. Father hematological and immunological research is needed to secure information on hematological parameters in different avian species at their earliest age. Anemia is a common clinical finding in birds because the avian erythrocyte half - life is much shorter than the mammalian. Therefore anemia should be determined as soon as possible. Researchers should standardize hematological parameters for every single avian species.

  1. Genomics and Evolution in Traditional Medicinal Plants: Road to a Healthier Life

    Science.gov (United States)

    Hao, Da-Cheng; Xiao, Pei-Gen

    2015-01-01

    Medicinal plants have long been utilized in traditional medicine and ethnomedicine worldwide. This review presents a glimpse of the current status of and future trends in medicinal plant genomics, evolution, and phylogeny. These dynamic fields are at the intersection of phytochemistry and plant biology and are concerned with the evolution mechanisms and systematics of medicinal plant genomes, origin and evolution of the plant genotype and metabolic phenotype, interaction between medicinal plant genomes and their environment, the correlation between genomic diversity and metabolite diversity, and so on. Use of the emerging high-end genomic technologies can be expanded from crop plants to traditional medicinal plants, in order to expedite medicinal plant breeding and transform them into living factories of medicinal compounds. The utility of molecular phylogeny and phylogenomics in predicting chemodiversity and bioprospecting is also highlighted within the context of natural-product-based drug discovery and development. Representative case studies of medicinal plant genome, phylogeny, and evolution are summarized to exemplify the expansion of knowledge pedigree and the paradigm shift to the omics-based approaches, which update our awareness about plant genome evolution and enable the molecular breeding of medicinal plants and the sustainable utilization of plant pharmaceutical resources. PMID:26461812

  2. Mitochondrial genome evolution in Alismatales: Size reduction and extensive loss of ribosomal protein genes

    DEFF Research Database (Denmark)

    Petersen, Gitte; Cuenca, Argelia; Zervas, Athanasios

    2017-01-01

    The order Alismatales is a hotspot for evolution of plant mitochondrial genomes characterized by remarkable differences in genome size, substitution rates, RNA editing, retrotranscription, gene loss and intron loss. Here we have sequenced the complete mitogenomes of Zostera marina and Stratiotes...

  3. The genome sequence of taurine cattle: A window to ruminant biology and evolution

    Science.gov (United States)

    To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (ma...

  4. Parasitism drives host genome evolution: Insights from the Pasteuria ramosa-Daphnia magna system.

    Science.gov (United States)

    Bourgeois, Yann; Roulin, Anne C; Müller, Kristina; Ebert, Dieter

    2017-04-01

    Because parasitism is thought to play a major role in shaping host genomes, it has been predicted that genomic regions associated with resistance to parasites should stand out in genome scans, revealing signals of selection above the genomic background. To test whether parasitism is indeed such a major factor in host evolution and to better understand host-parasite interaction at the molecular level, we studied genome-wide polymorphisms in 97 genotypes of the planktonic crustacean Daphnia magna originating from three localities across Europe. Daphnia magna is known to coevolve with the bacterial pathogen Pasteuria ramosa for which host genotypes (clonal lines) are either resistant or susceptible. Using association mapping, we identified two genomic regions involved in resistance to P. ramosa, one of which was already known from a previous QTL analysis. We then performed a naïve genome scan to test for signatures of positive selection and found that the two regions identified with the association mapping further stood out as outliers. Several other regions with evidence for selection were also found, but no link between these regions and phenotypic variation could be established. Our results are consistent with the hypothesis that parasitism is driving host genome evolution. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  5. The Genome Sequence of Taurine Cattle: A Window to Ruminant Biology and Evolution

    OpenAIRE

    Elsik, Christine G.; Tellam, Ross L.; Worley, Kim C.; Gibbs, Richard A.; Abatepaulo, Antonio R. R.; Abbey, Colette A.; Adelson, David L.; Aerts, Jan; Ahola, Virpi; Alexander, Lee; Alioto, Tyler; Almeida, Iassudara G.; Amadio, Ariel F.; Anatriello, Elen; Antonarakis, Stylianos E.

    2009-01-01

    To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specifi...

  6. Whole-genome duplication and molecular evolution in Cornus L. (Cornaceae - Insights from transcriptome sequences.

    Directory of Open Access Journals (Sweden)

    Yan Yu

    Full Text Available The pattern and rate of genome evolution have profound consequences in organismal evolution. Whole-genome duplication (WGD, or polyploidy, has been recognized as an important evolutionary mechanism of plant diversification. However, in non-model plants the molecular signals of genome duplications have remained largely unexplored. High-throughput transcriptome data from next-generation sequencing have set the stage for novel investigations of genome evolution using new bioinformatic and methodological tools in a phylogenetic framework. Here we compare ten de novo-assembled transcriptomes representing the major lineages of the angiosperm genus Cornus (dogwood and relevant outgroups using a customized pipeline for analyses. Using three distinct approaches, molecular dating of orthologous genes, analyses of the distribution of synonymous substitutions between paralogous genes, and examination of substitution rates through time, we detected a shared WGD event in the late Cretaceous across all taxa sampled. The inferred doubling event coincides temporally with the paleoclimatic changes associated with the initial divergence of the genus into three major lineages. Analyses also showed an acceleration of rates of molecular evolution after WGD. The highest rates of molecular evolution were observed in the transcriptome of the herbaceous lineage, C. canadensis, a species commonly found at higher latitudes, including the Arctic. Our study demonstrates the value of transcriptome data for understanding genome evolution in closely related species. The results suggest dramatic increase in sea surface temperature in the late Cretaceous may have contributed to the evolution and diversification of flowering plants.

  7. Unexpected Diversity and Expression of Avian Endogenous Retroviruses

    Science.gov (United States)

    Bolisetty, Mohan; Blomberg, Jonas; Benachenhou, Farid; Sperber, Göran; Beemon, Karen

    2012-01-01

    ABSTRACT Endogenous retroviruses (ERVs) were identified and characterized in three avian genomes to gain insight into early retroviral evolution. Using the computer program RetroTector to detect relatively intact ERVs, we identified 500 ERVs in the chicken genome, 150 in the turkey genome, and 1,200 in the zebra finch genome. Previous studies suggested that endogenous alpharetroviruses were present in chicken genomes. In this analysis, a small number of alpharetroviruses were seen in the chicken and turkey genomes; however, these were greatly outnumbered by beta-like, gamma-like, and alphabeta proviruses. While the avian ERVs belonged to the same major groups as mammalian ERVs, they were more heterogeneous. In particular, the beta-like viruses revealed an evolutionary continuum with the gradual acquisition and loss of betaretroviral markers and a transition from beta to alphabeta and then to alpharetroviruses. Thus, it appears that birds may resemble a melting pot for early ERV evolution. Many of the ERVs were integrated in clusters on chromosomes, often near centromeres. About 25% of the chicken ERVs were in or near cellular transcription units; this is nearly random. The majority of these integrations were in the sense orientation in introns. A higher-than-random number of integrations were >100 kb from the nearest gene. Deep-sequencing studies of chicken embryo fibroblasts revealed that about 20% of the 500 ERVs were transcribed and translated. A subset of these were also transcribed in vivo in chickens, showing tissue-specific patterns of expression. PMID:23073767

  8. Symbiodinium genomes reveal adaptive evolution of functions related to symbiosis

    KAUST Repository

    Liu, Huanle

    2017-10-06

    Symbiosis between dinoflagellates of the genus Symbiodinium and reef-building corals forms the trophic foundation of the world\\'s coral reef ecosystems. Here we present the first draft genome of Symbiodinium goreaui (Clade C, type C1: 1.03 Gbp), one of the most ubiquitous endosymbionts associated with corals, and an improved draft genome of Symbiodinium kawagutii (Clade F, strain CS-156: 1.05 Gbp), previously sequenced as strain CCMP2468, to further elucidate genomic signatures of this symbiosis. Comparative analysis of four available Symbiodinium genomes against other dinoflagellate genomes led to the identification of 2460 nuclear gene families that show evidence of positive selection, including genes involved in photosynthesis, transmembrane ion transport, synthesis and modification of amino acids and glycoproteins, and stress response. Further, we identified extensive sets of genes for meiosis and response to light stress. These draft genomes provide a foundational resource for advancing our understanding Symbiodinium biology and the coral-algal symbiosis.

  9. Whole genome identification, phylogeny and evolution of the cytochrome P450 family 2 (CYP2) sub-families in birds

    DEFF Research Database (Denmark)

    Almeida, Daniela; Maldonado, Emanuel; Khan, Imran

    2016-01-01

    The cytochrome P450 (CYP) superfamily defends organisms from endogenous and noxious environmental compounds, and thus is crucial for survival. However, beyond mammals the molecular evolution of CYP2 subfamilies is poorly understood. Here, we characterized the CYP2 family across 48 novel avian whole...

  10. The Jujube Genome Provides Insights into Genome Evolution and the Domestication of Sweetness/Acidity Taste in Fruit Trees.

    Science.gov (United States)

    Huang, Jian; Zhang, Chunmei; Zhao, Xing; Fei, Zhangjun; Wan, KangKang; Zhang, Zhong; Pang, Xiaoming; Yin, Xiao; Bai, Yang; Sun, Xiaoqing; Gao, Lizhi; Li, Ruiqiang; Zhang, Jinbo; Li, Xingang

    2016-12-01

    Jujube (Ziziphus jujuba Mill.) belongs to the Rhamnaceae family and is a popular fruit tree species with immense economic and nutritional value. Here, we report a draft genome of the dry jujube cultivar 'Junzao' and the genome resequencing of 31 geographically diverse accessions of cultivated and wild jujubes (Ziziphus jujuba var. spinosa). Comparative analysis revealed that the genome of 'Dongzao', a fresh jujube, was ~86.5 Mb larger than that of the 'Junzao', partially due to the recent insertions of transposable elements in the 'Dongzao' genome. We constructed eight proto-chromosomes of the common ancestor of Rhamnaceae and Rosaceae, two sister families in the order Rosales, and elucidated the evolutionary processes that have shaped the genome structures of modern jujubes. Population structure analysis revealed the complex genetic background of jujubes resulting from extensive hybridizations between jujube and its wild relatives. Notably, several key genes that control fruit organic acid metabolism and sugar content were identified in the selective sweep regions. We also identified S-locus genes controlling gametophytic self-incompatibility and investigated haplotype patterns of the S locus in the jujube genomes, which would provide a guideline for parent selection for jujube crossbreeding. This study provides valuable genomic resources for jujube improvement, and offers insights into jujube genome evolution and its population structure and domestication.

  11. Population Dynamics and Rates of Molecular Evolution of a Recently Emerged Paramyxovirus, Avian Metapneumovirus Subtype C▿ †

    OpenAIRE

    Padhi, Abinash; Poss, Mary

    2008-01-01

    We report the existence of two distinct sublineages of avian metapneumovirus (MPV) subtype C, a virus which has caused serious economic loss in commercial turkey farms in the United States. This subtype is closely related to human MPV, infects multiple avian species, and is globally distributed. The evolutionary rates of this virus are estimated to be 1.3 × 10−3 to 7 × 10−3 substitutions per site per year, and coalescent estimates place its emergence between 1991 and 1996. The four genes exam...

  12. Population Dynamics and Rates of Molecular Evolution of a Recently Emerged Paramyxovirus, Avian Metapneumovirus Subtype C▿ †

    Science.gov (United States)

    Padhi, Abinash; Poss, Mary

    2009-01-01

    We report the existence of two distinct sublineages of avian metapneumovirus (MPV) subtype C, a virus which has caused serious economic loss in commercial turkey farms in the United States. This subtype is closely related to human MPV, infects multiple avian species, and is globally distributed. The evolutionary rates of this virus are estimated to be 1.3 × 10−3 to 7 × 10−3 substitutions per site per year, and coalescent estimates place its emergence between 1991 and 1996. The four genes examined show a concordant demographic pattern which is characterized by a rapid increase in population size followed by stable population grown until the present. PMID:19052092

  13. Gene finding with a hidden Markov model of genome structure and evolution

    DEFF Research Database (Denmark)

    Pedersen, Jakob Skou; Hein, Jotun

    2003-01-01

    the model are linear in alignment length and genome number. The model is applied to the problem of gene finding. The benefit of modelling sequence evolution is demonstrated both in a range of simulations and on a set of orthologous human/mouse gene pairs. AVAILABILITY: Free availability over the Internet...... annotation. The modelling of evolution by the existing comparative gene finders leaves room for improvement. Results: A probabilistic model of both genome structure and evolution is designed. This type of model is called an Evolutionary Hidden Markov Model (EHMM), being composed of an HMM and a set of region...

  14. Comparative genome sequencing of Drosophila pseudoobscura: Chromosomal, gene, and cis-element evolution

    DEFF Research Database (Denmark)

    Richards, Stephen; Liu, Yue; Bettencourt, Brian R.

    2005-01-01

    years (Myr) since the pseudoobscura/melanogaster divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome-wide average, consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than random and nearby sequences......We have sequenced the genome of a second Drosophila species, Drosophila pseudoobscura, and compared this to the genome sequence of Drosophila melanogaster, a primary model organism. Throughout evolution the vast majority of Drosophila genes have remained on the same chromosome arm, but within each...... between the species-but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a pattern of repeat-mediated chromosomal rearrangement, and high coadaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence...

  15. Genomic diversity and evolution of the head crest in the rock pigeon.

    Science.gov (United States)

    Shapiro, Michael D; Kronenberg, Zev; Li, Cai; Domyan, Eric T; Pan, Hailin; Campbell, Michael; Tan, Hao; Huff, Chad D; Hu, Haofu; Vickrey, Anna I; Nielsen, Sandra C A; Stringham, Sydney A; Hu, Hao; Willerslev, Eske; Gilbert, M Thomas P; Yandell, Mark; Zhang, Guojie; Wang, Jun

    2013-03-01

    The geographic origins of breeds and the genetic basis of variation within the widely distributed and phenotypically diverse domestic rock pigeon (Columba livia) remain largely unknown. We generated a rock pigeon reference genome and additional genome sequences representing domestic and feral populations. We found evidence for the origins of major breed groups in the Middle East and contributions from a racing breed to North American feral populations. We identified the gene EphB2 as a strong candidate for the derived head crest phenotype shared by numerous breeds, an important trait in mate selection in many avian species. We also found evidence that this trait evolved just once and spread throughout the species, and that the crest originates early in development by the localized molecular reversal of feather bud polarity.

  16. Insights from the complete chloroplast genome into the evolution of Sesamum indicum L.

    Directory of Open Access Journals (Sweden)

    Haiyang Zhang

    Full Text Available Sesame (Sesamum indicum L. is one of the oldest oilseed crops. In order to investigate the evolutionary characters according to the Sesame Genome Project, apart from sequencing its nuclear genome, we sequenced the complete chloroplast genome of S. indicum cv. Yuzhi 11 (white seeded using Illumina and 454 sequencing. Comparisons of chloroplast genomes between S. indicum and the 18 other higher plants were then analyzed. The chloroplast genome of cv. Yuzhi 11 contains 153,338 bp and a total of 114 unique genes (KC569603. The number of chloroplast genes in sesame is the same as that in Nicotiana tabacum, Vitis vinifera and Platanus occidentalis. The variation in the length of the large single-copy (LSC regions and inverted repeats (IR in sesame compared to 18 other higher plant species was the main contributor to size variation in the cp genome in these species. The 77 functional chloroplast genes, except for ycf1 and ycf2, were highly conserved. The deletion of the cp ycf1 gene sequence in cp genomes may be due either to its transfer to the nuclear genome, as has occurred in sesame, or direct deletion, as has occurred in Panax ginseng and Cucumis sativus. The sesame ycf2 gene is only 5,721 bp in length and has lost about 1,179 bp. Nucleotides 1-585 of ycf2 when queried in BLAST had hits in the sesame draft genome. Five repeats (R10, R12, R13, R14 and R17 were unique to the sesame chloroplast genome. We also found that IR contraction/expansion in the cp genome alters its rate of evolution. Chloroplast genes and repeats display the signature of convergent evolution in sesame and other species. These findings provide a foundation for further investigation of cp genome evolution in Sesamum and other higher plants.

  17. Insights from the complete chloroplast genome into the evolution of Sesamum indicum L.

    Science.gov (United States)

    Zhang, Haiyang; Li, Chun; Miao, Hongmei; Xiong, Songjin

    2013-01-01

    Sesame (Sesamum indicum L.) is one of the oldest oilseed crops. In order to investigate the evolutionary characters according to the Sesame Genome Project, apart from sequencing its nuclear genome, we sequenced the complete chloroplast genome of S. indicum cv. Yuzhi 11 (white seeded) using Illumina and 454 sequencing. Comparisons of chloroplast genomes between S. indicum and the 18 other higher plants were then analyzed. The chloroplast genome of cv. Yuzhi 11 contains 153,338 bp and a total of 114 unique genes (KC569603). The number of chloroplast genes in sesame is the same as that in Nicotiana tabacum, Vitis vinifera and Platanus occidentalis. The variation in the length of the large single-copy (LSC) regions and inverted repeats (IR) in sesame compared to 18 other higher plant species was the main contributor to size variation in the cp genome in these species. The 77 functional chloroplast genes, except for ycf1 and ycf2, were highly conserved. The deletion of the cp ycf1 gene sequence in cp genomes may be due either to its transfer to the nuclear genome, as has occurred in sesame, or direct deletion, as has occurred in Panax ginseng and Cucumis sativus. The sesame ycf2 gene is only 5,721 bp in length and has lost about 1,179 bp. Nucleotides 1-585 of ycf2 when queried in BLAST had hits in the sesame draft genome. Five repeats (R10, R12, R13, R14 and R17) were unique to the sesame chloroplast genome. We also found that IR contraction/expansion in the cp genome alters its rate of evolution. Chloroplast genes and repeats display the signature of convergent evolution in sesame and other species. These findings provide a foundation for further investigation of cp genome evolution in Sesamum and other higher plants.

  18. The seahorse genome and the evolution of its specialized morphology.

    Science.gov (United States)

    Lin, Qiang; Fan, Shaohua; Zhang, Yanhong; Xu, Meng; Zhang, Huixian; Yang, Yulan; Lee, Alison P; Woltering, Joost M; Ravi, Vydianathan; Gunter, Helen M; Luo, Wei; Gao, Zexia; Lim, Zhi Wei; Qin, Geng; Schneider, Ralf F; Wang, Xin; Xiong, Peiwen; Li, Gang; Wang, Kai; Min, Jiumeng; Zhang, Chi; Qiu, Ying; Bai, Jie; He, Weiming; Bian, Chao; Zhang, Xinhui; Shan, Dai; Qu, Hongyue; Sun, Ying; Gao, Qiang; Huang, Liangmin; Shi, Qiong; Meyer, Axel; Venkatesh, Byrappa

    2016-12-14

    Seahorses have a specialized morphology that includes a toothless tubular mouth, a body covered with bony plates, a male brood pouch, and the absence of caudal and pelvic fins. Here we report the sequencing and de novo assembly of the genome of the tiger tail seahorse, Hippocampus comes. Comparative genomic analysis identifies higher protein and nucleotide evolutionary rates in H. comes compared with other teleost fish genomes. We identified an astacin metalloprotease gene family that has undergone expansion and is highly expressed in the male brood pouch. We also find that the H. comes genome lacks enamel matrix protein-coding proline/glutamine-rich secretory calcium-binding phosphoprotein genes, which might have led to the loss of mineralized teeth. tbx4, a regulator of hindlimb development, is also not found in H. comes genome. Knockout of tbx4 in zebrafish showed a 'pelvic fin-loss' phenotype similar to that of seahorses.

  19. Genome sequence of the brown Norway rat yields insights into mammalian evolution

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, Richard A.; Weinstock, George M.; Metzker, Michael L.; Muzny, Donna M.; Sodergren, Erica J.; Scherer, Steven; Scott, Graham; Steffen, David; Worley, Kim C.; Burch, Paula E.; Okwuonu, Geoffrey; Hines, Sandra; Lewis, Lora; DeRamo, Christine; Delgado, Oliver; Dugan-Rocha, Shannon; Miner, George; Morgan, Margaret; Hawes, Alicia; Gill, Rachel; Holt, Robert A.; Adams, Mark D.; Amanatides, Peter G.; Baden-Tillson, Holly; Barnstead, Mary; Chin, Soo; Evans, Cheryl A.; Ferriera, Steven; Fosler, Carl; Glodek, Anna; Gu, Zhiping; Jennings, Don; Kraft, Cheryl L.; Nguyen, Trixie; Pfannkoch, Cynthia M.; Sitter, Cynthia; Sutton, Granger G.; Venter, J. Craig; Woodage, Trevor; Smith, Douglas; Lee, Hong-Maei; Gustafson, Erik; Cahill, Patrick; Kana, Arnold; Doucette-Stamm, Lynn; Weinstock, Keith; Fechtel, Kim; Weiss, Robert B.; Dunn, Diane M.; Green, Eric D.; Blakesley, Robert W.; Bouffard, Gerard G.; de Jong, Pieter J.; Osoegawa, Kazutoyo; Zhu, Baoli; Marra, Marco; Schein, Jacqueline; Bosdet, Ian; Fjell, Chris; Jones, Steven; Krzywinski, Martin; Mathewson, Carrie; Siddiqui, Asim; Wye, Natasja; McPherson, John; Zhao, Shaying; Fraser, Claire M.; Shetty, Jyoti; Shatsman, Sofiya; Geer, Keita; Chen, Yixin; Abramzon, Sofyia; Nierman, William C.; Havlak, Paul H.; Chen, Rui; Durbin, K. James; Egan, Amy; Ren, Yanru; Song, Xing-Zhi; Li, Bingshan; Liu, Yue; Qin, Xiang; Cawley, Simon; Cooney, A.J.; D' Souza, Lisa M.; Martin, Kirt; Wu, Jia Qian; Gonzalez-Garay, Manuel L.; Jackson, Andrew R.; Kalafus, Kenneth J.; McLeod, Michael P.; Milosavljevic, Aleksandar; Virk, Davinder; Volkov, Andrei; Wheeler, David A.; Zhang, Zhengdong; Bailey, Jeffrey A.; Eichler, Evan E.; Tuzun, Eray; Birney, Ewan; Mongin, Emmanuel; Ureta-Vidal, Abel; Woodwark, Cara; Zdobnov, Evgeny; Bork, Peer; Suyama, Mikita; Torrents, David; Alexandersson, Marina; Trask, Barbara J.; Young, Janet M.; et al.

    2004-02-02

    The laboratory rat (Rattus norvegicus) is an indispensable tool in experimental medicine and drug development, having made inestimable contributions to human health. We report here the genome sequence of the Brown Norway (BN) rat strain. The sequence represents a high-quality 'draft' covering over 90 percent of the genome. The BN rat sequence is the third complete mammalian genome to be deciphered, and three-way comparisons with the human and mouse genomes resolve details of mammalian evolution. This first comprehensive analysis includes genes and proteins and their relation to human disease, repeated sequences, comparative genome-wide studies of mammalian orthologous chromosomal regions and rearrangement breakpoints, reconstruction of ancestral karyotypes and the events leading to existing species, rates of variation, and lineage-specific and lineage-independent evolutionary events such as expansion of gene families, orthology relations and protein evolution.

  20. Evolution and adaptation of H5N1 influenza virus in avian and human hosts in Indonesia and Vietnam

    NARCIS (Netherlands)

    Smith, G. J. D.; Naipospos, T. S. P.; Nguyen, T. D.; de Jong, M. D.; Vijaykrishna, D.; Usman, T. B.; Hassan, S. S.; Nguyen, T. V.; Dao, T. V.; Bui, N. A.; Leung, Y. H. C.; Cheung, C. L.; Rayner, J. M.; Zhang, J. X.; Zhang, L. J.; Poon, L. L. M.; Li, K. S.; Nguyen, V. C.; Hien, T. T.; Farrar, J.; Webster, R. G.; Chen, H.; Peiris, J. S. M.; Guan, Y.

    2006-01-01

    Highly pathogenic avian influenza virus H5N1 is endemic in poultry in East and Southeast Asia with disease outbreaks recently spreading to parts of central Asia, Europe and Africa. Continued interspecies transmission to humans has been reported in Vietnam, Thailand, Cambodia, Indonesia and China,

  1. Avian reovirus L2 genome segment sequences and predicted structure/function of the encoded RNA-dependent RNA polymerase protein

    Directory of Open Access Journals (Sweden)

    Xu Wanhong

    2008-12-01

    Full Text Available Abstract Background The orthoreoviruses are infectious agents that possess a genome comprised of 10 double-stranded RNA segments encased in two concentric protein capsids. Like virtually all RNA viruses, an RNA-dependent RNA polymerase (RdRp enzyme is required for viral propagation. RdRp sequences have been determined for the prototype mammalian orthoreoviruses and for several other closely-related reoviruses, including aquareoviruses, but have not yet been reported for any avian orthoreoviruses. Results We determined the L2 genome segment nucleotide sequences, which encode the RdRp proteins, of two different avian reoviruses, strains ARV138 and ARV176 in order to define conserved and variable regions within reovirus RdRp proteins and to better delineate structure/function of this important enzyme. The ARV138 L2 genome segment was 3829 base pairs long, whereas the ARV176 L2 segment was 3830 nucleotides long. Both segments were predicted to encode λB RdRp proteins 1259 amino acids in length. Alignments of these newly-determined ARV genome segments, and their corresponding proteins, were performed with all currently available homologous mammalian reovirus (MRV and aquareovirus (AqRV genome segment and protein sequences. There was ~55% amino acid identity between ARV λB and MRV λ3 proteins, making the RdRp protein the most highly conserved of currently known orthoreovirus proteins, and there was ~28% identity between ARV λB and homologous MRV and AqRV RdRp proteins. Predictive structure/function mapping of identical and conserved residues within the known MRV λ3 atomic structure indicated most identical amino acids and conservative substitutions were located near and within predicted catalytic domains and lining RdRp channels, whereas non-identical amino acids were generally located on the molecule's surfaces. Conclusion The ARV λB and MRV λ3 proteins showed the highest ARV:MRV identity values (~55% amongst all currently known ARV and MRV

  2. [From random mutagenesis to precise genome editing: the development and evolution of genome editing techniques in Drosophila].

    Science.gov (United States)

    Su, Fang; Huang, Zong-liang; Guo, Ya-wen; Jiao, Ren-jie; Zi, Li; Chen, Jian-ming; Liu, Ji-yong

    2016-01-01

    Drosophila melanogaster, an important model organism for studying life science, has contributed more to the research of genetics, developmental biology and biomedicine with the development of genome editing techniques. Drosophila genome-editing techniques have evolved from random mutagenesis to precise genome editing and from simple mutant construction to diverse genome editing methods since the 20th century. Chemical mutagenesis, using Ethyl methanesulfonate (EMS), is an important technique to study gene function in forward genetics, however, the precise knockout of Drosophila genes could not be achieved. The gene targeting technology, based on homologous recombination, has accomplished the precise editing of Drosophila genome for the first time, but with low efficiency. The CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein)-mediated precise genome editing is simple, fast and highly efficient compared with the gene targeting technology in Drosophila. In this review, we focus on Drosophila gene knockout, and summarize the evolution of genome editing techniques in Drosophila, emphasizing the development and applications of gene targeting, zinc-finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN) and CRISPR/Cas9 techniques.

  3. The Informatics (R) Evolution in Biology: The Case of Genomics

    International Nuclear Information System (INIS)

    Michan Aguirre, Layla; Alvarez, Eduardo; Montoya Perez, Laura Elizabeth

    2011-01-01

    Biology has been revolutionized by the introduction of new disciplines, such is the case of genomics that introduced in the 80s has turned unlikely to modern science, the discipline refers to the study not only of genes but their roles, relations among themselves and with the environment. Arises, with the consolidation of the human genome project and introduces us to a period of transition in which specific genetic knowledge becomes critical. Differs from other approaches in the type of information provided, the prospects for technical and intellectual improvements in the collection and use of data from the whole genome, (Murray, 2000). This work aims to investigate the recent biology, in particular, to show the history of genomics, through literature search and bibliometric analysis.

  4. Genomic quantitative genetics to study evolution in the wild

    NARCIS (Netherlands)

    Gienapp, P.; Fior, Simone; Guillaume, Frédéric; Lasky, Jesse R.; Sork, Victoria L.; Csilléry, Katalin

    2017-01-01

    Quantitative genetic theory provides a means of estimating the evolutionary potential of natural populations. However, this approach was previously only feasible in systems where the genetic relatedness between individuals could be inferred from pedigrees or experimental crosses. The genomic

  5. Genomic changes under rapid evolution : Selection for parasitoid resistance

    NARCIS (Netherlands)

    Jalvingh, Kirsten M; Chang, Peter L; Nuzhdin, Sergey V; Wertheim, Bregje

    2014-01-01

    In this study, we characterize changes in the genome during a swift evolutionary adaptation, by combining experimental selection with high-throughput sequencing. We imposed strong experimental selection on an ecologically relevant trait, parasitoid resistance in Drosophila melanogaster against

  6. This Déjà vu feeling--analysis of multidomain protein evolution in eukaryotic genomes.

    Directory of Open Access Journals (Sweden)

    Christian M Zmasek

    Full Text Available Evolutionary innovation in eukaryotes and especially animals is at least partially driven by genome rearrangements and the resulting emergence of proteins with new domain combinations, and thus potentially novel functionality. Given the random nature of such rearrangements, one could expect that proteins with particularly useful multidomain combinations may have been rediscovered multiple times by parallel evolution. However, existing reports suggest a minimal role of this phenomenon in the overall evolution of eukaryotic proteomes. We assembled a collection of 172 complete eukaryotic genomes that is not only the largest, but also the most phylogenetically complete set of genomes analyzed so far. By employing a maximum parsimony approach to compare repertoires of Pfam domains and their combinations, we show that independent evolution of domain combinations is significantly more prevalent than previously thought. Our results indicate that about 25% of all currently observed domain combinations have evolved multiple times. Interestingly, this percentage is even higher for sets of domain combinations in individual species, with, for instance, 70% of the domain combinations found in the human genome having evolved independently at least once in other species. We also show that previous, much lower estimates of this rate are most likely due to the small number and biased phylogenetic distribution of the genomes analyzed. The process of independent emergence of identical domain combination is widespread, not limited to domains with specific functional categories. Besides data from large-scale analyses, we also present individual examples of independent domain combination evolution. The surprisingly large contribution of parallel evolution to the development of the domain combination repertoire in extant genomes has profound consequences for our understanding of the evolution of pathways and cellular processes in eukaryotes and for comparative

  7. Genomic changes under rapid evolution: selection for parasitoid resistance

    Science.gov (United States)

    Jalvingh, Kirsten M.; Chang, Peter L.; Nuzhdin, Sergey V.; Wertheim, Bregje

    2014-01-01

    In this study, we characterize changes in the genome during a swift evolutionary adaptation, by combining experimental selection with high-throughput sequencing. We imposed strong experimental selection on an ecologically relevant trait, parasitoid resistance in Drosophila melanogaster against Asobara tabida. Replicated selection lines rapidly evolved towards enhanced immunity. Larval survival after parasitization increased twofold after just five generations of selection. Whole-genome sequencing revealed that the fast and strong selection response in innate immunity produced multiple, highly localized genomic changes. We identified narrow genomic regions carrying a significant signature of selection, which were present across all chromosomes and covered in total less than 5% of the whole D. melanogaster genome. We identified segregating sites with highly significant changes in frequency between control and selection lines that fell within these narrow ‘selected regions’. These segregating sites were associated with 42 genes that constitute possible targets of selection. A region on chromosome 2R was highly enriched in significant segregating sites and may be of major effect on parasitoid defence. The high genetic variability and small linkage blocks in our base population are likely responsible for allowing this complex trait to evolve without causing widespread erosive effects in the genome, even under such a fast and strong selective regime. PMID:24500162

  8. What transposable elements tell us about genome organization and evolution: the case of Drosophila.

    Science.gov (United States)

    Biémont, C; Vieira, C

    2005-01-01

    Transposable elements (TEs) have been identified in every organism in which they have been looked for. The sequencing of large genomes, such as the human genome and those of Drosophila, Arabidopsis, Caenorhabditis, has also shown that they are a major constituent of these genomes, accounting for 15% of the genome of Drosophila, 45% of the human genome, and more than 70% in some plants and amphibians. Compared with the 1% of genomic DNA dedicated to protein-coding sequences in the human genome, this has prompted various researchers to suggest that the TEs and the other repetitive sequences that constitute the so-called "noncoding DNA", are where the most stimulating discoveries will be made in the future (Bromham, 2002). We are therefore getting further and further from the original idea that this DNA was simply "junk DNA", that owed its presence in the genome entirely to its capacity for selfish transposition. Our understanding of the structures of TEs, their distribution along the genomes, their sequence and insertion polymorphisms within genomes, and within and between populations and species, their impact on genes and on the regulatory mechanisms of genetic expression, their effects on exon shuffling and other phenomena that reshape the genome, and their impact on genome size has increased dramatically in recent years. This leads to a more general picture of the impact of TEs on genomes, though many copies are still mainly selfish or junk DNA. In this review we focus mainly on discoveries made in Drosophila, but we also use information about other genomes when this helps to elucidate the general processes involved in the organization, plasticity, and evolution of genomes.

  9. Genomic Diversity and Evolution of the Fish Pathogen Flavobacterium psychrophilum

    Directory of Open Access Journals (Sweden)

    Eric Duchaud

    2018-02-01

    Full Text Available Flavobacterium psychrophilum, the etiological agent of rainbow trout fry syndrome and bacterial cold-water disease in salmonid fish, is currently one of the main bacterial pathogens hampering the productivity of salmonid farming worldwide. In this study, the genomic diversity of the F. psychrophilum species is analyzed using a set of 41 genomes, including 30 newly sequenced isolates. These were selected on the basis of available MLST data with the two-fold objective of maximizing the coverage of the species diversity and of allowing a focus on the main clonal complex (CC-ST10 infecting farmed rainbow trout (Oncorhynchus mykiss worldwide. The results reveal a bacterial species harboring a limited genomic diversity both in terms of nucleotide diversity, with ~0.3% nucleotide divergence inside CDSs in pairwise genome comparisons, and in terms of gene repertoire, with the core genome accounting for ~80% of the genes in each genome. The pan-genome seems nevertheless “open” according to the scaling exponent of a power-law fitted on the rate of new gene discovery when genomes are added one-by-one. Recombination is a key component of the evolutionary process of the species as seen in the high level of apparent homoplasy in the core genome. Using a Hidden Markov Model to delineate recombination tracts in pairs of closely related genomes, the average recombination tract length was estimated to ~4.0 Kbp and the typical ratio of the contributions of recombination and mutations to nucleotide-level differentiation (r/m was estimated to ~13. Within CC-ST10, evolutionary distances computed on non-recombined regions and comparisons between 22 isolates sampled up to 27 years apart suggest a most recent common ancestor in the second half of the nineteenth century in North America with subsequent diversification and transmission of this clonal complex coinciding with the worldwide expansion of rainbow trout farming. With the goal to promote the development of

  10. Avian anemia's

    OpenAIRE

    Raukar Jelena

    2005-01-01

    This paper deals with avian anemia's classified by MCHC/MCV and with types of anemia's. Father hematological and immunological research is needed to secure information on hematological parameters in different avian species at their earliest age. Anemia is a common clinical finding in birds because the avian erythrocyte half - life is much shorter than the mammalian. Therefore anemia should be determined as soon as possible. Researchers should standardize hematologica...

  11. Molecular characterization and complete genome sequence of avian paramyxovirus type 4 prototype strain duck/Hong Kong/D3/75

    Directory of Open Access Journals (Sweden)

    Collins Peter L

    2008-10-01

    Full Text Available Abstract Background Avian paramyxoviruses (APMVs are frequently isolated from domestic and wild birds throughout the world. All APMVs, except avian metapneumovirus, are classified in the genus Avulavirus of the family Paramyxoviridae. At present, the APMVs of genus Avulavirus are divided into nine serological types (APMV 1–9. Newcastle disease virus represents APMV-1 and is the most characterized among all APMV types. Very little is known about the molecular characteristics and pathogenicity of APMV 2–9. Results As a first step towards understanding the molecular genetics and pathogenicity of APMV-4, we have sequenced the complete genome of APMV-4 strain duck/Hong Kong/D3/75 and determined its pathogenicity in embryonated chicken eggs. The genome of APMV-4 is 15,054 nucleotides (nt in length, which is consistent with the "rule of six". The genome contains six non-overlapping genes in the order 3'-N-P/V-M-F-HN-L-5'. The genes are flanked on either side by highly conserved transcription start and stop signals and have intergenic sequences varying in length from 9 to 42 nt. The genome contains a 55 nt leader region at 3' end. The 5' trailer region is 17 nt, which is the shortest in the family Paramyxoviridae. Analysis of mRNAs transcribed from the P gene showed that 35% of the transcripts were edited by insertion of one non-templated G residue at an editing site leading to production of V mRNAs. No message was detected that contained insertion of two non-templated G residues, indicating that the W mRNAs are inefficiently produced in APMV-4 infected cells. The cleavage site of the F protein (DIPQR↓F does not conform to the preferred cleavage site of the ubiquitous intracellular protease furin. However, exogenous proteases were not required for the growth of APMV-4 in cell culture, indicating that the cleavage does not depend on a furin site. Conclusion Phylogenic analysis of the nucleotide sequences of viruses of all five genera of the family

  12. Evolution and Diversity in Human Herpes Simplex Virus Genomes

    Science.gov (United States)

    Gatherer, Derek; Ochoa, Alejandro; Greenbaum, Benjamin; Dolan, Aidan; Bowden, Rory J.; Enquist, Lynn W.; Legendre, Matthieu; Davison, Andrew J.

    2014-01-01

    Herpes simplex virus 1 (HSV-1) causes a chronic, lifelong infection in >60% of adults. Multiple recent vaccine trials have failed, with viral diversity likely contributing to these failures. To understand HSV-1 diversity better, we comprehensively compared 20 newly sequenced viral genomes from China, Japan, Kenya, and South Korea with six previously sequenced genomes from the United States, Europe, and Japan. In this diverse collection of passaged strains, we found that one-fifth of the newly sequenced members share a gene deletion and one-third exhibit homopolymeric frameshift mutations (HFMs). Individual strains exhibit genotypic and potential phenotypic variation via HFMs, deletions, short sequence repeats, and single-nucleotide polymorphisms, although the protein sequence identity between strains exceeds 90% on average. In the first genome-scale analysis of positive selection in HSV-1, we found signs of selection in specific proteins and residues, including the fusion protein glycoprotein H. We also confirmed previous results suggesting that recombination has occurred with high frequency throughout the HSV-1 genome. Despite this, the HSV-1 strains analyzed clustered by geographic origin during whole-genome distance analysis. These data shed light on likely routes of HSV-1 adaptation to changing environments and will aid in the selection of vaccine antigens that are invariant worldwide. PMID:24227835

  13. Exploring Diversification and Genome Size Evolution in Extant Gymnosperms through Phylogenetic Synthesis

    Directory of Open Access Journals (Sweden)

    J. Gordon Burleigh

    2012-01-01

    Full Text Available Gymnosperms, comprising cycads, Ginkgo, Gnetales, and conifers, represent one of the major groups of extant seed plants. Yet compared to angiosperms, little is known about the patterns of diversification and genome evolution in gymnosperms. We assembled a phylogenetic supermatrix containing over 4.5 million nucleotides from 739 gymnosperm taxa. Although 93.6% of the cells in the supermatrix are empty, the data reveal many strongly supported nodes that are generally consistent with previous phylogenetic analyses, including weak support for Gnetales sister to Pinaceae. A lineage through time plot suggests elevated rates of diversification within the last 100 million years, and there is evidence of shifts in diversification rates in several clades within cycads and conifers. A likelihood-based analysis of the evolution of genome size in 165 gymnosperms finds evidence for heterogeneous rates of genome size evolution due to an elevated rate in Pinus.

  14. Eggs, embryos and the evolution of imprinting: insights from the platypus genome.

    Science.gov (United States)

    Renfree, Marilyn B; Papenfuss, Anthony T; Shaw, Geoff; Pask, Andrew J

    2009-01-01

    Genomic imprinting is widespread in eutherian and marsupial mammals. Although there have been many hypotheses to explain why genomic imprinting evolved in mammals, few have examined how it arose. The host defence hypothesis suggests that imprinting evolved from existing mechanisms within the cell that act to silence foreign DNA elements that insert into the genome. However, the changes to the mammalian genome that accompanied the evolution of imprinting have been hard to define due to the absence of large-scale genomic resources from all extant classes. The recent release of the platypus genome sequence has provided the first opportunity to make comparisons between prototherian (monotreme, which show no signs of imprinting) and therian (marsupial and eutherian, which have imprinting) mammals. We compared the distribution of repeat elements known to attract epigenetic silencing across the genome from monotremes and therian mammals, particularly focusing on the orthologous imprinted regions. Our analyses show that the platypus has significantly fewer repeats of certain classes in the regions of the genome that have become imprinted in therian mammals. The accumulation of repeats, especially long-terminal repeats and DNA elements, in therian imprinted genes and gene clusters therefore appears to be coincident with, and may have been a potential driving force in, the development of mammalian genomic imprinting. Comparative platypus genome analyses of orthologous imprinted regions have provided strong support for the host defence hypothesis to explain the origin of imprinting.

  15. Genome analysis of the platypus reveals unique signatures of evolution.

    Science.gov (United States)

    Warren, Wesley C; Hillier, LaDeana W; Marshall Graves, Jennifer A; Birney, Ewan; Ponting, Chris P; Grützner, Frank; Belov, Katherine; Miller, Webb; Clarke, Laura; Chinwalla, Asif T; Yang, Shiaw-Pyng; Heger, Andreas; Locke, Devin P; Miethke, Pat; Waters, Paul D; Veyrunes, Frédéric; Fulton, Lucinda; Fulton, Bob; Graves, Tina; Wallis, John; Puente, Xose S; López-Otín, Carlos; Ordóñez, Gonzalo R; Eichler, Evan E; Chen, Lin; Cheng, Ze; Deakin, Janine E; Alsop, Amber; Thompson, Katherine; Kirby, Patrick; Papenfuss, Anthony T; Wakefield, Matthew J; Olender, Tsviya; Lancet, Doron; Huttley, Gavin A; Smit, Arian F A; Pask, Andrew; Temple-Smith, Peter; Batzer, Mark A; Walker, Jerilyn A; Konkel, Miriam K; Harris, Robert S; Whittington, Camilla M; Wong, Emily S W; Gemmell, Neil J; Buschiazzo, Emmanuel; Vargas Jentzsch, Iris M; Merkel, Angelika; Schmitz, Juergen; Zemann, Anja; Churakov, Gennady; Kriegs, Jan Ole; Brosius, Juergen; Murchison, Elizabeth P; Sachidanandam, Ravi; Smith, Carly; Hannon, Gregory J; Tsend-Ayush, Enkhjargal; McMillan, Daniel; Attenborough, Rosalind; Rens, Willem; Ferguson-Smith, Malcolm; Lefèvre, Christophe M; Sharp, Julie A; Nicholas, Kevin R; Ray, David A; Kube, Michael; Reinhardt, Richard; Pringle, Thomas H; Taylor, James; Jones, Russell C; Nixon, Brett; Dacheux, Jean-Louis; Niwa, Hitoshi; Sekita, Yoko; Huang, Xiaoqiu; Stark, Alexander; Kheradpour, Pouya; Kellis, Manolis; Flicek, Paul; Chen, Yuan; Webber, Caleb; Hardison, Ross; Nelson, Joanne; Hallsworth-Pepin, Kym; Delehaunty, Kim; Markovic, Chris; Minx, Pat; Feng, Yucheng; Kremitzki, Colin; Mitreva, Makedonka; Glasscock, Jarret; Wylie, Todd; Wohldmann, Patricia; Thiru, Prathapan; Nhan, Michael N; Pohl, Craig S; Smith, Scott M; Hou, Shunfeng; Nefedov, Mikhail; de Jong, Pieter J; Renfree, Marilyn B; Mardis, Elaine R; Wilson, Richard K

    2008-05-08

    We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation.

  16. Genome analysis of the platypus reveals unique signatures of evolution

    Science.gov (United States)

    Warren, Wesley C.; Hillier, LaDeana W.; Marshall Graves, Jennifer A.; Birney, Ewan; Ponting, Chris P.; Grützner, Frank; Belov, Katherine; Miller, Webb; Clarke, Laura; Chinwalla, Asif T.; Yang, Shiaw-Pyng; Heger, Andreas; Locke, Devin P.; Miethke, Pat; Waters, Paul D.; Veyrunes, Frédéric; Fulton, Lucinda; Fulton, Bob; Graves, Tina; Wallis, John; Puente, Xose S.; López-Otín, Carlos; Ordóñez, Gonzalo R.; Eichler, Evan E.; Chen, Lin; Cheng, Ze; Deakin, Janine E.; Alsop, Amber; Thompson, Katherine; Kirby, Patrick; Papenfuss, Anthony T.; Wakefield, Matthew J.; Olender, Tsviya; Lancet, Doron; Huttley, Gavin A.; Smit, Arian F. A.; Pask, Andrew; Temple-Smith, Peter; Batzer, Mark A.; Walker, Jerilyn A.; Konkel, Miriam K.; Harris, Robert S.; Whittington, Camilla M.; Wong, Emily S. W.; Gemmell, Neil J.; Buschiazzo, Emmanuel; Vargas Jentzsch, Iris M.; Merkel, Angelika; Schmitz, Juergen; Zemann, Anja; Churakov, Gennady; Kriegs, Jan Ole; Brosius, Juergen; Murchison, Elizabeth P.; Sachidanandam, Ravi; Smith, Carly; Hannon, Gregory J.; Tsend-Ayush, Enkhjargal; McMillan, Daniel; Attenborough, Rosalind; Rens, Willem; Ferguson-Smith, Malcolm; Lefèvre, Christophe M.; Sharp, Julie A.; Nicholas, Kevin R.; Ray, David A.; Kube, Michael; Reinhardt, Richard; Pringle, Thomas H.; Taylor, James; Jones, Russell C.; Nixon, Brett; Dacheux, Jean-Louis; Niwa, Hitoshi; Sekita, Yoko; Huang, Xiaoqiu; Stark, Alexander; Kheradpour, Pouya; Kellis, Manolis; Flicek, Paul; Chen, Yuan; Webber, Caleb; Hardison, Ross; Nelson, Joanne; Hallsworth-Pepin, Kym; Delehaunty, Kim; Markovic, Chris; Minx, Pat; Feng, Yucheng; Kremitzki, Colin; Mitreva, Makedonka; Glasscock, Jarret; Wylie, Todd; Wohldmann, Patricia; Thiru, Prathapan; Nhan, Michael N.; Pohl, Craig S.; Smith, Scott M.; Hou, Shunfeng; Renfree, Marilyn B.; Mardis, Elaine R.; Wilson, Richard K.

    2009-01-01

    We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation. PMID:18464734

  17. Genome evolution in the allotetraploid frog Xenopus laevis.

    Science.gov (United States)

    Session, Adam M; Uno, Yoshinobu; Kwon, Taejoon; Chapman, Jarrod A; Toyoda, Atsushi; Takahashi, Shuji; Fukui, Akimasa; Hikosaka, Akira; Suzuki, Atsushi; Kondo, Mariko; van Heeringen, Simon J; Quigley, Ian; Heinz, Sven; Ogino, Hajime; Ochi, Haruki; Hellsten, Uffe; Lyons, Jessica B; Simakov, Oleg; Putnam, Nicholas; Stites, Jonathan; Kuroki, Yoko; Tanaka, Toshiaki; Michiue, Tatsuo; Watanabe, Minoru; Bogdanovic, Ozren; Lister, Ryan; Georgiou, Georgios; Paranjpe, Sarita S; van Kruijsbergen, Ila; Shu, Shengquiang; Carlson, Joseph; Kinoshita, Tsutomu; Ohta, Yuko; Mawaribuchi, Shuuji; Jenkins, Jerry; Grimwood, Jane; Schmutz, Jeremy; Mitros, Therese; Mozaffari, Sahar V; Suzuki, Yutaka; Haramoto, Yoshikazu; Yamamoto, Takamasa S; Takagi, Chiyo; Heald, Rebecca; Miller, Kelly; Haudenschild, Christian; Kitzman, Jacob; Nakayama, Takuya; Izutsu, Yumi; Robert, Jacques; Fortriede, Joshua; Burns, Kevin; Lotay, Vaneet; Karimi, Kamran; Yasuoka, Yuuri; Dichmann, Darwin S; Flajnik, Martin F; Houston, Douglas W; Shendure, Jay; DuPasquier, Louis; Vize, Peter D; Zorn, Aaron M; Ito, Michihiko; Marcotte, Edward M; Wallingford, John B; Ito, Yuzuru; Asashima, Makoto; Ueno, Naoto; Matsuda, Yoichi; Veenstra, Gert Jan C; Fujiyama, Asao; Harland, Richard M; Taira, Masanori; Rokhsar, Daniel S

    2016-10-20

    To explore the origins and consequences of tetraploidy in the African clawed frog, we sequenced the Xenopus laevis genome and compared it to the related diploid X. tropicalis genome. We characterize the allotetraploid origin of X. laevis by partitioning its genome into two homoeologous subgenomes, marked by distinct families of 'fossil' transposable elements. On the basis of the activity of these elements and the age of hundreds of unitary pseudogenes, we estimate that the two diploid progenitor species diverged around 34 million years ago (Ma) and combined to form an allotetraploid around 17-18 Ma. More than 56% of all genes were retained in two homoeologous copies. Protein function, gene expression, and the amount of conserved flanking sequence all correlate with retention rates. The subgenomes have evolved asymmetrically, with one chromosome set more often preserving the ancestral state and the other experiencing more gene loss, deletion, rearrangement, and reduced gene expression.

  18. Evolution, global spread, and pathogenicity of highly pathogenic avian influenza H5Nx clade 2.3.4.4

    Science.gov (United States)

    Novel subtypes of Eurasian-origin (Goose/Guangdong lineage) H5 highly pathogenic avian influenza (HPAI) viruses belonging to clade 2.3.4 such as H5N2, H5N5, H5N6, and H5N8 have been identified in China since 2008 and subsequently evolved into four genetically distinct groups (A – D) of clade 2.3.4.4...

  19. Peltaster fructicola genome reveals evolution from an invasive phytopathogen to an ectophytic parasite

    OpenAIRE

    Chao Xu; Huan Chen; Mark L. Gleason; Jin-Rong Xu; Huiquan Liu; Rong Zhang; Guangyu Sun

    2016-01-01

    Sooty blotch and flyspeck (SBFS) fungi are unconventional plant pathogens that cause economic losses by blemishing the surface appearance of infected fruit. Here, we introduce the 18.14-Mb genome of Peltaster fructicola, one of the most prevalent SBFS species on apple. This undersized assembly contains only 8,334 predicted protein-coding genes and a very small repertoire of repetitive elements. Phylogenomics and comparative genomics revealed that P. fructicola had undergone a reductive evolut...

  20. Insights on the evolution of mycoparasitism from the genome of Clonostachys rosea

    DEFF Research Database (Denmark)

    Karlsson, Magnus; Durling, Mikael Brandström; Choi, Jaeyoung

    2015-01-01

    Clonostachys rosea is a mycoparasitic fungus that can control several important plant diseases. Here we report on the genome sequencing of C. rosea and a comparative genome analysis, in order to resolve the phylogenetic placement of C. rosea and to study the evolution of mycoparasitism as a fungal...... of gene family evolution reveals several distinct differences between the included mycoparasites. C. rosea contains significantly more ATP-binding cassette (ABC) transporters, polyketide synthases, cytochrome P450 monooxygenases, pectin lyases, glucose-methanol-choline oxidoreductases and lytic...

  1. Niche differentiation and evolution of comammox Nitrospira through a comparative genomics analysis

    DEFF Research Database (Denmark)

    Palomo, Alejandro; Fowler, Jane; Pedersen, Anders Gorm

    , ammonia oxidizing prokaryotes (AOP) and nitrite oxidizing bacteria (NOB). Recently, several articles have shown the capability of a single microorganism, belonging to the genus Nitrospira, to carry out the complete oxidation of ammonia to nitrate (comammox). Nitrospira spp. are widespread in both natural......) and high quality published Nitrospira genomes, to reveal distinct genomic features within Nitrospira. In addition, we investigated the evolution of the ammonia oxidation pathway in comammox Nitrospira. This analysis revealed distinct genetic capabilities of the different comammox clades and canonical...... of the ecology and evolution of the recently discovered comammox Nitrospira....

  2. Evolution of pathogenicity and sexual reproduction in eight Candida genomes

    NARCIS (Netherlands)

    Butler, G.; Rasmussen, M.D.; Lin, M.F.; Santos, M.A.S.; Sakthikumar, S.; Munro, C.A.; Rheinbay, E.; Grabherr, M.; Forche, A.; Reedy, J.L.; Agrafioti, I.; Arnaud, M.B.; Bates, S.; Brown, A.J.P.; Brunke, S.; Costanzo, M.C.; Fitzpatrick, D.A.; de Groot, P.W.J.; Harris, D.; Hoyer, L.L.; Hube, B.; Klis, F.M.; Kodira, C.; Lennard, N.; Logue, M.E.; Martin, R.; Neiman, A.M.; Nikolaou, E.; Quail, M.A.; Quinn, J.; Santos, M.C.; Schmitzberger, F.F.; Sherlock, G.; Shah, P.; Silverstein, K.A.T.; Skrzypek, M.S.; Soll, D.; Staggs, R.; Stansfield, I.; Stumpf, M.P.H.; Sudbery, P.E.; Srikantha, T.; Zeng, Q.; Berman, J.; Berriman, M.; Heitman, J.; Gow, N.A.R.; Lorenz, M.C.; Birren, B.W.; Kellis, M.; Cuomo, C.A.

    2009-01-01

    Candida species are the most common cause of opportunistic fungal infection worldwide. Here we report the genome sequences of six Candida species and compare these and related pathogens and non-pathogens. There are significant expansions of cell wall, secreted and transporter gene families in

  3. Biology, genome organization and evolution of parvoviruses in marine shrimp

    Science.gov (United States)

    A number of parvoviruses are now know to infect marine shrimp, and these viruses alone or in combination with other viruses have the potential to cause major losses in shrimp aquaculture globally. This review provides a comprehensive overview of the biology, genome organization, gene expression, and...

  4. Evolution of closely linked gene pairs in vertebrate genomes.

    NARCIS (Netherlands)

    Franck, E.; Hulsen, T.; Huynen, M.A.; Jong, W.W.W. de; Lubsen, N.H.; Madsen, O.

    2008-01-01

    The orientation of closely linked genes in mammalian genomes is not random: there are more head-to-head (h2h) gene pairs than expected. To understand the origin of this enrichment in h2h gene pairs, we have analyzed the phylogenetic distribution of gene pairs separated by less than 600 bp of

  5. Evolution of closely linked gene pairs in vertebrate genomes

    NARCIS (Netherlands)

    Franck, E.; Hulsen, T.; Huynen, M.A.; Jong, de W.W.; Lunsen, N.H.; Madsen, O.

    2008-01-01

    The orientation of closely linked genes in mammalian genomes is not random: there are more head-to-head (h2h) gene pairs than expected. To understand the origin of this enrichment in h2h gene pairs, we have analyzed the phylogenetic distribution of gene pairs separated by less than 600 bp of

  6. The pineapple genome and the evolution of CAM photosynthesis

    Science.gov (United States)

    Pineapple (Ananas comosus (L.) Merr.) is the most economically valuable crop possessing crassulacean acid metabolism (CAM), a photosynthetic carbon assimilation pathway with high water-use efficiency, and the second most important tropical fruit. We sequenced the genomes of pineapple varieties F153 ...

  7. Reciprocal genomic evolution in the ant-fungus agricultural symbiosis

    DEFF Research Database (Denmark)

    Nygaard, Sanne; Hu, Haofu; Li, Cai

    2016-01-01

    The attine ant-fungus agricultural symbiosis evolved over tens of millions of years, producing complex societies with industrial-scale farming analogous to that of humans. Here we document reciprocal shifts in the genomes and transcriptomes of seven fungus-farming ant species and their fungal...

  8. Karyotypic Evolution of the Common and Silverleaf Sunflower Genomes

    Directory of Open Access Journals (Sweden)

    Adam F. Heesacker

    2009-11-01

    Full Text Available Silverleaf sunflower ( Torrey and Gray has been an important source of favorable alleles for broadening genetic diversity and enhancing agriculturally important traits in common sunflower ( L., and, as the closest living relative of , provides an excellent model for understanding how apparently maladaptive chromosomal rearrangements became established in this genus. The genomes of and were comparatively mapped to identify syntenic and rearranged chromosomes and develop genomic blueprints for predicting the impact of chromosomal rearrangements on interspecific gene flow. Syntenic chromosomal segments were identified and aligned using 131 orthologous DNA marker loci distributed throughout the genome (299 DNA marker loci were mapped in . We identified 28 colinear chromosomal segments, 10 colinear chromosomes, and seven chromosomal rearrangements (five non-reciprocal translocations and two inversions. Four chromosomes carrying non-reciprocal translocations apparently arose from the duplication of two chromosomes, and three chromosomes apparently arose from end-to-end or end-to-opposite-end fusions of chromosomes or chromosome segments. Chromosome duplication may reduce the initial fitness costs of chromosomal rearrangements, thereby facilitating their establishment. Despite dramatic differences in chromosome architecture, a significant fraction of the genome appears to be accessible for introgression into .

  9. Complete genome viral phylogenies suggests the concerted evolution of regulatory cores and accessory satellites.

    Science.gov (United States)

    de Andrade Zanotto, Paolo Marinho; Krakauer, David C

    2008-01-01

    We consider the concerted evolution of viral genomes in four families of DNA viruses. Given the high rate of horizontal gene transfer among viruses and their hosts, it is an open question as to how representative particular genes are of the evolutionary history of the complete genome. To address the concerted evolution of viral genes, we compared genomic evolution across four distinct, extant viral families. For all four viral families we constructed DNA-dependent DNA polymerase-based (DdDp) phylogenies and in addition, whole genome sequence, as quantitative descriptions of inter-genome relationships. We found that the history of the polymerase gene was highly predictive of the history of the genome as a whole, which we explain in terms of repeated, co-divergence events of the core DdDp gene accompanied by a number of satellite, accessory genetic loci. We also found that the rate of gene gain in baculovirus and poxviruses proceeds significantly more quickly than the rate of gene loss and that there is convergent acquisition of satellite functions promoting contextual adaptation when distinct viral families infect related hosts. The congruence of the genome and polymerase trees suggests that a large set of viral genes, including polymerase, derive from a phylogenetically conserved core of genes of host origin, secondarily reinforced by gene acquisition from common hosts or co-infecting viruses within the host. A single viral genome can be thought of as a mutualistic network, with the core genes acting as an effective host and the satellite genes as effective symbionts. Larger virus genomes show a greater departure from linkage equilibrium between core and satellites functions.

  10. Repair-mediated duplication by capture of proximal chromosomal DNA has shaped vertebrate genome evolution.

    Directory of Open Access Journals (Sweden)

    John K Pace

    2009-05-01

    Full Text Available DNA double-strand breaks (DSBs are a common form of cellular damage that can lead to cell death if not repaired promptly. Experimental systems have shown that DSB repair in eukaryotic cells is often imperfect and may result in the insertion of extra chromosomal DNA or the duplication of existing DNA at the breakpoint. These events are thought to be a source of genomic instability and human diseases, but it is unclear whether they have contributed significantly to genome evolution. Here we developed an innovative computational pipeline that takes advantage of the repetitive structure of genomes to detect repair-mediated duplication events (RDs that occurred in the germline and created insertions of at least 50 bp of genomic DNA. Using this pipeline we identified over 1,000 probable RDs in the human genome. Of these, 824 were intra-chromosomal, closely linked duplications of up to 619 bp bearing the hallmarks of the synthesis-dependent strand-annealing repair pathway. This mechanism has duplicated hundreds of sequences predicted to be functional in the human genome, including exons, UTRs, intron splice sites and transcription factor binding sites. Dating of the duplication events using comparative genomics and experimental validation revealed that the mechanism has operated continuously but with decreasing intensity throughout primate evolution. The mechanism has produced species-specific duplications in all primate species surveyed and is contributing to genomic variation among humans. Finally, we show that RDs have also occurred, albeit at a lower frequency, in non-primate mammals and other vertebrates, indicating that this mechanism has been an important force shaping vertebrate genome evolution.

  11. Distribution and evolution of repeated sequences in genomes of Triatominae (Hemiptera-Reduviidae inferred from genomic in situ hybridization.

    Directory of Open Access Journals (Sweden)

    Sebastian Pita

    Full Text Available The subfamily Triatominae, vectors of Chagas disease, comprises 140 species characterized by a highly homogeneous chromosome number. We analyzed the chromosomal distribution and evolution of repeated sequences in Triatominae genomes by Genomic in situ Hybridization using Triatoma delpontei and Triatoma infestans genomic DNAs as probes. Hybridizations were performed on their own chromosomes and on nine species included in six genera from the two main tribes: Triatomini and Rhodniini. Genomic probes clearly generate two different hybridization patterns, dispersed or accumulated in specific regions or chromosomes. The three used probes generate the same hybridization pattern in each species. However, these patterns are species-specific. In closely related species, the probes strongly hybridized in the autosomal heterochromatic regions, resembling C-banding and DAPI patterns. However, in more distant species these co-localizations are not observed. The heterochromatic Y chromosome is constituted by highly repeated sequences, which is conserved among 10 species of Triatomini tribe suggesting be an ancestral character for this group. However, the Y chromosome in Rhodniini tribe is markedly different, supporting the early evolutionary dichotomy between both tribes. In some species, sex chromosomes and autosomes shared repeated sequences, suggesting meiotic chromatin exchanges among these heterologous chromosomes. Our GISH analyses enabled us to acquire not only reliable information about autosomal repeated sequences distribution but also an insight into sex chromosome evolution in Triatominae. Furthermore, the differentiation obtained by GISH might be a valuable marker to establish phylogenetic relationships and to test the controversial origin of the Triatominae subfamily.

  12. Distribution and evolution of repeated sequences in genomes of Triatominae (Hemiptera-Reduviidae) inferred from genomic in situ hybridization.

    Science.gov (United States)

    Pita, Sebastian; Panzera, Francisco; Sánchez, Antonio; Panzera, Yanina; Palomeque, Teresa; Lorite, Pedro

    2014-01-01

    The subfamily Triatominae, vectors of Chagas disease, comprises 140 species characterized by a highly homogeneous chromosome number. We analyzed the chromosomal distribution and evolution of repeated sequences in Triatominae genomes by Genomic in situ Hybridization using Triatoma delpontei and Triatoma infestans genomic DNAs as probes. Hybridizations were performed on their own chromosomes and on nine species included in six genera from the two main tribes: Triatomini and Rhodniini. Genomic probes clearly generate two different hybridization patterns, dispersed or accumulated in specific regions or chromosomes. The three used probes generate the same hybridization pattern in each species. However, these patterns are species-specific. In closely related species, the probes strongly hybridized in the autosomal heterochromatic regions, resembling C-banding and DAPI patterns. However, in more distant species these co-localizations are not observed. The heterochromatic Y chromosome is constituted by highly repeated sequences, which is conserved among 10 species of Triatomini tribe suggesting be an ancestral character for this group. However, the Y chromosome in Rhodniini tribe is markedly different, supporting the early evolutionary dichotomy between both tribes. In some species, sex chromosomes and autosomes shared repeated sequences, suggesting meiotic chromatin exchanges among these heterologous chromosomes. Our GISH analyses enabled us to acquire not only reliable information about autosomal repeated sequences distribution but also an insight into sex chromosome evolution in Triatominae. Furthermore, the differentiation obtained by GISH might be a valuable marker to establish phylogenetic relationships and to test the controversial origin of the Triatominae subfamily.

  13. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse

    DEFF Research Database (Denmark)

    Orlando, Ludovic Antoine Alexandre; Ginolhac, Aurélien; Zhang, Guojie

    2013-01-01

    The rich fossil record of equids has made them a model for evolutionary processes. Here we present a 1.12-times coverage draft genome from a horse bone recovered from permafrost dated to approximately 560-780 thousand years before present (kyr bp). Our data represent the oldest full genome sequence...... and olfaction throughout horse evolution. Finally, we identify 29 genomic regions among horse breeds that deviate from neutrality and show low levels of genetic variation compared to the Przewalski's horse. Such regions could correspond to loci selected early during domestication....

  14. Avian Metapneumoviruses

    Science.gov (United States)

    Avian metapneumovirus (aMPV) is an economically important virus that is the primary causal agent of turkey rhinotracheitis (TRT), also known as avian rhinotracheitis (ART). The virus causes an acute highly contagious infection of the upper respiratory tract in turkeys and was first isolated from tur...

  15. Large-scale trends in the evolution of gene structures within 11 animal genomes.

    Directory of Open Access Journals (Sweden)

    Mark Yandell

    2006-03-01

    Full Text Available We have used the annotations of six animal genomes (Homo sapiens, Mus musculus, Ciona intestinalis, Drosophila melanogaster, Anopheles gambiae, and Caenorhabditis elegans together with the sequences of five unannotated Drosophila genomes to survey changes in protein sequence and gene structure over a variety of timescales--from the less than 5 million years since the divergence of D. simulans and D. melanogaster to the more than 500 million years that have elapsed since the Cambrian explosion. To do so, we have developed a new open-source software library called CGL (for "Comparative Genomics Library". Our results demonstrate that change in intron-exon structure is gradual, clock-like, and largely independent of coding-sequence evolution. This means that genome annotations can be used in new ways to inform, corroborate, and test conclusions drawn from comparative genomics analyses that are based upon protein and nucleotide sequence similarities.

  16. The genomic impact of 100 million years of social evolution in seven ant species

    DEFF Research Database (Denmark)

    Gadau, Jürgen; Helmkampf, Martin; Nygaard, Sanne

    2012-01-01

    makes them excellent model organisms to study the evolution of social systems. Comparing the ant genomes with those of the honeybee, a lineage that evolved eusociality independently from ants, and solitary insects suggests that there are significant differences in key aspects of genome organization......Ants (Hymenoptera, Formicidae) represent one of the most successful eusocial taxa in terms of both their geographic distribution and species number. The publication of seven ant genomes within the past year was a quantum leap for socio- and ant genomics. The diversity of social organization in ants...... between social and solitary insects, as well as among ant species. Altogether, these seven ant genomes open exciting new research avenues and opportunities for understanding the genetic basis and regulation of social species, and adaptive complex systems in general....

  17. Convergent adaptive evolution in marginal environments: unloading transposable elements as a common strategy among mangrove genomes.

    Science.gov (United States)

    Lyu, Haomin; He, Ziwen; Wu, Chung-I; Shi, Suhua

    2018-01-01

    Several clades of mangrove trees independently invade the interface between land and sea at the margin of woody plant distribution. As phenotypic convergence among mangroves is common, the possibility of convergent adaptation in their genomes is quite intriguing. To study this molecular convergence, we sequenced multiple mangrove genomes. In this study, we focused on the evolution of transposable elements (TEs) in relation to the genome size evolution. TEs, generally considered genomic parasites, are the most common components of woody plant genomes. Analyzing the long terminal repeat-retrotransposon (LTR-RT) type of TE, we estimated their death rates by counting solo-LTRs and truncated elements. We found that all lineages of mangroves massively and convergently reduce TE loads in comparison to their nonmangrove relatives; as a consequence, genome size reduction happens independently in all six mangrove lineages; TE load reduction in mangroves can be attributed to the paucity of young elements; the rarity of young LTR-RTs is a consequence of fewer births rather than access death. In conclusion, mangrove genomes employ a convergent strategy of TE load reduction by suppressing element origination in their independent adaptation to a new environment. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  18. The spotted gar genome illuminates vertebrate evolution and facilitates human-to-teleost comparisons

    Science.gov (United States)

    Braasch, Ingo; Gehrke, Andrew R.; Smith, Jeramiah J.; Kawasaki, Kazuhiko; Manousaki, Tereza; Pasquier, Jeremy; Amores, Angel; Desvignes, Thomas; Batzel, Peter; Catchen, Julian; Berlin, Aaron M.; Campbell, Michael S.; Barrell, Daniel; Martin, Kyle J.; Mulley, John F.; Ravi, Vydianathan; Lee, Alison P.; Nakamura, Tetsuya; Chalopin, Domitille; Fan, Shaohua; Wcisel, Dustin; Cañestro, Cristian; Sydes, Jason; Beaudry, Felix E. G.; Sun, Yi; Hertel, Jana; Beam, Michael J.; Fasold, Mario; Ishiyama, Mikio; Johnson, Jeremy; Kehr, Steffi; Lara, Marcia; Letaw, John H.; Litman, Gary W.; Litman, Ronda T.; Mikami, Masato; Ota, Tatsuya; Saha, Nil Ratan; Williams, Louise; Stadler, Peter F.; Wang, Han; Taylor, John S.; Fontenot, Quenton; Ferrara, Allyse; Searle, Stephen M. J.; Aken, Bronwen; Yandell, Mark; Schneider, Igor; Yoder, Jeffrey A.; Volff, Jean-Nicolas; Meyer, Axel; Amemiya, Chris T.; Venkatesh, Byrappa; Holland, Peter W. H.; Guiguen, Yann; Bobe, Julien; Shubin, Neil H.; Di Palma, Federica; Alföldi, Jessica; Lindblad-Toh, Kerstin; Postlethwait, John H.

    2016-01-01

    To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before the teleost genome duplication (TGD). The slowly evolving gar genome conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization, and development (e.g., Hox, ParaHox, and miRNA genes). Numerous conserved non-coding elements (CNEs, often cis-regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles of such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses revealed that the sum of expression domains and levels from duplicated teleost genes often approximate patterns and levels of gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes, and the function of human regulatory sequences. PMID:26950095

  19. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons.

    Science.gov (United States)

    Braasch, Ingo; Gehrke, Andrew R; Smith, Jeramiah J; Kawasaki, Kazuhiko; Manousaki, Tereza; Pasquier, Jeremy; Amores, Angel; Desvignes, Thomas; Batzel, Peter; Catchen, Julian; Berlin, Aaron M; Campbell, Michael S; Barrell, Daniel; Martin, Kyle J; Mulley, John F; Ravi, Vydianathan; Lee, Alison P; Nakamura, Tetsuya; Chalopin, Domitille; Fan, Shaohua; Wcisel, Dustin; Cañestro, Cristian; Sydes, Jason; Beaudry, Felix E G; Sun, Yi; Hertel, Jana; Beam, Michael J; Fasold, Mario; Ishiyama, Mikio; Johnson, Jeremy; Kehr, Steffi; Lara, Marcia; Letaw, John H; Litman, Gary W; Litman, Ronda T; Mikami, Masato; Ota, Tatsuya; Saha, Nil Ratan; Williams, Louise; Stadler, Peter F; Wang, Han; Taylor, John S; Fontenot, Quenton; Ferrara, Allyse; Searle, Stephen M J; Aken, Bronwen; Yandell, Mark; Schneider, Igor; Yoder, Jeffrey A; Volff, Jean-Nicolas; Meyer, Axel; Amemiya, Chris T; Venkatesh, Byrappa; Holland, Peter W H; Guiguen, Yann; Bobe, Julien; Shubin, Neil H; Di Palma, Federica; Alföldi, Jessica; Lindblad-Toh, Kerstin; Postlethwait, John H

    2016-04-01

    To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization and development (mediated, for example, by Hox, ParaHox and microRNA genes). Numerous conserved noncoding elements (CNEs; often cis regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles for such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses showed that the sums of expression domains and expression levels for duplicated teleost genes often approximate the patterns and levels of expression for gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes and the function of human regulatory sequences.

  20. Rapid evolution of the mitochondrial genome in Chalcidoid wasps (Hymenoptera: Chalcidoidea driven by parasitic lifestyles.

    Directory of Open Access Journals (Sweden)

    Jin-Hua Xiao

    Full Text Available Among the Chalcidoids, hymenopteran parasitic wasps that have diversified lifestyles, a partial mitochondrial genome has been reported only from Nasonia. This genome had many unusual features, especially a dramatic reorganization and a high rate of evolution. Comparisons based on more mitochondrial genomic data from the same superfamily were required to reveal weather these unusual features are peculiar to Nasonia or not. In the present study, we sequenced the nearly complete mitochondrial genomes from the species Philotrypesis. pilosa and Philotrypesis sp., both of which were associated with Ficus hispida. The acquired data included all of the protein-coding genes, rRNAs, and most of the tRNAs, and in P. pilosa the control region. High levels of nucleotide divergence separated the two species. A comparison of all available hymenopteran mitochondrial genomes (including a submitted partial genome from Ceratosolen solmsi revealed that the Chalcidoids had dramatic mitochondrial gene rearrangments, involved not only the tRNAs, but also several protein-coding genes. The AT-rich control region was translocated and inverted in Philotrypesis. The mitochondrial genomes also exhibited rapid rates of evolution involving elevated nonsynonymous mutations.

  1. Genome increase as a clock for the origin and evolution of life

    Directory of Open Access Journals (Sweden)

    Sharov Alexei A

    2006-06-01

    Full Text Available Abstract Background The size of non-redundant functional genome can be an indicator of biological complexity of living organisms. Several positive feedback mechanisms including gene cooperation and duplication with subsequent specialization may result in the exponential growth of biological complexity in macro-evolution. Results I propose a hypothesis that biological complexity increased exponentially during evolution. Regression of the logarithm of functional non-redundant genome size versus time of origin in major groups of organisms showed a 7.8-fold increase per 1 billion years, and hence the increase of complexity can be viewed as a clock of macro-evolution. A strong version of the exponential hypothesis is that the rate of complexity increase in early (pre-prokaryotic evolution of life was at most the same (or even slower than observed in the evolution of prokaryotes and eukaryotes. Conclusion The increase of functional non-redundant genome size in macro-evolution was consistent with the exponential hypothesis. If the strong exponential hypothesis is true, then the origin of life should be dated 10 billion years ago. Thus, the possibility of panspermia as a source of life on earth should be discussed on equal basis with alternative hypotheses of de-novo life origin. Panspermia may be proven if bacteria similar to terrestrial ones are found on other planets or satellites in the solar system. Reviewers This article was reviewed by Eugene V. Koonin, Chris Adami and Arcady Mushegian.

  2. The impact of genome triplication on tandem gene evolution in Brassica rapa

    Directory of Open Access Journals (Sweden)

    Lu eFang

    2012-11-01

    Full Text Available Whole genome duplication (WGD and tandem duplication (TD are both important modes of gene expansion. However, how whole genome duplication influences tandemly duplicated genes is not well studied. We used Brassica rapa, which has undergone an additional genome triplication (WGT and shares a common ancestor with Arabidopsis thaliana, Arabidopsis lyrata and Thellungiella parvula, to investigate the impact of genome triplication on tandem gene evolution. We identified 2,137, 1,569, 1,751 and 1,135 tandem gene arrays in B. rapa, A. thaliana, A. lyrata and T. parvula respectively. Among them, 414 conserved tandem arrays are shared by the 3 species without WGT, which were also considered as existing in the diploid ancestor of B. rapa. Thus, after genome triplication, B. rapa should have 1,242 tandem arrays according to the 414 conserved tandems. Here, we found 400 out of the 414 tandems had at least one syntenic ortholog in the genome of B. rapa. Furthermore, 294 out of the 400 shared syntenic orthologs maintain tandem arrays (more than one gene for each syntenic hit in B. rapa. For the 294 tandem arrays, we obtained 426 copies of syntenic paralogous tandems in the triplicated genome of B. rapa. In this study, we demonstrated that tandem arrays in B. rapa were dramatically fractionated after WGT when compared either to non-tandem genes in the B. rapa genome or to the tandem arrays in closely related species that have not experienced a recent whole-genome polyploidization event.

  3. Chromatin structure and evolution in the human genome

    Directory of Open Access Journals (Sweden)

    Dunlop Malcolm G

    2007-05-01

    Full Text Available Abstract Background Evolutionary rates are not constant across the human genome but genes in close proximity have been shown to experience similar levels of divergence and selection. The higher-order organisation of chromosomes has often been invoked to explain such phenomena but previously there has been insufficient data on chromosome structure to investigate this rigorously. Using the results of a recent genome-wide analysis of open and closed human chromatin structures we have investigated the global association between divergence, selection and chromatin structure for the first time. Results In this study we have shown that, paradoxically, synonymous site divergence (dS at non-CpG sites is highest in regions of open chromatin, primarily as a result of an increased number of transitions, while the rates of other traditional measures of mutation (intergenic, intronic and ancient repeat divergence as well as SNP density are highest in closed regions of the genome. Analysis of human-chimpanzee divergence across intron-exon boundaries indicates that although genes in relatively open chromatin generally display little selection at their synonymous sites, those in closed regions show markedly lower divergence at their fourfold degenerate sites than in neighbouring introns and intergenic regions. Exclusion of known Exonic Splice Enhancer hexamers has little affect on the divergence observed at fourfold degenerate sites across chromatin categories; however, we show that closed chromatin is enriched with certain classes of ncRNA genes whose RNA secondary structure may be particularly important. Conclusion We conclude that, overall, non-CpG mutation rates are lowest in open regions of the genome and that regions of the genome with a closed chromatin structure have the highest background mutation rate. This might reflect lower rates of DNA damage or enhanced DNA repair processes in regions of open chromatin. Our results also indicate that dS is a poor

  4. Complete genome sequence of a velogenic neurotropic avian paramyxovirus 1 isolated from peacocks (Pavo cristatus) in a wildlife park in Pakistan.

    Science.gov (United States)

    Munir, Muhammad; Shabbir, Muhammad Z; Yaqub, Tahir; Shabbir, Muhammad A B; Mukhtar, Nadia; Khan, Muhammad R; Berg, Mikael

    2012-12-01

    Avian paramyxovirus serotype 1 (APMV-1) was isolated from an acute and highly contagious outbreak in peacocks (Pavo cristatus) in a wildlife park in Pakistan. A velogenic neurotropic form of APMV-1 caused a 100% case fatality rate and killed 190 peacocks within a week. Biological and serological characterizations showed features of a velogenic strain of APMV-1, and these results were further confirmed by sequence analysis of the cleavage site in the fusion protein. The complete genome of one of the isolates was sequenced, and phylogenetic analysis was conducted. The analysis showed that this isolate belonged to genotype VII, specifically, to subgenotype VIIa, and clustered closely with isolates characterized from Indonesia in the 1990s. Interestingly, the isolate showed significant differences from previously characterized APMV-1 isolates from commercial and rural chickens in Pakistan. The work presented here is the first complete genome sequence of any APMV-1 isolate from wild birds in the region and therefore highlights the need for increased awareness and surveillance in such bird species.

  5. Evolution of pathogenicity and sexual reproduction in eight Candida genomes

    Science.gov (United States)

    Butler, Geraldine; Rasmussen, Matthew D.; Lin, Michael F.; Santos, Manuel A.S.; Sakthikumar, Sharadha; Munro, Carol A.; Rheinbay, Esther; Grabherr, Manfred; Forche, Anja; Reedy, Jennifer L.; Agrafioti, Ino; Arnaud, Martha B.; Bates, Steven; Brown, Alistair J.P.; Brunke, Sascha; Costanzo, Maria C.; Fitzpatrick, David A.; de Groot, Piet W. J.; Harris, David; Hoyer, Lois L.; Hube, Bernhard; Klis, Frans M.; Kodira, Chinnappa; Lennard, Nicola; Logue, Mary E.; Martin, Ronny; Neiman, Aaron M.; Nikolaou, Elissavet; Quail, Michael A.; Quinn, Janet; Santos, Maria C.; Schmitzberger, Florian F.; Sherlock, Gavin; Shah, Prachi; Silverstein, Kevin; Skrzypek, Marek S.; Soll, David; Staggs, Rodney; Stansfield, Ian; Stumpf, Michael P H; Sudbery, Peter E.; Thyagarajan, Srikantha; Zeng, Qiandong; Berman, Judith; Berriman, Matthew; Heitman, Joseph; Gow, Neil A. R.; Lorenz, Michael C.; Birren, Bruce W.; Kellis, Manolis; Cuomo, Christina A.

    2009-01-01

    Candida species are the most common cause of opportunistic fungal infection worldwide. We report the genome sequences of six Candida species and compare these and related pathogens and nonpathogens. There are significant expansions of cell wall, secreted, and transporter gene families in pathogenic species, suggesting adaptations associated with virulence. Large genomic tracts are homozygous in three diploid species, possibly resulting from recent recombination events. Surprisingly, key components of the mating and meiosis pathways are missing from several species. These include major differences at the Mating-type loci (MTL); Lodderomyces elongisporus lacks MTL, and components of the a1/alpha2 cell identity determinant were lost in other species, raising questions about how mating and cell types are controlled. Analysis of the CUG leucine to serine genetic code change reveals that 99% of ancestral CUG codons were erased and new ones arose elsewhere. Lastly, we revise the C. albicans gene catalog, identifying many new genes. PMID:19465905

  6. Identification of constraints influencing the bacterial genomes evolution in the PVC super-phylum.

    Science.gov (United States)

    Pinos, Sandrine; Pontarotti, Pierre; Raoult, Didier; Merhej, Vicky

    2017-03-09

    Horizontal transfer plays an important role in the evolution of bacterial genomes, yet it obeys several constraints, including the ecological opportunity to meet other organisms, the presence of transfer systems, and the fitness of the transferred genes. Bacteria from the Planctomyctetes, Verrumicrobia, Chlamydiae (PVC) super-phylum have a compartmentalized cell plan delimited by an intracytoplasmic membrane that might constitute an additional constraint with particular impact on bacterial evolution. In this investigation, we studied the evolution of 33 genomes from PVC species and focused on the rate and the nature of horizontally transferred sequences in relation to their habitat and their cell plan. Using a comparative phylogenomic approach, we showed that habitat influences the evolution of the bacterial genome's content and the flux of horizontal transfer of DNA (HT). Thus bacteria from soil, from insects and ubiquitous bacteria presented the highest average of horizontal transfer compared to bacteria living in water, extracellular bacteria in vertebrates, bacteria from amoeba and intracellular bacteria in vertebrates (with a mean of 379 versus 110 events per species, respectively and 7.6% of each genomes due to HT against 4.8%). The partners of these transfers were mainly bacterial organisms (94.9%); they allowed us to differentiate environmental bacteria, which exchanged more with Proteobacteria, and bacteria from vertebrates, which exchanged more with Firmicutes. The functional analysis of the horizontal transfers revealed a convergent evolution, with an over-representation of genes encoding for membrane biogenesis and lipid metabolism, among compartmentalized bacteria in the different habitats. The presence of an intracytoplasmic membrane in PVC species seems to affect the genome's evolution through the selection of transferred DNA, according to their encoded functions.

  7. Telomere Length Dynamics and the Evolution of Cancer Genome Architecture

    Directory of Open Access Journals (Sweden)

    Kez Cleal

    2018-02-01

    Full Text Available Telomeres are progressively eroded during repeated rounds of cell division due to the end replication problem but also undergo additional more substantial stochastic shortening events. In most cases, shortened telomeres induce a cell-cycle arrest or trigger apoptosis, although for those cells that bypass such signals during tumour progression, a critical length threshold is reached at which telomere dysfunction may ensue. Dysfunction of the telomere nucleoprotein complex can expose free chromosome ends to the DNA double-strand break (DSB repair machinery, leading to telomere fusion with both telomeric and non-telomeric loci. The consequences of telomere fusions in promoting genome instability have long been appreciated through the breakage–fusion–bridge (BFB cycle mechanism, although recent studies using high-throughput sequencing technologies have uncovered evidence of involvement in a wider spectrum of genomic rearrangements including chromothripsis. A critical step in cancer progression is the transition of a clone to immortality, through the stabilisation of the telomere repeat array. This can be achieved via the reactivation of telomerase, or the induction of the alternative lengthening of telomeres (ALT pathway. Whilst telomere dysfunction may promote genome instability and tumour progression, by limiting the replicative potential of a cell and enforcing senescence, telomere shortening can act as a tumour suppressor mechanism. However, the burden of senescent cells has also been implicated as a driver of ageing and age-related pathology, and in the promotion of cancer through inflammatory signalling. Considering the critical role of telomere length in governing cancer biology, we review questions related to the prognostic value of studying the dynamics of telomere shortening and fusion, and discuss mechanisms and consequences of telomere-induced genome rearrangements.

  8. The evolution of genomic imprinting: theories, predictions and empirical tests.

    Science.gov (United States)

    Patten, M M; Ross, L; Curley, J P; Queller, D C; Bonduriansky, R; Wolf, J B

    2014-08-01

    The epigenetic phenomenon of genomic imprinting has motivated the development of numerous theories for its evolutionary origins and genomic distribution. In this review, we examine the three theories that have best withstood theoretical and empirical scrutiny. These are: Haig and colleagues' kinship theory; Day and Bonduriansky's sexual antagonism theory; and Wolf and Hager's maternal-offspring coadaptation theory. These theories have fundamentally different perspectives on the adaptive significance of imprinting. The kinship theory views imprinting as a mechanism to change gene dosage, with imprinting evolving because of the differential effect that gene dosage has on the fitness of matrilineal and patrilineal relatives. The sexual antagonism and maternal-offspring coadaptation theories view genomic imprinting as a mechanism to modify the resemblance of an individual to its two parents, with imprinting evolving to increase the probability of expressing the fitter of the two alleles at a locus. In an effort to stimulate further empirical work on the topic, we carefully detail the logic and assumptions of all three theories, clarify the specific predictions of each and suggest tests to discriminate between these alternative theories for why particular genes are imprinted.

  9. The evolution of genomic imprinting: theories, predictions and empirical tests

    Science.gov (United States)

    Patten, M M; Ross, L; Curley, J P; Queller, D C; Bonduriansky, R; Wolf, J B

    2014-01-01

    The epigenetic phenomenon of genomic imprinting has motivated the development of numerous theories for its evolutionary origins and genomic distribution. In this review, we examine the three theories that have best withstood theoretical and empirical scrutiny. These are: Haig and colleagues' kinship theory; Day and Bonduriansky's sexual antagonism theory; and Wolf and Hager's maternal–offspring coadaptation theory. These theories have fundamentally different perspectives on the adaptive significance of imprinting. The kinship theory views imprinting as a mechanism to change gene dosage, with imprinting evolving because of the differential effect that gene dosage has on the fitness of matrilineal and patrilineal relatives. The sexual antagonism and maternal–offspring coadaptation theories view genomic imprinting as a mechanism to modify the resemblance of an individual to its two parents, with imprinting evolving to increase the probability of expressing the fitter of the two alleles at a locus. In an effort to stimulate further empirical work on the topic, we carefully detail the logic and assumptions of all three theories, clarify the specific predictions of each and suggest tests to discriminate between these alternative theories for why particular genes are imprinted. PMID:24755983

  10. Step-wise and punctuated genome evolution drive phenotype changes of tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Stepanenko, Aleksei, E-mail: a.a.stepanenko@gmail.com [Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03680 (Ukraine); Andreieva, Svitlana; Korets, Kateryna; Mykytenko, Dmytro [Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03680 (Ukraine); Huleyuk, Nataliya [Institute of Hereditary Pathology, National Academy of Medical Sciences of Ukraine, Lviv 79008 (Ukraine); Vassetzky, Yegor [CNRS UMR8126, Université Paris-Sud 11, Institut de Cancérologie Gustave Roussy, Villejuif 94805 (France); Kavsan, Vadym [Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03680 (Ukraine)

    2015-01-15

    Highlights: • There are the step-wise continuous and punctuated phases of cancer genome evolution. • The system stresses during the different phases may lead to very different responses. • Stable transfection of an empty vector can result in genome and phenotype changes. • Functions of a (trans)gene can be opposite/versatile in cells with different genomes. • Contextually, temozolomide can both promote and suppress tumor cell aggressiveness. - Abstract: The pattern of genome evolution can be divided into two phases: the step-wise continuous phase (step-wise clonal evolution, stable dominant clonal chromosome aberrations (CCAs), and low frequency of non-CCAs, NCCAs) and punctuated phase (marked by elevated NCCAs and transitional CCAs). Depending on the phase, system stresses (the diverse CIN promoting factors) may lead to the very different phenotype responses. To address the contribution of chromosome instability (CIN) to phenotype changes of tumor cells, we characterized CCAs/NCCAs of HeLa and HEK293 cells, and their derivatives after genotoxic stresses (a stable plasmid transfection, ectopic expression of cancer-associated CHI3L1 gene or treatment with temozolomide) by conventional cytogenetics, copy number alterations (CNAs) by array comparative genome hybridization, and phenotype changes by cell viability and soft agar assays. Transfection of either the empty vector pcDNA3.1 or pcDNA3.1-CHI3L1 into 293 cells initiated the punctuated genome changes. In contrast, HeLa-CHI3L1 cells demonstrated the step-wise genome changes. Increased CIN correlated with lower viability of 293-pcDNA3.1 cells but higher colony formation efficiency (CFE). Artificial CHI3L1 production in 293-CHI3L1 cells increased viability and further contributed to CFE. The opposite growth characteristics of 293-CHI3L1 and HeLa-CHI3L1 cells were revealed. The effect and function of a (trans)gene can be opposite and versatile in cells with different genetic network, which is defined by

  11. Evolution of an Eurasian avian-like influenza virus in naïve and vaccinated pigs.

    Directory of Open Access Journals (Sweden)

    Pablo R Murcia

    Full Text Available Influenza viruses are characterized by an ability to cross species boundaries and evade host immunity, sometimes with devastating consequences. The 2009 pandemic of H1N1 influenza A virus highlights the importance of pigs in influenza emergence, particularly as intermediate hosts by which avian viruses adapt to mammals before emerging in humans. Although segment reassortment has commonly been associated with influenza emergence, an expanded host-range is also likely to be associated with the accumulation of specific beneficial point mutations. To better understand the mechanisms that shape the genetic diversity of avian-like viruses in pigs, we studied the evolutionary dynamics of an Eurasian Avian-like swine influenza virus (EA-SIV in naïve and vaccinated pigs linked by natural transmission. We analyzed multiple clones of the hemagglutinin 1 (HA1 gene derived from consecutive daily viral populations. Strikingly, we observed both transient and fixed changes in the consensus sequence along the transmission chain. Hence, the mutational spectrum of intra-host EA-SIV populations is highly dynamic and allele fixation can occur with extreme rapidity. In addition, mutations that could potentially alter host-range and antigenicity were transmitted between animals and mixed infections were commonplace, even in vaccinated pigs. Finally, we repeatedly detected distinct stop codons in virus samples from co-housed pigs, suggesting that they persisted within hosts and were transmitted among them. This implies that mutations that reduce viral fitness in one host, but which could lead to fitness benefits in a novel host, can circulate at low frequencies.

  12. Molecular characterization of Babesia peircei and Babesia ugwidiensis provides insight into the evolution and host specificity of avian piroplasmids

    Directory of Open Access Journals (Sweden)

    Michael J. Yabsley

    2017-12-01

    Full Text Available There are 16 recognized species of avian-infecting Babesia spp. (Piroplasmida: Babesiidae. While the classification of piroplasmids has been historically based on morphological differences, geographic isolation and presumed host and/or vector specificities, recent studies employing gene sequence analysis have provided insight into their phylogenetic relationships and host distribution and specificity. In this study, we analyzed the sequences of the 18S rRNA gene and ITS-1 and ITS-2 regions of two Babesia species from South African seabirds: Babesia peircei from African penguins (Spheniscus demersus and Babesia ugwidiensis from Bank and Cape cormorants (Phalacrocorax neglectus and P. capensis, respectively. Our results show that avian Babesia spp. are not monophyletic, with at least three distinct phylogenetic groups. B. peircei and B. ugwidiensis are closely related, and fall within the same phylogenetic group as B. ardeae (from herons Ardea cinerea, B. poelea (from boobies Sula spp. and B. uriae (from murres Uria aalge. The validity of B. peircei and B. ugwidiensis as separate species is corroborated by both morphological and genetic evidence. On the other hand, our results indicate that B. poelea might be a synonym of B. peircei, which in turn would be a host generalist that infects seabirds from multiple orders. Further studies combining morphological and molecular methods are warranted to clarify the taxonomy, phylogeny and host distribution of avian piroplasmids. Keywords: Africa, Babesia, Piroplasmida, Phalacrocoracidae, Spheniscidae, Tick-borne pathogen

  13. A genomic survey of the fish parasite Spironucleus salmonicida indicates genomic plasticity among diplomonads and significant lateral gene transfer in eukaryote genome evolution

    Directory of Open Access Journals (Sweden)

    Logsdon John M

    2007-02-01

    Full Text Available Abstract Background Comparative genomic studies of the mitochondrion-lacking protist group Diplomonadida (diplomonads has been lacking, although Giardia lamblia has been intensively studied. We have performed a sequence survey project resulting in 2341 expressed sequence tags (EST corresponding to 853 unique clones, 5275 genome survey sequences (GSS, and eleven finished contigs from the diplomonad fish parasite Spironucleus salmonicida (previously described as S. barkhanus. Results The analyses revealed a compact genome with few, if any, introns and very short 3' untranslated regions. Strikingly different patterns of codon usage were observed in genes corresponding to frequently sampled ESTs versus genes poorly sampled, indicating that translational selection is influencing the codon usage of highly expressed genes. Rigorous phylogenomic analyses identified 84 genes – mostly encoding metabolic proteins – that have been acquired by diplomonads or their relatively close ancestors via lateral gene transfer (LGT. Although most acquisitions were from prokaryotes, more than a dozen represent likely transfers of genes between eukaryotic lineages. Many genes that provide novel insights into the genetic basis of the biology and pathogenicity of this parasitic protist were identified including 149 that putatively encode variant-surface cysteine-rich proteins which are candidate virulence factors. A number of genomic properties that distinguish S. salmonicida from its human parasitic relative G. lamblia were identified such as nineteen putative lineage-specific gene acquisitions, distinct mutational biases and codon usage and distinct polyadenylation signals. Conclusion Our results highlight the power of comparative genomic studies to yield insights into the biology of parasitic protists and the evolution of their genomes, and suggest that genetic exchange between distantly-related protist lineages may be occurring at an appreciable rate in eukaryote

  14. Organization and evolution of primate centromeric DNA from whole-genome shotgun sequence data.

    Science.gov (United States)

    Alkan, Can; Ventura, Mario; Archidiacono, Nicoletta; Rocchi, Mariano; Sahinalp, S Cenk; Eichler, Evan E

    2007-09-01

    The major DNA constituent of primate centromeres is alpha satellite DNA. As much as 2%-5% of sequence generated as part of primate genome sequencing projects consists of this material, which is fragmented or not assembled as part of published genome sequences due to its highly repetitive nature. Here, we develop computational methods to rapidly recover and categorize alpha-satellite sequences from previously uncharacterized whole-genome shotgun sequence data. We present an algorithm to computationally predict potential higher-order array structure based on paired-end sequence data and then experimentally validate its organization and distribution by experimental analyses. Using whole-genome shotgun data from the human, chimpanzee, and macaque genomes, we examine the phylogenetic relationship of these sequences and provide further support for a model for their evolution and mutation over the last 25 million years. Our results confirm fundamental differences in the dispersal and evolution of centromeric satellites in the Old World monkey and ape lineages of evolution.

  15. Organization and evolution of primate centromeric DNA from whole-genome shotgun sequence data.

    Directory of Open Access Journals (Sweden)

    Can Alkan

    2007-09-01

    Full Text Available The major DNA constituent of primate centromeres is alpha satellite DNA. As much as 2%-5% of sequence generated as part of primate genome sequencing projects consists of this material, which is fragmented or not assembled as part of published genome sequences due to its highly repetitive nature. Here, we develop computational methods to rapidly recover and categorize alpha-satellite sequences from previously uncharacterized whole-genome shotgun sequence data. We present an algorithm to computationally predict potential higher-order array structure based on paired-end sequence data and then experimentally validate its organization and distribution by experimental analyses. Using whole-genome shotgun data from the human, chimpanzee, and macaque genomes, we examine the phylogenetic relationship of these sequences and provide further support for a model for their evolution and mutation over the last 25 million years. Our results confirm fundamental differences in the dispersal and evolution of centromeric satellites in the Old World monkey and ape lineages of evolution.

  16. A revised timescale for human evolution based on ancient mitochondrial genomes

    Czech Academy of Sciences Publication Activity Database

    Fu, Q.; Mittnik, A.; Johnson, P. L. F.; Bos, K.; Lari, M.; Bollongino, R.; Sun, Ch.; Giemsch, L.; Schmitz, R.; Burger, J.; Ronchitelli, A. M.; Martini, F.; Cremonesi, R. G.; Svoboda, Jiří; Bauer, P.; Caramelli, D.; Castellano, S.; Reich, D.; Pääbo, S.; Krause, J.

    2013-01-01

    Roč. 23, April 8 (2013), s. 553-559 ISSN 0960-9822 Institutional support: RVO:68081758 Keywords : mitochondrial genome * human evolution * calibration Subject RIV: AC - Archeology, Anthropology, Ethnology OBOR OECD: Archaeology Impact factor: 9.916, year: 2013

  17. Gene finding with a hidden Markov model of genome structure and evolution

    DEFF Research Database (Denmark)

    Pedersen, Jakob Skou; Hein, Jotun

    2003-01-01

    the model are linear in alignment length and genome number. The model is applied to the problem of gene finding. The benefit of modelling sequence evolution is demonstrated both in a range of simulations and on a set of orthologous human/mouse gene pairs. AVAILABILITY: Free availability over the Internet...

  18. How genome size variation is linked with evolution within Chenopodium sensu lato

    Czech Academy of Sciences Publication Activity Database

    Mandák, Bohumil; Krak, Karol; Vít, Petr; Pavlíková, Zuzana; Lomonosova, M. N.; Habibi, Farzaneh; Lei, Wang; Jellen, E.N.; Douda, Jan

    2016-01-01

    Roč. 23, DEC 2016 (2016), s. 18-32 ISSN 1433-8319 R&D Projects: GA ČR GA13-02290S Institutional support: RVO:67985939 Keywords : Chenopodium * genome size evolution * flow cytometry Subject RIV: EF - Botanics Impact factor: 3.123, year: 2016

  19. Whole-Genome Scans Provide Evidence of Adaptive Evolution in Malawian Plasmodium falciparum Isolates

    DEFF Research Database (Denmark)

    Ocholla, Harold; Preston, Mark D; Mipando, Mwapatsa

    2014-01-01

    BACKGROUND:  Selection by host immunity and antimalarial drugs has driven extensive adaptive evolution in Plasmodium falciparum and continues to produce ever-changing landscapes of genetic variation. METHODS:  We performed whole-genome sequencing of 69 P. falciparum isolates from Malawi and used...

  20. A genomic approach to examine the complex evolution of laurasiatherian mammals.

    Directory of Open Access Journals (Sweden)

    Björn M Hallström

    Full Text Available Recent phylogenomic studies have failed to conclusively resolve certain branches of the placental mammalian tree, despite the evolutionary analysis of genomic data from 32 species. Previous analyses of single genes and retroposon insertion data yielded support for different phylogenetic scenarios for the most basal divergences. The results indicated that some mammalian divergences were best interpreted not as a single bifurcating tree, but as an evolutionary network. In these studies the relationships among some orders of the super-clade Laurasiatheria were poorly supported, albeit not studied in detail. Therefore, 4775 protein-coding genes (6,196,263 nucleotides were collected and aligned in order to analyze the evolution of this clade. Additionally, over 200,000 introns were screened in silico, resulting in 32 phylogenetically informative long interspersed nuclear elements (LINE insertion events. The present study shows that the genome evolution of Laurasiatheria may best be understood as an evolutionary network. Thus, contrary to the common expectation to resolve major evolutionary events as a bifurcating tree, genome analyses unveil complex speciation processes even in deep mammalian divergences. We exemplify this on a subset of 1159 suitable genes that have individual histories, most likely due to incomplete lineage sorting or introgression, processes that can make the genealogy of mammalian genomes complex. These unexpected results have major implications for the understanding of evolution in general, because the evolution of even some higher level taxa such as mammalian orders may sometimes not be interpreted as a simple bifurcating pattern.

  1. The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae)

    Czech Academy of Sciences Publication Activity Database

    Leitch, I.J.; Hanson, L.; Lim, K.Y.; Kovařík, Aleš; Chase, M.W.; Clarkson, J.J.; Leitch, A.R.

    2008-01-01

    Roč. 101, č. 6 (2008), s. 805-814 ISSN 0305-7364 R&D Projects: GA ČR(CZ) GA521/07/0116 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : genome size * allopolyploidy * evolution-Nicotiana Subject RIV: BO - Biophysics Impact factor: 2.755, year: 2008

  2. Microgeographic Genome Size Differentiation of the Carob Tree, Ceratonia siliqua, at ‘Evolution Canyon’, Israel

    OpenAIRE

    BUREŠ, PETR; PAVLÍČEK, TOMÁŠ; HOROVÁ, LUCIE; NEVO, EVIATAR

    2004-01-01

    • Background and Aims We tested whether the local differences in genome size recorded earlier in the wild barley, Hordeum spontaneum, at ‘Evolution Canyon’, Mount Carmel, Israel, can also be found in other organisms. As a model species for our test we chose the evergreen carob tree, Ceratonia siliqua.

  3. Complete Chloroplast Genome Sequence of Aquilaria sinensis (Lour.) Gilg and Evolution Analysis within the Malvales Order.

    Science.gov (United States)

    Wang, Ying; Zhan, Di-Feng; Jia, Xian; Mei, Wen-Li; Dai, Hao-Fu; Chen, Xiong-Ting; Peng, Shi-Qing

    2016-01-01

    plant. Moreover, the results will enhance our understanding about the evolution of cp genomes of the Malvales order, particularly with regard to the role of A. sinensis in plant systematics and evolution.

  4. Complete Chloroplast Genome Sequence of Aquilaria sinensis (Lour. Gilg and the Evolution Analysis within the Malvalesorder

    Directory of Open Access Journals (Sweden)

    Ying eWang

    2016-03-01

    medicinal plant. Moreover, the results will enhance our understanding about the evolution of cp genomes of the Malvales order, particularly with regard to the role of A.sinensis in plant systematics and evolution.

  5. The relationship of recombination rate, genome structure, and patterns of molecular evolution across angiosperms.

    Science.gov (United States)

    Tiley, George P; Burleigh, J Gordon; Burleigh, Gordon

    2015-09-16

    Although homologous recombination affects the efficacy of selection in populations, the pattern of recombination rate evolution and its effects on genome evolution across plants are largely unknown. Recombination can reduce genome size by enabling the removal of LTR retrotransposons, alter codon usage by GC biased gene conversion, contribute to complex histories of gene duplication and loss through tandem duplication, and enhance purifying selection on genes. Therefore, variation in recombination rate across species may explain some of the variation in genomic architecture as well as rates of molecular evolution. We used phylogenetic comparative methods to investigate the evolution of global meiotic recombination rate in angiosperms and its effects on genome architecture and selection at the molecular level using genetic maps and genome sequences from thirty angiosperm species. Recombination rate is negatively correlated with genome size, which is likely caused by the removal of LTR retrotransposons. After correcting recombination rates for euchromatin content, we also found an association between global recombination rate and average gene family size. This suggests a role for recombination in the preservation of duplicate genes or expansion of gene families. An analysis of the correlation between the ratio of nonsynonymous to synonymous substitution rates (dN/dS) and recombination rate in 3748 genes indicates that higher recombination rates are associated with an increased efficacy of purifying selection, suggesting that global recombination rates affect variation in rates of molecular evolution across distantly related angiosperm species, not just between populations. We also identified shifts in dN/dS for recombination proteins that are associated with shifts in global recombination rate across our sample of angiosperms. Although our analyses only reveal correlations, not mechanisms, and do not include potential covariates of recombination rate, like effective

  6. Parental origin and genome evolution in the allopolyploid Iris versicolor

    Czech Academy of Sciences Publication Activity Database

    Lim, K.Y.; Matyášek, Roman; Kovařík, Aleš; Leitch, A.

    2007-01-01

    Roč. 100, č. 2 (2007), s. 219-224 ISSN 0305-7364 R&D Projects: GA ČR(CZ) GA521/07/0116; GA ČR(CZ) GA204/05/0687; GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : allopolyploidy * evolution * rDNA * Iris Subject RIV: BO - Biophysics Impact factor: 2.939, year: 2007

  7. Avian Biotechnology.

    Science.gov (United States)

    Nakamura, Yoshiaki

    2017-01-01

    Primordial germ cells (PGCs) generate new individuals through differentiation, maturation and fertilization. This means that the manipulation of PGCs is directly linked to the manipulation of individuals, making PGCs attractive target cells in the animal biotechnology field. A unique biological property of avian PGCs is that they circulate temporarily in the vasculature during early development, and this allows us to access and manipulate avian germ lines. Following the development of a technique for transplantation, PGCs have become central to avian biotechnology, in contrast to the use of embryo manipulation and subsequent transfer to foster mothers, as in mammalian biotechnology. Today, avian PGC transplantation combined with recent advanced manipulation techniques, including cell purification, cryopreservation, depletion, and long-term culture in vitro, have enabled the establishment of genetically modified poultry lines and ex-situ conservation of poultry genetic resources. This chapter introduces the principles, history, and procedures of producing avian germline chimeras by transplantation of PGCs, and the current status of avian germline modification as well as germplasm cryopreservation. Other fundamental avian reproductive technologies are described, including artificial insemination and embryo culture, and perspectives of industrial applications in agriculture and pharmacy are considered, including poultry productivity improvement, egg modification, disease resistance impairment and poultry gene "pharming" as well as gene banking.

  8. Multiple genomic recombination events in the evolution of saffold cardiovirus.

    Directory of Open Access Journals (Sweden)

    Lili Ren

    Full Text Available BACKGROUND: Saffold cardiovirus (SAFV is a new human cardiovirus with 11 identified genotypes. Little is known about the natural history and pathogenicity of SAFVs. METHODOLOGY/PRINCIPAL FINDINGS: We sequenced the genome of five SAFV-1 strains which were identified from fecal samples taken from children with viral diarrhea in Beijing, China between March 2006 and November 2007, and analyzed the phylogenetic and phylodynamic properties of SAFVs using the genome sequences of every known SAFV genotypes. We identified multiple recombination events in our SAFV-1 strains, specifically recombination between SAFV-2, -3, -4, -9, -10 and the prototype SAFV-1 strain in the VP4 region and recombination between SAFV-4, -6, -8, -10, -11 and prototype SAFV-1 in the VP1/2A region. Notably, recombination in the structural gene VP4 is a rare event in Cardiovirus. The ratio of nonsynonymous substitutions to synonymous substitutions indicates a purifying selection of the SAFV genome. Phylogenetic and molecular clock analysis indicates the existence of at least two subclades of SAFV-1 with different origins. Subclade 1 includes two strains isolated from Pakistan, whereas subclade 2 includes the prototype strain and strains isolated in China, Pakistan, and Afghanistan. The most recent common ancestor of all SAFV genotypes dates to the 1710s, and SAFV-1, -2, and -3 to the 1940s, 1950s, and 1960s, respectively. No obvious relationship between variation and pathogenicity exists in the critical domains of the CD and EF loops of viral capsid proteins or the multi-functional proteins L based on amino acid sequence identity comparison between SAFV genotypes. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that intertypic recombination plays an important role in the diversity of SAFVs, highlighting the diversity of the five strains with the previously described SAFV-1 strains.

  9. A Gene Gravity Model for the Evolution of Cancer Genomes: A Study of 3,000 Cancer Genomes across 9 Cancer Types

    Science.gov (United States)

    Lin, Chen-Ching; Zhao, Junfei; Jia, Peilin; Li, Wen-Hsiung; Zhao, Zhongming

    2015-01-01

    Cancer development and progression result from somatic evolution by an accumulation of genomic alterations. The effects of those alterations on the fitness of somatic cells lead to evolutionary adaptations such as increased cell proliferation, angiogenesis, and altered anticancer drug responses. However, there are few general mathematical models to quantitatively examine how perturbations of a single gene shape subsequent evolution of the cancer genome. In this study, we proposed the gene gravity model to study the evolution of cancer genomes by incorporating the genome-wide transcription and somatic mutation profiles of ~3,000 tumors across 9 cancer types from The Cancer Genome Atlas into a broad gene network. We found that somatic mutations of a cancer driver gene may drive cancer genome evolution by inducing mutations in other genes. This functional consequence is often generated by the combined effect of genetic and epigenetic (e.g., chromatin regulation) alterations. By quantifying cancer genome evolution using the gene gravity model, we identified six putative cancer genes (AHNAK, COL11A1, DDX3X, FAT4, STAG2, and SYNE1). The tumor genomes harboring the nonsynonymous somatic mutations in these genes had a higher mutation density at the genome level compared to the wild-type groups. Furthermore, we provided statistical evidence that hypermutation of cancer driver genes on inactive X chromosomes is a general feature in female cancer genomes. In summary, this study sheds light on the functional consequences and evolutionary characteristics of somatic mutations during tumorigenesis by propelling adaptive cancer genome evolution, which would provide new perspectives for cancer research and therapeutics. PMID:26352260

  10. Evolution of a microbial nitrilase gene family: a comparative and environmental genomics study

    Science.gov (United States)

    Podar, Mircea; Eads, Jonathan R; Richardson, Toby H

    2005-01-01

    Background Completed genomes and environmental genomic sequences are bringing a significant contribution to understanding the evolution of gene families, microbial metabolism and community eco-physiology. Here, we used comparative genomics and phylogenetic analyses in conjunction with enzymatic data to probe the evolution and functions of a microbial nitrilase gene family. Nitrilases are relatively rare in bacterial genomes, their biological function being unclear. Results We examined the genetic neighborhood of the different subfamily genes and discovered conserved gene clusters or operons associated with specific nitrilase clades. The inferred evolutionary transitions that separate nitrilases which belong to different gene clusters correlated with changes in their enzymatic properties. We present evidence that Darwinian adaptation acted during one of those transitions and identified sites in the enzyme that may have been under positive selection. Conclusion Changes in the observed biochemical properties of the nitrilases associated with the different gene clusters are consistent with a hypothesis that those enzymes have been recruited to a novel metabolic pathway following gene duplication and neofunctionalization. These results demonstrate the benefits of combining environmental genomic sampling and completed genomes data with evolutionary and biochemical analyses in the study of gene families. They also open new directions for studying the functions of nitrilases and the genes they are associated with. PMID:16083508

  11. Evolution of a microbial nitrilase gene family: a comparative and environmental genomics study

    Directory of Open Access Journals (Sweden)

    Eads Jonathan R

    2005-08-01

    Full Text Available Abstract Background Completed genomes and environmental genomic sequences are bringing a significant contribution to understanding the evolution of gene families, microbial metabolism and community eco-physiology. Here, we used comparative genomics and phylogenetic analyses in conjunction with enzymatic data to probe the evolution and functions of a microbial nitrilase gene family. Nitrilases are relatively rare in bacterial genomes, their biological function being unclear. Results We examined the genetic neighborhood of the different subfamily genes and discovered conserved gene clusters or operons associated with specific nitrilase clades. The inferred evolutionary transitions that separate nitrilases which belong to different gene clusters correlated with changes in their enzymatic properties. We present evidence that Darwinian adaptation acted during one of those transitions and identified sites in the enzyme that may have been under positive selection. Conclusion Changes in the observed biochemical properties of the nitrilases associated with the different gene clusters are consistent with a hypothesis that those enzymes have been recruited to a novel metabolic pathway following gene duplication and neofunctionalization. These results demonstrate the benefits of combining environmental genomic sampling and completed genomes data with evolutionary and biochemical analyses in the study of gene families. They also open new directions for studying the functions of nitrilases and the genes they are associated with.

  12. Short-term genome evolution of Listeria monocytogenes in a non-controlled environment

    Directory of Open Access Journals (Sweden)

    Ivy Reid A

    2008-11-01

    Full Text Available Abstract Background While increasing data on bacterial evolution in controlled environments are available, our understanding of bacterial genome evolution in natural environments is limited. We thus performed full genome analyses on four Listeria monocytogenes, including human and food isolates from both a 1988 case of sporadic listeriosis and a 2000 listeriosis outbreak, which had been linked to contaminated food from a single processing facility. All four isolates had been shown to have identical subtypes, suggesting that a specific L. monocytogenes strain persisted in this processing plant over at least 12 years. While a genome sequence for the 1988 food isolate has been reported, we sequenced the genomes of the 1988 human isolate as well as a human and a food isolate from the 2000 outbreak to allow for comparative genome analyses. Results The two L. monocytogenes isolates from 1988 and the two isolates from 2000 had highly similar genome backbone sequences with very few single nucleotide (nt polymorphisms (1 – 8 SNPs/isolate; confirmed by re-sequencing. While no genome rearrangements were identified in the backbone genome of the four isolates, a 42 kb prophage inserted in the chromosomal comK gene showed evidence for major genome rearrangements. The human-food isolate pair from each 1988 and 2000 had identical prophage sequence; however, there were significant differences in the prophage sequences between the 1988 and 2000 isolates. Diversification of this prophage appears to have been caused by multiple homologous recombination events or possibly prophage replacement. In addition, only the 2000 human isolate contained a plasmid, suggesting plasmid loss or acquisition events. Surprisingly, besides the polymorphisms found in the comK prophage, a single SNP in the tRNA Thr-4 prophage represents the only SNP that differentiates the 1988 isolates from the 2000 isolates. Conclusion Our data support the hypothesis that the 2000 human listeriosis

  13. Genomic organization and molecular phylogenies of the beta (β keratin multigene family in the chicken (Gallus gallus and zebra finch (Taeniopygia guttata: implications for feather evolution

    Directory of Open Access Journals (Sweden)

    Sawyer Roger H

    2010-05-01

    Full Text Available Abstract Background The epidermal appendages of reptiles and birds are constructed of beta (β keratins. The molecular phylogeny of these keratins is important to understanding the evolutionary origin of these appendages, especially feathers. Knowing that the crocodilian β-keratin genes are closely related to those of birds, the published genomes of the chicken and zebra finch provide an opportunity not only to compare the genomic organization of their β-keratins, but to study their molecular evolution in archosaurians. Results The subfamilies (claw, feather, feather-like, and scale of β-keratin genes are clustered in the same 5' to 3' order on microchromosome 25 in chicken and zebra finch, although the number of claw and feather genes differs between the species. Molecular phylogenies show that the monophyletic scale genes are the basal group within birds and that the monophyletic avian claw genes form the basal group to all feather and feather-like genes. Both species have a number of feather clades on microchromosome 27 that form monophyletic groups. An additional monophyletic cluster of feather genes exist on macrochromosome 2 for each species. Expression sequence tag analysis for the chicken demonstrates that all feather β-keratin clades are expressed. Conclusions Similarity in the overall genomic organization of β-keratins in Galliformes and Passeriformes suggests similar organization in all Neognathae birds, and perhaps in the ancestral lineages leading to modern birds, such as the paravian Anchiornis huxleyi. Phylogenetic analyses demonstrate that evolution of archosaurian epidermal appendages in the lineage leading to birds was accompanied by duplication and divergence of an ancestral β-keratin gene cluster. As morphological diversification of epidermal appendages occurred and the β-keratin multigene family expanded, novel β-keratin genes were selected for novel functions within appendages such as feathers.

  14. Reproductive Mode and the Evolution of Genome Size and Structure in Caenorhabditis Nematodes.

    Science.gov (United States)

    Fierst, Janna L; Willis, John H; Thomas, Cristel G; Wang, Wei; Reynolds, Rose M; Ahearne, Timothy E; Cutter, Asher D; Phillips, Patrick C

    2015-06-01

    The self-fertile nematode worms Caenorhabditis elegans, C. briggsae, and C. tropicalis evolved independently from outcrossing male-female ancestors and have genomes 20-40% smaller than closely related outcrossing relatives. This pattern of smaller genomes for selfing species and larger genomes for closely related outcrossing species is also seen in plants. We use comparative genomics, including the first high quality genome assembly for an outcrossing member of the genus (C. remanei) to test several hypotheses for the evolution of genome reduction under a change in mating system. Unlike plants, it does not appear that reductions in the number of repetitive elements, such as transposable elements, are an important contributor to the change in genome size. Instead, all functional genomic categories are lost in approximately equal proportions. Theory predicts that self-fertilization should equalize the effective population size, as well as the resulting effects of genetic drift, between the X chromosome and autosomes. Contrary to this, we find that the self-fertile C. briggsae and C. elegans have larger intergenic spaces and larger protein-coding genes on the X chromosome when compared to autosomes, while C. remanei actually has smaller introns on the X chromosome than either self-reproducing species. Rather than being driven by mutational biases and/or genetic drift caused by a reduction in effective population size under self reproduction, changes in genome size in this group of nematodes appear to be caused by genome-wide patterns of gene loss, most likely generated by genomic adaptation to self reproduction per se.

  15. Reproductive Mode and the Evolution of Genome Size and Structure in Caenorhabditis Nematodes.

    Directory of Open Access Journals (Sweden)

    Janna L Fierst

    2015-06-01

    Full Text Available The self-fertile nematode worms Caenorhabditis elegans, C. briggsae, and C. tropicalis evolved independently from outcrossing male-female ancestors and have genomes 20-40% smaller than closely related outcrossing relatives. This pattern of smaller genomes for selfing species and larger genomes for closely related outcrossing species is also seen in plants. We use comparative genomics, including the first high quality genome assembly for an outcrossing member of the genus (C. remanei to test several hypotheses for the evolution of genome reduction under a change in mating system. Unlike plants, it does not appear that reductions in the number of repetitive elements, such as transposable elements, are an important contributor to the change in genome size. Instead, all functional genomic categories are lost in approximately equal proportions. Theory predicts that self-fertilization should equalize the effective population size, as well as the resulting effects of genetic drift, between the X chromosome and autosomes. Contrary to this, we find that the self-fertile C. briggsae and C. elegans have larger intergenic spaces and larger protein-coding genes on the X chromosome when compared to autosomes, while C. remanei actually has smaller introns on the X chromosome than either self-reproducing species. Rather than being driven by mutational biases and/or genetic drift caused by a reduction in effective population size under self reproduction, changes in genome size in this group of nematodes appear to be caused by genome-wide patterns of gene loss, most likely generated by genomic adaptation to self reproduction per se.

  16. Quantifying the Number of Independent Organelle DNA Insertions in Genome Evolution and Human Health.

    Science.gov (United States)

    Hazkani-Covo, Einat; Martin, William F

    2017-05-01

    Fragments of organelle genomes are often found as insertions in nuclear DNA. These fragments of mitochondrial DNA (numts) and plastid DNA (nupts) are ubiquitous components of eukaryotic genomes. They are, however, often edited out during the genome assembly process, leading to systematic underestimation of their frequency. Numts and nupts, once inserted, can become further fragmented through subsequent insertion of mobile elements or other recombinational events that disrupt the continuity of the inserted sequence relative to the genuine organelle DNA copy. Because numts and nupts are typically identified through sequence comparison tools such as BLAST, disruption of insertions into smaller fragments can lead to systematic overestimation of numt and nupt frequencies. Accurate identification of numts and nupts is important, however, both for better understanding of their role during evolution, and for monitoring their increasingly evident role in human disease. Human populations are polymorphic for 141 numt loci, five numts are causal to genetic disease, and cancer genomic studies are revealing an abundance of numts associated with tumor progression. Here, we report investigation of salient parameters involved in obtaining accurate estimates of numt and nupt numbers in genome sequence data. Numts and nupts from 44 sequenced eukaryotic genomes reveal lineage-specific differences in the number, relative age and frequency of insertional events as well as lineage-specific dynamics of their postinsertional fragmentation. Our findings outline the main technical parameters influencing accurate identification and frequency estimation of numts in genomic studies pertinent to both evolution and human health. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Analysis of Complete Nucleotide Sequences of 12 Gossypium Chloroplast Genomes: Origin and Evolution of Allotetraploids

    Science.gov (United States)

    Xu, Qin; Xiong, Guanjun; Li, Pengbo; He, Fei; Huang, Yi; Wang, Kunbo; Li, Zhaohu; Hua, Jinping

    2012-01-01

    Background Cotton (Gossypium spp.) is a model system for the analysis of polyploidization. Although ascertaining the donor species of allotetraploid cotton has been intensively studied, sequence comparison of Gossypium chloroplast genomes is still of interest to understand the mechanisms underlining the evolution of Gossypium allotetraploids, while it is generally accepted that the parents were A- and D-genome containing species. Here we performed a comparative analysis of 13 Gossypium chloroplast genomes, twelve of which are presented here for the first time. Methodology/Principal Findings The size of 12 chloroplast genomes under study varied from 159,959 bp to 160,433 bp. The chromosomes were highly similar having >98% sequence identity. They encoded the same set of 112 unique genes which occurred in a uniform order with only slightly different boundary junctions. Divergence due to indels as well as substitutions was examined separately for genome, coding and noncoding sequences. The genome divergence was estimated as 0.374% to 0.583% between allotetraploid species and A-genome, and 0.159% to 0.454% within allotetraploids. Forty protein-coding genes were completely identical at the protein level, and 20 intergenic sequences were completely conserved. The 9 allotetraploids shared 5 insertions and 9 deletions in whole genome, and 7-bp substitutions in protein-coding genes. The phylogenetic tree confirmed a close relationship between allotetraploids and the ancestor of A-genome, and the allotetraploids were divided into four separate groups. Progenitor allotetraploid cotton originated 0.43–0.68 million years ago (MYA). Conclusion Despite high degree of conservation between the Gossypium chloroplast genomes, sequence variations among species could still be detected. Gossypium chloroplast genomes preferred for 5-bp indels and 1–3-bp indels are mainly attributed to the SSR polymorphisms. This study supports that the common ancestor of diploid A-genome species in

  18. Plastid Genome of Dictyopteris divaricata (Dictyotales, Phaeophyceae): Understanding the Evolution of Plastid Genomes in Brown Algae.

    Science.gov (United States)

    Liu, Feng; Jin, Zhe; Wang, Yu; Bi, Yuping; Melton, James T

    2017-12-01

    Dictyotophycidae is a subclass of brown algae containing 395 species that are distributed worldwide. A complete plastid (chloroplast) genome (ptDNA or cpDNA) had not previously been sequenced from this group. In this study, the complete plastid genome of Dictyopteris divaricata (Okamura) Okamura (Dictyotales, Phaeophyceae) was characterized and compared to other brown algal ptDNAs. This plastid genome was 126,099 bp in size with two inverted repeats (IRs) of 6026 bp. The D. divaricata IRs contained rpl21, making its IRs larger than representatives from the orders Fucales and Laminariales, but was smaller than that from Ectocarpales. The G + C content of D. divaricata (31.19%) was the highest of the known ptDNAs of brown algae (28.94-31.05%). Two protein-coding genes, rbcR and rpl32, were present in ptDNAs of Laminariales, Ectocarpales (Ectocarpus siliculosus), and Fucales (LEF) but were absent in D. divaricata. Reduced intergenic space (13.11%) and eight pairs of overlapping genes in D. divaricata ptDNA made it the most compact plastid genome in brown algae so far. The architecture of D. divaricata ptDNA showed higher similarity to that of Laminariales compared with Fucales and Ectocarpales. The difference in general features, gene content, and architecture among the ptDNAs of D. divaricata and LEF clade revealed the diversity and evolutionary trends of plastid genomes in brown algae.

  19. The genome, evolution and diversity of Mycobacterium ulcerans.

    Science.gov (United States)

    Röltgen, Katharina; Stinear, Timothy P; Pluschke, Gerd

    2012-04-01

    Mycobacterium ulcerans (M. ulcerans) causes a devastating infection of the skin and underlying tissue commonly known as Buruli ulcer (BU). Genetic analyses indicate that M. ulcerans has a common ancestor with Mycobacterium marinum (M. marinum) and has diverged from this fish and human pathogen perhaps around a million years ago. M. ulcerans is characterized by minimal genetic diversity and since it has a highly clonal population structure, genetic differences between individual isolates reflect changes that have occurred sequentially from their respective progenitors. This feature, which is shared by other bacterial pathogens with low sequence diversity, such as Yersinia pestis and Bordetella pertussis renders M. ulcerans a promising model to reveal evolutionary mechanisms. Until today transmission pathways and environmental reservoirs of M. ulcerans are not entirely explored. However, comparative genome analysis of closely related M. ulcerans isolates is anticipated to give deeper insights into the population structure of this enigmatic mycobacterium. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. In vitro evolution of terminal protein-containing genomes

    Science.gov (United States)

    Esteban, José A.; Blanco, Luis; Villar, Laurentino; Salas, Margarita

    1997-01-01

    A new self-sustained terminal protein-primed DNA amplification system has been used to describe in vitro evolutionary changes affecting maintenance of the genome size of bacteriophage φ29. These changes involve generation and efficient amplification of short palindromic molecules containing an inverted duplication of one of the original DNA ends. A template-switching mechanism is proposed to account for the appearance of these molecules. After their formation, they would replicate by means of hairpin intermediates. Relevant kinetic information about this DNA replication system has been obtained from the competition between the input full-length φ29 DNA and its derived truncated versions. The physiological relevance of these molecules and the mechanisms to control their formation are discussed. PMID:9096322

  1. Rapid evolution of manifold CRISPR systems for plant genome editing

    Directory of Open Access Journals (Sweden)

    Yiping Qi

    2016-11-01

    Full Text Available Advanced CRISPR-Cas9 based technologies first validated in mammalian cell systems are quickly being adapted for use in plants. These new technologies increase CRISPR-Cas9’s utility and effectiveness by diversifying cellular capabilities through expression construct system evolution and enzyme orthogonality, as well as enhanced efficiency through delivery and expression mechanisms. Here, we review the current state of advanced CRISPR-Cas9 and Cpf1 capabilities in plants and cover the rapid evolution of these tools from first generation inducers of double strand breaks for basic genetic manipulations to second and third generation multiplexed systems with myriad functionalities, capabilities and specialized applications. We offer perspective on how to utilize these tools for currently untested research endeavors and analyze strengths and weaknesses of novel CRISPR systems in plants. Advanced CRISPR functionalities and delivery options demonstrated in plants are primarily reviewed but new technologies just coming to the forefront of CRISPR development, or those on the horizon, are briefly discussed. Topics covered are focused on the expansion of expression and delivery capabilities for CRISPR-Cas9 components and broadening targeting range through orthogonal Cas9 and Cpf1 proteins.

  2. Rapid Evolution of Manifold CRISPR Systems for Plant Genome Editing.

    Science.gov (United States)

    Lowder, Levi; Malzahn, Aimee; Qi, Yiping

    2016-01-01

    Advanced CRISPR-Cas9 based technologies first validated in mammalian cell systems are quickly being adapted for use in plants. These new technologies increase CRISPR-Cas9's utility and effectiveness by diversifying cellular capabilities through expression construct system evolution and enzyme orthogonality, as well as enhanced efficiency through delivery and expression mechanisms. Here, we review the current state of advanced CRISPR-Cas9 and Cpf1 capabilities in plants and cover the rapid evolution of these tools from first generation inducers of double strand breaks for basic genetic manipulations to second and third generation multiplexed systems with myriad functionalities, capabilities, and specialized applications. We offer perspective on how to utilize these tools for currently untested research endeavors and analyze strengths and weaknesses of novel CRISPR systems in plants. Advanced CRISPR functionalities and delivery options demonstrated in plants are primarily reviewed but new technologies just coming to the forefront of CRISPR development, or those on the horizon, are briefly discussed. Topics covered are focused on the expansion of expression and delivery capabilities for CRISPR-Cas9 components and broadening targeting range through orthogonal Cas9 and Cpf1 proteins.

  3. Avian influenza

    Science.gov (United States)

    ... develop flu-like symptoms within 10 days of handling infected birds or being in an area with ... your provider if you become sick after you return from your trip. Current information regarding avian flu ...

  4. Avian Flu

    International Nuclear Information System (INIS)

    Eckburg, Paul

    2006-01-01

    Since 2003, a severe form of H5N1 avian influenza has rapidly spread throughout Asia and Europe, infecting over 200 humans in 10 countries. The spread of H5N1 virus from person-to-person has been rare, thus preventing the emergence of a widespread pandemic. However, this ongoing epidemic continues to pose an important public health threat. Avian flu and its pandemic potential in humans will be discussed.

  5. Genetic characterization of low-pathogenic avian influenza viruses isolated on the Izumi plain in Japan: possible association of dynamic movements of wild birds with AIV evolution.

    Science.gov (United States)

    Nakagawa, Hiroko; Okuya, Kosuke; Kawabata, Toshiko; Matsuu, Aya; Takase, Kozo; Kuwahara, Masakazu; Toda, Shigehisa; Ozawa, Makoto

    2018-04-01

    The Izumi plain in Kagoshima Prefecture, Japan, is an overwintering site of endangered cranes (hooded cranes and white-naped cranes) and of many other migratory birds (including wild ducks) that are considered carriers of avian influenza viruses (AIVs). To assess the risks of a highly pathogenic avian influenza outbreak in the crane populations, we tested various environmental samples for AIVs in this area. In the 2014-2015 winter season, we isolated one AIV of the H6N2 subtype from the cranes' roost water and two AIVs of the H11N9 subtype from a crane fecal sample and a cloacal swab of a dead spot-billed duck. Genetic analysis of these AIV isolates indicated that our H6N2 isolate is genetically close to AIVs isolated from wild birds in Southeast Asian countries, except that the PB1 and NS genes belong to the North American virus lineage. All genes of the two H11N9 isolates are related to AIVs belonging to the Eurasian virus lineage. Notably, in our phylogenetic trees, H11 HA and N9 NA genes showing high sequence similarity to the corresponding genes of isolates from wild birds in South Africa and Spain, respectively, did not cluster in the major groups with recent wild-bird isolates from East Asia. These results suggest that AIVs with viral gene segments derived from various locations and bird species have been brought to the Izumi plain. These findings imply a possible association of dynamic movements of wild birds with AIV evolution.

  6. Positive Selection Driving Cytoplasmic Genome Evolution of the Medicinally Important Ginseng Plant Genus Panax

    Directory of Open Access Journals (Sweden)

    Peng Jiang

    2018-04-01

    Full Text Available Panax L. (the ginseng genus is a shade-demanding group within the family Araliaceae and all of its species are of crucial significance in traditional Chinese medicine. Phylogenetic and biogeographic analyses demonstrated that two rounds of whole genome duplications accompanying with geographic and ecological isolations promoted the diversification of Panax species. However, contributions of the cytoplasmic genomes to the adaptive evolution of Panax species remained largely uninvestigated. In this study, we sequenced the chloroplast and mitochondrial genomes of 11 accessions belonging to seven Panax species. Our results show that heterogeneity in nucleotide substitution rate is abundant in both of the two cytoplasmic genomes, with the mitochondrial genome possessing more variants at the total level but the chloroplast showing higher sequence polymorphisms at the genic regions. Genome-wide scanning of positive selection identified five and 12 genes from the chloroplast and mitochondrial genomes, respectively. Functional analyses further revealed that these selected genes play important roles in plant development, cellular metabolism and adaptation. We therefore conclude that positive selection might be one of the potential evolutionary forces that shaped nucleotide variation pattern of these Panax species. In particular, the mitochondrial genes evolved under stronger selective pressure compared to the chloroplast genes.

  7. Impacts of Genome-Wide Analyses on Our Understanding of Human Herpesvirus Diversity and Evolution

    Science.gov (United States)

    Renner, Daniel W.

    2017-01-01

    ABSTRACT Until fairly recently, genome-wide evolutionary dynamics and within-host diversity were more commonly examined in the context of small viruses than in the context of large double-stranded DNA viruses such as herpesviruses. The high mutation rates and more compact genomes of RNA viruses have inspired the investigation of population dynamics for these species, and recent data now suggest that herpesviruses might also be considered candidates for population modeling. High-throughput sequencing (HTS) and bioinformatics have expanded our understanding of herpesviruses through genome-wide comparisons of sequence diversity, recombination, allele frequency, and selective pressures. Here we discuss recent data on the mechanisms that generate herpesvirus genomic diversity and underlie the evolution of these virus families. We focus on human herpesviruses, with key insights drawn from veterinary herpesviruses and other large DNA virus families. We consider the impacts of cell culture on herpesvirus genomes and how to accurately describe the viral populations under study. The need for a strong foundation of high-quality genomes is also discussed, since it underlies all secondary genomic analyses such as RNA sequencing (RNA-Seq), chromatin immunoprecipitation, and ribosome profiling. Areas where we foresee future progress, such as the linking of viral genetic differences to phenotypic or clinical outcomes, are highlighted as well. PMID:29046445

  8. The house spider genome reveals an ancient whole-genome duplication during arachnid evolution.

    Science.gov (United States)

    Schwager, Evelyn E; Sharma, Prashant P; Clarke, Thomas; Leite, Daniel J; Wierschin, Torsten; Pechmann, Matthias; Akiyama-Oda, Yasuko; Esposito, Lauren; Bechsgaard, Jesper; Bilde, Trine; Buffry, Alexandra D; Chao, Hsu; Dinh, Huyen; Doddapaneni, HarshaVardhan; Dugan, Shannon; Eibner, Cornelius; Extavour, Cassandra G; Funch, Peter; Garb, Jessica; Gonzalez, Luis B; Gonzalez, Vanessa L; Griffiths-Jones, Sam; Han, Yi; Hayashi, Cheryl; Hilbrant, Maarten; Hughes, Daniel S T; Janssen, Ralf; Lee, Sandra L; Maeso, Ignacio; Murali, Shwetha C; Muzny, Donna M; Nunes da Fonseca, Rodrigo; Paese, Christian L B; Qu, Jiaxin; Ronshaugen, Matthew; Schomburg, Christoph; Schönauer, Anna; Stollewerk, Angelika; Torres-Oliva, Montserrat; Turetzek, Natascha; Vanthournout, Bram; Werren, John H; Wolff, Carsten; Worley, Kim C; Bucher, Gregor; Gibbs, Richard A; Coddington, Jonathan; Oda, Hiroki; Stanke, Mario; Ayoub, Nadia A; Prpic, Nikola-Michael; Flot, Jean-François; Posnien, Nico; Richards, Stephen; McGregor, Alistair P

    2017-07-31

    The duplication of genes can occur through various mechanisms and is thought to make a major contribution to the evolutionary diversification of organisms. There is increasing evidence for a large-scale duplication of genes in some chelicerate lineages including two rounds of whole genome duplication (WGD) in horseshoe crabs. To investigate this further, we sequenced and analyzed the genome of the common house spider Parasteatoda tepidariorum. We found pervasive duplication of both coding and non-coding genes in this spider, including two clusters of Hox genes. Analysis of synteny conservation across the P. tepidariorum genome suggests that there has been an ancient WGD in spiders. Comparison with the genomes of other chelicerates, including that of the newly sequenced bark scorpion Centruroides sculpturatus, suggests that this event occurred in the common ancestor of spiders and scorpions, and is probably independent of the WGDs in horseshoe crabs. Furthermore, characterization of the sequence and expression of the Hox paralogs in P. tepidariorum suggests that many have been subject to neo-functionalization and/or sub-functionalization since their duplication. Our results reveal that spiders and scorpions are likely the descendants of a polyploid ancestor that lived more than 450 MYA. Given the extensive morphological diversity and ecological adaptations found among these animals, rivaling those of vertebrates, our study of the ancient WGD event in Arachnopulmonata provides a new comparative platform to explore common and divergent evolutionary outcomes of polyploidization events across eukaryotes.

  9. Comparative Genome Analysis Reveals Divergent Genome Size Evolution in a Carnivorous Plant Genus

    Czech Academy of Sciences Publication Activity Database

    Vu, G.T.H.; Schmutzer, T.; Bull, F.; Cao, H.X.; Fuchs, J.; Tran, T.D.; Jovtchev, G.; Pistrick, K.; Stein, N.; Pečinka, A.; Neumann, Pavel; Novák, Petr; Macas, Jiří; Dear, P.H.; Blattner, F.R.; Scholz, U.; Schubert, I.

    2015-01-01

    Roč. 8, č. 3 (2015) ISSN 1940-3372 R&D Projects: GA ČR GBP501/12/G090 Institutional support: RVO:60077344 Keywords : Genlisea * genome * repetitive sequences Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.509, year: 2015

  10. The evolution and suppression of male suicide under paternal genome elimination.

    Science.gov (United States)

    Ross, Laura; Shuker, David M; Pen, Ido

    2011-02-01

    Different genetic systems can be both the cause and the consequence of genetic conflict over the transmission of genes, obscuring their evolutionary origin. For instance, with paternal genome elimination (PGE), found in some insects and mites, both sexes develop from fertilized eggs, but in males the paternally derived chromosomes are either lost (embryonic PGE) or deactivated (germline PGE) during embryogenesis and not transmitted to the next generation. Evolution of germline PGE requires two transitions: (1) elimination of the paternal genome during spermatogenesis; (2) deactivation of the paternal genome early in development. Hypotheses for the evolution of PGE have mainly focused on the first transition. However, maternal genes seem to be responsible for the deactivation and here we investigate if maternal suppression could have evolved in response to paternally expressed male suicide genes. We show that sibling competition can cause such genes to spread quickly and that inbreeding is necessary to prevent fixation of male suicide, and subsequent population extinction. Once male-suicide has evolved, maternally expressed suppressor genes can invade in the population. Our results highlight the rich opportunity for genetic conflict in asymmetric genetic systems and the counterintuitive phenotypes that can evolve as a result. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.

  11. Analysis of Adaptive Evolution in Lyssavirus Genomes Reveals Pervasive Diversifying Selection during Species Diversification

    Directory of Open Access Journals (Sweden)

    Carolina M. Voloch

    2014-11-01

    Full Text Available Lyssavirus is a diverse genus of viruses that infect a variety of mammalian hosts, typically causing encephalitis. The evolution of this lineage, particularly the rabies virus, has been a focus of research because of the extensive occurrence of cross-species transmission, and the distinctive geographical patterns present throughout the diversification of these viruses. Although numerous studies have examined pattern-related questions concerning Lyssavirus evolution, analyses of the evolutionary processes acting on Lyssavirus diversification are scarce. To clarify the relevance of positive natural selection in Lyssavirus diversification, we conducted a comprehensive scan for episodic diversifying selection across all lineages and codon sites of the five coding regions in lyssavirus genomes. Although the genomes of these viruses are generally conserved, the glycoprotein (G, RNA-dependent RNA polymerase (L and polymerase (P genes were frequently targets of adaptive evolution during the diversification of the genus. Adaptive evolution is particularly manifest in the glycoprotein gene, which was inferred to have experienced the highest density of positively selected codon sites along branches. Substitutions in the L gene were found to be associated with the early diversification of phylogroups. A comparison between the number of positively selected sites inferred along the branches of RABV population branches and Lyssavirus intespecies branches suggested that the occurrence of positive selection was similar on the five coding regions of the genome in both groups.

  12. Genome Evolution and Phylogenomic Analysis of Candidatus Kinetoplastibacterium, the Betaproteobacterial Endosymbionts of Strigomonas and Angomonas

    Science.gov (United States)

    Alves, João M.P.; Serrano, Myrna G.; Maia da Silva, Flávia; Voegtly, Logan J.; Matveyev, Andrey V.; Teixeira, Marta M.G.; Camargo, Erney P.; Buck, Gregory A.

    2013-01-01

    It has been long known that insect-infecting trypanosomatid flagellates from the genera Angomonas and Strigomonas harbor bacterial endosymbionts (Candidatus Kinetoplastibacterium or TPE [trypanosomatid proteobacterial endosymbiont]) that supplement the host metabolism. Based on previous analyses of other bacterial endosymbiont genomes from other lineages, a stereotypical path of genome evolution in such bacteria over the duration of their association with the eukaryotic host has been characterized. In this work, we sequence and analyze the genomes of five TPEs, perform their metabolic reconstruction, do an extensive phylogenomic analyses with all available Betaproteobacteria, and compare the TPEs with their nearest betaproteobacterial relatives. We also identify a number of housekeeping and central metabolism genes that seem to have undergone positive selection. Our genome structure analyses show total synteny among the five TPEs despite millions of years of divergence, and that this lineage follows the common path of genome evolution observed in other endosymbionts of diverse ancestries. As previously suggested by cell biology and biochemistry experiments, Ca. Kinetoplastibacterium spp. preferentially maintain those genes necessary for the biosynthesis of compounds needed by their hosts. We have also shown that metabolic and informational genes related to the cooperation with the host are overrepresented amongst genes shown to be under positive selection. Finally, our phylogenomic analysis shows that, while being in the Alcaligenaceae family of Betaproteobacteria, the closest relatives of these endosymbionts are not in the genus Bordetella as previously reported, but more likely in the Taylorella genus. PMID:23345457

  13. Genetic drift and mutational hazard in the evolution of salamander genomic gigantism.

    Science.gov (United States)

    Mohlhenrich, Erik Roger; Mueller, Rachel Lockridge

    2016-12-01

    Salamanders have the largest nuclear genomes among tetrapods and, excepting lungfishes, among vertebrates as a whole. Lynch and Conery (2003) have proposed the mutational-hazard hypothesis to explain variation in genome size and complexity. Under this hypothesis, noncoding DNA imposes a selective cost by increasing the target for degenerative mutations (i.e., the mutational hazard). Expansion of noncoding DNA, and thus genome size, is driven by increased levels of genetic drift and/or decreased mutation rates; the former determines the efficiency with which purifying selection can remove excess DNA, whereas the latter determines the level of mutational hazard. Here, we test the hypothesis that salamanders have experienced stronger long-term, persistent genetic drift than frogs, a related clade with more typically sized vertebrate genomes. To test this hypothesis, we compared dN/dS and Kr/Kc values of protein-coding genes between these clades. Our results do not support this hypothesis; we find that salamanders have not experienced stronger genetic drift than frogs. Additionally, we find evidence consistent with a lower nucleotide substitution rate in salamanders. This result, along with previous work showing lower rates of small deletion and ectopic recombination in salamanders, suggests that a lower mutational hazard may contribute to genomic gigantism in this clade. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  14. Evolution of endogenous non-retroviral genes integrated into plant genomes

    Directory of Open Access Journals (Sweden)

    Hyosub Chu

    2014-08-01

    Full Text Available Numerous comparative genome analyses have revealed the wide extent of horizontal gene transfer (HGT in living organisms, which contributes to their evolution and genetic diversity. Viruses play important roles in HGT. Endogenous viral elements (EVEs are defined as viral DNA sequences present within the genomes of non-viral organisms. In eukaryotic cells, the majority of EVEs are derived from RNA viruses using reverse transcription. In contrast, endogenous non-retroviral elements (ENREs are poorly studied. However, the increasing availability of genomic data and the rapid development of bioinformatics tools have enabled the identification of several ENREs in various eukaryotic organisms. To date, a small number of ENREs integrated into plant genomes have been identified. Of the known non-retroviruses, most identified ENREs are derived from double-strand (ds RNA viruses, followed by single-strand (ss DNA and ssRNA viruses. At least eight virus families have been identified. Of these, viruses in the family Partitiviridae are dominant, followed by viruses of the families Chrysoviridae and Geminiviridae. The identified ENREs have been primarily identified in eudicots, followed by monocots. In this review, we briefly discuss the current view on non-retroviral sequences integrated into plant genomes that are associated with plant-virus evolution and their possible roles in antiviral resistance.

  15. Evolving Ideas on the Origin and Evolution of Flowers: New Perspectives in the Genomic Era.

    Science.gov (United States)

    Chanderbali, Andre S; Berger, Brent A; Howarth, Dianella G; Soltis, Pamela S; Soltis, Douglas E

    2016-04-01

    The origin of the flower was a key innovation in the history of complex organisms, dramatically altering Earth's biota. Advances in phylogenetics, developmental genetics, and genomics during the past 25 years have substantially advanced our understanding of the evolution of flowers, yet crucial aspects of floral evolution remain, such as the series of genetic and morphological changes that gave rise to the first flowers; the factors enabling the origin of the pentamerous eudicot flower, which characterizes ∼70% of all extant angiosperm species; and the role of gene and genome duplications in facilitating floral innovations. A key early concept was the ABC model of floral organ specification, developed by Elliott Meyerowitz and Enrico Coen and based on two model systems,Arabidopsis thalianaandAntirrhinum majus Yet it is now clear that these model systems are highly derived species, whose molecular genetic-developmental organization must be very different from that of ancestral, as well as early, angiosperms. In this article, we will discuss how new research approaches are illuminating the early events in floral evolution and the prospects for further progress. In particular, advancing the next generation of research in floral evolution will require the development of one or more functional model systems from among the basal angiosperms and basal eudicots. More broadly, we urge the development of "model clades" for genomic and evolutionary-developmental analyses, instead of the primary use of single "model organisms." We predict that new evolutionary models will soon emerge as genetic/genomic models, providing unprecedented new insights into floral evolution. Copyright © 2016 by the Genetics Society of America.

  16. Genetics, Genomics and Evolution of Ergot Alkaloid Diversity

    Directory of Open Access Journals (Sweden)

    Carolyn A. Young

    2015-04-01

    Full Text Available The ergot alkaloid biosynthesis system has become an excellent model to study evolutionary diversification of specialized (secondary metabolites. This is a very diverse class of alkaloids with various neurotropic activities, produced by fungi in several orders of the phylum Ascomycota, including plant pathogens and protective plant symbionts in the family Clavicipitaceae. Results of comparative genomics and phylogenomic analyses reveal multiple examples of three evolutionary processes that have generated ergot-alkaloid diversity: gene gains, gene losses, and gene sequence changes that have led to altered substrates or product specificities of the enzymes that they encode (neofunctionalization. The chromosome ends appear to be particularly effective engines for gene gains, losses and rearrangements, but not necessarily for neofunctionalization. Changes in gene expression could lead to accumulation of various pathway intermediates and affect levels of different ergot alkaloids. Genetic alterations associated with interspecific hybrids of Epichloë species suggest that such variation is also selectively favored. The huge structural diversity of ergot alkaloids probably represents adaptations to a wide variety of ecological situations by affecting the biological spectra and mechanisms of defense against herbivores, as evidenced by the diverse pharmacological effects of ergot alkaloids used in medicine.

  17. NU-IN: Nucleotide evolution and input module for the EvolSimulator genome simulation platform

    Directory of Open Access Journals (Sweden)

    Barker Michael S

    2010-08-01

    Full Text Available Abstract Background There is increasing demand to test hypotheses that contrast the evolution of genes and gene families among genomes, using simulations that work across these levels of organization. The EvolSimulator program was developed recently to provide a highly flexible platform for forward simulations of amino acid evolution in multiple related lineages of haploid genomes, permitting copy number variation and lateral gene transfer. Synonymous nucleotide evolution is not currently supported, however, and would be highly advantageous for comparisons to full genome, transcriptome, and single nucleotide polymorphism (SNP datasets. In addition, EvolSimulator creates new genomes for each simulation, and does not allow the input of user-specified sequences and gene family information, limiting the incorporation of further biological realism and/or user manipulations of the data. Findings We present modified C++ source code for the EvolSimulator platform, which we provide as the extension module NU-IN. With NU-IN, synonymous and non-synonymous nucleotide evolution is fully implemented, and the user has the ability to use real or previously-simulated sequence data to initiate a simulation of one or more lineages. Gene family membership can be optionally specified, as well as gene retention probabilities that model biased gene retention. We provide PERL scripts to assist the user in deriving this information from previous simulations. We demonstrate the features of NU-IN by simulating genome duplication (polyploidy in the presence of ongoing copy number variation in an evolving lineage. This example is initiated with real genomic data, and produces output that we analyse directly with existing bioinformatic pipelines. Conclusions The NU-IN extension module is a publicly available open source software (GNU GPLv3 license extension to EvolSimulator. With the NU-IN module, users are now able to simulate both drift and selection at the nucleotide

  18. Evolution of a Pathogen: A Comparative Genomics Analysis Identifies a Genetic Pathway to Pathogenesis in Acinetobacter

    Science.gov (United States)

    Sahl, Jason W.; Gillece, John D.; Schupp, James M.; Waddell, Victor G.; Driebe, Elizabeth M.; Engelthaler, David M.; Keim, Paul

    2013-01-01

    Acinetobacter baumannii is an emergent and global nosocomial pathogen. In addition to A. baumannii, other Acinetobacter species, especially those in the Acinetobacter calcoaceticus-baumannii (Acb) complex, have also been associated with serious human infection. Although mechanisms of attachment, persistence on abiotic surfaces, and pathogenesis in A. baumannii have been identified, the genetic mechanisms that explain the emergence of A. baumannii as the most widespread and virulent Acinetobacter species are not fully understood. Recent whole genome sequencing has provided insight into the phylogenetic structure of the genus Acinetobacter. However, a global comparison of genomic features between Acinetobacter spp. has not been described in the literature. In this study, 136 Acinetobacter genomes, including 67 sequenced in this study, were compared to identify the acquisition and loss of genes in the expansion of the Acinetobacter genus. A whole genome phylogeny confirmed that A. baumannii is a monophyletic clade and that the larger Acb complex is also a well-supported monophyletic group. The whole genome phylogeny provided the framework for a global genomic comparison based on a blast score ratio (BSR) analysis. The BSR analysis demonstrated that specific genes have been both lost and acquired in the evolution of A. baumannii. In addition, several genes associated with A. baumannii pathogenesis were found to be more conserved in the Acb complex, and especially in A. baumannii, than in other Acinetobacter genomes; until recently, a global analysis of the distribution and conservation of virulence factors across the genus was not possible. The results demonstrate that the acquisition of specific virulence factors has likely contributed to the widespread persistence and virulence of A. baumannii. The identification of novel features associated with transcriptional regulation and acquired by clades in the Acb complex presents targets for better understanding the

  19. Evolution of a pathogen: a comparative genomics analysis identifies a genetic pathway to pathogenesis in Acinetobacter.

    Directory of Open Access Journals (Sweden)

    Jason W Sahl

    Full Text Available Acinetobacter baumannii is an emergent and global nosocomial pathogen. In addition to A. baumannii, other Acinetobacter species, especially those in the Acinetobacter calcoaceticus-baumannii (Acb complex, have also been associated with serious human infection. Although mechanisms of attachment, persistence on abiotic surfaces, and pathogenesis in A. baumannii have been identified, the genetic mechanisms that explain the emergence of A. baumannii as the most widespread and virulent Acinetobacter species are not fully understood. Recent whole genome sequencing has provided insight into the phylogenetic structure of the genus Acinetobacter. However, a global comparison of genomic features between Acinetobacter spp. has not been described in the literature. In this study, 136 Acinetobacter genomes, including 67 sequenced in this study, were compared to identify the acquisition and loss of genes in the expansion of the Acinetobacter genus. A whole genome phylogeny confirmed that A. baumannii is a monophyletic clade and that the larger Acb complex is also a well-supported monophyletic group. The whole genome phylogeny provided the framework for a global genomic comparison based on a blast score ratio (BSR analysis. The BSR analysis demonstrated that specific genes have been both lost and acquired in the evolution of A. baumannii. In addition, several genes associated with A. baumannii pathogenesis were found to be more conserved in the Acb complex, and especially in A. baumannii, than in other Acinetobacter genomes; until recently, a global analysis of the distribution and conservation of virulence factors across the genus was not possible. The results demonstrate that the acquisition of specific virulence factors has likely contributed to the widespread persistence and virulence of A. baumannii. The identification of novel features associated with transcriptional regulation and acquired by clades in the Acb complex presents targets for better

  20. Evolution of the Exon-Intron Structure in Ciliate Genomes.

    Directory of Open Access Journals (Sweden)

    Vladyslav S Bondarenko

    Full Text Available A typical eukaryotic gene is comprised of alternating stretches of regions, exons and introns, retained in and spliced out a mature mRNA, respectively. Although the length of introns may vary substantially among organisms, a large fraction of genes contains short introns in many species. Notably, some Ciliates (Paramecium and Nyctotherus possess only ultra-short introns, around 25 bp long. In Paramecium, ultra-short introns with length divisible by three (3n are under strong evolutionary pressure and have a high frequency of in-frame stop codons, which, in the case of intron retention, cause premature termination of mRNA translation and consequent degradation of the mis-spliced mRNA by the nonsense-mediated decay mechanism. Here, we analyzed introns in five genera of Ciliates, Paramecium, Tetrahymena, Ichthyophthirius, Oxytricha, and Stylonychia. Introns can be classified into two length classes in Tetrahymena and Ichthyophthirius (with means 48 bp, 69 bp, and 55 bp, 64 bp, respectively, but, surprisingly, comprise three distinct length classes in Oxytricha and Stylonychia (with means 33-35 bp, 47-51 bp, and 78-80 bp. In most ranges of the intron lengths, 3n introns are underrepresented and have a high frequency of in-frame stop codons in all studied species. Introns of Paramecium, Tetrahymena, and Ichthyophthirius are preferentially located at the 5' and 3' ends of genes, whereas introns of Oxytricha and Stylonychia are strongly skewed towards the 5' end. Analysis of evolutionary conservation shows that, in each studied genome, a significant fraction of intron positions is conserved between the orthologs, but intron lengths are not correlated between the species. In summary, our study provides a detailed characterization of introns in several genera of Ciliates and highlights some of their distinctive properties, which, together, indicate that splicing spellchecking is a universal and evolutionarily conserved process in the biogenesis of short

  1. Insights and inferences about integron evolution from genomic data

    Directory of Open Access Journals (Sweden)

    Martin Andrew P

    2008-05-01

    Full Text Available Abstract Background Integrons are mechanisms that facilitate horizontal gene transfer, allowing bacteria to integrate and express foreign DNA. These are important in the exchange of antibiotic resistance determinants, but can also transfer a diverse suite of genes unrelated to pathogenicity. Here, we provide a systematic analysis of the distribution and diversity of integron intI genes and integron-containing bacteria. Results We found integrons in 103 different pathogenic and non-pathogenic bacteria, in six major phyla. Integrons were widely scattered, and their presence was not confined to specific clades within bacterial orders. Nearly 1/3 of the intI genes that we identified were pseudogenes, containing either an internal stop codon or a frameshift mutation that would render the protein product non-functional. Additionally, 20% of bacteria contained more than one integrase gene. dN/dS ratios revealed mutational hotspots in clades of Vibrio and Shewanella intI genes. Finally, we characterized the gene cassettes associated with integrons in Methylobacillus flagellatus KT and Dechloromonas aromatica RCB, and found a heavy metal efflux gene as well as genes involved in protein folding and stability. Conclusion Our analysis suggests that the present distribution of integrons is due to multiple losses and gene transfer events. While, in some cases, the ability to integrate and excise foreign DNA may be selectively advantageous, the gain, loss, or rearrangment of gene cassettes could also be deleterious, selecting against functional integrases. Thus, such a high fraction of pseudogenes may suggest that the selective impact of integrons on genomes is variable, oscillating between beneficial and deleterious, possibly depending on environmental conditions.

  2. Molecular evolution of the plastid genome during diversification of the cotton genus.

    Science.gov (United States)

    Chen, Zhiwen; Grover, Corrinne E; Li, Pengbo; Wang, Yumei; Nie, Hushuai; Zhao, Yanpeng; Wang, Meiyan; Liu, Fang; Zhou, Zhongli; Wang, Xingxing; Cai, Xiaoyan; Wang, Kunbo; Wendel, Jonathan F; Hua, Jinping

    2017-07-01

    Cotton (Gossypium spp.) is commonly grouped into eight diploid genomic groups, designated A-G and K, and one tetraploid genomic group, namely AD. To gain insight into the phylogeny of Gossypium and molecular evolution of the chloroplast genome duringdiversification, chloroplast genomes (cpDNA) from 6 D-genome and 2 G-genome species of Gossypium (G. armourianum D 2-1 , G. harknessii D 2-2 , G. davidsonii D 3-d , G. klotzschianum D 3-k , G. aridum D 4 , G. trilobum D 8 , and G. australe G 2 , G. nelsonii G 3 ) were newly reported here. In combination with the 26 previously released cpDNA sequences, we performed comparative phylogenetic analyses of 34 Gossypium chloroplast genomes that collectively represent most of the diversity in the genus. Gossypium chloroplasts span a small range in size that is mostly attributable to indels that occur in the large single copy (LSC) region of the genome. Phylogenetic analysis using a concatenation of all genes provides robust support for six major Gossypium clades, largely supporting earlier inferences but also revealing new information on intrageneric relationships. Using Theobroma cacao as an outgroup, diversification of the genus was dated, yielding results that are in accord with previous estimates of divergence times, but also offering new perspectives on the basal, early radiation of all major clades within the genus as well as gaps in the record indicative of extinctions. Like most higher-plant chloroplast genomes, all cotton species exhibit a conserved quadripartite structure, i.e., two large inverted repeats (IR) containing most of the ribosomal RNA genes, and two unique regions, LSC (large single sequence) and SSC (small single sequence). Within Gossypium, the IR-single copy region junctions are both variable and homoplasious among species. Two genes, accD and psaJ, exhibited greater rates of synonymous and non-synonymous substitutions than did other genes. Most genes exhibited Ka/Ks ratios suggestive of neutral

  3. Size is not everything: rates of genome size evolution, not C-value, correlate with speciation in angiosperms

    Science.gov (United States)

    Puttick, Mark N.; Clark, James; Donoghue, Philip C. J.

    2015-01-01

    Angiosperms represent one of the key examples of evolutionary success, and their diversity dwarfs other land plants; this success has been linked, in part, to genome size and phenomena such as whole genome duplication events. However, while angiosperms exhibit a remarkable breadth of genome size, evidence linking overall genome size to diversity is equivocal, at best. Here, we show that the rates of speciation and genome size evolution are tightly correlated across land plants, and angiosperms show the highest rates for both, whereas very slow rates are seen in their comparatively species-poor sister group, the gymnosperms. No evidence is found linking overall genome size and rates of speciation. Within angiosperms, both the monocots and eudicots show the highest rates of speciation and genome size evolution, and these data suggest a potential explanation for the megadiversity of angiosperms. It is difficult to associate high rates of diversification with different types of polyploidy, but it is likely that high rates of evolution correlate with a smaller genome size after genome duplications. The diversity of angiosperms may, in part, be due to an ability to increase evolvability by benefiting from whole genome duplications, transposable elements and general genome plasticity. PMID:26631568

  4. Replication and adaptive mutations of low pathogenic avian influenza viruses in tracheal organ cultures of different avian species.

    Directory of Open Access Journals (Sweden)

    Henning Petersen

    Full Text Available Transmission of avian influenza viruses (AIV between different avian species may require genome mutations that allow efficient virus replication in a new species and could increase virulence. To study the role of domestic poultry in the evolution of AIV we compared replication of low pathogenic (LP AIV of subtypes H9N2, H7N7 and H6N8 in tracheal organ cultures (TOC and primary embryo fibroblast cultures of chicken, turkey, Pekin duck and homing pigeon. Virus strain-dependent and avian species-related differences between LPAIV were observed in growth kinetics and induction of ciliostasis in TOC. In particular, our data demonstrate high susceptibility to LPAIV of turkey TOC contrasted with low susceptibility of homing pigeon TOC. Serial virus passages in the cells of heterologous host species resulted in adaptive mutations in the AIV genome, especially in the receptor-binding site and protease cleavage site of the hemagglutinin. Our data highlight differences in susceptibility of different birds to AIV viruses and emphasizes potential role of poultry in the emergence of new virus variants.

  5. Game of clones: the genomic evolution of severe congenital neutropenia.

    Science.gov (United States)

    Touw, Ivo P

    2015-01-01

    Severe congenital neutropenia (SCN) is a genetically heterogeneous condition of bone marrow failure usually diagnosed in early childhood and characterized by a chronic and severe shortage of neutrophils. It is now well-established that mutations in HAX1 and ELANE (and more rarely in other genes) are the genetic cause of SCN. In contrast, it has remained unclear how these mutations affect neutrophil development. Innovative models based on induced pluripotent stem cell technology are being explored to address this issue. These days, most SCN patients receive life-long treatment with granulocyte colony-stimulating factor (G-CSF, CSF3). CSF3 therapy has greatly improved the life expectancy of SCN patients, but also unveiled a high frequency of progression toward myelodysplastic syndrome (MDS) and therapy refractory acute myeloid leukemia (AML). Expansion of hematopoietic clones with acquired mutations in the gene encoding the G-CSF receptor (CSF3R) is regularly seen in SCN patients and AML usually descends from one of these CSF3R mutant clones. These findings raised the questions how CSF3R mutations affect CSF3 responses of myeloid progenitors, how they contribute to the pre-leukemic state of SCN, and which additional events are responsible for progression to leukemia. The vast (sub)clonal heterogeneity of AML and the presence of AML-associated mutations in normally aged hematopoietic clones make it often difficult to determine which mutations are responsible for the leukemic process. Leukemia predisposition syndromes such as SCN are unique disease models to identify the sequential acquisition of these mutations and to interrogate how they contribute to clonal selection and leukemic evolution. © 2015 by The American Society of Hematology. All rights reserved.

  6. The Medicago Genome Provides Insight into the Evolution of Rhizobial Symbioses

    Science.gov (United States)

    Young, Nevin D.; Debellé, Frédéric; Oldroyd, Giles E. D.; Geurts, Rene; Cannon, Steven B.; Udvardi, Michael K.; Benedito, Vagner A.; Mayer, Klaus F. X.; Gouzy, Jérôme; Schoof, Heiko; Van de Peer, Yves; Proost, Sebastian; Cook, Douglas R.; Meyers, Blake C.; Spannagl, Manuel; Cheung, Foo; De Mita, Stéphane; Krishnakumar, Vivek; Gundlach, Heidrun; Zhou, Shiguo; Mudge, Joann; Bharti, Arvind K.; Murray, Jeremy D.; Naoumkina, Marina A.; Rosen, Benjamin; Silverstein, Kevin A. T.; Tang, Haibao; Rombauts, Stephane; Zhao, Patrick X.; Zhou, Peng; Barbe, Valérie; Bardou, Philippe; Bechner, Michael; Bellec, Arnaud; Berger, Anne; Bergès, Hélène; Bidwell, Shelby; Bisseling, Ton; Choisne, Nathalie; Couloux, Arnaud; Denny, Roxanne; Deshpande, Shweta; Dai, Xinbin; Doyle, Jeff; Dudez, Anne-Marie; Farmer, Andrew D.; Fouteau, Stéphanie; Franken, Carolien; Gibelin, Chrystel; Gish, John; Goldstein, Steven; González, Alvaro J.; Green, Pamela J.; Hallab, Asis; Hartog, Marijke; Hua, Axin; Humphray, Sean; Jeong, Dong-Hoon; Jing, Yi; Jöcker, Anika; Kenton, Steve M.; Kim, Dong-Jin; Klee, Kathrin; Lai, Hongshing; Lang, Chunting; Lin, Shaoping; Macmil, Simone L; Magdelenat, Ghislaine; Matthews, Lucy; McCorrison, Jamison; Monaghan, Erin L.; Mun, Jeong-Hwan; Najar, Fares Z.; Nicholson, Christine; Noirot, Céline; O’Bleness, Majesta; Paule, Charles R.; Poulain, Julie; Prion, Florent; Qin, Baifang; Qu, Chunmei; Retzel, Ernest F.; Riddle, Claire; Sallet, Erika; Samain, Sylvie; Samson, Nicolas; Sanders, Iryna; Saurat, Olivier; Scarpelli, Claude; Schiex, Thomas; Segurens, Béatrice; Severin, Andrew J.; Sherrier, D. Janine; Shi, Ruihua; Sims, Sarah; Singer, Susan R.; Sinharoy, Senjuti; Sterck, Lieven; Viollet, Agnès; Wang, Bing-Bing; Wang, Keqin; Wang, Mingyi; Wang, Xiaohong; Warfsmann, Jens; Weissenbach, Jean; White, Doug D.; White, Jim D.; Wiley, Graham B.; Wincker, Patrick; Xing, Yanbo; Yang, Limei; Yao, Ziyun; Ying, Fu; Zhai, Jixian; Zhou, Liping; Zuber, Antoine; Dénarié, Jean; Dixon, Richard A.; May, Gregory D.; Schwartz, David C.; Rogers, Jane; Quétier, Francis; Town, Christopher D.; Roe, Bruce A.

    2011-01-01

    Legumes (Fabaceae or Leguminosae) are unique among cultivated plants for their ability to carry out endosymbiotic nitrogen fixation with rhizobial bacteria, a process that takes place in a specialized structure known as the nodule. Legumes belong to one of the two main groups of eurosids, the Fabidae, which includes most species capable of endosymbiotic nitrogen fixation 1. Legumes comprise several evolutionary lineages derived from a common ancestor 60 million years ago (Mya). Papilionoids are the largest clade, dating nearly to the origin of legumes and containing most cultivated species 2. Medicago truncatula (Mt) is a long-established model for the study of legume biology. Here we describe the draft sequence of the Mt euchromatin based on a recently completed BAC-assembly supplemented with Illumina-shotgun sequence, together capturing ~94% of all Mt genes. A whole-genome duplication (WGD) approximately 58 Mya played a major role in shaping the Mt genome and thereby contributed to the evolution of endosymbiotic nitrogen fixation. Subsequent to the WGD, the Mt genome experienced higher levels of rearrangement than two other sequenced legumes, Glycine max (Gm) and Lotus japonicus (Lj). Mt is a close relative of alfalfa (M. sativa), a widely cultivated crop with limited genomics tools and complex autotetraploid genetics. As such, the Mt genome sequence provides significant opportunities to expand alfalfa’s genomic toolbox. PMID:22089132

  7. Plastid genomics in horticultural species: Importance and applications for plant diversity, evolution and biotechnology

    Directory of Open Access Journals (Sweden)

    Marcelo eRogalski

    2015-07-01

    Full Text Available During the evolution of the eukaryotic cell, plastids and mitochondria arose from an endosymbiotic process, which determined the presence of three genetic compartments into the incipient plant cell. After that, these three genetic materials from host and symbiont suffered several rearrangements, bringing on a complex interaction between nuclear and organellar gene products. Nowadays, plastids harbor a small genome with ~130 genes in a 100-220 kb sequence in higher plants. Plastid genes are mostly highly conserved between plant species, being useful for phylogenetic analysis in higher taxa. However, intergenic spacers have a relatively higher mutation rate and are important markers to study genetic diversity and divergence within natural plant populations. The predominant uniparental inheritance of plastids is like a highly desirable feature for phylogeny studies. Moreover, the gene content and genome rearrangements are efficient tools to capture and understand evolutionary events between different plant species. Currently, genetic engineering of the plastid genome (plastome offers a number of attractive advantages as high-level of foreign protein expression, marker-gene excision, gene expression in operon and transgene containment because of maternal inheritance of plastid genome in most crops. Therefore, plastid genome can be used for adding new characteristics related to synthesis of metabolic compounds, biopharmaceutical and tolerance to biotic and abiotic stresses. Here, we describe the importance and applications of plastid genome as tools for genetic and evolutionary studies, and plastid transformation focusing on increasing the performance of horticultural species in the field.

  8. Monitoring of Ebola Virus Makona Evolution through Establishment of Advanced Genomic Capability in Liberia.

    Science.gov (United States)

    Kugelman, Jeffrey R; Wiley, Michael R; Mate, Suzanne; Ladner, Jason T; Beitzel, Brett; Fakoli, Lawrence; Taweh, Fahn; Prieto, Karla; Diclaro, Joseph W; Minogue, Timothy; Schoepp, Randal J; Schaecher, Kurt E; Pettitt, James; Bateman, Stacey; Fair, Joseph; Kuhn, Jens H; Hensley, Lisa; Park, Daniel J; Sabeti, Pardis C; Sanchez-Lockhart, Mariano; Bolay, Fatorma K; Palacios, Gustavo

    2015-07-01

    To support Liberia's response to the ongoing Ebola virus (EBOV) disease epidemic in Western Africa, we established in-country advanced genomic capabilities to monitor EBOV evolution. Twenty-five EBOV genomes were sequenced at the Liberian Institute for Biomedical Research, which provided an in-depth view of EBOV diversity in Liberia during September 2014-February 2015. These sequences were consistent with a single virus introduction to Liberia; however, shared ancestry with isolates from Mali indicated at least 1 additional instance of movement into or out of Liberia. The pace of change is generally consistent with previous estimates of mutation rate. We observed 23 nonsynonymous mutations and 1 nonsense mutation. Six of these changes are within known binding sites for sequence-based EBOV medical countermeasures; however, the diagnostic and therapeutic impact of EBOV evolution within Liberia appears to be low.

  9. Recombination in Avian Gamma-Coronavirus Infectious Bronchitis Virus

    Directory of Open Access Journals (Sweden)

    Mark W. Jackwood

    2011-09-01

    Full Text Available Recombination in the family Coronaviridae has been well documented and is thought to be a contributing factor in the emergence and evolution of different coronaviral genotypes as well as different species of coronavirus. However, there are limited data available on the frequency and extent of recombination in coronaviruses in nature and particularly for the avian gamma-coronaviruses where only recently the emergence of a turkey coronavirus has been attributed solely to recombination. In this study, the full-length genomes of eight avian gamma-coronavirus infectious bronchitis virus (IBV isolates were sequenced and along with other full-length IBV genomes available from GenBank were analyzed for recombination. Evidence of recombination was found in every sequence analyzed and was distributed throughout the entire genome. Areas that have the highest occurrence of recombination are located in regions of the genome that code for nonstructural proteins 2, 3 and 16, and the structural spike glycoprotein. The extent of the recombination observed, suggests that this may be one of the principal mechanisms for generating genetic and antigenic diversity within IBV. These data indicate that reticulate evolutionary change due to recombination in IBV, likely plays a major role in the origin and adaptation of the virus leading to new genetic types and strains of the virus.

  10. Comparative genomic analysis shows that avian pathogenic Escherichia coli isolate IMT5155 (O2:K1:H5; ST complex 95, ST140 shares close relationship with ST95 APEC O1:K1 and human ExPEC O18:K1 strains.

    Directory of Open Access Journals (Sweden)

    Xiangkai Zhu Ge

    Full Text Available Avian pathogenic E. coli and human extraintestinal pathogenic E. coli serotypes O1, O2 and O18 strains isolated from different hosts are generally located in phylogroup B2 and ST complex 95, and they share similar genetic characteristics and pathogenicity, with no or minimal host specificity. They are popular objects for the study of ExPEC genetic characteristics and pathogenesis in recent years. Here, we investigated the evolution and genetic blueprint of APEC pathotype by performing phylogenetic and comparative genome analysis of avian pathogenic E. coli strain IMT5155 (O2:K1:H5; ST complex 95, ST140 with other E. coli pathotypes. Phylogeny analyses indicated that IMT5155 has closest evolutionary relationship with APEC O1, IHE3034, and UTI89. Comparative genomic analysis showed that IMT5155 and APEC O1 shared significant genetic overlap/similarities with human ExPEC dominant O18:K1 strains (IHE3034 and UTI89. Furthermore, the unique PAI I5155 (GI-12 was identified and found to be conserved in APEC O2 serotype isolates. GI-7 and GI-16 encoding two typical T6SSs in IMT5155 might be useful markers for the identification of ExPEC dominant serotypes (O1, O2, and O18 strains. IMT5155 contained a ColV plasmid p1ColV5155, which defined the APEC pathotype. The distribution analysis of 10 sequenced ExPEC pan-genome virulence factors among 47 sequenced E. coli strains provided meaningful information for B2 APEC/ExPEC-specific virulence factors, including several adhesins, invasins, toxins, iron acquisition systems, and so on. The pathogenicity tests of IMT5155 and other APEC O1:K1 and O2:K1 serotypes strains (isolated in China through four animal models showed that they were highly virulent for avian colisepticemia and able to cause septicemia and meningitis in neonatal rats, suggesting zoonotic potential of these APEC O1:K1 and O2:K1 isolates.

  11. Exploring Diversification and Genome Size Evolution in Extant Gymnosperms through Phylogenetic Synthesis

    OpenAIRE

    Burleigh, J. Gordon; Barbazuk, W. Brad; Davis, John M.; Morse, Alison M.; Soltis, Pamela S.

    2012-01-01

    Gymnosperms, comprising cycads, Ginkgo, Gnetales, and conifers, represent one of the major groups of extant seed plants. Yet compared to angiosperms, little is known about the patterns of diversification and genome evolution in gymnosperms. We assembled a phylogenetic supermatrix containing over 4.5 million nucleotides from 739 gymnosperm taxa. Although 93.6% of the cells in the supermatrix are empty, the data reveal many strongly supported nodes that are generally consistent with previous ph...

  12. Diversity and evolution of avian influenza viruses in live poultry markets, free-range poultry and wild wetland birds in China.

    Science.gov (United States)

    Chen, Liang-Jun; Lin, Xian-Dan; Guo, Wen-Ping; Tian, Jun-Hua; Wang, Wen; Ying, Xu-Hua; Wang, Miao-Ruo; Yu, Bin; Yang, Zhan-Qiu; Shi, Mang; Holmes, Edward C; Zhang, Yong-Zhen

    2016-04-01

    The wide circulation of novel avian influenza viruses (AIVs) highlights the risk of pandemic influenza emergence in China. To investigate the prevalence and genetic diversity of AIVs in different ecological contexts, we surveyed AIVs in live poultry markets (LPMs), free-range poultry and the wetland habitats of wild birds in Zhejiang and Hubei provinces. Notably, LPMs contained the highest frequency of AIV infection, and the greatest number of subtypes (n = 9) and subtype co-infections (n = 14), as well as frequent reassortment, suggesting that they play an active role in fuelling AIV transmission. AIV-positive samples were also identified in wild birds in both provinces and free-range poultry in one sampling site close to a wetland region in Hubei. H9N2, H7N9 and H5N1 were the most commonly sampled subtypes in the LPMs from Zhejiang, whilst H5N6 and H9N2 were the dominant subtypes in the LPMs from Hubei. Phylogenetic analyses of the whole-genome sequences of 43 AIVs revealed that three reassortant H5 subtypes were circulating in LMPs in both geographical regions. Notably, the viruses sampled from the wetland regions and free-range poultry contained complex reassortants, for which the origins of some segments were unclear. Overall, our study highlights the extent of AIV genetic diversity in two highly populated parts of central and south-eastern China, particularly in LPMs, and emphasizes the need for continual surveillance.

  13. Genomic insights into the distribution, genetic diversity and evolution of polyketide synthases and nonribosomal peptide synthetases.

    Science.gov (United States)

    Wang, Hao; Sivonen, Kaarina; Fewer, David P

    2015-12-01

    Polyketides and nonribosomal peptides are important secondary metabolites that exhibit enormous structural diversity, have many pharmaceutical applications, and include a number of clinically important drugs. These complex metabolites are most commonly synthesized on enzymatic assembly lines of polyketide synthases and nonribosomal peptide synthetases. Genome-mining studies making use of the recent explosion in the number of genome sequences have demonstrated unexpected enzymatic diversity and greatly expanded the known distribution of these enzyme systems across the three domains of life. The wealth of data now available suggests that genome-mining efforts will uncover new natural products, novel biosynthetic mechanisms, and shed light on the origin and evolution of these important enzymes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Comparative and functional genomics of the Lactococcus lactis taxon; insights into evolution and niche adaptation.

    Science.gov (United States)

    Kelleher, Philip; Bottacini, Francesca; Mahony, Jennifer; Kilcawley, Kieran N; van Sinderen, Douwe

    2017-03-29

    Lactococcus lactis is among the most widely studied lactic acid bacterial species due to its long history of safe use and economic importance to the dairy industry, where it is exploited as a starter culture in cheese production. In the current study, we report on the complete sequencing of 16 L. lactis subsp. lactis and L. lactis subsp. cremoris genomes. The chromosomal features of these 16 L. lactis strains in conjunction with 14 completely sequenced, publicly available lactococcal chromosomes were assessed with particular emphasis on discerning the L. lactis subspecies division, evolution and niche adaptation. The deduced pan-genome of L. lactis was found to be closed, indicating that the representative data sets employed for this analysis are sufficient to fully describe the genetic diversity of the taxon. Niche adaptation appears to play a significant role in governing the genetic content of each L. lactis subspecies, while (differential) genome decay and redundancy in the dairy niche is also highlighted.

  15. The impacts of drift and selection on genomic evolution in insects

    Directory of Open Access Journals (Sweden)

    K. Jun Tong

    2017-04-01

    Full Text Available Genomes evolve through a combination of mutation, drift, and selection, all of which act heterogeneously across genes and lineages. This leads to differences in branch-length patterns among gene trees. Genes that yield trees with the same branch-length patterns can be grouped together into clusters. Here, we propose a novel phylogenetic approach to explain the factors that influence the number and distribution of these gene-tree clusters. We apply our method to a genomic dataset from insects, an ancient and diverse group of organisms. We find some evidence that when drift is the dominant evolutionary process, each cluster tends to contain a large number of fast-evolving genes. In contrast, strong negative selection leads to many distinct clusters, each of which contains only a few slow-evolving genes. Our work, although preliminary in nature, illustrates the use of phylogenetic methods to shed light on the factors driving rate variation in genomic evolution.

  16. Targeted sequencing of venom genes from cone snail genomes improves understanding of conotoxin molecular evolution.

    Science.gov (United States)

    Phuong, Mark A; Mahardika, Gusti N

    2018-03-05

    To expand our capacity to discover venom sequences from the genomes of venomous organisms, we applied targeted sequencing techniques to selectively recover venom gene superfamilies and non-toxin loci from the genomes of 32 cone snail species (family, Conidae), a diverse group of marine gastropods that capture their prey using a cocktail of neurotoxic peptides (conotoxins). We were able to successfully recover conotoxin gene superfamilies across all species with high confidence (> 100X coverage) and used these data to provide new insights into conotoxin evolution. First, we found that conotoxin gene superfamilies are composed of 1-6 exons and are typically short in length (mean = ∼85bp). Second, we expanded our understanding of the following genetic features of conotoxin evolution: (a) positive selection, where exons coding the mature toxin region were often three times more divergent than their adjacent noncoding regions, (b) expression regulation, with comparisons to transcriptome data showing that cone snails only express a fraction of the genes available in their genome (24%-63%), and (c) extensive gene turnover, where Conidae species varied from 120-859 conotoxin gene copies. Finally, using comparative phylogenetic methods, we found that while diet specificity did not predict patterns of conotoxin evolution, dietary breadth was positively correlated with total conotoxin gene diversity. Overall, the targeted sequencing technique demonstrated here has the potential to radically increase the pace at which venom gene families are sequenced and studied, reshaping our ability to understand the impact of genetic changes on ecologically relevant phenotypes and subsequent diversification.

  17. Genomic Evidence for the Emergence and Evolution of Pathogenicity and Niche Preferences in the Genus Campylobacter

    Science.gov (United States)

    Iraola, Gregorio; Pérez, Ruben; Naya, Hugo; Paolicchi, Fernando; Pastor, Eugenia; Valenzuela, Sebastián; Calleros, Lucía; Velilla, Alejandra; Hernández, Martín; Morsella, Claudia

    2014-01-01

    The genus Campylobacter includes some of the most relevant pathogens for human and animal health; the continuous effort in their characterization has also revealed new species putatively involved in different kind of infections. Nowadays, the available genomic data for the genus comprise a wide variety of species with different pathogenic potential and niche preferences. In this work, we contribute to enlarge this available information presenting the first genome for the species Campylobacter sputorum bv. sputorum and use this and the already sequenced organisms to analyze the emergence and evolution of pathogenicity and niche preferences among Campylobacter species. We found that campylobacters can be unequivocally distinguished in established and putative pathogens depending on their repertory of virulence genes, which have been horizontally acquired from other bacteria because the nonpathogenic Campylobacter ancestor emerged, and posteriorly interchanged between some members of the genus. Additionally, we demonstrated the role of both horizontal gene transfers and diversifying evolution in niche preferences, being able to distinguish genetic features associated to the tropism for oral, genital, and gastrointestinal tissues. In particular, we highlight the role of nonsynonymous evolution of disulphide bond proteins, the invasion antigen B (CiaB), and other secreted proteins in the determination of niche preferences. Our results arise from assessing the previously unmet goal of considering the whole available Campylobacter diversity for genome comparisons, unveiling notorious genetic features that could explain particular phenotypes and set the basis for future research in Campylobacter biology. PMID:25193310

  18. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system

    Science.gov (United States)

    Vonk, Freek J.; Casewell, Nicholas R.; Henkel, Christiaan V.; Heimberg, Alysha M.; Jansen, Hans J.; McCleary, Ryan J. R.; Kerkkamp, Harald M. E.; Vos, Rutger A.; Guerreiro, Isabel; Calvete, Juan J.; Wüster, Wolfgang; Woods, Anthony E.; Logan, Jessica M.; Harrison, Robert A.; Castoe, Todd A.; de Koning, A. P. Jason; Pollock, David D.; Yandell, Mark; Calderon, Diego; Renjifo, Camila; Currier, Rachel B.; Salgado, David; Pla, Davinia; Sanz, Libia; Hyder, Asad S.; Ribeiro, José M. C.; Arntzen, Jan W.; van den Thillart, Guido E. E. J. M.; Boetzer, Marten; Pirovano, Walter; Dirks, Ron P.; Spaink, Herman P.; Duboule, Denis; McGlinn, Edwina; Kini, R. Manjunatha; Richardson, Michael K.

    2013-01-01

    Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection. PMID:24297900

  19. Evolution of domain promiscuity in eukaryotic genomes--a perspective from the inferred ancestral domain architectures.

    Science.gov (United States)

    Cohen-Gihon, Inbar; Fong, Jessica H; Sharan, Roded; Nussinov, Ruth; Przytycka, Teresa M; Panchenko, Anna R

    2011-03-01

    Most eukaryotic proteins are composed of two or more domains. These assemble in a modular manner to create new proteins usually by the acquisition of one or more domains to an existing protein. Promiscuous domains which are found embedded in a variety of proteins and co-exist with many other domains are of particular interest and were shown to have roles in signaling pathways and mediating network communication. The evolution of domain promiscuity is still an open problem, mostly due to the lack of sequenced ancestral genomes. Here we use inferred domain architectures of ancestral genomes to trace the evolution of domain promiscuity in eukaryotic genomes. We find an increase in average promiscuity along many branches of the eukaryotic tree. Moreover, domain promiscuity can proceed at almost a steady rate over long evolutionary time or exhibit lineage-specific acceleration. We also observe that many signaling and regulatory domains gained domain promiscuity around the Bilateria divergence. In addition we show that those domains that played a role in the creation of two body axes and existed before the divergence of the bilaterians from fungi/metazoan achieve a boost in their promiscuities during the bilaterian evolution.

  20. The Complete Chloroplast Genome of Banana (Musa acuminata, Zingiberales): Insight into Plastid Monocotyledon Evolution

    Science.gov (United States)

    Martin, Guillaume; Baurens, Franc-Christophe; Cardi, Céline; Aury, Jean-Marc; D’Hont, Angélique

    2013-01-01

    Background Banana (genus Musa) is a crop of major economic importance worldwide. It is a monocotyledonous member of the Zingiberales, a sister group of the widely studied Poales. Most cultivated bananas are natural Musa inter-(sub-)specific triploid hybrids. A Musa acuminata reference nuclear genome sequence was recently produced based on sequencing of genomic DNA enriched in nucleus. Methodology/Principal Findings The Musa acuminata chloroplast genome was assembled with chloroplast reads extracted from whole-genome-shotgun sequence data. The Musa chloroplast genome is a circular molecule of 169,972 bp with a quadripartite structure containing two single copy regions, a Large Single Copy region (LSC, 88,338 bp) and a Small Single Copy region (SSC, 10,768 bp) separated by Inverted Repeat regions (IRs, 35,433 bp). Two forms of the chloroplast genome relative to the orientation of SSC versus LSC were found. The Musa chloroplast genome shows an extreme IR expansion at the IR/SSC boundary relative to the most common structures found in angiosperms. This expansion consists of the integration of three additional complete genes (rps15, ndhH and ycf1) and part of the ndhA gene. No such expansion has been observed in monocots so far. Simple Sequence Repeats were identified in the Musa chloroplast genome and a new set of Musa chloroplastic markers was designed. Conclusion The complete sequence of M. acuminata ssp malaccensis chloroplast we reported here is the first one for the Zingiberales order. As such it provides new insight in the evolution of the chloroplast of monocotyledons. In particular, it reinforces that IR/SSC expansion has occurred independently several times within monocotyledons. The discovery of new polymorphic markers within Musa chloroplast opens new perspectives to better understand the origin of cultivated triploid bananas. PMID:23840670

  1. The complete chloroplast genome of banana (Musa acuminata, Zingiberales): insight into plastid monocotyledon evolution.

    Science.gov (United States)

    Martin, Guillaume; Baurens, Franc-Christophe; Cardi, Céline; Aury, Jean-Marc; D'Hont, Angélique

    2013-01-01

    Banana (genus Musa) is a crop of major economic importance worldwide. It is a monocotyledonous member of the Zingiberales, a sister group of the widely studied Poales. Most cultivated bananas are natural Musa inter-(sub-)specific triploid hybrids. A Musa acuminata reference nuclear genome sequence was recently produced based on sequencing of genomic DNA enriched in nucleus. The Musa acuminata chloroplast genome was assembled with chloroplast reads extracted from whole-genome-shotgun sequence data. The Musa chloroplast genome is a circular molecule of 169,972 bp with a quadripartite structure containing two single copy regions, a Large Single Copy region (LSC, 88,338 bp) and a Small Single Copy region (SSC, 10,768 bp) separated by Inverted Repeat regions (IRs, 35,433 bp). Two forms of the chloroplast genome relative to the orientation of SSC versus LSC were found. The Musa chloroplast genome shows an extreme IR expansion at the IR/SSC boundary relative to the most common structures found in angiosperms. This expansion consists of the integration of three additional complete genes (rps15, ndhH and ycf1) and part of the ndhA gene. No such expansion has been observed in monocots so far. Simple Sequence Repeats were identified in the Musa chloroplast genome and a new set of Musa chloroplastic markers was designed. The complete sequence of M. acuminata ssp malaccensis chloroplast we reported here is the first one for the Zingiberales order. As such it provides new insight in the evolution of the chloroplast of monocotyledons. In particular, it reinforces that IR/SSC expansion has occurred independently several times within monocotyledons. The discovery of new polymorphic markers within Musa chloroplast opens new perspectives to better understand the origin of cultivated triploid bananas.

  2. The complete chloroplast genome of banana (Musa acuminata, Zingiberales: insight into plastid monocotyledon evolution.

    Directory of Open Access Journals (Sweden)

    Guillaume Martin

    Full Text Available BACKGROUND: Banana (genus Musa is a crop of major economic importance worldwide. It is a monocotyledonous member of the Zingiberales, a sister group of the widely studied Poales. Most cultivated bananas are natural Musa inter-(sub-specific triploid hybrids. A Musa acuminata reference nuclear genome sequence was recently produced based on sequencing of genomic DNA enriched in nucleus. METHODOLOGY/PRINCIPAL FINDINGS: The Musa acuminata chloroplast genome was assembled with chloroplast reads extracted from whole-genome-shotgun sequence data. The Musa chloroplast genome is a circular molecule of 169,972 bp with a quadripartite structure containing two single copy regions, a Large Single Copy region (LSC, 88,338 bp and a Small Single Copy region (SSC, 10,768 bp separated by Inverted Repeat regions (IRs, 35,433 bp. Two forms of the chloroplast genome relative to the orientation of SSC versus LSC were found. The Musa chloroplast genome shows an extreme IR expansion at the IR/SSC boundary relative to the most common structures found in angiosperms. This expansion consists of the integration of three additional complete genes (rps15, ndhH and ycf1 and part of the ndhA gene. No such expansion has been observed in monocots so far. Simple Sequence Repeats were identified in the Musa chloroplast genome and a new set of Musa chloroplastic markers was designed. CONCLUSION: The complete sequence of M. acuminata ssp malaccensis chloroplast we reported here is the first one for the Zingiberales order. As such it provides new insight in the evolution of the chloroplast of monocotyledons. In particular, it reinforces that IR/SSC expansion has occurred independently several times within monocotyledons. The discovery of new polymorphic markers within Musa chloroplast opens new perspectives to better understand the origin of cultivated triploid bananas.

  3. Parasitic plants have increased rates of molecular evolution across all three genomes.

    Science.gov (United States)

    Bromham, Lindell; Cowman, Peter F; Lanfear, Robert

    2013-06-19

    Theoretical models and experimental evidence suggest that rates of molecular evolution could be raised in parasitic organisms compared to non-parasitic taxa. Parasitic plants provide an ideal test for these predictions, as there are at least a dozen independent origins of the parasitic lifestyle in angiosperms. Studies of a number of parasitic plant lineages have suggested faster rates of molecular evolution, but the results of some studies have been mixed. Comparative analysis of all parasitic plant lineages, including sequences from all three genomes, is needed to examine the generality of the relationship between rates of molecular evolution and parasitism in plants. We analysed DNA sequence data from the mitochondrial, nuclear and chloroplast genomes for 12 independent evolutionary origins of parasitism in angiosperms. We demonstrated that parasitic lineages have a faster rate of molecular evolution than their non-parasitic relatives in sequences for all three genomes, for both synonymous and nonsynonymous substitutions. Our results prove that raised rates of molecular evolution are a general feature of parasitic plants, not confined to a few taxa or specific genes. We discuss possible causes for this relationship, including increased positive selection associated with host-parasite arms races, relaxed selection, reduced population size or repeated bottlenecks, increased mutation rates, and indirect causal links with generation time and body size. We find no evidence that faster rates are due to smaller effective populations sizes or changes in selection pressure. Instead, our results suggest that parasitic plants have a higher mutation rate than their close non-parasitic relatives. This may be due to a direct connection, where some aspect of the parasitic lifestyle drives the evolution of raised mutation rates. Alternatively, this pattern may be driven by an indirect connection between rates and parasitism: for example, parasitic plants tend to be smaller than

  4. Comparative Genomics Reveals Accelerated Evolution in Conserved Pathways during the Diversification of Anole Lizards

    Science.gov (United States)

    Tollis, Marc; Hutchins, Elizabeth D; Stapley, Jessica; Rupp, Shawn M; Eckalbar, Walter L; Maayan, Inbar; Lasku, Eris; Infante, Carlos R; Dennis, Stuart R; Robertson, Joel A; May, Catherine M; Bermingham, Eldredge; DeNardo, Dale F; Hsieh, Shi-Tong Tonia; Kulathinal, Rob J; McMillan, William Owen; Menke, Douglas B; Pratt, Stephen C; Rawls, Jeffery Alan; Sanjur, Oris; Wilson-Rawls, Jeanne; Wilson Sayres, Melissa A; Fisher, Rebecca E

    2018-01-01

    Abstract Squamates include all lizards and snakes, and display some of the most diverse and extreme morphological adaptations among vertebrates. However, compared with birds and mammals, relatively few resources exist for comparative genomic analyses of squamates, hampering efforts to understand the molecular bases of phenotypic diversification in such a speciose clade. In particular, the ∼400 species of anole lizard represent an extensive squamate radiation. Here, we sequence and assemble the draft genomes of three anole species—Anolis frenatus, Anolis auratus, and Anolis apletophallus—for comparison with the available reference genome of Anolis carolinensis. Comparative analyses reveal a rapid background rate of molecular evolution consistent with a model of punctuated equilibrium, and strong purifying selection on functional genomic elements in anoles. We find evidence for accelerated evolution in genes involved in behavior, sensory perception, and reproduction, as well as in genes regulating limb bud development and hindlimb specification. Morphometric analyses of anole fore and hindlimbs corroborated these findings. We detect signatures of positive selection across several genes related to the development and regulation of the forebrain, hormones, and the iguanian lizard dewlap, suggesting molecular changes underlying behavioral adaptations known to reinforce species boundaries were a key component in the diversification of anole lizards. PMID:29360978

  5. The Ectocarpus genome and the independent evolution of multicellularity in brown algae.

    Science.gov (United States)

    Cock, J Mark; Sterck, Lieven; Rouzé, Pierre; Scornet, Delphine; Allen, Andrew E; Amoutzias, Grigoris; Anthouard, Veronique; Artiguenave, François; Aury, Jean-Marc; Badger, Jonathan H; Beszteri, Bank; Billiau, Kenny; Bonnet, Eric; Bothwell, John H; Bowler, Chris; Boyen, Catherine; Brownlee, Colin; Carrano, Carl J; Charrier, Bénédicte; Cho, Ga Youn; Coelho, Susana M; Collén, Jonas; Corre, Erwan; Da Silva, Corinne; Delage, Ludovic; Delaroque, Nicolas; Dittami, Simon M; Doulbeau, Sylvie; Elias, Marek; Farnham, Garry; Gachon, Claire M M; Gschloessl, Bernhard; Heesch, Svenja; Jabbari, Kamel; Jubin, Claire; Kawai, Hiroshi; Kimura, Kei; Kloareg, Bernard; Küpper, Frithjof C; Lang, Daniel; Le Bail, Aude; Leblanc, Catherine; Lerouge, Patrice; Lohr, Martin; Lopez, Pascal J; Martens, Cindy; Maumus, Florian; Michel, Gurvan; Miranda-Saavedra, Diego; Morales, Julia; Moreau, Hervé; Motomura, Taizo; Nagasato, Chikako; Napoli, Carolyn A; Nelson, David R; Nyvall-Collén, Pi; Peters, Akira F; Pommier, Cyril; Potin, Philippe; Poulain, Julie; Quesneville, Hadi; Read, Betsy; Rensing, Stefan A; Ritter, Andrés; Rousvoal, Sylvie; Samanta, Manoj; Samson, Gaelle; Schroeder, Declan C; Ségurens, Béatrice; Strittmatter, Martina; Tonon, Thierry; Tregear, James W; Valentin, Klaus; von Dassow, Peter; Yamagishi, Takahiro; Van de Peer, Yves; Wincker, Patrick

    2010-06-03

    Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related. These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae, closely related to the kelps (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic approaches to explore these and other aspects of brown algal biology further.

  6. Comparative genome sequencing of drosophila pseudoobscura: Chromosomal, gene and cis-element evolution

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Stephen; Liu, Yue; Bettencourt, Brian R.; Hradecky, Pavel; Letovsky, Stan; Nielsen, Rasmus; Thornton, Kevin; Todd, Melissa J.; Chen, Rui; Meisel, Richard P.; Couronne, Olivier; Hua, Sujun; Smith, Mark A.; Bussemaker, Harmen J.; van Batenburg, Marinus F.; Howells, Sally L.; Scherer, Steven E.; Sodergren, Erica; Matthews, Beverly B.; Crosby, Madeline A.; Schroeder, Andrew J.; Ortiz-Barrientos, Daniel; Rives, Catherine M.; Metzker, Michael L.; Muzny, Donna M.; Scott, Graham; Steffen, David; Wheeler, David A.; Worley, Kim C.; Havlak, Paul; Durbin, K. James; Egan, Amy; Gill, Rachel; Hume, Jennifer; Morgan, Margaret B.; Miner, George; Hamilton, Cerissa; Huang, Yanmei; Waldron, Lenee; Verduzco, Daniel; Blankenburg, Kerstin P.; Dubchak, Inna; Noor, Mohamed A.F.; Anderson, Wyatt; White, Kevin P.; Clark, Andrew G.; Schaeffer, Stephen W.; Gelbart, William; Weinstock, George M.; Gibbs, Richard A.

    2004-04-01

    The genome sequence of a second fruit fly, D. pseudoobscura, presents an opportunity for comparative analysis of a primary model organism D. melanogaster. The vast majority of Drosophila genes have remained on the same arm, but within each arm gene order has been extensively reshuffled leading to the identification of approximately 1300 syntenic blocks. A repetitive sequence is found in the D. pseudoobscura genome at many junctions between adjacent syntenic blocks. Analysis of this novel repetitive element family suggests that recombination between offset elements may have given rise to many paracentric inversions, thereby contributing to the shuffling of gene order in the D. pseudoobscura lineage. Based on sequence similarity and synteny, 10,516 putative orthologs have been identified as a core gene set conserved over 35 My since divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome wide average consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than control sequences between the species but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a picture of repeat mediated chromosomal rearrangement, and high co-adaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence between these species of Drosophila.

  7. The role of genomics in tracking the evolution of influenza A virus.

    Directory of Open Access Journals (Sweden)

    Alice Carolyn McHardy

    2009-10-01

    Full Text Available Influenza A virus causes annual epidemics and occasional pandemics of short-term respiratory infections associated with considerable morbidity and mortality. The pandemics occur when new human-transmissible viruses that have the major surface protein of influenza A viruses from other host species are introduced into the human population. Between such rare events, the evolution of influenza is shaped by antigenic drift: the accumulation of mutations that result in changes in exposed regions of the viral surface proteins. Antigenic drift makes the virus less susceptible to immediate neutralization by the immune system in individuals who have had a previous influenza infection or vaccination. A biannual reevaluation of the vaccine composition is essential to maintain its effectiveness due to this immune escape. The study of influenza genomes is key to this endeavor, increasing our understanding of antigenic drift and enhancing the accuracy of vaccine strain selection. Recent large-scale genome sequencing and antigenic typing has considerably improved our understanding of influenza evolution: epidemics around the globe are seeded from a reservoir in East-Southeast Asia with year-round prevalence of influenza viruses; antigenically similar strains predominate in epidemics worldwide for several years before being replaced by a new antigenic cluster of strains. Future in-depth studies of the influenza reservoir, along with large-scale data mining of genomic resources and the integration of epidemiological, genomic, and antigenic data, should enhance our understanding of antigenic drift and improve the detection and control of antigenically novel emerging strains.

  8. Birds--same thing, but different? Convergent evolution in the avian and mammalian auditory systems provides informative comparative models.

    Science.gov (United States)

    Köppl, Christine

    2011-03-01

    Birds have been and continue to be enlightening, comparative models in auditory research. This review highlights their particular appeal as a vertebrate group that evolved independently a similar division of labour to that seen in the mammalian cochlea, between classic sensory hair cells and hair cells specialising in amplification. Through studying both the similarities and differences between the avian and mammalian inner ear, profound insights into the principles of operation of such a divided system may be gained. For example, the prevailing model of the relationship between basilar-membrane displacement and afferent rate-level functions in mammals is reinforced by characteristic differences observed in birds, which correlate with known differences in basilar-papilla mechanics. Furthermore, birds arguably represent the most extreme case of hair cells using bundle motility for mechanical amplification at high frequencies, up to about 10 kHz. They should thus be informative for elucidating the operation and possibly the limitations of this ancestral amplifying mechanism at high frequencies. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Are there ergodic limits to evolution? Ergodic exploration of genome space and convergence.

    Science.gov (United States)

    McLeish, Tom C B

    2015-12-06

    We examine the analogy between evolutionary dynamics and statistical mechanics to include the fundamental question of ergodicity-the representative exploration of the space of possible states (in the case of evolution this is genome space). Several properties of evolutionary dynamics are identified that allow a generalization of the ergodic dynamics, familiar in dynamical systems theory, to evolution. Two classes of evolved biological structure then arise, differentiated by the qualitative duration of their evolutionary time scales. The first class has an ergodicity time scale (the time required for representative genome exploration) longer than available evolutionary time, and has incompletely explored the genotypic and phenotypic space of its possibilities. This case generates no expectation of convergence to an optimal phenotype or possibility of its prediction. The second, more interesting, class exhibits an evolutionary form of ergodicity-essentially all of the structural space within the constraints of slower evolutionary variables have been sampled; the ergodicity time scale for the system evolution is less than the evolutionary time. In this case, some convergence towards similar optima may be expected for equivalent systems in different species where both possess ergodic evolutionary dynamics. When the fitness maximum is set by physical, rather than co-evolved, constraints, it is additionally possible to make predictions of some properties of the evolved structures and systems. We propose four structures that emerge from evolution within genotypes whose fitness is induced from their phenotypes. Together, these result in an exponential speeding up of evolution, when compared with complete exploration of genomic space. We illustrate a possible case of application and a prediction of convergence together with attaining a physical fitness optimum in the case of invertebrate compound eye resolution.

  10. De novo gene evolution of antifreeze glycoproteins in codfishes revealed by whole genome sequence data.

    Science.gov (United States)

    Baalsrud, Helle Tessand; Tørresen, Ole Kristian; Hongrø Solbakken, Monica; Salzburger, Walter; Hanel, Reinhold; Jakobsen, Kjetill S; Jentoft, Sissel

    2017-12-05

    New genes can arise through duplication of a pre-existing gene or de novo from non-coding DNA, providing raw material for evolution of new functions in response to a changing environment. A prime example is the independent evolution of antifreeze glycoprotein genes (afgps) in the Arctic codfishes and Antarctic notothenioids to prevent freezing. However, the highly repetitive nature of these genes complicates studies of their organization. In notothenioids, afgps evolved from an extant gene, yet the evolutionary origin of afgps in codfishes is unknown. Here, we demonstrate that afgps in codfishes have evolved de novo from non-coding DNA 13-18 Ma, coinciding with the cooling of the Northern Hemisphere. Using whole-genome sequence data from several codfishes and notothenioids, we find higher copy number of afgp in species exposed to more severe freezing suggesting a gene dosage effect. Notably, antifreeze function is lost in one lineage of codfishes analogous to the afgp losses in non-Antarctic notothenioids. This indicates that selection can eliminate the antifreeze function when freezing is no longer imminent. Additionally, we show that evolution of afgp-assisting antifreeze potentiating protein genes (afpps) in notothenioids coincides with origin and lineage-specific losses of afgp. The origin of afgps in codfishes is one of the first examples of an essential gene born from non-coding DNA in a non-model species. Our study underlines the power of comparative genomics to uncover past molecular signatures of genome evolution, and further highlights the impact of de novo gene origin in response to a changing selection regime. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. Accelerated evolution of mitochondrial but not nuclear genomes of Hymenoptera: new evidence from crabronid wasps.

    Directory of Open Access Journals (Sweden)

    Martin Kaltenpoth

    Full Text Available Mitochondrial genes in animals are especially useful as molecular markers for the reconstruction of phylogenies among closely related taxa, due to the generally high substitution rates. Several insect orders, notably Hymenoptera and Phthiraptera, show exceptionally high rates of mitochondrial molecular evolution, which has been attributed to the parasitic lifestyle of current or ancestral members of these taxa. Parasitism has been hypothesized to entail frequent population bottlenecks that increase rates of molecular evolution by reducing the efficiency of purifying selection. This effect should result in elevated substitution rates of both nuclear and mitochondrial genes, but to date no extensive comparative study has tested this hypothesis in insects. Here we report the mitochondrial genome of a crabronid wasp, the European beewolf (Philanthus triangulum, Hymenoptera, Crabronidae, and we use it to compare evolutionary rates among the four largest holometabolous insect orders (Coleoptera, Diptera, Hymenoptera, Lepidoptera based on phylogenies reconstructed with whole mitochondrial genomes as well as four single-copy nuclear genes (18S rRNA, arginine kinase, wingless, phosphoenolpyruvate carboxykinase. The mt-genome of P. triangulum is 16,029 bp in size with a mean A+T content of 83.6%, and it encodes the 37 genes typically found in arthropod mt genomes (13 protein-coding, 22 tRNA, and two rRNA genes. Five translocations of tRNA genes were discovered relative to the putative ancestral genome arrangement in insects, and the unusual start codon TTG was predicted for cox2. Phylogenetic analyses revealed significantly longer branches leading to the apocritan Hymenoptera as well as the Orussoidea, to a lesser extent the Cephoidea, and, possibly, the Tenthredinoidea than any of the other holometabolous insect orders for all mitochondrial but none of the four nuclear genes tested. Thus, our results suggest that the ancestral parasitic lifestyle of

  12. Probing genomic diversity and evolution of Streptococcus suis serotype 2 by NimbleGen tiling arrays

    Directory of Open Access Journals (Sweden)

    Liao Hui

    2011-05-01

    Full Text Available Abstract Background Our previous studies revealed that a new disease form of streptococcal toxic shock syndrome (STSS is associated with specific Streptococcus suis serotype 2 (SS2 strains. To achieve a better understanding of the pathogenicity and evolution of SS2 at the whole-genome level, comparative genomic analysis of 18 SS2 strains, selected on the basis of virulence and geographic origin, was performed using NimbleGen tiling arrays. Results Our results demonstrate that SS2 isolates have highly divergent genomes. The 89K pathogenicity island (PAI, which has been previously recognized as unique to the Chinese epidemic strains causing STSS, was partially included in some other virulent and avirulent strains. The ABC-type transport systems, encoded by 89K, were hypothesized to greatly contribute to the catastrophic features of STSS. Moreover, we identified many polymorphisms in genes encoding candidate or known virulence factors, such as PlcR, lipase, sortases, the pilus-associated proteins, and the response regulator RevS and CtsR. On the basis of analysis of regions of differences (RDs across the entire genome for the 18 selected SS2 strains, a model of microevolution for these strains is proposed, which provides clues into Streptococcus pathogenicity and evolution. Conclusions Our deep comparative genomic analysis of the 89K PAI present in the genome of SS2 strains revealed details into how some virulent strains acquired genes that may contribute to STSS, which may lead to better environmental monitoring of epidemic SS2 strains.

  13. Comparative genomics reveals conservative evolution of the xylem transcriptome in vascular plants

    Directory of Open Access Journals (Sweden)

    Wu Harry X

    2010-06-01

    Full Text Available Abstract Background Wood is a valuable natural resource and a major carbon sink. Wood formation is an important developmental process in vascular plants which played a crucial role in plant evolution. Although genes involved in xylem formation have been investigated, the molecular mechanisms of xylem evolution are not well understood. We use comparative genomics to examine evolution of the xylem transcriptome to gain insights into xylem evolution. Results The xylem transcriptome is highly conserved in conifers, but considerably divergent in angiosperms. The functional domains of genes in the xylem transcriptome are moderately to highly conserved in vascular plants, suggesting the existence of a common ancestral xylem transcriptome. Compared to the total transcriptome derived from a range of tissues, the xylem transcriptome is relatively conserved in vascular plants. Of the xylem transcriptome, cell wall genes, ancestral xylem genes, known proteins and transcription factors are relatively more conserved in vascular plants. A total of 527 putative xylem orthologs were identified, which are unevenly distributed across the Arabidopsis chromosomes with eight hot spots observed. Phylogenetic analysis revealed that evolution of the xylem transcriptome has paralleled plant evolution. We also identified 274 conifer-specific xylem unigenes, all of which are of unknown function. These xylem orthologs and conifer-specific unigenes are likely to have played a crucial role in xylem evolution. Conclusions Conifers have highly conserved xylem transcriptomes, while angiosperm xylem transcriptomes are relatively diversified. Vascular plants share a common ancestral xylem transcriptome. The xylem transcriptomes of vascular plants are more conserved than the total transcriptomes. Evolution of the xylem transcriptome has largely followed the trend of plant evolution.

  14. Avian influenza

    DEFF Research Database (Denmark)

    EFSA Panel on Animal Health and Welfare; More, Simon; Bicout, Dominique

    2017-01-01

    Previous introductions of highly pathogenic avian influenza virus (HPAIV) to the EU were most likely via migratory wild birds. A mathematical model has been developed which indicated that virus amplification and spread may take place when wild bird populations of sufficient size within EU become...... infected. Low pathogenic avian influenza virus (LPAIV) may reach similar maximum prevalence levels in wild bird populations to HPAIV but the risk of LPAIV infection of a poultry holding was estimated to be lower than that of HPAIV. Only few non-wild bird pathways were identified having a non...

  15. Seventeen new complete mtDNA sequences reveal extensive mitochondrial genome evolution within the Demospongiae.

    Directory of Open Access Journals (Sweden)

    Xiujuan Wang

    Full Text Available Two major transitions in animal evolution--the origins of multicellularity and bilaterality--correlate with major changes in mitochondrial DNA (mtDNA organization. Demosponges, the largest class in the phylum Porifera, underwent only the first of these transitions and their mitochondrial genomes display a peculiar combination of ancestral and animal-specific features. To get an insight into the evolution of mitochondrial genomes within the Demospongiae, we determined 17 new mtDNA sequences from this group and analyzing them with five previously published sequences. Our analysis revealed that all demosponge mtDNAs are 16- to 25-kbp circular molecules, containing 13-15 protein genes, 2 rRNA genes, and 2-27 tRNA genes. All but four pairs of sampled genomes had unique gene orders, with the number of shared gene boundaries ranging from 1 to 41. Although most demosponge species displayed low rates of mitochondrial sequence evolution, a significant acceleration in evolutionary rates occurred in the G1 group (orders Dendroceratida, Dictyoceratida, and Verticillitida. Large variation in mtDNA organization was also observed within the G0 group (order Homosclerophorida including gene rearrangements, loss of tRNA genes, and the presence of two introns in Plakortis angulospiculatus. While introns are rare in modern-day demosponge mtDNA, we inferred that at least one intron was present in cox1 of the common ancestor of all demosponges. Our study uncovered an extensive mitochondrial genomic diversity within the Demospongiae. Although all sampled mitochondrial genomes retained some ancestral features, including a minimally modified genetic code, conserved structures of tRNA genes, and presence of multiple non-coding regions, they vary considerably in their size, gene content, gene order, and the rates of sequence evolution. Some of the changes in demosponge mtDNA, such as the loss of tRNA genes and the appearance of hairpin-containing repetitive elements

  16. Expanding the diversity of mycobacteriophages: insights into genome architecture and evolution.

    Directory of Open Access Journals (Sweden)

    Welkin H Pope

    2011-01-01

    Full Text Available Mycobacteriophages are viruses that infect mycobacterial hosts such as Mycobacterium smegmatis and Mycobacterium tuberculosis. All mycobacteriophages characterized to date are dsDNA tailed phages, and have either siphoviral or myoviral morphotypes. However, their genetic diversity is considerable, and although sixty-two genomes have been sequenced and comparatively analyzed, these likely represent only a small portion of the diversity of the mycobacteriophage population at large. Here we report the isolation, sequencing and comparative genomic analysis of 18 new mycobacteriophages isolated from geographically distinct locations within the United States. Although no clear correlation between location and genome type can be discerned, these genomes expand our knowledge of mycobacteriophage diversity and enhance our understanding of the roles of mobile elements in viral evolution. Expansion of the number of mycobacteriophages grouped within Cluster A provides insights into the basis of immune specificity in these temperate phages, and we also describe a novel example of apparent immunity theft. The isolation and genomic analysis of bacteriophages by freshman college students provides an example of an authentic research experience for novice scientists.

  17. Pseudomonas aeruginosa Genome Evolution in Patients and under the Hospital Environment

    Directory of Open Access Journals (Sweden)

    Céline Lucchetti-Miganeh

    2014-04-01

    Full Text Available Pseudomonas aeruginosa is a Gram-negative environmental species and an opportunistic microorganism, establishing itself in vulnerable patients, such as those with cystic fibrosis (CF or those hospitalized in intensive care units (ICU. It has become a major cause of nosocomial infections worldwide and a serious threat to Public Health because of overuse and misuse of antibiotics that have selected highly resistant strains against which very few therapeutic options exist. Herein is illustrated the intraclonal evolution of the genome of sequential isolates collected in a single CF patient from the early phase of pulmonary colonization to the fatal outcome. We also examined at the whole genome scale a pair of genotypically-related strains made of a drug susceptible, environmental isolate recovered from an ICU sink and of its multidrug resistant counterpart found to infect an ICU patient. Multiple genetic changes accumulated in the CF isolates over the disease time course including SNPs, deletion events and reduction of whole genome size. The strain isolated from the ICU patient displayed an increase in the genome size of 4.8% with major genetic rearrangements as compared to the initial environmental strain. The annotated genomes are given in free access in an interactive web application WallGene  designed to facilitate large-scale comparative analysis and thus allowing investigators to explore homologies and syntenies between P. aeruginosa strains, here PAO1 and the five clinical strains described.

  18. Gene order data from a model amphibian (Ambystoma: new perspectives on vertebrate genome structure and evolution

    Directory of Open Access Journals (Sweden)

    Voss S Randal

    2006-08-01

    Full Text Available Abstract Background Because amphibians arise from a branch of the vertebrate evolutionary tree that is juxtaposed between fishes and amniotes, they provide important comparative perspective for reconstructing character changes that have occurred during vertebrate evolution. Here, we report the first comparative study of vertebrate genome structure that includes a representative amphibian. We used 491 transcribed sequences from a salamander (Ambystoma genetic map and whole genome assemblies for human, mouse, rat, dog, chicken, zebrafish, and the freshwater pufferfish Tetraodon nigroviridis to compare gene orders and rearrangement rates. Results Ambystoma has experienced a rate of genome rearrangement that is substantially lower than mammalian species but similar to that of chicken and fish. Overall, we found greater conservation of genome structure between Ambystoma and tetrapod vertebrates, nevertheless, 57% of Ambystoma-fish orthologs are found in conserved syntenies of four or more genes. Comparisons between Ambystoma and amniotes reveal extensive conservation of segmental homology for 57% of the presumptive Ambystoma-amniote orthologs. Conclusion Our analyses suggest relatively constant interchromosomal rearrangement rates from the euteleost ancestor to the origin of mammals and illustrate the utility of amphibian mapping data in establishing ancestral amniote and tetrapod gene orders. Comparisons between Ambystoma and amniotes reveal some of the key events that have structured the human genome since diversification of the ancestral amniote lineage.

  19. Unraveling Mycobacterium tuberculosis genomic diversity and evolution in Lisbon, Portugal, a highly drug resistant setting.

    Science.gov (United States)

    Perdigão, João; Silva, Hugo; Machado, Diana; Macedo, Rita; Maltez, Fernando; Silva, Carla; Jordao, Luisa; Couto, Isabel; Mallard, Kim; Coll, Francesc; Hill-Cawthorne, Grant A; McNerney, Ruth; Pain, Arnab; Clark, Taane G; Viveiros, Miguel; Portugal, Isabel

    2014-11-18

    Multidrug- (MDR) and extensively drug resistant (XDR) tuberculosis (TB) presents a challenge to disease control and elimination goals. In Lisbon, Portugal, specific and successful XDR-TB strains have been found in circulation for almost two decades. In the present study we have genotyped and sequenced the genomes of 56 Mycobacterium tuberculosis isolates recovered mostly from Lisbon. The genotyping data revealed three major clusters associated with MDR-TB, two of which are associated with XDR-TB. Whilst the genomic data contributed to elucidate the phylogenetic positioning of circulating MDR-TB strains, showing a high predominance of a single SNP cluster group 5. Furthermore, a genome-wide phylogeny analysis from these strains, together with 19 publicly available genomes of Mycobacterium tuberculosis clinical isolates, revealed two major clades responsible for M/XDR-TB in the region: Lisboa3 and Q1 (LAM).The data presented by this study yielded insights on microevolution and identification of novel compensatory mutations associated with rifampicin resistance in rpoB and rpoC. The screening for other structural variations revealed putative clade-defining variants. One deletion in PPE41, found among Lisboa3 isolates, is proposed to contribute to immune evasion and as a selective advantage. Insertion sequence (IS) mapping has also demonstrated the role of IS6110 as a major driver in mycobacterial evolution by affecting gene integrity and regulation. Globally, this study contributes with novel genome-wide phylogenetic data and has led to the identification of new genomic variants that support the notion of a growing genomic diversity facing both setting and host adaptation.

  20. Unraveling Mycobacterium tuberculosis genomic diversity and evolution in Lisbon, Portugal, a highly drug resistant setting

    KAUST Repository

    Perdigão, João

    2014-11-18

    Background Multidrug- (MDR) and extensively drug resistant (XDR) tuberculosis (TB) presents a challenge to disease control and elimination goals. In Lisbon, Portugal, specific and successful XDR-TB strains have been found in circulation for almost two decades. Results In the present study we have genotyped and sequenced the genomes of 56 Mycobacterium tuberculosis isolates recovered mostly from Lisbon. The genotyping data revealed three major clusters associated with MDR-TB, two of which are associated with XDR-TB. Whilst the genomic data contributed to elucidate the phylogenetic positioning of circulating MDR-TB strains, showing a high predominance of a single SNP cluster group 5. Furthermore, a genome-wide phylogeny analysis from these strains, together with 19 publicly available genomes of Mycobacterium tuberculosis clinical isolates, revealed two major clades responsible for M/XDR-TB in the region: Lisboa3 and Q1 (LAM). The data presented by this study yielded insights on microevolution and identification of novel compensatory mutations associated with rifampicin resistance in rpoB and rpoC. The screening for other structural variations revealed putative clade-defining variants. One deletion in PPE41, found among Lisboa3 isolates, is proposed to contribute to immune evasion and as a selective advantage. Insertion sequence (IS) mapping has also demonstrated the role of IS6110 as a major driver in mycobacterial evolution by affecting gene integrity and regulation. Conclusions Globally, this study contributes with novel genome-wide phylogenetic data and has led to the identification of new genomic variants that support the notion of a growing genomic diversity facing both setting and host adaptation.

  1. An enigmatic fourth runt domain gene in the fugu genome: ancestral gene loss versus accelerated evolution

    Directory of Open Access Journals (Sweden)

    Hood Leroy

    2004-11-01

    Full Text Available Abstract Background The runt domain transcription factors are key regulators of developmental processes in bilaterians, involved both in cell proliferation and differentiation, and their disruption usually leads to disease. Three runt domain genes have been described in each vertebrate genome (the RUNX gene family, but only one in other chordates. Therefore, the common ancestor of vertebrates has been thought to have had a single runt domain gene. Results Analysis of the genome draft of the fugu pufferfish (Takifugu rubripes reveals the existence of a fourth runt domain gene, FrRUNT, in addition to the orthologs of human RUNX1, RUNX2 and RUNX3. The tiny FrRUNT packs six exons and two putative promoters in just 3 kb of genomic sequence. The first exon is located within an intron of FrSUPT3H, the ortholog of human SUPT3H, and the first exon of FrSUPT3H resides within the first intron of FrRUNT. The two gene structures are therefore "interlocked". In the human genome, SUPT3H is instead interlocked with RUNX2. FrRUNT has no detectable ortholog in the genomes of mammals, birds or amphibians. We consider alternative explanations for an apparent contradiction between the phylogenetic data and the comparison of the genomic neighborhoods of human and fugu runt domain genes. We hypothesize that an ancient RUNT locus was lost in the tetrapod lineage, together with FrFSTL6, a member of a novel family of follistatin-like genes. Conclusions Our results suggest that the runt domain family may have started expanding in chordates much earlier than previously thought, and exemplify the importance of detailed analysis of whole-genome draft sequence to provide new insights into gene evolution.

  2. A cricket Gene Index: a genomic resource for studying neurobiology, speciation, and molecular evolution

    Directory of Open Access Journals (Sweden)

    Quackenbush John

    2007-04-01

    Full Text Available Abstract Background As the developmental costs of genomic tools decline, genomic approaches to non-model systems are becoming more feasible. Many of these systems may lack advanced genetic tools but are extremely valuable models in other biological fields. Here we report the development of expressed sequence tags (EST's in an orthopteroid insect, a model for the study of neurobiology, speciation, and evolution. Results We report the sequencing of 14,502 EST's from clones derived from a nerve cord cDNA library, and the subsequent construction of a Gene Index from these sequences, from the Hawaiian trigonidiine cricket Laupala kohalensis. The Gene Index contains 8607 unique sequences comprised of 2575 tentative consensus (TC sequences and 6032 singletons. For each of the unique sequences, an attempt was made to assign a provisional annotation and to categorize its function using a Gene Ontology-based classification through a sequence-based comparison to known proteins. In addition, a set of unique 70 base pair oligomers that can be used for DNA microarrays was developed. All Gene Index information is posted at the DFCI Gene Indices web page Conclusion Orthopterans are models used to understand the neurophysiological basis of complex motor patterns such as flight and stridulation. The sequences presented in the cricket Gene Index will provide neurophysiologists with many genetic tools that have been largely absent in this field. The cricket Gene Index is one of only two gene indices to be developed in an evolutionary model system. Species within the genus Laupala have speciated recently, rapidly, and extensively. Therefore, the genes identified in the cricket Gene Index can be used to study the genomics of speciation. Furthermore, this gene index represents a significant EST resources for basal insects. As such, this resource is a valuable comparative tool for the understanding of invertebrate molecular evolution. The sequences presented here will

  3. Complete sequences of organelle genomes from the medicinal plant Rhazya stricta (Apocynaceae) and contrasting patterns of mitochondrial genome evolution across asterids.

    Science.gov (United States)

    Park, Seongjun; Ruhlman, Tracey A; Sabir, Jamal S M; Mutwakil, Mohammed H Z; Baeshen, Mohammed N; Sabir, Meshaal J; Baeshen, Nabih A; Jansen, Robert K

    2014-05-28

    Rhazya stricta is native to arid regions in South Asia and the Middle East and is used extensively in folk medicine to treat a wide range of diseases. In addition to generating genomic resources for this medicinally important plant, analyses of the complete plastid and mitochondrial genomes and a nuclear transcriptome from Rhazya provide insights into inter-compartmental transfers between genomes and the patterns of evolution among eight asterid mitochondrial genomes. The 154,841 bp plastid genome is highly conserved with gene content and order identical to the ancestral organization of angiosperms. The 548,608 bp mitochondrial genome exhibits a number of phenomena including the presence of recombinogenic repeats that generate a multipartite organization, transferred DNA from the plastid and nuclear genomes, and bidirectional DNA transfers between the mitochondrion and the nucleus. The mitochondrial genes sdh3 and rps14 have been transferred to the nucleus and have acquired targeting presequences. In the case of rps14, two copies are present in the nucleus; only one has a mitochondrial targeting presequence and may be functional. Phylogenetic analyses of both nuclear and mitochondrial copies of rps14 across angiosperms suggests Rhazya has experienced a single transfer of this gene to the nucleus, followed by a duplication event. Furthermore, the phylogenetic distribution of gene losses and the high level of sequence divergence in targeting presequences suggest multiple, independent transfers of both sdh3 and rps14 across asterids. Comparative analyses of mitochondrial genomes of eight sequenced asterids indicates a complicated evolutionary history in this large angiosperm clade with considerable diversity in genome organization and size, repeat, gene and intron content, and amount of foreign DNA from the plastid and nuclear genomes. Organelle genomes of Rhazya stricta provide valuable information for improving the understanding of mitochondrial genome evolution

  4. The mitochondrial genome of Sinentomon erythranum (Arthropoda: Hexapoda: Protura): an example of highly divergent evolution.

    Science.gov (United States)

    Chen, Wan-Jun; Bu, Yun; Carapelli, Antonio; Dallai, Romano; Li, Sheng; Yin, Wen-Ying; Luan, Yun-Xia

    2011-08-27

    The phylogenetic position of the Protura, traditionally considered the most basal hexapod group, is disputed because it has many unique morphological characters compared with other hexapods. Although mitochondrial genome information has been used extensively in phylogenetic studies, such information is not available for the Protura. This has impeded phylogenetic studies on this taxon, as well as the evolution of the arthropod mitochondrial genome. In this study, the mitochondrial genome of Sinentomon erythranum was sequenced, as the first proturan species to be reported. The genome contains a number of special features that differ from those of other hexapods and arthropods. As a very small arthropod mitochondrial genome, its 14,491 nucleotides encode 37 typical mitochondrial genes. Compared with other metazoan mtDNA, it has the most biased nucleotide composition with T = 52.4%, an extreme and reversed AT-skew of -0.351 and a GC-skew of 0.350. Two tandemly repeated regions occur in the A+T-rich region, and both could form stable stem-loop structures. Eighteen of the 22 tRNAs are greatly reduced in size with truncated secondary structures. The gene order is novel among available arthropod mitochondrial genomes. Rearrangements have involved in not only small tRNA genes, but also PCGs (protein-coding genes) and ribosome RNA genes. A large block of genes has experienced inversion and another nearby block has been reshuffled, which can be explained by the tandem duplication and random loss model. The most remarkable finding is that trnL2(UUR) is not located between cox1 and cox2 as observed in most hexapod and crustacean groups, but is between rrnL and nad1 as in the ancestral arthropod ground pattern. The "cox1-cox2" pattern was further confirmed in three more representative proturan species. The phylogenetic analyses based on the amino acid sequences of 13 mitochondrial PCGs suggest S. erythranum failed to group with other hexapod groups. The mitochondrial genome of S

  5. Avian and human metapneumovirus.

    Science.gov (United States)

    Broor, Shobha; Bharaj, Preeti

    2007-04-01

    Pneumovirus infection remains a significant problem for both human and veterinary medicine. Both avian pneumovirus (aMPV, Turkey rhinotracheitis virus) and human metapneumovirus (hMPV) are pathogens of birds and humans, which are associated with respiratory tract infections. Based on their different genomic organization and low level of nucleotide (nt) and amino acid (aa) identity with paramyxoviruses in the genus Pneumovirus, aMPV and hMPV have been classified into a new genus referred to as Metapneumovirus. The advancement of our understanding of pneumovirus biology and pathogenesis of pneumovirus disease in specific natural hosts can provide us with strategies for vaccine formulations and combined antiviral and immunomodulatory therapies.

  6. Evolution of eukaryotic genome architecture: Insights from the study of a rapidly evolving metazoan, Oikopleura dioica: Non-adaptive forces such as elevated mutation rates may influence the evolution of genome architecture.

    Science.gov (United States)

    Chavali, Sreenivas; Morais, David A de Lima; Gough, Julian; Babu, M Madan

    2011-08-01

    Recent sequencing of the metazoan Oikopleura dioica genome has provided important insights, which challenges the current understanding of eukaryotic genome evolution. Many genomic features of O. dioica show deviation from the commonly observed trends in other eukaryotic genomes. For instance, O. dioica has a rapidly evolving, highly compact genome with a divergent intron-exon organization. Additionally, O. dioica lacks the minor spliceosome and key DNA repair pathway genes. Even with a compact genome, O. dioica contains tandem repeats, comparable to other eukaryotes, and shows lineage-specific expansion of certain protein domains. Here, we review its genomic features in the context of current knowledge, discuss implications for contemporary biology and identify areas for further research. Analysis of the O. dioica genome suggests that non-adaptive forces such as elevated mutation rates might influence the evolution of genome architecture. The knowledge of unique genomic features and splicing mechanisms in O. dioica may be exploited for synthetic biology applications, such as generation of orthogonal splicing systems. Copyright © 2011 WILEY Periodicals, Inc.

  7. The evolutionary genetics and emergence of avian influenza viruses in wild birds.

    Directory of Open Access Journals (Sweden)

    Vivien G Dugan

    2008-05-01

    Full Text Available We surveyed the genetic diversity among avian influenza virus (AIV in wild birds, comprising 167 complete viral genomes from 14 bird species sampled in four locations across the United States. These isolates represented 29 type A influenza virus hemagglutinin (HA and neuraminidase (NA subtype combinations, with up to 26% of isolates showing evidence of mixed subtype infection. Through a phylogenetic analysis of the largest data set of AIV genomes compiled to date, we were able to document a remarkably high rate of genome reassortment, with no clear pattern of gene segment association and occasional inter-hemisphere gene segment migration and reassortment. From this, we propose that AIV in wild birds forms transient "genome constellations," continually reshuffled by reassortment, in contrast to the spread of a limited number of stable genome constellations that characterizes the evolution of mammalian-adapted influenza A viruses.

  8. The cyanobacterial endosymbiont of the unicellular algae Rhopalodia gibba shows reductive genome evolution

    Directory of Open Access Journals (Sweden)

    Lockhart Peter J

    2008-01-01

    association is the first example of an obligate cyanobacterial symbiosis involving nitrogen fixation for which genomic data are available. It represents a new model system to study molecular adaptations of genome evolution that accompany a switch from free-living to intracellular existence.

  9. Shared regulatory sites are abundant in the human genome and shed light on genome evolution and disease pleiotropy.

    Science.gov (United States)

    Tong, Pin; Monahan, Jack; Prendergast, James G D

    2017-03-01

    Large-scale gene expression datasets are providing an increasing understanding of the location of cis-eQTLs in the human genome and their role in disease. However, little is currently known regarding the extent of regulatory site-sharing between genes. This is despite it having potentially wide-ranging implications, from the determination of the way in which genetic variants may shape multiple phenotypes to the understanding of the evolution of human gene order. By first identifying the location of non-redundant cis-eQTLs, we show that regulatory site-sharing is a relatively common phenomenon in the human genome, with over 10% of non-redundant regulatory variants linked to the expression of multiple nearby genes. We show that these shared, local regulatory sites are linked to high levels of chromatin looping between the regulatory sites and their associated genes. In addition, these co-regulated gene modules are found to be strongly conserved across mammalian species, suggesting that shared regulatory sites have played an important role in shaping human gene order. The association of these shared cis-eQTLs with multiple genes means they also appear to be unusually important in understanding the genetics of human phenotypes and pleiotropy, with shared regulatory sites more often linked to multiple human phenotypes than other regulatory variants. This study shows that regulatory site-sharing is likely an underappreciated aspect of gene regulation and has important implications for the understanding of various biological phenomena, including how the two and three dimensional structures of the genome have been shaped and the potential causes of disease pleiotropy outside coding regions.

  10. Genome-Wide Convergence during Evolution of Mangroves from Woody Plants.

    Science.gov (United States)

    Xu, Shaohua; He, Ziwen; Guo, Zixiao; Zhang, Zhang; Wyckoff, Gerald J; Greenberg, Anthony; Wu, Chung-I; Shi, Suhua

    2017-04-01

    When living organisms independently invade a new environment, the evolution of similar phenotypic traits is often observed. An interesting but contentious issue is whether the underlying molecular biology also converges in the new habitat. Independent invasions of tropical intertidal zones by woody plants, collectively referred to as mangrove trees, represent some dramatic examples. The high salinity, hypoxia, and other stressors in the new habitat might have affected both genomic features and protein structures. Here, we developed a new method for detecting convergence at conservative Sites (CCS) and applied it to the genomic sequences of mangroves. In simulations, the CCS method drastically reduces random convergence at rapidly evolving sites as well as falsely inferred convergence caused by the misinferences of the ancestral character. In mangrove genomes, we estimated ∼400 genes that have experienced convergence over the background level of convergence in the nonmangrove relatives. The convergent genes are enriched in pathways related to stress response and embryo development, which could be important for mangroves' adaptation to the new habitat. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Peltaster fructicola genome reveals evolution from an invasive phytopathogen to an ectophytic parasite.

    Science.gov (United States)

    Xu, Chao; Chen, Huan; Gleason, Mark L; Xu, Jin-Rong; Liu, Huiquan; Zhang, Rong; Sun, Guangyu

    2016-03-11

    Sooty blotch and flyspeck (SBFS) fungi are unconventional plant pathogens that cause economic losses by blemishing the surface appearance of infected fruit. Here, we introduce the 18.14-Mb genome of Peltaster fructicola, one of the most prevalent SBFS species on apple. This undersized assembly contains only 8,334 predicted protein-coding genes and a very small repertoire of repetitive elements. Phylogenomics and comparative genomics revealed that P. fructicola had undergone a reductive evolution, during which the numbers of orphan genes and genes involved in plant cell wall degradation, secondary metabolism, and secreted peptidases and effectors were drastically reduced. In contrast, the genes controlling 1,8-dihydroxynaphthalene (DHN)-melanin biosynthesis and appressorium-mediated penetration were retained substantially. Additionally, microscopic examination of the surfaces of infected apple indicated for the first time that P. fructicola can not only dissolve epicuticular waxes but also partially penetrate the cuticle proper. Our findings indicate that genome contraction, characterized mainly by the massive loss of pathogenicity-related genes, has played an important role in the evolution of P. fructicola (and by implication other SBFS species) from a plant-penetrating ancestor to a non-invasive ectophyte, displaying a novel form of trophic interaction between plants and fungi.

  12. Microgeographic Genome Size Differentiation of the Carob Tree, Ceratonia siliqua, at ‘Evolution Canyon’, Israel

    Science.gov (United States)

    BUREŠ, PETR; PAVLÍČEK, TOMÁŠ; HOROVÁ, LUCIE; NEVO, EVIATAR

    2004-01-01

    • Background and Aims We tested whether the local differences in genome size recorded earlier in the wild barley, Hordeum spontaneum, at ‘Evolution Canyon’, Mount Carmel, Israel, can also be found in other organisms. As a model species for our test we chose the evergreen carob tree, Ceratonia siliqua. • Methods Genome size was measured by means of DAPI flow cytometry. • Key Results In adults, significantly more DNA was recorded in trees growing on the more illuminated, warmer, drier, microclimatically more fluctuating ‘African’ south‐facing slope than in trees on the opposite, less illuminated, cooler and more humid, ‘European’ north‐facing slope in spite of an interslope distance of only 100 m at the canyon bottom and 400 m at the top. The amount of DNA was significantly negatively correlated with leaf length and tree circumference. In seedlings, interslope differences in the amount of genome DNA were not found. In addition, the first cases of triploidy and tetraploidy were found in C. siliqua. • Conclusions The data on C. siliqua at ‘Evolution Canyon’ showed that local variability in the C‐value exists in this species and that ecological stress might be a strong evolutionary driving force in shaping the amount of DNA. PMID:15026300

  13. Microgeographic genome size differentiation of the carob tree, Ceratonia siliqua, at 'Evolution Canyon', Israel.

    Science.gov (United States)

    Bures, Petr; Pavlícek, Tomás; Horová, Lucie; Nevo, Eviatar

    2004-05-01

    We tested whether the local differences in genome size recorded earlier in the wild barley, Hordeum spontaneum, at 'Evolution Canyon', Mount Carmel, Israel, can also be found in other organisms. As a model species for our test we chose the evergreen carob tree, Ceratonia siliqua. Genome size was measured by means of DAPI flow cytometry. In adults, significantly more DNA was recorded in trees growing on the more illuminated, warmer, drier, microclimatically more fluctuating 'African' south-facing slope than in trees on the opposite, less illuminated, cooler and more humid, 'European' north-facing slope in spite of an interslope distance of only 100 m at the canyon bottom and 400 m at the top. The amount of DNA was significantly negatively correlated with leaf length and tree circumference. In seedlings, interslope differences in the amount of genome DNA were not found. In addition, the first cases of triploidy and tetraploidy were found in C. siliqua. The data on C. siliqua at 'Evolution Canyon' showed that local variability in the C-value exists in this species and that ecological stress might be a strong evolutionary driving force in shaping the amount of DNA.

  14. Single-cell genomics of a rare environmental alphaproteobacterium provides unique insights into Rickettsiaceae evolution.

    Science.gov (United States)

    Martijn, Joran; Schulz, Frederik; Zaremba-Niedzwiedzka, Katarzyna; Viklund, Johan; Stepanauskas, Ramunas; Andersson, Siv G E; Horn, Matthias; Guy, Lionel; Ettema, Thijs J G

    2015-11-01

    The bacterial family Rickettsiaceae includes a group of well-known etiological agents of many human and vertebrate diseases, including epidemic typhus-causing pathogen Rickettsia prowazekii. Owing to their medical relevance, rickettsiae have attracted a great deal of attention and their host-pathogen interactions have been thoroughly investigated. All known members display obligate intracellular lifestyles, and the best-studied genera, Rickettsia and Orientia, include species that are hosted by terrestrial arthropods. Their obligate intracellular lifestyle and host adaptation is reflected in the small size of their genomes, a general feature shared with all other families of the Rickettsiales. Yet, despite that the Rickettsiaceae and other Rickettsiales families have been extensively studied for decades, many details of the origin and evolution of their obligate host-association remain elusive. Here we report the discovery and single-cell sequencing of 'Candidatus Arcanobacter lacustris', a rare environmental alphaproteobacterium that was sampled from Damariscotta Lake that represents a deeply rooting sister lineage of the Rickettsiaceae. Intriguingly, phylogenomic and comparative analysis of the partial 'Candidatus Arcanobacter lacustris' genome revealed the presence chemotaxis genes and vertically inherited flagellar genes, a novelty in sequenced Rickettsiaceae, as well as several host-associated features. This finding suggests that the ancestor of the Rickettsiaceae might have had a facultative intracellular lifestyle. Our study underlines the efficacy of single-cell genomics for studying microbial diversity and evolution in general, and for rare microbial cells in particular.

  15. Comparative genomics reveals convergent evolution between the bamboo-eating giant and red pandas.

    Science.gov (United States)

    Hu, Yibo; Wu, Qi; Ma, Shuai; Ma, Tianxiao; Shan, Lei; Wang, Xiao; Nie, Yonggang; Ning, Zemin; Yan, Li; Xiu, Yunfang; Wei, Fuwen

    2017-01-31

    Phenotypic convergence between distantly related taxa often mirrors adaptation to similar selective pressures and may be driven by genetic convergence. The giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens) belong to different families in the order Carnivora, but both have evolved a specialized bamboo diet and adaptive pseudothumb, representing a classic model of convergent evolution. However, the genetic bases of these morphological and physiological convergences remain unknown. Through de novo sequencing the red panda genome and improving the giant panda genome assembly with added data, we identified genomic signatures of convergent evolution. Limb development genes DYNC2H1 and PCNT have undergone adaptive convergence and may be important candidate genes for pseudothumb development. As evolutionary responses to a bamboo diet, adaptive convergence has occurred in genes involved in the digestion and utilization of bamboo nutrients such as essential amino acids, fatty acids, and vitamins. Similarly, the umami taste receptor gene TAS1R1 has been pseudogenized in both pandas. These findings offer insights into genetic convergence mechanisms underlying phenotypic convergence and adaptation to a specialized bamboo diet.

  16. Snake mitochondrial genomes: phylogenetic relationships and implications of extended taxon sampling for interpretations of mitogenomic evolution

    Science.gov (United States)

    2010-01-01

    Background Snake mitochondrial genomes are of great interest in understanding mitogenomic evolution because of gene duplications and rearrangements and the fast evolutionary rate of their genes compared to other vertebrates. Mitochondrial gene sequences have also played an important role in attempts to resolve the contentious phylogenetic relationships of especially the early divergences among alethinophidian snakes. Two recent innovative studies found dramatic gene- and branch-specific relative acceleration in snake protein-coding gene evolution, particularly along internal branches leading to Serpentes and Alethinophidia. It has been hypothesized that some of these rate shifts are temporally (and possibly causally) associated with control region duplication and/or major changes in ecology and anatomy. Results The near-complete mitochondrial (mt) genomes of three henophidian snakes were sequenced: Anilius scytale, Rhinophis philippinus, and Charina trivirgata. All three genomes share a duplicated control region and translocated tRNALEU, derived features found in all alethinophidian snakes studied to date. The new sequence data were aligned with mt genome data for 21 other species of snakes and used in phylogenetic analyses. Phylogenetic results agreed with many other studies in recovering several robust clades, including Colubroidea, Caenophidia, and Cylindrophiidae+Uropeltidae. Nodes within Henophidia that have been difficult to resolve robustly in previous analyses remained uncompellingly resolved here. Comparisons of relative rates of evolution of rRNA vs. protein-coding genes were conducted by estimating branch lengths across the tree. Our expanded sampling revealed dramatic acceleration along the branch leading to Typhlopidae, particularly long rRNA terminal branches within Scolecophidia, and that most of the dramatic acceleration in protein-coding gene rate along Serpentes and Alethinophidia branches occurred before Anilius diverged from other

  17. Snake mitochondrial genomes: phylogenetic relationships and implications of extended taxon sampling for interpretations of mitogenomic evolution

    Directory of Open Access Journals (Sweden)

    Gower David J

    2010-01-01

    Full Text Available Abstract Background Snake mitochondrial genomes are of great interest in understanding mitogenomic evolution because of gene duplications and rearrangements and the fast evolutionary rate of their genes compared to other vertebrates. Mitochondrial gene sequences have also played an important role in attempts to resolve the contentious phylogenetic relationships of especially the early divergences among alethinophidian snakes. Two recent innovative studies found dramatic gene- and branch-specific relative acceleration in snake protein-coding gene evolution, particularly along internal branches leading to Serpentes and Alethinophidia. It has been hypothesized that some of these rate shifts are temporally (and possibly causally associated with control region duplication and/or major changes in ecology and anatomy. Results The near-complete mitochondrial (mt genomes of three henophidian snakes were sequenced: Anilius scytale, Rhinophis philippinus, and Charina trivirgata. All three genomes share a duplicated control region and translocated tRNALEU, derived features found in all alethinophidian snakes studied to date. The new sequence data were aligned with mt genome data for 21 other species of snakes and used in phylogenetic analyses. Phylogenetic results agreed with many other studies in recovering several robust clades, including Colubroidea, Caenophidia, and Cylindrophiidae+Uropeltidae. Nodes within Henophidia that have been difficult to resolve robustly in previous analyses remained uncompellingly resolved here. Comparisons of relative rates of evolution of rRNA vs. protein-coding genes were conducted by estimating branch lengths across the tree. Our expanded sampling revealed dramatic acceleration along the branch leading to Typhlopidae, particularly long rRNA terminal branches within Scolecophidia, and that most of the dramatic acceleration in protein-coding gene rate along Serpentes and Alethinophidia branches occurred before Anilius

  18. In vitro evolution of H5N1 avian influenza virus toward human-type receptor specificity

    DEFF Research Database (Denmark)

    Chen, Li-Mei; Blixt, Klas Ola; Stevens, James

    2012-01-01

    . Unlike the wild type H5N1, this mutant virus was transmitted by direct contact in the ferret model although not by airborne respiratory droplets. However, a reassortant virus with the mutant hemagglutinin, a human N2 neuraminidase and internal genes from an H5N1 virus was partially transmitted via...... respiratory droplets. The complex changes required for airborne transmissibility in ferrets suggest that extensive evolution is needed for H5N1 transmissibility in humans....

  19. Comparative analysis of mineralocorticoid receptor expression among vocal learners (Bengalese finch and budgerigar) and non-vocal learners (quail and ring dove) has implications for the evolution of avian vocal learning.

    Science.gov (United States)

    Matsunaga, Eiji; Suzuki, Kenta; Kobayashi, Tetsuya; Okanoya, Kazuo

    2011-12-01

    Mineralocorticoid receptor is the receptor for corticosteroids such as corticosterone or aldosterone. Previously, we found that mineralocorticoid receptor was highly expressed in song nuclei of a songbird, Bengalese finch (Lonchura striata var. domestica). Here, to examine the relationship between mineralocorticoid receptor expression and avian vocal learning, we analyzed mineralocorticoid receptor expression in the developing brain of another vocal learner, budgerigar (Melopsittacus undulatus) and non-vocal learners, quail (Coturnix japonica) and ring dove (Streptopelia capicola). Mineralocorticoid receptor showed vocal control area-related expressions in budgerigars as Bengalese finches, whereas no such mineralocorticoid receptor expressions were seen in the telencephalon of non-vocal learners. Thus, these results suggest the possibility that mineralocorticoid receptor plays a role in vocal development of parrots as songbirds and that the acquisition of mineralocorticoid receptor expression is involved in the evolution of avian vocal learning. © 2011 The Authors. Development, Growth & Differentiation © 2011 Japanese Society of Developmental Biologists.

  20. Complete Genome Analysis ofThermus parvatiensisand Comparative Genomics ofThermusspp. Provide Insights into Genetic Variability and Evolution of Natural Competence as Strategic Survival Attributes.

    Science.gov (United States)

    Tripathi, Charu; Mishra, Harshita; Khurana, Himani; Dwivedi, Vatsala; Kamra, Komal; Negi, Ram K; Lal, Rup

    2017-01-01

    Thermophilic environments represent an interesting niche. Among thermophiles, the genus Thermus is among the most studied genera. In this study, we have sequenced the genome of Thermus parvatiensis strain RL, a thermophile isolated from Himalayan hot water springs (temperature >96°C) using PacBio RSII SMRT technique. The small genome (2.01 Mbp) comprises a chromosome (1.87 Mbp) and a plasmid (143 Kbp), designated in this study as pTP143. Annotation revealed a high number of repair genes, a squeezed genome but containing highly plastic plasmid with transposases, integrases, mobile elements and hypothetical proteins (44%). We performed a comparative genomic study of the group Thermus with an aim of analysing the phylogenetic relatedness as well as niche specific attributes prevalent among the group. We compared the reference genome RL with 16 Thermus genomes to assess their phylogenetic relationships based on 16S rRNA gene sequences, average nucleotide identity (ANI), conserved marker genes (31 and 400), pan genome and tetranucleotide frequency. The core genome of the analyzed genomes contained 1,177 core genes and many singleton genes were detected in individual genomes, reflecting a conserved core but adaptive pan repertoire. We demonstrated the presence of metagenomic islands (chromosome:5, plasmid:5) by recruiting raw metagenomic data (from the same niche) against the genomic replicons of T. parvatiensis . We also dissected the CRISPR loci wide all genomes and found widespread presence of this system across Thermus genomes. Additionally, we performed a comparative analysis of competence loci wide Thermus genomes and found evidence for recent horizontal acquisition of the locus and continued dispersal among members reflecting that natural competence is a beneficial survival trait among Thermus members and its acquisition depicts unending evolution in order to accomplish optimal fitness.

  1. Capturing Genomic Evolution of Lung Cancers through Liquid Biopsy for Circulating Tumor DNA

    Directory of Open Access Journals (Sweden)

    Michael Offin

    2017-01-01

    Full Text Available Genetic sequencing of malignancies has become increasingly important to uncover therapeutic targets and capture the tumor’s dynamic changes to drug sensitivity and resistance through genomic evolution. In lung cancers, the current standard of tissue biopsy at the time of diagnosis and progression is not always feasible or practical and may underestimate intratumoral heterogeneity. Technological advances in genetic sequencing have enabled the use of circulating tumor DNA (ctDNA analysis to obtain information on both targetable mutations and capturing real-time Darwinian evolution of tumor clones and drug resistance mechanisms under selective therapeutic pressure. The ability to analyze ctDNA from plasma, CSF, or urine enables a comprehensive view of cancers as systemic diseases and captures intratumoral heterogeneity. Here, we describe these recent advances in the setting of lung cancers and advocate for further research and the incorporation of ctDNA analysis in clinical trials of targeted therapies. By capturing genomic evolution in a noninvasive manner, liquid biopsy for ctDNA analysis could accelerate therapeutic discovery and deliver the next leap forward in precision medicine for patients with lung cancers and other solid tumors.

  2. Whole genome analysis of Leptospira licerasiae provides insight into leptospiral evolution and pathogenicity.

    Directory of Open Access Journals (Sweden)

    Jessica N Ricaldi

    Full Text Available The whole genome analysis of two strains of the first intermediately pathogenic leptospiral species to be sequenced (Leptospira licerasiae strains VAR010 and MMD0835 provides insight into their pathogenic potential and deepens our understanding of leptospiral evolution. Comparative analysis of eight leptospiral genomes shows the existence of a core leptospiral genome comprising 1547 genes and 452 conserved genes restricted to infectious species (including L. licerasiae that are likely to be pathogenicity-related. Comparisons of the functional content of the genomes suggests that L. licerasiae retains several proteins related to nitrogen, amino acid and carbohydrate metabolism which might help to explain why these Leptospira grow well in artificial media compared with pathogenic species. L. licerasiae strains VAR010(T and MMD0835 possess two prophage elements. While one element is circular and shares homology with LE1 of L. biflexa, the second is cryptic and homologous to a previously identified but unnamed region in L. interrogans serovars Copenhageni and Lai. We also report a unique O-antigen locus in L. licerasiae comprised of a 6-gene cluster that is unexpectedly short compared with L. interrogans in which analogous regions may include >90 such genes. Sequence homology searches suggest that these genes were acquired by lateral gene transfer (LGT. Furthermore, seven putative genomic islands ranging in size from 5 to 36 kb are present also suggestive of antecedent LGT. How Leptospira become naturally competent remains to be determined, but considering the phylogenetic origins of the genes comprising the O-antigen cluster and other putative laterally transferred genes, L. licerasiae must be able to exchange genetic material with non-invasive environmental bacteria. The data presented here demonstrate that L. licerasiae is genetically more closely related to pathogenic than to saprophytic Leptospira and provide insight into the genomic bases for

  3. Virulence evolution of the human pathogen Neisseria meningitidis by recombination in the core and accessory genome.

    Directory of Open Access Journals (Sweden)

    Biju Joseph

    Full Text Available BACKGROUND: Neisseria meningitidis is a naturally transformable, facultative pathogen colonizing the human nasopharynx. Here, we analyze on a genome-wide level the impact of recombination on gene-complement diversity and virulence evolution in N. meningitidis. We combined comparative genome hybridization using microarrays (mCGH and multilocus sequence typing (MLST of 29 meningococcal isolates with computational comparison of a subset of seven meningococcal genome sequences. PRINCIPAL FINDINGS: We found that lateral gene transfer of minimal mobile elements as well as prophages are major forces shaping meningococcal population structure. Extensive gene content comparison revealed novel associations of virulence with genetic elements besides the recently discovered meningococcal disease associated (MDA island. In particular, we identified an association of virulence with a recently described canonical genomic island termed IHT-E and a differential distribution of genes encoding RTX toxin- and two-partner secretion systems among hyperinvasive and non-hyperinvasive lineages. By computationally screening also the core genome for signs of recombination, we provided evidence that about 40% of the meningococcal core genes are affected by recombination primarily within metabolic genes as well as genes involved in DNA replication and repair. By comparison with the results of previous mCGH studies, our data indicated that genetic structuring as revealed by mCGH is stable over time and highly similar for isolates from different geographic origins. CONCLUSIONS: Recombination comprising lateral transfer of entire genes as well as homologous intragenic recombination has a profound impact on meningococcal population structure and genome composition. Our data support the hypothesis that meningococcal virulence is polygenic in nature and that differences in metabolism might contribute to virulence.

  4. Gene loss and horizontal gene transfer contributed to the genome evolution of the extreme acidophile Ferrovum

    Directory of Open Access Journals (Sweden)

    Sophie Roxana Ullrich

    2016-05-01

    Full Text Available Acid mine drainage (AMD, associated with active and abandoned mining sites, is a habitat for acidophilic microorganisms that gain energy from the oxidation of reduced sulfur compounds and ferrous iron and that thrive at pH below 4. Members of the recently proposed genus Ferrovum are the first acidophilic iron oxidizers to be described within the Betaproteobacteria. Although they have been detected as typical community members in AMD habitats worldwide, knowledge of their phylogenetic and metabolic diversity is scarce. Genomics approaches appear to be most promising in addressing this lacuna since isolation and cultivation of Ferrovum has proven to be extremely difficult and has so far only been successful for the designated type strain Ferrovum myxofaciens P3G. In this study, the genomes of two novel strains of Ferrovum (PN-J185 and Z-31 derived from water samples of a mine water treatment plant were sequenced. These genomes were compared with those of Ferrovum sp. JA12 that also originated from the mine water treatment plant, and of the type strain (P3G. Phylogenomic scrutiny suggests that the four strains represent three Ferrovum species that cluster in two groups (1 and 2. Comprehensive analysis of their predicted metabolic pathways revealed that these groups harbor characteristic metabolic profiles, notably with respect to motility, chemotaxis, nitrogen metabolism, biofilm formation and their potential strategies to cope with the acidic environment. For example, while the F. myxofaciens strains (group 1 appear to be motile and diazotrophic, the non-motile group 2 strains have the predicted potential to use a greater variety of fixed nitrogen sources. Furthermore, analysis of their genome synteny provides first insights into their genome evolution, suggesting that horizontal gene transfer and genome reduction in the group 2 strains by loss of genes encoding complete metabolic pathways or physiological features contributed to the observed

  5. Comparative genomics and evolution of conserved noncoding elements (CNE in rainbow trout

    Directory of Open Access Journals (Sweden)

    Ferguson Moira M

    2009-06-01

    Full Text Available Abstract Background Recent advances in the accumulation of genetic mapping and DNA sequence information from several salmonid species support the long standing view of an autopolyploid origin of these fishes (i.e., 4R. However, the paralogy relationships of the chromosomal segments descendent from earlier polyploidization events (i.e., 2R/3R largely remain unknown, mainly due to an unbalanced pseudogenization of paralogous genes that were once resident on the ancient duplicated segments. Inter-specific conserved noncoding elements (CNE might hold the key in identifying these regions, if they are associated with arrays of genes that have been highly conserved in syntenic blocks through evolution. To test this hypothesis, we investigated the chromosomal positions of subset of CNE in the rainbow trout genome using a comparative genomic framework. Results Through a genome wide analysis, we selected 41 pairs of adjacent CNE located on various chromosomes in zebrafish and obtained their intervening, less conserved, sequence information from rainbow trout. We identified 56 distinct fragments corresponding to about 150 Kbp of sequence data that were localized to 67 different chromosomal regions in the rainbow trout genome. The genomic positions of many duplicated CNE provided additional support for some previously suggested homeologies in this species. Additionally, we now propose 40 new potential paralogous affinities by analyzing the variation in the segregation patterns of some multi-copy CNE along with the synteny association comparison using several model vertebrates. Some of these regions appear to carry signatures of the 1R, 2R or 3R duplications. A subset of these CNE markers also demonstrated high utility in identifying homologous chromosomal segments in the genomes of Atlantic salmon and Arctic charr. Conclusion CNE seem to be more efficacious than coding sequences in providing insights into the ancient paralogous affinities within the

  6. Accelerated Evolution of Conserved Noncoding Sequences in theHuman Genome

    Energy Technology Data Exchange (ETDEWEB)

    Prambhakar, Shyam; Noonan, James P.; Paabo, Svante; Rubin, EdwardM.

    2006-07-06

    Genomic comparisons between human and distant, non-primatemammals are commonly used to identify cis-regulatory elements based onconstrained sequence evolution. However, these methods fail to detect"cryptic" functional elements, which are too weakly conserved amongmammals to distinguish from nonfunctional DNA. To address this problem,we explored the potential of deep intra-primate sequence comparisons. Wesequenced the orthologs of 558 kb of human genomic sequence, coveringmultiple loci involved in cholesterol homeostasis, in 6 nonhumanprimates. Our analysis identified 6 noncoding DNA elements displayingsignificant conservation among primates, but undetectable in more distantcomparisons. In vitro and in vivo tests revealed that at least three ofthese 6 elements have regulatory function. Notably, the mouse orthologsof these three functional human sequences had regulatory activity despitetheir lack of significant sequence conservation, indicating that they arecryptic ancestral cis-regulatory elements. These regulatory elementscould still be detected in a smaller set of three primate speciesincluding human, rhesus and marmoset. Since the human and rhesus genomesequences are already available, and the marmoset genome is activelybeing sequenced, the primate-specific conservation analysis describedhere can be applied in the near future on a whole-genome scale, tocomplement the annotation provided by more distant speciescomparisons.

  7. Recent Recombination Events in the Core Genome Are Associated with Adaptive Evolution in Enterococcus faecium

    Science.gov (United States)

    de Been, Mark; van Schaik, Willem; Cheng, Lu; Corander, Jukka; Willems, Rob J.

    2013-01-01

    Reasons for the rising clinical impact of the bacterium Enterococcus faecium include the species’ rapid acquisition of adaptive genetic elements. Here, we focused on the impact of recombination on the evolution of E. faecium. We used the recently developed BratNextGen algorithm to detect recombinant regions in the core genome of 34 E. faecium strains, including three newly sequenced clinical strains. Recombination was found to have a significant impact on the E. faecium genome: of the original 1.2 million positions in the core genome, 0.5 million were predicted to have been affected by recombination in at least one strain. Importantly, strains in one of the two major E. faecium clades (clade B), which contains most of the E. faecium human gut commensals, formed the most important reservoir for donating foreign DNA to the second major E. faecium clade (clade A), which contains most of the clinical isolates. Also, several genomic regions were found to mainly recombine in specific hospital-associated E. faecium strains. One of these regions (the epa-like locus) likely encodes the biosynthesis of cell wall polysaccharides. These findings suggest a crucial role for recombination in the emergence of E. faecium as a successful hospital-associated pathogen. PMID:23882129

  8. Mitochondrial Genome Evolution and a Novel RNA Editing System in Deep-Branching Heteroloboseids.

    Science.gov (United States)

    Yang, Jiwon; Harding, Tommy; Kamikawa, Ryoma; Simpson, Alastair G B; Roger, Andrew J

    2017-05-01

    Discoba (Excavata) is an evolutionarily important group of eukaryotes that includes Jakobida, with the most bacterial-like mitochondrial genomes known, and Euglenozoa, many of which have extensively fragmented mitochondrial genomes. However, little is known about the mitochondrial genomes of Heterolobosea, the third main group of Discoba. Here, we studied two heteroloboseids-an undescribed amoeba "BB2" and Pharyngomonas kirbyi. Phylogenomic analysis revealed that they form a clade that is a sister group to all other Heterolobosea. We characterized the mitochondrial genomes of BB2 and P. kirbyi, which encoded 44 and 48 putative protein-coding genes respectively. Their gene contents were similar to that of Naegleria. In BB2, mitochondrially encoded RNAs were heavily edited, with ∼500 mononucleotide insertion events, mostly guanosines. These insertions always have the same identity as an adjacent nucleotide. Editing occurs in all ribosomal RNAs and protein-coding transcripts except one, and half of the transfer RNAs. Analysis of Illumina deep-sequencing data suggested that this RNA editing is very accurate and efficient, and most likely co-transcriptional. The dissimilarity of this editing process to other RNA editing phenomena in discobids, as well as its apparent absence in P. kirbyi, suggest that this remarkably extensive system of insertional editing evolved independently in the BB2 lineage, after its divergence from the P. kirbyi lineage. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Novel parvoviruses in reptiles and genome sequence of a lizard parvovirus shed light on Dependoparvovirus genus evolution.

    Science.gov (United States)

    Pénzes, Judit J; Pham, Hanh T; Benkö, Mária; Tijssen, Peter

    2015-09-01

    Here, we report the detection and partial genome characterization of two novel reptilian parvoviruses derived from a short-tailed pygmy chameleon (Rampholeon brevicaudatus) and a corn snake (Pantherophis guttatus) along with the complete genome analysis of the first lizard parvovirus, obtained from four bearded dragons (Pogona vitticeps). Both homology searches and phylogenetic tree reconstructions demonstrated that all are members of the genus Dependoparvovirus. Even though most dependoparvoviruses replicate efficiently only in co-infections with large DNA viruses, no such agents could be detected in one of the bearded dragon samples, hence the possibility of autonomous replication was explored. The alternative ORF encoding the full assembly activating protein (AAP), typical for the genus, could be obtained from reptilian parvoviruses for the first time, with a structure that appears to be more ancient than that of avian and mammalian parvoviruses. All three viruses were found to harbour short introns as previously observed for snake adeno-associated virus, shorter than that of any non-reptilian dependoparvovirus. According to the phylogenetic calculations based on full non-structural protein (Rep) and AAP sequences, the monophyletic cluster of reptilian parvoviruses seems to be the most basal out of all lineages of genus Dependoparvovirus. The suspected ability for autonomous replication, results of phylogenetic tree reconstruction, intron lengths and the structure of the AAP suggested that a single Squamata origin instead of the earlier assumed diapsid (common avian-reptilian) origin is more likely for the genus Dependoparvovirus of the family Parvoviridae.

  10. Comparative Genomic Analysis of Rapid Evolution of an Extreme-Drug-Resistant Acinetobacter baumannii Clone

    DEFF Research Database (Denmark)

    Tan, Sean Yang-Yi; Chua, Song Lin; Liu, Yang

    2013-01-01

    , comparative genomics has been employed to analyze the rapid evolution of an EDR Acinetobacter baumannii clone from the intensive care unit (ICU) of Rigshospitalet at Copenhagen. Two resistant A. baumannii strains, 48055 and 53264, were sequentially isolated from two individuals who had been admitted to ICU...... within a 1-month interval. Multilocus sequence typing indicates that these two isolates belonged to ST208. The A. baumannii 53264 strain gained colistin resistance compared with the 48055 strain and became an EDR strain. Genome sequencing indicates that A. baumannii 53264 and 48055 have almost identical...... genomes—61 single-nucleotide polymorphisms (SNPs) were found between them. The A. baumannii 53264 strain was assembled into 130 contigs, with a total length of 3,976,592 bp with 38.93% GC content. The A. baumannii 48055 strain was assembled into 135 contigs, with a total length of 4,049,562 bp with 39...

  11. Comparative Analysis of Bat Genomes Provides Insight into the Evolution of Flight and Immunity

    DEFF Research Database (Denmark)

    Zhang, Guojie; Cowled, Christopher; Shi, Zhengli

    2013-01-01

    Bats are the only mammals capable of sustained flight and are notorious reservoir hosts for some of the world's most highly pathogenic viruses, including Nipah, Hendra, Ebola, and severe acute respiratory syndrome (SARS). To identify genetic changes associated with the development of bat......-specific traits, we performed whole-genome sequencing and comparative analyses of two distantly related bat species, fruit bat Pteropus alecto and insectivorous Myotis davidii. We discovered an unexpected concentration of positively selected genes in the DNA damage checkpoint and nuclear factor-¿B pathways...... that may be related to the origin of flight, as well as expansion and contraction of important gene families. Comparison of bat genomes with other mammalian species has provided new insights into bat biology and evolution....

  12. Prolonged Shedding of Human Coronavirus in Hematopoietic Cell Transplant Recipients: Risk Factors and Viral Genome Evolution.

    Science.gov (United States)

    Ogimi, Chikara; Greninger, Alexander L; Waghmare, Alpana A; Kuypers, Jane M; Shean, Ryan C; Xie, Hu; Leisenring, Wendy M; Stevens-Ayers, Terry L; Jerome, Keith R; Englund, Janet A; Boeckh, Michael

    2017-07-15

    Recent data suggest that human coronavirus (HCoV) pneumonia is associated with significant mortality in hematopoietic cell transplant (HCT) recipients. Investigation of risk factors for prolonged shedding and intrahost genome evolution may provide critical information for development of novel therapeutics. We retrospectively reviewed HCT recipients with HCoV detected in nasal samples by polymerase chain reaction (PCR). HCoV strains were identified using strain-specific PCR. Shedding duration was defined as time between first positive and first negative sample. Logistic regression analyses were performed to evaluate factors for prolonged shedding (≥21 days). Metagenomic next-generation sequencing (mNGS) was conducted when ≥4 samples with cycle threshold values of Genome changes were consistent with the expected molecular clock of HCoV. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  13. Conditional Selection of Genomic Alterations Dictates Cancer Evolution and Oncogenic Dependencies.

    Science.gov (United States)

    Mina, Marco; Raynaud, Franck; Tavernari, Daniele; Battistello, Elena; Sungalee, Stephanie; Saghafinia, Sadegh; Laessle, Titouan; Sanchez-Vega, Francisco; Schultz, Nikolaus; Oricchio, Elisa; Ciriello, Giovanni

    2017-08-14

    Cancer evolves through the emergence and selection of molecular alterations. Cancer genome profiling has revealed that specific events are more or less likely to be co-selected, suggesting that the selection of one event depends on the others. However, the nature of these evolutionary dependencies and their impact remain unclear. Here, we designed SELECT, an algorithmic approach to systematically identify evolutionary dependencies from alteration patterns. By analyzing 6,456 genomes from multiple tumor types, we constructed a map of oncogenic dependencies associated with cellular pathways, transcriptional readouts, and therapeutic response. Finally, modeling of cancer evolution shows that alteration dependencies emerge only under conditional selection. These results provide a framework for the design of strategies to predict cancer progression and therapeutic response. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Strict Host-Symbiont Cospeciation and Reductive Genome Evolution in Insect Gut Bacteria

    Science.gov (United States)

    Hosokawa, Takahiro; Kikuchi, Yoshitomo; Nikoh, Naruo; Shimada, Masakazu; Fukatsu, Takema

    2006-01-01

    Host-symbiont cospeciation and reductive genome evolution have been identified in obligate endocellular insect symbionts, but no such example has been identified from extracellular ones. Here we first report such a case in stinkbugs of the family Plataspidae, wherein a specific gut bacterium is vertically transmitted via “symbiont capsule.” In all of the plataspid species, females produced symbiont capsules upon oviposition and their gut exhibited specialized traits for capsule production. Phylogenetic analysis showed that the plataspid symbionts constituted a distinct group in the γ-Proteobacteria, whose sister group was the aphid obligate endocellular symbionts Buchnera. Removal of the symbionts resulted in retarded growth, mortality, and sterility of the insects. The host phylogeny perfectly agreed with the symbiont phylogeny, indicating strict host-symbiont cospeciation despite the extracellular association. The symbionts exhibited AT-biased nucleotide composition, accelerated molecular evolution, and reduced genome size, as has been observed in obligate endocellular insect symbionts. These findings suggest that not the endocellular conditions themselves but the population genetic attributes of the vertically transmitted symbionts are probably responsible for the peculiar genetic traits of these insect symbionts. We proposed the designation “Candidatus Ishikawaella capsulata” for the plataspid symbionts. The plataspid stinkbugs, wherein the host-symbiont associations can be easily manipulated, provide a novel system that enables experimental approaches to previously untouched aspects of the insect-microbe mutualism. Furthermore, comparative analyses of the sister groups, the endocellular Buchnera and the extracellular Ishikawaella, would lead to insights into how the different symbiotic lifestyles have affected their genomic evolution. PMID:17032065

  15. Genome-wide DNA methylation profiling by modified reduced representation bisulfite sequencing in Brassica rapa suggests that epigenetic modifications play a key role in polyploid genome evolution

    OpenAIRE

    Chen, Xun; Ge, Xianhong; Wang, Jing; Tan, Chen; King, Graham J.; Liu, Kede

    2015-01-01

    Brassica rapa includes some of the most important vegetables worldwide as well as oilseed crops. The complete annotated genome sequence confirmed its paleohexaploid origins and provides opportunities for exploring the detailed process of polyploid genome evolution. We generated a genome-wide DNA methylation profile for B. rapa using a modified reduced representation bisulfite sequencing (RRBS) method. This sampling represented 2.24% of all CG loci (2.5 × 105), 2.16% CHG (2.7 × 105), and 1.68%...

  16. Avian Influenza.

    Science.gov (United States)

    Zeitlin, Gary Adam; Maslow, Melanie Jane

    2005-05-01

    The current epidemic of H5N1 highly pathogenic avian influenza in Southeast Asia raises serious concerns that genetic reassortment will result in the next influenza pandemic. There have been 164 confirmed cases of human infection with avian influenza since 1996. In 2004, there were 45 cases of human H5N1 in Vietnam and Thailand, with a mortality rate more than 70%. In addition to the potential public health hazard, the current zoonotic epidemic has caused severe economic losses. Efforts must be concentrated on early detection of bird outbreaks with aggressive culling, quarantining, and disinfection. To prepare for and prevent an increase in human cases, it is essential to improve detection methods and stockpile effective antivirals. Novel therapeutic modalities, including short-interfering RNAs and new vaccine strategies that use plasmid-based genetic systems, offer promise should a pandemic occur.

  17. Avian cholera

    Science.gov (United States)

    Friend, Milton

    1999-01-01

    Avian cholera is a contagious disease resulting from infection by the bacterium Pasteurella multocida. Several subspecies of bacteria have been proposed for P. multocida, and at least 16 different P. multocida serotypes or characteristics of antigens in bacterial cells that differentiate bacterial variants from each other have been recognized. The serotypes are further differentiated by other methods, including DNA fingerprinting. These evaluations are useful for studying the ecology of avian cholera (Fig. 7.1), because different serotypes are generally found in poultry and free-ranging migratory birds. These evaluations also show that different P. multocida serotypes are found in wild birds in the eastern United States than those that are found in the birds in the rest of the Nation (Fig. 7.2).

  18. Comparative genomics reveals adaptive evolution of Asian tapeworm in switching to a new intermediate host

    Science.gov (United States)

    Wang, Shuai; Wang, Sen; Luo, Yingfeng; Xiao, Lihua; Luo, Xuenong; Gao, Shenghan; Dou, Yongxi; Zhang, Huangkai; Guo, Aijiang; Meng, Qingshu; Hou, Junling; Zhang, Bing; Zhang, Shaohua; Yang, Meng; Meng, Xuelian; Mei, Hailiang; Li, Hui; He, Zilong; Zhu, Xueliang; Tan, Xinyu; Zhu, Xing-quan; Yu, Jun; Cai, Jianping; Zhu, Guan; Hu, Songnian; Cai, Xuepeng

    2016-01-01

    Taenia saginata, Taenia solium and Taenia asiatica (beef, pork and Asian tapeworms, respectively) are parasitic flatworms of major public health and food safety importance. Among them, T. asiatica is a newly recognized species that split from T. saginata via an intermediate host switch ∼1.14 Myr ago. Here we report the 169- and 168-Mb draft genomes of T. saginata and T. asiatica. Comparative analysis reveals that high rates of gene duplications and functional diversifications might have partially driven the divergence between T. asiatica and T. saginata. We observe accelerated evolutionary rates, adaptive evolutions in homeostasis regulation, tegument maintenance and lipid uptakes, and differential/specialized gene family expansions in T. asiatica that may favour its hepatotropism in the new intermediate host. We also identify potential targets for developing diagnostic or intervention tools against human tapeworms. These data provide new insights into the evolution of Taenia parasites, particularly the recent speciation of T. asiatica. PMID:27653464

  19. Gene trees, species trees and Earth history combine to shed light on the evolution of migration in a model avian system.

    Science.gov (United States)

    Voelker, Gary; Bowie, Rauri C K; Klicka, John

    2013-06-01

    The evolution of migration in birds has fascinated biologists for centuries. In this study, we performed phylogenetic-based analyses of Catharus thrushes, a model genus in the study of avian migration, and their close relatives. For these analyses, we used both mitochondrial and nuclear genes, and the resulting phylogenies were used to trace migratory traits and biogeographic patterns. Our results provide the first robust assessment of relationships within Catharus and relatives and indicate that both mitochondrial and autosomal genes contribute to overall support of the phylogeny. Measures of phylogenetic informativeness indicated that mitochondrial genes provided more signal within Catharus than did nuclear genes, whereas nuclear loci provided more signal for relationships between Catharus and close relatives than did mitochondrial genes. Insertion and deletion events also contributed important support across the phylogeny. Across all taxa included in the study, and for Catharus, possession of long-distance migration is reconstructed as the ancestral condition, and a North American (north of Mexico) ancestral area is inferred. Within Catharus, sedentary behaviour evolved after the first speciation event in the genus and is geographically and temporally correlated with Central American distributions and the final closure of the Central American Seaway. Migratory behaviour subsequently evolved twice in Catharus and is geographically and temporally correlated with a recolonization of North America in the late Pleistocene. By temporally linking speciation events with changes in migratory condition and events in Earth history, we are able to show support for several competing hypotheses relating to the geographic origin of migration. © 2013 John Wiley & Sons Ltd.

  20. Comparative Genomics Identifies Epidermal Proteins Associated with the Evolution of the Turtle Shell.

    Science.gov (United States)

    Holthaus, Karin Brigit; Strasser, Bettina; Sipos, Wolfgang; Schmidt, Heiko A; Mlitz, Veronika; Sukseree, Supawadee; Weissenbacher, Anton; Tschachler, Erwin; Alibardi, Lorenzo; Eckhart, Leopold

    2016-03-01

    The evolution of reptiles, birds, and mammals was associated with the origin of unique integumentary structures. Studies on lizards, chicken, and humans have suggested that the evolution of major structural proteins of the outermost, cornified layers of the epidermis was driven by the diversification of a gene cluster called Epidermal Differentiation Complex (EDC). Turtles have evolved unique defense mechanisms that depend on mechanically resilient modifications of the epidermis. To investigate whether the evolution of the integument in these reptiles was associated with specific adaptations of the sequences and expression patterns of EDC-related genes, we utilized newly available genome sequences to determine the epidermal differentiation gene complement of turtles. The EDC of the western painted turtle (Chrysemys picta bellii) comprises more than 100 genes, including at least 48 genes that encode proteins referred to as beta-keratins or corneous beta-proteins. Several EDC proteins have evolved cysteine/proline contents beyond 50% of total amino acid residues. Comparative genomics suggests that distinct subfamilies of EDC genes have been expanded and partly translocated to loci outside of the EDC in turtles. Gene expression analysis in the European pond turtle (Emys orbicularis) showed that EDC genes are differentially expressed in the skin of the various body sites and that a subset of beta-keratin genes within the EDC as well as those located outside of the EDC are expressed predominantly in the shell. Our findings give strong support to the hypothesis that the evolutionary innovation of the turtle shell involved specific molecular adaptations of epidermal differentiation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Phylogenomic analyses data of the avian phylogenomics project

    DEFF Research Database (Denmark)

    Jarvis, Erich D; Mirarab, Siavash; Aberer, Andre J

    2015-01-01

    ML algorithm or when using statistical binning with the coalescence-based MP-EST algorithm (which we refer to as MP-EST*). Other data sets, such as the coding sequence of some exons, revealed other properties of genome evolution, namely convergence. CONCLUSIONS: The Avian Phylogenomics Project is the largest......, amino acids, indels, and transposable elements, as well as tree files containing gene trees and species trees. Inferring an accurate phylogeny required generating: 1) A well annotated data set across species based on genome synteny; 2) Alignments with unaligned or incorrectly overaligned sequences...... filtered out; and 3) Diverse data sets, including genes and their inferred trees, indels, and transposable elements. Our total evidence nucleotide tree (TENT) data set (consisting of exons, introns, and UCEs) gave what we consider our most reliable species tree when using the concatenation-based Exa...

  2. Primates, Lice and Bacteria: Speciation and Genome Evolution in the Symbionts of Hominid Lice.

    Science.gov (United States)

    Boyd, Bret M; Allen, Julie M; Nguyen, Nam-Phuong; Vachaspati, Pranjal; Quicksall, Zachary S; Warnow, Tandy; Mugisha, Lawrence; Johnson, Kevin P; Reed, David L

    2017-07-01

    Insects with restricted diets rely on symbiotic bacteria to provide essential metabolites missing in their diet. The blood-sucking lice are obligate, host-specific parasites of mammals and are themselves host to symbiotic bacteria. In human lice, these bacterial symbionts supply the lice with B-vitamins. Here, we sequenced the genomes of symbiotic and heritable bacterial of human, chimpanzee, gorilla, and monkey lice and used phylogenomics to investigate their evolutionary relationships. We find that these symbionts have a phylogenetic history reflecting the louse phylogeny, a finding contrary to previous reports of symbiont replacement. Examination of the highly reduced symbiont genomes (0.53-0.57 Mb) reveals much of the genomes are dedicated to vitamin synthesis. This is unchanged in the smallest symbiont genome and one that appears to have been reorganized. Specifically, symbionts from human lice, chimpanzee lice, and gorilla lice carry a small plasmid that encodes synthesis of vitamin B5, a vitamin critical to the bacteria-louse symbiosis. This plasmid is absent in an old world monkey louse symbiont, where this pathway is on its primary chromosome. This suggests the unique genomic configuration brought about by the plasmid is not essential for symbiosis, but once obtained, it has persisted for up to 25 My. We also find evidence that human, chimpanzee, and gorilla louse endosymbionts have lost a pathway for synthesis of vitamin B1, whereas the monkey louse symbiont has retained this pathway. It is unclear whether these changes are adaptive, but they may point to evolutionary responses of louse symbionts to shifts in primate biology. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. Genome-wide analysis of adaptive molecular evolution in the carnivorous plant Utricularia gibba.

    Science.gov (United States)

    Carretero-Paulet, Lorenzo; Chang, Tien-Hao; Librado, Pablo; Ibarra-Laclette, Enrique; Herrera-Estrella, Luis; Rozas, Julio; Albert, Victor A

    2015-01-09

    The genome of the bladderwort Utricularia gibba provides an unparalleled opportunity to uncover the adaptive landscape of an aquatic carnivorous plant with unique phenotypic features such as absence of roots, development of water-filled suction bladders, and a highly ramified branching pattern. Despite its tiny size, the U. gibba genome accommodates approximately as many genes as other plant genomes. To examine the relationship between the compactness of its genome and gene turnover, we compared the U. gibba genome with that of four other eudicot species, defining a total of 17,324 gene families (orthogroups). These families were further classified as either 1) lineage-specific expanded/contracted or 2) stable in size. The U. gibba-expanded families are generically related to three main phenotypic features: 1) trap physiology, 2) key plant morphogenetic/developmental pathways, and 3) response to environmental stimuli, including adaptations to life in aquatic environments. Further scans for signatures of protein functional specialization permitted identification of seven candidate genes with amino acid changes putatively fixed by positive Darwinian selection in the U. gibba lineage. The Arabidopsis orthologs of these genes (AXR, UMAMIT41, IGS, TAR2, SOL1, DEG9, and DEG10) are involved in diverse plant biological functions potentially relevant for U. gibba phenotypic diversification, including 1) auxin metabolism and signal transduction, 2) flowering induction and floral meristem transition, 3) root development, and 4) peptidases. Taken together, our results suggest numerous candidate genes and gene families as interesting targets for further experimental confirmation of their functional and adaptive roles in the U. gibba's unique lifestyle and highly specialized body plan. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. Full-Genome Characterization and Genetic Evolution of West African Isolates of Bagaza Virus

    Directory of Open Access Journals (Sweden)

    Martin Faye

    2018-04-01

    Full Text Available Bagaza virus is a mosquito-borne flavivirus, first isolated in 1966 in Central African Republic. It has currently been identified in mosquito pools collected in the field in West and Central Africa. Emergence in wild birds in Europe and serological evidence in encephalitis patients in India raise questions on its genetic evolution and the diversity of isolates circulating in Africa. To better understand genetic diversity and evolution of Bagaza virus, we describe the full-genome characterization of 11 West African isolates, sampled from 1988 to 2014. Parameters such as genetic distances, N-glycosylation patterns, recombination events, selective pressures, and its codon adaptation to human genes are assessed. Our study is noteworthy for the observation of N-glycosylation and recombination in Bagaza virus and provides insight into its Indian origin from the 13th century. Interestingly, evidence of Bagaza virus codon adaptation to human house-keeping genes is also observed to be higher than those of other flaviviruses well known in human infections. Genetic variations on genome of West African Bagaza virus could play an important role in generating diversity and may promote Bagaza virus adaptation to other vertebrates and become an important threat in human health.

  5. The (d)evolution of methanotrophy in the Beijerinckiaceae—a comparative genomics analysis

    Science.gov (United States)

    Tamas, Ivica; Smirnova, Angela V; He, Zhiguo; Dunfield, Peter F

    2014-01-01

    The alphaproteobacterial family Beijerinckiaceae contains generalists that grow on a wide range of substrates, and specialists that grow only on methane and methanol. We investigated the evolution of this family by comparing the genomes of the generalist organotroph Beijerinckia indica, the facultative methanotroph Methylocella silvestris and the obligate methanotroph Methylocapsa acidiphila. Highly resolved phylogenetic construction based on universally conserved genes demonstrated that the Beijerinckiaceae forms a monophyletic cluster with the Methylocystaceae, the only other family of alphaproteobacterial methanotrophs. Phylogenetic analyses also demonstrated a vertical inheritance pattern of methanotrophy and methylotrophy genes within these families. Conversely, many lateral gene transfer (LGT) events were detected for genes encoding carbohydrate transport and metabolism, energy production and conversion, and transcriptional regulation in the genome of B. indica, suggesting that it has recently acquired these genes. A key difference between the generalist B. indica and its specialist methanotrophic relatives was an abundance of transporter elements, particularly periplasmic-binding proteins and major facilitator transporters. The most parsimonious scenario for the evolution of methanotrophy in the Alphaproteobacteria is that it occurred only once, when a methylotroph acquired methane monooxygenases (MMOs) via LGT. This was supported by a compositional analysis suggesting that all MMOs in Alphaproteobacteria methanotrophs are foreign in origin. Some members of the Beijerinckiaceae subsequently lost methanotrophic functions and regained the ability to grow on multicarbon energy substrates. We conclude that B. indica is a recidivist multitroph, the only known example of a bacterium having completely abandoned an evolved lifestyle of specialized methanotrophy. PMID:23985741

  6. The (d)evolution of methanotrophy in the Beijerinckiaceae--a comparative genomics analysis.

    Science.gov (United States)

    Tamas, Ivica; Smirnova, Angela V; He, Zhiguo; Dunfield, Peter F

    2014-02-01

    The alphaproteobacterial family Beijerinckiaceae contains generalists that grow on a wide range of substrates, and specialists that grow only on methane and methanol. We investigated the evolution of this family by comparing the genomes of the generalist organotroph Beijerinckia indica, the facultative methanotroph Methylocella silvestris and the obligate methanotroph Methylocapsa acidiphila. Highly resolved phylogenetic construction based on universally conserved genes demonstrated that the Beijerinckiaceae forms a monophyletic cluster with the Methylocystaceae, the only other family of alphaproteobacterial methanotrophs. Phylogenetic analyses also demonstrated a vertical inheritance pattern of methanotrophy and methylotrophy genes within these families. Conversely, many lateral gene transfer (LGT) events were detected for genes encoding carbohydrate transport and metabolism, energy production and conversion, and transcriptional regulation in the genome of B. indica, suggesting that it has recently acquired these genes. A key difference between the generalist B. indica and its specialist methanotrophic relatives was an abundance of transporter elements, particularly periplasmic-binding proteins and major facilitator transporters. The most parsimonious scenario for the evolution of methanotrophy in the Alphaproteobacteria is that it occurred only once, when a methylotroph acquired methane monooxygenases (MMOs) via LGT. This was supported by a compositional analysis suggesting that all MMOs in Alphaproteobacteria methanotrophs are foreign in origin. Some members of the Beijerinckiaceae subsequently lost methanotrophic functions and regained the ability to grow on multicarbon energy substrates. We conclude that B. indica is a recidivist multitroph, the only known example of a bacterium having completely abandoned an evolved lifestyle of specialized methanotrophy.

  7. Genomics of adaptation during experimental evolution of the opportunistic pathogen Pseudomonas aeruginosa.

    Science.gov (United States)

    Wong, Alex; Rodrigue, Nicolas; Kassen, Rees

    2012-09-01

    Adaptation is likely to be an important determinant of the success of many pathogens, for example when colonizing a new host species, when challenged by antibiotic treatment, or in governing the establishment and progress of long-term chronic infection. Yet, the genomic basis of adaptation is poorly understood in general, and for pathogens in particular. We investigated the genetics of adaptation to cystic fibrosis-like culture conditions in the presence and absence of fluoroquinolone antibiotics using the opportunistic pathogen Pseudomonas aeruginosa. Whole-genome sequencing of experimentally evolved isolates revealed parallel evolution at a handful of known antibiotic resistance genes. While the level of antibiotic resistance was largely determined by these known resistance genes, the costs of resistance were instead attributable to a number of mutations that were specific to individual experimental isolates. Notably, stereotypical quinolone resistance mutations in DNA gyrase often co-occurred with other mutations that, together, conferred high levels of resistance but no consistent cost of resistance. This result may explain why these mutations are so prevalent in clinical quinolone-resistant isolates. In addition, genes involved in cyclic-di-GMP signalling were repeatedly mutated in populations evolved in viscous culture media, suggesting a shared mechanism of adaptation to this CF-like growth environment. Experimental evolutionary approaches to understanding pathogen adaptation should provide an important complement to studies of the evolution of clinical isolates.

  8. Genomics of adaptation during experimental evolution of the opportunistic pathogen Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Alex Wong

    2012-09-01

    Full Text Available Adaptation is likely to be an important determinant of the success of many pathogens, for example when colonizing a new host species, when challenged by antibiotic treatment, or in governing the establishment and progress of long-term chronic infection. Yet, the genomic basis of adaptation is poorly understood in general, and for pathogens in particular. We investigated the genetics of adaptation to cystic fibrosis-like culture conditions in the presence and absence of fluoroquinolone antibiotics using the opportunistic pathogen Pseudomonas aeruginosa. Whole-genome sequencing of experimentally evolved isolates revealed parallel evolution at a handful of known antibiotic resistance genes. While the level of antibiotic resistance was largely determined by these known resistance genes, the costs of resistance were instead attributable to a number of mutations that were specific to individual experimental isolates. Notably, stereotypical quinolone resistance mutations in DNA gyrase often co-occurred with other mutations that, together, conferred high levels of resistance but no consistent cost of resistance. This result may explain why these mutations are so prevalent in clinical quinolone-resistant isolates. In addition, genes involved in cyclic-di-GMP signalling were repeatedly mutated in populations evolved in viscous culture media, suggesting a shared mechanism of adaptation to this CF-like growth environment. Experimental evolutionary approaches to understanding pathogen adaptation should provide an important complement to studies of the evolution of clinical isolates.

  9. Comparative genomics in chicken and Pekin duck using FISH mapping and microarray analysis

    Directory of Open Access Journals (Sweden)

    Fowler Katie E

    2009-08-01

    Full Text Available Abstract Background The availability of the complete chicken (Gallus gallus genome sequence as well as a large number of chicken probes for fluorescent in-situ hybridization (FISH and microarray resources facilitate comparative genomic studies between chicken and other bird species. In a previous study, we provided a comprehensive cytogenetic map for the turkey (Meleagris gallopavo and the first analysis of copy number variants (CNVs in birds. Here, we extend this approach to the Pekin duck (Anas platyrhynchos, an obvious target for comparative genomic studies due to its agricultural importance and resistance to avian flu. Results We provide a detailed molecular cytogenetic map of the duck genome through FISH assignment of 155 chicken clones. We identified one inter- and six intrachromosomal rearrangements between chicken and duck macrochromosomes and demonstrated conserved synteny among all microchromosomes analysed. Array comparative genomic hybridisation revealed 32 CNVs, of which 5 overlap previously designated "hotspot" regions between chicken and turkey. Conclusion Our results suggest extensive conservation of avian genomes across 90 million years of evolution in both macro- and microchromosomes. The data on CNVs between chicken and duck extends previous analyses in chicken and turkey and supports the hypotheses that avian genomes contain fewer CNVs than mammalian genomes and that genomes of evolutionarily distant species share regions of copy number variation ("CNV hotspots". Our results will expedite duck genomics, assist marker development and highlight areas of interest for future evolutionary and functional studies.

  10. Evolution of avian clutch size along latitudinal gradients: do seasonality, nest predation or breeding season length matter?

    Science.gov (United States)

    Griebeler, E M; Caprano, T; Böhning-Gaese, K

    2010-05-01

    Birds display a latitudinal gradient in clutch size with smaller clutches in the tropics and larger in the temperate region. Three factors have been proposed to affect this pattern: seasonality of resources (SR), nest predation and length of the breeding season (LBS). Here, we test the importance of these factors by modelling clutch size evolution within bird populations under different environmental settings. We use an individual-based ecogenetic simulation model that combines principles from population ecology and life history theory. Results suggest that increasing SR from the tropics to the poles by itself or in combination with a decreasing predation rate and LBS can generate the latitudinal gradient in clutch size. Annual fecundity increases and annual adult survival rate decreases from the tropics to the poles. We further show that the annual number of breeding attempts that (together with clutch size) determines total annual egg production is an important trait to understand latitudinal patterns in these life history characteristics. Field experiments that manipulate environmental factors have to record effects not only on clutch size, but also on annual number of breeding attempts. We use our model to predict the outcome of such experiments under different environmental settings.

  11. Intercontinental reassortment and genomic variation of low pathogenic avian influenza viruses isolated from northern pintails (Anas acuta) in Alaska: examining the evidence through space and time

    Science.gov (United States)

    Ramey, Andrew M.; Pearce, John M.; Flint, Paul L.; Ip, Hon S.; Derksen, Dirk V.; Franson, J. Christian; Petrula, Michael J.; Scotton, Bradley D.; Sowl, Kristine M.; Wege, Michael L.; Trust, Kimberly A.

    2010-01-01

    Migration and population genetic data for northern pintails (Anas acuta) and phylogenetic analysis of low pathogenic avian influenza (LPAI) viruses from this host in Alaska suggest that northern pintails are involved in ongoing intercontinental transmission of avian influenza. Here, we further refine this conclusion through phylogenetic analyses which demonstrate that detection of foreign lineage gene segments is spatially dependent and consistent through time. Our results show detection of foreign lineage gene segments to be most likely at sample locations on the Alaska Peninsula and least likely along the Southern Alaska Coast. Asian lineages detected at four gene segments persisted across years, suggesting maintenance in avian hosts that migrate to Alaska each year from Asia or in hosts that remain in Alaska throughout the year. Alternatively, live viruses may persist in the environment and re-infect birds in subsequent seasons.

  12. The evolution of human influenza A viruses from 1999 to 2006: A complete genome study

    Directory of Open Access Journals (Sweden)

    Fomsgaard Anders

    2008-03-01

    Full Text Available Abstract Background Knowledge about the complete genome constellation of seasonal influenza A viruses from different countries is valuable for monitoring and understanding of the evolution and migration of strains. Few complete genome sequences of influenza A viruses from Europe are publicly available at the present time and there have been few longitudinal genome studies of human influenza A viruses. We have studied the evolution of circulating human H3N2, H1N1 and H1N2 influenza A viruses from 1999 to 2006, we analysed 234 Danish human influenza A viruses and characterised 24 complete genomes. Results H3N2 was the prevalent strain in Denmark during the study period, but H1N1 dominated the 2000–2001 season. H1N2 viruses were first observed in Denmark in 2002–2003. After years of little genetic change in the H1N1 viruses the 2005–2006 season presented H1N1 of greater variability than before. This indicates that H1N1 viruses are evolving and that H1N1 soon is likely to be the prevalent strain again. Generally, the influenza A haemagglutinin (HA of H3N2 viruses formed seasonal phylogenetic clusters. Different lineages co-circulating within the same season were also observed. The evolution has been stochastic, influenced by small "jumps" in genetic distance rather than constant drift, especially with the introduction of the Fujian-like viruses in 2002–2003. Also evolutionary stasis-periods were observed which might indicate well fit viruses. The evolution of H3N2 viruses have also been influenced by gene reassortments between lineages from different seasons. None of the influenza genes were influenced by strong positive selection pressure. The antigenic site B in H3N2 HA was the preferred site for genetic change during the study period probably because the site A has been masked by glycosylations. Substitutions at CTL-epitopes in the genes coding for the neuraminidase (NA, polymerase acidic protein (PA, matrix protein 1 (M1, non

  13. Evolution, genomics and epidemiology of Pseudomonas syringae: Challenges in Bacterial Molecular Plant Pathology.

    Science.gov (United States)

    Baltrus, David A; McCann, Honour C; Guttman, David S

    2017-01-01

    A remarkable shift in our understanding of plant-pathogenic bacteria is underway. Until recently, nearly all research on phytopathogenic bacteria was focused on a small number of model strains, which provided a deep, but narrow, perspective on plant-microbe interactions. Advances in genome sequencing technologies have changed this by enabling the incorporation of much greater diversity into comparative and functional research. We are now moving beyond a typological understanding of a select collection of strains to a more generalized appreciation of the breadth and scope of plant-microbe interactions. The study of natural populations and evolution has particularly benefited from the expansion of genomic data. We are beginning to have a much deeper understanding of the natural genetic diversity, niche breadth, ecological constraints and defining characteristics of phytopathogenic species. Given this expanding genomic and ecological knowledge, we believe the time is ripe to evaluate what we know about the evolutionary dynamics of plant pathogens. © 2016 BSPP and John Wiley & Sons Ltd.

  14. Characterization of the opossum immune genome provides insights into the evolution of the mammalian immune system.

    Science.gov (United States)

    Belov, Katherine; Sanderson, Claire E; Deakin, Janine E; Wong, Emily S W; Assange, Daniel; McColl, Kaighin A; Gout, Alex; de Bono, Bernard; Barrow, Alexander D; Speed, Terence P; Trowsdale, John; Papenfuss, Anthony T

    2007-07-01

    The availability of the first marsupial genome sequence has allowed us to characterize the immunome of the gray short-tailed opossum (Monodelphis domestica). Here we report the identification of key immune genes, including the highly divergent chemokines, defensins, cathelicidins, and Natural Killer cell receptors. It appears that the increase in complexity of the mammalian immune system occurred prior to the divergence of the marsupial and eutherian lineages approximately 180 million years ago. Genomes of ancestral mammals most likely contained all of the key mammalian immune gene families, with evolution on different continents, in the presence of different pathogens leading to lineage specific expansions and contractions, resulting in some minor differences in gene number and composition between different mammalian lineages. Gene expansion and extensive heterogeneity in opossum antimicrobial peptide genes may have evolved as a consequence of the newborn young needing to survive without an adaptive immune system in a pathogen laden environment. Given the similarities in the genomic architecture of the marsupial and eutherian immune systems, we propose that marsupials are ideal model organisms for the study of developmental immunology.

  15. Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas

    Energy Technology Data Exchange (ETDEWEB)

    Worden, Alexandra Z.; Lee, Jae-Hyeok; Mock, Thomas; Rouze, Pierre; Simmons, Melinda P.; Aerts, Andrea L.; Allen, Andrew E.; Cuvelier, Marie L.; Derelle, Evelyne; Everett, Meredieht V.; Foulon, Elodie; Grimwood, Jane; Gundlach, Heidrun; Henrissat, Bernard; Napoli, Carolyn; McDonald, Sarah M.; Parker, Micaela S.; Rombauts, Stephane; Salamov, Asaf; von Dassow, Peter; Badger, Jonathan G,; Coutinho, Pedro M.; Demir, Elif; Dubchak, Inna; Gentemann, Chelle; Eikrem, Wenche; Gready, Jill E.; John, Uwe; Lanier, William; Lindquist, Erika A.; Lucas, Susan; Mayer, Kluas F. X.; Moreau, Herve; Not, Fabrice; Otillar, Robert; Panaud, Olivier; Pangilinan, Jasmyn; Paulsen, Ian; Piegu, Benoit; Poliakov, Aaron; Robbens, Steven; Schmutz, Jeremy; Roulza, Eve; Wyss, Tania; Zelensky, Alexander; Zhou, Kemin; Armbrust, E. Virginia; Bhattacharya, Debashish; Goodenough, Ursula W.; Van de Peer, Yves; Grigoriev, Igor V.

    2009-10-14

    Picoeukaryotes are a taxonomically diverse group of organisms less than 2 micrometers in diameter. Photosynthetic marine picoeukaryotes in the genus Micromonas thrive in ecosystems ranging from tropical to polar and could serve as sentinel organisms for biogeochemical fluxes of modern oceans during climate change. These broadly distributed primary producers belong to an anciently diverged sister clade to land plants. Although Micromonas isolates have high 18S ribosomal RNA gene identity, we found that genomes from two isolates shared only 90percent of their predicted genes. Their independent evolutionary paths were emphasized by distinct riboswitch arrangements as well as the discovery of intronic repeat elements in one isolate, and in metagenomic data, but not in other genomes. Divergence appears to have been facilitated by selection and acquisition processes that actively shape the repertoire of genes that are mutually exclusive between the two isolates differently than the core genes. Analyses of the Micromonas genomes offer valuable insights into ecological differentiation and the dynamic nature of early plant evolution.

  16. A maternal-offspring coadaptation theory for the evolution of genomic imprinting.

    Directory of Open Access Journals (Sweden)

    Jason B Wolf

    2006-11-01

    Full Text Available Imprinted genes are expressed either from the maternally or paternally inherited copy only, and they play a key role in regulating complex biological processes, including offspring development and mother-offspring interactions. There are several competing theories attempting to explain the evolutionary origin of this monoallelic pattern of gene expression, but a prevailing view has emerged that holds that genomic imprinting is a consequence of conflict between maternal and paternal gene copies over maternal investment. However, many imprinting patterns and the apparent overabundance of maternally expressed genes remain unexplained and may be incompatible with current theory. Here we demonstrate that sole expression of maternal gene copies is favored by natural selection because it increases the adaptive integration of offspring and maternal genomes, leading to higher offspring fitness. This novel coadaptation theory for the evolution of genomic imprinting is consistent with results of recent studies on epigenetic effects, and it provides a testable hypothesis for the origin of previously unexplained major imprinting patterns across different taxa. In conjunction with existing hypotheses, our results suggest that imprinting may have evolved due to different selective pressures at different loci.

  17. GENOMIC BASIS OF AGING AND LIFE HISTORY EVOLUTION IN DROSOPHILA MELANOGASTER

    Science.gov (United States)

    Remolina, Silvia C.; Chang, Peter L.; Leips, Jeff; Nuzhdin, Sergey V.; Hughes, Kimberly A.

    2015-01-01

    Natural diversity in aging and other life history patterns is a hallmark of organismal variation. Related species, populations, and individuals within populations show genetically based variation in life span and other aspects of age-related performance. Population differences are especially informative because these differences can be large relative to within-population variation and because they occur in organisms with otherwise similar genomes. We used experimental evolution to produce populations divergent for life span and late-age fertility and then used deep genome sequencing to detect sequence variants with nucleotide-level resolution. Several genes and genome regions showed strong signatures of selection, and the same regions were implicated in independent comparisons, suggesting that the same alleles were selected in replicate lines. Genes related to oogenesis, immunity, and protein degradation were implicated as important modifiers of late-life performance. Expression profiling and functional annotation narrowed the list of strong candidate genes to 38, most of which are novel candidates for regulating aging. Life span and early-age fecundity were negatively correlated among populations; therefore the alleles we identified also are candidate regulators of a major life-history trade-off. More generally, we argue that hitchhiking mapping can be a powerful tool for uncovering the molecular bases of quantitative genetic variation. PMID:23106705

  18. Centromere and telomere sequence alterations reflect the rapid genome evolution within the carnivorous plant genus Genlisea.

    Science.gov (United States)

    Tran, Trung D; Cao, Hieu X; Jovtchev, Gabriele; Neumann, Pavel; Novák, Petr; Fojtová, Miloslava; Vu, Giang T H; Macas, Jiří; Fajkus, Jiří; Schubert, Ingo; Fuchs, Joerg

    2015-12-01

    Linear chromosomes of eukaryotic organisms invariably possess centromeres and telomeres to ensure proper chromosome segregation during nuclear divisions and to protect the chromosome ends from deterioration and fusion, respectively. While centromeric sequences may differ between species, with arrays of tandemly repeated sequences and retrotransposons being the most abundant sequence types in plant centromeres, telomeric sequences are usually highly conserved among plants and other organisms. The genome size of the carnivorous genus Genlisea (Lentibulariaceae) is highly variable. Here we study evolutionary sequence plasticity of these chromosomal domains at an intrageneric level. We show that Genlisea nigrocaulis (1C = 86 Mbp; 2n = 40) and G. hispidula (1C = 1550 Mbp; 2n = 40) differ as to their DNA composition at centromeres and telomeres. G. nigrocaulis and its close relative G. pygmaea revealed mainly 161 bp tandem repeats, while G. hispidula and its close relative G. subglabra displayed a combination of four retroelements at centromeric positions. G. nigrocaulis and G. pygmaea chromosome ends are characterized by the Arabidopsis-type telomeric repeats (TTTAGGG); G. hispidula and G. subglabra instead revealed two intermingled sequence variants (TTCAGG and TTTCAGG). These differences in centromeric and, surprisingly, also in telomeric DNA sequences, uncovered between groups with on average a > 9-fold genome size difference, emphasize the fast genome evolution within this genus. Such intrageneric evolutionary alteration of telomeric repeats with cytosine in the guanine-rich strand, not yet known for plants, might impact the epigenetic telomere chromatin modification. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  19. Comparative genomics and the evolution of pathogenicity in human pathogenic fungi.

    LENUS (Irish Health Repository)

    Moran, Gary P

    2011-01-01

    Because most fungi have evolved to be free-living in the environment and because the infections they cause are usually opportunistic in nature, it is often difficult to identify specific traits that contribute to fungal pathogenesis. In recent years, there has been a surge in the number of sequenced genomes of human fungal pathogens, and comparison of these sequences has proved to be an excellent resource for exploring commonalities and differences in how these species interact with their hosts. In order to survive in the human body, fungi must be able to adapt to new nutrient sources and environmental stresses. Therefore, genes involved in carbohydrate and amino acid metabolism and transport and genes encoding secondary metabolites tend to be overrepresented in pathogenic species (e.g., Aspergillus fumigatus). However, it is clear that human commensal yeast species such as Candida albicans have also evolved a range of specific factors that facilitate direct interaction with host tissues. The evolution of virulence across the human pathogenic fungi has occurred largely through very similar mechanisms. One of the most important mechanisms is gene duplication and the expansion of gene families, particularly in subtelomeric regions. Unlike the case for prokaryotic pathogens, horizontal transfer of genes between species and other genera does not seem to have played a significant role in the evolution of fungal virulence. New sequencing technologies promise the prospect of even greater numbers of genome sequences, facilitating the sequencing of multiple genomes and transcriptomes within individual species, and will undoubtedly contribute to a deeper insight into fungal pathogenesis.

  20. Genetic diversity and evolution of dengue virus serotype 3: A comparative genomics study.

    Science.gov (United States)

    Waman, Vaishali P; Kale, Mohan M; Kulkarni-Kale, Urmila

    2017-04-01

    Dengue virus serotype 3 (DENV-3), one of the four serotypes of Dengue viruses, is geographically diverse. There are five distinct genotypes (I-V) of DENV-3. Emerging strains and lineages of DENV-3 are increasingly being reported. Availability of genomic data for DENV-3 strains provides opportunity to study its population structure. Complete genome sequences are available for 860 strains of four genotypes (I, II, III and V) isolated worldwide and were analyzed using population genetics and evolutionary approaches to map landscape of genomic diversity. DENV-3 population is observed to be stratified into five major subpopulations. Genotype I and II formed independent subpopulations while genotype III is subdivided into three subpopulations (GIII-a, GIII-b and GIII-c) and is therefore heterogeneous. Genotypes I, II and GIII-a subpopulations comprise of Asian strains whereas GIII-c comprises of American strains. GIII-b subpopulation includes mainly of American strains along with a few strains from Sri Lanka. Genetic admixture is predominantly observed in Sri Lankan strains of genotype III and all strains of genotype V. Inter-genotype recombination was observed to occur in non-structural region of several Asian strains whereas extent of recombination was limited in American strains. Significant positive selection was found to be operational on all genes and observed to be the main driving force of genetic diversity. Positive selection was strongly operational on the branches leading to Asian genotypes and helped to delineate the genetic differences between Asian and American lineages. Thus, inter-genotype recombination, migration and adaptive evolution are the major determinants of evolution of DENV-3. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Origin and evolution of a placental-specific microRNA family in the human genome

    Directory of Open Access Journals (Sweden)

    Gong Lejun

    2010-11-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are a class of short regulatory RNAs encoded in the genome of DNA viruses, some single cell organisms, plants and animals. With the rapid development of technology, more and more miRNAs are being discovered. However, the origin and evolution of most miRNAs remain obscure. Here we report the origin and evolution dynamics of a human miRNA family. Results We have shown that all members of the miR-1302 family are derived from MER53 elements. Although the conservation scores of the MER53-derived pre-miRNA sequences are low, we have identified 36 potential paralogs of MER53-derived miR-1302 genes in the human genome and 58 potential orthologs of the human miR-1302 family in placental mammals. We suggest that in placental species, this miRNA family has evolved following the birth-and-death model of evolution. Three possible mechanisms that can mediate miRNA duplication in evolutionary history have been proposed: the transposition of the MER53 element, segmental duplications and Alu-mediated recombination. Finally, we have found that the target genes of miR-1302 are over-represented in transportation, localization, and system development processes and in the positive regulation of cellular processes. Many of them are predicted to function in binding and transcription regulation. Conclusions The members of miR-1302 family that are derived from MER53 elements are placental-specific miRNAs. They emerged at the early stage of the recent 180 million years since eutherian mammals diverged from marsupials. Under the birth-and-death model, the miR-1302 genes have experienced a complex expansion with some members evolving by segmental duplications and some by Alu-mediated recombination events.

  2. Population genomics of dengue virus serotype 4: insights into genetic structure and evolution.

    Science.gov (United States)

    Waman, Vaishali P; Kasibhatla, Sunitha Manjari; Kale, Mohan M; Kulkarni-Kale, Urmila

    2016-08-01

    The spread of dengue disease has become a global public health concern. Dengue is caused by dengue virus, which is a mosquito-borne arbovirus of the genus Flavivirus, family Flaviviridae. There are four dengue virus serotypes (1-4), each of which is known to trigger mild to severe disease. Dengue virus serotype 4 (DENV-4) has four genotypes and is increasingly being reported to be re-emerging in various parts of the world. Therefore, the population structure and factors shaping the evolution of DENV-4 strains across the world were studied using genome-based population genetic, phylogenetic and selection pressure analysis methods. The population genomics study helped to reveal the spatiotemporal structure of the DENV-4 population and its primary division into two spatially distinct clusters: American and Asian. These spatial clusters show further time-dependent subdivisions within genotypes I and II. Thus, the DENV-4 population is observed to be stratified into eight genetically distinct lineages, two of which are formed by American strains and six of which are formed by Asian strains. Episodic positive selection was observed in the structural (E) and non-structural (NS2A and NS3) genes, which appears to be responsible for diversification of Asian lineages in general and that of modern lineages of genotype I and II in particular. In summary, the global DENV-4 population is stratified into eight genetically distinct lineages, in a spatiotemporal manner with limited recombination. The significant role of adaptive evolution in causing diversification of DENV-4 lineages is discussed. The evolution of DENV-4 appears to be governed by interplay between spatiotemporal distribution, episodic positive selection and intra/inter-genotype recombination.

  3. Phylogeny and molecular evolution of the Acc1 gene within the StH genome species in Triticeae (Poaceae).

    Science.gov (United States)

    Fan, Xing; Sha, Li-Na; Wang, Xiao-Li; Zhang, Hai-Qin; Kang, Hou-Yang; Wang, Yi; Zhou, Yong-Hong

    2013-10-15

    To estimate the phylogeny and molecular evolution of a single-copy gene encoding plastid acetyl-CoA carboxylase (Acc1) within the StH genome species, two Acc1 homoeologous sequences were isolated from nearly all the sampled StH genome species and were analyzed with those from 35 diploid taxa representing 19 basic genomes in Triticeae. Sequence diversity patterns and genealogical analysis suggested that (1) the StH genome species from the same areas or neighboring geographic regions are closely related to each other; (2) the Acc1 gene sequences of the StH genome species from North America and Eurasia are evolutionarily distinct; (3) Dasypyrum has contributed to the nuclear genome of Elymus repens and Elymus mutabilis; (4) the StH genome polyploids have higher levels of sequence diversity in the H genome homoeolog than the St genome homoeolog; and (5) the Acc1 sequence may evolve faster in the polyploid species than in the diploids. Our result provides some insight on evolutionary dynamics of duplicate Acc1 gene, the polyploidy speciation and phylogeny of the StH genome species. © 2013 Elsevier B.V. All rights reserved.

  4. Avian influenza

    Directory of Open Access Journals (Sweden)

    Tjandra Y. Aditama

    2006-06-01

    Full Text Available Avian influenza, or “bird flu”, is a contagious disease of animals which crossed the species barrier to infect humans and gave a quite impact on public health in the world since 2004, especially due to the threat of pandemic situation. Until 1st March 2006, laboratory-confirmed human cases have been reported in seven countries: Cambodia, Indonesia, Thailand, Viet Nam, China, Iraq and Turkey with a total of 174 cases and 94 dead (54.02%. Indonesia has 27 cases, 20 were dead (74.07%. AI cases in Indonesia are more in male (62.5% and all have a symptom of fever. An influenza pandemic is a rare but recurrent event. An influenza pandemic happens when a new subtype emerges that has not previously circulated in humans. For this reason, avian H5N1 is a strain with pandemic potential, since it might ultimately adapt into a strain that is contagious among humans. Impact of the pandemic could include high rates of illness and worker absenteeism are expected, and these will contribute to social and economic disruption. Historically, the number of deaths during a pandemic has varied greatly. Death rates are largely determined by four factors: the number of people who become infected, the virulence of the virus, the underlying characteristics and vulnerability of affected populations, and the effectiveness of preventive measures. Accurate predictions of mortality cannot be made before the pandemic virus emerges and begins to spread. (Med J Indones 2006; 15:125-8Keywords: Avian Influenza, Pandemic

  5. Multilocus phylogeny of the avian family Alaudidae (larks) reveals complex morphological evolution, non-monophyletic genera and hidden species diversity.

    Science.gov (United States)

    Alström, Per; Barnes, Keith N; Olsson, Urban; Barker, F Keith; Bloomer, Paulette; Khan, Aleem Ahmed; Qureshi, Masood Ahmed; Guillaumet, Alban; Crochet, Pierre-André; Ryan, Peter G

    2013-12-01

    The Alaudidae (larks) is a large family of songbirds in the superfamily Sylvioidea. Larks are cosmopolitan, although species-level diversity is by far largest in Africa, followed by Eurasia, whereas Australasia and the New World have only one species each. The present study is the first comprehensive phylogeny of the Alaudidae. It includes 83.5% of all species and representatives from all recognised genera, and was based on two mitochondrial and three nuclear loci (in total 6.4 kbp, although not all loci were available for all species). In addition, a larger sample, comprising several subspecies of some polytypic species was analysed for one of the mitochondrial loci. There was generally good agreement in trees inferred from different loci, although some strongly supported incongruences were noted. The tree based on the concatenated multilocus data was overall well resolved and well supported by the data. We stress the importance of performing single gene as well as combined data analyses, as the latter may obscure significant incongruence behind strong nodal support values. The multilocus tree revealed many unpredicted relationships, including some non-monophyletic genera (Calandrella, Mirafra, Melanocorypha, Spizocorys). The tree based on the extended mitochondrial data set revealed several unexpected deep divergences between taxa presently treated as conspecific (e.g. within Ammomanes cinctura, Ammomanes deserti, Calandrella brachydactyla, Eremophila alpestris), as well as some shallow splits between currently recognised species (e.g. Certhilauda brevirostris-C. semitorquata-C. curvirostris; Calendulauda barlowi-C. erythrochlamys; Mirafra cantillans-M. javanica). Based on our results, we propose a revised generic classification, and comment on some species limits. We also comment on the extraordinary morphological adaptability in larks, which has resulted in numerous examples of parallel evolution (e.g. in Melanocorypha mongolica and Alauda leucoptera [both

  6. Meiosis genes in Daphnia pulex and the role of parthenogenesis in genome evolution

    Science.gov (United States)

    Schurko, Andrew M; Logsdon, John M; Eads, Brian D

    2009-01-01

    Background Thousands of parthenogenetic animal species have been described and cytogenetic manifestations of this reproductive mode are well known. However, little is understood about the molecular determinants of parthenogenesis. The Daphnia pulex genome must contain the molecular machinery for different reproductive modes: sexual (both male and female meiosis) and parthenogenetic (which is either cyclical or obligate). This feature makes D. pulex an ideal model to investigate the genetic basis of parthenogenesis and its consequences for gene and genome evolution. Here we describe the inventory of meiotic genes and their expression patterns during meiotic and parthenogenetic reproduction to help address whether parthenogenesis uses existing meiotic and mitotic machinery, or whether novel processes may be involved. Results We report an inventory of 130 homologs representing over 40 genes encoding proteins with diverse roles in meiotic processes in the genome of D. pulex. Many genes involved in cell cycle regulation and sister chromatid cohesion are characterized by expansions in copy number. In contrast, most genes involved in DNA replication and homologous recombination are present as single copies. Notably, RECQ2 (which suppresses homologous recombination) is present in multiple copies while DMC1 is the only gene in our inventory that is absent in the Daphnia genome. Expression patterns for 44 gene copies were similar during meiosis versus parthenogenesis, although several genes displayed marked differences in expression level in germline and somatic tissues. Conclusion We propose that expansions in meiotic gene families in D. pulex may be associated with parthenogenesis. Taking into account our findings, we provide a mechanistic model of parthenogenesis, highlighting steps that must differ from meiosis including sister chromatid cohesion and kinetochore attachment. PMID:19383157

  7. Meiosis genes in Daphnia pulex and the role of parthenogenesis in genome evolution.

    Science.gov (United States)

    Schurko, Andrew M; Logsdon, John M; Eads, Brian D

    2009-04-21

    Thousands of parthenogenetic animal species have been described and cytogenetic manifestations of this reproductive mode are well known. However, little is understood about the molecular determinants of parthenogenesis. The Daphnia pulex genome must contain the molecular machinery for different reproductive modes: sexual (both male and female meiosis) and parthenogenetic (which is either cyclical or obligate). This feature makes D. pulex an ideal model to investigate the genetic basis of parthenogenesis and its consequences for gene and genome evolution. Here we describe the inventory of meiotic genes and their expression patterns during meiotic and parthenogenetic reproduction to help address whether parthenogenesis uses existing meiotic and mitotic machinery, or whether novel processes may be involved. We report an inventory of 130 homologs representing over 40 genes encoding proteins with diverse roles in meiotic processes in the genome of D. pulex. Many genes involved in cell cycle regulation and sister chromatid cohesion are characterized by expansions in copy number. In contrast, most genes involved in DNA replication and homologous recombination are present as single copies. Notably, RECQ2 (which suppresses homologous recombination) is present in multiple copies while DMC1 is the only gene in our inventory that is absent in the Daphnia genome. Expression patterns for 44 gene copies were similar during meiosis versus parthenogenesis, although several genes displayed marked differences in expression level in germline and somatic tissues. We propose that expansions in meiotic gene families in D. pulex may be associated with parthenogenesis. Taking into account our findings, we provide a mechanistic model of parthenogenesis, highlighting steps that must differ from meiosis including sister chromatid cohesion and kinetochore attachment.

  8. The octopus genome and the evolution of cephalopod neural and morphological novelties.

    Science.gov (United States)

    Albertin, Caroline B; Simakov, Oleg; Mitros, Therese; Wang, Z Yan; Pungor, Judit R; Edsinger-Gonzales, Eric; Brenner, Sydney; Ragsdale, Clifton W; Rokhsar, Daniel S

    2015-08-13

    Coleoid cephalopods (octopus, squid and cuttlefish) are active, resourceful predators with a rich behavioural repertoire. They have the largest nervous systems among the invertebrates and present other striking morphological innovations including camera-like eyes, prehensile arms, a highly derived early embryogenesis and a remarkably sophisticated adaptive colouration system. To investigate the molecular bases of cephalopod brain and body innovations, we sequenced the genome and multiple transcriptomes of the California two-spot octopus, Octopus bimaculoides. We found no evidence for hypothesized whole-genome duplications in the octopus lineage. The core developmental and neuronal gene repertoire of the octopus is broadly similar to that found across invertebrate bilaterians, except for massive expansions in two gene families previously thought to be uniquely enlarged in vertebrates: the protocadherins, which regulate neuronal development, and the C2H2 superfamily of zinc-finger transcription factors. Extensive messenger RNA editing generates transcript and protein diversity in genes involved in neural excitability, as previously described, as well as in genes participating in a broad range of other cellular functions. We identified hundreds of cephalopod-specific genes, many of which showed elevated expression levels in such specialized structures as the skin, the suckers and the nervous system. Finally, we found evidence for large-scale genomic rearrangements that are closely associated with transposable element expansions. Our analysis suggests that substantial expansion of a handful of gene families, along with extensive remodelling of genome linkage and repetitive content, played a critical role in the evolution of cephalopod morphological innovations, including their large and complex nervous systems.

  9. Comparative Genomic Analysis of Rapid Evolution of an Extreme-Drug-Resistant Acinetobacter baumannii Clone

    Science.gov (United States)

    Tan, Sean Yang-Yi; Chua, Song Lin; Liu, Yang; Høiby, Niels; Andersen, Leif Percival; Givskov, Michael; Song, Zhijun; Yang, Liang

    2013-01-01

    The emergence of extreme-drug-resistant (EDR) bacterial strains in hospital and nonhospital clinical settings is a big and growing public health threat. Understanding the antibiotic resistance mechanisms at the genomic levels can facilitate the development of next-generation agents. Here, comparative genomics has been employed to analyze the rapid evolution of an EDR Acinetobacter baumannii clone from the intensive care unit (ICU) of Rigshospitalet at Copenhagen. Two resistant A. baumannii strains, 48055 and 53264, were sequentially isolated from two individuals who had been admitted to ICU within a 1-month interval. Multilocus sequence typing indicates that these two isolates belonged to ST208. The A. baumannii 53264 strain gained colistin resistance compared with the 48055 strain and became an EDR strain. Genome sequencing indicates that A. baumannii 53264 and 48055 have almost identical genomes—61 single-nucleotide polymorphisms (SNPs) were found between them. The A. baumannii 53264 strain was assembled into 130 contigs, with a total length of 3,976,592 bp with 38.93% GC content. The A. baumannii 48055 strain was assembled into 135 contigs, with a total length of 4,049,562 bp with 39.00% GC content. Genome comparisons showed that this A. baumannii clone is classified as an International clone II strain and has 94% synteny with the A. baumannii ACICU strain. The ResFinder server identified a total of 14 antibiotic resistance genes in the A. baumannii clone. Proteomic analyses revealed that a putative porin protein was down-regulated when A. baumannii 53264 was exposed to antimicrobials, which may reduce the entry of antibiotics into the bacterial cell. PMID:23538992

  10. Organization and evolution of two SIDER retroposon subfamilies and their impact on the Leishmania genome

    Directory of Open Access Journals (Sweden)

    Bringaud Frédéric

    2009-05-01

    Full Text Available Abstract Background We have recently identified two large families of extinct transposable elements termed Short Interspersed DEgenerated Retroposons (SIDERs in the parasitic protozoan Leishmania major. The characterization of SIDER elements was limited to the SIDER2 subfamily, although members of both subfamilies have been shown to play a role in the regulation of gene expression at the post-transcriptional level. Apparent functional domestication of SIDERs prompted further investigation of their characterization, dissemination and evolution throughout the Leishmania genus, with particular attention to the disregarded SIDER1 subfamily. Results Using optimized statistical profiles of both SIDER1 and SIDER2 subgroups, we report the first automated and highly sensitive annotation of SIDERs in the genomes of L. infantum, L. braziliensis and L. major. SIDER annotations were combined to in-silico mRNA extremity predictions to generate a detailed distribution map of the repeat family, hence uncovering an enrichment of antisense-oriented SIDER repeats between the polyadenylation and trans-splicing sites of intergenic regions, in contrast to the exclusive sense orientation of SIDER elements within 3'UTRs. Our data indicate that SIDER elements are quite uniformly dispersed throughout all three genomes and that their distribution is generally syntenic. However, only 47.4% of orthologous genes harbor a SIDER element in all three species. There is evidence for species-specific enrichment of SIDERs and for their preferential association, especially for SIDER2s, with different metabolic functions. Investigation of the sequence attributes and evolutionary relationship of SIDERs to other trypanosomatid retroposons reveals that SIDER1 is a truncated version of extinct autonomous ingi-like retroposons (DIREs, which were functional in the ancestral Leishmania genome. Conclusion A detailed characterization of the sequence traits for both SIDER subfamilies unveils

  11. Comparative genomics of four closely related Clostridium perfringens bacteriophages reveals variable rates of evolution within a core genome

    Science.gov (United States)

    Background: Biotechnological uses of bacteriophage gene products as alternatives to conventional antibiotics will require a thorough understanding of their genomic context. We sequenced and analyzed the genomes of four closely related phages isolated from Clostridium perfringens, an important agricu...

  12. Novel Insights into Chromosome Evolution in Birds, Archosaurs, and Reptiles.

    Science.gov (United States)

    Farré, Marta; Narayan, Jitendra; Slavov, Gancho T; Damas, Joana; Auvil, Loretta; Li, Cai; Jarvis, Erich D; Burt, David W; Griffin, Darren K; Larkin, Denis M

    2016-08-25

    Homologous synteny blocks (HSBs) and evolutionary breakpoint regions (EBRs) in mammalian chromosomes are enriched for distinct DNA features, contributing to distinct phenotypes. To reveal HSB and EBR roles in avian evolution, we performed a sequence-based comparison of 21 avian and 5 outgroup species using recently sequenced genomes across the avian family tree and a newly-developed algorithm. We identified EBRs and HSBs in ancestral bird, archosaurian (bird, crocodile, and dinosaur), and reptile chromosomes. Genes involved in the regulation of gene expression and biosynthetic processes were preferably located in HSBs, including for example, avian-specific HSBs enriched for genes involved in limb development. Within birds, some lineage-specific EBRs rearranged genes were related to distinct phenotypes, such as forebrain development in parrots. Our findings provide novel evolutionary insights into genome evolution in birds, particularly on how chromosome rearrangements likely contributed to the formation of novel phenotypes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae).

    Science.gov (United States)

    Alverson, Andrew J; Wei, XiaoXin; Rice, Danny W; Stern, David B; Barry, Kerrie; Palmer, Jeffrey D

    2010-06-01

    The mitochondrial genomes of seed plants are unusually large and vary in size by at least an order of magnitude. Much of this variation occurs within a single family, the Cucurbitaceae, whose genomes range from an estimated 390 to 2,900 kb in size. We sequenced the mitochondrial genomes of Citrullus lanatus (watermelon: 379,236 nt) and Cucurbita pepo (zucchini: 982,833 nt)--the two smallest characterized cucurbit mitochondrial genomes--and determined their RNA editing content. The relatively compact Citrullus mitochondrial genome actually contains more and longer genes and introns, longer segmental duplications, and more discernibly nuclear-derived DNA. The large size of the Cucurbita mitochondrial genome reflects the accumulation of unprecedented amounts of both chloroplast sequences (>113 kb) and short repeated sequences (>370 kb). A low mutation rate has been hypothesized to underlie increases in both genome size and RNA editing frequency in plant mitochondria. However, despite its much larger genome, Cucurbita has a significantly higher synonymous substitution rate (and presumably mutation rate) than Citrullus but comparable levels of RNA editing. The evolution of mutation rate, genome size, and RNA editing are apparently decoupled in Cucurbitaceae, reflecting either simple stochastic variation or governance by different factors.

  14. Insights into the Evolution of Longevity from the Bowhead Whale Genome

    Directory of Open Access Journals (Sweden)

    Michael Keane

    2015-01-01

    Full Text Available The bowhead whale (Balaena mysticetus is estimated to live over 200 years and is possibly the longest-living mammal. These animals should possess protective molecular adaptations relevant to age-related diseases, particularly cancer. Here, we report the sequencing and comparative analysis of the bowhead whale genome and two transcriptomes from different populations. Our analysis identifies genes under positive selection and bowhead-specific mutations in genes linked to cancer and aging. In addition, we identify gene gain and loss involving genes associated with DNA repair, cell-cycle regulation, cancer, and aging. Our results expand our understanding of the evolution of mammalian longevity and suggest possible players involved in adaptive genetic changes conferring cancer resistance. We also found potentially relevant changes in genes related to additional processes, including thermoregulation, sensory perception, dietary adaptations, and immune response. Our data are made available online (http://www.bowhead-whale.org to facilitate research in this long-lived species.

  15. Ultra-deep sequencing reveals the subclonal structure and genomic evolution of oral squamous cell carcinoma

    DEFF Research Database (Denmark)

    Tabatabaeifar, Siavosh; Thomassen, Mads; Larsen, Martin Jakob

    Background: Oral squamous cell carcinoma (OSCC), a subgroup of head and neck squamous cell carcinoma (HNSCC), is primarily caused by alcohol consumption and tobacco use. Recent DNA sequencing studies suggests that HNSCC are very heterogeneous between patients; however the intra-patient subclonal...... structure remains unexplored due to lack of sampling multiple tumor biopsies from each patient. Materials and methods: To examine the clonal structure and describe the genomic cancer evolution we applied whole-exome sequencing combined with targeted ultra-deep targeted sequencing on biopsies from 5stage IV...... of unprecedented high resolution enabling clear detection of subclonal structure and observation of otherwise undetectable mutations. Furthermore, we demonstrate that OSCC show a high degree of inter-patient heterogeneity but a low degree of intra-patient/tumor heterogeneity. However, some OSCC cancers contain...

  16. Ultra-deep sequencing reveals the subclonal structure and genomic evolution of oral squamous cell carcinoma

    DEFF Research Database (Denmark)

    Tabatabaeifar, Siavosh; Thomassen, Mads; Larsen, Martin Jakob

    Background: Oral squamous cell carcinoma (OSCC), a subgroup of head and neck squamous cell carcinoma (HNSCC), is primarily caused by alcohol consumption and tobacco use. Recent DNA sequencing studies suggests that HNSCC are very heterogeneous between patients; however the intra-patient subclonal...... structure remains unexplored due to lack of sampling multiple tumor biopsies from each patient. Materials and methods: To examine the clonal structure and describe the genomic cancer evolution we applied whole-exome sequencing combined with targeted ultra-deep targeted sequencing on biopsies from 5stage IV...... OSCC patients. From each patient, a series of biopsies were sampled from 3 distinct geographical sites in primary tumor and 1 lymph node metastasis. A whole blood sample was taken as the matched reference. Results and discussion: Our results demonstrate that ultra-deep sequencing gives a level...

  17. Time to Spread Your Wings: A Review of the Avian Ancient DNA Field

    Directory of Open Access Journals (Sweden)

    Alicia Grealy

    2017-07-01

    Full Text Available Ancient DNA (aDNA has the ability to inform the evolutionary history of both extant and extinct taxa; however, the use of aDNA in the study of avian evolution is lacking in comparison to other vertebrates, despite birds being one of the most species-rich vertebrate classes. Here, we review the field of “avian ancient DNA” by summarising the past three decades of literature on this topic. Most studies over this time have used avian aDNA to reconstruct phylogenetic relationships and clarify taxonomy based on the sequencing of a few mitochondrial loci, but recent studies are moving toward using a comparative genomics approach to address developmental and functional questions. Applying aDNA analysis with more practical outcomes in mind (such as managing conservation is another increasingly popular trend among studies that utilise avian aDNA, but the majority of these have yet to influence management policy. We find that while there have been advances in extracting aDNA from a variety of avian substrates including eggshell, feathers, and coprolites, there is a bias in the temporal focus; the majority of the ca. 150 studies reviewed here obtained aDNA from late Holocene (100–1000 yBP material, with few studies investigating Pleistocene-aged material. In addition, we identify and discuss several other issues within the field that require future attention. With more than one quarter of Holocene bird extinctions occurring in the last several hundred years, it is more important than ever to understand the mechanisms driving the evolution and extinction of bird species through the use of aDNA.

  18. Multi-platform next-generation sequencing of the domestic turkey (Meleagris gallopavo: genome assembly and analysis.

    Directory of Open Access Journals (Sweden)

    Rami A Dalloul

    2010-09-01

    Full Text Available A synergistic combination of two next-generation sequencing platforms with a detailed comparative BAC physical contig map provided a cost-effective assembly of the genome sequence of the domestic turkey (Meleagris gallopavo. Heterozygosity of the sequenced source genome allowed discovery of more than 600,000 high quality single nucleotide variants. Despite this heterozygosity, the current genome assembly (∼1.1 Gb includes 917 Mb of sequence assigned to specific turkey chromosomes. Annotation identified nearly 16,000 genes, with 15,093 recognized as protein coding and 611 as non-coding RNA genes. Comparative analysis of the turkey, chicken, and zebra finch genomes, and comparing avian to mammalian species, supports the characteristic stability of avian genomes and identifies genes unique to the avian lineage. Clear differences are seen in number and variety of genes of the avian immune system where expansions and novel genes are less frequent than examples of gene loss. The turkey genome sequence provides resources to further understand the evolution of vertebrate genomes and genetic variation underlying economically important quantitative traits in poultry. This integrated approach may be a model for providing both gene and chromosome level assemblies of other species with agricultural, ecological, and evolutionary interest.

  19. Multi-Platform Next-Generation Sequencing of the Domestic Turkey (Meleagris gallopavo): Genome Assembly and Analysis

    Science.gov (United States)

    Aslam, Luqman; Beal, Kathryn; Ann Blomberg, Le; Bouffard, Pascal; Burt, David W.; Crasta, Oswald; Crooijmans, Richard P. M. A.; Cooper, Kristal; Coulombe, Roger A.; De, Supriyo; Delany, Mary E.; Dodgson, Jerry B.; Dong, Jennifer J.; Evans, Clive; Frederickson, Karin M.; Flicek, Paul; Florea, Liliana; Folkerts, Otto; Groenen, Martien A. M.; Harkins, Tim T.; Herrero, Javier; Hoffmann, Steve; Megens, Hendrik-Jan; Jiang, Andrew; de Jong, Pieter; Kaiser, Pete; Kim, Heebal; Kim, Kyu-Won; Kim, Sungwon; Langenberger, David; Lee, Mi-Kyung; Lee, Taeheon; Mane, Shrinivasrao; Marcais, Guillaume; Marz, Manja; McElroy, Audrey P.; Modise, Thero; Nefedov, Mikhail; Notredame, Cédric; Paton, Ian R.; Payne, William S.; Pertea, Geo; Prickett, Dennis; Puiu, Daniela; Qioa, Dan; Raineri, Emanuele; Ruffier, Magali; Salzberg, Steven L.; Schatz, Michael C.; Scheuring, Chantel; Schmidt, Carl J.; Schroeder, Steven; Searle, Stephen M. J.; Smith, Edward J.; Smith, Jacqueline; Sonstegard, Tad S.; Stadler, Peter F.; Tafer, Hakim; Tu, Zhijian (Jake); Van Tassell, Curtis P.; Vilella, Albert J.; Williams, Kelly P.; Yorke, James A.; Zhang, Liqing; Zhang, Hong-Bin; Zhang, Xiaojun; Zhang, Yang; Reed, Kent M.

    2010-01-01

    A synergistic combination of two next-generation sequencing platforms with a detailed comparative BAC physical contig map provided a cost-effective assembly of the genome sequence of the domestic turkey (Meleagris gallopavo). Heterozygosity of the sequenced source genome allowed discovery of more than 600,000 high quality single nucleotide variants. Despite this heterozygosity, the current genome assembly (∼1.1 Gb) includes 917 Mb of sequence assigned to specific turkey chromosomes. Annotation identified nearly 16,000 genes, with 15,093 recognized as protein coding and 611 as non-coding RNA genes. Comparative analysis of the turkey, chicken, and zebra finch genomes, and comparing avian to mammalian species, supports the characteristic stability of avian genomes and identifies genes unique to the avian lineage. Clear differences are seen in number and variety of genes of the avian immune system where expansions and novel genes are less frequent than examples of gene loss. The turkey genome sequence provides resources to further understand the evolution of vertebrate genomes and genetic variation underlying economically important quantitative traits in poultry. This integrated approach may be a model for providing both gene and chromosome level assemblies of other species with agricultural, ecological, and evolutionary interest. PMID:20838655

  20. Genomic diversity and evolution of Mycobacterium ulcerans revealed by next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Weihong Qi

    2009-09-01

    Full Text Available Mycobacterium ulcerans is the causative agent of Buruli ulcer, the third most common mycobacterial disease after tuberculosis and leprosy. It is an emerging infectious disease that afflicts mainly children and youths in West Africa. Little is known about the evolution and transmission mode of M. ulcerans, partially due to the lack of known genetic polymorphisms among isolates, limiting the application of genetic epidemiology. To systematically profile single nucleotide polymorphisms (SNPs, we sequenced the genomes of three M. ulcerans strains using 454 and Solexa technologies. Comparison with the reference genome of the Ghanaian classical lineage isolate Agy99 revealed 26,564 SNPs in a Japanese strain representing the ancestral lineage. Only 173 SNPs were found when comparing Agy99 with two other Ghanaian isolates, which belong to the two other types previously distinguished in Ghana by variable number tandem repeat typing. We further analyzed a collection of Ghanaian strains using the SNPs discovered. With 68 SNP loci, we were able to differentiate 54 strains into 13 distinct SNP haplotypes. The average SNP nucleotide diversity was low (average 0.06-0.09 across 68 SNP loci, and 96% of the SNP locus pairs were in complete linkage disequilibrium. We estimated that the divergence of the M. ulcerans Ghanaian clade from the Japanese strain occurred 394 to 529 thousand years ago. The Ghanaian subtypes diverged about 1000 to 3000 years ago, or even much more recently, because we found evidence that they evolved significantly faster than average. Our results offer significant insight into the evolution of M. ulcerans and provide a comprehensive report on genetic diversity within a highly clonal M. ulcerans population from a Buruli ulcer endemic region, which can facilitate further epidemiological studies of this pathogen through the development of high-resolution tools.

  1. Revisiting the pestilence of Helicobacter pylori: insights into geographical genomics and pathogen evolution.

    Science.gov (United States)

    Carroll, Ian M; Khan, Aleem A; Ahmed, Niyaz

    2004-06-01

    Helicobacter pylori causes chronic gastritis and plays important roles in peptic ulcer disease, gastric carcinoma, and mucosa-associated lymphoid tissue (MALT) lymphoma. It is believed that H. pylori infects over 50% of the worlds' population. However, only a small subset of infected people experience H. pylori-associated illnesses. Associations with disease-specific factors remain enigmatic. The contribution of comparative genomics to our understanding of the genome organisation and diversity of H. pylori is exemplified herein. The discovery of the cag pathogenicity island has revolutionised our understanding of the molecular pathogenesis of gastroduodenal ulcers. Another type IV secretion system, the comB gene cluster, provides a novel transformation system. Identification of this cluster has boosted our perception of horizontal gene transfer and gene mosaicism in H. pylori as a result of natural competence. Recent discovery of a third type IV secretion system called tfs3 encoding cluster in the so called plasticity zone of the H. pylori has gained significant attention, although its role is not clear. Study of the evolution of polymorphisms and sequence variation in H. pylori populations on a global basis is contributing to understanding of the history of human population migration and co-evolution of this pathogen with its human host. Possible symbiotic relationships were debated since the discovery of this pathogen. The debate has been further intensified as recent studies have posed the intriguing possibility that H. pylori infection may be advantageous in some humans. This analogy is based on increased incidence of diseases like gastro-oesophageal reflux disease (GERD), Barrett's oesophagus and adenocarcinoma of the oesophagus following H. pylori eradication in some patients.

  2. Dolphin genome provides evidence for adaptive evolution of nervous system genes and a molecular rate slowdown

    Science.gov (United States)

    McGowen, Michael R.; Grossman, Lawrence I.; Wildman, Derek E.

    2012-01-01

    Cetaceans (dolphins and whales) have undergone a radical transformation from the original mammalian bodyplan. In addition, some cetaceans have evolved large brains and complex cognitive capacities. We compared approximately 10 000 protein-coding genes culled from the bottlenose dolphin genome with nine other genomes to reveal molecular correlates of the remarkable phenotypic features of these aquatic mammals. Evolutionary analyses demonstrated that the overall synonymous substitution rate in dolphins has slowed compared with other studied mammals, and is within the range of primates and elephants. We also discovered 228 genes potentially under positive selection (dN/dS > 1) in the dolphin lineage. Twenty-seven of these genes are associated with the nervous system, including those related to human intellectual disabilities, synaptic plasticity and sleep. In addition, genes expressed in the mitochondrion have a significantly higher mean dN/dS ratio in the dolphin lineage than others examined, indicating evolution in energy metabolism. We encountered selection in other genes potentially related to cetacean adaptations such as glucose and lipid metabolism, dermal and lung development, and the cardiovascular system. This study underlines the parallel molecular trajectory of cetaceans with other mammalian groups possessing large brains. PMID:22740643

  3. Hybridization capture reveals evolution and conservation across the entire Koala retrovirus genome.

    Directory of Open Access Journals (Sweden)

    Kyriakos Tsangaras

    Full Text Available The koala retrovirus (KoRV is the only retrovirus known to be in the midst of invading the germ line of its host species. Hybridization capture and next generation sequencing were used on modern and museum DNA samples of koala (Phascolarctos cinereus to examine ca. 130 years of evolution across the full KoRV genome. Overall, the entire proviral genome appeared to be conserved across time in sequence, protein structure and transcriptional binding sites. A total of 138 polymorphisms were detected, of which 72 were found in more than one individual. At every polymorphic site in the museum koalas, one of the character states matched that of modern KoRV. Among non-synonymous polymorphisms, radical substitutions involving large physiochemical differences between amino acids were e